WorldWideScience

Sample records for hydrodynamic stable concentration

  1. CISOCUR - Hydrodynamic circulation in the Curonian Lagoon inferred through stable isotope measurements and numerical modelling

    Science.gov (United States)

    Umgiesser, Georg; Razinkovas-Baziukas, Arturas; Barisevičiūtė, Ruta; Baziukė, Dalia; Ertürk, Ali; Gasiūnaitė, Jovita; Gulbinskas, Saulius; Lubienė, Irma; Maračkinaite, Jurgita; Petkuvienė, Jolita; Pilkaitytė, Renata; Ruginis, Tomas; Zemlys, Petras; Žilius, Mindaugas

    2013-04-01

    The spatial pattern of the hydrodynamic circulation of the Curonian lagoon, the largest European coastal lagoon, is still little understood. In absence of automatic current registration data all the existing models relied mostly on such data as water levels leaving high level of uncertainty. Here we present CISOCUR, a new project financed by the European Social Fund under the Global Grant measure. The project applies a new methodology that uses the carbon stable isotope (SI) ratio of C12 and C13 that characterize different water sources entering the lagoon and may be altered by internal kinetic processes. Through the tracing of these isotope ratios different water masses can be identified. This gives the possibility to validate several hypotheses of water circulation and validate hydrodynamic models. In particular it will be possible to 1) trace water masses entering the lagoon through the Nemunas and the Klaipeda strait; 2) test the hypothesis of sediment transport mechanisms inside the lagoon; 3) evaluate the importance of physical forcing on the lagoon circulation. The use of a hydrodynamic finite element model, coupled with the SI method, will allow for a realistic description of the transport processes inside the Curonian lagoon. So the main research goal is to apply the stable isotope tracers and a finite element model to determine the circulation patterns in the Curonian lagoon. Overall, the project will develop according to 4 main phases: 1) A pilot study to measure the isotope composition of different carbon compounds (dissolved and suspended) in different water bodies that feed water into the central lagoon. Through this pilot study the optimal study sites for the seasonal campaign will be identified as well. 2) Seasonal field campaigns in the monitoring stations identified in phase 1 to measure the carbon isotope ratio. 3) Development of a model that describes the kinetics of carbon isotopes and its transformation. 4) Application of a hydrodynamic model

  2. Dynamic simulation of concentrated macromolecular solutions with screened long-range hydrodynamic interactions: algorithm and limitations.

    Science.gov (United States)

    Ando, Tadashi; Chow, Edmond; Skolnick, Jeffrey

    2013-09-28

    Hydrodynamic interactions exert a critical effect on the dynamics of macromolecules. As the concentration of macromolecules increases, by analogy to the behavior of semidilute polymer solutions or the flow in porous media, one might expect hydrodynamic screening to occur. Hydrodynamic screening would have implications both for the understanding of macromolecular dynamics as well as practical implications for the simulation of concentrated macromolecular solutions, e.g., in cells. Stokesian dynamics (SD) is one of the most accurate methods for simulating the motions of N particles suspended in a viscous fluid at low Reynolds number, in that it considers both far-field and near-field hydrodynamic interactions. This algorithm traditionally involves an O(N(3)) operation to compute Brownian forces at each time step, although asymptotically faster but more complex SD methods are now available. Motivated by the idea of hydrodynamic screening, the far-field part of the hydrodynamic matrix in SD may be approximated by a diagonal matrix, which is equivalent to assuming that long range hydrodynamic interactions are completely screened. This approximation allows sparse matrix methods to be used, which can reduce the apparent computational scaling to O(N). Previously there were several simulation studies using this approximation for monodisperse suspensions. Here, we employ newly designed preconditioned iterative methods for both the computation of Brownian forces and the solution of linear systems, and consider the validity of this approximation in polydisperse suspensions. We evaluate the accuracy of the diagonal approximation method using an intracellular-like suspension. The diffusivities of particles obtained with this approximation are close to those with the original method. However, this approximation underestimates intermolecular correlated motions, which is a trade-off between accuracy and computing efficiency. The new method makes it possible to perform large

  3. Continuum modeling of hydrodynamic particle–particle interactions in microfluidic high-concentration suspensions

    DEFF Research Database (Denmark)

    Ley, Mikkel Wennemoes Hvitfeld; Bruus, Henrik

    2016-01-01

    -concentration field coupled to the continuity and Navier–Stokes equation for the solution. The hydrodynamic interactions are accounted for through the concentration dependence of the suspension viscosity, of the single-particle mobility, and of the momentum transfer from the particles to the suspension. The model...... is applied on a magnetophoretic and an acoustophoretic system, respectively, and based on the results, we illustrate three main points: (1) for relative particle-to-fluid volume fractions greater than 0.01, the hydrodynamic interaction effects become important through a decreased particle mobility...

  4. Hydrodynamics Defines the Stable Swimming Direction of Spherical Squirmers in a Nematic Liquid Crystal

    Science.gov (United States)

    Lintuvuori, J. S.; Würger, A.; Stratford, K.

    2017-08-01

    We present a study of the hydrodynamics of an active particle—a model squirmer—in an environment with a broken rotational symmetry: a nematic liquid crystal. By combining simulations with analytic calculations, we show that the hydrodynamic coupling between the squirmer flow field and liquid crystalline director can lead to reorientation of the swimmers. The preferred orientation depends on the exact details of the squirmer flow field. In a steady state, pushers are shown to swim parallel with the nematic director while pullers swim perpendicular to the nematic director. This behavior arises solely from hydrodynamic coupling between the squirmer flow field and anisotropic viscosities of the host fluid. Our results suggest that an anisotropic swimming medium can be used to characterize and guide spherical microswimmers in the bulk.

  5. A model to secure a stable iodine concentration in milk

    Directory of Open Access Journals (Sweden)

    Gisken Trøan

    2015-12-01

    Full Text Available Background: Dairy products account for approximately 60% of the iodine intake in the Norwegian population. The iodine concentration in cow's milk varies considerably, depending on feeding practices, season, and amount of iodine and rapeseed products in cow fodder. The variation in iodine in milk affects the risk of iodine deficiency or excess in the population. Objective: The first goal of this study was to develop a model to predict the iodine concentration in milk based on the concentration of iodine and rapeseed or glucosinolate in feed, as a tool to securing stable iodine concentration in milk. A second aim was to estimate the impact of different iodine levels in milk on iodine nutrition in the Norwegian population. Design: Two models were developed on the basis of results from eight published and two unpublished studies from the past 20 years. The models were based on different iodine concentrations in the fodder combined with either glucosinolate (Model 1 or rapeseed cake/meal (Model 2. To illustrate the impact of different iodine concentrations in milk on iodine intake, we simulated the iodine contribution from dairy products in different population groups based on food intake data in the most recent dietary surveys in Norway. Results: The models developed could predict iodine concentration in milk. Cross-validation showed good fit and confirmed the explanatory power of the models. Our calculations showed that dairy products with current iodine level in milk (200 µg/kg cover 68, 49, 108 and 56% of the daily iodine requirements for men, women, 2-year-old children, and pregnant women, respectively. Conclusions: Securing a stable level of iodine in milk by adjusting iodine concentration in different cow feeds is thus important for preventing excess intake in small children and iodine deficiency in pregnant and non-pregnant women.

  6. BOREAS TE-5 CO2 Concentration and Stable Isotope Composition

    Science.gov (United States)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Ehleriinger, Jim; Brooks, J. Renee; Flanagan, Larry

    2000-01-01

    The BOREAS TE-5 team collected measurements in the NSA and SSA on gas exchange, gas composition, and tree growth. This data set contains measurements of the concentration and stable carbon (C-13/C-12 and oxygen (O-18/O-16) isotope ratios of atmospheric CO2 in air samples collected at different heights within forest canopies. The data were collected to determine the influence of photosynthesis and respiration by the forest ecosystems on the concentration and stable isotope ratio of atmospheric CO2 These measurements were collected at the SSA during each 1994 IFC at OJP, OBS, and OA sites. Measurements were also collected at the NSA during each 1994 IFC at the OJP, T6R5S TE UBS, and T2Q6A TE OA sites. The stable isotope ratios are expressed using standard delta notation and in units of per mil. The isotope ratios are expressed relative to the international standard, PDB, for both carbon and oxygen samples. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Activity Archive Center (DAAC).

  7. The role of entanglement concentration on the hydrodynamic properties of potato and sweet potato starches.

    Science.gov (United States)

    Guo, Li; Hu, Jian; Zhang, Juanjuan; Du, Xianfeng

    2016-12-01

    The hydrodynamic properties of potato starch and sweet potato starch in dilute and semi-dilute aqueous solutions were studied using a Ubbelohde viscometer, a transmission electron microscope, and steady shear rheological measurements. The results indicated that the potato starch solutions showed a linear shape of the η red versus c curves. The sweet potato starch solutions presented a non-linear shape with a downturn in dilute solutions, or the concentrations were lower than entanglement concentration (c e ). The c e values of the potato and sweet potato starch solutions were 0.43% and 0.54%, respectively. These findings indicated that the impact of the c e value on the network formation of the potato starch solutions was much more significant compared with the impact on the sweet potato starch solutions. The potato and sweet potato starch solutions showed shear thinning behaviour hardly occurs when the concentrations were less than c e , while shear thinning behaviour approached when the concentrations were equal to or greater than c e . Similarly, the potato and sweet potato starch solutions rarely resembled a pseudoplastic state when the concentrations were lower than or equal to c e , while the pseudoplastic behaviour developed when the concentrations were higher than c e . Copyright © 2016 Elsevier B.V. All rights reserved.

  8. The effects of entanglement concentration on the hydrodynamic properties of cereal starches.

    Science.gov (United States)

    Guo, Li; Zhang, Juanjuan; Hu, Jian; Du, Xianfeng; Cui, Bo

    2017-07-01

    The hydrodynamic properties of four cereal starches in dilute and semi-dilute aqueous solutions were investigated using an Ubbelohde viscometer, a transmission electron microscope and steady shear rheological measurements. The results indicated that the starch solutions showed the nonlinear shape of the η sp /c versus c curves in dilute solutions, followed by a linear increase to different extents thereafter. The intrinsic viscosity might be positively correlated with the entanglement concentration (c e ). Compared to normal maize and wheat starch solutions, c e influences more significantly the network formation of normal and waxy rice starch solutions. At concentrations ≤ c e , the gelatinized cereal starch solutions hardly exhibit shear thinning behavior, whereas shear thinning behavior developed at concentrations > c e , at which the solutions were pseudoplastic and thixotropic. The obtained information will be very useful, based on c e as a reference value, in regulating the starch concentration suitable for different industrial applications. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  9. Hydrodynamics of multi-sized particles in stable regime of a swirling bed

    Energy Technology Data Exchange (ETDEWEB)

    Miin, Chin Swee; Sulaiman, Shaharin Anwar; Raghavan, Vijay Raj; Heikal, Morgan Raymond; Naz, Muhammad Yasin [Universiti Teknologi PETRONAS, Perak (Malaysia)

    2015-11-15

    Using particle imaging velocimetry (PIV), we observed particle motion within the stable operating regime of a swirling fluidized bed with an annular blade distributor. This paper presents velocity profiles of particle flow in an effort to determine effects from blade angle, particle size and shape and bed weight on characteristics of a swirling fluidized bed. Generally, particle velocity increased with airflow rate and shallow bed height, but decreased with bed weight. A 3 .deg. increase in blade angle reduced particle velocity by approximately 18%. In addition, particle shape, size and bed weight affected various characteristics of the swirling regime. Swirling began soon after incipience in the form of a supra-linear curve, which is the characteristic of a swirling regime. The relationship between particle and gas velocities enabled us to predict heat and mass transfer rates between gas and particles.

  10. Concentric cylinder bioreactor for production of tissue engineered cartilage: effect of seeding density and hydrodynamic loading on construct development.

    Science.gov (United States)

    Saini, Sunil; Wick, Timothy M

    2003-01-01

    A concentric cylinder bioreactor has been developed to culture tissue engineered cartilage constructs under hydrodynamic loading. This bioreactor operates in a low shear stress environment, has a large growth area for construct production, allows for dynamic seeding of constructs, and provides for a uniform loading environment. Porous poly-lactic acid constructs, seeded dynamically in the bioreactor using isolated bovine chondrocytes, were cultured for 4 weeks at three seeding densities (60, 80, 100 x 10(6) cells per bioreactor) and three different shear stresses (imposed at 19, 38, and 76 rpm) to characterize the effect of chondrocyte density and hydrodynamic loading on construct growth. Construct seeding efficiency with chondrocytes is greater than 95% within 24 h. Extensive chondrocyte proliferation and matrix deposition are achieved so that after 28 days in culture, constructs from bioreactors seeded at the highest cell densities contain up to 15 x 10(6) cells, 2 mg GAG, and 3.5 mg collagen per construct and exhibit morphology similar to that of native cartilage. Bioreactors seeded with 60 million chondrocytes do not exhibit robust proliferation or matrix deposition and do not achieve morphology similar to that of native cartilage. In cultures under different steady hydrodynamic loading, the data demonstrate that higher shear stress suppresses matrix GAG deposition and encourages collagen incorporation. In contrast, under dynamic hydrodynamic loading conditions, cartilage constructs exhibit robust matrix collagen and GAG deposition. The data demonstrate that the concentric cylinder bioreactor provides a favorable hydrodynamic environment for cartilage construct growth and differentiation. Notably, construct matrix accumulation can be manipulated by hydrodynamic loading. This bioreactor is useful for fundamental studies of construct growth and to assess the significance of cell density, nutrients, and hydrodynamic loading on cartilage development. In addition

  11. Nanoparticle Tracking Analysis for Determination of Hydrodynamic Diameter, Concentration, and Zeta-Potential of Polyplex Nanoparticles.

    Science.gov (United States)

    Wilson, David R; Green, Jordan J

    2017-01-01

    Nanoparticle tracking analysis (NTA) is a recently developed nanoparticle characterization technique that offers certain advantages over dynamic light scattering for characterizing polyplex nanoparticles in particular. Dynamic light scattering results in intensity-weighted average measurements of nanoparticle characteristics. In contrast, NTA directly tracks individual particles, enabling concentration measurements as well as the direct determination of number-weighted particle size and zeta-potential. A direct number-weighted assessment of nanoparticle characteristics is particularly useful for polydisperse samples of particles, including many varieties of gene delivery particles that can be prone to aggregation. Here, we describe the synthesis of poly(beta-amino ester)/deoxyribonucleic acid (PBAE/DNA) polyplex nanoparticles and their characterization using NTA to determine hydrodynamic diameter, zeta-potential, and concentration. Additionally, we detail methods of labeling nucleic acids with fluorophores to assess only those polyplex nanoparticles containing plasmids via NTA. Polymeric gene delivery of exogenous plasmid DNA has great potential for treating a wide variety of diseases by inducing cells to express a gene of interest.

  12. Atomic detail brownian dynamics simulations of concentrated protein solutions with a mean field treatment of hydrodynamic interactions.

    Energy Technology Data Exchange (ETDEWEB)

    Mereghetti, Paolo; Wade, Rebecca C.

    2012-07-26

    High macromolecular concentrations are a distinguishing feature of living organisms. Understanding how the high concentration of solutes affects the dynamic properties of biological macromolecules is fundamental for the comprehension of biological processes in living systems. In this paper, we describe the implementation of mean field models of translational and rotational hydrodynamic interactions into an atomically detailed many-protein brownian dynamics simulation method. Concentrated solutions (30-40% volume fraction) of myoglobin, hemoglobin A, and sickle cell hemoglobin S were simulated, and static structure factors, oligomer formation, and translational and rotational self-diffusion coefficients were computed. Good agreement of computed properties with available experimental data was obtained. The results show the importance of both solvent mediated interactions and weak protein-protein interactions for accurately describing the dynamics and the association properties of concentrated protein solutions. Specifically, they show a qualitative difference in the translational and rotational dynamics of the systems studied. Although the translational diffusion coefficient is controlled by macromolecular shape and hydrodynamic interactions, the rotational diffusion coefficient is affected by macromolecular shape, direct intermolecular interactions, and both translational and rotational hydrodynamic interactions.

  13. Magneto-Hydrodynamic Fractionation (MHF) for continuous and sheathless sorting of high-concentration paramagnetic microparticles.

    Science.gov (United States)

    Kumar, Vikash; Rezai, Pouya

    2017-06-01

    Sorting cells, microorganisms and particles from a solution is of paramount importance in many biological applications. An ideal sorting device should work at high throughput, involve simple design, avoid energy consumption, operate without a diluting sheath flow and perform separation with high purity. However, currently available sorting methods such as pinched flow fractionation, hydrodynamic filtration, magnetophoresis and deterministic lateral displacement meet only a few of the above-mentioned characteristics. In this paper, we report a hybrid technique combining magnetic focusing of particles in a thin microchannel and their hydrodynamic fractionation at a downstream expansion region, to devise a sheathless and high-throughput Magneto-Hydrodynamic Fractionation (MHF) method. First, sheathless magnetic focusing of 11 μm microparticles against the wall of the thin microchannel was investigated over a wide range of flow rates (0.5-5 mL h-1). Then, a mixture of 5 μm and 11 μm paramagnetic particles was injected into the device at a flow rate of 5 mL h-1 to demonstrate their sorting. Both of these magnetic particles were aligned along the wall of the channel and hence focused in the device, however their centers were lying on different streamlines due to their different sizes. Therefore, they were separated into distinct streamlines upon entering into the expansion region. Using this device, we achieved a high throughput sorting of more than 104 particles per second with an approximate on-chip fractionation purity of 98%. This technique has a great potential for separation of more than two magnetic particles for application in immunomagnetic affinity-based sorting of multiple biological substances.

  14. Caffeine Citrate Dosing Adjustments to Assure Stable Caffeine Concentrations in Preterm Neonates.

    Science.gov (United States)

    Koch, Gilbert; Datta, Alexandre N; Jost, Kerstin; Schulzke, Sven M; van den Anker, John; Pfister, Marc

    2017-12-01

    To identify dosing strategies that will assure stable caffeine concentrations in preterm neonates despite changing caffeine clearance during the first 8 weeks of life. A 3-step simulation approach was used to compute caffeine doses that would achieve stable caffeine concentrations in the first 8 weeks after birth: (1) a mathematical weight change model was developed based on published weight distribution data; (2) a pharmacokinetic model was developed based on published models that accounts for individual body weight, postnatal, and gestational age on caffeine clearance and volume of distribution; and (3) caffeine concentrations were simulated for different dosing regimens. A standard dosing regimen of caffeine citrate (using a 20 mg/kg loading dose and 5 mg/kg/day maintenance dose) is associated with a maximal trough caffeine concentration of 15 mg/L after 1 week of treatment. However, trough concentrations subsequently exhibit a clinically relevant decrease because of increasing clearance. Model-based simulations indicate that an adjusted maintenance dose of 6 mg/kg/day in the second week, 7 mg/kg/day in the third to fourth week and 8 mg/kg/day in the fifth to eighth week assures stable caffeine concentrations with a target trough concentration of 15 mg/L. To assure stable caffeine concentrations during the first 8 weeks of life, the caffeine citrate maintenance dose needs to be increased by 1 mg/kg every 1-2 weeks. These simple adjustments are expected to maintain exposure to stable caffeine concentrations throughout this important developmental period and might enhance both the short- and long-term beneficial effects of caffeine treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Perioperative plasma concentrations of stable nitric oxide products are predictive of cognitive dysfunction after laparoscopic cholecystectomy.

    LENUS (Irish Health Repository)

    Iohom, G

    2012-02-03

    In this study our objectives were to determine the incidence of postoperative cognitive dysfunction (POCD) after laparoscopic cholecystectomy under sevoflurane anesthesia in patients aged >40 and <85 yr and to examine the associations between plasma concentrations of i) S-100beta protein and ii) stable nitric oxide (NO) products and POCD in this clinical setting. Neuropsychological tests were performed on 42 ASA physical status I-II patients the day before, and 4 days and 6 wk after surgery. Patient spouses (n = 13) were studied as controls. Cognitive dysfunction was defined as deficit in one or more cognitive domain(s). Serial measurements of serum concentrations of S-100beta protein and plasma concentrations of stable NO products (nitrate\\/nitrite, NOx) were performed perioperatively. Four days after surgery, new cognitive deficit was present in 16 (40%) patients and in 1 (7%) control subject (P = 0.01). Six weeks postoperatively, new cognitive deficit was present in 21 (53%) patients and 3 (23%) control subjects (P = 0.03). Compared with the "no deficit" group, patients who demonstrated a new cognitive deficit 4 days postoperatively had larger plasma NOx at each perioperative time point (P < 0.05 for each time point). Serum S-100beta protein concentrations were similar in the 2 groups. In conclusion, preoperative (and postoperative) plasma concentrations of stable NO products (but not S-100beta) are associated with early POCD. The former represents a potential biochemical predictor of POCD.

  16. Hydrodynamic analysis of fully developed turbidity currents over plane beds based on self-preserving velocity and concentration distributions

    Science.gov (United States)

    Cantero-Chinchilla, Francisco Nicolás.; Dey, Subhasish; Castro-Orgaz, Oscar; Ali, Sk Zeeshan

    2015-10-01

    This paper presents a hydrodynamic analysis for the fully developed turbidity currents over a plane bed stemming from the classical three-equation model (depth-averaged fluid continuity, sediment continuity, and fluid momentum equations). The streamwise velocity and the concentration distributions preserve self-similarity characteristics and are expressed as single functions of vertical distance over the turbidity current layer. Using the experimental data of turbidity and salinity currents, the undetermined coefficients and exponents are approximated. The proposed relationships for velocity and concentration distributions exhibit self-preserving characteristics for turbidity currents. The depth-averaged velocity, momentum, and energy coefficients are thus obtained using the proposed expression for velocity law. Also, from the expressions for velocity and concentration, the turbulent diffusivity and the Reynolds shear stress distributions are deduced with the aid of the diffusion equation of sediment concentration and the Boussinesq hypothesis. The generalized equation of unsteady nonuniform turbidity current is developed by using the velocity and concentration distributions in the moments of the integral scales over the turbidity current layer. Then, the equation is applied to analyze the gradually varied turbidity currents considering closure relationships for boundary interaction and shear velocity. The streamwise variations of current depth, velocity, concentration, reduced sediment flux, and Richardson number are presented. Further, the self-accelerating and depositional characteristics of turbidity currents including the transitional feature from erosional to depositional modes are addressed. The effects of the streamwise bed slope are also accounted for in the mathematical derivations. The results obtained from the present model are compared with those from the classical model.

  17. An energy stable algorithm for a quasi-incompressible hydrodynamic phase-field model of viscous fluid mixtures with variable densities and viscosities

    Science.gov (United States)

    Gong, Yuezheng; Zhao, Jia; Wang, Qi

    2017-10-01

    A quasi-incompressible hydrodynamic phase field model for flows of fluid mixtures of two incompressible viscous fluids of distinct densities and viscosities is derived by using the generalized Onsager principle, which warrants the variational structure, the mass conservation and energy dissipation law. We recast the model in an equivalent form and discretize the equivalent system in space firstly to arrive at a time-dependent ordinary differential and algebraic equation (DAE) system, which preserves the mass conservation and energy dissipation law at the semi-discrete level. Then, we develop a temporal discretization scheme for the DAE system, where the mass conservation and the energy dissipation law are once again preserved at the fully discretized level. We prove that the fully discretized algorithm is unconditionally energy stable. Several numerical examples, including drop dynamics of viscous fluid drops immersed in another viscous fluid matrix and mixing dynamics of binary polymeric solutions, are presented to show the convergence property as well as the accuracy and efficiency of the new scheme.

  18. Concentrations of radionuclides and selected stable elements in fruits and vegetables

    Energy Technology Data Exchange (ETDEWEB)

    Oakes, T W; Shank, K E

    1977-01-01

    Twenty-two types of fruits and vegetables collected from two commercial supermarkets have been analyzed for their radionuclidic and stable-element composition. A specific gamma-emitting isotope analysis was performed on each sample for /sup 40/K, /sup 60/Co, /sup 95/Zr-Nb, /sup 106/Ru, /sup 137/Cs, /sup 226/Ra, and /sup 232/Th. The concentration of the stable elements in each sample were determined using multi-element neutron-activation analysis (Al, Ag, Au, As, Ba, Br, Ca, Ce, Cl, Co, Cr, Cs, Cu, Eu, Fe, Hf, I, K, La, Mn, Mo, Mg, Na, Rb, Sb, Sc, Se, Sr, Ta, Te, Th, Ti, Zn, Zr) and atomic absorption (Cd, Ni, Pb). Information on the composition of a typical diet is used to estimate the radiological dose to man subsequent to ingestion of these fruits and vegetables. The stable-elemental compositions of the foodstuffs analyzed were compared with estimated values assuming foliar deposition and long-term buildup of effluents from a large modern coal-fired steam plant. It is tentatively concluded that for the general case of a precipitator-equipped, coal-fired steam plant, no toxic levels of trace elements in foodstuffs are expected as a result of the plant operation.

  19. Preparation of a stable graphene dispersion with high concentration by ultrasound.

    Science.gov (United States)

    Zhang, Weina; He, Wei; Jing, Xinli

    2010-08-19

    With unique structure and extraordinary electronic, thermal, and mechanical properties, graphene fascinates the scientific community. Due to its hydrophobic feature, preparation of a stable and highly concentrated graphene dispersion without the assistance of dispersing agents has generally been considered a challenge. Chemical reduction of graphene oxide (GO) is one of the most important methods for preparing a graphene dispersion. The aggregation of graphene sheets is a key reason to destabilize the resulting dispersion during conversion of aqueous GO dispersion to graphene. In this study, by replacing mechanical stirring with ultrasonic irradiation, the aggregation of various intermediates is effectively suppressed during the process of reduction of GO. Hence, a stable graphene dispersion with a high concentration of 1 mg.mL(-1) and relatively pure graphene sheets are achieved, and the as-prepared graphene paper exhibits a high electric conductivity of 712 S.m(-1). Ultraviolet-visible absorption spectroscopy and X-ray photoelectron spectroscopy show that ultrasound is the essence of enhancing chemical reaction rate. Fourier transformed infrared spectra and Raman spectra indicate that ultrasound has less damage to the chemical and crystal structures of graphene.

  20. Feedbacks between bivalve density, flow, and suspended sediment concentration on patch stable states.

    Science.gov (United States)

    Coco, Giovanni; Thrush, Simon F; Green, Malcolm O; Hewitt, Judi E

    2006-11-01

    We explore the role of biophysical feedbacks occurring at the patch scale (spatial scale of tens of meters) that influence bivalve physiological condition and affect patch stability by developing a numerical model for the pinnid bivalve, Atrina zelandica, in cohesive sediments. Simulated feedbacks involve bivalve density, flow conditions (assumed to be primarily influenced by local water depth and peak current speed), suspended sediment concentration (evaluated through a balance between background concentration, deposition, and erosion), and changes in the physiology of Atrina derived from empirical study. The model demonstrates that high bivalve density can lead to skimming flow and to a concomitant decrease in resuspension that will affect suspended sediment concentration over the patch directly feeding back on bivalve physiology. Consequently, for a given flow and background suspended sediment load, the stability of a patch directly depends on the size and density of bivalves in the patch. Although under a range of conditions patch stability is ensured independently of bivalve density, simulations clearly indicate that sudden changes in bivalve density or suspended sediment concentration can substantially affect patch structure and lead to different stable states. The model highlights the role of interactions between organisms, flow, and broader scale environmental conditions in providing a mechanistic explanation for the patchy occurrence of benthic suspension feeders.

  1. Experimental investigation of concentration and stable isotopes signals during organic contaminants back diffusion

    Science.gov (United States)

    Jin, Biao; Nika, Chrysanthi-Elisabeth; Rolle, Massimo

    2017-04-01

    Back diffusion of organic contaminants is often the cause of groundwater plumes' persistence and can significantly hinder cleanup interventions [1, 2]. In this study we perform a high-resolution investigation of back diffusion in a well-controlled flow-through laboratory setup. We considered cis-dichloroethene (cis-DCE) as model contaminant and we investigated its back diffusion from an impermeable source into a permeable saturated layer, in which advection-dominated flow conditions were established. We used concentration and stable chlorine isotope measurements to investigate the plumes originated by cis-DCE back diffusion in a series of flow-through experiments, performed in porous media with different hydraulic conductivity and at different seepage velocities (i.e., 0.4, 0.8 and 1.2 m/day). A two-centimeter thick agarose gel layer was placed at the bottom of the setup to simulate the source of cis-DCE back diffusion from an impervious layer. Intensive sampling (>1000 measurements) was carried out, including the withdrawal of aqueous samples at closely spaced (1 cm) outlet ports, as well as the high-resolution sampling of the source zone (agarose gel) at the end of each experiment. The transient behavior of the plumes originated by back diffusion was investigated by sampling the outlet ports at regular intervals in the experiments, each run for a total time corresponding to 15 pore volumes. The high-resolution sampling allowed us to resolve the spatial and temporal evolution of concentration and stable isotope gradients in the flow-through setup. In particular, steep concentration and stable isotope gradients were observed at the outlet. Lateral isotope gradients corresponding to chlorine isotope fractionation up to 20‰ were induced by cis-DCE back diffusion and subsequent advection-dominated transport in all flow-through experiments. A numerical modeling approach, tracking individually all chlorine isotopologues, based on the accurate parameterization of local

  2. Effect of raised plasma β endorphin concentrations on peripheral pain and angina thresholds in patients with stable angina

    OpenAIRE

    Jarmukli, N; Ahn, J; Iranmanesh, A; Russell, D

    1999-01-01

    OBJECTIVE—To determine whether changes in plasma concentrations of β endorphins alter angina threshold and peripheral pain threshold in patients with stable angina.
DESIGN—Latin square design comparison of angina thresholds by exercise treadmill test and peripheral pain thresholds using a radiant heat source in eight patients with stable angina under control conditions, after stimulation of pituitary β endorphin release by ketoconazole, after suppression of pituitary β endorphin release by de...

  3. Power outputs in the concentric phase of resistance exercises performed in the interval mode on stable and unstable surfaces.

    Science.gov (United States)

    Zemková, Erika; Jeleň, Michal; Kováčiková, Zuzana; Ollé, Gábor; Vilman, Tomáš; Hamar, Dušan

    2012-12-01

    The study compares power outputs in the concentric phase of chest presses and squats performed in the interval mode on stable and unstable surface, respectively. A group of 16 physical education students performed randomly on different days 6 sets of 8 repetitions of (a) chest presses on the bench and Swiss ball, respectively, and (b) squats on stable support base and Bosu ball, respectively, with 2 minutes of rest period between sets. The exercises were performed with previously established 70% of 1 repetition maximum under stable conditions. A PC-based system FiTRO Dyne Premium was used to monitor force and velocity and to calculate power. The results showed significantly lower power outputs when resistance exercises were performed on an unstable than a stable support base. In the initial set, mean power in concentric phase of lifting decreased more profoundly under unstable than under stable conditions during both chest presses (13.2 and 7.7%, respectively) and squats (10.3 and 7.2%, respectively). In the final set, the reduction rates of mean power in the concentric phase of chest presses were significantly (p Swiss ball than on the bench (19.9 and 11.8%, respectively). On the other hand, there were no significant differences in decline of mean power in the concentric phase of squats on the Bosu ball and on stable support base (11.4 and 9.6%, respectively). It may be concluded that power outputs during resistance exercises is more profoundly compromised under unstable than under stable conditions, and this effect is more evident for barbell chest presses on the Swiss ball than for barbell squats on the Bosu ball. These findings have to be taken into account when instability resistance exercises are implemented into the training program, namely, for sports that require production of maximal force in short time.

  4. Using Lead Concentrations and Stable Lead Isotope Ratios to Identify Contamination Events in Alluvial Soils

    Directory of Open Access Journals (Sweden)

    Diane Saint-Laurent

    2010-01-01

    Full Text Available Soils contaminated with hydrocarbons (C10–C50, polycyclic aromatic hydrocarbons (PAHs, and other contaminants (e.g., As, Cd, Cu, Pb were recently discovered on the banks of the Saint-François and Massawippi rivers. Alluvial soils are contaminated over a distance of 100 kilometers, and the level of the contaminated-hydrocarbon layer in the soil profiles is among the highest at the Windsor and Richmond sites. Concentrations of lead and stable lead isotope ratios (204Pb/206Pb, 207Pb/206Pb, 208Pb/206Pb are also used to identify contamination events. The maximum and minimum values detected in soil profiles for arsenic, cadmium, and lead vary from 3.01 to 37.88 mg kg-1 (As, 0.11 to 0.81 mg kg-1 (Cd 12.32 to 149.13 mg kg-1 (Pb, respectively, while the 207Pb/206Pb isotopic ratio values are between 0.8545 and 0.8724 for all the profiles. The highest values of trace elements (As, Pb and Zn were detected in the hydrocarbon layer (C10–C50, most often located at the bottom of the profiles (160, 200, and 220 cm in depth. The various peaks recorded in the soils and the position of the profiles suggest that various contaminants were transported by the river on several occasions and infiltrated the soil matrix or deposited on floodplains during successive floods. Atmospheric particles which entered the river or deposited on riverbanks must also be considered as another source of pollution recorded in soils.

  5. Effects of salinity and particle concentration on sediment hydrodynamics and critical bed-shear-stress for erosion of fine grained sediments used in wetland restoration projects

    Directory of Open Access Journals (Sweden)

    M. Ghose-Hajra

    2015-03-01

    Full Text Available Sea-level rise, the increasing number and intensity of storms, oil and groundwater extraction, and coastal land subsidence are putting people and property at risk along Louisiana’s coast, with major implications for human safety and economic health of coastal areas. A major goal towards re-establishing a healthy and sustainable coastal ecosystem has been to rebuild Louisiana’s disappearing wetlands with fine grained sediments that are dredged or diverted from nearby rivers, channels and lakes to build land in open water areas. A thorough geo-hydrodynamic characterization of the deposited sediments is important in the correct design and a more realistic outcome assessment of the long-term performance measures for ongoing coastal restoration projects. This paper evaluates the effects of salinity and solid particle concentration on the re-suspension characteristics of fine-grained dredged sediments obtained from multiple geographic locations along the Gulf coast. The critical bed-shear-stress for erosion has been evaluated as a function of sedimentation time. The sediment hydrodynamic properties obtained from the laboratory testing were used in a numerical coastal sediment distribution model to aid in evaluating sediment diversions from the Mississippi River into Breton Sound and Barataria Bay.

  6. Integration of stable isotope and trace contaminant concentration for enhanced forensic acetone discrimination.

    Science.gov (United States)

    Moran, James J; Ehrhardt, Christopher J; Wahl, Jon H; Kreuzer, Helen W; Wahl, Karen L

    2013-11-15

    We analyzed 21 neat acetone samples from 15 different suppliers to demonstrate the utility of a coupled stable isotope and trace contaminant strategy for distinguishing forensically-relevant samples. By combining these two pieces of orthogonal data we could discriminate all of the acetones that were produced by the 15 different suppliers. Using stable isotope ratios alone, we were able to distinguish 8 acetone samples, while the remaining 13 fell into four clusters with highly similar signatures. Adding trace chemical contaminant information enhanced discrimination to 13 individual acetones with three residual clusters. The acetones within each cluster shared a common manufacturer and might, therefore, not be expected to be resolved. The data presented here demonstrates the power of combining orthogonal data sets to enhance sample fingerprinting and highlights the role disparate data could play in future forensic investigations. © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Hydrodynamic Hunters.

    Science.gov (United States)

    Jashnsaz, Hossein; Al Juboori, Mohammed; Weistuch, Corey; Miller, Nicholas; Nguyen, Tyler; Meyerhoff, Viktoria; McCoy, Bryan; Perkins, Stephanie; Wallgren, Ross; Ray, Bruce D; Tsekouras, Konstantinos; Anderson, Gregory G; Pressé, Steve

    2017-03-28

    The Gram-negative Bdellovibrio bacteriovorus (BV) is a model bacterial predator that hunts other bacteria and may serve as a living antibiotic. Despite over 50 years since its discovery, it is suggested that BV probably collides into its prey at random. It remains unclear to what degree, if any, BV uses chemical cues to target its prey. The targeted search problem by the predator for its prey in three dimensions is a difficult problem: it requires the predator to sensitively detect prey and forecast its mobile prey's future position on the basis of previously detected signal. Here instead we find that rather than chemically detecting prey, hydrodynamics forces BV into regions high in prey density, thereby improving its odds of a chance collision with prey and ultimately reducing BV's search space for prey. We do so by showing that BV's dynamics are strongly influenced by self-generated hydrodynamic flow fields forcing BV onto surfaces and, for large enough defects on surfaces, forcing BV in orbital motion around these defects. Key experimental controls and calculations recapitulate the hydrodynamic origin of these behaviors. While BV's prey (Escherichia coli) are too small to trap BV in hydrodynamic orbit, the prey are also susceptible to their own hydrodynamic fields, substantially confining them to surfaces and defects where mobile predator and prey density is now dramatically enhanced. Colocalization, driven by hydrodynamics, ultimately reduces BV's search space for prey from three to two dimensions (on surfaces) even down to a single dimension (around defects). We conclude that BV's search for individual prey remains random, as suggested in the literature, but confined, however-by generic hydrodynamic forces-to reduced dimensionality. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. Cow hair allergen concentrations in dairy farms with automatic and conventional milking systems: From stable to bedroom.

    Science.gov (United States)

    Böhlandt, A; Schierl, R; Heizinger, J; Dietrich-Gümperlein, G; Zahradnik, E; Bruckmaier, L; Sültz, J; Raulf, M; Nowak, D

    2016-01-01

    Bovine hair and dander are considered to be a notable risk factor for sensitization and allergic symptoms in occupationally exposed cattle farmers due to various IgE binding proteins. Farmers are suspected not only to be exposed during their work inside the stables but also inside their homes as allergens could be transferred via hair and clothes resulting in continued bovine allergen exposure in private areas. In recent years a new sensitive sandwich ELISA (enzyme linked immunosorbent assay) test has been developed to measure the cow hair allergen (CHA) concentration in dust. The aim of the present study was to determine the CHA concentration in airborne and settled dust samples in stables and private rooms of dairy cattle farms with automatic milking systems (AM) and conventional milking systems (CM), also with respect to questionnaire data on farming characteristics. For this purpose different sampling techniques were applied, and results and practicability of the techniques were compared. Dust sampling was performed in the stable, computer room (only AM), changing room, living room and bedroom (mattress) of 12 dairy farms with automatic milking systems (AM group) and eight dairy farms with conventional milking systems (CM group). Altogether, 90 samples were taken by ALK filter dust collectors from all locations, while 32 samples were collected by an ion charging device (ICD) and 24 samples by an electronic dust fall collector (EDC) in computer rooms (AM) and/or changing and living rooms (not stables). The dust samples were extracted and analyzed for CHA content with a sandwich ELISA. At all investigated locations, CHA concentrations were above the limit of detection (LOD) of 0.1 ng/ml dust extract. The median CHA concentrations in dust collected by ALK filters ranged from 63 to 7154 μg/g dust in AM farms and from 121 to 5627 μg/g dust in CM farms with a steep concentration gradient from stables to bedrooms. ICD sampling revealed median CHA contents of 112

  9. Modeling of Hydrodynamics of a Highly Concentrated Granular Medium on the Basis of a Power-Law

    Directory of Open Access Journals (Sweden)

    Shvab Alexander

    2016-01-01

    Full Text Available The paper deals with the movement of the granular medium at a high concentration on the basis of the “power” of the liquid. Based on the original partial slip boundary conditions on the walls of protection obtained with experimental and numerical data to flow in the channel at a flow obstacle.

  10. Fractionation, concentration and flow: A model coupling stable isotope ratios to fluid travel time and chemical reactivity

    Science.gov (United States)

    Druhan, J. L.; Maher, K.

    2014-12-01

    From the point of infiltration to the point of discharge, the chemical signature imparted to fluid flowing through catchments represents the weathering flux from the landscape. The magnitude of this flux is linked to both the time water spends in the system and the time required for reactions to influence fluid chemistry. The ratio of these characteristic times is often represented as a Damköhler number (Da), which links the parameters governing reactivity and flow. Stable isotope ratios are now commonly applied to identify and even quantify the processes and rates of primary mineral weathering, secondary mineral formation and biogeochemical cycling within catchments. Here, we derive a series of fractionation-discharge relationships for a variety of governing chemical rate laws utilizing Da coefficients. These equations can be used to isolate and quantify the effects of (1) fluid travel time distributions and (2) chemical weathering efficiency on observed stable isotope ratios. The analytical solutions are verified against multi-component reactive transport simulations of stable isotope fractionation in homogeneous and spatially correlated heterogeneous flow fields using the CrunchTope code and evaluated against field observations. We demonstrate that for an irreversible reaction, the relationship between stable isotope enrichment and reactant concentration obeys a Rayleigh-type model across a wide range of reaction rates. However, this relationship is violated when a heterogeneous travel time distribution is considered. This observation highlights an important discrepancy in the commonly assumed relationship between fractionation and concentration for irreversible reactions. We further extend our derivation to consider isotope fractionation associated with a reversible reaction (i.e. a kinetically controlled approach to equilibrium) in a steady-state flow field. Due to the dependence of the observed isotope ratio on the flow rate, kinetic enrichment and

  11. Temporal and Spatial Variability of Black Sea Hydrodynamics and Chlorophyll: A Concentration with Connection to Wind Forcing

    Science.gov (United States)

    2013-03-01

    The measurements made by this early radar were found to be noisy, but that noise was discovered to be the signal response echoed from the surface...concentration Chu et al. discovered , and Figure 106 shows the distribution of the observational stations they used during their study. Figure 101. (a...and thermohaline structure of the Black Sea observed during HydroBlack ’91. Deep-Sea Research I, 41, 603-628. Oguz, T., La Violette, P.E., and

  12. Theoretical hydrodynamics

    CERN Document Server

    Milne-Thomson, L M

    2011-01-01

    This classic exposition of the mathematical theory of fluid motion is applicable to both hydrodynamics and aerodynamics. Based on vector methods and notation with their natural consequence in two dimensions - the complex variable - it offers more than 600 exercises and nearly 400 diagrams. Prerequisites include a knowledge of elementary calculus. 1968 edition.

  13. Hydrodynamic Lubrication

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 9. Hydrodynamic Lubrication Experiment with 'Floating' Drops. Jaywant H Arakeri K R Sreenivas. General Article Volume 1 Issue 9 September 1996 pp 51-58. Fulltext. Click here to view fulltext PDF. Permanent link:

  14. Hydrodynamic bearings

    CERN Document Server

    Bonneau, Dominique; Souchet, Dominique

    2014-01-01

    This Series provides the necessary elements to the development and validation of numerical prediction models for hydrodynamic bearings. This book describes the rheological models and the equations of lubrication. It also presents the numerical approaches used to solve the above equations by finite differences, finite volumes and finite elements methods.

  15. Concentration and stable carbon isotopic composition of CO2 in cave air of Postojnska jama, Slovenia

    Directory of Open Access Journals (Sweden)

    Magda Mandic

    2013-09-01

    Full Text Available Partial pressure of CO2 (pCO2 and its isotopic composition (δ13CairCO2 were measured in Postojnska jama, Slovenia, at 10 locations inside the cave and outside the cave during a one-year period. At all interior locations the pCO2 was higher and δ13CairCO2 lower than in the outside atmosphere. Strong seasonal fluctuations in both parameters were observed at locations deeper in the cave, which are isolated from the cave air circulation. By using a binary mixing model of two sources of CO2, one of them being the atmospheric CO2, we show that the excess of CO2 in the cave air has a δ13C value of -23.3 ± 0.7 ‰, in reasonable agreement with the previously measured soil-CO2 δ13C values. The stable isotope data suggest that soil CO2 is brought to the cave by drip water.

  16. Stable isotope mass balances versus concentration differences of dissolved inorganic carbon - implications for tracing carbon turnover in reservoirs.

    Science.gov (United States)

    Barth, Johannes A C; Mader, Michael; Nenning, Franziska; van Geldern, Robert; Friese, Kurt

    2017-08-01

    The aim of this study was to identify sources of carbon turnover using stable isotope mass balances. For this purpose, two pre-reservoirs in the Harz Mountains (Germany) were investigated for their dissolved and particulate carbon contents (dissolved inorganic carbon (DIC), dissolved organic carbon, particulate organic carbon) together with their stable carbon isotope ratios. DIC concentration depth profiles from March 2012 had an average of 0.33 mmol L-1. Increases in DIC concentrations later on in the year often corresponded with decreases in its carbon isotope composition (δ13CDIC) with the most negative value of -18.4 ‰ in September. This led to a carbon isotope mass balance with carbon isotope inputs of -28.5 ‰ from DOC and -23.4, -31.8 and -30.7 ‰ from algae, terrestrial and sedimentary matter, respectively. Best matches between calculated and measured DIC gains were achieved when using the isotope composition of algae. This shows that this type of organic material is most likely responsible for carbon additions to the DIC pool when its concentrations and δ13CDIC values correlate negatively. The presented isotope mass balance is transferable to other surface water and groundwater systems for quantification of organic matter turnover.

  17. Equine intradermal test threshold concentrations for house dust mite and storage mite allergens and identification of stable acari fauna.

    Science.gov (United States)

    Roberts, Holly A; Hurcombe, Samuel D A; Hillier, Andrew; Lorch, Gwendolen

    2014-04-01

    House dust mite (HDM) and storage mite (SM) stable fauna and their associated equine intradermal test (IDT) threshold concentrations (TCs) for the midwestern region of the USA are unknown. To determine IDT TCs and serum IgE concentrations for two HDM and three SM species in clinically normal horses over two seasons, and to identify the mite taxa and habitats in a stable. Thirty-eight clinically normal horses. Threshold concentrations for HDMs and SMs were determined using IDT subjective measurements and a statistical model. An enzyme-linked immunosorbent assay was used to quantify serum IgE concentrations for the same mite species. A modified flotation method was used to identify morphologically HDMs and SMs. Subjective IDT TCs were as follows: 1:80,000 w/v for Dermatophagoides farinae in both seasons; 1:80,000 w/v in spring and 1:160,000 w/v in late summer for Dermatophagoides pteronyssinus; 1:40,000 w/v in spring and 1:20,000 w/v in late summer for Acarus siro; 1:20,000 w/v for Lepidoglyphus destructor in both seasons; and 1:20,000 w/v in spring and 1:10,000 w/v in late summer for Tyrophagus putrescentiae. Statistically significant associations for increased serum IgE and a positive IDT reaction were evident for D. farinae in the spring and D. pteronyssinus in both seasons. One mite from all four genera specific to this study was identified; however,two HDM and A. siro species were not detected.Conclusions and clinical importance – This study established HDM and SM IDT dilution concentrations for the horses in this region. Exposure to diverse acaridae fauna may contribute to the pathogenesis of equine allergic disease.

  18. Experimental investigation of concentration and stable isotopes signals during organic contaminants back diffusion

    DEFF Research Database (Denmark)

    Jin, Biao; Nika, Chrysanthi-Elisabeth; Rolle, Massimo

    2017-01-01

    Back diffusion of organic contaminants is often the cause of groundwater plumes' persistence and can significantly hinder cleanup interventions [1, 2]. In this study we perform a high-resolution investigation of back diffusion in a well-controlled flow-through laboratory setup. We considered cis...... behavior of the plumes originated by back diffusion was investigated by sampling the outlet ports at regular intervals in the experiments, each run for a total time corresponding to 15 pore volumes. The high-resolution sampling allowed us to resolve the spatial and temporal evolution of concentration...

  19. Plasma cortisol concentration increases within 6 hours of stabling in RAO-affected horses.

    Science.gov (United States)

    Shaba, J J; Behan Braman, A; Robinson, N E

    2014-09-01

    In many inflammatory diseases plasma cortisol concentration (CORT) increases at the onset of acute inflammation, but the situation in recurrent airway obstruction (RAO) of horses is unknown. Split-plot repeated measures design with one grouping factor (disease) and two repeated factors (day and 3-hour intervals). To test the hypothesis that CORT increases as acute exacerbations of RAO develop. Four RAO-susceptible and 4 control horses were placed in a low dust environment (LDEnv) for 2 days followed by 2 days in a high dust environment (HDEnv). Exacerbations of RAO were indicated by increases in maximal change in pleural pressure (ΔPplmax) and decreases in breathing frequency variability (BFV), which was continuously measured by respiratory inductance plethysmography. Plasma samples for determination of CORT were collected every 6 h. In control horses, ΔPplmax and BFV were unaffected by the HDEnv, whereas in RAO-affected horses ΔPplmax increased and BFV decreased significantly. In the LDEnv, there was a circadian variation in CORT in both control and RAO-affected horses. In HDEnv, CORT was unaffected in control horses, but increased significantly in RAO-affected horses between 6 and 12 h after entering the HDEnv. Plasma cortisol concentration increases concurrently with the development of acute exacerbations of RAO. © 2013 EVJ Ltd.

  20. Radiation Hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Castor, J I

    2003-10-16

    The discipline of radiation hydrodynamics is the branch of hydrodynamics in which the moving fluid absorbs and emits electromagnetic radiation, and in so doing modifies its dynamical behavior. That is, the net gain or loss of energy by parcels of the fluid material through absorption or emission of radiation are sufficient to change the pressure of the material, and therefore change its motion; alternatively, the net momentum exchange between radiation and matter may alter the motion of the matter directly. Ignoring the radiation contributions to energy and momentum will give a wrong prediction of the hydrodynamic motion when the correct description is radiation hydrodynamics. Of course, there are circumstances when a large quantity of radiation is present, yet can be ignored without causing the model to be in error. This happens when radiation from an exterior source streams through the problem, but the latter is so transparent that the energy and momentum coupling is negligible. Everything we say about radiation hydrodynamics applies equally well to neutrinos and photons (apart from the Einstein relations, specific to bosons), but in almost every area of astrophysics neutrino hydrodynamics is ignored, simply because the systems are exceedingly transparent to neutrinos, even though the energy flux in neutrinos may be substantial. Another place where we can do ''radiation hydrodynamics'' without using any sophisticated theory is deep within stars or other bodies, where the material is so opaque to the radiation that the mean free path of photons is entirely negligible compared with the size of the system, the distance over which any fluid quantity varies, and so on. In this case we can suppose that the radiation is in equilibrium with the matter locally, and its energy, pressure and momentum can be lumped in with those of the rest of the fluid. That is, it is no more necessary to distinguish photons from atoms, nuclei and electrons, than it is

  1. Layered Double Hydroxide Nanoclusters: Aqueous, Concentrated, Stable, and Catalytically Active Colloids toward Green Chemistry.

    Science.gov (United States)

    Tokudome, Yasuaki; Morimoto, Tsuyoshi; Tarutani, Naoki; Vaz, Pedro D; Nunes, Carla D; Prevot, Vanessa; Stenning, Gavin B G; Takahashi, Masahide

    2016-05-24

    Increasing attention has been dedicated to the development of nanomaterials rendering green and sustainable processes, which occur in benign aqueous reaction media. Herein, we demonstrate the synthesis of another family of green nanomaterials, layered double hydroxide (LDH) nanoclusters, which are concentrated (98.7 g/L in aqueous solvent), stably dispersed (transparent sol for >2 weeks), and catalytically active colloids of nano LDHs (isotropic shape with the size of 7.8 nm as determined by small-angle X-ray scattering). LDH nanoclusters are available as colloidal building blocks to give access to meso- and macroporous LDH materials. Proof-of-concept applications revealed that the LDH nanocluster works as a solid basic catalyst and is separable from solvents of catalytic reactions, confirming the nature of nanocatalysts. The present work closely investigates the unique physical and chemical features of this colloid, the formation mechanism, and the ability to act as basic nanocatalysts in benign aqueous reaction systems.

  2. Highly concentrated, stable nitrogen-doped graphene for supercapacitors: Simultaneous doping and reduction

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Baojiang [College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin (China); Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People' s Republic of China, Heilongjiang University, Harbin (China); Tian Chungui; Wang Lei; Sun Li; Chen Chen; Nong Xiaozhen [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People' s Republic of China, Heilongjiang University, Harbin (China); Qiao Yingjie, E-mail: qiaoyingjie@hrbeu.edu.cn [College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin (China); Fu Honggang, E-mail: fuhg@vip.sina.com [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People' s Republic of China, Heilongjiang University, Harbin (China)

    2012-02-01

    In this work, we developed a concentrated ammonia-assisted hydrothermal method to obtain N-doped graphene sheets by simultaneous N-doping and reduction of graphene oxide (GO) sheets. The effects of hydrothermal temperature on the surface chemistry and the structure of N-doped graphene sheets were also investigated. X-ray photoelectron spectroscopy (XPS) study of N-doped graphene reveals that the highest doping level of 7.2% N is achieved at 180 Degree-Sign C for 12 h. N binding configurations of sample consist of pyridine N, quaternary N, and pyridine-N oxides. N doping is accompanied by the reduction of GO with decreases in oxygen levels from 34.8% in GO down to 8.5% in that of N-doped graphene. Meanwhile, the sample exhibits excellent N-doped thermal stability. Electrical measurements demonstrate that products have higher capacitive performance than that of pure graphene, the maximum specific capacitance of 144.6 F/g can be obtained which ascribe the pseudocapacitive effect from the N-doping. The samples also show excellent long-term cycle stability of capacitive performance.

  3. Nanoflow hydrodynamics

    DEFF Research Database (Denmark)

    Hansen, Jesper Schmidt; Dyre, Jeppe C.; Daivis, Peter J.

    2011-01-01

    We show by nonequilibrium molecular dynamics simulations that the Navier-Stokes equation does not correctly describe water flow in a nanoscale geometry. It is argued that this failure reflects the fact that the coupling between the intrinsic rotational and translational degrees of freedom becomes...... important for nanoflows. The coupling is correctly accounted for by the extended Navier-Stokes equations that include the intrinsic angular momentum as an independent hydrodynamic degree of freedom. © 2011 American Physical Society....

  4. Carbon and nitrogen stable isotopes and metal concentration in food webs from a mining-impacted coastal lagoon

    Energy Technology Data Exchange (ETDEWEB)

    Marin-Guirao, Lazaro [Departamento de Ecologia e Hidrologia, Facultad de Biologia, Universidad de Murcia, 30100-Murcia (Spain)], E-mail: lamarin@um.es; Lloret, Javier; Marin, Arnaldo [Departamento de Ecologia e Hidrologia, Facultad de Biologia, Universidad de Murcia, 30100-Murcia (Spain)

    2008-04-01

    Two food webs from the Mar Menor coastal lagoon, differing in the distance from the desert-stream through which mining wastes were discharged, were examined by reference to essential (Zn and Cu) and non-essential (Pb and Cd) metal concentrations and stable isotopes content (C and N). The partial extraction technique applied, which reflects the availability of metals to organisms after sediment ingestion, showed higher bioavailable metal concentrations in sediments from the station influenced by the mining discharges, in agreement with the higher metal concentrations observed in organisms, which in many cases exceeded the regulatory limits established in Spanish legislation concerning seafood. Spatial differences in essential metal concentrations in the fauna suggest that several organisms are exposed to metal levels above their regulation capacity. Differences in isotopic composition were found between both food webs, the wadi-influenced station showing higher {delta}{sup 15}N values and lower {delta}{sup 13}C levels, due to the discharge of urban waste waters and by the entrance of freshwater and allochthonous marsh plants. The linear-regressions between trophic levels (as indicated by {delta}{sup 15}N) and the metal content indicated that biomagnification does not occur. In the case of invertebrates, since the 'handle strategy' of the species and the physiological requirements of the organisms, among other factors, determine the final concentration of a specific element, no clear relationships between trophic level and the metal content are to be expected. For their part, fish communities did not show clear patterns in the case of any of the analyzed metals, probably because most fish species have similar metal requirements, and because biological factors also intervened. Finally, since the study deals with metals, assumptions concerning trophic transfer factors calculation may not be suitable since the metal burden originates not only from the prey but

  5. Effect of immunosuppressant blood levels on serum concentration of interleukin-17 and -23 in stable liver transplant recipients.

    Science.gov (United States)

    Fábrega, E; López-Hoyos, M; San Segundo, D; Casafont, F; Benito, M J; Pons-Romero, F

    2009-04-01

    T(H)17 cells have been recently described to be involved in inflammatory and immune-mediated diseases, but there is no evidence of their role in human liver transplantation. Interleukin (IL)-23 is considered an inducer cytokine, whereas IL-17 is the main cytokine released by T(H)17 cells. The aim of our study was to measure the serum levels of IL-17 and IL-23 in stable liver transplant recipients and examine the influence of immunosuppressant concentrations. Serum levels of IL-23 and IL-17 were determined in 38 healthy subjects and 35 stable hepatic transplant recipients who were free of rejection episodes for at least 8 years. The results were analyzed according to the simultaneous blood levels of cyclosporine (n = 20) or tacrolimus (n = 15). No significant differences were observed in the serum levels of IL-17 and IL-23 between healthy subjects and transplanted patients. In addition, patients with low blood levels of tacrolimus (<6 ng/mL), but not cyclosporine, showed significantly lower serum levels of the 2 cytokines. These preliminary results suggested a lack of activation of the T(H)17 pathway, which was more pronounced among the patient subgroup treated with tacrolimus.

  6. Concentrations of Radionuclides and Trace Elements in Environmantal Media arond te Dual-Axis Radiographic Hydrodynamic Test Facilit at Los Alamos National Laboratory during 2005

    Energy Technology Data Exchange (ETDEWEB)

    G.J.Gonzales; P.R. Fresquez; C.D.Hathcock; D.C. Keller

    2006-05-15

    The Mitigation Action Plan (MAP) for the Dual-Axis Radiographic Hydrodynamic Test (DARHT) facility at Los Alamos National Laboratory requires that samples of biotic and abiotic media be collected after operations began to determine if there are any human health or environmental impacts. The DARHT facility is the Laboratory's principal explosive test facility. To this end, samples of soil and sediment, vegetation, bees, and birds were collected around the facility in 2005 and analyzed for concentrations of {sup 3}H, {sup 137}Cs, {sup 90}Sr, {sup 238}Pu, {sup 239,240}Pu, {sup 241}Am, {sup 234}U, {sup 235}U, {sup 238}U, Ag, As, Ba, Be, Cd, Cr, Cu, Hg, Ni, Pb, Sb, Se, and Tl. Bird populations have also been monitored. Contaminant results, which represent up to six sample years since the start of operations, were compared with (1) baseline statistical reference levels (BSRLs) established over a four-year preoperational period before DARHT facility operations, (2) screening levels (SLs), and (3) regulatory standards. Most radionuclides and trace elements were below BSRLs and those few samples that contained radionuclides and trace elements above BSRLs were below SLs. Concentrations of radionuclides and nonradionuclides in biotic and abiotic media around the DARHT facility do not pose a significant human health hazard. The total number of birds captured and number of species represented were similar in 2003 and 2004, but both of these parameters increased substantially in 2005. Periodic interruption of the scope and schedule identified in the MAP generally should have no impact on meeting the intent of the MAP. The risk of not sampling one of the five media in any given year is that if a significant impact to contaminant levels were to occur there would exist a less complete understanding of the extent of the change to the baseline for these media and to the ecosystem as a whole. Since the MAP is a requirement that was established under the regulatory framework of

  7. Physical hydrodynamics

    CERN Document Server

    Guyon, Etienne; Petit, Luc; Mitescu, Catalin D

    2015-01-01

    This new edition is an enriched version of the textbook of fluid dynamics published more than 10 years ago. It retains the same physically oriented pedagogical perspective. This book emphasizes, as in the first edition, experimental inductive approaches and relies on the study of the mechanisms at play and on dimensional analysis rather than more formal approaches found in many classical textbooks in the field. The need for a completely new version also originated from the increase, over the last few decades, of the cross-overs between the mechanical and physical approaches, as is visible in international meetings and joint projects. Hydrodynamics is more widely linked today to other fields of experimental sciences: materials, environment, life sciences and earth sciences, as well as engineering sciences.

  8. Submarine hydrodynamics

    CERN Document Server

    Renilson, Martin

    2015-01-01

    This book adopts a practical approach and presents recent research together with applications in real submarine design and operation. Topics covered include hydrostatics, manoeuvring, resistance and propulsion of submarines. The author briefly reviews basic concepts in ship hydrodynamics and goes on to show how they are applied to submarines, including a look at the use of physical model experiments. The issues associated with manoeuvring in both the horizontal and vertical planes are explained, and readers will discover suggested criteria for stability, along with rudder and hydroplane effectiveness. The book includes a section on appendage design which includes information on sail design, different arrangements of bow planes and alternative stern configurations. Other themes explored in this book include hydro-acoustic performance, the components of resistance and the effect of hull shape. Readers will value the author’s applied experience as well as the empirical expressions that are presented for use a...

  9. Radiation hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Pomraning, G.C.

    1982-12-31

    This course was intended to provide the participant with an introduction to the theory of radiative transfer, and an understanding of the coupling of radiative processes to the equations describing compressible flow. At moderate temperatures (thousands of degrees), the role of the radiation is primarily one of transporting energy by radiative processes. At higher temperatures (millions of degrees), the energy and momentum densities of the radiation field may become comparable to or even dominate the corresponding fluid quantities. In this case, the radiation field significantly affects the dynamics of the fluid, and it is the description of this regime which is generally the charter of radiation hydrodynamics. The course provided a discussion of the relevant physics and a derivation of the corresponding equations, as well as an examination of several simplified models. Practical applications include astrophysics and nuclear weapons effects phenomena.

  10. Evaluation of Nutrient Concentrations, Sources, and Pathways in Three Urban Streams in Durham County, North Carolina using Stable Isotopes

    Science.gov (United States)

    McSwain, K. B.; Giorgino, M.; Woolfolk, M.; Young, M. B.

    2012-12-01

    In 2010, the North Carolina Environmental Management Commission adopted nutrient-management strategies for the Falls Lake and Jordan Lake reservoirs that call for comprehensive controls to reduce nitrogen and phosphorus loads from sources in the watershed, including urban stormwater, wastewater, and agriculture. The City of Durham Public Works Department Stormwater Services Division is implementing best management practices (BMPs) for new and existing development to reduce nutrient inputs from stormwater. The many small watersheds that drain into Falls and Jordan Lakes typically have diverse sources of nutrients and other pollutants, a range of agricultural to urban land use and embedded urban infrastructure, and limited available space, making effective BMPs complex and expensive to implement. The U.S. Geological Survey and the City of Durham are collaborating to evaluate current and historic nutrient concentration data at three small urban stream sites, two located within the upper Neuse River basin upstream from Falls Lake, and one located upstream from Jordan Lake in the Cape Fear River basin. Use of stable isotopes to characterize sources and transport of nitrogen in these streams is being evaluated as a tool to optimize design and cost effectiveness of BMPs to improving water quality. Analyses of transport pathways and nitrogen sources is focusing on the feasibility of nutrient source tracking using stable isotopes in small drainage area urban watersheds. Six months of preliminary data suggest that the surface water in the small urban basins is mostly derived from precipitation and that atmospheric deposition of nitrogen is an overlooked component. Results of this study will provide a basis for further study of other low-order urban streams of the North Carolina Piedmont Physiographic Province.

  11. Interactive Effects of CO2 Concentration and Water Regime on Stable Isotope Signatures, Nitrogen Assimilation and Growth in Sweet Pepper

    Science.gov (United States)

    Serret, María D.; Yousfi, Salima; Vicente, Rubén; Piñero, María C.; Otálora-Alcón, Ginés; del Amor, Francisco M.; Araus, José L.

    2018-01-01

    Sweet pepper is among the most widely cultivated horticultural crops in the Mediterranean basin, being frequently grown hydroponically under cover in combination with CO2 fertilization and water conditions ranging from optimal to suboptimal. The aim of this study is to develop a simple model, based on the analysis of plant stable isotopes in their natural abundance, gas exchange traits and N concentration, to assess sweet pepper growth. Plants were grown in a growth chamber for near 6 weeks. Two [CO2] (400 and 800 μmol mol−1), three water regimes (control and mild and moderate water stress) and four genotypes were assayed. For each combination of genotype, [CO2] and water regime five plants were evaluated. Water stress applied caused significant decreases in water potential, net assimilation, stomatal conductance, intercellular to atmospheric [CO2], and significant increases in water use efficiency, leaf chlorophyll content and carbon isotope composition, while the relative water content, the osmotic potential and the content of anthocyanins did change not under stress compared to control conditions support this statement. Nevertheless, water regime affects plant growth via nitrogen assimilation, which is associated with the transpiration stream, particularly at high [CO2], while the lower N concentration caused by rising [CO2] is not associated with stomatal closure. The stable isotope composition of carbon, oxygen, and nitrogen (δ13C, δ18O, and δ15N) in plant matter are affected not only by water regime but also by rising [CO2]. Thus, δ18O increased probably as response to decreases in transpiration, while the increase in δ15N may reflect not only a lower stomatal conductance but a higher nitrogen demand in leaves or shifts in nitrogen metabolism associated with decreases in photorespiration. The way that δ13C explains differences in plant growth across water regimes within a given [CO2], seems to be mediated through its direct relationship with N

  12. Interactive Effects of CO2 Concentration and Water Regime on Stable Isotope Signatures, Nitrogen Assimilation and Growth in Sweet Pepper

    Directory of Open Access Journals (Sweden)

    María D. Serret

    2018-01-01

    Full Text Available Sweet pepper is among the most widely cultivated horticultural crops in the Mediterranean basin, being frequently grown hydroponically under cover in combination with CO2 fertilization and water conditions ranging from optimal to suboptimal. The aim of this study is to develop a simple model, based on the analysis of plant stable isotopes in their natural abundance, gas exchange traits and N concentration, to assess sweet pepper growth. Plants were grown in a growth chamber for near 6 weeks. Two [CO2] (400 and 800 μmol mol−1, three water regimes (control and mild and moderate water stress and four genotypes were assayed. For each combination of genotype, [CO2] and water regime five plants were evaluated. Water stress applied caused significant decreases in water potential, net assimilation, stomatal conductance, intercellular to atmospheric [CO2], and significant increases in water use efficiency, leaf chlorophyll content and carbon isotope composition, while the relative water content, the osmotic potential and the content of anthocyanins did change not under stress compared to control conditions support this statement. Nevertheless, water regime affects plant growth via nitrogen assimilation, which is associated with the transpiration stream, particularly at high [CO2], while the lower N concentration caused by rising [CO2] is not associated with stomatal closure. The stable isotope composition of carbon, oxygen, and nitrogen (δ13C, δ18O, and δ15N in plant matter are affected not only by water regime but also by rising [CO2]. Thus, δ18O increased probably as response to decreases in transpiration, while the increase in δ15N may reflect not only a lower stomatal conductance but a higher nitrogen demand in leaves or shifts in nitrogen metabolism associated with decreases in photorespiration. The way that δ13C explains differences in plant growth across water regimes within a given [CO2], seems to be mediated through its direct

  13. Thermo-hydrodynamic lubrication in hydrodynamic bearings

    CERN Document Server

    Bonneau, Dominique; Souchet, Dominique

    2014-01-01

    This Series provides the necessary elements to the development and validation of numerical prediction models for hydrodynamic bearings. This book describes the thermo-hydrodynamic and the thermo-elasto-hydrodynamic lubrication. The algorithms are methodically detailed and each section is thoroughly illustrated.

  14. High-Temperature Thermochemical Storage with Redox-Stable Perovskites for Concentrating Solar Power, CRADA Number: CRD-14-554

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhiwen [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-05

    As part of a Federal Opportunity Announcement (FOA) Award, the project will be led by Colorado School of Mines (CSM) to explore and demonstrate the efficacy of highly reducible, redox-stable oxides to provide efficient thermochemical energy storage for heat release at temperatures of 900 degrees Celcius or more. NREL will support the material development for its application in a concentrating solar power (CSP) plant. In the project, NREL will provide its inventive system design, chemical looping for CSP, and use it as a platform to accommodate the chemical processes using a cost effective perovskite materials identified by CSM. NREL will design a 5-10kW particle receiver for perovskite reduction to store solar energy and help the development of a fluidized-bed reoxidation reactor and system integration. NREL will develop the demonstration receiver for on-sun test in the 5-10 kWt range in NREL's high flux solar furnace. NREL will assist in system analysis and provide techno-economic inputs for the overall system configuration.

  15. Can stable isotope fractionation in diatom and coccolith biominerals elucidate the significance of carbon concentrating mechanisms (CCMs) in the past?

    Science.gov (United States)

    Stoll, H.; Bolton, C.; Isensee, K.; Mendez-Vicente, A.; Rubio-Ramos, M.; Mejia-Ramirez, L. M.

    2012-04-01

    Carbon isotopic fractionation in fossil algal biomarkers is typically interpreted to reflect atmospheric CO2 changes assuming simple diffusive uptake of CO2 by cells, however modern algae employ a diverse array of additional strategies to concentrate DIC inside the cell (CCMs). We previously hypothesized that the size-correlated range of vital effects in carbonate liths produced by different coccolithophore species was due to variable significance of CCMs in their C acquisition, and that an absence of interspecific vital effects may reflect a reduced importance of CCMs (or more similar CCMs employed). Here, we present stable isotope data from size-separated deep-sea sediments dominated by small, intermediate and large coccoliths from time slices throughout the Cenozoic. We show that the range of coccolith vital effects is distinct during several major Cenozoic proxy-inferred climate-CO2 transitions, and where vital effects are significant their magnitude scales with cell size in the same sense as modern culture genera (increasing C and O isotope enrichment with decreasing coccolith size). Our new culture experiments with coccolithophorids reveal strong plasticity in the magnitude of stable carbon isotope vital effects in coccoliths of Calcidiscus leptoporus and Emiliania huxleyi with variable CO2. At high CO2 coccoliths of both species are more isotopically enriched, but the magnitude is greater in C. leptoporus leading to reduced interspecific offsets at high CO2. In the case of E. huxleyi, higher CO2 conditions resulted in significant reduction in the magnitude of DIC accumulation in the intracellular carbon pool, and more positive carbon isotopic values inside the particulate organic matter. A model of carbon acquisition incorporating both photosynthetic and carbonate production is used to explore mechanisms for these relationships. We also investigate fractionation in diatom organic matter and diatom biomineral-bound organic matter. While the carbon isotopic

  16. Plant family identity distinguishes patterns of carbon and nitrogen stable isotope abundance and nitrogen concentration in mycoheterotrophic plants associated with ectomycorrhizal fungi

    Science.gov (United States)

    Hynson, Nicole A.; Schiebold, Julienne M.-I.; Gebauer, Gerhard

    2016-01-01

    Background and Aims Mycoheterotrophy entails plants meeting all or a portion of their carbon (C) demands via symbiotic interactions with root-inhabiting mycorrhizal fungi. Ecophysiological traits of mycoheterotrophs, such as their C stable isotope abundances, strongly correlate with the degree of species’ dependency on fungal C gains relative to C gains via photosynthesis. Less explored is the relationship between plant evolutionary history and mycoheterotrophic plant ecophysiology. We hypothesized that the C and nitrogen (N) stable isotope compositions, and N concentrations of fully and partially mycoheterotrophic species differentiate them from autotrophs, and that plant family identity would be an additional and significant explanatory factor for differences in these traits among species. We focused on mycoheterotrophic species that associate with ectomycorrhizal fungi from plant families Ericaceae and Orchidaceae. Methods Published and unpublished data were compiled on the N concentrations, C and N stable isotope abundances (δ13C and δ15N) of fully (n = 18) and partially (n = 22) mycoheterotrophic species from each plant family as well as corresponding autotrophic reference species (n = 156). These data were used to calculate site-independent C and N stable isotope enrichment factors (ε). Then we tested for differences in N concentration, 13C and 15N enrichment among plant families and trophic strategies. Key Results We found that in addition to differentiating partially and fully mycoheterotrophic species from each other and from autotrophs, C and N stable isotope enrichment also differentiates plant species based on familial identity. Differences in N concentrations clustered at the plant family level rather than the degree of dependency on mycoheterotrophy. Conclusions We posit that differences in stable isotope composition and N concentrations are related to plant family-specific physiological interactions with fungi and their environments. PMID

  17. Hydrodynamics challenge problem

    Energy Technology Data Exchange (ETDEWEB)

    Hornung, R. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Keasler, J. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gokhale, M. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2011-06-09

    The hydrodynamics challenge problem represents a classical HPC physics problem, namely high deformation event modeling via Lagrangian shock hydrodynamics. This challenge problem solves the Sedov blast wave problem for one material in three dimensions. The problem has an analytic solution, and can be scaled to arbitrarily large problem sizes. The reference code is drawn from a production LLNL hydrodynamics code.

  18. Using variances in hydrocarbon concentration and carbon stable isotope to determine the important influence of irrigated water on petroleum accumulation in surface soil.

    Science.gov (United States)

    Zhang, Juan; Wang, Renqing; Yang, Juncheng; Hou, Hong; Du, Xiaoming; Dai, Jiulan

    2013-05-01

    Hunpu is a wastewater-irrigated area southwest of Shenyang. To evaluate petroleum contamination and identify its sources at the area, the aliphatic hydrocarbons and compound-specific carbon stable isotopes of n-alkanes in the soil, irrigation water, and atmospheric deposition were analyzed. The analyses of hydrocarbon concentrations and geochemical characteristics reveal that the water is moderately contaminated by degraded heavy oil. According to the isotope analysis, inputs of modern C3 plants and degraded petroleum are present in the water, air, and soil. The similarities and dissimilarities among the water, air, and soil samples were determined by concentration, isotope, and multivariate statistical analyses. Hydrocarbons from various sources, as well as the water/atmospheric deposition samples, are more effectively differentiated through principal component analysis of carbon stable isotope ratios (δ(13)C) relative to hydrocarbon concentrations. Redundancy analysis indicates that 57.1 % of the variance in the δ(13)C of the soil can be explained by the δ(13)C of both the water and air, and 35.5 % of the variance in the hydrocarbon concentrations of the soil can be explained by hydrocarbon concentrations of both the water and the air. The δ(13)C in the atmospheric deposition accounts for 28.2 % of the δ(13)C variance in the soil, which is considerably higher than the variance in hydrocarbon concentrations of the soil explained by hydrocarbon concentrations of the atmospheric deposition (7.7 %). In contrast to δ(13)C analysis, the analysis of hydrocarbon concentrations underestimates the effect of petroleum contamination in the irrigated water and air on the surface soil. Overall, the irrigated water exerts a larger effect on the surface soil than does the atmospheric deposition.

  19. High-temperature stable absorber coatings for linear concentrating solar thermal power plants; Hochtemperaturstabile Absorberschichten fuer linear konzentrierende solarthermische Kraftwerke

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrandt, Christina

    2009-03-23

    This work describes the development of new absorber coatings for different applications - para-bolic trough and linear Fresnel collectors - and operating conditions - absorber in vacuum or in air. The demand for higher efficiencies of solar thermal power plants using parabolic trough technology results in higher temperatures in the collectors and on the absorber tubes. As heat losses increase strongly with increasing temperatures, the need for a lower emissivity of the absorber coating at constant absorptivity arises. The linear Fresnel application envisions ab-sorber tubes stable in air at high temperatures of about 450 C, which are to date commercially not available. This work comprises the theoretical background, the modeling and the fabrication of absorber tubes including the technology transfer to a production-size inline sputter coater. In annealing tests and accompanying optical measurements, degradation processes have been observed and specified more precisely by material characterization techniques. The simulations provided the capability of different materials used as potential IR-reflector. The highest selectivity can be achieved by applying silver which consequently has been chosen for the application in absorber coatings of the parabolic trough technology. Thin silver films how-ever need to be stabilized when used at high temperatures. Appropriate barrier layers as well as process and layer parameters were identified. A high selectivity was achieved and stability of the absorber coating for 1200 h at 500 C in vacuum has been demonstrated. For the application in air, silver was also analyzed as a potential IR-reflector. Even though the stability could be increased considerably, it nevertheless proved to be insufficient. The main factors influencing stability in a positive way are the use of higher quality polishing, additional barrier layers and adequate process parameters. This knowledge was applied for developing coatings which are stable in air at

  20. Using equilibrium passive dosing to maintain stable exposure concentrations of triclosan in a 6-week toxicity test

    DEFF Research Database (Denmark)

    Sobek, A.; Ribbenstedt, A.; Mustajärvi, L.

    2015-01-01

    toxicity tests. Yet, the European Commission’s criteria for chemicals’ risk assessments aim at protecting higher levels in the environment. To achieve protection of populations and ecosystems, reliable long-term ecotoxicologial tests are needed. In this study, we used equilibrium passive dosing to maintain...... hundred individuals in each vial. The increasing biomass of the test organisms can again lead to declining exposure concentrations, but such loss was buffered by passive dosing. Quality assurance tests showed that a) the loading and passive dosing procedures resulted in exposure concentrations with little...

  1. Elementary classical hydrodynamics

    CERN Document Server

    Chirgwin, B H; Langford, W J; Maxwell, E A; Plumpton, C

    1967-01-01

    Elementary Classical Hydrodynamics deals with the fundamental principles of elementary classical hydrodynamics, with emphasis on the mechanics of inviscid fluids. Topics covered by this book include direct use of the equations of hydrodynamics, potential flows, two-dimensional fluid motion, waves in liquids, and compressible flows. Some general theorems such as Bernoulli's equation are also considered. This book is comprised of six chapters and begins by introducing the reader to the fundamental principles of fluid hydrodynamics, with emphasis on ways of studying the motion of a fluid. Basic c

  2. Elasto-hydrodynamic lubrication

    CERN Document Server

    Dowson, D; Hopkins, D W

    1977-01-01

    Elasto-Hydrodynamic Lubrication deals with the mechanism of elasto-hydrodynamic lubrication, that is, the lubrication regime in operation over the small areas where machine components are in nominal point or line contact. The lubrication of rigid contacts is discussed, along with the effects of high pressure on the lubricant and bounding solids. The governing equations for the solution of elasto-hydrodynamic problems are presented.Comprised of 13 chapters, this volume begins with an overview of elasto-hydrodynamic lubrication and representation of contacts by cylinders, followed by a discussio

  3. Stable C and N isotope concentration in several tissues of the loggerhead sea turtle Caretta caretta from the western Mediterranean and dietary implications

    Directory of Open Access Journals (Sweden)

    Mónica Revelles

    2007-03-01

    Full Text Available The isotopic concentrations of carapace scutes, skin, muscle and blood of loggerhead sea turtles (Caretta caretta from the Balearic Archipelago were analysed to investigate the pattern of variation between tissues and to assess the position of this species in the trophic webs of the Algerian Basin. Skin showed higher δ13C values than muscle or carapace scutes and these showed higher values than blood. Conversely, muscle showed higher δ15N values than skin, skin showed higher values than blood and blood showed higher values than carapace scutes. Dead and live sea turtles from the same habitat did not differ in the concentration of stable isotopes. However, some of the tissues of the turtles caught in drifting longlines in the oceanic realm showed higher δ13C values than those from the turtles caught by hand or in trammel nets over the continental shelf, although they did not differ in the δ15N. Comparison of the concentration of stable isotopes in the turtles with that of other species from several areas of the Algerian Basin revealed that they consumed planktonic prey and that the trophic level of the sea turtles was higher than that of carnivorous cnidarians but lower than that of zooplanktophagous fish and crustaceans.

  4. Transformations of integrable hydrodynamic chains and their hydrodynamic reductions

    OpenAIRE

    Pavlov, Maxim V.

    2006-01-01

    Hydrodynamic reductions of the hydrodynamic chain associated with dispersionless limit of 2+1 Harry Dym equation are found by the Miura type and reciprocal transformations applied to the Benney hydrodynamic chain.

  5. N2O production and consumption from stable isotopic and concentration data in the Peruvian coastal upwelling system

    Science.gov (United States)

    Bourbonnais, Annie; Letscher, Robert T.; Bange, Hermann W.; Échevin, Vincent; Larkum, Jennifer; Mohn, Joachim; Yoshida, Naohiro; Altabet, Mark A.

    2017-04-01

    The ocean is an important source of nitrous oxide (N2O) to the atmosphere, yet the factors controlling N2O production and consumption in oceanic environments are still not understood nor constrained. We measured N2O concentrations and isotopomer ratios, as well as O2, nutrient and biogenic N2 concentrations, and the isotopic compositions of nitrate and nitrite at several coastal stations during two cruises off the Peru coast ( 5-16°S, 75-81°W) in December 2012 and January 2013. N2O concentrations varied from below equilibrium values in the oxygen deficient zone (ODZ) to up to 190 nmol L-1 in surface waters. We used a 3-D-reaction-advection-diffusion model to evaluate the rates and modes of N2O production in oxic waters and rates of N2O consumption versus production by denitrification in the ODZ. Intramolecular site preference in N2O isotopomer was relatively low in surface waters (generally -3 to 14‰) and together with modeling results, confirmed the dominance of nitrifier-denitrification or incomplete denitrifier-denitrification, corresponding to an efflux of up to 0.6 Tg N yr-1 off the Peru coast. Other evidence, e.g., the absence of a relationship between ΔN2O and apparent O2 utilization and significant relationships between nitrate, a substrate during denitrification, and N2O isotopes, suggest that N2O production by incomplete denitrification or nitrifier-denitrification decoupled from aerobic organic matter remineralization are likely pathways for extreme N2O accumulation in newly upwelled surface waters. We observed imbalances between N2O production and consumption in the ODZ, with the modeled proportion of N2O consumption relative to production generally increasing with biogenic N2. However, N2O production appeared to occur even where there was high N loss at the shallowest stations.

  6. Stable-isotope geochemistry of the Pierina high-sulfidation Au-Ag deposit, Peru: Influence of hydrodynamics on SO42--H2S sulfur isotopic exchange in magmatic-steam and steam-heated environments

    Science.gov (United States)

    Fifarek, R.H.; Rye, R.O.

    2005-01-01

    The Pierina high-sulfidation Au-Ag deposit formed 14.5 my ago in rhyolite ash flow tuffs that overlie porphyritic andesite and dacite lavas and are adjacent to a crosscutting and interfingering dacite flow dome complex. The distribution of alteration zones indicates that fluid flow in the lavas was largely confined to structures but was dispersed laterally in the tuffs because of a high primary and alteration-induced permeability. The lithologically controlled hydrodynamics created unusual fluid, temperature, and pH conditions that led to complete SO42--H2S isotopic equilibration during the formation of some magmatic-steam and steam-heated alunite, a phenomenon not previously recognized in similar deposits. Isotopic data for early magmatic hydrothermal and main-stage alunite (??34S=8.5??? to 31.7???; ??18 OSO4=4.9??? to 16.5???; ??18 OOH=2.2??? to 14.4???; ??D=-97??? to -39???), sulfides (??34 S=-3.0??? to 4.3???), sulfur (??34S=-1.0??? to 1.1???), and clay minerals (??18O=4.3??? to 12.5???; ??D=-126??? to -81???) are typical of high-sulfidation epithermal deposits. The data imply the following genetic elements for Pierina alteration-mineralization: (1) fluid and vapor exsolution from an I-type magma, (2) wallrock buffering and cooling of slowing rising vapors to generate a reduced (H2S/SO4???6) highly acidic condensate that mixed with meteoric water but retained a magmatic ??34S???S signature of ???1???, (3) SO2 disproportionation to HSO4- and H2S between 320 and 180 ??C, and (4) progressive neutralization of laterally migrating acid fluids to form a vuggy quartz???alunite-quartz??clay???intermediate argillic???propylitic alteration zoning. Magmatic-steam alunite has higher ??34S (8.5??? to 23.2???) and generally lower ??18OSO4 (1.0 to 11.5???), ??18OOH (-3.4 to 5.9???), and ??D (-93 to -77???) values than predicted on the basis of data from similar occurrences. These data and supporting fluid-inclusion gas chemistry imply that the rate of vapor ascent for this

  7. Stable binding of alternative protein-enriched food matrices with concentrated cranberry bioflavonoids for functional food applications.

    Science.gov (United States)

    Grace, Mary H; Guzman, Ivette; Roopchand, Diana E; Moskal, Kristin; Cheng, Diana M; Pogrebnyak, Natasha; Raskin, Ilya; Howell, Amy; Lila, Mary Ann

    2013-07-17

    Defatted soy flour (DSF), soy protein isolate (SPI), hemp protein isolate (HPI), medium-roast peanut flour (MPF), and pea protein isolate (PPI) stably bind and concentrate cranberry (CB) polyphenols, creating protein/polyphenol-enriched matrices. Proanthocyanidins (PAC) in the enriched matrices ranged from 20.75 mg/g (CB-HPI) to 10.68 mg/g (CB-SPI). Anthocyanins (ANC) ranged from 3.19 mg/g (CB-DSF) to 1.68 mg/g (CB-SPI), whereas total phenolics (TP) ranged from 37.61 mg/g (CB-HPI) to 21.29 mg/g (CB-SPI). LC-MS indicated that the enriched matrices contained all identifiable ANC, PAC, and flavonols present in CB juice. Complexation with SPI stabilized and preserved the integrity of the CB polyphenolic components for at least 15 weeks at 37 °C. PAC isolated from enriched matrices demonstrated comparable antiadhesion bioactivity to PAC isolated directly from CB juice (MIC 0.4-0.16 mg/mL), indicating their potential utility for maintenance of urinary tract health. Approximately 1.0 g of polyphenol-enriched matrix delivered the same amount of PAC available in 1 cup (300 mL) of commercial CB juice cocktail, which has been shown clinically to be the prophylactic dose for reducing recurring urinary tract infections. CB-SPI inhibited Gram-positive and Gram-negative bacterial growth. Nutritional and sensory analyses indicated that the targeted CB-matrix combinations have high potential for incorporation in functional food formulations.

  8. Dissolved organic carbon, CO2, and CH4 concentrations and their stable isotope ratios in thermokarst lakes on the Qinghai-Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Cuicui Mu

    2016-01-01

    Full Text Available Thermokarst lakes are widely distributed on the Qinghai-Tibetan Plateau (QTP, which accounts for 8% of the global permafrost area. These lakes probably promote organic matter biodegradation and thus accelerate the emission of carbon-based greenhouse gases. However, little is known about greenhouse gas concentrations and their stable isotopes characteristics of these lakes. In this study, we measured the concentrations of dissolved organic carbon (DOC, dissolved CO2 and CH4, as well as the distribution of δ13CCO2, δ13CCH4, and δ13COM (organic matter of lake sediments in thermokarst lakes on the QTP. Results showed that the OM of the lake sediments was highly decomposed. The concentrations of DOC, CO2 and CH4 in the lake water on the QTP were 1.2–49.6 mg L–1, 3.6–45.0 μmol L–1 and 0.28–3.0 μmol L–1, respectively. The highest CO2 and CH4 concentrations were recorded in July while the lowest values in September, which suggested that temperature had an effect on greenhouse gas production, although this pattern may also relate to thermal stratification of the water column. The results implied that thermokast lakes should be paid more attention to regarding carbon cycle and greenhouse gas emissions on the QTP.

  9. Hydrodynamics and Flow

    Science.gov (United States)

    Hirano, Tetsufumi; van der Kolk, Naomi; Bilandzic, Ante

    The main purpose of the lecture was to lead students and young postdocs to the frontier of the hydrodynamic description of relativistic heavy-ion collisions (H.I.C.) in order for them to understand talks and posters presented in the Quark Matter 2008 (QM08) conference in Jaipur, India [1]. So the most recent studies were not addressed in this lecture as they would be presented during the QM08 conference itself. Also, we try to give a very pedagogical lecture here. For the readers who may want to study relativistic hydrodynamics and its application to H.I.C. as an advanced course, we strongly recommend them to consult the references. This lecture note is divided into three parts. In the first part we give a brief introduction to relativistic hydrodynamics in the context of H.I.C. In the second part we present the formalism and some fundamental aspects of relativistic ideal and viscous hydrodynamics.

  10. Formation of new stable pigments from condensation reaction between malvidin 3-glucoside and (-)-epicatechin mediated by acetaldehyde: Effect of tartaric acid concentration.

    Science.gov (United States)

    Sun, Baoshan; Barradas, Tania; Leandro, Conceição; Santos, Cláudia; Spranger, Isabel

    2008-09-15

    The objective of this work was to study the effect of tartaric acid concentration on the condensation reaction between malvidin 3-glucoside (Mv-glc) and flavanols mediated by acetaldehyde in the model solution. The model wine solutions were prepared by 12% ethanol in water (v/v) with two different l-tartaric acid concentrations (5g/l and 25g/l, respectively) and at two different pH values (3.2 and 1.7, respectively). Four new pigments were detected in model wine solutions containing Mv-glc, (-)-epicatechin and acetaldehyde. By reverse-phase HPLC-DAD, ESI-MS and MS(n) fragmentation analysis, the four new pigments were tentatively identified as four isomers of hydroxyethyl malvidin-3-glucoside-ethyl-flavanol. The decrease in the concentration of Mv-glc and (-)-epicatechin and the increase in the concentration of the new identified pigments were more pronounced at higher tartaric acid concentration. At pH 1.7, although the two well-recognized ethyl-linked Mv-glc-flavanol isomers were quantitatively the major pigmented products in the reaction solution throughout the assay period, they appeared less stable than the four new pigments. At pH 3.2, the rate of formation of ethyl-linked Mv-glc-flavanol pigments was much slower than at pH 1.7, whereas the four new pigments were quantitatively the predominant pigmented products at the latter stage of the reaction. Copyright © 2008 Elsevier Ltd. All rights reserved.

  11. Pan-Arctic concentrations of mercury and stable isotope ratios of carbon (δ{sup 13}C) and nitrogen (δ{sup 15}N) in marine zooplankton

    Energy Technology Data Exchange (ETDEWEB)

    Pomerleau, Corinne, E-mail: corinne.pomerleau@umanitoba.ca [Centre for Earth Observation Science, University of Manitoba, Winnipeg, MB R3T 2N2 (Canada); Greenland Institute of Natural Resources, Kivioq 2, Nuuk 3900, Greenland (Denmark); Stern, Gary A.; Pućko, Monika [Centre for Earth Observation Science, University of Manitoba, Winnipeg, MB R3T 2N2 (Canada); Foster, Karen L. [Foster Environmental, Peterborough, ON K9J 8L2 (Canada); Macdonald, Robie W. [Institute of Ocean Sciences, Fisheries and Oceans Canada, Sidney, BC V8L 4B2 (Canada); Fortier, Louis [Québec-Océan, Département de Biologie, Université Laval, Québec, QC G1V 0A6 (Canada)

    2016-05-01

    Zooplankton play a central role in marine food webs, dictating the quantity and quality of energy available to upper trophic levels. They act as “keystone” species in transfer of mercury (Hg) up through the marine food chain. Here, we present the first Pan-Arctic overview of total and monomethylmercury concentrations (THg and MMHg) and stable isotope ratios of carbon (δ{sup 13}C) and nitrogen (δ{sup 15}N) in selected zooplankton species by assembling data collected between 1998 and 2012 from six arctic regions (Laptev Sea, Chukchi Sea, southeastern Beaufort Sea, Canadian Arctic Archipelago, Hudson Bay and northern Baffin Bay). MMHg concentrations in Calanus spp., Themisto spp. and Paraeuchaeta spp. were found to increase with higher δ{sup 15}N and lower δ{sup 13}C. The southern Beaufort Sea exhibited both the highest THg and MMHg concentrations. Biomagnification of MMHg between Calanus spp. and two of its known predators, Themisto spp. and Paraeuchaeta spp., was greatest in the southern Beaufort Sea. Our results show large geographical variations in Hg concentrations and isotopic signatures for individual species related to regional ecosystem features, such as varying water masses and freshwater inputs, and highlight the increased exposure to Hg in the marine food chain of the southern Beaufort Sea. - Highlights: • Assessment of Pan-Arctic variability in zooplankton Hg concentrations • Increased exposure to Hg in the marine food chain of the southern Beaufort Sea • Zooplankton plays a central role in the Hg pathway within Arctic marine food webs.

  12. A proteomic method for the analysis of changes in protein concentrations in response to systemic perturbations using metabolic incorporation of stable isotopes and mass spectrometry.

    Science.gov (United States)

    Gustavsson, Niklas; Greber, Boris; Kreitler, Thomas; Himmelbauer, Heinz; Lehrach, Hans; Gobom, Johan

    2005-09-01

    While several techniques exist for assessing quantitative differences among proteomes representing different cell states, methods for assessing how these differences are mediated are largely missing. We present a method that allows one to differentiate between cellular processes, such as protein synthesis, degradation and PTMs which affect protein concentrations. An induced systemic perturbation of a cell culture was coupled to a replacement of the growth medium to one highly enriched in the stable isotope 15N. The relative abundance of the 15N- and 14N-enriched forms of proteins, isolated from cell cultures harvested at time points following the onset of the perturbation, were determined by MS. Alterations in protein synthesis and degradation were quantified by comparing proteins isolated from perturbed and unperturbed cultures, respectively. The method was evaluated by subjecting HeLa cells to heat stress. As expected, a number of known heat shock proteins (Hsp) increased in concentration during heat stress. For Hsp27, increased de novo synthesis accounted for the concentration increase, while for Hsp70, decreased degradation accounted for the increase. A protein that was detected only after prolonged heat stress, vimentin, was not primarily synthesized de novo, but appeared rather as a result of PTM.

  13. Relationship between self-reported fish and shellfish consumption, carbon and nitrogen stable isotope values and total mercury concentrations in pregnant women (II from Baja California Sur, Mexico

    Directory of Open Access Journals (Sweden)

    Rebecca Bentzen

    2014-01-01

    Full Text Available Seafood is a valuable source of nutrients important for fetal development. However, seafood consumption is the main route of exposure to monomethyl mercury (MeHg+ for humans. MeHg+ is highly bioavailable and potentially adversely affects fetal neurodevelopment. MeHg+ exposure from fish consumption varies significantly by age and trophic level of fish consumed as well as the frequency and amount of fish consumed. This study investigates total Hg concentrations ([THg] in hair segments of pregnant Mexican women in relation to (1 self-reported frequency of fish and shellfish consumption, (2 maternal trophic level and marine diet contributions, determined using hair carbon (C and nitrogen (N stable isotopes, and (3 relates [THg] to various hair advisory thresholds. We also examined whether variation in C and N isotope values is explained by self-reported frequency of fish and shellfish consumption. A significant proportion of hair samples had [THg] higher than suggested agency thresholds and, for women within the range of the various advisory thresholds (1–20 μg g−1, the specific statistic used and threshold applied are important considerations for assessing and communicating risk. Individuals enriched in 15N (δ15N values had higher [THg] as did individuals that reported consuming fish and shellfish more frequently, suggesting that variation in [THg] can be explained by both consumer reported diet and diet as determined by C and N stable isotope assessment. However, at higher reported fish consumption levels the trophic level is maintained while [THg] is paradoxically lower. This suggests that THg exposure and assimilation are more complicated in higher fish frequency consumption categories. [THg] is more variable at the higher concentrations, possibly indicating some exposure to non-dietary Hg, heritable variations affecting Hg toxicodynamics, and BMI and tobacco exposure factors as outlined in our companion paper.

  14. Finite element analysis of one–dimensional hydrodynamic ...

    African Journals Online (AJOL)

    In this research work, we consider the one dimensional hydrodynamic dispersion of a reactive solute in electroosmotic flow. We present results demonstrating the utility of finite element methods to simulate and visualize hydrodynamic dispersion in the electroosmotic flow. From examination of concentration profile, effective ...

  15. Progress in smooth particle hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Wingate, C.A.; Dilts, G.A.; Mandell, D.A.; Crotzer, L.A.; Knapp, C.E.

    1998-07-01

    Smooth Particle Hydrodynamics (SPH) is a meshless, Lagrangian numerical method for hydrodynamics calculations where calculational elements are fuzzy particles which move according to the hydrodynamic equations of motion. Each particle carries local values of density, temperature, pressure and other hydrodynamic parameters. A major advantage of SPH is that it is meshless, thus large deformation calculations can be easily done with no connectivity complications. Interface positions are known and there are no problems with advecting quantities through a mesh that typical Eulerian codes have. These underlying SPH features make fracture physics easy and natural and in fact, much of the applications work revolves around simulating fracture. Debris particles from impacts can be easily transported across large voids with SPH. While SPH has considerable promise, there are some problems inherent in the technique that have so far limited its usefulness. The most serious problem is the well known instability in tension leading to particle clumping and numerical fracture. Another problem is that the SPH interpolation is only correct when particles are uniformly spaced a half particle apart leading to incorrect strain rates, accelerations and other quantities for general particle distributions. SPH calculations are also sensitive to particle locations. The standard artificial viscosity treatment in SPH leads to spurious viscosity in shear flows. This paper will demonstrate solutions for these problems that they and others have been developing. The most promising is to replace the SPH interpolant with the moving least squares (MLS) interpolant invented by Lancaster and Salkauskas in 1981. SPH and MLS are closely related with MLS being essentially SPH with corrected particle volumes. When formulated correctly, JLS is conservative, stable in both compression and tension, does not have the SPH boundary problems and is not sensitive to particle placement. The other approach to

  16. Hydrodynamic Vortex on Surfaces

    Science.gov (United States)

    Ragazzo, Clodoaldo Grotta; de Barros Viglioni, Humberto Henrique

    2017-10-01

    The equations of motion for a system of point vortices on an oriented Riemannian surface of finite topological type are presented. The equations are obtained from a Green's function on the surface. The uniqueness of the Green's function is established under hydrodynamic conditions at the surface's boundaries and ends. The hydrodynamic force on a point vortex is computed using a new weak formulation of Euler's equation adapted to the point vortex context. An analogy between the hydrodynamic force on a massive point vortex and the electromagnetic force on a massive electric charge is presented as well as the equations of motion for massive vortices. Any noncompact Riemann surface admits a unique Riemannian metric such that a single vortex in the surface does not move ("Steady Vortex Metric"). Some examples of surfaces with steady vortex metric isometrically embedded in R^3 are presented.

  17. Coupling of a headspace autosampler with a programmed temperature vaporizer for stable carbon and hydrogen isotope analysis of volatile organic compounds at microgram per liter concentrations.

    Science.gov (United States)

    Herrero-Martín, Sara; Nijenhuis, Ivonne; Richnow, Hans H; Gehre, Matthias

    2015-01-20

    One major challenge for the environmental application of compound-specific stable isotope analysis (CSIA) is the necessity of efficient sample treatment methods, allowing isolation of a sufficient mass of organic contaminants needed for accurate measurement of the isotope ratios. Here, we present a novel preconcentration technique--the coupling of a headspace (HS) autosampler with a programmed temperature vaporizer (PTV)--for carbon (δ(13)C) and hydrogen (δ(2)H) isotope analysis of volatile organic compounds in water at concentrations of tens of micrograms per liter. The technique permits large-volume injection of headspace samples, maintaining the principle of simple static HS extraction. We developed the method for multielement isotope analysis (δ(13)C and δ(2)H) of methyl tert-butyl ether (MTBE), benzene, toluene, ethylbenzene, and o-xylene (BTEX), and analysis of δ(13)C for chlorinated benzenes and ethenes. Extraction and injection conditions were optimized for maximum sensitivity and minimum isotope effects. Injection of up to 5 mL of headspace sample from a 20 mL vial containing 13 mL of aqueous solution and 5 g of NaCl (10 min of incubation at 90 °C) resulted in accurate δ(13)C and δ(2)H values. The method detection limits (MDLs) for δ(13)C were from 2 to 60 μg/L (MTBE, BTEX, chlorinated ethenes, and benzenes) and 60-97 μg/L for δ(2)H (MTBE and BTEX). Overall, the HS-PTV technique is faster, simpler, isotope effect-free, and requires fewer treatment steps and less sample volume than other extraction techniques used for CSIA. The environmental applicability was proved by the analysis of groundwater samples containing BTEX and chlorinated contaminants at microgram per liter concentrations.

  18. Hydrodynamic separator sediment retention testing.

    Science.gov (United States)

    2010-03-01

    Hydrodynamic separators are widely used in urban areas for removal of suspended sediments and floatables from : stormwater due to limited land availability for the installation of above ground stormwater best management : practices (BMPs). Hydrodynam...

  19. Bosonization and quantum hydrodynamics

    Indian Academy of Sciences (India)

    Bosonization and quantum hydrodynamics. GIRISH S SETLUR. Department of Physics, Indian Institute of Technology, Guwahati, North Guwahati .... and Haldane [3] breaks up the Fermi surface into patches where the separation between the patches ∆kF ≫ Λ ∼ ∆q. Not only is this contrived, it involves the introduction of one ...

  20. Skew resisting hydrodynamic seal

    Science.gov (United States)

    Conroy, William T.; Dietle, Lannie L.; Gobeli, Jeffrey D.; Kalsi, Manmohan S.

    2001-01-01

    A novel hydrodynamically lubricated compression type rotary seal that is suitable for lubricant retention and environmental exclusion. Particularly, the seal geometry ensures constraint of a hydrodynamic seal in a manner preventing skew-induced wear and provides adequate room within the seal gland to accommodate thermal expansion. The seal accommodates large as-manufactured variations in the coefficient of thermal expansion of the sealing material, provides a relatively stiff integral spring effect to minimize pressure-induced shuttling of the seal within the gland, and also maintains interfacial contact pressure within the dynamic sealing interface in an optimum range for efficient hydrodynamic lubrication and environment exclusion. The seal geometry also provides for complete support about the circumference of the seal to receive environmental pressure, as compared the interrupted character of seal support set forth in U.S. Pat. Nos. 5,873,576 and 6,036,192 and provides a hydrodynamic seal which is suitable for use with non-Newtonian lubricants.

  1. Smoothed Particle Hydrodynamic Simulator

    Energy Technology Data Exchange (ETDEWEB)

    2016-10-05

    This code is a highly modular framework for developing smoothed particle hydrodynamic (SPH) simulations running on parallel platforms. The compartmentalization of the code allows for rapid development of new SPH applications and modifications of existing algorithms. The compartmentalization also allows changes in one part of the code used by many applications to instantly be made available to all applications.

  2. Near-Shore Hydrodynamic Conditions and Chemical Plume Tracking

    National Research Council Canada - National Science Library

    Fong, Derek

    2004-01-01

    .... Analyzing a dye concentration data set collected by a state of the art autonomous underwater vehicle and fixed hydrodynamic measurements, we quantify the meandering and lateral dispersion of a plume...

  3. Hydrodynamics of Turning Flocks.

    Science.gov (United States)

    Yang, Xingbo; Marchetti, M Cristina

    2015-12-18

    We present a hydrodynamic model of flocking that generalizes the familiar Toner-Tu equations to incorporate turning inertia of well-polarized flocks. The continuum equations controlled by only two dimensionless parameters, orientational inertia and alignment strength, are derived by coarse-graining the inertial spin model recently proposed by Cavagna et al. The interplay between orientational inertia and bend elasticity of the flock yields anisotropic spin waves that mediate the propagation of turning information throughout the flock. The coupling between spin-current density to the local vorticity field through a nonlinear friction gives rise to a hydrodynamic mode with angular-dependent propagation speed at long wavelengths. This mode becomes unstable as a result of the growth of bend and splay deformations augmented by the spin wave, signaling the transition to complex spatiotemporal patterns of continuously turning and swirling flocks.

  4. Superluminous Supernovae hydrodynamic models

    Science.gov (United States)

    Orellana, M.

    2017-07-01

    We use our radiation hydrodynamic code in order to simulate magnetar powered Superluminous Supernovae (SLSNe). It is assumed that a central rapidly rotating magnetar deposits all its rotational energy into the ejecta where is added to the usual power. The magnetar luminosity and spin-down timescale are adopted as the free parameters of the model. For the case of ASASSN-15lh, which has been claimed as the most luminous supernova ever discovered, we have found physically plausible magnetar parameters can reproduce the overall shape of the bolometric light curve (LC) provided the progenitor mass is ≍ 8M⊙. The ejecta dynamics of this event shows signs of the magnetar energy input which deviates the expansion from the usually assumed homologous behaviour. Our numerical experiments lead us to conclude that the hydrodynamical modeling is necessary in order to derive the properties of powerful magnetars driving SLSNe.

  5. Staggered Schemes for Fluctuating Hydrodynamics

    CERN Document Server

    Balboa, F; Delgado-Buscalioni, R; Donev, A; Fai, T; Griffith, B; Peskin, C S

    2011-01-01

    We develop numerical schemes for solving the isothermal compressible and incompressible equations of fluctuating hydrodynamics on a grid with staggered momenta. We develop a second-order accurate spatial discretization of the diffusive, advective and stochastic fluxes that satisfies a discrete fluctuation-dissipation balance, and construct temporal discretizations that are at least second-order accurate in time deterministically and in a weak sense. Specifically, the methods reproduce the correct equilibrium covariances of the fluctuating fields to third (compressible) and second (incompressible) order in the time step, as we verify numerically. We apply our techniques to model recent experimental measurements of giant fluctuations in diffusively mixing fluids in a micro-gravity environment [A. Vailati et. al., Nature Communications 2:290, 2011]. Numerical results for the static spectrum of non-equilibrium concentration fluctuations are in excellent agreement between the compressible and incompressible simula...

  6. Hydrodynamic blade guide

    Science.gov (United States)

    Blaedel, Kenneth L.; Davis, Pete J.; Landram, Charles S.

    2000-01-01

    A saw having a self-pumped hydrodynamic blade guide or bearing for retaining the saw blade in a centered position in the saw kerf (width of cut made by the saw). The hydrodynamic blade guide or bearing utilizes pockets or grooves incorporated into the sides of the blade. The saw kerf in the workpiece provides the guide or bearing stator surface. Both sides of the blade entrain cutting fluid as the blade enters the kerf in the workpiece, and the trapped fluid provides pressure between the blade and the workpiece as an inverse function of the gap between the blade surface and the workpiece surface. If the blade wanders from the center of the kerf, then one gap will increase and one gap will decrease and the consequent pressure difference between the two sides of the blade will cause the blade to re-center itself in the kerf. Saws using the hydrodynamic blade guide or bearing have particular application in slicing slabs from boules of single crystal materials, for example, as well as for cutting other difficult to saw materials such as ceramics, glass, and brittle composite materials.

  7. Hydrodynamics of fossil fishes

    Science.gov (United States)

    Fletcher, Thomas; Altringham, John; Peakall, Jeffrey; Wignall, Paul; Dorrell, Robert

    2014-01-01

    From their earliest origins, fishes have developed a suite of adaptations for locomotion in water, which determine performance and ultimately fitness. Even without data from behaviour, soft tissue and extant relatives, it is possible to infer a wealth of palaeobiological and palaeoecological information. As in extant species, aspects of gross morphology such as streamlining, fin position and tail type are optimized even in the earliest fishes, indicating similar life strategies have been present throughout their evolutionary history. As hydrodynamical studies become more sophisticated, increasingly complex fluid movement can be modelled, including vortex formation and boundary layer control. Drag-reducing riblets ornamenting the scales of fast-moving sharks have been subjected to particularly intense research, but this has not been extended to extinct forms. Riblets are a convergent adaptation seen in many Palaeozoic fishes, and probably served a similar hydrodynamic purpose. Conversely, structures which appear to increase skin friction may act as turbulisors, reducing overall drag while serving a protective function. Here, we examine the diverse adaptions that contribute to drag reduction in modern fishes and review the few attempts to elucidate the hydrodynamics of extinct forms. PMID:24943377

  8. Hydrodynamics of insect spermatozoa

    Science.gov (United States)

    Pak, On Shun; Lauga, Eric

    2010-11-01

    Microorganism motility plays important roles in many biological processes including reproduction. Many microorganisms propel themselves by propagating traveling waves along their flagella. Depending on the species, propagation of planar waves (e.g. Ceratium) and helical waves (e.g. Trichomonas) were observed in eukaryotic flagellar motion, and hydrodynamic models for both were proposed in the past. However, the motility of insect spermatozoa remains largely unexplored. An interesting morphological feature of such cells, first observed in Tenebrio molitor and Bacillus rossius, is the double helical deformation pattern along the flagella, which is characterized by the presence of two superimposed helical flagellar waves (one with a large amplitude and low frequency, and the other with a small amplitude and high frequency). Here we present the first hydrodynamic investigation of the locomotion of insect spermatozoa. The swimming kinematics, trajectories and hydrodynamic efficiency of the swimmer are computed based on the prescribed double helical deformation pattern. We then compare our theoretical predictions with experimental measurements, and explore the dependence of the swimming performance on the geometric and dynamical parameters.

  9. Hydrodynamics of fossil fishes.

    Science.gov (United States)

    Fletcher, Thomas; Altringham, John; Peakall, Jeffrey; Wignall, Paul; Dorrell, Robert

    2014-08-07

    From their earliest origins, fishes have developed a suite of adaptations for locomotion in water, which determine performance and ultimately fitness. Even without data from behaviour, soft tissue and extant relatives, it is possible to infer a wealth of palaeobiological and palaeoecological information. As in extant species, aspects of gross morphology such as streamlining, fin position and tail type are optimized even in the earliest fishes, indicating similar life strategies have been present throughout their evolutionary history. As hydrodynamical studies become more sophisticated, increasingly complex fluid movement can be modelled, including vortex formation and boundary layer control. Drag-reducing riblets ornamenting the scales of fast-moving sharks have been subjected to particularly intense research, but this has not been extended to extinct forms. Riblets are a convergent adaptation seen in many Palaeozoic fishes, and probably served a similar hydrodynamic purpose. Conversely, structures which appear to increase skin friction may act as turbulisors, reducing overall drag while serving a protective function. Here, we examine the diverse adaptions that contribute to drag reduction in modern fishes and review the few attempts to elucidate the hydrodynamics of extinct forms.

  10. How to fake hydrodynamic signals

    Energy Technology Data Exchange (ETDEWEB)

    Romatschke, Paul [Department of Physics, 390 UCB, University of Colorado at Boulder, Boulder, CO (United States); Center for Theory of Quantum Matter, University of Colorado, Boulder, CO 80309 (United States)

    2016-12-15

    Flow signatures in experimental data from relativistic ion collisions, are usually interpreted as a fingerprint of the presence of a hydrodynamic phase during the evolution of these systems. I review some theoretical ideas to ‘fake’ this hydrodynamic behavior in p+A and A+A collisions. I find that transverse flow and femtoscopic measurements can easily be forged through non-hydrodynamic evolution, while large elliptic flow requires some non-vanishing interactions in the hot phase.

  11. Foundations of radiation hydrodynamics

    CERN Document Server

    Mihalas, Dimitri

    1999-01-01

    Radiation hydrodynamics is a broad subject that cuts across many disciplines in physics and astronomy: fluid dynamics, thermodynamics, statistical mechanics, kinetic theory, and radiative transfer, among others. The theory developed in this book by two specialists in the field can be applied to the study of such diverse astrophysical phenomena as stellar winds, supernova explosions, and the initial phases of cosmic expansion, as well as the physics of laser fusion and reentry vehicles. As such, it provides students with the basic tools for research on radiating flows.Largely self-contained,

  12. Hydrodynamic dispersion within porous biofilms

    KAUST Repository

    Davit, Y.

    2013-01-23

    Many microorganisms live within surface-associated consortia, termed biofilms, that can form intricate porous structures interspersed with a network of fluid channels. In such systems, transport phenomena, including flow and advection, regulate various aspects of cell behavior by controlling nutrient supply, evacuation of waste products, and permeation of antimicrobial agents. This study presents multiscale analysis of solute transport in these porous biofilms. We start our analysis with a channel-scale description of mass transport and use the method of volume averaging to derive a set of homogenized equations at the biofilm-scale in the case where the width of the channels is significantly smaller than the thickness of the biofilm. We show that solute transport may be described via two coupled partial differential equations or telegrapher\\'s equations for the averaged concentrations. These models are particularly relevant for chemicals, such as some antimicrobial agents, that penetrate cell clusters very slowly. In most cases, especially for nutrients, solute penetration is faster, and transport can be described via an advection-dispersion equation. In this simpler case, the effective diffusion is characterized by a second-order tensor whose components depend on (1) the topology of the channels\\' network; (2) the solute\\'s diffusion coefficients in the fluid and the cell clusters; (3) hydrodynamic dispersion effects; and (4) an additional dispersion term intrinsic to the two-phase configuration. Although solute transport in biofilms is commonly thought to be diffusion dominated, this analysis shows that hydrodynamic dispersion effects may significantly contribute to transport. © 2013 American Physical Society.

  13. Load responsive hydrodynamic bearing

    Science.gov (United States)

    Kalsi, Manmohan S.; Somogyi, Dezso; Dietle, Lannie L.

    2002-01-01

    A load responsive hydrodynamic bearing is provided in the form of a thrust bearing or journal bearing for supporting, guiding and lubricating a relatively rotatable member to minimize wear thereof responsive to relative rotation under severe load. In the space between spaced relatively rotatable members and in the presence of a liquid or grease lubricant, one or more continuous ring shaped integral generally circular bearing bodies each define at least one dynamic surface and a plurality of support regions. Each of the support regions defines a static surface which is oriented in generally opposed relation with the dynamic surface for contact with one of the relatively rotatable members. A plurality of flexing regions are defined by the generally circular body of the bearing and are integral with and located between adjacent support regions. Each of the flexing regions has a first beam-like element being connected by an integral flexible hinge with one of the support regions and a second beam-like element having an integral flexible hinge connection with an adjacent support region. A least one local weakening geometry of the flexing region is located intermediate the first and second beam-like elements. In response to application of load from one of the relatively rotatable elements to the bearing, the beam-like elements and the local weakening geometry become flexed, causing the dynamic surface to deform and establish a hydrodynamic geometry for wedging lubricant into the dynamic interface.

  14. Dissipative structures: From reaction-diffusion to chemo-hydrodynamic patterns

    Science.gov (United States)

    Budroni, M. A.; De Wit, A.

    2017-10-01

    The interplay of reaction and diffusion processes can trigger localized spatiotemporal patterns when two solutions containing separate reactants A and B of an oscillating reaction are put in contact. Using the Brusselator, a classical model for chemical oscillations, we show numerically that localized waves and Turing patterns as well as reaction-diffusion (RD) patterns due to an interaction between these two kinds of modes can develop in time around the reactive contact zone depending on the initial concentration of reactants and diffusion coefficients of the intermediate species locally produced. We further explore the possible hydrodynamic destabilization of an initially buoyantly stable stratification of such an A + B → oscillator system, when the chemical reaction provides a buoyant periodic forcing via localized density changes. Guided by the properties of the underlying RD dynamics, we predict new chemo-hydrodynamic instabilities on the basis of the dynamic density profiles which are here varying with the concentration of one of the intermediate species of the oscillator. Nonlinear simulations of the related reaction-diffusion-convection equations show how the active coupling between the localized oscillatory kinetics and buoyancy-driven convection can induce pulsatile convective fingering and pulsatile plumes as well as rising or sinking Turing spots, depending on the initial concentration of the reactants and their contribution to the density.

  15. Metal Concentrations in the Liver and Stable Isotope Ratios of Carbon and Nitrogen in the Muscle of Silvertip Shark (Carcharhinus albimarginatus Culled off Ishigaki Island, Japan: Changes with Growth.

    Directory of Open Access Journals (Sweden)

    Tetsuya Endo

    Full Text Available We analyzed Hg, Cd, Zn, Cu and Fe concentrations in liver samples as well as the Hg concentration and stable isotope ratios of carbon and nitrogen (δ13C and δ15N in muscle samples from silvertip sharks (Carcharhinus albimarginatus in Japan. Muscular and hepatic Hg concentrations increased with increased body length. However, these increases were more prominent in the liver than in the muscle samples, and appeared to occur after maturation. Hepatic Zn and Cu concentrations decreased during the growth stage, and then increased concomitantly thereafter with increases in Cd burden. Hepatic Fe concentration from males increased proportionally with increases in body length, whereas no increase was observed in samples from females, probably due to the mother-to-embryo transfer of Fe. The δ13C values tended to decrease with increases in body length, whereas no decrease in the δ15N values was observed.

  16. Metal Concentrations in the Liver and Stable Isotope Ratios of Carbon and Nitrogen in the Muscle of Silvertip Shark (Carcharhinus albimarginatus) Culled off Ishigaki Island, Japan: Changes with Growth.

    Science.gov (United States)

    Endo, Tetsuya; Kimura, Osamu; Ohta, Chiho; Koga, Nobuyuki; Kato, Yoshihisa; Fujii, Yukiko; Haraguchi, Koichi

    2016-01-01

    We analyzed Hg, Cd, Zn, Cu and Fe concentrations in liver samples as well as the Hg concentration and stable isotope ratios of carbon and nitrogen (δ13C and δ15N) in muscle samples from silvertip sharks (Carcharhinus albimarginatus) in Japan. Muscular and hepatic Hg concentrations increased with increased body length. However, these increases were more prominent in the liver than in the muscle samples, and appeared to occur after maturation. Hepatic Zn and Cu concentrations decreased during the growth stage, and then increased concomitantly thereafter with increases in Cd burden. Hepatic Fe concentration from males increased proportionally with increases in body length, whereas no increase was observed in samples from females, probably due to the mother-to-embryo transfer of Fe. The δ13C values tended to decrease with increases in body length, whereas no decrease in the δ15N values was observed.

  17. Hydrodynamics of Ship Propellers

    DEFF Research Database (Denmark)

    Breslin, John P.; Andersen, Poul

    This book deals with flows over propellers operating behind ships, and the hydrodynamic forces and moments which the propeller generates on the shaft and on the ship hull.The first part of the text is devoted to fundamentals of the flow about hydrofoil sections (with and without cavitation......) and about wings. It then treats propellers in uniform flow, first via advanced actuator disc modelling, and then using lifting-line theory. Pragmatic guidance is given for design and evaluation of performance, including the use of computer modelling.The second part covers the development of unsteady forces...... arising from operation in non-uniform hull wakes. First, by a number of simplifications, various aspects of the problem are dealt with separately until the full problem of a non-cavitating, wide-bladed propeller in a wake is treated by a new and completely developed theory. Next, the complicated problem...

  18. Foundations of radiation hydrodynamics

    Science.gov (United States)

    Mihalas, D.; Mihalas, B. W.

    This book is the result of an attempt, over the past few years, to gather the basic tools required to do research on radiating flows in astrophysics. The microphysics of gases is discussed, taking into account the equation of state of a perfect gas, the first and second law of thermodynamics, the thermal properties of a perfect gas, the distribution function and Boltzmann's equation, the collision integral, the Maxwellian velocity distribution, Boltzmann's H-theorem, the time of relaxation, and aspects of classical statistical mechanics. Other subjects explored are related to the dynamics of ideal fluids, the dynamics of viscous and heat-conducting fluids, relativistic fluid flow, waves, shocks, winds, radiation and radiative transfer, the equations of radiation hydrodynamics, and radiating flows. Attention is given to small-amplitude disturbances, nonlinear flows, the interaction of radiation and matter, the solution of the transfer equation, acoustic waves, acoustic-gravity waves, basic concepts of special relativity, and equations of motion and energy.

  19. Hydrodynamics of Peristaltic Propulsion

    Science.gov (United States)

    Athanassiadis, Athanasios; Hart, Douglas

    2014-11-01

    A curious class of animals called salps live in marine environments and self-propel by ejecting vortex rings much like jellyfish and squid. However, unlike other jetting creatures that siphon and eject water from one side of their body, salps produce vortex rings by pumping water through siphons on opposite ends of their hollow cylindrical bodies. In the simplest cases, it seems like some species of salp can successfully move by contracting just two siphons connected by an elastic body. When thought of as a chain of timed contractions, salp propulsion is reminiscent of peristaltic pumping applied to marine locomotion. Inspired by salps, we investigate the hydrodynamics of peristaltic propulsion, focusing on the scaling relationships that determine flow rate, thrust production, and energy usage in a model system. We discuss possible actuation methods for a model peristaltic vehicle, considering both the material and geometrical requirements for such a system.

  20. Hydrodynamics of foams

    Science.gov (United States)

    Karakashev, Stoyan I.

    2017-08-01

    This brief review article is devoted to all the aspects related to hydrodynamics of foams. For this reason, we focused at first on the methods for studying the basic structural units of the foams—the foam films (FF) and the Plateau borders (PB), thus reviewing the literature about their drainage. After this, we scrutinized in detail the Derjaguin's works on the electrostatic disjoining pressure along with its Langmuir's interpretation, the microscopic and macroscopic approaches in the theory of the van der Waals disjoining pressure, the DLVO theory, the steric disjoining pressure of de Gennes, and the more recent works on non-DLVO forces. The basic methods for studying of foam drainage are presented as well. Engineering and other applications of foam are reviewed as well. All these aspects are presented from retrospective and perspective viewpoints.

  1. Hydrodynamic effects on coalescence.

    Energy Technology Data Exchange (ETDEWEB)

    Dimiduk, Thomas G.; Bourdon, Christopher Jay; Grillet, Anne Mary; Baer, Thomas A.; de Boer, Maarten Pieter; Loewenberg, Michael (Yale University, New Haven, CT); Gorby, Allen D.; Brooks, Carlton, F.

    2006-10-01

    The goal of this project was to design, build and test novel diagnostics to probe the effect of hydrodynamic forces on coalescence dynamics. Our investigation focused on how a drop coalesces onto a flat surface which is analogous to two drops coalescing, but more amenable to precise experimental measurements. We designed and built a flow cell to create an axisymmetric compression flow which brings a drop onto a flat surface. A computer-controlled system manipulates the flow to steer the drop and maintain a symmetric flow. Particle image velocimetry was performed to confirm that the control system was delivering a well conditioned flow. To examine the dynamics of the coalescence, we implemented an interferometry capability to measure the drainage of the thin film between the drop and the surface during the coalescence process. A semi-automated analysis routine was developed which converts the dynamic interferogram series into drop shape evolution data.

  2. Technical Report on the Behavior of Trace Elements, Stable Isotopes, and Radiogenic Isotopes During the Processing of Uranium Ore to Uranium Ore Concentrate

    Energy Technology Data Exchange (ETDEWEB)

    Marks, N. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Borg, L. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Eppich, G. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gaffney, A. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Genneti, V. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hutcheon, I. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kristo, M. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lindvall, R. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ramon, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Robel, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Roberts, S. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schorzman, K. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sharp, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Singleton, M. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Williams, R. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-07-09

    The goals of this SP-1 effort were to understand how isotopic and elemental signatures behave during mining, milling, and concentration and to identify analytes that might preserve geologic signatures of the protolith ores. The impurities that are preserved through the concentration process could provide useful forensic signatures and perhaps prove diagnostic of sample origin.

  3. High serum YKL-40 concentration is associated with cardiovascular and all-cause mortality in patients with stable coronary artery disease

    DEFF Research Database (Denmark)

    Kastrup, Jens; Johansen, Julia S; Winkel, Per

    2009-01-01

    , interquartile range 0.23 year), 270 patients among the 4298 patients with stable CAD in the CLARICOR trial suffered myocardial infarction (MI) and 377 died (187 classified as cardiovascular death). Serum YKL-40 transformed as Y=log[max(82, serum YKL-40/microg/L)] was significantly associated with cardiovascular...... death [hazard ratio (HR) = 1.88, 95% confidence interval (CI) = 1.54-2.31, P HR = 2.01, 95% CI = 1.75-2.31, P HR = 1.38, 95% CI = 1.13-1.68, P = 0.002). Following multivariable adjustment for cardiovascular risk factors (age, sex, previous MI, smoking...

  4. Pollution history of a tropical estuary revealed by combined hydrodynamic modelling and sediment geochemistry

    Science.gov (United States)

    Andrews, J. E.; Greenaway, A. M.; Bigg, G. R.; Webber, D. F.; Dennis, P. F.; Guthrie, G. A.

    1999-01-01

    Hydrodynamic modelling of water movement in Hunts Bay, a protected part of Kingston Harbour, Jamaica, shows that depth averaged tidal flows are very low. In the northeast corner of Hunts Bay, water is essentially stagnant. Even under high flow conditions, much of the Bay bottom water is `bypassed' by buoyant, lower salinity surface flows. The muddy sediments of Hunts Bay reflect these sluggish to stagnant conditions; sediment cores from the northeast corner of the Bay contain progressively higher amounts of organic matter in their upper parts (˜last 15-20 years sedimentation). Combined C/N ratios and stable carbon isotope compositions of this organic matter imply a sewage origin. Both lead and chromium metal concentrations and enrichment factors relative to average crustal shales show geographically related patterns that reflect hydrodynamic circulation predicted by modelling. In particular, metal concentrations and enrichment factors are highest at the northern end of the bay, especially in the northeast corner. Modelling confirms that stagnant conditions would occur in the northeast part of the bay even without the presence of a major causeway. The causeway may contribute to low flow conditions, but is not the principal cause of organic contamination, which is simply an excessive input of sewage.

  5. Effects of Boundary Layer Height on the Model of Ground-Level PM2.5 Concentrations from AOD: Comparison of Stable and Convective Boundary Layer Heights from Different Methods

    Directory of Open Access Journals (Sweden)

    Zengliang Zang

    2017-06-01

    Full Text Available The aerosol optical depth (AOD from satellites or ground-based sun photometer spectral observations has been widely used to estimate ground-level PM2.5 concentrations by regression methods. The boundary layer height (BLH is a popular factor in the regression model of AOD and PM2.5, but its effect is often uncertain. This may result from the structures between the stable and convective BLHs and from the calculation methods of the BLH. In this study, the boundary layer is divided into two types of stable and convective boundary layer, and the BLH is calculated using different methods from radiosonde data and National Centers for Environmental Prediction (NCEP reanalysis data for the station in Beijing, China during 2014–2015. The BLH values from these methods show significant differences for both the stable and convective boundary layer. Then, these BLHs were introduced into the regression model of AOD-PM2.5 to seek the respective optimal BLH for the two types of boundary layer. It was found that the optimal BLH for the stable boundary layer is determined using the method of surface-based inversion, and the optimal BLH for the convective layer is determined using the method of elevated inversion. Finally, the optimal BLH and other meteorological parameters were combined to predict the PM2.5 concentrations using the stepwise regression method. The results indicate that for the stable boundary layer, the optimal stepwise regression model includes the factors of surface relative humidity, BLH, and surface temperature. These three factors can significantly enhance the prediction accuracy of ground-level PM2.5 concentrations, with an increase of determination coefficient from 0.50 to 0.68. For the convective boundary layer, however, the optimal stepwise regression model includes the factors of BLH and surface wind speed. These two factors improve the determination coefficient, with a relatively low increase from 0.65 to 0.70. It is found that the

  6. Engineering Hydrodynamic AUV Hulls

    Science.gov (United States)

    Allen, J.

    2016-12-01

    AUV stands for autonomous underwater vehicle. AUVs are used in oceanography and are similar to gliders. MBARIs AUVs as well as other AUVs map the ocean floor which is very important. They also measure physical characteristics of the water, such as temperature and salinity. My science fair project for 4th grade was a STEM activity in which I built and tested 3 different AUV bodies. I wanted to find out which design was the most hydrodynamic. I tested three different lengths of AUV hulls to see which AUV would glide the farthest. The first was 6 inches. The second was 12 inches and the third was 18 inches. I used clay for the nosecone and cut a ruler into two and made it the fin. Each AUV used the same nosecone and fin. I tested all three designs in a pool. I used biomimicry to create my hypothesis. When I was researching I found that long slim animals swim fastest. So, my hypothesis is the longer AUV will glide farthest. In the end I was right. The longer AUV did glide the farthest.

  7. Lotic Water Hydrodynamic Model

    Energy Technology Data Exchange (ETDEWEB)

    Judi, David Ryan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tasseff, Byron Alexander [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-01-23

    Water-related natural disasters, for example, floods and droughts, are among the most frequent and costly natural hazards, both socially and economically. Many of these floods are a result of excess rainfall collecting in streams and rivers, and subsequently overtopping banks and flowing overland into urban environments. Floods can cause physical damage to critical infrastructure and present health risks through the spread of waterborne diseases. Los Alamos National Laboratory (LANL) has developed Lotic, a state-of-the-art surface water hydrodynamic model, to simulate propagation of flood waves originating from a variety of events. Lotic is a two-dimensional (2D) flood model that has been used primarily for simulations in which overland water flows are characterized by movement in two dimensions, such as flood waves expected from rainfall-runoff events, storm surge, and tsunamis. In 2013, LANL developers enhanced Lotic through several development efforts. These developments included enhancements to the 2D simulation engine, including numerical formulation, computational efficiency developments, and visualization. Stakeholders can use simulation results to estimate infrastructure damage and cascading consequences within other sets of infrastructure, as well as to inform the development of flood mitigation strategies.

  8. Hydrodynamics of ocean pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Yoshihara, S.; Toyoda, S.; Venkataramana, K.; Aiko, Y. (Kagoshima University, Kagoshima (Japan). Faculty of Engineering)

    1993-09-30

    This paper describes the current forces acting on cylindrical models in a steady flow, corresponding to the cases of rigid and large diameter pipelines in real seas. The models were placed in a circulating water channel normal to the direction of flow. The strains in the models were recorded using strain gauges, from which fluid forces in the horizontal and vertical directions were obtained. The drag coefficient, lift coefficient, and Straul number were calculated, and were illustrated against the Reynolds number. Consequently, the drag force was found to increase with flow velocity. In addition, it was shown that the variation of lift force was more complex and was affected by the eddies and other forms of turbulence around the models. For the model which consists of two pipes held together, it was found that the fluid forces were greater on the upstream side. It was provided that the fluid forces were also affected by the orientation of the pipelines. Furthermore, it was clarified that the values of hydrodynamic coefficients and Straul number were similar to the results for vertical cylinders in uniform flows. 5 refs., 16 figs.

  9. Passive dosing of triclosan in multi-generation tests with copepods - Stable exposure concentrations and effects at the low µg l-1 range

    DEFF Research Database (Denmark)

    Ribbenstedt, Anton; Mustajärvi, Lukas; Breitholtz, Magnus

    2017-01-01

    Ecotoxicity testing is a crucial component of chemical risk assessment. Still, due to methodological difficulties related to controlling exposure concentrations over time, data on long-term effects of organic chemicals at low concentrations are limited. The aim of the present study was therefore......-26 µg L(-1) . Our results demonstrate that passive dosing is applicable for long-term ecotoxicity testing of organic chemicals, including during significant growth of the test organism population. Shifts in the demographic structure of the population during exposure suggest the most severe effects were...... exerted on juvenile development. Progressively lower development index values in the populations exposed to increasing triclosan concentrations suggest developmental retardation. Our results further stress the need for chronic exposure during ecotoxicity testing in chemical risk assessment as even...

  10. Hydrodynamic Forcing Mobilizes Cu in Low-Permeability Estuarine Sediments.

    Science.gov (United States)

    Xie, Minwei; Wang, Ning; Gaillard, Jean-François; Packman, Aaron I

    2016-05-03

    Overlying hydrodynamics play critical roles in controlling surface-porewater exchanges in permeable sediments, but these effects have rarely been characterized in low-permeability sediments. We conducted a series of laboratory experiments to evaluate the effects of varied hydrodynamic conditions on the efflux of metals from low-permeability estuarine sediments. Two Cu-contaminated sediments obtained from the Piscataqua River were subject to controlled levels of hydrodynamic shear in Gust mesocosms, including episodic sediment resuspension. Overlying water and porewater samples were collected over the course of experiments and analyzed for metal concentrations. The two sediments had similar permeability (∼10(-15) m(2)), but different particle size distributions. Hydrodynamic forcing enhanced the mobilization and efflux of Cu from the coarser-grained sediments, but not the finer-grained sediments. Sediment resuspension caused additional transitory perturbations in Cu concentrations in the water column. Particulate metal concentrations increased significantly during resuspension, but then rapidly decreased to preresuspension levels following cessation of sediment transport. Overall, these results show that the mobility and efflux of metals are likely to be influenced by overlying hydrodynamics even in low-permeability sediments, and these effects are mediated by sediment heterogeneity and resuspension.

  11. Hydrodynamics of electrons in graphene

    Science.gov (United States)

    Lucas, Andrew; Chung Fong, Kin

    2018-02-01

    Generic interacting many-body quantum systems are believed to behave as classical fluids on long time and length scales. Due to rapid progress in growing exceptionally pure crystals, we are now able to experimentally observe this collective motion of electrons in solid-state systems, including graphene. We present a review of recent progress in understanding the hydrodynamic limit of electronic motion in graphene, written for physicists from diverse communities. We begin by discussing the ‘phase diagram’ of graphene, and the inevitable presence of impurities and phonons in experimental systems. We derive hydrodynamics, both from a phenomenological perspective and using kinetic theory. We then describe how hydrodynamic electron flow is visible in electronic transport measurements. Although we focus on graphene in this review, the broader framework naturally generalizes to other materials. We assume only basic knowledge of condensed matter physics, and no prior knowledge of hydrodynamics.

  12. Anomalous hydrodynamics in two dimensions

    Indian Academy of Sciences (India)

    s12043-015-1167-5; ePublication: 14 January 2016. Abstract. A new approach is presented to discuss two-dimensional hydrodynamics with gauge and gravitational anomalies. Exact constitutive relations for the stress tensor and charge current are.

  13. An introduction to astrophysical hydrodynamics

    CERN Document Server

    Shore, Steven N

    1992-01-01

    This book is an introduction to astrophysical hydrodynamics for both astronomy and physics students. It provides a comprehensive and unified view of the general problems associated with fluids in a cosmic context, with a discussion of fluid dynamics and plasma physics. It is the only book on hydrodynamics that addresses the astrophysical context. Researchers and students will find this work to be an exceptional reference. Contents include chapters on irrotational and rotational flows, turbulence, magnetohydrodynamics, and instabilities.

  14. Dietary factor VII activation does not increase plasma concentrations of prothrombin fragment 1+2 in patients with stable angina pectoris and coronary atherosclerosis

    DEFF Research Database (Denmark)

    Bladbjerg, E-M; Münster, A M; Marckmann, P

    2000-01-01

    for triglycerides, activated FVII (FVIIa), FVII protein concentration (FVII:Ag), prothrombin fragment 1+2 (F1+2), and soluble fibrin. Triglyceride levels increased from fasting levels on both diets, but they increased most markedly on the high-fat diet. FVIIa and FVIIa/FVII:Ag increased with the high-fat diet...

  15. Hemodynamics of a hydrodynamic injection

    Directory of Open Access Journals (Sweden)

    Tsutomu Kanefuji

    2014-01-01

    Full Text Available The hemodynamics during a hydrodynamic injection were evaluated using cone beam computed tomography (CBCT and fluoroscopic imaging. The impacts of hydrodynamic (5 seconds and slow (60 seconds injections into the tail veins of mice were compared using 9% body weight of a phase-contrast medium. Hydrodynamically injected solution traveled to the heart and drew back to the hepatic veins (HV, which led to liver expansion and a trace amount of spillover into the portal vein (PV. The liver volumes peaked at 165.6 ± 13.3% and 165.5 ± 11.9% of the original liver volumes in the hydrodynamic and slow injections, respectively. Judging by the intensity of the CBCT images at the PV, HV, right atrium, liver parenchyma (LP, and the inferior vena cava (IVC distal to the HV conjunction, the slow injection resulted in the higher intensity at PV than at LP. In contrast, a significantly higher intensity was observed in LP after hydrodynamic injection in comparison with that of PV, suggesting that the liver took up the iodine from the blood flow. These results suggest that the enlargement speed of the liver, rather than the expanded volume, primarily determines the efficiency of hydrodynamic delivery to the liver.

  16. Unpredictably Stable

    DEFF Research Database (Denmark)

    Failla, Virgilio; Melillo, Francesca; Reichstein, Toke

    2014-01-01

    Is entrepreneurship a more stable career choice for high employment turnover individuals? We find that a transition to entrepreneurship induces a shift towards stayer behavior and identify job matching, job satisfaction and lock-in effects as main drivers. These findings have major implications...

  17. Stable isotope

    African Journals Online (AJOL)

    Results of the study suggest that there are two main carbon pathways for plankton and nekton in the Kariega estuary, carbon derived from the eelgrass and its associated epiphytes and carbon which has its origins in the salt marsh riparian vegetation and zooplankton. Keywords: stable isotope analysis; temperate estuary; ...

  18. Hydrodynamic Effects in Oscillatory Active Nematics

    Science.gov (United States)

    Mikhailov, Alexander S.; Koyano, Yuki; Kitahata, Hiroyuki

    2017-10-01

    Oscillatory active nematics represent nonequilibrium suspensions of microscopic objects, such as natural or artificial molecular machines, that cyclically change their shapes and thus operate as oscillating force dipoles. In this mini-review, hydrodynamic collective effects in such active nematics are discussed. Microscopic stirring at low Reynolds numbers induces non-thermal fluctuating flows and passive particles become advected by them. Similar to advection of particles in macroscopic turbulent flows, this enhances diffusion of tracer particles. Furthermore, their drift and accumulation in regions with stronger activity or higher concentration of force dipoles take place. Analytical investigations and numerical simulations both for 2D and 3D systems were performed.

  19. CALIBRATED HYDRODYNAMIC MODEL

    Directory of Open Access Journals (Sweden)

    Sezar Gülbaz

    2015-01-01

    Full Text Available The land development and increase in urbanization in a watershed affect water quantityand water quality. On one hand, urbanization provokes the adjustment of geomorphicstructure of the streams, ultimately raises peak flow rate which causes flood; on theother hand, it diminishes water quality which results in an increase in Total SuspendedSolid (TSS. Consequently, sediment accumulation in downstream of urban areas isobserved which is not preferred for longer life of dams. In order to overcome thesediment accumulation problem in dams, the amount of TSS in streams and inwatersheds should be taken under control. Low Impact Development (LID is a BestManagement Practice (BMP which may be used for this purpose. It is a land planningand engineering design method which is applied in managing storm water runoff inorder to reduce flooding as well as simultaneously improve water quality. LID includestechniques to predict suspended solid loads in surface runoff generated over imperviousurban surfaces. In this study, the impact of LID-BMPs on surface runoff and TSS isinvestigated by employing a calibrated hydrodynamic model for Sazlidere Watershedwhich is located in Istanbul, Turkey. For this purpose, a calibrated hydrodynamicmodel was developed by using Environmental Protection Agency Storm WaterManagement Model (EPA SWMM. For model calibration and validation, we set up arain gauge and a flow meter into the field and obtain rainfall and flow rate data. Andthen, we select several LID types such as retention basins, vegetative swales andpermeable pavement and we obtain their influence on peak flow rate and pollutantbuildup and washoff for TSS. Consequently, we observe the possible effects ofLID on surface runoff and TSS in Sazlidere Watershed.

  20. Concentrations and stable carbon isotope compositions of oxalic acid and related SOA in Beijing before, during, and after the 2014 APEC

    Science.gov (United States)

    Wang, Jiayuan; Wang, Gehui; Gao, Jian; Wang, Han; Ren, Yanqin; Li, Jianjun; Zhou, Bianhong; Wu, Can; Zhang, Lu; Wang, Shulan; Chai, Fahe

    2017-01-01

    To ensure good air quality for the 2014 Asia-Pacific Economic Cooperation (APEC) summit, stringent emission controls were implemented in Beijing and its surrounding regions, leading to a significant reduction in PM2.5 loadings. To investigate the impact of the emission controls on aerosol chemistry, high-volume PM2.5 samples were collected in Beijing from 8 October to 24 November 2014 and determined for secondary inorganic aerosols (SIA, i.e., SO42-, NO3-, and NH4+), dicarboxylic acids, keto-carboxylic acid, and α-dicarbonyls, as well as stable carbon isotope composition of oxalic acid (C2). Our results showed that SIA, C2, and related secondary organic aerosols in PM2.5 during APEC were 2-4 times lower than those before APEC, which is firstly ascribed to the strict emission control measures and secondly attributed to the relatively colder and drier conditions during the event that are unfavorable for secondary aerosol production.C2 in the polluted air masses, which mostly occurred before APEC, are abundant and enriched in 13C. On the contrary, C2 in the clean air masses, which mostly occurred during APEC, is much less abundant but still enriched in 13C. In the mixed type of clean and polluted air masses, which mostly occurred after APEC, C2 is lower than that before APEC but higher than that during APEC and enriched in lighter 12C. A comparison on chemical composition of fine particles and δ13C values of C2 in two events that are characterized by high loadings of PM2.5 further showed that after APEC SIA and the total detected organic compounds (TDOC) are much less abundant and fine aerosols are enriched with primary organics and relatively fresh, compared with those before APEC.

  1. Determination of trace element concentrations and stable lead, uranium and thorium isotope ratios by quadrupole-ICP-MS in NORM and NORM-polluted sample leachates

    Energy Technology Data Exchange (ETDEWEB)

    Mas, J.L., E-mail: ppmasb@us.es [Dpto. Fisica Aplicada I, EPS, Universidad de Sevilla, 41012 Sevilla (Spain); Villa, M. [Servicio de Radioisotopos, Centro de Investigacion, Tecnologia e Innovacion (CITIUS), Universidad de Sevilla, Avda. Reina Mercedes 4b, 41012 Sevilla (Spain); Dpto. Fisica Aplicada II, ETS de Arquitectura, Universidad de Sevilla, Avda. Reina Mercedes 2, 41012 Sevilla (Spain); Hurtado, S. [Servicio de Radioisotopos, Centro de Investigacion, Tecnologia e Innovacion (CITIUS), Universidad de Sevilla, Avda. Reina Mercedes 4b, 41012 Sevilla (Spain); Garcia-Tenorio, R. [Dpto. Fisica Aplicada II, ETS de Arquitectura, Universidad de Sevilla, Avda. Reina Mercedes 2, 41012 Sevilla (Spain)

    2012-02-29

    Highlights: Black-Right-Pointing-Pointer Polluted sediment and NORM samples. Black-Right-Pointing-Pointer An efficient yet fast process allowing multi-parametric determinations in <3 days. Black-Right-Pointing-Pointer Trace element concentrations, Pb, Th and U isotope ratios with a single instrument. - Abstract: This work focuses on the monitoring of the potential pollution in scenarios that involve NORM-related industrial activities (environmental or in-door scenarios). The objective was to develop a method to determine extent and origin of the contamination, suitable for monitoring (i.e. simple, fast and economical) and avoiding the use of too many different instruments. It is presented a radiochemical method that allows the determination of trace element concentrations and {sup 206}Pb/{sup 207}Pb/{sup 208}Pb, {sup 238}U/{sup 234}U and {sup 232}Th/{sup 230}Th isotope ratios using a single sample aliquot and a single instrument (ICP-QMS). Eichrom UTEVA{sup Registered-Sign} extraction chromatography minicolumns were used to separate uranium and thorium in sample leachates. Independent ICP-MS determinations of uranium and thorium isotope ratios were carried out afterwards. Previously a small aliquot of the leachate was used for the determination of trace element concentrations and lead isotope ratios. Several radiochemical arrangements were tested to get maximum performances and simplicity of the method. The performances of the method were studied in terms of chemical yields of uranium and thorium and removal of the potentially interfering elements. The established method was applied to samples from a chemical industry and sediments collected in a NORM-polluted scenario. The results obtained from our method allowed us to infer not only the extent, but also the sources of the contamination in the area.

  2. Multiscale temporal integrators for fluctuating hydrodynamics

    Science.gov (United States)

    Delong, Steven; Sun, Yifei; Griffith, Boyce E.; Vanden-Eijnden, Eric; Donev, Aleksandar

    2014-12-01

    Following on our previous work [S. Delong, B. E. Griffith, E. Vanden-Eijnden, and A. Donev, Phys. Rev. E 87, 033302 (2013), 10.1103/PhysRevE.87.033302], we develop temporal integrators for solving Langevin stochastic differential equations that arise in fluctuating hydrodynamics. Our simple predictor-corrector schemes add fluctuations to standard second-order deterministic solvers in a way that maintains second-order weak accuracy for linearized fluctuating hydrodynamics. We construct a general class of schemes and recommend two specific schemes: an explicit midpoint method and an implicit trapezoidal method. We also construct predictor-corrector methods for integrating the overdamped limit of systems of equations with a fast and slow variable in the limit of infinite separation of the fast and slow time scales. We propose using random finite differences to approximate some of the stochastic drift terms that arise because of the kinetic multiplicative noise in the limiting dynamics. We illustrate our integrators on two applications involving the development of giant nonequilibrium concentration fluctuations in diffusively mixing fluids. We first study the development of giant fluctuations in recent experiments performed in microgravity using an overdamped integrator. We then include the effects of gravity and find that we also need to include the effects of fluid inertia, which affects the dynamics of the concentration fluctuations greatly at small wave numbers.

  3. Hydrodynamics of Hemostasis in Sickle-Cell Disease

    Science.gov (United States)

    Cohen, S. I. A.; Mahadevan, L.

    2013-03-01

    Vaso-occlusion, the stoppage of blood flow in sickle-cell disease, is a complex dynamical process spanning multiple time and length scales. Motivated by recent ex vivo microfluidic measurements of hemostasis using blood from sickle-cell patients, we develop a multiphase model that couples the kinetics and hydrodynamics of a flowing suspension of normal and sickled cells in a fluid. We use the model to derive expressions for the cell velocities and concentrations that quantify the hydrodynamics of hemostasis, and provide simple criteria as well as a phase diagram for occlusion, consistent with our simulations and earlier observations.

  4. Stable beams

    CERN Multimedia

    2015-01-01

    Stable beams: two simple words that carry so much meaning at CERN. When LHC page one switched from "squeeze" to "stable beams" at 10.40 a.m. on Wednesday, 3 June, it triggered scenes of jubilation in control rooms around the CERN sites, as the LHC experiments started to record physics data for the first time in 27 months. This is what CERN is here for, and it’s great to be back in business after such a long period of preparation for the next stage in the LHC adventure.   I’ve said it before, but I’ll say it again. This was a great achievement, and testimony to the hard and dedicated work of so many people in the global CERN community. I could start to list the teams that have contributed, but that would be a mistake. Instead, I’d simply like to say that an achievement as impressive as running the LHC – a machine of superlatives in every respect – takes the combined effort and enthusiasm of everyone ...

  5. Hydrodynamics of oceans and atmospheres

    CERN Document Server

    Eckart, Carl

    1960-01-01

    Hydrodynamics of Oceans and Atmospheres is a systematic account of the hydrodynamics of oceans and atmospheres. Topics covered range from the thermodynamic functions of an ideal gas and the thermodynamic coefficients for water to steady motions, the isothermal atmosphere, the thermocline, and the thermosphere. Perturbation equations, field equations, residual equations, and a general theory of rays are also presented. This book is comprised of 17 chapters and begins with an introduction to the basic equations and their solutions, with the aim of illustrating the laws of dynamics. The nonlinear

  6. Anisotropic hydrodynamics: Motivation and methodology

    Energy Technology Data Exchange (ETDEWEB)

    Strickland, Michael

    2014-06-15

    In this proceedings contribution I review recent progress in our understanding of the bulk dynamics of relativistic systems that possess potentially large local rest frame momentum-space anisotropies. In order to deal with these momentum-space anisotropies, a reorganization of relativistic viscous hydrodynamics can be made around an anisotropic background, and the resulting dynamical framework has been dubbed “anisotropic hydrodynamics”. I also discuss expectations for the degree of momentum-space anisotropy of the quark–gluon plasma generated in relativistic heavy ion collisions at RHIC and LHC from second-order viscous hydrodynamics, strong-coupling approaches, and weak-coupling approaches.

  7. Numerical Hydrodynamics in General Relativity

    Directory of Open Access Journals (Sweden)

    Font José A.

    2003-01-01

    Full Text Available The current status of numerical solutions for the equations of ideal general relativistic hydrodynamics is reviewed. With respect to an earlier version of the article, the present update provides additional information on numerical schemes, and extends the discussion of astrophysical simulations in general relativistic hydrodynamics. Different formulations of the equations are presented, with special mention of conservative and hyperbolic formulations well-adapted to advanced numerical methods. A large sample of available numerical schemes is discussed, paying particular attention to solution procedures based on schemes exploiting the characteristic structure of the equations through linearized Riemann solvers. A comprehensive summary of astrophysical simulations in strong gravitational fields is presented. These include gravitational collapse, accretion onto black holes, and hydrodynamical evolutions of neutron stars. The material contained in these sections highlights the numerical challenges of various representative simulations. It also follows, to some extent, the chronological development of the field, concerning advances on the formulation of the gravitational field and hydrodynamic equations and the numerical methodology designed to solve them.

  8. Hydrodynamics of a quark droplet

    DEFF Research Database (Denmark)

    Bjerrum-Bohr, Johan J.; Mishustin, Igor N.; Døssing, Thomas

    2012-01-01

    We present a simple model of a multi-quark droplet evolution based on the hydrodynamical description. This model includes collective expansion of the droplet, effects of the vacuum pressure and surface tension. The hadron emission from the droplet is described following Weisskopf's statistical...

  9. The Hamiltonian approach in classification and integrability of hydrodynamic chains

    OpenAIRE

    Pavlov, Maxim V.

    2006-01-01

    New approach in classification of integrable hydrodynamic chains is established. This is the method of the Hamiltonian hydrodynamic reductions. Simultaneously, this approach yields explicit Hamiltonian hydrodynamic reductions of the Hamiltonian hydrodynamic chains. The concept of reducible Poisson brackets is established. Also this approach is useful for non-Hamiltonian hydrodynamic chains. The deformed Benney hydrodynamic chain is considered.

  10. Hydrodynamical processes in planet-forming accretion disks

    Science.gov (United States)

    Lin, Min-Kai

    Understanding the physics of accretion flows in circumstellar disk provides the foundation to any theory of planet formation. The last few years have witnessed dramatic a revision in the fundamental fluid dynamics of protoplanetary accretion disks. There is growing evidence that the key to answering some of the most pressing questions, such as the origin of disk turbulence, mass transport, and planetesimal formation, may lie within, and intimately linked to, purely hydrodynamical processes in protoplanetary disks. Recent studies, including those from the proposal team, have discovered and highlighted the significance of several new hydrodynamical instabilities in the planet-forming regions of these disks. These include, but not limited to: the vertical shear instability, active between 10 to 100 AU; the zombie vortex instability, operating in regions interior to about 1AU; and the convective over-stability at intermediate radii. Secondary Rossbywave and elliptic instabilities may also be triggered, feeding off the structures that emerge from the above primary instabilities. The result of these hydrodynamic processes range from small-scale turbulence that transports angular momentum, to large-scale vortices that concentrate dust particles and enhance planetesimal formation. Hydrodynamic processes pertain to a wide range of disk conditions, meaning that at least one of these processes are active at any given disk location and evolutionary epoch. This remains true even after planet formation, which affects their subsequent orbital evolution. Hydrodynamical processes also have direct observable consequences. For example, vortices have being invoked to explain recent ALMA images of asymmetric `dust-traps' in transition disks. Hydrodynamic activities thus play a crucial role at every stage of planet formation and disk evolution. We propose to develop theoretical models of the above hydrodynamic processes under physical disk conditions by properly accounting for disk

  11. Hydrodynamic instabilities in beryllium targets for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Yi, S. A., E-mail: austinyi@lanl.gov; Simakov, A. N.; Wilson, D. C.; Olson, R. E.; Kline, J. L.; Batha, S. H. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545 (United States); Clark, D. S.; Hammel, B. A.; Milovich, J. L.; Salmonson, J. D.; Kozioziemski, B. J. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States)

    2014-09-15

    Beryllium ablators offer higher ablation velocity, rate, and pressure than their carbon-based counterparts, with the potential to increase the probability of achieving ignition at the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)]. We present here a detailed hydrodynamic stability analysis of low (NIF Revision 6.1) and high adiabat NIF beryllium target designs. Our targets are optimized to fully utilize the advantages of beryllium in order to suppress the growth of hydrodynamic instabilities. This results in an implosion that resists breakup of the capsule, and simultaneously minimizes the amount of ablator material mixed into the fuel. We quantify the improvement in stability of beryllium targets relative to plastic ones, and show that a low adiabat beryllium capsule can be at least as stable at the ablation front as a high adiabat plastic target.

  12. Hydrodynamics from Landau initial conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Abhisek [University of Tennessee, Knoxville (UTK); Gerhard, Jochen [Frankfurt Institute for Advanced Studies (FIAS), Germany; Torrieri, Giorgio [Universidade Estadual de Campinas, Instituto de Física " Gleb Wataghin" (IFGW), Sao Paulo, Brazil; Read jr, Kenneth F. [University of Tennessee (UTK) and Oak Ridge National Laboratory (ORNL); Wong, Cheuk-Yin [ORNL

    2015-01-01

    We investigate ideal hydrodynamic evolution, with Landau initial conditions, both in a semi-analytical 1+1D approach and in a numerical code incorporating event-by-event variation with many events and transverse density inhomogeneities. The object of the calculation is to test how fast would a Landau initial condition transition to a commonly used boost-invariant expansion. We show that the transition to boost-invariant flow occurs too late for realistic setups, with corrections of O (20 - 30%) expected at freezeout for most scenarios. Moreover, the deviation from boost-invariance is correlated with both transverse flow and elliptic flow, with the more highly transversely flowing regions also showing the most violation of boost invariance. Therefore, if longitudinal flow is not fully developed at the early stages of heavy ion collisions, 2+1 dimensional hydrodynamics is inadequate to extract transport coefficients of the quark-gluon plasma. Based on [1, 2

  13. Hydrodynamic model in isospin channels

    Energy Technology Data Exchange (ETDEWEB)

    Lipparini, E.; Stringari, S.

    1987-08-31

    The Steinwedel-Jensen hydrodynamic model is generalized to study isovector collective modes excited in charge-exchange reactions. Results are given for the energy splittings between the different isospin components of the giant dipole and monopole resonances recently observed in (p,n) and (..pi../sup +- /,..pi../sup 0/) reactions. The quenching of the ..delta..T/sub z/ = +1 excitation strength in Nnot =Z nuclei with respect to the N = Z case is also discussed.

  14. Student Conceptual Difficulties in Hydrodynamics

    OpenAIRE

    Suarez, Alvaro; Kahan, Sandra; Zavala, Genaro; Marti, Arturo C.

    2017-01-01

    We describe a study on the conceptual difficulties faced by college students in understanding hydrodynamics of ideal fluids. This study was based on responses obtained in hundreds of written exams complemented with several oral interviews, which were held with first-year engineering and science university students. Their responses allowed us to identify a series of misconceptions unreported in the literature so far. The study findings demonstrate that the most critical difficulties arise from...

  15. Numerical Hydrodynamics in Special Relativity.

    Science.gov (United States)

    Martí, José Maria; Müller, Ewald

    2003-01-01

    This review is concerned with a discussion of numerical methods for the solution of the equations of special relativistic hydrodynamics (SRHD). Particular emphasis is put on a comprehensive review of the application of high-resolution shock-capturing methods in SRHD. Results of a set of demanding test bench simulations obtained with different numerical SRHD methods are compared. Three applications (astrophysical jets, gamma-ray bursts and heavy ion collisions) of relativistic flows are discussed. An evaluation of various SRHD methods is presented, and future developments in SRHD are analyzed involving extension to general relativistic hydrodynamics and relativistic magneto-hydrodynamics. The review further provides FORTRAN programs to compute the exact solution of a 1D relativistic Riemann problem with zero and nonzero tangential velocities, and to simulate 1D relativistic flows in Cartesian Eulerian coordinates using the exact SRHD Riemann solver and PPM reconstruction. Supplementary material is available for this article at 10.12942/lrr-2003-7 and is accessible for authorized users.

  16. Hydrodynamic instabilities in miscible fluids

    Science.gov (United States)

    Truzzolillo, Domenico; Cipelletti, Luca

    2018-01-01

    Hydrodynamic instabilities in miscible fluids are ubiquitous, from natural phenomena up to geological scales, to industrial and technological applications, where they represent the only way to control and promote mixing at low Reynolds numbers, well below the transition from laminar to turbulent flow. As for immiscible fluids, the onset of hydrodynamic instabilities in miscible fluids is directly related to the physics of their interfaces. The focus of this review is therefore on the general mechanisms driving the growth of disturbances at the boundary between miscible fluids, under a variety of forcing conditions. In the absence of a regularizing mechanism, these disturbances would grow indefinitely. For immiscible fluids, interfacial tension provides such a regularizing mechanism, because of the energy cost associated to the creation of new interface by a growing disturbance. For miscible fluids, however, the very existence of interfacial stresses that mimic an effective surface tension is debated. Other mechanisms, however, may also be relevant, such as viscous dissipation. We shall review the stabilizing mechanisms that control the most common hydrodynamic instabilities, highlighting those cases for which the lack of an effective interfacial tension poses deep conceptual problems in the mathematical formulation of a linear stability analysis. Finally, we provide a short overview on the ongoing research on the effective, out of equilibrium interfacial tension between miscible fluids.

  17. Entropy-limited hydrodynamics: a novel approach to relativistic hydrodynamics

    Science.gov (United States)

    Guercilena, Federico; Radice, David; Rezzolla, Luciano

    2017-07-01

    We present entropy-limited hydrodynamics (ELH): a new approach for the computation of numerical fluxes arising in the discretization of hyperbolic equations in conservation form. ELH is based on the hybridisation of an unfiltered high-order scheme with the first-order Lax-Friedrichs method. The activation of the low-order part of the scheme is driven by a measure of the locally generated entropy inspired by the artificial-viscosity method proposed by Guermond et al. (J. Comput. Phys. 230(11):4248-4267, 2011, doi: 10.1016/j.jcp.2010.11.043). Here, we present ELH in the context of high-order finite-differencing methods and of the equations of general-relativistic hydrodynamics. We study the performance of ELH in a series of classical astrophysical tests in general relativity involving isolated, rotating and nonrotating neutron stars, and including a case of gravitational collapse to black hole. We present a detailed comparison of ELH with the fifth-order monotonicity preserving method MP5 (Suresh and Huynh in J. Comput. Phys. 136(1):83-99, 1997, doi: 10.1006/jcph.1997.5745), one of the most common high-order schemes currently employed in numerical-relativity simulations. We find that ELH achieves comparable and, in many of the cases studied here, better accuracy than more traditional methods at a fraction of the computational cost (up to {˜}50% speedup). Given its accuracy and its simplicity of implementation, ELH is a promising framework for the development of new special- and general-relativistic hydrodynamics codes well adapted for massively parallel supercomputers.

  18. [Differences and sources of CO2 concentration, carbon and oxygen stable isotope composition between inside and outside of a green space system and influencing factors in an urban area].

    Science.gov (United States)

    Sun, Shou-jia; Meng, Ping; Zhang, Jin-song; Shu, Jian-hua; Zheng, Ning

    2015-10-01

    The off-axis integrated cavity output spectroscopy technique was used to measure air CO2 concentration, stable carbon (δ13C) and oxygen (δ18C) isotope ratios on the Fourth Ring Road (FRR) and in the green space system of Beijing Institute of Landscape Architecture (BILA) in summer and winter seasons. The variations of CO2 concentration, δ13C value, δ18C value and the differences of them between the FRR and the BILA, which were correlated with traffic volume and meteorological factors, were analyzed at half-hour timescale. The results showed that traffic volume on the FRR was large both in summer and winter with obvious morning and evening rush hours, and more than 150 thousands vehicles were observed everyday during the observation periods. Diurnal variation of the CO2 concentration showed a two-peak curve both on the FRR and in the green space system of the BILA. In contrast, diurnal variation of δ13C value was a two-trough curve while diurnal variation of δ18O value was a single-trough curve. The differences of CO2 concentration, δ13C value and δ18O value between the FRR and the green space system of BILA in summer were greater than those in winter. The carbon isotope partitioning results showed that in summer vehicle exhaust contributed 64.9% to total atmospheric CO2 of the FRR during measurement time, while heterotrophic respiration contributed 56.3% to total atmospheric CO2 of the green space system in BILA. However, in winter atmospheric CO2 from both the FRR and green space system mostly came from vehicle exhaust. Stepwise regression analysis indicated that differences of CO2 concentration between the FRR and green space system were significantly related to vehicle volume and solar radiation at half-hour timescale, while solar radiation and relative humidity were the main meteorological factors causing δ13 and δ18O differences between the FRR and green space system. Plants in the green space system strongly assimilated CO2 from fossil fuel burning

  19. Dancing Volvox: Hydrodynamic Bound States of Swimming Algae

    Science.gov (United States)

    Drescher, Knut; Leptos, Kyriacos C.; Tuval, Idan; Ishikawa, Takuji; Pedley, Timothy J.; Goldstein, Raymond E.

    2013-01-01

    The spherical alga Volvox swims by means of flagella on thousands of surface somatic cells. This geometry and its large size make it a model organism for studying the fluid dynamics of multicellularity. Remarkably, when two nearby Volvox colonies swim close to a solid surface, they attract one another and can form stable bound states in which they “waltz” or “minuet” around each other. A surface-mediated hydrodynamic attraction combined with lubrication forces between spinning, bottom-heavy Volvox explains the formation, stability, and dynamics of the bound states. These phenomena are suggested to underlie observed clustering of Volvox at surfaces. PMID:19518757

  20. Colloidal suspensions hydrodynamic retention mechanisms in model porous media; Mecanismes de retention hydrodynamique de suspensions colloidales en milieux poreux modeles

    Energy Technology Data Exchange (ETDEWEB)

    Salehi, N.

    1996-04-19

    This study deals with the retention mechanisms of colloidal particles in porous media flows, and the subsequent reduction in permeability in the case of stable and non adsorbing colloids. It combines experimental results and modelling. This study has been realised with stable dispersion of monodispersed carboxylate polystyrene latexes negatively charged injected through negatively charged polycarbonate membranes having mono-sized cylindrical pores. The mean particle diameter is smaller than the mean pore diameter. Both batch and flow experiments in Nuclepore membranes have been done. The results of batch experiments have proved no adsorption of the colloidal latex particles on the surface of the Nuclepore membranes without flow at low salinity. In flow experiments at low particle concentration, only deposition on the upstream side of the membrane have been induced by hydrodynamic forces even for non adsorbing particles without creating any permeability reduction. The retention levels are zero at low and high Peclet numbers with a maximum at intermediate values. Partial plugging was observed at higher colloid concentration even at low salinity without any upstream surface deposition. The modelling of plugging processes is achieved by considering the particle concentration, fluid rate and ratio between the mean pore diameter and the mean particle diameter. This study can be particularly useful in the fields of water treatment and of restoration of lands following radioactive contamination. (author). 96 refs., 99 figs., 29 tabs.

  1. Opto-hydrodynamic instability of fluid interfaces

    Science.gov (United States)

    Delville, Jean-Pierre; Issenmann, Bruno; Wunenburger, Regis; Casner, Alexis

    2005-08-01

    The bending of fluid interfaces by the optical radiation pressure is now recognized as an appealing contactless tool to probe microscopic surface properties of soft materials. However, as the radiation pressure is intrinsically weak (typically of the order of a few Pascal), investigations are often limited to the regime of weak deformations. Non-linear behaviors can nevertheless be investigated using very soft fluid interfaces. Either a large stable tether is formed, or else a break-up of the interface occurs above a well-defined beam power threshold, depending on the direction of the beam propagation. This asymmetry originates from the occurrence of total reflection condition of light at deformed interface. Interface instability results in the formation of a stationary beam-centered liquid micro-jet that emits droplets. Radiation-induced jetting can also lead to giant tunable liquid columns with aspect ratio up to 100, i.e. well beyond the fundamental Rayleigh-Plateau limitation. Consequently, the applications range of the opto-hydrodynamic interface instability is wide, going from adaptative micro-optics (lensing and light guiding by the induced columns) to micro-fluidics and microspraying, as fluid transfer is optically monitored and directed in three dimensions.

  2. Hydrodynamic pairing of soft particles in a confined flow

    Science.gov (United States)

    Aouane, O.; Farutin, A.; Thiébaud, M.; Benyoussef, A.; Wagner, C.; Misbah, C.

    2017-06-01

    The mechanism of hydrodynamics-induced pairing of soft particles, namely closed bilayer membranes (vesicles, a model system for red blood cells) and drops, is studied numerically with a special attention paid to the role of the confinement (the particles are within two rigid walls). This study unveils the complexity of the pairing mechanism due to hydrodynamic interactions. We find both for vesicles and for drops that two particles attract each other and form a stable pair at weak confinement if their initial separation is below a certain value. If the initial separation is beyond that distance, the particles repel each other and adopt a longer stable interdistance. This means that for the same confinement we have (at least) two stable branches. To which branch a pair of particles relaxes with time depends only on the initial configuration. An unstable branch is found between these two stable branches. At a critical confinement the stable branch corresponding to the shortest interdistance merges with the unstable branch in the form of a saddle-node bifurcation. At this critical confinement we have a finite jump from a solution corresponding to the continuation of the unbounded case to a solution which is induced by the presence of walls. The results are summarized in a phase diagram, which proves to be of a complex nature. The fact that both vesicles and drops have the same qualitative phase diagram points to the existence of a universal behavior, highlighting the fact that with regard to pairing the details of mechanical properties of the deformable particles are unimportant. This offers an interesting perspective for simple analytical modeling.

  3. Annual Report: Hydrodynamics and Radiative Hydrodynamics with Astrophysical Applications

    Energy Technology Data Exchange (ETDEWEB)

    R. Paul Drake

    2005-12-01

    We report the ongoing work of our group in hydrodynamics and radiative hydrodynamics with astrophysical applications. During the period of the existing grant, we have carried out two types of experiments at the Omega laser. One set of experiments has studied radiatively collapsing shocks, obtaining high-quality scaling data using a backlit pinhole and obtaining the first (ever, anywhere) Thomson-scattering data from a radiative shock. Other experiments have studied the deeply nonlinear development of the Rayleigh-Taylor (RT) instability from complex initial conditions, obtaining the first (ever, anywhere) dual-axis radiographic data using backlit pinholes and ungated detectors. All these experiments have applications to astrophysics, discussed in the corresponding papers either in print or in preparation. We also have obtained preliminary radiographs of experimental targets using our x-ray source. The targets for the experiments have been assembled at Michigan, where we also prepare many of the simple components. The above activities, in addition to a variety of data analysis and design projects, provide good experience for graduate and undergraduates students. In the process of doing this research we have built a research group that uses such work to train junior scientists.

  4. Forced wetting and hydrodynamic assist

    Science.gov (United States)

    Blake, Terence D.; Fernandez-Toledano, Juan-Carlos; Doyen, Guillaume; De Coninck, Joël

    2015-11-01

    Wetting is a prerequisite for coating a uniform layer of liquid onto a solid. Wetting failure and air entrainment set the ultimate limit to coating speed. It is well known in the coating art that this limit can be postponed by manipulating the coating flow to generate what has been termed "hydrodynamic assist," but the underlying mechanism is unclear. Experiments have shown that the conditions that postpone air entrainment also reduce the apparent dynamic contact angle, suggesting a direct link, but how the flow might affect the contact angle remains to be established. Here, we use molecular dynamics to compare the outcome of steady forced wetting with previous results for the spontaneous spreading of liquid drops and apply the molecular-kinetic theory of dynamic wetting to rationalize our findings and place them on a quantitative footing. The forced wetting simulations reveal significant slip at the solid-liquid interface and details of the flow immediately adjacent to the moving contact line. Our results confirm that the local, microscopic contact angle is dependent not simply only on the velocity of wetting but also on the nature of the flow that drives it. In particular, they support an earlier suggestion that during forced wetting, an intense shear stress in the vicinity of the contact line can assist surface tension forces in promoting dynamic wetting, thus reducing the velocity-dependence of the contact angle. Hydrodynamic assist then appears as a natural consequence of wetting that emerges when the contact line is driven by a strong and highly confined flow. Our theoretical approach also provides a self-consistent model of molecular slip at the solid-liquid interface that enables its magnitude to be estimated from dynamic contact angle measurements. In addition, the model predicts how hydrodynamic assist and slip may be influenced by liquid viscosity and solid-liquid interactions.

  5. Numerical simulation of hydrodynamic flows in the jet electric

    Science.gov (United States)

    Sarychev, V. D.; Granovskii, A. Yu; Nevskii, S. A.

    2016-02-01

    On the basis of concepts from magnetic hydrodynamics the mathematical model of hydrodynamic flows in the stream of electric arc plasma, obtained between the rod electrode and the target located perpendicular to the flat conductive, was developed. The same phenomenon occurs in the welding arc, arc plasma and other injection sources of charged particles. The model is based on the equations of magnetic hydrodynamics with special boundary conditions. The obtained system of equations was solved by the numerical method of finite elements with an automatic selection of the time step. Calculations were carried out with regard to the normal plasma inleakage on the solid conducting surface and the surface with the orifice. It was found that the solid surface facilitates three swirling zones. Interaction of these zones leads to the formation of two stable swirling zones, one of which is located at a distance of two radii from the axis and midway between the electrodes, another is located in the immediate vicinity of the continuous electrode. In this zone plasma backflow scattering fine particles is created. Swirling zones are not formed by using the plane electrode with an orifice. Thus, the fine particles can pass through it and consolidate.

  6. Hydrodynamic model of temperature change in open ionic channels.

    Science.gov (United States)

    Chen, D P; Eisenberg, R S; Jerome, J W; Shu, C W

    1995-12-01

    Most theories of open ionic channels ignore heat generated by current flow, but that heat is known to be significant when analogous currents flow in semiconductors, so a generalization of the Poisson-Nernst-Planck theory of channels, called the hydrodynamic model, is needed. The hydrodynamic theory is a combination of the Poisson and Euler field equations of electrostatics and fluid dynamics, conservation laws that describe diffusive and convective flow of mass, heat, and charge (i.e., current), and their coupling. That is to say, it is a kinetic theory of solute and solvent flow, allowing heat and current flow as well, taking into account density changes, temperature changes, and electrical potential gradients. We integrate the equations with an essentially nonoscillatory shock-capturing numerical scheme previously shown to be stable and accurate. Our calculations show that 1) a significant amount of electrical energy is exchanged with the permeating ions; 2) the local temperature of the ions rises some tens of degrees, and this temperature rise significantly alters for ionic flux in a channel 25 A long, such as gramicidin-A; and 3) a critical parameter, called the saturation velocity, determines whether ionic motion is overdamped (Poisson-Nernst-Planck theory), is an intermediate regime (called the adiabatic approximation in semiconductor theory), or is altogether unrestricted (requiring the full hydrodynamic model). It seems that significant temperature changes are likely to accompany current flow in the open ionic channel.

  7. Disruptive Innovation in Numerical Hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Waltz, Jacob I. [Los Alamos National Laboratory

    2012-09-06

    We propose the research and development of a high-fidelity hydrodynamic algorithm for tetrahedral meshes that will lead to a disruptive innovation in the numerical modeling of Laboratory problems. Our proposed innovation has the potential to reduce turnaround time by orders of magnitude relative to Advanced Simulation and Computing (ASC) codes; reduce simulation setup costs by millions of dollars per year; and effectively leverage Graphics Processing Unit (GPU) and future Exascale computing hardware. If successful, this work will lead to a dramatic leap forward in the Laboratory's quest for a predictive simulation capability.

  8. Students’ conceptual difficulties in hydrodynamics

    Directory of Open Access Journals (Sweden)

    Alvaro Suarez

    2017-11-01

    Full Text Available We describe a study on the conceptual difficulties faced by college students in understanding hydrodynamics of ideal fluids. This study was based on responses obtained in hundreds of written exams complemented with several oral interviews, which were held with first-year engineering and science university students. Their responses allowed us to identify a series of misconceptions unreported in the literature so far. The study findings demonstrate that the most critical difficulties arise from the students’ inability to establish a link between the kinematics and dynamics of moving fluids, and from a lack of understanding regarding how different regions of a system interact.

  9. Students' conceptual difficulties in hydrodynamics

    Science.gov (United States)

    Suarez, Alvaro; Kahan, Sandra; Zavala, Genaro; Marti, Arturo C.

    2017-12-01

    We describe a study on the conceptual difficulties faced by college students in understanding hydrodynamics of ideal fluids. This study was based on responses obtained in hundreds of written exams complemented with several oral interviews, which were held with first-year engineering and science university students. Their responses allowed us to identify a series of misconceptions unreported in the literature so far. The study findings demonstrate that the most critical difficulties arise from the students' inability to establish a link between the kinematics and dynamics of moving fluids, and from a lack of understanding regarding how different regions of a system interact.

  10. Hydrodynamic characteristics of UASB bioreactors.

    Science.gov (United States)

    John, Siby; Tare, Vinod

    2011-10-01

    The hydrodynamic characteristics of UASB bioreactors operated under different organic loading and hydraulic loading rates were studied, using three laboratory scale models treating concocted sucrose wastewater. Residence time distribution (RTD) analysis using dispersion model and tanks-in-series model was directed towards the characterization of the fluid flow pattern in the reactors and correlation of the hydraulic regime with the biomass content and biogas production. Empty bed reactors followed a plug flow pattern and the flow pattern changed to a large dispersion mixing with biomass and gas production. Effect of increase in gas production on the overall hydraulics was insignificant.

  11. Hydrodynamic loading of tensegrity structures

    Science.gov (United States)

    Wroldsen, Anders S.; Johansen, Vegar; Skelton, Robert E.; Sørensen, Asgeir J.

    2006-03-01

    This paper introduces hydrodynamic loads for tensegrity structures, to examine their behavior in marine environments. Wave compliant structures are of general interest when considering large marine structures, and we are motivated by the aquaculture industry where new concepts are investigated in order to make offshore installations for seafood production. This paper adds to the existing models and software simulations of tensegrity structures exposed to environmental loading from waves and current. A number of simulations are run to show behavior of the structure as a function of pretension level and string stiffness for a given loading condition.

  12. Numerical Hydrodynamics in General Relativity

    Directory of Open Access Journals (Sweden)

    Font José A.

    2000-05-01

    Full Text Available The current status of numerical solutions for the equations of ideal general relativistic hydrodynamics is reviewed. Different formulations of the equations are presented, with special mention of conservative and hyperbolic formulations well-adapted to advanced numerical methods. A representative sample of available numerical schemes is discussed and particular emphasis is paid to solution procedures based on schemes exploiting the characteristic structure of the equations through linearized Riemann solvers. A comprehensive summary of relevant astrophysical simulations in strong gravitational fields, including gravitational collapse, accretion onto black holes and evolution of neutron stars, is also presented.

  13. Hydrodynamics and stellar winds an introduction

    CERN Document Server

    Maciel, Walter J

    2014-01-01

    Stellar winds are a common phenomenon in the life of stars, from the dwarfs like the Sun to the red giants and hot supergiants, constituting one of the basic aspects of modern astrophysics. Stellar winds are a hydrodynamic phenomenon in which circumstellar gases expand towards the interstellar medium. This book presents an elementary introduction to the fundamentals of hydrodynamics with an application to the study of stellar winds. The principles of hydrodynamics have many other applications, so that the book can be used as an introduction to hydrodynamics for students of physics, astrophysics and other related areas.

  14. Hydrodynamic Stability of Liquid-Propellant Combustion: Landau's Problem Revisited

    Science.gov (United States)

    Margolis, S. B.

    2001-01-01

    Hydrodynamic, or Landau, instability in combustion is typically associated with the onset of wrinkling of a flame surface, corresponding to the formation of steady cellular structures as the stability threshold is crossed. As its name suggests, it stems from hydrodynamic effects connected with thermal expansion across the reaction region. In the context of liquid-propellant combustion, the classical models that originally predicted this phenomenon have been extended to include the important effects that arise from a dynamic dependence of the burning rate on the local pressure and temperature fields. Thus, the onset of Landau instability has now been shown to occur for sufficiently small negative values of the pressure sensitivity of the burning rate, significantly generalizing previous classical results for this problem that assumed a constant normal burning rate. It has also been shown that the onset of instability occurs for decreasing values of the disturbance wave number as the gravitational-acceleration parameter decreases. Consequently, in an appropriate weak-gravity limit, Landau instability becomes a long-wave phenomena associated with the formation of large cells on the liquid-propellant surface. Additionally, a pulsating form of hydrodynamic instability has been shown to occur as well, corresponding to the onset of temporal oscillations in the location of the liquid/gas interface. This instability occurs for sufficiently large negative values of the pressure sensitivity, and is enhanced by increasing values of the burning-rate temperature sensitivity. It is further shown that for sufficiently small values of this parameter, there exists a stable range of pressure sensitivities for steady, planar burning such that the classical cellular form of hydrodynamic instability and the more recent pulsating form of hydrodynamic instability can each occur as the corresponding stability threshold is crossed. For larger thermal sensitivities, however, the pulsating

  15. Invariant description of solutions of hydrodynamic type systems in hodograph space: hydrodynamic surfaces

    OpenAIRE

    Ferapontov, E. V.

    2001-01-01

    Hydrodynamic surfaces are solutions of hydrodynamic type systems viewed as non-parametrized submanifolds of the hodograph space. We propose an invariant differential-geometric characterization of hydrodynamic surfaces by expressing the curvature form of the characteristic web in terms of the reciprocal invariants.

  16. Effects of hydrodynamic disturbances and resuspension characteristics on the release of tetrabromobisphenol A from sediment.

    Science.gov (United States)

    Cheng, Haomiao; Hua, Zulin

    2016-12-01

    Tetrabromobisphenol A (TBBPA) exists widely in river and lake sediments; it has raised growing attention in recent years as emerging contaminant due to its possible threats to the aquatic environment and human health. Using a specialized simulator, the relationships between hydrodynamic disturbances and resuspension characteristics were simulated, with an emphasis on microscopic characteristics. Furthermore, TBBPA release from sediment was studied in relation to hydrodynamic disturbances and resuspension characteristics. The results show that stronger water disturbances caused an increase in suspended solids concentration (SSC) and produced different behaviors of particle size distribution (PSD) and media diameter (D50) in the slight and large-scale resuspension situations. As for microscopic resuspension characteristics, the specific surface area (SSA) of suspended particulate matter (SPM) was very different from that of smooth particles. This difference may result from the fractal nature of the SPM. The fractal dimension (FD) of SPM was found to have a significant correlation with turbulent kinetic energy. TBBPA release into overlying water and adsorption onto SPM both increased with hydrodynamic disturbances; but the release into overlying water is more dominant. The TBBPA concentrations in SPM under different hydrodynamic conditions were significant related to SSA, indicating that SSA is a key factor affecting the TBBPA adsorption capacity of SPM. TBBPA concentrations in sediment decreased slightly with the increased hydrodynamic dispersion. Findings from this research show the importance of considering the hydrodynamic disturbance and resuspension characteristics in understanding TBBPA release behavior in aquatic environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Fluctuating hydrodynamics for ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Lazaridis, Konstantinos [Department of Mathematics and Statistics, Washington State University, Pullman, 99163 (United States); Wickham, Logan [Department of Computer Science, Washington State University, Richland, 99354 (United States); Voulgarakis, Nikolaos, E-mail: n.voulgarakis@wsu.edu [Department of Mathematics and Statistics, Washington State University, Pullman, 99163 (United States)

    2017-04-25

    We present a mean-field fluctuating hydrodynamics (FHD) method for studying the structural and transport properties of ionic liquids in bulk and near electrified surfaces. The free energy of the system consists of two competing terms: (1) a Landau–Lifshitz functional that models the spontaneous separation of the ionic groups, and (2) the standard mean-field electrostatic interaction between the ions in the liquid. The numerical approach used to solve the resulting FHD-Poisson equations is very efficient and models thermal fluctuations with remarkable accuracy. Such density fluctuations are sufficiently strong to excite the experimentally observed spontaneous formation of liquid nano-domains. Statistical analysis of our simulations provides quantitative information about the properties of ionic liquids, such as the mixing quality, stability, and the size of the nano-domains. Our model, thus, can be adequately parameterized by directly comparing our prediction with experimental measurements and all-atom simulations. Conclusively, this work can serve as a practical mathematical tool for testing various theories and designing more efficient mixtures of ionic liquids. - Highlights: • A new fluctuating hydrodynamics method for ionic liquids. • Description of ionic liquid morphology in bulk and near electrified surfaces. • Direct comparison with experimental measurements.

  18. Hydromechanical transmission with hydrodynamic drive

    Science.gov (United States)

    Orshansky, Jr., deceased, Elias; Weseloh, William E.

    1979-01-01

    This transmission has a first planetary gear assembly having first input means connected to an input shaft, first output means, and first reaction means, and a second planetary gear assembly having second input means connected to the first input means, second output means, and second reaction means connected directly to the first reaction means by a reaction shaft. First clutch means, when engaged, connect the first output means to an output shaft in a high driving range. A hydrodynamic drive is used; for example, a torque converter, which may or may not have a stationary case, has a pump connected to the second output means, a stator grounded by an overrunning clutch to the case, and a turbine connected to an output member, and may be used in a starting phase. Alternatively, a fluid coupling or other type of hydrodynamic drive may be used. Second clutch means, when engaged, for connecting the output member to the output shaft in a low driving range. A variable-displacement hydraulic unit is mechanically connected to the input shaft, and a fixed-displacement hydraulic unit is mechanically connected to the reaction shaft. The hydraulic units are hydraulically connected together so that when one operates as a pump the other acts as a motor, and vice versa. Both clutch means are connected to the output shaft through a forward-reverse shift arrangement. It is possible to lock out the torque converter after the starting phase is over.

  19. Inducer Hydrodynamic Load Measurement Devices

    Science.gov (United States)

    Skelley, Stephen E.; Zoladz, Thomas F.

    2002-01-01

    Marshall Space Flight Center (MSFC) has demonstrated two measurement devices for sensing and resolving the hydrodynamic loads on fluid machinery. The first - a derivative of the six component wind tunnel balance - senses the forces and moments on the rotating device through a weakened shaft section instrumented with a series of strain gauges. This "rotating balance" was designed to directly measure the steady and unsteady hydrodynamic loads on an inducer, thereby defining both the amplitude and frequency content associated with operating in various cavitation modes. The second device - a high frequency response pressure transducer surface mounted on a rotating component - was merely an extension of existing technology for application in water. MSFC has recently completed experimental evaluations of both the rotating balance and surface-mount transducers in a water test loop. The measurement bandwidth of the rotating balance was severely limited by the relative flexibility of the device itself, resulting in an unexpectedly low structural bending mode and invalidating the higher frequency response data. Despite these limitations, measurements confirmed that the integrated loads on the four-bladed inducer respond to both cavitation intensity and cavitation phenomena. Likewise, the surface-mount pressure transducers were subjected to a range of temperatures and flow conditions in a non-rotating environment to record bias shifts and transfer functions between the transducers and a reference device. The pressure transducer static performance was within manufacturer's specifications and dynamic response accurately followed that of the reference.

  20. Physical phantom of craniospinal hydrodynamics.

    Science.gov (United States)

    Bouzerar, R; Czosnyka, M; Czosnyka, Z; Balédent, Olivier

    2012-01-01

    Inside the craniospinal system, blood, and cerebrospinal fluid (CSF) interactions occurring through volume exchanges are still not well understood. We built a physical model of this global hydrodynamic system. The main objective was to study, in controlled conditions, CSF-blood interactions to better understand the phenomenon underlying pathogenesis of hydrocephalus. A structure representing the cranium is connected to the spinal channel. The cranium is divided into compartments mimicking anatomical regions such as ventricles or aqueduct cerebri. Resistive and compliant characteristics of blood and CSF compartments can be assessed or measured using pressure and flow sensors incorporated in the model. An arterial blood flow input is generated by a programmable pump. Flows and pressures inside the system are simultaneously recorded. Preliminary results show that the model can mimic venous and CSF flows in response to arterial pressure input. Pulse waveforms and volume flows were measured and confirmed that they partially replicated the data previously obtained with phase-contrast magnetic resonance imaging. The phantom shows that CSF oscillations directly result from arteriovenous flow, and intracranial pressure measurements show that the model obeys an exponential relationship between pressure and intracranial volume expansion. The phantom will be useful to investigate the hydrodynamic hypotheses underlying development of hydrocephalus.

  1. The hydrodynamics of lamprey locomotion

    Science.gov (United States)

    Leftwich, Megan C.

    The lamprey, an anguilliform swimmer, propels itself by undulating most of its body. This type of swimming produces flow patterns that are highly three-dimensional in nature and not very well understood. However, substantial previous work has been done to understand two-dimensional unsteady propulsion, the possible wake structures and thrust performance. Limited studies of three-dimensional propulsors with simple geometries have displayed the importance of the third dimension in designing unsteady swimmers. Some of the results of those studies, primarily the ways in which vorticity is organized in the wake region, are seen in lamprey swimming as well. In the current work, the third dimension is not the only important factor, but complex geometry and body undulations also contribute to the hydrodynamics. Through dye flow visualization, particle induced velocimetry and pressure measurements, the hydrodynamics of anguilliform swimming are studied using a custom built robotic lamprey. These studies all indicate that the undulations of the body are not producing thrust. Instead, it is the tail which acts to propel the animal. This conclusion led to further investigation of the tail, specifically the role of varying tail flexibility on hydrodymnamics. It is found that by making the tail more flexible, one decreases the coherence of the vorticity in the lamprey's wake. Additional flexibility also yields less thrust.

  2. Hydrodynamic instability of meandering channels

    Science.gov (United States)

    Ali, Sk Zeeshan; Dey, Subhasish

    2017-12-01

    In this paper, we explore the hydrodynamic instability of meandering channels driven by the turbulent flow. The governing equations of channel dynamics with suitable boundary conditions are closed with the fluid and granular constitutive relationships. A regular expansion of the fundamental variables is employed to linearize the parent equations by superimposing the perturbations on the basic unperturbed flow. The channel dynamics reveal a resonance phenomenon which occurs when the key variables fall in the vicinity of the distinct critical values. The resonance phenomenon preserves its distinctive signature in different flow regimes which are guided by the characteristic values of the shear Reynolds number. The hydrodynamic analysis indicates that the fluid friction and the volumetric sediment flux play a decisive role to characterize the channel instability in different flow regimes. The growths of azimuthal velocity perturbation in phase with curvature, bed topography perturbation, bend amplification rate, and meander propagation speed in different flow regimes are investigated by varying the meander wavenumber, Shields number, channel aspect ratio, and relative roughness number. The analysis is capable to capture the effects of grain size on azimuthal velocity perturbation, bed topography perturbation, bend amplification rate, and meandering propagation speed over a wide range of shear Reynolds numbers. The variations of resonant wavenumbers in different flow regimes with the Shields number, channel aspect ratio, and relative roughness number are addressed. For a specific flow regime, the upstream and downstream migrations of meandering channels are typically governed by the Shields number, channel aspect ratio, and relative roughness number.

  3. A microfluidic-based hydrodynamic trap for single particles.

    Science.gov (United States)

    Johnson-Chavarria, Eric M; Tanyeri, Melikhan; Schroeder, Charles M

    2011-01-21

    concentrated or crowded particle suspensions, which is difficult using alternative force field-based trapping methods. The hydrodynamic trap is user-friendly, straightforward to implement and may be added to existing microfluidic devices to facilitate trapping and long-time analysis of particles. Overall, the hydrodynamic trap is a new platform for confinement, micromanipulation, and observation of particles without surface immobilization and eliminates the need for potentially perturbative optical, magnetic, and electric fields in the free-solution trapping of small particles.

  4. Hydrodynamic clustering of droplets in turbulence

    Science.gov (United States)

    Kunnen, Rudie; Yavuz, Altug; van Heijst, Gertjan; Clercx, Herman

    2017-11-01

    Small, inertial particles are known to cluster in turbulent flows: particles are centrifuged out of eddies and gather in the strain-dominated regions. This so-called preferential concentration is reflected in the radial distribution function (RDF; a quantitative measure of clustering). We study clustering of water droplets in a loudspeaker-driven turbulence chamber. We track the motion of droplets in 3D and calculate the RDF. At moderate scales (a few Kolmogorov lengths) we find the typical power-law scaling of preferential concentration in the RDF. However, at even smaller scales (a few droplet diameters), we encounter a hitherto unobserved additional clustering. We postulate that the additional clustering is due to hydrodynamic interactions, an effect which is typically disregarded in modeling. Using a perturbative expansion of inertial effects in a Stokes-flow description of two interacting spheres, we obtain an expression for the RDF which indeed includes the additional clustering. The additional clustering enhances the collision probability of droplets, which enhances their growth rate due to coalescence. The additional clustering is thus an essential effect in precipitation modeling.

  5. Emergence of multiple synchronization modes in hydrodynamically-coupled cilia

    Science.gov (United States)

    Guo, Hanliang; Kanso, Eva

    2016-11-01

    Motile cilia and flagella exhibit different phase coordinations. For example, closely swimming spermatozoa are observed to synchronize together; bi-flagellates Chlamydomonas regulate the flagella in a "breast-stroke" fashion; cilia on the surface of Paramecium beat in a fixed phase lag in an orchestrated wave like fashion. Experimental evidence suggests that phase coordinations can be achieved solely via hydrodynamical interactions. However, the exact mechanisms behind it remain illusive. Here, adapting a "geometric switch" model, we observe different synchronization modes in pairs of hydrodynamically-coupled cilia by changing physical parameters such as the strength of the cilia internal motor and the separation distance between cilia. Interestingly, we find regions in the parameter space where the coupled cilia reach stable phase coordinations and regions where the phase coordinations are sensitive to perturbations. We also find that leaning into the fluid reduces the sensitivity to perturbations, and produces stable phase coordination that is neither in-phase nor anti-phase, which could explain the origin of metachronal waves in large cilia populations.

  6. Stable Isotope Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Tissue samples (skin, bone, blood, muscle) are analyzed for stable carbon, stable nitrogen, and stable sulfur analysis. Many samples are used in their entirety for...

  7. Hydrodynamics, Fungal Physiology, and Morphology.

    Science.gov (United States)

    Serrano-Carreón, L; Galindo, E; Rocha-Valadéz, J A; Holguín-Salas, A; Corkidi, G

    2015-01-01

    Filamentous cultures, such as fungi and actinomycetes, contribute substantially to the pharmaceutical industry and to enzyme production, with an annual market of about 6 billion dollars. In mechanically stirred reactors, most frequently used in fermentation industry, microbial growth and metabolite productivity depend on complex interactions between hydrodynamics, oxygen transfer, and mycelial morphology. The dissipation of energy through mechanically stirring devices, either flasks or tanks, impacts both microbial growth through shearing forces on the cells and the transfer of mass and energy, improving the contact between phases (i.e., air bubbles and microorganisms) but also causing damage to the cells at high energy dissipation rates. Mechanical-induced signaling in the cells triggers the molecular responses to shear stress; however, the complete mechanism is not known. Volumetric power input and, more importantly, the energy dissipation/circulation function are the main parameters determining mycelial size, a phenomenon that can be explained by the interaction of mycelial aggregates and Kolmogorov eddies. The use of microparticles in fungal cultures is also a strategy to increase process productivity and reproducibility by controlling fungal morphology. In order to rigorously study the effects of hydrodynamics on the physiology of fungal microorganisms, it is necessary to rule out the possible associated effects of dissolved oxygen, something which has been reported scarcely. At the other hand, the processes of phase dispersion (including the suspended solid that is the filamentous biomass) are crucial in order to get an integral knowledge about biological and physicochemical interactions within the bioreactor. Digital image analysis is a powerful tool for getting relevant information in order to establish the mechanisms of mass transfer as well as to evaluate the viability of the mycelia. This review focuses on (a) the main characteristics of the two most

  8. Hydrodynamics Versus Intracellular Coupling in the Synchronization of Eukaryotic Flagella

    NARCIS (Netherlands)

    Quaranta, G.; Aubin, M.E.; Tam, D.S.W.

    2015-01-01

    The influence of hydrodynamic forces on eukaryotic flagella synchronization is investigated by triggering phase locking between a controlled external flow and the flagella of C. reinhardtii. Hydrodynamic forces required for synchronization are over an order of magnitude larger than hydrodynamic

  9. Hydrodynamic enhanced dielectrophoretic particle trapping

    Science.gov (United States)

    Miles, Robin R.

    2003-12-09

    Hydrodynamic enhanced dielectrophoretic particle trapping carried out by introducing a side stream into the main stream to squeeze the fluid containing particles close to the electrodes producing the dielelectrophoretic forces. The region of most effective or the strongest forces in the manipulating fields of the electrodes producing the dielectrophoretic forces is close to the electrodes, within 100 .mu.m from the electrodes. The particle trapping arrangement uses a series of electrodes with an AC field placed between pairs of electrodes, which causes trapping of particles along the edges of the electrodes. By forcing an incoming flow stream containing cells and DNA, for example, close to the electrodes using another flow stream improves the efficiency of the DNA trapping.

  10. Hydrodynamic Limit for Interacting Neurons

    Science.gov (United States)

    De Masi, A.; Galves, A.; Löcherbach, E.; Presutti, E.

    2015-02-01

    This paper studies the hydrodynamic limit of a stochastic process describing the time evolution of a system with N neurons with mean-field interactions produced both by chemical and by electrical synapses. This system can be informally described as follows. Each neuron spikes randomly following a point process with rate depending on its membrane potential. At its spiking time, the membrane potential of the spiking neuron is reset to the value 0 and, simultaneously, the membrane potentials of the other neurons are increased by an amount of potential . This mimics the effect of chemical synapses. Additionally, the effect of electrical synapses is represented by a deterministic drift of all the membrane potentials towards the average value of the system. We show that, as the system size N diverges, the distribution of membrane potentials becomes deterministic and is described by a limit density which obeys a non linear PDE which is a conservation law of hyperbolic type.

  11. Hydrodynamics of active permeating gels

    Energy Technology Data Exchange (ETDEWEB)

    Callan-Jones, A C [Laboratoire Charles Coulomb, UMR 5521 CNRS-UM2, Universite Montpellier II, 34095 Montpellier Cedex 5 (France); Juelicher, F, E-mail: andrew.callan-jones@univ-montp2.fr [Max-Planck-Institut fuer Physik komplexer Systeme, Noethnitzerstrasse 38, 01187 Dresden (Germany)

    2011-09-15

    We develop a hydrodynamic theory of active permeating gels with viscoelasticity in which a polymer network is embedded in a background fluid. This situation is motivated by active processes in the cell cytoskeleton in which motor molecules generate elastic stresses in the network, which can drive permeation flows of the cytosol. Our approach differs from earlier ones by considering the elastic strain in the polymer network as a slowly relaxing dynamical variable. We first present the general ideas for the case of a passive, isotropic gel and then extend this description to a polar, active gel. We discuss two specific cases to illustrate the role of permeation in active gels: self-propulsion of a thin slab of gel relative to a substrate driven by filament polymerization and depolymerization; and non-equilibrium deswelling of a gel driven by molecular motors.

  12. Special vortex in relativistic hydrodynamics

    Science.gov (United States)

    Chupakhin, A. P.; Yanchenko, A. A.

    2017-10-01

    An exact solution of the Euler equations governing the flow of a compressible fluid in relativistic hydrodynamics is found and studied. It is a relativistic analogue of the Ovsyannikov vortex (special vortex) investigated earlier for classical gas dynamics. Solutions are partially invariant of Defect 1 and Rank 2 with respect to the rotation group. A theorem on the representation of the factor-system in the form of a union of a non-invariant subsystem for the function determining the deviation of the velocity vector from the meridian, and invariant subsystem for determination of thermodynamic parameters, the Lorentz factor and the radial velocity component is proved. Compatibility conditions for the overdetermined non-invariant subsystem are obtained. A stationary solution of this type is studied in detail. It is proved that its invariant subsystem reduces to an implicit differential equation. For this equation, the manifold of branching of solutions is investigated, and a set of singular points is found.

  13. Anomalous hydrodynamics kicks neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Kaminski, Matthias, E-mail: mski@ua.edu [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487 (United States); Department of Physics and Astronomy, University of Victoria, Victoria, BC, V8P 5C2 (Canada); Uhlemann, Christoph F. [Department of Physics, University of Washington, Seattle, WA 98195 (United States); Bleicher, Marcus [Frankfurt Institute for Advanced Studies, Goethe-Universität Frankfurt (Germany); Institut für Theoretische Physik, Goethe Universität Frankfurt (Germany); Schaffner-Bielich, Jürgen [Institut für Theoretische Physik, Goethe Universität Frankfurt (Germany)

    2016-09-10

    Observations show that, at the beginning of their existence, neutron stars are accelerated briskly to velocities of up to a thousand kilometers per second. We argue that this remarkable effect can be explained as a manifestation of quantum anomalies on astrophysical scales. To theoretically describe the early stage in the life of neutron stars we use hydrodynamics as a systematic effective-field-theory framework. Within this framework, anomalies of the Standard Model of particle physics as underlying microscopic theory imply the presence of a particular set of transport terms, whose form is completely fixed by theoretical consistency. The resulting chiral transport effects in proto-neutron stars enhance neutrino emission along the internal magnetic field, and the recoil can explain the order of magnitude of the observed kick velocities.

  14. Combined treatment technology based on synergism between hydrodynamic cavitation and advanced oxidation processes.

    Science.gov (United States)

    Gogate, Parag R; Patil, Pankaj N

    2015-07-01

    The present work highlights the novel approach of combination of hydrodynamic cavitation and advanced oxidation processes for wastewater treatment. The initial part of the work concentrates on the critical analysis of the literature related to the combined approaches based on hydrodynamic cavitation followed by a case study of triazophos degradation using different approaches. The analysis of different combinations based on hydrodynamic cavitation with the Fenton chemistry, advanced Fenton chemistry, ozonation, photocatalytic oxidation, and use of hydrogen peroxide has been highlighted with recommendations for important design parameters. Subsequently degradation of triazophos pesticide in aqueous solution (20 ppm solution of commercially available triazophos pesticide) has been investigated using hydrodynamic cavitation and ozonation operated individually and in combination for the first time. Effect of different operating parameters like inlet pressure (1-8 bar) and initial pH (2.5-8) have been investigated initially. The effect of addition of Fenton's reagent at different loadings on the extent of degradation has also been investigated. The combined method of hydrodynamic cavitation and ozone has been studied using two approaches of injecting ozone in the solution tank and at the orifice (at the flow rate of 0.576 g/h and 1.95 g/h). About 50% degradation of triazophos was achieved by hydrodynamic cavitation alone under optimized operating parameters. About 80% degradation of triazophos was achieved by combination of hydrodynamic cavitation and Fenton's reagent whereas complete degradation was achieved using combination of hydrodynamic cavitation and ozonation. TOC removal of 96% was also obtained for the combination of ozone and hydrodynamic cavitation making it the best treatment strategy for removal of triazophos. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. The hydrodynamics of dolphin drafting

    Directory of Open Access Journals (Sweden)

    Weihs Daniel

    2004-05-01

    Full Text Available Abstract Background Drafting in cetaceans is defined as the transfer of forces between individuals without actual physical contact between them. This behavior has long been surmised to explain how young dolphin calves keep up with their rapidly moving mothers. It has recently been observed that a significant number of calves become permanently separated from their mothers during chases by tuna vessels. A study of the hydrodynamics of drafting, initiated in the hope of understanding the mechanisms causing the separation of mothers and calves during fishing-related activities, is reported here. Results Quantitative results are shown for the forces and moments around a pair of unequally sized dolphin-like slender bodies. These include two major effects. First, the so-called Bernoulli suction, which stems from the fact that the local pressure drops in areas of high speed, results in an attractive force between mother and calf. Second is the displacement effect, in which the motion of the mother causes the water in front to move forwards and radially outwards, and water behind the body to move forwards to replace the animal's mass. Thus, the calf can gain a 'free ride' in the forward-moving areas. Utilizing these effects, the neonate can gain up to 90% of the thrust needed to move alongside the mother at speeds of up to 2.4 m/sec. A comparison with observations of eastern spinner dolphins (Stenella longirostris is presented, showing savings of up to 60% in the thrust that calves require if they are to keep up with their mothers. Conclusions A theoretical analysis, backed by observations of free-swimming dolphin schools, indicates that hydrodynamic interactions with mothers play an important role in enabling dolphin calves to keep up with rapidly moving adult school members.

  16. Hydrodynamic Forces on Macromolecules Protruding from Lipid Bilayers Due to External Liquid Flows.

    Science.gov (United States)

    Jönsson, Peter; Jönsson, Bengt

    2015-11-24

    It has previously been observed that an externally applied hydrodynamic shear flow above a fluid lipid bilayer can change the local concentration of macromolecules that are associated with the lipid bilayer. The external liquid flow results in a hydrodynamic force on molecules protruding from the lipid bilayer, causing them to move in the direction of the flow. However, there has been no quantitative study about the magnitude of these forces. We here use finite element simulations to investigate how the magnitude of the external hydrodynamic forces varies with the size and shape of the studied macromolecule. The simulations show that the hydrodynamic force is proportional to the effective hydrodynamic area of the studied molecule, Ahydro, multiplied by the mean hydrodynamic shear stress acting on the membrane surface, σhydro. The parameter Ahydro depends on the size and shape of the studied macromolecule above the lipid bilayer and scales with the cross-sectional area of the molecule. We also investigate how hydrodynamic shielding from other surrounding macromolecules decreases Ahydro when the surface coverage of the shielding macromolecules increases. Experiments where the protein streptavidin is anchored to a supported lipid bilayer on the floor of a microfluidic channel were finally performed at three different surface concentrations, Φ = 1%, 6%, and 10%, where the protein is being moved relative to the lipid bilayer by a liquid flow through the channel. From photobleaching measurements of fluorescently labeled streptavidin we found the experimental drift data to be within good accuracy of the simulated results, less than 12% difference, indicating the validity of the results obtained from the simulations. In addition to giving a deeper insight into how a liquid flow can affect membrane-associated molecules in a lipid bilayer, we also see an interesting potential of using hydrodynamic flow experiments together with the obtained results to study the size and

  17. A new relativistic hydrodynamics code for high-energy heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Kazuhisa [Nagoya University, Department of Physics, Nagoya (Japan); Akamatsu, Yukinao [Nagoya University, Kobayashi-Maskawa Institute for the Origin of Particles and the Universe (KMI), Nagoya (Japan); Osaka University, Department of Physics, Toyonaka (Japan); Stony Brook University, Department of Physics and Astronomy, Stony Brook, NY (United States); Nonaka, Chiho [Nagoya University, Department of Physics, Nagoya (Japan); Nagoya University, Kobayashi-Maskawa Institute for the Origin of Particles and the Universe (KMI), Nagoya (Japan); Duke University, Department of Physics, Durham, NC (United States)

    2016-10-15

    We construct a new Godunov type relativistic hydrodynamics code in Milne coordinates, using a Riemann solver based on the two-shock approximation which is stable under the existence of large shock waves. We check the correctness of the numerical algorithm by comparing numerical calculations and analytical solutions in various problems, such as shock tubes, expansion of matter into the vacuum, the Landau-Khalatnikov solution, and propagation of fluctuations around Bjorken flow and Gubser flow. We investigate the energy and momentum conservation property of our code in a test problem of longitudinal hydrodynamic expansion with an initial condition for high-energy heavy-ion collisions. We also discuss numerical viscosity in the test problems of expansion of matter into the vacuum and conservation properties. Furthermore, we discuss how the numerical stability is affected by the source terms of relativistic numerical hydrodynamics in Milne coordinates. (orig.)

  18. Tuning bacterial hydrodynamics with magnetic fields

    Science.gov (United States)

    Pierce, C. J.; Mumper, E.; Brown, E. E.; Brangham, J. T.; Lower, B. H.; Lower, S. K.; Yang, F. Y.; Sooryakumar, R.

    2017-06-01

    Magnetotactic bacteria are a group of motile prokaryotes that synthesize chains of lipid-bound, magnetic nanoparticles called magnetosomes. This study exploits their innate magnetism to investigate previously unexplored facets of bacterial hydrodynamics at surfaces. Through use of weak, uniform, external magnetic fields and local, micromagnetic surface patterns, the relative strength of hydrodynamic, magnetic, and flagellar force components is tuned through magnetic control of the bacteria's orientation. The resulting swimming behaviors provide a means to experimentally determine hydrodynamic parameters and offer a high degree of control over large numbers of living microscopic entities. The implications of this controlled motion for studies of bacterial motility near surfaces and for micro- and nanotechnology are discussed.

  19. Effects of hydrodynamic interaction on the equivalent conductivity minimum of electrolyte solutions in solvents of low dielectric constant.

    Science.gov (United States)

    Yamaguchi, T; Shimoda, Y; Koda, S

    2013-01-14

    Brownian dynamics simulation on model electrolyte solutions in our previous work [T. Yamaguchi et al., J. Chem. Phys. 134, 244506 (2011)] is extended to include the hydrodynamic interaction between ions, in order to examine its effects on ionic mobility in solvents of low dielectric constant. The effects of the hydrodynamic interaction are rather small as a whole, and the equivalent conductivity minimum is observed in systems with the hydrodynamic interaction. The hydrodynamic interaction increases the self-diffusion coefficient while decreases the equivalent conductivity, thereby increases the deviation from the Nernst-Einstein relationship. Based on the analysis of the time-dependent ionic mobilities, these changes are elucidated in terms of the electrophoretic and relaxation effects. It is also demonstrated that the concentration dependence of the ionic mobilities with the hydrodynamic interaction is reproduced fairly well by a theoretical calculation.

  20. Parameterization of wind turbine impacts on hydrodynamics and sediment transport

    Science.gov (United States)

    Rivier, Aurélie; Bennis, Anne-Claire; Pinon, Grégory; Magar, Vanesa; Gross, Markus

    2016-10-01

    Monopile foundations of offshore wind turbines modify the hydrodynamics and sediment transport at local and regional scales. The aim of this work is to assess these modifications and to parameterize them in a regional model. In the present study, this is achieved through a regional circulation model, coupled with a sediment transport module, using two approaches. One approach is to explicitly model the monopiles in the mesh as dry cells, and the other is to parameterize them by adding a drag force term to the momentum and turbulence equations. Idealised cases are run using hydrodynamical conditions and sediment grain sizes typical from the area located off Courseulles-sur-Mer (Normandy, France), where an offshore windfarm is under planning, to assess the capacity of the model to reproduce the effect of the monopile on the environment. Then, the model is applied to a real configuration on an area including the future offshore windfarm of Courseulles-sur-Mer. Four monopiles are represented in the model using both approaches, and modifications of the hydrodynamics and sediment transport are assessed over a tidal cycle. In relation to local hydrodynamic effects, it is observed that currents increase at the side of the monopile and decrease in front of and downstream of the monopile. In relation to sediment transport effect, the results show that resuspension and erosion occur around the monopile in locations where the current speed increases due to the monopile presence, and sediments deposit downstream where the bed shear stress is lower. During the tidal cycle, wakes downstream of the monopile reach the following monopile and modify the velocity magnitude and suspended sediment concentration patterns around the second monopile.

  1. Hydrodynamic Instabilities Produced by Evaporation

    Science.gov (United States)

    Romo-Cruz, Julio Cesar Ruben; Hernandez-Zapata, Sergio; Ruiz-Chavarria, Gerardo

    2012-11-01

    When a liquid layer (alcohol in the present work) is in an environment where its relative humidity is less than 100 percent evaporation appears. When RH is above a certain threshold the liquid is at rest. If RH decreases below this threshold the flow becomes unstable, and hydrodynamic cells develop. The aim of this work is to understand the formation of those cells and its main features. Firstly, we investigate how the cell size depends on the layer width. We also study how temperature depends on the vertical coordinate when the cells are present. An inverse temperature gradient is found, that is, the bottom of liquid layer is colder than the free surface. This shows that the intuitive idea that the cells are due to a direct temperature gradient, following a Marangoni-like process, does not work. We propose the hypothesis that the evaporation produce a pressure gradient that is responsible of the cell development. On the other hand, using a Schlieren technique we study the topography of the free surface when cells are present. Finally the alcohol vapor layer adjacent to the liquid surface is explored using scattering experiments, giving some insight on the plausibility of the hypothesis described previously. Authors acknowledge support by DGAPA-UNAM under project IN116312 ``Vorticidad y ondas no lineales en fluidos.''

  2. Hydrodynamics of unitary Fermi gases

    Science.gov (United States)

    Young, Ryan E.

    Unitary fermi gases have been widely studied as they provide a tabletop archetype for re- search on strongly coupled many body systems and perfect fluids. Research into unitary fermi gases can provide insight into may other strongly interacting systems including high temperature superconductor, quark-gluon plasmas, and neutron stars. Within the unitary regime, the equilib- rium transport coefficients and thermodynamic properties are universal functions of density and temperature. Thus, unitary fermi gases provide a archetype to study nonperturbative many-body physics, which is of fundamental significance and crosses several fields. This thesis reports on two topics regarding unitary fermi gases. A recent string theory conjecture gives a lower bound for the dimensionless ratio of shear viscosity of entropy, η/s ≥ 4pi /kb . Unitary fermi gases are a candidate for prefect fluids, yet η/s is well above the string theory bound. Using a stochastic formulation of hydrodynamics, we calculate a lower bound for this ratio accounting for the momentum dissipation from fluctuations. This lower bound is in good agreement with both theoretical and experimental results. The second question addressed is the simulation of elliptic flow. Elliptic flow, first observed in 2002, is a characteristic of strongly coupled systems and has been studied in both quark-gluon plasmas and unitary fermi gases. As such, simulations of these systems are of interest. We test a variety of lattice Boltzmann models and compare the simulation results to the theoretical and experimental findings.

  3. Production and purification of biodiesel produced from used frying oil using hydrodynamic cavitation

    Directory of Open Access Journals (Sweden)

    Nitin S. Kolhe

    2017-06-01

    Full Text Available This work describes the biodiesel production from used frying oil using a hydrodynamic cavitation reactor as well as separation and purification of fatty acid methyl esters (FAME. Under the optimized process conditions, i.e., methanol to oil molar ratio of 4.5:1 and catalyst (KOH concentration of 0.55wt%, the conversion achieved was 93.86mol%. Higher conversion (93.6% was obtained in only 20min as compared to 88.5% in 1h in stirred tank reactor. Due to the completion of transesterification reaction, the amount of intermediate diglycerides and monoglycerides present in the reaction mixture was less. It helps for the complete separation of methyl ester and glycerol layers without hindrance in 1h. Small amount KOH catalyst used for completion of reaction reduces amount of KOH and soap in ester layer which further helps to form a less stable emulsion during water washing step. The complete separation was observed at 70 °C temperature in just 3h. Thus, this study indicates that the increased production capacity can be achieved by shortening the time for the separation and purification.

  4. Anisotropic hydrodynamic function of dense confined colloids

    Science.gov (United States)

    Nygârd, Kim; Buitenhuis, Johan; Kagias, Matias; Jefimovs, Konstantins; Zontone, Federico; Chushkin, Yuriy

    2017-06-01

    Dense colloidal dispersions exhibit complex wave-vector-dependent diffusion, which is controlled by both direct particle interactions and indirect nonadditive hydrodynamic interactions mediated by the solvent. In bulk the hydrodynamic interactions are probed routinely, but in confined geometries their studies have been hitherto hindered by additional complications due to confining walls. Here we solve this issue by combining high-energy x-ray photon correlation spectroscopy and small-angle x-ray-scattering experiments on colloid-filled microfluidic channels to yield the confined fluid's hydrodynamic function in the short-time limit. Most importantly, we find the confined fluid to exhibit a strongly anisotropic hydrodynamic function, similar to its anisotropic structure factor. This observation is important in order to guide future theoretical research.

  5. Polariton Superfluids Reveal Quantum Hydrodynamic Solitons

    National Research Council Canada - National Science Library

    A. Amo; S. Pigeon; D. Sanvitto; V. G. Sala; R. Hivet; I. Carusotto; F. Pisanello; G. Leménager; R. Houdré; E Giacobino; C. Ciuti; A. Bramati

    2011-01-01

    .... Using an interacting Bose gas of exciton-polaritons in a semiconductor microcavity, we report the transition from superfluidity to the hydrodynamic formation of oblique dark solitons and vortex...

  6. Low Mach number fluctuating hydrodynamics of multispecies liquid mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Donev, Aleksandar, E-mail: donev@courant.nyu.edu; Bhattacharjee, Amit Kumar [Courant Institute of Mathematical Sciences, New York University, New York, New York 10012 (United States); Nonaka, Andy; Bell, John B. [Center for Computational Science and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Garcia, Alejandro L. [Department of Physics and Astronomy, San Jose State University, San Jose, California 95192 (United States)

    2015-03-15

    We develop a low Mach number formulation of the hydrodynamic equations describing transport of mass and momentum in a multispecies mixture of incompressible miscible liquids at specified temperature and pressure, which generalizes our prior work on ideal mixtures of ideal gases [Balakrishnan et al., “Fluctuating hydrodynamics of multispecies nonreactive mixtures,” Phys. Rev. E 89 013017 (2014)] and binary liquid mixtures [Donev et al., “Low mach number fluctuating hydrodynamics of diffusively mixing fluids,” Commun. Appl. Math. Comput. Sci. 9(1), 47-105 (2014)]. In this formulation, we combine and extend a number of existing descriptions of multispecies transport available in the literature. The formulation applies to non-ideal mixtures of arbitrary number of species, without the need to single out a “solvent” species, and includes contributions to the diffusive mass flux due to gradients of composition, temperature, and pressure. Momentum transport and advective mass transport are handled using a low Mach number approach that eliminates fast sound waves (pressure fluctuations) from the full compressible system of equations and leads to a quasi-incompressible formulation. Thermal fluctuations are included in our fluctuating hydrodynamics description following the principles of nonequilibrium thermodynamics. We extend the semi-implicit staggered-grid finite-volume numerical method developed in our prior work on binary liquid mixtures [Nonaka et al., “Low mach number fluctuating hydrodynamics of binary liquid mixtures,” http://arxiv.org/abs/1410.2300 (2015)] and use it to study the development of giant nonequilibrium concentration fluctuations in a ternary mixture subjected to a steady concentration gradient. We also numerically study the development of diffusion-driven gravitational instabilities in a ternary mixture and compare our numerical results to recent experimental measurements [Carballido-Landeira et al., “Mixed-mode instability of a

  7. Hydrodynamic properties of whole arabic gum

    OpenAIRE

    Masuelli, Martin Alberto

    2016-01-01

    The most economically important of the hydrodynamic properties of a material are viscosity and density, which allow determining the intrinsic viscosity of raw materials used in the food industry. They serve as an indirect measure of molecular weight (M), hydrodynamic radius (RH), number of Simha, (ν(P)), Perrin parameter (P); hydration value (δ), Scheraga-Mandelkern parameter (β), and Flory parameters (0 and P0). Normally, these parameters are reported at a temperature of 25ºC, which limits t...

  8. Relabeling symmetries in hydrodynamics and magnetohydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Padhye, N.; Morrison, P.J.

    1996-04-01

    Lagrangian symmetries and concomitant generalized Bianchi identities associated with the relabeling of fluid elements are found for hydrodynamics and magnetohydrodynamics (MHD). In hydrodynamics relabeling results in Ertel`s theorem of conservation of potential vorticity, while in MHD it yields the conservation of cross helicity. The symmetries of the reduction from Lagrangian (material) to Eulerian variables are used to construct the Casimir invariants of the Hamiltonian formalism.

  9. stableGP

    Data.gov (United States)

    National Aeronautics and Space Administration — The code in the stableGP package implements Gaussian process calculations using efficient and numerically stable algorithms. Description of the algorithms is in the...

  10. On the Importance of Hydrodynamic Interactions in Lipid Membrane Formation

    Science.gov (United States)

    Ando, Tadashi; Skolnick, Jeffrey

    2013-01-01

    Hydrodynamic interactions (HI) give rise to collective motions between molecules, which are known to be important in the dynamics of random coil polymers and colloids. However, their role in the biological self-assembly of many molecule systems has not been investigated. Here, using Brownian dynamics simulations, we evaluate the importance of HI on the kinetics of self-assembly of lipid membranes. One-thousand coarse-grained lipid molecules in periodic simulation boxes were allowed to assemble into stable bilayers in the presence and absence of intermolecular HI. Hydrodynamic interactions reduce the monomer-monomer association rate by 50%. In contrast, the rate of association of lipid clusters is much faster in the presence of intermolecular HI. In fact, with intermolecular HI, the membrane self-assembly rate is 3–10 times faster than that without intermolecular HI. We introduce an analytical model to describe the size dependence of the diffusive encounter rate of particle clusters, which can qualitatively explain our simulation results for the early stage of the membrane self-assembly process. These results clearly suggest that HI greatly affects the kinetics of self-assembly and that simulations without HI will significantly underestimate the kinetic parameters of such processes. PMID:23332062

  11. Stable canonical rules

    NARCIS (Netherlands)

    Iemhoff, R.; Bezhanishvili, N.; Bezhanishvili, Guram

    2016-01-01

    We introduce stable canonical rules and prove that each normal modal multi-conclusion consequence relation is axiomatizable by stable canonical rules. We apply these results to construct finite refutation patterns for modal formulas, and prove that each normal modal logic is axiomatizable by stable

  12. Stable canonical rules

    NARCIS (Netherlands)

    Bezhanishvili, G.; Bezhanishvili, N.; Iemhoff, R.

    We introduce stable canonical rules and prove that each normal modal multi-conclusion consequence relation is axiomatizable by stable canonical rules. We apply these results to construct finite refutation patterns for modal formulas, and prove that each normal modal logic is axiomatizable by stable

  13. Cadmium Accumulation and Metallothionein Response in the Freshwater Bivalve Corbicula fluminea Under Hydrodynamic Conditions.

    Science.gov (United States)

    Geng, Nan; Wang, Chao; Wang, Peifang; Qi, Ning; Ren, Lingxiao

    2015-06-01

    Freshwater bivalves such as Corbicula fluminea (Müller) are useful biomonitors for cadmium pollution because they absorb heavy metals and accumulate them in their tissues. We exposed C. fluminea in the laboratory to natural and cadmium (Cd)-spiked sediments below flowing water in order to evaluate the organisms' Cd accumulation and metallothionein (MT) response under hydrodynamic conditions. The accumulation of Cd and the induction of MT in C. fluminea were determined at 0, 1, 3, 6, 10, 16, and 23 days. Hydrodynamic conditions, represented by a water flow rate of 14 or 3.2 cm/s, increased Cd accumulation in the visceral mass, gill, foot, and mantle of C. fluminea in the first 3 or 6 days in the natural sediment. Cd concentrations in the C. fluminea tissues kept increasing over time in the three treatments, and significant differences were observed in Cd accumulation after 6 (visceral mass), 10 (foot) and 16 (gill and mantle) days among the three groups. The MT concentrations were barely affected by hydrodynamic conditions and were significantly linearly related to the Cd concentration in the visceral mass in the natural sediment and binomially related to it in the Cd-spiked sediment. Hydrodynamic conditions enhanced the accumulation of Cd in the soft tissues of C. fluminea, especially in the Cd-spiked sediment, but stronger hydrodynamic forces did not increase Cd accumulation. MT may be considered an indicator for Cd accumulation in C. fluminea under hydrodynamic conditions, but only when the Cd concentrations in the tissue remain below the toxic threshold values.

  14. Long-lived "critters" formed by hydrodynamic clustering

    Science.gov (United States)

    Delmotte, Blaise; Driscoll, Michelle; Youssef, Mena; Sacanna, Stefano; Donev, Aleksandar; Chaikin, Paul

    2016-11-01

    Self-assembly in colloidal systems often requires finely tuning the interactions between particles. When colloids are active, or moving due to an external drive, the assembly is even harder to achieve. Here we show that long-lived compact motile structures, called "critters", can be formed just with hydrodynamic interactions. They naturally emerge from a recently discovered fingering instability in a system of microrollers near a floor. Our 3D large-scale simulations show that these critters are a stable state of the system, move much faster than individual rollers, and quickly respond to a changing drive. The formation of critters is robust to any initial condition and our experiments suggest that similar structures are formed even in a thermal colloidal system. We believe the critters are a promising tool for microscopic transport, flow, aggregation and mixing.

  15. Hydrodynamic control of microphytoplankton bloom in a coastal sea

    Science.gov (United States)

    Murty, K. Narasimha; Sarma, Nittala S.; Pandi, Sudarsana Rao; Chiranjeevulu, Gundala; Kiran, Rayaprolu; Muralikrishna, R.

    2017-08-01

    The influence of hydrodynamics on phytoplankton bloom occurrence/formation has not been adequately reported. Here, we document diurnal observations in the tropical Bay of Bengal's mid-western shelf region which reveal microphytoplankton cell density maxima in association with neap tide many times more than what could be accounted for by solar insolation and nutrient levels. When in summer, phytoplankton cells were abundant and the cell density of Guinardia delicatula reached critical value by tide caused zonation, aggregation happened to an intense bloom. Mucilaginous exudates from the alga due to heat and silicate stress likely promoted and stable water column and weak winds left undisturbed, the transient bloom. The phytoplankton aggregates have implication as food resource in the benthic region implying higher fishery potential, in carbon dioxide sequestration (carbon burial) and in efforts towards improving remote sensing algorithms for chlorophyll in the coastal region.

  16. Hydrodynamic modulation of pluripotent stem cells

    Science.gov (United States)

    2012-01-01

    Controlled expansion and differentiation of pluripotent stem cells (PSCs) using reproducible, high-throughput methods could accelerate stem cell research for clinical therapies. Hydrodynamic culture systems for PSCs are increasingly being used for high-throughput studies and scale-up purposes; however, hydrodynamic cultures expose PSCs to complex physical and chemical environments that include spatially and temporally modulated fluid shear stresses and heterogeneous mass transport. Furthermore, the effects of fluid flow on PSCs cannot easily be attributed to any single environmental parameter since the cellular processes regulating self-renewal and differentiation are interconnected and the complex physical and chemical parameters associated with fluid flow are thus difficult to independently isolate. Regardless of the challenges posed by characterizing fluid dynamic properties, hydrodynamic culture systems offer several advantages over traditional static culture, including increased mass transfer and reduced cell handling. This article discusses the challenges and opportunities of hydrodynamic culture environments for the expansion and differentiation of PSCs in microfluidic systems and larger-volume suspension bioreactors. Ultimately, an improved understanding of the effects of hydrodynamics on the self-renewal and differentiation of PSCs could yield improved bioprocessing technologies to attain scalable PSC culture strategies that will probably be requisite for the development of therapeutic and diagnostic applications. PMID:23168068

  17. Anisotropic hydrodynamics for conformal Gubser flow

    Energy Technology Data Exchange (ETDEWEB)

    Strickland, Michael; Nopoush, Mohammad [Kent State University, Kent OH 44242 (United States); Ryblewski, Radoslaw [The H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków (Poland)

    2016-12-15

    In this proceedings contribution, we review the exact solution of the anisotropic hydrodynamics equations for a system subject to Gubser flow. For this purpose, we use the leading-order anisotropic hydrodynamics equations which assume that the distribution function is ellipsoidally symmetric in local-rest-frame momentum. We then prove that the SO(3){sub q} symmetry in de Sitter space constrains the anisotropy tensor to be of spheroidal form with only one independent anisotropy parameter remaining. As a consequence, the exact solution reduces to the problem of solving two coupled non-linear differential equations. We show that, in the limit that the relaxation time goes to zero, one obtains Gubser's ideal hydrodynamic solution and, in the limit that the relaxation time goes to infinity, one obtains the exact free streaming solution obtained originally by Denicol et al. For finite relaxation time, we solve the equations numerically and compare to the exact solution of the relaxation-time-approximation Boltzmann equation subject to Gubser flow. Using this as our standard, we find that anisotropic hydrodynamics describes the spatio-temporal evolution of the system better than all currently known dissipative hydrodynamics approaches.

  18. Hydrodynamic Modeling and Its Application in AUC.

    Science.gov (United States)

    Rocco, Mattia; Byron, Olwyn

    2015-01-01

    The hydrodynamic parameters measured in an AUC experiment, s(20,w) and D(t)(20,w)(0), can be used to gain information on the solution structure of (bio)macromolecules and their assemblies. This entails comparing the measured parameters with those that can be computed from usually "dry" structures by "hydrodynamic modeling." In this chapter, we will first briefly put hydrodynamic modeling in perspective and present the basic physics behind it as implemented in the most commonly used methods. The important "hydration" issue is also touched upon, and the distinction between rigid bodies versus those for which flexibility must be considered in the modeling process is then made. The available hydrodynamic modeling/computation programs, HYDROPRO, BEST, SoMo, AtoB, and Zeno, the latter four all implemented within the US-SOMO suite, are described and their performance evaluated. Finally, some literature examples are presented to illustrate the potential applications of hydrodynamics in the expanding field of multiresolution modeling. © 2015 Elsevier Inc. All rights reserved.

  19. Hydrodynamic and microbial processes controlling nitrate in a fissured-porous karst aquifer of the Franconian Alb, southern Germany.

    Science.gov (United States)

    Einsiedl, Florian; Mayer, Bernhard

    2006-11-01

    Concentrations and stable isotope compositions of nitrate from 11 karst springs in the Franconian Alb (southern Germany) were determined during low flow and high flow conditions to assess sources and processes affecting groundwater nitrate. During low flow, nitrate concentrations in groundwater were around 0.10 mM in springs draining forested catchments, whereas in agricultural areas nitrate concentrations were typically higher reaching up to 0.93 mM. The isotopic composition of groundwater nitrate during low flow (delta15N values of -3.1 to 6.7% per hundred, delta180 values of +2.1 to 4.0% per hundred) in concert with concentration data suggests that nitrate is formed by nitrification in forest and agricultural soils. In addition, synthetic fertilizer N that has undergone immobilization and subsequent remineralization likely constitutes an additional nitrate source in agriculturally used catchments. During recharge conditions, concentrations and delta15N values of groundwater nitrate changed little, but delta18O values were significantly elevated (up to 24.5%o per hundred suggesting that around 25% of the nitrate was directly derived from atmospheric deposition. Groundwater dating revealed that low nitrate concentrations in groundwater (_> or =0 years) are consistent with a mixture of old low nitrate-containing and young water, the latter being affected by anthropogenic N inputs predominantly in the agriculturally used catchment areas during the last few decades. Thermodynamic and hydrogeological evidence also suggests that denitrification may have occurred in the porous rock matrix of the karst aquifer. This study demonstrates that a combination of hydrodynamic, chemical, and isotopic approaches provides unique insights into the sources and the biogeochemical history of nitrate in karst aquifers, and therefore constitutes a valuable tool for assessing the vulnerability of karst aquifers to nitrate pollution in dependence on land use and assessing their self

  20. Dynamo efficiency controlled by hydrodynamic bistability.

    Science.gov (United States)

    Miralles, Sophie; Herault, Johann; Herault, Johann; Fauve, Stephan; Gissinger, Christophe; Pétrélis, François; Daviaud, François; Dubrulle, Bérengère; Boisson, Jean; Bourgoin, Mickaël; Verhille, Gautier; Odier, Philippe; Pinton, Jean-François; Plihon, Nicolas

    2014-06-01

    Hydrodynamic and magnetic behaviors in a modified experimental setup of the von Kármán sodium flow-where one disk has been replaced by a propeller-are investigated. When the rotation frequencies of the disk and the propeller are different, we show that the fully turbulent hydrodynamic flow undergoes a global bifurcation between two configurations. The bistability of these flow configurations is associated with the dynamics of the central shear layer. The bistable flows are shown to have different dynamo efficiencies; thus for a given rotation rate of the soft-iron disk, two distinct magnetic behaviors are observed depending on the flow configuration. The hydrodynamic transition controls the magnetic field behavior, and bifurcations between high and low magnetic field branches are investigated.

  1. Hyperbolic metamaterial lens with hydrodynamic nonlocal response

    DEFF Research Database (Denmark)

    Yan, Wei; Mortensen, N. Asger; Wubs, Martijn

    2013-01-01

    We investigate the effects of hydrodynamic nonlocal response in hyperbolic metamaterials (HMMs), focusing on the experimentally realizable parameter regime where unit cells are much smaller than an optical wavelength but much larger than the wavelengths of the longitudinal pressure waves of the f......We investigate the effects of hydrodynamic nonlocal response in hyperbolic metamaterials (HMMs), focusing on the experimentally realizable parameter regime where unit cells are much smaller than an optical wavelength but much larger than the wavelengths of the longitudinal pressure waves...... in the local-response approximation and in the hydrodynamic Drude model can differ considerably. In particular, the optimal frequency for imaging in the nonlocal theory is blueshifted with respect to that in the local theory. Thus, to detect whether nonlocal response is at work in a hyperbolic metamaterial, we...... propose to measure the near-field distribution of a hyperbolic metamaterial lens....

  2. The RAGE radiation-hydrodynamic code

    CERN Document Server

    Gittings, Michael; Clover, Michael; Betlach, Thomas; Byrne, Nelson; Coker, Robert; Dendy, Edward; Hueckstaedt, Robert; New, Kim; Oakes, W Rob; Ranta, Dale; Stefan, Ryan

    2008-01-01

    We describe RAGE, the ``Radiation Adaptive Grid Eulerian'' radiation-hydrodynamics code, including its data structures, its parallelization strategy and performance, its hydrodynamic algorithm(s), its (gray) radiation diffusion algorithm, and some of the considerable amount of verification and validation efforts. The hydrodynamics is a basic Godunov solver, to which we have made significant improvements to increase the advection algorithm's robustness and to converge stiffnesses in the equation of state. Similarly, the radiation transport is a basic gray diffusion, but our treatment of the radiation-material coupling, wherein we converge nonlinearities in a novel manner to allow larger timesteps and more robust behavior, can be applied to any multi-group transport algorithm.

  3. The RAGE radiation-hydrodynamic code

    Energy Technology Data Exchange (ETDEWEB)

    Gittings, Michael; Clover, Michael; Betlach, Thomas; Byrne, Nelson; Ranta, Dale [Science Applications International Corp. MS A-1, 10260 Campus Point Drive, San Diego, CA 92121 (United States); Weaver, Robert; Coker, Robert; Dendy, Edward; Hueckstaedt, Robert; New, Kim; Oakes, W Rob [Los Alamos National Laboratory, MS T087, PO Box 1663, Los Alamos, NM 87545 (United States); Stefan, Ryan [TaylorMade-adidas Golf, 5545 Fermi Court, Carlsbad, CA 92008-7324 (United States)], E-mail: michael.r.clover@saic.com

    2008-10-01

    We describe RAGE, the 'radiation adaptive grid Eulerian' radiation-hydrodynamics code, including its data structures, its parallelization strategy and performance, its hydrodynamic algorithm(s), its (gray) radiation diffusion algorithm, and some of the considerable amount of verification and validation efforts. The hydrodynamics is a basic Godunov solver, to which we have made significant improvements to increase the advection algorithm's robustness and to converge stiffnesses in the equation of state. Similarly, the radiation transport is a basic gray diffusion, but our treatment of the radiation-material coupling, wherein we converge nonlinearities in a novel manner to allow larger timesteps and more robust behavior, can be applied to any multi-group transport algorithm.

  4. Dissecting the regulation of pollen tube growth by modelling the interplay of hydrodynamics, cell wall and ion dynamics

    Directory of Open Access Journals (Sweden)

    Junli eLiu

    2014-08-01

    Full Text Available Hydrodynamics, cell wall and ion dynamics are all important properties that regulate pollen tube growth. Currently, the two main pollen tube growth models, the cell wall model and the hydrodynamic model do not appear to be reconcilable. Here we develop an integrative model for pollen tube growth and show that our model reproduces key experimental observations: 1 that the hypertonic condition leads to a much longer oscillatory period and that the hypotonic condition halves the oscillatory period; 2 that oscillations in turgor are experimentally undetectable; 3 that increasing the extracellular calcium concentration or decreasing the pH decreases the growth oscillatory amplitude; 4 that knockout of Raba4d, a member of the Rab family of small GTPase proteins, decreases pollen tube length after germination for 24 hours. Using the model generated here, we reveal that 1 when cell wall extensibility is large, pollen tube may sustain growth at different volume changes and maintain relatively stable turgor; 2 turgor increases if cell wall extensibility decreases; 3 increasing turgor due to decrease in osmolarity in the media, although very small, increases volume change . However, increasing turgor due to decrease in cell wall extensibility decreases volume change. In this way regulation of pollen tube growth by turgor is context dependent. By changing the osmolarity in the media, the main regulatory points are extracellular osmolarity for water flow and turgor for the volume encompassed by the cell wall. However, if the viscosity of cell wall changes, the main regulatory points are turgor for water flow and wall extensibility for the volume encompassed by the cell wall. The novel methodology developed here reveals the underlying context-dependent regulatory principle of pollen tube growth.

  5. Quantitation of 4-Methyl-4-sulfanylpentan-2-one (4MSP) in Hops by a Stable Isotope Dilution Assay in Combination with GC×GC-TOFMS: Method Development and Application To Study the Influence of Variety, Provenance, Harvest Year, and Processing on 4MSP Concentrations.

    Science.gov (United States)

    Reglitz, Klaas; Steinhaus, Martin

    2017-03-22

    A stable isotope dilution assay was developed for quantitation of 4-methyl-4-sulfanylpentan-2-one (4MSP) in hops. The approach included the use of 4-(13C)methyl-4-sulfanyl(1,3,5-13C3)pentan-2-one as internal standard, selective isolation of hop thiols by mercurated agarose, and GC×GC-TOFMS analysis. Application of the method to 53 different hop samples revealed 4MSP concentrations between Hop processing such as drying and pelletizing had only a minor impact on 4MSP concentrations. Like the majority of other hop volatiles, 4MSP is predominantly located in the lupulin glands.

  6. Hydrodynamics of an open vibrated granular system

    Energy Technology Data Exchange (ETDEWEB)

    Brey, J. Javier; Ruiz-Montero, M. J.; Moreno, F.

    2001-06-01

    Using the hydrodynamic description and molecular dynamics simulations, the steady state of a fluidized granular system in the presence of gravity is studied. For an open system, the density profile exhibits a maximum, while the temperature profile goes through a minimum at high altitude, beyond that the temperature increases with the height. The existence of the minimum is explained by the hydrodynamic equations if the presence of a collisionless boundary layer is taken into account. The energy dissipated by interparticle collisions is also computed. A good agreement is found between theory and simulation. The relationship with previous works is discussed.

  7. Introduction to physics mechanics, hydrodynamics thermodynamics

    CERN Document Server

    Frauenfelder, P

    2013-01-01

    Introduction of Physics: Mechanics , Hydrodynamics, Thermodynamics covers the principles of matter and its motion through space and time, as well as the related concepts of energy and force. This book is composed of eleven chapters, and begins with an introduction to the basic principles of mechanics, hydrodynamics, and thermodynamics. The subsequent chapters deal with the statics of rigid bodies and the dynamics of particles and rigid bodies. These topics are followed by discussions on elasticity, mechanics of fluids, the basic concept of thermodynamic, kinetic theory, and crystal structure o

  8. FDTD for Hydrodynamic Electron Fluid Maxwell Equations

    Directory of Open Access Journals (Sweden)

    Yingxue Zhao

    2015-05-01

    Full Text Available In this work, we develop a numerical method for solving the three dimensional hydrodynamic electron fluid Maxwell equations that describe the electron gas dynamics driven by an external electromagnetic wave excitation. Our numerical approach is based on the Finite-Difference Time-Domain (FDTD method for solving the Maxwell’s equations and an explicit central finite difference method for solving the hydrodynamic electron fluid equations containing both electron density and current equations. Numerical results show good agreement with the experiment of studying the second-harmonic generation (SHG from metallic split-ring resonator (SRR.

  9. Fish stocking density impacts tank hydrodynamics

    DEFF Research Database (Denmark)

    Rasmussen, Michael R.; Lunger, Angela; Laursen, Jesper

    2006-01-01

    The effect of stocking density upon the hydrodynamics of a circular tank, configured in a recirculation system, was investigated. Red drums Sciaenops ocellatus of approximately 140 g wet weight, were stocked at five rates varying from 0 to 12 kg m-3. The impact of the presence of fish upon tank...... hydrodynamics was established using in-tank-based Rhodamine WT fluorometry at a flow rate of 0.23 l s-1 (tank exchange rate of 1.9 h-1). With increasing numbers of animals, curvilinear relationships were observed for dispersion coefficients and tank mixing times. Stocking densities of 3, 6, 9 and 12 kg m-3...

  10. Parity breaking transport in Lifshitz hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Hoyos, Carlos [Department of Physics, Universidad de Oviedo, Avda. Calvo Sotelo 18, 33007, Oviedo (Spain); Meyer, Adiel; Oz, Yaron [Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel)

    2015-09-07

    We derive the constitutive relations of first order charged hydrodynamics for theories with Lifshitz scaling and broken parity in 2+1 and 3+1 spacetime dimensions. In addition to the anomalous (in 3+1) or Hall (in 2+1) transport of relativistic hydrodynamics, there is an additional non-dissipative transport allowed by the absence of boost invariance. We analyze the non-relativistic limit and use a phenomenological model of a strange metal to argue that these effects can be measured in principle by using electromagnetic fields with non-zero gradients.

  11. Impact of hydrodynamic stresses on bacterial flagella

    Science.gov (United States)

    Das, Debasish; Riley, Emily; Lauga, Eric

    2017-11-01

    The locomotion of bacteria powered by helical filaments, such as Escherichia coli, critically involves the generation of flows and hydrodynamic stresses which lead to forces and moments balanced by the moment applied by the bacterial rotary motor (which is embedded in the cell wall) and the deformation of the short flexible hook. In this talk we use numerical computations to accurately compute these hydrodynamic stresses, to show how they critically lead to fluid-structure instabilities at the whole-cell level, and enquire if they can be used to rationalise experimental measurements of bacterial motor torques. ERC Consolidator Grant.

  12. INVERSE STABLE SUBORDINATORS.

    Science.gov (United States)

    Meerschaert, Mark M; Straka, Peter

    2013-01-01

    The inverse stable subordinator provides a probability model for time-fractional differential equations, and leads to explicit solution formulae. This paper reviews properties of the inverse stable subordinator, and applications to a variety of problems in mathematics and physics. Several different governing equations for the inverse stable subordinator have been proposed in the literature. This paper also shows how these equations can be reconciled.

  13. Stable Boundary Layer Issues

    OpenAIRE

    Steeneveld, G.J.

    2012-01-01

    Understanding and prediction of the stable atmospheric boundary layer is a challenging task. Many physical processes are relevant in the stable boundary layer, i.e. turbulence, radiation, land surface coupling, orographic turbulent and gravity wave drag, and land surface heterogeneity. The development of robust stable boundary layer parameterizations for use in NWP and climate models is hampered by the multiplicity of processes and their unknown interactions. As a result, these models suffer ...

  14. INVERSE STABLE SUBORDINATORS

    Science.gov (United States)

    MEERSCHAERT, MARK M.; STRAKA, PETER

    2013-01-01

    The inverse stable subordinator provides a probability model for time-fractional differential equations, and leads to explicit solution formulae. This paper reviews properties of the inverse stable subordinator, and applications to a variety of problems in mathematics and physics. Several different governing equations for the inverse stable subordinator have been proposed in the literature. This paper also shows how these equations can be reconciled. PMID:25045216

  15. Degradation of alachlor in aqueous solution by using hydrodynamic cavitation.

    Science.gov (United States)

    Wang, Xikui; Zhang, Yong

    2009-01-15

    The degradation of alachlor aqueous solution by using hydrodynamic cavitation was systematically investigated. It was found that alachlor in aqueous solution can be deomposed with swirling jet-induced cavitation. The degradation can be described by a pseudo-first-order kinetics and the degradation rate was found to be 4.90x10(-2)min(-1). The effects of operating parameters such as fluid pressure, solution temperature, initial concentration of alachlor and medium pH on the degradation rates of alachlor were also discussed. The results showed that the degradation rates of alachlor increased with increasing pressure and decreased with increasing initial concentration. An optimum temperature of 40 degrees C existed for the degradation rate of alachlor and the degradation rate was also found to be slightly depend on medium pH. Many degradation products formed during the process, and some of them were qualitatively identified by GC-MS.

  16. Comparison of Metabolite Concentrations in the Left Dorsolateral Prefrontal Cortex, the Left Frontal White Matter, and the Left Hippocampus in Patients in Stable Schizophrenia Treated with Antipsychotics with or without Antidepressants. 1H-NMR Spectroscopy Study

    Directory of Open Access Journals (Sweden)

    Dominik Strzelecki

    2015-10-01

    Full Text Available Managing affective, negative, and cognitive symptoms remains the most difficult therapeutic problem in stable phase of schizophrenia. Efforts include administration of antidepressants. Drugs effects on brain metabolic parameters can be evaluated by means of proton nuclear magnetic resonance (1H-NMR spectroscopy. We compared spectroscopic parameters in the left prefrontal cortex (DLPFC, the left frontal white matter (WM and the left hippocampus and assessed the relationship between treatment and the spectroscopic parameters in both groups. We recruited 25 patients diagnosed with schizophrenia (DSM-IV-TR, with dominant negative symptoms and in stable clinical condition, who were treated with antipsychotic and antidepressive medication for minimum of three months. A group of 25 patients with schizophrenia, who were taking antipsychotic drugs but not antidepressants, was matched. We compared metabolic parameters (N-acetylaspartate (NAA, myo-inositol (mI, glutamatergic parameters (Glx, choline (Cho, and creatine (Cr between the two groups. All patients were also assessed with the Positive and Negative Syndrome Scale (PANSS and the Calgary Depression Scale for Schizophrenia (CDSS. In patients receiving antidepressants we observed significantly higher NAA/Cr and NAA/Cho ratios within the DLPFC, as well as significantly higher mI/Cr within the frontal WM. Moreover, we noted significantly lower values of parameters associated with the glutamatergic transmission—Glx/Cr and Glx/Cho in the hippocampus. Doses of antipsychotic drugs in the group treated with antidepressants were also significantly lower in the patients showing similar severity of psychopathology.

  17. Stochastic-hydrodynamic model of halo formation in charged particle beams

    Directory of Open Access Journals (Sweden)

    Nicola Cufaro Petroni

    2003-03-01

    Full Text Available The formation of the beam halo in charged particle accelerators is studied in the framework of a stochastic-hydrodynamic model for the collective motion of the particle beam. In such a stochastic-hydrodynamic theory the density and the phase of the charged beam obey a set of coupled nonlinear hydrodynamic equations with explicit time-reversal invariance. This leads to a linearized theory that describes the collective dynamics of the beam in terms of a classical Schrödinger equation. Taking into account space-charge effects, we derive a set of coupled nonlinear hydrodynamic equations. These equations define a collective dynamics of self-interacting systems much in the same spirit as in the Gross-Pitaevskii and Landau-Ginzburg theories of the collective dynamics for interacting quantum many-body systems. Self-consistent solutions of the dynamical equations lead to quasistationary beam configurations with enhanced transverse dispersion and transverse emittance growth. In the limit of a frozen space-charge core it is then possible to determine and study the properties of stationary, stable core-plus-halo beam distributions. In this scheme the possible reproduction of the halo after its elimination is a consequence of the stationarity of the transverse distribution which plays the role of an attractor for every other distribution.

  18. The calculation of hydrodynamic coefficients for underwater vehicles

    National Research Council Canada - National Science Library

    Jones, D. A

    2002-01-01

    .... As part of an examination of the requirements for the hydrodynamics and maneuverability of these vehicles MPD has been tasked with the development of models to determine the hydrodynamic coefficients...

  19. Evolutionary Stable Strategy

    Indian Academy of Sciences (India)

    IAS Admin

    After Maynard-Smith and Price [1] mathematically derived why a given behaviour or strategy was adopted by a certain proportion of the population at a given time, it was shown that a strategy which is currently stable in a population need not be stable in evolutionary time (across generations). Additionally it was sug-.

  20. Stable Boundary Layer Issues

    NARCIS (Netherlands)

    Steeneveld, G.J.

    2012-01-01

    Understanding and prediction of the stable atmospheric boundary layer is a challenging task. Many physical processes are relevant in the stable boundary layer, i.e. turbulence, radiation, land surface coupling, orographic turbulent and gravity wave drag, and land surface heterogeneity. The

  1. Bistable synchronization modes in hydrodynamically coupled micro-rotors

    Science.gov (United States)

    Guo, Hanliang; Kanale, Anup; Fuerthauer, Sebastian; Kanso, Eva

    2017-11-01

    Cilia often beat in synchrony, and they may transition between different synchronization modes in the same cell type. For example, cilia in the mammalian brain ventricles are reported to periodically change their collective beat orientation, providing a cilia-based switch for redirecting the transport of cerebrospinal fluid. Experimental and theoretical evidences suggest that phase coordinations can be achieved solely via hydrodynamical interactions. However, the exact mechanisms responsible for transitioning between various synchronization modes remain illusive. Here, we use a theoretical model where each cilium is represented by a bead moving along a closed trajectory close to a no-slip surface. We investigate the emergent synchronization modes and their stability for various cilia-inspired force profiles. We observe distinct stable synchronization modes between two rotors, including a bistable regime where both in-phase and anti-phase synchronizations are stable. We then extend this analysis to an array of rotors where we demonstrate the dynamical formations of metachronal waves. These findings may help us to understand the origin of synchrony in biological and bio-inspired systems, and the mechanisms underlying transitions between different synchronization modes.

  2. Crystallization: Key thermodynamic, kinetic and hydrodynamic aspects

    Indian Academy of Sciences (India)

    In spite of the wide-spread use of crystallization, a clear understanding of the thermodynamic, kinetic and hydrodynamic aspects of the design methodologies are not yet well established. More often than not crystallization is still considered an art especially in fine-chemicals, pharmaceuticals and life-sciences sector.

  3. Hydrodynamic erosion process of undisturbed clay

    NARCIS (Netherlands)

    Zhao, G.; Visser, P.J.; Vrijling, J.K.

    2011-01-01

    This paper describes the hydrodynamic erosion process of undisturbed clay due to the turbulent flow, based on theoretical analysis and experimental results. The undisturbed clay has the unique and complicated characteristics of cohesive force among clay particles, which are highly different from

  4. Microflow Cytometers with Integrated Hydrodynamic Focusing

    Directory of Open Access Journals (Sweden)

    Martin Schmidt

    2013-04-01

    Full Text Available This study demonstrates the suitability of microfluidic structures for high throughput blood cell analysis. The microfluidic chips exploit fully integrated hydrodynamic focusing based on two different concepts: Two-stage cascade focusing and spin focusing (vortex principle. The sample—A suspension of micro particles or blood cells—is injected into a sheath fluid streaming at a substantially higher flow rate, which assures positioning of the particles in the center of the flow channel. Particle velocities of a few m/s are achieved as required for high throughput blood cell analysis. The stability of hydrodynamic particle positioning was evaluated by measuring the pulse heights distributions of fluorescence signals from calibration beads. Quantitative assessment based on coefficient of variation for the fluorescence intensity distributions resulted in a value of about 3% determined for the micro-device exploiting cascade hydrodynamic focusing. For the spin focusing approach similar values were achieved for sample flow rates being 1.5 times lower. Our results indicate that the performances of both variants of hydrodynamic focusing suit for blood cell differentiation and counting. The potential of the micro flow cytometer is demonstrated by detecting immunologically labeled CD3 positive and CD4 positive T-lymphocytes in blood.

  5. Macroscopic liquid-state molecular hydrodynamics.

    Science.gov (United States)

    Keanini, R G; Tkacik, Peter T; Fleischhauer, Eric; Shahinian, Hossein; Sholar, Jodie; Azimi, Farzad; Mullany, Brid

    2017-01-31

    Experimental evidence and theoretical modeling suggest that piles of confined, high-restitution grains, subject to low-amplitude vibration, can serve as experimentally-accessible analogs for studying a range of liquid-state molecular hydrodynamic processes. Experiments expose single-grain and multiple-grain, collective dynamic features that mimic those either observed or predicted in molecular-scale, liquid state systems, including: (i) near-collision-time-scale hydrodynamic organization of single-molecule dynamics, (ii) nonequilibrium, long-time-scale excitation of collective/hydrodynamic modes, and (iii) long-time-scale emergence of continuum, viscous flow. In order to connect directly observable macroscale granular dynamics to inaccessible and/or indirectly measured molecular hydrodynamic processes, we recast traditional microscale equilibrium and nonequilibrium statistical mechanics for dense, interacting microscale systems into self-consistent, macroscale form. The proposed macroscopic models, which appear to be new with respect to granular physics, and which differ significantly from traditional kinetic-theory-based, macroscale statistical mechanics models, are used to rigorously derive the continuum equations governing viscous, liquid-like granular flow. The models allow physically-consistent interpretation and prediction of observed equilibrium and non-equilibrium, single-grain, and collective, multiple-grain dynamics.

  6. Н(1) Gauge theory as quantum hydrodynamics

    Indian Academy of Sciences (India)

    January 2004 physics pp. 101-114. Н(1) Gauge theory as quantum hydrodynamics. GIRIsH s sETLUR ... there is work by Ceperley [4] using quantum Monte Carlo. The main point of this article is to highlight the ..... Fermi liquid theory break down in two or three dimensions?' In two dimensions, for the interaction νХ = const.

  7. Maximum entropy Eddington factors. [Radiation hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Minerbo, G.N.

    1977-07-01

    A technique from statistical mechanics is applied to the problem of determining the most probable value of the Eddington tensor given the zeroth and first moment of the intensity. The result is applicable to two- and three-dimensional configurations and is intended for use in large radiation hydrodynamics calculations. 1 figure.

  8. Does earthworms density really modify soil's hydrodynamic ...

    African Journals Online (AJOL)

    It was carried out on the meadows soils of the valley of Wadi Bousselam. Although the treated water has high organic and particulate filler, it improved the earthworm abundance, total porosity and hydraulic conductivity of the soil. Keywords: meadows soils; earthworm density; soil morphology; treated water; hydrodynamic ...

  9. Hydrodynamic forces on inundated bridge decks

    Science.gov (United States)

    2009-05-01

    The hydrodynamic forces experienced by an inundated bridge deck have great importance in the design of bridges. Specifically, the drag force, lift force, and the moment acting on the bridge deck under various levels of inundation and a range of flow ...

  10. Hydrodynamic Gradient Expansion in Gauge Theory Plasmas,

    NARCIS (Netherlands)

    Heller, M.P.; Janik, R.A.; Witaszczyk, P

    2013-01-01

    We utilize the fluid-gravity duality to investigate the large order behavior of hydrodynamic gradient expansion of the dynamics of a gauge theory plasma system. This corresponds to the inclusion of dissipative terms and transport coefficients of very high order. Using the dual gravity description,

  11. Stabilizing geometry for hydrodynamic rotary seals

    Science.gov (United States)

    Dietle, Lannie L.; Schroeder, John E.

    2010-08-10

    A hydrodynamic sealing assembly including a first component having first and second walls and a peripheral wall defining a seal groove, a second component having a rotatable surface relative to said first component, and a hydrodynamic seal comprising a seal body of generally ring-shaped configuration having a circumference. The seal body includes hydrodynamic and static sealing lips each having a cross-sectional area that substantially vary in time with each other about the circumference. In an uninstalled condition, the seal body has a length defined between first and second seal body ends which varies in time with the hydrodynamic sealing lip cross-sectional area. The first and second ends generally face the first and second walls, respectively. In the uninstalled condition, the first end is angulated relative to the first wall and the second end is angulated relative to the second wall. The seal body has a twist-limiting surface adjacent the static sealing lip. In the uninstalled condition, the twist-limiting surface is angulated relative to the peripheral wall and varies along the circumference. A seal body discontinuity and a first component discontinuity mate to prevent rotation of the seal body relative to the first component.

  12. Students' Conceptual Difficulties in Hydrodynamics

    Science.gov (United States)

    Suarez, Alvaro; Kahan, Sandra; Zavala, Genaro; Marti, Arturo C.

    2017-01-01

    We describe a study on the conceptual difficulties faced by college students in understanding hydrodynamics of ideal fluids. This study was based on responses obtained in hundreds of written exams complemented with several oral interviews, which were held with first-year engineering and science university students. Their responses allowed us to…

  13. Hydrodynamic Lubrication Analysis Of Slider Bearings Lubricated ...

    African Journals Online (AJOL)

    Hydrodynamic Lubrication Analysis Of Slider Bearings Lubricated With Micropolar Fluids. ... The finite element method and Gauss Seidel iterative procedure have been used to simulate the modified Reynolds equation governing the micropolar lubricant flow in the bearing. The variations of pressure and load capacity are ...

  14. Hydrodynamic flow induced anisotropy in colloid adsorption

    NARCIS (Netherlands)

    Loenhout, Marijn T.J.; Kooij, Ernst S.; Wormeester, Herbert; Poelsema, Bene

    2009-01-01

    The possibility to induce structure in layers of colloid particles by using the hydrodynamic blocking effect is investigated both experimentally and by using Monte Carlo simulations. Latex particles with diameters of 1.1 m and 0.46 m are deposited on 3-amino-propyltriethoxysilane (APTES)

  15. Impact of Hydrodynamics on Oral Biofilm Strength

    NARCIS (Netherlands)

    Paramonova, E.; Kalmykowa, O. J.; van der Mei, H. C.; Busscher, H. J.; Sharma, P. K.

    2009-01-01

    Mechanical removal of oral biofilms is ubiquitously accepted as the best way to prevent caries and periodontal diseases. Removal effectiveness strongly depends on biofilm strength. To investigate the influence of hydrodynamics on oral biofilm strength, we grew single- and multi-species biofilms of

  16. Magneto-hydrodynamical model for plasma

    Science.gov (United States)

    Liu, Ruikuan; Yang, Jiayan

    2017-10-01

    Based on the Newton's second law and the Maxwell equations for the electromagnetic field, we establish a new 3-D incompressible magneto-hydrodynamics model for the motion of plasma under the standard Coulomb gauge. By using the Galerkin method, we prove the existence of a global weak solution for this new 3-D model.

  17. The hydrodynamic description of pseudorapidity distributions at ...

    Indian Academy of Sciences (India)

    The hot and dense matter produced in nucleus–nucleus collisions is supposed to expand accordingto unified hydrodynamics, one of the few theoretical models that can be worked out exactly. The solutionis then used to formulate the rapidity distribution of charged particles frozen out from the fluid on thespace-like ...

  18. Macroscopic liquid-state molecular hydrodynamics

    Science.gov (United States)

    Keanini, R. G.; Tkacik, Peter T.; Fleischhauer, Eric; Shahinian, Hossein; Sholar, Jodie; Azimi, Farzad; Mullany, Brid

    2017-01-01

    Experimental evidence and theoretical modeling suggest that piles of confined, high-restitution grains, subject to low-amplitude vibration, can serve as experimentally-accessible analogs for studying a range of liquid-state molecular hydrodynamic processes. Experiments expose single-grain and multiple-grain, collective dynamic features that mimic those either observed or predicted in molecular-scale, liquid state systems, including: (i) near-collision-time-scale hydrodynamic organization of single-molecule dynamics, (ii) nonequilibrium, long-time-scale excitation of collective/hydrodynamic modes, and (iii) long-time-scale emergence of continuum, viscous flow. In order to connect directly observable macroscale granular dynamics to inaccessible and/or indirectly measured molecular hydrodynamic processes, we recast traditional microscale equilibrium and nonequilibrium statistical mechanics for dense, interacting microscale systems into self-consistent, macroscale form. The proposed macroscopic models, which appear to be new with respect to granular physics, and which differ significantly from traditional kinetic-theory-based, macroscale statistical mechanics models, are used to rigorously derive the continuum equations governing viscous, liquid-like granular flow. The models allow physically-consistent interpretation and prediction of observed equilibrium and non-equilibrium, single-grain, and collective, multiple-grain dynamics.

  19. On a model in radiation hydrodynamics

    OpenAIRE

    Ducomet, Bernard; Feireisl, Eduard; Nečasová, Šárka

    2011-01-01

    We consider a simplified model arising in radiation hydrodynamics based on the Navier–Stokes–Fourier system describing the macroscopic fluid motion, and a transport equation modeling the propagation of radiative intensity. We establish global-in-time existence for the associated initial–boundary value problem in the framework of weak solutions.

  20. Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity.

    Science.gov (United States)

    Font, José A

    2008-01-01

    This article presents a comprehensive overview of numerical hydrodynamics and magneto-hydrodynamics (MHD) in general relativity. Some significant additions have been incorporated with respect to the previous two versions of this review (2000, 2003), most notably the coverage of general-relativistic MHD, a field in which remarkable activity and progress has occurred in the last few years. Correspondingly, the discussion of astrophysical simulations in general-relativistic hydrodynamics is enlarged to account for recent relevant advances, while those dealing with general-relativistic MHD are amply covered in this review for the first time. The basic outline of this article is nevertheless similar to its earlier versions, save for the addition of MHD-related issues throughout. Hence, different formulations of both the hydrodynamics and MHD equations are presented, with special mention of conservative and hyperbolic formulations well adapted to advanced numerical methods. A large sample of numerical approaches for solving such hyperbolic systems of equations is discussed, paying particular attention to solution procedures based on schemes exploiting the characteristic structure of the equations through linearized Riemann solvers. As previously stated, a comprehensive summary of astrophysical simulations in strong gravitational fields is also presented. These are detailed in three basic sections, namely gravitational collapse, black-hole accretion, and neutron-star evolutions; despite the boundaries, these sections may (and in fact do) overlap throughout the discussion. The material contained in these sections highlights the numerical challenges of various representative simulations. It also follows, to some extent, the chronological development of the field, concerning advances in the formulation of the gravitational field, hydrodynamics and MHD equations and the numerical methodology designed to solve them. To keep the length of this article reasonable, an effort has

  1. 78 FR 9907 - Hydrodynamics, Inc.; Notice Denying Late Intervention

    Science.gov (United States)

    2013-02-12

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Hydrodynamics, Inc.; Notice Denying Late Intervention On June 24, 2010, Commission staff issued a three-year preliminary permit to Hydrodynamics, Inc. (Hydrodynamics) to study the...

  2. Disinfection of Escherichia coli bacteria using hybrid method of ozonation and hydrodynamic cavitation with orifice plate

    Science.gov (United States)

    Karamah, Eva F.; Ghaudenson, Rioneli; Amalia, Fitri; Bismo, Setijo

    2017-11-01

    This research aims to evaluate the performance of hybrid method of ozonation and hydrodynamic cavitation with orifice plate on E.coli bacteria disinfection. In this research, ozone dose, circulation flowrate, and disinfection method were varied. Ozone was produced by commercial ozonator with ozone dose of 64.83 mg/hour, 108.18 mg/hour, and 135.04 mg/hour. Meanwhile, hydrodynamic cavitation was generated by an orifice plate. The disinfection method compared in this research were: hydrodynamic cavitation, ozonation, and the combination of both. The best result on each method was achieved on the 60th minutes and with a circulation flowrate of 7 L/min. The hybrid method attained final concentration of 0 CFU/mL from the initial concentration of 2.10 × 105 CFU/mL. The ozonation method attained final concentration of 0 CFU/mL from the initial concentration of 1.32 × 105 CFU/mL. Cavitation method gives the least disinfection with final concentration of 5.20 × 104 CFU/mL from the initial concentration of 2.17 × 105 CFU/mL. In conclusion, hybrid method gives a faster and better disinfection of E.coli than each method on its own.

  3. Numerical Study of Hydrodynamic Forces for AFM Operations in Liquid

    Directory of Open Access Journals (Sweden)

    Tobias Berthold

    2017-01-01

    Full Text Available For advanced atomic force microscopy (AFM investigation of chemical surface modifications or very soft organic sample surfaces, the AFM probe tip needs to be operated in a liquid environment because any attractive or repulsive forces influenced by the measurement environment could obscure molecular forces. Due to fluid properties, the mechanical behavior of the AFM cantilever is influenced by the hydrodynamic drag force due to viscous friction with the liquid. This study provides a numerical model based on computational fluid dynamics (CFD and investigates the hydrodynamic drag forces for different cantilever geometries and varying fluid conditions for Peakforce Tapping (PFT in liquids. The developed model was verified by comparing the predicted values with published results of other researchers and the findings confirmed that drag force dependence on tip speed is essentially linear in nature. We observed that triangular cantilever geometry provides significant lower drag forces than rectangular geometry and that short cantilever offers reduced flow resistance. The influence of different liquids such as ultrapure water or an ethanol-water mixture as well as a temperature induced variation of the drag force could be demonstrated. The acting forces are lowest in ultrapure water, whereas with increasing ethanol concentrations the drag forces increase.

  4. Loss of water from Venus. I - Hydrodynamic escape of hydrogen

    Science.gov (United States)

    Kasting, J. F.; Pollack, J. B.

    1983-01-01

    A one-dimensional photochemical-dynamic model is used to study hydrodynamic loss of hydrogen from a primitive, water-rich atmosphere on Venus. The escape flux is calculated as a function of the H2O mixing ratio at the atmospheric cold trap. The cold trap mixing ratio is then related in an approximate fashion to the H2O concentration in the lower atmosphere. Hydrodynamic escape should have been the dominant loss process for hydroogen when the H2O mass mixing ratio in the lower atmosphere exceeded approximately 0.1. The escape rate would have depended upon the magnitude of the solar ultraviolet flux and the atmospheric EUV heating efficiency and, to a lesser extent, on the O2 content of the atmosphere. The time required for Venus to have lost the bulk of a terrestrial ocean of water is on the order of a billion years. Deuterium would have been swept away along with hydrogen if the escape rate was high enough, but some D/H enrichment should have occurred as the escape rate slowed down.

  5. Numerical Study of Hydrodynamic Forces for AFM Operations in Liquid.

    Science.gov (United States)

    Berthold, Tobias; Benstetter, Guenther; Frammelsberger, Werner; Rodríguez, Rosana; Nafría, Montserrat

    2017-01-01

    For advanced atomic force microscopy (AFM) investigation of chemical surface modifications or very soft organic sample surfaces, the AFM probe tip needs to be operated in a liquid environment because any attractive or repulsive forces influenced by the measurement environment could obscure molecular forces. Due to fluid properties, the mechanical behavior of the AFM cantilever is influenced by the hydrodynamic drag force due to viscous friction with the liquid. This study provides a numerical model based on computational fluid dynamics (CFD) and investigates the hydrodynamic drag forces for different cantilever geometries and varying fluid conditions for Peakforce Tapping (PFT) in liquids. The developed model was verified by comparing the predicted values with published results of other researchers and the findings confirmed that drag force dependence on tip speed is essentially linear in nature. We observed that triangular cantilever geometry provides significant lower drag forces than rectangular geometry and that short cantilever offers reduced flow resistance. The influence of different liquids such as ultrapure water or an ethanol-water mixture as well as a temperature induced variation of the drag force could be demonstrated. The acting forces are lowest in ultrapure water, whereas with increasing ethanol concentrations the drag forces increase.

  6. Large-Scale Description of Interacting One-Dimensional Bose Gases: Generalized Hydrodynamics Supersedes Conventional Hydrodynamics

    Science.gov (United States)

    Doyon, Benjamin; Dubail, Jérôme; Konik, Robert; Yoshimura, Takato

    2017-11-01

    The theory of generalized hydrodynamics (GHD) was recently developed as a new tool for the study of inhomogeneous time evolution in many-body interacting systems with infinitely many conserved charges. In this Letter, we show that it supersedes the widely used conventional hydrodynamics (CHD) of one-dimensional Bose gases. We illustrate this by studying "nonlinear sound waves" emanating from initial density accumulations in the Lieb-Liniger model. We show that, at zero temperature and in the absence of shocks, GHD reduces to CHD, thus for the first time justifying its use from purely hydrodynamic principles. We show that sharp profiles, which appear in finite times in CHD, immediately dissolve into a higher hierarchy of reductions of GHD, with no sustained shock. CHD thereon fails to capture the correct hydrodynamics. We establish the correct hydrodynamic equations, which are finite-dimensional reductions of GHD characterized by multiple, disjoint Fermi seas. We further verify that at nonzero temperature, CHD fails at all nonzero times. Finally, we numerically confirm the emergence of hydrodynamics at zero temperature by comparing its predictions with a full quantum simulation performed using the NRG-TSA-abacus algorithm. The analysis is performed in the full interaction range, and is not restricted to either weak- or strong-repulsion regimes.

  7. Normal modified stable processes

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Shephard, N.

    2002-01-01

    This paper discusses two classes of distributions, and stochastic processes derived from them: modified stable (MS) laws and normal modified stable (NMS) laws. This extends corresponding results for the generalised inverse Gaussian (GIG) and generalised hyperbolic (GH) or normal generalised inverse...... Gaussian (NGIG) laws. The wider framework thus established provides, in particular, for added flexibility in the modelling of the dynamics of financial time series, of importance especially as regards OU based stochastic volatility models for equities. In the special case of the tempered stable OU process...

  8. Stable Allocation Mechanism

    OpenAIRE

    Baïou, Mourad; Balinski, Michel

    2002-01-01

    The stable allocation problem is the generalization of the well-known and much studied stable (0,1)-matching problems to the allocation of real numbers (hours or quantities). There are two distinct sets of agents, a set I of "employees" or "buyers" and a set J of "employers" or "sellers", each agent with preferences over the opposite set and each with a given available time or quantity. In common with its specializations, and allocation problem may have exponentially many stable solutions (th...

  9. Solving 3D relativistic hydrodynamical problems with WENO discontinuous Galerkin methods

    CERN Document Server

    Bugner, Marcus; Bernuzzi, Sebastiano; Weyhausen, Andreas; Bruegmann, Bernd

    2015-01-01

    Discontinuous Galerkin (DG) methods coupled to WENO algorithms allow high order convergence for smooth problems and for the simulation of discontinuities and shocks. In this work, we investigate WENO-DG algorithms in the context of numerical general relativity, in particular for general relativistic hydrodynamics. We implement the standard WENO method at different orders, a compact (simple) WENO scheme, as well as an alternative subcell evolution algorithm. To evaluate the performance of the different numerical schemes, we study non-relativistic, special relativistic, and general relativistic testbeds. We present the first three-dimensional simulations of general relativistic hydrodynamics, albeit for a fixed spacetime background, within the framework of WENO-DG methods. The most important testbed is a single TOV-star in three dimensions, showing that long term stable simulations of single isolated neutron stars can be obtained with WENO-DG methods.

  10. Solving 3D relativistic hydrodynamical problems with weighted essentially nonoscillatory discontinuous Galerkin methods

    Science.gov (United States)

    Bugner, Marcus; Dietrich, Tim; Bernuzzi, Sebastiano; Weyhausen, Andreas; Brügmann, Bernd

    2016-10-01

    Discontinuous Galerkin (DG) methods coupled to weighted essentially nonoscillatory (WENO) algorithms allow high order convergence for smooth problems and for the simulation of discontinuities and shocks. In this work, we investigate WENO-DG algorithms in the context of numerical general relativity, in particular for general relativistic hydrodynamics. We implement the standard WENO method at different orders, a compact (simple) WENO scheme, as well as an alternative subcell evolution algorithm. To evaluate the performance of the different numerical schemes, we study nonrelativistic, special relativistic, and general relativistic test beds. We present the first three-dimensional simulations of general relativistic hydrodynamics, albeit for a fixed spacetime background, within the framework of WENO-DG methods. The most important test bed is a single Tolman-Oppenheimer-Volkoff star in three dimensions, showing that long term stable simulations of single isolated neutron stars can be obtained with WENO-DG methods.

  11. Pulsating Hydrodynamic Instability in a Dynamic Model of Liquid-Propellant Combustion

    Science.gov (United States)

    Margolis, Stephen B.; Sacksteder, Kurt (Technical Monitor)

    1999-01-01

    Hydrodynamic (Landau) instability in combustion is typically associated with the onset of wrinkling of a flame surface, corresponding to the formation of steady cellular structures as the stability threshold is crossed. In the context of liquid-propellant combustion, such instability has recently been shown to occur for critical values of the pressure sensitivity of the burning rate and the disturbance wavenumber, significantly generalizing previous classical results for this problem that assumed a constant normal burning rate. Additionally, however, a pulsating form of hydrodynamic instability has been shown to occur as well, corresponding to the onset of temporal oscillations in the location of the liquid/gas interface. In the present work, we consider the realistic influence of a nonzero temperature sensitivity in the local burning rate on both types of stability thresholds. It is found that for sufficiently small values of this parameter, there exists a stable range of pressure sensitivities for steady, planar burning such that the classical cellular form of hydrodynamic instability and the more recent pulsating form of hydrodynamic instability can each occur as the corresponding stability threshold is crossed. For larger thermal sensitivities, however, the pulsating stability boundary evolves into a C-shaped curve in the disturbance-wavenumber/ pressure-sensitivity plane, indicating loss of stability to pulsating perturbations for all sufficiently large disturbance wavelengths. It is thus concluded, based on characteristic parameter values, that an equally likely form of hydrodynamic instability in liquid-propellant combustion is of a nonsteady, long-wave nature, distinct from the steady, cellular form originally predicted by Landau.

  12. Investigation of the hydrodynamic properties of a new MRI-resistant programmable hydrocephalus shunt

    Directory of Open Access Journals (Sweden)

    Pickard John D

    2008-04-01

    Full Text Available Abstract Background The Polaris valve is a newly released hydrocephalus shunt that is designed to drain cerebrospinal fluid (CSF from the brain ventricles or lumbar CSF space. The aim of this study was to bench test the properties of the Polaris shunt, independently of the manufacturer. Methods The Polaris Valve is a ball-on-spring valve, which can be adjusted magnetically in vivo. A special mechanism is incorporated to prevent accidental re-adjustment by an external magnetic field. The performance and hydrodynamic properties of the valve were evaluated in the UK Shunt Evaluation Laboratory, Cambridge, UK. Results The three shunts tested showed good mechanical durability over the 3-month period of testing, and a stable hydrodynamic performance over 45 days. The pressure-flow performance curves, operating, opening and closing pressures were stable. The drainage rate of the shunt increased when a negative outlet pressure (siphoning was applied. The hydrodynamic parameters fell within the limits specified by the manufacturer and changed according to the five programmed performance levels. Hydrodynamic resistance was dependant on operating pressure, changing from low values of 1.6 mmHg/ml/min at the lowest level to 11.2 mmHg/ml/min at the highest performance level. External programming proved to be easy and reliable. Even very strong magnetic fields (3 Tesla were not able to change the programming of the valve. However, distortion of magnetic resonance images was present. Conclusion The Polaris Valve is a reliable, adjustable valve. Unlike other adjustable valves (except the Miethke ProGAV valve, the Polaris cannot be accidentally re-adjusted by an external magnetic field.

  13. Resistivity bound for hydrodynamic bad metals

    Science.gov (United States)

    Lucas, Andrew; Hartnoll, Sean A.

    2017-10-01

    We obtain a rigorous upper bound on the resistivity ρ of an electron fluid whose electronic mean free path is short compared with the scale of spatial inhomogeneities. When such a hydrodynamic electron fluid supports a nonthermal diffusion process—such as an imbalance mode between different bands—we show that the resistivity bound becomes ρ≲AΓ. The coefficient A is independent of temperature and inhomogeneity lengthscale, and Γ is a microscopic momentum-preserving scattering rate. In this way, we obtain a unified mechanism—without umklapp—for ρ˜T2 in a Fermi liquid and the crossover to ρ˜T in quantum critical regimes. This behavior is widely observed in transition metal oxides, organic metals, pnictides, and heavy fermion compounds and has presented a long-standing challenge to transport theory. Our hydrodynamic bound allows phonon contributions to diffusion constants, including thermal diffusion, to directly affect the electrical resistivity.

  14. Supernova hydrodynamics on the Omega laser

    Science.gov (United States)

    Drake, R. P.; Keiter, P.; Korreck, K. E.; Dannenberg, K. K.; Robey, H. A.; Perry, T. S.; Kane, J. O.; Remington, B. A.; Wallace, R. J.; Hurricane, O. A.; Ryutov, D. D.; Knauer, J.; Teyssier, R.; Calder, A.; Rosner, R.; Fryxell, B.; Arnett, D.; Zhang, Y.; Glimm, J.; Turner, N.; Stone, J.; McCray, R.; Grove, J.

    2001-10-01

    Our experiments study mechanisms that affect the evolution of supernovae, supernova remnants, and related systems. These experiments are designed to be well scaled from astrophysical systems to the laboratory. This overview of our work will highlight our most recent results. Our work is motivated by the specific fact that numerical simulations have proven unable to reproduce certain aspects of astrophysical observations, and by the general need to provide experimental tests of modeling of hydrodynamic and radiation-hydrodynamic systems. The experiments use the Omega Laser at the Lab. for Laser Energetics, Univ. of Rochester. We have recently explored the comparison of 2D and 3D systems, the comparison of single mode and multimode systems, and the production and diagnosis of a radiative-precursor shock.

  15. Application of hydrodynamics to heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Felsberger, Lukas

    2014-12-02

    The Bjorken model is a simple tool for making rough predictions of the hydrodynamic evolution of the thermalized matter created in a heavy ion collision. The advantage of the model clearly lies in its simplicity, rather than accuracy. As it is still used for making rough estimations 'by hand', in this thesis, I investigate in which cases the Bjorken model gives useful results and in which it is not recommended. For central collisions, I show which critical size the nuclei should have so that the Bjorken model can be applied. For non-central collisions, I demonstrate that using Glauber initial conditions combined with the Bjorken evolution, leads to reasonable results up to large impact parameters. Finally, I study the case of a non-ideal (viscous) description of the thermalized matter which leads to strongly differing results if first- or second-order hydrodynamics is applied.

  16. Filter-Feeding Zoobenthos and Hydrodynamics

    DEFF Research Database (Denmark)

    Riisgård, Hans Ulrik; Larsen, Poul Scheel

    2017-01-01

    interplay between benthic filter feeders and hydrodynamics. Starting from the general concept of grazing potential and typical data on benthic population densities its realization is considered, first at the level of the individual organism through the processes of pumping and trapping of food particles...... for ingestion which relies on hydrodynamics. Studies have shown the importance of biomixing giving increased vertical seston flux due to mixing induced by exhalant jets of filter feeders, particularly in stagnant water but likely also in benthic boundary layers over mussel beds at moderate flow velocities......This chapter summarizes recent years’ studies on zoobenthic filter feeding in the sea. General principles are extracted based on experiments and mathematical modeling, mainly from own studies in shallow temperate Danish waters, in order to present primary characteristics of the sophisticated...

  17. Low Mach Number Fluctuating Hydrodynamics for Electrolytes

    CERN Document Server

    Péraud, Jean-Philippe; Chaudhri, Anuj; Bell, John B; Donev, Aleksandar; Garcia, Alejandro L

    2016-01-01

    We formulate and study computationally the low Mach number fluctuating hydrodynamic equations for electrolyte solutions. We are interested in studying transport in mixtures of charged species at the mesoscale, down to scales below the Debye length, where thermal fluctuations have a significant impact on the dynamics. Continuing our previous work on fluctuating hydrodynamics of multicomponent mixtures of incompressible isothermal miscible liquids (A. Donev, et al., Physics of Fluids, 27, 3, 2015), we now include the effect of charged species using a quasielectrostatic approximation. Localized charges create an electric field, which in turn provides additional forcing in the mass and momentum equations. Our low Mach number formulation eliminates sound waves from the fully compressible formulation and leads to a more computationally efficient quasi-incompressible formulation. We demonstrate our ability to model saltwater (NaCl) solutions in both equilibrium and nonequilibrium settings. We show that our algorithm...

  18. Hydrodynamic theory of tissue shear flow

    CERN Document Server

    Popović, Marko; Merkel, Matthias; Etournay, Raphaël; Eaton, Suzanne; Jülicher, Frank; Salbreux, Guillaume

    2016-01-01

    We propose a hydrodynamic theory to describe shear flows in developing epithelial tissues. We introduce hydrodynamic fields corresponding to state properties of constituent cells as well as a contribution to overall tissue shear flow due to rearrangements in cell network topology. We then construct a constitutive equation for the shear rate due to topological rearrangements. We identify a novel rheological behaviour resulting from memory effects in the tissue. We show that anisotropic deformation of tissue and cells can arise from two distinct active cellular processes: generation of active stress in the tissue, and actively driven cellular rearrangements. These two active processes result in distinct cellular and tissue shape changes, depending on boundary conditions applied on the tissue. Our findings have consequences for the understanding of tissue morphogenesis during development.

  19. Electro-hydrodynamic synchronization of piezoelectric flags

    CERN Document Server

    Xia, Yifan; Michelin, Sebastien

    2016-01-01

    Hydrodynamic coupling of flexible flags in axial flows may profoundly influence their flapping dynamics, in particular driving their synchronization. This work investigates the effect of such coupling on the harvesting efficiency of coupled piezoelectric flags, that convert their periodic deformation into an electrical current. Considering two flags connected to a single output circuit, we investigate using numerical simulations the relative importance of hydrodynamic coupling to electrodynamic coupling of the flags through the output circuit due to the inverse piezoelectric effect. It is shown that electrodynamic coupling is dominant beyond a critical distance, and induces a synchronization of the flags' motion resulting in enhanced energy harvesting performance. We further show that this electrodynamic coupling can be strengthened using resonant harvesting circuits.

  20. Hydrodynamics of ultra-relativistic bubble walls

    Directory of Open Access Journals (Sweden)

    Leonardo Leitao

    2016-04-01

    Full Text Available In cosmological first-order phase transitions, gravitational waves are generated by the collisions of bubble walls and by the bulk motions caused in the fluid. A sizeable signal may result from fast-moving walls. In this work we study the hydrodynamics associated to the fastest propagation modes, namely, ultra-relativistic detonations and runaway solutions. We compute the energy injected by the phase transition into the fluid and the energy which accumulates in the bubble walls. We provide analytic approximations and fits as functions of the net force acting on the wall, which can be readily evaluated for specific models. We also study the back-reaction of hydrodynamics on the wall motion, and we discuss the extrapolation of the friction force away from the ultra-relativistic limit. We use these results to estimate the gravitational wave signal from detonations and runaway walls.

  1. Dynamics and hydrodynamic mixing of reactive solutes at stable fresh-salt interfaces

    Science.gov (United States)

    van der Zee, Sjoerd E. A. T. M.; Eeman, Sara; Cirkel, Gijsbert; Leijnse, Toon

    2014-05-01

    In coastal zones with saline groundwater, but also in semi-arid regions, fresh groundwater lenses may form due to infiltration of rain water. The thickness of both the lens and the mixing zone, determines fresh water availability for plant growth. Due to recharge variation, the thickness of the lens and the mixing zone are not constant, which may adversely affect agricultural and natural vegetation if saline water reaches the root zone during the growing season. A similar situation is found in situations where groundwater is not saline, but has a different chemical signature than rainwater-affected groundwater. Then also, vegetation patches and botanic biodiversity may depend sensitively on the depth of the interface between different types of groundwater. In this presentation, we study the response of thin lenses and their mixing zone to variation of recharge. The recharge is varied using sinusoids with a range of amplitudes and frequencies. We vary lens properties by varying the Rayleigh number and Mass flux ratio of saline and fresh water, as these dominate on the thickness of thin lenses and their mixing zone. Numerical results show a linear relation between the normalised lens volume and the main lens and recharge characteristics, enabling an empirical approximation of the variation of lens thickness. Increase of the recharge amplitude causes increase and the increase of recharge frequency causes a decrease in the variation of lens thickness. The average lens thickness is not significantly influenced by these variations in recharge, contrary to the mixing zone thickness. The mixing zone thickness is compared to that of a Fickian mixing regime. A simple relation between the travelled distance of the centre of the mixing zone position due to variations in recharge and the mixing zone thickness is shown to be valid for both a sinusoidal recharge variation and actual records of irregularly varying daily recharge data. Starting from a step response function, convolution can be used to determine the effect of variable recharge in time. For a sinusoidal curve, we can determine delay of lens movement compared to the recharge curve as well as the lens amplitude, derived from the convolution integral. Together the proposed equations provide us with a first order approximation of lens characteristics using basic lens and recharge parameters without the use of numerical models. This enables the assessment of the vulnerability of any thin fresh water lens on saline, upward seeping groundwater to salinity stress in the root zone.

  2. Hydrodynamics and water quality models applied to Sepetiba Bay

    Science.gov (United States)

    Cunha, Cynara de L. da N.; Rosman, Paulo C. C.; Ferreira, Aldo Pacheco; Carlos do Nascimento Monteiro, Teófilo

    2006-10-01

    A coupled hydrodynamic and water quality model is used to simulate the pollution in Sepetiba Bay due to sewage effluent. Sepetiba Bay has a complicated geometry and bottom topography, and is located on the Brazilian coast near Rio de Janeiro. In the simulation, the dissolved oxygen (DO) concentration and biochemical oxygen demand (BOD) are used as indicators for the presence of organic matter in the body of water, and as parameters for evaluating the environmental pollution of the eastern part of Sepetiba Bay. Effluent sources in the model are taken from DO and BOD field measurements. The simulation results are consistent with field observations and demonstrate that the model has been correctly calibrated. The model is suitable for evaluating the environmental impact of sewage effluent on Sepetiba Bay from river inflows, assessing the feasibility of different treatment schemes, and developing specific monitoring activities. This approach has general applicability for environmental assessment of complicated coastal bays.

  3. Novel techniques for slurry bubble column hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Dudukovic, M.P.

    1999-05-14

    The objective of this cooperative research effort between Washington University, Ohio State University and Exxon Research Engineering Company was to improve the knowledge base for scale-up and operation of slurry bubble column reactors for syngas conversion and other coal conversion processes by increased reliance on experimentally verified hydrodynamic models. During the first year (July 1, 1995--June 30, 1996) of this three year program novel experimental tools (computer aided radioactive particle tracking (CARPT), particle image velocimetry (PIV), heat probe, optical fiber probe and gamma ray tomography) were developed and tuned for measurement of pertinent hydrodynamic quantities, such as velocity field, holdup distribution, heat transfer and bubble size. The accomplishments were delineated in the First Technical Annual Report. The second year (July, 1996--June 30, 1997) was spent on further development and tuning of the novel experimental tools (e.g., development of Monte Carlo calibration for CARPT, optical probe development), building up the hydrodynamic data base using these tools and comparison of the two techniques (PIV and CARPT) for determination of liquid velocities. A phenomenological model for gas and liquid backmixing was also developed. All accomplishments were summarized in the Second Annual Technical Report. During the third and final year of the program (July 1, 1997--June 30, 1998) and during the nine months no cost extension, the high pressure facility was completed and a set of data was taken at high pressure conditions. Both PIV, CT and CARPT were used. More fundamental hydrodynamic modeling was also undertaken and model predictions were compared to data. The accomplishments for this period are summarized in this report.

  4. Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity

    Directory of Open Access Journals (Sweden)

    Font José A.

    2008-09-01

    Full Text Available This article presents a comprehensive overview of numerical hydrodynamics and magnetohydrodynamics (MHD in general relativity. Some significant additions have been incorporated with respect to the previous two versions of this review (2000, 2003, most notably the coverage of general-relativistic MHD, a field in which remarkable activity and progress has occurred in the last few years. Correspondingly, the discussion of astrophysical simulations in general-relativistic hydrodynamics is enlarged to account for recent relevant advances, while those dealing with general-relativistic MHD are amply covered in this review for the first time. The basic outline of this article is nevertheless similar to its earlier versions, save for the addition of MHD-related issues throughout. Hence, different formulations of both the hydrodynamics and MHD equations are presented, with special mention of conservative and hyperbolic formulations well adapted to advanced numerical methods. A large sample of numerical approaches for solving such hyperbolic systems of equations is discussed, paying particular attention to solution procedures based on schemes exploiting the characteristic structure of the equations through linearized Riemann solvers. As previously stated, a comprehensive summary of astrophysical simulations in strong gravitational fields is also presented. These are detailed in three basic sections, namely gravitational collapse, black-hole accretion, and neutron-star evolutions; despite the boundaries, these sections may (and in fact do overlap throughout the discussion. The material contained in these sections highlights the numerical challenges of various representative simulations. It also follows, to some extent, the chronological development of the field, concerning advances in the formulation of the gravitational field, hydrodynamics and MHD equations and the numerical methodology designed to solve them. To keep the length of this article reasonable

  5. Hydrodynamic Instability in an Extended Landau/Levich Model of Liquid-Propellant Combustion

    Science.gov (United States)

    Margolis, Stephen B.; Sackesteder, Kurt (Technical Monitor)

    1998-01-01

    , the pulsating hydrodynamic stability boundary is found to be insensitive to gravitational and surface-tension effects, but is more sensitive to the effects of liquid viscosity, which is a significant stabilizing effect for O(l) and higher wavenumbers. Liquid-propellant combustion is predicted to be stable (i.e., steady and planar) only for a range of negative pressure sensitivities that lie between the two types of hydrodynamic stability boundaries.

  6. Modeling multiphase flow using fluctuating hydrodynamics.

    Science.gov (United States)

    Chaudhri, Anuj; Bell, John B; Garcia, Alejandro L; Donev, Aleksandar

    2014-09-01

    Fluctuating hydrodynamics provides a model for fluids at mesoscopic scales where thermal fluctuations can have a significant impact on the behavior of the system. Here we investigate a model for fluctuating hydrodynamics of a single-component, multiphase flow in the neighborhood of the critical point. The system is modeled using a compressible flow formulation with a van der Waals equation of state, incorporating a Korteweg stress term to treat interfacial tension. We present a numerical algorithm for modeling this system based on an extension of algorithms developed for fluctuating hydrodynamics for ideal fluids. The scheme is validated by comparison of measured structure factors and capillary wave spectra with equilibrium theory. We also present several nonequilibrium examples to illustrate the capability of the algorithm to model multiphase fluid phenomena in a neighborhood of the critical point. These examples include a study of the impact of fluctuations on the spinodal decomposition following a rapid quench, as well as the piston effect in a cavity with supercooled walls. The conclusion in both cases is that thermal fluctuations affect the size and growth of the domains in off-critical quenches.

  7. Hydrodynamic fluctuations in thermostatted multiparticle collision dynamics.

    Science.gov (United States)

    Híjar, Humberto; Sutmann, Godehard

    2011-04-01

    In this work we study the behavior of mesoscopic fluctuations of a fluid simulated by Multiparticle Collision Dynamics when this is applied together with a local thermostatting procedure that constrains the strength of temperature fluctuations. We consider procedures in which the thermostat interacts with the fluid at every simulation step as well as cases in which the thermostat is applied only at regular time intervals. Due to the application of the thermostat temperature fluctuations are forced to relax to equilibrium faster than they do in the nonthermostatted, constant-energy case. Depending on the interval of application of the thermostat, it is demonstrated that the thermodynamic state changes gradually from isothermal to adiabatic conditions. In order to exhibit this effect we compute from simulations diverse correlation functions of the hydrodynamic fluctuating fields. These correlation functions are compared with those predicted by a linearized hydrodynamic theory of a simple fluid in which a thermostat is applied locally. We find a good agreement between the model and the numerical results, which confirms that hydrodynamic fluctuations in Multiparticle Collision Dynamics in the presence of the thermostat have the properties expected for spontaneous fluctuations in fluids in contact with a heat reservoir.

  8. Hydrodynamics of an Electrochemical Membrane Bioreactor

    Science.gov (United States)

    Wang, Ya-Zhou; Wang, Yun-Kun; He, Chuan-Shu; Yang, Hou-Yun; Sheng, Guo-Ping; Shen, Jin-You; Mu, Yang; Yu, Han-Qing

    2015-05-01

    An electrochemical membrane bioreactor (EMBR) has recently been developed for energy recovery and wastewater treatment. The hydrodynamics of the EMBR would significantly affect the mass transfers and reaction kinetics, exerting a pronounced effect on reactor performance. However, only scarce information is available to date. In this study, the hydrodynamic characteristics of the EMBR were investigated through various approaches. Tracer tests were adopted to generate residence time distribution curves at various hydraulic residence times, and three hydraulic models were developed to simulate the results of tracer studies. In addition, the detailed flow patterns of the EMBR were acquired from a computational fluid dynamics (CFD) simulation. Compared to the tank-in-series and axial dispersion ones, the Martin model could describe hydraulic performance of the EBMR better. CFD simulation results clearly indicated the existence of a preferential or circuitous flow in the EMBR. Moreover, the possible locations of dead zones in the EMBR were visualized through the CFD simulation. Based on these results, the relationship between the reactor performance and the hydrodynamics of EMBR was further elucidated relative to the current generation. The results of this study would benefit the design, operation and optimization of the EMBR for simultaneous energy recovery and wastewater treatment.

  9. Hydrodynamics of an Electrochemical Membrane Bioreactor

    Science.gov (United States)

    Wang, Ya-Zhou; Wang, Yun-Kun; He, Chuan-Shu; Yang, Hou-Yun; Sheng, Guo-Ping; Shen, Jin-You; Mu, Yang; Yu, Han-Qing

    2015-01-01

    An electrochemical membrane bioreactor (EMBR) has recently been developed for energy recovery and wastewater treatment. The hydrodynamics of the EMBR would significantly affect the mass transfers and reaction kinetics, exerting a pronounced effect on reactor performance. However, only scarce information is available to date. In this study, the hydrodynamic characteristics of the EMBR were investigated through various approaches. Tracer tests were adopted to generate residence time distribution curves at various hydraulic residence times, and three hydraulic models were developed to simulate the results of tracer studies. In addition, the detailed flow patterns of the EMBR were acquired from a computational fluid dynamics (CFD) simulation. Compared to the tank-in-series and axial dispersion ones, the Martin model could describe hydraulic performance of the EBMR better. CFD simulation results clearly indicated the existence of a preferential or circuitous flow in the EMBR. Moreover, the possible locations of dead zones in the EMBR were visualized through the CFD simulation. Based on these results, the relationship between the reactor performance and the hydrodynamics of EMBR was further elucidated relative to the current generation. The results of this study would benefit the design, operation and optimization of the EMBR for simultaneous energy recovery and wastewater treatment. PMID:25997399

  10. Hydrodynamic slip length as a surface property

    Science.gov (United States)

    Ramos-Alvarado, Bladimir; Kumar, Satish; Peterson, G. P.

    2016-02-01

    Equilibrium and nonequilibrium molecular dynamics simulations were conducted in order to evaluate the hypothesis that the hydrodynamic slip length is a surface property. The system under investigation was water confined between two graphite layers to form nanochannels of different sizes (3-8 nm). The water-carbon interaction potential was calibrated by matching wettability experiments of graphitic-carbon surfaces free of airborne hydrocarbon contamination. Three equilibrium theories were used to calculate the hydrodynamic slip length. It was found that one of the recently reported equilibrium theories for the calculation of the slip length featured confinement effects, while the others resulted in calculations significantly hindered by the large margin of error observed between independent simulations. The hydrodynamic slip length was found to be channel-size independent using equilibrium calculations, i.e., suggesting a consistency with the definition of a surface property, for 5-nm channels and larger. The analysis of the individual trajectories of liquid particles revealed that the reason for observing confinement effects in 3-nm nanochannels is the high mobility of the bulk particles. Nonequilibrium calculations were not consistently affected by size but by noisiness in the smallest systems.

  11. Hydrodynamics of an electrochemical membrane bioreactor.

    Science.gov (United States)

    Wang, Ya-Zhou; Wang, Yun-Kun; He, Chuan-Shu; Yang, Hou-Yun; Sheng, Guo-Ping; Shen, Jin-You; Mu, Yang; Yu, Han-Qing

    2015-05-22

    An electrochemical membrane bioreactor (EMBR) has recently been developed for energy recovery and wastewater treatment. The hydrodynamics of the EMBR would significantly affect the mass transfers and reaction kinetics, exerting a pronounced effect on reactor performance. However, only scarce information is available to date. In this study, the hydrodynamic characteristics of the EMBR were investigated through various approaches. Tracer tests were adopted to generate residence time distribution curves at various hydraulic residence times, and three hydraulic models were developed to simulate the results of tracer studies. In addition, the detailed flow patterns of the EMBR were acquired from a computational fluid dynamics (CFD) simulation. Compared to the tank-in-series and axial dispersion ones, the Martin model could describe hydraulic performance of the EBMR better. CFD simulation results clearly indicated the existence of a preferential or circuitous flow in the EMBR. Moreover, the possible locations of dead zones in the EMBR were visualized through the CFD simulation. Based on these results, the relationship between the reactor performance and the hydrodynamics of EMBR was further elucidated relative to the current generation. The results of this study would benefit the design, operation and optimization of the EMBR for simultaneous energy recovery and wastewater treatment.

  12. High-k 3D-barium titanate foam/phenolphthalein poly(ether sulfone)/cyanate ester composites with frequency-stable dielectric properties and extremely low dielectric loss under reduced concentration of ceramics

    Science.gov (United States)

    Zheng, Longhui; Yuan, Li; Guan, Qingbao; Liang, Guozheng; Gu, Aijuan

    2018-01-01

    Higher dielectric constant, lower dielectric loss and better frequency stability have been the developing trends for high dielectric constant (high-k) materials. Herein, new composites have been developed through building unique structure by using hyperbranched polysiloxane modified 3D-barium titanate foam (BTF) (BTF@HSi) as the functional fillers and phenolphthalein poly(ether sulfone) (cPES)/cyanate ester (CE) blend as the resin matrix. For BTF@HSi/cPES/CE composite with 34.1 vol% BTF, its dielectric constant at 100 Hz is as high as 162 and dielectric loss is only 0.007; moreover, the dielectric properties of BTF@HSi/cPES/CE composites exhibit excellent frequency stability. To reveal the mechanism behind these attractive performances of BTF@HSi/cPES/CE composites, three kinds of composites (BTF/CE, BTF/cPES/CE, BTF@HSi/CE) were prepared, their structure and integrated performances were intensively investigated and compared with those of BTF@HSi/cPES/CE composites. Results show that the surface modification of BTF is good for preparing composites with improved thermal stability; while introducing flexible cPES to CE is beneficial to fabricate composites with good quality through effectively blocking cracks caused by the stress concentration, and then endowing the composites with good dielectric properties at reduced concentration of ceramics.

  13. A linked hydrodynamic and water quality model for the Salton Sea

    Science.gov (United States)

    Chung, E.G.; Schladow, S.G.; Perez-Losada, J.; Robertson, Dale M.

    2008-01-01

    A linked hydrodynamic and water quality model was developed and applied to the Salton Sea. The hydrodynamic component is based on the one-dimensional numerical model, DLM. The water quality model is based on a new conceptual model for nutrient cycling in the Sea, and simulates temperature, total suspended sediment concentration, nutrient concentrations, including PO4-3, NO3-1 and NH4+1, DO concentration and chlorophyll a concentration as functions of depth and time. Existing water temperature data from 1997 were used to verify that the model could accurately represent the onset and breakup of thermal stratification. 1999 is the only year with a near-complete dataset for water quality variables for the Salton Sea. The linked hydrodynamic and water quality model was run for 1999, and by adjustment of rate coefficients and other water quality parameters, a good match with the data was obtained. In this article, the model is fully described and the model results for reductions in external phosphorus load on chlorophyll a distribution are presented. ?? 2008 Springer Science+Business Media B.V.

  14. Calcium stable isotope geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Gausonne, Nikolaus [Muenster Univ. (Germany). Inst. fuer Mineralogie; Schmitt, Anne-Desiree [Strasbourg Univ. (France). LHyGeS/EOST; Heuser, Alexander [Bonn Univ. (Germany). Steinmann-Inst. fuer Geologie, Mineralogie und Palaeontologie; Wombacher, Frank [Koeln Univ. (Germany). Inst. fuer Geologie und Mineralogie; Dietzel, Martin [Technische Univ. Graz (Austria). Inst. fuer Angewandte Geowissenschaften; Tipper, Edward [Cambridge Univ. (United Kingdom). Dept. of Earth Sciences; Schiller, Martin [Copenhagen Univ. (Denmark). Natural History Museum of Denmark

    2016-08-01

    This book provides an overview of the fundamentals and reference values for Ca stable isotope research, as well as current analytical methodologies including detailed instructions for sample preparation and isotope analysis. As such, it introduces readers to the different fields of application, including low-temperature mineral precipitation and biomineralisation, Earth surface processes and global cycling, high-temperature processes and cosmochemistry, and lastly human studies and biomedical applications. The current state of the art in these major areas is discussed, and open questions and possible future directions are identified. In terms of its depth and coverage, the current work extends and complements the previous reviews of Ca stable isotope geochemistry, addressing the needs of graduate students and advanced researchers who want to familiarize themselves with Ca stable isotope research.

  15. On stable Baire classes

    OpenAIRE

    Karlova, Olena; Mykhaylyuk, Volodymyr

    2015-01-01

    We introduce and study adhesive spaces. Using this concept we obtain a characterization of stable Baire maps $f:X\\to Y$ of the class $\\alpha$ for wide classes of topological spaces. In particular, we prove that for a topological space $X$ and a contractible space $Y$ a map $f:X\\to Y$ belongs to the $n$'th stable Baire class if and only if there exist a sequence $(f_k)_{k=1}^\\infty$ of continuous maps $f_k:X\\to Y$ and a sequence $(F_k)_{k=1}^\\infty$ of functionally ambiguous sets of the $n$'th...

  16. Hydrodynamic Effects on the Transport and Retention of Biocolloids in Single, Saturated Fractures

    Science.gov (United States)

    Schutten, M.; Dickson, S. E.

    2011-12-01

    Approximately 30% of Canadians and 50% of Americans rely on groundwater for their domestic water supplies. A significant portion of this groundwater originates from fractured rock aquifers, as they are ubiquitous throughout North America. In comparison to unconsolidated porous media aquifers, relatively little is understood about biocolloid transport in fractures. A mechanistic understanding of the transport and retention of biocolloids in fractures is important towards determining the risk of biocolloid contamination to these sources, which can have a significant impact on human health. It has been well documented in the interfacial science literature that micro-scale hydrodynamics play a significant role in the transport of particles greater than approximately one micron in diameter, but do not significantly affect the transport of smaller particles. This phenomenon, however, has never been investigated in fractures, where the larger-scale hydrodynamics are complex, and must also be considered. To bridge this knowledge gap, this research was conducted to elucidate the effects of hydrodynamics on the transport and retention of E. coli RS2-GFP and MS2 in single, saturated, fractures at the laboratory scale. To achieve this goal, dolomitic limestone samples were acquired from a quarry in Guelph, Ontario, and were fractured under a uniaxial force. The hydrologic properties of each fracture sample were characterized using hydraulic and solute tracer tests. E. coli RS2-GFP and MS2 were chosen as the study microorganisms to isolate the micro-scale hydrodynamic effects. It is well established that micro-scale hydrodynamics do not affect transport for particles in the size range of MS2, while they do affect particles in the size range of E. coli. Using a factorial design approach, a known number of either E. coli RS2-GFP or MS2 was released into the fracture under a range of specific discharges (30, 10 and 5 m/day). The resulting effluent concentration profiles were

  17. Efficient inactivation of MS-2 virus in water by hydrodynamic cavitation.

    Science.gov (United States)

    Kosel, Janez; Gutiérrez-Aguirre, Ion; Rački, Nejc; Dreo, Tanja; Ravnikar, Maja; Dular, Matevž

    2017-11-01

    The aim of this study was to accurately quantify the impact of hydrodynamic cavitation on the infectivity of bacteriophage MS2, a norovirus surrogate, and to develop a small scale reactor for testing the effect of hydrodynamic cavitation on human enteric viruses, which cannot be easily prepared in large quantities. For this purpose, 3 mL scale and 1 L scale reactors were constructed and tested. Both devices were efficient in generating hydrodynamic cavitation and in reducing the infectivity of MS2 virus. Furthermore, they reached more than 4 logs reductions of viral infectivity, thus confirming the scalability of hydrodynamic cavitation for this particular application. As for the mechanism of page inactivation, we suspect that cavitation generated OH - radicals formed an advanced oxidation process, which could have damaged the host's recognition receptors located on the surface of the bacteriophage. Additional damage could arise from the high shear forces inside the cavity. Moreover, the effectiveness of the cavitation was higher for suspensions containing low initial viral titers that are in similar concentration to the ones found in real water samples. According to this, cavitation generators could prove to be a useful tool for treating virus-contaminated wastewaters in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Stable Unhappy Marriages.

    Science.gov (United States)

    Heaton, Tim B.; Albrecht, Stan L.

    1991-01-01

    Examined prevalence and determinants of stable unhappy marriage using data from national survey. Results indicated age, lack of prior marital experience, commitment to marriage as an institution, low social activity, lack of control over one's life, and belief that divorce would detract from happiness were all predictive of stability in unhappy…

  19. The stable subgroup graph

    Directory of Open Access Journals (Sweden)

    Behnaz Tolue

    2018-07-01

    Full Text Available In this paper we introduce stable subgroup graph associated to the group $G$. It is a graph with vertex set all subgroups of $G$ and two distinct subgroups $H_1$ and $H_2$ are adjacent if $St_{G}(H_1\\cap H_2\

  20. Cofinal stable logics

    NARCIS (Netherlands)

    Bezhanishvili, G.; Bezhanishvili, N.; Ilin, J.

    2016-01-01

    We generalize the (∧,∨)-canonical formulas to (∧,∨)-canonical rules, and prove that each intuitionistic multi-conclusion consequence relation is axiomatizable by (∧,∨)-canonical rules. This yields a convenient characterization of stable superintuitionistic logics. The (∧,∨)-canonical formulas are

  1. Hydrodynamic and elastic interactions of sedimenting flexible fibers

    Science.gov (United States)

    Ekiel-Jezewska, Maria L.; Bukowicki, Marek

    2017-11-01

    Dynamics of flexible micro and nano filaments in fluids is intensively investigated in many laboratories, with a perspective of numerous applications in biology, medicine or modern technology. In the literature, different theoretical models of elastic interactions between flexible fiber segments are applied. The task of this work is to examine the impact of a chosen elastic model on the dynamics of fibers settling in a viscous fluid under low Reynolds number. To this goal, we construct two trumbbells, each made of three beads connected by springs and with a bending resistance, and we describe hydrodynamic interactions of the beads in terms of the Rotne-Prager mobility tensors. Using the harmonic bending potential, and coupling it to the spring potential by the Young's modulus, we find simple benchmark solutions: stable stationary configurations of a single elastic trumbbell and a fast horizontal attraction of two elastic trumbbells towards a periodic long-lasting orbit. We show that for sufficiently large bending angles, other models of bending interactions can lead to qualitatively and quantitatively different spurious effects. We also demonstrate examples of essential differences between the dynamics of elastic dumbbells and trumbbells. This work was supported in part by Narodowe Centrum Nauki under Grant No. 2014/15/B/ST8/04359.

  2. 3D Hydrodynamic Simulation of Classical Novae Explosions

    Science.gov (United States)

    Kendrick, Coleman J.

    2015-01-01

    This project investigates the formation and lifecycle of classical novae and determines how parameters such as: white dwarf mass, star mass and separation affect the evolution of the rotating binary system. These parameters affect the accretion rate, frequency of the nova explosions and light curves. Each particle in the simulation represents a volume of hydrogen gas and are initialized randomly in the outer shell of the companion star. The forces on each particle include: gravity, centrifugal, coriolis, friction, and Langevin. The friction and Langevin forces are used to model the viscosity and internal pressure of the gas. A velocity Verlet method with a one second time step is used to compute velocities and positions of the particles. A new particle recycling method was developed which was critical for computing an accurate and stable accretion rate and keeping the particle count reasonable. I used C++ and OpenCL to create my simulations and ran them on two Nvidia GTX580s. My simulations used up to 1 million particles and required up to 10 hours to complete. My simulation results for novae U Scorpii and DD Circinus are consistent with professional hydrodynamic simulations and observed experimental data (light curves and outburst frequencies). When the white dwarf mass is increased, the time between explosions decreases dramatically. My model was used to make the first prediction for the next outburst of nova DD Circinus. My simulations also show that the companion star blocks the expanding gas shell leading to an asymmetrical expanding shell.

  3. IUTAM symposium on hydrodynamic diffusion of suspended particles

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R.H. [ed.

    1995-12-31

    Hydrodynamic diffusion refers to the fluctuating motion of nonBrownian particles (or droplets or bubbles) which occurs in a dispersion due to multiparticle interactions. For example, in a concentrated sheared suspension, particles do not move along streamlines but instead exhibit fluctuating motions as they tumble around each other. This leads to a net migration of particles down gradients in particle concentration and in shear rate, due to the higher frequency of encounters of a test particle with other particles on the side of the test particle which has higher concentration or shear rate. As another example, suspended particles subject to sedimentation, centrifugation, or fluidization, do not generally move relative to the fluid with a constant velocity, but instead experience diffusion-like fluctuations in velocity due to interactions with neighboring particles and the resulting variation in the microstructure or configuration of the suspended particles. In flowing granular materials, the particles interact through direct collisions or contacts (rather than through the surrounding fluid); these collisions also cause the particles to undergo fluctuating motions characteristic of diffusion processes. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  4. An overview of hydrodynamic studies of mineralization

    Directory of Open Access Journals (Sweden)

    Guoxiang Chi

    2011-07-01

    Full Text Available Fluid flow is an integral part of hydrothermal mineralization, and its analysis and characterization constitute an important part of a mineralization model. The hydrodynamic study of mineralization deals with analyzing the driving forces, fluid pressure regimes, fluid flow rate and direction, and their relationships with localization of mineralization. This paper reviews the principles and methods of hydrodynamic studies of mineralization, and discusses their significance and limitations for ore deposit studies and mineral exploration. The driving forces of fluid flow may be related to fluid overpressure, topographic relief, tectonic deformation, and fluid density change due to heating or salinity variation, depending on specific geologic environments and mineralization processes. The study methods may be classified into three types, megascopic (field observations, microscopic analyses, and numerical modeling. Megascopic features indicative of significantly overpressured (especially lithostatic or supralithostatic fluid systems include horizontal veins, sand injection dikes, and hydraulic breccias. Microscopic studies, especially microthermometry of fluid inclusions and combined stress analysis and microthermometry of fluid inclusion planes (FIPs can provide important information about fluid temperature, pressure, and fluid-structural relationships, thus constraining fluid flow models. Numerical modeling can be carried out to solve partial differential equations governing fluid flow, heat transfer, rock deformation and chemical reactions, in order to simulate the distribution of fluid pressure, temperature, fluid flow rate and direction, and mineral precipitation or dissolution in 2D or 3D space and through time. The results of hydrodynamic studies of mineralization can enhance our understanding of the formation processes of hydrothermal deposits, and can be used directly or indirectly in mineral exploration.

  5. Hydrodynamic evolution of neutron star merger remnants

    Science.gov (United States)

    Liu, Men-Quan; Zhang, Jie

    2017-11-01

    Based on the special relativistic hydrodynamic equations and updated cooling function, we investigate the long-term evolution of neutron stars merger (NSM) remnants by a one-dimensional hydrodynamic code. Three NSM models from one soft equation of state, SFHo, and two stiff equations of state, DD2 and TM1, are used to compare their influences on the hydrodynamic evolution of remnants. We present the luminosity, mass and radius of remnants, as well as the velocity, temperature and density of shocks. For a typical interstellar medium (ISM) density with solar metallicity, we find that the NSM remnant from the SFHo model makes much more changes to ISM in terms of velocity, density and temperature distributions, compared with the case of DD2 and TM1 models. The maximal luminosity of the NSM remnant from the SFHo model is 3.4 × 1038 erg s-1, which is several times larger than that from DD2 and TM1 models. The NSM remnant from the SFHo model can maintain high luminosity (>1038 erg s-1) for 2.29 × 104 yr. Furthermore, the density and temperature of remnants at the maximal luminosity are not sensitive to the power of the original remnant. For the ISM with the solar metallicity and nH = 1 cm- 3, the density of the first shock ˜10-23 g cm-3 and the temperature ˜3 × 105 K in the maximal luminosity phase; The temperature of the first shock decreases and there is a thin `dense' shell with density ˜10-21 g cm-3 after the maximal luminosity. These characteristics may be helpful for future observations of NSM remnants.

  6. Aggregation and stability of Fe2O3:Influence of humic acid concentration, Fe2O3 concentration and pH

    Science.gov (United States)

    Ahmad, Nur Suraya; Radiman, Shahidan; Yaacob, Wan Zuhairi Wan

    2016-11-01

    The scenario of released nanoparticles from consumer product into the environment especially natural waters are increased concern nowadays. Assessing their aggregation and stability under environmental conditions are important to determining their fate and behavior in natural waters. The aggregation behavior of Fe2O3 nanoparticles (NPs) was investigated at variable concentration of humic acid, Fe2O3 NPs concentration and pH variation in solution using dynamic light scattering to measure their z-average hydrodynamic diameter and zeta potential value. The stability are then evaluated by assessing their aggregation and disaggregation. Increasing humic acid concentration induced the disaggregation of Fe2O3 NPs. At a lower concentrations of Fe2O3 (5) of solution induced disaggregation of suspensions and make it stable in the solution. TEM imaging have confirmed that Fe2O3 NPs aggregate and disaggregate in the presence of humic acid. Our study result shows that aggregation and stability of Fe2O3 NPs were depends on concentration of humic acid, concentration of NPs itself and the pH of the solutions.

  7. Computer simulation of the fire-tube boiler hydrodynamics

    Directory of Open Access Journals (Sweden)

    Khaustov Sergei A.

    2015-01-01

    Full Text Available Finite element method was used for simulating the hydrodynamics of fire-tube boiler with the ANSYS Fluent 12.1.4 engineering simulation software. Hydrodynamic structure and volumetric temperature distribution were calculated. The results are presented in graphical form. Complete geometric model of the fire-tube boiler based on boiler drawings was considered. Obtained results are suitable for qualitative analysis of hydrodynamics and singularities identification in fire-tube boiler water shell.

  8. Consistent description of kinetics and hydrodynamics of dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Markiv, B. [Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii St., 79011 Lviv (Ukraine); Tokarchuk, M. [Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii St., 79011 Lviv (Ukraine); National University “Lviv Polytechnic,” 12 Bandera St., 79013 Lviv (Ukraine)

    2014-02-15

    A consistent statistical description of kinetics and hydrodynamics of dusty plasma is proposed based on the Zubarev nonequilibrium statistical operator method. For the case of partial dynamics, the nonequilibrium statistical operator and the generalized transport equations for a consistent description of kinetics of dust particles and hydrodynamics of electrons, ions, and neutral atoms are obtained. In the approximation of weakly nonequilibrium process, a spectrum of collective excitations of dusty plasma is investigated in the hydrodynamic limit.

  9. Hydrodynamics Versus Intracellular Coupling in the Synchronization of Eukaryotic Flagella.

    Science.gov (United States)

    Quaranta, Greta; Aubin-Tam, Marie-Eve; Tam, Daniel

    2015-12-04

    The influence of hydrodynamic forces on eukaryotic flagella synchronization is investigated by triggering phase locking between a controlled external flow and the flagella of C. reinhardtii. Hydrodynamic forces required for synchronization are over an order of magnitude larger than hydrodynamic forces experienced in physiological conditions. Our results suggest that synchronization is due instead to coupling through cell internal fibers connecting the flagella. This conclusion is confirmed by observations of the vfl3 mutant, with impaired mechanical connection between the flagella.

  10. Size fractionation by slalom chromatography and hydrodynamic chromatography

    OpenAIRE

    Dias, Ricardo P.

    2008-01-01

    Hydrodynamic chromatography, also called separation by flow, is based on the use of the parabolic flow profile occurring in open capillaries or in the pores from a column filled with non-porous particles. The hydrodynamic chromatography separation medium, if any, is much simpler than that from size exclusion chromatography (porous particles), the former technique being used in the size-fractionation of many colloids and macromolecules. The transition between hydrodynamic chromatography (obtai...

  11. The hydrodynamic and radiative properties of low-density foams heated by x-rays

    Science.gov (United States)

    Rosmej, O. N.; Suslov, N.; Martsovenko, D.; Vergunova, G.; Borisenko, N.; Orlov, N.; Rienecker, T.; Klir, D.; Rezack, K.; Orekhov, A.; Borisenko, L.; Krousky, E.; Pfeifer, M.; Dudzak, R.; Maeder, R.; Schaechinger, M.; Schoenlein, A.; Zaehter, S.; Jacoby, J.; Limpouch, J.; Ullschmied, J.; Zhidkov, N.

    2015-09-01

    An advanced type of hydrodynamic stable plasma targets with homogeneous distribution of plasma parameters has been proposed for application in experiments on heavy ion stopping in plasmas and relativistic laser based particle acceleration. Plasma was created via x-ray heating of polymer aerogels with a mean density 103 times lower than that of solid matter. Hydrodynamic and radiation properties of low-density polymer aerogels heated by x-rays, which were generated due to laser interaction with a gold hohlraum, have been investigated experimentally and numerically. In experiments carried out at the PALS laser facility in Prague, the parameters of the hohlraum based soft x-ray source and the fraction of x-ray energy absorbed by foam layers have been measured. The results of these experiments and numerical simulations show that the x-ray heat process occurs via propagation of supersonic radiation driven heat waves. The measured heat wave velocity of 107 cm s-1 allows one to estimate the plasma temperature reached as 25 eV. The hydrodynamic stability of x-ray heated plasma layers has been demonstrated by means of an optical streak camera viewing the plasma expansion process. Simulations of the foam heating process denote rather homogeneous distribution of the plasma temperature and density in the x-ray heated plasma layer and sharp plasma boundaries. The investigated features of such plasma targets are a great advantage for experiments with heavy ion and relativistic laser beams.

  12. GASOLINE: Smoothed Particle Hydrodynamics (SPH) code

    Science.gov (United States)

    N-Body Shop

    2017-10-01

    Gasoline solves the equations of gravity and hydrodynamics in astrophysical problems, including simulations of planets, stars, and galaxies. It uses an SPH method that features correct mixing behavior in multiphase fluids and minimal artificial viscosity. This method is identical to the SPH method used in the ChaNGa code (ascl:1105.005), allowing users to extend results to problems requiring >100,000 cores. Gasoline uses a fast, memory-efficient O(N log N) KD-Tree to solve Poisson's Equation for gravity and avoids artificial viscosity in non-shocking compressive flows.

  13. A Hydro-Dynamical Model for Gravity

    Directory of Open Access Journals (Sweden)

    Corneliu BERBENTE

    2016-03-01

    Full Text Available hydro-dynamical model for gravity by using an analogy with the attraction of spherical sources in incompressible fluids is proposed. Information regarding a photon-like particle called graviton is taken using an author’s previous paper [6]. The substance and radiation interaction due to emission of gravitons takes place via an energy field made of the emitted gravitons and filling the entire universe. The energy distribution is considered uniform at the universe scale. A consequence of the proposed model is the increasing of the universal “constant” of gravity, as a function of the age of universe.

  14. An analytical model of flagellate hydrodynamics

    DEFF Research Database (Denmark)

    Dölger, Julia; Bohr, Tomas; Andersen, Anders Peter

    2017-01-01

    Flagellates are unicellular microswimmers that propel themselves using one or several beating flagella. We consider a hydrodynamic model of flagellates and explore the effect of flagellar arrangement and beat pattern on swimming kinematics and near-cell flow. The model is based on the analytical......–right symmetric flagellar arrangements we determine the swimming velocity, and we show that transversal forces due to the periodic movements of the flagella can promote swimming. For a model flagellate with both a longitudinal and a transversal flagellum we determine radius and pitch of the helical swimming...

  15. Hydrodynamic Study Of Column Bioleaching Processes

    Directory of Open Access Journals (Sweden)

    Sadowski Zygmunt

    2015-06-01

    Full Text Available The modelling of flow leaching solution through the porous media has been considered. The heap bioleaching process can be tested using the column experimental equipment. This equipment was employed to the hydrodynamic studies of copper ore bioleaching. The copper ore (black shale ore with the support, inertial materials (glass small balls and polyethylene beads was used to the bioleaching tests. The packed beds were various composition, the ore/support ratio was changed. The correlation between the bed porosity and bioleaching kinetics, and copper recovery was investigated.

  16. Hydrodynamic approach to p–Pb

    Energy Technology Data Exchange (ETDEWEB)

    Bożek, Piotr, E-mail: piotr.bozek@ifj.edu.pl [AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, PL-30059 Kraków (Poland); Institute of Nuclear Physics PAN, PL-31342 Kraków (Poland); Broniowski, Wojciech, E-mail: wojciech.broniowski@ifj.edu.pl [Institute of Nuclear Physics PAN, PL-31342 Kraków (Poland); Institute of Physics, Jan Kochanowski University, PL-25406 Kielce (Poland)

    2014-06-15

    The formation and collective expansion of the fireball formed in ultrarelativistic p–A and d–A collisions is discussed. Predictions of the hydrodynamic model are compared to recent experimental results. The presence of strong final state interaction effects in the small dense systems is consistent with the observed azimuthal anisotropy of the flow and with the mass dependence of the average transverse momentum and of the elliptic flow. This raises the question of the mechanism explaining such a rapid build-up of the collective flow and the large degree of local equilibration needed to justify this scenario.

  17. Effect of geometry on hydrodynamic film thickness

    Science.gov (United States)

    Brewe, D. E.; Hamrock, B. J.; Taylor, C. M.

    1978-01-01

    The influence of geometry on the isothermal hydrodynamic film separating two rigid solids was investigated. Pressure-viscosity effects were not considered. The minimum film thickness is derived for fully flooded conjunctions by using the Reynolds boundary conditions. It was found that the minimum film thickness had the same speed, viscosity, and load dependence as Kapitza's classical solution. However, the incorporation of Reynolds boundary conditions resulted in an additional geometry effect. Solutions using the parabolic film approximation are compared with those using the exact expression for the film in the analysis. Contour plots are shown that indicate in detail the pressure developed between the solids.

  18. Study on numerical calculation method for hydrodynamic parameters of WEC

    Directory of Open Access Journals (Sweden)

    Lijiao Shen

    2017-01-01

    Full Text Available For the effect of hydrodynamic parameters on the dynamic performance of wave energy devices is very significant, these parameters must be considered carefully when adjusting dynamic characteristics of devices. On the other hand calculating hydrodynamic parameter of devices accurately can guarantee rational dynamic property parameter adjustment. By using CFD technique and considering the definition of hydrodynamic parameters, the phase relationship between added mass and damp as well as the equation of forces, one new calculation method of hydrodynamic parameter was presented. Finally one example demonstrated the effectiveness of the new analysis method presented in this paper.

  19. Hydrodynamization and transient modes of expanding plasma in kinetic theory

    CERN Document Server

    Heller, Michal P; Spalinski, Michal

    2016-01-01

    We study the transition to hydrodynamics in a weakly-coupled model of quark-gluon plasma given by kinetic theory in the relaxation time approximation. Our studies uncover qualitative similarities to the results on hydrodynamization in strongly coupled gauge theories. In particular, we demonstrate that the gradient expansion in this model has vanishing radius of convergence. The asymptotic character of the hydrodynamic gradient expansion is crucial for the recently discovered applicability of hydrodynamics at large gradients. Furthermore, the analysis of the resurgent properties of the series provides, quite remarkably, indication for the existence of a novel transient, damped oscillatory mode of expanding plasmas in kinetic theory.

  20. Effect of Nitric Acid Concentrations on Synthesis and Stability of Maghemite Nanoparticles Suspension

    Directory of Open Access Journals (Sweden)

    Irwan Nurdin

    2014-01-01

    Full Text Available Maghemite (γ-Fe2O3 nanoparticles have been synthesized using a chemical coprecipitation method at different nitric acid concentrations as an oxidizing agent. Characterization of all samples performed by several techniques including X-ray diffraction (XRD, transmission electron microscopy (TEM, alternating gradient magnetometry (AGM, thermogravimetric analysis (TGA, dynamic light scattering (DLS, and zeta potential. The XRD patterns confirmed that the particles were maghemite. The crystallite size of all samples decreases with the increasing concentration of nitric acid. TEM observation showed that the particles have spherical morphology with narrow particle size distribution. The particles showed superparamagnetic behavior with decreased magnetization values at the increasing concentration of nitric acid. TGA measurement showed that the stability temperature decreases with the increasing concentration of nitric acid. DLS measurement showed that the hydrodynamic particle sizes decrease with the increasing concentration of nitric acid. Zeta potential values show a decrease with the increasing concentration of nitric acid. The increasing concentration of nitric acid in synthesis of maghemite nanoparticles produced smaller size particles, lower magnetization, better thermal stability, and more stable maghemite nanoparticles suspension.

  1. A theoretical study on the frequency-dependent electric conductivity of electrolyte solutions. II. Effect of hydrodynamic interaction.

    Science.gov (United States)

    Yamaguchi, T; Matsuoka, T; Koda, S

    2009-03-07

    The theory on the frequency-dependent electric conductivity of electrolyte solutions proposed previously by Yamaguchi et al. [J. Chem. Phys. 127, 234501 (2007)] is extended to include the hydrodynamic interaction between ions. The theory is applied to the aqueous solution of NaCl and the concentration dependence of the conductivity agrees well with that determined by experiments. The effects of the hydrodynamic and relaxation effects are highly nonadditive in the concentrated solution, because the hydrodynamic interaction between ions affects the time-dependent response of the ionic atmosphere. The decrease in the electric conductivity is divided into the contributions of ion pair distribution at various distances. The long-range ionic atmosphere plays a major role at the concentration as low as 0.01 mol/kg, whereas the contribution of the contact ion pair region is important at 1 mol/kg. The magnitude of the contribution of the contact ion pair region is scarcely dependent on the presence of the hydrodynamic interaction. The transport number of cation is calculated to be a decreasing function of concentration as is observed in experiments.

  2. Mechanisms of cadmium accumulation (adsorption and absorption) by the freshwater bivalve Corbicula fluminea under hydrodynamic conditions.

    Science.gov (United States)

    Nan, Geng; Peifang, Wang; Chao, Wang; Jun, Hou; Jin, Qian; Lingzhan, Miao

    2016-05-01

    Many heavy metals in sediments and water have potential adverse effects on aquatic organisms such as Corbicula fluminea (O.F. Müller, 1774), a bivalve species frequently used as a biomonitor for metal pollution. Studies over the past decades examining the heavy metal uptake by C. fluminea, very few has investigated the effect of hydrodynamic conditions on accumulation of heavy metal by C. fluminea. Therefore, in this study, to investigate the mechanism of intracellular and extracellular accumulation of metal, individuals of C. fluminea were exposed to cadmium (Cd)-treated water under three different hydrodynamic conditions. These included exposures in two set ups: three rates of rotation (500, 350, 200 r/min) in beakers for 10 days, and then exposure to Cd-treated sediment under two naturally turbulent water conditions (14 cm/s and 3.2 cm/s) in experimental flumes for 23 days. Hydrodynamic force increased the burrowing rate but decreased the activity of C. fluminea. After 10 days of exposure, the extracellular concentrations of Cd in the tissues of C. fluminea in the sand group were significantly higher than that in the gravel groups. The intracellular and extracellular concentrations of Cd in the tissues of C. fluminea dramatically increased in the Cd-treated sediment test. Moreover, the concentration of the extracellular Cd adsorbed on the tissues of C. fluminea in the 14 cm/s and 3.2 cm/s groups was significantly higher than that in the control group, whereas the effect of hydrodynamic force on absorption of Cd by C. fluminea was not obvious. These results suggest that hydrodynamic condition plays an important role in extracellular accumulation of Cd by C. fluminea. In future study, when using C. fluminea to assess Cd pollution in aquatic environment, extracellular Cd adsorbed on the tissue should be removed to avoid the influence of hydrodynamics. Copyright © 2016. Published by Elsevier Ltd.

  3. Classification of integrable hydrodynamic chains and generating functions of conservation laws

    OpenAIRE

    Pavlov, Maxim V.

    2006-01-01

    New approach to classification of integrable hydrodynamic chains is established. Generating functions of conservation laws are classified by the method of hydrodynamic reductions. N parametric family of explicit hydrodynamic reductions allows to reconstruct corresponding hydrodynamic chains. Plenty new hydrodynamic chains are found.

  4. Stable Hybrid Adaptive Control,

    Science.gov (United States)

    1982-07-01

    STABLE HYBRID ADAPTIVE CONTROL(U) YALE UNIV NEW HAVEN i/i CT CENTER FOR SYSTEMS SCIENCE K S NARENDRA ET AL. JUL 82 8286 Ne@04-76-C-8e7 UNCLASSIFIED...teasrallepsaaw1tflbe~ll b ydd Il"t 5 As is the comtanuous Case cistral to the stability analysis of the hybrid ~IVt* COnRol PO* IMare the sur Models

  5. Conservative regularization of ideal hydrodynamics and magnetohydrodynamics

    Science.gov (United States)

    Thyagaraja, A.

    2010-03-01

    Inviscid, incompressible hydrodynamics and incompressible ideal magnetohydrodynamics (MHD) share many properties such as time-reversal invariance of equations, conservation laws, and certain topological features. In three dimensions, these systems may lead to singular solutions (involving vortex and current sheets). While dissipative (viscoresistive) effects can regularize the equations leading to bounded solutions to the initial-boundary value (Cauchy) problem which presumably exist uniquely, the time-reversal symmetry and associated conservation properties are certainly destroyed. The present work is analogous to (and suggested by) the Korteweg-de Vries regularization of the one-dimensional, nonlinear kinematic wave equation. Thus the regularizations applied to the original equations of hydrodynamics and ideal MHD retain conservation properties and the symmetries of the original equations. Integral invariants which generalize those known for the original systems are shown to imply bounded enstrophy. The regularization developed can also be applied to the corresponding dissipative models (such as the Navier-Stokes equations and the viscoresistive MHD equations) and may imply interesting regularity properties for the solutions of the latter as well. The models developed thus have intrinsic mathematical interest as well as possible applications to large-scale numerical simulations in systems where dissipative effects are extremely small or even absent.

  6. Coupling of smooth particle hydrodynamics with PRONTO

    Energy Technology Data Exchange (ETDEWEB)

    Attaway, S.W.; Heinstein, M.W.; Mello, F.J.; Swegle, J.W.

    1993-08-01

    A gridless numerical technique called smooth particle hydrodynamics (SPH) has been coupled to the transient dynamics finite element code, PRONTO. In this paper, a new weighted residual derivation for the SPH method will be presented, and the methods used to embed SPH within PRONTO will be outlined. Example SPH-PRONTO calculations will also be presented. One major difficulty associated with the Lagrangian finite element method is modeling materials with no shear strength; for example, gases, fluids and explosive bi-products. Typically these materials can be modeled for only a short time with a Lagrangian finite element code. Large distortions cause tangling of the mesh, which will eventually lead to numerical difficulties such as negative element area or ``bow tie`` elements. Remeshing will allow the problem to continue for a short while, but the large distortions can prevent a complete analysis. Smooth particle hydrodynamics is a gridless Lagrangian technique. Requiring no mesh, SPH has the potential to model material fracture, large shear flows, and penetration. SPH computes the strain rate and the stress divergence based on the nearest neighbors of a particle, which are determined using an efficient particle sorting technique. Embedding the SPH method within PRONTO allows part of the problem to be modeled with quadrilateral finite elements while other parts are modeled with the gridless SPH method. SPH elements are coupled to the quadrilateral elements through a contact like algorithm.

  7. Advancement in Mixing Hydrodynamics using Motionless Mixer

    Directory of Open Access Journals (Sweden)

    Mazhar Hussain

    2015-07-01

    Full Text Available A large number of scientists have been conducting research to improve the hydrodynamic characteristics of mixing of fluids. Out of these techniques, static mixing is adopted in this study to improve the mixing of fluids, which has a lead of negligible energy consumption in comparison with dynamic mixers. Air Water system have been cast-off for mixing in which reduction in pressure, energy consumed, bubble diameter and mass transfer rate was mainly taken into account to design the static mixer element. Five different types of elements (Baffle, Plate, Blade, Needle and Wheel were tested to observe and compare above mentioned hydrodynamic properties. Two point source characteristics i.e. reduction in pressure and bubble size, were carried out using Hg manometer and still photography respectively. Other nonpoint source characteristics (Energy depletion, rate of mixing were found to be directly influenced by these point source characteristics. From the experimentations baffle element catches more importance, in terms of less energy depletion, more mixing rate, when compared with the other elements tested. This element becomes also comparable with other elements renowned in literature.

  8. Mesoscale simulations of hydrodynamic squirmer interactions.

    Science.gov (United States)

    Götze, Ingo O; Gompper, Gerhard

    2010-10-01

    The swimming behavior of self-propelled microorganisms is studied by particle-based mesoscale simulations. The simulation technique includes both hydrodynamics and thermal fluctuations that are both essential for the dynamics of microswimmers. The swimmers are modeled as squirmers, i.e., spherical objects with a prescribed tangential surface velocity, where the focus of thrust generation can be tuned from pushers to pullers. For passive squirmers (colloids), we show that the velocity autocorrelation function agrees quantitatively with the Boussinesq approximation. Single active squirmers show a persistent random-walk behavior, determined by forward motion, lateral diffusion, and orientational fluctuations, in agreement with theoretical predictions. For pairs of squirmers, which are initially swimming in parallel, we find an attraction for pushers and a repulsion for pullers, as expected. The hydrodynamic force between squirmer pairs is calculated as a function of the center-to-center distances d(cm) and is found to be consistent with a logarithmic distance dependence for d(cm) less than about two sphere diameters; here, the force is considerably stronger than expected from the far-field expansion. The dependence of the force strength on the asymmetry of the polar surface velocity is obtained. During the collision process, thermal fluctuations turn out to be very important and to strongly affect the postcollision velocity directions of both squirmers.

  9. Hydrodynamics of Sperm Cells near Surfaces

    Science.gov (United States)

    Elgeti, Jens; Kaupp, U. Benjamin; Gompper, Gerhard

    2010-01-01

    Sperm are propelled by an actively beating tail, and display a wide variety of swimming patterns. When confined between two parallel walls, sperm swim either in circles or on curvilinear trajectories close to the walls. We employ mesoscale hydrodynamics simulations in combination with a mechanical sperm model to study the swimming behavior near walls. The simulations show that sperm become captured at the wall due to the hydrodynamic flow fields which are generated by the flagellar beat. The circular trajectories are determined by the chiral asymmetry of the sperm shape. For strong (weak) chirality, sperm swim in tight (wide) circles, with the beating plane of the flagellum oriented perpendicular (parallel) to the wall. For comparison, we also perform simulations based on a local anisotropic friction of the flagellum. In this resistive force approximation, surface adhesion and circular swimming patterns are obtained as well. However, the adhesion mechanism is now due to steric repulsion, and the orientation of the beating plane is different. Our model provides a theoretical framework that explains several distinct swimming behaviors of sperm near and far from a wall. Moreover, the model suggests a mechanism by which sperm navigate in a chemical gradient via a change of their shape. PMID:20712984

  10. Relativistic hydrodynamics on graphics processing units

    CERN Document Server

    Sikorski, Jan; Porter-Sobieraj, Joanna; Słodkowski, Marcin; Krzyżanowski, Piotr; Książek, Natalia; Duda, Przemysław

    2016-01-01

    Hydrodynamics calculations have been successfully used in studies of the bulk properties of the Quark-Gluon Plasma, particularly of elliptic flow and shear viscosity. However, there are areas (for instance event-by-event simulations for flow fluctuations and higher-order flow harmonics studies) where further advancement is hampered by lack of efficient and precise 3+1D~program. This problem can be solved by using Graphics Processing Unit (GPU) computing, which offers unprecedented increase of the computing power compared to standard CPU simulations. In this work, we present an implementation of 3+1D ideal hydrodynamics simulations on the Graphics Processing Unit using Nvidia CUDA framework. MUSTA-FORCE (MUlti STAge, First ORder CEntral, with a~slope limiter and MUSCL reconstruction) and WENO (Weighted Essentially Non-Oscillating) schemes are employed in the simulations, delivering second (MUSTA-FORCE), fifth and seventh (WENO) order of accuracy. Third order Runge-Kutta scheme was used for integration in the t...

  11. A web portal for hydrodynamical, cosmological simulations

    Science.gov (United States)

    Ragagnin, A.; Dolag, K.; Biffi, V.; Cadolle Bel, M.; Hammer, N. J.; Krukau, A.; Petkova, M.; Steinborn, D.

    2017-07-01

    This article describes a data centre hosting a web portal for accessing and sharing the output of large, cosmological, hydro-dynamical simulations with a broad scientific community. It also allows users to receive related scientific data products by directly processing the raw simulation data on a remote computing cluster. The data centre has a multi-layer structure: a web portal, a job control layer, a computing cluster and a HPC storage system. The outer layer enables users to choose an object from the simulations. Objects can be selected by visually inspecting 2D maps of the simulation data, by performing highly compounded and elaborated queries or graphically by plotting arbitrary combinations of properties. The user can run analysis tools on a chosen object. These services allow users to run analysis tools on the raw simulation data. The job control layer is responsible for handling and performing the analysis jobs, which are executed on a computing cluster. The innermost layer is formed by a HPC storage system which hosts the large, raw simulation data. The following services are available for the users: (I) CLUSTERINSPECT visualizes properties of member galaxies of a selected galaxy cluster; (II) SIMCUT returns the raw data of a sub-volume around a selected object from a simulation, containing all the original, hydro-dynamical quantities; (III) SMAC creates idealized 2D maps of various, physical quantities and observables of a selected object; (IV) PHOX generates virtual X-ray observations with specifications of various current and upcoming instruments.

  12. Improved Swimming Performance in Hydrodynamically- coupled Airfoils

    Science.gov (United States)

    Heydari, Sina; Shelley, Michael J.; Kanso, Eva

    2017-11-01

    Collective motion is a widespread phenomenon in the animal kingdom from fish schools to bird flocks. Half of the known fish species are thought to exhibit schooling behavior during some phase of their life cycle. Schooling likely occurs to serve multiple purposes, including foraging for resources and protection from predators. Growing experimental and theoretical evidence supports the hypothesis that fish can benefit from the hydrodynamic interactions with their neighbors, but it is unclear whether this requires particular configurations or regulations. Here, we propose a physics-based approach that account for hydrodynamic interactions among swimmers based on the vortex sheet model. The benefit of this model is that it is scalable to a large number of swimmers. We start by examining the case of two swimmers, heaving plates, moving in parallel and in tandem. We find that for the same heaving amplitude and frequency, the coupled-swimmers move faster and more efficiently. This increase in velocity depends strongly on the configuration and separation distance between the swimmers. Our results are consistent with recent experimental findings on heaving airfoils and underline the role of fluid dynamic interactions in the collective behavior of swimmers.

  13. Hydrodynamic flow control in marine mammals.

    Science.gov (United States)

    Fish, Frank E; Howle, Laurens E; Murray, Mark M

    2008-12-01

    The ability to control the flow of water around the body dictates the performance of marine mammals in the aquatic environment. Morphological specializations of marine mammals afford mechanisms for passive flow control. Aside from the design of the body, which minimizes drag, the morphology of the appendages provides hydrodynamic advantages with respect to drag, lift, thrust, and stall. The flukes of cetaceans and sirenians and flippers of pinnipeds possess geometries with flexibility, which enhance thrust production for high efficiency swimming. The pectoral flippers provide hydrodynamic lift for maneuvering. The design of the flippers is constrained by performance associated with stall. Delay of stall can be accomplished passively by modification of the flipper leading edge. Such a design is exhibited by the leading edge tubercles on the flippers of humpback whales (Megaptera novaeangliae). These novel morphological structures induce a spanwise flow field of separated vortices alternating with regions of accelerated flow. The coupled flow regions maintain areas of attached flow and delay stall to high angles of attack. The delay of stall permits enhanced turning performance with respect to both agility and maneuverability. The morphological features of marine mammals for flow control can be utilized in the biomimetic design of engineered structures for increased power production and increased efficiency.

  14. From cilia hydrodynamics to zebrafish embryonic development.

    Science.gov (United States)

    Supatto, Willy; Vermot, Julien

    2011-01-01

    Embryonic development involves the cellular integration of chemical and physical stimuli. A key physical input is the mechanical stress generated during embryonic morphogenesis. This process necessitates tensile forces at the tissue scale such as during axis elongation and budding, as well as at the cellular scale when cells migrate and contract. Furthermore, cells can generate forces using motile cilia to produce flow. Cilia-driven flows are critical throughout embryonic development but little is known about the diversity of the forces they exert and the role of the mechanical stresses they generate. In this chapter, through an examination of zebrafish development, we highlight what is known about the role of hydrodynamics mediated by beating cilia and examine the physical features of flow fields from the modeling and experimental perspectives. We review imaging strategies to visualize and quantify beating cilia and the flow they generate in vivo. Finally, we describe the function of hydrodynamics during left-right embryonic patterning and inner ear development. Ideally, continued progress in these areas will help to address a key conceptual problem in developmental biology, which is to understand the interplay between environmental constraints and genetic control during morphogenesis. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Mix and hydrodynamic instabilities on NIF

    Science.gov (United States)

    Smalyuk, V. A.; Robey, H. F.; Casey, D. T.; Clark, D. S.; Döppner, T.; Haan, S. W.; Hammel, B. A.; MacPhee, A. G.; Martinez, D.; Milovich, J. L.; Peterson, J. L.; Pickworth, L.; Pino, J. E.; Raman, K.; Tipton, R.; Weber, C. R.; Baker, K. L.; Bachmann, B.; Berzak Hopkins, L. F.; Bond, E.; Caggiano, J. A.; Callahan, D. A.; Celliers, P. M.; Cerjan, C.; Dixit, S. N.; Edwards, M. J.; Felker, S.; Field, J. E.; Fittinghoff, D. N.; Gharibyan, N.; Grim, G. P.; Hamza, A. V.; Hatarik, R.; Hohenberger, M.; Hsing, W. W.; Hurricane, O. A.; Jancaitis, K. S.; Jones, O. S.; Khan, S.; Kroll, J. J.; Lafortune, K. N.; Landen, O. L.; Ma, T.; MacGowan, B. J.; Masse, L.; Moore, A. S.; Nagel, S. R.; Nikroo, A.; Pak, A.; Patel, P. K.; Remington, B. A.; Sayre, D. B.; Spears, B. K.; Stadermann, M.; Tommasini, R.; Widmayer, C. C.; Yeamans, C. B.; Crippen, J.; Farrell, M.; Giraldez, E.; Rice, N.; Wilde, C. H.; Volegov, P. L.; Gatu Johnson, M.

    2017-06-01

    Several new platforms have been developed to experimentally measure hydrodynamic instabilities in all phases of indirect-drive, inertial confinement fusion implosions on National Ignition Facility. At the ablation front, instability growth of pre-imposed modulations was measured with a face-on, x-ray radiography platform in the linear regime using the Hydrodynamic Growth Radiography (HGR) platform. Modulation growth of "native roughness" modulations and engineering features (fill tubes and capsule support membranes) were measured in conditions relevant to layered DT implosions. A new experimental platform was developed to measure instability growth at the ablator-ice interface. In the deceleration phase of implosions, several experimental platforms were developed to measure both low-mode asymmetries and high-mode perturbations near peak compression with x-ray and nuclear techniques. In one innovative technique, the self-emission from the hot spot was enhanced with argon dopant to "self-backlight" the shell in-flight. To stabilize instability growth, new "adiabat-shaping" techniques were developed using the HGR platform and applied in layered DT implosions.

  16. On Hydrodynamic Instabilities in Cylindrical Geometry

    Science.gov (United States)

    Proano, Erik; Rollin, Bertrand

    2017-11-01

    Recent research has suggested that hydrodynamic instabilities induced mixing is one of the last major hurdles toward achieving optimum conditions for ignition in confined fusion approaches for energy production. We leave aside the complexities of multiple interacting physics that lead to a fusion target ignition to be able to focus on understanding the development of these hydrodynamic instabilities, namely Richtmyer-Meshkov and Rayleigh-Taylor, in the context of a converging geometry. The problem is reformulated into the cleaner case of a cylindrical shock wave imploding onto a pocket of Sulfur Hexafluoride immersed in air. This numerical experiment aims at characterizing qualitatively and quantitatively the relation between the instabilities initial conditions and their development until late time. Starting from carefully designed single- and multimode disturbances at the initial density interface, our simulations track the evolution of the mixing layer through successive occurrences of the Richtmyer-Meshkov and Rayleigh-Taylor instabilities. Evolution of the mixing zone width and growth rate are presented for selected initial conditions, along with a quantification of mixing. Also, the effect of the converging shock strength is discussed.

  17. Low Mach number fluctuating hydrodynamics for electrolytes

    Science.gov (United States)

    Péraud, Jean-Philippe; Nonaka, Andy; Chaudhri, Anuj; Bell, John B.; Donev, Aleksandar; Garcia, Alejandro L.

    2016-11-01

    We formulate and study computationally the low Mach number fluctuating hydrodynamic equations for electrolyte solutions. We are interested in studying transport in mixtures of charged species at the mesoscale, down to scales below the Debye length, where thermal fluctuations have a significant impact on the dynamics. Continuing our previous work on fluctuating hydrodynamics of multicomponent mixtures of incompressible isothermal miscible liquids [A. Donev et al., Phys. Fluids 27, 037103 (2015), 10.1063/1.4913571], we now include the effect of charged species using a quasielectrostatic approximation. Localized charges create an electric field, which in turn provides additional forcing in the mass and momentum equations. Our low Mach number formulation eliminates sound waves from the fully compressible formulation and leads to a more computationally efficient quasi-incompressible formulation. We demonstrate our ability to model saltwater (NaCl) solutions in both equilibrium and nonequilibrium settings. We show that our algorithm is second order in the deterministic setting and for length scales much greater than the Debye length gives results consistent with an electroneutral approximation. In the stochastic setting, our model captures the predicted dynamics of equilibrium and nonequilibrium fluctuations. We also identify and model an instability that appears when diffusive mixing occurs in the presence of an applied electric field.

  18. Supernova Hydrodynamics on the Omega Laser

    Energy Technology Data Exchange (ETDEWEB)

    R. Paul Drake

    2004-01-16

    (B204)The fundamental motivation for our work is that supernovae are not well understood. Recent observations have clarified the depth of our ignorance, by producing observed phenomena that current theory and computer simulations cannot reproduce. Such theories and simulations involve, however, a number of physical mechanisms that have never been studied in isolation. We perform experiments, in compressible hydrodynamics and radiation hydrodynamics, relevant to supernovae and supernova remnants. These experiments produce phenomena in the laboratory that are believed, based on simulations, to be important to astrophysics but that have not been directly observed in either the laboratory or in an astrophysical system. During the period of this grant, we have focused on the scaling of an astrophysically relevant, radiative-precursor shock, on preliminary studies of collapsing radiative shocks, and on the multimode behavior and the three-dimensional, deeply nonlinear evolution of the Rayleigh-Taylor (RT) instability at a decelerating, embedded interface. These experiments required strong compression and decompression, strong shocks (Mach {approx}10 or greater), flexible geometries, and very smooth laser beams, which means that the 60-beam Omega laser is the only facility capable of carrying out this program.

  19. How Hydrodynamics Control Algal Blooms in the Ythan Estuary, Scotland

    Science.gov (United States)

    Champangern, K.; Hoey, T.; Thomas, R.; Mitchard, E. T.

    2016-12-01

    The Ythan estuary, northeast Scotland, was designated in 2000 as a Nitrate Vulnerable Zone (NVZ) under the European Commission (EC) Nitrates Directive. Much of the catchment is intensively farmed and water quality has been adversely affected by nutrients from agricultural fertilisers. As a result, algal mats develop annually on tidal flats where sediment from upstream and from the adjacent dune systems is deposited. Understanding the patterns of water (river and ocean) circulation in the estuary as well as nutrient transport in the estuary is crucial for comprehending the role of several factors (elevation; sediment characteristics; nutrient flux) control the locations and scale of annual algal blooms. To understand the controls, the Delft3d flow model is used to simulate hydrodynamic patterns and nutrient pathways in the estuary during high flow and low flow events. The results from the simulations reveal that during high river flow in the central part of the estuary, where algal growth is most extensive, flow velocity are higher during flood tide than in the ebb. However, the velocity in this area remain very low throughout the tidal cycle. During low river flow, the velocity during one tidal cycle has the same pattern as in high flow event, although the velocity is generally slightly higher than during high river flow except during slack tide where velocity and shear stress are lower. The modelled nutrient pathways and their concentration also show the movement of nutrients with regard to interaction of both fresh and sea water. The concentration is greatest during low tide in the upper estuary followed by middle and lower estuary, while appearing lowest during high tide. The nutrients mobilise along the main channel where velocity is greater. However, they are also dispersed to shallower areas where algal growth is extensive and remain high concentrated in the areas until a new flood tide. These model results are validated against measured data, of which the

  20. Hydrodynamic studies of CNT nanofluids in helical coil heat exchanger

    Science.gov (United States)

    Babita; Sharma, S. K.; Mital Gupta, Shipra; Kumar, Arinjay

    2017-12-01

    Helical coils are extensively used in several industrial processes such as refrigeration systems, chemical reactors, recovery processes etc to accommodate a large heat transfer area within a smaller space. Nanofluids are getting great attention due to their enhanced heat transfer capability. In heat transfer equipments, pressure drop is one of the major factors of consideration for pumping power calculations. So, the present work is aimed to study hydrodynamics of CNT nanofluids in helical coils. In this study, pressure drop characteristics of CNT nanofluid flowing inside horizontal helical coils are investigated experimentally. The helical coil to tube diameter was varied from 11.71 to 27.34 keeping pitch of the helical coil constant. Double distilled water was used as basefluid. SDBS and GA surfactants were added to stablilize CNT nanofluids. The volumetric fraction of CNT nanofluid was varied from 0.003 vol% to 0.051 vol%. From the experimental data, it was analyzed that the friction factor in helical coils is greater than that of straight tubes. Concentration of CNT in nanofluids also has a significant influence on the pressure drop/friction factor of helical coils. At a constant concentration of CNT, decreasing helical coil to tube diameter from 27.24 to 11.71, fanning friction factor of helical coil; f c increases for a constant value of p/d t. This increase in the value of fanning friction factor can be attributed to the secondary flow of CNT nanofluid in helical coils.

  1. Effective method of treatment of effluents from production of bitumens under basic pH conditions using hydrodynamic cavitation aided by external oxidants.

    Science.gov (United States)

    Boczkaj, Grzegorz; Gągol, Michał; Klein, Marek; Przyjazny, Andrzej

    2018-01-01

    Utilization of cavitation in advanced oxidation processes (AOPs) is a promising trend in research on treatment of industrial effluents. The paper presents the results of investigations on the use of hydrodynamic cavitation aided by additional oxidation processes (O 3 /H 2 O 2 /Peroxone) to reduce the total pollution load in the effluent from the production of bitumens. A detailed analysis of changes in content of volatile organic compounds (VOCs) for all processes studied was also performed. The studies revealed that the most effective treatment process involves hydrodynamic cavitation aided by ozonation (40% COD reduction and 50% BOD reduction). The other processes investigated (hydrodynamic cavitation+H 2 O 2 , hydrodynamic cavitation+Peroxone and hydrodynamic cavitation alone) ensure reduction of COD by 20, 25 and 13% and reduction of BOD by 49, 32 and 18%, respectively. The results of this research revealed that most of the VOCs studied are effectively degraded. The formation of byproducts is one of the aspects that must be considered in evaluation of the AOPs studied. This work confirmed that furfural is one of the byproducts whose concentration increased during treatment by hydrodynamic cavitation alone as well as hydrodynamic cavitation aided by H 2 O 2 as an external oxidant and it should be controlled during treatment processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. The use of hydrodynamic disintegration as a means to improve ...

    African Journals Online (AJOL)

    Disintegration by hydrodynamic cavitation has a positive effect on the degree and rate of sludge anaerobic digestion. By applying hydrodynamic disintegration the lysis of cells occurs in minutes instead of days. The intracellular and extracellular components are set free and are immediately available for biological ...

  3. Flow hydrodynamics near inlet key of Piano Key Weir (PKW)

    Indian Academy of Sciences (India)

    This paper presents fundamental outcomes from an experimental study on the hydrodynamic performance near inlet key of Piano Key Weir (PKW). Hydrodynamic performance was tested in a circulated open channel that comprised of PKW and sand bed (d50 = 0.25 mm). Instantaneous velocities were measured at 20 cross ...

  4. Hydrodynamics of a Multistage Wet Scrubber Incineration Conditions

    Science.gov (United States)

    Said, M. M.; Manyele, S. V.; Raphael, M. L.

    2012-01-01

    The objective of the study was to determine the hydrodynamics of the two stage counter-current cascade wet scrubbers used during incineration of medical waste. The dependence of the hydrodynamics on two main variables was studied: Inlet air flow rate and inlet liquid flow rate. This study introduces a new wet scrubber operating features, which are…

  5. Hydrodynamic roughness of floodplain vegetation: Airborne parameterization and field validation

    NARCIS (Netherlands)

    Straatsma, M.W.; Middelkoop, H.; Jong, S.M. de

    2011-01-01

    Hydrodynamic modeling is a central tool for flood risk management and lies at the base for the determination of deposition of sediment and heavy metals. In recent years, considerable effort has been made on the development of 2D and 3D hydrodynamic models that accurately simulate overbank flow

  6. SPHYNX: SPH hydrocode for subsonic hydrodynamical instabilities and strong shocks

    Science.gov (United States)

    Cabezon, Ruben M.; Garcia-Senz, Domingo

    2017-09-01

    SPHYNX addresses subsonic hydrodynamical instabilities and strong shocks; it is Newtonian, grounded on the Euler-Lagrange formulation of the smoothed-particle hydrodynamics technique, and density based. SPHYNX uses an integral approach for estimating gradients, a flexible family of interpolators to suppress pairing instability, and incorporates volume elements to provides better partition of the unity.

  7. Turbulent behaviour in magnetic hydrodynamics is not universal

    CERN Document Server

    Dmitriy, W

    1996-01-01

    A short distance expansion method (SDE) that is well known in the quantum field theory for analysis of turbulent behaviour of stochastic magnetic hydrodynamics of incompressible conductive fluid is applied. As a result is shown that in an inertial range the turbulent spectra of magnetic hydrodynamics depend on a scale of arising of curls.

  8. RECENT ADVANCES IN MACROMOLECULAR HYDRODYNAMIC MODELING

    Science.gov (United States)

    Aragon, Sergio R.

    2010-01-01

    The modern implementation of the boundary element method (S.R. Aragon, J. Comput. Chem. 25(2004)1191–12055) has ushered unprecedented accuracy and precision for the solution of the Stokes equations of hydrodynamics with stick boundary conditions. This article begins by reviewing computations with the program BEST of smooth surface objects such as ellipsoids, the dumbbell, and cylinders that demonstrate that the numerical solution of the integral equation formulation of hydrodynamics yields very high precision and accuracy. When BEST is used for macromolecular computations, the limiting factor becomes the definition of the molecular hydrodynamic surface and the implied effective solvation of the molecular surface. Studies on 49 different proteins, ranging in molecular weight from 9 to over 400 kDa, have shown that a model using a 1.1 A thick hydration layer describes all protein transport properties very well for the overwhelming majority of them. In addition, this data implies that the crystal structure is an excellent representation of the average solution structure for most of them. In order to investigate the origin of a handful of significant discrepancies in some multimeric proteins (over −20% observed in the intrinsic viscosity), the technique of Molecular Dynamics simulation (MD) has been incorporated into the research program. A preliminary study of dimeric α-chymotrypsin using approximate implicit water MD is presented. In addition I describe the successful validation of modern protein force fields, ff03 and ff99SB, for the accurate computation of solution structure in explicit water simulation by comparison of trajectory ensemble average computed transport properties with experimental measurements. This work includes small proteins such as lysozyme, ribonuclease and ubiquitin using trajectories around 10 ns duration. We have also studied a 150 kDa flexible monoclonal IgG antibody, trastuzumab, with multiple independent trajectories encompassing over

  9. Stable and Enforceable

    DEFF Research Database (Denmark)

    Hallett, Andrew Hughes; Hougaard Jensen, Svend E.

    2011-01-01

    -term stabilisation. We argue for public sector debt targets as a practical way to achieve such a set up, and an excess debt protocol is constructed to give enforceable form to those targets. The ideas of “fiscal space” and optimal debt levels are used to provide a mechanism for identifying a stable region within...... which the debt targeting regime should operate. Making these factors explicit would both improve the credibility of planned fiscal policies and reduce risk premia on borrowing costs. We finally show how Europe’s competitiveness pact, and debt restructuring operations, can be used to maximise...

  10. Onset of hydrodynamic mix in high-velocity, highly compressed inertial confinement fusion implosions.

    Science.gov (United States)

    Ma, T; Patel, P K; Izumi, N; Springer, P T; Key, M H; Atherton, L J; Benedetti, L R; Bradley, D K; Callahan, D A; Celliers, P M; Cerjan, C J; Clark, D S; Dewald, E L; Dixit, S N; Döppner, T; Edgell, D H; Epstein, R; Glenn, S; Grim, G; Haan, S W; Hammel, B A; Hicks, D; Hsing, W W; Jones, O S; Khan, S F; Kilkenny, J D; Kline, J L; Kyrala, G A; Landen, O L; Le Pape, S; MacGowan, B J; Mackinnon, A J; MacPhee, A G; Meezan, N B; Moody, J D; Pak, A; Parham, T; Park, H-S; Ralph, J E; Regan, S P; Remington, B A; Robey, H F; Ross, J S; Spears, B K; Smalyuk, V; Suter, L J; Tommasini, R; Town, R P; Weber, S V; Lindl, J D; Edwards, M J; Glenzer, S H; Moses, E I

    2013-08-23

    Deuterium-tritium inertial confinement fusion implosion experiments on the National Ignition Facility have demonstrated yields ranging from 0.8 to 7×10(14), and record fuel areal densities of 0.7 to 1.3 g/cm2. These implosions use hohlraums irradiated with shaped laser pulses of 1.5-1.9 MJ energy. The laser peak power and duration at peak power were varied, as were the capsule ablator dopant concentrations and shell thicknesses. We quantify the level of hydrodynamic instability mix of the ablator into the hot spot from the measured elevated absolute x-ray emission of the hot spot. We observe that DT neutron yield and ion temperature decrease abruptly as the hot spot mix mass increases above several hundred ng. The comparison with radiation-hydrodynamic modeling indicates that low mode asymmetries and increased ablator surface perturbations may be responsible for the current performance.

  11. Tears of Venom: Hydrodynamics of Reptilian Envenomation

    Science.gov (United States)

    Young, Bruce A.; Herzog, Florian; Friedel, Paul; Rammensee, Sebastian; Bausch, Andreas; van Hemmen, J. Leo

    2011-05-01

    In the majority of venomous snakes, and in many other reptiles, venom is conveyed from the animal’s gland to the prey’s tissue through an open groove on the surface of the teeth and not through a tubular fang. Here we focus on two key aspects of the grooved delivery system: the hydrodynamics of venom as it interacts with the groove geometry, and the efficiency of the tooth-groove-venom complex as the tooth penetrates the prey’s tissue. We show that the surface tension of the venom is the driving force underlying the envenomation dynamics. In so doing, we explain not only the efficacy of the open groove, but also the prevalence of this mechanism among reptiles.

  12. An analysis of smoothed particle hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Swegle, J.W.; Attaway, S.W.; Heinstein, M.W.; Mello, F.J. [Sandia National Labs., Albuquerque, NM (United States); Hicks, D.L. [Michigan Technological Univ., Houghton, MI (United States)

    1994-03-01

    SPH (Smoothed Particle Hydrodynamics) is a gridless Lagrangian technique which is appealing as a possible alternative to numerical techniques currently used to analyze high deformation impulsive loading events. In the present study, the SPH algorithm has been subjected to detailed testing and analysis to determine its applicability in the field of solid dynamics. An important result of the work is a rigorous von Neumann stability analysis which provides a simple criterion for the stability or instability of the method in terms of the stress state and the second derivative of the kernel function. Instability, which typically occurs only for solids in tension, results not from the numerical time integration algorithm, but because the SPH algorithm creates an effective stress with a negative modulus. The analysis provides insight into possible methods for removing the instability. Also, SPH has been coupled into the transient dynamics finite element code PRONTO, and a weighted residual derivation of the SPH equations has been obtained.

  13. Hydrodynamic advantages of swimming by salp chains.

    Science.gov (United States)

    Sutherland, Kelly R; Weihs, Daniel

    2017-08-01

    Salps are marine invertebrates comprising multiple jet-propelled swimming units during a colonial life-cycle stage. Using theory, we show that asynchronous swimming with multiple pulsed jets yields substantial hydrodynamic benefit due to the production of steady swimming velocities, which limit drag. Laboratory comparisons of swimming kinematics of aggregate salps (Salpa fusiformis and Weelia cylindrica) using high-speed video supported that asynchronous swimming by aggregates results in a smoother velocity profile and showed that this smoother velocity profile is the result of uncoordinated, asynchronous swimming by individual zooids. In situ flow visualizations of W. cylindrica swimming wakes revealed that another consequence of asynchronous swimming is that fluid interactions between jet wakes are minimized. Although the advantages of multi-jet propulsion have been mentioned elsewhere, this is the first time that the theory has been quantified and the role of asynchronous swimming verified using experimental data from the laboratory and the field. © 2017 The Author(s).

  14. Study of hydrodynamic characteristics in tubular photobioreactors.

    Science.gov (United States)

    Zhang, Qinghua; Wu, Xia; Xue, Shengzhang; Liang, Kehong; Cong, Wei

    2013-02-01

    In this work, the hydrodynamic characteristics in tubular photobioreactors with a series of helical static mixers built-in were numerically investigated using computational fluid dynamics (CFD). The influences of height and screw pitch of the helical static mixer and fluid inlet velocity on the cell trajectories, swirl numbers and energy consumption were examined. In order to verify the actual results for cultivation of microalgae, cultivation experiments of freshwater Chlorella sp. were carried out in photobioreactor with and without helical static mixer built-in at the same time. It was shown that with built-in helical static mixer, the mixing of fluid could be intensified, and the light/dark cycle could also be achieved which is of benefit for the growth of microalgae. The biomass productivity of Chlorella sp. in tubular photobioreactor with helical static mixer built-in was 37.26 % higher than that in the photobioreactor without helical static mixer.

  15. Hydrodynamic Interactions in Active and Passive Matter

    Science.gov (United States)

    Krafnick, Ryan C.

    Active matter is present at all biological length scales, from molecular apparatuses interior to cells, to swimming microscopic organisms, to birds, fish, and people. Its properties are varied and its applications diverse, but our understanding of the fundamental driving forces of systems with these constituents remains incomplete. This thesis examines active matter suspensions, exploring the role of hydrodynamic interactions on the unique and emergent properties therein. Both qualitative and quantitative impacts are considered, and care is taken in determining the physical origin of the results in question. It is found that fluid dynamical interactions are fundamentally, qualitatively important, and much of the properties of a system can be explained with an effective energy density defined via the fluid fields arising from the embedded self-propelling entities themselves.

  16. Simulations of Rising Hydrodynamic and Magnetohydrodynamic Bubbles

    Science.gov (United States)

    Ricker, P. M.; Robinson, K.; Dursi, L. J.; Rosner, R.; Calder, A. C.; Zingale, M.; Truran, J. W.; Linde, T.; Caceres, A.; Fryxell, B.; Olson, K.; Riley, K.; Siegel, A.; Vladimirova, N.

    Motivated by recent Chandra and XMM-Newton observations of X-ray emission voids in galaxy cluster cooling flows, we have investigated the behavior of rising bubbles in stratified atmospheres using the FLASH adaptive-mesh simulation code. We present results from two-dimensional simulations with and without the effects of magnetic fields, and with varying bubble sizes and background stratifications. We find purely hydrodynamic bubbles to be unstable; a dynamically important magnetic field is required to maintain a bubble's integrity. This suggests that, even absent thermal conduction, for bubbles to be persistent enough to be regularly observed, they must be supported in large part by magnetic fields. We also observe that magnetically supported bubbles leave a tail as they rise. The structure of these tails may provide clues to the bubble's dynamical history.

  17. The Interaction Between Hydrodynamic Nonpropagating Solitons

    Science.gov (United States)

    Wang, Junyi; Wang, Wei; Wei, Rongjue; Wang, Benren

    1998-06-01

    The interaction between hydrodynamic nonpropagating solitons in a water tank has been investigated within the framework of Larraza & Putterman and Miles theory. It is shown that these solitons, similar to one-dimensional boats, never pass through each other and exchange places, and thus their interaction can be described in terms of two-body potential. The interaction potential for two solitons with opposite polarity and that for solitons with like polarity are found to be pure repulsive and anharmonic, respectively. Based on the results, it is explained well why two solitons of an opposite pair repel each other as a distance is reached. while that of a like pair can oscillate about each other.

  18. Hydrodynamic pressure in liquid filled container

    Science.gov (United States)

    Maiti, Pabitra Ranjan

    2011-12-01

    Liquid storage tanks are used to store oil, drinking water and different liquids which are necessary in industry and energy production. Partially liquid filled container shows free surface movement under external excitation this phenomenon is known as sloshing of liquid. When external excitation frequency matches the natural frequency of sloshing, a violent oscillation may occur that causes excess dynamic pressure on the tank structure. The dynamic behavior of liquid storage tanks under seismic excitation has been the subject of numerous theoretical and experimental investigations. This paper presents a pressure based finite element analysis of the liquid-structure systems considering the coupled effect of elastic structure and liquid. The equation of motion of the liquid is considered as incompressible and inviscid. The hydrodynamic pressure variation along a wall of prismatic container is studied and presented for different fill depth of liquid under sinusoidal base excitation.

  19. Nonlinear hydrodynamics in a Mediterranean lagoon

    Directory of Open Access Journals (Sweden)

    E. Alekseenko

    2013-03-01

    Full Text Available The paper addresses the application of the nonlinear hydrodynamics model (RANS (Reynolds-averaged Navier–Stokes equations in a wide semi-enclosed Mediterranean lagoon (Berre lagoon, considering three natural forcing functions, i.e., sea tide propagating through a long narrow channel, wind and runoff. Main attention is focused to characteristic velocities (at free surface and bottom and to free surface elevation associated to each of these three mechanisms, with special attention to the nearshore areas (i.e., in shallow water. The most interesting result concerns wind effects which, due to Berre lagoon bathymetry, give rise to downwind coastal jets, alongshore, in shallow water areas. Such coastal jets were never mentioned before in Berre lagoon literature.

  20. Preliminary study of disc hydrodynamic polishing.

    Science.gov (United States)

    Li, Yan; Lin, Bin; Zhang, XiaoFeng; Liu, PengFei

    2016-10-01

    In this paper, a developed polishing method based on elastic emission machining and Jules Verne-a variation on fluid jet polishing-is presented. This method is named disc hydrodynamic polishing (DHDP). A computational fluid dynamics (CFD)-based model that consists of a CFD model and an erosion model is introduced to predict the surface roughness obtained by DHDP. The performance of DHDP is studied by experiments. The slurry used in the experiments comprises 95% deionized water and 5% cerium oxide particles. Fused-silica glass is chosen as the workpiece. After the experiments, an ultrasmooth surface without cracks is obtained. The simulation results principally coincide with the experimental results. The experimental results show that the actual roughness is slightly less than the prediction and smaller particles are more favorable for obtaining a better surface roughness.

  1. Hydrodynamics and Elasticity of Charged Black Branes

    DEFF Research Database (Denmark)

    Gath, Jakob

    We consider long-wavelength perturbations of charged black branes to first order in a uidelastic derivative expansion. At first order the perturbations decouple and we treat the hydrodynamic and elastic perturbations separately. To put the results in a broader perspective, we present the rst......-order corrected dynamics of uid branes carrying higher-form charge by obtaining the general form of their equations of motion to pole-dipole order in the absence of external forces. To monopole order, we characterize the corresponding effective theory of viscous uid branes by writing down the general form......)isotropic uid branes in terms of two sets of response coecients, the Young modulus and the piezoelectric moduli. We subsequently consider a large class of examples in gravity of this effective theory. In particular, we consider dilatonic black p-branes in two different settings: charged under a Maxwell gauge...

  2. Evaluation of parameters in hydrodynamic model

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Tae-Hoon [Hanyang University, Seoul (Korea); Lee, Jong-Wook [Korea Institute of Construction Technology, Koyang (Korea); Jegal, Sun-Dong [Kumho Engineering Company, Anyang (Korea)

    2000-02-29

    Generally speaking, a hydrodynamic model needs a friction coefficient (Manning coefficient or Chezy coefficient) and eddy viscosity. For numerical solution the coefficients are usually determined by recursive calculations. The eddy viscosity in numerical model plays physical diffusion in flow and also acts as numerical viscosity. Hence its value has influence on the stability of numerical solution and for these reasons a consistent evaluation procedure is needed. By using records of stage and discharge in the downstream reach of the Han river, 1-D models (HEC-2 and NETWORK) and 2-D model (SMS), estimated values of Manning coefficient and an empirical equation for eddy viscosity are presented. The computed results are verified through the recorded flow elevation data. (author). 26 refs., 7 tabs., 14 figs.

  3. Hydrodynamic models for slurry bubble column reactors

    Energy Technology Data Exchange (ETDEWEB)

    Gidaspow, D. [IIT Center, Chicago, IL (United States)

    1995-12-31

    The objective of this investigation is to convert a {open_quotes}learning gas-solid-liquid{close_quotes} fluidization model into a predictive design model. This model is capable of predicting local gas, liquid and solids hold-ups and the basic flow regimes: the uniform bubbling, the industrially practical churn-turbulent (bubble coalescence) and the slugging regimes. Current reactor models incorrectly assume that the gas and the particle hold-ups (volume fractions) are uniform in the reactor. They must be given in terms of empirical correlations determined under conditions that radically differ from reactor operation. In the proposed hydrodynamic approach these hold-ups are computed from separate phase momentum balances. Furthermore, the kinetic theory approach computes the high slurry viscosities from collisions of the catalyst particles. Thus particle rheology is not an input into the model.

  4. Using river locks to teach hydrodynamic concepts

    CERN Document Server

    Carvalho-Santos, Vagson L; Silva, Enisvaldo C; Rios, Márcio L; Silva, Anderson A P

    2013-01-01

    In this work, the use of a river lock as a non-formal setting for teaching Q2 hydrodynamical concepts is proposed. In particular, we describe the operation of a river lock situated at the Sobradinho dam, on the S\\~ao Francisco River (Brazil). A model to represent and to analyse the dynamics of river lock operation is presented and we derive the dynamical equations for the rising of the water column as an example to understand the Euler equation. Furthermore, with this activity, we enable the integration of content initially introduced in the classroom with practical applications, thereby allowing the association of physical themes to content relevant in disciplines such as history and geography. In addition, experiences of this kind enable teachers to talk about the environmental and social impacts caused by the construction of a dam and, consequently, a crossover of concepts has been made possible, leading to more meaningful learning for the students.

  5. Hydrodynamics and control of microbial locomotion

    Science.gov (United States)

    Dunkel, Jorn; Kantsler, Vasily; Polin, Marco; Wioland, Hugo; Goldstein, Raymond

    2014-03-01

    Interactions between swimming cells, surfaces and fluid flow are essential to many microbiological processes, from the formation of biofilms to the fertilization of human egg cells. Yet, relatively little remains known quantitatively about the physical mechanisms that govern the response of bacteria, algae and sperm cells to flow velocity gradients and solid surfaces. A better understanding of cell-surface and cell-flow interactions promises new biological insights and may advance microfluidic techniques for controlling microbial and sperm locomotion, with potential applications in diagnostics and therapeutic protein synthesis. Here, we report new experimental measurements that quantify surface interactions of bacteria, unicellular green algae and mammalian spermatozoa. These experiments show that the subtle interplay of hydrodynamics and surface interactions can stabilize collective bacterial motion, that direct ciliary contact interactions dominate surface scattering of eukaryotic biflagellate algae, and that rheotaxis combined with steric surface interactions provides a robust long-range navigation mechanism for sperm cells.

  6. Steady State Thermo-Hydrodynamic Analysis of Two-Axial groove and Multilobe Hydrodynamic Bearings

    Directory of Open Access Journals (Sweden)

    C. Bhagat

    2014-12-01

    Full Text Available Steady state thermo-hydrodynamic analysis of two axial groove and multi lobe oil journal bearings is performed in this paper. To study the steady state thermo-hydrodynamic characteristics Reynolds equation is solved simultaneously along with the energy equation and heat conduction equation in bush and shaft. The effect of groove geometry, cavitation in the fluid film, the recirculation of lubricant, shaft speed has also been taken into account. Film temperature in case of three-lobe bearing is found to be high as compared to other studied bearing configurations. The data obtained from this analysis can be used conveniently in the design of such bearings, which are presented in dimensionless form.

  7. Nuclear Hydrodynamics with Viscosity and Heat Conduction.

    Science.gov (United States)

    Sedlak, Joseph Edmond

    A one-dimensional, relativistic, hydrodynamic model is developed to study the effects of heat conduction in moderate energy heavy-ion collisions (1-30 MeV kinetic energy per particle in the center-of-mass frame). A simple argument is presented for the temperature and density dependences of the transport coefficients which enter the fluid equations. With a temperature dependent thermal conductivity, the heat equation is nonlinear. The solution to this equation is given and then is used to find expressions for the thermal relaxation time. The equation of state for infinite nuclear matter is discussed. A modification must be added to extend this to finite nuclei with diffuse surfaces: the inhomogeneity of the density affects the binding energy. This nonlocal correction is written as a volume integral of density differences weighted by the long range part of the nucleon-nucleon potential. It is demonstrated that an equation having the same form as the classical Euler equation can be derived from a quantum variational principle. By analogy, this equation indicates how the nonlocal binding energy correction leads to a nonlocal pressure. A review of the relativistic hydrodynamic equations is given. It is shown how the stress-energy tensor must be constructed to guarantee non-negative entropy production. The system of equations is solved numerically with various choices for the initial kinetic energy and the thermal conductivity. It is found that the conductivity has a strong influence on the evolution of the density distribution. When conductivity is included, the final kinetic energy is substantially reduced, and the critical initial kinetic energy, below which fusion occurs, changes from 1 MeV to 5 MeV per particle. These effects are interpreted by comparing the collision time to the thermal relaxation time.

  8. Full sphere hydrodynamic and dynamo benchmarks

    KAUST Repository

    Marti, P.

    2014-01-26

    Convection in planetary cores can generate fluid flow and magnetic fields, and a number of sophisticated codes exist to simulate the dynamic behaviour of such systems. We report on the first community activity to compare numerical results of computer codes designed to calculate fluid flow within a whole sphere. The flows are incompressible and rapidly rotating and the forcing of the flow is either due to thermal convection or due to moving boundaries. All problems defined have solutions that alloweasy comparison, since they are either steady, slowly drifting or perfectly periodic. The first two benchmarks are defined based on uniform internal heating within the sphere under the Boussinesq approximation with boundary conditions that are uniform in temperature and stress-free for the flow. Benchmark 1 is purely hydrodynamic, and has a drifting solution. Benchmark 2 is a magnetohydrodynamic benchmark that can generate oscillatory, purely periodic, flows and magnetic fields. In contrast, Benchmark 3 is a hydrodynamic rotating bubble benchmark using no slip boundary conditions that has a stationary solution. Results from a variety of types of code are reported, including codes that are fully spectral (based on spherical harmonic expansions in angular coordinates and polynomial expansions in radius), mixed spectral and finite difference, finite volume, finite element and also a mixed Fourier-finite element code. There is good agreement between codes. It is found that in Benchmarks 1 and 2, the approximation of a whole sphere problem by a domain that is a spherical shell (a sphere possessing an inner core) does not represent an adequate approximation to the system, since the results differ from whole sphere results. © The Authors 2014. Published by Oxford University Press on behalf of The Royal Astronomical Society.

  9. Hydrodynamic models for slurry bubble column reactors. Seventh technical progress report, January--March 1996

    Energy Technology Data Exchange (ETDEWEB)

    Gidaspow, D.

    1996-04-01

    The objective of this investigation is to convert our ``learning gas solid-liquid`` fluidization model into a predictive design model. The IIT hydrodynamic model computes the phase velocities and the volume fractions of gas, liquid and particulate phase. Model verification involves a comparison of these computed velocities and volume fractions to experimental values. A hydrodynamic model for multiphase flows, based on the principles of mass, momentum and energy conservation for each phase, was developed and applied to model gas-liquid, gas-liquid-solid fluidization and gas-solid-solid separation. To simulate the industrial slurry bubble column reactors, a computer program based on the hydrodynamic model was written with modules for chemical reactions (e.g. the synthesis of methanol), phase changes and heat exchangers. In the simulations of gas-liquid two phases flow system, the gas hold-ups, computed with a variety of operating conditions such as temperature, pressure, gas and liquid velocities, agree well with the measurements obtained at Air Products` pilot plant. The hydrodynamic model has more flexible features than the previous empirical correlations in predicting the gas hold-up of gas-liquid two-phase flow systems. In the simulations of gas-liquid-solid bubble column reactors with and without slurry circulation, the code computes volume fractions, temperatures and velocity distributions for the gas, the liquid and the solid phases, as well as concentration distributions for the species (CO, H{sub 2}, CH{sub 3}0H, ... ), after startup from a certain initial state. A kinetic theory approach is used to compute a solid viscosity due to particle collisions. Solid motion and gas-liquid-solid mixing are observed on a color PCSHOW movie made from computed time series data. The steady state and time average catalyst concentration profiles, the slurry height and the rates of methanol production agree well with the measurements obtained at an Air Products` pilot plant.

  10. Research of tare hydrodynamic behaviour at sterilization of canned fish

    Directory of Open Access Journals (Sweden)

    Alexeev G. V.

    2016-09-01

    Full Text Available The paper is devoted to research on improving the equipment that ensures the absolute safety of mineral nutrients in the production of sterilized canned fish. The results of experimental study of hydrodynamic characteristics moving sterilized jars of canned fish of different sizes under the influence of circulating gas-liquid heat-carrying medium in the capacity have been presented. Some experimental setup with organized top-down and bottom-up flows in it modeling a sterilizer (autoclave has been proposed for the research. The experiments have been performed in the superficial gas velocity ranging from 0.03 m/s to 0.15 m/s corresponding to stable operation of the apparatus. Cans drag coefficient in the flow of heat-carrying medium has been determined by two methods for two heat-carrying media – pure glycerol and water solutions in experiments on precipitation and air – cans when blowing in the wind tunnel. The significant difference in the rates of cans upstream and downstream is reliably established, and therefore it has been proposed to use for the cans' motion characterization the indicator averaged over the two specified rates and called cans circulation speed. An empirical equation describing the dependence of the cans circulation rate from the superficial gas velocity has been obtained. Based on the analysis of studies some empirical dependencies on calculation of the drag coefficients of various types of packaging in the range of Reynolds criterion values from 1 to 4 000 have been offered. The necessity of using the qualifying factor for calculating the real drag on the results of the experiment has been determined.

  11. Directional flow sensing by passively stable larvae.

    Science.gov (United States)

    Fuchs, Heidi L; Christman, Adam J; Gerbi, Gregory P; Hunter, Elias J; Diez, F Javier

    2015-09-01

    Mollusk larvae have a stable, velum-up orientation that may influence how they sense and react to hydrodynamic signals applied in different directions. Directional sensing abilities and responses could affect how a larva interacts with anisotropic fluid motions, including those in feeding currents and in boundary layers encountered during settlement. Oyster larvae (Crassostrea virginica) were exposed to simple shear in a Couette device and to solid-body rotation in a single rotating cylinder. Both devices were operated in two different orientations, one with the axis of rotation parallel to the gravity vector, and one with the axis perpendicular. Larvae and flow were observed simultaneously with near-infrared particle-image velocimetry, and behavior was quantified as a response to strain rate, vorticity and centripetal acceleration. Only flows rotating about a horizontal axis elicited the diving response observed previously for oyster larvae in turbulence. The results provide strong evidence that the turbulence-sensing mechanism relies on gravity-detecting organs (statocysts) rather than mechanosensors (cilia). Flow sensing with statocysts sets oyster larvae apart from zooplankters such as copepods and protists that use external mechanosensors in sensing spatial velocity gradients generated by prey or predators. Sensing flow-induced changes in orientation, rather than flow deformation, would enable more efficient control of vertical movements. Statocysts provide larvae with a mechanism of maintaining their upward swimming when rotated by vortices and initiating dives toward the seabed in response to the strong turbulence associated with adult habitats. © 2015. Published by The Company of Biologists Ltd.

  12. Design of Fiber Optic Sensors for Measuring Hydrodynamic Parameters

    Science.gov (United States)

    Lyons, Donald R.; Quiett, Carramah; Griffin, DeVon (Technical Monitor)

    2001-01-01

    The science of optical hydrodynamics involves relating the optical properties to the fluid dynamic properties of a hydrodynamic system. Fiber-optic sensors are being designed for measuring the hydrodynamic parameters of various systems. As a flowing fluid makes an encounter with a flat surface, it forms a boundary layer near this surface. The region between the boundary layer and the flat plate contains information about parameters such as viscosity, compressibility, pressure, density, and velocity. An analytical model has been developed for examining the hydrodynamic parameters near the surface of a fiber-optic sensor. An analysis of the conservation of momentum, the continuity equation and the Navier-Stokes equation for compressible flow were used to develop expressions for the velocity and the density as a function of the distance along the flow and above the surface. When examining the flow near the surface, these expressions are used to estimate the sensitivity required to perform direct optical measurements and to derive the shear force for indirect optical measurements. The derivation of this result permits the incorporation of better design parameters for other fiber-based sensors. Future work includes analyzing the optical parametric designs of fiber-optic sensors, modeling sensors to utilize the parameters for hydrodynamics and applying different mixtures of hydrodynamic flow. Finally, the fabrication of fiber-optic sensors for hydrodynamic flow applications of the type described in this presentation could enhance aerospace, submarine, and medical technology.

  13. Hydrodynamic trail following in a California sea lion (Zalophus californianus).

    Science.gov (United States)

    Gläser, Nele; Wieskotten, Sven; Otter, Christian; Dehnhardt, Guido; Hanke, Wolf

    2011-02-01

    The mystacial vibrissae of pinnipeds constitute a sensory system for active touch and detection of hydrodynamic events. Harbour seals (Phoca vitulina) and California sea lions (Zalophus californianus) can both detect hydrodynamic stimuli caused by a small sphere vibrating in the water (hydrodynamic dipole stimuli). Hydrodynamic trail following has only been shown in harbour seals. Hydrodynamical and biomechanical studies of single vibrissae of the two species showed that the specialized undulated structure of harbour seal vibrissae, as opposed to the smooth structure of sea lion vibrissae, suppresses self-generated noise in the actively moving animal. Here we tested whether also sea lions were able to perform hydrodynamic trail following in spite of their non-specialized hair structure. Hydrodynamic trails were generated by a remote-controlled miniature submarine. Linear trails could be followed with high accuracy, comparable to the performance of harbour seals, but in contrast, increasing delay resulted in a reduced performance as compared to harbour seals. The results of this study are consistent with the hypothesis that structural differences in the vibrissal hair types of otariid compared to phocid pinnipeds lead to different sensitivity of the vibrissae during forward swimming, but still reveal a good performance even in the species with non-specialized hair type.

  14. On higher order and anisotropic hydrodynamics for Bjorken and Gubser flows

    CERN Document Server

    2018-01-01

    We study the evolution of hydrodynamic and non-hydrodynamic moments of the distribution function using anisotropic and third-order Chapman-Enskog hydrodynamics for systems undergoing Bjorken and Gubser flows. The hydrodynamic results are compared with the exact solution of the Boltzmann equation with a collision term in relaxation time approximation. While the evolution of the hydrodynamic moments of the distribution function (i.e. of the energy momentum tensor) can be described with high accuracy by both hydrodynamic approximation schemes, their description of the evolution of the entropy of the system is much less precise. We attribute this to large contributions from non-hydrodynamic modes coupling into the entropy evolution which are not well captured by the hydrodynamic approximations. The differences between the exact solution and the hydrodynamic approximations are larger for the third-order Chapman-Enskog hydrodynamics than for anisotropic hydrodynamics, which effectively resums some of the dissipati...

  15. Fluctuating hydrodynamics of multi-species reactive mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, Amit Kumar; Donev, Aleksandar [Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, New York 10012 (United States); Balakrishnan, Kaushik [Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, California 91109 (United States); Garcia, Alejandro L. [Department of Physics and Astronomy, San Jose State University, 1 Washington Square, San Jose, California 95192 (United States); Bell, John B. [Computational Research Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720 (United States)

    2015-06-14

    We formulate and study computationally the fluctuating compressible Navier-Stokes equations for reactive multi-species fluid mixtures. We contrast two different expressions for the covariance of the stochastic chemical production rate in the Langevin formulation of stochastic chemistry, and compare both of them to predictions of the chemical master equation for homogeneous well-mixed systems close to and far from thermodynamic equilibrium. We develop a numerical scheme for inhomogeneous reactive flows, based on our previous methods for non-reactive mixtures [Balakrishnan , Phys. Rev. E 89, 013017 (2014)]. We study the suppression of non-equilibrium long-ranged correlations of concentration fluctuations by chemical reactions, as well as the enhancement of pattern formation by spontaneous fluctuations. Good agreement with available theory demonstrates that the formulation is robust and a useful tool in the study of fluctuations in reactive multi-species fluids. At the same time, several problems with Langevin formulations of stochastic chemistry are identified, suggesting that future work should examine combining Langevin and master equation descriptions of hydrodynamic and chemical fluctuations.

  16. Dusty gas with one fluid in smoothed particle hydrodynamics

    Science.gov (United States)

    Laibe, Guillaume; Price, Daniel J.

    2014-05-01

    In a companion paper we have shown how the equations describing gas and dust as two fluids coupled by a drag term can be re-formulated to describe the system as a single-fluid mixture. Here, we present a numerical implementation of the one-fluid dusty gas algorithm using smoothed particle hydrodynamics (SPH). The algorithm preserves the conservation properties of the SPH formalism. In particular, the total gas and dust mass, momentum, angular momentum and energy are all exactly conserved. Shock viscosity and conductivity terms are generalized to handle the two-phase mixture accordingly. The algorithm is benchmarked against a comprehensive suit of problems: DUSTYBOX, DUSTYWAVE, DUSTYSHOCK and DUSTYOSCILL, each of them addressing different properties of the method. We compare the performance of the one-fluid algorithm to the standard two-fluid approach. The one-fluid algorithm is found to solve both of the fundamental limitations of the two-fluid algorithm: it is no longer possible to concentrate dust below the resolution of the gas (they have the same resolution by definition), and the spatial resolution criterion h limitation is that it does not capture multi-streaming of dust in the limit of zero coupling, suggesting that in this case a hybrid approach may be required.

  17. Hydrodynamics and freeze out problems in energetic heavy ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Yun

    2010-09-15

    The work is describing the development from QGP to the final stage (Freeze out) in energetic heavy ion reactions, which is particularly important because this model, based on matter properties we are interested in, describes the observables and can be compared to the experimental results. My doctoral work is mainly on theoretical models, which generated a full list of experimentally observable particles, and then evaluated the produced set of particles, comparable to those in experiments. Thus we produced the same collective observables that are measured in experiments. I concentrated on calculating the flow variables and presented a solution of the continuity equations, which provided a generalized description on matching heavy ion collision stages in a theoretical and simplified way. We also connected our hydrodynamic model with the PACIAE model, aiming for examining the flow properties. This work included the generation of parton distributions for the PACIAE model. The development of hybrid models is now in rapid progress internationally as these models are the most adequate to describe the experimental data in all details. The simple analytic treatment of the hydro and molecular dynamical stages of the model presents an important advantage and increased accuracy in the model construction. (Author)

  18. Fluidic Channels Produced by Electro Hydrodynamic Viscous Fingering

    Science.gov (United States)

    Behler, Kristopher; Wetzel, Eric

    2010-03-01

    Viscous fingering is a term describing fingerlike extensions of liquid from a column of low viscosity liquid that has been injected into a more viscous liquid. The modification of viscous fingering, known as electro hydrodynamic viscous fingering (EHVF), utilizes large electrical potentials of 10-60 kV. The fingers see a reduction in size and increase in branching behavior due to the potential applied to the system. The resulting finely structured patterns are analogous to biological systems such as blood vessels and the lymphatic system. In this study silicone oils and water were studied in thin channel Hele-Shaw cells. The interfacial tension was optimized by altering the surfactant concentration in the silicone oils. EHVF of liquid filled packed beds consisting of beads and silicone oils showed retardation of the relaxation of the fingers after the voltage was turned off. Decreased relaxation provides a means to solidify patterns into a curable material, such as polydimethylsiloxane (PDMS). After the water is evacuated from the fingers, the cured materials then possess hollow channels that can be refilled and emptied, thus creating an artificial circulatory system.

  19. Calibration of hydrodynamic behavior and biokinetics for TOC removal modeling in biofilm reactors under different hydraulic conditions.

    Science.gov (United States)

    Zeng, Ming; Soric, Audrey; Roche, Nicolas

    2013-09-01

    In this study, total organic carbon (TOC) biodegradation was simulated by GPS-X software in biofilm reactors with carriers of plastic rings and glass beads under different hydraulic conditions. Hydrodynamic model by retention time distribution and biokinetic measurement by in-situ batch test served as two significant parts of model calibration. Experimental results showed that TOC removal efficiency was stable in both media due to the enough height of column, although the actual hydraulic volume changed during the variation of hydraulic condition. Simulated TOC removal efficiencies were close to experimental ones with low theil inequality coefficient values (below 0.15). Compared with glass beads, more TOC was removed in the filter with plastic rings due to the larger actual hydraulic volume and lower half saturation coefficient in spite of its lower maximum specific growth rate of biofilm, which highlighted the importance of calibrating hydrodynamic behavior and biokinetics. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Inducer Hydrodynamic Forces in a Cavitating Environment

    Science.gov (United States)

    Skelley, Stephen E.

    2004-01-01

    Marshall Space Flight Center has developed and demonstrated a measurement device for sensing and resolving the hydrodynamic loads on fluid machinery. The device - a derivative of the six-component wind tunnel balance - senses the forces and moments on the rotating device through a weakened shaft section instrumented with a series of strain gauges. This rotating balance was designed to directly measure the steady and unsteady hydrodynamic loads on an inducer, thereby defining the amplitude and frequency content associated with operating in various cavitation modes. The rotating balance was calibrated statically using a dead-weight load system in order to generate the 6 x 12 calibration matrix later used to convert measured voltages to engineering units. Structural modeling suggested that the rotating assembly first bending mode would be significantly reduced with the balance s inclusion. This reduction in structural stiffness was later confirmed experimentally with a hammer-impact test. This effect, coupled with the relatively large damping associated with the rotating balance waterproofing material, limited the device s bandwidth to approximately 50 Hertz Other pre-test validations included sensing the test article rotating assembly built-in imbalance for two configurations and directly measuring the assembly mass and buoyancy while submerged under water. Both tests matched predictions and confirmed the device s sensitivity while stationary and rotating. The rotating balance was then demonstrated in a water test of a full-scale Space Shuttle Main Engine high-pressure liquid oxygen pump inducer. Experimental data was collected a scaled operating conditions at three flow coefficients across a range of cavitation numbers for the single inducer geometry and radial clearance. Two distinct cavitation modes were observed symmetric tip vortex cavitation and alternate-blade cavitation. Although previous experimental tests on the same inducer demonstrated two additional

  1. Hydrodynamic charge and heat transport on inhomogeneous curved spaces

    Science.gov (United States)

    Scopelliti, Vincenzo; Schalm, Koenraad; Lucas, Andrew

    2017-08-01

    We develop the theory of hydrodynamic charge and heat transport in strongly interacting quasirelativistic systems on manifolds with inhomogeneous spatial curvature. In solid-state physics, this is analogous to strain disorder in the underlying lattice. In the hydrodynamic limit, we find that the thermal and electrical conductivities are dominated by viscous effects and that the thermal conductivity is most sensitive to this disorder. We compare the effects of inhomogeneity in the spatial metric to inhomogeneity in the chemical potential and discuss the extent to which our hydrodynamic theory is relevant for experimentally realizable condensed-matter systems, including suspended graphene at the Dirac point.

  2. Test problems for radiation and radiation-hydrodynamics codes

    Science.gov (United States)

    Ensman, Lisa

    1994-01-01

    A number of test problems for radiation and radiation-hydrodynamics computer codes are described. These include evolution to radiative equilibrium, cooling from radiative equilibrium, subcritical and supercritical radiating shocks, and a radiating blast wave in a power-law density distribution. For each test problem, example input parameters and plots of the results are presented. Some test problems for pure hydrodynamics are also suggested. The radiation-hydrodynamics code used to perform the example test problems and the equations it solves are described in some detail.

  3. Study on Relation between Hydrodynamic Feature Size of HPAM and Pore Size of Reservoir Rock in Daqing Oilfield

    Directory of Open Access Journals (Sweden)

    Qing Fang

    2015-01-01

    Full Text Available The flow mechanism of the injected fluid was studied by the constant pressure core displacement experiments in the paper. It is assumed under condition of the constant pressure gradient in deep formation based on the characteristic of pressure gradient distribution between the injection and production wells and the mobility of different polymer systems in deep reservoir. Moreover, the flow rate of steady stream was quantitatively analyzed and the critical flow pressure gradient of different injection parameters polymer solutions in different permeability cores was measured. The result showed that polymer hydrodynamic feature size increases with the increasing molecular weight. If the concentration of polymer solutions overlaps beyond critical concentration, then molecular chains entanglement will be occur and cause the augment of its hydrodynamic feature size. The polymer hydrodynamic feature size decreased as the salinity of the dilution water increased. When the median radius of the core pore and throat was 5–10 times of the polymer system hydrodynamic feature size, the polymer solution had a better compatibility with the microscopic pore structure of the reservoir. The estimation of polymer solutions mobility in the porous media can be used to guide the polymer displacement plan and select the optimum injection parameters.

  4. Pulsating Hydrodynamic Instability and Thermal Coupling in an Extended Landau/Levich Model of Liquid-Propellant Combustion

    Science.gov (United States)

    Margolis, S. B.

    1999-01-01

    Hydrodynamic (Landau) instability in combustion is typically associated with the onset of wrinkling of a flame surface, corresponding to the formation of steady cellular structures as the stability threshold is crossed. In the context of liquid-propellant combustion, such instability has recently been shown to occur for critical values of the pressure sensitivity of the burning rate and the disturbance wavenumber, significantly generalizing previous classical results for this problem that assumed a constant normal burning rate. Additionally, however, a pulsating form of hydrodynamic instability has been shown to occur as well, corresponding to the onset of temporal oscillations in the location of the liquid/gas interface. In the present work, we consider the realistic influence of a nonzero temperature sensitivity in the local burning rate on both types of stability thresholds. It is found that for sufficiently small values of this parameter, there exists a stable range of pressure sensitivities for steady, planar burning such that the classical cellular form of hydrodynamic instability and the more recent pulsating form of hydrodynamic instability can each occur as the corresponding stability threshold is crossed. For larger thermal sensitivities, however, the pulsating stability boundary evolves into a C-shaped curve in the disturbance-wavenumber/ pressure-sensitivity plane, indicating loss of stability to pulsating perturbations for all sufficiently large disturbance wavelengths. It is thus concluded, based on characteristic parameter values, that an equally likely form of hydrodynamic instability in liquid-propellant combustion is of a nonsteady, long-wave nature, distinct from the steady, cellular form originally predicted by Landau.

  5. ELECTRODEPOSITION OF COPPER IONS ON FIXED BED ELECTRODES: KINETIC AND HYDRODYNAMIC STUDY

    Directory of Open Access Journals (Sweden)

    L.A.M. Ruotolo

    2002-03-01

    Full Text Available The kinetic and hydrodynamic behaviour of a fixed-bed electrochemical reactor was studied in terms of current efficiency (CE and energy efficiency (EE. In the kinetic experiments the effects of fixed bed thickness (L, current density (i and initial concentration of copper (C0 were studied. In the hydrodynamic experiments the permeability (k of the electrode and the coefficient for inertial forces (c were also studied as functions of the applied current density. At low current densities and bed thicknesses greater than 1.0 cm, negative CE and EE were observed as a consequence of the dissolution of the porous matrix. At high current densities low CE and EE were observed and a powdery deposit was formed on the surface of the particles. From the results of the kinetic study bed thickness and the range of current densities employed in the hydrodynamic experiments were chosen. In these experiments the electrodeposition process continued until the whole electrode had been clogged and no more electrolyte could pass through it. The relationship between pressure drop and flow rate was well described by the Forchheimer equation. It was observed that the reduction in porosity due to copper electrodeposition causes the flow rate to decrease because of the decrease in electrode permeability, but it had no influence on current efficiency.

  6. Study on Compatibility of Polymer Hydrodynamic Size and Pore Throat Size for Honggang Reservoir

    Directory of Open Access Journals (Sweden)

    Dan-Dan Yin

    2014-01-01

    Full Text Available Long core flow experiment was conducted to study problems like excessive injection pressure and effective lag of oil wells during the polymer flooding in Honggang reservoir in Jilin oilfield. According to the changes in viscosity and hydrodynamic dimensions before and after polymer solution was injected into porous media, the compatibility of polymer hydrodynamic dimension and the pore throat size was studied in this experiment. On the basis of the median of radius R of pore throats in rocks with different permeability, dynamic light scattering method (DLS was adopted to measure the hydrodynamic size Rh of polymer solution with different molecular weights. The results state that three kinds of 1500 mg/L concentration polymer solution with 2000 × 104, 1500 × 104, and 1000 × 104 molecular weight matched well with the pore throat in rocks with permeability of 300 mD, 180 mD, and 75 mD in sequence. In this case, the ratios of core pore throat radius median to the size of polymer molecular clew R/Rh are 6.16, 5.74, and 6.04. For Honggang oil reservoir in Jilin, when that ratio ranges from 5.5 to 6.0, the compatibility of polymer and the pore structure will be relatively better.

  7. Bioreactor hydrodynamic effect on Escherichia coli physiology: experimental results and stochastic simulations.

    Science.gov (United States)

    Delvigne, F; Destain, J; Thonart, P

    2005-11-01

    A microorganism circulating in a bioreactor can be submitted to hydrodynamic conditions inducing a significant effect on its physiology. The mixing time exhibited by the stirred bioreactor and the circulation of microorganisms are both involved in this reacting system. The mixing component determines the intensity of the concentration gradient and the circulation component determines the way in which the microorganism is exposed to this gradient. These two components linked to the experimental evaluation of microbial physiology can be analysed by a structured stochastic model in the case of a partitioned or "scale-down" reactor (SDR). A stochastic model indeed enables to simulate the mixing process as well as the circulation of microorganisms in SDRs. The superimposition of mixing and circulation processes determines the concentration profile experienced by a microorganism in the reactor. In the present case, the glucose concentration experienced by Escherichia coli has been modelled during a fed-batch culture. In this context, the use of a stochastic hydrodynamic model has permitted to point out an interesting feed pulse retardant effect in the SDRs. Nevertheless, the metabolic response of E. coli is not easy to interpret because of the possible simultaneous developments of overflow metabolism and mixed acid fermentation induced by the strong glucose concentration in the reactor.

  8. Large stable magnetic domains

    Science.gov (United States)

    Pulliam, G. R.; Ross, W. E.; MacNeal, B.; Bailey, R. F.

    1982-03-01

    Large, thin-film single domain areas have been observed, in the absence of a bias field, in garnets with magnetization perpendicular to the film plane.1,2 The domain stability in the work by Krumme1 was attributed to a combination of low saturation magnetization and a low Curie temperature. Uchishiba2 relates the stability in his double layer system to appropriate anisotropy fields in one layer compared to the magnetization in the other layer. A more complete model for large domain stability in a bias field free environment is given in this work. Three distinct stability regimes are predicted by the model and all have been observed experimentally. Areas 3.5-cm in diameter have been made into stable single domains. This was achieved in a material showing a zero bias strip width of 4.5 μm. The single domain diameter was, therefore, 7500 times the equilibrium energy domain width. The technique developed and the model have led to a new means for observing magnetic defects. More importantly, it also offers a means for measuring the strength of the defects. Possible applications of the model are also discussed.

  9. Hydrodynamic size of DNA/cationic gemini surfactant complex as a function of surfactant structure.

    Science.gov (United States)

    Devínsky, Ferdinand; Pisárcik, Martin; Lacko, Ivan

    2009-06-01

    The present study deals with the determination of hydrodynamic size of DNA/cationic gemini surfactant complex in sodium bromide solution using the dynamic light scattering method. Cationic gemini surfactants with polymethylene spacer of variable length were used for the interaction with DNA. The scattering experiments were performed at constant DNA and sodium bromide concentrations and variable surfactant concentration in the premicellar and micellar regions as a function of surfactant spacer length. It was found that the DNA conformation strongly depends on the polymethylene spacer length as well as on the surfactant concentration relative to the surfactant critical micelle concentration. Gemini surfactant molecules with 4 methylene groups in the spacer were found to be the least efficient DNA compacting agent in the region above the surfactant cmc. Gemini molecules with the shortest spacer length (2 methylene groups) and the longest spacer length (8 methylene groups) investigated showed the most efficient DNA compaction ability.

  10. Nonlinear hydrodynamics of three-phase reactors

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Takatoshi; Kikuchi, Ryuji; Tsutsumi, Atsushu; Yoshida, Kunio [The University of Tokyo, Tokyo (Japan); Puncochar, Mirosav; Drahos, Jiri

    1999-08-01

    In the present study, nonlinear hydrodynamic behavior of bubbles particles in a gas-liquid-solid three-phase reactor is characterized by deterministic chaos analysis in terms to determine correlation dimension from the series of the time intervals between successive optical signals triggered by bubbles or particles. The axial and radial distributions of correlation dimensions are examined and the effect of superficial gas velocity on correlation dimensions for gas and solid phases is investigated. In the bubbly flow regime, with increasing axial position the correlation dimensions for the gas phase increase to reach a maximum and slightly drop at the center of the column. On the other hand, in the churn-turbulent flow regime, correlation dimension of the gas phase has a minimum at the middle of the column. The correlation dimensions of solid phase are 1-2 lower than those of gas phase, and decrease with axial positions. Uniform radial distributions of both gas and solid phases are observed except near the wall. (author)

  11. An implicit Smooth Particle Hydrodynamic code

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, Charles E. [Univ. of New Mexico, Albuquerque, NM (United States)

    2000-05-01

    An implicit version of the Smooth Particle Hydrodynamic (SPH) code SPHINX has been written and is working. In conjunction with the SPHINX code the new implicit code models fluids and solids under a wide range of conditions. SPH codes are Lagrangian, meshless and use particles to model the fluids and solids. The implicit code makes use of the Krylov iterative techniques for solving large linear-systems and a Newton-Raphson method for non-linear corrections. It uses numerical derivatives to construct the Jacobian matrix. It uses sparse techniques to save on memory storage and to reduce the amount of computation. It is believed that this is the first implicit SPH code to use Newton-Krylov techniques, and is also the first implicit SPH code to model solids. A description of SPH and the techniques used in the implicit code are presented. Then, the results of a number of tests cases are discussed, which include a shock tube problem, a Rayleigh-Taylor problem, a breaking dam problem, and a single jet of gas problem. The results are shown to be in very good agreement with analytic solutions, experimental results, and the explicit SPHINX code. In the case of the single jet of gas case it has been demonstrated that the implicit code can do a problem in much shorter time than the explicit code. The problem was, however, very unphysical, but it does demonstrate the potential of the implicit code. It is a first step toward a useful implicit SPH code.

  12. A hydrodynamic model for cooperating solidary countries

    Science.gov (United States)

    De Luca, Roberto; Di Mauro, Marco; Falzarano, Angelo; Naddeo, Adele

    2017-07-01

    The goal of international trade theories is to explain the exchange of goods and services between different countries, aiming to benefit from it. Albeit the idea is very simple and known since ancient history, smart policy and business strategies need to be implemented by each subject, resulting in a complex as well as not obvious interplay. In order to understand such a complexity, different theories have been developed since the sixteenth century and today new ideas still continue to enter the game. Among them, the so called classical theories are country-based and range from Absolute and Comparative Advantage theories by A. Smith and D. Ricardo to Factor Proportions theory by E. Heckscher and B. Ohlin. In this work we build a simple hydrodynamic model, able to reproduce the main conclusions of Comparative Advantage theory in its simplest setup, i.e. a two-country world with country A and country B exchanging two goods within a genuine exchange-based economy and a trade flow ruled only by market forces. The model is further generalized by introducing money in order to discuss its role in shaping trade patterns. Advantages and drawbacks of the model are also discussed together with perspectives for its improvement.

  13. Hydrodynamic excitations in hot QCD plasma

    Science.gov (United States)

    Abbasi, Navid; Allahbakhshi, Davood; Davody, Ali; Taghavi, Seyed Farid

    2017-12-01

    We study the long wavelength excitations in rotating QCD fluid in the presence of an external magnetic field at finite vector and axial charge densities. We consider the fluctuations of vector and axial charge currents coupled to energy and momentum fluctuations and compute the S O (3 ) covariant dispersion relations of the six corresponding hydrodynamic modes. Among them, there are always two scalar chiral-magnetic-vortical-heat (CMVH) waves; in the absence of a magnetic field (vorticity) these waves reduce to chiral-vortical-heat (CVH) [chiral-magnetic-heat (CMH)] waves. While CMVH waves are a mixture of CMH and CVH waves, they have generally different velocities compared to the sum of velocities of the latter waves. The other four modes, which are made out of scalar-vector fluctuations, are mixed sound-Alfvén waves. We show that when the magnetic field is parallel with the vorticity, these four modes are the two ordinary sound modes together with two chiral Alfvén waves propagating along the common direction of the magnetic field and vorticity.

  14. Rheological and fractal hydrodynamics of aerobic granules.

    Science.gov (United States)

    Tijani, H I; Abdullah, N; Yuzir, A; Ujang, Zaini

    2015-06-01

    The structural and hydrodynamic features for granules were characterized using settling experiments, predefined mathematical simulations and ImageJ-particle analyses. This study describes the rheological characterization of these biologically immobilized aggregates under non-Newtonian flows. The second order dimensional analysis defined as D2=1.795 for native clusters and D2=1.099 for dewatered clusters and a characteristic three-dimensional fractal dimension of 2.46 depicts that these relatively porous and differentially permeable fractals had a structural configuration in close proximity with that described for a compact sphere formed via cluster-cluster aggregation. The three-dimensional fractal dimension calculated via settling-fractal correlation, U∝l(D) to characterize immobilized granules validates the quantitative measurements used for describing its structural integrity and aggregate complexity. These results suggest that scaling relationships based on fractal geometry are vital for quantifying the effects of different laminar conditions on the aggregates' morphology and characteristics such as density, porosity, and projected surface area. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Hydrodynamics of the Veracruz Reef System

    Science.gov (United States)

    Marin Hernandez, M.

    2013-05-01

    One year of hydrographic and current measurements in the Veracruz Reef System National Park (VRSNP) at the southwestern Gulf of Mexico are analyzed. To our knowledge, this is the first study of seasonal variations from observations in the region. The area has a particular dynamics because this reef system receives discharges of three rivers, in the northern (Antigua river), in the center (Jamapa river) and in the southern (Papaloapan river), dividing the VRSNP in two reef groups. In order to know the hydrodynamics, four transects perpendicular to the coast were accomplished, two on every side of the reef groups. Up to the date, there have been completed 6 oceanographic campaigns every 2 months, where ADCP currents data were collected continuously on all transects and thermohaline fields were obtained from 24 survey stations along transects using CTD. The area has three well-marked seasons: dry, rain and Nortes (strong winds resulting from the passage of cold fronts). During the rain season the river discharges have a significant impact in the thermohaline profiles. Temporary changes in stratification of the water column, spatial distribution of temperature and salinity, as well as temporary changes in currents direction were established for the three seasons.

  16. Effect of wearing a swimsuit on hydrodynamic drag of swimmer

    Directory of Open Access Journals (Sweden)

    Daniel Almeida Marinho

    2012-12-01

    Full Text Available The purpose of this study was to analyse the effect of wearing a swimsuit on swimmer's passive drag. A computational fluid dynamics analysis was carried out to determine the hydrodynamic drag of a female swimmer's model (i wearing a standard swimsuit; (ii wearing a last generation swimsuit and; (iii with no swimsuit, wearing light underwear. The three-dimensional surface geometry of a female swimmer's model with different swimsuit/underwear was acquired through standard commercial laser scanner. Passive drag force and drag coefficient were computed with the swimmer in a prone position. Higher hydrodynamic drag values were determined when the swimmer was with no swimsuit in comparison with the situation when the swimmer was wearing a swimsuit. The last generation swimsuit presented lower hydrodynamic drag values, although very similar to standard swimsuit. In conclusion, wearing a swimsuit could positively influence the swimmer's hydrodynamics, especially reducing the pressure drag component.

  17. Introduction to Naval Hydrodynamics using Advanced Computational and Experimental Tools

    Science.gov (United States)

    Buchholz, James; Carrica, Pablo; Russell, Jae-Eun; Pontarelli, Matthew; Krebill, Austin; Berdon, Randall

    2017-11-01

    An undergraduate certificate program in naval hydrodynamics has been recently established at the University of Iowa. Despite several decades of graduate research in this area, this is the first formal introduction to naval hydrodynamics for University of Iowa undergraduate students. Central to the curriculum are two new courses that emphasize open-ended projects conducted in a novel laboratory/learning community that exposes students to advanced tools in computational and experimental fluid mechanics, respectively. Learning is pursued in a loosely-structured environment in which students work in small groups to conduct simulations and experiments relating to resistance, propulsion, and seakeeping using a revised version of the naval hydrodynamics research flow solver, REX, and a small towing tank. Survey responses indicate that the curriculum and course format has strongly increased student interest in naval hydrodynamics and effectively facilitated depth of student learning. This work was supported by the Office of Naval Research under Award Number N00014-15-1-2448.

  18. Hydrodynamic and Salinity Intrusion Model in Selangor River Estuary

    Science.gov (United States)

    Haron, N. F.; Tahir, W.

    2016-07-01

    A multi-dimensional hydrodynamic and transport model has been used to develop the hydrodynamic and salinity intrusion model for Selangor River Estuary. Delft3D-FLOW was applied to the study area using a curvilinear, boundary fitted grid. External boundary forces included ocean water level, salinity, and stream flow. The hydrodynamic and salinity transport used for the simulation was calibrated and confirmed using data on November 2005 and from May to June 2014. A 13-day period for November 2005 data and a 6-day period of May to June 2014 data were chosen as the calibration and confirmation period because of the availability of data from the field-monitoring program conducted. From the calibration results, it shows that the model was well suited to predict the hydrodynamic and salinity intrusion characteristics of the study area.

  19. HYDRODYNAMICS OF OSCILLATING WING ON THE PITCH ANGLE

    Directory of Open Access Journals (Sweden)

    Vitalii Korobov

    2017-07-01

    Full Text Available Purpose: research of the hydrodynamic characteristics of a wing in a nonstationary stream. Methods: The experimental studies of the hydrodynamic load acting on the wing of 1.5 elongation, wich harmonically oscillated respect to the transversal axis in the frequency range of 0.2-2.5 Hz. The flow speed in the hydrodynamic tunnel ranged of 0.2-1.5 m/s. Results: The instantaneous values of the coefficients of lift and drag / thrust on the pitch angle at unsteady flow depends on the Strouhal number.Discussion: with increasing oscillation frequency coefficients of hydrodynamic force components significantly higher than the data for the stationary blowing out of the wing.

  20. Theoretical study of the crossover into hydrodynamic regime in graphene

    Science.gov (United States)

    Ho, Derek; Yudhistira, Indra; Hu, Ben Yu-Kuang; Adam, Shaffique

    Experiments on graphene have recently succeeded in entering the hydrodynamic regime, as demonstrated by successful observations of strong violation of Wiedemann-Franz law, the Gurzhi effect and electronic Poiseuille flow. It is known that electronic systems enter the hydrodynamic regime when electron-electron scattering dominates over electron-impurity and electron-phonon scattering. However, a quantitative study of this transition from the Fermi liquid to hydrodynamic regime is still lacking. In view of this, we quantitatively analyze the electron-electron, electron-impurity and electron-phonon scattering rates as a function of temperature, charge doping and disorder (charge puddle) strength. This yields a quantitative understanding of the onset of hydrodynamic electronic behavior in graphene samples. This work is supported by the National Research Foundation of Singapore under its Fellowship program (NRF-NRFF2012-01) and by the Singapore Ministry of Education and Yale-NUS College through Grant No. R-607-265-01312.

  1. Viscosity and Vorticity in Reduced Magneto-Hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Ilon [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-08-12

    Magneto-hydrodynamics (MHD) critically relies on viscous forces in order for an accurate determination of the electric eld. For each charged particle species, the Braginskii viscous tensor for a magnetized plasma has the decomposition into matrices with special symmetries.

  2. Concurrent multiscale modelling of atomistic and hydrodynamic processes in liquids

    Science.gov (United States)

    Markesteijn, Anton; Karabasov, Sergey; Scukins, Arturs; Nerukh, Dmitry; Glotov, Vyacheslav; Goloviznin, Vasily

    2014-01-01

    Fluctuations of liquids at the scales where the hydrodynamic and atomistic descriptions overlap are considered. The importance of these fluctuations for atomistic motions is discussed and examples of their accurate modelling with a multi-space–time-scale fluctuating hydrodynamics scheme are provided. To resolve microscopic details of liquid systems, including biomolecular solutions, together with macroscopic fluctuations in space–time, a novel hybrid atomistic–fluctuating hydrodynamics approach is introduced. For a smooth transition between the atomistic and continuum representations, an analogy with two-phase hydrodynamics is used that leads to a strict preservation of macroscopic mass and momentum conservation laws. Examples of numerical implementation of the new hybrid approach for the multiscale simulation of liquid argon in equilibrium conditions are provided. PMID:24982246

  3. Progress and Challenges in Coupled Hydrodynamic-Ecological Estuarine Modeling

    Science.gov (United States)

    Numerical modeling has emerged over the last several decades as a widely accepted tool for investigations in environmental sciences. In estuarine research, hydrodynamic and ecological models have moved along parallel tracks with regard to complexity, refinement, computational po...

  4. Numerical Ship Hydrodynamics: An Assessment of the Gothenburg 2010 Workshop

    National Research Council Canada - National Science Library

    Larsson, Lars; Stern, Frederick (Professor of engineering); Visonneau, Michel

    2014-01-01

    "This book assesses the state-of-the-art in computational fluid dynamics (CFD) applied to ship hydrodynamics and provides guidelines for the future developments in the field based on the Gothenburg 2010 Workshop...

  5. Modeling Free-surface Solitary Waves with Smoothed Particle Hydrodynamics

    National Research Council Canada - National Science Library

    Balázs Tóth

    2017-01-01

    A three-dimensional weakly compressible Smoothed Particle Hydrodynamics (SPH) solver is presented and applied to simulate free-surface solitary waves generated in a quasi two dimensional dam-break experiment...

  6. High yield DNA fragmentation using cyclical hydrodynamic shearing

    NARCIS (Netherlands)

    Shui, Lingling; Sparreboom, Wouter; Spang, Peter; Roeser, Tina; Nieto, Benjamin; Guasch, Francesc; Corbera, Antoni Homs; van den Berg, Albert; Carlen, Edwin

    2013-01-01

    We report a new DNA fragmentation technique that significantly simplifies conventional hydrodynamic shearing fragmentation by eliminating the need for sample recirculation while maintaining high fragmentation yield and low fragment length variation, and therefore, reduces instrument complexity and

  7. Hydrodynamics, sediment transport and light extinction off Cape Bolinao, Philippines

    NARCIS (Netherlands)

    Rivera, P.C.

    1997-01-01

    Observational and numerical modelling studies of the hydrodynamics, sediment transport, and light extinction were undertaken in the marine environment around Cape Bolinao in the Lingayen Gulf (Northwest Philippines). Abundant with ecologically important seagrasses and benthic organisms,

  8. Hydrodynamic stability of the painted turtle (Chrysemys picta): effects of four-limbed rowing versus forelimb flapping in rigid-bodied tetrapods.

    Science.gov (United States)

    Rivera, Gabriel; Rivera, Angela R V; Blob, Richard W

    2011-04-01

    Hydrodynamic stability is the ability to resist recoil motions of the body produced by destabilizing forces. Previous studies have suggested that recoil motions can decrease locomotor performance, efficiency and sensory perception and that swimming animals might utilize kinematic strategies or possess morphological adaptations that reduce recoil motions and produce more stable trajectories. We used high-speed video to assess hydrodynamic stability during rectilinear swimming in the freshwater painted turtle (Chrysemys picta). Parameters of vertical stability (heave and pitch) were non-cyclic and variable, whereas measures of lateral stability (sideslip and yaw) showed repeatable cyclic patterns. In addition, because freshwater and marine turtles use different swimming styles, we tested the effects of propulsive mode on hydrodynamic stability during rectilinear swimming, by comparing our data from painted turtles with previously collected data from two species of marine turtle (Caretta caretta and Chelonia mydas). Painted turtles had higher levels of stability than both species of marine turtle for six of the eight parameters tested, highlighting potential disadvantages associated with 'aquatic flight'. Finally, available data on hydrodynamic stability of other rigid-bodied vertebrates indicate that turtles are less stable than boxfish and pufferfish.

  9. Stable electroosmotically driven actuators

    Science.gov (United States)

    Sritharan, Deepa; Motsebo, Mylene; Tumbic, Julia; Smela, Elisabeth

    2013-04-01

    We have previously presented "nastic" actuators based on electroosmotic (EO) pumping of fluid in microchannels using high electric fields for potential application in soft robotics. In this work we address two challenges facing this technology: applying EO to meso-scale devices and the stability of the pumping fluid. The hydraulic pressure achieved by EO increases with as 1/d2, where d is the depth of the microchannel, but the flow rate (which determines the stroke and the speed) is proportional to nd, where n is the number of channels. Therefore to get high force and high stroke the device requires a large number of narrow channels, which is not readily achievable using standard microfabrication techniques. Furthermore, for soft robotics the structure must be soft. In this work we present a method of fabricating a three-dimensional porous elastomer to serve as the array of channels based on a sacrificial sugar scaffold. We demonstrate the concept by fabricating small pumps. The flexible devices were made from polydimethylsiloxane (PDMS) and comprise the 3D porous elastomer flanked on either side by reservoirs containing electrodes. The second issue addressed here involves the pumping fluid. Typically, water is used for EO, but water undergoes electrolysis even at low voltages. Since EO takes place at kV, these systems must be open to release the gases. We have recently reported that propylene carbonate (PC) is pumped at a comparable rate as water and is also stable for over 30 min at 8 kV. Here we show that PC is, however, degraded by moisture, so future EO systems must prevent water from reaching the PC.

  10. A new nodal solver for the two dimensional Lagrangian hydrodynamics

    Science.gov (United States)

    Corot, T.; Mercier, B.

    2018-01-01

    We describe a cell-centered Godunov type scheme for the Lagrangian hydrodynamic equations on general unstructured meshes with nodal fluxes. The nodal solver only depends on the angular repartition of the physical variables around the node and not on the length of the edges. The scheme verifies a weak consistency property. Numerical results are compared to EUCCLHYD and GLACE schemes which are also cell-centered schemes with node based fluxes for Lagrangian hydrodynamics.

  11. Morphological and biomechanical response to eutrophication and hydrodynamic stresses.

    Science.gov (United States)

    Zhu, Guorong; Yuan, Changbo; Di, Guilan; Zhang, Meng; Ni, Leyi; Cao, Te; Fang, Rongting; Wu, Gongguo

    2017-12-05

    Eutrophication and hydrodynamics determine the final distribution patterns of aquatic macrophytes; however, there is limited available knowledge regarding their interactive effects. Morphological and biomechanical responses to eutrophication and hydrodynamic stresses were assessed by sampling five abundant and dominant species, Potamogeton maackianus, P. pectinatus, P. lucens, Ceratophyllum demersum and Myriophyllum spicatum, in three macrophyte beds in Lake Erhai, Yunnan Province, China: one exposed to eutrophication and moderate southeast (SE) wind; one with mesotrophication, but sheltered by the lakeshore, with weak wind disturbance; and one with meso-eutrophication and strong SE wind. The results showed significant interactive effects of eutrophication and hydrodynamics on most biomechanical traits and some morphological traits, suggesting that aquatic macrophytes preferentially undergo biomechanical adjustments to resist the coexisting eutrophication and hydrodynamic stresses. In particular, hydrodynamics increased both the tensile force and tensile strain of P. maackianus under meso-eutrophication and dramatically decreased them in eutrophic areas, suggesting that eutrophication triggers mechanical failure in this species. Additionally, P. pectinatus, C. demersum and M. spicatum showed the lowest and highest values for the biomechanical variables (greater values for M. spicatum) in the most eutrophic and hydrodynamic areas, respectively, implying that increases in hydrodynamics primarily induce mechanical damage in eutrophic species. The plants generally exhibited greater tensile strain in both shallow and deep waters and the greatest tensile force at moderate depths. The stem cross-sectional area, plant height, stem length, internode length, and branch traits were all responsible for determining the biomechanical variables. This study reveals that hydrodynamic changes primarily induce mechanical damage in eutrophic species, whereas eutrophication triggers

  12. Experiment and Simulation Study of Hydrodynamic Dispersion and Finger Dynamics for Convective Dissolution of Carbon Dioxide

    Science.gov (United States)

    Liang, Y.; DiCarlo, D. A.; Hesse, M. A.

    2015-12-01

    Carbon capture and storage in deep geological formations has the potential to reduce anthropogenic CO2 emissions from industrial point sources. Dissolution of CO2 into the brine, resulting in stable stratification, has been identified as the key to long-term storage security. Here we present new analogue laboratory experiment method, advanced image processing method and optimized simulation method to characterize CO2 convective dissolution trapping process and gravitational finger behaviors, in order to study the effect of hydrodynamic dispersion on the CO2 convective dissolution process, as well as to study the effect of control physical parameters on the gravitational finger dynamics. Figure 1 shows the image processing method to analyze the finger dynamics. Understanding the effect of hydrodynamic dispersion and the finger dynamics are essential to evaluate whether convective dissolution occurs, as well as to predict how fast it occurs at the geological CO2 storage field scale. The effect of hydrodynamics dispersion and the finger dynamics can be applied to estimate the security of geological CO2 storage fields, in turn. Optimiezed simulation work is conducted to predict the CO2 dissolution rate at geological CO2 storage field. The large experimental assembly will allow us to quantify in detail for the first time the relationship between convective dissolution rate and the controlling factors of the system, including permeability and driven force, which could be essential to trapping process at Bravo Dome geological CO2 storage field. We complement the homogeneous experiments with a detailed study of the scaling law of the convective flux with dispersion effect. The advanced image processing method with Fourier's transform method allow us to understand the finger dynamics and corresponding control factors in porous media, for the first time. By applying the dispersion effect and finger dynamics we found from the experimental study, we optimize the simulation

  13. On Pulsating and Cellular Forms of Hydrodynamic Instability in Liquid-Propellant Combustion

    Science.gov (United States)

    Margolis, Stephen B.; Sacksteder, Kurt (Technical Monitor)

    1998-01-01

    An extended Landau-Levich model of liquid-propellant combustion, one that allows for a local dependence of the burning rate on the (gas) pressure at the liquid-gas interface, exhibits not only the classical hydrodynamic cellular instability attributed to Landau but also a pulsating hydrodynamic instability associated with sufficiently negative pressure sensitivities. Exploiting the realistic limit of small values of the gas-to-liquid density ratio p, analytical formulas for both neutral stability boundaries may be obtained by expanding all quantities in appropriate powers of p in each of three distinguished wave-number regimes. In particular, composite analytical expressions are derived for the neutral stability boundaries A(sub p)(k), where A, is the pressure sensitivity of the burning rate and k is the wave number of the disturbance. For the cellular boundary, the results demonstrate explicitly the stabilizing effect of gravity on long-wave disturbances, the stabilizing effect of viscosity (both liquid and gas) and surface tension on short-wave perturbations, and the instability associated with intermediate wave numbers for negative values of A(sub p), which is characteristic of many hydroxylammonium nitrate-based liquid propellants over certain pressure ranges. In contrast, the pulsating hydrodynamic stability boundary is insensitive to gravitational and surface-tension effects but is more sensitive to the effects of liquid viscosity because, for typical nonzero values of the latter, the pulsating boundary decreases to larger negative values of A(sub p) as k increases through O(l) values. Thus, liquid-propellant combustion is predicted to be stable (that is, steady and planar) only for a range of negative pressure sensitivities that lie below the cellular boundary that exists for sufficiently small negative values of A(sub p) and above the pulsating boundary that exists for larger negative values of this parameter.

  14. Study on the Matching Relationship between Polymer Hydrodynamic Characteristic Size and Pore Throat Radius of Target Block S Based on the Microporous Membrane Filtration Method

    Directory of Open Access Journals (Sweden)

    Li Yiqiang

    2014-01-01

    Full Text Available The concept of the hydrodynamic characteristic size of polymer was proposed in this study, to characterize the size of aggregates of many polymer molecules in the polymer percolation process. The hydrodynamic characteristic sizes of polymers used in the target block S were examined by employing microporous membrane filtration method, and the factors were studied. Natural core flow experiments were conducted in order to set up the flow matching relationship plate. According to the flow matching plate, the relationship between the hydrodynamic characteristic size of polymer and pore throat radius obtained from core mercury injection data was found. And several suitable polymers for different reservoirs permeability were given. The experimental results of microporous membrane filtration indicated that the hydrodynamic characteristic size of polymer maintained a good nonlinear relationship with polymer viscosity; the value increased as the molecular weight and concentration of the polymer increased and increased as the salinity of dilution water decreased. Additionally, the hydrodynamic characteristic size decreased as the pressure increased, so the hydrodynamic characteristic size ought to be determined based on the pressure of the target block. In the core flow studies, good matching of polymer and formation was identified as polymer flow pressure gradient lower than the fracture pressure gradient of formation. In this case, good matching that was the pore throat radius should be larger than 10 times the hydrodynamic characteristic size of polymer in this study. Using relationship, more matching relationship between the hydrodynamic characteristic sizes of polymer solutions and the pore throat radius of target block was determined.

  15. Removal of micropollutants in biofilters: Hydrodynamic effects on biofilm assembly and functioning.

    Science.gov (United States)

    Carpenter, Corey M G; Helbling, Damian E

    2017-09-01

    Global water resources contain a variety of micropollutants (MPs), including pharmaceuticals, personal care products, and pesticides. This study investigated the removal of MPs during drinking water production by means of biofiltration. The objective of this work was to investigate the influence of hydrodynamics on biofilm growth and development in a biofiltration process and the consequent effect on MP biotransformation rates. We operated three groups of biofiltration columns continuously for 381 days under three distinct hydrodynamic regimes (superficial velocity: 10, 20, 40 cm h -1 ) and fed them a mixture of 29 micropollutants at low concentrations. Total protein concentrations were used as a surrogate measurement for attached biomass and periodic tracer experiments were conducted to estimate dispersivity and assess changes in the depth of the biological zone in each biofilter. These data revealed significant differences in biofilm assembly among the biofilters; higher superficial velocities led to less concentrated surface biomass but a deeper biological zone and more total biomass. Eleven of the 29 MPs were biotransformed and nine of those could be evaluated to estimate biotransformation rates. The second-order rate constants for all nine MPs were not significantly different among the hydrodynamic regimes. However, a depth-based analysis of biotransformation rates revealed significantly greater second-order rate constants for 5 of the MPs at increasing biofilter depths, suggesting that sparse microbial communities found in deeper and more oligotrophic biofilters had a greater activity for the biotransformation of these MPs. The identification of several transformation products at similar relative distributions suggests that the greater activity was not the result of changing metabolic processes under more oligotrophic conditions. These results improve our fundamental understanding of biofilm assembly and functioning in biofiltration processes. Copyright

  16. Use of hydrodynamic cavitation in (waste)water treatment.

    Science.gov (United States)

    Dular, Matevž; Griessler-Bulc, Tjaša; Gutierrez-Aguirre, Ion; Heath, Ester; Kosjek, Tina; Krivograd Klemenčič, Aleksandra; Oder, Martina; Petkovšek, Martin; Rački, Nejc; Ravnikar, Maja; Šarc, Andrej; Širok, Brane; Zupanc, Mojca; Žitnik, Miha; Kompare, Boris

    2016-03-01

    The use of acoustic cavitation for water and wastewater treatment (cleaning) is a well known procedure. Yet, the use of hydrodynamic cavitation as a sole technique or in combination with other techniques such as ultrasound has only recently been suggested and employed. In the first part of this paper a general overview of techniques that employ hydrodynamic cavitation for cleaning of water and wastewater is presented. In the second part of the paper the focus is on our own most recent work using hydrodynamic cavitation for removal of pharmaceuticals (clofibric acid, ibuprofen, ketoprofen, naproxen, diclofenac, carbamazepine), toxic cyanobacteria (Microcystis aeruginosa), green microalgae (Chlorella vulgaris), bacteria (Legionella pneumophila) and viruses (Rotavirus) from water and wastewater. As will be shown, hydrodynamic cavitation, like acoustic, can manifest itself in many different forms each having its own distinctive properties and mechanisms. This was until now neglected, which eventually led to poor performance of the technique. We will show that a different type of hydrodynamic cavitation (different removal mechanism) is required for successful removal of different pollutants. The path to use hydrodynamic cavitation as a routine water cleaning method is still long, but recent results have already shown great potential for optimisation, which could lead to a low energy tool for water and wastewater cleaning. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Concentration device

    DEFF Research Database (Denmark)

    2013-01-01

    A concentration device (2) for filter filtration concentration of particles (4) from a volume of a fluid (6). The concentration device (2) comprises a filter (8) configured to filter particles (4) of a predefined size in the volume of the fluid (6). The concentration device (2) comprises...

  18. Hydrodynamics coalescence collision of three liquid drops in 3D with smoothed particle hydrodynamics

    Directory of Open Access Journals (Sweden)

    Alejandro Acevedo-Malavé

    2012-12-01

    Full Text Available The Smoothed Particle Hydrodynamics method (SPH has been useful to model continuous fluid. This method is employed to obtain approximate numerical solutions of the equations in fluid dynamics by replacing the fluid with a set of particles. These particles may be interpreted as corresponding to interpolation points from which properties of the fluid can be determined. The SPH method is particularly useful when the fluid motion produces a big deformation and a large velocity of the whole fluid. In this study, the SPH method is applied to simulate for the first time the hydrodynamic collision of three equal-size liquid drops in the three-dimensional space. Ranges of value for the droplets collision velocity are chosen giving rise to the following different results for the collision: permanent coalescence, fragmentation, and flocculation of the drops. The velocity vector fields formed inside the drops during the collision process are presented. Three possible scenarios for fragmentation of liquid drops are shown. Multiple satellite drops arise from the ligaments on the surface of the formed bigger drop.

  19. Grid and particle hydrodynamics: Beyond hydrodynamics via fluid element particle-in-cell

    Energy Technology Data Exchange (ETDEWEB)

    Bateson, W.B.; Hewett, D.W. [Lawrence Livermore National Lab., CA (United States)

    1998-08-10

    A new plasma/fluid transport algorithm is presented that combines and retains the strengths of the particle and hydrodynamic methods. By including internal velocity characteristics of area particles within each finite size macro-particle (FSP), a redundancy is introduced in the representation of the real particle distribution that is recovered by the superposition of these macro-particles. This redundancy is exploited by merging particles that sufficiently overlap in parameter space. The internal velocity distribution is exploited by allowing the distribution with each FSP to evolve hydrodynamically. In turn the evolution establishes the partitioning of moments into central and expansion particles. Such aggressive increases in the number of individual FSPs probe for emerging features. If interesting features fail to materialize, aggressive merging provides particle economy. The objective is to economically recover details of the particle distribution necessary for accurate collisions. GaPH promises to accomplish this mission without squandering computational resources in uninteresting regions of phase space. This paper reports collisionless GaPH test results that compare well with analytic solutions that initially contain large gradients.

  20. Annual Report 2006 for Hydrodynamics and Radiation Hydrodynamics with Astrophysical Applications

    Energy Technology Data Exchange (ETDEWEB)

    R. Paul Drake

    2007-04-05

    We report the ongoing work of our group in hydrodynamics and radiation hydrodynamics with astrophysical applications. During the period of the existing grant, we have carried out two types of experiments at the Omega laser. One set of experiments has studied radiatively collapsing shocks, obtaining data using a backlit pinhole with a 100 ps backlighter and beginning to develop the ability to look into the shock tube with optical or x-ray diagnostics. Other experiments have studied the deeply nonlinear development of the Rayleigh-Taylor (RT) instability from complex initial conditions, using dual-axis radiographic data with backlit pinholes and ungated detectors to complete the data set for a Ph.D. student. We lead a team that is developing a proposal for experiments at the National Ignition Facility and are involved in experiments at NIKE and LIL. All these experiments have applications to astrophysics, discussed in the corresponding papers. We assemble the targets for the experiments at Michigan, where we also prepare many of the simple components. We also have several projects underway in our laboratory involving our x-ray source. The above activities, in addition to a variety of data analysis and design projects, provide good experience for graduate and undergraduates students. In the process of doing this research we have built a research group that uses such work to train junior scientists.

  1. Early Hydrodynamic Evolution of a Stellar Collision

    Science.gov (United States)

    Kushnir, Doron; Katz, Boaz

    2014-04-01

    The early phase of the hydrodynamic evolution following the collision of two stars is analyzed. Two strong shocks propagate from the contact surface and move toward the center of each star at a velocity that is a small fraction of the velocity of the approaching stars. The shocked region near the contact surface has a planar symmetry and a uniform pressure. The density vanishes at the (Lagrangian) surface of contact, and the speed of sound diverges there. The temperature, however, reaches a finite value, since as the density vanishes, the finite pressure is radiation dominated. For carbon-oxygen white dwarf (CO WD) collisions, this temperature is too low for any appreciable nuclear burning shortly after the collision, which allows for a significant fraction of the mass to be highly compressed to the density required for efficient 56Ni production in the detonation wave that follows. This property is crucial for the viability of collisions of typical CO WD as progenitors of type Ia supernovae, since otherwise only massive (>0.9 M ⊙) CO WDs would have led to such explosions (as required by all other progenitor models). The divergence of the speed of sound limits numerical studies of stellar collisions, as it makes convergence tests exceedingly expensive unless dedicated schemes are used. We provide a new one-dimensional Lagrangian numerical scheme to achieve this. A self-similar planar solution is derived for zero-impact parameter collisions between two identical stars, under some simplifying assumptions (including a power-law density profile), which is the planar version of previous piston problems that were studied in cylindrical and spherical symmetries.

  2. HYDRODYNAMIC PERFORMANCES OF SMALL SIZE SWATH CRAFT

    Directory of Open Access Journals (Sweden)

    Ermina Begovic

    2015-12-01

    Full Text Available The good seakeeping characteristics of SWATH hull form are very interesting for small working craft and pleasure boats. Intrinsic limitations as the low values of weight per inch of immersion and transversal and longitudinal instability, can be acceptable and successfully managed when the mission profile does not ask for significant load variation and shift. The exploitation of SWATH concept is limited by the craft size, but if main dimensions allow enough static stability, this configuration appears very promising. SWATH behaviour in rough sea at zero and low speed have led to consider this hull form within the small craft design research program in progress at University of Naples Federico II. The design of small size SWATH working/pleasure craft has to begin from the consideration of strut waterplane areas that are the key factor to get acceptable static and dynamic stability. Displacement has to be reduced as most as possible to increase static stability, as shown by last design trends. The results of CFD analysis concerning SWATH resistance and propulsion, aspects are presented. A numerical evaluation of the hull-propeller interactions is performed, through simulations of self-propulsion tests with a simplified method (Actuator Disk model to discretize the propeller effect. The effective wake coefficient, the thrust deduction fraction and hull efficiency are provided. To validate CFD resistance results a comparison with experimental tests performed by Authors is reported. The presented work highlights different hydrodynamic aspects, comments advantages and critical issues of SWATH concept and reports detailed CFD modelling procedure with the aim to provide a reference for SWATH small craft design.

  3. Hydrodynamic Simulations of Kepler's Supernova Remnant

    Science.gov (United States)

    Sullivan, Jessica; Blondin, John; Borkowski, Kazik; Reynolds, Stephen

    2018-01-01

    Kepler’s supernova remnant contains unusual features that strongly suggest an origin in a single-degenerate Type Ia explosion, including anisotropic circumstellar medium (CSM), a strong brightness gradient, and spatially varying expansion proper motions. We present 3Dhydrodynamic simulations to test a picture in which Kepler's progenitor binary emitted a strong asymmetric wind, densest in the orbital plane, while the system moved at high velocity through the ISM. We simulate the creation of the presupernova environment as well as the supernova blast wave, using the VH-1 grid-based hydrodynamics code. We first modeled an anisotropic wind to create an asymmetric bowshock around the progenitor, then the blast wave from thesupernova. The final simulation places both previous model pieces onto a single grid and allows the blast wave to expand into the bowshock. Models were completed on a Yin-Yang grids with matching angular resolutions. By manipulating parameters that control the asymmetry of the system, we attempted to find conditions that recreated the current state of Kepler. We analyzed these models by comparing images of Kepler from the Chandra X-ray Observatory to line-of-sight projections from the model results. We also present comparisons of simulated expansion velocities with recent observations of X-ray proper motions from Chandra images. We were able to produce models that contained similar features to those seen in Kepler. We find the greatest resemblance to Kepler images with a presupernova wind with an equator-to-pole density contrast of 3 and a moderately disk-like CSM at a 5° angle between equatorial plane and system motion.

  4. Relativistic hydrodynamic jets in the intracluster medium

    Science.gov (United States)

    Choi, Eunwoo

    2017-08-01

    We have performed the first three-dimensional relativistic hydrodynamic simulations of extragalactic jets of pure leptonic and baryonic plasma compositions propagating into a hydrostatic intracluster medium (ICM) environment. The numerical simulations use a general equation of state for a multicomponent relativistic gas, which closely reproduces the Synge equation of state for a relativistic perfect gas. We find that morphological and dynamical differences between leptonic and baryonic jets are much less evident than those between hot and cold jets. In all these models, the jets first propagate with essentially constant velocities within the core radius of the ICM and then accelerate progressively so as to increase the jet advance velocity by a factor of between 1.2 and 1.6 at the end of simulations, depending upon the models. The temporal evolution of the average cavity pressure is not consistent with that expected by the extended theoretical model even if the average cavity pressure decreases as a function of time with a power law. Our simulations produce synthetic radio images that are dominated by bright hot spots and appear similar to observations of the extended radio galaxies with collimated radio jets. These bright radio lobes would be visible as dark regions in X-ray images and are morphologically similar to observed X-ray cavities in the ICM. This supports the expectation that the bow shock surrounding the head of the jet is important mechanism for producing X-ray cavities in the ICM. Although there are quantitative differences among the models, the total radio and X-ray intensity curves show qualitatively similar trends in all of them.

  5. Hydrodynamic implications of textural trends in sand deposits of the 2004 tsunami in Sri Lanka

    Science.gov (United States)

    Morton, R.A.; Goff, J.R.; Nichol, S.L.

    2008-01-01

    Field observations and sediment samples at a coastal-plain setting in southeastern Sri Lanka were used to document the erosional and depositional impacts of the 2004 Indian Ocean tsunami and to interpret the hydrodynamic processes that produced an extensive sand-sheet deposit. Tsunami deposit thicknesses ranged from 6 to 22??cm with thickness being controlled partly by antecedent topography. The deposit was composed of coarse to medium sand organized into plane-parallel laminae and a few laminasets. Vertical textural trends showed an overall but non-systematic upward fining and upward thinning of depositional units with an upward increase in heavy-mineral laminations at some locations. Repeated patterns in the vertical textural trends (upward fining, upward coarsening, uniform) were used to subdivide and correlate the deposit into five hydro-textural stratigraphic units. The depositional units were linked to hydrodynamic processes and upcurrent conditions, such as rates of sediment supply and composition of the sediment sources. Vertical changes in grain-size distributions recorded the depositional phases associated with flow acceleration, initial unsteady pulsating flow, relatively stable and uniform flow, flow deceleration, slack water, and return flow or flow redirection. Study results suggest that vertical textural trends from multiple cross-shore sections can be used to interpret complex tsunami flow histories, but at the location examined, interpretation of the lateral textural trends did not provide a basis for identifying the correct sediment transport pathways because flow near the landward boundary was multidirectional.

  6. Realization of hydrodynamic experiments on quasi-2D liquid crystal films in microgravity

    Science.gov (United States)

    Clark, Noel A.; Eremin, Alexey; Glaser, Matthew A.; Hall, Nancy; Harth, Kirsten; Klopp, Christoph; Maclennan, Joseph E.; Park, Cheol S.; Stannarius, Ralf; Tin, Padetha; Thurmes, William N.; Trittel, Torsten

    2017-08-01

    Freely suspended films of smectic liquid crystals are unique examples of quasi two-dimensional fluids. Mechanically stable and with quantized thickness of the order of only a few molecular layers, smectic films are ideal systems for studying fundamental fluid physics, such as collective molecular ordering, defect and fluctuation phenomena, hydrodynamics, and nonequilibrium behavior in two dimensions (2D), including serving as models of complex biological membranes. Smectic films can be drawn across openings in planar supports resulting in thin, meniscus-bounded membranes, and can also be prepared as bubbles, either supported on an inflation tube or floating freely. The quantized layering renders smectic films uniquely useful in 2D fluid physics. The OASIS team has pursued a variety of ground-based and microgravity applications of thin liquid crystal films to fluid structure and hydrodynamic problems in 2D and quasi-2D systems. Parabolic flights and sounding rocket experiments were carried out in order to explore the shape evolution of free floating smectic bubbles, and to probe Marangoni effects in flat films. The dynamics of emulsions of smectic islands (thicker regions on thin background films) and of microdroplet inclusions in spherical films, as well as thermocapillary effects, were studied over extended periods within the OASIS (Observation and Analysis of Smectic Islands in Space) project on the International Space Station. We summarize the technical details of the OASIS hardware and give preliminary examples of key observations.

  7. Hydrodynamic Characteristics of a Low-drag, Planing-tail Flying-boat Hull

    Science.gov (United States)

    Suydam, Henry B

    1948-01-01

    The hydrodynamic characteristics of a flying-boat incorporating a low-drag, planing-tail hull were determined from model tests made in Langley tank number 2 and compared with tests of the same flying boat incorporating a conventional-type hull. The planing-tail model, with which stable take-offs were possible for a large range of elevator positions at all center-of-gravity locations tested, had more take-off stability than the conventional model. No upper-limit porpoising was encountered by the planing-tail model. The maximum changes in rise during landings were lower for the planing-tail model than for the conventional model at most contact trims, an indication of improved landing stability for the planing-tail model. The hydrodynamic resistance of the planing-tail hull was lower than the conventional hull at all speeds, and the load-resistance ratio was higher for the planing-tail hull, being especially high at the hump. The static trim of the planing-tail hull was much higher than the conventional hull, but the variation of trim with speed during take-off was smaller.

  8. A novel rotation generator of hydrodynamic cavitation for waste-activated sludge disintegration.

    Science.gov (United States)

    Petkovšek, Martin; Mlakar, Matej; Levstek, Marjetka; Stražar, Marjeta; Širok, Brane; Dular, Matevž

    2015-09-01

    The disintegration of raw sludge is very important for enhancement of the biogas production in anaerobic digestion process as it provides easily degradable substrate for microorganisms to perform maximum sludge treatment efficiency and stable digestion of sludge at lower costs. In the present study the disintegration was studied by using a novel rotation generator of hydrodynamic cavitation (RGHC). At the first stage the analysis of hydrodynamics of the RGHC were made with tap water, where the cavitation extent and aggressiveness was evaluated. At the second stage RGHC was used as a tool for pretreatment of a waste-activated sludge (WAS), collected from wastewater treatment plant (WWTP). In case of WAS the disintegration rate was measured, where the soluble chemical oxygen demand (SCOD) and soluble Kjeldahl nitrogen were monitored and microbiological pictures were taken. The SCOD increased from initial 45 mg/L up to 602 mg/L and 12.7% more biogas has been produced by 20 passes through RGHC. The results were obtained on a pilot bioreactor plant, volume of 400 L. Copyright © 2015. Published by Elsevier B.V.

  9. Galectin-1 in stable liver transplant recipients.

    Science.gov (United States)

    García, M J; Jurado, F; San Segundo, D; López-Hoyos, M; Iruzubieta, P; Llerena, S; Casafont, F; Arias, M; Puente, Á; Crespo, J; Fábrega, E

    2015-01-01

    The achievement of a state of tolerance and minimization of the immunosuppressive load form part of the "Holy Grail" in solid organ transplantation. Galectin-1 recently has been described to be involved in the maintenance of a tolerant environment, but there is no evidence of its role in human liver transplantation. The aim of our study was to measure the serum levels of galectin-1 in stable liver transplant recipients. Serum levels of galectin-1 were determined in 30 stable liver transplant recipients who had been free of rejection episodes for at least 8 years. Fifteen patients with an acute rejection episode and 34 healthy subjects were used as the control group. The concentrations of galectin-1 were significantly higher in stable liver transplant recipients compared with healthy subjects and with the acute rejection group. These preliminary results indicate that galectin-1 is upregulated in stable liver transplant recipients. Thus, our results extend the recent findings that galectin-1 may play an immune-suppressive role in liver transplantation. It remains to be established whether it might help to induce tolerance in liver transplantation. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. The hydrodynamic drag and the mobilisation of sediment into the water column of towed fishing gear components

    Science.gov (United States)

    O'Neill, F. G.; Summerbell, K. J.

    2016-12-01

    The hydrodynamic drag of towed fishing gears leads to direct impacts on the benthic environment, and can play a major role in the overall economic efficiency of the fishing operation and emissions of nitrogen oxides, sulphur oxides and greenhouse gases such as CO2. Here we investigate some of the underpinning processes which govern these issues and make direct hydrodynamic drag measurements and calculate the hydrodynamic drag coefficients for a range of well-defined gear components that, when fished, are in contact with the seabed. We measure the concentration and particle size distribution of the sediment mobilised into the water column in the wake of these gear elements, at a range of towing speeds, and demonstrate that as the hydrodynamic drag increases the amount of sediment mobilised also increases. We also vary the weight of the elements and show that this does not influence the amount of sediment put into the water column. These results provide a better understanding of the physical and mechanical processes that take place when a towed fishing gear interacts with the seabed. They will permit the development of more fuel efficient gears and gears of reduced benthic impact and will improve the empirical modelling of the sediment mobilised into the turbulent wake behind towed fishing gears which will lead to better assessments of the environmental and ecological impact of fishing gears.

  11. Differences between blood and a Newtonian fluid on the performance of a hydrodynamic bearing for rotary blood pumps.

    Science.gov (United States)

    Amaral, Felipe; Egger, Christina; Steinseifer, Ulrich; Schmitz-Rode, Thomas

    2013-09-01

    Assuming that blood has a constant viscosity is a common practice when designing rotary blood pumps (RBPs), where shear stresses are generally higher than in the human body. This eases the design and allows numerical simulations and bench top experiments to be performed with Newtonian fluids. However, specific flow conditions may cause a change in cell distribution leading to an apparent lower blood viscosity. It has been observed that decreasing the vessel diameters and increasing flow velocities contribute to this effect. Because a hydrodynamic bearing operates under flow conditions following this pattern, it is important to verify whether this effect also takes place when this type of bearing is applied to a RBP. Because the operation of a hydrodynamic bearing depends directly on the fluid viscosity, a local change in cell distribution in the bearing gap can be reflected in changes in the bearing performance. In this work, a spiral groove hydrodynamic bearing was tested with porcine blood in a specially built test rig. The generated suspension force, cross flow, and bearing torque were recorded and compared with the reference response when using a solution of water and glycerol. Experiments with porcine blood yielded lower suspension forces, lower flows, and lower bearing torques than when using the glycerol solution. An explanation could be a lower apparent viscosity due to inhomogeneity of blood cell concentrations. Therefore, it is crucial to consider the effective blood viscosity when designing hydrodynamic bearings for RBPs and performing experiments. © 2013 Wiley Periodicals, Inc. and International Center for Artificial Organs and Transplantation.

  12. Essentially asymptotically stable homoclinic networks

    NARCIS (Netherlands)

    Driesse, R.; Homburg, A.J.

    2009-01-01

    Melbourne [An example of a nonasymptotically stable attractor, Nonlinearity 4(3) (1991), pp. 835-844] discusses an example of a robust heteroclinic network that is not asymptotically stable but which has the strong attracting property called essential asymptotic stability. We establish that this

  13. Coronal closed structures. IV - Hydrodynamical stability and response to heating perturbations

    Science.gov (United States)

    Peres, G.; Serio, S.; Vaiana, G. S.; Rosner, R.

    1982-01-01

    The response of magnetically confined atmospheres to perturbations in the temperature and density distribution, and the local heating rate by means of a one-dimensional time-dependent hydrodynamical code, which incorporates the full energy, momentum and mass conservation equations is studied. These studies extend the linear instability analysis of Habbal and Rosner (1979) into the finite-amplitude regime, and generalize the confined atmosphere models of Serio et al., to the time-dependent domain. The results show that closed coronal atmospheres are stable against finite-amplitude perturbations if the chromospheric response is taken into account; and observed correlated increases in coronal density and temperature can only be achieved under quiescent conditions by increasing the heat deposition rate relatively more in the chromosphere than in the corona.

  14. Hydrodynamic Transfection for Generation of Novel Mouse Models for Liver Cancer Research

    Science.gov (United States)

    Chen, Xin; Calvisi, Diego F.

    2015-01-01

    Primary liver cancers, including hepatocellular carcinoma and intrahepatic cholangiocarcinoma, are leading causes of cancer-related death worldwide. Recent large-scale genomic approaches have identified a wide number of genes whose deregulation is associated with hepatocellular carcinoma and intrahepatic cholangiocarcinoma development. Murine models are critical tools to determine the oncogenic potential of these genes. Conventionally, transgenic or knockout mouse models are used for this purpose. However, several limitations apply to the latter models. Herein, we review a novel approach for stable gene expression in mouse hepatocytes by hydrodynamic injection in combination with Sleeping Beauty–mediated somatic integration. This method represents a flexible, reliable, and cost-effective tool to generate preclinical murine models for liver cancer research. Furthermore, it can be used as an in vivo transfection method to study biochemical cross talks among multiple pathways along hepatocarcinogenesis and to test the therapeutic potential of drugs against liver cancer. PMID:24480331

  15. Statistical-mechanical approach to study the hydrodynamic stability of the stably stratified atmospheric boundary layer

    Science.gov (United States)

    Nevo, G.; Vercauteren, N.; Kaiser, A.; Dubrulle, B.; Faranda, D.

    2017-08-01

    We study the hydrodynamic equilibrium properties of the stably stratified atmospheric boundary layer from measurements obtained in the Snow-Horizontal Array Turbulence Study campaign at the Plaine Morte Glacier in the Swiss Alps. Our approach is based on a combination of dynamical systems techniques and statistical analysis. The main idea is to measure the deviations from the behavior expected by a turbulent observable when it is close to a transition between different metastable states. We first assess the performance of our method on the Lorenz attractor, then on a turbulent flow. The results show that the method recognizes subtle differences among different stable boundary layer turbulence regimes and may be used to help characterize their transitions.

  16. Hydrodynamic instability in a magnetically driven suspension of paramagnetic red blood cells.

    Science.gov (United States)

    Kashevsky, B E; Zholud, A M; Kashevsky, S B

    2015-09-07

    We investigate the magnetically driven motion in suspensions of paramagnetic particles. Our object is diluted deoxygenated whole blood with paramagnetic red blood cells (RBCs). We use direct observations in a closed vertical Hele-Shaw channel, and a well-defined magnetic force field applied horizontally in the channel plane. At very low cell concentrations, we register single-particle motion mode, track individual cells and determine their hydrodynamic and magnetic characteristics. Above 0.2 volume percent concentration, we observe local swirls and a global transient quasi-periodic vortex structure, intensifying with increasing cell concentration, but surprisingly this does not influence the time and purity of the magnetic extraction of RBCs. Our observations shed light on the behavioral complexity of magnetically driven submagnetic suspensions, an important issue for the emerging microfluidic technology of direct magnetic cell separation and intriguing for the mechanics of particulate soft matter.

  17. Phonon hydrodynamics and its applications in nanoscale heat transport

    Science.gov (United States)

    Guo, Yangyu; Wang, Moran

    2015-09-01

    Phonon hydrodynamics is an effective macroscopic method to study heat transport in dielectric solid and semiconductor. It has a clear and intuitive physical picture, transforming the abstract and ambiguous heat transport process into a concrete and evident process of phonon gas flow. Furthermore, with the aid of the abundant models and methods developed in classical hydrodynamics, phonon hydrodynamics becomes much easier to implement in comparison to the current popular approaches based on the first-principle method and kinetic theories involving complicated computations. Therefore, it is a promising tool for studying micro- and nanoscale heat transport in rapidly developing micro and nano science and technology. However, there still lacks a comprehensive account of the theoretical foundations, development and implementation of this approach. This work represents such an attempt in providing a full landscape, from physical fundamental and kinetic theory of phonons to phonon hydrodynamics in view of descriptions of phonon systems at microscopic, mesoscopic and macroscopic levels. Thus a systematical kinetic framework, summing up so far scattered theoretical models and methods in phonon hydrodynamics as individual cases, is established through a frame of a Chapman-Enskog solution to phonon Boltzmann equation. Then the basic tenets and procedures in implementing phonon hydrodynamics in nanoscale heat transport are presented through a review of its recent wide applications in modeling thermal transport properties of nanostructures. Finally, we discuss some pending questions and perspectives highlighted by a novel concept of generalized phonon hydrodynamics and possible applications in micro/nano phononics, which will shed more light on more profound understanding and credible applications of this new approach in micro- and nanoscale heat transport science.

  18. Measuring Hydrodynamics and Sediment Transport in the Swash Zone

    Science.gov (United States)

    Puleo, J. A.

    2014-12-01

    The swash zone is the most landward region of the nearshore where wave energy is ultimately dissipated or reflected. It is the most accessible region of the nearshore but is the most challenging for obtaining measurements and performing numerical modeling simulations. The challenging aspects are related to the moving shoreline, rapid changes in water depth, bed level fluctuations, swift, turbulent, direction-reversing flows, large suspended, bed and sheet flow sediment loads, large void fraction, and fluid infiltration and exfiltration from the beach. The major hurdle numerical modelers face is predicting sediment transport rates on a swash-by-swash basis as errors rapidly lead to inaccuracies in simulated morphological evolution. Recent advances in measurement capabilities are now helping to fill gaps in understanding of sediment transport processes and, in turn, improve predictive capability. Newly developed acoustic Doppler profiling velocimeters have allowed for the measurement of hydrodynamics in the direct vicinity of the bed including boundary layer development, bed shear stresses and turbulence dissipation. Bed shear stresses on natural beaches have been estimated at over 20 N/m2; an order of magnitude larger than in the surf zone. Vertical profiles of turbulence dissipation increase near the bed and near the water surface during uprush (shoreward-directed motion) indicating the simultaneous importance of bottom shear and bore-generated turbulence during this phase of motion. Dissipation during backwash (offshore-directed motion) originates at the bed with little influence from fluid motion near the water surface. Other sensors have enabled, for the first time, the measurement of time dependent sheet flow concentrations. Sheet flow thicknesses have been found to exceed 0.03 m under some natural swash zone conditions and concentrations within the mobile sheet flow layer approach the packed bed limit. Sheet flow sediment concentration profiles for varying

  19. The role of hydrodynamics in shaping the composition and architecture of epilithic biofilms in fluvial ecosystems.

    Science.gov (United States)

    Risse-Buhl, Ute; Anlanger, Christine; Kalla, Katalin; Neu, Thomas R; Noss, Christian; Lorke, Andreas; Weitere, Markus

    2017-12-15

    Previous laboratory and on-site experiments have highlighted the importance of hydrodynamics in shaping biofilm composition and architecture. In how far responses to hydrodynamics can be found in natural flows under the complex interplay of environmental factors is still unknown. In this study we investigated the effect of near streambed turbulence in terms of turbulent kinetic energy (TKE) on the composition and architecture of biofilms matured in two mountainous streams differing in dissolved nutrient concentrations. Over both streams, TKE significantly explained 7% and 8% of the variability in biofilm composition and architecture, respectively. However, effects were more pronounced in the nutrient richer stream, where TKE significantly explained 12% and 3% of the variability in biofilm composition and architecture, respectively. While at lower nutrient concentrations seasonally varying factors such as stoichiometry of dissolved nutrients (N/P ratio) and light were more important and explained 41% and 6% of the variability in biofilm composition and architecture, respectively. Specific biofilm features such as elongated ripples and streamers, which were observed in response to the uniform and unidirectional flow in experimental settings, were not observed. Microbial biovolume and surface area covered by the biofilm canopy increased with TKE, while biofilm thickness and porosity where not affected or decreased. These findings indicate that under natural flows where near bed flow velocities and turbulence intensities fluctuate with time and space, biofilms became more compact. They spread uniformly on the mineral surface as a film of densely packed coccoid cells appearing like cobblestone pavement. The compact growth of biofilms seemed to be advantageous for resisting hydrodynamic shear forces in order to avoid displacement. Thus, near streambed turbulence can be considered as important factor shaping the composition and architecture of biofilms grown under natural

  20. Dynamics of suspensions of hydrodynamically structured particles: analytic theory and applications to experiments.

    Science.gov (United States)

    Riest, Jonas; Eckert, Thomas; Richtering, Walter; Nägele, Gerhard

    2015-04-14

    We present an easy-to-use analytic toolbox for the calculation of short-time transport properties of concentrated suspensions of spherical colloidal particles with internal hydrodynamic structure, and direct interactions described by a hard-core or soft Hertz pair potential. The considered dynamic properties include self-diffusion and sedimentation coefficients, the wavenumber-dependent diffusion function determined in dynamic scattering experiments, and the high-frequency shear viscosity. The toolbox is based on the hydrodynamic radius model (HRM) wherein the internal particle structure is mapped on a hydrodynamic radius parameter for unchanged direct interactions, and on an existing simulation data base for solvent-permeable and spherical annulus particles. Useful scaling relations for the diffusion function and self-diffusion coefficient, known to be valid for hard-core interaction, are shown to apply also for soft pair potentials. We further discuss extensions of the toolbox to long-time transport properties including the low-shear zero-frequency viscosity and the long-time self-diffusion coefficient. The versatility of the toolbox is demonstrated by the analysis of a previous light scattering study of suspensions of non-ionic PNiPAM microgels [Eckert et al., J. Chem. Phys., 2008, 129, 124902] in which a detailed theoretical analysis of the dynamic data was left as an open task. By the comparison with Hertz potential based calculations, we show that the experimental data are consistently and accurately described using the Verlet-Weis corrected Percus-Yevick structure factor as input, and for a solvent penetration length equal to three percent of the excluded volume radius. This small amount of solvent permeability of the microgel particles has a significant dynamic effect at larger concentrations.

  1. Concentration risk

    Directory of Open Access Journals (Sweden)

    Matić Vesna

    2016-01-01

    Full Text Available Concentration risk has been gaining a special dimension in the contemporary financial and economic environment. Financial institutions are exposed to this risk mainly in the field of lending, mostly through their credit activities and concentration of credit portfolios. This refers to the concentration of different exposures within a single risk category (credit risk, market risk, operational risk, liquidity risk.

  2. Direct-Drive Hydrodynamic Instability Experiments

    Science.gov (United States)

    Azechi, Hiroshi

    1996-11-01

    As is well known, hydrodynamic instabilities play an important role in inertial-confinement-fusion implosions. Target surface perturbations are imposed, in addition to the original surface roughness, by imprint of laser irradiation nonuniformity. These perturbations may be amplified by rippled shock propagation before the shock transit through the pusher; and will grow due to the Rayleigh-Taylor (R-T) instability after the shock transit. Subsequent feed-through seeds the perturbations in the fuel-pusher interface. These together with the initial inner surface perturbations will grow again due to the R-T instability during the deceleration phase, resulting in fuel-pusher mixing which may degrade the implosion performance significantly. Good understandings of the instabilities are therefore necessary to tolerate the mixing. At the GEKKO XII laser facility, we have conducted an extensive series of direct-drive experiments on the imprint^1 and its reduction in pre-formed pl! asmas, rippled shock propagation^2, and R-T instability in linear regime^3. The partially-coherent-light^4 for the target drive performs the state-of-art uniformity and allows well controlled experiments. For the imprint experiments, we introduced a single-mode perturbation only on the foot pulse for the imprint followed by uniform main pulse for R-T amplification. We have also initiated investigation of the imprint by moving single-mode non-uniformity, which is generated by interference of two different laser wavelengths. The time for the interference fringe to move one perturbation wavelength is equivalent to the smoothing time of laser irradiation. The experimental R-T growth rate was significantly reduced from the classical growth rate. This and recently accumulated database of laser intensity, and target thickness dependences support the conclusion that non-local energy transport play an important role in these experiments. Experimental results and compari! sons with theory and simulations

  3. Stable Chlorine Isotope Fractionation

    Science.gov (United States)

    Sharp, Z.

    2006-12-01

    Chlorine isotope partitioning between different phases is not well understood. Pore fluids can have δ37Cl values as low as -8‰, with neoform sediments having strongly positive values. Most strikingly, volcanic gases have δ37Cl values that cover a range in excess of 14‰ (Barnes et al., this meeting). The large range is difficult to explain in terms of equilibrium fractionation, which, although calculated to be very large for Cl in different oxidation states, should be less than 2‰ between chloride species (Schauble et al., 2003, GCA). To address the discrepancy between Nature and theory, we have measured Cl isotope fractionation for selected equilibrium and disequilibrium experiments in order to identify mechanisms that might lead to large fractionations. 1) NaCl (s,l) NaCl (v): NaCl was sealed in an evacuated silica tube and heated at one end, causing vaporization and reprecipitation of NaCl (v) at the cool end of the tube. The fractionation is 0.2‰ at 700°C (halite-vapor) and 0.7‰ at 800°C (liquid-vapor), respectively. The larger fractionation at higher temperature may be related to equilibrium fractionation between liquid and gas vs. `stripping' of the solid in the lower T experiments. 2) Sodalite NaCl(l): Nepheline and excess NaCl were sealed in a Pt crucible at 825°C for 48 hrs producing sodalite. The measured newly-formed sodalite-NaCl fractionation is -0.2‰. 3) Volatilization of HCl: Dry inert gas was bubbled through HCl solutions and the vapor was collected in a downstream water trap. There was no fractionation for 12.4M HCl (HCl fuming) vapor at 25°C. For a 1 M boiling HCl solution, the HCl-vapor fractionation was ~9‰. The difference is probably related to the degree of dissociation in the acid, with HCl dissolved in water for the highly acidic solutions, and dissociated H3O+ and Cl- for lower concentrations. The HCl volatilization experiments are in contrast to earlier vapor-liquid experiments in NaCl-H2O system, where fractionation was

  4. Viscosity and dissipative hydrodynamics from effective field theory

    Science.gov (United States)

    Grozdanov, Sašo; Polonyi, Janos

    2015-05-01

    With the goal of deriving dissipative hydrodynamics from an action, we study classical actions for open systems, which follow from the generic structure of effective actions in the Schwinger-Keldysh closed-time-path (CTP) formalism with two time axes and a doubling of degrees of freedom. The central structural feature of such effective actions is the coupling between degrees of freedom on the two time axes. This reflects the fact that from an effective field theory point of view, dissipation is the loss of energy of the low-energy hydrodynamical degrees of freedom to the integrated-out, UV degrees of freedom of the environment. The dynamics of only the hydrodynamical modes may therefore not possess a conserved stress-energy tensor. After a general discussion of the CTP effective actions, we use the variational principle to derive the energy-momentum balance equation for a dissipative fluid from an effective Goldstone action of the long-range hydrodynamical modes. Despite the absence of conserved energy and momentum, we show that we can construct the first-order dissipative stress-energy tensor and derive the Navier-Stokes equations near hydrodynamical equilibrium. The shear viscosity is shown to vanish in the classical theory under consideration, while the bulk viscosity is determined by the form of the effective action. We also discuss the thermodynamics of the system and analyze the entropy production.

  5. Concentrator Photovoltaics

    CERN Document Server

    Luque, Antonio L

    2007-01-01

    Photovoltaic solar-energy conversion is one of the most promising technologies for generating renewable energy, and conversion of concentrated sunlight can lead to reduced cost for solar electricity. In fact, photovoltaic conversion of concentrated sunlight insures an efficient and cost-effective sustainable power resource. This book gives an overview of all components, e.g. cells, concentrators, modules and systems, for systems of concentrator photovoltaics. The authors report on significant results related to design, technology, and applications, and also cover the fundamental physics and market considerations. Specific contributions include: theory and practice of sunlight concentrators; an overview of concentrator PV activities; a description of concentrator solar cells; design and technology of modules and systems; manufacturing aspects; and a market study.

  6. Testing a one-dimensional prescription of dynamical shear mixing with a two-dimensional hydrodynamic simulation

    Science.gov (United States)

    Edelmann, P. V. F.; Röpke, F. K.; Hirschi, R.; Georgy, C.; Jones, S.

    2017-07-01

    Context. The treatment of mixing processes is still one of the major uncertainties in 1D stellar evolution models. This is mostly due to the need to parametrize and approximate aspects of hydrodynamics in hydrostatic codes. In particular, the effect of hydrodynamic instabilities in rotating stars, for example, dynamical shear instability, evades consistent description. Aims: We intend to study the accuracy of the diffusion approximation to dynamical shear in hydrostatic stellar evolution models by comparing 1D models to a first-principle hydrodynamics simulation starting from the same initial conditions. Methods: We chose an initial model calculated with the stellar evolution code GENEC that is just at the onset of a dynamical shear instability but does not show any other instabilities (e.g., convection). This was mapped to the hydrodynamics code SLH to perform a 2D simulation in the equatorial plane. We compare the resulting profiles in the two codes and compute an effective diffusion coefficient for the hydro simulation. Results: Shear instabilities develop in the 2D simulation in the regions predicted by linear theory to become unstable in the 1D stellar evolution model. Angular velocity and chemical composition is redistributed in the unstable region, thereby creating new unstable regions. After a period of time, the system settles in a symmetric, steady state, which is Richardson stable everywhere in the 2D simulation, whereas the instability remains for longer in the 1D model due to the limitations of the current implementation in the 1D code. A spatially resolved diffusion coefficient is extracted by comparing the initial and final profiles of mean atomic mass. Conclusions: The presented simulation gives a first insight on hydrodynamics of shear instabilities in a real stellar environment and even allows us to directly extract an effective diffusion coefficient. We see evidence for a critical Richardson number of 0.25 as regions above this threshold remain

  7. Interleukin-9 in stable liver transplant recipients.

    Science.gov (United States)

    Fábrega, E; López-Hoyos, M; San Segundo, D; Casafont, F; Moraleja, I; Sampedro, B; Pons-Romero, F

    2012-01-01

    Interleukin-9 (IL-9) has recently been described to be involved in the maintenance of a tolerant environment, but there is no evidence of its role in human liver transplantation. The aim of our study was to measure the serum levels of IL-9 in stable liver transplant recipients and examine their influence on immunosuppressant load. Serum IL-9 levels were determined in 34 healthy subjects and 30 stable liver transplant recipients who were free of rejection episodes for at least 8 years. The results were analyzed according to the blood levels of calcineurin inhibitors (CNIs) at the time of the study: 13 patients showed high concentrations of either cyclosporine or tacrolimus (high CNI: cyclosporine > 80 ng/mL or tacrolimus > 5 ng/mL) and another 17 patients showed low CNI levels. The concentrations of IL-9 were significantly higher among liver transplant recipients compared with healthy subjects. In addition, patients with low CNI blood levels showed higher serum levels of IL-9, an effect that was greater with tacrolimus, albeit not significantly. These preliminary results indicated that increased serum IL-9 concentrations accompanied a lower immunosuppressive load. It remains to be established whether this relates to induction of tolerance in liver transplantation. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Deformation of double emulsions under conditions of flow cytometry hydrodynamic focusing.

    Science.gov (United States)

    Ma, Shaohua; Huck, Wilhelm T S; Balabani, Stavroula

    2015-11-21

    Water-in-oil-in-water (w/o/w) microfluidics double emulsions offer a new route to compartmentalise reagents into isolated aqueous microenvironments while maintaining an aqueous carrier fluid phase; this enables compatibility with commercial flow cytometry systems such as fluorescence-activated cell sorting (FACS). Double emulsion (inner core) deformation under hydrodynamic focusing conditions that mimic the environment double emulsions experience in flow cytometry applications is of particular importance for droplet stability and cell viability. This paper reports on an experimental study of the dynamic deformation of aqueous cores of w/o/w double emulsions under hydrodynamic focusing, with the sheath flow directed at 45° to the sample flow. A number of factors affecting the inner core deformation and recovery were examined. Deformation was found to depend significantly on the core or shell viscosity, the droplet-to-sheath flow velocity ratio, and core and shell sizes. Core deformation was found to depend more on the type of surfactant rather concentration with high molecular weight surfactant exhibiting a negligible effect on deformation whereas low molecular weight surfactant enhancing deformation at low concentrations due to their lateral mobility at the interface.

  9. Surfzone hydrodynamics as a key determinant of spatial variation in rocky intertidal communities

    Science.gov (United States)

    Shanks, Alan L.; Fujimura, Atsushi G.; Reniers, Ad J. H. M.; MacMahan, Jamie; Griesemer, Chris D.; Jarvis, Marley; Brown, Jenna

    2016-01-01

    Larvae of intertidal species develop at sea and must return to adult habitats to replenish populations. Similarly, nutrients, detritus and plankton provide important subsidies spurring growth and reproduction of macroalgae and filter-feeding invertebrates that form the foundation of intertidal communities. Together, these factors determine the density and intensity of interactions among community members. We hypothesized that spatial variation in surfzone hydrodynamics affects the delivery of plankton subsidies. We compared entire zooplankton communities inside and outside the surf zone daily while monitoring physical conditions for one month each at two shores with different surfzone characteristics. Opposite cross-shore distributions of larvae and other zooplankters occurred at the two sites: zooplankton was much more abundant inside the mildly sloping dissipative surf zone (DSZ) with rip currents and was more abundant outside the steep reflective surf zone (RSZ). Biophysical numerical simulations demonstrated that zooplankters were concentrated in rip channels of the DSZ and were mostly unable to enter the RSZ, indicating the hydrodynamic processes behind the observed spatial variation of zooplankters in the surf zone. Differences in the concentration of larvae and other zooplankters between the inner shelf and surf zone may be an underappreciated, key determinant of spatial variation in inshore communities. PMID:27733543

  10. Hydrodynamic assessment data associated with the July 2010 line 6B spill into the Kalamazoo River, Michigan, 2012–14

    Science.gov (United States)

    Reneau, Paul C.; Soong, David T.; Hoard, Christopher J.; Fitzpatrick, Faith A.

    2015-12-07

    Hydrodynamic-assessment data for the Kalamazoo River were collected by the U.S. Geological Survey (USGS) during 2012–14 to augment other hydrodynamic data-collection efforts by Enbridge Energy L.P. and the U.S. Environmental Protection Agency associated with the 2010 Enbridge Line 6B oil spill. Specifically, the USGS data-collection efforts were focused on additional background data needed for 2013–14 updates to Enbridge’s 2012 hydrodynamic and sediment-transport models for simulating resuspension and deposition of submerged oil. The main data-collection activities consisted of the following along the Kalamazoo River: (1) a survey done by use of a Real-Time Network Global Navigation Satellite System, (2) water-level measurements in impounded sections, (3) velocity, discharge, and bathymetry measurements at transects and stationary points along the oil-affected reach of the river and in Morrow Delta and Lake, (4) estimates of tributary inflows, and (5) suspended-sediment concentrations and particle-size data at USGS streamgages along the Kalamazoo River. The method used to estimate bed shear stress from stationary velocity data is described. Averaged transect-based velocity data that were processed to match model grids also are included. In addition to model inputs and checks, these hydrodynamic-related data were used in submerged oil containment and recovery operations focused in impoundments and designated sediment traps. This report contains a description of the scope and methods associated with the hydrodynamic data collection and supplementary files of the USGS data that were used in modeling activities.

  11. Effects of hydrodynamic conditions on the sorption behaviors of aniline on sediment with coexistence of nitrobenzene.

    Science.gov (United States)

    Wang, Peng; Hua, Zulin; Cai, Yunjie; Shen, Xia; Li, Qiongqiong; Liu, Xiaoyuan

    2015-08-01

    The sorption behaviors of pollutants affected by hydrodynamic conditions were confirmed in natural water environment. The effects of hydrodynamic conditions on the sorption behaviors of aniline on sediment with coexistence of nitrobenzene were investigated. The particle entrainment simulator (PES) was used to simulate varied bottom shear stresses. The batch equilibrium method was applied to the experiments with the stress levels and the action time controlled at 0.2-0.5 N/m(2) and 24 h, respectively. The findings indicated that apparent partition coefficient of aniline on sediment increased with the shear stress significantly, while decreased with nitrobenzene concentration. On the contrary, both the sorption amount of aniline on suspended particulate matter (Q s) and the effect of nitrobenzene concentration on Q s declined as the shear stress increased. The sorption kinetic results showed that the sorption process followed the pseudo-second-order kinetics equation, and the process included two stages: fast sorption stage and slow sorption stage, among which the average sorption rate of fast stage was 7.5-9.5 times that of slow one. The effect of shear stress on the average sorption rate of aniline was enhanced with the increase of nitrobenzene concentration. And shear stress weakened the disturbance of cosolute on main solute sorption process. In addition, experiment results of sorption kinetic show that only the initial sorption rate was affected by shear stress and cosolute concentration. In the first 5 min, shear stress had positive effects on the sorption rate. After that, the sorption rate barely changed with shear stress and cosolute concentration.

  12. Hydrodynamic Expansion of Pellicles Caused by e-Beam Heating

    CERN Document Server

    Ho, D

    2000-01-01

    Placing a pellicle in front of a x-ray converter target for radiographic applications can confine the backstreaming ions and target plasma to a shorter channel so that the cumulative effect on e-beam focusing is reduced. The pellicle is subject to heating by e-beam since the pellicle is placed upstream of the target. The calculation of the hydrodynamic expansion, caused by the heating, using the radiation hydrodynamics code LASNEX is presented in this report. Calculations show that mylar pellicles disintegrate at the end of a multi-pulse intense e-beam while beryllium and carbon pellicles remain intact. The expansions for the kapton-carbon multi-layered targets are also examined. Hydrodynamic expansions for pellicles with various e-beam spot radii are calculated for DARHT-II beam parameters. All the simulation results indicate that the backstreaming ions can be stopped.

  13. Automatization of hydrodynamic modelling in a Floreon+ system

    Science.gov (United States)

    Ronovsky, Ales; Kuchar, Stepan; Podhoranyi, Michal; Vojtek, David

    2017-07-01

    The paper describes fully automatized hydrodynamic modelling as a part of the Floreon+ system. The main purpose of hydrodynamic modelling in the disaster management is to provide an accurate overview of the hydrological situation in a given river catchment. Automatization of the process as a web service could provide us with immediate data based on extreme weather conditions, such as heavy rainfall, without the intervention of an expert. Such a service can be used by non scientific users such as fire-fighter operators or representatives of a military service organizing evacuation during floods or river dam breaks. The paper describes the whole process beginning with a definition of a schematization necessary for hydrodynamic model, gathering of necessary data and its processing for a simulation, the model itself and post processing of a result and visualization on a web service. The process is demonstrated on a real data collected during floods in our Moravian-Silesian region in 2010.

  14. Moving least-squares corrections for smoothed particle hydrodynamics

    Directory of Open Access Journals (Sweden)

    Ciro Del Negro

    2011-12-01

    Full Text Available First-order moving least-squares are typically used in conjunction with smoothed particle hydrodynamics in the form of post-processing filters for density fields, to smooth out noise that develops in most applications of smoothed particle hydrodynamics. We show how an approach based on higher-order moving least-squares can be used to correct some of the main limitations in gradient and second-order derivative computation in classic smoothed particle hydrodynamics formulations. With a small increase in computational cost, we manage to achieve smooth density distributions without the need for post-processing and with higher accuracy in the computation of the viscous term of the Navier–Stokes equations, thereby reducing the formation of spurious shockwaves or other streaming effects in the evolution of fluid flow. Numerical tests on a classic two-dimensional dam-break problem confirm the improvement of the new approach.

  15. Modeling of nanoscale liquid mixture transport by density functional hydrodynamics.

    Science.gov (United States)

    Dinariev, Oleg Yu; Evseev, Nikolay V

    2017-06-01

    Modeling of multiphase compositional hydrodynamics at nanoscale is performed by means of density functional hydrodynamics (DFH). DFH is the method based on density functional theory and continuum mechanics. This method has been developed by the authors over 20 years and used for modeling in various multiphase hydrodynamic applications. In this paper, DFH was further extended to encompass phenomena inherent in liquids at nanoscale. The new DFH extension is based on the introduction of external potentials for chemical components. These potentials are localized in the vicinity of solid surfaces and take account of the van der Waals forces. A set of numerical examples, including disjoining pressure, film precursors, anomalous rheology, liquid in contact with heterogeneous surface, capillary condensation, and forward and reverse osmosis, is presented to demonstrate modeling capabilities.

  16. A note on generalized hydrodynamics: inhomogeneous fields and other concepts

    CERN Document Server

    Doyon, Benjamin

    2016-01-01

    Generalized hydrodynamics (GHD) was proposed recently as a formulation of hydrodynamics for integrable systems, taking into account infinitely-many conservation laws. In this note we further develop the theory in various directions. By extending GHD to all commuting flows of the integrable model, we provide a full description of how to take into account weakly varying force fields, temperature fields and other inhomogeneous external fields within GHD. We expect this can be used, for instance, to characterize the non-equilibrium dynamics of one-dimensional Bose gases in trap potentials. We also show that the GGE equations of state, and thus GHD, emerge uniformly in free particle models under the condition that the space-time variation scale of hydrodynamic observables grows unboundedly with time. We further show how the equations of state at the core of GHD follow from the continuity relation for entropy, and we show how to recover Euler-like equations and discuss possible viscosity terms.

  17. Phonon hydrodynamics for nanoscale heat transport at ordinary temperatures

    Science.gov (United States)

    Guo, Yangyu; Wang, Moran

    2018-01-01

    The classical Fourier's law fails in extremely small and ultrafast heat conduction even at ordinary temperatures due to strong thermodynamic nonequilibrium effects. In this work, a macroscopic phonon hydrodynamic equation beyond Fourier's law with a relaxation term and nonlocal terms is derived through a perturbation expansion to the phonon Boltzmann equation around a four-moment nonequilibrium solution. The temperature jump and heat flux tangential retardant boundary conditions are developed based on the Maxwell model of the phonon-boundary interaction. Extensive steady-state and transient nanoscale heat transport cases are modeled by the phonon hydrodynamic model, which produces quantitative predictions in good agreement with available phonon Boltzmann equation solutions and experimental results. The phonon hydrodynamic model provides a simple and elegant mathematical description of non-Fourier heat conduction with a clear and intuitive physical picture. The present work will promote deeper understanding and macroscopic modeling of heat transport in extreme states.

  18. Random patterns in fish schooling enhance alertness: a hydrodynamic perspective

    CERN Document Server

    Kadri, Usama; Kadri, Anan

    2016-01-01

    One of the most highly debated questions in the field of animal swarming and social behaviour, is the collective random patterns and chaotic behaviour formed by some animal species, in particular if there is a danger. Is such a behaviour beneficial or unfavourable for survival? Here we report on one of the most remarkable forms of animal swarming and social behaviour - fish schooling - from a hydrodynamic point of view. We found that some fish species do not have preferred orientation and they swarm in a random pattern mode, despite the excess of energy consumed. Our analyses, which includes calculations of the hydrodynamic forces between slender bodies, show that such a behaviour enhances the transfer of hydrodynamic information, and thus enhances the survivability of the school. These findings support the general hypothesis that a disordered and non-trivial collective behaviour of individuals within a nonlinear dynamical system is essential for optimising transfer of information - an optimisation that might...

  19. Gasoline2: a modern smoothed particle hydrodynamics code

    Science.gov (United States)

    Wadsley, James W.; Keller, Benjamin W.; Quinn, Thomas R.

    2017-10-01

    The methods in the Gasoline2 smoothed particle hydrodynamics (SPH) code are described and tested. Gasoline2 is the most recent version of the Gasoline code for parallel hydrodynamics and gravity with identical hydrodynamics to the Changa code. As with other Modern SPH codes, we prevent sharp jumps in time-steps, use upgraded kernels and larger neighbour numbers and employ local viscosity limiters. Unique features in Gasoline2 include its Geometric Density Average Force expression, explicit Turbulent Diffusion terms and Gradient-Based shock detection to limit artificial viscosity. This last feature allows Gasoline2 to completely avoid artificial viscosity in non-shocking compressive flows. We present a suite of tests demonstrating the value of these features with the same code configuration and parameter choices used for production simulations.

  20. High-order hydrodynamic algorithms for exascale computing

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Nathaniel Ray [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-05

    Hydrodynamic algorithms are at the core of many laboratory missions ranging from simulating ICF implosions to climate modeling. The hydrodynamic algorithms commonly employed at the laboratory and in industry (1) typically lack requisite accuracy for complex multi- material vortical flows and (2) are not well suited for exascale computing due to poor data locality and poor FLOP/memory ratios. Exascale computing requires advances in both computer science and numerical algorithms. We propose to research the second requirement and create a new high-order hydrodynamic algorithm that has superior accuracy, excellent data locality, and excellent FLOP/memory ratios. This proposal will impact a broad range of research areas including numerical theory, discrete mathematics, vorticity evolution, gas dynamics, interface instability evolution, turbulent flows, fluid dynamics and shock driven flows. If successful, the proposed research has the potential to radically transform simulation capabilities and help position the laboratory for computing at the exascale.

  1. On the hydrodynamic attractor of Yang-Mills plasma

    Science.gov (United States)

    Spaliński, Michał

    2018-01-01

    There is mounting evidence suggesting that relativistic hydrodynamics becomes relevant for the physics of quark-gluon plasma as the result of nonhydrodynamic modes decaying to an attractor apparent even when the system is far from local equilibrium. Here we determine this attractor for Bjorken flow in N = 4 supersymmetric Yang-Mills theory (SYM) using Borel summation of the gradient expansion of the expectation value of the energy momentum tensor. By comparing the result to numerical simulations of the flow based on the AdS/CFT correspondence we show that it provides an accurate and unambiguous approximation of the hydrodynamic attractor in this system. This development has important implications for the formulation of effective theories of hydrodynamics.

  2. Consistent implementation of non-zero-range terms into hydrodynamics

    Science.gov (United States)

    Pratt, Scott

    2017-10-01

    Non-zero-range interactions are often incorporated into mean field theories through gradient terms. Here, a formalism is developed to incorporate such terms into hydrodynamics. These terms alter expressions for the entropy, chemical potential, temperature, and the stress-energy tensor. The formalism respects local conservation of energy, charge, and entropy. The formalism leads to static solutions where the temperature, chemical potential, and hydrodynamic acceleration all vanish, even when the density profile might be nonuniform. Profiles for a phase boundary and for correlation functions are calculated to illustrate the gradient modifications for various thermodynamic quantities. Also, for hydrodynamic calculations that add thermal noise to generate density-density correlations of the desired strength, an additional noise term is derived so that, at equilibrium, correlations are generated with both the correct size and length scale.

  3. Hydrodynamic interaction of swimming organisms in an inertial regime

    Science.gov (United States)

    Li, Gaojin; Ostace, Anca; Ardekani, Arezoo M.

    2016-11-01

    We numerically investigate the hydrodynamic interaction of swimming organisms at small to intermediate Reynolds number regimes, i.e., Re˜O (0.1 -100 ) , where inertial effects are important. The hydrodynamic interaction of swimming organisms in this regime is significantly different from the Stokes regime for microorganisms, as well as the high Reynolds number flows for fish and birds, which involves strong flow separation and detached vortex structures. Using an archetypal swimmer model, called a "squirmer," we find that the inertial effects change the contact time and dispersion dynamics of a pair of pusher swimmers, and trigger hydrodynamic attraction for two pullers. These results are potentially important in investigating predator-prey interactions, sexual reproduction, and the encounter rate of marine organisms such as copepods, ctenophora, and larvae.

  4. Isotropization and hydrodynamization in weakly coupled heavy-ion collisions

    CERN Document Server

    Kurkela, Aleksi

    2015-01-01

    We numerically solve 2+1D effective kinetic theory of weak coupling QCD under longitudinal expansion relevant for early stages of heavy-ion collisions. We find agreement with viscous hydrodynamics and classical Yang-Mills simulations in the regimes where they are applicable. By choosing initial conditions that are motivated by color-glass-condensate framework we find that for Q=2GeV and $\\alpha_s$=0.3 the system is approximately described by viscous hydrodynamics well before $\\tau \\lesssim 1.0$ fm/c.

  5. Quantum hydrodynamics from large-n supersymmetric gauge theories

    Science.gov (United States)

    Koroteev, Peter; Sciarappa, Antonio

    2017-09-01

    We study the connection between periodic finite-difference Intermediate Long Wave (Δ ILW ) hydrodynamical systems and integrable many-body models of Calogero and Ruijsenaars-type. The former describe quantum cohomology and quantum K-theory of the ADHM moduli space of Abelian instantons, while the latter arise in the instanton counting of four- and five-dimensional supersymmetric gauge theories with eight supercharges in the presence of defects. Using string theory dualities, we provide correspondences between hydrodynamical and many-body integrable systems. In particular, we match the energy spectra on both sides.

  6. Challenges to Ship Hydrodynamics in the XXI Century

    Directory of Open Access Journals (Sweden)

    Lech Kobylinski

    2014-09-01

    Full Text Available The beginning of twenty-first century is characterized with important changes in world shipping and exploitation of ocean resources. Three important trends are clearly visible: environment protection, safety and economy. They materialize in important changes in the structure of world fleet where some existing ship types are going to disappear and new ship types emerge. Increasing the size of some ship types is another visible tendency. Stress on environment protection has serious impact on the hydrodynamic characteristics of ships whether with regard to safety zero accident rate is the goal. Important challenges to ship hydrodynamics caused by those tendencies are discussed in the paper.

  7. Hydrodynamics and energetics of jumping copepod nauplii and copepodids

    DEFF Research Database (Denmark)

    Wadhwa, Navish; Andersen, Anders Peter; Kiørboe, Thomas

    2014-01-01

    vortex rings, respectively. Our measurements suggest that copepodids cover a larger distance compared to their body size in each jump and are also hydrodynamically quieter, as the flow disturbance they create attenuates faster with distance. Also, copepodids are energetically more efficient than nauplii...... viscosity and inertia are potentially important, and the Reynolds number changes by an order of magnitude during growth. Thus we expect the life stage related changes experienced by a copepod to result in hydrodynamic and energetic differences, ultimately affecting the fitness. To quantify these differences...

  8. UASB reactor hydrodynamics: residence time distribution and proposed modelling tools.

    Science.gov (United States)

    López, I; Borzacconi, L

    2010-05-01

    The hydrodynamic behaviour of UASB (Up Flow Anaerobic Sludge Blanket) reactors based on residence time distribution curves allows the implementation of global models, including the kinetic aspects of biological reactions. The most relevant hydrodynamic models proposed in the literature are discussed and compared with the extended tanks in series (ETIS) model. Although derived from the tanks in series model, the ETIS model's parameter is not an integer. The ETIS model can be easily solved in the Laplace domain and applied to a two-stage anaerobic digestion linear model. Experimental data from a 250 m3 UASB reactor treating malting wastewater are used to calibrate and validate the proposed model.

  9. Quantum hydrodynamics from large- n supersymmetric gauge theories

    Science.gov (United States)

    Koroteev, Peter; Sciarappa, Antonio

    2018-01-01

    We study the connection between periodic finite-difference Intermediate Long Wave (Δ ILW) hydrodynamical systems and integrable many-body models of Calogero and Ruijsenaars-type. The former describe quantum cohomology and quantum K-theory of the ADHM moduli space of Abelian instantons, while the latter arise in the instanton counting of four- and five-dimensional supersymmetric gauge theories with eight supercharges in the presence of defects. Using string theory dualities, we provide correspondences between hydrodynamical and many-body integrable systems. In particular, we match the energy spectra on both sides.

  10. Star Formation History of Dwarf Galaxies in Cosmological Hydrodynamic Simulations

    Directory of Open Access Journals (Sweden)

    Kentaro Nagamine

    2010-01-01

    Full Text Available We examine the past and current work on the star formation (SF histories of dwarf galaxies in cosmological hydrodynamic simulations. The results obtained from different numerical methods are still somewhat mixed, but the differences are understandable if we consider the numerical and resolution effects. It remains a challenge to simulate the episodic nature of SF history in dwarf galaxies at late times within the cosmological context of a cold dark matter model. More work is needed to solve the mysteries of SF history of dwarf galaxies employing large-scale hydrodynamic simulations on the next generation of supercomputers.

  11. Behavior of passive admixture in a vortical hydrodynamic field

    Directory of Open Access Journals (Sweden)

    R.O.Bobrov

    2006-01-01

    Full Text Available The motion of passive admixture of spherical particles in the stationary hydrodynamic field of a swirling flow is studied. A spherical particle of a given mass in the hydrodynamic field of a swirling flow is located on a certain circular orbit, where the centrifugal force is compensated by the radial drag force due to the sink. This leads to the separation of the host fluid and admixture. A theory of Brownian motion of admixture in dilute solutions with a non-uniform flow is constructed.

  12. Mode-by-mode hydrodynamics: Ideas and concepts

    Energy Technology Data Exchange (ETDEWEB)

    Floerchinger, Stefan

    2014-06-15

    The main ideas, technical concepts and perspectives for a mode resolved description of the hydrodynamical regime of relativistic heavy ion collisions are discussed. A background-fluctuation splitting and a Bessel–Fourier expansion for the fluctuating part of the hydrodynamical fields allows for a complete characterization of initial conditions, the fluid dynamical propagation of single modes, the study of interaction effects between modes, the determination of the associated particle spectra and the generalization of the whole program to event-by-event correlations and probability distributions.

  13. Concentrated Ownership

    DEFF Research Database (Denmark)

    Rose, Caspar

    2014-01-01

    This entry summarizes the main theoretical contributions and empirical findings in relation to concentrated ownership from a law and economics perspective. The various forms of concentrated ownership are described as well as analyzed from the perspective of the legal protection of investors...

  14. Hydrodynamic control of phytoplankton loss to the benthos in an estuarine environment

    Science.gov (United States)

    Jones, Nicole L.; Thompson, Janet K.; Arrigo, Kevin R.; Monismith, Stephen G.

    2009-01-01

    Field experiments were undertaken to measure the influence of hydrodynamics on the removal of phytoplankton by benthic grazers in Suisun Slough, North San Francisco Bay. Chlorophyll a concentration boundary layers were found over beds inhabited by the active suspension feeders Corbula amurensis and Corophium alienense and the passive suspension feeders Marenzellaria viridis and Laonome sp. Benthic losses of phytoplankton were estimated via both the control volume and the vertical flux approach, in which chlorophyll a concentration was used as a proxy for phytoplankton biomass. The rate of phytoplankton loss to the bed was positively correlated to the bed shear stress. The maximum rate of phytoplankton loss to the bed was five times larger than estimated by laboratory-derived pumping rates for the active suspension feeders. Reasons for this discrepancy are explored including a physical mechanism whereby phytoplankton is entrained in a near-bed fluff layer where aggregation is mediated by the presence of mucus produced by the infaunal community.

  15. Electrokinetic Sample Preconcentration and Hydrodynamic Sample Injection for Microchip Electrophoresis Using a Pneumatic Microvalve

    Energy Technology Data Exchange (ETDEWEB)

    Cong, Yongzheng; Katipamula, Shanta; Geng, Tao; Prost, Spencer A.; Tang, Keqi; Kelly, Ryan T.

    2016-02-01

    A microfluidic platform was developed to perform online electrokinetic sample preconcentration and rapid hydrodynamic sample injection for electrophoresis using a single microvalve. The PDMS microchip consists of a separation channel, a side channel for sample introduction, and a control channel which is used as a pneumatic microvalve aligned at the intersection of the two flow channels. The closed microvalve, created by multilayer soft lithography, can serve as a preconcentrator under an applied electric potential, enabling current to pass through while blocking bulk flow. Once analytes are concentrated, the valve is briefly opened and the stacked sample is pressure injected into the separation channel for electrophoretic separation. Fluorescently labeled peptides were enriched by a factor of ~450 in 230 s. The performance of the platform was validated by the online preconcentration, injection and electrophoretic separation of fluorescently labeled peptides. This method enables both rapid analyte concentration and controlled injection volume for high sensitivity, high resolution capillary electrophoresis.

  16. CISOCUR - Residence time modelling in the Curonian Lagoon and validation through stable isotope measurements

    Science.gov (United States)

    Umgiesser, Georg; Razinkovas-Baziukas, Arturas; Zemlys, Petras; Ertürk, Ali; Mėžinė, Jovita

    2015-04-01

    The spatial pattern of the hydrodynamic circulation of the Curonian lagoon, the largest European coastal lagoon, is still little understood. In absence of automatic current registration data all the existing models relied mostly on such data as water levels leaving high level of uncertainty. Here we present CISOCUR, a new project financed by European Social Fund under the Global Grant measure. The project applies a new methodology that uses the carbon stable isotope (SI) ratio of C12 and C13 that characterize different water sources entering the lagoon and may be altered by internal kinetic processes. Through the tracing of these isotope ratios different water masses can be identified. This gives the possibility to validate several hypotheses of water circulation and validate hydrodynamic models. In particular it will be possible to 1) trace water masses entering the lagoon through the Nemunas and the Klaipeda strait; 2) test the hypothesis of sediment transport mechanisms inside the lagoon; 3) evaluate the importance of physical forcing on the lagoon circulation. The use of a hydrodynamic finite element model, coupled with the SI method, will allow for a realistic description of the transport processes inside the Curonian lagoon. So the main research goal is to apply the stable isotope tracers and a finite element model to determine the circulation patterns in the Curonian lagoon. Here we show how the SI analysis was used to validate the hydrodynamic model on the basis of residence time. The average residence time of the Nemunas waters is estimated through SI data and is then compared with the model data computed through standard algorithms. Seasonal changes of carbon content are taken care of through a preliminary application of a carbon kinetic model. The results are compared to literature data.

  17. Stable Boundary Layer Education (STABLE) Final Campaign Summary

    Energy Technology Data Exchange (ETDEWEB)

    Turner, David D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-03-01

    The properties of, and the processes that occur in, the nocturnal stable boundary layer are not well understood, making it difficult to represent adequately in numerical models. The nocturnal boundary layer often is characterized by a temperature inversion and, in the Southern Great Plains region, a low-level jet. To advance our understanding of the nocturnal stable boundary layer, high temporal and vertical resolution data on the temperature and wind properties are needed, along with both large-eddy simulation and cloud-resolving modeling.

  18. Hydrodynamic and absorption studies of carbon dioxide absorption in aqueous amide solutions using a bubble column contactor

    Directory of Open Access Journals (Sweden)

    A. Blanco

    2013-12-01

    Full Text Available The present work analyses the carbon dioxide absorption process in aqueous n-alkylpyrrolidones solutions, from the point of view of hydrodynamic studies as well as mass transfer, using a bubble column contactor. An analysis of the influence of solute concentration and gas flow-rate is complemented by the study of the effect caused by the alkyl group on the hydrodynamics and mass transfer. The presence of this kind of substance produces a decrease in mass transfer rate, but on the basis of interfacial area and mass transfer coefficient values, ethyl-2-pyrrolidine (EP shows suitable characteristics to replace methyl-2-pyrrolidine (MP in gas separation processes due to its lower safety problems.

  19. A hybrid molecular dynamics/fluctuating hydrodynamics method for modelling liquids at multiple scales in space and time

    Energy Technology Data Exchange (ETDEWEB)

    Korotkin, Ivan, E-mail: i.korotkin@qmul.ac.uk; Karabasov, Sergey; Markesteijn, Anton [The School of Engineering and Material Science, Queen Mary University of London, Mile End Road, E1 4NS London (United Kingdom); Nerukh, Dmitry; Scukins, Arturs [Institute of Systems Analytics, Aston University, Birmingham B4 7ET (United Kingdom); Farafonov, Vladimir [Department of Physical Chemistry, V. N. Karazin Kharkiv National University, Svobody Square 4, 61022 Kharkiv (Ukraine); Pavlov, Evgen [Institute of Systems Analytics, Aston University, Birmingham B4 7ET (United Kingdom); Faculty of Physics, Kiev National Taras Shevchenko University, Prospect Acad. Glushkova 4, Kiev 03127 (Ukraine)

    2015-07-07

    A new 3D implementation of a hybrid model based on the analogy with two-phase hydrodynamics has been developed for the simulation of liquids at microscale. The idea of the method is to smoothly combine the atomistic description in the molecular dynamics zone with the Landau-Lifshitz fluctuating hydrodynamics representation in the rest of the system in the framework of macroscopic conservation laws through the use of a single “zoom-in” user-defined function s that has the meaning of a partial concentration in the two-phase analogy model. In comparison with our previous works, the implementation has been extended to full 3D simulations for a range of atomistic models in GROMACS from argon to water in equilibrium conditions with a constant or a spatially variable function s. Preliminary results of simulating the diffusion of a small peptide in water are also reported.

  20. Evaluation of the hydrodynamic behaviour of turbulence promoters in parallel plate electrochemical reactors by means of the dispersion model

    Energy Technology Data Exchange (ETDEWEB)

    Colli, A.N. [Programa de Electroquimica Aplicada e Ingenieria Electroquimica (PRELINE), Facultad de Ingenieria Quimica, Universidad Nacional del Litoral, Santiago del Estero 2829, S3000AOM Santa Fe (Argentina); Bisang, J.M., E-mail: jbisang@fiq.unl.edu.ar [Programa de Electroquimica Aplicada e Ingenieria Electroquimica (PRELINE), Facultad de Ingenieria Quimica, Universidad Nacional del Litoral, Santiago del Estero 2829, S3000AOM Santa Fe (Argentina)

    2011-08-30

    Highlights: {center_dot} The type of turbulence promoters has a strong influence on the hydrodynamics. {center_dot} The dispersion model is appropriate for expanded plastic turbulence promoters. {center_dot} The dispersion model is appropriate for glass beads turbulence promoters. - Abstract: The hydrodynamic behaviour of electrochemical reactors with parallel plate electrodes is experimentally studied using the stimulus-response method either with an empty reactor or with different turbulence promoters. Theoretical results which are in accordance with the analytical and numerical resolution of the dispersion model for a closed system are compared with the classical relationships of the normalized outlet concentration for open systems and the validity range of the equations is discussed. The experimental results were well correlated with the dispersion model using glass beads or expanded plastic meshes as turbulence promoters, which have shown the most advantageous performance. The Peclet number was higher than 63. The dispersion coefficient was found to increase linearly with flow velocity in these cases.

  1. Hydrodynamic loading and viscous damping of patterned perforations on microfabricated resonant structures

    DEFF Research Database (Denmark)

    Park, Kidong; Shim, Jeong; Solovyeva, Vita

    2012-01-01

    We examined the hydrodynamic loading of vertically resonating microfabricated plates immersed in liquids with different viscosities. The planar structures were patterned with focused ion beam, perforating various shapes with identical area but varying perimeters. The hydrodynamic loading of vario...

  2. Hydrodynamical approach to the difference between neutron and proton radii

    Energy Technology Data Exchange (ETDEWEB)

    Stringari, S.; Lipparini, E. (Trento Univ. (Italy). Dipartimento di Fisica)

    1982-11-11

    The difference between the neutron and proton radii is investigated using a hydrodynamical approach. A comparison with Hartree-Fock calculations and the predictions of the liquid droplet model is made. The role of the surface symmetry energy and of the Coulomb force is discussed in details.

  3. Hydrodynamic manoeuvrability data of a flatfish type AUV

    DEFF Research Database (Denmark)

    Aage, Christian; Wagner Smitt, Leif

    1994-01-01

    by two propellers and four thrusters. The data comprise added mass and inertia coefficients, damping, lift and drag coefficients of the vehicle and its control surfaces, as well as resistance and propulsion characteristics. The hydrodynamic data have been determined by full scale tests, using a towing...

  4. Tunable Hydrodynamic Chromatography of Microparticles Localized in Short Microchannels

    NARCIS (Netherlands)

    Jellema, Laurens-Jan C.; Markesteijn, Anton P.; Westerweel, Jerry; Verpoorte, Elisabeth

    2010-01-01

    This paper describes a new way to perform hydrodynamic chromatography (HDC) for the size separation of particles based on a unique recirculating flow pattern. Pressure-driven (PF) and electro-osmotic flows (EOF) are opposed in narrow glass microchannels that expand at both ends. The resulting

  5. Dynamic imaging and hydrodynamics study of high velocity, laser ...

    Indian Academy of Sciences (India)

    Abstract. The main aim of the study of thin target foil–laser interaction experiments is to under- stand the physics of hydrodynamics of the foil acceleration, which is highly relevant to inertial confinement fusion (ICF). This paper discusses a simple, inexpensive multiframe optical shadow- graphy diagnostics developed for ...

  6. Hydrodynamic coefficients for water-wave diffraction by spherical ...

    Indian Academy of Sciences (India)

    Evaluation of hydrodynamic coefficients and loads on submerged or floating bodies is of great significance in designing these structures. Some special regular-shaped geometries such as those of cylindrical (circular, elliptic) and spherical (hemisphere, sphere, spheroid) structures are usually considered to obtain analytical ...

  7. Study on unsteady hydrodynamic performance of propeller in waves

    Science.gov (United States)

    Zhao, Qingxin; Guo, Chunyu; Su, Yumin; Liu, Tian; Meng, Xiangyin

    2017-09-01

    The speed of a ship sailing in waves always slows down due to the decrease in efficiency of the propeller. So it is necessary and essential to analyze the unsteady hydrodynamic performance of propeller in waves. This paper is based on the numerical simulation and experimental research of hydrodynamics performance when the propeller is under wave conditions. Open-water propeller performance in calm water is calculated by commercial codes and the results are compared to experimental values to evaluate the accuracy of the numerical simulation method. The first-order Volume of Fluid (VOF) wave method in STAR CCM+ is utilized to simulate the three-dimensional numerical wave. According to the above prerequisite, the numerical calculation of hydrodynamic performance of the propeller under wave conditions is conducted, and the results reveal that both thrust and torque of the propeller under wave conditions reveal intense unsteady behavior. With the periodic variation of waves, ventilation, and even an effluent phenomenon appears on the propeller. Calculation results indicate, when ventilation or effluent appears, the numerical calculation model can capture the dynamic characteristics of the propeller accurately, thus providing a significant theory foundation for further studying the hydrodynamic performance of a propeller in waves.

  8. Sediment characteristics and hydrodynamic setting of reef platform ...

    African Journals Online (AJOL)

    Sediment grain size distribution, carbonate content and current velocities for the Kunduchi area are used to determine its hydrodynamic setting and sediment characteristics. The sediment mean grain size generally decreases northward. The sediments consist of medium to coarse sand south of the Tegeta River and fine ...

  9. Prototype Mixed Finite Element Hydrodynamics Capability in ARES

    Energy Technology Data Exchange (ETDEWEB)

    Rieben, R N

    2008-07-10

    This document describes work on a prototype Mixed Finite Element Method (MFEM) hydrodynamics algorithm in the ARES code, and its application to a set of standard test problems. This work is motivated by the need for improvements to the algorithms used in the Lagrange hydrodynamics step to make them more robust. We begin by identifying the outstanding issues with traditional numerical hydrodynamics algorithms followed by a description of the proposed method and how it may address several of these longstanding issues. We give a theoretical overview of the proposed MFEM algorithm as well as a summary of the coding additions and modifications that were made to add this capability to the ARES code. We present results obtained with the new method on a set of canonical hydrodynamics test problems and demonstrate significant improvement in comparison to results obtained with traditional methods. We conclude with a summary of the issues still at hand and motivate the need for continued research to develop the proposed method into maturity.

  10. Hydrodynamic modelling of tidal inlets in Hue, Vietnam

    NARCIS (Netherlands)

    Lam, N.T.; Verhagen, H.J.; Van der Wegen, M.

    2003-01-01

    Application of an one-dimensional numerical model for hydrodynamic simulation of a complex lagooninlet system in Vietnam is presented. Model results help to get a better understanding on the behaviour of the system. Based on the numerical model results and analytic solutions, stability of tidal

  11. Hydrodynamic modelling for relativistic heavy-ion collisions at RHIC ...

    Indian Academy of Sciences (India)

    Nz. 1. Introduction. The quark gluon plasma (QGP) is formed in high-energy heavy-ion collisions at Relativis- .... To obtain final hadrons, pure hydrodynamic simulations assume free hadron resonances directly emitted ... models is realized by a Monte-Carlo event generator, which transforms the hydrody- namic output into ...

  12. Optical and hydrodynamic stretching of single cells from blood

    DEFF Research Database (Denmark)

    Thirstrup, Henrik; Rungling, Tony B.; Khalil Al-Hamdani, Mustafa Zyad

    2017-01-01

    as an optical stretcher, in a microfluidic chip in which optical fibers have been placed during a post-processing step. Another strategy is to exert hydrodynamic shear forces on the cells by forcing the cells through a narrow constriction. The latter method has the advantage of a considerably higher throughput...

  13. Launch Environment Water Flow Simulations Using Smoothed Particle Hydrodynamics

    Science.gov (United States)

    Vu, Bruce T.; Berg, Jared J.; Harris, Michael F.; Crespo, Alejandro C.

    2015-01-01

    This paper describes the use of Smoothed Particle Hydrodynamics (SPH) to simulate the water flow from the rainbird nozzle system used in the sound suppression system during pad abort and nominal launch. The simulations help determine if water from rainbird nozzles will impinge on the rocket nozzles and other sensitive ground support elements.

  14. Modelling of hydrodynamic circulation in Benoa Bay, Bali

    DEFF Research Database (Denmark)

    Ningsih, Nining Sari; Muchamad, Al Azhar

    2013-01-01

    A simulation of water level, velocity, salinity, and temperature in the Bay of Benoa has been carried out using a three-dimensional hydrodynamic Estuarine and Coastal Ocean Model incorporating a main characteristic of southward transport of the Indonesian throughflow at the offshore area of the bay...

  15. Water Flow Simulation using Smoothed Particle Hydrodynamics (SPH)

    Science.gov (United States)

    Vu, Bruce; Berg, Jared; Harris, Michael F.

    2014-01-01

    Simulation of water flow from the rainbird nozzles has been accomplished using the Smoothed Particle Hydrodynamics (SPH). The advantage of using SPH is that no meshing is required, thus the grid quality is no longer an issue and accuracy can be improved.

  16. Hydrodynamic characterization of the Paleocene aquifer in the ...

    African Journals Online (AJOL)

    The intense exploitation of shallow aquifers in the coastal basin of Togo provokes a rapid depletion of these reservoirs. The confined paleocene aquifer represents potential reserves that are yet little exploited. This paper presents the hydrodynamic characterization of this aquifer. Piezometric data established from 80 wells ...

  17. A Full Hydrodynamic Modelling of 2D Breaker Bar Development

    DEFF Research Database (Denmark)

    Jacobsen, Niels Gjøl; Fredsøe, Jørgen

    2011-01-01

    zone. The temporal change of a cross shore beach profile under both regular and bichromatic waves is considered. The dependency on the morphological time scale on the regularity of the incident waves is discussed. The feedback onto the hydrodynamics due to a changing bed level is discussed in the case...

  18. Hydrodynamic Properties of Planing Surfaces and Flying Boats

    Science.gov (United States)

    Sokolov, N. A.

    1950-01-01

    The study of the hydrodynamic properties of planing bottom of flying boats and seaplane floats is at the present time based exclusively on the curves of towing tests conducted in tanks. In order to provide a rational basis for the test procedure in tanks and practical design data, a theoretical study must be made of the flow at the step and relations derived that show not only qualitatively but quantitatively the inter-relations of the various factors involved. The general solution of the problem of the development of hydrodynamic forces during the motion of the seaplane float or flying boat is very difficult for it is necessary to give a three-dimensional solution, which does not always permit reducing the analysis to the form of workable computation formulas. On the other had, the problem is complicated by the fact that the object of the analysis is concerned with two fluid mediums, namely, air and water, which have a surface of density discontinuity between them. The theoretical and experimental investigations on the hydrodynamics of a ship cannot be completely carried over to the design of floats and flying-boat hulls, because of the difference in the shape of the contour lines of the bodies, and, because of the entirely different flow conditions from the hydrodynamic viewpoint.

  19. The effect of hydrodynamics on nitrogen accumulation and ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-07-18

    Jul 18, 2008 ... Natural water hydrodynamic conditions play an important role in the nutrients transport among water, soil and plants. Meanwhile, aquatic plants affect the water flow characters and pollutants purification capability. However, there are limited studies on how these conditions affects the nutrient uptake and.

  20. The effect of hydrodynamics on nitrogen accumulation and ...

    African Journals Online (AJOL)

    Natural water hydrodynamic conditions play an important role in the nutrients transport among water, soil and plants. Meanwhile, aquatic plants affect the water flow characters and pollutants purification capability. However, there are limited studies on how these conditions affects the nutrient uptake and physiological ...

  1. Physical hydrodynamic propulsion model study on creeping viscous ...

    Indian Academy of Sciences (India)

    Physical hydrodynamic propulsion model study on creeping viscous flow through a ciliated porous tube ... Dates. Manuscript received: 7 February 2016; Manuscript revised: 20 July 2016; Accepted: 5 October 2016; Early published: Unedited version published online: Final version published online: 16 February 2017 ...

  2. Divorticity and dihelicity in two-dimensional hydrodynamics

    DEFF Research Database (Denmark)

    Shivamoggi, B.K.; van Heijst, G.J.F.; Juul Rasmussen, Jens

    2010-01-01

    A framework is developed based on the concepts of divorticity B (≡×ω, ω being the vorticity) and dihelicity g (≡vB) for discussing the theoretical structure underlying two-dimensional (2D) hydrodynamics. This formulation leads to the global and Lagrange invariants that could impose significant...

  3. On the existence of hydrodynamic instability in single diffusive ...

    Indian Academy of Sciences (India)

    Appl. 175 (1993) 458), to establish mathematically, the existence of hydrodynamic instability in single diffusive bottom heavy systems, when considered in the more general framework of the boundary conditions of the type specified by Beavers and Joseph (J. Fluid Mech. 30 (1967) 197), in the parameter regime T 0 2 > 1 ...

  4. A weakly-compressible Cartesian grid approach for hydrodynamic flows

    Science.gov (United States)

    Bigay, P.; Oger, G.; Guilcher, P.-M.; Le Touzé, D.

    2017-11-01

    The present article aims at proposing an original strategy to solve hydrodynamic flows. In introduction, the motivations for this strategy are developed. It aims at modeling viscous and turbulent flows including complex moving geometries, while avoiding meshing constraints. The proposed approach relies on a weakly-compressible formulation of the Navier-Stokes equations. Unlike most hydrodynamic CFD (Computational Fluid Dynamics) solvers usually based on implicit incompressible formulations, a fully-explicit temporal scheme is used. A purely Cartesian grid is adopted for numerical accuracy and algorithmic simplicity purposes. This characteristic allows an easy use of Adaptive Mesh Refinement (AMR) methods embedded within a massively parallel framework. Geometries are automatically immersed within the Cartesian grid with an AMR compatible treatment. The method proposed uses an Immersed Boundary Method (IBM) adapted to the weakly-compressible formalism and imposed smoothly through a regularization function, which stands as another originality of this work. All these features have been implemented within an in-house solver based on this WCCH (Weakly-Compressible Cartesian Hydrodynamic) method which meets the above requirements whilst allowing the use of high-order (> 3) spatial schemes rarely used in existing hydrodynamic solvers. The details of this WCCH method are presented and validated in this article.

  5. Interaction effects on hydrodynamic characteristics of twin rudders

    NARCIS (Netherlands)

    Liu, J.; Hekkenberg, R.G.

    2016-01-01

    In order to reach the required manoeuvrability, inland vessels often use twin rudders, but the interaction effects are poorly understood. To achieve a proper configuration, this paper applies 2D RANS simulations to analyse the interaction effects on the twin-rudder hydrodynamics. Various twin-rudder

  6. Young swimmers' classification based on kinematics, hydrodynamics, and anthropometrics.

    Science.gov (United States)

    Barbosa, Tiago M; Morais, Jorge E; Costa, Mário J; Goncalves, José; Marinho, Daniel A; Silva, António J

    2014-04-01

    The aim of this article has been to classify swimmers based on kinematics, hydrodynamics, and anthropometrics. Sixty-seven young swimmers made a maximal 25 m front-crawl to measure with a speedometer the swimming velocity (v), speed-fluctuation (dv) and dv normalized to v (dv/v). Another two 25 m bouts with and without carrying a perturbation device were made to estimate active drag coefficient (CDa). Trunk transverse surface area (S) was measured with photogrammetric technique on land and in the hydrodynamic position. Cluster 1 was related to swimmers with a high speed fluctuation (ie, dv and dv/v), cluster 2 with anthropometrics (ie, S) and cluster 3 with a high hydrodynamic profile (ie, CDa). The variable that seems to discriminate better the clusters was the dv/v (F=53.680; PPPPv (F=5.375; P=.01). Stepwise discriminant analysis extracted 2 functions: Function 1 was mainly defined by dv/v and S (74.3% of variance), whereas function 2 was mainly defined by CDa (25.7% of variance). It can be concluded that kinematics, hydrodynamics and anthropometrics are determinant domains in which to classify and characterize young swimmers' profiles.

  7. Density estimators in particle hydrodynamics - DTFE versus regular SPH

    NARCIS (Netherlands)

    Pelupessy, FI; Schaap, WE; van de Weygaert, R

    We present the results of a study comparing density maps reconstructed by the Delaunay Tessellation Field Estimator (DTFE) and by regular SPH kernel-based techniques. The density maps are constructed from the outcome of an SPH particle hydrodynamics simulation of a multiphase interstellar medium.

  8. VibroCav : Hydrodynamic Vibration and Cavitation Technology

    NARCIS (Netherlands)

    Bakker, T.W.

    2012-01-01

    Vibration and cavitation can be generated in many ways and serve many useful purposes. This study describes physical aspects of useful vibration and cavitation for a broad spectrum of applications at atmospheric or elevated pressures. After a review of available devices, hydrodynamic

  9. Microscale Electro-Hydrodynamic Cell Printing with High Viability.

    Science.gov (United States)

    He, Jiankang; Zhao, Xiang; Chang, Jinke; Li, Dichen

    2017-12-01

    Cell printing has gained extensive attentions for the controlled fabrication of living cellular constructs in vitro. Various cell printing techniques are now being explored and developed for improved cell viability and printing resolution. Here an electro-hydrodynamic cell printing strategy is developed with microscale resolution (95%). Unlike the existing electro-hydrodynamic cell jetting or printing explorations, insulating substrate is used to replace conventional semiconductive substrate as the collecting surface which significantly reduces the electrical current in the electro-hydrodynamic printing process from milliamperes (>0.5 mA) to microamperes (printed cells. The smallest width of the electro-hydrodynamically printed hydrogel filament is 82.4 ± 14.3 µm by optimizing process parameters. Multiple hydrogels or multilayer cell-laden constructs can be flexibly printed under cell-friendly conditions. The printed cells in multilayer hydrogels kept alive and gradually spread during 7-days culture in vitro. This exploration offers a novel and promising cell printing strategy which might benefit future biomedical innovations such as microscale tissue engineering, organ-on-a-chip systems, and nanomedicine. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Hydrodynamics based transfection in normal and fibrotic rats

    OpenAIRE

    Yeikilis, Rita; Gal, Shunit; Kopeiko, Natalia; Paizi, Melia; Pines, Mark; Braet, Filip; Spira, Gadi

    2006-01-01

    AIM: Hydrodynamics based transfection (HBT), the injection of a large volume of naked plasmid DNA in a short time is a relatively simple, efficient and safe method for in vivo transfection of liver cells. Though used for quite some time, the mechanism of gene transfection has not yet been elucidated.

  11. Hydrodynamic roughness of floodplain vegetation : Airborne parameterization and field validation

    NARCIS (Netherlands)

    Straatsma, M.W.

    2007-01-01

    The parameterization of hydrodynamic roughness of floodplains is a key component in the assessment of the safety levels of the fluvial area. Roughness describes the amount of friction that is exerted on the water by the vegetation and the ground surface. Menno Straatsma studied new ways to quantify

  12. Constructive Euler hydrodynamics for one-dimensional attractive particle systems

    OpenAIRE

    Bahadoran, C; Guiol, H.; Ravishankar, K.; Saada, E

    2017-01-01

    61 pages; soumis; We review a (constructive) approach first introduced in [6] and further developed in [7, 8, 38, 9] for hydrodynamic limits of asymmetric attractive particle systems, in a weak or in a strong (that is, almost sure) sense, in an homogeneous or in a quenched disordered setting.

  13. Hydrodynamic control of microphytoplankton bloom in a coastal sea

    Indian Academy of Sciences (India)

    The influence of hydrodynamics on phytoplankton bloom occurrence/formation has not been adequately reported. Here, we document diurnal observations in the tropical Bay of Bengal's mid-western shelf region which reveal microphytoplankton cell density maxima in association with neap tide many times more than what ...

  14. Hydrodynamic model for picosecond propagation of laser-created nanoplasmas

    CERN Document Server

    Saxena, Vikrant; Ziaja, Beata; Santra, Robin

    2015-01-01

    The interaction of a free-electron-laser pulse with a moderate or large size cluster is known to create a quasi-neutral nanoplasma, which then expands on hydrodynamic timescale, i.e., $>1$ ps. To have a better understanding of ion and electron data from experiments derived from laser-irradiated clusters, one needs to simulate cluster dynamics on such long timescales for which the molecular dynamics approach becomes inefficient. We therefore propose a two-step Molecular Dynamics-Hydrodynamic scheme. In the first step we use molecular dynamics code to follow the dynamics of an irradiated cluster until all the photo-excitation and corresponding relaxation processes are finished and a nanoplasma, consisting of ground-state ions and thermalized electrons, is formed. In the second step we perform long-timescale propagation of this nanoplasma with a computationally efficient hydrodynamic approach. In the present paper we examine the feasibility of a hydrodynamic two-fluid approach to follow the expansion of spherica...

  15. Hydrodynamic coefficients for water-wave diffraction by spherical ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    The work presented here is the result of water-wave interaction with submerged spheres. Analytical expressions for various hydrodynamic coefficients and loads due to the diffraction of water waves by a submerged sphere are obtained. The exciting force components due to surge and heave motions are derived by solving ...

  16. Interaction of Microphysical Aerosol Processes with Hydrodynamics Mixing

    KAUST Repository

    Alshaarawi, Amjad

    2015-12-15

    This work is concerned with the interaction between condensing aerosol dynamics and hydrodynamic mixing within ow configurations in which aerosol particles form (nucleate) from a supersaturated vapor and supersaturation is induced by the mixing of two streams (a saturated stream and a cold one). Two canonical hydrodynamic configurations are proposed for the investigation. The First is the steady one-dimensional opposed-ow configuration. The setup consists of the two (saturated and cold) streams owing from opposite nozzles. A mixing layer is established across a stagnation plane in the center where nucleation and other aerosol dynamics are triggered. The second is homogeneous isotropic turbulence in a three-dimensional periodic domain. Patches of a hot saturated gas mix with patches of a cold one. A mixing layer forms across the growing interface where the aerosol dynamics of interest occur. In both configurations, a unique analogy is observed. The results reveal a complex response to variations in the mixing rates. Depending on the mixing rate, the response of the number density falls into one of two regimes. For fast mixing rates, the maximum reached number density of the condensing droplets increases with the hydrodynamic time. We refer to this as the nucleation regime. On the contrary, for low mixing rates, the maximum reached number density decreases with the hydrodynamic time. We refer to this as the consumption regime. It is shown that vapor scavenging by the aerosol phase is key to explaining the transition between these two regimes.

  17. Hydrodynamic Liner Experiments Using the Ranchero Flux Compression Generator System

    Energy Technology Data Exchange (ETDEWEB)

    Goforth, J.H.; Atchison, W.L.; Fowler, C.M.; Lopez, E.A.; Oona, H.; Tasker, D.G.; King, J.C.; Herrera, D.H.; Torres, D.T.; Sena, F.C.; McGuire, J.A.; Reinovsky, R.E.; Stokes, J.L.; Tabaka, L.J.; Garcia, O.F.; Faehl, R.J.; Lindemuth, I.R.; Keinigs, R.K.; Broste, B.

    1998-10-18

    The authors have developed a system for driving hydrodynamic liners at currents approaching 30 MA. Their 43 cm module will deliver currents of interest, and when fully developed, the 1.4 m module will allow similar currents with more total system inductance. With these systems they can perform interesting physics experiments and support the Atlas development effort.

  18. Hydrodynamic Drag on Streamlined Projectiles and Cavities

    KAUST Repository

    Jetly, Aditya

    2016-04-19

    The air cavity formation resulting from the water-entry of solid objects has been the subject of extensive research due to its application in various fields such as biology, marine vehicles, sports and oil and gas industries. Recently we demonstrated that at certain conditions following the closing of the air cavity formed by the initial impact of a superhydrophobic sphere on a free water surface a stable streamlined shape air cavity can remain attached to the sphere. The formation of superhydrophobic sphere and attached air cavity reaches a steady state during the free fall. In this thesis we further explore this novel phenomenon to quantify the drag on streamlined shape cavities. The drag on the sphere-cavity formation is then compared with the drag on solid projectile which were designed to have self-similar shape to that of the cavity. The solid projectiles of adjustable weight were produced using 3D printing technique. In a set of experiments on the free fall of projectile we determined the variation of projectiles drag coefficient as a function of the projectiles length to diameter ratio and the projectiles specific weight, covering a range of intermediate Reynolds number, Re ~ 104 – 105 which are characteristic for our streamlined cavity experiments. Parallel free fall experiment with sphere attached streamlined air cavity and projectile of the same shape and effective weight clearly demonstrated the drag reduction effect due to the stress-free boundary condition at cavity liquid interface. The streamlined cavity experiments can be used as the upper bound estimate of the drag reduction by air layers naturally sustained on superhydrophobic surfaces in contact with water. In the final part of the thesis we design an experiment to test the drag reduction capacity of robust superhydrophobic coatings deposited on the surface of various model vessels.

  19. Hydrodynamic and symmetry safety factors of HiPER's targets

    Energy Technology Data Exchange (ETDEWEB)

    Hallo, L; Olazabal-Loume, M; Ribeyre, X; Drean, V; Schurtz, G; Feugeas, J-L; Breil, J; Nicolai, Ph; Maire, P-H [CELIA, Universite Bordeaux 1, 351 cours de La Liberation, 33405 Talence (France)], E-mail: hallo@celia.u-bordeaux1.fr

    2009-01-15

    Hydrodynamics and robustness of three high yield targets within the HiPER project are presented. Using realistic illumination nonuniformity configuration, hydrodynamic perturbations sensitivity analysis is carried out. A rather simple hydrodynamic perturbation modeling sequence is validated thanks to 2D simulations. 1D simulations post-processed with such a modeling sequence provide a good estimation of the thermonuclear burn. First estimates of hydrodynamic safety factor are given.

  20. Concentrating Radioactivity

    Science.gov (United States)

    Herrmann, Richard A.

    1974-01-01

    By concentrating radioactivity contained on luminous dials, a teacher can make a high reading source for classroom experiments on radiation. The preparation of the source and its uses are described. (DT)