WorldWideScience

Sample records for hydrodynamic stable concentration

  1. An L-stable method for solving stiff hydrodynamics

    Science.gov (United States)

    Li, Shengtai

    2017-07-01

    We develop a new method for simulating the coupled dynamics of gas and multi-species dust grains. The dust grains are treated as pressure-less fluids and their coupling with gas is through stiff drag terms. If an explicit method is used, the numerical time step is subject to the stopping time of the dust particles, which can become extremely small for small grains. The previous semi-implicit method [1] uses second-order trapezoidal rule (TR) on the stiff drag terms and it works only for moderately small size of the dust particles. This is because TR method is only A-stable not L-stable. In this work, we use TR-BDF2 method [2] for the stiff terms in the coupled hydrodynamic equations. The L-stability of TR-BDF2 proves essential in treating a number of dust species. The combination of TR-BDF2 method with the explicit discretization of other hydro terms can solve a wide variety of stiff hydrodynamics equations accurately and efficiently. We have implemented our method in our LA-COMPASS (Los Alamos Computational Astrophysics Suite) package. We have applied the code to simulate some dusty proto-planetary disks and obtained very good match with astronomical observations.

  2. CISOCUR - Hydrodynamic circulation in the Curonian Lagoon inferred through stable isotope measurements and numerical modelling

    Science.gov (United States)

    Umgiesser, Georg; Razinkovas-Baziukas, Arturas; Barisevičiūtė, Ruta; Baziukė, Dalia; Ertürk, Ali; Gasiūnaitė, Jovita; Gulbinskas, Saulius; Lubienė, Irma; Maračkinaite, Jurgita; Petkuvienė, Jolita; Pilkaitytė, Renata; Ruginis, Tomas; Zemlys, Petras; Žilius, Mindaugas

    2013-04-01

    The spatial pattern of the hydrodynamic circulation of the Curonian lagoon, the largest European coastal lagoon, is still little understood. In absence of automatic current registration data all the existing models relied mostly on such data as water levels leaving high level of uncertainty. Here we present CISOCUR, a new project financed by the European Social Fund under the Global Grant measure. The project applies a new methodology that uses the carbon stable isotope (SI) ratio of C12 and C13 that characterize different water sources entering the lagoon and may be altered by internal kinetic processes. Through the tracing of these isotope ratios different water masses can be identified. This gives the possibility to validate several hypotheses of water circulation and validate hydrodynamic models. In particular it will be possible to 1) trace water masses entering the lagoon through the Nemunas and the Klaipeda strait; 2) test the hypothesis of sediment transport mechanisms inside the lagoon; 3) evaluate the importance of physical forcing on the lagoon circulation. The use of a hydrodynamic finite element model, coupled with the SI method, will allow for a realistic description of the transport processes inside the Curonian lagoon. So the main research goal is to apply the stable isotope tracers and a finite element model to determine the circulation patterns in the Curonian lagoon. Overall, the project will develop according to 4 main phases: 1) A pilot study to measure the isotope composition of different carbon compounds (dissolved and suspended) in different water bodies that feed water into the central lagoon. Through this pilot study the optimal study sites for the seasonal campaign will be identified as well. 2) Seasonal field campaigns in the monitoring stations identified in phase 1 to measure the carbon isotope ratio. 3) Development of a model that describes the kinetics of carbon isotopes and its transformation. 4) Application of a hydrodynamic model

  3. Concentration of stable elements in food products

    International Nuclear Information System (INIS)

    Montford, M.A.; Shank, K.E.; Hendricks, C.; Oakes, T.W.

    1980-01-01

    Food samples were taken from commercial markets and analyzed for stable element content. The concentrations of most stable elements (Ag, Al, As, Au, Ba, Br, Ca, Ce, Cl, Co, Cr, Cs, Cu, Fe, Hf, I, K, La, Mg, Mn, Mo, Na, Rb, Sb, Sc, Se, Sr, Ta, Th, Ti, V, Zn, Zr) were determined using multiple-element neutron activation analysis, while the concentrations of other elements (Cd, Hg, Ni, Pb) were determined using atomic absorption. The relevance of the concentrations found are noted in relation to other literature values. An earlier study was extended to include the determination of the concentration of stable elements in home-grown products in the vicinity of the Oak Ridge National Laboratory. Comparisons between the commercial and local food-stuff values are discussed

  4. Hydrodynamic instabilities and concentration polarization coupled by osmotic pressure in a Taylor-Couette cell

    Science.gov (United States)

    Martinand, Denis; Tilton, Nils

    2016-11-01

    This study addresses analytically and numerically the coupling between hydrodynamic instabilities and osmotic pressure driven by concentration polarization. The configuration consists of a Taylor-Couette cell filled with a Newtonian fluid carrying a passive scalar. Whereas the concentric inner and outer cylinders are membranes permeable to the solvent, they totally reject the scalar. As a radial in- or outflow of solvent is imposed through both cylinders, a concentration boundary layer develops on the cylinder where the solvent exits, until an equilibrium steady state is reached. In addition, the rotation of the inner cylinder is used to drive centrifugal instabilities in the form of toroidal vortices, which interact with the concentration boundary layer. By means of the osmotic pressure, concentration polarization is found to promote or hinder the hydrodynamic instabilities, depending on capacity of the vortices and diffusion to increase the concentration field at the membrane. The results obtained by analytical stability analysis agree with dedicated Direct Numerical Simulations.

  5. Hydrodynamic Investigation of a Concentric Cylindrical OWC Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Yu Zhou

    2018-04-01

    Full Text Available A fixed, concentric, cylindrical oscillating water column (OWC wave energy converter (WEC is proposed for shallow offshore sites. Compared with the existing shoreline OWC device, this wave energy device is not restricted by the wave directions and coastline geography conditions. Analytical solutions are derived based on the linear potential-flow theory and eigen-function expansion technique to investigate hydrodynamic properties of the device. Three typical free-surface oscillation modes in the chamber are discussed, of which the piston-type mode makes the main contribution to the energy conversion. The effects of the geometrical parameters on the hydrodynamic properties are further investigated. The resonance frequency of the chamber, the power extraction efficiency, and the effective frequency bandwidth of the device is discussed, amongst other topics. It is found that the proposed OWC-WEC device with a lower draft and wider chamber breadth has better power extraction ability.

  6. Log-stable concentration distributions of trace elements in biomedical samples

    International Nuclear Information System (INIS)

    Kubala-Kukus, A.; Kuternoga, E.; Braziewicz, J.; Pajek, M.

    2004-01-01

    In the present paper, which follows our earlier observation that the asymmetric and long-tailed concentration distributions of trace elements in biomedical samples, measured by the X-ray fluorescence techniques, can be modeled by the log-stable distributions, further specific aspects of this observation are discussed. First, we demonstrate that, typically, for a quite substantial fraction (10-20%) of trace elements studied in different kinds of biomedical samples, the measured concentration distributions are described in fact by the 'symmetric' log-stable distributions, i.e. the asymmetric distributions which are described by the symmetric stable distributions. This observation is, in fact, expected for the random multiplicative process, which models the concentration distributions of trace elements in the biomedical samples. The log-stable nature of concentration distribution of trace elements results in several problems of statistical nature, which have to be addressed in XRF data analysis practice. Consequently, in the present paper, the following problems, namely (i) the estimation of parameters for stable distributions and (ii) the testing of the log-stable nature of the concentration distribution by using the Anderson-Darling (A 2 ) test, especially for symmetric stable distributions, are discussed in detail. In particular, the maximum likelihood estimation and Monte Carlo simulation techniques were used, respectively, for estimation of stable distribution parameters and calculation of the critical values for the Anderson-Darling test. The discussed ideas are exemplified by the results of the study of trace element concentration distributions in selected biomedical samples, which were obtained by using the X-ray fluorescence (XRF, TXRF) methods

  7. Caffeine Citrate Dosing Adjustments to Assure Stable Caffeine Concentrations in Preterm Neonates.

    Science.gov (United States)

    Koch, Gilbert; Datta, Alexandre N; Jost, Kerstin; Schulzke, Sven M; van den Anker, John; Pfister, Marc

    2017-12-01

    To identify dosing strategies that will assure stable caffeine concentrations in preterm neonates despite changing caffeine clearance during the first 8 weeks of life. A 3-step simulation approach was used to compute caffeine doses that would achieve stable caffeine concentrations in the first 8 weeks after birth: (1) a mathematical weight change model was developed based on published weight distribution data; (2) a pharmacokinetic model was developed based on published models that accounts for individual body weight, postnatal, and gestational age on caffeine clearance and volume of distribution; and (3) caffeine concentrations were simulated for different dosing regimens. A standard dosing regimen of caffeine citrate (using a 20 mg/kg loading dose and 5 mg/kg/day maintenance dose) is associated with a maximal trough caffeine concentration of 15 mg/L after 1 week of treatment. However, trough concentrations subsequently exhibit a clinically relevant decrease because of increasing clearance. Model-based simulations indicate that an adjusted maintenance dose of 6 mg/kg/day in the second week, 7 mg/kg/day in the third to fourth week and 8 mg/kg/day in the fifth to eighth week assures stable caffeine concentrations with a target trough concentration of 15 mg/L. To assure stable caffeine concentrations during the first 8 weeks of life, the caffeine citrate maintenance dose needs to be increased by 1 mg/kg every 1-2 weeks. These simple adjustments are expected to maintain exposure to stable caffeine concentrations throughout this important developmental period and might enhance both the short- and long-term beneficial effects of caffeine treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Isotopic methods of investigations of hydrodynamics in installations for hydrometallurgic processing of copper concentrates

    International Nuclear Information System (INIS)

    Stsheletski, M.; Urban'ski, T.S.

    1979-01-01

    Isotope methods have been presented of investigations of hydrodynamics of liquid and solid phases in pilot-scale installations for hydrometallurgic processing of copper concentrates: in the column installation for leaching; in the tubular reactor for copper reduction by hydrogen and in the installation for crystallization of magnesium sulphate under pressure conditions. The column leaching installation has been tested by pulse injection of two radioisotope indicators simultaneously. The copper concentrate was labelled by sorbed colloidal gold-198 and the liquid phase was labelled by solution of sodium chloride containing sodium-24. Measurements of the radiation intensities were registered by scintillation counters, working with a single-channel amplitude analyzer, integrators and counting rate monitors. According to the distribution of time of stay, by the moments method, number of powers of ideal intermixings in the cell model of flow of the both phases. In the tubular reactor process of copper reduction by hydrogen is going on in three phases: gas-liquid-solig phase. Hydrodynamic investigations in this instalation was done in the presence of air, water and copper powder. Water was labelled by sodium-24 and copper powder by copper-64. Changes of intensity of radiation were measured by scintillation counters, located along the installation and were registered by multichannel amplitude analyzer. Peckle number and longitudal dispersion factor were determined. In investigations of the solid phase hydrodynamics during crystallization of magnesium sulphate under elevated temperature and high pressure, as an indicator, isotope gold-198 has been used, by which crystalls of the solid phase were labelled, and isotope sodium-24 was added to a liquid. Simultaneousely were measured and registered by a single-channel analyzer intensity of radiation of both indicators. Mean time of stay and parameters of a mathematical model of the phases flow in this installation were

  9. Influence of concentration and hydrodynamic factors in sorption of iodine by anion-exchangers of the mass-transfer rate

    International Nuclear Information System (INIS)

    Sokolov, V.V.; Smirnov, N.N.

    1982-01-01

    An investigation of the joint influence of hydrodynamic and concentration factors in sorption of iodine by AV-17-8 and anion exchange resins on the mass-transfer coefficient is the subject of this report. The method of central composite rotatable experimental design was used for quantitative assessment and derivation of the appropriate equations. The investigation yielded the necessary regression equations satisfactorily describing the influence of all the factors in the mass-transfer coefficient. the optimal mass-transfer conditions were determined. On the basis of the values obtained, recommendations are made on the optimal hydrodynamic conditions of operation of equipment with pneumatic circulation of the ion-exchanger

  10. Two-component fluid membranes near repulsive walls: Linearized hydrodynamics of equilibrium and nonequilibrium states.

    Science.gov (United States)

    Sankararaman, Sumithra; Menon, Gautam I; Sunil Kumar, P B

    2002-09-01

    We study the linearized hydrodynamics of a two-component fluid membrane near a repulsive wall, using a model that incorporates curvature-concentration coupling as well as hydrodynamic interactions. This model is a simplified version of a recently proposed one [J.-B. Manneville et al., Phys. Rev. E 64, 021908 (2001)] for nonequilibrium force centers embedded in fluid membranes, such as light-activated bacteriorhodopsin pumps incorporated in phospholipid egg phosphatidyl choline (EPC) bilayers. The pump-membrane system is modeled as an impermeable, two-component bilayer fluid membrane in the presence of an ambient solvent, in which one component, representing active pumps, is described in terms of force dipoles displaced with respect to the bilayer midpoint. We first discuss the case in which such pumps are rendered inactive, computing the mode structure in the bulk as well as the modification of hydrodynamic properties by the presence of a nearby wall. These results should apply, more generally, to equilibrium fluid membranes comprised of two components, in which the effects of curvature-concentration coupling are significant, above the threshold for phase separation. We then discuss the fluctuations and mode structure in the steady state of active two-component membranes near a repulsive wall. We find that proximity to the wall smoothens membrane height fluctuations in the stable regime, resulting in a logarithmic scaling of the roughness even for initially tensionless membranes. This explicitly nonequilibrium result is a consequence of the incorporation of curvature-concentration coupling in our hydrodynamic treatment. This result also indicates that earlier scaling arguments which obtained an increase in the roughness of active membranes near repulsive walls upon neglecting the role played by such couplings may need to be reevaluated.

  11. A simple method to estimate the optimum iodine concentration of contrast material through microcatheters: hydrodynamic calculation with spreadsheet software

    International Nuclear Information System (INIS)

    Yamauchi, Teiyu; Hayashi, Toshihiko; Yamada, Takeshi; Futami, Choichiro; Tsukiyama, Yumiko; Harada, Motoko; Furui, Shigeru; Suzuki, Shigeru; Mimura, Kohshiro

    2008-01-01

    It is important to increase the iodine delivery rate (I), that is the iodine concentration of the contrast material (C) x the flow rate of the contrast material (Q), through microcatheters to obtain arteriograms of the highest contrast. It is known that C is an important factor that influences I. The purpose of this study is to establish a method of hydrodynamic calculation of the optimum iodine concentration (i.e., the iodine concentration at which I becomes maximum) of the contrast material and its flow rate through commercially available microcatheters. Iopamidol, ioversol and iohexol of ten iodine concentrations were used. Iodine delivery rates (I meas) of each contrast material through ten microcatheters were measured. The calculated iodine delivery rate (I cal) and calculated optimum iodine concentration (calculated C opt) were obtained with spreadsheet software. The agreement between I cal and I meas was studied by correlation and logarithmic Bland-Altman analyses. The value of the calculated C opt was within the optimum range of iodine concentrations (i.e. the range of iodine concentrations at which I meas becomes 90% or more of the maximum) in all cases. A good correlation between I cal and I meas (I cal = 1.08 I meas, r = 0.99) was observed. Logarithmic Bland-Altman analysis showed that the 95% confidence interval of I cal/I meas was between 0.82 and 1.29. In conclusion, hydrodynamic calculation with spreadsheet software is an accurate, generally applicable and cost-saving method to estimate the value of the optimum iodine concentration and its flow rate through microcatheters

  12. Colloidal suspensions hydrodynamic retention mechanisms in model porous media

    International Nuclear Information System (INIS)

    Salehi, N.

    1996-01-01

    This study deals with the retention mechanisms of colloidal particles in porous media flows, and the subsequent reduction in permeability in the case of stable and non adsorbing colloids. It combines experimental results and modelling. This study has been realised with stable dispersion of monodispersed carboxylate polystyrene latexes negatively charged injected through negatively charged polycarbonate membranes having mono-sized cylindrical pores. The mean particle diameter is smaller than the mean pore diameter. Both batch and flow experiments in Nuclepore membranes have been done. The results of batch experiments have proved no adsorption of the colloidal latex particles on the surface of the Nuclepore membranes without flow at low salinity. In flow experiments at low particle concentration, only deposition on the upstream side of the membrane have been induced by hydrodynamic forces even for non adsorbing particles without creating any permeability reduction. The retention levels are zero at low and high Peclet numbers with a maximum at intermediate values. Partial plugging was observed at higher colloid concentration even at low salinity without any upstream surface deposition. The modelling of plugging processes is achieved by considering the particle concentration, fluid rate and ratio between the mean pore diameter and the mean particle diameter. This study can be particularly useful in the fields of water treatment and of restoration of lands following radioactive contamination. (author). 96 refs., 99 figs., 29 tabs

  13. A model to secure a stable iodine concentration in milk

    Directory of Open Access Journals (Sweden)

    Gisken Trøan

    2015-12-01

    Full Text Available Background: Dairy products account for approximately 60% of the iodine intake in the Norwegian population. The iodine concentration in cow's milk varies considerably, depending on feeding practices, season, and amount of iodine and rapeseed products in cow fodder. The variation in iodine in milk affects the risk of iodine deficiency or excess in the population. Objective: The first goal of this study was to develop a model to predict the iodine concentration in milk based on the concentration of iodine and rapeseed or glucosinolate in feed, as a tool to securing stable iodine concentration in milk. A second aim was to estimate the impact of different iodine levels in milk on iodine nutrition in the Norwegian population. Design: Two models were developed on the basis of results from eight published and two unpublished studies from the past 20 years. The models were based on different iodine concentrations in the fodder combined with either glucosinolate (Model 1 or rapeseed cake/meal (Model 2. To illustrate the impact of different iodine concentrations in milk on iodine intake, we simulated the iodine contribution from dairy products in different population groups based on food intake data in the most recent dietary surveys in Norway. Results: The models developed could predict iodine concentration in milk. Cross-validation showed good fit and confirmed the explanatory power of the models. Our calculations showed that dairy products with current iodine level in milk (200 µg/kg cover 68, 49, 108 and 56% of the daily iodine requirements for men, women, 2-year-old children, and pregnant women, respectively. Conclusions: Securing a stable level of iodine in milk by adjusting iodine concentration in different cow feeds is thus important for preventing excess intake in small children and iodine deficiency in pregnant and non-pregnant women.

  14. Studies on concentration of minor stable elements in marine environmental samples

    International Nuclear Information System (INIS)

    Suzuki, Hamaji; Ishii, Toshiaki; Iimura, Mitsue; Koyanagi, Taku

    1978-01-01

    Information on the physico-chemical state and quantity of stable elements in marine environments is frequently required to analyze the radioecological behavior of radionuclides released from nuclear facilities into the sea. In this work, determination of stable Mn, Fe, Co, Zn, Zr, Rb, Cs and some rare earth elements (Ce, Eu, Tb, Yb and Lu) in seawater and marine organisms was carried out and the concentration factors were estimated. Seawater and marine organisms were collected on the seashore of Ibaraki Prefecture and analysed by means of neutron activation analysis or atomic absorption spectrometry depending on the elements or samples. Average concentration factors of the rare earth elements by marine organisms are estimated as 3 x 10 1 : muscle of fish, 5 x 10 2 : soft part of clams, and 2 x 10 2 : algae, respectively. Concentration factors by muscle of fishes were 10 3 : Fe, 2 x 10 2 : Co, 5 x 10 2 : Zn, and 5 x 10 1 : Cs, and those by soft part of shellfishes were 10 4 : Fe, 10 3 : Co, 2 x 10 3 : Zn, and 10 1 : Cs, whereas those by algae were 2 x 10 4 : Fe, 5 x 10 2 : Co, 10 3 : Zn, and 3 x 10 1 : Cs, respectively. The high concentration factors for numerous stable elements by shellfishes and algae suggested their suitabilities to the indicator organisms for monitoring of marine pollution by these heavy metals and corresponding radioisotopes and also their significant contribution to the internal radiation exposure to man as radioactive seafoods. (author)

  15. Hydrodynamic control of microphytoplankton bloom in a coastal sea

    Indian Academy of Sciences (India)

    Hydrodynamic control of microphytoplankton bloom in a coastal sea ... many times more than what could be accounted for by solar insolation and nutrient levels. ... and stable water column and weak winds left undisturbed, the transient bloom.

  16. Experimental investigation of concentration and stable isotopes signals during organic contaminants back diffusion

    DEFF Research Database (Denmark)

    Jin, Biao; Nika, Chrysanthi-Elisabeth; Rolle, Massimo

    2017-01-01

    -dichloroethene (cis-DCE) as model contaminant and we investigated its back diffusion from an impermeable source into a permeable saturated layer, in which advection-dominated flow conditions were established. We used concentration and stable chlorine isotope measurements to investigate the plumes originated by cis...... and stable isotope gradients in the flow-through setup. In particular, steep concentration and stable isotope gradients were observed at the outlet. Lateral isotope gradients corresponding to chlorine isotope fractionation up to 20‰ were induced by cis-DCE back diffusion and subsequent advection......-dominated transport in all flow-through experiments. A numerical modeling approach, tracking individually all chlorine isotopologues, based on the accurate parameterization of local dispersion, as well as on the values of aqueous diffusion coefficients and diffusion-induced isotope fractionation from a previous study...

  17. Thermo-hydrodynamic lubrication in hydrodynamic bearings

    CERN Document Server

    Bonneau, Dominique; Souchet, Dominique

    2014-01-01

    This Series provides the necessary elements to the development and validation of numerical prediction models for hydrodynamic bearings. This book describes the thermo-hydrodynamic and the thermo-elasto-hydrodynamic lubrication. The algorithms are methodically detailed and each section is thoroughly illustrated.

  18. Magneto-hydrodynamically stable axisymmetric mirrorsa)

    Science.gov (United States)

    Ryutov, D. D.; Berk, H. L.; Cohen, B. I.; Molvik, A. W.; Simonen, T. C.

    2011-09-01

    Making axisymmetric mirrors magnetohydrodynamically (MHD) stable opens up exciting opportunities for using mirror devices as neutron sources, fusion-fission hybrids, and pure-fusion reactors. This is also of interest from a general physics standpoint (as it seemingly contradicts well-established criteria of curvature-driven instabilities). The axial symmetry allows for much simpler and more reliable designs of mirror-based fusion facilities than the well-known quadrupole mirror configurations. In this tutorial, after a summary of classical results, several techniques for achieving MHD stabilization of the axisymmetric mirrors are considered, in particular: (1) employing the favorable field-line curvature in the end tanks; (2) using the line-tying effect; (3) controlling the radial potential distribution; (4) imposing a divertor configuration on the solenoidal magnetic field; and (5) affecting the plasma dynamics by the ponderomotive force. Some illuminative theoretical approaches for understanding axisymmetric mirror stability are described. The applicability of the various stabilization techniques to axisymmetric mirrors as neutron sources, hybrids, and pure-fusion reactors are discussed; and the constraints on the plasma parameters are formulated.

  19. Magneto-hydrodynamically stable axisymmetric mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Ryutov, D. D.; Cohen, B. I.; Molvik, A. W. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Berk, H. L. [University of Texas, Austin, Texas 78712 (United States); Simonen, T. C. [University of California, Berkeley, California 94720 (United States)

    2011-09-15

    Making axisymmetric mirrors magnetohydrodynamically (MHD) stable opens up exciting opportunities for using mirror devices as neutron sources, fusion-fission hybrids, and pure-fusion reactors. This is also of interest from a general physics standpoint (as it seemingly contradicts well-established criteria of curvature-driven instabilities). The axial symmetry allows for much simpler and more reliable designs of mirror-based fusion facilities than the well-known quadrupole mirror configurations. In this tutorial, after a summary of classical results, several techniques for achieving MHD stabilization of the axisymmetric mirrors are considered, in particular: (1) employing the favorable field-line curvature in the end tanks; (2) using the line-tying effect; (3) controlling the radial potential distribution; (4) imposing a divertor configuration on the solenoidal magnetic field; and (5) affecting the plasma dynamics by the ponderomotive force. Some illuminative theoretical approaches for understanding axisymmetric mirror stability are described. The applicability of the various stabilization techniques to axisymmetric mirrors as neutron sources, hybrids, and pure-fusion reactors are discussed; and the constraints on the plasma parameters are formulated.

  20. Radioactive and stable cobalt concentrations in mussel in Kyushu island, Japan

    International Nuclear Information System (INIS)

    Momoshima, Noriyuki; Shiki, Atsushi; Takashima, Yoshimasa; Maki, Takao; Koriyama, Munehiro; Shimozono, Seika; Imamura, Hiroka; Nakamata, Kojiro.

    1985-01-01

    Two kinds of mussel, Septifer virgatus and Mytilus edulis, were collected from Kyushu island, Japan, in order to elucidate a background level of 60 Co, which is one of the most significant radionuclide for environmental monitoring around a nuclear power plant. The mussels were collected from 7 locations in 1983 and classified 2 or 3 groups depending on their shell size at each location. Activities of 60 Co were measured by a low-background β counter after purified by means of chemical separation and electrodeposition. Stable cobalt concentrations were determined by colorimetric method. The concentrations of cobalt in Septifer virgatus are one order higher level than that in Mytilus edulis. There are not so large difference in cobalt content depending on shell size so long as comparing them at the same location. The radioactivities in mussels show the same trend as stable cobalt. It has become apparent that Septifer virgatus has a tendency to concentrate cobalt with growing but Mytilus edulis is opposite. The cobalt-60 introduced to sea from nuclear explosions seems to be relatively constant in coastal seawater since specific activities are distributed in a narrow range in spite of kind, shell size and location. (author)

  1. NONLINEAR EVOLUTION OF GLOBAL HYDRODYNAMIC SHALLOW-WATER INSTABILITY IN THE SOLAR TACHOCLINE

    International Nuclear Information System (INIS)

    Dikpati, Mausumi

    2012-01-01

    We present a fully nonlinear hydrodynamic 'shallow-water' model of the solar tachocline. The model consists of a global spherical shell of differentially rotating fluid, which has a deformable top, thus allowing motions in radial directions along with latitudinal and longitudinal directions. When the system is perturbed, in the course of its nonlinear evolution it can generate unstable low-frequency shallow-water shear modes from the differential rotation, high-frequency gravity waves, and their interactions. Radiative and overshoot tachoclines are characterized in this model by high and low effective gravity values, respectively. Building a semi-implicit spectral scheme containing very low numerical diffusion, we perform nonlinear evolution of shallow-water modes. Our first results show that (1) high-latitude jets or polar spin-up occurs due to nonlinear evolution of unstable hydrodynamic shallow-water disturbances and differential rotation, (2) Reynolds stresses in the disturbances together with changing shell thickness and meridional flow are responsible for the evolution of differential rotation, (3) disturbance energy primarily remains concentrated in the lowest longitudinal wavenumbers, (4) an oscillation in energy between perturbed and unperturbed states occurs due to evolution of these modes in a nearly dissipation-free system, and (5) disturbances are geostrophic, but occasional nonadjustment in geostrophic balance can occur, particularly in the case of high effective gravity, leading to generation of gravity waves. We also find that a linearly stable differential rotation profile remains nonlinearly stable.

  2. Concentrations of radiocesium and stable elements in different parts of pine tree collected in Chernobyl area

    International Nuclear Information System (INIS)

    Yoshida, Satoshi; Watanabe, Masumi; Suzuki, Akira; Linkov, Igor; Dvornik, Alexander; Zhuchenko, Tatiana

    2007-01-01

    Radial distributions of 137 Cs and related stable elements in a pine tree collected in Chernobyl contaminated area in Belarus were determined, in order to get basic information for dose estimation of pine tree. The concentration of 137 Cs in annual tree rings was the highest in cambium, and decreased sharply toward inside. The highest concentration of 137 Cs in cambium suggests the highest radiation dose to growing part of wood. Distribution of stable Cs was similar as that of 137 Cs, and the 137 Cs/stable Cs ratio was almost constant, indicating the equilibrium of Chernobyl 137 Cs with stable Cs in the pine wood. The similar distributions as Cs were observed for K and Rb. (author)

  3. Pattern formation in flocking models: A hydrodynamic description.

    Science.gov (United States)

    Solon, Alexandre P; Caussin, Jean-Baptiste; Bartolo, Denis; Chaté, Hugues; Tailleur, Julien

    2015-12-01

    We study in detail the hydrodynamic theories describing the transition to collective motion in polar active matter, exemplified by the Vicsek and active Ising models. Using a simple phenomenological theory, we show the existence of an infinity of propagative solutions, describing both phase and microphase separation, that we fully characterize. We also show that the same results hold specifically in the hydrodynamic equations derived in the literature for the active Ising model and for a simplified version of the Vicsek model. We then study numerically the linear stability of these solutions. We show that stable ones constitute only a small fraction of them, which, however, includes all existing types. We further argue that, in practice, a coarsening mechanism leads towards phase-separated solutions. Finally, we construct the phase diagrams of the hydrodynamic equations proposed to qualitatively describe the Vicsek and active Ising models and connect our results to the phenomenology of the corresponding microscopic models.

  4. Introduction to hydrodynamics

    International Nuclear Information System (INIS)

    Wilkins, M.L.

    1979-01-01

    Various aspects of hydrodynamics and elastic--plastic flow are introduced for the purpose of defining hydrodynamic terms and explaining what some of the important hydrodynamic concepts are. The first part covers hydrodynamic theory; and discussed fundamental hydrodynamic equations, discontinuities, and shock, detonation, and elastic--plastic waves. The second part deals with applications of hydrodynamic theory to material equations of state, spall, Taylor instabilities, and detonation pressure measurements

  5. Final Report. Hydrodynamics by high-energy-density plasma flow and hydrodynamics and radiative hydrodynamics with astrophysical application

    International Nuclear Information System (INIS)

    R Paul Drake

    2004-01-01

    OAK-B135 This is the final report from the project Hydrodynamics by High-Energy-Density Plasma Flow and Hydrodynamics and Radiation Hydrodynamics with Astrophysical Applications. This project supported a group at the University of Michigan in the invention, design, performance, and analysis of experiments using high-energy-density research facilities. The experiments explored compressible nonlinear hydrodynamics, in particular at decelerating interfaces, and the radiation hydrodynamics of strong shock waves. It has application to supernovae, astrophysical jets, shock-cloud interactions, and radiative shock waves

  6. A linked hydrodynamic and water quality model for the Salton Sea

    Science.gov (United States)

    Chung, E.G.; Schladow, S.G.; Perez-Losada, J.; Robertson, Dale M.

    2008-01-01

    A linked hydrodynamic and water quality model was developed and applied to the Salton Sea. The hydrodynamic component is based on the one-dimensional numerical model, DLM. The water quality model is based on a new conceptual model for nutrient cycling in the Sea, and simulates temperature, total suspended sediment concentration, nutrient concentrations, including PO4-3, NO3-1 and NH4+1, DO concentration and chlorophyll a concentration as functions of depth and time. Existing water temperature data from 1997 were used to verify that the model could accurately represent the onset and breakup of thermal stratification. 1999 is the only year with a near-complete dataset for water quality variables for the Salton Sea. The linked hydrodynamic and water quality model was run for 1999, and by adjustment of rate coefficients and other water quality parameters, a good match with the data was obtained. In this article, the model is fully described and the model results for reductions in external phosphorus load on chlorophyll a distribution are presented. ?? 2008 Springer Science+Business Media B.V.

  7. Concentrations of radionuclides and selected stable elements in fruits and vegetables

    International Nuclear Information System (INIS)

    Oakes, T.W.; Shank, K.E.

    1977-01-01

    Twenty-two types of fruits and vegetables collected from two commercial supermarkets have been analyzed for their radionuclidic and stable-element composition. A specific gamma-emitting isotope analysis was performed on each sample for 40 K, 60 Co, 95 Zr-Nb, 106 Ru, 137 Cs, 226 Ra, and 232 Th. The concentration of the stable elements in each sample were determined using multi-element neutron-activation analysis (Al, Ag, Au, As, Ba, Br, Ca, Ce, Cl, Co, Cr, Cs, Cu, Eu, Fe, Hf, I, K, La, Mn, Mo, Mg, Na, Rb, Sb, Sc, Se, Sr, Ta, Te, Th, Ti, Zn, Zr) and atomic absorption (Cd, Ni, Pb). Information on the composition of a typical diet is used to estimate the radiological dose to man subsequent to ingestion of these fruits and vegetables. The stable-elemental compositions of the foodstuffs analyzed were compared with estimated values assuming foliar deposition and long-term buildup of effluents from a large modern coal-fired steam plant. It is tentatively concluded that for the general case of a precipitator-equipped, coal-fired steam plant, no toxic levels of trace elements in foodstuffs are expected as a result of the plant operation

  8. An energy stable algorithm for a quasi-incompressible hydrodynamic phase-field model of viscous fluid mixtures with variable densities and viscosities

    Science.gov (United States)

    Gong, Yuezheng; Zhao, Jia; Wang, Qi

    2017-10-01

    A quasi-incompressible hydrodynamic phase field model for flows of fluid mixtures of two incompressible viscous fluids of distinct densities and viscosities is derived by using the generalized Onsager principle, which warrants the variational structure, the mass conservation and energy dissipation law. We recast the model in an equivalent form and discretize the equivalent system in space firstly to arrive at a time-dependent ordinary differential and algebraic equation (DAE) system, which preserves the mass conservation and energy dissipation law at the semi-discrete level. Then, we develop a temporal discretization scheme for the DAE system, where the mass conservation and the energy dissipation law are once again preserved at the fully discretized level. We prove that the fully discretized algorithm is unconditionally energy stable. Several numerical examples, including drop dynamics of viscous fluid drops immersed in another viscous fluid matrix and mixing dynamics of binary polymeric solutions, are presented to show the convergence property as well as the accuracy and efficiency of the new scheme.

  9. Perioperative plasma concentrations of stable nitric oxide products are predictive of cognitive dysfunction after laparoscopic cholecystectomy.

    LENUS (Irish Health Repository)

    Iohom, G

    2012-02-03

    In this study our objectives were to determine the incidence of postoperative cognitive dysfunction (POCD) after laparoscopic cholecystectomy under sevoflurane anesthesia in patients aged >40 and <85 yr and to examine the associations between plasma concentrations of i) S-100beta protein and ii) stable nitric oxide (NO) products and POCD in this clinical setting. Neuropsychological tests were performed on 42 ASA physical status I-II patients the day before, and 4 days and 6 wk after surgery. Patient spouses (n = 13) were studied as controls. Cognitive dysfunction was defined as deficit in one or more cognitive domain(s). Serial measurements of serum concentrations of S-100beta protein and plasma concentrations of stable NO products (nitrate\\/nitrite, NOx) were performed perioperatively. Four days after surgery, new cognitive deficit was present in 16 (40%) patients and in 1 (7%) control subject (P = 0.01). Six weeks postoperatively, new cognitive deficit was present in 21 (53%) patients and 3 (23%) control subjects (P = 0.03). Compared with the "no deficit" group, patients who demonstrated a new cognitive deficit 4 days postoperatively had larger plasma NOx at each perioperative time point (P < 0.05 for each time point). Serum S-100beta protein concentrations were similar in the 2 groups. In conclusion, preoperative (and postoperative) plasma concentrations of stable NO products (but not S-100beta) are associated with early POCD. The former represents a potential biochemical predictor of POCD.

  10. Self-Organized Traveling Chemo-Hydrodynamic Fingers Triggered by a Chemical Oscillator.

    Science.gov (United States)

    Escala, D M; Budroni, M A; Carballido-Landeira, J; De Wit, A; Muñuzuri, A P

    2014-02-06

    Pulsatile chemo-hydrodynamic patterns due to a coupling between an oscillating chemical reaction and buoyancy-driven hydrodynamic flows can develop when two solutions of separate reactants of the Belousov-Zhabotinsky reaction are put in contact in the gravity field and conditions for chemical oscillations are met in the contact zone. In regular oscillatory conditions, localized periodic changes in the concentration of intermediate species induce pulsatile density gradients, which, in turn, generate traveling convective fingers breaking the transverse symmetry. These patterns are the self-organized result of a genuine coupling between chemical and hydrodynamic modes.

  11. Hydrodynamic Cavitation-Assisted Synthesis of Nanocalcite

    Directory of Open Access Journals (Sweden)

    Shirish H. Sonawane

    2010-01-01

    Full Text Available A systematic study was made on the synthesis of nanocalcite using a hydrodynamic cavitation reactor. The effects of various parameters such as diameter and geometry of orifice, CO2 flow rate, and Ca(OH2 concentration were investigated. It was observed that the orifice diameter and its geometry had significant effect on the carbonation process. The reaction rate was significantly faster than that observed in a conventional carbonation process. The particle size was significantly affected by the reactor geometry. The results showed that an orifice with 5 holes of 1 mm size resulted in the particle size reduction to 37 nm. The experimental investigation reveals that hydrodynamic cavitation may be more energy efficient.

  12. Stochastic-hydrodynamic model of halo formation in charged particle beams

    Directory of Open Access Journals (Sweden)

    Nicola Cufaro Petroni

    2003-03-01

    Full Text Available The formation of the beam halo in charged particle accelerators is studied in the framework of a stochastic-hydrodynamic model for the collective motion of the particle beam. In such a stochastic-hydrodynamic theory the density and the phase of the charged beam obey a set of coupled nonlinear hydrodynamic equations with explicit time-reversal invariance. This leads to a linearized theory that describes the collective dynamics of the beam in terms of a classical Schrödinger equation. Taking into account space-charge effects, we derive a set of coupled nonlinear hydrodynamic equations. These equations define a collective dynamics of self-interacting systems much in the same spirit as in the Gross-Pitaevskii and Landau-Ginzburg theories of the collective dynamics for interacting quantum many-body systems. Self-consistent solutions of the dynamical equations lead to quasistationary beam configurations with enhanced transverse dispersion and transverse emittance growth. In the limit of a frozen space-charge core it is then possible to determine and study the properties of stationary, stable core-plus-halo beam distributions. In this scheme the possible reproduction of the halo after its elimination is a consequence of the stationarity of the transverse distribution which plays the role of an attractor for every other distribution.

  13. Hydrodynamic study of an internal airlift reactor for microalgae culture.

    Science.gov (United States)

    Rengel, Ana; Zoughaib, Assaad; Dron, Dominique; Clodic, Denis

    2012-01-01

    Internal airlift reactors are closed systems considered today for microalgae cultivation. Several works have studied their hydrodynamics but based on important solid concentrations, not with biomass concentrations usually found in microalgae cultures. In this study, an internal airlift reactor has been built and tested in order to clarify the hydrodynamics of this system, based on microalgae typical concentrations. A model is proposed taking into account the variation of air bubble velocity according to volumetric air flow rate injected into the system. A relationship between riser and downcomer gas holdups is established, which varied slightly with solids concentrations. The repartition of solids along the reactor resulted to be homogenous for the range of concentrations and volumetric air flow rate studied here. Liquid velocities increase with volumetric air flow rate, and they vary slightly when solids are added to the system. Finally, liquid circulation time found in each section of the reactor is in concordance with those employed in microalgae culture.

  14. Flow stabilization with active hydrodynamic cloaks.

    Science.gov (United States)

    Urzhumov, Yaroslav A; Smith, David R

    2012-11-01

    We demonstrate that fluid flow cloaking solutions, based on active hydrodynamic metamaterials, exist for two-dimensional flows past a cylinder in a wide range of Reynolds numbers (Re's), up to approximately 200. Within the framework of the classical Brinkman equation for homogenized porous flow, we demonstrate using two different methods that such cloaked flows can be dynamically stable for Re's in the range of 5-119. The first highly efficient method is based on a linearization of the Brinkman-Navier-Stokes equation and finding the eigenfrequencies of the least stable eigenperturbations; the second method is a direct numerical integration in the time domain. We show that, by suppressing the von Kármán vortex street in the weakly turbulent wake, porous flow cloaks can raise the critical Reynolds number up to about 120 or five times greater than for a bare uncloaked cylinder.

  15. Concentrations of stable elements and uranium in estuarine areas of Japan

    International Nuclear Information System (INIS)

    Takata, Hyoe; Aono, Tatsuo; Tagami, Keiko; Uchida, Shigeo

    2008-01-01

    The geochemistry of stable elements can be a good analogue for understanding the behavior of radionuclides in estuarine and coastal environments. In this study, the behavior of nutrients (NO 3 + NO 2 , PO 4 , Si(OH) 4 ), heavy metals, and U was observed in several estuarine and coastal waters of Japan. We also collected data on salinity, pH, and suspended particle matter (SPM). Nutrient concentrations followed conservative dilution lines in these estuaries, and concentrations of dissolved Fe decreased as salinity increased from 0 to 20. In general, most of the dissolved Fe in estuaries is in colloidal form. The behavior of dissolved Fe might reflect a loss of colloidal Fe through coagulation in this salinity range. Dissolved Co and Ni concentrations followed approximate dilution lines from the rivers to the seawater end-members, suggesting that they were quasi-conservative in these estuarine systems. A rapid increase in dissolved Cd concentrations was observed at low levels of salinity (<4). Estimated fluxes of dissolved Cd to the estuarine and coastal waters showed that the salt-induced desorption of Cd from particles constitutes a significant source of dissolved Cd in the estuarine and coastal waters. (author)

  16. Elasto-hydrodynamic lubrication

    CERN Document Server

    Dowson, D; Hopkins, D W

    1977-01-01

    Elasto-Hydrodynamic Lubrication deals with the mechanism of elasto-hydrodynamic lubrication, that is, the lubrication regime in operation over the small areas where machine components are in nominal point or line contact. The lubrication of rigid contacts is discussed, along with the effects of high pressure on the lubricant and bounding solids. The governing equations for the solution of elasto-hydrodynamic problems are presented.Comprised of 13 chapters, this volume begins with an overview of elasto-hydrodynamic lubrication and representation of contacts by cylinders, followed by a discussio

  17. Elementary classical hydrodynamics

    CERN Document Server

    Chirgwin, B H; Langford, W J; Maxwell, E A; Plumpton, C

    1967-01-01

    Elementary Classical Hydrodynamics deals with the fundamental principles of elementary classical hydrodynamics, with emphasis on the mechanics of inviscid fluids. Topics covered by this book include direct use of the equations of hydrodynamics, potential flows, two-dimensional fluid motion, waves in liquids, and compressible flows. Some general theorems such as Bernoulli's equation are also considered. This book is comprised of six chapters and begins by introducing the reader to the fundamental principles of fluid hydrodynamics, with emphasis on ways of studying the motion of a fluid. Basic c

  18. Spontaneous variability of pre-dialysis concentrations of uremic toxins over time in stable hemodialysis patients.

    Directory of Open Access Journals (Sweden)

    Sunny Eloot

    Full Text Available Numerous outcome studies and interventional trials in hemodialysis (HD patients are based on uremic toxin concentrations determined at one single or a limited number of time points. The reliability of these studies however entirely depends on how representative these cross-sectional concentrations are. We therefore investigated the variability of predialysis concentrations of uremic toxins over time.Prospectively collected predialysis serum samples of the midweek session of week 0, 1, 2, 3, 4, 8, 12, and 16 were analyzed for a panel of uremic toxins in stable chronic HD patients (N = 18 while maintaining dialyzer type and dialysis mode during the study period.Concentrations of the analyzed uremic toxins varied substantially between individuals, but also within stable HD patients (intra-patient variability. For urea, creatinine, beta-2-microglobulin, and some protein-bound uremic toxins, Intra-class Correlation Coefficient (ICC was higher than 0.7. However, for phosphorus, uric acid, symmetric and asymmetric dimethylarginine, and the protein-bound toxins hippuric acid and indoxyl sulfate, ICC values were below 0.7, implying a concentration variability within the individual patient even exceeding 65% of the observed inter-patient variability.Intra-patient variability may affect the interpretation of the association between a single concentration of certain uremic toxins and outcomes. When performing future outcome and interventional studies with uremic toxins other than described here, one should quantify their intra-patient variability and take into account that for solutes with a large intra-patient variability associations could be missed.

  19. Density waves in a lattice hydrodynamic traffic flow model with the anticipation effect

    International Nuclear Information System (INIS)

    Zhao Min; Sun Di-Hua; Tian Chuan

    2012-01-01

    By introducing the traffic anticipation effect in the real world into the original lattice hydrodynamic model, we present a new anticipation effect lattice hydrodynamic (AELH) model, and obtain the linear stability condition of the model by applying the linear stability theory. Through nonlinear analysis, we derive the Burgers equation and Korteweg-de Vries (KdV) equation, to describe the propagating behaviour of traffic density waves in the stable and the metastable regions, respectively. The good agreement between simulation results and analytical results shows that the stability of traffic flow can be enhanced when the anticipation effect is considered. (interdisciplinary physics and related areas of science and technology)

  20. Hydrodynamic instabilities in beryllium targets for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Yi, S. A., E-mail: austinyi@lanl.gov; Simakov, A. N.; Wilson, D. C.; Olson, R. E.; Kline, J. L.; Batha, S. H. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545 (United States); Clark, D. S.; Hammel, B. A.; Milovich, J. L.; Salmonson, J. D.; Kozioziemski, B. J. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States)

    2014-09-15

    Beryllium ablators offer higher ablation velocity, rate, and pressure than their carbon-based counterparts, with the potential to increase the probability of achieving ignition at the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)]. We present here a detailed hydrodynamic stability analysis of low (NIF Revision 6.1) and high adiabat NIF beryllium target designs. Our targets are optimized to fully utilize the advantages of beryllium in order to suppress the growth of hydrodynamic instabilities. This results in an implosion that resists breakup of the capsule, and simultaneously minimizes the amount of ablator material mixed into the fuel. We quantify the improvement in stability of beryllium targets relative to plastic ones, and show that a low adiabat beryllium capsule can be at least as stable at the ablation front as a high adiabat plastic target.

  1. Invariant description of solutions of hydrodynamic-type systems in hodograph space: hydrodynamic surfaces

    International Nuclear Information System (INIS)

    Ferapontov, E.V.

    2002-01-01

    Hydrodynamic surfaces are solutions of hydrodynamic-type systems viewed as non-parametrized submanifolds of the hodograph space. We propose an invariant differential-geometric characterization of hydrodynamic surfaces by expressing the curvature form of the characteristic web in terms of the reciprocal invariants. (author)

  2. Preparation of novel stable antibacterial nanoparticles using hydroxyethylcellulose and application in paper.

    Science.gov (United States)

    Wei, Dafu; Chen, Yan; Zhang, Youwei

    2016-01-20

    Taking advantage of the self-assembly between the components, novel stable antibacterial nanoparticles were efficiently fabricated via a facile one-step co-polymerization of acrylic acid (AA) and N,N'-methylenebisacrylamide (MBA) on a mixed aqueous solution of poly(hexamethylene guanidine hydrochloride) (PHMG) and hydroxyethylcellulose (HEC). The z-average hydrodynamic diameters of the nanoparticles ranged from 220 nm to 450 nm. The inner layer of the nanoparticles is composed of water-insoluble interpolymer complexes of PHMG and PAA networks, while the outer layer is composed of PHMG and HEC. The nanoparticles are stabilized by electrostatic interactions, hydrogen bonding interactions, and the chemical bonds. The nanoparticle solution remained stable in a wide pH range of 2.0-12.0 and at salt concentrations below 0.25 mol/L. The nanoparticles were incorporated into handsheets using a dipping treatment. The resulted handsheets exhibited excellent antimicrobial activities even after multiple water washing treatments. The nanoparticles are promising in fabricating paper, water-based coatings and textiles with permanent antibacterial activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Concentration factors of stable elements and radionuclides in Po river fish

    International Nuclear Information System (INIS)

    Achilli, M.; Ciceri, G.; Bozzani, A.; Guzzi, L.; Queirazza, G.

    1988-01-01

    The concentration factors (CF) of stable Co, Cs, Mn, Fe, Zn and Sr in different fish from six stretches in the middle course of the Po river (N. Italy) have been investigated. The space-time variation in water has been followed for 14 months. The investigation has been undertaken to study CF variations in the same fish species as a function of the physico-chemical form of the different elements in water (dissolved, dissolved and exchangeable fraction of the particulate, total). CF values of 103 Ru, 131 I and 134 - 137 Cs were also investigated for Cyprinus carpio reared, with artificial food, in two semi-natural environments

  4. Disinfection of Escherichia coli bacteria using hybrid method of ozonation and hydrodynamic cavitation with orifice plate

    Science.gov (United States)

    Karamah, Eva F.; Ghaudenson, Rioneli; Amalia, Fitri; Bismo, Setijo

    2017-11-01

    This research aims to evaluate the performance of hybrid method of ozonation and hydrodynamic cavitation with orifice plate on E.coli bacteria disinfection. In this research, ozone dose, circulation flowrate, and disinfection method were varied. Ozone was produced by commercial ozonator with ozone dose of 64.83 mg/hour, 108.18 mg/hour, and 135.04 mg/hour. Meanwhile, hydrodynamic cavitation was generated by an orifice plate. The disinfection method compared in this research were: hydrodynamic cavitation, ozonation, and the combination of both. The best result on each method was achieved on the 60th minutes and with a circulation flowrate of 7 L/min. The hybrid method attained final concentration of 0 CFU/mL from the initial concentration of 2.10 × 105 CFU/mL. The ozonation method attained final concentration of 0 CFU/mL from the initial concentration of 1.32 × 105 CFU/mL. Cavitation method gives the least disinfection with final concentration of 5.20 × 104 CFU/mL from the initial concentration of 2.17 × 105 CFU/mL. In conclusion, hybrid method gives a faster and better disinfection of E.coli than each method on its own.

  5. Hydrodynamics in a swarm of rising bubbles

    International Nuclear Information System (INIS)

    Riboux, G.

    2007-04-01

    In many applications, bubbles are used to agitate a liquid in order to enhance mixing and transfer. This work is devoted to the study of the hydrodynamics in a stable bubble column. Experimentally, we have determined the properties of the velocity fluctuations inside and behind a homogeneous swarm of rising bubbles for different bubble sizes and gas volume fractions α: self-similarity in α 0,4 , spectrum in k -3 and integral length scale controlled by buoyancy. Numerically, we have reproduced these properties by means of large-scale simulations, the bubbles being modeled by volume-forces. This confirms that the dynamics is controlled by wake interactions. (author)

  6. Colloidal suspensions hydrodynamic retention mechanisms in model porous media; Mecanismes de retention hydrodynamique de suspensions colloidales en milieux poreux modeles

    Energy Technology Data Exchange (ETDEWEB)

    Salehi, N

    1996-04-19

    This study deals with the retention mechanisms of colloidal particles in porous media flows, and the subsequent reduction in permeability in the case of stable and non adsorbing colloids. It combines experimental results and modelling. This study has been realised with stable dispersion of monodispersed carboxylate polystyrene latexes negatively charged injected through negatively charged polycarbonate membranes having mono-sized cylindrical pores. The mean particle diameter is smaller than the mean pore diameter. Both batch and flow experiments in Nuclepore membranes have been done. The results of batch experiments have proved no adsorption of the colloidal latex particles on the surface of the Nuclepore membranes without flow at low salinity. In flow experiments at low particle concentration, only deposition on the upstream side of the membrane have been induced by hydrodynamic forces even for non adsorbing particles without creating any permeability reduction. The retention levels are zero at low and high Peclet numbers with a maximum at intermediate values. Partial plugging was observed at higher colloid concentration even at low salinity without any upstream surface deposition. The modelling of plugging processes is achieved by considering the particle concentration, fluid rate and ratio between the mean pore diameter and the mean particle diameter. This study can be particularly useful in the fields of water treatment and of restoration of lands following radioactive contamination. (author). 96 refs., 99 figs., 29 tabs.

  7. The hydrodynamic theory of detonation

    Science.gov (United States)

    Langweiler, Heinz

    1939-01-01

    This report derives equations containing only directly measurable constants for the quantities involved in the hydrodynamic theory of detonation. The stable detonation speed, D, is revealed as having the lowest possible value in the case of positive material velocity, by finding the minimum of the Du curve (u denotes the speed of the gases of combustion). A study of the conditions of energy and impulse in freely suspended detonating systems leads to the disclosure of a rarefaction front traveling at a lower speed behind the detonation front; its velocity is computed. The latent energy of the explosive passes into the steadily growing detonation zone - the region between the detonation front and the rarefaction front. The conclusions lead to a new definition of the concept of shattering power. The calculations are based on the behavior of trinitrotoluene.

  8. Effect of Nitric Acid Concentrations on Synthesis and Stability of Maghemite Nanoparticles Suspension

    Directory of Open Access Journals (Sweden)

    Irwan Nurdin

    2014-01-01

    Full Text Available Maghemite (γ-Fe2O3 nanoparticles have been synthesized using a chemical coprecipitation method at different nitric acid concentrations as an oxidizing agent. Characterization of all samples performed by several techniques including X-ray diffraction (XRD, transmission electron microscopy (TEM, alternating gradient magnetometry (AGM, thermogravimetric analysis (TGA, dynamic light scattering (DLS, and zeta potential. The XRD patterns confirmed that the particles were maghemite. The crystallite size of all samples decreases with the increasing concentration of nitric acid. TEM observation showed that the particles have spherical morphology with narrow particle size distribution. The particles showed superparamagnetic behavior with decreased magnetization values at the increasing concentration of nitric acid. TGA measurement showed that the stability temperature decreases with the increasing concentration of nitric acid. DLS measurement showed that the hydrodynamic particle sizes decrease with the increasing concentration of nitric acid. Zeta potential values show a decrease with the increasing concentration of nitric acid. The increasing concentration of nitric acid in synthesis of maghemite nanoparticles produced smaller size particles, lower magnetization, better thermal stability, and more stable maghemite nanoparticles suspension.

  9. Dissipative relativistic hydrodynamics

    International Nuclear Information System (INIS)

    Imshennik, V.S.; Morozov, Yu.I.

    1989-01-01

    Using the comoving reference frame in the general non-inertial case, the relativistic hydrodynamics equations are derived with an account for dissipative effects in the matter. From the entropy production equation, the exact from for the dissipative tensor components is obtained. As a result, the closed system of equations of dissipative relativistic hydrodynamics is obtained in the comoving reference frame as a relativistic generalization of the known Navier-Stokes equations for Lagrange coordinates. Equations of relativistic hydrodynamics with account for dissipative effects in the matter are derived using the assocoated reference system in general non-inertial case. True form of the dissipative tensor components is obtained from entropy production equation. Closed system of equations for dissipative relativistic hydrodynamics is obtained as a result in the assocoated reference system (ARS) - relativistic generalization of well-known Navier-Stokes equations for Lagrange coordinates. Equation system, obtained in this paper for ARS, may be effectively used in numerical models of explosive processes with 10 51 erg energy releases which are characteristic for flashes of supernovae, if white dwarf type compact target suggested as presupernova

  10. Occurrence and distribution of pharmaceutically active and endocrine disrupting compounds in Singapore's marine environment: Influence of hydrodynamics and physical–chemical properties

    International Nuclear Information System (INIS)

    Bayen, Stéphane; Zhang, Hui; Desai, Malan Manish; Ooi, Seng Keat; Kelly, Barry C.

    2013-01-01

    The fate and exposure risks of pharmaceutically active compounds (PhACs) and endocrine disrupting chemicals (EDCs) in marine environments are not well-understood. In this study we developed a multi-residue analytical method for quantifying concentrations of forty target compounds in seawater from Singapore. Analyses of samples (n = 24) from eight sites showed the occurrence of several compounds, including gemfibrozil ( R ). Principal Components Analysis revealed a strong relationship between t R and contaminant concentrations. While source emissions are undoubtedly important, proximate distance to a wastewater treatment plant had little influence on concentrations. The site with the greatest t R , which exhibited the highest concentrations, is adjacent to Singapore's largest protected wetland reserve. The results highlight an important linkage between hydrodynamic behavior and contaminant exposure risks in complex coastal marine ecosystems. Highlights: •A field study of emerging contaminants in Singapore's coastal marine environment was conducted. •PhACs such as gemfibrozil, triclosan, carbamazepine and ibuprofen were frequently detected. •Site proximity to WWTP had little influence on ambient concentrations. •Contaminant concentrations were highly correlated to hydrodynamic residence time. •Coastal hydrodynamic behaviour greatly influences contaminant exposure risks. -- A field study demonstrates the influence of hydrodynamic residence time and physical–chemical properties on exposure risks of PhACs and EDCs in coastal marine ecosystems

  11. Relativistic hydrodynamics

    CERN Document Server

    Luciano, Rezzolla

    2013-01-01

    Relativistic hydrodynamics is a very successful theoretical framework to describe the dynamics of matter from scales as small as those of colliding elementary particles, up to the largest scales in the universe. This book provides an up-to-date, lively, and approachable introduction to the mathematical formalism, numerical techniques, and applications of relativistic hydrodynamics. The topic is typically covered either by very formal or by very phenomenological books, but is instead presented here in a form that will be appreciated both by students and researchers in the field. The topics covered in the book are the results of work carried out over the last 40 years, which can be found in rather technical research articles with dissimilar notations and styles. The book is not just a collection of scattered information, but a well-organized description of relativistic hydrodynamics, from the basic principles of statistical kinetic theory, down to the technical aspects of numerical methods devised for the solut...

  12. Treatment of industrial wastewater effluents using hydrodynamic cavitation and the advanced Fenton process.

    Science.gov (United States)

    Chakinala, Anand G; Gogate, Parag R; Burgess, Arthur E; Bremner, David H

    2008-01-01

    For the first time, hydrodynamic cavitation induced by a liquid whistle reactor (LWR) has been used in conjunction with the advanced Fenton process (AFP) for the treatment of real industrial wastewater. Semi-batch experiments in the LWR were designed to investigate the performance of the process for two different industrial wastewater samples. The effect of various operating parameters such as pressure, H2O2 concentration and the initial concentration of industrial wastewater samples on the extent of mineralization as measured by total organic carbon (TOC) content have been studied with the aim of maximizing the extent of degradation. It has been observed that higher pressures, sequential addition of hydrogen peroxide at higher loadings and lower concentration of the effluent are more favourable for a rapid TOC mineralization. In general, the novel combination of hydrodynamic cavitation with AFP results in about 60-80% removal of TOC under optimized conditions depending on the type of industrial effluent samples. The combination described herein is most useful for treatment of bio-refractory materials where the diminution in toxicity can be achieved up to a certain level and then conventional biological oxidation can be employed for final treatment. The present work is the first to report the use of a hydrodynamic cavitation technique for real industrial wastewater treatment.

  13. Occurrence and distribution of pharmaceutically active and endocrine disrupting compounds in Singapore's marine environment: Influence of hydrodynamics and physical–chemical properties

    Energy Technology Data Exchange (ETDEWEB)

    Bayen, Stéphane [Singapore-Delft Water Alliance, National University of Singapore (Singapore); Zhang, Hui [Department of Civil and Environmental Engineering, National University of Singapore (Singapore); Desai, Malan Manish [Tropical Marine Science Institute, National University of Singapore (Singapore); Ooi, Seng Keat [Singapore-Delft Water Alliance, National University of Singapore (Singapore); Kelly, Barry C., E-mail: bckelly@nus.edu.sg [Department of Civil and Environmental Engineering, National University of Singapore (Singapore)

    2013-11-15

    The fate and exposure risks of pharmaceutically active compounds (PhACs) and endocrine disrupting chemicals (EDCs) in marine environments are not well-understood. In this study we developed a multi-residue analytical method for quantifying concentrations of forty target compounds in seawater from Singapore. Analyses of samples (n = 24) from eight sites showed the occurrence of several compounds, including gemfibrozil (<0.09–19.8 ng/L), triclosan (<0.55–10.5 ng/L), carbamazepine (<0.28–10.9 ng/L) and ibuprofen (<2.2–9.1 ng/L). A 3D hydrodynamic model for Singapore was used to predict residence time (t{sub R}). Principal Components Analysis revealed a strong relationship between t{sub R} and contaminant concentrations. While source emissions are undoubtedly important, proximate distance to a wastewater treatment plant had little influence on concentrations. The site with the greatest t{sub R}, which exhibited the highest concentrations, is adjacent to Singapore's largest protected wetland reserve. The results highlight an important linkage between hydrodynamic behavior and contaminant exposure risks in complex coastal marine ecosystems. Highlights: •A field study of emerging contaminants in Singapore's coastal marine environment was conducted. •PhACs such as gemfibrozil, triclosan, carbamazepine and ibuprofen were frequently detected. •Site proximity to WWTP had little influence on ambient concentrations. •Contaminant concentrations were highly correlated to hydrodynamic residence time. •Coastal hydrodynamic behaviour greatly influences contaminant exposure risks. -- A field study demonstrates the influence of hydrodynamic residence time and physical–chemical properties on exposure risks of PhACs and EDCs in coastal marine ecosystems.

  14. Combined treatment technology based on synergism between hydrodynamic cavitation and advanced oxidation processes.

    Science.gov (United States)

    Gogate, Parag R; Patil, Pankaj N

    2015-07-01

    The present work highlights the novel approach of combination of hydrodynamic cavitation and advanced oxidation processes for wastewater treatment. The initial part of the work concentrates on the critical analysis of the literature related to the combined approaches based on hydrodynamic cavitation followed by a case study of triazophos degradation using different approaches. The analysis of different combinations based on hydrodynamic cavitation with the Fenton chemistry, advanced Fenton chemistry, ozonation, photocatalytic oxidation, and use of hydrogen peroxide has been highlighted with recommendations for important design parameters. Subsequently degradation of triazophos pesticide in aqueous solution (20 ppm solution of commercially available triazophos pesticide) has been investigated using hydrodynamic cavitation and ozonation operated individually and in combination for the first time. Effect of different operating parameters like inlet pressure (1-8 bar) and initial pH (2.5-8) have been investigated initially. The effect of addition of Fenton's reagent at different loadings on the extent of degradation has also been investigated. The combined method of hydrodynamic cavitation and ozone has been studied using two approaches of injecting ozone in the solution tank and at the orifice (at the flow rate of 0.576 g/h and 1.95 g/h). About 50% degradation of triazophos was achieved by hydrodynamic cavitation alone under optimized operating parameters. About 80% degradation of triazophos was achieved by combination of hydrodynamic cavitation and Fenton's reagent whereas complete degradation was achieved using combination of hydrodynamic cavitation and ozonation. TOC removal of 96% was also obtained for the combination of ozone and hydrodynamic cavitation making it the best treatment strategy for removal of triazophos. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Recent development of hydrodynamic modeling

    Science.gov (United States)

    Hirano, Tetsufumi

    2014-09-01

    In this talk, I give an overview of recent development in hydrodynamic modeling of high-energy nuclear collisions. First, I briefly discuss about current situation of hydrodynamic modeling by showing results from the integrated dynamical approach in which Monte-Carlo calculation of initial conditions, quark-gluon fluid dynamics and hadronic cascading are combined. In particular, I focus on rescattering effects of strange hadrons on final observables. Next I highlight three topics in recent development in hydrodynamic modeling. These include (1) medium response to jet propagation in di-jet asymmetric events, (2) causal hydrodynamic fluctuation and its application to Bjorken expansion and (3) chiral magnetic wave from anomalous hydrodynamic simulations. (1) Recent CMS data suggest the existence of QGP response to propagation of jets. To investigate this phenomenon, we solve hydrodynamic equations with source term which exhibits deposition of energy and momentum from jets. We find a large number of low momentum particles are emitted at large angle from jet axis. This gives a novel interpretation of the CMS data. (2) It has been claimed that a matter created even in p-p/p-A collisions may behave like a fluid. However, fluctuation effects would be important in such a small system. We formulate relativistic fluctuating hydrodynamics and apply it to Bjorken expansion. We found the final multiplicity fluctuates around the mean value even if initial condition is fixed. This effect is relatively important in peripheral A-A collisions and p-p/p-A collisions. (3) Anomalous transport of the quark-gluon fluid is predicted when extremely high magnetic field is applied. We investigate this possibility by solving anomalous hydrodynamic equations. We found the difference of the elliptic flow parameter between positive and negative particles appears due to the chiral magnetic wave. Finally, I provide some personal perspective of hydrodynamic modeling of high energy nuclear collisions

  16. Hydrodynamic optical soliton tunneling

    Science.gov (United States)

    Sprenger, P.; Hoefer, M. A.; El, G. A.

    2018-03-01

    A notion of hydrodynamic optical soliton tunneling is introduced in which a dark soliton is incident upon an evolving, broad potential barrier that arises from an appropriate variation of the input signal. The barriers considered include smooth rarefaction waves and highly oscillatory dispersive shock waves. Both the soliton and the barrier satisfy the same one-dimensional defocusing nonlinear Schrödinger (NLS) equation, which admits a convenient dispersive hydrodynamic interpretation. Under the scale separation assumption of nonlinear wave (Whitham) modulation theory, the highly nontrivial nonlinear interaction between the soliton and the evolving hydrodynamic barrier is described in terms of self-similar, simple wave solutions to an asymptotic reduction of the Whitham-NLS partial differential equations. One of the Riemann invariants of the reduced modulation system determines the characteristics of a soliton interacting with a mean flow that results in soliton tunneling or trapping. Another Riemann invariant yields the tunneled soliton's phase shift due to hydrodynamic interaction. Soliton interaction with hydrodynamic barriers gives rise to effects that include reversal of the soliton propagation direction and spontaneous soliton cavitation, which further suggest possible methods of dark soliton control in optical fibers.

  17. Hydrodynamic cavitation for sonochemical effects.

    Science.gov (United States)

    Moholkar, V S; Kumar, P S; Pandit, A B

    1999-03-01

    A comparative study of hydrodynamic and acoustic cavitation has been made on the basis of numerical solutions of the Rayleigh-Plesset equation. The bubble/cavity behaviour has been studied under both acoustic and hydrodynamic cavitation conditions. The effect of varying pressure fields on the collapse of the cavity (sinusoidal for acoustic and linear for hydrodynamic) and also on the latter's dynamic behaviour has been studied. The variations of parameters such as initial cavity size, intensity of the acoustic field and irradiation frequency in the case of acoustic cavitation, and initial cavity size, final recovery pressure and time for pressure recovery in the case of hydrodynamic cavitation, have been found to have significant effects on cavity/bubble dynamics. The simulations reveal that the bubble/cavity collapsing behaviour in the case of hydrodynamic cavitation is accompanied by a large number of pressure pulses of relatively smaller magnitude, compared with just one or two pulses under acoustic cavitation. It has been shown that hydrodynamic cavitation offers greater control over operating parameters and the resultant cavitation intensity. Finally, a brief summary of the experimental results on the oxidation of aqueous KI solution with a hydrodynamic cavitation set-up is given which supports the conclusion of this numerical study. The methodology presented allows one to manipulate and optimise of specific process, either physical or chemical.

  18. Solitonic Dispersive Hydrodynamics: Theory and Observation

    Science.gov (United States)

    Maiden, Michelle D.; Anderson, Dalton V.; Franco, Nevil A.; El, Gennady A.; Hoefer, Mark A.

    2018-04-01

    Ubiquitous nonlinear waves in dispersive media include localized solitons and extended hydrodynamic states such as dispersive shock waves. Despite their physical prominence and the development of thorough theoretical and experimental investigations of each separately, experiments and a unified theory of solitons and dispersive hydrodynamics are lacking. Here, a general soliton-mean field theory is introduced and used to describe the propagation of solitons in macroscopic hydrodynamic flows. Two universal adiabatic invariants of motion are identified that predict trapping or transmission of solitons by hydrodynamic states. The result of solitons incident upon smooth expansion waves or compressive, rapidly oscillating dispersive shock waves is the same, an effect termed hydrodynamic reciprocity. Experiments on viscous fluid conduits quantitatively confirm the soliton-mean field theory with broader implications for nonlinear optics, superfluids, geophysical fluids, and other dispersive hydrodynamic media.

  19. A combined N-body and hydrodynamic code for modeling disk galaxies

    International Nuclear Information System (INIS)

    Schroeder, M.C.

    1989-01-01

    A combined N-body and hydrodynamic computer code for the modeling of two dimensional galaxies is described. The N-body portion of the code is used to calculate the motion of the particle component of a galaxy, while the hydrodynamics portion of the code is used to follow the motion and evolution of the fluid component. A complete description of the numerical methods used for each portion of the code is given. Additionally, the proof tests of the separate and combined portions of the code are presented and discussed. Finally, a discussion of the topics researched with the code and results obtained is presented. These include: the measurement of stellar relaxation times in disk galaxy simulations; the effects of two-armed spiral perturbations on stable axisymmetric disks; the effects of the inclusion of an instellar medium (ISM) on the stability of disk galaxies; and the effect of the inclusion of stellar evolution on disk galaxy simulations

  20. Hydrodynamic Impacts on Dissolution, Transport and Absorption from Thousands of Drug Particles Moving within the Intestines

    Science.gov (United States)

    Behafarid, Farhad; Brasseur, James G.

    2017-11-01

    Following tablet disintegration, clouds of drug particles 5-200 μm in diameter pass through the intestines where drug molecules are absorbed into the blood. Release rate depends on particle size, drug solubility, local drug concentration and the hydrodynamic environment driven by patterned gut contractions. To analyze the dynamics underlying drug release and absorption, we use a 3D lattice Boltzmann model of the velocity and concentration fields driven by peristaltic contractions in vivo, combined with a mathematical model of dissolution-rate from each drug particle transported through the grid. The model is empirically extended for hydrodynamic enhancements to release rate by local convection and shear-rate, and incorporates heterogeneity in bulk concentration. Drug dosage and solubility are systematically varied along with peristaltic wave speed and volume. We predict large hydrodynamic enhancements (35-65%) from local shear-rate with minimal enhancement from convection. With high permeability boundary conditions, a quasi-equilibrium balance between release and absorption is established with volume and wave-speed dependent transport time scale, after an initial transient and before a final period of dissolution/absorption. Supported by FDA.

  1. Hydrodynamic attraction of swimming microorganisms by surfaces

    OpenAIRE

    Berke, Allison P.; Turner, Linda; Berg, Howard C.; Lauga, Eric

    2008-01-01

    Cells swimming in confined environments are attracted by surfaces. We measure the steady-state distribution of smooth-swimming bacteria (Escherichia coli) between two glass plates. In agreement with earlier studies, we find a strong increase of the cell concentration at the boundaries. We demonstrate theoretically that hydrodynamic interactions of the swimming cells with solid surfaces lead to their re-orientation in the direction parallel to the surfaces, as well as their attraction by the c...

  2. Large-Scale Description of Interacting One-Dimensional Bose Gases: Generalized Hydrodynamics Supersedes Conventional Hydrodynamics

    Science.gov (United States)

    Doyon, Benjamin; Dubail, Jérôme; Konik, Robert; Yoshimura, Takato

    2017-11-01

    The theory of generalized hydrodynamics (GHD) was recently developed as a new tool for the study of inhomogeneous time evolution in many-body interacting systems with infinitely many conserved charges. In this Letter, we show that it supersedes the widely used conventional hydrodynamics (CHD) of one-dimensional Bose gases. We illustrate this by studying "nonlinear sound waves" emanating from initial density accumulations in the Lieb-Liniger model. We show that, at zero temperature and in the absence of shocks, GHD reduces to CHD, thus for the first time justifying its use from purely hydrodynamic principles. We show that sharp profiles, which appear in finite times in CHD, immediately dissolve into a higher hierarchy of reductions of GHD, with no sustained shock. CHD thereon fails to capture the correct hydrodynamics. We establish the correct hydrodynamic equations, which are finite-dimensional reductions of GHD characterized by multiple, disjoint Fermi seas. We further verify that at nonzero temperature, CHD fails at all nonzero times. Finally, we numerically confirm the emergence of hydrodynamics at zero temperature by comparing its predictions with a full quantum simulation performed using the NRG-TSA-abacus algorithm. The analysis is performed in the full interaction range, and is not restricted to either weak- or strong-repulsion regimes.

  3. Hydrodynamic escape from planetary atmospheres

    Science.gov (United States)

    Tian, Feng

    Hydrodynamic escape is an important process in the formation and evolution of planetary atmospheres. Due to the existence of a singularity point near the transonic point, it is difficult to find transonic steady state solutions by solving the time-independent hydrodynamic equations. In addition to that, most previous works assume that all energy driving the escape flow is deposited in one narrow layer. This assumption not only results in less accurate solutions to the hydrodynamic escape problem, but also makes it difficult to include other chemical and physical processes in the hydrodynamic escape models. In this work, a numerical model describing the transonic hydrodynamic escape from planetary atmospheres is developed. A robust solution technique is used to solve the time dependent hydrodynamic equations. The method has been validated in an isothermal atmosphere where an analytical solution is available. The hydrodynamic model is applied to 3 cases: hydrogen escape from small orbit extrasolar planets, hydrogen escape from a hydrogen rich early Earth's atmosphere, and nitrogen/methane escape from Pluto's atmosphere. Results of simulations on extrasolar planets are in good agreement with the observations of the transiting extrasolar planet HD209458b. Hydrodynamic escape of hydrogen from other hypothetical close-in extrasolar planets are simulated and the influence of hydrogen escape on the long-term evolution of these extrasolar planets are discussed. Simulations on early Earth suggest that hydrodynamic escape of hydrogen from a hydrogen rich early Earth's atmosphere is about two orders magnitude slower than the diffusion limited escape rate. A hydrogen rich early Earth's atmosphere could have been maintained by the balance between the hydrogen escape and the supply of hydrogen into the atmosphere by volcanic outgassing. Origin of life may have occurred in the organic soup ocean created by the efficient formation of prebiotic molecules in the hydrogen rich early

  4. Hydrodynamic interaction between two trapped swimming model micro-organisms.

    Science.gov (United States)

    Matas Navarro, R; Pagonabarraga, I

    2010-09-01

    We present a theoretical study of the behaviour of two active particles under the action of harmonic traps kept at a fixed distance away from each other. We classify the steady configurations the squirmers develop as a function of their self-propelling velocity and the active stresses the swimmers induce around them. We have further analyzed the stability of such configurations, and have found that the ratio between their self-propelling velocity and the apolar flow generated through active stresses determines whether collinear parallel squirmers or perpendicularly swimming particles moving away from each other are stable. Therefore, there is a close connection between the stable configurations and the active mechanisms leading to the particle self-propulsion. The trap potential does not affect the stability of the configurations; it only modifies some of their relevant time scales. We have also observed the development of characteristic frequencies which should be observable. Finally, we show that the development of the hydrodynamic flows induced by the active particles may be relevant even when its time scale orders of magnitude smaller than the other present characteristic time scales and may destabilize the stable configurations.

  5. A hydrodynamic formalism for Brownian systems

    International Nuclear Information System (INIS)

    Pina, E.; Rosales, M.A.

    1981-01-01

    A formal hydrodynamic approach to Brownian motion is presented and the corresponding equations are derived. Hydrodynamic quantities are expressed in terms of the physical variables characterizing the Brownian systems. Contact is made with the hydrodynamic model of Quantum Mechanics. (author)

  6. Advanced in Macrostatistical Hydrodynamics

    International Nuclear Information System (INIS)

    Graham, A.L.; Tetlow, N.; Abbott, J.R.; Mondy, L.S.; Brenner, H.

    1993-01-01

    An overview is presented of research that focuses on slow flows of suspensions in which colloidal and inertial effects are negligibly small (Macrostatistical Hydrodynamics). First, we describe nuclear magnetic resonance imaging experiments to quantitatively measure particle migration occurring in concentrated suspensions undergoing a flow with a nonuniform shear rate. These experiments address the issue of how the flow field affects the microstructure of suspensions. In order to understand the local viscosity in a suspension with such a flow-induced, spatially varying concentration, one must know how the viscosity of a homogeneous suspension depends on such variables as solids concentration and particle orientation. We suggest the technique of falling ball viscometry, using small balls, as a method to determine the effective viscosity of a suspension without affecting the original microstructure significantly. We also describe data from experiments in which the detailed fluctuations of a falling ball's velocity indicate the noncontinuum nature of the suspension and may lead to more insights into the effects of suspension microstructure on macroscopic properties. Finally, we briefly describe other experiments that can be performed in quiescent suspensions (in contrast to the use of conventional shear rotational viscometers) in order to learn more about the microstructure and boundary effects in concentrated suspensions

  7. Limitations of the Weissler reaction as a model reaction for measuring the efficiency of hydrodynamic cavitation.

    Science.gov (United States)

    Morison, K R; Hutchinson, C A

    2009-01-01

    The Weissler reaction in which iodide is oxidised to a tri-iodide complex (I(3)(-)) has been widely used for measurement of the intensity of ultrasonic and hydrodynamic cavitation. It was used in this work to compare ultrasonic cavitation at 24 kHz with hydrodynamic cavitation using two different devices, one a venturi and the other a sudden expansion, operated up to 8.7 bar. Hydrodynamic cavitation had a maximum efficiency of about 5 x 10(-11) moles of I(3)(-) per joule of energy compared with the maximum of almost 8 x 10(-11) mol J(-1) for ultrasonic cavitation. Hydrodynamic cavitation was found to be most effective at 10 degrees C compared with 20 degrees C and 30 degrees C and at higher upstream pressures. However, it was found that in hydrodynamic conditions, even without cavitation, I(3)(-) was consumed at a rapid rate leading to an equilibrium concentration. It was concluded that the Weissler reaction was not a good model reaction for the assessment of the effectiveness of hydrodynamic cavitation.

  8. Correlated particle dynamics in concentrated quasi-two-dimensional suspensions

    International Nuclear Information System (INIS)

    Diamant, H; Cui, B; Lin, B; Rice, S A

    2005-01-01

    We investigate theoretically and experimentally how the hydrodynamically correlated lateral motion of particles in a suspension confined between two surfaces is affected by the suspension concentration. Despite the long range of the correlations (decaying as 1/r 2 with the inter-particle distance r), the concentration effect is present only at short inter-particle distances for which the static pair correlation is nonuniform. This is in sharp contrast with the effect of hydrodynamic screening in unconfined suspensions, where increasing the concentration changes the prefactor of the large-distance correlation

  9. How to fake hydrodynamic signals

    Energy Technology Data Exchange (ETDEWEB)

    Romatschke, Paul [Department of Physics, 390 UCB, University of Colorado at Boulder, Boulder, CO (United States); Center for Theory of Quantum Matter, University of Colorado, Boulder, CO 80309 (United States)

    2016-12-15

    Flow signatures in experimental data from relativistic ion collisions, are usually interpreted as a fingerprint of the presence of a hydrodynamic phase during the evolution of these systems. I review some theoretical ideas to ‘fake’ this hydrodynamic behavior in p+A and A+A collisions. I find that transverse flow and femtoscopic measurements can easily be forged through non-hydrodynamic evolution, while large elliptic flow requires some non-vanishing interactions in the hot phase.

  10. Lower bound on the electroweak wall velocity from hydrodynamic instability

    Energy Technology Data Exchange (ETDEWEB)

    Mégevand, Ariel; Membiela, Federico Agustín; Sánchez, Alejandro D., E-mail: megevand@mdp.edu.ar, E-mail: membiela@mdp.edu.ar, E-mail: sanchez@mdp.edu.ar [IFIMAR (CONICET-UNMdP), Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Deán Funes (7600) 3350 Mar del Plata (Argentina)

    2015-03-01

    The subsonic expansion of bubbles in a strongly first-order electroweak phase transition is a convenient scenario for electroweak baryogenesis. For most extensions of the Standard Model, stationary subsonic solutions (i.e., deflagrations) exist for the propagation of phase transition fronts. However, deflagrations are known to be hydrodynamically unstable for wall velocities below a certain critical value. We calculate this critical velocity for several extensions of the Standard Model and compare with an estimation of the wall velocity. In general, we find a region in parameter space which gives stable deflagrations as well as favorable conditions for electroweak baryogenesis.

  11. Lower bound on the electroweak wall velocity from hydrodynamic instability

    International Nuclear Information System (INIS)

    Mégevand, Ariel; Membiela, Federico Agustín; Sánchez, Alejandro D.

    2015-01-01

    The subsonic expansion of bubbles in a strongly first-order electroweak phase transition is a convenient scenario for electroweak baryogenesis. For most extensions of the Standard Model, stationary subsonic solutions (i.e., deflagrations) exist for the propagation of phase transition fronts. However, deflagrations are known to be hydrodynamically unstable for wall velocities below a certain critical value. We calculate this critical velocity for several extensions of the Standard Model and compare with an estimation of the wall velocity. In general, we find a region in parameter space which gives stable deflagrations as well as favorable conditions for electroweak baryogenesis

  12. Lower bound on the electroweak wall velocity from hydrodynamic instability

    Energy Technology Data Exchange (ETDEWEB)

    Mégevand, Ariel; Membiela, Federico Agustín; Sánchez, Alejandro D. [IFIMAR (CONICET-UNMdP), Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Deán Funes (7600) 3350 Mar del Plata (Argentina)

    2015-03-27

    The subsonic expansion of bubbles in a strongly first-order electroweak phase transition is a convenient scenario for electroweak baryogenesis. For most extensions of the Standard Model, stationary subsonic solutions (i.e., deflagrations) exist for the propagation of phase transition fronts. However, deflagrations are known to be hydrodynamically unstable for wall velocities below a certain critical value. We calculate this critical velocity for several extensions of the Standard Model and compare with an estimation of the wall velocity. In general, we find a region in parameter space which gives stable deflagrations as well as favorable conditions for electroweak baryogenesis.

  13. Hydrodynamical description of collective flow

    OpenAIRE

    Huovinen, Pasi

    2003-01-01

    I review how hydrodynamical flow is related to the observed flow in ultrarelativistic heavy ion collisions and how initial conditions, equation of state and freeze-out temperature affect flow in hydrodynamical models.

  14. Efficient inactivation of MS-2 virus in water by hydrodynamic cavitation.

    Science.gov (United States)

    Kosel, Janez; Gutiérrez-Aguirre, Ion; Rački, Nejc; Dreo, Tanja; Ravnikar, Maja; Dular, Matevž

    2017-11-01

    The aim of this study was to accurately quantify the impact of hydrodynamic cavitation on the infectivity of bacteriophage MS2, a norovirus surrogate, and to develop a small scale reactor for testing the effect of hydrodynamic cavitation on human enteric viruses, which cannot be easily prepared in large quantities. For this purpose, 3 mL scale and 1 L scale reactors were constructed and tested. Both devices were efficient in generating hydrodynamic cavitation and in reducing the infectivity of MS2 virus. Furthermore, they reached more than 4 logs reductions of viral infectivity, thus confirming the scalability of hydrodynamic cavitation for this particular application. As for the mechanism of page inactivation, we suspect that cavitation generated OH - radicals formed an advanced oxidation process, which could have damaged the host's recognition receptors located on the surface of the bacteriophage. Additional damage could arise from the high shear forces inside the cavity. Moreover, the effectiveness of the cavitation was higher for suspensions containing low initial viral titers that are in similar concentration to the ones found in real water samples. According to this, cavitation generators could prove to be a useful tool for treating virus-contaminated wastewaters in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Effects of salinity and particle concentration on sediment hydrodynamics and critical bed-shear-stress for erosion of fine grained sediments used in wetland restoration projects

    Science.gov (United States)

    Ghose-Hajra, M.; McCorquodale, A.; Mattson, G.; Jerolleman, D.; Filostrat, J.

    2015-03-01

    Sea-level rise, the increasing number and intensity of storms, oil and groundwater extraction, and coastal land subsidence are putting people and property at risk along Louisiana's coast, with major implications for human safety and economic health of coastal areas. A major goal towards re-establishing a healthy and sustainable coastal ecosystem has been to rebuild Louisiana's disappearing wetlands with fine grained sediments that are dredged or diverted from nearby rivers, channels and lakes to build land in open water areas. A thorough geo-hydrodynamic characterization of the deposited sediments is important in the correct design and a more realistic outcome assessment of the long-term performance measures for ongoing coastal restoration projects. This paper evaluates the effects of salinity and solid particle concentration on the re-suspension characteristics of fine-grained dredged sediments obtained from multiple geographic locations along the Gulf coast. The critical bed-shear-stress for erosion has been evaluated as a function of sedimentation time. The sediment hydrodynamic properties obtained from the laboratory testing were used in a numerical coastal sediment distribution model to aid in evaluating sediment diversions from the Mississippi River into Breton Sound and Barataria Bay.

  16. Effects of salinity and particle concentration on sediment hydrodynamics and critical bed-shear-stress for erosion of fine grained sediments used in wetland restoration projects

    Directory of Open Access Journals (Sweden)

    M. Ghose-Hajra

    2015-03-01

    Full Text Available Sea-level rise, the increasing number and intensity of storms, oil and groundwater extraction, and coastal land subsidence are putting people and property at risk along Louisiana’s coast, with major implications for human safety and economic health of coastal areas. A major goal towards re-establishing a healthy and sustainable coastal ecosystem has been to rebuild Louisiana’s disappearing wetlands with fine grained sediments that are dredged or diverted from nearby rivers, channels and lakes to build land in open water areas. A thorough geo-hydrodynamic characterization of the deposited sediments is important in the correct design and a more realistic outcome assessment of the long-term performance measures for ongoing coastal restoration projects. This paper evaluates the effects of salinity and solid particle concentration on the re-suspension characteristics of fine-grained dredged sediments obtained from multiple geographic locations along the Gulf coast. The critical bed-shear-stress for erosion has been evaluated as a function of sedimentation time. The sediment hydrodynamic properties obtained from the laboratory testing were used in a numerical coastal sediment distribution model to aid in evaluating sediment diversions from the Mississippi River into Breton Sound and Barataria Bay.

  17. Hydrodynamics and stellar winds an introduction

    CERN Document Server

    Maciel, Walter J

    2014-01-01

    Stellar winds are a common phenomenon in the life of stars, from the dwarfs like the Sun to the red giants and hot supergiants, constituting one of the basic aspects of modern astrophysics. Stellar winds are a hydrodynamic phenomenon in which circumstellar gases expand towards the interstellar medium. This book presents an elementary introduction to the fundamentals of hydrodynamics with an application to the study of stellar winds. The principles of hydrodynamics have many other applications, so that the book can be used as an introduction to hydrodynamics for students of physics, astrophysics and other related areas.

  18. Hydrodynamics of electrons in graphene

    Science.gov (United States)

    Lucas, Andrew; Chung Fong, Kin

    2018-02-01

    Generic interacting many-body quantum systems are believed to behave as classical fluids on long time and length scales. Due to rapid progress in growing exceptionally pure crystals, we are now able to experimentally observe this collective motion of electrons in solid-state systems, including graphene. We present a review of recent progress in understanding the hydrodynamic limit of electronic motion in graphene, written for physicists from diverse communities. We begin by discussing the ‘phase diagram’ of graphene, and the inevitable presence of impurities and phonons in experimental systems. We derive hydrodynamics, both from a phenomenological perspective and using kinetic theory. We then describe how hydrodynamic electron flow is visible in electronic transport measurements. Although we focus on graphene in this review, the broader framework naturally generalizes to other materials. We assume only basic knowledge of condensed matter physics, and no prior knowledge of hydrodynamics.

  19. Black brane entropy and hydrodynamics

    NARCIS (Netherlands)

    Booth, I.; Heller, M.P.; Spaliński, M.

    2010-01-01

    A generalization of entropy to near-equilibrium phenomena is provided by the notion of a hydrodynamic entropy current. Recent advances in holography have lead to the formulation of fluid-gravity duality, a remarkable connection between the hydrodynamics of certain strongly coupled media and dynamics

  20. Black brane entropy and hydrodynamics

    NARCIS (Netherlands)

    Booth, I.; Heller, M.P.; Spaliński, M.

    2011-01-01

    A generalization of entropy to near-equilibrium phenomena is provided by the notion of a hydrodynamic entropy current. Recent advances in holography have lead to the formulation of fluid-gravity duality, a remarkable connection between the hydrodynamics of certain strongly coupled media and dynamics

  1. Formulating viscous hydrodynamics for large velocity gradients

    International Nuclear Information System (INIS)

    Pratt, Scott

    2008-01-01

    Viscous corrections to relativistic hydrodynamics, which are usually formulated for small velocity gradients, have recently been extended from Navier-Stokes formulations to a class of treatments based on Israel-Stewart equations. Israel-Stewart treatments, which treat the spatial components of the stress-energy tensor τ ij as dynamical objects, introduce new parameters, such as the relaxation times describing nonequilibrium behavior of the elements τ ij . By considering linear response theory and entropy constraints, we show how the additional parameters are related to fluctuations of τ ij . Furthermore, the Israel-Stewart parameters are analyzed for their ability to provide stable and physical solutions for sound waves. Finally, it is shown how these parameters, which are naturally described by correlation functions in real time, might be constrained by lattice calculations, which are based on path-integral formulations in imaginary time

  2. Enhanced decolorization of methyl orange using zero-valent copper nanoparticles under assistance of hydrodynamic cavitation.

    Science.gov (United States)

    Li, Pan; Song, Yuan; Wang, Shuai; Tao, Zheng; Yu, Shuili; Liu, Yanan

    2015-01-01

    The rate of reduction reactions of zero-valent metal nanoparticles is restricted by their agglomeration. Hydrodynamic cavitation was used to overcome the disadvantage in this study. Experiments for decolorization of methyl orange azo dye by zero-valent copper nanoparticles were carried out in aqueous solution with and without hydrodynamic cavitation. The results showed that hydrodynamic cavitation greatly accelerated the decolorization rate of methyl orange. The size of nanoparticles was decreased after hydrodynamic cavitation treatment. The effects of important operating parameters such as discharge pressure, initial solution pH, and copper nanoparticle concentration on the degradation rates were studied. It was observed that there was an optimum discharge pressure to get best decolorization performance. Lower solution pH were favorable for the decolorization. The pseudo-first-order kinetic constant for the degradation of methyl orange increased linearly with the copper dose. UV-vis spectroscopic and Fourier transform infrared (FT-IR) analyses confirmed that many degradation intermediates were formed. The results indicated hydroxyl radicals played a key role in the decolorization process. Therefore, the enhancement of decolorization by hydrodynamic cavitation could due to the deagglomeration of nanoparticles as well as the oxidation by the in situ generated hydroxyl radicals. These findings greatly increase the potential of the Cu(0)/hydrodynamic cavitation technique for use in the field of treatment of wastewater containing hazardous materials. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Topics in fluctuating nonlinear hydrodynamics

    International Nuclear Information System (INIS)

    Milner, S.T.

    1986-01-01

    Models of fluctuating nonlinear hydrodynamics have enjoyed much success in explaining the effect of long-wavelength fluctuations in diverse hydrodynamic systems. This thesis explores two such problems; in both, the body of hydrodynamic assumptions powerfully constrains the predictions of a well-posed theory. The effects of layer fluctuations in smectic-A liquid crystals are first examined. The static theory (introduced by Grinstein and Pelcovits) is reviewed. Ward identities, resulting from the arbitrariness of the layering direction, are derived and exploited. The static results motivate an examination of dynamic fluctuation effects. A new sound-damping experiment is proposed that would probe singular dependence of viscosities on applied stress. A theory of Procaccia and Gitterman that reaction rates of chemically reacting binary mixtures are drastically reduced near their thermodynamic critical points is analyzed. Hydrodynamic arguments and Van Hove theory are applied, concluding that the PG idea is drastically slowed, and spatially varying composition fluctuations are at best slowed down over a narrow range of wavenumbers

  4. A novel rotation generator of hydrodynamic cavitation for waste-activated sludge disintegration.

    Science.gov (United States)

    Petkovšek, Martin; Mlakar, Matej; Levstek, Marjetka; Stražar, Marjeta; Širok, Brane; Dular, Matevž

    2015-09-01

    The disintegration of raw sludge is very important for enhancement of the biogas production in anaerobic digestion process as it provides easily degradable substrate for microorganisms to perform maximum sludge treatment efficiency and stable digestion of sludge at lower costs. In the present study the disintegration was studied by using a novel rotation generator of hydrodynamic cavitation (RGHC). At the first stage the analysis of hydrodynamics of the RGHC were made with tap water, where the cavitation extent and aggressiveness was evaluated. At the second stage RGHC was used as a tool for pretreatment of a waste-activated sludge (WAS), collected from wastewater treatment plant (WWTP). In case of WAS the disintegration rate was measured, where the soluble chemical oxygen demand (SCOD) and soluble Kjeldahl nitrogen were monitored and microbiological pictures were taken. The SCOD increased from initial 45 mg/L up to 602 mg/L and 12.7% more biogas has been produced by 20 passes through RGHC. The results were obtained on a pilot bioreactor plant, volume of 400 L. Copyright © 2015. Published by Elsevier B.V.

  5. Anomalous hydrodynamics of Weyl materials

    Science.gov (United States)

    Monteiro, Gustavo; Abanov, Alexander

    Kinetic theory is a useful tool to study transport in Weyl materials when the band-touching points are hidden inside a Fermi surface. It accounts, for example, for the negative magnetoresistance caused by the chiral magnetic effect and quantum oscillations (SdH effect) in the magnetoresistance together within the same framework. As an alternative approach to kinetic theory we also consider the regime of strong interactions where hydrodynamics can be applicable. A variational principle of these hydrodynamic equations can be found in and provide a natural framework to study hydrodynamic surface modes which correspond to the strongly-interacting physics signature of Fermi arcs. G.M. acknowledges the financial support from FAPESP.

  6. SPECIAL RELATIVISTIC HYDRODYNAMICS WITH GRAVITATION

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Jai-chan [Department of Astronomy and Atmospheric Sciences, Kyungpook National University, Daegu (Korea, Republic of); Noh, Hyerim [Korea Astronomy and Space Science Institute, Daejon (Korea, Republic of)

    2016-12-20

    Special relativistic hydrodynamics with weak gravity has hitherto been unknown in the literature. Whether such an asymmetric combination is possible has been unclear. Here, the hydrodynamic equations with Poisson-type gravity, considering fully relativistic velocity and pressure under the weak gravity and the action-at-a-distance limit, are consistently derived from Einstein’s theory of general relativity. An analysis is made in the maximal slicing, where the Poisson’s equation becomes much simpler than our previous study in the zero-shear gauge. Also presented is the hydrodynamic equations in the first post-Newtonian approximation, now under the general hypersurface condition. Our formulation includes the anisotropic stress.

  7. Similarity flows in relativistic hydrodynamics

    International Nuclear Information System (INIS)

    Blaizot, J.P.; Ollitrault, J.Y.

    1986-01-01

    In ultra-relativistic heavy ion collisions, one expects in particular to observe a deconfinement transition leading to a formation of quark gluon plasma. In the framework of the hydrodynamic model, experimental signatures of such a plasma may be looked for as observable consequences of a first order transition on the evolution of the system. In most of the possible scenario, the phase transition is accompanied with discontinuities in the hydrodynamic flow, such as shock waves. The method presented in this paper has been developed to treat without too much numerical effort such discontinuous flow. It relies heavily on the use of similarity solutions of the hydrodynamic equations

  8. The RAGE radiation-hydrodynamic code

    International Nuclear Information System (INIS)

    Gittings, Michael; Clover, Michael; Betlach, Thomas; Byrne, Nelson; Ranta, Dale; Weaver, Robert; Coker, Robert; Dendy, Edward; Hueckstaedt, Robert; New, Kim; Oakes, W Rob; Stefan, Ryan

    2008-01-01

    We describe RAGE, the 'radiation adaptive grid Eulerian' radiation-hydrodynamics code, including its data structures, its parallelization strategy and performance, its hydrodynamic algorithm(s), its (gray) radiation diffusion algorithm, and some of the considerable amount of verification and validation efforts. The hydrodynamics is a basic Godunov solver, to which we have made significant improvements to increase the advection algorithm's robustness and to converge stiffnesses in the equation of state. Similarly, the radiation transport is a basic gray diffusion, but our treatment of the radiation-material coupling, wherein we converge nonlinearities in a novel manner to allow larger timesteps and more robust behavior, can be applied to any multi-group transport algorithm

  9. On the influence of the hydrodynamic interactions on the aggregation rate of magnetic spheres in a dilute suspension

    International Nuclear Information System (INIS)

    Cunha, F.R.; Couto, H.L.G.

    2011-01-01

    Magnetostatic attraction may lead to formation of aggregates in stable colloidal magnetic suspensions and magneto-rheological suspensions. The aggregation problem of magnetic composites under differential sedimentation is a key problem in the control of the instability of non-Brownian suspensions. Against these attractive forces are the electrostatic repulsion and the hydrodynamic interactions acting as stabilizing effects to the suspension. This work concerns an investigation of the pairwise interaction of magnetic particles in a dilute sedimenting suspension. We focus attention on suspensions where the Peclet number is large (negligible Brownian motion) and where the Reynolds number (negligible inertia) is small. The suspension is composed of magnetic micro-spheres of different radius and density immersed in a Newtonian fluid moving under the action of gravity. The theoretical calculations are based on direct computations of the hydrodynamic and the magnetic interactions among the rigid spheres in the regime of low particle Reynolds number. From the limiting trajectory in which aggregation occurs, we calculate the collision efficiency, representing the dimensionless rate at which aggregates are formed. The numerical results show clear evidence that the hydrodynamic interactions are of fundamental relevance in the process of magnetic particle aggregation. We compare the stabilizing effects between electrostatic repulsion and hydrodynamic interactions.

  10. On the influence of the hydrodynamic interactions on the aggregation rate of magnetic spheres in a dilute suspension

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, F.R., E-mail: frcunha@unb.b [Universidade de Brasilia, Faculdade de Tecnologia, Depto. de Engenharia Mecanica, Grupo de Mecanica dos Fluidos de Escoamentos Complexos - VORTEX, Campus Universitario Darcy Ribeiro, 70910-900, Brasilia, DF (Brazil); Couto, H.L.G. [Universidade de Brasilia, Faculdade de Tecnologia, Depto. de Engenharia Mecanica, Grupo de Mecanica dos Fluidos de Escoamentos Complexos - VORTEX, Campus Universitario Darcy Ribeiro, 70910-900, Brasilia, DF (Brazil)

    2011-01-15

    Magnetostatic attraction may lead to formation of aggregates in stable colloidal magnetic suspensions and magneto-rheological suspensions. The aggregation problem of magnetic composites under differential sedimentation is a key problem in the control of the instability of non-Brownian suspensions. Against these attractive forces are the electrostatic repulsion and the hydrodynamic interactions acting as stabilizing effects to the suspension. This work concerns an investigation of the pairwise interaction of magnetic particles in a dilute sedimenting suspension. We focus attention on suspensions where the Peclet number is large (negligible Brownian motion) and where the Reynolds number (negligible inertia) is small. The suspension is composed of magnetic micro-spheres of different radius and density immersed in a Newtonian fluid moving under the action of gravity. The theoretical calculations are based on direct computations of the hydrodynamic and the magnetic interactions among the rigid spheres in the regime of low particle Reynolds number. From the limiting trajectory in which aggregation occurs, we calculate the collision efficiency, representing the dimensionless rate at which aggregates are formed. The numerical results show clear evidence that the hydrodynamic interactions are of fundamental relevance in the process of magnetic particle aggregation. We compare the stabilizing effects between electrostatic repulsion and hydrodynamic interactions.

  11. Universality in passively advected hydrodynamic fields : the case of a passive vector with pressure

    NARCIS (Netherlands)

    Benzi, R.; Biferale, L.; Toschi, F.

    2001-01-01

    Universality of statistical properties of passive quantities advected by turbulent velocity fields at changing the passive forcing mechanism is discussed. In particular, we concentrate on the statistical properties of an hydrodynamic system with pressure. We present theoretical arguments and

  12. Modeling of Hydrodynamic Chromatography for Colloid Migration in Fractured Rock

    International Nuclear Information System (INIS)

    Li Shihhai; Jen, C.-P.

    2001-01-01

    The role of colloids in the migration of radionuclides in the geosphere has been emphasized in the performance assessment of high-level radioactive waste disposal. The literature indicates that the colloid velocity may not be equal to the velocity of groundwater owing to hydrodynamic chromatography. A theoretical model for hydrodynamic chromatography of colloid migration in the fracture is proposed in the present work. In this model, the colloids are treated as nonreactive and the external forces acting on colloidal particles are considered including the inertial force, the van der Waals attractive force, and the electrical double-layer repulsive force, as well as the gravitational force. A fully developed concentration profile for colloids is obtained to elucidate migration behavior for colloids in the fracture. The effects of parameters governing these forces and the aperture of the fracture are determined using a theoretical model

  13. Nutrient Concentrations and Stable Isotopes of Runoff from a Midwest Tile-Drained Corn Field

    Science.gov (United States)

    Wilkins, B. P.; Woo, D.; Li, J.; Michalski, G. M.; Kumar, P.; Conroy, J. L.; Keefer, D. A.; Keefer, L. L.; Hodson, T. O.

    2017-12-01

    Tile drains are a common crop drainage device used in Midwest agroecosystems. While efficient at drainage, the tiles provide a quick path for nutrient runoff, reducing the time available for microbes to use nutrients (e.g., NO3- and PO43-) and reduce export to riverine systems. Thus, understanding the effects of tile drains on nutrient runoff is critical to achieve nutrient reduction goals. Here we present isotopic and concentration data collected from tile drain runoff of a corn field located near Monticello, IL. Tile flow samples were measured for anion concentrations and stable isotopes of H2O and NO3-, while precipitation was measured for dual isotopes of H2O. Results demonstrate early tile flow from rain events have a low Cl- concentration (60% contribution) in the beginning of the hydrograph. As flow continues H2O isotopic values reflect pre-event water (ground and soil water), and Cl- concentrations increase representing a greater influence by matrix flow (60-90% contribution). Nitrate concentrations change dramatically, especially during the growing season, and do not follow a similar trend as the conservative Cl-, often decreasing days before, which represents missing nitrate in the upper surface portion of the soil. Nitrate isotopic data shows significant changes in 15N (4‰) and 18O (4‰) during individual hydrological events, representing that in addition to plant uptake and leaching, considerate NO3- is lost through denitrification. It is notable, that throughout the season d15N and d18O of nitrate change significantly representing that seasonally, substantial denitrification occurs.

  14. Modelling hydrodynamic parameters to predict flow assisted corrosion

    International Nuclear Information System (INIS)

    Poulson, B.; Greenwell, B.; Chexal, B.; Horowitz, J.

    1992-01-01

    During the past 15 years, flow assisted corrosion has been a worldwide problem in the power generating industry. The phenomena is complex and depends on environment, material composition, and hydrodynamic factors. Recently, modeling of flow assisted corrosion has become a subject of great importance. A key part of this effort is modeling the hydrodynamic aspects of this issue. This paper examines which hydrodynamic parameter should be used to correlate the occurrence and rate of flow assisted corrosion with physically meaningful parameters, discusses ways of measuring the relevant hydrodynamic parameter, and describes how the hydrodynamic data is incorporated into the predictive model

  15. Hydrodynamic electronic fluid instability in GaAs MESFETs at terahertz frequencies

    Science.gov (United States)

    Li, Kang; Hao, Yue; Jin, Xiaoqi; Lu, Wu

    2018-01-01

    III-V compound semiconductor field effect transistors (FETs) are potential candidates as solid state THz emitters and detectors due to plasma wave instability in these devices. Using a 2D hydrodynamic model, here we present the numerical studies of electron fluid instability in a FET structure. The model is implemented in a GaAs MESFET structure with a gate length of 0.2 µm as a testbed by taking into account the non-equilibrium transport and multi-valley non-parabolicity energy bands. The results show that the electronic density instability in the channel can produce stable periodic oscillations at THz frequencies. Along with stable oscillations, negative differential resistance in output characteristics is observed. The THz emission energy density increases monotonically with the drain bias. The emission frequency of electron density oscillations can be tuned by both gate and drain biases. The results suggest that III-V FETs can be a kind of versatile THz devices with good tunability on both radiative power and emission frequency.

  16. HOTSED: a discrete element model for simulating hydrodynamic conditions and adsorbed and dissolved radioisotope concentrations in estuaries

    International Nuclear Information System (INIS)

    Fields, D.E.; Hetrick, D.M.

    1978-12-01

    A model has been developed to study the feasibility of simulating one-dimensional transport of radioisotope-tagged sediment in tidal-dominated estuaries. A preliminary one-dimensional model for simulating hydrodynamic, thermal, and dissolved radionuclide concentrations in tidal estuaries was merged with an improved version of the SEDTRN model, a multi-sediment-size class model of bedload and suspended sediment transport. The improved SEDTRN model, which employs a velocity-based rather than an energy-based sediment transport rate calculation and accounts for nonzero channel bed slope, is given credence by comparing its results in stand-alone form to those obtained using the parent model. Results of the latter model have been shown to compare favorably to field measurements. The combined preliminary model is called HOTSED. Details of model modifications, the addition of printer plot output capability, and a discussion of input and output structures are included. The HOTSED model is applied to the Hudson River under tidal-transient conditions and the transport ''tagged'' or radioisotope-bearing sediment is simulated. The code is designed specifically for applications with dominant tidal cycling. It requires, for a 76-element channel system, 270 thousand bytes of storage and, for a simulation of 25 hours, has an execution time of approximately five minutes on the IBM System 360/91 computer

  17. Hydrodynamic interactions in active colloidal crystal microrheology.

    Science.gov (United States)

    Weeber, R; Harting, J

    2012-11-01

    In dense colloids it is commonly assumed that hydrodynamic interactions do not play a role. However, a found theoretical quantification is often missing. We present computer simulations that are motivated by experiments where a large colloidal particle is dragged through a colloidal crystal. To qualify the influence of long-ranged hydrodynamics, we model the setup by conventional Langevin dynamics simulations and by an improved scheme with limited hydrodynamic interactions. This scheme significantly improves our results and allows to show that hydrodynamics strongly impacts the development of defects, the crystal regeneration, as well as the jamming behavior.

  18. Experimental and numerical simulations of the hydrodynamic dispersion of a pollutant effluent in a estuarine coastal zone

    International Nuclear Information System (INIS)

    Gidas, N.K.; Koutitonsky, V.G.

    1996-01-01

    An experimental and numerical study was performed to measure and simulate the hydrodynamic dispersion of a pollutant effluent discharged by an outfall diffuser into an estuarine coastal zone near Rimouski, Canada. Field measurements of currents, tides, salinity, and winds were obtained in the vicinity of the injection site, and two tracer dispersion experiments were carried on in these coastal waters. The measurements were taken before and after the construction of the marine outfall diffuser. The similitude between the plume of a tracer (physical model) released into the coastal waters before construction and that of the real effluent (prototype) discharged at the same site was studied. A new coefficient of similitude was established, which allows to transpose the concentrations of the physical model tracer to the waste water concentrations of the prototype. The numerical simulation (2D) is performed with a hydrodynamic model and an advection-dispersion model of the MIKE21 system from the Danish Hydraulic Institute, using the so-called telescopic approach. The objective of these simulations was to predict, among other things, the pollutant effluent concentrations for critical hydrodynamic conditions relative to the aquatic ecosystem to be protected. The methodology elaborated was used for the management of the coastal environments subjected to pollution. (author). 28 refs., 2 tabs., 12 figs

  19. Study on Relation between Hydrodynamic Feature Size of HPAM and Pore Size of Reservoir Rock in Daqing Oilfield

    Directory of Open Access Journals (Sweden)

    Qing Fang

    2015-01-01

    Full Text Available The flow mechanism of the injected fluid was studied by the constant pressure core displacement experiments in the paper. It is assumed under condition of the constant pressure gradient in deep formation based on the characteristic of pressure gradient distribution between the injection and production wells and the mobility of different polymer systems in deep reservoir. Moreover, the flow rate of steady stream was quantitatively analyzed and the critical flow pressure gradient of different injection parameters polymer solutions in different permeability cores was measured. The result showed that polymer hydrodynamic feature size increases with the increasing molecular weight. If the concentration of polymer solutions overlaps beyond critical concentration, then molecular chains entanglement will be occur and cause the augment of its hydrodynamic feature size. The polymer hydrodynamic feature size decreased as the salinity of the dilution water increased. When the median radius of the core pore and throat was 5–10 times of the polymer system hydrodynamic feature size, the polymer solution had a better compatibility with the microscopic pore structure of the reservoir. The estimation of polymer solutions mobility in the porous media can be used to guide the polymer displacement plan and select the optimum injection parameters.

  20. Numerical Hydrodynamics in General Relativity

    Directory of Open Access Journals (Sweden)

    Font José A.

    2003-01-01

    Full Text Available The current status of numerical solutions for the equations of ideal general relativistic hydrodynamics is reviewed. With respect to an earlier version of the article, the present update provides additional information on numerical schemes, and extends the discussion of astrophysical simulations in general relativistic hydrodynamics. Different formulations of the equations are presented, with special mention of conservative and hyperbolic formulations well-adapted to advanced numerical methods. A large sample of available numerical schemes is discussed, paying particular attention to solution procedures based on schemes exploiting the characteristic structure of the equations through linearized Riemann solvers. A comprehensive summary of astrophysical simulations in strong gravitational fields is presented. These include gravitational collapse, accretion onto black holes, and hydrodynamical evolutions of neutron stars. The material contained in these sections highlights the numerical challenges of various representative simulations. It also follows, to some extent, the chronological development of the field, concerning advances on the formulation of the gravitational field and hydrodynamic equations and the numerical methodology designed to solve them.

  1. Resolving collisions in Stokes suspensions with an efficient and stable potential-free constrained optimization algorithm

    Science.gov (United States)

    Yan, Wen; Corona, Eduardo; Veerapaneni, Shravan; Shelley, Michael

    2017-11-01

    A common challenge in simulating dense suspension of rigid particles in Stokes flow is the numerical instability that arises due to particle collisions. To overcome this problem, often a strong repulsive potential between particles is prescribed. This in turn leads to numerical stiffness and dramatic reduction in stable time-step sizes. In this work, we eliminate such stiffness by introducing contact constraints explicitly and solving the hydrodynamic equations in tandem with a linear complementarity problem with inequality constraints. The Newton's third law of the collision force is explicitly guaranteed to allow consistent calculation of collision stresses. Efficient parallelization for shared-memory and distributed-memory architectures is also implemented. This method can be coupled to any Stokes hydrodynamics solver for particles with various shapes and allows us to simulate 104 107 spheres on a laptop, depending on the cost of the Stokes hydrodynamics solver. We demonstrate its performance on a range of applications from active matter to multi-physics problems.

  2. The RAGE radiation-hydrodynamic code

    Energy Technology Data Exchange (ETDEWEB)

    Gittings, Michael; Clover, Michael; Betlach, Thomas; Byrne, Nelson; Ranta, Dale [Science Applications International Corp. MS A-1, 10260 Campus Point Drive, San Diego, CA 92121 (United States); Weaver, Robert; Coker, Robert; Dendy, Edward; Hueckstaedt, Robert; New, Kim; Oakes, W Rob [Los Alamos National Laboratory, MS T087, PO Box 1663, Los Alamos, NM 87545 (United States); Stefan, Ryan [TaylorMade-adidas Golf, 5545 Fermi Court, Carlsbad, CA 92008-7324 (United States)], E-mail: michael.r.clover@saic.com

    2008-10-01

    We describe RAGE, the 'radiation adaptive grid Eulerian' radiation-hydrodynamics code, including its data structures, its parallelization strategy and performance, its hydrodynamic algorithm(s), its (gray) radiation diffusion algorithm, and some of the considerable amount of verification and validation efforts. The hydrodynamics is a basic Godunov solver, to which we have made significant improvements to increase the advection algorithm's robustness and to converge stiffnesses in the equation of state. Similarly, the radiation transport is a basic gray diffusion, but our treatment of the radiation-material coupling, wherein we converge nonlinearities in a novel manner to allow larger timesteps and more robust behavior, can be applied to any multi-group transport algorithm.

  3. Hydrodynamic Forces on Composite Structures

    Science.gov (United States)

    2014-06-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited HYDRODYNAMIC ...Thesis 4. TITLE AND SUBTITLE HYDRODYNAMIC FORCES ON COMPOSITE STRUCTURES 5. FUNDING NUMBERS 6. AUTHOR(S) Scott C. Millhouse 7. PERFORMING...angles yields different free surface effects including vortices and the onset of cavitation . 14. SUBJECT TERMS Fluid structure interaction, FSI, finite

  4. Anisotropic hydrodynamics for conformal Gubser flow

    Energy Technology Data Exchange (ETDEWEB)

    Strickland, Michael; Nopoush, Mohammad [Kent State University, Kent OH 44242 (United States); Ryblewski, Radoslaw [The H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków (Poland)

    2016-12-15

    In this proceedings contribution, we review the exact solution of the anisotropic hydrodynamics equations for a system subject to Gubser flow. For this purpose, we use the leading-order anisotropic hydrodynamics equations which assume that the distribution function is ellipsoidally symmetric in local-rest-frame momentum. We then prove that the SO(3){sub q} symmetry in de Sitter space constrains the anisotropy tensor to be of spheroidal form with only one independent anisotropy parameter remaining. As a consequence, the exact solution reduces to the problem of solving two coupled non-linear differential equations. We show that, in the limit that the relaxation time goes to zero, one obtains Gubser's ideal hydrodynamic solution and, in the limit that the relaxation time goes to infinity, one obtains the exact free streaming solution obtained originally by Denicol et al. For finite relaxation time, we solve the equations numerically and compare to the exact solution of the relaxation-time-approximation Boltzmann equation subject to Gubser flow. Using this as our standard, we find that anisotropic hydrodynamics describes the spatio-temporal evolution of the system better than all currently known dissipative hydrodynamics approaches.

  5. Anisotropic hydrodynamics for conformal Gubser flow

    International Nuclear Information System (INIS)

    Strickland, Michael; Nopoush, Mohammad; Ryblewski, Radoslaw

    2016-01-01

    In this proceedings contribution, we review the exact solution of the anisotropic hydrodynamics equations for a system subject to Gubser flow. For this purpose, we use the leading-order anisotropic hydrodynamics equations which assume that the distribution function is ellipsoidally symmetric in local-rest-frame momentum. We then prove that the SO(3)_q symmetry in de Sitter space constrains the anisotropy tensor to be of spheroidal form with only one independent anisotropy parameter remaining. As a consequence, the exact solution reduces to the problem of solving two coupled non-linear differential equations. We show that, in the limit that the relaxation time goes to zero, one obtains Gubser's ideal hydrodynamic solution and, in the limit that the relaxation time goes to infinity, one obtains the exact free streaming solution obtained originally by Denicol et al. For finite relaxation time, we solve the equations numerically and compare to the exact solution of the relaxation-time-approximation Boltzmann equation subject to Gubser flow. Using this as our standard, we find that anisotropic hydrodynamics describes the spatio-temporal evolution of the system better than all currently known dissipative hydrodynamics approaches.

  6. Small systems – hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bożek, Piotr, E-mail: piotr.bozek@fis.agh.edu.pl

    2016-12-15

    The scenario assuming a collective expansion stage in collisions of small systems, p-A, d-Au, and {sup 3}He-Au is discussed. A review of the observables predicted in relativistic hydrodynamic models in comparison with experimental data is presented, with arguments indicating the presence of collective expansion. The limits of applicability of the hydrodynamic model are addressed. We briefly indicate possible applications of the collective flow in small systems to study the space-time dynamics at very small scales in relativistic collisions.

  7. Relativistic conformal magneto-hydrodynamics from holography

    International Nuclear Information System (INIS)

    Buchbinder, Evgeny I.; Buchel, Alex

    2009-01-01

    We use the AdS/CFT correspondence to study first-order relativistic viscous magneto-hydrodynamics of (2+1)-dimensional conformal magnetic fluids. It is shown that the first order magneto-hydrodynamics constructed following Landau and Lifshitz from the positivity of the entropy production is inconsistent. We propose additional contributions to the entropy motivated dissipative current and, correspondingly, new dissipative transport coefficients. We use the strongly coupled M2-brane plasma in external magnetic field to show that the new magneto-hydrodynamics leads to self-consistent results in the shear and sound wave channels.

  8. Dileptons from transport and hydrodynamical models

    International Nuclear Information System (INIS)

    Huovinen, P.; Koch, V.

    2000-01-01

    Transport and hydrodynamical models used to describe the expansion stage of a heavy-ion collision at the CERN SPS give different dilepton spectrum even if they are tuned to reproduce the observed hadron spectra. To understand the origin of this difference we compare the dilepton emission from transport and hydrodynamical models using similar initial states in both models. We find that the requirement of pion number conservation in a hydrodynamical model does not change the dilepton emission. Also the mass distribution from the transport model indicates faster cooling and longer lifetime of the fireball

  9. Hydrodynamic Capture and Release of Passively Driven Particles by Active Particles Under Hele-Shaw Flows

    Science.gov (United States)

    Mishler, Grant; Tsang, Alan Cheng Hou; Pak, On Shun

    2018-03-01

    The transport of active and passive particles plays central roles in diverse biological phenomena and engineering applications. In this paper, we present a theoretical investigation of a system consisting of an active particle and a passive particle in a confined micro-fluidic flow. The introduction of an external flow is found to induce the capture of the passive particle by the active particle via long-range hydrodynamic interactions among the particles. This hydrodynamic capture mechanism relies on an attracting stable equilibrium configuration formed by the particles, which occurs when the external flow intensity exceeds a certain threshold. We evaluate this threshold by studying the stability of the equilibrium configurations analytically and numerically. Furthermore, we study the dynamics of typical capture and non-capture events and characterize the basins of attraction of the equilibrium configurations. Our findings reveal a critical dependence of the hydrodynamic capture mechanism on the external flow intensity. Through adjusting the external flow intensity across the stability threshold, we demonstrate that the active particle can capture and release the passive particle in a controllable manner. Such a capture-and-release mechanism is desirable for biomedical applications such as the capture and release of therapeutic payloads by synthetic micro-swimmers in targeted drug delivery.

  10. Analytic approaches to relativistic hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Hatta, Yoshitaka

    2016-12-15

    I summarize our recent work towards finding and utilizing analytic solutions of relativistic hydrodynamic. In the first part I discuss various exact solutions of the second-order conformal hydrodynamics. In the second part I compute flow harmonics v{sub n} analytically using the anisotropically deformed Gubser flow and discuss its dependence on n, p{sub T}, viscosity, the chemical potential and the charge.

  11. Brownian dynamics with hydrodynamic interactions

    International Nuclear Information System (INIS)

    Ermak, D.L.; McCammon, J.A.

    1978-01-01

    A method for simulating the Brownian dynamics of N particles with the inclusion of hydrodynamic interactions is described. The particles may also be subject to the usual interparticle or external forces (e.g., electrostatic) which have been included in previous methods for simulating Brownian dynamics of particles in the absence of hydrodynamic interactions. The present method is derived from the Langevin equations for the N particle assembly, and the results are shown to be consistent with the corresponding Fokker--Planck results. Sample calculations on small systems illustrate the importance of including hydrodynamic interactions in Brownian dynamics simulations. The method should be useful for simulation studies of diffusion limited reactions, polymer dynamics, protein folding, particle coagulation, and other phenomena in solution

  12. Hydrodynamic Modeling and Its Application in AUC.

    Science.gov (United States)

    Rocco, Mattia; Byron, Olwyn

    2015-01-01

    The hydrodynamic parameters measured in an AUC experiment, s(20,w) and D(t)(20,w)(0), can be used to gain information on the solution structure of (bio)macromolecules and their assemblies. This entails comparing the measured parameters with those that can be computed from usually "dry" structures by "hydrodynamic modeling." In this chapter, we will first briefly put hydrodynamic modeling in perspective and present the basic physics behind it as implemented in the most commonly used methods. The important "hydration" issue is also touched upon, and the distinction between rigid bodies versus those for which flexibility must be considered in the modeling process is then made. The available hydrodynamic modeling/computation programs, HYDROPRO, BEST, SoMo, AtoB, and Zeno, the latter four all implemented within the US-SOMO suite, are described and their performance evaluated. Finally, some literature examples are presented to illustrate the potential applications of hydrodynamics in the expanding field of multiresolution modeling. © 2015 Elsevier Inc. All rights reserved.

  13. Two-fluid hydrodynamic model for semiconductors

    DEFF Research Database (Denmark)

    Maack, Johan Rosenkrantz; Mortensen, N. Asger; Wubs, Martijn

    2018-01-01

    The hydrodynamic Drude model (HDM) has been successful in describing the optical properties of metallic nanostructures, but for semiconductors where several different kinds of charge carriers are present an extended theory is required. We present a two-fluid hydrodynamic model for semiconductors...

  14. Assessment for hydrodynamic masses of HANARO flow tubes

    International Nuclear Information System (INIS)

    Ryu, Jeong Soo; Cho, Yeong Garp; Kim, Doo Kie; Woo, Jong Sug; Park, Jin Ho

    2000-06-01

    The effect of hydrodynamic masses is investigated in dynamic characteristics and seismic response analyses of the submerged HANARO hexagonal flow tubes. Consistent hydrodynamic masses of the surrounding water are evaluated by the prepared program using the finite element method, in which arbitrary cross-sections of submerged structures and boundary conditions of the surrounding fluid can be considered. Also lumped hydrodynamic masses are calculated using simple formula applied to hexagonal flow tubes in the infinite fluid. Modal analyses and seismic response spectrum analyses were performed using hydrodynamic masses obtained by the finite element method and the simple formula. The results of modal analysis were verified by comparing the results measured from modal tests. And the displacement results of the seismic response spectrum analysis were assessed by comparing the consistent and the lumped hydrodynamic masses obtained by various methods. Finally practical criteria based on parametric studies are proposed as the lumped hydrodynamic masses for HANARO flow tubes

  15. Assessment for hydrodynamic masses of HANARO flow tubes

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jeong Soo; Cho, Yeong Garp; Kim, Doo Kie; Woo, Jong Sug; Park, Jin Ho

    2000-06-01

    The effect of hydrodynamic masses is investigated in dynamic characteristics and seismic response analyses of the submerged HANARO hexagonal flow tubes. Consistent hydrodynamic masses of the surrounding water are evaluated by the prepared program using the finite element method, in which arbitrary cross-sections of submerged structures and boundary conditions of the surrounding fluid can be considered. Also lumped hydrodynamic masses are calculated using simple formula applied to hexagonal flow tubes in the infinite fluid. Modal analyses and seismic response spectrum analyses were performed using hydrodynamic masses obtained by the finite element method and the simple formula. The results of modal analysis were verified by comparing the results measured from modal tests. And the displacement results of the seismic response spectrum analysis were assessed by comparing the consistent and the lumped hydrodynamic masses obtained by various methods. Finally practical criteria based on parametric studies are proposed as the lumped hydrodynamic masses for HANARO flow tubes.

  16. On higher order and anisotropic hydrodynamics for Bjorken and Gubser flows

    CERN Document Server

    2018-01-01

    We study the evolution of hydrodynamic and non-hydrodynamic moments of the distribution function using anisotropic and third-order Chapman-Enskog hydrodynamics for systems undergoing Bjorken and Gubser flows. The hydrodynamic results are compared with the exact solution of the Boltzmann equation with a collision term in relaxation time approximation. While the evolution of the hydrodynamic moments of the distribution function (i.e. of the energy momentum tensor) can be described with high accuracy by both hydrodynamic approximation schemes, their description of the evolution of the entropy of the system is much less precise. We attribute this to large contributions from non-hydrodynamic modes coupling into the entropy evolution which are not well captured by the hydrodynamic approximations. The differences between the exact solution and the hydrodynamic approximations are larger for the third-order Chapman-Enskog hydrodynamics than for anisotropic hydrodynamics, which effectively resums some of the dissipati...

  17. Hydrodynamic Lubrication

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 9. Hydrodynamic Lubrication Experiment with 'Floating' Drops. Jaywant H Arakeri K R Sreenivas. General Article Volume 1 Issue 9 September 1996 pp 51-58. Fulltext. Click here to view fulltext PDF. Permanent link:

  18. Hydrodynamic interactions in active colloidal crystal microrheology

    OpenAIRE

    Weeber, R; Harting, JDR Jens

    2012-01-01

    In dense colloids it is commonly assumed that hydrodynamic interactions do not play a role. However, a found theoretical quantification is often missing. We present computer simulations that are motivated by experiments where a large colloidal particle is dragged through a colloidal crystal. To qualify the influence of long-ranged hydrodynamics, we model the setup by conventional Langevin dynamics simulations and by an improved scheme with limited hydrodynamic interactions. This scheme signif...

  19. Universal hydrodynamics of non-conformal branes

    International Nuclear Information System (INIS)

    Kanitscheider, Ingmar; Skenderis, Kostas

    2009-01-01

    We examine the hydrodynamic limit of non-conformal branes using the recently developed precise holographic dictionary. We first streamline the discussion of holography for backgrounds that asymptote locally to non-conformal brane solutions by showing that all such solutions can be obtained from higher dimensional asymptotically locally AdS solutions by suitable dimensional reduction and continuation in the dimension. As a consequence, many holographic results for such backgrounds follow from the corresponding results of the Asymptotically AdS case. In particular, the hydrodynamics of non-conformal branes is fully determined in terms of conformal hydrodynamics. Using previous results on the latter we predict the form of the non-conformal hydrodynamic stress tensor to second order in derivatives. Furthermore we show that the ratio between bulk and shear viscosity is fixed by the generalized conformal structure to be ζ/η = 2(1/(d-1)-c s 2 ), where c s is the speed of sound in the fluid.

  20. Entropy-limited hydrodynamics: a novel approach to relativistic hydrodynamics

    Science.gov (United States)

    Guercilena, Federico; Radice, David; Rezzolla, Luciano

    2017-07-01

    We present entropy-limited hydrodynamics (ELH): a new approach for the computation of numerical fluxes arising in the discretization of hyperbolic equations in conservation form. ELH is based on the hybridisation of an unfiltered high-order scheme with the first-order Lax-Friedrichs method. The activation of the low-order part of the scheme is driven by a measure of the locally generated entropy inspired by the artificial-viscosity method proposed by Guermond et al. (J. Comput. Phys. 230(11):4248-4267, 2011, doi: 10.1016/j.jcp.2010.11.043). Here, we present ELH in the context of high-order finite-differencing methods and of the equations of general-relativistic hydrodynamics. We study the performance of ELH in a series of classical astrophysical tests in general relativity involving isolated, rotating and nonrotating neutron stars, and including a case of gravitational collapse to black hole. We present a detailed comparison of ELH with the fifth-order monotonicity preserving method MP5 (Suresh and Huynh in J. Comput. Phys. 136(1):83-99, 1997, doi: 10.1006/jcph.1997.5745), one of the most common high-order schemes currently employed in numerical-relativity simulations. We find that ELH achieves comparable and, in many of the cases studied here, better accuracy than more traditional methods at a fraction of the computational cost (up to {˜}50% speedup). Given its accuracy and its simplicity of implementation, ELH is a promising framework for the development of new special- and general-relativistic hydrodynamics codes well adapted for massively parallel supercomputers.

  1. The concentration of 137Cs and stable Cs in zooplankton in the western North Pacific in relation to their taxonomic composition

    International Nuclear Information System (INIS)

    Kaeriyama, Hideki; Watabe, Teruhisa; Kusakabe, Masashi

    2008-01-01

    The objective of this study is to obtain information on the background level of 137 Cs in zooplankton in the waters close to Rokkasho-mura in Aomori Prefecture, Japan, where a large-scale project has been progressively promoted to establish the nuclear fuel cycle. Prior to the full-scale operation of the spent nuclear fuel reprocessing plant, zooplankton samples were collected in May and October 2005, June 2006, and June 2007 from the surface water (0-5 m depth). The samples were analyzed to determine the concentrations of 137 Cs and stable Cs in relation to taxonomic composition. The numerical abundance of the plankton varied from 253 to 1514 inds. m -3 . Taxonomic composition differed between the two sampling periods. Although copepods formed the most abundant taxonomic group during both seasons, gelatinous plankton (chaetognaths, siphonophores, appendicularians and doliolids) were more abundant in October 2005 than in June 2006 and June 2007. The concentration of 137 Cs in zooplankton varied from 11 to 24 mBq kg-WW -1 . At the same station, the 137 Cs concentration in zooplankton in October 2005 was almost twice as much as that in June 2006, although the concentration of 137 Cs in seawater did not show a difference. The concentration of stable Cs was measured for each taxonomic group: that in gelatinous zooplankton (chaetognaths) was higher than that in crustacean zooplankton (copepods, euphausiids and amphipods). These results suggest that the concentration of 137 Cs in zooplankton is affected by the occurrence of gelatinous zooplankton. (author)

  2. Frequency-dependent hydrodynamic interaction between two solid spheres

    Science.gov (United States)

    Jung, Gerhard; Schmid, Friederike

    2017-12-01

    Hydrodynamic interactions play an important role in many areas of soft matter science. In simulations with implicit solvent, various techniques such as Brownian or Stokesian dynamics explicitly include hydrodynamic interactions a posteriori by using hydrodynamic diffusion tensors derived from the Stokes equation. However, this equation assumes the interaction to be instantaneous which is an idealized approximation and only valid on long time scales. In the present paper, we go one step further and analyze the time-dependence of hydrodynamic interactions between finite-sized particles in a compressible fluid on the basis of the linearized Navier-Stokes equation. The theoretical results show that at high frequencies, the compressibility of the fluid has a significant impact on the frequency-dependent pair interactions. The predictions of hydrodynamic theory are compared to molecular dynamics simulations of two nanocolloids in a Lennard-Jones fluid. For this system, we reconstruct memory functions by extending the inverse Volterra technique. The simulation data agree very well with the theory, therefore, the theory can be used to implement dynamically consistent hydrodynamic interactions in the increasingly popular field of non-Markovian modeling.

  3. Hydrodynamics of insect spermatozoa

    Science.gov (United States)

    Pak, On Shun; Lauga, Eric

    2010-11-01

    Microorganism motility plays important roles in many biological processes including reproduction. Many microorganisms propel themselves by propagating traveling waves along their flagella. Depending on the species, propagation of planar waves (e.g. Ceratium) and helical waves (e.g. Trichomonas) were observed in eukaryotic flagellar motion, and hydrodynamic models for both were proposed in the past. However, the motility of insect spermatozoa remains largely unexplored. An interesting morphological feature of such cells, first observed in Tenebrio molitor and Bacillus rossius, is the double helical deformation pattern along the flagella, which is characterized by the presence of two superimposed helical flagellar waves (one with a large amplitude and low frequency, and the other with a small amplitude and high frequency). Here we present the first hydrodynamic investigation of the locomotion of insect spermatozoa. The swimming kinematics, trajectories and hydrodynamic efficiency of the swimmer are computed based on the prescribed double helical deformation pattern. We then compare our theoretical predictions with experimental measurements, and explore the dependence of the swimming performance on the geometric and dynamical parameters.

  4. A NOVEL INTERPRETATION OF CONCENTRATION DEPENDENCE OF VISCOSITY OF DILUTE POLYMER SOLUTION

    Institute of Scientific and Technical Information of China (English)

    Yan Pan; Rong-shi Cheng

    2000-01-01

    The concentration dependence of the reduced viscosity of dilute polymer solution is interpreted in the light of a new concept of the self-association of polymer chains in dilute solution. The apparent self-association constant is defined as the molar association constant divided by the molar mass of individual polymer chain and is numerically interconvertible with the Huggins coefficient. The molar association constant is directly proportional to the effective hydrodynamic volume of the polymer chain in solution and is irrespective of the chain architecture. The effective hydrodynamic volume accounts for the non-spherical conformation of a short polymer chain in solution and is a product of a shape factor and hydrodynamic volume. The observed enhancement of Huggins coefficient for short chain and branched polymer is satisfactorily interpreted by the concept of self-association. The concept of self-association allows us to predict the existence of a boundary concentration Cs (dynamic contact concentration) which divides the dilute polymer solution into two regions.

  5. Pulsating Hydrodynamic Instability and Thermal Coupling in an Extended Landau/Levich Model of Liquid-Propellant Combustion -- I. Inviscid Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Stephen B. Margolis; Forman A. Williams

    1999-03-01

    Hydrodynamic (Landau) instability in combustion is typically associated with the onset of wrinkling of a flame surface, corresponding to the formation of steady cellular structures as the stability threshold is crossed. In the context of liquid-propellant combustion, such instability has recently been shown to occur for critical values of the pressure sensitivity of the burning rate and the disturbance wavenumber, significantly generalizing previous classical results for this problem that assumed a constant normal burning rate. Additionally, however, a pulsating form of hydrodynamic instability has been shown to occur as well, corresponding to the onset of temporal oscillations in the location of the liquid/gas interface. In the present work, we consider the realistic influence of a nonzero temperature sensitivity in the local burning rate on both types of stability thresholds. It is found that for sufficiently small values of this parameter, there exists a stable range of pressure sensitivities for steady, planar burning such that the classical cellular form of hydrodynamic instability and the more recent pulsating form of hydrodynamic instability can each occur as the corresponding stability threshold is crossed. For larger thermal sensitivities, however, the pulsating stability boundary evolves into a C-shaped curve in the (disturbance-wavenumber, pressure-sensitivity) plane, indicating loss of stability to pulsating perturbations for all sufficiently large disturbance wavelengths. It is thus concluded, based on characteristic parameter values, that an equally likely form of hydrodynamic instability in liquid-propellant combustion is of a nonsteady, long-wave nature, distinct from the steady, cellular form originally predicted by Landau.

  6. Soliton Gases and Generalized Hydrodynamics

    Science.gov (United States)

    Doyon, Benjamin; Yoshimura, Takato; Caux, Jean-Sébastien

    2018-01-01

    We show that the equations of generalized hydrodynamics (GHD), a hydrodynamic theory for integrable quantum systems at the Euler scale, emerge in full generality in a family of classical gases, which generalize the gas of hard rods. In this family, the particles, upon colliding, jump forward or backward by a distance that depends on their velocities, reminiscent of classical soliton scattering. This provides a "molecular dynamics" for GHD: a numerical solver which is efficient, flexible, and which applies to the presence of external force fields. GHD also describes the hydrodynamics of classical soliton gases. We identify the GHD of any quantum model with that of the gas of its solitonlike wave packets, thus providing a remarkable quantum-classical equivalence. The theory is directly applicable, for instance, to integrable quantum chains and to the Lieb-Liniger model realized in cold-atom experiments.

  7. Hydrodynamic aspects of flotation separation

    Directory of Open Access Journals (Sweden)

    Peleka Efrosyni N.

    2016-01-01

    Full Text Available Flotation separation is mainly used for removing particulates from aqueous dispersions. It is widely used for ore beneficiation and recovering valuable materials. This paper reviews the hydrodynamics of flotation separations and comments on selected recent publications. Units are distinguished as cells of ideal and non-ideal flow. A brief introduction to hydrodynamics is included to explain an original study of the hybrid flotation-microfiltration cell, effective for heavy metal ion removal.

  8. Hydrodynamic dispersion within porous biofilms

    KAUST Repository

    Davit, Y.

    2013-01-23

    Many microorganisms live within surface-associated consortia, termed biofilms, that can form intricate porous structures interspersed with a network of fluid channels. In such systems, transport phenomena, including flow and advection, regulate various aspects of cell behavior by controlling nutrient supply, evacuation of waste products, and permeation of antimicrobial agents. This study presents multiscale analysis of solute transport in these porous biofilms. We start our analysis with a channel-scale description of mass transport and use the method of volume averaging to derive a set of homogenized equations at the biofilm-scale in the case where the width of the channels is significantly smaller than the thickness of the biofilm. We show that solute transport may be described via two coupled partial differential equations or telegrapher\\'s equations for the averaged concentrations. These models are particularly relevant for chemicals, such as some antimicrobial agents, that penetrate cell clusters very slowly. In most cases, especially for nutrients, solute penetration is faster, and transport can be described via an advection-dispersion equation. In this simpler case, the effective diffusion is characterized by a second-order tensor whose components depend on (1) the topology of the channels\\' network; (2) the solute\\'s diffusion coefficients in the fluid and the cell clusters; (3) hydrodynamic dispersion effects; and (4) an additional dispersion term intrinsic to the two-phase configuration. Although solute transport in biofilms is commonly thought to be diffusion dominated, this analysis shows that hydrodynamic dispersion effects may significantly contribute to transport. © 2013 American Physical Society.

  9. Hydrodynamic bearings

    CERN Document Server

    Bonneau, Dominique; Souchet, Dominique

    2014-01-01

    This Series provides the necessary elements to the development and validation of numerical prediction models for hydrodynamic bearings. This book describes the rheological models and the equations of lubrication. It also presents the numerical approaches used to solve the above equations by finite differences, finite volumes and finite elements methods.

  10. Hydrodynamic dispersion of microswimmers in suspension

    Science.gov (United States)

    Martin, Matthieu; Rafaï, Salima; Peyla, Philippe

    2014-11-01

    In our laboratory, we study hydrodynamics of suspensions of micro-swimmers. These micro-organisms are unicellular algae Chlamydomonas Rheinhardii which are able to swim by using their flagella. The swimming dynamics of these micro-swimmers can be seen as a random walk, in absence of any kind of interaction. In addition, these algae have the property of being phototactic, i.e. they swim towards the light. Combining this property with a hydrodynamic flow, we were able to reversibly separate algae from the rest of the fluid. But for sufficiently high volume fraction, these active particles interact with each other. We are now interested in how the coupling of hydrodynamic interactions between swimmers and phototaxis can modify the swimming dynamics at the scale of the suspension. To this aim, we conduct experiments in microfluidic devices to study the dispersion of the micro-organisms in a the liquid phase as a function of the volume fraction. We show that the dispersion of an assembly of puller type microswimmers is quantitatively affected by hydrodynamics interactions. Phd student.

  11. Hydrodynamic delivery of plasmid DNA encoding human Fc?R-Ig dimers blocks immune-complex mediated inflammation in mice

    OpenAIRE

    Shashidharamurthy, Rangaiah; Machiah, Deepa; Bozeman, Erica N.; Srivatsan, Sanjay; Patel, Jaina; Cho, Alice; Jacob, Joshy; Selvaraj, Periasamy

    2011-01-01

    Therapeutic use and function of recombinant molecules can be studied by the expression of foreign genes in mice. In this study, we have expressed human Fcgamma receptor ?Ig fusion molecules (Fc?R-Igs) in mice by administering Fc?R-Ig plasmid DNAs hydrodynamically and compared their effectiveness to purified molecules in blocking immune-complex (IC) mediated inflammation in mice. The concentration of hydrodynamically expressed Fc?R-Igs (CD16AF-Ig, CD32AR-Ig and CD32AH-Ig) reached a maximum of ...

  12. Tuning bacterial hydrodynamics with magnetic fields

    Science.gov (United States)

    Pierce, C. J.; Mumper, E.; Brown, E. E.; Brangham, J. T.; Lower, B. H.; Lower, S. K.; Yang, F. Y.; Sooryakumar, R.

    2017-06-01

    Magnetotactic bacteria are a group of motile prokaryotes that synthesize chains of lipid-bound, magnetic nanoparticles called magnetosomes. This study exploits their innate magnetism to investigate previously unexplored facets of bacterial hydrodynamics at surfaces. Through use of weak, uniform, external magnetic fields and local, micromagnetic surface patterns, the relative strength of hydrodynamic, magnetic, and flagellar force components is tuned through magnetic control of the bacteria's orientation. The resulting swimming behaviors provide a means to experimentally determine hydrodynamic parameters and offer a high degree of control over large numbers of living microscopic entities. The implications of this controlled motion for studies of bacterial motility near surfaces and for micro- and nanotechnology are discussed.

  13. Hydrodynamics in a Degenerate, Strongly Attractive Fermi Gas

    Science.gov (United States)

    Thomas, John E.; Kinast, Joseph; Hemmer, Staci; Turlapov, Andrey; O'Hara, Ken; Gehm, Mike; Granade, Stephen

    2004-01-01

    In summary, we use all-optical methods with evaporative cooling near a Feshbach resonance to produce a strongly interacting degenerate Fermi gas. We observe hydrodynamic behavior in the expansion dynamics. At low temperatures, collisions may not explain the expansion dynamics. We observe hydrodynamics in the trapped gas. Our observations include collisionally-damped excitation spectra at high temperature which were not discussed above. In addition, we observe weakly damped breathing modes at low temperature. The observed temperature dependence of the damping time and hydrodynamic frequency are not consistent with collisional dynamics nor with collisionless mean field interactions. These observations constitute the first evidence for superfluid hydrodynamics in a Fermi gas.

  14. An introduction to astrophysical hydrodynamics

    CERN Document Server

    Shore, Steven N

    1992-01-01

    This book is an introduction to astrophysical hydrodynamics for both astronomy and physics students. It provides a comprehensive and unified view of the general problems associated with fluids in a cosmic context, with a discussion of fluid dynamics and plasma physics. It is the only book on hydrodynamics that addresses the astrophysical context. Researchers and students will find this work to be an exceptional reference. Contents include chapters on irrotational and rotational flows, turbulence, magnetohydrodynamics, and instabilities.

  15. Theoretical hydrodynamics

    CERN Document Server

    Milne-Thomson, L M

    2011-01-01

    This classic exposition of the mathematical theory of fluid motion is applicable to both hydrodynamics and aerodynamics. Based on vector methods and notation with their natural consequence in two dimensions - the complex variable - it offers more than 600 exercises and nearly 400 diagrams. Prerequisites include a knowledge of elementary calculus. 1968 edition.

  16. Hydrodynamic Overview at Hot Quarks 2016

    International Nuclear Information System (INIS)

    Noronha-Hostler, Jacquelyn

    2017-01-01

    Event-by-event relativistic hydrodynamics has been extremely successful in describing flow observables in heavy-ion collisions. However, the initial state and viscosity simultaneously affect comparisons to data so a discussion of experimental observables that help to distinguish the two follows. Specific problems that arise in the hydrodynamical modeling at the Beam Energy Scan are also addressed. (paper)

  17. Hydrodynamic control of microphytoplankton bloom in a coastal sea

    Science.gov (United States)

    Murty, K. Narasimha; Sarma, Nittala S.; Pandi, Sudarsana Rao; Chiranjeevulu, Gundala; Kiran, Rayaprolu; Muralikrishna, R.

    2017-08-01

    The influence of hydrodynamics on phytoplankton bloom occurrence/formation has not been adequately reported. Here, we document diurnal observations in the tropical Bay of Bengal's mid-western shelf region which reveal microphytoplankton cell density maxima in association with neap tide many times more than what could be accounted for by solar insolation and nutrient levels. When in summer, phytoplankton cells were abundant and the cell density of Guinardia delicatula reached critical value by tide caused zonation, aggregation happened to an intense bloom. Mucilaginous exudates from the alga due to heat and silicate stress likely promoted and stable water column and weak winds left undisturbed, the transient bloom. The phytoplankton aggregates have implication as food resource in the benthic region implying higher fishery potential, in carbon dioxide sequestration (carbon burial) and in efforts towards improving remote sensing algorithms for chlorophyll in the coastal region.

  18. Degradation of BTEX in aqueous solution by hydrodynamic cavitation

    Energy Technology Data Exchange (ETDEWEB)

    Braeutigam, P.; Wu, Z.-L.; Stark, A.; Ondruschka, B. [Institute for Technical Chemistry and Environmental Chemistry, Friedrich Schiller University, Jena (Germany)

    2009-05-15

    A self-made low-pressure device (up to 100 psi) for hydrodynamic cavitation was tested with the reaction of BTEX (benzene, toluene, ethylbenzene, and xylenes) in water. Experimental parameters, such as inlet pressure, solution temperature, and concentration of the chosen substrates, as well as the effect of different restrictions were investigated. The energy efficiency of the process was measured in comparison to two acoustic cavitation systems (24 and 850 kHz). The products of the BTEX degradation were identified and a pyrolytic degradation pathway is concluded. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  19. On the hydrodynamics and the scale-up of flotation processes

    International Nuclear Information System (INIS)

    Schubert, H.

    1986-01-01

    In flotation machines, turbulence is process-determining. Macroturbulence is necessary for suspension, microturbulence controls the air dispersion, the rate of the particle-bubble collisions and the stresses on agglomerates. Consequently, the hydrodynamic optimization of flotation processes plays an important role for the flotation efficiency. In the paper the following aspects are considered: the turbulent microprocesses of flotation processes; the integral hydrodynamic characterization of flotation processes; correlations between particle size and optimum hydrodynamics; correlations between flocculation of fine particles and optimum-hydrodynamics; and hydrodynamic scale-up of flotation processes

  20. Removal of blue-green algae using the hybrid method of hydrodynamic cavitation and ozonation.

    Science.gov (United States)

    Wu, Zhilin; Shen, Haifeng; Ondruschka, Bernd; Zhang, Yongchun; Wang, Weimin; Bremner, David H

    2012-10-15

    A suspension of Microcystis aeruginosa (30 μg L(-1)chlorophyll a) was circulated in a hydrodynamic cavitation device and ozone was introduced at the suction side of the pump. The removal of algae over 10 min using hydrodynamic cavitation alone and ozone alone is less than 15% and 35%, respectively. The destruction of algae rises significantly from 24% in the absence of the orifice to 91% with the optimized orifice on 5 min of processing using hydrodynamic cavitation along with ozone (HC/O(3)) and the utilization of ozone increases from 32% to 61%. Interestingly, the suction process is more effective than the extrusion method (positive pressure) and the optimal bulk temperature for algal elimination was found to be 20 °C. Increasing the input concentration of ozone is favorable for the removal of algae but leads to a greater loss of ozone and a decrease in the utilization of ozone. Under the optimal conditions, the algal cells and chlorophyll a are completely destroyed in 10 min by use of the hybrid method. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Gas and particle concentrations in horse stables with individual boxes as a function of the bedding material and the mucking regimen.

    Science.gov (United States)

    Fleming, K; Hessel, E F; Van den Weghe, H F A

    2009-11-01

    The aim of this study was to compare different types of bedding and mucking regimens used in horse stables on the generation of airborne particulate matter bedding material (wheat straw, straw pellets, and wood shavings) used for horses were assessed according to their ammonia generation. Each type of bedding was used for 2 wk, with 3 repetitions. The mean ammonia concentrations within the stable were 3.07 +/- 0.23 mg/m(3) for wheat straw, 4.79 +/- 0.23 mg/m(3) for straw pellets, and 4.27 +/- 0.17 mg/m(3) for wood shavings. In Exp. 2, the effects of the mucking regimen on the generation of ammonia and PM10 from wheat straw (the bedding with the least ammonia generation in the previous experiment) were examined using 3 different daily regimens: 1) no mucking out, 2) complete mucking out, and 3) partial mucking out (removing only feces). The mean ammonia concentrations in the stable differed significantly among all 3 mucking regimens (P bedding regimen without mucking out was evaluated with regard to gas and airborne particle generation. The ammonia values were found not to increase constantly during the course of the 6-wk period. The average weekly values for PM10 also did not increase constantly but varied between approximately 90 and 140 microg/m. It can be concluded from the particle and gas generation patterns found in the results of all 3 experiments that wheat straw was the most suitable bedding of the 3 types investigated and that mucking out completely on a daily basis should not be undertaken in horse stables.

  2. Hydrodynamic clustering of droplets in turbulence

    Science.gov (United States)

    Kunnen, Rudie; Yavuz, Altug; van Heijst, Gertjan; Clercx, Herman

    2017-11-01

    Small, inertial particles are known to cluster in turbulent flows: particles are centrifuged out of eddies and gather in the strain-dominated regions. This so-called preferential concentration is reflected in the radial distribution function (RDF; a quantitative measure of clustering). We study clustering of water droplets in a loudspeaker-driven turbulence chamber. We track the motion of droplets in 3D and calculate the RDF. At moderate scales (a few Kolmogorov lengths) we find the typical power-law scaling of preferential concentration in the RDF. However, at even smaller scales (a few droplet diameters), we encounter a hitherto unobserved additional clustering. We postulate that the additional clustering is due to hydrodynamic interactions, an effect which is typically disregarded in modeling. Using a perturbative expansion of inertial effects in a Stokes-flow description of two interacting spheres, we obtain an expression for the RDF which indeed includes the additional clustering. The additional clustering enhances the collision probability of droplets, which enhances their growth rate due to coalescence. The additional clustering is thus an essential effect in precipitation modeling.

  3. Hyperscaling-violating Lifshitz hydrodynamics from black-holes: part II

    Energy Technology Data Exchange (ETDEWEB)

    Kiritsis, Elias [Crete Center for Theoretical Physics, Institute of Theoretical and Computational Physics,Department of Physics, University of Crete, 71003 Heraklion (Greece); Crete Center for Quantum Complexity and Nanotechnology,Department of Physics, University of Crete, 71003 Heraklion (Greece); APC Univ Paris Diderot, Sorbonne Paris Cité,UMR 7164 CNRS, F-75205 Paris (France); Matsuo, Yoshinori [Department of Physics, National Taiwan University,Taipei 10617, Taiwan, R.O.C. (China)

    2017-03-08

    The derivation of Lifshitz-invariant hydrodynamics from holography, presented in https://www.doi.org/10.1007/JHEP12(2015)076 is generalized to arbitrary hyperscaling violating Lifshitz scaling theories with an unbroken U(1) symmetry. The hydrodynamics emerging is non-relativistic with scalar “forcing'. By a redefinition of the pressure it becomes standard non-relativistic hydrodynamics in the presence of specific chemical potential for the mass current. The hydrodynamics is compatible with the scaling theory of Lifshitz invariance with hyperscaling violation. The bulk viscosity vanishes while the shear viscosity to entropy ratio is the same as in the relativistic case. We also consider the dimensional reduction ansatz for the hydrodynamics and clarify the difference with previous results suggesting a non-vanishing bulk viscosity.

  4. HYDRODYNAMICS OF OSCILLATING WING ON THE PITCH ANGLE

    Directory of Open Access Journals (Sweden)

    Vitalii Korobov

    2017-07-01

    Full Text Available Purpose: research of the hydrodynamic characteristics of a wing in a nonstationary stream. Methods: The experimental studies of the hydrodynamic load acting on the wing of 1.5 elongation, wich harmonically oscillated respect to the transversal axis in the frequency range of 0.2-2.5 Hz. The flow speed in the hydrodynamic tunnel ranged of 0.2-1.5 m/s. Results: The instantaneous values of the coefficients of lift and drag / thrust on the pitch angle at unsteady flow depends on the Strouhal number.Discussion: with increasing oscillation frequency coefficients of hydrodynamic force components significantly higher than the data for the stationary blowing out of the wing.

  5. Numerical Hydrodynamics in Special Relativity.

    Science.gov (United States)

    Martí, José Maria; Müller, Ewald

    2003-01-01

    This review is concerned with a discussion of numerical methods for the solution of the equations of special relativistic hydrodynamics (SRHD). Particular emphasis is put on a comprehensive review of the application of high-resolution shock-capturing methods in SRHD. Results of a set of demanding test bench simulations obtained with different numerical SRHD methods are compared. Three applications (astrophysical jets, gamma-ray bursts and heavy ion collisions) of relativistic flows are discussed. An evaluation of various SRHD methods is presented, and future developments in SRHD are analyzed involving extension to general relativistic hydrodynamics and relativistic magneto-hydrodynamics. The review further provides FORTRAN programs to compute the exact solution of a 1D relativistic Riemann problem with zero and nonzero tangential velocities, and to simulate 1D relativistic flows in Cartesian Eulerian coordinates using the exact SRHD Riemann solver and PPM reconstruction. Supplementary material is available for this article at 10.12942/lrr-2003-7 and is accessible for authorized users.

  6. Hydrodynamic flow in the vicinity of a nanopore induced by an applied voltage

    International Nuclear Information System (INIS)

    Mao Mao; Ghosal, Sandip; Hu Guohui

    2013-01-01

    Continuum simulation is employed to study ion transport and fluid flow through a nanopore in a solid-state membrane under an applied potential drop. The results show the existence of concentration polarization layers on the surfaces of the membrane. The nonuniformity of the ionic distribution gives rise to an electric pressure that drives vortical motion in the fluid. There is also a net hydrodynamic flow through the nanopore due to an asymmetry induced by the membrane surface charge. The qualitative behavior is similar to that observed in a previous study using molecular dynamic simulations. The current–voltage characteristics show some nonlinear features but are not greatly affected by the hydrodynamic flow in the parameter regime studied. In the limit of thin Debye layers, the electric resistance of the system can be characterized using an equivalent circuit with lumped parameters. Generation of vorticity can be understood qualitatively from elementary considerations of the Maxwell stresses. However, the flow strength is a strongly nonlinear function of the applied field. Combination of electrophoretic and hydrodynamic effects can lead to ion selectivity in terms of valences and this could have some practical applications in separations. (paper)

  7. Computer simulation of the fire-tube boiler hydrodynamics

    Directory of Open Access Journals (Sweden)

    Khaustov Sergei A.

    2015-01-01

    Full Text Available Finite element method was used for simulating the hydrodynamics of fire-tube boiler with the ANSYS Fluent 12.1.4 engineering simulation software. Hydrodynamic structure and volumetric temperature distribution were calculated. The results are presented in graphical form. Complete geometric model of the fire-tube boiler based on boiler drawings was considered. Obtained results are suitable for qualitative analysis of hydrodynamics and singularities identification in fire-tube boiler water shell.

  8. Boltzmann equation and hydrodynamics beyond Navier-Stokes.

    Science.gov (United States)

    Bobylev, A V

    2018-04-28

    We consider in this paper the problem of derivation and regularization of higher (in Knudsen number) equations of hydrodynamics. The author's approach based on successive changes of hydrodynamic variables is presented in more detail for the Burnett level. The complete theory is briefly discussed for the linearized Boltzmann equation. It is shown that the best results in this case can be obtained by using the 'diagonal' equations of hydrodynamics. Rigorous estimates of accuracy of the Navier-Stokes and Burnett approximations are also presented.This article is part of the theme issue 'Hilbert's sixth problem'. © 2018 The Author(s).

  9. Hydrodynamic states of phonons in insulators

    Directory of Open Access Journals (Sweden)

    S.A. Sokolovsky

    2012-12-01

    Full Text Available The Chapman-Enskog method is generalized for accounting the effect of kinetic modes on hydrodynamic evolution. Hydrodynamic states of phonon system of insulators have been studied in a small drift velocity approximation. For simplicity, the investigation was carried out for crystals of the cubic class symmetry. It has been found that in phonon hydrodynamics, local equilibrium is violated even in the approximation linear in velocity. This is due to the absence of phonon momentum conservation law that leads to a drift velocity relaxation. Phonon hydrodynamic equations which take dissipative processes into account have been obtained. The results were compared with the standard theory based on the local equilibrium validity. Integral equations have been obtained for calculating the objects of the theory (including viscosity and heat conductivity. It has been shown that in low temperature limit, these equations are solvable by iterations. Steady states of the system have been considered and an expression for steady state heat conductivity has been obtained. It coincides with the famous result by Akhiezer in the leading low temperature approximation. It has been established that temperature distribution in the steady state of insulator satisfies a condition of heat source absence.

  10. Hydrodynamic relaxations in dissipative particle dynamics

    Science.gov (United States)

    Hansen, J. S.; Greenfield, Michael L.; Dyre, Jeppe C.

    2018-01-01

    This paper studies the dynamics of relaxation phenomena in the standard dissipative particle dynamics (DPD) model [R. D. Groot and P. B. Warren, J. Chem. Phys. 107, 4423 (1997)]. Using fluctuating hydrodynamics as the framework of the investigation, we focus on the collective transverse and longitudinal dynamics. It is shown that classical hydrodynamic theory predicts the transverse dynamics at relatively low temperatures very well when compared to simulation data; however, the theory predictions are, on the same length scale, less accurate for higher temperatures. The agreement with hydrodynamics depends on the definition of the viscosity, and here we find that the transverse dynamics are independent of the dissipative and random shear force contributions to the stress. For high temperatures, the spectrum for the longitudinal dynamics is dominated by the Brillouin peak for large length scales and the relaxation is therefore governed by sound wave propagation and is athermal. This contrasts the results at lower temperatures and small length scale, where the thermal process is clearly present in the spectra. The DPD model, at least qualitatively, re-captures the underlying hydrodynamical mechanisms, and quantitative agreement is excellent at intermediate temperatures for the transverse dynamics.

  11. Relabeling symmetries in hydrodynamics and magnetohydrodynamics

    International Nuclear Information System (INIS)

    Padhye, N.; Morrison, P.J.

    1996-04-01

    Lagrangian symmetries and concomitant generalized Bianchi identities associated with the relabeling of fluid elements are found for hydrodynamics and magnetohydrodynamics (MHD). In hydrodynamics relabeling results in Ertel's theorem of conservation of potential vorticity, while in MHD it yields the conservation of cross helicity. The symmetries of the reduction from Lagrangian (material) to Eulerian variables are used to construct the Casimir invariants of the Hamiltonian formalism

  12. Calibration of hydrodynamic behavior and biokinetics for TOC removal modeling in biofilm reactors under different hydraulic conditions.

    Science.gov (United States)

    Zeng, Ming; Soric, Audrey; Roche, Nicolas

    2013-09-01

    In this study, total organic carbon (TOC) biodegradation was simulated by GPS-X software in biofilm reactors with carriers of plastic rings and glass beads under different hydraulic conditions. Hydrodynamic model by retention time distribution and biokinetic measurement by in-situ batch test served as two significant parts of model calibration. Experimental results showed that TOC removal efficiency was stable in both media due to the enough height of column, although the actual hydraulic volume changed during the variation of hydraulic condition. Simulated TOC removal efficiencies were close to experimental ones with low theil inequality coefficient values (below 0.15). Compared with glass beads, more TOC was removed in the filter with plastic rings due to the larger actual hydraulic volume and lower half saturation coefficient in spite of its lower maximum specific growth rate of biofilm, which highlighted the importance of calibrating hydrodynamic behavior and biokinetics. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Use of hydrodynamic cavitation in (waste)water treatment.

    Science.gov (United States)

    Dular, Matevž; Griessler-Bulc, Tjaša; Gutierrez-Aguirre, Ion; Heath, Ester; Kosjek, Tina; Krivograd Klemenčič, Aleksandra; Oder, Martina; Petkovšek, Martin; Rački, Nejc; Ravnikar, Maja; Šarc, Andrej; Širok, Brane; Zupanc, Mojca; Žitnik, Miha; Kompare, Boris

    2016-03-01

    The use of acoustic cavitation for water and wastewater treatment (cleaning) is a well known procedure. Yet, the use of hydrodynamic cavitation as a sole technique or in combination with other techniques such as ultrasound has only recently been suggested and employed. In the first part of this paper a general overview of techniques that employ hydrodynamic cavitation for cleaning of water and wastewater is presented. In the second part of the paper the focus is on our own most recent work using hydrodynamic cavitation for removal of pharmaceuticals (clofibric acid, ibuprofen, ketoprofen, naproxen, diclofenac, carbamazepine), toxic cyanobacteria (Microcystis aeruginosa), green microalgae (Chlorella vulgaris), bacteria (Legionella pneumophila) and viruses (Rotavirus) from water and wastewater. As will be shown, hydrodynamic cavitation, like acoustic, can manifest itself in many different forms each having its own distinctive properties and mechanisms. This was until now neglected, which eventually led to poor performance of the technique. We will show that a different type of hydrodynamic cavitation (different removal mechanism) is required for successful removal of different pollutants. The path to use hydrodynamic cavitation as a routine water cleaning method is still long, but recent results have already shown great potential for optimisation, which could lead to a low energy tool for water and wastewater cleaning. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Hydrodynamics of oceans and atmospheres

    CERN Document Server

    Eckart, Carl

    1960-01-01

    Hydrodynamics of Oceans and Atmospheres is a systematic account of the hydrodynamics of oceans and atmospheres. Topics covered range from the thermodynamic functions of an ideal gas and the thermodynamic coefficients for water to steady motions, the isothermal atmosphere, the thermocline, and the thermosphere. Perturbation equations, field equations, residual equations, and a general theory of rays are also presented. This book is comprised of 17 chapters and begins with an introduction to the basic equations and their solutions, with the aim of illustrating the laws of dynamics. The nonlinear

  15. Hydrodynamic simulation of elliptic flow

    CERN Document Server

    Kolb, P F; Ruuskanen, P V; Heinz, Ulrich W

    1999-01-01

    We use a hydrodynamic model to study the space-time evolution transverse to the beam direction in ultrarelativistic heavy-ion collisions with nonzero impact parameters. We focus on the influence of early pressure on the development of radial and elliptic flow. We show that at high energies elliptic flow is generated only during the initial stages of the expansion while radial flow continues to grow until freeze-out. Quantitative comparisons with SPS data from semiperipheral Pb+Pb collisions suggest the applicability of hydrodynamical concepts already $\\approx$ 1 fm/c after impact.

  16. Shear viscosity, cavitation and hydrodynamics at LHC

    International Nuclear Information System (INIS)

    Bhatt, Jitesh R.; Mishra, Hiranmaya; Sreekanth, V.

    2011-01-01

    We study evolution of quark-gluon matter in the ultrarelativistic heavy-ion collisions within the frame work of relativistic second-order viscous hydrodynamics. In particular, by using the various prescriptions of a temperature-dependent shear viscosity to the entropy ratio, we show that the hydrodynamic description of the relativistic fluid becomes invalid due to the phenomenon of cavitation. For most of the initial conditions relevant for LHC, the cavitation sets in very early stage. The cavitation in this case is entirely driven by the large values of shear viscosity. Moreover we also demonstrate that the conformal terms used in equations of the relativistic dissipative hydrodynamic can influence the cavitation time.

  17. Steady State Thermo-Hydrodynamic Analysis of Two-Axial groove and Multilobe Hydrodynamic Bearings

    Directory of Open Access Journals (Sweden)

    C. Bhagat

    2014-12-01

    Full Text Available Steady state thermo-hydrodynamic analysis of two axial groove and multi lobe oil journal bearings is performed in this paper. To study the steady state thermo-hydrodynamic characteristics Reynolds equation is solved simultaneously along with the energy equation and heat conduction equation in bush and shaft. The effect of groove geometry, cavitation in the fluid film, the recirculation of lubricant, shaft speed has also been taken into account. Film temperature in case of three-lobe bearing is found to be high as compared to other studied bearing configurations. The data obtained from this analysis can be used conveniently in the design of such bearings, which are presented in dimensionless form.

  18. Microflow Cytometers with Integrated Hydrodynamic Focusing

    Directory of Open Access Journals (Sweden)

    Martin Schmidt

    2013-04-01

    Full Text Available This study demonstrates the suitability of microfluidic structures for high throughput blood cell analysis. The microfluidic chips exploit fully integrated hydrodynamic focusing based on two different concepts: Two-stage cascade focusing and spin focusing (vortex principle. The sample—A suspension of micro particles or blood cells—is injected into a sheath fluid streaming at a substantially higher flow rate, which assures positioning of the particles in the center of the flow channel. Particle velocities of a few m/s are achieved as required for high throughput blood cell analysis. The stability of hydrodynamic particle positioning was evaluated by measuring the pulse heights distributions of fluorescence signals from calibration beads. Quantitative assessment based on coefficient of variation for the fluorescence intensity distributions resulted in a value of about 3% determined for the micro-device exploiting cascade hydrodynamic focusing. For the spin focusing approach similar values were achieved for sample flow rates being 1.5 times lower. Our results indicate that the performances of both variants of hydrodynamic focusing suit for blood cell differentiation and counting. The potential of the micro flow cytometer is demonstrated by detecting immunologically labeled CD3 positive and CD4 positive T-lymphocytes in blood.

  19. Connection between hydrodynamic, water bag and Vlasov models

    International Nuclear Information System (INIS)

    Gros, M.; Bertrand, P.; Feix, M.R.

    1978-01-01

    The connection between hydrodynamic, water bag and Vlasov models is still under consideration with numerical experiments. For long wavelength, slightly non linear excitations and initial preparations such as the usual adiabatic invariant Pn -3 is space independent, the hydrodynamic model is equivalent to the water bag, and for long wavelengths a nice agreement is found with the full numerical solution of the Vlasov equation. For other initial conditions when the water bag cannot be defined, the hydrodynamic approach does not represent the correct behaviour. (author)

  20. Strongly coupled single-phase flow problems: Effects of density variation, hydrodynamic dispersion, and first order decay

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, C.M.; Pruess, K. [Lawrence Berkeley Laboratory, Berkeley, CA (United States)

    1995-03-01

    We have developed TOUGH2 modules for strongly coupled flow and transport that include full hydrodynamic dispersion. T2DM models tow-dimensional flow and transport in systems with variable salinity, while T32DMR includes radionuclide transport with first-order decay of a parent-daughter chain of radionuclide components in variable salinity systems. T2DM has been applied to a variety of coupled flow problems including the pure solutal convection problem of Elder and the mixed free and forced convection salt-dome flow problem. In the Elder and salt-dome flow problems, density changes of up to 20% caused by brine concentration variations lead to strong coupling between the velocity and brine concentration fields. T2DM efficiently calculates flow and transport for these problems. We have applied T2DMR to the dispersive transport and decay of radionuclide tracers in flow fields with permeability heterogeneities and recirculating flows. Coupling in these problems occurs by velocity-dependent hydrodynamic dispersion. Our results show that the maximum daughter species concentration may occur fully within a recirculating or low-velocity region. In all of the problems, we observe very efficient handling of the strongly coupled flow and transport processes.

  1. Hydrodynamic disperser

    Energy Technology Data Exchange (ETDEWEB)

    Bulatov, A.I.; Chernov, V.S.; Prokopov, L.I.; Proselkov, Yu.M.; Tikhonov, Yu.P.

    1980-01-15

    A hydrodynamic disperser is suggested which contains a housing, slit nozzles installed on a circular base arranged opposite from each other, resonators secured opposite the nozzle and outlet sleeve. In order to improve the effectiveness of dispersion by throttling the flow, each resonator is made in the form of a crimped plate with crimpings that decrease in height in a direction towards the nozzle.

  2. Hydrodynamic Limit of Multiple SLE

    Science.gov (United States)

    Hotta, Ikkei; Katori, Makoto

    2018-04-01

    Recently del Monaco and Schleißinger addressed an interesting problem whether one can take the limit of multiple Schramm-Loewner evolution (SLE) as the number of slits N goes to infinity. When the N slits grow from points on the real line R in a simultaneous way and go to infinity within the upper half plane H, an ordinary differential equation describing time evolution of the conformal map g_t(z) was derived in the N → ∞ limit, which is coupled with a complex Burgers equation in the inviscid limit. It is well known that the complex Burgers equation governs the hydrodynamic limit of the Dyson model defined on R studied in random matrix theory, and when all particles start from the origin, the solution of this Burgers equation is given by the Stieltjes transformation of the measure which follows a time-dependent version of Wigner's semicircle law. In the present paper, first we study the hydrodynamic limit of the multiple SLE in the case that all slits start from the origin. We show that the time-dependent version of Wigner's semicircle law determines the time evolution of the SLE hull, K_t \\subset H\\cup R, in this hydrodynamic limit. Next we consider the situation such that a half number of the slits start from a>0 and another half of slits start from -a exact solutions, we will discuss the universal long-term behavior of the multiple SLE and its hull K_t in the hydrodynamic limit.

  3. Effective method of treatment of effluents from production of bitumens under basic pH conditions using hydrodynamic cavitation aided by external oxidants.

    Science.gov (United States)

    Boczkaj, Grzegorz; Gągol, Michał; Klein, Marek; Przyjazny, Andrzej

    2018-01-01

    Utilization of cavitation in advanced oxidation processes (AOPs) is a promising trend in research on treatment of industrial effluents. The paper presents the results of investigations on the use of hydrodynamic cavitation aided by additional oxidation processes (O 3 /H 2 O 2 /Peroxone) to reduce the total pollution load in the effluent from the production of bitumens. A detailed analysis of changes in content of volatile organic compounds (VOCs) for all processes studied was also performed. The studies revealed that the most effective treatment process involves hydrodynamic cavitation aided by ozonation (40% COD reduction and 50% BOD reduction). The other processes investigated (hydrodynamic cavitation+H 2 O 2 , hydrodynamic cavitation+Peroxone and hydrodynamic cavitation alone) ensure reduction of COD by 20, 25 and 13% and reduction of BOD by 49, 32 and 18%, respectively. The results of this research revealed that most of the VOCs studied are effectively degraded. The formation of byproducts is one of the aspects that must be considered in evaluation of the AOPs studied. This work confirmed that furfural is one of the byproducts whose concentration increased during treatment by hydrodynamic cavitation alone as well as hydrodynamic cavitation aided by H 2 O 2 as an external oxidant and it should be controlled during treatment processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Application of Hydrodynamic Cavitation for Food and Bioprocessing

    Science.gov (United States)

    Gogate, Parag R.

    Hydrodynamic cavitation can be simply generated by the alterations in the flow field in high speed/high pressure devices and also by passage of the liquid through a constriction such as orifice plate, venturi, or throttling valve. Hydrodynamic cavitation results in the formation of local hot spots, release of highly reactive free radicals, and enhanced mass transfer rates due to turbulence generated as a result of liquid circulation currents. These conditions can be suitably applied for intensification of different bioprocessing applications in an energy-efficient manner as compared to conventionally used ultrasound-based reactors. The current chapter aims at highlighting different aspects related to hydrodynamic cavitation, including the theoretical aspects for optimization of operating parameters, reactor designs, and overview of applications relevant to food and bioprocessing. Some case studies highlighting the comparison of hydrodynamic cavitation and acoustic cavitation reactors will also be discussed.

  5. RADIATION HYDRODYNAMICS MODELS OF THE INNER RIM IN PROTOPLANETARY DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Flock, M.; Turner, N. J. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Fromang, S. [Laboratoire AIM, CEA/DSM-CNRS-Université Paris 7, Irfu/Service d’Astrophysique, CEA-Saclay, F-91191 Gif-sur-Yvette (France); Benisty, M., E-mail: mflock@caltech.edu [Université Grenoble Alpes, CNRS, IPAG, F-38000 Grenoble (France)

    2016-08-20

    Many stars host planets orbiting within a few astronomical units (AU). The occurrence rate and distributions of masses and orbits vary greatly with the host star’s mass. These close planets’ origins are a mystery that motivates investigating protoplanetary disks’ central regions. A key factor governing the conditions near the star is the silicate sublimation front, which largely determines where the starlight is absorbed, and which is often called the inner rim. We present the first radiation hydrodynamical modeling of the sublimation front in the disks around the young intermediate-mass stars called Herbig Ae stars. The models are axisymmetric and include starlight heating; silicate grains sublimating and condensing to equilibrium at the local, time-dependent temperature and density; and accretion stresses parameterizing the results of MHD magnetorotational turbulence models. The results compare well with radiation hydrostatic solutions and prove to be dynamically stable. Passing the model disks into Monte Carlo radiative transfer calculations, we show that the models satisfy observational constraints on the inner rim’s location. A small optically thin halo of hot dust naturally arises between the inner rim and the star. The inner rim has a substantial radial extent, corresponding to several disk scale heights. While the front’s overall position varies with the stellar luminosity, its radial extent depends on the mass accretion rate. A pressure maximum develops near the location of thermal ionization at temperatures of about 1000 K. The pressure maximum is capable of halting solid pebbles’ radial drift and concentrating them in a zone where temperatures are sufficiently high for annealing to form crystalline silicates.

  6. Annual Report: Hydrodynamics and Radiative Hydrodynamics with Astrophysical Applications

    Energy Technology Data Exchange (ETDEWEB)

    R. Paul Drake

    2005-12-01

    We report the ongoing work of our group in hydrodynamics and radiative hydrodynamics with astrophysical applications. During the period of the existing grant, we have carried out two types of experiments at the Omega laser. One set of experiments has studied radiatively collapsing shocks, obtaining high-quality scaling data using a backlit pinhole and obtaining the first (ever, anywhere) Thomson-scattering data from a radiative shock. Other experiments have studied the deeply nonlinear development of the Rayleigh-Taylor (RT) instability from complex initial conditions, obtaining the first (ever, anywhere) dual-axis radiographic data using backlit pinholes and ungated detectors. All these experiments have applications to astrophysics, discussed in the corresponding papers either in print or in preparation. We also have obtained preliminary radiographs of experimental targets using our x-ray source. The targets for the experiments have been assembled at Michigan, where we also prepare many of the simple components. The above activities, in addition to a variety of data analysis and design projects, provide good experience for graduate and undergraduates students. In the process of doing this research we have built a research group that uses such work to train junior scientists.

  7. Model of Collective Fish Behavior with Hydrodynamic Interactions

    Science.gov (United States)

    Filella, Audrey; Nadal, François; Sire, Clément; Kanso, Eva; Eloy, Christophe

    2018-05-01

    Fish schooling is often modeled with self-propelled particles subject to phenomenological behavioral rules. Although fish are known to sense and exploit flow features, these models usually neglect hydrodynamics. Here, we propose a novel model that couples behavioral rules with far-field hydrodynamic interactions. We show that (1) a new "collective turning" phase emerges, (2) on average, individuals swim faster thanks to the fluid, and (3) the flow enhances behavioral noise. The results of this model suggest that hydrodynamic effects should be considered to fully understand the collective dynamics of fish.

  8. Anisotropic hydrodynamics: Motivation and methodology

    Energy Technology Data Exchange (ETDEWEB)

    Strickland, Michael

    2014-06-15

    In this proceedings contribution I review recent progress in our understanding of the bulk dynamics of relativistic systems that possess potentially large local rest frame momentum-space anisotropies. In order to deal with these momentum-space anisotropies, a reorganization of relativistic viscous hydrodynamics can be made around an anisotropic background, and the resulting dynamical framework has been dubbed “anisotropic hydrodynamics”. I also discuss expectations for the degree of momentum-space anisotropy of the quark–gluon plasma generated in relativistic heavy ion collisions at RHIC and LHC from second-order viscous hydrodynamics, strong-coupling approaches, and weak-coupling approaches.

  9. Hydrodynamics of quark-gluon plasmas

    International Nuclear Information System (INIS)

    Blaizot, J.P.

    1986-06-01

    This paper reviews some aspects of the hydrodynamics of quark-gluon plasmas. Various stages of ultra-relativistic heavy ion collisions are described. Several estimates of the maximum energy density expected to be achieved in these collisions are compared. Discontinuities which may be induced in the hydrodynamic flow by a phase transition are described and a convenient numerical method designed to deal with such discontinuous flows is briefly presented. Finally, the correlations between particle transverse momenta and multiplicities are analyzed and one discusses to which extent these correlations could signal the occurrence of a phase transition in heavy ion collisions

  10. Hydrodynamic constants from cosmic censorship

    International Nuclear Information System (INIS)

    Nakamura, Shin

    2008-01-01

    We study a gravity dual of Bjorken flow of N=4 SYM-theory plasma. We point out that the cosmic censorship hypothesis may explain why the regularity of the dual geometry constrains the hydrodynamic constants. We also investigate the apparent horizon of the dual geometry. We find that the dual geometry constructed on Fefferman-Graham (FG) coordinates is not appropriate for examination of the apparent horizon since the coordinates do not cover the trapped region. However, the preliminary analysis on FG coordinates suggests that the location of the apparent horizon is very sensitive to the hydrodynamic parameters. (author)

  11. Surfactant effect on drop coalescence and film drainage hydrodynamics

    Science.gov (United States)

    Weheliye, Weheliye; Chinaud, Maxime; Voulgaropoulos, Victor; Angeli, Panagiota

    2015-11-01

    Coalescence of a drop on an aqueous-organic interface is studied in two test geometries A rectangular acrylic vessel and a Hele-Shaw cell (two parallel plates placed 2mm apart) are investigated for the experiments. Time resolved Particle Image Velocimetry (PIV) measurements provide information on the hydrodynamics during the bouncing stage of the droplet and on the vortices generated at the bulk fluid after the droplet has coalesced. The velocity field inside the droplet during its coalescence is presented. By localizing the rupture point of the coalescence in the quasi two dimensional cell, the film drainage dynamics are discussed by acquiring its flow velocity by PIV measurements with a straddling camera. The effect of surface tension forces in the coalescence of the droplet is investigated by introducing surface active agents at various concentrations extending on both sides of the critical micelle concentration.

  12. Hydrodynamics of multi-sized particles in stable regime of a swirling bed

    Energy Technology Data Exchange (ETDEWEB)

    Miin, Chin Swee; Sulaiman, Shaharin Anwar; Raghavan, Vijay Raj; Heikal, Morgan Raymond; Naz, Muhammad Yasin [Universiti Teknologi PETRONAS, Perak (Malaysia)

    2015-11-15

    Using particle imaging velocimetry (PIV), we observed particle motion within the stable operating regime of a swirling fluidized bed with an annular blade distributor. This paper presents velocity profiles of particle flow in an effort to determine effects from blade angle, particle size and shape and bed weight on characteristics of a swirling fluidized bed. Generally, particle velocity increased with airflow rate and shallow bed height, but decreased with bed weight. A 3 .deg. increase in blade angle reduced particle velocity by approximately 18%. In addition, particle shape, size and bed weight affected various characteristics of the swirling regime. Swirling began soon after incipience in the form of a supra-linear curve, which is the characteristic of a swirling regime. The relationship between particle and gas velocities enabled us to predict heat and mass transfer rates between gas and particles.

  13. Using equilibrium passive dosing to maintain stable exposure concentrations of triclosan in a 6-week toxicity test

    DEFF Research Database (Denmark)

    Sobek, A.; Ribbenstedt, A.; Mustajärvi, L.

    2015-01-01

    toxicity tests. Yet, the European Commission’s criteria for chemicals’ risk assessments aim at protecting higher levels in the environment. To achieve protection of populations and ecosystems, reliable long-term ecotoxicologial tests are needed. In this study, we used equilibrium passive dosing to maintain...... stable exposure concentrations of triclosan (log Kow 4.8) in a 6-week multigeneration test with the benthic copepod Nitocra spinipes. The tests were performed in 10 mL vials casted with 1000 mg of silicone (DC 1-2577). Based on a previous pilot study, three triclosan concentrations were selected...... and tested (15 μg L-1; 30 μg L-1; 60 μg L-1) as well as a control (no triclosan). At test beginning, each vial contained 12 individuals consisting of 3 individuals from four different life stages. The test includes feeding with phytoplankton three times a week, which can lead to declining freely dissolved...

  14. A theoretical study of hydrodynamic cavitation.

    Science.gov (United States)

    Arrojo, S; Benito, Y

    2008-03-01

    The optimization of hydrodynamic cavitation as an AOP requires identifying the key parameters and studying their effects on the process. Specific simulations of hydrodynamic bubbles reveal that time scales play a major role on the process. Rarefaction/compression periods generate a number of opposing effects which have demonstrated to be quantitatively different from those found in ultrasonic cavitation. Hydrodynamic cavitation can be upscaled and offers an energy efficient way of generating cavitation. On the other hand, the large characteristic time scales hinder bubble collapse and generate a low number of cavitation cycles per unit time. By controlling the pressure pulse through a flexible cavitation chamber design these limitations can be partially compensated. The chemical processes promoted by this technique are also different from those found in ultrasonic cavitation. Properties such as volatility or hydrophobicity determine the potential applicability of HC and therefore have to be taken into account.

  15. ELECTRODEPOSITION OF COPPER IONS ON FIXED BED ELECTRODES: KINETIC AND HYDRODYNAMIC STUDY

    Directory of Open Access Journals (Sweden)

    L.A.M. Ruotolo

    2002-03-01

    Full Text Available The kinetic and hydrodynamic behaviour of a fixed-bed electrochemical reactor was studied in terms of current efficiency (CE and energy efficiency (EE. In the kinetic experiments the effects of fixed bed thickness (L, current density (i and initial concentration of copper (C0 were studied. In the hydrodynamic experiments the permeability (k of the electrode and the coefficient for inertial forces (c were also studied as functions of the applied current density. At low current densities and bed thicknesses greater than 1.0 cm, negative CE and EE were observed as a consequence of the dissolution of the porous matrix. At high current densities low CE and EE were observed and a powdery deposit was formed on the surface of the particles. From the results of the kinetic study bed thickness and the range of current densities employed in the hydrodynamic experiments were chosen. In these experiments the electrodeposition process continued until the whole electrode had been clogged and no more electrolyte could pass through it. The relationship between pressure drop and flow rate was well described by the Forchheimer equation. It was observed that the reduction in porosity due to copper electrodeposition causes the flow rate to decrease because of the decrease in electrode permeability, but it had no influence on current efficiency.

  16. Agricultural diffuse pollution in a chalk aquifer (Trois Fontaines, France): Influence of pesticide properties and hydrodynamic constraints

    Science.gov (United States)

    Baran, N.; Lepiller, M.; Mouvet, C.

    2008-08-01

    SummaryThe characterization of the transfer of pesticides to and in groundwater is essential for effective water resource management. Intensive monitoring, from October 1989 to May 2006, of a weakly karstified chalk aquifer system in a 50 km 2 agricultural catchment, enabled the characterization of the temporal variability of pesticide concentrations in the groundwater of the main outlet. Atrazine and its metabolite deethylatrazine were quantified 394 and 393 times in 476 samples with concentrations ranging from the quantification limit (0.025 μg L -1) to 5.3 and 1.86 μg L -1, respectively. This common presence, compared to the rare detections of isoproturon (in 108 of 476 samples), the pesticide most widely used in the catchment during at least the past decade, highlighted the significant effect of pesticide properties in the time series of concentrations observed in the groundwater. The use of geochemical tracers (nitrate, chloride) analysed in the groundwater and the hydrodynamic monitoring of the system (discharge, water levels) enabled identification of various infiltration mechanisms governing the functioning of the system. The hydrodynamic study showing that the relative contribution of the infiltration mechanisms varies with time, made it possible to explain major variations observed in the pesticide-concentration time series recorded at the spring.

  17. Role Played by Shear-Induced Hydrodynamic Diffusion on the Continuous Separation of Blood Cells

    Science.gov (United States)

    Hoyos, Mauricio; Kurowski, Pascal; Moore, Lee; Williams, Stephen; Zborowski, Maciej

    2001-11-01

    The continuous sorting of hematopoietic stem cells, lymphocytes or other blood cells can be performed using a membraneless hydrodynamic technique called split-flow thin channel fractionation, SPLITT. Two streams are introduced to the separator: carrier at one inlet and a suspension containing a mixture of immunomagnetically-labeled cells and unlabeled cells at the other inlet. The SPLITT channel, comprising a thin annulus between two concentric cylinders, is fitted into a permanent quadrupole magnet. The sample is transported along the axis of the separation column, and the labeled cells migrate perpendicular to the bulk flow under the influence of the magnetic field. The aim is to recover - at high purity - all of the magnetized cells in the enriched outlet. However, other cells contaminate the enriched fraction. This may be due to a transversal transport of non-immunomagnetically-labeled cells - termed crossover - by shear-induced hydrodynamic diffusion, SIHD, occurring along the separator. The unwanted cell crossover strongly influences the target cell purity in the enriched fraction. We investigate the possible presence of SIHD on the separation of progenitor cells and particles by studying the cross-stream concentration as a function of different parameters: namely, shear rate, inlet concentration and particle size. With our SIHD model we can solve the convection-diffusion equation by assuming an effective diffusion coefficient, which predicts the observed crossover.

  18. Effects of trace element concentration on enzyme controlled stable isotope fractionation during aerobic biodegradation of toluene.

    Science.gov (United States)

    Mancini, Silvia A; Hirschorn, Sarah K; Elsner, Martin; Lacrampe-Couloume, Georges; Sleep, Brent E; Edwards, Elizabeth A; Lollar, Barbara Sherwood

    2006-12-15

    The effects of iron concentration on carbon and hydrogen isotopic fractionation during aerobic biodegradation of toluene by Pseudomonas putida mt-2 were investigated using a low iron medium and two different high iron media. Mean carbon enrichment factors (epsilonc) determined using a Rayleigh isotopic model were smaller in culture grown under high iron conditions (epsilonc = -1.7+/-0.1%) compared to low iron conditions (epsilonc = -2.5+/-0.3%). Mean hydrogen enrichment factors (epsilonH) were also significantly smaller for culture grown under high iron conditions (epsilonH = -77 +/-4%) versus low iron conditions (EpsilonH = -159+/-11%). A mechanistic model for enzyme kinetics was used to relate differences in the magnitude of isotopic fractionation for low iron versus high iron cultures to the efficiency of the enzymatic transformation. The increase of carbon and hydrogen enrichment factors at low iron concentrations suggests a slower enzyme-catalyzed substrate conversion step (k2) relative to the enzyme-substrate binding step (k-l) at low iron concentration. While the observed differences were subtle and, hence, do not significantly impact the ability to use stable isotope analysis in the field, these results demonstrated that resolvable differences in carbon and hydrogen isotopic fractionation were related to low and high iron conditions. This novel result highlights the need to further investigate the effects of other trace elements known to be key components of biodegradative enzymes.

  19. Hydrodynamic suppression of phase separation in active suspensions.

    Science.gov (United States)

    Matas-Navarro, Ricard; Golestanian, Ramin; Liverpool, Tanniemola B; Fielding, Suzanne M

    2014-09-01

    We simulate with hydrodynamics a suspension of active disks squirming through a Newtonian fluid. We explore numerically the full range of squirmer area fractions from dilute to close packed and show that "motility induced phase separation," which was recently proposed to arise generically in active matter, and which has been seen in simulations of active Brownian disks, is strongly suppressed by hydrodynamic interactions. We give an argument for why this should be the case and support it with counterpart simulations of active Brownian disks in a parameter regime that provides a closer counterpart to hydrodynamic suspensions than in previous studies.

  20. Dynamic structurization in solutions of hydrodynamically active polymers

    International Nuclear Information System (INIS)

    Pogrebnyak, V.G.; Tverdokhleb, S.V.; Naumchuk, N.V.

    1993-01-01

    The processes of ordering and self-regulation in nonlinear systems have attracted great attention because understanding the principles of self-regulation and its thermodynamics can become a clue to many physical phenomena. In this work, it is experimentally established that, under the condition of elongational flows, dynamic structurization and periodic processes may originate in the solutions of flexible, hydrodynamically-active polymers due to self-regulation in these systems. The hydrodynamic elongational field was created using the flow of a Newtonian liquid (water, acetone, dioxane) converging to a small opening. The hydrodynamically-active polymers were polyethylene oxide or hydrolyzed polyacrylamide

  1. arXiv On higher order and anisotropic hydrodynamics for Bjorken and Gubser flows

    CERN Document Server

    Chattopadhyay, Chandrodoy; Pal, Subrata; Vujanovic, Gojko

    2018-06-15

    We study the evolution of hydrodynamic and nonhydrodynamic moments of the distribution function using anisotropic and third-order Chapman-Enskog hydrodynamics for systems undergoing Bjorken and Gubser flows. The hydrodynamic results are compared with the exact solution of the Boltzmann equation with a collision term in relaxation time approximation. While the evolution of the hydrodynamic moments of the distribution function (i.e., of the energy momentum tensor) can be described with high accuracy by both hydrodynamic approximation schemes, their description of the evolution of the entropy of the system is much less precise. We attribute this to large contributions from nonhydrodynamic modes coupling into the entropy evolution, which are not well captured by the hydrodynamic approximations. The differences between the exact solution and the hydrodynamic approximations are larger for the third-order Chapman-Enskog hydrodynamics than for anisotropic hydrodynamics, which effectively resums some of the dissipativ...

  2. Onset of hydrodynamic mix in high-velocity, highly compressed inertial confinement fusion implosions.

    Science.gov (United States)

    Ma, T; Patel, P K; Izumi, N; Springer, P T; Key, M H; Atherton, L J; Benedetti, L R; Bradley, D K; Callahan, D A; Celliers, P M; Cerjan, C J; Clark, D S; Dewald, E L; Dixit, S N; Döppner, T; Edgell, D H; Epstein, R; Glenn, S; Grim, G; Haan, S W; Hammel, B A; Hicks, D; Hsing, W W; Jones, O S; Khan, S F; Kilkenny, J D; Kline, J L; Kyrala, G A; Landen, O L; Le Pape, S; MacGowan, B J; Mackinnon, A J; MacPhee, A G; Meezan, N B; Moody, J D; Pak, A; Parham, T; Park, H-S; Ralph, J E; Regan, S P; Remington, B A; Robey, H F; Ross, J S; Spears, B K; Smalyuk, V; Suter, L J; Tommasini, R; Town, R P; Weber, S V; Lindl, J D; Edwards, M J; Glenzer, S H; Moses, E I

    2013-08-23

    Deuterium-tritium inertial confinement fusion implosion experiments on the National Ignition Facility have demonstrated yields ranging from 0.8 to 7×10(14), and record fuel areal densities of 0.7 to 1.3 g/cm2. These implosions use hohlraums irradiated with shaped laser pulses of 1.5-1.9 MJ energy. The laser peak power and duration at peak power were varied, as were the capsule ablator dopant concentrations and shell thicknesses. We quantify the level of hydrodynamic instability mix of the ablator into the hot spot from the measured elevated absolute x-ray emission of the hot spot. We observe that DT neutron yield and ion temperature decrease abruptly as the hot spot mix mass increases above several hundred ng. The comparison with radiation-hydrodynamic modeling indicates that low mode asymmetries and increased ablator surface perturbations may be responsible for the current performance.

  3. Abnormal pressures as hydrodynamic phenomena

    Science.gov (United States)

    Neuzil, C.E.

    1995-01-01

    So-called abnormal pressures, subsurface fluid pressures significantly higher or lower than hydrostatic, have excited speculation about their origin since subsurface exploration first encountered them. Two distinct conceptual models for abnormal pressures have gained currency among earth scientists. The static model sees abnormal pressures generally as relict features preserved by a virtual absence of fluid flow over geologic time. The hydrodynamic model instead envisions abnormal pressures as phenomena in which flow usually plays an important role. This paper develops the theoretical framework for abnormal pressures as hydrodynamic phenomena, shows that it explains the manifold occurrences of abnormal pressures, and examines the implications of this approach. -from Author

  4. Study of a flowing aqueous decontamination foam drainage mechanisms and hydrodynamic behaviour

    International Nuclear Information System (INIS)

    Boissonnet, G.

    1998-01-01

    For the decontamination of nuclear facilities, the use of foams has a great potentiality. This work deals with the study of a flowing aqueous foam regarding two aspects: the structure and the drainage on one hand, the hydrodynamic behaviour on the other hand. The foam has been studied from a photograph of a plexiglass column wall, in which the foam flows vertically. Image processing and analysis have been used to measure the foam structure parameters and demonstrate that the smaller the average diameter of the bubbles is, the more stable the foam is. The competition between the gravity and the interfacial forces has been showed by two types of fluid flow in the inter-bubble channels: one where the gravity is preponderant, the other where the two forces exist. Two drainage models based on the Darcy law and the Weaire model have been elaborated. From an hydrodynamic behaviour point of view, the sliding of a shear core in the liquid film on wall, has been demonstrated. A Ostwald De Weale type behaviour appears concerning the whole flow; a Herschel Bulkley type behaviour of the foam core appears when the shearing and the sliding are dissociated. The sliding speed is 5 to 95% of the global speed according to the experiment conditions. A method to forecast the pressure losses, based on the Moody diagram has been established. (A.L.B.)

  5. IUTAM symposium on hydrodynamic diffusion of suspended particles

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R.H. [ed.

    1995-12-31

    Hydrodynamic diffusion refers to the fluctuating motion of nonBrownian particles (or droplets or bubbles) which occurs in a dispersion due to multiparticle interactions. For example, in a concentrated sheared suspension, particles do not move along streamlines but instead exhibit fluctuating motions as they tumble around each other. This leads to a net migration of particles down gradients in particle concentration and in shear rate, due to the higher frequency of encounters of a test particle with other particles on the side of the test particle which has higher concentration or shear rate. As another example, suspended particles subject to sedimentation, centrifugation, or fluidization, do not generally move relative to the fluid with a constant velocity, but instead experience diffusion-like fluctuations in velocity due to interactions with neighboring particles and the resulting variation in the microstructure or configuration of the suspended particles. In flowing granular materials, the particles interact through direct collisions or contacts (rather than through the surrounding fluid); these collisions also cause the particles to undergo fluctuating motions characteristic of diffusion processes. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  6. Hydrodynamic and sedimentological controls governing formation of fluvial levees

    Science.gov (United States)

    Johnston, G. H.; Edmonds, D. A.; David, S. R.; Czuba, J. A.

    2017-12-01

    Fluvial levees are familiar features found on the margins of river channels, yet we know little about what controls their presence, height, and shape. These attributes of levees are important because they control sediment transfer from channel to floodplain and flooding patterns along a river system. Despite the familiarity and importance of levees, there is a surprising lack of basic geomorphic data on fluvial levees. Because of this we seek to understand: 1) where along rivers do levees tend to occur?; 2) what geomorphic and hydrodynamic variables control cross-sectional shape of levees? We address these questions by extracting levee shape from LiDAR data and by collecting hydrodynamic and sedimentological data from reaches of the Tippecanoe River, the White River, and the Muscatatuck River, Indiana, USA. Fluvial levees are extracted from a 1.5-m resolution LiDAR bare surface model and compared to hydrological, sedimentological, and geomorphological data from USGS stream gages. We digitized banklines and extracted levee cross-sections to calculate levee slope, taper, height, e-folding length, and e-folding width. To answer the research questions, we performed a multivariable regression between the independent variables—channel geometry, sediment grain size and concentration, flooding conditions, and slope—and the dependent levee variables. We find considerable variation in levee presence and shape in our field data. On the Muscatatuck River levees occur on 30% of the banks compared to 10% on the White River. Moreover, levees on the Muscatatuck are on average 3 times wider than the White River. This is consistent with the observation that the Muscatatuck is finer-grained compared to the White River and points to sedimentology being an important control on levee geomorphology. Future work includes building a morphodynamic model to understand how different hydrodynamic and geomorphic conditions control levee geometry.

  7. An overview of relativistic hydrodynamics as applied to heavy ion reactions

    International Nuclear Information System (INIS)

    Strottman, D.D.

    1989-01-01

    The application of relativistic hydrodynamics as applied to heavy ions is reviewed. Constraints on the nuclear equation of state, as well as the form of the hydrodynamic equations imposed by causality are discussed. Successes (flow, side-splash, scaling) and shortcomings of one-fluid hydrodynamics are reviewed. Models for pion production within hydrodynamics and reasons for disagreement with experiment are assessed. Finally, the motivations for and the implementations of multi-fluid models are presented. 74 refs., 11 figs

  8. Hydrodynamics of ponderomotive interactions in a collisionless plasma

    International Nuclear Information System (INIS)

    Kono, M.; Skoric, M.M.; ter Haar, D.

    1987-01-01

    A hydrodynamic treatment of ponderomotive interactions in a collisionless plasma is presented and it is shown that consistent hydrodynamics leads to the correct expression for the solenoidal ponderomotive electron current density, a result previously thought to be derivable only in the framework of the warm-plasma kinetic theory

  9. Two-time temperature Green functions in kinetic theory and molecular hydrodynamics. 3. Account of interactions of hydrodynamic fluctuations

    International Nuclear Information System (INIS)

    Tserkovnikov, Yu.A.

    2001-01-01

    The regular method for deriving the equations for the Green functions in the tasks on the molecular hydrodynamics and kinetics, making it possible to account consequently the contribution into the generalized kinetics coefficients, conditioned by interaction of two, three and more hydrodynamic modes. In contrast to the general theory of perturbations by the interaction constant the consequent approximations are accomplished by the degree of accounting for the higher correlations, described by the irreducible functions [ru

  10. New theories of relativistic hydrodynamics in the LHC era

    Science.gov (United States)

    Florkowski, Wojciech; Heller, Michal P.; Spaliński, Michał

    2018-04-01

    The success of relativistic hydrodynamics as an essential part of the phenomenological description of heavy-ion collisions at RHIC and the LHC has motivated a significant body of theoretical work concerning its fundamental aspects. Our review presents these developments from the perspective of the underlying microscopic physics, using the language of quantum field theory, relativistic kinetic theory, and holography. We discuss the gradient expansion, the phenomenon of hydrodynamization, as well as several models of hydrodynamic evolution equations, highlighting the interplay between collective long-lived and transient modes in relativistic matter. Our aim to provide a unified presentation of this vast subject—which is naturally expressed in diverse mathematical languages—has also led us to include several new results on the large-order behaviour of the hydrodynamic gradient expansion.

  11. Dissecting the regulation of pollen tube growth by modelling the interplay of hydrodynamics, cell wall and ion dynamics

    Directory of Open Access Journals (Sweden)

    Junli eLiu

    2014-08-01

    Full Text Available Hydrodynamics, cell wall and ion dynamics are all important properties that regulate pollen tube growth. Currently, the two main pollen tube growth models, the cell wall model and the hydrodynamic model do not appear to be reconcilable. Here we develop an integrative model for pollen tube growth and show that our model reproduces key experimental observations: 1 that the hypertonic condition leads to a much longer oscillatory period and that the hypotonic condition halves the oscillatory period; 2 that oscillations in turgor are experimentally undetectable; 3 that increasing the extracellular calcium concentration or decreasing the pH decreases the growth oscillatory amplitude; 4 that knockout of Raba4d, a member of the Rab family of small GTPase proteins, decreases pollen tube length after germination for 24 hours. Using the model generated here, we reveal that 1 when cell wall extensibility is large, pollen tube may sustain growth at different volume changes and maintain relatively stable turgor; 2 turgor increases if cell wall extensibility decreases; 3 increasing turgor due to decrease in osmolarity in the media, although very small, increases volume change . However, increasing turgor due to decrease in cell wall extensibility decreases volume change. In this way regulation of pollen tube growth by turgor is context dependent. By changing the osmolarity in the media, the main regulatory points are extracellular osmolarity for water flow and turgor for the volume encompassed by the cell wall. However, if the viscosity of cell wall changes, the main regulatory points are turgor for water flow and wall extensibility for the volume encompassed by the cell wall. The novel methodology developed here reveals the underlying context-dependent regulatory principle of pollen tube growth.

  12. Three aspects of critical phenomenons: fundamental, hydrodynamic, conceptual

    International Nuclear Information System (INIS)

    Beysens, D.

    1993-01-01

    After a recall of the leading results relative to the universality class of fluids, examples of how well known universal prevision are held in check by fluids specificities, especially hydrodynamics. Applications of critical phenomenons tool to damping, hydrodynamic instabilities, turbulence are described. (A.B.). 11 refs., 7 figs., 1 tab

  13. Hydrodynamization and transient modes of expanding plasma in kinetic theory

    CERN Document Server

    Heller, Michal P.; Spalinski, Michal

    2016-01-01

    We study the transition to hydrodynamics in a weakly-coupled model of quark-gluon plasma given by kinetic theory in the relaxation time approximation. Our studies uncover qualitative similarities to the results on hydrodynamization in strongly coupled gauge theories. In particular, we demonstrate that the gradient expansion in this model has vanishing radius of convergence. The asymptotic character of the hydrodynamic gradient expansion is crucial for the recently discovered applicability of hydrodynamics at large gradients. Furthermore, the analysis of the resurgent properties of the series provides, quite remarkably, indication for the existence of a novel transient, damped oscillatory mode of expanding plasmas in kinetic theory.

  14. Littoral Hydrodynamics and Sediment Transport Around a Semi-Permeable Breakwater

    Science.gov (United States)

    2015-09-18

    Australasian Coasts & Ports Conference 2015 15 - 18 September 2015, Auckland , New Zealand Li, H et al. Littoral Hydrodynamics and Sediment...Coasts and Ports 2015, Auckland , New Zealand, 15-18 September, 2015, 7 pp. Littoral Hydrodynamics and Sediment Transport Around a Semi...Conference 2015 15 - 18 September 2015, Auckland , New Zealand Li, H et al. Littoral Hydrodynamics and Sediment Transport 2 The bathymetric and side

  15. Introduction to physics mechanics, hydrodynamics thermodynamics

    CERN Document Server

    Frauenfelder, P

    2013-01-01

    Introduction of Physics: Mechanics , Hydrodynamics, Thermodynamics covers the principles of matter and its motion through space and time, as well as the related concepts of energy and force. This book is composed of eleven chapters, and begins with an introduction to the basic principles of mechanics, hydrodynamics, and thermodynamics. The subsequent chapters deal with the statics of rigid bodies and the dynamics of particles and rigid bodies. These topics are followed by discussions on elasticity, mechanics of fluids, the basic concept of thermodynamic, kinetic theory, and crystal structure o

  16. Study on Compatibility of Polymer Hydrodynamic Size and Pore Throat Size for Honggang Reservoir

    Directory of Open Access Journals (Sweden)

    Dan-Dan Yin

    2014-01-01

    Full Text Available Long core flow experiment was conducted to study problems like excessive injection pressure and effective lag of oil wells during the polymer flooding in Honggang reservoir in Jilin oilfield. According to the changes in viscosity and hydrodynamic dimensions before and after polymer solution was injected into porous media, the compatibility of polymer hydrodynamic dimension and the pore throat size was studied in this experiment. On the basis of the median of radius R of pore throats in rocks with different permeability, dynamic light scattering method (DLS was adopted to measure the hydrodynamic size Rh of polymer solution with different molecular weights. The results state that three kinds of 1500 mg/L concentration polymer solution with 2000 × 104, 1500 × 104, and 1000 × 104 molecular weight matched well with the pore throat in rocks with permeability of 300 mD, 180 mD, and 75 mD in sequence. In this case, the ratios of core pore throat radius median to the size of polymer molecular clew R/Rh are 6.16, 5.74, and 6.04. For Honggang oil reservoir in Jilin, when that ratio ranges from 5.5 to 6.0, the compatibility of polymer and the pore structure will be relatively better.

  17. Analytic solutions of hydrodynamics equations

    International Nuclear Information System (INIS)

    Coggeshall, S.V.

    1991-01-01

    Many similarity solutions have been found for the equations of one-dimensional (1-D) hydrodynamics. These special combinations of variables allow the partial differential equations to be reduced to ordinary differential equations, which must then be solved to determine the physical solutions. Usually, these reduced ordinary differential equations are solved numerically. In some cases it is possible to solve these reduced equations analytically to obtain explicit solutions. In this work a collection of analytic solutions of the 1-D hydrodynamics equations is presented. These can be used for a variety of purposes, including (i) numerical benchmark problems, (ii) as a basis for analytic models, and (iii) to provide insight into more complicated solutions

  18. Non-hydrodynamic model of plasma focus structure

    International Nuclear Information System (INIS)

    Imshennik, V.S.; Zueva, N.M.; Lokutsievskij, O.V.; Mikhajlova, M.S.

    1985-01-01

    Experimental and theoretical plasma focus study has resulted in the necessity of creating a non-hydrodynamic plasma focus structure model (MKHD model). This model describes the final stage of plasma focus, which starts immediately after maximum plasma compression. It is related to a very limited space near the neck of the sausage instability. The MKHD model is two-dimensional, axially symmetric and collisionless with respect to the ions and magnetohydrodynamic with respect to the electrons; it accounts for the pinch instability of the sausage type (m=0 mode). The MKHD model, first of all, explains the long time of the plasma focus existence and non-thermonuclear peculiarities in the neutron yield. The initial and boundary conditions are formulated in accordance with the experiments and the results of computations in the 2D MHD model. A non-stationary process of plasma focus dynamics is studied numerically for a relatively long time - about 20 ns; this time is, in principle, not restricted. The computations show that the external edge of the neck expands rather slowly (at a speed that is lower than the thermal ion velocity, by an order of magnitude), and the magnetic field energy is converted to the kinetic energy of the chaotic ion motion (which is doubled for the time of computation). A 'supra-thermal' tail (with the deuterium ion energy higher than 10 keV) forms slowly at the ion distribution function; this tail determines a substantial part of the total neutron yield. The formation of stable vortices, which actually determine the structure of the plasma flow during the developed non-hydrodynamic stage of the plasma focus, is also found in the computations. These properties of the development of the sausage instability, as found in the numerical experiment with the MKHD plasma focus model, are in qualitative agreement with the behaviour of an instability of the same type in the MHD models of the Z-pinch

  19. Dilepton production in schematic causal viscous hydrodynamics

    International Nuclear Information System (INIS)

    Song, Taesoo; Han, Kyong Chol; Ko, Che Ming

    2011-01-01

    Assuming that in the hot dense matter produced in relativistic heavy-ion collisions, the energy density, entropy density, and pressure as well as the azimuthal and space-time rapidity components of the shear tensor are uniform in the direction transversal to the reaction plane, we derive a set of schematic equations from the Isreal-Stewart causal viscous hydrodynamics. These equations are then used to describe the evolution dynamics of relativistic heavy-ion collisions by taking the shear viscosity to entropy density ratio of 1/4π for the initial quark-gluon plasma (QGP) phase and of 10 times this value for the later hadron-gas (HG) phase. Using the production rate evaluated with particle distributions that take into account the viscous effect, we study dilepton production in central heavy-ion collisions. Compared with results from the ideal hydrodynamics, we find that although the dilepton invariant mass spectra from the two approaches are similar, the transverse momentum spectra are significantly enhanced at high transverse momenta by the viscous effect. We also study the transverse momentum dependence of dileptons produced from QGP for a fixed transverse mass, which is essentially absent in the ideal hydrodynamics, and find that this so-called transverse mass scaling is violated in the viscous hydrodynamics, particularly at high transverse momenta.

  20. Black Hole Scrambling from Hydrodynamics.

    Science.gov (United States)

    Grozdanov, Sašo; Schalm, Koenraad; Scopelliti, Vincenzo

    2018-06-08

    We argue that the gravitational shock wave computation used to extract the scrambling rate in strongly coupled quantum theories with a holographic dual is directly related to probing the system's hydrodynamic sound modes. The information recovered from the shock wave can be reconstructed in terms of purely diffusionlike, linearized gravitational waves at the horizon of a single-sided black hole with specific regularity-enforced imaginary values of frequency and momentum. In two-derivative bulk theories, this horizon "diffusion" can be related to late-time momentum diffusion via a simple relation, which ceases to hold in higher-derivative theories. We then show that the same values of imaginary frequency and momentum follow from a dispersion relation of a hydrodynamic sound mode. The frequency, momentum, and group velocity give the holographic Lyapunov exponent and the butterfly velocity. Moreover, at this special point along the sound dispersion relation curve, the residue of the retarded longitudinal stress-energy tensor two-point function vanishes. This establishes a direct link between a hydrodynamic sound mode at an analytically continued, imaginary momentum and the holographic butterfly effect. Furthermore, our results imply that infinitely strongly coupled, large-N_{c} holographic theories exhibit properties similar to classical dilute gases; there, late-time equilibration and early-time scrambling are also controlled by the same dynamics.

  1. Hydrodynamic Coefficients Identification and Experimental Investigation for an Underwater Vehicle

    Directory of Open Access Journals (Sweden)

    Shaorong XIE

    2014-02-01

    Full Text Available Hydrodynamic coefficients are the foundation of unmanned underwater vehicles modeling and controller design. In order to reduce identification complexity and acquire necessary hydrodynamic coefficients for controllers design, the motion of the unmanned underwater vehicle was separated into vertical motion and horizontal motion models. Hydrodynamic coefficients were regarded as mapping parameters from input forces and moments to output velocities and acceleration of the unmanned underwater vehicle. The motion models of the unmanned underwater vehicle were nonlinear and Genetic Algorithm was adopted to identify those hydrodynamic coefficients. To verify the identification quality, velocities and acceleration of the unmanned underwater vehicle was measured using inertial sensor under the same conditions as Genetic Algorithm identification. Curves similarity between measured velocities and acceleration and those identified by Genetic Algorithm were used as optimizing standard. It is found that the curves similarity were high and identified hydrodynamic coefficients of the unmanned underwater vehicle satisfied the measured motion states well.

  2. The molar hydrodynamic volume changes of factor VIIa due to GlycoPEGylation

    DEFF Research Database (Denmark)

    Plesner, Bitten; Westh, Peter; Hvidt, Søren

    2011-01-01

    The effects of GlycoPEGylation on the molar hydrodynamic volume of recombinant human rFVIIa were investigated using rFVIIa and two GlycoPEGylated recombinant human FVIIa derivatives, a linear 10 kDa PEG and a branched 40 kDa PEG, respectively. Molar hydrodynamic volumes were determined by capillary......, that the molar hydrodynamic volume of the conjugated protein is not just an addition of the molar hydrodynamic volume of the PEG and the protein. The molar hydrodynamic volume of the GlycoPEGylated protein is larger than the volume of its composites. These results suggest that both the linear and the branched...

  3. Catalytic conversion reactions mediated by single-file diffusion in linear nanopores: hydrodynamic versus stochastic behavior.

    Science.gov (United States)

    Ackerman, David M; Wang, Jing; Wendel, Joseph H; Liu, Da-Jiang; Pruski, Marek; Evans, James W

    2011-03-21

    We analyze the spatiotemporal behavior of species concentrations in a diffusion-mediated conversion reaction which occurs at catalytic sites within linear pores of nanometer diameter. Diffusion within the pores is subject to a strict single-file (no passing) constraint. Both transient and steady-state behavior is precisely characterized by kinetic Monte Carlo simulations of a spatially discrete lattice-gas model for this reaction-diffusion process considering various distributions of catalytic sites. Exact hierarchical master equations can also be developed for this model. Their analysis, after application of mean-field type truncation approximations, produces discrete reaction-diffusion type equations (mf-RDE). For slowly varying concentrations, we further develop coarse-grained continuum hydrodynamic reaction-diffusion equations (h-RDE) incorporating a precise treatment of single-file diffusion in this multispecies system. The h-RDE successfully describe nontrivial aspects of transient behavior, in contrast to the mf-RDE, and also correctly capture unreactive steady-state behavior in the pore interior. However, steady-state reactivity, which is localized near the pore ends when those regions are catalytic, is controlled by fluctuations not incorporated into the hydrodynamic treatment. The mf-RDE partly capture these fluctuation effects, but cannot describe scaling behavior of the reactivity.

  4. Cavitation Generation and Usage Without Ultrasound: Hydrodynamic Cavitation

    Science.gov (United States)

    Gogate, Parag R.; Pandit, Aniruddha B.

    Hydrodynamic Cavitation, which was and is still looked upon as an unavoidable nuisance in the flow systems, can be a serious contender as an alternative to acoustic cavitation for harnessing the spectacular effects of cavitation in physical and chemical processing. The present chapter covers the basics of hydrodynamic cavitation including the considerations for the bubble dynamics analysis, reactor designs and recommendations for optimum operating parameters. An overview of applications in different areas of physical, chemical and biological processing on scales ranging from few grams to several hundred kilograms has also been presented. Since hydrodynamic cavitation was initially proposed as an alternative to acoustic cavitation, it is necessary to compare the efficacy of both these modes of cavitations for a variety of applications and hence comparisons have been discussed either on the basis of energy efficiency or based on the scale of operation. Overall it appears that hydrodynamic cavitation results in conditions similar to those generated using acoustic cavitation but at comparatively much larger scale of operation and with better energy efficiencies.

  5. Hydrodynamic approach to electronic transport in graphene

    Energy Technology Data Exchange (ETDEWEB)

    Narozhny, Boris N. [Institute for Theoretical Condensed Matter Physics, Karlsruhe Institute of Technology, Karlsruhe (Germany); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation); Gornyi, Igor V. [Institute for Theoretical Condensed Matter Physics, Karlsruhe Institute of Technology, Karlsruhe (Germany); Institute of Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe (Germany); Ioffe Physical Technical Institute, St. Petersburg (Russian Federation); Mirlin, Alexander D. [Institute for Theoretical Condensed Matter Physics, Karlsruhe Institute of Technology, Karlsruhe (Germany); Institute of Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe (Germany); Petersburg Nuclear Physics Institute, St. Petersburg (Russian Federation); Schmalian, Joerg [Institute for Theoretical Condensed Matter Physics, Karlsruhe Institute of Technology, Karlsruhe (Germany); Institute for Solid State Physics, Karlsruhe Institute of Technology, Karlsruhe (Germany)

    2017-11-15

    The last few years have seen an explosion of interest in hydrodynamic effects in interacting electron systems in ultra-pure materials. In this paper we briefly review the recent advances, both theoretical and experimental, in the hydrodynamic approach to electronic transport in graphene, focusing on viscous phenomena, Coulomb drag, non-local transport measurements, and possibilities for observing nonlinear effects. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Improvements to SOIL: An Eulerian hydrodynamics code

    International Nuclear Information System (INIS)

    Davis, C.G.

    1988-04-01

    Possible improvements to SOIL, an Eulerian hydrodynamics code that can do coupled radiation diffusion and strength of materials, are presented in this report. Our research is based on the inspection of other Eulerian codes and theoretical reports on hydrodynamics. Several conclusions from the present study suggest that some improvements are in order, such as second-order advection, adaptive meshes, and speedup of the code by vectorization and/or multitasking. 29 refs., 2 figs

  7. Kubo Formulas for Second-Order Hydrodynamic Coefficients

    International Nuclear Information System (INIS)

    Moore, Guy D.; Sohrabi, Kiyoumars A.

    2011-01-01

    At second order in gradients, conformal relativistic hydrodynamics depends on the viscosity η and on five additional ''second-order'' hydrodynamical coefficients τ Π , κ, λ 1 , λ 2 , and λ 3 . We derive Kubo relations for these coefficients, relating them to equilibrium, fully retarded three-point correlation functions of the stress tensor. We show that the coefficient λ 3 can be evaluated directly by Euclidean means and does not in general vanish.

  8. Hydrodynamics of a Multistage Wet Scrubber Incineration Conditions

    Science.gov (United States)

    Said, M. M.; Manyele, S. V.; Raphael, M. L.

    2012-01-01

    The objective of the study was to determine the hydrodynamics of the two stage counter-current cascade wet scrubbers used during incineration of medical waste. The dependence of the hydrodynamics on two main variables was studied: Inlet air flow rate and inlet liquid flow rate. This study introduces a new wet scrubber operating features, which are…

  9. Titan's hydrodynamically escaping atmosphere

    Science.gov (United States)

    Strobel, Darrell F.

    2008-02-01

    The upper atmosphere of Titan is currently losing mass at a rate ˜(4-5)×10 amus, by hydrodynamic escape as a high density, slow outward expansion driven principally by solar UV heating by CH 4 absorption. The hydrodynamic mass loss is essentially CH 4 and H 2 escape. Their combined escape rates are restricted by power limitations from attaining their limiting rates (and limiting fluxes). Hence they must exhibit gravitational diffusive separation in the upper atmosphere with increasing mixing ratios to eventually become major constituents in the exosphere. A theoretical model with solar EUV heating by N 2 absorption balanced by HCN rotational line cooling in the upper thermosphere yields densities and temperatures consistent with the Huygens Atmospheric Science Investigation (HASI) data [Fulchignoni, M., and 42 colleagues, 2005. Nature 438, 785-791], with a peak temperature of ˜185-190 K between 3500-3550 km. This model implies hydrodynamic escape rates of ˜2×10 CHs and 5×10 Hs, or some other combination with a higher H 2 escape flux, much closer to its limiting value, at the expense of a slightly lower CH 4 escape rate. Nonthermal escape processes are not required to account for the loss rates of CH 4 and H 2, inferred by the Cassini Ion Neutral Mass Spectrometer (INMS) measurements [Yelle, R.V., Borggren, N., de la Haye, V., Kasprzak, W.T., Niemann, H.B., Müller-Wodarg, I., Waite Jr., J.H., 2006. Icarus 182, 567-576].

  10. The hydrodynamic drag and the mobilisation of sediment into the water column of towed fishing gear components

    Science.gov (United States)

    O'Neill, F. G.; Summerbell, Keith David

    2016-12-01

    The hydrodynamic drag of towed fishing gears leads to direct impacts on the benthic environment, and can play a major role in the overall economic efficiency of the fishing operation and emissions of nitrogen oxides, sulphur oxides and greenhouse gases such as CO2. Here we investigate some of the underpinning processes which govern these issues and make direct hydrodynamic drag measurements and calculate the hydrodynamic drag coefficients for a range of well-defined gear components that, when fished, are in contact with the seabed. We measure the concentration and particle size distribution of the sediment mobilised into the water column in the wake of these gear elements, at a range of towing speeds, and demonstrate that as the hydrodynamic drag increases the amount of sediment mobilised also increases. We also vary the weight of the elements and show that this does not influence the amount of sediment put into the water column. These results provide a better understanding of the physical and mechanical processes that take place when a towed fishing gear interacts with the seabed. They will permit the development of more fuel efficient gears and gears of reduced benthic impact and will improve the empirical modelling of the sediment mobilised into the turbulent wake behind towed fishing gears which will lead to better assessments of the environmental and ecological impact of fishing gears.

  11. Hydrodynamic cavitation: a bottom-up approach to liquid aeration

    NARCIS (Netherlands)

    Raut, J.S.; Stoyanov, S.D.; Duggal, C.; Pelan, E.G.; Arnaudov, L.N.; Naik, V.M.

    2012-01-01

    We report the use of hydrodynamic cavitation as a novel, bottom-up method for continuous creation of foams comprising of air microbubbles in aqueous systems containing surface active ingredients, like proteins or particles. The hydrodynamic cavitation was created using a converging-diverging nozzle.

  12. Soliton shock wave fronts and self-similar discontinuities in dispersion hydrodynamics

    International Nuclear Information System (INIS)

    Gurevich, A.V.; Meshcherkin, A.P.

    1987-01-01

    Nonlinear flows in nondissipative dispersion hydrodynamics are examined. It is demonstrated that in order to describe such flows it is necessary to incorporate a new concept: a special discontinuity called a ''self-similar'' discontinuity consisting of a nondissipative shock wave and a powerful slow wave discontinuity in regular hydrodynamics. The ''self similar discontinuity'' expands linearly over time. It is demonstrated that this concept may be introduced in a solution to Euler equations. The boundary conditions of the ''self similar discontinuity'' that allow closure of Euler equations for dispersion hydrodynamics are formulated, i.e., those that replace the shock adiabatic curve of standard dissipative hydrodynamics. The structure of the soliton front and of the trailing edge of the shock wave is investigated. A classification and complete solution are given to the problem of the decay of random initial discontinuities in the hydrodynamics of highly nonisothermic plasma. A solution is derived to the problem of the decay of initial discontinuities in the hydrodynamics of magnetized plasma. It is demonstrated that in this plasma, a feature of current density arises at the point of soliton inversion

  13. Modeling of laser-driven hydrodynamics experiments

    Science.gov (United States)

    di Stefano, Carlos; Doss, Forrest; Rasmus, Alex; Flippo, Kirk; Desjardins, Tiffany; Merritt, Elizabeth; Kline, John; Hager, Jon; Bradley, Paul

    2017-10-01

    Correct interpretation of hydrodynamics experiments driven by a laser-produced shock depends strongly on an understanding of the time-dependent effect of the irradiation conditions on the flow. In this talk, we discuss the modeling of such experiments using the RAGE radiation-hydrodynamics code. The focus is an instability experiment consisting of a period of relatively-steady shock conditions in which the Richtmyer-Meshkov process dominates, followed by a period of decaying flow conditions, in which the dominant growth process changes to Rayleigh-Taylor instability. The use of a laser model is essential for capturing the transition. also University of Michigan.

  14. Shadowfax: Moving mesh hydrodynamical integration code

    Science.gov (United States)

    Vandenbroucke, Bert

    2016-05-01

    Shadowfax simulates galaxy evolution. Written in object-oriented modular C++, it evolves a mixture of gas, subject to the laws of hydrodynamics and gravity, and any collisionless fluid only subject to gravity, such as cold dark matter or stars. For the hydrodynamical integration, it makes use of a (co-) moving Lagrangian mesh. The code has a 2D and 3D version, contains utility programs to generate initial conditions and visualize simulation snapshots, and its input/output is compatible with a number of other simulation codes, e.g. Gadget2 (ascl:0003.001) and GIZMO (ascl:1410.003).

  15. Polybrominated diphenyl ethers in surface sediments of the Yangtze River Delta: Levels, distribution and potential hydrodynamic influence

    International Nuclear Information System (INIS)

    Chen Shejun; Gao Xiaojiang; Mai Bixian; Chen Zhuomin; Luo Xiaojun; Sheng Guoying; Fu Jiamo; Zeng, Eddy Y.

    2006-01-01

    A total of 32 surface sediments collected from the Yangtze River Estuary, Hangzhou Bay and the Qiantang River were analyzed for polybrominated diphenyl ethers (PBDEs). The concentrations of ΣPBDEs (sum of 12 PBDE congeners without BDE 209) and BDE 209 varied from n.d. to 0.55 and from 0.16 to 94.6 ng/g, respectively. The spatial variability of ΣPBDEs concentrations indicated that waste discharge from the urban areas might been the main source of PBDEs in the Yangtze River Delta. BDE 209 was the predominant congener (∼90-100%) detected among the 13 congeners, consistent with the fact that technical deca-BDE mixtures are presently the dominant technical PBDE mixtures used in China. Compared to published data acquired from other locales, PBDE congeners with less than four bromines were more abundant in the present study area. The hydrodynamic conditions may likely be a significant factor in dictating the observed levels and congener distribution patterns of PBDEs. - This study discussed the possible effects of hydrodynamic conditions on the distribution of PBDEs in estuarine and marine boundary

  16. High-order hydrodynamic algorithms for exascale computing

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Nathaniel Ray [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-05

    Hydrodynamic algorithms are at the core of many laboratory missions ranging from simulating ICF implosions to climate modeling. The hydrodynamic algorithms commonly employed at the laboratory and in industry (1) typically lack requisite accuracy for complex multi- material vortical flows and (2) are not well suited for exascale computing due to poor data locality and poor FLOP/memory ratios. Exascale computing requires advances in both computer science and numerical algorithms. We propose to research the second requirement and create a new high-order hydrodynamic algorithm that has superior accuracy, excellent data locality, and excellent FLOP/memory ratios. This proposal will impact a broad range of research areas including numerical theory, discrete mathematics, vorticity evolution, gas dynamics, interface instability evolution, turbulent flows, fluid dynamics and shock driven flows. If successful, the proposed research has the potential to radically transform simulation capabilities and help position the laboratory for computing at the exascale.

  17. Hydrodynamics in a swarm of rising bubbles; Hydrodynamique d'un essaim de bulles en ascension

    Energy Technology Data Exchange (ETDEWEB)

    Riboux, G

    2007-04-15

    In many applications, bubbles are used to agitate a liquid in order to enhance mixing and transfer. This work is devoted to the study of the hydrodynamics in a stable bubble column. Experimentally, we have determined the properties of the velocity fluctuations inside and behind a homogeneous swarm of rising bubbles for different bubble sizes and gas volume fractions {alpha}: self-similarity in {alpha}{sup 0,4}, spectrum in k{sup -3} and integral length scale controlled by buoyancy. Numerically, we have reproduced these properties by means of large-scale simulations, the bubbles being modeled by volume-forces. This confirms that the dynamics is controlled by wake interactions. (author)

  18. Decontamination of unsymmetrical dimethylhydrazine waste water by hydrodynamic cavitation-induced advanced Fenton process.

    Science.gov (United States)

    Torabi Angaji, Mahmood; Ghiaee, Reza

    2015-03-01

    A pilot scale hydrodynamic cavitation (HC) reactor, using iron metal blades, as the heterogeneous catalyst, with no external source of H₂O₂ was developed for catalytic decontamination of unsymmetrical dimethylhydrazine (UDMH) waste water. In situ generation of Fenton reagents suggested an induced advanced Fenton process (IAFP) to explain the enhancing effect of the used catalyst in the HC process. The effects of the applied catalyst, pH of the initial solution (1.0-9.7), initial UDMH concentration (2-15 mg/l), inlet pressure (5.5-7.8bar), and downstream pressure (2-6 bar), have been investigated. The results showed that the highest cavitation yield can be obtained at pH 3 and initial UDMH concentration of 10mg/l. Also, an increase in the inlet pressure would lead to an increase in the extent of UDMH degradation. In addition, the optimum value of 3 bar was determined for the downstream pressure that resulted to 98.6% degradation of UDMH after 120 min of processing time. Neither n-nitrosodimethylamine (NDMA) nor any other toxic byproduct (/end-product) was observed in the investigated samples. Formic acid and acetic acid, as well as nitromethane, were identified as oxidation by-products. The present work has conclusively established that hydrodynamic cavitation in combination with Fenton's chemistry can be effectively used for the degradation of UDMH. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Degradation of organic wastewater by hydrodynamic cavitation combined with acoustic cavitation.

    Science.gov (United States)

    Yi, Chunhai; Lu, Qianqian; Wang, Yun; Wang, Yixuan; Yang, Bolun

    2018-05-01

    In this paper, the decomposition of Rhodamine B (RhB) by hydrodynamic cavitation (HC), acoustic cavitation (AC) and the combination of these individual methods (HAC) have been investigated. The degradation of 20 L RhB aqueous solution was carried out in a self-designed HAC reactor, where hydrodynamic cavitation and acoustic cavitation could take place in the same space simultaneously. The effects of initial concentration, inlet pressure, solution temperature and ultrasonic power were studied and discussed. Obvious synergies were found in the HAC process. The combined method achieved the best conversion, and the synergistic effect in HAC was even up to 119% with the ultrasonic power of 220 W in a treatment time of 30 min. The time-independent synergistic factor based on rate constant was introduced and the maximum value reached 40% in the HAC system. Besides, the hybrid HAC method showed great superiority in energy efficiency at lower ultrasonic power (88-176 W). Therefore, HAC technology can be visualized as a promising method for wastewater treatment with good scale-up possibilities. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Hydrodynamic Aspects at Vitória Bay Mouth, ES

    Directory of Open Access Journals (Sweden)

    FLÁVIA A.A. GARONCE

    2014-06-01

    Full Text Available Understading the hydrodynamic behavior and suspended particulated matter (SPM transport are of great importance in port regions such as Vitória Harbor, which is located at Vitória Bay, Vitória – ES, Brazil. Vitória Bay is an estuary that has not been systematically assessed through a temporal analysis in order to identify its hydrodynamics characteristics and SPM exchange. This study aims to investigate salt and suspended particulate matter flux at the estuarine mouth of Vitória Bay by understanding the temporal variation of salinity, temperature and tidal currents within the water column and at the channel crosssection. Results showed that the estuarine mouth tended to present partial stratification periods during neap tides and little stratification in spring tides. The circulation pattern was mainly influenced by the tide, with little influence from river discharge. With regard to the SPM, the mouth of the estuary tended to show low concentrations, with the highest values occurring during the dry season. A close relationship between momentary discharge, SPM and salt fluxes was observed. Despite all the data was collected at the mouth of the estuary, the system showed an importation trend of salt in all cycles and SPM importation for three of the four studied tidal cycles. Thus, Vitoria Bay is not exporting SPM to the adjacent inner shelf.

  1. Carbon and nitrogen stable isotopes and metal concentration in food webs from a mining-impacted coastal lagoon

    International Nuclear Information System (INIS)

    Marin-Guirao, Lazaro; Lloret, Javier; Marin, Arnaldo

    2008-01-01

    Two food webs from the Mar Menor coastal lagoon, differing in the distance from the desert-stream through which mining wastes were discharged, were examined by reference to essential (Zn and Cu) and non-essential (Pb and Cd) metal concentrations and stable isotopes content (C and N). The partial extraction technique applied, which reflects the availability of metals to organisms after sediment ingestion, showed higher bioavailable metal concentrations in sediments from the station influenced by the mining discharges, in agreement with the higher metal concentrations observed in organisms, which in many cases exceeded the regulatory limits established in Spanish legislation concerning seafood. Spatial differences in essential metal concentrations in the fauna suggest that several organisms are exposed to metal levels above their regulation capacity. Differences in isotopic composition were found between both food webs, the wadi-influenced station showing higher δ 15 N values and lower δ 13 C levels, due to the discharge of urban waste waters and by the entrance of freshwater and allochthonous marsh plants. The linear-regressions between trophic levels (as indicated by δ 15 N) and the metal content indicated that biomagnification does not occur. In the case of invertebrates, since the 'handle strategy' of the species and the physiological requirements of the organisms, among other factors, determine the final concentration of a specific element, no clear relationships between trophic level and the metal content are to be expected. For their part, fish communities did not show clear patterns in the case of any of the analyzed metals, probably because most fish species have similar metal requirements, and because biological factors also intervened. Finally, since the study deals with metals, assumptions concerning trophic transfer factors calculation may not be suitable since the metal burden originates not only from the prey but also from adsorption over the body

  2. Carbon and nitrogen stable isotopes and metal concentration in food webs from a mining-impacted coastal lagoon

    Energy Technology Data Exchange (ETDEWEB)

    Marin-Guirao, Lazaro [Departamento de Ecologia e Hidrologia, Facultad de Biologia, Universidad de Murcia, 30100-Murcia (Spain)], E-mail: lamarin@um.es; Lloret, Javier; Marin, Arnaldo [Departamento de Ecologia e Hidrologia, Facultad de Biologia, Universidad de Murcia, 30100-Murcia (Spain)

    2008-04-01

    Two food webs from the Mar Menor coastal lagoon, differing in the distance from the desert-stream through which mining wastes were discharged, were examined by reference to essential (Zn and Cu) and non-essential (Pb and Cd) metal concentrations and stable isotopes content (C and N). The partial extraction technique applied, which reflects the availability of metals to organisms after sediment ingestion, showed higher bioavailable metal concentrations in sediments from the station influenced by the mining discharges, in agreement with the higher metal concentrations observed in organisms, which in many cases exceeded the regulatory limits established in Spanish legislation concerning seafood. Spatial differences in essential metal concentrations in the fauna suggest that several organisms are exposed to metal levels above their regulation capacity. Differences in isotopic composition were found between both food webs, the wadi-influenced station showing higher {delta}{sup 15}N values and lower {delta}{sup 13}C levels, due to the discharge of urban waste waters and by the entrance of freshwater and allochthonous marsh plants. The linear-regressions between trophic levels (as indicated by {delta}{sup 15}N) and the metal content indicated that biomagnification does not occur. In the case of invertebrates, since the 'handle strategy' of the species and the physiological requirements of the organisms, among other factors, determine the final concentration of a specific element, no clear relationships between trophic level and the metal content are to be expected. For their part, fish communities did not show clear patterns in the case of any of the analyzed metals, probably because most fish species have similar metal requirements, and because biological factors also intervened. Finally, since the study deals with metals, assumptions concerning trophic transfer factors calculation may not be suitable since the metal burden originates not only from the prey but

  3. Linearly resummed hydrodynamics in a weakly curved spacetime

    Science.gov (United States)

    Bu, Yanyan; Lublinsky, Michael

    2015-04-01

    We extend our study of all-order linearly resummed hydrodynamics in a flat space [1, 2] to fluids in weakly curved spaces. The underlying microscopic theory is a finite temperature super-Yang-Mills theory at strong coupling. The AdS/CFT correspondence relates black brane solutions of the Einstein gravity in asymptotically locally AdS5 geometry to relativistic conformal fluids in a weakly curved 4D background. To linear order in the amplitude of hydrodynamic variables and metric perturbations, the fluid's energy-momentum tensor is computed with derivatives of both the fluid velocity and background metric resummed to all orders. We extensively discuss the meaning of all order hydrodynamics by expressing it in terms of the memory function formalism, which is also suitable for practical simulations. In addition to two viscosity functions discussed at length in refs. [1, 2], we find four curvature induced structures coupled to the fluid via new transport coefficient functions. In ref. [3], the latter were referred to as gravitational susceptibilities of the fluid. We analytically compute these coefficients in the hydrodynamic limit, and then numerically up to large values of momenta.

  4. Resurgence and hydrodynamic attractors in Gauss-Bonnet holography

    Science.gov (United States)

    Casalderrey-Solana, Jorge; Gushterov, Nikola I.; Meiring, Ben

    2018-04-01

    We study the convergence of the hydrodynamic series in the gravity dual of Gauss-Bonnet gravity in five dimensions with negative cosmological constant via holography. By imposing boost invariance symmetry, we find a solution to the Gauss-Bonnet equation of motion in inverse powers of the proper time, from which we can extract high order corrections to Bjorken flow for different values of the Gauss-Bonnet parameter λGB. As in all other known examples the gradient expansion is, at most, an asymptotic series which can be understood through applying the techniques of Borel-Padé summation. As expected from the behaviour of the quasi-normal modes in the theory, we observe that the singularities in the Borel plane of this series show qualitative features that interpolate between the infinitely strong coupling limit of N=4 Super Yang Mills theory and the expectation from kinetic theory. We further perform the Borel resummation to constrain the behaviour of hydrodynamic attractors beyond leading order in the hydrodynamic expansion. We find that for all values of λGB considered, the convergence of different initial conditions to the resummation and its hydrodynamization occur at large and comparable values of the pressure anisotropy.

  5. Degradation of alachlor in aqueous solution by using hydrodynamic cavitation.

    Science.gov (United States)

    Wang, Xikui; Zhang, Yong

    2009-01-15

    The degradation of alachlor aqueous solution by using hydrodynamic cavitation was systematically investigated. It was found that alachlor in aqueous solution can be deomposed with swirling jet-induced cavitation. The degradation can be described by a pseudo-first-order kinetics and the degradation rate was found to be 4.90x10(-2)min(-1). The effects of operating parameters such as fluid pressure, solution temperature, initial concentration of alachlor and medium pH on the degradation rates of alachlor were also discussed. The results showed that the degradation rates of alachlor increased with increasing pressure and decreased with increasing initial concentration. An optimum temperature of 40 degrees C existed for the degradation rate of alachlor and the degradation rate was also found to be slightly depend on medium pH. Many degradation products formed during the process, and some of them were qualitatively identified by GC-MS.

  6. Hydrodynamic Modeling of Santa Marta's Big Marsh

    International Nuclear Information System (INIS)

    Saldarriaga, Juan

    1991-01-01

    The ecological degradation of Santa Marta's Big Marsh and their next areas it has motivated the realization of diagnosis studies and design by several state and private entities. One of the recommended efforts for international advisory it was to develop an ecological model that allowed the handling of the water body and the economic test of alternative of solution to those ecological problems. The first part of a model of this type is in turn a model that simulates the movement of the water inside the marsh, that is to say, a hydrodynamic model. The realization of this was taken charge to the civil engineering department, on the part of Colciencias. This article contains a general explanation of the hydrodynamic pattern that this being developed by a professors group. The ecological causes are described and antecedent, the parts that conform the complex of the Santa Marta big Marsh The marsh modeling is made and it is explained in qualitative form the model type Hydrodynamic used

  7. Behavior of passive admixture in a vortical hydrodynamic field

    NARCIS (Netherlands)

    Bobrov, R.O.; Kyrylyuk, A.V; Zatovsky, A.V.

    2006-01-01

    The motion of passive admixture of spherical particles in the stationary hydrodynamic field of a swirling flow is studied. A spherical particle of a given mass in the hydrodynamic field of a swirling flow is located on a certain circular orbit, where the centrifugal force is compensated by the

  8. Hydrodynamic model research in Waseda group

    International Nuclear Information System (INIS)

    Muroya, Shin

    2010-01-01

    Constructing 'High Energy Material Science' had been proposed by Namiki as the guiding principle for the scientists of the high energy physics group lead by himself in Waseda University when the author started to study multiple particle production in 1980s toward the semi-phenomenological model for the quark gluon plasma (QGP). Their strategy was based on three stages to build an intermediate one between the fundamental theory of QCD and the phenomenological model. The quantum theoretical Langevin equation was taken up as the semi-phenomenological model at the intermediate stage and the Landau hydrodynamic model was chosen as the phenomenological model to focus on the 'phase transition' of QGP. A review is given here over the quantum theoretical Langevin equation formalism developed there and followed by the further progress with the 1+1 dimensional viscous fluid model as well as the hydrodynamic model with cylindrical symmetry. The developments of the baryon fluid model and Hanbury-Brown Twiss effect are also reviewed. After 1995 younger generation physicists came to the group to develop those models further. Activities by Hirano, Nonaka and Morita beyond the past generation's hydrodynamic model are picked up briefly. (S. Funahashi)

  9. Study on the Matching Relationship between Polymer Hydrodynamic Characteristic Size and Pore Throat Radius of Target Block S Based on the Microporous Membrane Filtration Method

    Directory of Open Access Journals (Sweden)

    Li Yiqiang

    2014-01-01

    Full Text Available The concept of the hydrodynamic characteristic size of polymer was proposed in this study, to characterize the size of aggregates of many polymer molecules in the polymer percolation process. The hydrodynamic characteristic sizes of polymers used in the target block S were examined by employing microporous membrane filtration method, and the factors were studied. Natural core flow experiments were conducted in order to set up the flow matching relationship plate. According to the flow matching plate, the relationship between the hydrodynamic characteristic size of polymer and pore throat radius obtained from core mercury injection data was found. And several suitable polymers for different reservoirs permeability were given. The experimental results of microporous membrane filtration indicated that the hydrodynamic characteristic size of polymer maintained a good nonlinear relationship with polymer viscosity; the value increased as the molecular weight and concentration of the polymer increased and increased as the salinity of dilution water decreased. Additionally, the hydrodynamic characteristic size decreased as the pressure increased, so the hydrodynamic characteristic size ought to be determined based on the pressure of the target block. In the core flow studies, good matching of polymer and formation was identified as polymer flow pressure gradient lower than the fracture pressure gradient of formation. In this case, good matching that was the pore throat radius should be larger than 10 times the hydrodynamic characteristic size of polymer in this study. Using relationship, more matching relationship between the hydrodynamic characteristic sizes of polymer solutions and the pore throat radius of target block was determined.

  10. Pair mobility functions for rigid spheres in concentrated colloidal dispersions: Force, torque, translation, and rotation.

    Science.gov (United States)

    Zia, Roseanna N; Swan, James W; Su, Yu

    2015-12-14

    The formulation of detailed models for the dynamics of condensed soft matter including colloidal suspensions and other complex fluids requires accurate description of the physical forces between microstructural constituents. In dilute suspensions, pair-level interactions are sufficient to capture hydrodynamic, interparticle, and thermodynamic forces. In dense suspensions, many-body interactions must be considered. Prior analytical approaches to capturing such interactions such as mean-field approaches replace detailed interactions with averaged approximations. However, long-range coupling and effects of concentration on local structure, which may play an important role in, e.g., phase transitions, are smeared out in such approaches. An alternative to such approximations is the detailed modeling of hydrodynamic interactions utilizing precise couplings between moments of the hydrodynamic traction on a suspended particle and the motion of that or other suspended particles. For two isolated spheres, a set of these functions was calculated by Jeffrey and Onishi [J. Fluid Mech. 139, 261-290 (1984)] and Jeffrey [J. Phys. Fluids 4, 16-29 (1992)]. Along with pioneering work by Batchelor, these are the touchstone for low-Reynolds-number hydrodynamic interactions and have been applied directly in the solution of many important problems related to the dynamics of dilute colloidal dispersions [G. K. Batchelor and J. T. Green, J. Fluid Mech. 56, 375-400 (1972) and G. K. Batchelor, J. Fluid Mech. 74, 1-29 (1976)]. Toward extension of these functions to concentrated systems, here we present a new stochastic sampling technique to rapidly calculate an analogous set of mobility functions describing the hydrodynamic interactions between two hard spheres immersed in a suspension of arbitrary concentration, utilizing accelerated Stokesian dynamics simulations. These mobility functions provide precise, radially dependent couplings of hydrodynamic force and torque to particle translation

  11. Pair mobility functions for rigid spheres in concentrated colloidal dispersions: Force, torque, translation, and rotation

    International Nuclear Information System (INIS)

    Zia, Roseanna N.; Su, Yu; Swan, James W.

    2015-01-01

    The formulation of detailed models for the dynamics of condensed soft matter including colloidal suspensions and other complex fluids requires accurate description of the physical forces between microstructural constituents. In dilute suspensions, pair-level interactions are sufficient to capture hydrodynamic, interparticle, and thermodynamic forces. In dense suspensions, many-body interactions must be considered. Prior analytical approaches to capturing such interactions such as mean-field approaches replace detailed interactions with averaged approximations. However, long-range coupling and effects of concentration on local structure, which may play an important role in, e.g., phase transitions, are smeared out in such approaches. An alternative to such approximations is the detailed modeling of hydrodynamic interactions utilizing precise couplings between moments of the hydrodynamic traction on a suspended particle and the motion of that or other suspended particles. For two isolated spheres, a set of these functions was calculated by Jeffrey and Onishi [J. Fluid Mech. 139, 261–290 (1984)] and Jeffrey [J. Phys. Fluids 4, 16–29 (1992)]. Along with pioneering work by Batchelor, these are the touchstone for low-Reynolds-number hydrodynamic interactions and have been applied directly in the solution of many important problems related to the dynamics of dilute colloidal dispersions [G. K. Batchelor and J. T. Green, J. Fluid Mech. 56, 375–400 (1972) and G. K. Batchelor, J. Fluid Mech. 74, 1–29 (1976)]. Toward extension of these functions to concentrated systems, here we present a new stochastic sampling technique to rapidly calculate an analogous set of mobility functions describing the hydrodynamic interactions between two hard spheres immersed in a suspension of arbitrary concentration, utilizing accelerated Stokesian dynamics simulations. These mobility functions provide precise, radially dependent couplings of hydrodynamic force and torque to particle

  12. Intensification of esterification of acids for synthesis of biodiesel using acoustic and hydrodynamic cavitation.

    Science.gov (United States)

    Kelkar, Mandar A; Gogate, Parag R; Pandit, Aniruddha B

    2008-03-01

    Cavitation results in conditions of turbulence and liquid circulation in the reactor which can aid in eliminating mass transfer resistances. The present work illustrates the use of cavitation for intensification of biodiesel synthesis (esterification) reaction, which is mass transfer limited reaction considering the immiscible nature of the reactants, i.e., fatty acids and alcohol. Esterification of fatty acid (FA) odour cut (C(8)-C(10)) with methanol in the presence of concentrated H(2)SO(4) as a catalyst has been studied in hydrodynamic cavitation reactor as well as in the sonochemical reactor. The different reaction operating parameters such as molar ratio of acid to alcohol, catalyst quantity have been optimized under acoustic as well as hydrodynamic cavitating conditions in addition to the optimization of the geometry of the orifice plate in the case of hydrodynamic cavitation reactors. Few experiments have also been carried out with other acid (lower and higher)/methanol combination viz. caprylic acid and capric acids with methanol with an aim of investigating the efficacy of cavitation for giving the desired yields and also to quantify the degree of process intensification that can be achieved using the same. It has been observed that ambient operating conditions of temperature and pressure and reaction times of 90% conversion (mol%). This clearly establishes the efficacy of cavitation as an excellent way to achieve process intensification of the biodiesel synthesis process.

  13. Fish stocking density impacts tank hydrodynamics

    DEFF Research Database (Denmark)

    Rasmussen, Michael R.; Lunger, Angela; Laursen, Jesper

    2006-01-01

    The effect of stocking density upon the hydrodynamics of a circular tank, configured in a recirculation system, was investigated. Red drums Sciaenops ocellatus of approximately 140 g wet weight, were stocked at five rates varying from 0 to 12 kg m-3. The impact of the presence of fish upon tank...... hydrodynamics was established using in-tank-based Rhodamine WT fluorometry at a flow rate of 0.23 l s-1 (tank exchange rate of 1.9 h-1). With increasing numbers of animals, curvilinear relationships were observed for dispersion coefficients and tank mixing times. Stocking densities of 3, 6, 9 and 12 kg m-3...

  14. Hydrodynamics of isotropic and liquid crystalline active polymer solutions.

    Science.gov (United States)

    Ahmadi, Aphrodite; Marchetti, M C; Liverpool, T B

    2006-12-01

    We describe the large-scale collective behavior of solutions of polar biofilaments and stationary and mobile crosslinkers. Both mobile and stationary crosslinkers induce filament alignment promoting either polar or nematic order. In addition, mobile crosslinkers, such as clusters of motor proteins, exchange forces and torques among the filaments and render the homogeneous states unstable via filament bundling. We start from a Smoluchowski equation for rigid filaments in solutions, where pairwise crosslink-mediated interactions among the filaments yield translational and rotational currents. The large-scale properties of the system are described in terms of continuum equations for filament and motor densities, polarization, and alignment tensor obtained by coarse-graining the Smoluchovski equation. The possible homogeneous and inhomogeneous states of the systems are obtained as stable solutions of the dynamical equations and are characterized in terms of experimentally accessible parameters. We make contact with work by other authors and show that our model allows for an estimate of the various parameters in the hydrodynamic equations in terms of physical properties of the crosslinkers.

  15. Passive dosing of triclosan in multi-generation tests with copepods - Stable exposure concentrations and effects at the low µg l-1 range

    DEFF Research Database (Denmark)

    Ribbenstedt, Anton; Mustajärvi, Lukas; Breitholtz, Magnus

    2017-01-01

    to test the applicability of passive dosing to maintain stable concentrations of the organochlorine bacteriocide triclosan in the water phase during a 6-week multi-generation population development test with the harpacticoid copepod Nitocra spinipes. Triclosan was loaded into silicone (1000 mg), which...... was used as passive dosing phase in the exposure vials. The distribution ratio for triclosan between silicone and water (Dsilicone-water ) was 10466 ± 1927. A population development test was conducted at three concentration levels of triclosan that were measured to be 3-5 µg L(-1) , 7-11 µg L(-1) and 16...... exerted on juvenile development. Progressively lower development index values in the populations exposed to increasing triclosan concentrations suggest developmental retardation. Our results further stress the need for chronic exposure during ecotoxicity testing in chemical risk assessment as even...

  16. Hydrodynamics of long-scale-length plasmas. Summary

    International Nuclear Information System (INIS)

    Craxton, R.S.

    1984-01-01

    A summary is given relating to the importance of long-scale-length plasmas to laser fusion. Some experiments are listed in which long-scale-length plasmas have been produced and studied. This talk presents SAGE simulations of most of these experiments with the emphasis being placed on understanding the hydrodynamic conditions rather than the parametric/plasma-physics processes themselves which are not modeled by SAGE. However, interpretation of the experiments can often depend on a good understanding of the hydrodynamics, including optical ray tracing

  17. Studies on influence of environmental factors on concentration on concentration of radionuclides

    International Nuclear Information System (INIS)

    Anon.

    1974-01-01

    Environmental factors which seemed to influence the concentration of radionuclides to marine organisms including illumination, water temperature, coexisting stable elements, salt concentration, suspended matters in sea water and residue were studied. The influence of illumination was examined by algae using 137 Cs, 60 Co, 85 Sr, and 106 Ru as tracers, within 24 hours of illumination. The concentration of 137 Cs and 60 Co revealed remarkable increase of uptake in accordance with increasing illumination intensity, and 24 hours illumination showed 2 times concentration of that by 4 hours'. 85 Sr and 106 Ru showed no effect of illumination, and suggested their concentration was depending on adsorption to the surface. As for water temperature, the concentration factor of 65 Zn, 137 Cs obtained from fishes and shells by 22 0 C breeding was 2 times of that by 12 0 C breeding. Concerning the influence of coexisting stable elements, fishes and shells were examined by 54 Mn, 60 Co, and 65 Zn as tracers. When the stable elements concentration in sea water became 10 times the normal, concentration factor depending on adsorption and metabolism became respective one tenth and one second of the normal value. The influence of salt concentration was examined using 85 Sr, 65 Zn, and 137 Cs, and revealed that 28 to 40 per cent changes of salt level gave slight influence on concentration factor. In order to study the influence of suspended matters and quality of residue, 3 kinds of 106 Ru complex species were added. Concentration factor of Hijiki (Hijikia fusiforme) showed no remarkable difference between breeding in filtrated and non-filtrated sea water. However, clams living in the sand should be taken care of the concentration by the residue in the sea bottom. (Kanao, N.)

  18. Relation between distribution coefficient of radioactive strontium and solid-liquid distribution ratio of background stable strontium

    International Nuclear Information System (INIS)

    Igarashi, Toshifumi; Mahara, Yasunori; Okamura, Masaki; Ashikawa, Nobuo.

    1992-01-01

    Distribution coefficients (K d ) of nuclides, which are defined as the ratio of the adsorbed concentration to the solution concentration, are important in predicting nuclide migration in the subsurface environment. This study was undertaken to contrust an effective method of determining the most pertinent K d value for simulating in situ distribution phenomena between the solid and liquid phases, by using background stable isotopes. This paper describes the applicability of this method to Sr by carrying out a batch Sr adsorption experiment where stable Sr coexisted with the radioactive isotope, 85 Sr, and by comparing the concentration distribution ratio of the background stable Sr with the K d value obtained by the batch experiment. The results showed that the K d of 85 Sr (K d85 ) agreed well with the K d of the coexisting stable Sr (K ds ) and that the two values decreased with an increase in the concentration of the stable Sr, when sand was used as an adsorbent. In addition, the K d85 corresponded to the ratio of the exchangeable solid-phase concentration of background stable Sr to the concentration of the background stable Sr in groundwater when the concentration of the coexisting stable Sr approached the background level. On the other hand, when powdered rock samples were used, the K d85 did not agree with the K ds , and the concentration distribution ratio of the background stable Sr was greater than the K d85 . This discrepancy might be due to the disequilibrium resulting from grinding the rock matrices. This suggests that measurement of the background stable Sr distribution ratio between the solid and liquid phases can be an effective method of estimating the K d of radioactive Sr when the groundwater is in satisfactory contact with the adsorption medium. (author)

  19. Effects of Boundary Layer Height on the Model of Ground-Level PM2.5 Concentrations from AOD: Comparison of Stable and Convective Boundary Layer Heights from Different Methods

    Directory of Open Access Journals (Sweden)

    Zengliang Zang

    2017-06-01

    Full Text Available The aerosol optical depth (AOD from satellites or ground-based sun photometer spectral observations has been widely used to estimate ground-level PM2.5 concentrations by regression methods. The boundary layer height (BLH is a popular factor in the regression model of AOD and PM2.5, but its effect is often uncertain. This may result from the structures between the stable and convective BLHs and from the calculation methods of the BLH. In this study, the boundary layer is divided into two types of stable and convective boundary layer, and the BLH is calculated using different methods from radiosonde data and National Centers for Environmental Prediction (NCEP reanalysis data for the station in Beijing, China during 2014–2015. The BLH values from these methods show significant differences for both the stable and convective boundary layer. Then, these BLHs were introduced into the regression model of AOD-PM2.5 to seek the respective optimal BLH for the two types of boundary layer. It was found that the optimal BLH for the stable boundary layer is determined using the method of surface-based inversion, and the optimal BLH for the convective layer is determined using the method of elevated inversion. Finally, the optimal BLH and other meteorological parameters were combined to predict the PM2.5 concentrations using the stepwise regression method. The results indicate that for the stable boundary layer, the optimal stepwise regression model includes the factors of surface relative humidity, BLH, and surface temperature. These three factors can significantly enhance the prediction accuracy of ground-level PM2.5 concentrations, with an increase of determination coefficient from 0.50 to 0.68. For the convective boundary layer, however, the optimal stepwise regression model includes the factors of BLH and surface wind speed. These two factors improve the determination coefficient, with a relatively low increase from 0.65 to 0.70. It is found that the

  20. Highly Stable Operation of Lithium Metal Batteries Enabled by the Formation of a Transient High Concentration Electrolyte Layer

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jianming; Yan, Pengfei; Mei, Donghai; Engelhard, Mark H.; Cartmell, Samuel S.; Polzin, Bryant; Wang, Chong M.; Zhang, Jiguang; Xu, Wu

    2016-02-08

    Lithium (Li) metal has been extensively investigated as an anode for rechargeable battery applications due to its ultrahigh specific capacity and the lowest redox potential. However, significant challenges including dendrite growth and low Coulombic efficiency are still hindering the practical applications of rechargeable Li metal batteries. Here, we demonstrate that long-term cycling of Li metal batteries can be realized by the formation of a transient high concentration electrolyte layer near the surface of Li metal anode during high rate discharge process. The highly concentrated Li+ ions in this transient layer will immediately solvate with the available solvent molecules and facilitate the formation of a stable and flexible SEI layer composed of a poly(ethylene carbonate) framework integrated with other organic/inorganic lithium salts. This SEI layer largely suppresses the corrosion of Li metal anode by free organic solvents and enables the long-term operation of Li metal batteries. The fundamental findings in this work provide a new direction for the development and operation of Li metal batteries that could be operated at high current densities for a wide range of applications.

  1. Disruption of Brewers' yeast by hydrodynamic cavitation: Process variables and their influence on selective release.

    Science.gov (United States)

    Balasundaram, B; Harrison, S T L

    2006-06-05

    Intracellular products, not secreted from the microbial cell, are released by breaking the cell envelope consisting of cytoplasmic membrane and an outer cell wall. Hydrodynamic cavitation has been reported to cause microbial cell disruption. By manipulating the operating variables involved, a wide range of intensity of cavitation can be achieved resulting in a varying extent of disruption. The effect of the process variables including cavitation number, initial cell concentration of the suspension and the number of passes across the cavitation zone on the release of enzymes from various locations of the Brewers' yeast was studied. The release profile of the enzymes studied include alpha-glucosidase (periplasmic), invertase (cell wall bound), alcohol dehydrogenase (ADH; cytoplasmic) and glucose-6-phosphate dehydrogenase (G6PDH; cytoplasmic). An optimum cavitation number Cv of 0.13 for maximum disruption was observed across the range Cv 0.09-0.99. The optimum cell concentration was found to be 0.5% (w/v, wet wt) when varying over the range 0.1%-5%. The sustained effect of cavitation on the yeast cell wall when re-circulating the suspension across the cavitation zone was found to release the cell wall bound enzyme invertase (86%) to a greater extent than the enzymes from other locations of the cell (e.g. periplasmic alpha-glucosidase at 17%). Localised damage to the cell wall could be observed using transmission electron microscopy (TEM) of cells subjected to less intense cavitation conditions. Absence of the release of cytoplasmic enzymes to a significant extent, absence of micronisation as observed by TEM and presence of a lower number of proteins bands in the culture supernatant on SDS-PAGE analysis following hydrodynamic cavitation compared to disruption by high-pressure homogenisation confirmed the selective release offered by hydrodynamic cavitation. Copyright 2006 Wiley Periodicals, Inc.

  2. FDTD for Hydrodynamic Electron Fluid Maxwell Equations

    Directory of Open Access Journals (Sweden)

    Yingxue Zhao

    2015-05-01

    Full Text Available In this work, we develop a numerical method for solving the three dimensional hydrodynamic electron fluid Maxwell equations that describe the electron gas dynamics driven by an external electromagnetic wave excitation. Our numerical approach is based on the Finite-Difference Time-Domain (FDTD method for solving the Maxwell’s equations and an explicit central finite difference method for solving the hydrodynamic electron fluid equations containing both electron density and current equations. Numerical results show good agreement with the experiment of studying the second-harmonic generation (SHG from metallic split-ring resonator (SRR.

  3. Hydrodynamic instabilities in inertial fusion

    International Nuclear Information System (INIS)

    Hoffman, N.M.

    1994-01-01

    This report discusses topics on hydrodynamics instabilities in inertial confinement: linear analysis of Rayleigh-Taylor instability; ablation-surface instability; bubble rise in late-stage Rayleigh-Taylor instability; and saturation and multimode interactions in intermediate-stage Rayleigh-Taylor instability

  4. High Efficiency Hydrodynamic DNA Fragmentation in a Bubbling System.

    Science.gov (United States)

    Li, Lanhui; Jin, Mingliang; Sun, Chenglong; Wang, Xiaoxue; Xie, Shuting; Zhou, Guofu; van den Berg, Albert; Eijkel, Jan C T; Shui, Lingling

    2017-01-18

    DNA fragmentation down to a precise fragment size is important for biomedical applications, disease determination, gene therapy and shotgun sequencing. In this work, a cheap, easy to operate and high efficiency DNA fragmentation method is demonstrated based on hydrodynamic shearing in a bubbling system. We expect that hydrodynamic forces generated during the bubbling process shear the DNA molecules, extending and breaking them at the points where shearing forces are larger than the strength of the phosphate backbone. Factors of applied pressure, bubbling time and temperature have been investigated. Genomic DNA could be fragmented down to controllable 1-10 Kbp fragment lengths with a yield of 75.30-91.60%. We demonstrate that the ends of the genomic DNAs generated from hydrodynamic shearing can be ligated by T4 ligase and the fragmented DNAs can be used as templates for polymerase chain reaction. Therefore, in the bubbling system, DNAs could be hydrodynamically sheared to achieve smaller pieces in dsDNAs available for further processes. It could potentially serve as a DNA sample pretreatment technique in the future.

  5. Nonlinear hydrodynamic equations for superfluid helium in aerogel

    International Nuclear Information System (INIS)

    Brusov, Peter N.; Brusov, Paul P.

    2003-01-01

    Aerogel in superfluids is studied very intensively during last decade. The importance of these systems is connected to the fact that this allows to investigate the influence of impurities on superfluidity. We have derived for the first time nonlinear hydrodynamic equations for superfluid helium in aerogel. These equations are generalization of McKenna et al. equations for nonlinear hydrodynamics case and could be used to study sound propagation phenomena in aerogel-superfluid system, in particular--to study sound conversion phenomena. We have obtained two alternative sets of equations, one of which is a generalization of a traditional set of nonlinear hydrodynamics equations for the case of an aerogel-superfluid system and, the other one represents a la Putterman equations (equation for v→ s is replaced by equation for A→=((ρ n )/(ρσ))w→, where w→=v→ n -v→ s )

  6. Biodiesel production through hydrodynamic cavitation and performance testing

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Amit; Verma, Ashish; Kachhwaha, S.S.; Maji, S. [Department of Mechanical Engineering, Delhi College of Engineering, Bawana Road, Delhi 110042 (India)

    2010-03-15

    This paper presents the details of development of a biodiesel production test rig based on hydrodynamic cavitation followed by results of experimental investigation carried out on a four cylinder, direct injection water cooled diesel engine operating on diesel and biodiesel blend of Citrullus colocyntis (Thumba) oil. The experiment covers a wide range of engine rpm. Results show that biodiesel of Thumba oil produced through hydrodynamic cavitation technique can be used as an alternative fuel with better performance and lower emissions compared to diesel. The most significant conclusions are that (1) Biodiesel production through hydrodynamic cavitation technique seems to be a simple, efficient, time saving, eco-friendly and industrially viable process. (2) 30% biodiesel blend of Thumba oil shows relatively higher brake power, brake thermal efficiency, reduced bsfc and smoke opacity with favourable p-{theta} diagram as compared to diesel. (author)

  7. Concentration of trace elements in marine organisms

    International Nuclear Information System (INIS)

    Ishii, Takaaki; Suzuki, Hamaji; Iimura, Mitsue; Koyanagi, Taku

    1976-01-01

    Information on the quality and quantity of stable trace elements in marine environments is frequently required to analyze the radioecological behavior of radionuclides released from nuclear facilities into the sea. In the present work, special attention was concentrated in determination of stable Mn, Fe, Co, Zn, Rb and Cs in marine organisms to estimate the concentration factors for these elements and corresponding radionuclides. Marine organisms (fishes, marine invertebrates and seaweeds) were collected at the seashore of Ibaragi prefecture and provided for chemical analysis after dry-ashing and wet-ashing. Atomic absorption spectrophotometry and neutron activation analysis were applied to determine the concentration of elements. The concentration of stable elements in fish muscle was independent on species of the fishes though slightly higher trends were observed in ''Usumebaru'', Sebastes nivosus for Cs, ''Ishimochi'', Nibea mitsukurii for Zn and Fe compared with other species. The concentration of Co, Zn and Fe in muscle of marine invertebrates was one order of magnitude higher than fish muscles especially in shellfishes for Co. Seaweeds showed peculiar species specificity for the concentration of stable trace elements and remarkable differences was observed between the species even among the same genus. (auth.)

  8. Drinking water biofilm cohesiveness changes under chlorination or hydrodynamic stress.

    Science.gov (United States)

    Mathieu, L; Bertrand, I; Abe, Y; Angel, E; Block, J C; Skali-Lami, S; Francius, G

    2014-05-15

    Attempts at removal of drinking water biofilms rely on various preventive and curative strategies such as nutrient reduction in drinking water, disinfection or water flushing, which have demonstrated limited efficiency. The main reason for these failures is the cohesiveness of the biofilm driven by the physico-chemical properties of its exopolymeric matrix (EPS). Effective cleaning procedures should break up the matrix and/or change the elastic properties of bacterial biofilms. The aim of this study was to evaluate the change in the cohesive strength of two-month-old drinking water biofilms under increasing hydrodynamic shear stress τw (from ∼0.2 to ∼10 Pa) and shock chlorination (applied concentration at T0: 10 mg Cl2/L; 60 min contact time). Biofilm erosion (cell loss per unit surface area) and cohesiveness (changes in the detachment shear stress and cluster volumes measured by atomic force microscopy (AFM)) were studied. When rapidly increasing the hydrodynamic constraint, biofilm removal was found to be dependent on a dual process of erosion and coalescence of the biofilm clusters. Indeed, 56% of the biofilm cells were removed with, concomitantly, a decrease in the number of the 50-300 μm(3) clusters and an increase in the number of the smaller (i.e., 600 μm(3)) ones. Moreover, AFM evidenced the strengthening of the biofilm structure along with the doubling of the number of contact points, NC, per cluster volume unit following the hydrodynamic disturbance. This suggests that the compactness of the biofilm exopolymers increases with hydrodynamic stress. Shock chlorination removed cells (-75%) from the biofilm while reducing the volume of biofilm clusters. Oxidation stress resulted in a decrease in the cohesive strength profile of the remaining drinking water biofilms linked to a reduction in the number of contact points within the biofilm network structure in particular for the largest biofilm cluster volumes (>200 μm(3)). Changes in the cohesive

  9. Assessing the Hydrogeomorphic Effects of Environmental Flows using Hydrodynamic Modeling.

    Science.gov (United States)

    Gregory, Angela; Morrison, Ryan R; Stone, Mark

    2018-04-13

    Water managers are increasingly using environmental flows (e-flows) as a tool to improve ecological conditions downstream from impoundments. Recent studies have called for e-flow approaches that explicitly consider impacts on hydrogeomorphic processes when developing management alternatives. Process-based approaches are particularly relevant in river systems that have been highly modified and where water supplies are over allocated. One-dimensional (1D) and two-dimensional (2D) hydrodynamic models can be used to resolve hydrogeomorphic processes at different spatial and temporal scales to support the development, testing, and refinement of e-flow hypotheses. Thus, the objective of this paper is to demonstrate the use of hydrodynamic models as a tool for assisting stakeholders in targeting and assessing environmental flows within a decision-making framework. We present a case study of e-flows on the Rio Chama in northern New Mexico, USA, where 1D and 2D hydrodynamic modeling was used within a collaborative process to implement an e-flow experiment. A specific goal of the e-flow process was to improve spawning habitat for brown trout by flushing fine sediments from gravel features. The results revealed that the 2D hydrodynamic model provided much greater insight with respect to hydrodynamic and sediment transport processes, which led to a reduction in the recommended e-flow discharge. The results suggest that 2D hydrodynamic models can be useful tools for improving process understanding, developing e-flow recommendations, and supporting adaptive management even when limited or no data are available for model calibration and validation.

  10. Hydrodynamic perception in true seals (Phocidae) and eared seals (Otariidae).

    Science.gov (United States)

    Hanke, Wolf; Wieskotten, Sven; Marshall, Christopher; Dehnhardt, Guido

    2013-06-01

    Pinnipeds, that is true seals (Phocidae), eared seals (Otariidae), and walruses (Odobenidae), possess highly developed vibrissal systems for mechanoreception. They can use their vibrissae to detect and discriminate objects by direct touch. At least in Phocidae and Otariidae, the vibrissae can also be used to detect and analyse water movements. Here, we review what is known about this ability, known as hydrodynamic perception, in pinnipeds. Hydrodynamic perception in pinnipeds developed convergently to the hydrodynamic perception with the lateral line system in fish and the sensory hairs in crustaceans. So far two species of pinnipeds, the harbour seal (Phoca vitulina) representing the Phocidae and the California sea lion (Zalophus californianus) representing the Otariidae, have been studied for their ability to detect local water movements (dipole stimuli) and to follow hydrodynamic trails, that is the water movements left behind by objects that have passed by at an earlier point in time. Both species are highly sensitive to dipole stimuli and can follow hydrodynamic trails accurately. In the individuals tested, California sea lions were clearly more sensitive to dipole stimuli than harbour seals, and harbour seals showed a superior trail following ability as compared to California sea lions. Harbour seals have also been shown to derive additional information from hydrodynamic trails, such as motion direction, size and shape of the object that caused the trail (California sea lions have not yet been tested). The peculiar undulated shape of the harbour seals' vibrissae appears to play a crucial role in trail following, as it suppresses self-generated noise while the animal is swimming.

  11. Realization of hydrodynamic experiments on quasi-2D liquid crystal films in microgravity

    Science.gov (United States)

    Clark, Noel A.; Eremin, Alexey; Glaser, Matthew A.; Hall, Nancy; Harth, Kirsten; Klopp, Christoph; Maclennan, Joseph E.; Park, Cheol S.; Stannarius, Ralf; Tin, Padetha; Thurmes, William N.; Trittel, Torsten

    2017-08-01

    Freely suspended films of smectic liquid crystals are unique examples of quasi two-dimensional fluids. Mechanically stable and with quantized thickness of the order of only a few molecular layers, smectic films are ideal systems for studying fundamental fluid physics, such as collective molecular ordering, defect and fluctuation phenomena, hydrodynamics, and nonequilibrium behavior in two dimensions (2D), including serving as models of complex biological membranes. Smectic films can be drawn across openings in planar supports resulting in thin, meniscus-bounded membranes, and can also be prepared as bubbles, either supported on an inflation tube or floating freely. The quantized layering renders smectic films uniquely useful in 2D fluid physics. The OASIS team has pursued a variety of ground-based and microgravity applications of thin liquid crystal films to fluid structure and hydrodynamic problems in 2D and quasi-2D systems. Parabolic flights and sounding rocket experiments were carried out in order to explore the shape evolution of free floating smectic bubbles, and to probe Marangoni effects in flat films. The dynamics of emulsions of smectic islands (thicker regions on thin background films) and of microdroplet inclusions in spherical films, as well as thermocapillary effects, were studied over extended periods within the OASIS (Observation and Analysis of Smectic Islands in Space) project on the International Space Station. We summarize the technical details of the OASIS hardware and give preliminary examples of key observations.

  12. Hydrodynamic problems of heavy liquid metal coolants technology in loop-type and mono-block-type reactor installations

    International Nuclear Information System (INIS)

    Orlov, Yuri I.; Efanov, Alexander D.; Martynov, Pyotr N.; Gulevsky, Valery A.; Papovyants, Albert K.; Levchenko, Yuri D.; Ulyanov, Vladimir V.

    2007-01-01

    In the report, the influence of hydrodynamics of the loop with heavy liquid metal coolants (Pb and Pb-Bi) on the realization methods and efficiency of the coolant technology for the reactor installations of loop, improved loop and mono-block type of design has been studied. The last two types of installations, as a rule, are characterized by the following features: availability of loop sections with low hydraulic head and low coolant velocities, large squares of coolant free surfaces; absence of stop and regulating valve, auxiliary pumps on the coolant pumping-over lines. Because of the different hydrodynamic conditions in the installation types, the tasks of the coolant technology have specific solutions. The description of the following procedures of coolant technology is given in the report: purification by hydrogen (purification using gas mixture containing hydrogen), regulation of dissolved oxygen concentration in coolant, coolant filtrating, control of dissolved oxygen concentration in coolant. It is shown that change of the loop design made with economic purpose and for improvement of the installation safety cause additional requirements to the procedures and apparatuses of the coolant technology realization

  13. Hydromechanics of Wind-Assisted Ship Propulsion : Modeling of Hydrodynamic Sideforce

    NARCIS (Netherlands)

    van der Kolk, N.J.

    2016-01-01

    This paper deals with the hydrodynamic sideforce production of a wind-assisted ship. The subject is introduced, both in physical terms, and with an overview of current and recent work. The importance of the hydrodynamic sideforce is established, before classical models are reviewed. Finally, the

  14. Concurrent Modeling of Hydrodynamics and Interaction Forces Improves Particle Deposition Predictions.

    Science.gov (United States)

    Jin, Chao; Ren, Carolyn L; Emelko, Monica B

    2016-04-19

    It is widely believed that media surface roughness enhances particle deposition-numerous, but inconsistent, examples of this effect have been reported. Here, a new mathematical framework describing the effects of hydrodynamics and interaction forces on particle deposition on rough spherical collectors in absence of an energy barrier was developed and validated. In addition to quantifying DLVO force, the model includes improved descriptions of flow field profiles and hydrodynamic retardation functions. This work demonstrates that hydrodynamic effects can significantly alter particle deposition relative to expectations when only the DLVO force is considered. Moreover, the combined effects of hydrodynamics and interaction forces on particle deposition on rough, spherical media are not additive, but synergistic. Notably, the developed model's particle deposition predictions are in closer agreement with experimental observations than those from current models, demonstrating the importance of inclusion of roughness impacts in particle deposition description/simulation. Consideration of hydrodynamic contributions to particle deposition may help to explain discrepancies between model-based expectations and experimental outcomes and improve descriptions of particle deposition during physicochemical filtration in systems with nonsmooth collector surfaces.

  15. Effect of paracentesis on ocular cloxacillin concentration

    International Nuclear Information System (INIS)

    Salminen, L.

    1978-01-01

    The effect of interior chamber puncture on cloxacillin concentration in the rabbit eye after intravenous injection was studied using a radioactive tracer method. The enhancement in drug concentration caused by paracentesis was most immediate and significant in the iris-ciliary body preparation. It was soon followed by high cloxacillin concentration in the aqueous humour, which contributed to elevated cloxacillin levels in the cornea, lens and anterior vitreous body, when compared to normal material. Contrary to normal eyes, cloxacillin concentration in the cornea of the punctured eyes was higher than in the limbal area. The morphological changes occurring after paracentesis are discussed. The breakdown of the hydrodynamic equilibrium in the eye, suggested as the only change after paracentesis by Raviola (1974), cannot merely explain the cloxacillin concentration changes measured in the punctured eye. (author)

  16. Hydrodynamics of a quark droplet

    DEFF Research Database (Denmark)

    Bjerrum-Bohr, Johan J.; Mishustin, Igor N.; Døssing, Thomas

    2012-01-01

    We present a simple model of a multi-quark droplet evolution based on the hydrodynamical description. This model includes collective expansion of the droplet, effects of the vacuum pressure and surface tension. The hadron emission from the droplet is described following Weisskopf's statistical...

  17. Overview of the 9th International Conference on Hydrodynamics

    Science.gov (United States)

    Lu, Dong-qiang

    2010-10-01

    The 9th International Conference on Hydrodynamics (ICHD), held in Shanghai, China from 11 to 15 October, 2010, was briefly reviewed. More than 240 delegates from 23 countries and regions attended this Conference, at which three plenary lectures, two keynote lectures and more than 160 papers were delivered. A special symposium on hydrodynamics in honor of Prof. You-sheng He was jointly organized in this ICHD. The printed proceedings, edited by Y. S. Wu, S. Q. Dai, H. Liu et al. and published by China Ocean Press, collect 172 technical papers contributed from 26 countries and regions. The electronic proceedings are distributed by the Elsevier at the ScienceDirect website as "Journal of Hydrodynamics, 2010, Vol. 22, No. 5 (Supplement)".

  18. Impact of hydrodynamic stresses on bacterial flagella

    Science.gov (United States)

    Das, Debasish; Riley, Emily; Lauga, Eric

    2017-11-01

    The locomotion of bacteria powered by helical filaments, such as Escherichia coli, critically involves the generation of flows and hydrodynamic stresses which lead to forces and moments balanced by the moment applied by the bacterial rotary motor (which is embedded in the cell wall) and the deformation of the short flexible hook. In this talk we use numerical computations to accurately compute these hydrodynamic stresses, to show how they critically lead to fluid-structure instabilities at the whole-cell level, and enquire if they can be used to rationalise experimental measurements of bacterial motor torques. ERC Consolidator Grant.

  19. Activity-induced clustering in model dumbbell swimmers: the role of hydrodynamic interactions.

    Science.gov (United States)

    Furukawa, Akira; Marenduzzo, Davide; Cates, Michael E

    2014-08-01

    Using a fluid-particle dynamics approach, we numerically study the effects of hydrodynamic interactions on the collective dynamics of active suspensions within a simple model for bacterial motility: each microorganism is modeled as a stroke-averaged dumbbell swimmer with prescribed dipolar force pairs. Using both simulations and qualitative arguments, we show that, when the separation between swimmers is comparable to their size, the swimmers' motions are strongly affected by activity-induced hydrodynamic forces. To further understand these effects, we investigate semidilute suspensions of swimmers in the presence of thermal fluctuations. A direct comparison between simulations with and without hydrodynamic interactions shows these to enhance the dynamic clustering at a relatively small volume fraction; with our chosen model the key ingredient for this clustering behavior is hydrodynamic trapping of one swimmer by another, induced by the active forces. Furthermore, the density dependence of the motility (of both the translational and rotational motions) exhibits distinctly different behaviors with and without hydrodynamic interactions; we argue that this is linked to the clustering tendency. Our study illustrates the fact that hydrodynamic interactions not only affect kinetic pathways in active suspensions, but also cause major changes in their steady state properties.

  20. The relations between hydrodynamic characteristics and interbedding oxidation zone type uranium mineralization

    International Nuclear Information System (INIS)

    Bai Jingping

    2001-01-01

    Infiltrating type hydrodynamic way controls the formation of interbedding oxidation zone type uranium deposit. The author analyzes hydrodynamic condition of Songliao basin and concludes that during evolution and development of Songliao basin, Water-bearing petrofabric of Mingshui Formation and above inherit completely infiltrating hydrodynamic way as they were deposited and that Sifangtai Formation inherit the way to some extent, that below Sifangtai Formation water bearing petrofabric were completely reformed in northern part of Songliao watershed. The contact line between infiltrating and out filtrating type hydrodynamic way, e.g. underground water dividing lines formed in different geological period, restricts development of interbedding oxidation zone in this period and controls uranium mineralization

  1. Nucleosynthesis and hydrodynamic instabilities in core collapse supernovae

    International Nuclear Information System (INIS)

    Kifonidis, K.

    2001-01-01

    Hydrodynamic instabilities are of crucial importance for the explosion of massive stars as core collapse supernovae, for the synthesis of the heavy elements, and for their injection into the interstellar medium. The processes hereby involved are studied by means of two-dimensional hydrodynamic simulations which follow all phases from shock revival to shock breakout through the photosphere of a massive star. The computed distributions of radioactive elements are compared to observational data of SN 1987 A and other supernovae. While we find good agreement of our models with observations of Type Ib supernovae, the high velocities of iron group elements observed in SN 1987 A cannot be reproduced. Possible reasons for this discrepancy are discussed. Hydrodynamic instabilities are of crucial importance for the explosion of massive stars as core collapse supernovae, for the synthesis of the heavy elements, and for their injection into the interstellar medium. The processes hereby involved are studied by means of two-dimensional hydrodynamic simulations which follow all phases from shock revival to shock breakout through the photosphere of a massive star. The computed distributions of radioactive elements are compared to observational data of SN 1987 A and other supernovae. While we find good agreement of our models with observations of Type Ib supernovae, the high velocities of iron group elements observed in SN 1987 A cannot be reproduced. Possible reasons for this discrepancy are discussed

  2. Hydrodynamic response of viscous fluids under seismic excitation

    International Nuclear Information System (INIS)

    Ma, D.C.

    1993-01-01

    Hydrodynamic response of liquid-tank systems, such as reactor vessels, spent-fuel pools and liquid storage tanks have been studied extensively in the last decade (Chang et al. 1988; Ma et al. 1991). However, most of the studies are conducted with the assumption of an inviscid fluid. In recent years, the hydrodynamic response of viscous fluids has received increasing attention in high level waste storage tanks containing viscous waste material. This paper presents a numerical study on the hydrodynamic response of viscous fluids in a large 2-D fluid-tank system under seismic excitation. Hydrodynamic responses (i.e. sloshing wave height, fluid pressures, shear stress, etc.) are calculated for a fluid with various viscosities. Four fluid viscosities are considered. They are 1 cp, 120 cp, 1,000 cp and 12,000 cp (1 cp = 1.45 x 10 -7 lb-sec/in 2 ). Note that the liquid sodium of the Liquid-Metal Reactor (LMR) reactor has a viscosity of 1.38 x 10 -5 lb-sec/in 2 (about 95 cp) at an operational temperature of 900 degree F. Section 2 describes the pertinent features of the mathematical model. In Section 3, the fundamental sloshing phenomena of viscous fluid are examined. Sloshing wave height and shear stress for fluid with different viscosities are compared. The conclusions are given in Section 4

  3. Droplet motion in microfluidic networks: Hydrodynamic interactions and pressure-drop measurements

    Science.gov (United States)

    Sessoms, D. A.; Belloul, M.; Engl, W.; Roche, M.; Courbin, L.; Panizza, P.

    2009-07-01

    We present experimental, numerical, and theoretical studies of droplet flows in hydrodynamic networks. Using both millifluidic and microfluidic devices, we study the partitioning of monodisperse droplets in an asymmetric loop. In both cases, we show that droplet traffic results from the hydrodynamic feedback due to the presence of droplets in the outlet channels. We develop a recently-introduced phenomenological model [W. Engl , Phys. Rev. Lett. 95, 208304 (2005)] and successfully confront its predictions to our experimental results. This approach offers a simple way to measure the excess hydrodynamic resistance of a channel filled with droplets. We discuss the traffic behavior and the variations in the corresponding hydrodynamic resistance length Ld and of the droplet mobility β , as a function of droplet interdistance and confinement for channels having circular or rectangular cross sections.

  4. Fully implicit 1D radiation hydrodynamics: Validation and verification

    International Nuclear Information System (INIS)

    Ghosh, Karabi; Menon, S.V.G.

    2010-01-01

    A fully implicit finite difference scheme has been developed to solve the hydrodynamic equations coupled with radiation transport. Solution of the time-dependent radiation transport equation is obtained using the discrete ordinates method and the energy flow into the Lagrangian meshes as a result of radiation interaction is fully accounted for. A tridiagonal matrix system is solved at each time step to determine the hydrodynamic variables implicitly. The results obtained from this fully implicit radiation hydrodynamics code in the planar geometry agrees well with the scaling law for radiation driven strong shock propagation in aluminium. For the point explosion problem the self similar solutions are compared with results for pure hydrodynamic case in spherical geometry. Results obtained when radiation interaction is also accounted agree with those of point explosion with heat conduction for lower input energies. Having, thus, benchmarked the code, self convergence of the method w.r.t. time step is studied in detail for both the planar and spherical problems. Spatial as well as temporal convergence rates are ≅1 as expected from the difference forms of mass, momentum and energy conservation equations. This shows that the asymptotic convergence rate of the code is realized properly.

  5. Evaluation of incompressible hydrodynamic mass methods in reactor applications

    International Nuclear Information System (INIS)

    Takeuchi, K.

    1981-01-01

    The hydrodynamic (or virtual) mass approach is evaluated by comparison of structural responses computed by the hydrodynamic mass method with those computed by MULTIFLEX code for a fluid/structure interaction problem with fluid compression effects taken into account. A sample problem used in that evaluation is a simplified 1-D PWR model which is first subjected to a LOCA type transient. The time history of structural displacement computed with the hydrodynamic mass approach is compared with MULTIFLEX results. The frequencies of structural oscillation of these two computations agree. The amplitudes disagree by more than 50%, which is attributed to the effect of fluid compressibility. For the seismic study, sinusoidal forces are applied to the floor at the vessel support. The system responses are expressed by the response functions or the maximum values of the barrel/vessel relative displacements as the applied frequency is varied. The response functions are computed by the hydrodynamic mass method and by MULTIFLEX for evaluation of the virtual mass method. For the pump pulsation study, sinusoidal pressure oscillations are applied at the pump outlet and the response functions are computed as above. 12 refs

  6. The role of hydrodynamics in shaping the composition and architecture of epilithic biofilms in fluvial ecosystems.

    Science.gov (United States)

    Risse-Buhl, Ute; Anlanger, Christine; Kalla, Katalin; Neu, Thomas R; Noss, Christian; Lorke, Andreas; Weitere, Markus

    2017-12-15

    Previous laboratory and on-site experiments have highlighted the importance of hydrodynamics in shaping biofilm composition and architecture. In how far responses to hydrodynamics can be found in natural flows under the complex interplay of environmental factors is still unknown. In this study we investigated the effect of near streambed turbulence in terms of turbulent kinetic energy (TKE) on the composition and architecture of biofilms matured in two mountainous streams differing in dissolved nutrient concentrations. Over both streams, TKE significantly explained 7% and 8% of the variability in biofilm composition and architecture, respectively. However, effects were more pronounced in the nutrient richer stream, where TKE significantly explained 12% and 3% of the variability in biofilm composition and architecture, respectively. While at lower nutrient concentrations seasonally varying factors such as stoichiometry of dissolved nutrients (N/P ratio) and light were more important and explained 41% and 6% of the variability in biofilm composition and architecture, respectively. Specific biofilm features such as elongated ripples and streamers, which were observed in response to the uniform and unidirectional flow in experimental settings, were not observed. Microbial biovolume and surface area covered by the biofilm canopy increased with TKE, while biofilm thickness and porosity where not affected or decreased. These findings indicate that under natural flows where near bed flow velocities and turbulence intensities fluctuate with time and space, biofilms became more compact. They spread uniformly on the mineral surface as a film of densely packed coccoid cells appearing like cobblestone pavement. The compact growth of biofilms seemed to be advantageous for resisting hydrodynamic shear forces in order to avoid displacement. Thus, near streambed turbulence can be considered as important factor shaping the composition and architecture of biofilms grown under natural

  7. Filter-Feeding Zoobenthos and Hydrodynamics

    DEFF Research Database (Denmark)

    Riisgård, Hans Ulrik; Larsen, Poul Scheel

    2017-01-01

    interplay between benthic filter feeders and hydrodynamics. Starting from the general concept of grazing potential and typical data on benthic population densities its realization is considered, first at the level of the individual organism through the processes of pumping and trapping of food particles...

  8. Anomalous hydrodynamics in two dimensions

    Indian Academy of Sciences (India)

    Abstract. A new approach is presented to discuss two-dimensional hydrodynamics with gauge and gravitational anomalies. Exact constitutive relations for the stress tensor and charge current are obtained. Also, a connection between response parameters and anomaly coefficients is discussed. These are new results which, ...

  9. Framing Camera Improvements and hydrodynamic Experiments

    National Research Council Canada - National Science Library

    Drake, R. P

    2007-01-01

    .... We also propose to participate in hydrodynamic experiments at NRL whenever they occur, to prepare for an experiment for NIKE to study the onset of turbulence via the Kelvin Helmholtz instability...

  10. Hydrodynamic design of an underwater hull cleaning robot and its evaluation

    Directory of Open Access Journals (Sweden)

    Man Hyung Lee

    2012-12-01

    Full Text Available An underwater hull cleaning robot can be a desirable choice for the cleaning of large ships. It can make the cleaning process safe and economical. This paper presents a hydrodynamic design of an underwater cleaning robot and its evaluation for an underwater ship hull cleaning robot. The hydrodynamic design process of the robot body is described in detail. Optimal body design process with compromises among conflicting design requirements is given. Experimental results on the hydrodynamic performance of the robot are given.

  11. Automatization of hydrodynamic modelling in a Floreon+ system

    Science.gov (United States)

    Ronovsky, Ales; Kuchar, Stepan; Podhoranyi, Michal; Vojtek, David

    2017-07-01

    The paper describes fully automatized hydrodynamic modelling as a part of the Floreon+ system. The main purpose of hydrodynamic modelling in the disaster management is to provide an accurate overview of the hydrological situation in a given river catchment. Automatization of the process as a web service could provide us with immediate data based on extreme weather conditions, such as heavy rainfall, without the intervention of an expert. Such a service can be used by non scientific users such as fire-fighter operators or representatives of a military service organizing evacuation during floods or river dam breaks. The paper describes the whole process beginning with a definition of a schematization necessary for hydrodynamic model, gathering of necessary data and its processing for a simulation, the model itself and post processing of a result and visualization on a web service. The process is demonstrated on a real data collected during floods in our Moravian-Silesian region in 2010.

  12. Origins of hydrodynamic forces on centrifugal pump impellers

    Science.gov (United States)

    Adkins, Douglas R.; Brennen, Christopher E.

    1987-01-01

    Hydrodynamic interactions that occur between a centrifugal pump impeller and volute are experimentally and theoretically investigated. The theoretical analysis considers the inability of the blades to perfectly guide the flow through the impeller, and also includes a quasi-one dimensional treatment of the flow in the volute. The disturbance at the impeller discharge and the resulting forces are determined by the theoretical model. The model is then extended to obtain the hydrodynamic force perturbations that are caused by the impeller whirling eccentrically in the volute. Under many operating conditions, these force perturbations were found to be destablizing. Comparisons are made between the theoretical model and the experimental measurements of pressure distributions and radial forces on the impeller. The theoretical model yields fairly accurate predictions of the radial forces caused by the flow through the impeller. However, it was found that the pressure acting on the front shroud of the impeller has a substantial effect on the destablizing hydrodynamic forces.

  13. Structural study of concentrated micelle-solutions of sodium octanoate by light scattering

    International Nuclear Information System (INIS)

    Hayoun, Marc

    1982-05-01

    Structural investigation of sodium octanoate (CH 3 -(CH 2 ) 6 -COONa) by light scattering has been made to study properties of concentrated aqueous micelle-solutions. From static light scattering data, the micellar weight and shape have been determined. The monomer aggregation number and the apparent micellar charge have been confirmed. Quasi-elastic light scattering, has been used to measure the effective diffusion coefficient as a function of the volume fraction. Extrapolation to the c.m.c. give the hydrodynamic radius of the micelles. At low micelle-concentration, strong exchange reaction between monomers and micelles affects the Brownian motion and resulting is an increase in the diffusion coefficient. The experimental data show a strong hydrodynamic contribution to S(q) (factor structure) and D(q) (effective diffusion coefficient) arising from hard spheres interactions with a large repulsive potential. (author) [fr

  14. Discovery of hydrodynamic behavior in high energy heavy ion collisions

    International Nuclear Information System (INIS)

    Hamagaki, Hideki

    2010-01-01

    The objective of high energy heavy ion collision experiments is creating high temperature and high density states to investigate hadron matter properties in such extreme conditions. Since the start of heavy ion collision experiments with BEVALAC, knowledge of the space-time evolution of collision has become indispensable for understanding the hadronic matter properties. This problem is reviewed here from the hydrodynamics view point. Although its importance has been generally recognized since the time of BEVALAC, the hydrodynamic description has not been successful because the hydrodynamic model assuming non-viscous or small fluid had not been considered to be enough to properly describe the space-time evolution of hadron-hadron collisions until the RHIC experiments. Items of the following titles are picked up and reviewed here: Development of heavy ion accelerations; Space-time evolution of hadron collision process and hydrodynamic model; Chemical freezing and kinematical freezing, including transverse momentum spectra at proton-proton collisions and particle spectra in heavy ion collisions; Elliptical azimuthal angle anisotropy; Discovery of hydrodynamic flow at BEVALAC; Problems of incident beam dependence of v2; Elliptic azimuthal angle anisotropy at RHIC; What is it that carries the elliptic anisotropy? Discussion of attainment of thermodynamical equilibrium state at RHIC; and finally investigations of fluid properties other than azimuthal anisotropy, such as, Fluid properties probed by heavy quarks and Observing QCD fluid responses. (S. Funahashi)

  15. Degradation of chlorocarbons driven by hydrodynamic cavitation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Z.L.; Ondruschka, B.; Braeutigam, P. [Institut fuer Technische Chemie und Umweltchemie, Friedrich-Schiller-Universitaet Jena, Jena (Germany)

    2007-05-15

    To provide an efficient lab-scale device for the investigation of the degradation of organic pollutants driven by hydrodynamic cavitation, the degradation kinetics of chloroform and carbon tetrachloride and the increase of conductivity in aqueous solutions were measured. These are values which were not previously available. Under hydrodynamic cavitation conditions, the degradation kinetics for chlorocarbons was found to be pseudo first-order. Meanwhile, C-H and C-Cl bonds are broken, and Cl{sub 2}, Cl{sup .}, Cl{sup -} and other ions released can increase the conductivity and enhance the oxidation of KI in aqueous solutions. The upstream pressures of the orifice plate, the cavitation number, and the solution temperature have substantial effects on the degradation kinetics. A decreased cavitation number can result in more cavitation events and enhances the degradation of chlorocarbons and/or the oxidation of KI. A decrease in temperature is generally favorable to the cavitation chemistry. Organic products from the degradation of carbon tetrachloride and chloroform have demonstrated the formation and recombination of free radicals, e.g., CCl{sub 4}, C{sub 2}Cl{sub 4}, and C{sub 2}Cl{sub 6} are produced from the degradation of CHCl{sub 3}. CHCl{sub 3} and C{sub 2}Cl{sub 6} are produced from the degradation of CCl{sub 4}. Both the chemical mechanism and the reaction kinetics of the degradation of chlorocarbons induced by hydrodynamic cavitation are consistent with those obtained from the acoustic cavitation. Therefore, the technology of hydrodynamic cavitation should be a good candidate for the removal of organic pollutants from water. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  16. Hydrodynamic slip length as a surface property

    Science.gov (United States)

    Ramos-Alvarado, Bladimir; Kumar, Satish; Peterson, G. P.

    2016-02-01

    Equilibrium and nonequilibrium molecular dynamics simulations were conducted in order to evaluate the hypothesis that the hydrodynamic slip length is a surface property. The system under investigation was water confined between two graphite layers to form nanochannels of different sizes (3-8 nm). The water-carbon interaction potential was calibrated by matching wettability experiments of graphitic-carbon surfaces free of airborne hydrocarbon contamination. Three equilibrium theories were used to calculate the hydrodynamic slip length. It was found that one of the recently reported equilibrium theories for the calculation of the slip length featured confinement effects, while the others resulted in calculations significantly hindered by the large margin of error observed between independent simulations. The hydrodynamic slip length was found to be channel-size independent using equilibrium calculations, i.e., suggesting a consistency with the definition of a surface property, for 5-nm channels and larger. The analysis of the individual trajectories of liquid particles revealed that the reason for observing confinement effects in 3-nm nanochannels is the high mobility of the bulk particles. Nonequilibrium calculations were not consistently affected by size but by noisiness in the smallest systems.

  17. The hydrodynamic size of polymer stabilized nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, Karl M; Al-Somali, Ali M; Mejia, Michelle; Colvin, Vicki L [Department of Chemistry, Rice University, MS-60 6100 Main Street, Houston, TX 77005 (United States)

    2007-11-28

    For many emerging applications, nanocrystals are surface functionalized with polymers to control self-assembly, prevent aggregation, and promote incorporation into polymer matrices and biological systems. The hydrodynamic diameter of these nanoparticle-polymer complexes is a critical factor for many applications, and predicting this size is complicated by the fact that the structure of the grafted polymer at a nanocrystalline interface is not generally established. In this work we evaluate using size-exclusion chromatography the overall hydrodynamic diameter of nanocrystals (Au, CdSe, d<5 nm) surface coated with polystyrene of varying molecular weight. The polymer is tethered to the nanoparticles via a terminal thiol to provide strong attachment. Our data show that at full coverage the polymer assumes a brush conformation and is 44% longer than the unbound polymer in solution. The brush conformation is confirmed by comparison with models used to describe polymer brushes at flat interfaces. From this work, we suggest an empirical formula which predicts the hydrodynamic diameter of polymer coated nanoparticles based on the size of the nanoparticle core and the size of the randomly coiled unbound polymer in solution.

  18. Annual Report 2006 for Hydrodynamics and Radiation Hydrodynamics with Astrophysical Applications

    Energy Technology Data Exchange (ETDEWEB)

    R. Paul Drake

    2007-04-05

    We report the ongoing work of our group in hydrodynamics and radiation hydrodynamics with astrophysical applications. During the period of the existing grant, we have carried out two types of experiments at the Omega laser. One set of experiments has studied radiatively collapsing shocks, obtaining data using a backlit pinhole with a 100 ps backlighter and beginning to develop the ability to look into the shock tube with optical or x-ray diagnostics. Other experiments have studied the deeply nonlinear development of the Rayleigh-Taylor (RT) instability from complex initial conditions, using dual-axis radiographic data with backlit pinholes and ungated detectors to complete the data set for a Ph.D. student. We lead a team that is developing a proposal for experiments at the National Ignition Facility and are involved in experiments at NIKE and LIL. All these experiments have applications to astrophysics, discussed in the corresponding papers. We assemble the targets for the experiments at Michigan, where we also prepare many of the simple components. We also have several projects underway in our laboratory involving our x-ray source. The above activities, in addition to a variety of data analysis and design projects, provide good experience for graduate and undergraduates students. In the process of doing this research we have built a research group that uses such work to train junior scientists.

  19. CHASM Challenge Problem: Lagrangian Hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Hornung, R [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Keasler, J [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gokhale, M [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2010-09-10

    Computer simulations of many science and engineering problems require modeling the equations of hydrodynamics which describe the motion of materials relative to each other induced by various forces. Many important DoD simulation problems involve complex multi-material systems that undergo large deformations. Examples include the analysis of armor defense, penetration mechanics, blast effects, structural integrity, and conventional munitions such as shaped charges and explosively formed projectiles. Indeed, the original motivation for developing codes that solve the equations of hydrodynamics, herein referred to as “hydrocodes”, was to solve problems with defense applications. The FY2010 Requirements Analysis Report issued by the DoD High Performance Computing Modernization Program (HPCMP) Office shows that a major portion of DoD HPC activities involves hydrocodes [HPCMP2010]. The report surveyed 496 projects across the Services and various Agencies, representing 4,050 HPCMP users at more than 125 locations, including government, contractors, and academia, and grouped each project into one of ten categories.

  20. Comparisons of hydrodynamic beam models with kinetic treatments

    International Nuclear Information System (INIS)

    Boyd, J.K.; Mark, J.W.; Sharp, W.M.; Yu, S.S.

    1983-01-01

    Hydrodynamic models have been derived by Mark and Yu and by others to describe energetic self-pinched beams, such as those used in ion-beam fusion. The closure of the Mark-Yu model is obtained with adiabatic assumptions mathematically analogous to those of Chew, Goldberger, and Low for MHD. The other models treated here use an ideal gas closure and a closure by Newcomb based on an expansion in V/sub th//V/sub z/. Features of these hydrodynamic beam models are compared with a kinetic treatment

  1. Anisotropic nonequilibrium hydrodynamic attractor

    Science.gov (United States)

    Strickland, Michael; Noronha, Jorge; Denicol, Gabriel S.

    2018-02-01

    We determine the dynamical attractors associated with anisotropic hydrodynamics (aHydro) and the DNMR equations for a 0 +1 d conformal system using kinetic theory in the relaxation time approximation. We compare our results to the nonequilibrium attractor obtained from the exact solution of the 0 +1 d conformal Boltzmann equation, the Navier-Stokes theory, and the second-order Mueller-Israel-Stewart theory. We demonstrate that the aHydro attractor equation resums an infinite number of terms in the inverse Reynolds number. The resulting resummed aHydro attractor possesses a positive longitudinal-to-transverse pressure ratio and is virtually indistinguishable from the exact attractor. This suggests that an optimized hydrodynamic treatment of kinetic theory involves a resummation not only in gradients (Knudsen number) but also in the inverse Reynolds number. We also demonstrate that the DNMR result provides a better approximation of the exact kinetic theory attractor than the Mueller-Israel-Stewart theory. Finally, we introduce a new method for obtaining approximate aHydro equations which relies solely on an expansion in the inverse Reynolds number. We then carry this expansion out to the third order, and compare these third-order results to the exact kinetic theory solution.

  2. Chromatin Hydrodynamics

    Science.gov (United States)

    Bruinsma, Robijn; Grosberg, Alexander Y.; Rabin, Yitzhak; Zidovska, Alexandra

    2014-01-01

    Following recent observations of large scale correlated motion of chromatin inside the nuclei of live differentiated cells, we present a hydrodynamic theory—the two-fluid model—in which the content of a nucleus is described as a chromatin solution with the nucleoplasm playing the role of the solvent and the chromatin fiber that of a solute. This system is subject to both passive thermal fluctuations and active scalar and vector events that are associated with free energy consumption, such as ATP hydrolysis. Scalar events drive the longitudinal viscoelastic modes (where the chromatin fiber moves relative to the solvent) while vector events generate the transverse modes (where the chromatin fiber moves together with the solvent). Using linear response methods, we derive explicit expressions for the response functions that connect the chromatin density and velocity correlation functions to the corresponding correlation functions of the active sources and the complex viscoelastic moduli of the chromatin solution. We then derive general expressions for the flow spectral density of the chromatin velocity field. We use the theory to analyze experimental results recently obtained by one of the present authors and her co-workers. We find that the time dependence of the experimental data for both native and ATP-depleted chromatin can be well-fitted using a simple model—the Maxwell fluid—for the complex modulus, although there is some discrepancy in terms of the wavevector dependence. Thermal fluctuations of ATP-depleted cells are predominantly longitudinal. ATP-active cells exhibit intense transverse long wavelength velocity fluctuations driven by force dipoles. Fluctuations with wavenumbers larger than a few inverse microns are dominated by concentration fluctuations with the same spectrum as thermal fluctuations but with increased intensity. PMID:24806919

  3. Interaction of Microphysical Aerosol Processes with Hydrodynamics Mixing

    KAUST Repository

    Alshaarawi, Amjad

    2015-12-15

    This work is concerned with the interaction between condensing aerosol dynamics and hydrodynamic mixing within ow configurations in which aerosol particles form (nucleate) from a supersaturated vapor and supersaturation is induced by the mixing of two streams (a saturated stream and a cold one). Two canonical hydrodynamic configurations are proposed for the investigation. The First is the steady one-dimensional opposed-ow configuration. The setup consists of the two (saturated and cold) streams owing from opposite nozzles. A mixing layer is established across a stagnation plane in the center where nucleation and other aerosol dynamics are triggered. The second is homogeneous isotropic turbulence in a three-dimensional periodic domain. Patches of a hot saturated gas mix with patches of a cold one. A mixing layer forms across the growing interface where the aerosol dynamics of interest occur. In both configurations, a unique analogy is observed. The results reveal a complex response to variations in the mixing rates. Depending on the mixing rate, the response of the number density falls into one of two regimes. For fast mixing rates, the maximum reached number density of the condensing droplets increases with the hydrodynamic time. We refer to this as the nucleation regime. On the contrary, for low mixing rates, the maximum reached number density decreases with the hydrodynamic time. We refer to this as the consumption regime. It is shown that vapor scavenging by the aerosol phase is key to explaining the transition between these two regimes.

  4. Linearly resummed hydrodynamics in a weakly curved spacetime

    International Nuclear Information System (INIS)

    Bu, Yanyan; Lublinsky, Michael

    2015-01-01

    We extend our study of all-order linearly resummed hydrodynamics in a flat space (http://dx.doi.org/10.1103/PhysRevD.90.086003, http://dx.doi.org/10.1007/JHEP11(2014)064) to fluids in weakly curved spaces. The underlying microscopic theory is a finite temperature N=4 super-Yang-Mills theory at strong coupling. The AdS/CFT correspondence relates black brane solutions of the Einstein gravity in asymptotically locally AdS 5 geometry to relativistic conformal fluids in a weakly curved 4D background. To linear order in the amplitude of hydrodynamic variables and metric perturbations, the fluid’s energy-momentum tensor is computed with derivatives of both the fluid velocity and background metric resummed to all orders. We extensively discuss the meaning of all order hydrodynamics by expressing it in terms of the memory function formalism, which is also suitable for practical simulations. In addition to two viscosity functions discussed at length in refs. (http://dx.doi.org/10.1103/PhysRevD.90.086003, http://dx.doi.org/10.1007/JHEP11(2014)064), we find four curvature induced structures coupled to the fluid via new transport coefficient functions. In ref. (http://dx.doi.org/10.1103/PhysRevD.80.065026), the latter were referred to as gravitational susceptibilities of the fluid. We analytically compute these coefficients in the hydrodynamic limit, and then numerically up to large values of momenta.

  5. Linearly resummed hydrodynamics in a weakly curved spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Bu, Yanyan; Lublinsky, Michael [Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel)

    2015-04-24

    We extend our study of all-order linearly resummed hydrodynamics in a flat space (http://dx.doi.org/10.1103/PhysRevD.90.086003, http://dx.doi.org/10.1007/JHEP11(2014)064) to fluids in weakly curved spaces. The underlying microscopic theory is a finite temperature N=4 super-Yang-Mills theory at strong coupling. The AdS/CFT correspondence relates black brane solutions of the Einstein gravity in asymptotically locally AdS{sub 5} geometry to relativistic conformal fluids in a weakly curved 4D background. To linear order in the amplitude of hydrodynamic variables and metric perturbations, the fluid’s energy-momentum tensor is computed with derivatives of both the fluid velocity and background metric resummed to all orders. We extensively discuss the meaning of all order hydrodynamics by expressing it in terms of the memory function formalism, which is also suitable for practical simulations. In addition to two viscosity functions discussed at length in refs. (http://dx.doi.org/10.1103/PhysRevD.90.086003, http://dx.doi.org/10.1007/JHEP11(2014)064), we find four curvature induced structures coupled to the fluid via new transport coefficient functions. In ref. (http://dx.doi.org/10.1103/PhysRevD.80.065026), the latter were referred to as gravitational susceptibilities of the fluid. We analytically compute these coefficients in the hydrodynamic limit, and then numerically up to large values of momenta.

  6. Carbon and nitrogen stable isotope ratios and mercury concentration in the scalp hair of residents from Taiji, a whaling town

    International Nuclear Information System (INIS)

    Endo, Tetsuya; Hayasaka, Moriaki; Hisamichi, Yohsuke; Kimura, Osamu; Haraguchi, Koichi

    2013-01-01

    Highlights: ► We analyzed δ 13 C, δ 15 N and Hg in hair from Japanese whale meat-eaters and non-eaters. ► The δ 15 N and δ 13 C values in whale meat-eaters were higher than those in non-eaters. ► The Hg concentration in whale meat-eaters was higher than that in non-eaters. ► A positive correlation was seen between δ 15 N and Hg in whale meat-eaters. ► Consumption of whale meat may increase δ 15 N, δ 13 C and Hg in the scalp hair. -- Abstract: We analyzed stable isotope ratios of carbon (δ 13 C) and nitrogen (δ 15 N) as well as mercury (Hg) concentration in the scalp hair of Japanese who consumed whale meat and those who did not, and investigated the relationships among the δ 13 C and δ 15 N values and Hg concentration. The average δ 15 N and δ 13 C values of whale meat-eaters (10.11‰ and −18.5‰) were significantly higher than those of non-eaters (9.28‰ and −18.9‰), respectively. The average Hg concentration of whale meat-eaters (20.6 μg/g) was significantly higher than that of non-eaters (2.20 μg/g). Significant positive correlations were found between the δ 13 C and δ 15 N values and between the δ 15 N value and Hg concentration in the hair of whale meat-eaters, while the correlation between the δ 15 N value and Hg concentration was not statistically significant in the non-eaters. The consumption of whale meat may increase Hg concentration as well as δ 15 N and δ 13 C values in scalp hair

  7. Progress and challenges in coupled hydrodynamic-ecological estuarine modeling

    Science.gov (United States)

    Ganju, Neil K.; Brush, Mark J.; Rashleigh, Brenda; Aretxabaleta, Alfredo L.; del Barrio, Pilar; Grear, Jason S.; Harris, Lora A.; Lake, Samuel J.; McCardell, Grant; O'Donnell, James; Ralston, David K.; Signell, Richard P.; Testa, Jeremy; Vaudrey, Jamie M. P.

    2016-01-01

    Numerical modeling has emerged over the last several decades as a widely accepted tool for investigations in environmental sciences. In estuarine research, hydrodynamic and ecological models have moved along parallel tracks with regard to complexity, refinement, computational power, and incorporation of uncertainty. Coupled hydrodynamic-ecological models have been used to assess ecosystem processes and interactions, simulate future scenarios, and evaluate remedial actions in response to eutrophication, habitat loss, and freshwater diversion. The need to couple hydrodynamic and ecological models to address research and management questions is clear because dynamic feedbacks between biotic and physical processes are critical interactions within ecosystems. In this review, we present historical and modern perspectives on estuarine hydrodynamic and ecological modeling, consider model limitations, and address aspects of model linkage, skill assessment, and complexity. We discuss the balance between spatial and temporal resolution and present examples using different spatiotemporal scales. Finally, we recommend future lines of inquiry, approaches to balance complexity and uncertainty, and model transparency and utility. It is idealistic to think we can pursue a “theory of everything” for estuarine models, but recent advances suggest that models for both scientific investigations and management applications will continue to improve in terms of realism, precision, and accuracy.

  8. Marine Radioactivity Studies in the Suez Canal, Part I: Hydrodynamics and Transit Times

    Science.gov (United States)

    Abril, J. M.; Abdel-Aal, M. M.

    2000-04-01

    This paper describes work carried out under the IAEA Project EGY/07/002 to study the dispersion of radioactive material in the Suez Canal. This effort is linked with the increased public concern about radiation safety through this important trade route. To follow the fate of radioactive wastes along this waterway, we had to solve the hydrodynamics of the water, governed mainly by tides, atmospheric forcing and the drift currents produced by horizontal salinity gradients and by differences in mean sea level (MSL) at the two entrances of the Canal. The hydrodynamics has been studied using both 1-D and 2-D modelling approaches, and a reasonable calibration has been possible from the data set prepared with the collaboration of the Suez Canal Authority. Dispersion of conservative pollutants has been preliminarily studied by using a 1-D-Gaussian approach. Thus, we are computing the path of the plumes and the time evolution of concentrations for different scenarios of discharges and under different seasonal conditions. The transit times can vary enormously during the year, ranging from a few days to several months, depending on the differences in MSL at the two entrances of the Canal.

  9. Relativistic hydrodynamics, heavy ion reactions and antiproton annihilation

    International Nuclear Information System (INIS)

    Strottman, D.

    1985-01-01

    The application of relativistic hydrodynamics to relativistic heavy ions and antiproton annihilation is summarized. Conditions for validity of hydrodynamics are presented. Theoretical results for inclusive particle spectra, pion production and flow analysis are given for medium energy heavy ions. The two-fluid model is introduced and results presented for reactions from 800 MeV per nucleon to 15 GeV on 15 GeV per nucleon. Temperatures and densities attained in antiproton annihilation are given. Finally, signals which might indicate the presence of a quark-gluon plasma are briefly surveyed

  10. Hydrodynamic flow in a synaptic cleft during exocytosis.

    Science.gov (United States)

    Shneider, M N; Gimatdinov, R S; Skorinkin, A I; Kovyazina, I V; Nikolsky, E E

    2012-01-01

    It is shown that exocytosis in a chemical synapse may be accompanied by "microjet" formation due to the overpressure that exists in the vesicles. This mechanism may take place either at complete fusion of a vesicle with the presynaptic membrane or in the so-called kiss-and-run mode of neurotransmitter release. A simple hydrodynamic model of the viscous incompressible flow arising in the synaptic cleft is suggested. The occurrence of hydrodynamic flow (microjet) leads to more efficient transport of neurotransmitter than in the case of classical diffusive transport.

  11. Hydrodynamic Expansion of Pellicles Caused by e-Beam Heating

    CERN Document Server

    Ho, D

    2000-01-01

    Placing a pellicle in front of a x-ray converter target for radiographic applications can confine the backstreaming ions and target plasma to a shorter channel so that the cumulative effect on e-beam focusing is reduced. The pellicle is subject to heating by e-beam since the pellicle is placed upstream of the target. The calculation of the hydrodynamic expansion, caused by the heating, using the radiation hydrodynamics code LASNEX is presented in this report. Calculations show that mylar pellicles disintegrate at the end of a multi-pulse intense e-beam while beryllium and carbon pellicles remain intact. The expansions for the kapton-carbon multi-layered targets are also examined. Hydrodynamic expansions for pellicles with various e-beam spot radii are calculated for DARHT-II beam parameters. All the simulation results indicate that the backstreaming ions can be stopped.

  12. Distribution of radiocesium and stable elements within a pine tree

    International Nuclear Information System (INIS)

    Yoshida, S.; Watanabe, M.; Suzuki, A.

    2011-01-01

    Distributions of 137 Cs and stable elements in different parts of a pine tree collected in Chernobyl-contaminated area in Belarus were determined. Samples include annual tree rings of wood, branches and needles with different ages. The concentrations of 137 Cs and stable Cs in annual tree rings were the highest in cambium and decreased sharply towards inside. The youngest needles and branches contained higher 137 Cs and stable Cs than older ones. The concentration of 137 Cs being highest in growing parts suggests the highest radiation dose to the radiation-sensitive parts of tree. Distribution patterns of stable elements in pine tree differ among the elements. Distributions similar to those of Cs were observed for K and Rb, suggesting that alkaline metals tend to be translocated to young growing parts of pine tree. A similar distribution was also observed for phosphorus. Distributions of alkaline earth metals and several heavy metals were different from those of alkaline metals. (authors)

  13. Hydrodynamic limit of interacting particle systems

    International Nuclear Information System (INIS)

    Landim, C.

    2004-01-01

    We present in these notes two methods to derive the hydrodynamic equation of conservative interacting particle systems. The intention is to present the main ideas in the simplest possible context and refer for details and references. (author)

  14. Effect of Second-Order Hydrodynamics on a Floating Offshore Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Roald, L.; Jonkman, J.; Robertson, A.

    2014-05-01

    The design of offshore floating wind turbines uses design codes that can simulate the entire coupled system behavior. At the present, most codes include only first-order hydrodynamics, which induce forces and motions varying with the same frequency as the incident waves. Effects due to second- and higher-order hydrodynamics are often ignored in the offshore industry, because the forces induced typically are smaller than the first-order forces. In this report, first- and second-order hydrodynamic analysis used in the offshore oil and gas industry is applied to two different wind turbine concepts--a spar and a tension leg platform.

  15. Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity

    Directory of Open Access Journals (Sweden)

    Font José A.

    2008-09-01

    Full Text Available This article presents a comprehensive overview of numerical hydrodynamics and magnetohydrodynamics (MHD in general relativity. Some significant additions have been incorporated with respect to the previous two versions of this review (2000, 2003, most notably the coverage of general-relativistic MHD, a field in which remarkable activity and progress has occurred in the last few years. Correspondingly, the discussion of astrophysical simulations in general-relativistic hydrodynamics is enlarged to account for recent relevant advances, while those dealing with general-relativistic MHD are amply covered in this review for the first time. The basic outline of this article is nevertheless similar to its earlier versions, save for the addition of MHD-related issues throughout. Hence, different formulations of both the hydrodynamics and MHD equations are presented, with special mention of conservative and hyperbolic formulations well adapted to advanced numerical methods. A large sample of numerical approaches for solving such hyperbolic systems of equations is discussed, paying particular attention to solution procedures based on schemes exploiting the characteristic structure of the equations through linearized Riemann solvers. As previously stated, a comprehensive summary of astrophysical simulations in strong gravitational fields is also presented. These are detailed in three basic sections, namely gravitational collapse, black-hole accretion, and neutron-star evolutions; despite the boundaries, these sections may (and in fact do overlap throughout the discussion. The material contained in these sections highlights the numerical challenges of various representative simulations. It also follows, to some extent, the chronological development of the field, concerning advances in the formulation of the gravitational field, hydrodynamics and MHD equations and the numerical methodology designed to solve them. To keep the length of this article reasonable

  16. Hydrodynamic cavitation kills prostate cells and ablates benign prostatic hyperplasia tissue.

    Science.gov (United States)

    Itah, Zeynep; Oral, Ozlem; Perk, Osman Yavuz; Sesen, Muhsincan; Demir, Ebru; Erbil, Secil; Dogan-Ekici, A Isin; Ekici, Sinan; Kosar, Ali; Gozuacik, Devrim

    2013-11-01

    Hydrodynamic cavitation is a physical phenomenon characterized by vaporization and bubble formation in liquids under low local pressures, and their implosion following their release to a higher pressure environment. Collapse of the bubbles releases high energy and may cause damage to exposed surfaces. We recently designed a set-up to exploit the destructive nature of hydrodynamic cavitation for biomedical purposes. We have previously shown that hydrodynamic cavitation could kill leukemia cells and erode kidney stones. In this study, we analyzed the effects of cavitation on prostate cells and benign prostatic hyperplasia (BPH) tissue. We showed that hydrodynamic cavitation could kill prostate cells in a pressure- and time-dependent manner. Cavitation did not lead to programmed cell death, i.e. classical apoptosis or autophagy activation. Following the application of cavitation, we observed no prominent DNA damage and cells did not arrest in the cell cycle. Hence, we concluded that cavitation forces directly damaged the cells, leading to their pulverization. Upon application to BPH tissues from patients, cavitation could lead to a significant level of tissue destruction. Therefore similar to ultrasonic cavitation, we propose that hydrodynamic cavitation has the potential to be exploited and developed as an approach for the ablation of aberrant pathological tissues, including BPH.

  17. Driven polymer translocation in good and bad solvent: Effects of hydrodynamics and tension propagation.

    Science.gov (United States)

    Moisio, J E; Piili, J; Linna, R P

    2016-08-01

    We investigate the driven polymer translocation through a nanometer-scale pore in the presence and absence of hydrodynamics both in good and bad solvent. We present our results on tension propagating along the polymer segment on the cis side that is measured for the first time using our method that works also in the presence of hydrodynamics. For simulations we use stochastic rotation dynamics, also called multiparticle collision dynamics. We find that in the good solvent the tension propagates very similarly whether hydrodynamics is included or not. Only the tensed segment is by a constant factor shorter in the presence of hydrodynamics. The shorter tensed segment and the hydrodynamic interactions contribute to a smaller friction for the translocating polymer when hydrodynamics is included, which shows as smaller waiting times and a smaller exponent in the scaling of the translocation time with the polymer length. In the bad solvent hydrodynamics has a minimal effect on polymer translocation, in contrast to the good solvent, where it speeds up translocation. We find that under bad-solvent conditions tension does not spread appreciably along the polymer. Consequently, translocation time does not scale with the polymer length. By measuring the effective friction in a setup where a polymer in free solvent is pulled by a constant force at the end, we find that hydrodynamics does speed up collective polymer motion in the bad solvent even more effectively than in the good solvent. However, hydrodynamics has a negligible effect on the motion of individual monomers within the highly correlated globular conformation on the cis side and hence on the entire driven translocation under bad-solvent conditions.

  18. Hydrodynamic instabilities in astrophysics and ICF

    International Nuclear Information System (INIS)

    Paul Drake, R.

    2005-01-01

    Inertial fusion systems and astrophysical systems both involve hydrodynamic effects, including sources of pressure, shock waves, rarefactions, and plasma flows. In the evolution of such systems, hydrodynamic instabilities naturally evolve. As a result, a fundamental understanding of hydrodynamic instabilities is necessary to understand their behavior. In addition, high-energy-density facilities designed for ICF purposes can be used to provide and experimental basis for understanding astrophysical processes. In this talk. I will discuss the instabilities that appear in astrophysics and ICF from the common perspective of the basic mechanisms at work. Examples will be taken from experiments aimed at ICF, from astrophysical systems, and from experiments using ICF systems to address issues in astrophysics. The high-energy-density research facilities of today can accelerate small but macroscopic amounts of material to velocities above 100 km/s, can heat such material to temperature above 100 eV, can produce pressures far above a million atmospheres (10''12 dybes/cm''2 or 0.1 TPascal), and can do experiments under these conditions that address basic physics issues. This enables on to devise experiments aimed directly at important process such as the Rayleigh Taylor instability at an ablating surface or at an embedded interface that is accelerating, the Richtmeyer Meshkov evolution of shocked interfaces, and the Kelvin-Helmholtz instability of shear flows. The talk will include examples of such phenomena from the laboratory and from astrophysics, and will discuss experiments to study them. (Author)

  19. Hydrodynamic cavitation as a novel pretreatment approach for bioethanol production from reed.

    Science.gov (United States)

    Kim, Ilgook; Lee, Ilgyu; Jeon, Seok Hwan; Hwang, Taewoon; Han, Jong-In

    2015-09-01

    In this study, hydrodynamic cavitation (HC) was employed as a physical means to improve alkaline pretreatment of reed. The HC-assisted alkaline pretreatment was undertaken to evaluate the influence of NaOH concentration (1-5%), solid-to-liquid ratio (5-15%), and reaction time (20-60 min) on glucose yield. The optimal condition was found to be 3.0% NaOH at solid-to-liquid (S/L) ratio of 11.8% for 41.1 min, which resulted in the maximum glucose yield of 326.5 g/kg biomass. Furthermore, simultaneous saccharification and fermentation (SSF) was conducted to assess the ethanol production. An ethanol concentration of 25.9 g/L and ethanol yield of 90% were achieved using batch SSF. These results clearly demonstrated HC system can be indeed a promising pretreatment tool for lignocellulosic bioethanol production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. A new approach to non-Abelian hydrodynamics

    International Nuclear Information System (INIS)

    Fernández-Melgarejo, Jose J.; Rey, Soo-Jong; Surówka, Piotr

    2017-01-01

    We present a new approach to describe hydrodynamics carrying non-Abelian macroscopic degrees of freedom. Based on the Kaluza-Klein compactification of a higher-dimensional neutral dissipative fluid on a manifold of non-Abelian isometry, we obtain a four-dimensional colored dissipative fluid coupled to Yang-Mills gauge field. We derive transport coefficients of resulting colored fluid, which feature non-Abelian character of color charges. In particular, we obtain color-specific terms in the gradient expansions and response quantities such as the conductivity matrix and the chemical potentials. We argue that our Kaluza-Klein approach provides a robust description of non-Abelian hydrodynamics, and discuss some links between this system and quark-gluon plasma and fluid/gravity duality.

  1. A new approach to non-Abelian hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Melgarejo, Jose J. [Center for the Fundamental Laws of Nature, Harvard University,Cambridge, MA 02138 (United States); Rey, Soo-Jong [School of Physics & Astronomy and Center for Theoretical Physics, Seoul National University,Seoul, 08826 (Korea, Republic of); Department of Fundamental Sciences, University of Science and Technology,Daejeon, 34113 (Korea, Republic of); Center for Gauge, Gravity & Strings, Institute for Basic Sciences,Daejeon, 34047 (Korea, Republic of); Surówka, Piotr [Center for the Fundamental Laws of Nature, Harvard University,Cambridge, MA 02138 (United States); Max-Planck-Institut für Physik (Werner-Heisenberg-Institut),Föhringer Ring 6, D-80805 Munich (Germany)

    2017-02-23

    We present a new approach to describe hydrodynamics carrying non-Abelian macroscopic degrees of freedom. Based on the Kaluza-Klein compactification of a higher-dimensional neutral dissipative fluid on a manifold of non-Abelian isometry, we obtain a four-dimensional colored dissipative fluid coupled to Yang-Mills gauge field. We derive transport coefficients of resulting colored fluid, which feature non-Abelian character of color charges. In particular, we obtain color-specific terms in the gradient expansions and response quantities such as the conductivity matrix and the chemical potentials. We argue that our Kaluza-Klein approach provides a robust description of non-Abelian hydrodynamics, and discuss some links between this system and quark-gluon plasma and fluid/gravity duality.

  2. Hydrodynamics of Turning Flocks

    OpenAIRE

    Yang, Xingbo; Marchetti, M. Cristina

    2014-01-01

    We present a hydrodynamic model of flocking that generalizes the familiar Toner-Tu equations to incorporate turning inertia of well-polarized flocks. The continuum equations controlled by only two dimensionless parameters, orientational inertia and alignment strength, are derived by coarse graining the inertial spin model recently proposed by Cavagna et al. The interplay between orientational inertia and bend elasticity of the flock yields anisotropic spin waves that mediate the propagation o...

  3. Hydrodynamical assessment of 200A GeV collisions

    International Nuclear Information System (INIS)

    Schnedermann, E.; Heinz, U.

    1994-01-01

    We are analyzing the hydrodynamics of 200A GeV S+S collisions using a new approach which tries to quantify the uncertainties arising from the specific implementation of the hydrodynamical model. Based on a previous phenomenological analysis we use the global hydrodynamics model to show that the amount of initial flow, or initial energy density, cannot be determined from the hadronic momentum spectra. We additionally find that almost always a sizable transverse flow develops, which causes the system to freeze out, thereby limiting the flow velocity in itself. This freeze-out dominance in turn makes a distinction between a plasma and a hadron resonance gas equation of state very difficult, whereas a pure pion gas can easily be ruled out from present data. To complete the picture we also analyze particle multiplicity data, which suggest that chemical equilibrium is not reached with respect to the strange particles. However, the overpopulation of pions seems to be at most moderate, with a pion chemical potential far away from the Bose divergence

  4. Adding Sarcosine to Antipsychotic Treatment in Patients with Stable Schizophrenia Changes the Concentrations of Neuronal and Glial Metabolites in the Left Dorsolateral Prefrontal Cortex.

    Science.gov (United States)

    Strzelecki, Dominik; Podgórski, Michał; Kałużyńska, Olga; Stefańczyk, Ludomir; Kotlicka-Antczak, Magdalena; Gmitrowicz, Agnieszka; Grzelak, Piotr

    2015-10-15

    The glutamatergic system is a key point in pathogenesis of schizophrenia. Sarcosine (N-methylglycine) is an exogenous amino acid that acts as a glycine transporter inhibitor. It modulates glutamatergic transmission by increasing glycine concentration around NMDA (N-methyl-d-aspartate) receptors. In patients with schizophrenia, the function of the glutamatergic system in the prefrontal cortex is impaired, which may promote negative and cognitive symptoms. Proton nuclear magnetic resonance (¹H-NMR) spectroscopy is a non-invasive imaging method enabling the evaluation of brain metabolite concentration, which can be applied to assess pharmacologically induced changes. The aim of the study was to evaluate the influence of a six-month course of sarcosine therapy on the concentration of metabolites (NAA, N-acetylaspartate; Glx, complex of glutamate, glutamine and γ-aminobutyric acid (GABA); mI, myo-inositol; Cr, creatine; Cho, choline) in the left dorso-lateral prefrontal cortex (DLPFC) in patients with stable schizophrenia. Fifty patients with schizophrenia, treated with constant antipsychotics doses, in stable clinical condition were randomly assigned to administration of sarcosine (25 patients) or placebo (25 patients) for six months. Metabolite concentrations in DLPFC were assessed with 1.5 Tesla ¹H-NMR spectroscopy. Clinical symptoms were evaluated with the Positive and Negative Syndrome Scale (PANSS). The first spectroscopy revealed no differences in metabolite concentrations between groups. After six months, NAA/Cho, mI/Cr and mI/Cho ratios in the left DLPFC were significantly higher in the sarcosine than the placebo group. In the sarcosine group, NAA/Cr, NAA/Cho, mI/Cr, mI/Cho ratios also significantly increased compared to baseline values. In the placebo group, only the NAA/Cr ratio increased. The addition of sarcosine to antipsychotic therapy for six months increased markers of neurons viability (NAA) and neurogilal activity (mI) with simultaneous improvement

  5. Adding Sarcosine to Antipsychotic Treatment in Patients with Stable Schizophrenia Changes the Concentrations of Neuronal and Glial Metabolites in the Left Dorsolateral Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Dominik Strzelecki

    2015-10-01

    Full Text Available The glutamatergic system is a key point in pathogenesis of schizophrenia. Sarcosine (N-methylglycine is an exogenous amino acid that acts as a glycine transporter inhibitor. It modulates glutamatergic transmission by increasing glycine concentration around NMDA (N-methyl-d-aspartate receptors. In patients with schizophrenia, the function of the glutamatergic system in the prefrontal cortex is impaired, which may promote negative and cognitive symptoms. Proton nuclear magnetic resonance (1H-NMR spectroscopy is a non-invasive imaging method enabling the evaluation of brain metabolite concentration, which can be applied to assess pharmacologically induced changes. The aim of the study was to evaluate the influence of a six-month course of sarcosine therapy on the concentration of metabolites (NAA, N-acetylaspartate; Glx, complex of glutamate, glutamine and γ-aminobutyric acid (GABA; mI, myo-inositol; Cr, creatine; Cho, choline in the left dorso-lateral prefrontal cortex (DLPFC in patients with stable schizophrenia. Fifty patients with schizophrenia, treated with constant antipsychotics doses, in stable clinical condition were randomly assigned to administration of sarcosine (25 patients or placebo (25 patients for six months. Metabolite concentrations in DLPFC were assessed with 1.5 Tesla 1H-NMR spectroscopy. Clinical symptoms were evaluated with the Positive and Negative Syndrome Scale (PANSS. The first spectroscopy revealed no differences in metabolite concentrations between groups. After six months, NAA/Cho, mI/Cr and mI/Cho ratios in the left DLPFC were significantly higher in the sarcosine than the placebo group. In the sarcosine group, NAA/Cr, NAA/Cho, mI/Cr, mI/Cho ratios also significantly increased compared to baseline values. In the placebo group, only the NAA/Cr ratio increased. The addition of sarcosine to antipsychotic therapy for six months increased markers of neurons viability (NAA and neurogilal activity (mI with simultaneous

  6. Hydrodynamics of ultra-relativistic bubble walls

    Energy Technology Data Exchange (ETDEWEB)

    Leitao, Leonardo, E-mail: lleitao@mdp.edu.ar; Mégevand, Ariel, E-mail: megevand@mdp.edu.ar

    2016-04-15

    In cosmological first-order phase transitions, gravitational waves are generated by the collisions of bubble walls and by the bulk motions caused in the fluid. A sizeable signal may result from fast-moving walls. In this work we study the hydrodynamics associated to the fastest propagation modes, namely, ultra-relativistic detonations and runaway solutions. We compute the energy injected by the phase transition into the fluid and the energy which accumulates in the bubble walls. We provide analytic approximations and fits as functions of the net force acting on the wall, which can be readily evaluated for specific models. We also study the back-reaction of hydrodynamics on the wall motion, and we discuss the extrapolation of the friction force away from the ultra-relativistic limit. We use these results to estimate the gravitational wave signal from detonations and runaway walls.

  7. The Monte Carlo photoionization and moving-mesh radiation hydrodynamics code CMACIONIZE

    Science.gov (United States)

    Vandenbroucke, B.; Wood, K.

    2018-04-01

    We present the public Monte Carlo photoionization and moving-mesh radiation hydrodynamics code CMACIONIZE, which can be used to simulate the self-consistent evolution of HII regions surrounding young O and B stars, or other sources of ionizing radiation. The code combines a Monte Carlo photoionization algorithm that uses a complex mix of hydrogen, helium and several coolants in order to self-consistently solve for the ionization and temperature balance at any given type, with a standard first order hydrodynamics scheme. The code can be run as a post-processing tool to get the line emission from an existing simulation snapshot, but can also be used to run full radiation hydrodynamical simulations. Both the radiation transfer and the hydrodynamics are implemented in a general way that is independent of the grid structure that is used to discretize the system, allowing it to be run both as a standard fixed grid code, but also as a moving-mesh code.

  8. Warm dense mater: another application for pulsed power hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Reinovsky, Robert Emil [Los Alamos National Laboratory

    2009-01-01

    Pulsed Power Hydrodynamics (PPH) is an application of low-impedance pulsed power, and high magnetic field technology to the study of advanced hydrodynamic problems, instabilities, turbulence, and material properties. PPH can potentially be applied to the study of the properties of warm dense matter (WDM) as well. Exploration of the properties of warm dense matter such as equation of state, viscosity, conductivity is an emerging area of study focused on the behavior of matter at density near solid density (from 10% of solid density to slightly above solid density) and modest temperatures ({approx}1-10 eV). Conditions characteristic of WDM are difficult to obtain, and even more difficult to diagnose. One approach to producing WDM uses laser or particle beam heating of very small quantities of matter on timescales short compared to the subsequent hydrodynamic expansion timescales (isochoric heating) and a vigorous community of researchers are applying these techniques. Pulsed power hydrodynamic techniques, such as large convergence liner compression of a large volume, modest density, low temperature plasma to densities approaching solid density or through multiple shock compression and heating of normal density material between a massive, high density, energetic liner and a high density central 'anvil' are possible ways to reach relevant conditions. Another avenue to WDM conditions is through the explosion and subsequent expansion of a conductor (wire) against a high pressure (density) gas background (isobaric expansion) techniques. However, both techniques demand substantial energy, proper power conditioning and delivery, and an understanding of the hydrodynamic and instability processes that limit each technique. In this paper we will examine the challenges to pulsed power technology and to pulsed power systems presented by the opportunity to explore this interesting region of parameter space.

  9. Statistical analysis of hydrodynamic cavitation events

    Science.gov (United States)

    Gimenez, G.; Sommer, R.

    1980-10-01

    The frequency (number of events per unit time) of pressure pulses produced by hydrodynamic cavitation bubble collapses is investigated using statistical methods. The results indicate that this frequency is distributed according to a normal law, its parameters not being time-evolving.

  10. Hydrodynamic forces on inundated bridge decks

    Science.gov (United States)

    2009-05-01

    The hydrodynamic forces experienced by an inundated bridge deck have great importance in the design of bridges. Specifically, the drag force, lift force, and the moment acting on the bridge deck under various levels of inundation and a range of flow ...

  11. Magneto-hydrodynamical model for plasma

    Science.gov (United States)

    Liu, Ruikuan; Yang, Jiayan

    2017-10-01

    Based on the Newton's second law and the Maxwell equations for the electromagnetic field, we establish a new 3-D incompressible magneto-hydrodynamics model for the motion of plasma under the standard Coulomb gauge. By using the Galerkin method, we prove the existence of a global weak solution for this new 3-D model.

  12. Radiation hydrodynamics in the laboratory

    International Nuclear Information System (INIS)

    1985-12-01

    This report contains a collection of five preprints devoted to the subject of laser induced phenomena of radiation hydrodynamics. These preprints cover approximately the contents of the presentations made by the MPQ experimental laser-plasma group at the 17th European Conference on Laser Interaction with Matter (ECLIM), Rome, November 18-22, 1985. (orig.)

  13. Degradation of dichlorvos using hydrodynamic cavitation based treatment strategies.

    Science.gov (United States)

    Joshi, Ravi K; Gogate, Parag R

    2012-05-01

    The degradation of an aqueous solution of dichlorvos, a commonly used pesticide in India, has been systematically investigated using hydrodynamic cavitation reactor. All the experiments have been carried out using a 20 ppm solution of commercially available dichlorvos. The effect of important operating parameters such as inlet pressure (over a range 3-6 bar), temperature (31 °C, 36 °C and 39 °C) and pH (natural pH = 5.7 and acidic pH = 3) on the extent of degradation has been investigated initially. It has been observed that an optimum value of pressure gives maximum degradation whereas low temperature and pH of 3 are favorable. Intensification studies have been carried out using different additives such as hydrogen peroxide, carbon tetrachloride, and Fenton's reagent. Use of hydrogen peroxide and carbon tetrachloride resulted in the enhancement of the extent of degradation at optimized conditions but significant enhancement was obtained with the combined use of hydrodynamic cavitation and Fenton's chemistry. The maximum extent of degradation as obtained by using a combination of hydrodynamic cavitation and Fenton's chemistry was 91.5% in 1h of treatment time. The present work has conclusively established that hydrodynamic cavitation in combination with Fenton's chemistry can be effectively used for the degradation of dichlorvos. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. An introduction to relativistic hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Font, Jose A [Departamento de AstronomIa y AstrofIsica, Universidad de Valencia, Dr. Moliner 50, 46100 Burjassot (Valencia) (Spain)

    2007-11-15

    We review formulations of the equations of (inviscid) general relativistic hydrodynamics and (ideal) magnetohydrodynamics, along with methods for their numerical solution. Both systems can be cast as first-order, hyperbolic systems of conservation laws, following the explicit choice of an Eulerian observer and suitable fluid and magnetic field variables. During the last fifteen years, the so-called (upwind) high-resolution shock-capturing schemes based on Riemann solvers have been successfully extended from classical to relativistic fluid dynamics, both special and general. Nowadays, general relativistic hydrodynamical simulations in relativistic astrophysics are routinely performed, particularly within the test-fluid approximation but also for dynamical spacetimes. While such advances also hold true in the case of the MHD equations, the astrophysical applications investigated so far are still limited, yet the field is bound to witness major developments in the near future. The article also presents a brief overview of numerical techniques, providing state-of-the-art examples of their applicability to general relativistic fluids and magneto-fluids in characteristic scenarios of relativistic astrophysics.

  15. Annual Scientific Report 2006 for Hydrodynamics and Radiation Hydrodynamics with Astrophysical Applications

    International Nuclear Information System (INIS)

    R. Paul Drake

    2007-01-01

    We report the ongoing work of our group in hydrodynamics and radiation hydrodynamics with astrophysical applications. During the period of the existing grant, we have carried out two types of experiments at the Omega laser. One set of experiments has studied radiatively collapsing shocks, obtaining data using a backlit pinhole with a 100 ps backlighter and beginning to develop the ability to look into the shock tube with optical or x-ray diagnostics. Other experiments have studied the deeply nonlinear development of the Rayleigh-Taylor (RT) instability from complex initial conditions, using dual-axis radiographic data with backlit pinholes and ungated detectors to complete the data set for a Ph.D. student. We lead a team that is developing a proposal for experiments at the National Ignition Facility and are involved in experiments at NIKE and LIL. All these experiments have applications to astrophysics, discussed in the corresponding papers. We assemble the targets for the experiments at Michigan, where we also prepare many of the simple components. We also have several projects underway in our laboratory involving our x-ray source. The above activities, in addition to a variety of data analysis and design projects, provide good experience for graduate and undergraduates students. In the process of doing this research we have built a research group that uses such work to train junior scientists

  16. Effect of AOT Microemulsion Composition on the Hydrodynamic Diameter and Electrophoretic Mobility of Titanium Oxide Nanoparticles

    Science.gov (United States)

    Shaparenko, N. O.; Beketova, D. I.; Demidova, M. G.; Bulavchenko, A. I.

    2018-05-01

    The hydrodynamic diameter and electrophoretic mobility of titania nanoparticles in AOT microemulsions are studied depending on their water content (from 0 to 1.5 vol %), chloroform content in n-decane-chloroform mixture (from 0 to 30 vol %) and temperature (from 0 to 60°C). Considerable changes in diameter (from 20 to 400 nm) are detected upon adding water to the microemulsion. The electrophoretic mobility grows by 2-3 times upon adding chloroform, or as the temperature falls. The observed features allow us to halve the time of electrophoretic concentration for 140 nm TiO2 nanoparticles, and to concentrate 14 nm nanoparticles that do not exhibit electrophoretic mobility in the absence of chloroform.

  17. Crossflow-induced vibrations of tube banks: hydrodynamic forces and mathematical models

    International Nuclear Information System (INIS)

    Chen, S.S.

    1977-01-01

    The objective of this paper is to present a method of analysis for the hydrodynamic forces acting on tube banks and a mathematical model for multiple tubes and multiple excitation mechanisms incorporating tube/fluid coupling. The hydrodynamic forces acting on tube banks are analyzed using the two dimensional potential flow theory

  18. Isotropization and hydrodynamization in weakly coupled heavy-ion collisions

    CERN Document Server

    Kurkela, Aleksi

    2015-01-01

    We numerically solve 2+1D effective kinetic theory of weak coupling QCD under longitudinal expansion relevant for early stages of heavy-ion collisions. We find agreement with viscous hydrodynamics and classical Yang-Mills simulations in the regimes where they are applicable. By choosing initial conditions that are motivated by color-glass-condensate framework we find that for Q=2GeV and $\\alpha_s$=0.3 the system is approximately described by viscous hydrodynamics well before $\\tau \\lesssim 1.0$ fm/c.

  19. CRKSPH: A new meshfree hydrodynamics method with applications to astrophysics

    Science.gov (United States)

    Owen, John Michael; Raskin, Cody; Frontiere, Nicholas

    2018-01-01

    The study of astrophysical phenomena such as supernovae, accretion disks, galaxy formation, and large-scale structure formation requires computational modeling of, at a minimum, hydrodynamics and gravity. Developing numerical methods appropriate for these kinds of problems requires a number of properties: shock-capturing hydrodynamics benefits from rigorous conservation of invariants such as total energy, linear momentum, and mass; lack of obvious symmetries or a simplified spatial geometry to exploit necessitate 3D methods that ideally are Galilean invariant; the dynamic range of mass and spatial scales that need to be resolved can span many orders of magnitude, requiring methods that are highly adaptable in their space and time resolution. We have developed a new Lagrangian meshfree hydrodynamics method called Conservative Reproducing Kernel Smoothed Particle Hydrodynamics, or CRKSPH, in order to meet these goals. CRKSPH is a conservative generalization of the meshfree reproducing kernel method, combining the high-order accuracy of reproducing kernels with the explicit conservation of mass, linear momentum, and energy necessary to study shock-driven hydrodynamics in compressible fluids. CRKSPH's Lagrangian, particle-like nature makes it simple to combine with well-known N-body methods for modeling gravitation, similar to the older Smoothed Particle Hydrodynamics (SPH) method. Indeed, CRKSPH can be substituted for SPH in existing SPH codes due to these similarities. In comparison to SPH, CRKSPH is able to achieve substantially higher accuracy for a given number of points due to the explicitly consistent (and higher-order) interpolation theory of reproducing kernels, while maintaining the same conservation principles (and therefore applicability) as SPH. There are currently two coded implementations of CRKSPH available: one in the open-source research code Spheral, and the other in the high-performance cosmological code HACC. Using these codes we have applied

  20. Experimental hydrodynamics of swimming in fishes

    Science.gov (United States)

    Tytell, Eric Daniel

    2005-11-01

    The great diversity of fish body shapes suggests that they have adapted to different selective pressures. For many fishes, the pressures include hydrodynamic demands: swimming efficiently or accelerating rapidly, for instance. However, the hydrodynamic advantages or disadvantages to specific morphologies are poorly understood. In particular, eels have been considered inefficient swimmers, but they migrate long distances without feeding, a task that requires efficient swimming. This dissertation, therefore, begins with an examination of the swimming hydrodynamics of American eels, Anguilla rostrata, at steady swimming speeds from 0.5 to 2 body lengths (L) per second and during accelerations from -1.4 to 1.3 L s -2. The final chapter examines the hydrodynamic effects of body shape directly by describing three-dimensional flow around swimming bluegill sunfish, Lepomis macrochirus. In all chapters, flow is quantified using digital particle image velocimetry, and simultaneous kinematics are measured from high-resolution digital video. The wake behind a swimming eel in the horizontal midline plane is described first. Rather than producing a wake with fluid jets angled backwards, like in fishes such as sunfish, eels have a wake with exclusively lateral jets. The lack of downstream momentum indicates that eels balance the axial forces of thrust and drag evenly over time and over their bodies, and therefore do not change axial fluid momentum. This even balance, present at all steady swimming speeds, is probably due to the relatively uniform body shape of eels. As eels accelerate, thrust exceeds drag, axial momentum increases, and the wake approaches that of other fishes. During steady swimming, though, the lack of axial momentum prevents direct efficiency estimation. The effect of body shape was examined directly by measuring flow in multiple transverse planes along the body of bluegill sunfish swimming at 1.2 L s-1. The dorsal and anal fin, neglected in many previous

  1. Removal of pharmaceuticals from wastewater by biological processes, hydrodynamic cavitation and UV treatment.

    Science.gov (United States)

    Zupanc, Mojca; Kosjek, Tina; Petkovšek, Martin; Dular, Matevž; Kompare, Boris; Širok, Brane; Blažeka, Željko; Heath, Ester

    2013-07-01

    To augment the removal of pharmaceuticals different conventional and alternative wastewater treatment processes and their combinations were investigated. We tested the efficiency of (1) two distinct laboratory scale biological processes: suspended activated sludge and attached-growth biomass, (2) a combined hydrodynamic cavitation-hydrogen peroxide process and (3) UV treatment. Five pharmaceuticals were chosen including ibuprofen, naproxen, ketoprofen, carbamazepine and diclofenac, and an active metabolite of the lipid regulating agent clofibric acid. Biological treatment efficiency was evaluated using lab-scale suspended activated sludge and moving bed biofilm flow-through reactors, which were operated under identical conditions in respect to hydraulic retention time, working volume, concentration of added pharmaceuticals and synthetic wastewater composition. The suspended activated sludge process showed poor and inconsistent removal of clofibric acid, carbamazepine and diclofenac, while ibuprofen, naproxen and ketoprofen yielded over 74% removal. Moving bed biofilm reactors were filled with two different types of carriers i.e. Kaldnes K1 and Mutag BioChip™ and resulted in higher removal efficiencies for ibuprofen and diclofenac. Augmentation and consistency in the removal of diclofenac were observed in reactors using Mutag BioChip™ carriers (85%±10%) compared to reactors using Kaldnes carriers and suspended activated sludge (74%±22% and 48%±19%, respectively). To enhance the removal of pharmaceuticals hydrodynamic cavitation with hydrogen peroxide process was evaluated and optimal conditions for removal were established regarding the duration of cavitation, amount of added hydrogen peroxide and initial pressure, all of which influence the efficiency of the process. Optimal parameters resulted in removal efficiencies between 3-70%. Coupling the attached-growth biomass biological treatment, hydrodynamic cavitation/hydrogen peroxide process and UV treatment

  2. The meteorology and chemistry of high nitrogen oxide concentrations in the stable boundary layer at the South Pole

    Science.gov (United States)

    Neff, William; Crawford, Jim; Buhr, Marty; Nicovich, John; Chen, Gao; Davis, Douglas

    2018-03-01

    Four summer seasons of nitrogen oxide (NO) concentrations were obtained at the South Pole (SP) during the Sulfur Chemistry in the Antarctic Troposphere (ISCAT) program (1998 and 2000) and the Antarctic Tropospheric Chemistry Investigation (ANTCI) in (2003, 2005, 2006-2007). Together, analyses of the data collected from these studies provide insight into the large- to small-scale meteorology that sets the stage for extremes in NO and the significant variability that occurs day to day, within seasons, and year to year. In addition, these observations reveal the interplay between physical and chemical processes at work in the stable boundary layer of the high Antarctic plateau. We found a systematic evolution of the large-scale wind system over the ice sheet from winter to summer that controls the surface boundary layer and its effect on NO: initially in early spring (Days 280-310) the transport of warm air and clouds over West Antarctica dominates the environment over the SP; in late spring (Days 310-340), the winds at 300 hPa exhibit a bimodal behavior alternating between northwest and southeast quadrants, which is of significance to NO; in early summer (Days 340-375), the flow aloft is dominated by winds from the Weddell Sea; and finally, during late spring, winds aloft from the southeast are strongly associated with clear skies, shallow stable boundary layers, and light surface winds from the east - it is under these conditions that the highest NO occurs. Examination of the winds at 300 hPa from 1961 to 2013 shows that this seasonal pattern has not changed significantly, although the last twenty years have seen an increasing trend in easterly surface winds at the SP. What has also changed is the persistence of the ozone hole, often into early summer. With lower total ozone column density and higher sun elevation, the highest actinic flux responsible for the photolysis of snow nitrate now occurs in late spring under the shallow boundary layer conditions optimum for

  3. Hydrodynamic simulations of expanding shells

    Czech Academy of Sciences Publication Activity Database

    Wünsch, Richard; Palouš, Jan; Ehlerová, Soňa

    2004-01-01

    Roč. 289, 3-4 (2004), s. 35-36 ISSN 0004-640X. [From observation to self-consistent modelling of the ISM in galaxies. Porto, 03.09.2002-05.09.2002] R&D Projects: GA AV ČR KSK1048102 Keywords : hydrodynamic simulations * ISM * star formation Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.597, year: 2004

  4. Hydrodynamic loading and viscous damping of patterned perforations on microfabricated resonant structures

    DEFF Research Database (Denmark)

    Park, Kidong; Shim, Jeong; Solovyeva, Vita

    2012-01-01

    We examined the hydrodynamic loading of vertically resonating microfabricated plates immersed in liquids with different viscosities. The planar structures were patterned with focused ion beam, perforating various shapes with identical area but varying perimeters. The hydrodynamic loading of various...

  5. Modeling of nanoscale liquid mixture transport by density functional hydrodynamics

    Science.gov (United States)

    Dinariev, Oleg Yu.; Evseev, Nikolay V.

    2017-06-01

    Modeling of multiphase compositional hydrodynamics at nanoscale is performed by means of density functional hydrodynamics (DFH). DFH is the method based on density functional theory and continuum mechanics. This method has been developed by the authors over 20 years and used for modeling in various multiphase hydrodynamic applications. In this paper, DFH was further extended to encompass phenomena inherent in liquids at nanoscale. The new DFH extension is based on the introduction of external potentials for chemical components. These potentials are localized in the vicinity of solid surfaces and take account of the van der Waals forces. A set of numerical examples, including disjoining pressure, film precursors, anomalous rheology, liquid in contact with heterogeneous surface, capillary condensation, and forward and reverse osmosis, is presented to demonstrate modeling capabilities.

  6. Heat capacity of liquids: A hydrodynamic approach

    Directory of Open Access Journals (Sweden)

    T. Bryk

    2015-03-01

    Full Text Available We study autocorrelation functions of energy, heat and entropy densities obtained by molecular dynamics simulations of supercritical Ar and compare them with the predictions of the hydrodynamic theory. It is shown that the predicted by the hydrodynamic theory single-exponential shape of the entropy density autocorrelation functions is perfectly reproduced for small wave numbers by the molecular dynamics simulations and permits the calculation of the wavenumber-dependent specific heat at constant pressure. The estimated wavenumber-dependent specific heats at constant volume and pressure, Cv(k and Cp(k, are shown to be in the long-wavelength limit in good agreement with the macroscopic experimental values of Cv and Cp for the studied thermodynamic points of supercritical Ar.

  7. Hydrodynamics of ultra-relativistic bubble walls

    Directory of Open Access Journals (Sweden)

    Leonardo Leitao

    2016-04-01

    Full Text Available In cosmological first-order phase transitions, gravitational waves are generated by the collisions of bubble walls and by the bulk motions caused in the fluid. A sizeable signal may result from fast-moving walls. In this work we study the hydrodynamics associated to the fastest propagation modes, namely, ultra-relativistic detonations and runaway solutions. We compute the energy injected by the phase transition into the fluid and the energy which accumulates in the bubble walls. We provide analytic approximations and fits as functions of the net force acting on the wall, which can be readily evaluated for specific models. We also study the back-reaction of hydrodynamics on the wall motion, and we discuss the extrapolation of the friction force away from the ultra-relativistic limit. We use these results to estimate the gravitational wave signal from detonations and runaway walls.

  8. Two-fluid hydrodynamic modes in a trapped superfluid gas

    International Nuclear Information System (INIS)

    Taylor, E.; Griffin, A.

    2005-01-01

    In the collisional region at finite temperatures, the collective modes of superfluids are described by the Landau two-fluid hydrodynamic equations. This region can now be probed over the entire BCS-Bose-Einstein-condensate crossover in trapped Fermi superfluids with a Feshbach resonance, including the unitarity region. Building on the approach initiated by Zaremba, Nikuni, and Griffin in 1999 for trapped atomic Bose gases, we present a variational formulation of two-fluid hydrodynamic collective modes based on the work of Zilsel in 1950 developed for superfluid helium. Assuming a simple variational Ansatz for the superfluid and normal fluid velocities, the frequencies of the hydrodynamic modes are given by solutions of coupled algebraic equations, with constants only involving spatial integrals over various equilibrium thermodynamic derivatives. This variational approach is both simpler and more physical than a direct attempt to solve the Landau two-fluid differential equations. Our two-fluid results are shown to reduce to those of Pitaevskii and Stringari for a pure superfluid at T=0

  9. Supernova hydrodynamics

    International Nuclear Information System (INIS)

    Colgate, S.A.

    1981-01-01

    The explosion of a star supernova occurs at the end of its evolution when the nuclear fuel in its core is almost, or completely, consumed. The star may explode due to a small residual thermonuclear detonation, type I SN or it may collapse, type I and type II SN leaving a neutron star remnant. The type I progenitor should be thought to be an old accreting white dwarf, 1.4 M/sub theta/, with a close companion star. A type II SN is thought to be a massive young star 6 to 10 M/sub theta/. The mechanism of explosion is still a challenge to our ability to model the most extreme conditions of matter and hydrodynamics that occur presently and excessively in the universe. 39 references

  10. Physical hydrodynamics

    CERN Document Server

    Guyon, Etienne; Petit, Luc; Mitescu, Catalin D

    2015-01-01

    This new edition is an enriched version of the textbook of fluid dynamics published more than 10 years ago. It retains the same physically oriented pedagogical perspective. This book emphasizes, as in the first edition, experimental inductive approaches and relies on the study of the mechanisms at play and on dimensional analysis rather than more formal approaches found in many classical textbooks in the field. The need for a completely new version also originated from the increase, over the last few decades, of the cross-overs between the mechanical and physical approaches, as is visible in international meetings and joint projects. Hydrodynamics is more widely linked today to other fields of experimental sciences: materials, environment, life sciences and earth sciences, as well as engineering sciences.

  11. Hydrodynamic delivery of plasmid DNA encoding human FcγR-Ig dimers blocks immune-complex mediated inflammation in mice.

    Science.gov (United States)

    Shashidharamurthy, R; Machiah, D; Bozeman, E N; Srivatsan, S; Patel, J; Cho, A; Jacob, J; Selvaraj, P

    2012-09-01

    Therapeutic use and function of recombinant molecules can be studied by the expression of foreign genes in mice. In this study, we have expressed human Fcγ receptor-Ig fusion molecules (FcγR-Igs) in mice by administering FcγR-Ig plasmid DNAs hydrodynamically and compared their effectiveness with purified molecules in blocking immune-complex (IC)-mediated inflammation in mice. The concentration of hydrodynamically expressed FcγR-Igs (CD16A(F)-Ig, CD32A(R)-Ig and CD32A(H)-Ig) reached a maximum of 130 μg ml(-1) of blood within 24 h after plasmid DNA administration. The in vivo half-life of FcγR-Igs was found to be 9-16 days and western blot analysis showed that the FcγR-Igs were expressed as a homodimer. The hydrodynamically expressed FcγR-Igs blocked 50-80% of IC-mediated inflammation up to 3 days in a reverse passive Arthus reaction model. Comparative analysis with purified molecules showed that hydrodynamically expressed FcγR-Igs are more efficient than purified molecules in blocking IC-mediated inflammation and had a higher half-life. In summary, these results suggest that the administration of a plasmid vector with the FcγR-Ig gene can be used to study the consequences of blocking IC binding to FcγRs during the development of inflammatory diseases. This approach may have potential therapeutic value in treating IC-mediated inflammatory autoimmune diseases such as lupus, arthritis and autoimmune vasculitis.

  12. Initial conditions for hydrodynamics from weakly coupled pre-equilibrium evolution

    International Nuclear Information System (INIS)

    Mazeliauskas, Aleksas

    2017-01-01

    We use leading order effective kinetic theory to simulate the pre-equilibrium evolution of transverse energy and flow perturbations in heavy-ion collisions. We provide a Green function which propagates the initial perturbations of the energy-momentum tensor to a time when hydrodynamics becomes applicable. With this map, the pre-thermal evolution from saturated nuclei to hydrodynamics can be modeled in the framework of weakly coupled QCD. (paper)

  13. Hydrodynamic analysis application of contaminated groundwater remediation to oil hydrocarbons

    OpenAIRE

    Pajić Predrag R.; Čalenić Aleksandar I.; Polomčić Dušan M.; Bajić Dragoljub I.

    2017-01-01

    In this paper, the application of the hydrodynamic analysis in the selected ‘pumping and treatment’ remediation method of groundwater hydrocarbon pollution in the case of the Pancevo oil refinery is examined. The applied hydrodynamic analysis represents a regular and necessary approach in modern hydrogeology. Previous chemical analysis of soil and groundwater samples at observation objects revealed their pollution by oil products. New researches included the constraction of 12 piezometric bor...

  14. Hydrodynamics automatic optimization of runner blades for reaction hydraulic turbines

    Science.gov (United States)

    Balint, D.; Câmpian, V.; Nedelcu, D.; Megheles, O.

    2012-11-01

    The aim of this paper is to optimize the hydrodynamics of the runner blades of hydraulic turbines. The runner presented is an axial Kaplan one, but the methodology is common also to Francis runners. The whole methodology is implemented in the in-house software QTurbo3D. The effect of the runner blades geometry modification upon its hydrodynamics is shown both from energetic and cavitation points of view.

  15. Hydrodynamics automatic optimization of runner blades for reaction hydraulic turbines

    International Nuclear Information System (INIS)

    Balint, D; Câmpian, V; Nedelcu, D; Megheles, O

    2012-01-01

    The aim of this paper is to optimize the hydrodynamics of the runner blades of hydraulic turbines. The runner presented is an axial Kaplan one, but the methodology is common also to Francis runners. The whole methodology is implemented in the in-house software QTurbo3D. The effect of the runner blades geometry modification upon its hydrodynamics is shown both from energetic and cavitation points of view.

  16. Initial conditions for hydrodynamics from weakly coupled pre-equilibrium evolution

    CERN Document Server

    Keegan, Liam; Mazeliauskas, Aleksas; Teaney, Derek

    2016-01-01

    We use effective kinetic theory, accurate at weak coupling, to simulate the pre-equilibrium evolution of transverse energy and flow perturbations in heavy-ion collisions. We provide a Green function which propagates the initial perturbations to the energy-momentum tensor at a time when hydrodynamics becomes applicable. With this map, the complete pre-thermal evolution from saturated nuclei to hydrodynamics can be modelled in a perturbatively controlled way.

  17. Behavior of passive admixture in a vortical hydrodynamic field

    Directory of Open Access Journals (Sweden)

    R.O.Bobrov

    2006-01-01

    Full Text Available The motion of passive admixture of spherical particles in the stationary hydrodynamic field of a swirling flow is studied. A spherical particle of a given mass in the hydrodynamic field of a swirling flow is located on a certain circular orbit, where the centrifugal force is compensated by the radial drag force due to the sink. This leads to the separation of the host fluid and admixture. A theory of Brownian motion of admixture in dilute solutions with a non-uniform flow is constructed.

  18. On the hydrodynamic limit of self-consistent field equations

    International Nuclear Information System (INIS)

    Pauli, H.C.

    1980-01-01

    As an approximation to the nuclear many-body problem, the hydrodynamical limit of self-consistent field equations is worked out and applied to the treatment of vibrational and rotational motion. Its validity is coupled to the value of a smallness parameter, behaving as 20Asup(-2/3) with the number of nucleons. For finite nuclei, this number is not small enough as compared to 1, and indeed one observes a discrepancy of roughly a factor of 5 between the hydrodynamic frequencies and the relevant experimental numbers. (orig.)

  19. Numerical and experimental investigation on static electric charge model at stable cone-jet region

    Science.gov (United States)

    Hashemi, Ali Reza; Pishevar, Ahmad Reza; Valipouri, Afsaneh; Pǎrǎu, Emilian I.

    2018-03-01

    In a typical electro-spinning process, the steady stretching process of the jet beyond the Taylor cone has a significant effect on the dimensions of resulting nanofibers. Also, it sets up the conditions for the onset of the bending instability. The focus of this work is the modeling and simulation of the initial stable jet phase seen during the electro-spinning process. The perturbation method was applied to solve hydrodynamic equations, and the electrostatic equation was solved by a boundary integral method. These equations were coupled with the stress boundary conditions derived appropriate at the fluid-fluid interface. Perturbation equations were discretized by the second-order finite difference method, and the Newton method was implemented to solve the discretized nonlinear system. Also, the boundary element method was utilized to solve the electrostatic equation. In the theoretical study, the fluid is described as a leaky dielectric with charges only on the jet surface in dielectric air. In this study, electric charges were modeled as static. Comparison of numerical and experimental results shows that at low flow rates and high electric field, good agreement was achieved because of the superior importance of the charge transport by conduction rather than convection and charge concentration. In addition, the effect of unevenness of the electric field around the nozzle tip was experimentally studied through plate-plate geometry as well as point-plate geometry.

  20. Taming axial dispersion in hydrodynamic chromatography columns through wall patterning

    Science.gov (United States)

    Adrover, Alessandra; Cerbelli, Stefano; Giona, Massimiliano

    2018-04-01

    A well-known limitation of hydrodynamic chromatography arises from the synergistic interaction between transverse diffusion and streamwise convection, which enhances axial dispersion through the Taylor-Aris mechanism. We show that a periodic sequence of slip/no-slip conditions at the channel walls (e.g., representing wall indentations hosting stable air pockets) can significantly reduce axial dispersion, thus enhancing separation performance. The theoretical/numerical analysis is based on a generalization of Brenner's macrotransport approach to solute transport, here modified to account for the finite-size of the suspended particles. The most effective dispersion-taming outcome is observed when the alternating sequence of slip/no-slip conditions yields non-vanishing cross-sectional flow components. The combination of these components with the hindering interaction between the channel boundaries and the finite-sized particles gives rise to a non-trivial solution of Brenner's problem on the unit periodic cell, where the cross-sectional particle number density departs from the spatially homogeneous condition. In turn, this effect impacts upon the solution of the so-called b-field defining the large-scale dispersion tensor, with an overall decremental effect on the axial dispersion coefficient and on the Height Equivalent of a Theoretical Plate.

  1. Hydrodynamic control of phytoplankton loss to the benthos in an estuarine environment

    Science.gov (United States)

    Jones, Nicole L.; Thompson, Janet K.; Arrigo, Kevin R.; Monismith, Stephen G.

    2009-01-01

    Field experiments were undertaken to measure the influence of hydrodynamics on the removal of phytoplankton by benthic grazers in Suisun Slough, North San Francisco Bay. Chlorophyll a concentration boundary layers were found over beds inhabited by the active suspension feeders Corbula amurensis and Corophium alienense and the passive suspension feeders Marenzellaria viridis and Laonome sp. Benthic losses of phytoplankton were estimated via both the control volume and the vertical flux approach, in which chlorophyll a concentration was used as a proxy for phytoplankton biomass. The rate of phytoplankton loss to the bed was positively correlated to the bed shear stress. The maximum rate of phytoplankton loss to the bed was five times larger than estimated by laboratory-derived pumping rates for the active suspension feeders. Reasons for this discrepancy are explored including a physical mechanism whereby phytoplankton is entrained in a near-bed fluff layer where aggregation is mediated by the presence of mucus produced by the infaunal community.

  2. Analysis of Hydrodynamic Mechanism on Particles Focusing in Micro-Channel Flows

    Directory of Open Access Journals (Sweden)

    Qikun Wang

    2017-06-01

    Full Text Available In this paper, the hydrodynamic mechanism of moving particles in laminar micro-channel flows was numerically investigated. A hydrodynamic criterion was proposed to determine whether particles in channel flows can form a focusing pattern or not. A simple formula was derived to demonstrate how the focusing position varies with Reynolds number and particle size. Based on this proposed criterion, a possible hydrodynamic mechanism was discussed as to why the particles would not be focused if their sizes were too small or the channel Reynolds number was too low. The Re-λ curve (Re, λ respectively represents the channel-based Reynolds number and the particle’s diameter scaled by the channel was obtained using the data fitting with a least square method so as to obtain a parameter range of the focusing pattern. In addition, the importance of the particle rotation to the numerical modeling for the focusing of particles was discussed in view of the hydrodynamics. This research is expected to deepen the understanding of the particle transport phenomena in bounded flow, either in micro or macro fluidic scope.

  3. Tuning Bacterial Hydrodynamics with Magnetic Fields: A Path to Bacterial Robotics

    Science.gov (United States)

    Pierce, Christopher; Mumper, Eric; Brangham, Jack; Wijesinghe, Hiran; Lower, Stephen; Lower, Brian; Yang, Fengyuan; Sooryakumar, Ratnasingham

    Magnetotactic Bacteria (MTB) are a group of motile prokaryotes that synthesize chains of lipid-bound, magnetic nano-particles. In this study, the innate magnetism of these flagellated swimmers is exploited to explore their hydrodynamics near confining surfaces, using the magnetic field as a tuning parameter. With weak (Gauss), uniform, external, magnetic ?elds and the field gradients arising from micro-magnetic surface patterns, the relative strength of hydrodynamic, magnetic and ?agellar force components is tuned through magnetic control of the bacteria's orientation and position. In addition to direct measurement of several hydrodynamic quantities related to the motility of individual cells, their tunable dynamics reveal a number of novel, highly controllable swimming behaviors with potential value in micro-robotics applications. Specifically, the experiments permit the MTB cells to be directed along parallel or divergent trajectories, suppress their flagellar forces through magnetic means, and induce transitions between planar, circulating trajectories and drifting, vertically oriented ``top-like'' motion. The implications of the work for fundamental hydrodynamics research as well as bacterially driven robotics applications will be discussed.

  4. Generalized hydrodynamic treatment of the interplay between restricted transport and catalytic reactions in nanoporous materials.

    Science.gov (United States)

    Ackerman, David M; Wang, Jing; Evans, James W

    2012-06-01

    Behavior of catalytic reactions in narrow pores is controlled by a delicate interplay between fluctuations in adsorption-desorption at pore openings, restricted diffusion, and reaction. This behavior is captured by a generalized hydrodynamic formulation of appropriate reaction-diffusion equations (RDE). These RDE incorporate an unconventional description of chemical diffusion in mixed-component quasi-single-file systems based on a refined picture of tracer diffusion for finite-length pores. The RDE elucidate the nonexponential decay of the steady-state reactant concentration into the pore and the non-mean-field scaling of the reactant penetration depth.

  5. An analytical study of thermo-hydrodynamic behaviour of the reflood-phase during a LOCA

    International Nuclear Information System (INIS)

    Murao, Y.

    1977-12-01

    The objectives of this study are - the check of the quench model proposed by the author and T. Sudoh, - the establishment of the thermo-hydrodynamics downstream from the quench front, and - the stabilization of the numerical calculations. In order to study these therms, the new version of the reflood analysis code 'REFLA-1D' was developed. The quench modes were classified into the following three types: 1) Liquid column type (rewetting by subcooled water), 2) Dryout type (annular flow type, rewetting by saturated water), and 3) Rewetting type (entire surface temperature higher than rewetting temperature). For the thermo-hydrodynamic model downstream from the quench front, the flow pattern was divided into the five regimes: 1) Subcooled film boiling regime, 2) Transition flow regime, 3) Dispersed flow regime, 4) Superheated steam flow regime, and 5) Rewetted regime. To stabilze the numerical calculation and shorten the computing time, the Lagrangian form of the energy equation of gase phase and dispersed flow region was used instead of the Eulerian form. Considerably close agreement between three PWR-FLECHT tests and the calculated results for the critical Weber number Wec=1.0 was obtained for fuel clad surface temperature and quench time except in earlier stage before turnaround, but poor agreement for the heat transfer characteristics in the transition flow region defined between the quench front and the dispersed flow region. The calculation was relatively stable and the computing time is about the same as a real time for a IBM 370-158 computer. (orig.) [de

  6. Acoustic-hydrodynamic-flame coupling—A new perspective for zero and low Mach number flows

    Science.gov (United States)

    Pulikkottil, V. V.; Sujith, R. I.

    2017-04-01

    A combustion chamber has a hydrodynamic field that convects the incoming fuel and oxidizer into the chamber, thereby causing the mixture to react and produce heat energy. This heat energy can, in turn, modify the hydrodynamic and acoustic fields by acting as a source and thereby, establish a positive feedback loop. Subsequent growth in the amplitude of the acoustic field variables and their eventual saturation to a limit cycle is generally known as thermo-acoustic instability. Mathematical representation of these phenomena, by a set of equations, is the subject of this paper. In contrast to the ad hoc models, an explanation of the flame-acoustic-hydrodynamic coupling, based on fundamental laws of conservation of mass, momentum, and energy, is presented in this paper. In this paper, we use a convection reaction diffusion equation, which, in turn, is derived from the fundamental laws of conservation to explain the flame-acoustic coupling. The advantage of this approach is that the physical variables such as hydrodynamic velocity and heat release rate are coupled based on the conservation of energy and not based on an ad hoc model. Our approach shows that the acoustic-hydrodynamic interaction arises from the convection of acoustic velocity fluctuations by the hydrodynamic field and vice versa. This is a linear mechanism, mathematically represented as a convection operator. This mechanism resembles the non-normal mechanism studied in hydrodynamic theory. We propose that this mechanism could relate the instability mechanisms of hydrodynamic and thermo-acoustic systems. Furthermore, the acoustic-hydrodynamic interaction is shown to be responsible for the convection of entropy disturbances from the inlet of the chamber. The theory proposed in this paper also unifies the observations in the fields of low Mach number flows and zero Mach number flows. In contrast to the previous findings, where compressibility is shown to be causing different physics for zero and low Mach

  7. Anisotropic hydrodynamics, holography and the chiral magnetic effect

    International Nuclear Information System (INIS)

    Gahramanov, Ilmar; Kalaydzhyan, Tigran; Kirsch, Ingo; Hamburg Univ.

    2012-03-01

    We discuss a possible dependence of the chiral magnetic effect (CME) on the elliptic flow coefficient υ 2 . We first study this in a hydrodynamic model for a static anisotropic plasma with multiple anomalous U(1) currents. In the case of two charges, one axial and one vector, the CME formally appears as a first-order transport coefficient in the vector current. We compute this transport coefficient and show its dependence on υ 2 . We also determine the CME-coefficient from first-order corrections to the dual AdS background using the fluid-gravity duality. For small anisotropies, we find numerical agreement with the hydrodynamic result. (orig.)

  8. Anisotropic hydrodynamics, holography and the chiral magnetic effect

    Energy Technology Data Exchange (ETDEWEB)

    Gahramanov, Ilmar; Kalaydzhyan, Tigran; Kirsch, Ingo [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Hamburg Univ. (Germany). Zentrum fuer Mathematische Physik

    2012-03-15

    We discuss a possible dependence of the chiral magnetic effect (CME) on the elliptic flow coefficient {upsilon}{sub 2}. We first study this in a hydrodynamic model for a static anisotropic plasma with multiple anomalous U(1) currents. In the case of two charges, one axial and one vector, the CME formally appears as a first-order transport coefficient in the vector current. We compute this transport coefficient and show its dependence on {upsilon}{sub 2}. We also determine the CME-coefficient from first-order corrections to the dual AdS background using the fluid-gravity duality. For small anisotropies, we find numerical agreement with the hydrodynamic result. (orig.)

  9. Challenges to Ship Hydrodynamics in the XXI Century

    Directory of Open Access Journals (Sweden)

    Lech Kobylinski

    2014-09-01

    Full Text Available The beginning of twenty-first century is characterized with important changes in world shipping and exploitation of ocean resources. Three important trends are clearly visible: environment protection, safety and economy. They materialize in important changes in the structure of world fleet where some existing ship types are going to disappear and new ship types emerge. Increasing the size of some ship types is another visible tendency. Stress on environment protection has serious impact on the hydrodynamic characteristics of ships whether with regard to safety zero accident rate is the goal. Important challenges to ship hydrodynamics caused by those tendencies are discussed in the paper.

  10. Synthesis and spectroscopic studies of stable aqueous dispersion of silver nanoparticles.

    Science.gov (United States)

    El-Shishtawy, Reda M; Asiri, Abdullah M; Al-Otaibi, Maha M

    2011-09-01

    A facile approach for the synthesis of stable aqueous dispersion of silver nanoparticles (AgNPs) using glucose as the reducing agent in water/micelles system, in which cetyltrimethylammonium bromide (CTAB) was used as capping agent (stabilizer) is described. The evolution of plasmon band of AgNPs was monitored under different conditions such as (a) concentration of sodium hydroxide, (b) concentration of glucose, (c) concentration of silver nitrate (d) concentration of CTAB, and (e) reaction time. AgNPs were characterized by UV-visible spectroscopy, transmission electron microscopy (TEM), fluorescence spectroscopy and FT-IR spectroscopy. The results revealed an easy and viable strategy for obtaining stable aqueous dispersion of AgNPs with well controlled shape and size below 30 nm in diameter. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Simulation of seismic signals from asymmetric LANL hydrodynamic calculations

    International Nuclear Information System (INIS)

    Stevens, J.L.; Rimer, N.; Halda, E.J.; Barker, T.G.; Davis, C.G.; Johnson, W.E.

    1993-01-01

    Hydrodynamic calculations of an asymmetric nuclear explosion source were propagated to teleseismic distances to investigate the effects of the asymmetric source on seismic signals. The source is an explosion in a 12 meter long canister with the device at one end of the canister and a metal plate adjacent to the explosion. This produces a strongly asymmetric two-lobed source in the hydrodynamic region. The hydrodynamic source is propagated to the far field using a three-step process. The Eulerian hydrodynamic code SOIL was used by LANL to calculate the material velocity, density, and internal energy up to a time of 8.9 milliseconds after the explosion. These quantities were then transferred to an initial grid for the Lagrangian elastic/plastic finite difference code CRAM, which was used by S-CUBED to propagate the signal through the region of nonlinear deformation into the external elastic region. The cavity size and shape at the time of the overlay were determined by searching for a rapid density change in the SOIL grid, and this interior region was then rezoned into a single zone. The CRAM calculation includes material strength and gravity, and includes the effect of the free surface above the explosion. Finally, far field body waves were calculated by integrating over a closed surface in the elastic region and using the representation theorem. A second calculation was performed using an initially spherical source for comparison with the asymmetric calculation

  12. A review and assessment of hydrodynamic cavitation as a technology for the future.

    Science.gov (United States)

    Gogate, Parag R; Pandit, Aniruddha B

    2005-01-01

    In the present work, the current status of the hydrodynamic cavitation reactors has been reviewed discussing the bubble dynamics analysis, optimum design considerations, design correlations for cavitational intensity (in terms of collapse pressure)/cavitational yield and different successful chemical synthesis applications clearly illustrating the utility of these types of reactors. The theoretical discussion based on the modeling of the bubble dynamics equations aims at understanding the design information related to the dependency of the cavitational intensity on the operating parameters and recommendations have been made for the choice of the optimized conditions of operating parameters. The design information based on the theoretical analysis has also been supported with some experimental illustrations concentrating on the chemical synthesis applications. Assessment of the hydrodynamic cavitation reactors and comparison with the sonochemical reactors has been done by citing the different industrially important reactions (oxidation of toluene, o-xylene, m-xylene, p-xylene, mesitylene, o-nitrotoluene, p-nitrotoluene, m-nitrotoluene, o-chlorotoluene and p-chlorotoulene, and trans-esterification reaction i.e., synthesis of bio-diesel). Some recommendations have also been made for the future work to be carried out as well as the choice of the operating conditions for realizing the dream of industrial scale applications of the cavitational reactors.

  13. CMacIonize: Monte Carlo photoionisation and moving-mesh radiation hydrodynamics

    Science.gov (United States)

    Vandenbroucke, Bert; Wood, Kenneth

    2018-02-01

    CMacIonize simulates the self-consistent evolution of HII regions surrounding young O and B stars, or other sources of ionizing radiation. The code combines a Monte Carlo photoionization algorithm that uses a complex mix of hydrogen, helium and several coolants in order to self-consistently solve for the ionization and temperature balance at any given time, with a standard first order hydrodynamics scheme. The code can be run as a post-processing tool to get the line emission from an existing simulation snapshot, but can also be used to run full radiation hydrodynamical simulations. Both the radiation transfer and the hydrodynamics are implemented in a general way that is independent of the grid structure that is used to discretize the system, allowing it to be run both as a standard fixed grid code and also as a moving-mesh code.

  14. Laboratory Study of Magnetorotational Instability and Hydrodynamic Stability at Large Reynolds Numbers

    Science.gov (United States)

    Ji, H.; Burin, M.; Schartman, E.; Goodman, J.; Liu, W.

    2006-01-01

    Two plausible mechanisms have been proposed to explain rapid angular momentum transport during accretion processes in astrophysical disks: nonlinear hydrodynamic instabilities and magnetorotational instability (MRI). A laboratory experiment in a short Taylor-Couette flow geometry has been constructed in Princeton to study both mechanisms, with novel features for better controls of the boundary-driven secondary flows (Ekman circulation). Initial results on hydrodynamic stability have shown negligible angular momentum transport in Keplerian-like flows with Reynolds numbers approaching one million, casting strong doubt on the viability of nonlinear hydrodynamic instability as a source for accretion disk turbulence.

  15. Use of implicit Monte Carlo radiation transport with hydrodynamics and compton scattering

    International Nuclear Information System (INIS)

    Fleck, J.A. Jr.

    1971-03-01

    It is shown that the combination of implicit radiation transport and hydrodynamics, Compton scattering, and any other energy transport can be simply carried out by a ''splitting'' procedure. Contributions to material energy exchange can be reckoned separately for hydrodynamics, radiation transport without scattering, Compton scattering, plus any other possible energy exchange mechanism. The radiation transport phase of the calculation would be implicit, but the hydrodynamics and Compton portions would not, leading to possible time step controls. The time step restrictions which occur on radiation transfer due to large Planck mean absorption cross-sections would not occur

  16. Antimicrobial polyethyleneimine-silver nanoparticles in a stable colloidal dispersion.

    Science.gov (United States)

    Lee, Hyun Ju; Lee, Se Guen; Oh, Eun Jung; Chung, Ho Yun; Han, Sang Ik; Kim, Eun Jung; Seo, Song Yi; Ghim, Han Do; Yeum, Jeong Hyun; Choi, Jin Hyun

    2011-11-01

    Excellent colloidal stability and antimicrobial activity are important parameters for silver nanoparticles (AgNPs) in a range of biomedical applications. In this study, polyethyleneimine (PEI)-capped silver nanoparticles (PEI-AgNPs) were synthesized in the presence of sodium borohydride (NaBH(4)) and PEI at room temperature. The PEI-AgNPs had a positive zeta potential of approximately +49 mV, and formed a stable nanocolloid against agglomeration due to electrostatic repulsion. The particle size and hydrodynamic cluster size showed significant correlations with the amount of PEI and NaBH(4). PEI-AgNPs and even PEI showed excellent antimicrobial activity against Staphylococus aureus and Klebsiella pneumoniae. The cytotoxic effects of PEI and PEI-AgNPs were confirmed by an evaluation of the cell viability. The results suggest that the amount of PEI should be minimized to the level that maintains the stability of PEI-AgNPs in a colloidal dispersion. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Cosmological hydrodynamical simulations of galaxy clusters: X-ray scaling relations and their evolution

    Science.gov (United States)

    Truong, N.; Rasia, E.; Mazzotta, P.; Planelles, S.; Biffi, V.; Fabjan, D.; Beck, A. M.; Borgani, S.; Dolag, K.; Gaspari, M.; Granato, G. L.; Murante, G.; Ragone-Figueroa, C.; Steinborn, L. K.

    2018-03-01

    We analyse cosmological hydrodynamical simulations of galaxy clusters to study the X-ray scaling relations between total masses and observable quantities such as X-ray luminosity, gas mass, X-ray temperature, and YX. Three sets of simulations are performed with an improved version of the smoothed particle hydrodynamics GADGET-3 code. These consider the following: non-radiative gas, star formation and stellar feedback, and the addition of feedback by active galactic nuclei (AGN). We select clusters with M500 > 1014 M⊙E(z)-1, mimicking the typical selection of Sunyaev-Zeldovich samples. This permits to have a mass range large enough to enable robust fitting of the relations even at z ˜ 2. The results of the analysis show a general agreement with observations. The values of the slope of the mass-gas mass and mass-temperature relations at z = 2 are 10 per cent lower with respect to z = 0 due to the applied mass selection, in the former case, and to the effect of early merger in the latter. We investigate the impact of the slope variation on the study of the evolution of the normalization. We conclude that cosmological studies through scaling relations should be limited to the redshift range z = 0-1, where we find that the slope, the scatter, and the covariance matrix of the relations are stable. The scaling between mass and YX is confirmed to be the most robust relation, being almost independent of the gas physics. At higher redshifts, the scaling relations are sensitive to the inclusion of AGNs which influences low-mass systems. The detailed study of these objects will be crucial to evaluate the AGN effect on the ICM.

  18. Fins improve the swimming performance of fish sperm: a hydrodynamic analysis of the Siberian sturgeon Acipenser baerii.

    Science.gov (United States)

    Gillies, Eric A; Bondarenko, Volodymyr; Cosson, Jacky; Pacey, Allan A

    2013-02-01

    The flagella of sturgeon sperm have an ultrastructure comprising paddle-like fins extending along most of their length. These fins are seen in several other marine and freshwater fish. The sperm of these fish are fast swimmers and are relatively short lived: it is therefore tempting to think of these fins as having evolved for hydrodynamic advantage, but the actual advantage they impart, at such a small length scale and slow speed, is unclear. The phrase "the fins improve hydrodynamic efficiency" is commonly found in biological literature, yet little hydrodynamic analysis has previously been used to support such conjectures. In this paper, we examine various hydrodynamic models of sturgeon sperm and investigate both swimming velocity and energy expenditure. All of the models indicate a modest hydrodynamic advantage of finned sperm, in both straight line swimming speed and a hydrodynamic efficiency measure. We find a hydrodynamic advantage for a flagellum with fins, over one without fins, of the order of 15-20% in straight line propulsive velocity and 10-15% in a hydrodynamic efficiency measure. Copyright © 2012 Wiley Periodicals, Inc.

  19. Use of water towing tanks for aerodynamics and hydrodynamics

    Science.gov (United States)

    Gadelhak, Mohamed

    1987-01-01

    Wind tunnels and flumes have become standard laboratory tools for modeling a variety of aerodynamic and hydrodynamic flow problems. Less available, although by no means less useful, are facilities in which a model can be towed (or propelled) through air or water. This article emphasizes the use of the water towing tank as an experimental tool for aerodynamic and hydrodynamic studies. Its advantages and disadvantages over other flow rigs are discussed, and its usefullness is illustrated through many examples of research results obtained over the past few years in a typical towing tank facility.

  20. Hydrodynamic motion of a heavy-ion-beam-heated plasma

    International Nuclear Information System (INIS)

    Jacoby, J.; Hoffmann, D.H.H.; Mueller, R.W.; Mahrt-Olt, K.; Arnold, R.C.; Schneider, V.; Maruhn, J.

    1990-01-01

    The first experimental study is reported of a plasma produced by a heavy-ion beam. Relevant parameters for heating with heavy ions are described, temperature and density of the plasma are determined, and the hydrodynamic motion in the target induced by the beam is studied. The measured temperature and the free-electron density are compared with a two-dimensional hydrodynamic-model calculation. In accordance with the model, a radial rarefaction wave reaching the center of the target was observed and the penetration velocity of the ion beam into the xenon-gas target was measured

  1. Hyperbolic metamaterial lens with hydrodynamic nonlocal response

    DEFF Research Database (Denmark)

    Yan, Wei; Mortensen, N. Asger; Wubs, Martijn

    2013-01-01

    We investigate the effects of hydrodynamic nonlocal response in hyperbolic metamaterials (HMMs), focusing on the experimentally realizable parameter regime where unit cells are much smaller than an optical wavelength but much larger than the wavelengths of the longitudinal pressure waves...... of the free-electron plasma in the metal constituents. We derive the nonlocal corrections to the effective material parameters analytically, and illustrate the noticeable nonlocal effects on the dispersion curves numerically. As an application, we find that the focusing characteristics of a HMM lens...... in the local-response approximation and in the hydrodynamic Drude model can differ considerably. In particular, the optimal frequency for imaging in the nonlocal theory is blueshifted with respect to that in the local theory. Thus, to detect whether nonlocal response is at work in a hyperbolic metamaterial, we...

  2. The effect of a concentration-dependent viscosity on particle transport in a channel flow with porous walls

    KAUST Repository

    Herterich, James G.

    2014-02-02

    The transport of a dilute suspension of particles through a channel with porous walls, accounting for the concentration dependence of the viscosity, is analyzed. In particular, we study two cases of fluid permeation through the porous channel walls: (1) at a constant flux and (2) dependent on the pressure drop across the wall. We also consider the effect of mixing the suspension first compared with point injection by considering inlet concentration distributions of different widths. We find that a pessimal inlet distribution width exists that maximizes the required hydrodynamic pressure for a constant fluid influx. The effect of an external hydrodynamic pressure, to compensate for the reduced transmembrane pressure difference due to osmotic pressure, is investigated. © 2014 American Institute of Chemical Engineers.

  3. Critical scattering of neutrons by Fe: study of the hydrodynamic and critical regions

    International Nuclear Information System (INIS)

    Parette, Georges

    1971-01-01

    In the present work we describe the latest experiments on the critical magnetic scattering of neutrons by iron just above the Curie temperature, performed at the Centre d'Etudes Nucleaires at Saclay. In these experiments we have tried to explore the 'hydrodynamical region' as defined by the 'scaling laws' and to determine the temperature dependence of the diffusion constant. These experiments yield a verification of the recent theoretical calculations made by P. Resibois and C. Piette. These calculations and several measurements which we have conducted show the existence of an intermediate region between the 'critical' and the 'hydrodynamical' regions, which we call the 'quasi-hydrodynamical' region. In the hydrodynamical region, whose borders are well defined by the calculations of Resibois and Piette, our results confirm the theoretical predictions concerning this region. (author) [fr

  4. Hydrodynamic modelling as a need for protection of the surface flows

    International Nuclear Information System (INIS)

    Popovska, Tsvetanka

    1997-01-01

    The problems of flow in the open flows, rivers and lakes especially today require serious access and its global solving. The choice of basic equations and the method of their solving is from the exceptional importance. Regardless of the fact whether two or three dimensional model is selected, as a global mathematical model it should have three phases: (i) hydrodynamic model with which the current picture is determined, (ii) transport-dispersive model with which the distribution of various physical-chemical parameters is determined and (iii) ecological model which uses the results from the first two phases, determines the situation of degradation and concentration of the various parameters and further provides measures for surpassing the negative situations. The flow in the open flows generally is a turbulent phenomena especially in the zones of emptying-releasing on the surface water currents and contaminants. Characteristic for turbulent flows is their stochastic nature, i.e. they lack and kind of regularity of the physic-hydraulic parameters. So, certain measuring are needed and within todays degree of pollution of our surface waters, we should say urgent. This kind of measuring from hydrodynamic aspect are concerned to the boundary and start conditions, or the conditions which rule on the surface, in the bottom and the coast. From the quality aspect, they need systematic measuring of the biological and chemical parameters. This points out to the need of multidisciplinary and not partial access in developing and application of the mathematical model

  5. Fluctuating hydrodynamics for ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Lazaridis, Konstantinos [Department of Mathematics and Statistics, Washington State University, Pullman, 99163 (United States); Wickham, Logan [Department of Computer Science, Washington State University, Richland, 99354 (United States); Voulgarakis, Nikolaos, E-mail: n.voulgarakis@wsu.edu [Department of Mathematics and Statistics, Washington State University, Pullman, 99163 (United States)

    2017-04-25

    We present a mean-field fluctuating hydrodynamics (FHD) method for studying the structural and transport properties of ionic liquids in bulk and near electrified surfaces. The free energy of the system consists of two competing terms: (1) a Landau–Lifshitz functional that models the spontaneous separation of the ionic groups, and (2) the standard mean-field electrostatic interaction between the ions in the liquid. The numerical approach used to solve the resulting FHD-Poisson equations is very efficient and models thermal fluctuations with remarkable accuracy. Such density fluctuations are sufficiently strong to excite the experimentally observed spontaneous formation of liquid nano-domains. Statistical analysis of our simulations provides quantitative information about the properties of ionic liquids, such as the mixing quality, stability, and the size of the nano-domains. Our model, thus, can be adequately parameterized by directly comparing our prediction with experimental measurements and all-atom simulations. Conclusively, this work can serve as a practical mathematical tool for testing various theories and designing more efficient mixtures of ionic liquids. - Highlights: • A new fluctuating hydrodynamics method for ionic liquids. • Description of ionic liquid morphology in bulk and near electrified surfaces. • Direct comparison with experimental measurements.

  6. Numerical methods for hydrodynamic stability problems

    International Nuclear Information System (INIS)

    Fujimura, Kaoru

    1985-11-01

    Numerical methods for solving the Orr-Sommerfeld equation, which is the fundamental equation of the hydrodynamic stability theory for various shear flows, are reviewed and typical numerical results are presented. The methods of asymptotic solution, finite difference methods, initial value methods and expansions in orthogonal functions are compared. (author)

  7. Hydrodynamic impact response, a flexible view

    NARCIS (Netherlands)

    Vredeveldt, A.W.; Hoogeland, M.; Janssen, G.Th.M.

    2001-01-01

    The popularity of high-speed craft is steadily increasing. Until now, much attention has been focussed on the hydrodynamic aspects of these craft. The structural design of these vessels is usually considered in a quasi static sense. However, due to the requirement of light ship structures, fast ship

  8. Stability and dynamical features of solitary wave solutions for a hydrodynamic-type system taking into account nonlocal effects

    Science.gov (United States)

    Vladimirov, Vsevolod A.; Maçzka, Czesław; Sergyeyev, Artur; Skurativskyi, Sergiy

    2014-06-01

    We consider a hydrodynamic-type system of balance equations for mass and momentum closed by the dynamical equation of state taking into account the effects of spatial nonlocality. We study higher symmetry admitted by this system and establish its non-integrability for the generic values of parameters. A system of ODEs obtained from the system under study through the group theory reduction is investigated. The reduced system is shown to possess a family of the homoclinic solutions describing solitary waves of compression and rarefaction. The waves of compression are shown to be unstable. On the contrary, the waves of rarefaction are likely to be stable. Numerical simulations reveal some peculiarities of solitary waves of rarefaction, and, in particular, the recovery of their shape after the collisions.

  9. Physical-chemical hydrodynamics of the processes of sorption-membrane technology of LRW treatment

    International Nuclear Information System (INIS)

    Alexander D Efanov; Pyotr N Martynov; Yuri D Boltoev; Ivan V Yagodkin; Nataliya G Bogdanovich; Sergey S Skvortsov; Alexander R Sokolovsky; Elena V Ignatova; Gennady V Grigoriev; Vitaly V Grigorov

    2005-01-01

    Full text of publication follows: Liquid radioactive NPP waste is generated, when radioactive water is collected and mixed from various routine and non-routine process measures being performed in accordance with the operating regulations of reactor units with water coolant. The main sources of LRW are the primary loop water coolant, deactivation, regeneration and rinse waters, waste laundry and showers water producing the initial averaged LRW as well as spent fuel element cooling pond water and water of biological protection tanks. LRW handling can be substantially advanced, in particular, through development and introduction of the non-conventional sorption-membrane technology of NPP LRW treatment, being developed at SSC RF IPPE. This technology makes use of natural inorganic sorbents (tripolite, zeolite, ion-exchange materials) and filtering nano-structured metallic and ceramic membranes (titanium, zirconium, chromium and other or their oxides, carbides and nitrides). The efficiency of the sorption membrane technology is associated just with the investigation of the physical-chemical processes of sorption, coagulation and sedimentation under the conditions of forced and free convection occurring in LRW. Besides, it is necessary to take into consideration that the hydrodynamics of the flows of LRW being decontaminated by membrane filtration depends on the structure and composition of the porous composition pare 'nano-structured membrane-substrate'. Neglecting these peculiarities can result in drastic reduction of the time of stable LRW filtration, reduction of the operability resource of filtration systems or in quick mechanical destruction of porous materials. The paper presents the investigation results on: -the effect of the convection flows being generated by air bubbling or LRW stirring by agitator on the static sorption conditions (sorption time, medium pH, sorbent dispersity, sorbent concentration in liquid medium) and on the efficiency of extraction by

  10. Biomimetic shark skin: design, fabrication and hydrodynamic function.

    Science.gov (United States)

    Wen, Li; Weaver, James C; Lauder, George V

    2014-05-15

    Although the functional properties of shark skin have been of considerable interest to both biologists and engineers because of the complex hydrodynamic effects of surface roughness, no study to date has successfully fabricated a flexible biomimetic shark skin that allows detailed study of hydrodynamic function. We present the first study of the design, fabrication and hydrodynamic testing of a synthetic, flexible, shark skin membrane. A three-dimensional (3D) model of shark skin denticles was constructed using micro-CT imaging of the skin of the shortfin mako (Isurus oxyrinchus). Using 3D printing, thousands of rigid synthetic shark denticles were placed on flexible membranes in a controlled, linear-arrayed pattern. This flexible 3D printed shark skin model was then tested in water using a robotic flapping device that allowed us to either hold the models in a stationary position or move them dynamically at their self-propelled swimming speed. Compared with a smooth control model without denticles, the 3D printed shark skin showed increased swimming speed with reduced energy consumption under certain motion programs. For example, at a heave frequency of 1.5 Hz and an amplitude of ± 1 cm, swimming speed increased by 6.6% and the energy cost-of-transport was reduced by 5.9%. In addition, a leading-edge vortex with greater vorticity than the smooth control was generated by the 3D printed shark skin, which may explain the increased swimming speeds. The ability to fabricate synthetic biomimetic shark skin opens up a wide array of possible manipulations of surface roughness parameters, and the ability to examine the hydrodynamic consequences of diverse skin denticle shapes present in different shark species. © 2014. Published by The Company of Biologists Ltd.

  11. Numerical modeling of hydrodynamic in southwestern Johor, Malaysia

    Science.gov (United States)

    Jusoh, Wan Hasliza Wan; Tangang, Fredolin; Juneng, Liew; Hamid, Mohd. Radzi Abdul

    2014-09-01

    Tanjung Piai located at the southwest of Johor, Malaysia faces severe erosion since a few decades ago. Considering the condition in this particular area, understanding of its hydrodynamic behaviour should be clearly explained. Thus, a numerical modelling has been applied in this study in order to investigate the hydrodynamic of current flow along the study area. Hydrodynamic study was carried out by applying a numerical modelling of MIKE 21 software based on flexible mesh grids. The model generally described the current flow pattern in the study area corresponding to the several flows from surrounding water regime which are Malacca Strait, Singapore Strait and Java Sea. The interaction of various water flows in the area of Tanjung Piai which is located in the middle part of the meeting of the currents to have a very complicated hydrodynamic conditions. The study area generally experienced two tidal phase in a day as the water flows is greatly influenced by the adjacent water flow from Malacca and Singapore Straits. During first tidal cycle, the most dominant flow is influenced by a single water flow which is Malacca Strait for both ebbing and flooding event. The current velocity was generally higher during this first tidal phase particularly at the tips of Tanjung Piai where severe erosion is spotted. However, the second tidal phase gives different stress to the study area as the flow is relatively dominated by both Malacca and Singapore Straits. During this phase, the meeting of current from both straits can be discovered near to the Tanjung Piai as this occurrence makes relatively slower current velocity around the study area. Basically, the numerical modelling result in this study can be considered as basic information in describing the condition of study area as it would be very useful for extensive study especially the study of sediment transport and morphological processes in the coastal area.

  12. Biomedical device prototype based on small scale hydrodynamic cavitation

    Science.gov (United States)

    Ghorbani, Morteza; Sozer, Canberk; Alcan, Gokhan; Unel, Mustafa; Ekici, Sinan; Uvet, Huseyin; Koşar, Ali

    2018-03-01

    This study presents a biomedical device prototype based on small scale hydrodynamic cavitation. The application of small scale hydrodynamic cavitation and its integration to a biomedical device prototype is offered as an important alternative to other techniques, such as ultrasound therapy, and thus constitutes a local, cheap, and energy-efficient solution, for urinary stone therapy and abnormal tissue ablation (e.g., benign prostate hyperplasia (BPH)). The destructive nature of bubbly, cavitating, flows was exploited, and the potential of the prototype was assessed and characterized. Bubbles generated in a small flow restrictive element (micro-orifice) based on hydrodynamic cavitation were utilized for this purpose. The small bubbly, cavitating, flow generator (micro-orifice) was fitted to a small flexible probe, which was actuated with a micromanipulator using fine control. This probe also houses an imaging device for visualization so that the emerging cavitating flow could be locally targeted to the desired spot. In this study, the feasibility of this alternative treatment method and its integration to a device prototype were successfully accomplished.

  13. Biomedical device prototype based on small scale hydrodynamic cavitation

    Directory of Open Access Journals (Sweden)

    Morteza Ghorbani

    2018-03-01

    Full Text Available This study presents a biomedical device prototype based on small scale hydrodynamic cavitation. The application of small scale hydrodynamic cavitation and its integration to a biomedical device prototype is offered as an important alternative to other techniques, such as ultrasound therapy, and thus constitutes a local, cheap, and energy-efficient solution, for urinary stone therapy and abnormal tissue ablation (e.g., benign prostate hyperplasia (BPH. The destructive nature of bubbly, cavitating, flows was exploited, and the potential of the prototype was assessed and characterized. Bubbles generated in a small flow restrictive element (micro-orifice based on hydrodynamic cavitation were utilized for this purpose. The small bubbly, cavitating, flow generator (micro-orifice was fitted to a small flexible probe, which was actuated with a micromanipulator using fine control. This probe also houses an imaging device for visualization so that the emerging cavitating flow could be locally targeted to the desired spot. In this study, the feasibility of this alternative treatment method and its integration to a device prototype were successfully accomplished.

  14. Relativistic hydrodynamics in the presence of puncture black holes

    International Nuclear Information System (INIS)

    Faber, Joshua A.; Etienne, Zachariah B.; Shapiro, Stuart L.; Taniguchi, Keisuke; Baumgarte, Thomas W.

    2007-01-01

    Many of the recent numerical simulations of binary black holes in vacuum adopt the moving puncture approach. This successful approach avoids the need to impose numerical excision of the black hole interior and is easy to implement. Here we wish to explore how well the same approach can be applied to moving black hole punctures in the presence of relativistic hydrodynamic matter. First, we evolve single black hole punctures in vacuum to calibrate our Baumgarte-Shapiro-Shibata-Nakamura implementation and to confirm that the numerical solution for the exterior spacetime is invariant to any junk (i.e., constraint-violating) initial data employed in the black hole interior. Then we focus on relativistic Bondi accretion onto a moving puncture Schwarzschild black hole as a numerical test bed for our high-resolution shock-capturing relativistic hydrodynamics scheme. We find that the hydrodynamical equations can be evolved successfully in the interior without imposing numerical excision. These results help motivate the adoption of the moving puncture approach to treat the binary black hole-neutron star problem using conformal thin-sandwich initial data

  15. Optimization of MBR hydrodynamics for cake layer fouling control through CFD simulation and RSM design.

    Science.gov (United States)

    Yang, Min; Yu, Dawei; Liu, Mengmeng; Zheng, Libing; Zheng, Xiang; Wei, Yuansong; Wang, Fang; Fan, Yaobo

    2017-03-01

    Membrane fouling is an important issue for membrane bioreactor (MBR) operation. This paper aims at the investigation and the controlling of reversible membrane fouling due to cake layer formation and foulants deposition by optimizing MBR hydrodynamics through the combination of computational fluid dynamics (CFD) and design of experiment (DOE). The model was validated by comparing simulations with measurements of liquid velocity and dissolved oxygen (DO) concentration in a lab-scale submerged MBR. The results demonstrated that the sludge concentration is the most influencing for responses including shear stress, particle deposition propensity (PDP), sludge viscosity and strain rate. A medium sludge concentration of 8820mgL -1 is optimal for the reduction of reversible fouling in this submerged MBR. The bubble diameter is more decisive than air flowrate for membrane shear stress due to its role in sludge viscosity. The optimal bubble diameter was at around 4.8mm for both of shear stress and PDP. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Metal of cavitation erosion of a hydrodynamic reactor

    Science.gov (United States)

    Zakirzakov, A. G.; Brand, A. E.; Petryakov, V. A.; Gordievskaya, E. F.

    2017-02-01

    Cavitation erosion is a major cause of the petroleum equipment hydraulic erosion, which leads to the metal weight loss of the equipment and its breakdown, which can be followed by the full stop of the plant or company work. The probability of the metal weight loss and equipment failure can be reduced by the use of special protective coatings or rivets, made of the sacrificial metals, the use of which significantly increases the service life and the production equipment reliability. The article investigates the cavitation erosion effect, occurred under the condition of the advanced hydrodynamic cavitation on the hydrodynamic cavitation reactor. This article presents the results of the experiments and recommendations for increasing the operational resource.

  17. A Novel Disintegration Tester for Solid Dosage Forms Enabling Adjustable Hydrodynamics.

    Science.gov (United States)

    Kindgen, Sarah; Rach, Regine; Nawroth, Thomas; Abrahamsson, Bertil; Langguth, Peter

    2016-08-01

    A modified in vitro disintegration test device was designed that enables the investigation of the influence of hydrodynamic conditions on disintegration of solid oral dosage forms. The device represents an improved derivative of the compendial PhEur/USP disintegration test device. By the application of a computerized numerical control, a variety of physiologically relevant moving velocities and profiles can be applied. With the help of computational fluid dynamics, the hydrodynamic and mechanical forces present in the probe chamber were characterized for a variety of device moving speeds. Furthermore, a proof of concept study aimed at the investigation of the influence of hydrodynamic conditions on disintegration times of immediate release tablets. The experiments demonstrated the relevance of hydrodynamics for tablet disintegration, especially in media simulating the fasted state. Disintegration times increased with decreasing moving velocity. A correlation between experimentally determined disintegration times and computational fluid dynamics predicted shear stress on tablet surface was established. In conclusion, the modified disintegration test device is a valuable tool for biorelevant in vitro disintegration testing of solid oral dosage forms. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  18. Hydrodynamic effects of air sparging on hollow fiber membranes in a bubble column reactor.

    Science.gov (United States)

    Xia, Lijun; Law, Adrian Wing-Keung; Fane, Anthony G

    2013-07-01

    Air sparging is now a standard approach to reduce concentration polarization and fouling of membrane modules in membrane bioreactors (MBRs). The hydrodynamic shear stresses, bubble-induced turbulence and cross flows scour the membrane surfaces and help reduce the deposit of foulants onto the membrane surface. However, the detailed quantitative knowledge on the effect of air sparging remains lacking in the literature due to the complex hydrodynamics generated by the gas-liquid flows. To date, there is no valid model that describes the relationship between the membrane fouling performance and the flow hydrodynamics. The present study aims to examine the impact of hydrodynamics induced by air sparging on the membrane fouling mitigation in a quantitative manner. A modelled hollow fiber module was placed in a cylindrical bubble column reactor at different axial heights with the trans-membrane pressure (TMP) monitored under constant flux conditions. The configuration of bubble column without the membrane module immersed was identical to that studied by Gan et al. (2011) using Phase Doppler Anemometry (PDA), to ensure a good quantitative understanding of turbulent flow conditions along the column height. The experimental results showed that the meandering flow regime which exhibits high flow instability at the 0.3 m is more beneficial to fouling alleviation compared with the steady flow circulation regime at the 0.6 m. The filtration tests also confirmed the existence of an optimal superficial air velocity beyond which a further increase is of no significant benefit on the membrane fouling reduction. In addition, the alternate aeration provided by two air stones mounted at the opposite end of the diameter of the bubble column was also studied to investigate the associated flow dynamics and its influence on the membrane filtration performance. It was found that with a proper switching interval and membrane module orientation, the membrane fouling can be effectively

  19. High-Temperature Thermochemical Storage with Redox-Stable Perovskites for Concentrating Solar Power, CRADA Number: CRD-14-554

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhiwen [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-05

    As part of a Federal Opportunity Announcement (FOA) Award, the project will be led by Colorado School of Mines (CSM) to explore and demonstrate the efficacy of highly reducible, redox-stable oxides to provide efficient thermochemical energy storage for heat release at temperatures of 900 degrees Celcius or more. NREL will support the material development for its application in a concentrating solar power (CSP) plant. In the project, NREL will provide its inventive system design, chemical looping for CSP, and use it as a platform to accommodate the chemical processes using a cost effective perovskite materials identified by CSM. NREL will design a 5-10kW particle receiver for perovskite reduction to store solar energy and help the development of a fluidized-bed reoxidation reactor and system integration. NREL will develop the demonstration receiver for on-sun test in the 5-10 kWt range in NREL's high flux solar furnace. NREL will assist in system analysis and provide techno-economic inputs for the overall system configuration.

  20. Modeling hydrodynamic cavitation

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, P.S.; Pandit, A.B. [Mumbai Univ. (India). Chemical Engineering Div.

    1999-12-01

    Cavitation as a source and method of energy input for chemical processing is increasingly studied due to its ability to generate localized high temperatures and pressures under nearly ambient conditions. Compared to cavitation generated by ultrasound, hydrodynamic cavitation has been proved to be a very energy-efficient alternative. A simple and unified model has been developed to study the cavitation phenomena in hydraulic systems with emphasis on the venturi tube and high-speed homogenizer. The model has been found to be satisfactory in explaining the effect of operating variables and equipment geometry on two different modes of cavitation generation qualitatively and in some cases quantitatively. (orig.)

  1. Plasmas in particle accelerators: a hydrodynamic model of three-dimensional electrostatic instabilities

    International Nuclear Information System (INIS)

    Krafft, G.A.; Mark, J.W.K.; Wang, T.S.F.

    1983-01-01

    In an earlier paper, closed hydrodynamic equations were derived with possible application to the simulation of beam plasmas relevant to designs of heavy ion accelerators for inertial confinement fusion energy applications. The closure equations involved a novel feature of anisotropic stresses even transverse to the beam. A related hydrodynamic model is used in this paper to examine further the boundaries of validity of such hydrodynamic approximations. It is also proposed as a useful tool to provide an economic means for searching the large parameter space relevant to three-dimensional stability problems involving coupling of longitudinal and transverse motions in the presence of wall impedance

  2. Dissolved organic carbon, CO2, and CH4 concentrations and their stable isotope ratios in thermokarst lakes on the Qinghai-Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Cuicui Mu

    2016-01-01

    Full Text Available Thermokarst lakes are widely distributed on the Qinghai-Tibetan Plateau (QTP, which accounts for 8% of the global permafrost area. These lakes probably promote organic matter biodegradation and thus accelerate the emission of carbon-based greenhouse gases. However, little is known about greenhouse gas concentrations and their stable isotopes characteristics of these lakes. In this study, we measured the concentrations of dissolved organic carbon (DOC, dissolved CO2 and CH4, as well as the distribution of δ13CCO2, δ13CCH4, and δ13COM (organic matter of lake sediments in thermokarst lakes on the QTP. Results showed that the OM of the lake sediments was highly decomposed. The concentrations of DOC, CO2 and CH4 in the lake water on the QTP were 1.2–49.6 mg L–1, 3.6–45.0 μmol L–1 and 0.28–3.0 μmol L–1, respectively. The highest CO2 and CH4 concentrations were recorded in July while the lowest values in September, which suggested that temperature had an effect on greenhouse gas production, although this pattern may also relate to thermal stratification of the water column. The results implied that thermokast lakes should be paid more attention to regarding carbon cycle and greenhouse gas emissions on the QTP.

  3. Force production during squats performed with a rotational resistance device under stable versus unstable conditions.

    Science.gov (United States)

    Moras, Gerard; Vázquez-Guerrero, Jairo

    2015-11-01

    [Purpose] Force production during a squat action on a rotational resistance device (RRD) under stable and unstable conditions. [Subjects and Methods] Twenty-one healthy males were asked to perform six sets of six repetitions of squats on an RRD on either stable or unstable surfaces. The stable and unstable sets were performed on different days. Muscular outputs were obtained from a linear encoder and a strain gauge fixed to a vest. [Results] Overall, the results showed no significant differences for any of the dependent variables across exercise modes. Forcemean outputs were higher in the concentric phase than in the eccentric phase for each condition, but there were no differences in velocity, time or displacement. The forcepeak was similar in the eccentric and concentric phases of movement under both stable and unstable conditions. There were no significant differences in forcemean between sets per condition or between conditions. [Conclusion] These results suggest that performing squats with a RRD achieves similar forcemean and forcepeak under stable and unstable conditions. The forcepeak produced is also similar in concentric and eccentric phases.

  4. Hydrodynamics and phases of flocks

    International Nuclear Information System (INIS)

    Toner, John; Tu Yuhai; Ramaswamy, Sriram

    2005-01-01

    We review the past decade's theoretical and experimental studies of flocking: the collective, coherent motion of large numbers of self-propelled 'particles' (usually, but not always, living organisms). Like equilibrium condensed matter systems, flocks exhibit distinct 'phases' which can be classified by their symmetries. Indeed, the phases that have been theoretically studied to date each have exactly the same symmetry as some equilibrium phase (e.g., ferromagnets, liquid crystals). This analogy with equilibrium phases of matter continues in that all flocks in the same phase, regardless of their constituents, have the same 'hydrodynamic'-that is, long-length scale and long-time behavior, just as, e.g., all equilibrium fluids are described by the Navier-Stokes equations. Flocks are nonetheless very different from equilibrium systems, due to the intrinsically nonequilibrium self-propulsion of the constituent 'organisms'. This difference between flocks and equilibrium systems is most dramatically manifested in the ability of the simplest phase of a flock, in which all the organisms are, on average moving in the same direction (we call this a 'ferromagnetic' flock; we also use the terms 'vector-ordered' and 'polar-ordered' for this situation) to exist even in two dimensions (i.e., creatures moving on a plane), in defiance of the well-known Mermin-Wagner theorem of equilibrium statistical mechanics, which states that a continuous symmetry (in this case, rotation invariance, or the ability of the flock to fly in any direction) can not be spontaneously broken in a two-dimensional system with only short-ranged interactions. The 'nematic' phase of flocks, in which all the creatures move preferentially, or are simply oriented preferentially, along the same axis, but with equal probability of moving in either direction, also differs dramatically from its equilibrium counterpart (in this case, nematic liquid crystals). Specifically, it shows enormous number fluctuations, which

  5. Hydrodynamic analysis and simulation of a flow cell ammonia electrolyzer

    International Nuclear Information System (INIS)

    Diaz, Luis A.; Botte, Gerardine G.

    2015-01-01

    Highlights: • NH_3 electrooxidation mechanism was validated in a bench scale electrolyzer. • All kinetic parameters for NH_3 electro-oxidation were calculated and verified. • Hydrodynamic behavior of the NH_3 electrolyzer was properly described as a CSTR. • CSTR model was successfully applied to simulate a flow ammonia electrolyzer. - Abstract: The hydrodynamic analysis and simulation of a non-ideal single pass flow cell alkaline ammonia electrolyzer was performed after the scale-up of a well-characterized deposited polycrystalline Pt on Ni anode. The hydrodynamic analysis was performed using the residence time distribution (RTD) test. The results of the hydrodynamic investigation provide additional insights for the kinetic analysis of the ammonia electrooxidation reaction on polycrystalline Pt electrocatalysts -which are typically obtained under controlled flow regime, e.g., rotating disk electrode- by including the flow non-uniformity present in the electrolyzer. Based on the RTD function, the ammonia electrolyzer performance was simulated as a non-steady stirred tank reactor (CSTR) and the unknown kinetic parameters were obtained by fitting the simulation results with an experimental current profile, obtaining an adequate prediction of the ammonia conversion. This simplified approach for the simulation of the ammonia electrolyzer could be implemented in process simulation packages and could be used for the design and scale-up of the process for hydrogen production and wastewater remediation.

  6. Clustering and phase behaviour of attractive active particles with hydrodynamics.

    Science.gov (United States)

    Navarro, Ricard Matas; Fielding, Suzanne M

    2015-10-14

    We simulate clustering, phase separation and hexatic ordering in a monolayered suspension of active squirming disks subject to an attractive Lennard-Jones-like pairwise interaction potential, taking hydrodynamic interactions between the particles fully into account. By comparing the hydrodynamic case with counterpart simulations for passive and active Brownian particles, we elucidate the relative roles of self-propulsion, interparticle attraction, and hydrodynamic interactions in determining clustering and phase behaviour. Even in the presence of an attractive potential, we find that hydrodynamic interactions strongly suppress the motility induced phase separation that might a priori have been expected in a highly active suspension. Instead, we find only a weak tendency for the particles to form stringlike clusters in this regime. At lower activities we demonstrate phase behaviour that is broadly equivalent to that of the counterpart passive system at low temperatures, characterized by regimes of gas-liquid, gas-solid and liquid-solid phase coexistence. In this way, we suggest that a dimensionless quantity representing the level of activity relative to the strength of attraction plays the role of something like an effective non-equilibrium temperature, counterpart to the (dimensionless) true thermodynamic temperature in the passive system. However there are also some important differences from the equilibrium case, most notably with regards the degree of hexatic ordering, which we discuss carefully.

  7. Numerical Analysis of Hydrodynamics for Bionic Oscillating Hydrofoil Based on Panel Method

    Directory of Open Access Journals (Sweden)

    Gang Xue

    2016-01-01

    Full Text Available The kinematics model based on the Slender-Body theory is proposed from the bionic movement of real fish. The Panel method is applied to the hydrodynamic performance analysis innovatively, with the Gauss-Seidel method to solve the Navier-Stokes equations additionally, to evaluate the flexible deformation of fish in swimming accurately when satisfying the boundary conditions. A physical prototype to mimic the shape of tuna is developed with the revolutionized technology of rapid prototyping manufacturing. The hydrodynamic performance for rigid oscillating hydrofoil is analyzed with the proposed method, and it shows good coherence with the cases analyzed by the commercial software Fluent and the experimental data from robofish. Furthermore, the hydrodynamic performance of coupled hydrofoil, which consisted of flexible fish body and rigid caudal fin, is analyzed with the proposed method. It shows that the caudal fin has great influence on trailing vortex shedding and the phase angle is the key factor on hydrodynamic performance. It is verified that the shape of trailing vortex is similar to the image of the motion curve at the trailing edge as the assumption of linear vortex plane under the condition of small downwash velocity. The numerical analysis of hydrodynamics for bionic movement based on the Panel method has certain value to reveal the fish swimming mechanism.

  8. Comparison of Nannochloropsis sp. cells disruption between hydrodynamic cavitation and conventional extraction

    Directory of Open Access Journals (Sweden)

    Setyawan Martomo

    2018-01-01

    Full Text Available Biodiesel production from microalgae is one of the solution of the future energy problem, but its production cost is still high. One of the costly stages of this process is the lipid extraction process. It can be reduced by microalgae cell disruption. One of the mechanical method to cell disruption with the lowest energy requirement is hydrodynamic cavitation. This aim of this study is to evaluate the distribution coefficient and the mass transfer coefficient value of lipid extraction of Nannochloropsis sp. assisted by hydrodynamic cavitation and compare with conventional extraction. The hydrodynamic cavitation extraction was done at 34 °C, 1 atm. The conventional extraction was done at 34 °C, 1 atm with stirring speed 260 and 1000 rpm. The experimental result shows that the distribution coefficient dependent on the temperature with the values for 50, 44, 38 and 34 °C were 0.502, 0.394, 0.349, and 0.314 respectively. And it was according to Van’ Hoff equation with the values of ΔH° was 20.718 kJ/mol and ΔS° was 58.05 J/mol/K. The hydrodynamic cavitation extraction was faster than conventional. The mass transfer coefficient values for hydrodynamic cavitation, conventional 260 rpm and 1000 rpm were 7.373, 0.534 and 0.121 1/s respectively.

  9. The behavior of radioactive 137Cs and stable Cs at the isolated undisturbed mountain pond in Fukui, Japan

    International Nuclear Information System (INIS)

    Iwamoto, Kazumi; Kimura, Makio; Ando, Kenji; Amano, Hikaru

    2003-01-01

    The behavior of radioactive 137 Cs and stable Cs at the isolated undisturbed mountain pond in Fukui, Japan was studied for the pond water, the sedimentary grains and the soil near the pond. The concentrations of 137 Cs and stable Cs in the pond water ranged from 0.23 to 0.85 Bq/m 3 and from 0.005 to 0.018 mg/m 3 , respectively. The sedimentary grains were sorted by sieving into fractions with diameter from 2 mm to less than 38 μm. The concentrations of 137 Cs and stable Cs in the sorted grains were measured, and those of the adsorbed state were determined by subtracting the concentration of the grain matrix. The adsorbed concentrations increased with decrease in particle diameter and depended less on the kind of samples. The in-situ distribution coefficient Kd depended largely on particle diameter and increased with the decrease in diameter. The values of Kd ranged from about 20 to 1200 m 3 /kg for stable Cs and about 15 to 1000 m 3 /kg for 137 Cs, and the Kd of 137 Cs seemed to be slightly smaller than that of stable Cs. The concentration of stable Cs in the sedimentary mud was found to be close to that of the fine grains. The concentrations of stable Cs in the soil near the pond was about 7.7 mg/kg, and that of 137 Cs was about 0.6 kBq/kg for the surface layer soil and decreased with increase in soil depth. (author)

  10. Degradation of imidacloprid using combined advanced oxidation processes based on hydrodynamic cavitation.

    Science.gov (United States)

    Patil, Pankaj N; Bote, Sayli D; Gogate, Parag R

    2014-09-01

    The harmful effects of wastewaters containing pesticides or insecticides on human and aquatic life impart the need of effectively treating the wastewater streams containing these contaminants. In the present work, hydrodynamic cavitation reactors have been applied for the degradation of imidacloprid with process intensification studies based on different additives and combination with other similar processes. Effect of different operating parameters viz. concentration (20-60 ppm), pressure (1-8 bar), temperature (34 °C, 39 °C and 42 °C) and initial pH (2.5-8.3) has been investigated initially using orifice plate as cavitating device. It has been observed that 23.85% degradation of imidacloprid is obtained at optimized set of operating parameters. The efficacy of different process intensifying approaches based on the use of hydrogen peroxide (20-80 ppm), Fenton's reagent (H2O2:FeSO4 ratio as 1:1, 1:2, 2:1, 2:2, 4:1 and 4:2), advanced Fenton process (H2O2:Iron Powder ratio as 1:1, 2:1 and 4:1) and combination of Na2S2O8 and FeSO4 (FeSO4:Na2S2O8 ratio as 1:1, 1:2, 1:3 and 1:4) on the extent of degradation has been investigated. It was observed that near complete degradation of imidacloprid was achieved in all the cases at optimized values of process intensifying parameters. The time required for complete degradation of imidacloprid for approach based on hydrogen peroxide was 120 min where as for the Fenton and advance Fenton process, the required time was only 60 min. To check the effectiveness of hydrodynamic cavitation with different cavitating devices, few experiments were also performed with the help of slit venturi as a cavitating device at already optimized values of parameters. The present work has conclusively established that combined processes based on hydrodynamic cavitation can be effectively used for complete degradation of imidacloprid. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Hydrodynamic interaction between bacteria and passive sphere

    Science.gov (United States)

    Zhang, Bokai; Ding, Yang; Xu, Xinliang

    2017-11-01

    Understanding hydrodynamic interaction between bacteria and passive sphere is important for identifying rheological properties of bacterial and colloidal suspension. Over the past few years, scientists mainly focused on bacterial influences on tracer particle diffusion or hydrodynamic capture of a bacteria around stationary boundary. Here, we use superposition of singularities and regularized method to study changes in bacterial swimming velocity and passive sphere diffusion, simultaneously. On this basis, we present a simple two-bead model that gives a unified interpretation of passive sphere diffusion and bacterial swimming. The model attributes both variation of passive sphere diffusion and changes of speed of bacteria to an effective mobility. Using the effective mobility of bacterial head and tail as an input function, the calculations are consistent with simulation results at a broad range of tracer diameters, incident angles and bacterial shapes.

  12. Transversal expansion study in the Landau hydrodynamic

    International Nuclear Information System (INIS)

    Pottag, F.W.

    1984-01-01

    The system of equations in the frame of Landau's hydrodynamical model for multiparticle production at high energies is studied. Taking as a first approximation the one-dimensional exact due to Khalatnikov, and a special set of curvilinear coordinates, the radial part is separated from the longitudinal one in the equations of motion, and a system of partial differential equations (non-linear, hyperbolic) is obtained for the radial part. These equations are solved numerically by the method of caracteristics. The hydrodynamical variables are obtained over all the three-dimensional-flow region as well as its variation with the mass of the initially expanding system. Both, the transverse rapidity distribution of the fluid and the inclusive particle distribution at 90 0 in the center of mass system, are calculated. The last one is compared with recent experimental data. (author) [pt

  13. Hydrodynamic determination of the moving direction of an artificial fin by a harbour seal (Phoca vitulina).

    Science.gov (United States)

    Wieskotten, S; Dehnhardt, G; Mauck, B; Miersch, L; Hanke, W

    2010-07-01

    Harbour seals can use their vibrissal system to detect and follow hydrodynamic trails left by moving objects. In this study we determined the maximum time after which a harbour seal could indicate the moving direction of an artificial fish tail and analysed the hydrodynamic parameters allowing the discrimination. Hydrodynamic trails were generated using a fin-like paddle moving from left to right or from right to left in the calm water of an experimental box. The blindfolded seal was able to recognise the direction of the paddle movement when the hydrodynamic trail was up to 35 s old. Particle Image Velocimetry (PIV) revealed that the seal might have perceived and used two different hydrodynamic parameters to determine the moving direction of the fin-like paddle. The structure and spatial arrangement of the vortices in the hydrodynamic trail and high water velocities between two counter-rotating vortices are characteristic of the movement direction and are within the sensory range of the seal.

  14. EFFECT OF CENTRAL MASS CONCENTRATION ON THE FORMATION OF NUCLEAR SPIRALS IN BARRED GALAXIES

    International Nuclear Information System (INIS)

    Thakur, Parijat; Jiang, I.-G.; Ann, H. B.

    2009-01-01

    We have performed smoothed particle hydrodynamics simulations to study the response of the central kiloparsec region of a gaseous disk to the imposition of nonaxisymmetric bar potentials. The model galaxies are composed of three axisymmetric components (halo, disk, and bulge) and a nonaxisymmetric bar. These components are assumed to be invariant in time in the frame corotating with the bar. The potential of spherical γ-models of Dehnen is adopted for the bulge component whose density varies as r -γ near the center and r -4 at larger radii and, hence, possesses a central density core for γ = 0 and cusps for γ>0. Since the central mass concentration of the model galaxies increases with the cusp parameter γ, we have examined here the effect of the central mass concentration by varying the cusp parameter γ on the mechanism responsible for the formation of the symmetric two-armed nuclear spirals in barred galaxies. Our simulations show that the symmetric two-armed nuclear spirals are formed by hydrodynamic spiral shocks driven by the gravitational torque of the bar for the models with γ = 0 and 0.5. On the other hand, the symmetric two-armed nuclear spirals in the models with γ = 1 and 1.5 are explained by gas density waves. Thus, we conclude that the mechanism responsible for the formation of symmetric two-armed nuclear spirals in barred galaxies changes from hydrodynamic shocks to gas density waves as the central mass concentration increases from γ = 0 to 1.5.

  15. Bayesian Modeling of Air Pollution Extremes Using Nested Multivariate Max-Stable Processes

    KAUST Repository

    Vettori, Sabrina; Huser, Raphaë l; Genton, Marc G.

    2018-01-01

    Capturing the potentially strong dependence among the peak concentrations of multiple air pollutants across a spatial region is crucial for assessing the related public health risks. In order to investigate the multivariate spatial dependence properties of air pollution extremes, we introduce a new class of multivariate max-stable processes. Our proposed model admits a hierarchical tree-based formulation, in which the data are conditionally independent given some latent nested $\\alpha$-stable random factors. The hierarchical structure facilitates Bayesian inference and offers a convenient and interpretable characterization. We fit this nested multivariate max-stable model to the maxima of air pollution concentrations and temperatures recorded at a number of sites in the Los Angeles area, showing that the proposed model succeeds in capturing their complex tail dependence structure.

  16. Bayesian Modeling of Air Pollution Extremes Using Nested Multivariate Max-Stable Processes

    KAUST Repository

    Vettori, Sabrina

    2018-03-18

    Capturing the potentially strong dependence among the peak concentrations of multiple air pollutants across a spatial region is crucial for assessing the related public health risks. In order to investigate the multivariate spatial dependence properties of air pollution extremes, we introduce a new class of multivariate max-stable processes. Our proposed model admits a hierarchical tree-based formulation, in which the data are conditionally independent given some latent nested $\\\\alpha$-stable random factors. The hierarchical structure facilitates Bayesian inference and offers a convenient and interpretable characterization. We fit this nested multivariate max-stable model to the maxima of air pollution concentrations and temperatures recorded at a number of sites in the Los Angeles area, showing that the proposed model succeeds in capturing their complex tail dependence structure.

  17. Viscosity and Vorticity in Reduced Magneto-Hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Ilon [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-08-12

    Magneto-hydrodynamics (MHD) critically relies on viscous forces in order for an accurate determination of the electric eld. For each charged particle species, the Braginskii viscous tensor for a magnetized plasma has the decomposition into matrices with special symmetries.

  18. does earthworms density really modify soil's hydrodynamic ...

    African Journals Online (AJOL)

    N. Ababsa,, M. Kribaa, D. Addad, L. Tamrabet and M. Baha

    1 mai 2016 ... Journal of Fundamental and Applied Sciences is licensed under a Creative Commons Attribution-NonCommercial 4.0. International License. Libraries Resource Directory. We are listed under Research Associations category. DOES EARTHWORMS DENSITY REALLY MODIFY SOIL'S HYDRODYNAMIC.

  19. Hydrodynamic predictions for 5.44 TeV Xe+Xe collisions

    Science.gov (United States)

    Giacalone, Giuliano; Noronha-Hostler, Jacquelyn; Luzum, Matthew; Ollitrault, Jean-Yves

    2018-03-01

    We argue that relativistic hydrodynamics is able to make robust predictions for soft particle production in Xe+Xe collisions at the CERN Large Hadron Collider (LHC). The change of system size from Pb+Pb to Xe+Xe provides a unique opportunity to test the scaling laws inherent to fluid dynamics. Using event-by-event hydrodynamic simulations, we make quantitative predictions for several observables: mean transverse momentum, anisotropic flow coefficients, and their fluctuations. Results are shown as a function of collision centrality.

  20. Hydrodynamic modelling of hydrostatic magnesium extrusion

    NARCIS (Netherlands)

    Moodij, Ellen; de Rooij, Matthias B.; Schipper, Dirk J.

    2006-01-01

    Wilson’s hydrodynamic model of the hydrostatic extrusion process is extended to meet the geometry found on residual billets. The transition from inlet to work zone of the process is not considered sharp as in the model of Wilson but as a rounded edge, modelled by a parabolic function. It is shown

  1. 3-D CFD simulations of hydrodynamics in the Sulejow dam reservoir

    Directory of Open Access Journals (Sweden)

    Ziemińska-Stolarska Aleksandra

    2015-12-01

    Full Text Available This paper reports the processes by which a single-phase 3-D CFD model of hydrodynamics in a 17-km-long dam reservoir was developed, verified and tested. A simplified VOF model of flow was elaborated to determine the effect of wind on hydrodynamics in the lake. A hexahedral mesh with over 17 million elements and a k-ω SST turbulence model were defined for single-phase simulations in steady-state conditions. The model was verified on the basis of the extensive flow measurements (StreamPro ADCP, USA. Excellent agreement (average error of less than 10% between computed and measured velocity profiles was found. The simulation results proved a strong effect of wind on hydrodynamics in the lake, especially on the development of the water circulation pattern in the lacustrine zone.

  2. Stable convergence and stable limit theorems

    CERN Document Server

    Häusler, Erich

    2015-01-01

    The authors present a concise but complete exposition of the mathematical theory of stable convergence and give various applications in different areas of probability theory and mathematical statistics to illustrate the usefulness of this concept. Stable convergence holds in many limit theorems of probability theory and statistics – such as the classical central limit theorem – which are usually formulated in terms of convergence in distribution. Originated by Alfred Rényi, the notion of stable convergence is stronger than the classical weak convergence of probability measures. A variety of methods is described which can be used to establish this stronger stable convergence in many limit theorems which were originally formulated only in terms of weak convergence. Naturally, these stronger limit theorems have new and stronger consequences which should not be missed by neglecting the notion of stable convergence. The presentation will be accessible to researchers and advanced students at the master's level...

  3. Hydrodynamics and water quality models applied to Sepetiba Bay

    Science.gov (United States)

    Cunha, Cynara de L. da N.; Rosman, Paulo C. C.; Ferreira, Aldo Pacheco; Carlos do Nascimento Monteiro, Teófilo

    2006-10-01

    A coupled hydrodynamic and water quality model is used to simulate the pollution in Sepetiba Bay due to sewage effluent. Sepetiba Bay has a complicated geometry and bottom topography, and is located on the Brazilian coast near Rio de Janeiro. In the simulation, the dissolved oxygen (DO) concentration and biochemical oxygen demand (BOD) are used as indicators for the presence of organic matter in the body of water, and as parameters for evaluating the environmental pollution of the eastern part of Sepetiba Bay. Effluent sources in the model are taken from DO and BOD field measurements. The simulation results are consistent with field observations and demonstrate that the model has been correctly calibrated. The model is suitable for evaluating the environmental impact of sewage effluent on Sepetiba Bay from river inflows, assessing the feasibility of different treatment schemes, and developing specific monitoring activities. This approach has general applicability for environmental assessment of complicated coastal bays.

  4. Laser driven hydrodynamic instability experiments

    International Nuclear Information System (INIS)

    Remington, B.A.; Weber, S.V.; Haan, S.W.; Kilkenny, J.D.; Glendinning, S.G.; Wallace, R.J.; Goldstein, W.H.; Wilson, B.G.; Nash, J.K.

    1993-01-01

    An extensive series of experiments has been conducted on the Nova laser to measure hydrodynamic instabilities in planar foils accelerated by x-ray ablation. Single mode experiments allow a measurement of the fundamental growth rates from the linear well into the nonlinear regime. Two-mode foils allow a first direct observation of mode coupling. Surface-finish experiments allow a measurement of the evolution of a broad spectrum of random initial modes

  5. The Proceedings of the International Conference on Numerical Ship Hydrodynamics (4th) Held in Washington, DC on 24-27 September 1985

    Science.gov (United States)

    1985-09-01

    Arlington VA, U.S.A. M.R. Hendenhall and S.C. Perkins, PREDICTION OF THE UNSTEADY HYDRODYNAMIC CHARACTERISTICS OF SUBNERSIBLE VEHICLES ...Architecture and Ocean Engineering University of Glasgow Glasgow, Scotland Abstract Research into slamming on marine vehicles has concentrated in the two...difference (open boun- compare the results obtained by the dary) method (17], hibrid method of - method on the assumption of the linear matching with the

  6. Nanoscale hydrodynamics near solids

    Science.gov (United States)

    Camargo, Diego; de la Torre, J. A.; Duque-Zumajo, D.; Español, Pep; Delgado-Buscalioni, Rafael; Chejne, Farid

    2018-02-01

    Density Functional Theory (DFT) is a successful and well-established theory for the study of the structure of simple and complex fluids at equilibrium. The theory has been generalized to dynamical situations when the underlying dynamics is diffusive as in, for example, colloidal systems. However, there is no such a clear foundation for Dynamic DFT (DDFT) for the case of simple fluids in contact with solid walls. In this work, we derive DDFT for simple fluids by including not only the mass density field but also the momentum density field of the fluid. The standard projection operator method based on the Kawasaki-Gunton operator is used for deriving the equations for the average value of these fields. The solid is described as featureless under the assumption that all the internal degrees of freedom of the solid relax much faster than those of the fluid (solid elasticity is irrelevant). The fluid moves according to a set of non-local hydrodynamic equations that include explicitly the forces due to the solid. These forces are of two types, reversible forces emerging from the free energy density functional, and accounting for impenetrability of the solid, and irreversible forces that involve the velocity of both the fluid and the solid. These forces are localized in the vicinity of the solid surface. The resulting hydrodynamic equations should allow one to study dynamical regimes of simple fluids in contact with solid objects in isothermal situations.

  7. Load responsive hydrodynamic bearing

    Science.gov (United States)

    Kalsi, Manmohan S.; Somogyi, Dezso; Dietle, Lannie L.

    2002-01-01

    A load responsive hydrodynamic bearing is provided in the form of a thrust bearing or journal bearing for supporting, guiding and lubricating a relatively rotatable member to minimize wear thereof responsive to relative rotation under severe load. In the space between spaced relatively rotatable members and in the presence of a liquid or grease lubricant, one or more continuous ring shaped integral generally circular bearing bodies each define at least one dynamic surface and a plurality of support regions. Each of the support regions defines a static surface which is oriented in generally opposed relation with the dynamic surface for contact with one of the relatively rotatable members. A plurality of flexing regions are defined by the generally circular body of the bearing and are integral with and located between adjacent support regions. Each of the flexing regions has a first beam-like element being connected by an integral flexible hinge with one of the support regions and a second beam-like element having an integral flexible hinge connection with an adjacent support region. A least one local weakening geometry of the flexing region is located intermediate the first and second beam-like elements. In response to application of load from one of the relatively rotatable elements to the bearing, the beam-like elements and the local weakening geometry become flexed, causing the dynamic surface to deform and establish a hydrodynamic geometry for wedging lubricant into the dynamic interface.

  8. The impact of glide phases on the trackability of hydrodynamic trails in harbour seals (Phoca vitulina).

    Science.gov (United States)

    Wieskotten, S; Dehnhardt, G; Mauck, B; Miersch, L; Hanke, W

    2010-11-01

    The mystacial vibrissae of harbour seals (Phoca vitulina) constitute a highly sensitive hydrodynamic receptor system enabling the seals to detect and follow hydrodynamic trails. In the wild, hydrodynamic trails, as generated by swimming fish, consist of cyclic burst-and-glide phases, associated with various differences in the physical parameters of the trail. Here, we investigated the impact of glide phases on the trackability of differently aged hydrodynamic trails in a harbour seal. As fish are not easily trained to swim certain paths with predetermined burst-and-glide phases, the respective hydrodynamic trails were generated using a remote-controlled miniature submarine. Gliding phases in hydrodynamic trails had a negative impact on the trackability when trails were 15 s old. The seal lost the generated trails more often within the transition zones, when the submarine switched from a burst to a glide moving pattern. Hydrodynamic parameter analysis (particle image velocimetry) revealed that the smaller dimensions and faster decay of hydrodynamic trails generated by the gliding submarine are responsible for the impaired success of the seal tracking the gliding phase. Furthermore, the change of gross water flow generated by the submarine from a rearwards-directed stream in the burst phase to a water flow passively dragged behind the submarine during gliding might influence the ability of the seal to follow the trail as this might cause a weaker deflection of the vibrissae. The possible ecological implications of intermittent swimming behaviour in fish for piscivorous predators are discussed.

  9. Hydrodynamic resistance and flow patterns in the gills of a tilapine fish.

    Science.gov (United States)

    Strother, James A

    2013-07-15

    The gills of teleost fishes are often discussed as an archetypal counter-current exchange system, capable of supporting the relatively high metabolic rates of some fishes despite the low oxygen solubility of water. Despite an appreciation for the physiology of exchange at the gills, many questions remain regarding the hydrodynamical basis of ventilation in teleost fishes. In this study, the hydrodynamic resistance and flow fields around the isolated gills of a tilapia, Oreochromis mossambicus, were measured as a function of the applied pressure head. At ventilatory pressures typical of a fish at rest, the hydrodynamic resistance of the gills was nearly constant, the flow was laminar, shunting of water around the gills was essentially absent, and the distribution of water flow was relatively uniform. However, at the higher pressures typical of an active or stressed fish, some of these qualities were lost. In particular, at elevated pressures there was a decrease in the hydrodynamic resistance of the gills and substantial shunting of water around the gills. These effects suggest mechanical limits to maximum aerobic performance during activity or under adverse environmental conditions.

  10. Dynamic equilibrium of radiocesium with stable cesium within the soil-mushroom system in Turkish pine forest

    International Nuclear Information System (INIS)

    Karadeniz, Ozlem; Yaprak, Guenseli

    2007-01-01

    Mushrooms and soils collected from pine forests in Izmir, Turkey were measured for radiocesium and stable Cs in 2002. The ranges of 137 Cs and stable Cs concentrations in mushrooms were 9.84 ± 1.67 to 401 ± 3.85 Bq kg -1 dry weight and 0.040 ± 0.004 to 11.3 ± 1.09 mg kg -1 dry weight, respectively. The concentrations of 137 Cs and stable Cs in soils were 0.29 ± 0.18 to 161 ± 1.12 Bq kg -1 dry weight and 0.14 ± 0.004 to 1.44 ± 0.045 mg kg -1 dry weight, respectively. Even though different species were included, the concentration ratios of 137 Cs to stable Cs were fairly constant for samples collected at the same forest site, and were in the same order of magnitude as the 137 Cs to stable Cs ratios for the organic soil layers. The soil-to-mushroom transfer factors of 137 Cs and stable Cs were in the range of 0.19-3.15 and 0.17-12.3, respectively. The transfer factors of 137 Cs were significantly correlated to those of stable Cs. - The 137 Cs/ 133 Cs ratios observed in mushroom samples and in organic layers shows that 137 Cs is well mixed with stable Cs within the biological cycle in the studied pine forest

  11. Mix and hydrodynamic instabilities on NIF

    Science.gov (United States)

    Smalyuk, V. A.; Robey, H. F.; Casey, D. T.; Clark, D. S.; Döppner, T.; Haan, S. W.; Hammel, B. A.; MacPhee, A. G.; Martinez, D.; Milovich, J. L.; Peterson, J. L.; Pickworth, L.; Pino, J. E.; Raman, K.; Tipton, R.; Weber, C. R.; Baker, K. L.; Bachmann, B.; Berzak Hopkins, L. F.; Bond, E.; Caggiano, J. A.; Callahan, D. A.; Celliers, P. M.; Cerjan, C.; Dixit, S. N.; Edwards, M. J.; Felker, S.; Field, J. E.; Fittinghoff, D. N.; Gharibyan, N.; Grim, G. P.; Hamza, A. V.; Hatarik, R.; Hohenberger, M.; Hsing, W. W.; Hurricane, O. A.; Jancaitis, K. S.; Jones, O. S.; Khan, S.; Kroll, J. J.; Lafortune, K. N.; Landen, O. L.; Ma, T.; MacGowan, B. J.; Masse, L.; Moore, A. S.; Nagel, S. R.; Nikroo, A.; Pak, A.; Patel, P. K.; Remington, B. A.; Sayre, D. B.; Spears, B. K.; Stadermann, M.; Tommasini, R.; Widmayer, C. C.; Yeamans, C. B.; Crippen, J.; Farrell, M.; Giraldez, E.; Rice, N.; Wilde, C. H.; Volegov, P. L.; Gatu Johnson, M.

    2017-06-01

    Several new platforms have been developed to experimentally measure hydrodynamic instabilities in all phases of indirect-drive, inertial confinement fusion implosions on National Ignition Facility. At the ablation front, instability growth of pre-imposed modulations was measured with a face-on, x-ray radiography platform in the linear regime using the Hydrodynamic Growth Radiography (HGR) platform. Modulation growth of "native roughness" modulations and engineering features (fill tubes and capsule support membranes) were measured in conditions relevant to layered DT implosions. A new experimental platform was developed to measure instability growth at the ablator-ice interface. In the deceleration phase of implosions, several experimental platforms were developed to measure both low-mode asymmetries and high-mode perturbations near peak compression with x-ray and nuclear techniques. In one innovative technique, the self-emission from the hot spot was enhanced with argon dopant to "self-backlight" the shell in-flight. To stabilize instability growth, new "adiabat-shaping" techniques were developed using the HGR platform and applied in layered DT implosions.

  12. Hydrodynamic optical-field-ionized plasma channels

    Science.gov (United States)

    Shalloo, R. J.; Arran, C.; Corner, L.; Holloway, J.; Jonnerby, J.; Walczak, R.; Milchberg, H. M.; Hooker, S. M.

    2018-05-01

    We present experiments and numerical simulations which demonstrate that fully ionized, low-density plasma channels could be formed by hydrodynamic expansion of plasma columns produced by optical field ionization. Simulations of the hydrodynamic expansion of plasma columns formed in hydrogen by an axicon lens show the generation of 200 mm long plasma channels with axial densities of order ne(0 ) =1 ×1017cm-3 and lowest-order modes of spot size WM≈40 μ m . These simulations show that the laser energy required to generate the channels is modest: of order 1 mJ per centimeter of channel. The simulations are confirmed by experiments with a spherical lens which show the formation of short plasma channels with 1.5 ×1017cm-3≲ne(0 ) ≲1 ×1018cm-3 and 61 μ m ≳WM≳33 μ m . Low-density plasma channels of this type would appear to be well suited as multi-GeV laser-plasma accelerator stages capable of long-term operation at high pulse repetition rates.

  13. The Coupling of Radiation and Hydrodynamics

    International Nuclear Information System (INIS)

    Lowrie, R.B.; Morel, J.E.; Hittinger, J.A.

    1999-01-01

    The coupling of radiation transport and hydrodynamics is discussed for the Eulerian frame. The discussion is aimed at developing a suitable set of equations for nonrelativistic radiation hydrodynamics (RHD) that can be numerically integrated using high-resolution methods for conservation laws. We outline how numerical methods based on a wave decomposition may be developed, along with the importance of conservation, particularly in the equilibrium regime. The properties of the RHD equations are examined through asymptotic and dispersion analyses. The conditions required to obtain the classical equilibrium limit are rigorously studied. The results show that a simple coupling term developed recently by Morel, which retains a minimum of relativistic corrections, may be sufficient for nonrelativistic flows. We also give two constraints on the relativistic corrections that result in retaining terms on the order of the truncation. In addition, the dispersion results for the P 1 approximation are studied in detail and are compared with both the exact-transport results and a full relativistic treatment. We also examine some nonintuitive behavior in the dispersion results. copyright copyright 1999. The American Astronomical Society

  14. Foundations of radiation hydrodynamics

    CERN Document Server

    Mihalas, Dimitri

    1999-01-01

    Radiation hydrodynamics is a broad subject that cuts across many disciplines in physics and astronomy: fluid dynamics, thermodynamics, statistical mechanics, kinetic theory, and radiative transfer, among others. The theory developed in this book by two specialists in the field can be applied to the study of such diverse astrophysical phenomena as stellar winds, supernova explosions, and the initial phases of cosmic expansion, as well as the physics of laser fusion and reentry vehicles. As such, it provides students with the basic tools for research on radiating flows.Largely self-contained,

  15. Numerical Modeling of Lead Oxidation in Controlled Lead Bismuth Eutectic Systems: Chemical Kinetics and Hydrodynamic Effects

    International Nuclear Information System (INIS)

    Wu, Chao; Kanthi Kiran Dasika; Chen, Yitung; Moujaes, Samir

    2002-01-01

    Using liquid Lead-Bismuth Eutectic (LBE) as coolant in nuclear systems has been studied for more than 50 years. And LBE has many unique nuclear, thermo physical and chemical attributes which are attractive for practical application. But, corrosion is one of the greatest concerns in using liquid Lead-Bismuth Eutectic (LBE) as spallation target in the Accelerator-driven Transmutation of Waste (ATW) program. Los Alamos National Laboratory has designed and built the Liquid Lead-Bismuth Materials Test Loop (MTL) to study the materials behavior in a flow of molten LBE. A difference of 100 deg. C was designed between the coldest and the hottest parts at a nominal flow rate of 8.84 GPM. Liquid LBE flow was activated by a mechanical sump pump or by natural convection. In order to maintain a self-healing protective film on the surface of the stainless steel pipe, a certain concentration of oxygen has to be maintained in the liquid metal. Therefore, it is of importance to understand what the oxygen concentrations are in the LBE loop related to the corrosion effects on the metal surface, the temperature profiles, the flow rates, and diffusion rates through the metal surface. The chemical kinetics also needs to be fully understood in the corrosion processes coupled with the hydrodynamics. The numerical simulation will be developed and used to analyze the system corrosion effects with different kind of oxygen concentrations, flow rates, chemical kinetics, and geometries. The hydrodynamics modeling of using computational fluid dynamics will provide the necessary the levels of oxygen and corrosion products close to the boundary or surface. This paper presents an approach towards the above explained tasks by analyzing the reactions between the Lead and oxygen at a couple of sections in the MTL. Attempt is also made to understand the surface chemistry by choosing an example model and estimating the near wall surface concentration values for propane and oxygen. (authors)

  16. FABM-PCLake – linking aquatic ecology with hydrodynamics

    DEFF Research Database (Denmark)

    Hu, Fenjuan; Bolding, Karsten; Bruggeman, Jorn

    2016-01-01

    This study presents FABM-PCLake, a redesigned structure of the PCLake aquatic ecosystem model, which we implemented in the Framework for Aquatic Biogeochemical Models (FABM). In contrast to the original model, which was designed for temperate, fully mixed freshwater lakes, the new FABM......-PCLake represents an integrated aquatic ecosystem model that can be linked with different hydrodynamic models and allows simulations of hydrodynamic and biogeochemical processes for zero-dimensional, one-dimensional as well as three-dimensional environments. FABM-PCLake describes interactions between multiple......, including water currents, light and temperature influence a wide range of biogeochemical processes. The model enables studies on ecosystem dynamics in physically heterogeneous environments (e.g., stratifying water bodies, and water bodies with horizontal gradients in physical and biogeochemical properties...

  17. Electrokinetic sample preconcentration and hydrodynamic sample injection for microchip electrophoresis using a pneumatic microvalve.

    Science.gov (United States)

    Cong, Yongzheng; Katipamula, Shanta; Geng, Tao; Prost, Spencer A; Tang, Keqi; Kelly, Ryan T

    2016-02-01

    A microfluidic platform was developed to perform online electrokinetic sample preconcentration and rapid hydrodynamic sample injection for zone electrophoresis using a single microvalve. The polydimethylsiloxane microchip comprises a separation channel, a side channel for sample introduction, and a control channel which is used as a pneumatic microvalve aligned at the intersection of the two flow channels. The closed microvalve, created by multilayer soft lithography, serves as a nanochannel preconcentrator under an applied electric potential, enabling current to pass through while preventing bulk flow. Once analytes are concentrated, the valve is briefly opened and the stacked sample is pressure injected into the separation channel for electrophoretic separation. Fluorescently labeled peptides were enriched by a factor of ∼450 in 230 s. This method enables both rapid analyte concentration and controlled injection volume for high sensitivity, high-resolution CE. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Evaluation of the hydrodynamic behaviour of turbulence promoters in parallel plate electrochemical reactors by means of the dispersion model

    International Nuclear Information System (INIS)

    Colli, A.N.; Bisang, J.M.

    2011-01-01

    Highlights: · The type of turbulence promoters has a strong influence on the hydrodynamics. · The dispersion model is appropriate for expanded plastic turbulence promoters. · The dispersion model is appropriate for glass beads turbulence promoters. - Abstract: The hydrodynamic behaviour of electrochemical reactors with parallel plate electrodes is experimentally studied using the stimulus-response method either with an empty reactor or with different turbulence promoters. Theoretical results which are in accordance with the analytical and numerical resolution of the dispersion model for a closed system are compared with the classical relationships of the normalized outlet concentration for open systems and the validity range of the equations is discussed. The experimental results were well correlated with the dispersion model using glass beads or expanded plastic meshes as turbulence promoters, which have shown the most advantageous performance. The Peclet number was higher than 63. The dispersion coefficient was found to increase linearly with flow velocity in these cases.

  19. Hydrodynamic theory for quantum plasmonics: Linear-response dynamics of the inhomogeneous electron gas

    DEFF Research Database (Denmark)

    Yan, Wei

    2015-01-01

    We investigate the hydrodynamic theory of metals, offering systematic studies of the linear-response dynamics for an inhomogeneous electron gas. We include the quantum functional terms of the Thomas-Fermi kinetic energy, the von Weizsa¨cker kinetic energy, and the exchange-correlation Coulomb...... energies under the local density approximation. The advantages, limitations, and possible improvements of the hydrodynamic theory are transparently demonstrated. The roles of various parameters in the theory are identified. We anticipate that the hydrodynamic theory can be applied to investigate the linear...... response of complex metallic nanostructures, including quantum effects, by adjusting theory parameters appropriately....

  20. Impact of Hydrodynamics on Oral Biofilm Strength

    NARCIS (Netherlands)

    Paramonova, E.; Kalmykowa, O. J.; van der Mei, H. C.; Busscher, H. J.; Sharma, P. K.

    2009-01-01

    Mechanical removal of oral biofilms is ubiquitously accepted as the best way to prevent caries and periodontal diseases. Removal effectiveness strongly depends on biofilm strength. To investigate the influence of hydrodynamics on oral biofilm strength, we grew single- and multi-species biofilms of

  1. VibroCav : Hydrodynamic Vibration and Cavitation Technology

    NARCIS (Netherlands)

    Bakker, T.W.

    2012-01-01

    Vibration and cavitation can be generated in many ways and serve many useful purposes. This study describes physical aspects of useful vibration and cavitation for a broad spectrum of applications at atmospheric or elevated pressures. After a review of available devices, hydrodynamic

  2. Regional and inter annual patterns of heavy metals, organochlorines and stable isotopes in narwhals (Monodon monoceros) from West Greenland

    DEFF Research Database (Denmark)

    Dietz, R.; Riget, F.; Hobson, K.A.

    2004-01-01

    Samples of 150 narwhals obtained in different years from two West Greenland areas, Avanersuaq and Uummannaq, were compared for concentrations of and regional differences in heavy metals and organochlorines and stable-carbon and nitrogen isotopes. Cadmium, Hg, and Se concentrations increased....../age composition of the data. PCB and DDT concentrations in West Greenland narwhals were half those found in East Greenland and Svalbard. Stable-carbon isotope ratios in muscle of 150 narwhals showed a decreasing trend in the first year when they gradually reduced their dependency on mother's milk, after which...... between stable isotope ratios and metal and OC concentrations....

  3. Application of hydrodynamics to heavy ion collisions

    International Nuclear Information System (INIS)

    Felsberger, Lukas

    2014-01-01

    The Bjorken model is a simple tool for making rough predictions of the hydrodynamic evolution of the thermalized matter created in a heavy ion collision. The advantage of the model clearly lies in its simplicity, rather than accuracy. As it is still used for making rough estimations 'by hand', in this thesis, I investigate in which cases the Bjorken model gives useful results and in which it is not recommended. For central collisions, I show which critical size the nuclei should have so that the Bjorken model can be applied. For non-central collisions, I demonstrate that using Glauber initial conditions combined with the Bjorken evolution, leads to reasonable results up to large impact parameters. Finally, I study the case of a non-ideal (viscous) description of the thermalized matter which leads to strongly differing results if first- or second-order hydrodynamics is applied.

  4. Granular Gases: Probing the Boundaries of Hydrodynamics

    International Nuclear Information System (INIS)

    Goldhirsch, I.

    1999-01-01

    The dissipative nature of the particle interactions in granular systems renders granular gases mesoscopic and bearing some similarities to regular gases in the ''continuum transition regime'' where shear rates and/or thermal gradients are very large). The following properties of granular gases support the above claim: (i). Mean free times are of the same order as macroscopic time scales (inverse shear rates); (ii). Mean free paths can be macroscopic and comparable to the system's dimensions; (iii). Typical flows are supersonic; (iv). Shear rates are typically ''large''; (v). Stress fields are scale (resolution) dependent; (vi). Burnett and super-Burnett corrections to both the constitutive relations and the boundary conditions are of importance; (vii). Single particle distribution functions can be far from Gaussian. It is concluded that while hydrodynamic descriptions of granular gases are relevant, they are probing the boundaries of applicability of hydrodynamics and perhaps slightly beyond

  5. Hyperbolic metamaterial lens with hydrodynamic nonlocal response.

    Science.gov (United States)

    Yan, Wei; Mortensen, N Asger; Wubs, Martijn

    2013-06-17

    We investigate the effects of hydrodynamic nonlocal response in hyperbolic metamaterials (HMMs), focusing on the experimentally realizable parameter regime where unit cells are much smaller than an optical wavelength but much larger than the wavelengths of the longitudinal pressure waves of the free-electron plasma in the metal constituents. We derive the nonlocal corrections to the effective material parameters analytically, and illustrate the noticeable nonlocal effects on the dispersion curves numerically. As an application, we find that the focusing characteristics of a HMM lens in the local-response approximation and in the hydrodynamic Drude model can differ considerably. In particular, the optimal frequency for imaging in the nonlocal theory is blueshifted with respect to that in the local theory. Thus, to detect whether nonlocal response is at work in a hyperbolic metamaterial, we propose to measure the near-field distribution of a hyperbolic metamaterial lens.

  6. Smoothed Particle Hydrodynamics Coupled with Radiation Transfer

    Science.gov (United States)

    Susa, Hajime

    2006-04-01

    We have constructed a brand-new radiation hydrodynamics solver based upon Smoothed Particle Hydrodynamics, which works on a parallel computer system. The code is designed to investigate the formation and evolution of first-generation objects at z ≳ 10, where the radiative feedback from various sources plays important roles. The code can compute the fraction of chemical species e, H+, H, H-, H2, and H+2 by by fully implicit time integration. It also can deal with multiple sources of ionizing radiation, as well as radiation at Lyman-Werner band. We compare the results for a few test calculations with the results of one-dimensional simulations, in which we find good agreements with each other. We also evaluate the speedup by parallelization, which is found to be almost ideal, as long as the number of sources is comparable to the number of processors.

  7. Application of hydrodynamics to heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Felsberger, Lukas

    2014-12-02

    The Bjorken model is a simple tool for making rough predictions of the hydrodynamic evolution of the thermalized matter created in a heavy ion collision. The advantage of the model clearly lies in its simplicity, rather than accuracy. As it is still used for making rough estimations 'by hand', in this thesis, I investigate in which cases the Bjorken model gives useful results and in which it is not recommended. For central collisions, I show which critical size the nuclei should have so that the Bjorken model can be applied. For non-central collisions, I demonstrate that using Glauber initial conditions combined with the Bjorken evolution, leads to reasonable results up to large impact parameters. Finally, I study the case of a non-ideal (viscous) description of the thermalized matter which leads to strongly differing results if first- or second-order hydrodynamics is applied.

  8. Tunable hydrodynamic characteristics in microchannels with biomimetic superhydrophobic (lotus leaf replica) walls.

    Science.gov (United States)

    Dey, Ranabir; Raj M, Kiran; Bhandaru, Nandini; Mukherjee, Rabibrata; Chakraborty, Suman

    2014-05-21

    The present work comprehensively addresses the hydrodynamic characteristics through microchannels with lotus leaf replica (exhibiting low adhesion and superhydrophobic properties) walls. The lotus leaf replica is fabricated following an efficient, two-step, soft-molding process and is then integrated with rectangular microchannels. The inherent biomimetic, superhydrophobic surface-liquid interfacial hydrodynamics, and the consequential bulk flow characteristics, are critically analyzed by the micro-particle image velocimetry technique. It is observed that the lotus leaf replica mediated microscale hydrodynamics comprise of two distinct flow regimes even within the low Reynolds number paradigm, unlike the commonly perceived solely apparent slip-stick dominated flows over superhydrophobic surfaces. While the first flow regime is characterized by an apparent slip-stick flow culminating in an enhanced bulk throughput rate, the second flow regime exhibits a complete breakdown of the aforementioned laminar and uni-axial flow model, leading to a predominantly no-slip flow. Interestingly, the critical flow condition dictating the transition between the two hydrodynamic regimes is intrinsically dependent on the micro-confinement effect. In this regard, an energetically consistent theoretical model is also proposed to predict the alterations in the critical flow condition with varying microchannel configurations, by addressing the underlying biomimetic surface-liquid interfacial conditions. Hence, the present research endeavour provides a new design-guiding paradigm for developing multi-functional microfluidic devices involving biomimetic, superhydrophobic surfaces, by judicious exploitation of the tunable hydrodynamic characteristics in the two regimes.

  9. Effect of flow rate distribution at the inlet on hydrodynamic mixing in narrow rectangular multi-channel

    International Nuclear Information System (INIS)

    Xu Jianjun; Chen Bingde; Wang Xiaojun

    2008-01-01

    Flow and heat transfer in the narrow rectangular multi-channel is widely en- countered in the engineering application, hydrodynamic mixing in the narrow rectangular multi-channel is one of the important concerns. With the help of the Computational Fluid Dynamics code CFX, the effect of flow rate distribution of the main channel at the inlet on hydrodynamic mixing in the narrow rectangular multi-channel is numerical simulated. The results show that the flow rate distributions at the inlet have a great effect on hydrodynamics mixing in multi-channel, the flow rate in the main channel doesn't change with increasing the axial mixing section when the average flow rate at the inlet is set. Hydrodynamic mixing will arise in the mixing section when the different ratio of the flow rate distribution at the inlet is set, and hydrodynamic mixing increases with the difference of the flow rate distribution at the inlet increase. The trend of the flow rate distribution of the main channel is consistent during the whole axial mixing section, and hydrodynamic mixing in former 4 mixing section is obvious. (authors)

  10. Theory of concentrated vortices an introduction

    CERN Document Server

    Alekseenko, S V; Okulov, V L

    2007-01-01

    Vortex motion is one of the basic states of a flowing continuum. Intere- ingly, in many cases vorticity is space-localized, generating concentrated vortices. Vortex filaments having extremely diverse dynamics are the most characteristic examples of such vortices. Notable examples, in particular, include such phenomena as self-inducted motion, various instabilities, wave generation, and vortex breakdown. These effects are typically ma- fested as a spiral (or helical) configuration of a vortex axis. Many publications in the field of hydrodynamics are focused on vortex motion and vortex effects. Only a few books are devoted entirely to v- tices, and even fewer to concentrated vortices. This work aims to highlight the key problems of vortex formation and behavior. The experimental - servations of the authors, the impressive visualizations of concentrated vortices (including helical and spiral) and pictures of vortex breakdown primarily motivated the authors to begin this work. Later, the approach based on the hel...

  11. Geochemical and hydrodynamic controls on arsenic and trace metal cycling in a seasonally stratified US sub-tropical reservoir

    International Nuclear Information System (INIS)

    Brandenberger, Jill M.; Louchouarn, Patrick; Herbert, Bruce; Tissot, Philippe

    2004-01-01

    The phase distribution of trace metals and oxyanions was investigated within a South Texas watershed hosting a high density of surface uranium mine pits and tailings. The objectives of the study were to evaluate the potential impact of these old uranium mining sites on the watershed with particular emphasis on spatial and temporal changes in water quality of a reservoir that serves as the major source of freshwater to a population of ∼ 350,000 people in the region. A livestock pond, bordered by uranium mine tailings, was used as a model case-study site to evaluate the cycling of uranium mine-derived oxyanions under changing redox conditions. Although the pond showed seasonal thermal and chemical stratification, geochemical cycling of metals was limited to Co and Pb, which seemed to be mostly associated with redox cycling of Mn mineral phases, and U, which suggested reductive precipitation in the ponds hypolimnion. Uranium levels, however, were too low to support strong inputs from th e tailings into the water column of the pond. The strong relations observed between particulate Cr, Cs, V and Fe suggest that these metals are associated with a stable particulate phase (probably allochthonous aluminosilicates) enriched in unreactive iron. This observation is supported by a parallel relationship in sediments collected across a broad range of sediment depositional processed (and histories) in the basin. Arsenic, though selectively enriched in the ponds water column, remained stable and mostly in solution throughout the depth of the profile and showed no sign of geochemical cycling or interaction with Fe-rich particles. We found no evidence of anthropogenic impacts of U mines beyond the purely local scale. Arsenic does decrease in concentration downstream of uranium mining sites but its presence within the Nueces drainage basin is related to interactions between surface and ground waters with uranium-rich geological formations rather than long-scale transport of

  12. The use of hydrodynamic disintegration as a means to improve anaerobic digestion of activated sludge

    OpenAIRE

    Machnicka, A; Grűbel, K; Suschka, J

    2009-01-01

    Disintegration by hydrodynamic cavitation has a positive effect on the degree and rate of sludge anaerobic digestion. By applying hydrodynamic disintegration the lysis of cells occurs in minutes instead of days. The intracellular and extracellular components are set free and are immediately available for biological degradation which leads to an improvement of the subsequent anaerobic process. Hydrodynamic disintegration of the activated sludge results in organic matter and a polymer transfer ...

  13. An overview of hydrodynamic studies of mineralization

    Directory of Open Access Journals (Sweden)

    Guoxiang Chi

    2011-07-01

    Full Text Available Fluid flow is an integral part of hydrothermal mineralization, and its analysis and characterization constitute an important part of a mineralization model. The hydrodynamic study of mineralization deals with analyzing the driving forces, fluid pressure regimes, fluid flow rate and direction, and their relationships with localization of mineralization. This paper reviews the principles and methods of hydrodynamic studies of mineralization, and discusses their significance and limitations for ore deposit studies and mineral exploration. The driving forces of fluid flow may be related to fluid overpressure, topographic relief, tectonic deformation, and fluid density change due to heating or salinity variation, depending on specific geologic environments and mineralization processes. The study methods may be classified into three types, megascopic (field observations, microscopic analyses, and numerical modeling. Megascopic features indicative of significantly overpressured (especially lithostatic or supralithostatic fluid systems include horizontal veins, sand injection dikes, and hydraulic breccias. Microscopic studies, especially microthermometry of fluid inclusions and combined stress analysis and microthermometry of fluid inclusion planes (FIPs can provide important information about fluid temperature, pressure, and fluid-structural relationships, thus constraining fluid flow models. Numerical modeling can be carried out to solve partial differential equations governing fluid flow, heat transfer, rock deformation and chemical reactions, in order to simulate the distribution of fluid pressure, temperature, fluid flow rate and direction, and mineral precipitation or dissolution in 2D or 3D space and through time. The results of hydrodynamic studies of mineralization can enhance our understanding of the formation processes of hydrothermal deposits, and can be used directly or indirectly in mineral exploration.

  14. Towards the concept of hydrodynamic cavitation control

    Science.gov (United States)

    Chatterjee, Dhiman; Arakeri, Vijay H.

    1997-02-01

    A careful study of the existing literature available in the field of cavitation reveals the potential of ultrasonics as a tool for controlling and, if possible, eliminating certain types of hydrodynamic cavitation through the manipulation of nuclei size present in a flow. A glass venturi is taken to be an ideal device to study the cavitation phenomenon at its throat and its potential control. A piezoelectric transducer, driven at the crystal resonant frequency, is used to generate an acoustic pressure field and is termed an ‘ultrasonic nuclei manipulator (UNM)’. Electrolysis bubbles serve as artificial nuclei to produce travelling bubble cavitation at the venturi throat in the absence of a UNM but this cavitation is completely eliminated when a UNM is operative. This is made possible because the nuclei, which pass through the acoustic field first, cavitate, collapse violently and perhaps fragment and go into dissolution before reaching the venturi throat. Thus, the potential nuclei for travelling bubble cavitation at the venturi throat seem to be systematically destroyed through acoustic cavitation near the UNM. From the solution to the bubble dynamics equation, it has been shown that the potential energy of a bubble at its maximum radius due to an acoustic field is negligible compared to that for the hydrodynamic field. Hence, even though the control of hydrodynamic macro cavitation achieved in this way is at the expense of acoustic micro cavitation, it can still be considered to be a significant gain. These are some of the first results in this direction.

  15. An experimental investigation of hydrodynamic cavitation in micro-Venturis

    Science.gov (United States)

    Mishra, Chandan; Peles, Yoav

    2006-10-01

    The existence of hydrodynamic cavitation in the flow of de-ionized water through micro-Venturis has been witnessed in the form of traveling bubble cavitation and fully developed streamer bubble/supercavitation, and their mechanisms have been discussed. High-speed photography and flow visualization disclose inchoate cavitation bubbles emerging downstream from the micro-Venturi throat and the presence of a single streamer bubble/supercavity, which is equidistant from the micro device walls. The supercavity initiates inside the diffuser section and extends until the microchannel exit and proceeds to bifurcate the incoming flow. This article strives to provide numerical data and experimental details of hydrodynamic cavitation taking place within micro-Venturis.

  16. Charge-dependent correlations from event-by-event anomalous hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Hirono, Yuji [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States); Hirano, Tetsufumi [Department of Physics, Sophia University, Tokyo 102-8554 (Japan); Kharzeev, Dmitri E. [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States); Department of Physics and RIKEN-BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973-5000 (United States)

    2016-12-15

    We report on our recent attempt of quantitative modeling of the Chiral Magnetic Effect (CME) in heavy-ion collisions. We perform 3+1 dimensional anomalous hydrodynamic simulations on an event-by-event basis, with constitutive equations that contain the anomaly-induced effects. We also develop a model of the initial condition for the axial charge density that captures the statistical nature of random chirality imbalances created by the color flux tubes. Basing on the event-by-event hydrodynamic simulations for hundreds of thousands of collisions, we calculate the correlation functions that are measured in experiments, and discuss how the anomalous transport affects these observables.

  17. Rapidity correlations test stochastic hydrodynamics

    International Nuclear Information System (INIS)

    Zin, C; Gavin, S; Moschelli, G

    2017-01-01

    We show that measurements of the rapidity dependence of transverse momentum correlations can be used to determine the characteristic time τ π that dictates the rate of isotropization of the stress energy tensor, as well as the shear viscosity ν = η/sT . We formulate methods for computing these correlations using second order dissipative hydrodynamics with noise. Current data are consistent with τ π /ν ∼ 10 but targeted measurements can improve this precision. (paper)

  18. Hydrodynamical model with massless constituents

    International Nuclear Information System (INIS)

    Chiu, C.B.; Wang, K.H.

    1974-01-01

    Within the constituent hydrodynamical model, it is shown that the total number of constituents is conserved, if these constituents are massless and satisfy the Fermi-Dirac distribution. A simple scheme for the transition from the constituent-phase to the hadron-phase is suggested, and the hadron inclusive momentum spectra are presented for this case. This phase transition scheme predicts the average transverse momentum of meson resonances which is compatible with the data. (U.S.)

  19. Production and use of stable isotopes in France

    International Nuclear Information System (INIS)

    Roth, E.; Letolle, R.

    1991-01-01

    This paper can not cover the field of production and use of stable isotopes in France exhaustively within six pages. We have chosen to concentrate on highlights of the subject and on recent work, and to give references for further reading. 26 refs

  20. Hydrodynamic cavitation in microsystems. I. Experiments with deionized water and nanofluids

    Science.gov (United States)

    Medrano, M.; Zermatten, P. J.; Pellone, C.; Franc, J. P.; Ayela, F.

    2011-12-01

    An experimental study of hydrodynamic cavitation downstream microdiaphragms and microventuris is presented. Deionized water and nanofluids have been characterized within silicon-Pyrex micromachined devices with hydraulic diameters ranging from 51 μm to 104 μm. The input pressure could reach up to 10 bars, and the flow rate was below 1 liter per hour. The output pressure of the devices was fixed at values ranging from 0.3 bar to 2 bars, so that it was possible to study the evolution of the cavitation number as a function of the Reynolds number in the orifice of the diaphragms or in the throat of the venturis. A delay on the onset of cavitation has been recorded for all the devices when they are fed with deionized water, because of the metastability of the liquid and because of the lack of roughness of the walls. For the first time, hydrodynamic cavitation of nanofluids (nanoparticles dispersed into the liquid) has been considered. The presence of nano-aggregates in the liquid does not exhibit any noticeable effect on the cavitation threshold through the venturis. However, such a presence has a strong influence on the cavitation onset in microdiaphragms: above a critical volume solid concentration of ≈10-5, the metastability is broken and the nanofluids behave as tap water filled up with large nuclei. These microdevices, where a low amount of fluid is required to reach cavitating flows, appear to be useful tools in order to study cavitating phenomena in localized area with specific fluids.

  1. The effects of second-order hydrodynamics on a semisubmersible floating offshore wind turbine

    International Nuclear Information System (INIS)

    Bayati, I; Jonkman, J; Robertson, A; Platt, A

    2014-01-01

    The objective of this paper is to assess the second-order hydrodynamic effects on a semisubmersible floating offshore wind turbine. Second-order hydrodynamics induce loads and motions at the sum- and difference-frequencies of the incident waves. These effects have often been ignored in offshore wind analysis, under the assumption that they are significantly smaller than first-order effects. The sum- and difference-frequency loads can, however, excite eigenfrequencies of a floating system, leading to large oscillations that strain the mooring system or vibrations that cause fatigue damage to the structure. Observations of supposed second-order responses in wave-tank tests performed by the DeepCwind consortium at the Maritime Research Institute Netherlands (MARIN) offshore basin suggest that these effects might be more important than originally expected. These observations inspired interest in investigating how second-order excitation affects floating offshore wind turbines and whether second-order hydrodynamics should be included in offshore wind simulation tools like FAST. In this work, the effects of second-order hydrodynamics on a floating semisubmersible offshore wind turbine are investigated. Because FAST is currently unable to account for second-order effects, a method to assess these effects was applied in which linearized properties of the floating wind system derived from FAST (including the 6x6 mass and stiffness matrices) are used by WAMIT to solve the first- and second-order hydrodynamics problems in the frequency domain. The method was applied to the Offshore Code Comparison Collaboration Continuation OC4-DeepCwind semisubmersible platform, supporting the National Renewable Energy Laboratory's 5-MW baseline wind turbine. In this paper, the loads and response of the system caused by the second-order hydrodynamics are analysed and compared to the first-order hydrodynamic loads and induced motions in the frequency domain. Further, the second

  2. Uptake and translocation of 109Cd and stable Cd within tobacco plants (Nicotiana sylvestris)

    International Nuclear Information System (INIS)

    Rosén, K.; Eriksson, J.; Vinichuk, M.

    2012-01-01

    The availability, uptake, and translocation of recently added ( 109 Cd) and naturally occurring (stable) soil Cd within tobacco plants were compared. 109 Cd was added to soil in two treatments, A (0.25 MBq kg soil −1 DW) and B (eight-fold dose): stable Cd was measured in both treatments. Both the added and the stable Cd were higher in leaves and reproductive structures of the plant than in stalks and roots. The uptake of 109 Cd was 5.3 kBq plant −1 for treatment A and 36.7 kBq plant −1 for treatment B, and about 26 μg plant −1 for stable Cd. Leaves of the tobacco plants accumulated 40–45% of the total 109 Cd and about 50% of total stable Cd taken up by the plant. Cadmium concentration in the plant was three times higher than in roots and two times higher than the concentration in soil: the concentration in roots was lower than in the soil. - Capsule: The availability, uptake, and translocation of recently added ( 109 Cd) and naturally occurring (stable) soil Cd within tobacco plants (Nicotiana sylvestris) were investigated. - Highlights: ► We compared uptake recently added and naturally occurring soil Cd by tobacco plant. ► Both added and stable Cd display similar uptake and translocation within the plant. ► Leaves of tobacco plants accumulate half of the total Cd taken up by the plant. ► Recently added 109 Cd to soil is more available than naturally occurring cadmium.

  3. Plasma hydrodynamics of the intense laser-cluster interaction*

    Science.gov (United States)

    Milchberg, Howard

    2002-11-01

    We present a 1D hydrodynamic model of the intense laser-cluster interaction in which the laser field is treated self-consistently. We find that for clusters initially as small as 25Å in radius, for which the hydrodynamic model is appropriate, nonuniform expansion of the heated material results in long-time resonance of the laser field at the critical density plasma layer. A significant result of this is that the ponderomotive force, which is enhanced at the critical density surface, can be large enough to strongly modify the plasma hydrodynamics, even at laser intensities as low as 10^15 W/cm^2 for 800 nm laser pulses. Recent experiments in EUV and x-ray generation as a function of laser pulsewidth [1], and femtosecond time-resolved measurements of cluster transient polarizability [2] provide strong support for the basic physics of this model. Recent results using a 2D hybrid fluid/PIC code show qualitative agreement with the 1D hydrocode [3]. *Work supported by the National Science Foundation and the EUV-LLC. 1. E. Parra, I. Alexeev, J. Fan, K. Kim, S.J. McNaught, and H. M. Milchberg, Phys. Rev. E 62, R5931 (2000). 2. K.Y. Kim, I. Alexeev, E. Parra, and H.M. Milchberg, submitted for publication. 3. T. Taguchi, T. Antonsen, and H.M Milchberg, this meeting.

  4. Hydrodynamic evolution and jet energy loss in Cu + Cu collisions

    International Nuclear Information System (INIS)

    Schenke, Bjoern; Jeon, Sangyong; Gale, Charles

    2011-01-01

    We present results from a hybrid description of Cu + Cu collisions using (3 + 1)-dimensional hydrodynamics (music) for the bulk evolution and a Monte Carlo simulation (martini) for the evolution of high-momentum partons in the hydrodynamical background. We explore the limits of this description by going to small system sizes and determine the dependence on different fractions of wounded nucleon and binary collisions scaling of the initial energy density. We find that Cu + Cu collisions are well described by the hybrid description at least up to 20% central collisions.

  5. Twentieth-First Symposium on Naval Hydrodynamics Held in Troudheim, Norway on 24-28 June 1996

    National Research Council Canada - National Science Library

    1996-01-01

    .... Seventy- two papers were presented in thirteen topical areas covered by the symposium, including wave-induced ship motions and loads, viscous ship hydrodynamics, wake dynamics, wave hydrodynamics...

  6. Submarine hydrodynamics

    CERN Document Server

    Renilson, Martin

    2015-01-01

    This book adopts a practical approach and presents recent research together with applications in real submarine design and operation. Topics covered include hydrostatics, manoeuvring, resistance and propulsion of submarines. The author briefly reviews basic concepts in ship hydrodynamics and goes on to show how they are applied to submarines, including a look at the use of physical model experiments. The issues associated with manoeuvring in both the horizontal and vertical planes are explained, and readers will discover suggested criteria for stability, along with rudder and hydroplane effectiveness. The book includes a section on appendage design which includes information on sail design, different arrangements of bow planes and alternative stern configurations. Other themes explored in this book include hydro-acoustic performance, the components of resistance and the effect of hull shape. Readers will value the author’s applied experience as well as the empirical expressions that are presented for use a...

  7. An iterative method for hydrodynamic interactions in Brownian dynamics simulations of polymer dynamics

    Science.gov (United States)

    Miao, Linling; Young, Charles D.; Sing, Charles E.

    2017-07-01

    Brownian Dynamics (BD) simulations are a standard tool for understanding the dynamics of polymers in and out of equilibrium. Quantitative comparison can be made to rheological measurements of dilute polymer solutions, as well as direct visual observations of fluorescently labeled DNA. The primary computational challenge with BD is the expensive calculation of hydrodynamic interactions (HI), which are necessary to capture physically realistic dynamics. The full HI calculation, performed via a Cholesky decomposition every time step, scales with the length of the polymer as O(N3). This limits the calculation to a few hundred simulated particles. A number of approximations in the literature can lower this scaling to O(N2 - N2.25), and explicit solvent methods scale as O(N); however both incur a significant constant per-time step computational cost. Despite this progress, there remains a need for new or alternative methods of calculating hydrodynamic interactions; large polymer chains or semidilute polymer solutions remain computationally expensive. In this paper, we introduce an alternative method for calculating approximate hydrodynamic interactions. Our method relies on an iterative scheme to establish self-consistency between a hydrodynamic matrix that is averaged over simulation and the hydrodynamic matrix used to run the simulation. Comparison to standard BD simulation and polymer theory results demonstrates that this method quantitatively captures both equilibrium and steady-state dynamics after only a few iterations. The use of an averaged hydrodynamic matrix allows the computationally expensive Brownian noise calculation to be performed infrequently, so that it is no longer the bottleneck of the simulation calculations. We also investigate limitations of this conformational averaging approach in ring polymers.

  8. Hydrodynamic cavitation as a novel approach for delignification of wheat straw for paper manufacturing.

    Science.gov (United States)

    Badve, Mandar P; Gogate, Parag R; Pandit, Aniruddha B; Csoka, Levente

    2014-01-01

    The present work deals with application of hydrodynamic cavitation for intensification of delignification of wheat straw as an essential step in the paper manufacturing process. Wheat straw was first treated with potassium hydroxide (KOH) for 48 h and subsequently alkali treated wheat straw was subjected to hydrodynamic cavitation. Hydrodynamic cavitation reactor used in the work is basically a stator and rotor assembly, where the rotor is provided with indentations and cavitational events are expected to occur on the surface of rotor as well as within the indentations. It has been observed that treatment of alkali treated wheat straw in hydrodynamic cavitation reactor for 10-15 min increases the tensile index of the synthesized paper sheets to about 50-55%, which is sufficient for paper board manufacture. The final mechanical properties of the paper can be effectively managed by controlling the processing parameters as well as the cavitational parameters. It has also been established that hydrodynamic cavitation proves to be an effective method over other standard digestion techniques of delignification in terms of electrical energy requirements as well as the required time for processing. Overall, the work is first of its kind application of hydrodynamic cavitation for enhancing the effectiveness of delignification and presents novel results of significant interest to the paper and pulp industry opening an entirely new area of application of cavitational reactors. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Model of the hydrodynamic loads applied on a rotating halfbridge belonging to a circular settling tank

    Science.gov (United States)

    Dascalescu, A. E.; Lazaroiu, G.; Scupi, A. A.; Oanta, E.

    2016-08-01

    The rotating half-bridge of a settling tank is employed to sweep the sludge from the wastewater and to vacuum and sent it to the central collector. It has a complex geometry but the main beam may be considered a slender bar loaded by the following category of forces: concentrated forces produced by the weight of the scrapping system of blades, suction pipes, local sludge collecting chamber, plus the sludge in the horizontal sludge transporting pipes; forces produced by the access bridge; buoyant forces produced by the floating barrels according to Archimedes’ principle; distributed forces produced by the weight of the main bridge; hydrodynamic forces. In order to evaluate the hydrodynamic loads we have conceived a numerical model based on the finite volume method, using the ANSYS-Fluent software. To model the flow we used the equations of Reynolds Averaged Navier-Stokes (RANS) for liquids together with Volume of Fluid model (VOF) for multiphase flows. For turbulent model k-epsilon we used the equation for turbulent kinetic energy k and dissipation epsilon. These results will be used to increase the accuracy of the loads’ sub-model in the theoretical models, e. the finite element model and the analytical model.

  10. Evaluating results from the Relativistic Heavy Ion Collider with perturbative QCD and hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Fries, R.J.; Nonaka, C.

    2011-07-01

    We review the basic concepts of perturbative quantum chromodynamics (QCD) and relativistic hydrodynamics, and their applications to hadron production in high energy nuclear collisions. We discuss results from the Relativistic Heavy Ion Collider (RHIC) in light of these theoretical approaches. Perturbative QCD and hydrodynamics together explain a large amount of experimental data gathered during the first decade of RHIC running, although some questions remain open. We focus primarily on practical aspects of the calculations, covering basic topics like perturbation theory, initial state nuclear effects, jet quenching models, ideal hydrodynamics, dissipative corrections, freeze-out and initial conditions. We conclude by comparing key results from RHIC to calculations.

  11. Hydrodynamic studies in designing of fluidized bed system

    International Nuclear Information System (INIS)

    Mohamad Puad Abu; Muhd Noor Muhd Yunus; Syed Nasaruddin Syed Idris

    2002-01-01

    Fluidized bed process have been used mostly in the petroleum and paper industries, and for processing nuclear wastes, spent cook liquor, wood chips, and sewage sludge disposal. Even at MINT some of the equipment available used this principal. Before we use or purchase this equipment, it is very grateful if we could understand how the system has been designed. The hydrodynamic fluidization studies is very important in designing of fluidized bed system especially in determining the minimum fluidizing velocity, terminal velocity, flexibility of operation, slugging condition, bubble size and velocity, and transport disengaging height. They can be determined either by calculation or experimentation. This paper will highlight the hydrodynamic study that need to be performed in designing of fluidized bed system so that its can be used appropriately. (Author)

  12. Hydrodynamic manoeuvrability data of a flatfish type AUV

    DEFF Research Database (Denmark)

    Aage, Christian; Wagner Smitt, Leif

    1994-01-01

    Hydrodynamic manoeuvrability data of the flatfish type autonomous underwater vehicle (AUV) “MARIUS” are presented. “MARIUS” was developed under the EC MAST Programme as a vehicle for seabed inspection and environmental surveys in coastal waters. The AUV has an overall length of 4.5 m and is driven...... by two propellers and four thrusters. The data comprise added mass and inertia coefficients, damping, lift and drag coefficients of the vehicle and its control surfaces, as well as resistance and propulsion characteristics. The hydrodynamic data have been determined by full scale tests, using a towing...... tank equipped with a planar motion mechanism. A few free-sailing tests have been carried out as well. Application of the data and possible improvements of the shape of the vehicle are discussed...

  13. Hydrodynamic fabrication of structurally gradient ZnO nanorods.

    Science.gov (United States)

    Kim, Hyung Min; Youn, Jae Ryoun; Song, Young Seok

    2016-02-26

    We studied a new approach where structurally gradient nanostructures were fabricated by means of hydrodynamics. Zinc oxide (ZnO) nanorods were synthesized in a drag-driven rotational flow in a controlled manner. The structural characteristics of nanorods such as orientation and diameter were determined by momentum and mass transfer at the substrate surface. The nucleation of ZnO was induced by shear stress which plays a key role in determining the orientation of ZnO nanorods. The nucleation and growth of such nanostructures were modeled theoretically and analyzed numerically to understand the underlying physics of the fabrication of nanostructures controlled by hydrodynamics. The findings demonstrated that the precise control of momentum and mass transfer enabled the formation of ZnO nanorods with a structural gradient in diameter and orientation.

  14. Universal hydrodynamic flow in holographic planar shock collisions

    Energy Technology Data Exchange (ETDEWEB)

    Chesler, Paul M. [Department of Physics, Harvard University,Cambridge MA 02138 (United States); Kilbertus, Niki [Institut für Theoretische Physik, Universität Regensburg,D-93040 Regensburg (Germany); Schee, Wilke van der [Center for Theoretical Physics, MIT,Cambridge MA 02139 (United States)

    2015-11-20

    We study the collision of planar shock waves in AdS{sub 5} as a function of shock profile. In the dual field theory the shock waves describe planar sheets of energy whose collision results in the formation of a plasma which behaves hydrodynamically at late times. We find that the post-collision stress tensor near the light cone exhibits transient non-universal behavior which depends on both the shock width and the precise functional form of the shock profile. However, over a large range of shock widths, including those which yield qualitative different behavior near the future light cone, and for different shock profiles, we find universal behavior in the subsequent hydrodynamic evolution. Additionally, we compute the rapidity distribution of produced particles and find it to be well described by a Gaussian.

  15. GLOFRIM v1.0-A globally applicable computational framework for integrated hydrological-hydrodynamic modelling

    NARCIS (Netherlands)

    Hoch, Jannis M.; Neal, Jeffrey C.; Baart, Fedor; Van Beek, Rens; Winsemius, Hessel C.; Bates, Paul D.; Bierkens, Marc F.P.

    2017-01-01

    We here present GLOFRIM, a globally applicable computational framework for integrated hydrological-hydrodynamic modelling. GLOFRIM facilitates spatially explicit coupling of hydrodynamic and hydrologic models and caters for an ensemble of models to be coupled. It currently encompasses the global

  16. On kinetic Boltzmann equations and related hydrodynamic flows with dry viscosity

    Directory of Open Access Journals (Sweden)

    Nikolai N. Bogoliubov (Jr.

    2007-01-01

    Full Text Available A two-component particle model of Boltzmann-Vlasov type kinetic equations in the form of special nonlinear integro-differential hydrodynamic systems on an infinite-dimensional functional manifold is discussed. We show that such systems are naturally connected with the nonlinear kinetic Boltzmann-Vlasov equations for some one-dimensional particle flows with pointwise interaction potential between particles. A new type of hydrodynamic two-component Benney equations is constructed and their Hamiltonian structure is analyzed.

  17. The role of Weyl symmetry in hydrodynamics

    Science.gov (United States)

    Diles, Saulo

    2018-04-01

    This article is dedicated to the analysis of Weyl symmetry in the context of relativistic hydrodynamics. Here is discussed how this symmetry is properly implemented using the prescription of minimal coupling: ∂ → ∂ + ωA. It is shown that this prescription has no problem to deal with curvature since it gives the correct expressions for the commutator of covariant derivatives. In hydrodynamics, Weyl gauge connection emerges from the degrees of freedom of the fluid: it is a combination of the expansion and entropy gradient. The remaining degrees of freedom, shear, vorticity and the metric tensor, are see in this context as charged fields under the Weyl gauge connection. The gauge nature of the connection provides natural dynamics to it via equations of motion analogous to the Maxwell equations for electromagnetism. As a consequence, a charge for the Weyl connection is defined and the notion of local charge is analyzed generating the conservation law for the Weyl charge.

  18. Bulk hydrodynamic stability and turbulent saturation in compressing hot spots

    Science.gov (United States)

    Davidovits, Seth; Fisch, Nathaniel J.

    2018-04-01

    For hot spots compressed at constant velocity, we give a hydrodynamic stability criterion that describes the expected energy behavior of non-radial hydrodynamic motion for different classes of trajectories (in ρR — T space). For a given compression velocity, this criterion depends on ρR, T, and d T /d (ρR ) (the trajectory slope) and applies point-wise so that the expected behavior can be determined instantaneously along the trajectory. Among the classes of trajectories are those where the hydromotion is guaranteed to decrease and those where the hydromotion is bounded by a saturated value. We calculate this saturated value and find the compression velocities for which hydromotion may be a substantial fraction of hot-spot energy at burn time. The Lindl (Phys. Plasmas 2, 3933 (1995)] "attractor" trajectory is shown to experience non-radial hydrodynamic energy that grows towards this saturated state. Comparing the saturation value with the available detailed 3D simulation results, we find that the fluctuating velocities in these simulations reach substantial fractions of the saturated value.

  19. Effectiveness of training programmes used in two stables of thoroughbred race horses.

    Science.gov (United States)

    Szarska, E; Cywińska, A; Ostaszewski, P; Kowalska, A

    2014-01-01

    The purpose of this study was to compare the training methods used in two stables and their effects on selected blood parameters and race results. A total number of 36 thoroughbred race horses was examined in two groups, trained by two trainers. Twenty-four horses (group A) were trained at Sluzewiec and the remaining twelve horses (group B) were kept and trained in a private stable. The experiment lasted for five months. The activities of CPK (creatine phosphokinase) and AST (aspartate aminotransferase) and the concentration of LA (lactic acid) were determined. The speed was controlled and recorded by a Garmin GPS system. The analysis of the General Handicap rating demonstrated that the training methods used in stable A were more effective and resulted in better classification of these horses. Training methods in both stables were evaluated and compared on the basis of maximal speeds during training sessions and related post exercise LA concentrations. The main differences between training methods used in both stables concerned the workload and the time of work with the rider. Analysis of the values measured in individual horses from stable B have shown that AST and CK activities were high not only in all young, 2-year-old horses but also in three older ones. This seems to confirm the lack of balance and proper movement coordination in these horses, resulting in high activities of muscle enzymes.

  20. A Preliminary Study on the Measurement of Sediment Concentration in Hill-Slope Runoff with an Electrolyte Tracer

    Directory of Open Access Journals (Sweden)

    Xiaonan Shi Fan Zhang

    2012-01-01

    Full Text Available Sediment concentration in hill-slope runoff is an important index for soil erosion. Developing a reliable and portable measuring system of sediment concentration is a core issue for soil and water conservation study, especially for the Tibetan Plateau under unfavorable climate and terrain conditions for field investigation. Challenges include uneven distribution of sediment across a runoff section as well as difficulty in detecting a wide range of particle sizes. An electrolyte tracer, with the advantage of uniform distribution and its widely used electric-conductivity sensor, can avoid the problems of direct measurement of sediment. A new measurement method of sediment concentration in runoff with an electrolyte tracer is proposed based on a premise that sediment concentration is closely correlated with hydrodynamic dispersion coefficient of solute in runoff. In this study, an experiment system of hill-slope runoff with an electrolyte tracer and sediments is first designed. Second, two model parameters in the advective-dispersive equation of solute transport, flow velocity and diffusion coefficient, are inversely estimated by calibrating the observed concentrations of an electrolyte tracer. And third, the relationship between sediment concentrations and hydrodynamic dispersion coefficients are defined through specified regression. As a result, a measurement system of sediment concentration in hill-slope runoff with an electrolyte tracer is primarily established by integrating the relationship of variables, experiment system, and model theory.

  1. Study of the hydrodynamic circulation and transport of radionuclides in the Ilha Grande Bay -RJ

    International Nuclear Information System (INIS)

    Franklin, Mariza Ramalho

    2001-01-01

    The Almirante Alvaro Alberto Nuclear Center (CNAAA), located at the city of Rio de Janeiro and the liquid effluents are released into the Ilha Grande Bay (BIG). The objective of this work was to simulate mathematically the dispersion of 3 H and 137 Cs present in the liquid effluents that are routinely released into the environment, and in this way contribute to the improvement of the radiological impact assessment associated to these releases. The hydrodynamic circulation pattern of the bay and the transport of radionuclides were simulated by means of numerical modeling techniques by the computational system SisBAHIA (Sistema Base Hidrodinâmica e Ambiental). The results indicate that the local circulation pattern is mainly driven by the propagation of the tidal wave, and is characterized by low current velocities of about 0.1 m.s -1 . The wind stress (normal or extreme ones ) over the free surface does not alter the local circulation pattern significantly. The effluents are released in a rate of about 120 m 3 .s. -1 . As a result, the local hydrodynamics is markedly altered by means of the formation of a huge vortices close to the release area. According to the annual amount of the released radionuclides predicted in the Nuclear Licensing Document, and considering a continuous release it could be predicted that the radionuclide plume would present a low mobility, with most of the activity concentration amount being restricted close to the source. The activity concentration distribution reach the transportation steady state by the end of the 51 st day of simulation. A conservative behavior of both radionuclides in the water column was assumed in the performed simulation. (author)

  2. Hydrodynamics of Ship Propellers

    DEFF Research Database (Denmark)

    Breslin, John P.; Andersen, Poul

    This book deals with flows over propellers operating behind ships, and the hydrodynamic forces and moments which the propeller generates on the shaft and on the ship hull.The first part of the text is devoted to fundamentals of the flow about hydrofoil sections (with and without cavitation...... of an intermittently cavitating propeller in a wake and the pressures and forces it exerts on the shaft and on the ship hull is examined. A final chapter discusses the optimization of efficiency of compound propulsors. The authors have taken care to clearly describe physical concepts and mathematical steps. Appendices...

  3. Detailed simulation of morphodynamics : 1. Hydrodynamic model

    NARCIS (Netherlands)

    Nabi, M.; De Vriend, H.J.; Mosselman, E.; Sloff, C.J.; Shimizu, Y.

    2012-01-01

    We present a three-dimensional high-resolution hydrodynamic model for unsteady incompressible flow over an evolving bed topography. This is achieved by using a multilevel Cartesian grid technique that allows the grid to be refined in high-gradient regions and in the vicinity of the river bed. The

  4. Hydrodynamics in adaptive resolution particle simulations: Multiparticle collision dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Alekseeva, Uliana, E-mail: Alekseeva@itc.rwth-aachen.de [Jülich Supercomputing Centre (JSC), Institute for Advanced Simulation (IAS), Forschungszentrum Jülich, D-52425 Jülich (Germany); German Research School for Simulation Sciences (GRS), Forschungszentrum Jülich, D-52425 Jülich (Germany); Winkler, Roland G., E-mail: r.winkler@fz-juelich.de [Theoretical Soft Matter and Biophysics, Institute for Advanced Simulation (IAS), Forschungszentrum Jülich, D-52425 Jülich (Germany); Sutmann, Godehard, E-mail: g.sutmann@fz-juelich.de [Jülich Supercomputing Centre (JSC), Institute for Advanced Simulation (IAS), Forschungszentrum Jülich, D-52425 Jülich (Germany); ICAMS, Ruhr-University Bochum, D-44801 Bochum (Germany)

    2016-06-01

    A new adaptive resolution technique for particle-based multi-level simulations of fluids is presented. In the approach, the representation of fluid and solvent particles is changed on the fly between an atomistic and a coarse-grained description. The present approach is based on a hybrid coupling of the multiparticle collision dynamics (MPC) method and molecular dynamics (MD), thereby coupling stochastic and deterministic particle-based methods. Hydrodynamics is examined by calculating velocity and current correlation functions for various mixed and coupled systems. We demonstrate that hydrodynamic properties of the mixed fluid are conserved by a suitable coupling of the two particle methods, and that the simulation results agree well with theoretical expectations.

  5. Numerical simulation of hydrodynamic and water quality effects of shoreline changes in Bohai Bay

    Science.gov (United States)

    Jia, Han; Shen, Yongming; Su, Meirong; Yu, Chunxue

    2018-02-01

    This study uses the HD and Ecolab modules of MIKE to simulate the hydrodynamic and water quality and predict the influence of shoreline changes in Bohai Bay, China. The study shows that shoreline changes weaken the residual current and generate a counter-clockwise circulation south of Huanghua Port, thereby resulting in weak water exchange capacity and low pollutant-diffusing capacity. Shoreline changes reduce the area of Bohai Bay, resulting in a smaller tidal prism and further weakening the water exchange capacity. This situation is not conducive to the diffusion of pollutants, and therefore may lead to increased water pollution in the bay. Shoreline changes hinder the spread of runoff, weaken the dilution effect of the river on seawater, and block the spread of coastal residual current, thereby resulting in increased salinity near the reclamation area. Shoreline changes lead to an increase in PO4-P concentration and decrease in DIN concentration. The value of N/P near the project decreases, thereby weakening the phosphorus-limited effect.

  6. Characterization of initial fluctuations for the hydrodynamical description of heavy ion collisions

    CERN Document Server

    Floerchinger, Stefan

    2013-01-01

    Event-by-event fluctuations in the initial conditions for a hydrodynamical description of heavy-ion collisions are characterized. We propose a Bessel-Fourier decomposition with respect to the azimuthal angle, the radius in the transverse plane and rapidity. This allows for a complete characterization of fluctuations in all hydrodynamical fields including energy density, pressure, fluid velocity, shear stress and bulk viscous pressure. It has the advantage that fluctuations can be ordered with respect to their wave length and that they can be propagated mode-by-mode within the hydrodynamical formalism. Event ensembles can then be characterized in terms of a functional probability distribution. For the event ensemble of a Monte Carlo Glauber model, we provide evidence that the latter is close to Gaussian form, thus allowing for a particularly simple characterization of the event distribution.

  7. Neptune: An astrophysical smooth particle hydrodynamics code for massively parallel computer architectures

    Science.gov (United States)

    Sandalski, Stou

    Smooth particle hydrodynamics is an efficient method for modeling the dynamics of fluids. It is commonly used to simulate astrophysical processes such as binary mergers. We present a newly developed GPU accelerated smooth particle hydrodynamics code for astrophysical simulations. The code is named neptune after the Roman god of water. It is written in OpenMP parallelized C++ and OpenCL and includes octree based hydrodynamic and gravitational acceleration. The design relies on object-oriented methodologies in order to provide a flexible and modular framework that can be easily extended and modified by the user. Several pre-built scenarios for simulating collisions of polytropes and black-hole accretion are provided. The code is released under the MIT Open Source license and publicly available at http://code.google.com/p/neptune-sph/.

  8. Hydrodynamic model of the open-pit mine “Buvač” (Republic of Srpska

    Directory of Open Access Journals (Sweden)

    Papić Petar

    2013-09-01

    Full Text Available Projecting of the dewatering system of the open-pit mine “Buvač” (Republic of Srpska, Bosnia and Herzegovina is based on the use of hydrodynamic model of groundwater regime. Creating the hydrodynamic model of the open-pit mine “Buvač“ was made in phases, which began by basic interpretation of collected data, along with schematization of the groundwater flow and flow conditions, and finally, forming and calibration of model. Hydrodynamic model was created as multilayer model with eight layers. Calibration of the hydrodynamic model is the starting point for making prognosis calculation in order to create the most optimal system of open-pit mine protection from groundwater. The results of model calibration indicated that the rivers Gomjenica and Bistrica, precipitation and inflow from karstified rocks are the primary sources of recharge of the limonite ore body “Buvač”.

  9. Hydrodynamic evolution of neutron star merger remnants

    Science.gov (United States)

    Liu, Men-Quan; Zhang, Jie

    2017-11-01

    Based on the special relativistic hydrodynamic equations and updated cooling function, we investigate the long-term evolution of neutron stars merger (NSM) remnants by a one-dimensional hydrodynamic code. Three NSM models from one soft equation of state, SFHo, and two stiff equations of state, DD2 and TM1, are used to compare their influences on the hydrodynamic evolution of remnants. We present the luminosity, mass and radius of remnants, as well as the velocity, temperature and density of shocks. For a typical interstellar medium (ISM) density with solar metallicity, we find that the NSM remnant from the SFHo model makes much more changes to ISM in terms of velocity, density and temperature distributions, compared with the case of DD2 and TM1 models. The maximal luminosity of the NSM remnant from the SFHo model is 3.4 × 1038 erg s-1, which is several times larger than that from DD2 and TM1 models. The NSM remnant from the SFHo model can maintain high luminosity (>1038 erg s-1) for 2.29 × 104 yr. Furthermore, the density and temperature of remnants at the maximal luminosity are not sensitive to the power of the original remnant. For the ISM with the solar metallicity and nH = 1 cm- 3, the density of the first shock ∼10-23 g cm-3 and the temperature ∼3 × 105 K in the maximal luminosity phase; The temperature of the first shock decreases and there is a thin 'dense' shell with density ∼10-21 g cm-3 after the maximal luminosity. These characteristics may be helpful for future observations of NSM remnants.

  10. Hydrodynamical model based on a bag-like Lagrangian

    International Nuclear Information System (INIS)

    Chiu, C.B.; Lam, C.S.; Wang, K.H.

    1976-06-01

    Equations of motion of hydrodynamical model are derived from a bag-like Lagrangian by using the technique of information theory. Comments on the break-up of the system and on the properties of decay products are included

  11. Fluid dynamics of acoustic and hydrodynamic cavitation in hydraulic power systems

    OpenAIRE

    Ferrari, A.

    2017-01-01

    Cavitation is the transition from a liquid to a vapour phase, due to a drop in pressure to the level of the vapour tension of the fluid. Two kinds of cavitation have been reviewed here: acoustic cavitation and hydrodynamic cavitation. As acoustic cavitation in engineering systems is related to the propagation of waves through a region subjected to liquid vaporization, the available expressions of the sound speed are discussed. One of the main effects of hydrodynamic cavitation in the nozzles ...

  12. Relativistic Hydrodynamics of Color-Flavor Locking Phase with Spontaneous Symmetry Breaking

    Institute of Scientific and Technical Information of China (English)

    ZHANG Sun; WANG Fan

    2004-01-01

    We study the hydrodynamics of color-flavor locking phase of three flavors of light quarks in high density QCD with spontaneous symmetry breaking. The basic hydrodynamic equations are presented based on the Poisson bracket method and the Goldstone phonon and the thermo phonon are compared. The dissipative equations are constructed in the frame of the first-order theory and all the transport coefficients are also defined, which could be looked on as the general case including the Landau's theory and the Eckart's theory

  13. Causal hydrodynamics of gauge theory plasmas from AdS/CFT duality

    International Nuclear Information System (INIS)

    Natsuume, Makoto; Okamura, Takashi

    2008-01-01

    We study causal hydrodynamics (Israel-Stewart theory) of gauge theory plasmas from the AdS/CFT duality. Causal hydrodynamics requires new transport coefficients (relaxation times) and we compute them for a number of supersymmetric gauge theories including the N=4 super Yang-Mills theory. However, the relaxation times obtained from the 'shear mode' do not agree with the ones from the 'sound mode', which implies that the Israel-Stewart theory is not a sufficient framework to describe the gauge theory plasmas.

  14. Star Formation History of Dwarf Galaxies in Cosmological Hydrodynamic Simulations

    Directory of Open Access Journals (Sweden)

    Kentaro Nagamine

    2010-01-01

    Full Text Available We examine the past and current work on the star formation (SF histories of dwarf galaxies in cosmological hydrodynamic simulations. The results obtained from different numerical methods are still somewhat mixed, but the differences are understandable if we consider the numerical and resolution effects. It remains a challenge to simulate the episodic nature of SF history in dwarf galaxies at late times within the cosmological context of a cold dark matter model. More work is needed to solve the mysteries of SF history of dwarf galaxies employing large-scale hydrodynamic simulations on the next generation of supercomputers.

  15. DETERMINATION OF HYDRODYNAMIC CHARACTERISTICS OF A RADIO-CONTROLLED AIRPLANE MODEL WITH AIR CUSHION LANDING GEAR

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available This article presents the results of the hydrodynamic parameters of radio-controlled models (RCM of the aircraft with the landing gear on an air cushion (REFERENCED obtained during tests in the water tank of TSAGI NIMC on land- ing modes with varying alignment and pressure in air cushion chassis on calm and disturbed water surfaces.ACLG’s RCM is based on the Froude criterion. The experimental data of the real aircraft Dingo, LMS, An-26, C-130 Hercules (size, weight, thrust parameters were processed. Tests were carried out, using the standard testbed, utiliz- ing the dynamically-corresponding models in the water tank. Drag best value rate while travelling along the smooth water was reached at the rear centering, with balloon pressure on the water of 700 Pa. In this case, the hump drag, at velocity of 2 mps, does not exceed 29 Newtons (hydrodynamic fineness on the ‘drag hump’ is, Кг=13,5, while at velocity of 10 mps, the drag is 30 Newtons, at Кг =13.The most unfavourable mode of motion is the one with configuration of lowered pressure in the balloons (400 Pa.In these cases, the Кг = 6,5. At motion with yaw angle of 10º, the drag rate meaning practically stands stable (Кг = 13,1, while at 20º it grows (Кг = 10,6.At motion along the waved surface, the critical wave length equals to two thirds of the ACU, while drag raises by the quarter, compared to other wave types. Such vehicles can be used in the hard-to-reach regions of the Russian Federation.

  16. Influence of temperature and salinity on hydrodynamic forces

    Directory of Open Access Journals (Sweden)

    A. Escobar

    2016-12-01

    Full Text Available The purpose of this study is to introduce an innovative approach to offshore engineering so as to take variations in sea temperature and salinity into account in the calculation of hydrodynamic forces. With this in mind, a thorough critical analysis of the influence of sea temperature and salinity on hydrodynamic forces on piles like those used nowadays in offshore wind farms will be carried out. This influence on hydrodynamic forces occurs through a change in water density and viscosity due to temperature and salinity variation. Therefore, the aim here is to observe whether models currently used to estimate wave forces on piles are valid for different ranges of sea temperature and salinity apart from observing the limit when diffraction or nonlinear effects arise combining both effects with the magnitude of the pile diameter. Hence, specific software has been developed to simulate equations in fluid mechanics taking into account nonlinear and diffraction effects. This software enables wave produced forces on a cylinder supported on the sea bed to be calculated. The study includes observations on the calculation model's sensitivity as to a variation in the cylinder's diameter, on the one hand and, on the other, as to temperature and salinity variation. This software will enable an iterative calculation to be made for finding out the shape the pressure wave caused when a wave passes over will have for different pile diameters and water with different temperature and salinity.

  17. Hydrodynamic potentials for the micropolar Navier-Stokes problem

    International Nuclear Information System (INIS)

    Martynenko, M.D.; Dimian, M.

    1995-01-01

    An integral representation of linear and angular velocities and pressure for the description of linear stationary flows of micropolar viscous liquid media is obtained, and on its basis hydrodynamic potentials for the micropolar Navier-Stokes problem are introduced

  18. Classifying and modelling spiral structures in hydrodynamic simulations of astrophysical discs

    Science.gov (United States)

    Forgan, D. H.; Ramón-Fox, F. G.; Bonnell, I. A.

    2018-05-01

    We demonstrate numerical techniques for automatic identification of individual spiral arms in hydrodynamic simulations of astrophysical discs. Building on our earlier work, which used tensor classification to identify regions that were `spiral-like', we can now obtain fits to spirals for individual arm elements. We show this process can even detect spirals in relatively flocculent spiral patterns, but the resulting fits to logarithmic `grand-design' spirals are less robust. Our methods not only permit the estimation of pitch angles, but also direct measurements of the spiral arm width and pattern speed. In principle, our techniques will allow the tracking of material as it passes through an arm. Our demonstration uses smoothed particle hydrodynamics simulations, but we stress that the method is suitable for any finite-element hydrodynamics system. We anticipate our techniques will be essential to studies of star formation in disc galaxies, and attempts to find the origin of recently observed spiral structure in protostellar discs.

  19. A Computational Study on Hydrodynamic Torque Coefficients of a Butterfly Valve

    International Nuclear Information System (INIS)

    Lee, Do-Hwan; Park, Sung-Keun; Kang, Shin-Chul; Kim, Dae-Woong; Park, Ju-Yeop

    2007-01-01

    Butterfly valves have been widely used for on-off or control purposes in the process industry, since they provide quick opening and closing operation and good flow control characteristics. For the evaluation of the adequacy of valve operability and the actuator sizing, the required torque estimation is necessary. Since the principal contributing component of the require torque in the mid-stroke position is hydrodynamic torque, it is necessary to predict the torque properly under the actual flow conditions. The research on the prediction of the valve performance was led by EPRI (Electric Power Research Institute) in early 1990s. A performance prediction model was developed based on the experimental results and the free-streamline analysis by Sarpkaya. Recently, Kalsi Engineering carried out extended tests and developed the improved model. Variation of disk geometries and upstream flow conditions were tried to obtain accurate hydrodynamic torque coefficients. However, since the model is only commercially available, a general method to obtain hydrodynamic torque for butterfly valves is called for

  20. Calibration of Linked Hydrodynamic and Water Quality Model for Santa Margarita Lagoon

    Science.gov (United States)

    2016-07-01

    was used to drive the transport and water quality kinetics for the simulation of 2007–2009. The sand berm, which controlled the opening/closure of...TECHNICAL REPORT 3015 July 2016 Calibration of Linked Hydrodynamic and Water Quality Model for Santa Margarita Lagoon Final Report Pei...Linked Hydrodynamic and Water Quality Model for Santa Margarita Lagoon Final Report Pei-Fang Wang Chuck Katz Ripan Barua SSC Pacific James

  1. Laser driven hydrodynamic instability experiments

    International Nuclear Information System (INIS)

    Remington, B.A.; Weber, S.V.; Haan, S.W.; Kilkenny, J.D.; Glendinning, S.G.; Wallace, R.J.; Goldstein, W.H.; Wilson, B.G.; Nash, J.K.

    1992-01-01

    We have conducted an extensive series of experiments on the Nova laser to measure hydrodynamic instabilities in planar foils accelerated by x-ray ablation. Single mode experiments allow a measurement of the fundamental growth rates from the linear well into the nonlinear regime; multimode foils allow an assessment of the degree of mode coupling; and surface-finish experiments allow a measurement of the evolution of a broad spectrum of random initial modes. Experimental results and comparisons with theory and simulations are presented

  2. Low torque hydrodynamic lip geometry for rotary seals

    Science.gov (United States)

    Dietle, Lannie L.; Schroeder, John E.

    2015-07-21

    A hydrodynamically lubricating geometry for the generally circular dynamic sealing lip of rotary seals that are employed to partition a lubricant from an environment. The dynamic sealing lip is provided for establishing compressed sealing engagement with a relatively rotatable surface, and for wedging a film of lubricating fluid into the interface between the dynamic sealing lip and the relatively rotatable surface in response to relative rotation that may occur in the clockwise or the counter-clockwise direction. A wave form incorporating an elongated dimple provides the gradual convergence, efficient impingement angle, and gradual interfacial contact pressure rise that are conducive to efficient hydrodynamic wedging. Skewed elevated contact pressure zones produced by compression edge effects provide for controlled lubricant movement within the dynamic sealing interface between the seal and the relatively rotatable surface, producing enhanced lubrication and low running torque.

  3. Viscosity effect in Landau's hydrodynamical model

    International Nuclear Information System (INIS)

    Hoang, T.F.; Phua, K.K.; Nanyang Univ., Singapore

    1979-01-01

    The Bose-Einstein distribution is used to investigate Landau's hydrodynamical model with viscosity. In case the viscosity dependence on the temperature is T 3 , the correction to the multiplicity behaves like I/E and is found to be negligible for the pp data. A discussion is presented on a possibility of reconciling E 1 / 2 and logE dependence of the multiplicity law. (orig.)

  4. Interactive Effects of CO2 Concentration and Water Regime on Stable Isotope Signatures, Nitrogen Assimilation and Growth in Sweet Pepper

    Directory of Open Access Journals (Sweden)

    María D. Serret

    2018-01-01

    Full Text Available Sweet pepper is among the most widely cultivated horticultural crops in the Mediterranean basin, being frequently grown hydroponically under cover in combination with CO2 fertilization and water conditions ranging from optimal to suboptimal. The aim of this study is to develop a simple model, based on the analysis of plant stable isotopes in their natural abundance, gas exchange traits and N concentration, to assess sweet pepper growth. Plants were grown in a growth chamber for near 6 weeks. Two [CO2] (400 and 800 μmol mol−1, three water regimes (control and mild and moderate water stress and four genotypes were assayed. For each combination of genotype, [CO2] and water regime five plants were evaluated. Water stress applied caused significant decreases in water potential, net assimilation, stomatal conductance, intercellular to atmospheric [CO2], and significant increases in water use efficiency, leaf chlorophyll content and carbon isotope composition, while the relative water content, the osmotic potential and the content of anthocyanins did change not under stress compared to control conditions support this statement. Nevertheless, water regime affects plant growth via nitrogen assimilation, which is associated with the transpiration stream, particularly at high [CO2], while the lower N concentration caused by rising [CO2] is not associated with stomatal closure. The stable isotope composition of carbon, oxygen, and nitrogen (δ13C, δ18O, and δ15N in plant matter are affected not only by water regime but also by rising [CO2]. Thus, δ18O increased probably as response to decreases in transpiration, while the increase in δ15N may reflect not only a lower stomatal conductance but a higher nitrogen demand in leaves or shifts in nitrogen metabolism associated with decreases in photorespiration. The way that δ13C explains differences in plant growth across water regimes within a given [CO2], seems to be mediated through its direct

  5. The effect of hydrodynamics on nitrogen accumulation and ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-07-18

    Jul 18, 2008 ... Natural water hydrodynamic conditions play an important role in the nutrients transport among water, ... stress inhibition, while Chl a and b appeared to be a little synthesized in the S flume. ..... accounting for 48.1% increase.

  6. Recent Advances in Tsunami-Seabed-Structure Interaction from Geotechnical and Hydrodynamic Perspectives

    Science.gov (United States)

    Sassa, S.

    2017-12-01

    This presentation shows some recent research advances on tsunami-seabed-structure interaction following the 2011 Tohoku Earthquake Tsunami, Japan. It presents a concise summary and discussion of utilizing a geotechnical centrifuge and a large-scale hydro flume for the modelling of tsunami-seabed-structure interaction. I highlight here the role of tsunami-induced seepage in piping/boiling, erosion and bearing capacity decrease and failure of the rubble/seabed foundation. A comparison and discussion are made on the stability assessment for the design of tsunami-resistant structures on the basis of the results from both geo-centrifuge and large-scale hydrodynamic experiments. The concurrent processes of the instability involving the scour of the mound/sandy seabed, bearing capacity failure and flow of the foundation and the failure of caisson breakwaters under tsunami overflow and seepage coupling are made clear in this presentation. Three series of experiments were conducted under fifty gravities. The first series of experiments targeted the instability of the mounds themselves, and the second series of experiments clarified how the mound scour would affect the overall stability of the caissons. The third series of experiments examined the effect of a countermeasure on the basis of the results from the two series of experiments. The experimental results first demonstrated that the coupled overflow-seepage actions promoted the development of the mound scour significantly, and caused bearing capacity failure of the mound, resulting in the total failure of the caisson breakwater, which otherwise remained stable without the coupling effect. The velocity vectors obtained from the high-resolution image analysis illustrated the series of such concurrent scour/bearing-capacity-failure/flow processes leading to the instability of the breakwater. The stability of the breakwaters was significantly improved with decreasing hydraulic gradient underneath the caissons due to an

  7. The molar hydrodynamic volume changes of factor VIIa due to GlycoPEGylation.

    Science.gov (United States)

    Plesner, Bitten; Westh, Peter; Hvidt, Søren; Nielsen, Anders D

    2011-06-01

    The effects of GlycoPEGylation on the molar hydrodynamic volume of recombinant human rFVIIa were investigated using rFVIIa and two GlycoPEGylated recombinant human FVIIa derivatives, a linear 10kDa PEG and a branched 40kDa PEG, respectively. Molar hydrodynamic volumes were determined by capillary viscometry and mass spectrometry. The intrinsic viscosities of rFVIIa, its two GlycoPEGylated compounds, and of linear 8kDa, 10kDa, 20kDa and branched 40kDa PEG polymers were determined. The measured intrinsic viscosity of rFVIIa is 6.0mL/g, while the intrinsic viscosities of 10kDa PEG-rFVIIa and 40kDa PEG-rFVIIa are 29.5mL/g and 79.0mL/g, respectively. The intrinsic viscosities of the linear PEG polymers are 20, 22.6 and 41.4mL/g for 8, 10, and 20kDa, respectively, and 61.1mL/g for the branched 40kDa PEG. From the results of the intrinsic viscosity and MALDI-TOF measurements it is evident, that the molar hydrodynamic volume of the conjugated protein is not just an addition of the molar hydrodynamic volume of the PEG and the protein. The molar hydrodynamic volume of the GlycoPEGylated protein is larger than the volume of its composites. These results suggest that both the linear and the branched PEG are not wrapped around the surface of rFVIIa but are chains that are significantly stretched out when attached to the protein. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Mark III LOCA-related hydrodynamic load definition. Generic technical activity B-10

    International Nuclear Information System (INIS)

    1984-02-01

    This report, prepared by the staff of the Office of Nuclear Reactor Regulation and its consultants at the Brookhaven National Laboratory, provides a discussion of LOCA-related suppression pool hydrodynamic loads in boiling water reactor (BWR) facilities with the Mark III pressure-suppression containment design. Its issuance completes NRC Generic Technical Activity B-10, Behavior of BWR Mark III Containment. On the basis of certain large-scale tests conducted between 1973 and 1979, the General Electric Company developed LOCA-related hydrodynamic load definitions for use in the design of the standard Mark III containment. The staff and its consultants have reviewed these load definitions and their bases conclude that, with a few specified changes, the proposed load definitions provide conservative loading conditions. The staff-approved acceptance criteria for LOCA-related hydrodynamic loads are provided in Appendix C of this report

  9. Effects of ponderomotive forces and space-charge field on laser plasma hydrodynamics

    International Nuclear Information System (INIS)

    Cang Yu; Lu Xin; Wu Huichun; Zhang Jie

    2005-01-01

    Using a two-fluid two-temperature hydrodynamic code, authors studied the hydrodynamics in the interaction of intense (10 15 W/cm 2 ) ultrashort (150 fs) laser pulses and linear density plasmas. The simulation results show the ponderomotive force effect on the formation of the electron density ripples in under-dense region, such ripples increase the reflection of the laser pulse, and on the separation of the plasma in critical surface. Quasi-electroneutrality is not suitable in this case because of the different ponderomotive force and the gradient of thermal-pressure for ions and electrons. Ions are moved by the electrostatic force. Comparing with the simulation results from one-fluid two-temperature code, authors find that under strong ponderomotive force and gradient of thermo-pressure, two-fluid code is more suitable to simulate the hydrodynamics of plasmas. (authors)

  10. The quantum hydrodynamics of the Sutherland model

    International Nuclear Information System (INIS)

    Stone, Michael; Gutman, Dmitry

    2008-01-01

    We show that the form of the chiral condition found by Abanov et al in the quantum hydrodynamics of the Sutherland model arises because there are two distinct inner products with respect to which the chiral Hamiltonian is Hermitian, but only one with respect to which the full, non-chiral, Hamiltonian is Hermitian

  11. High-Order Curvilinear Finite Element Methods for Lagrangian Hydrodynamics [High Order Curvilinear Finite Elements for Lagrangian Hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Dobrev, Veselin A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kolev, Tzanio V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rieben, Robert N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2012-09-20

    The numerical approximation of the Euler equations of gas dynamics in a movingLagrangian frame is at the heart of many multiphysics simulation algorithms. Here, we present a general framework for high-order Lagrangian discretization of these compressible shock hydrodynamics equations using curvilinear finite elements. This method is an extension of the approach outlined in [Dobrev et al., Internat. J. Numer. Methods Fluids, 65 (2010), pp. 1295--1310] and can be formulated for any finite dimensional approximation of the kinematic and thermodynamic fields, including generic finite elements on two- and three-dimensional meshes with triangular, quadrilateral, tetrahedral, or hexahedral zones. We discretize the kinematic variables of position and velocity using a continuous high-order basis function expansion of arbitrary polynomial degree which is obtained via a corresponding high-order parametric mapping from a standard reference element. This enables the use of curvilinear zone geometry, higher-order approximations for fields within a zone, and a pointwise definition of mass conservation which we refer to as strong mass conservation. Moreover, we discretize the internal energy using a piecewise discontinuous high-order basis function expansion which is also of arbitrary polynomial degree. This facilitates multimaterial hydrodynamics by treating material properties, such as equations of state and constitutive models, as piecewise discontinuous functions which vary within a zone. To satisfy the Rankine--Hugoniot jump conditions at a shock boundary and generate the appropriate entropy, we introduce a general tensor artificial viscosity which takes advantage of the high-order kinematic and thermodynamic information available in each zone. Finally, we apply a generic high-order time discretization process to the semidiscrete equations to develop the fully discrete numerical algorithm. Our method can be viewed as the high-order generalization of the so-called staggered

  12. Hydrodynamics of Normal Atomic Gases with Spin-orbit Coupling.

    Science.gov (United States)

    Hou, Yan-Hua; Yu, Zhenhua

    2015-10-20

    Successful realization of spin-orbit coupling in atomic gases by the NIST scheme opens the prospect of studying the effects of spin-orbit coupling on many-body physics in an unprecedentedly controllable way. Here we derive the linearized hydrodynamic equations for the normal atomic gases of the spin-orbit coupling by the NIST scheme with zero detuning. We show that the hydrodynamics of the system crucially depends on the momentum susceptibilities which can be modified by the spin-orbit coupling. We reveal the effects of the spin-orbit coupling on the sound velocities and the dipole mode frequency of the gases by applying our formalism to the ideal Fermi gas. We also discuss the generalization of our results to other situations.

  13. Interplay of Laser-Plasma Interactions and Inertial Fusion Hydrodynamics

    International Nuclear Information System (INIS)

    Strozzi, D. J.; Bailey, D. S.; Michel, P.; Divol, L.; Sepke, S. M.

    2017-01-01

    The effects of laser-plasma interactions (LPI) on the dynamics of inertial confinement fusion hohlraums are investigated in this work via a new approach that self-consistently couples reduced LPI models into radiation-hydrodynamics numerical codes. The interplay between hydrodynamics and LPI—specifically stimulated Raman scatter and crossed-beam energy transfer (CBET)—mostly occurs via momentum and energy deposition into Langmuir and ion acoustic waves. This spatially redistributes energy coupling to the target, which affects the background plasma conditions and thus, modifies laser propagation. In conclusion, this model shows reduced CBET and significant laser energy depletion by Langmuir waves, which reduce the discrepancy between modeling and data from hohlraum experiments on wall x-ray emission and capsule implosion shape.

  14. Hydrodynamical analysis of the effect of fish fins morphology

    Science.gov (United States)

    Azwadi Che Sidik, Nor; Yen, Tey Wah

    2013-12-01

    The previous works on the biomechanics of fishes focuses on the locomotion effect of the fish bodies. However, there is quite a insufficiency in unveiling the respective function of fins when the fishes pose statics and exposed to fluid flow. Accordingly, this paper's focus is to investigate the hydrodynamic effect of the fins configuration to the fluid flow of shark-shaped-inspired structure. The drag and lift coefficient is computed for different cases of fish fins addition and configuration. The k-epsilon turbulence model is deployed using finite volume method with the aid of commercial software ANSYS CFX. The finding will demystify some of the functions of the fish's fins in term of their contribution to the hydrodynamic flow around the fishes.

  15. Experimental study of hydrodynamically induced vibrational processes in VVER-440 fuel assemblies

    International Nuclear Information System (INIS)

    Solonin, V.I.; Perevezentsev, V.V.; Rekshnya, N.F.; Krapivtsev, V.G.

    2000-01-01

    Investigations are described of hydrodynamically induced vibrations in a single fuel assembly of a VVER-440 reactor, performed on a full-scale model installed in a closed loop filled with distilled water; the model fuel elements contained simulators of fuel pellets. Data on hydrodynamic loads were obtained by measuring pressure oscillations along the height of the fuel assembly case. Results of the measurements are presented in graphs and are discussed in some detail. (A.K.)

  16. Hydrodynamic Modeling for Autonomous Underwater Vehicles Using Computational and Semi-Empirical Methods

    OpenAIRE

    Geisbert, Jesse Stuart

    2007-01-01

    Buoyancy driven underwater gliders, which locomote by modulating their buoyancy and their attitude with moving mass actuators and inflatable bladders, are proving their worth as efficient long-distance, long-duration ocean sampling platforms. Gliders have the capability to travel thousands of kilometers without a need to stop or recharge. There is a need for the development of methods for hydrodynamic modeling. This thesis aims to determine the hydrodynamic parameters for the governing equat...

  17. Distribution and behavior of radionuclides and stable elements in Lake Obuchi

    International Nuclear Information System (INIS)

    Ueda, Shinji; Hasegawa, Hidenao; Hisamatsu, Shun'ichi; Inaba, Jiro

    2000-01-01

    Distribution and behavior of radionuclides and related stable elements in the lake water of brackish Lake Obuchi were investigated by field observations. Concentrations of 238 U and stable elements were measured at various points in the lake, and compiled to obtain the elemental distributions and variation characteristics. The concentrations of 238 U in the lake water were higher in areas nearer to the Pacific Ocean, and correlated well with those of Na, K, Ca, Mg and Sr (r = 0.86 to 0.92). These observations implied that 238 U in the lake originated from seawater. The bottom layer water was reductive during July and September (stratified period) in deep areas (> 3 m). In this condition, concentrations of PO 4 3- -P, NH 4 + -N, Fe and Mn in the water increased. Concentration ratios of 238 U to those of Na strongly suggested the following conclusions. The concentrations of 238 U in the turn-over period were represented by a simple mixture of seawater and fresh water. However, in the stratified period, part of the 238 U was lost from the seawater near the bottom of the lake due to the reductive condition. (author)

  18. A simplified suite of methods to evaluate chelator conjugation of antibodies: effects on hydrodynamic radius and biodistribution

    International Nuclear Information System (INIS)

    Al-Ejeh, Fares; Darby, Jocelyn M.; Thierry, Benjamin; Brown, Michael P.

    2009-01-01

    Introduction: Antibodies covalently conjugated with chelators such as 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) are required for radioimmunoscintigraphy and radioimmunotherapy, which are of growing importance in cancer medicine. Method: Here, we report a suite of simple methods that provide a preclinical assessment package for evaluating the effects of DOTA conjugation on the in vitro and in vivo performance of monoclonal antibodies. We exemplify the use of these methods by investigating the effects of DOTA conjugation on the biochemical properties of the DAB4 clone of the La/SSB-specific murine monoclonal autoantibody, APOMAB (registered) , which is a novel malignant cell death ligand. Results: We have developed a 96-well microtiter-plate assay to measure directly the concentration of DOTA and other chelators in antibody-chelator conjugate solutions. Coupled with a commercial assay for measuring protein concentration, the dual microtiter-plate method can rapidly determine chelator/antibody ratios in the same plate. The biochemical properties of DAB4 immunoconjugates were altered as the DOTA/Ab ratio increased so that: (i) mass/charge ratio decreased; (ii) hydrodynamic radius increased; (iii) antibody immunoactivity decreased; (iv) rate of chelation of metal ions and specific radioactivity both increased and in vivo, (v) tumor uptake decreased as nonspecific uptake by liver and spleen increased. Conclusion: This simplified suite of methods readily identifies biochemical characteristics of the DOTA-immunoconjugates such as hydrodynamic diameter and decreased mass/charge ratio associated with compromised immunotargeting efficiency and, thus, may prove useful for optimizing conjugation procedures in order to maximize immunoconjugate-mediated radioimmunoscintigraphy and radioimmunotherapy.

  19. On the universal hydrodynamics of strongly coupled CFTs with gravity duals

    International Nuclear Information System (INIS)

    Gupta, Rajesh Kumar; Mukhopadhyay, Ayan

    2009-01-01

    It is known that the solutions of pure classical 5D gravity with AdS 5 asymptotics can describe strongly coupled large N dynamics in a universal sector of 4D conformal gauge theories. We show that when the boundary metric is flat we can uniquely specify the solution by the boundary stress tensor. We also show that in the Fefferman-Graham coordinates all these solutions have an integer Taylor series expansion in the radial coordinate (i.e. no log terms). Specifying an arbitrary stress tensor can lead to two types of pathologies, it can either destroy the asymptotic AdS boundary condition or it can produce naked singularities. We show that when solutions have no net angular momentum, all hydrodynamic stress tensors preserve the asymptotic AdS boundary condition, though they may produce naked singularities. We construct solutions corresponding to arbitrary hydrodynamic stress tensors in Fefferman-Graham coordinates using a derivative expansion. In contrast to Eddington-Finkelstein coordinates here the constraint equations simplify and at each order it is manifestly Lorentz covariant. The regularity analysis, becomes more elaborate, but we can show that there is a unique hydrodynamic stress tensor which gives us solutions free of naked singularities. In the process we write down explicit first order solutions in both Fefferman-Graham and Eddington-Finkelstein coordinates for hydrodynamic stress tensors with arbitrary η/s. Our solutions can describe arbitrary (slowly varying) velocity configurations. We point out some field-theoretic implications of our general results.

  20. Hydrodynamic analysis application of contaminated groundwater remediation to oil hydrocarbons

    Directory of Open Access Journals (Sweden)

    Pajić Predrag R.

    2017-01-01

    Full Text Available In this paper, the application of the hydrodynamic analysis in the selected ‘pumping and treatment’ remediation method of groundwater hydrocarbon pollution in the case of the Pancevo oil refinery is examined. The applied hydrodynamic analysis represents a regular and necessary approach in modern hydrogeology. Previous chemical analysis of soil and groundwater samples at observation objects revealed their pollution by oil products. New researches included the constraction of 12 piezometric boreholes of varying depths, geoelectric soil sounding, ‘in situ’ measurement of the present contaminant, detected as a hydrophobic phase of LNAPL, chemical analysis of soil and groundwater samples with emphasis on total petroleum hydrocarbons (TPH content, total fats and mineral oils, mercury cations and other characteristic compounds, etc. These researches define the volume of contamination issued by the ‘light’ (LNAPL contamination phase. The selected remediation method for this type of pollution is the ‘Pump and Treat’ method, which implies the pumping of contaminated groundwater from aquifer and their subsequent treatment. A hydrodynamic method was used to select the optimal hydrotechnical solution for LNAPL extraction. On the mathematical model, the prediction calculations for two variant solutions were carried out (‘hydraulic isolation’ and complex for the application of groundwater contamination remediation characterized as front pollution substance (by extraction and injection wells or infiltration pool. By extraction wells performing, it would be possible to remove the LNAPL from the surface of the water with special pumps-skimmers. The importance of the hydrodynamic method application is, in addition to the hydrotechnical solution selection for the LNAPL drainage, the provision of quality basis for the dimensioning of these objects based on the results of the groundwater balance.