WorldWideScience

Sample records for hydrodynamic coupling effects

  1. The effect of coupling hydrologic and hydrodynamic models on probable maximum flood estimation

    Science.gov (United States)

    Felder, Guido; Zischg, Andreas; Weingartner, Rolf

    2017-07-01

    Deterministic rainfall-runoff modelling usually assumes stationary hydrological system, as model parameters are calibrated with and therefore dependant on observed data. However, runoff processes are probably not stationary in the case of a probable maximum flood (PMF) where discharge greatly exceeds observed flood peaks. Developing hydrodynamic models and using them to build coupled hydrologic-hydrodynamic models can potentially improve the plausibility of PMF estimations. This study aims to assess the potential benefits and constraints of coupled modelling compared to standard deterministic hydrologic modelling when it comes to PMF estimation. The two modelling approaches are applied using a set of 100 spatio-temporal probable maximum precipitation (PMP) distribution scenarios. The resulting hydrographs, the resulting peak discharges as well as the reliability and the plausibility of the estimates are evaluated. The discussion of the results shows that coupling hydrologic and hydrodynamic models substantially improves the physical plausibility of PMF modelling, although both modelling approaches lead to PMF estimations for the catchment outlet that fall within a similar range. Using a coupled model is particularly suggested in cases where considerable flood-prone areas are situated within a catchment.

  2. STABILITY ANALYSIS OF THREE LOBE HYDRODYNAMIC JOURNAL BEARING: COUPLE STRESS FLUID EFFECTS

    Directory of Open Access Journals (Sweden)

    N.P.Mehta

    2010-10-01

    Full Text Available The effects of couple stress fluid, when added to a Newtonian base, are studied by deriving a generalized form of the Reynolds equation. A couple stress parameter ‘l’ has been used to indicate the length of the long chain molecule being added. Finite element method has been used to solve the generalized Reynolds equation for each lobe to obtain the respective pressure distributions. Stable equilibrium conditions in terms of eccentricity ratios and the attitude angles have been obtained for the vertical load condition. The journal has been perturbed from this equilibrium condition to give the stiffness and the damping coefficients. It has been observed that slight variation of the coupe stress parameter ‘l’ has great influence on the dynamic characteristics, i.e. the stiffness and the dampingcoefficients. The threshold speed and the critical mass of the journal, obtained as a solution to the linearized equations of motion, are used to demonstrate the increased stability of the journal bearing system.

  3. Hydrodynamics of Normal Atomic Gases with Spin-orbit Coupling.

    Science.gov (United States)

    Hou, Yan-Hua; Yu, Zhenhua

    2015-10-20

    Successful realization of spin-orbit coupling in atomic gases by the NIST scheme opens the prospect of studying the effects of spin-orbit coupling on many-body physics in an unprecedentedly controllable way. Here we derive the linearized hydrodynamic equations for the normal atomic gases of the spin-orbit coupling by the NIST scheme with zero detuning. We show that the hydrodynamics of the system crucially depends on the momentum susceptibilities which can be modified by the spin-orbit coupling. We reveal the effects of the spin-orbit coupling on the sound velocities and the dipole mode frequency of the gases by applying our formalism to the ideal Fermi gas. We also discuss the generalization of our results to other situations.

  4. Isotropization and hydrodynamization in weakly coupled heavy-ion collisions

    CERN Document Server

    Kurkela, Aleksi

    2015-01-01

    We numerically solve 2+1D effective kinetic theory of weak coupling QCD under longitudinal expansion relevant for early stages of heavy-ion collisions. We find agreement with viscous hydrodynamics and classical Yang-Mills simulations in the regimes where they are applicable. By choosing initial conditions that are motivated by color-glass-condensate framework we find that for Q=2GeV and $\\alpha_s$=0.3 the system is approximately described by viscous hydrodynamics well before $\\tau \\lesssim 1.0$ fm/c.

  5. Mode-coupling approach to polymer diffusion in an unentangled melt. II. The effect of viscoelastic hydrodynamic interactions

    Science.gov (United States)

    Farago, J.; Meyer, H.; Baschnagel, J.; Semenov, A. N.

    2012-05-01

    A mode-coupling theory (MCT) version (called hMCT thereafter) of a recently presented theory [Farago, Meyer, and Semenov, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.107.178301 107, 178301 (2011)] is developed to describe the diffusional properties of a tagged polymer in a melt. The hMCT accounts for the effect of viscoelastic hydrodynamic interactions (VHIs), that is, a physical mechanism distinct from the density-based MCT (dMCT) described in the first paper of this series. The two versions of the MCT yield two different contributions to the asymptotic behavior of the center-of-mass velocity autocorrelation function (c.m. VAF). We show that in most cases the VHI mechanism is dominant; for long chains and prediffusive times it yields a negative tail ∝-N-1/2t-3/2 for the c.m. VAF. The case of non-momentum-conserving dynamics (Langevin or Monte Carlo) is discussed as well. It generally displays a distinctive behavior with two successive relaxation stages: first -N-1t-5/4 (as in the dMCT approach), then -N-1/2t-3/2. Both the amplitude and the duration of the first t-5/4 stage crucially depend on the Langevin friction parameter γ. All results are also relevant for the early time regime of entangled melts. These slow relaxations of the c.m. VAF, thus account for the anomalous subdiffusive regime of the c.m. mean square displacement widely observed in numerical and experimental works.

  6. Hydrodynamic effects on coalescence.

    Energy Technology Data Exchange (ETDEWEB)

    Dimiduk, Thomas G.; Bourdon, Christopher Jay; Grillet, Anne Mary; Baer, Thomas A.; de Boer, Maarten Pieter; Loewenberg, Michael (Yale University, New Haven, CT); Gorby, Allen D.; Brooks, Carlton, F.

    2006-10-01

    The goal of this project was to design, build and test novel diagnostics to probe the effect of hydrodynamic forces on coalescence dynamics. Our investigation focused on how a drop coalesces onto a flat surface which is analogous to two drops coalescing, but more amenable to precise experimental measurements. We designed and built a flow cell to create an axisymmetric compression flow which brings a drop onto a flat surface. A computer-controlled system manipulates the flow to steer the drop and maintain a symmetric flow. Particle image velocimetry was performed to confirm that the control system was delivering a well conditioned flow. To examine the dynamics of the coalescence, we implemented an interferometry capability to measure the drainage of the thin film between the drop and the surface during the coalescence process. A semi-automated analysis routine was developed which converts the dynamic interferogram series into drop shape evolution data.

  7. Coupled effects of solution chemistry and hydrodynamics on the mobility and transport of quantum dot nanomaterials in the vadose zone

    Science.gov (United States)

    Uyusur, Burcu; Darnault, Christophe J. G.; Snee, Preston T.; Kokën, Emre; Jacobson, Astrid R.; Wells, Robert R.

    2010-11-01

    To investigate the coupled effects of solution chemistry and hydrodynamics on the mobility of quantum dot (QD) nanoparticles in the vadose zone, laboratory scale transport experiments involving single and/or sequential infiltrations of QDs in unsaturated and saturated porous media, and computations of total interaction and capillary potential energies were performed. As ionic strength increased, QD retention in the unsaturated porous media increased; however, this retention was significantly suppressed in the presence of a non-ionic surfactant in the infiltration suspensions as indicated by surfactant enhanced transport of QDs. In the vadose zone, the non-ionic surfactant limited the formation of QD aggregates, enhanced QD mobility and transport, and lowered the solution surface tension, which resulted in a decrease in capillary forces that not only led to a reduction in the removal of QDs, but also impacted the vadose zone flow processes. When chemical transport conditions were favorable (ionic strength of 5 × 10 -4 M and 5 × 10 -3 M, or ionic strengths of 5 × 10 -2 M and 0.5 M with surfactant), the dominating phenomena controlling the mobility and transport of QDs in the vadose zone were meso-scale processes, where infiltration by preferential flow results in the rapid transport of QDs. When chemical transport conditions were unfavorable (ionic strength of 5 × 10 -2 M and 0.5 M) the dominating phenomena controlling the mobility and transport of QDs in the vadose zone were pore-scale processes governed by gas-water interfaces (GWI) that impact the mobility of QDs. The addition of surfactant enhanced the transport of QDs both in favorable and unfavorable chemical transport conditions. The mobility and retention of QDs was controlled by interaction and capillary forces, with the latter being the most influential. GWI were found to be the dominant mechanism and site for QD removal compared with solid-water interfaces (SWI) and pore straining. Additionally

  8. Coupled effects of solution chemistry and hydrodynamics on the mobility and transport of quantum dot nanomaterials in the Vadose Zone

    Science.gov (United States)

    To investigate the coupled effects of solution chemistry and vadose zone processes on the mobility of quantum dot (QD) nanoparticles, laboratory scale transport experiments were performed. The complex coupled effects of ionic strength, size of QD aggregates, surface tension, contact angle, infiltrat...

  9. Coupling Hydrologic and Hydrodynamic Models to Estimate PMF

    Science.gov (United States)

    Felder, G.; Weingartner, R.

    2015-12-01

    Most sophisticated probable maximum flood (PMF) estimations derive the PMF from the probable maximum precipitation (PMP) by applying deterministic hydrologic models calibrated with observed data. This method is based on the assumption that the hydrological system is stationary, meaning that the system behaviour during the calibration period or the calibration event is presumed to be the same as it is during the PMF. However, as soon as a catchment-specific threshold is reached, the system is no longer stationary. At or beyond this threshold, retention areas, new flow paths, and changing runoff processes can strongly affect downstream peak discharge. These effects can be accounted for by coupling hydrologic and hydrodynamic models, a technique that is particularly promising when the expected peak discharge may considerably exceed the observed maximum discharge. In such cases, the coupling of hydrologic and hydraulic models has the potential to significantly increase the physical plausibility of PMF estimations. This procedure ensures both that the estimated extreme peak discharge does not exceed the physical limit based on riverbed capacity and that the dampening effect of inundation processes on peak discharge is considered. Our study discusses the prospect of considering retention effects on PMF estimations by coupling hydrologic and hydrodynamic models. This method is tested by forcing PREVAH, a semi-distributed deterministic hydrological model, with randomly generated, physically plausible extreme precipitation patterns. The resulting hydrographs are then used to externally force the hydraulic model BASEMENT-ETH (riverbed in 1D, potential inundation areas in 2D). Finally, the PMF estimation results obtained using the coupled modelling approach are compared to the results obtained using ordinary hydrologic modelling.

  10. Initial conditions for hydrodynamics from weakly coupled pre-equilibrium evolution

    CERN Document Server

    Keegan, Liam; Mazeliauskas, Aleksas; Teaney, Derek

    2016-01-01

    We use effective kinetic theory, accurate at weak coupling, to simulate the pre-equilibrium evolution of transverse energy and flow perturbations in heavy-ion collisions. We provide a Green function which propagates the initial perturbations to the energy-momentum tensor at a time when hydrodynamics becomes applicable. With this map, the complete pre-thermal evolution from saturated nuclei to hydrodynamics can be modelled in a perturbatively controlled way.

  11. Hydrodynamic transport in strongly coupled disordered quantum field theories

    CERN Document Server

    Lucas, Andrew

    2015-01-01

    We compute direct current (dc) thermoelectric transport coefficients in strongly coupled quantum field theories without long lived quasiparticles, at finite temperature and charge density, and disordered on long wavelengths compared to the length scale of local thermalization. Many previous transport computations in strongly coupled systems are interpretable hydrodynamically, despite formally going beyond the hydrodynamic regime. This includes momentum relaxation times previously derived by the memory matrix formalism, and non-perturbative holographic results; in the latter case, this is subject to some important subtleties. Our formalism may extend some memory matrix computations to higher orders in the perturbative disorder strength, as well as give valuable insight into non-perturbative regimes. Strongly coupled metals with quantum critical contributions to transport generically transition between coherent and incoherent metals as disorder strength is increased at fixed temperature, analogous to mean field...

  12. Theoretical Description and Numerical Simulation of the Hydrodynamic Coupling

    Directory of Open Access Journals (Sweden)

    V. O. Lomakin

    2016-01-01

    Full Text Available The article’s subject is to study and describe the processes in the hydrodynamic coupling during its operation. The hydrodynamic coupling is a type of hydrodynamic transmission that provides a flexible connection between the input and output shafts, in contrast to the mechanical coupling. Currently, the fluid couplings are widely used and the theoretical description of their operation has been given long before. However, in Russia these units are not produced, the theoretical model is very simple while the experimental data are scattered and non-systematized. So the problem is relevant and requires consideration.The research objective is to complement the existing theoretical model for better describing the fluid coupling operation as well as to compare the results, based on its using, with the numerical simulation results. The main part of the article contains these sections.The mathematical model shows: the equations used for theoretical description of the fluid coupling operation, the basic hydrodynamic equations converted to solve the problem in a stationary setting, and the applied turbulence model (k-ω. The author backslides from the standard jet theory in which the calculation is performed at an average trickle in order to take into consideration the non-uniformity of the velocity distribution in the fluid coupling.The article also raised the issue on the applicability of the stationary formulation of the problem for the numerical simulation. The study revealed that the solutions obtained under stationary and non-stationary calculations practically match. The verification was conducted by three points of characteristic of the hydraulic coupling.The article gives the fluid coupling dimensions, represents an image of its threedimensional model and of the computational grid. It also shows some figures to illustrate the processes in a fluid coupling obtained by its numerical modeling.During the study it was found out that the proposed

  13. Development of Fully Coupled Aeroelastic and Hydrodynamic Models for Offshore Wind Turbines: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Jonkman, J. M.; Sclavounos, P. D.

    2006-01-01

    Aeroelastic simulation tools are routinely used to design and analyze onshore wind turbines, in order to obtain cost effective machines that achieve favorable performance while maintaining structural integrity. These tools employ sophisticated models of wind-inflow; aerodynamic, gravitational, and inertial loading of the rotor, nacelle, and tower; elastic effects within and between components; and mechanical actuation and electrical responses of the generator and of control and protection systems. For offshore wind turbines, additional models of the hydrodynamic loading in regular and irregular seas, the dynamic coupling between the support platform motions and wind turbine motions, and the dynamic characterization of mooring systems for compliant floating platforms are also important. Hydrodynamic loading includes contributions from hydrostatics, wave radiation, and wave scattering, including free surface memory effects. The integration of all of these models into comprehensive simulation tools, capable of modeling the fully coupled aeroelastic and hydrodynamic responses of floating offshore wind turbines, is presented.

  14. Hydrodynamics of strongly coupled gauge theories from gravity

    Energy Technology Data Exchange (ETDEWEB)

    Benincasa, P. [Department of Applied Mathematics, University of Western Ontario, London, Ontario N6A 5B7 (Canada)

    2007-09-15

    In this talk we review some recent developments in the analysis of gauge theories from a holographic perspective. We focus on the transport properties of strongly coupled gauge theories. In particular, we discuss the results for two specific non-conformal models: the N=2* supersymmetric SU(N{sub c}) Yang-Mills theory and the Sakai-Sugimoto model. Finally, we discuss the hydrodynamic picture for the N=4SU(N{sub c}) SYM theory when the leading correction in the inverse 't Hooft coupling is taken into account.

  15. Hydrodynamics of strongly coupled gauge theories from gravity

    Science.gov (United States)

    Benincasa, P.

    2007-09-01

    In this talk we review some recent developments in the analysis of gauge theories from a holographic perspective. We focus on the transport properties of strongly coupled gauge theories. In particular, we discuss the results for two specific non-conformal models: the N=2 supersymmetric SU( Nc) Yang-Mills theory and the Sakai-Sugimoto model. Finally, we discuss the hydrodynamic picture for the N=4SU( Nc) SYM theory when the leading correction in the inverse 't Hooft coupling is taken into account.

  16. Underdamped modes in a hydrodynamically coupled microparticle system

    Science.gov (United States)

    Yao, A. M.; Keen, S. A. J.; Burnham, D. R.; Leach, J.; Leonardo, R. Di; McGloin, D.; Padgett, M. J.

    2009-05-01

    When micron-sized particles are trapped in a linear periodic array, for example, by using optical tweezers, they interact only through the hydrodynamic forces between them. This couples the motion of the spheres and it has been predicted that an extended system might behave as an elastic medium that could support underdamped propagating waves. In practice, these underdamped modes can be observed only with massive particles in very stiff traps and very low viscosity fluids. We have been able to realize these conditions by trapping water droplets in air. Even with a system of just two particles we were able to observe the coupled oscillatory motion predicted: underdamping of the symmetric (collective) mode and overdamping of the asymmetric (relative) mode.

  17. Emergence of multiple synchronization modes in hydrodynamically-coupled cilia

    Science.gov (United States)

    Guo, Hanliang; Kanso, Eva

    2016-11-01

    Motile cilia and flagella exhibit different phase coordinations. For example, closely swimming spermatozoa are observed to synchronize together; bi-flagellates Chlamydomonas regulate the flagella in a "breast-stroke" fashion; cilia on the surface of Paramecium beat in a fixed phase lag in an orchestrated wave like fashion. Experimental evidence suggests that phase coordinations can be achieved solely via hydrodynamical interactions. However, the exact mechanisms behind it remain illusive. Here, adapting a "geometric switch" model, we observe different synchronization modes in pairs of hydrodynamically-coupled cilia by changing physical parameters such as the strength of the cilia internal motor and the separation distance between cilia. Interestingly, we find regions in the parameter space where the coupled cilia reach stable phase coordinations and regions where the phase coordinations are sensitive to perturbations. We also find that leaning into the fluid reduces the sensitivity to perturbations, and produces stable phase coordination that is neither in-phase nor anti-phase, which could explain the origin of metachronal waves in large cilia populations.

  18. Simulation and visualization of coupled hydrodynamical, chemical and biological models

    Directory of Open Access Journals (Sweden)

    Dag Slagstad

    1997-04-01

    Full Text Available This paper briefly describes the principles of hydrodynamical and ecological modelling of marine systems and how model results are presented by use of MATLAB. Two application examples are shown. One refers to modelling and simulation of the carbon vertical transport in the Greenland Sea and the other is a study on the effect of wind pattern for the invasion success of zooplankton from the Norwegian Sea into the North Sea by use of particle tracking.

  19. Viscosity and dissipative hydrodynamics from effective field theory

    Science.gov (United States)

    Grozdanov, Sašo; Polonyi, Janos

    2015-05-01

    With the goal of deriving dissipative hydrodynamics from an action, we study classical actions for open systems, which follow from the generic structure of effective actions in the Schwinger-Keldysh closed-time-path (CTP) formalism with two time axes and a doubling of degrees of freedom. The central structural feature of such effective actions is the coupling between degrees of freedom on the two time axes. This reflects the fact that from an effective field theory point of view, dissipation is the loss of energy of the low-energy hydrodynamical degrees of freedom to the integrated-out, UV degrees of freedom of the environment. The dynamics of only the hydrodynamical modes may therefore not possess a conserved stress-energy tensor. After a general discussion of the CTP effective actions, we use the variational principle to derive the energy-momentum balance equation for a dissipative fluid from an effective Goldstone action of the long-range hydrodynamical modes. Despite the absence of conserved energy and momentum, we show that we can construct the first-order dissipative stress-energy tensor and derive the Navier-Stokes equations near hydrodynamical equilibrium. The shear viscosity is shown to vanish in the classical theory under consideration, while the bulk viscosity is determined by the form of the effective action. We also discuss the thermodynamics of the system and analyze the entropy production.

  20. Film rupture in the diffuse interface model coupled to hydrodynamics.

    Science.gov (United States)

    Thiele, U; Velarde, M G; Neuffer, K; Pomeau, Y

    2001-09-01

    The process of dewetting of a thin liquid film is usually described using a long-wave approximation yielding a single evolution equation for the film thickness. This equation incorporates an additional pressure term-the disjoining pressure-accounting for the molecular forces. Recently a disjoining pressure was derived coupling hydrodynamics to the diffuse interface model [L. M. Pismen and Y. Pomeau, Phys. Rev. E 62, 2480 (2000)]. Using the resulting evolution equation as a generic example for the evolution of unstable thin films, we examine the thickness ranges for linear instability and metastability for flat films, the families of stationary periodic and localized solutions, and their linear stability. The results are compared to simulations of the nonlinear time evolution. From this we conclude that, within the linearly unstable thickness range, there exists a well defined subrange where finite perturbations are crucial for the time evolution and the resulting structures. In the remainder of the linearly unstable thickness range the resulting structures are controlled by the fastest flat film mode assumed up to now for the entire linearly unstable thickness range. Finally, the implications for other forms of disjoining pressure in dewetting and for spinodal decomposition are discussed.

  1. Hydrodynamical Coupling of Mass and Momentum in Multiphase Galactic Winds

    CERN Document Server

    Schneider, Evan E

    2016-01-01

    Using a set of high resolution hydrodynamical simulations run with the Cholla code, we investigate how mass and momentum couple to the multiphase components of galactic winds. The simulations model the interaction between a hot wind driven by supernova explosions and a cooler, denser cloud of interstellar or circumgalactic media. By resolving scales of $\\Delta x 100$ pc distances our calculations capture how the cloud disruption leads to a distribution of densities and temperatures in the resulting multiphase outflow, and quantify the mass and momentum associated with each phase. We find the multiphase wind contains comparable mass and momenta in phases over a wide range of densities extending from the hot wind $(n \\approx 10^{-3}$ $\\mathrm{cm}^{-3})$ to the coldest components $(n \\approx 10^2$ $\\mathrm{cm}^{-3})$. We further find that the momentum distributes roughly in proportion to the mass in each phase, and the mass-loading of the hot phase by the destruction of cold, dense material is an efficient proc...

  2. Hydrodynamical Coupling of Mass and Momentum in Multiphase Galactic Winds

    Science.gov (United States)

    Schneider, Evan E.; Robertson, Brant E.

    2017-01-01

    Using a set of high-resolution hydrodynamical simulations run with the Cholla code, we investigate how mass and momentum couple to the multiphase components of galactic winds. The simulations model the interaction between a hot wind driven by supernova explosions and a cooler, denser cloud of interstellar or circumgalactic media. By resolving scales of {{Δ }}x 100 pc distances, our calculations capture how the cloud disruption leads to a distribution of densities and temperatures in the resulting multiphase outflow and quantify the mass and momentum associated with each phase. We find that the multiphase wind contains comparable mass and momenta in phases over a wide range of densities and temperatures extending from the hot wind (n≈ {10}-2.5 {{cm}}-3, T≈ {10}6.5 K) to the coldest components (n≈ {10}2 {{cm}}-3, T≈ {10}2 K). We further find that the momentum distributes roughly in proportion to the mass in each phase, and the mass loading of the hot phase by the destruction of cold, dense material is an efficient process. These results provide new insight into the physical origin of observed multiphase galactic outflows and inform galaxy formation models that include coarser treatments of galactic winds. Our results confirm that cool gas observed in outflows at large distances from the galaxy (≳ 1 kpc) likely does not originate through the entrainment of cold material near the central starburst.

  3. Coupled incompressible Smoothed Particle Hydrodynamics model for continuum-based modelling sediment transport

    Science.gov (United States)

    Pahar, Gourabananda; Dhar, Anirban

    2017-04-01

    A coupled solenoidal Incompressible Smoothed Particle Hydrodynamics (ISPH) model is presented for simulation of sediment displacement in erodible bed. The coupled framework consists of two separate incompressible modules: (a) granular module, (b) fluid module. The granular module considers a friction based rheology model to calculate deviatoric stress components from pressure. The module is validated for Bagnold flow profile and two standardized test cases of sediment avalanching. The fluid module resolves fluid flow inside and outside porous domain. An interaction force pair containing fluid pressure, viscous term and drag force acts as a bridge between two different flow modules. The coupled model is validated against three dambreak flow cases with different initial conditions of movable bed. The simulated results are in good agreement with experimental data. A demonstrative case considering effect of granular column failure under full/partial submergence highlights the capability of the coupled model for application in generalized scenario.

  4. Hydrodynamic Instability and Thermal Coupling in a Dynamic Model of Liquid-Propellant Combustion

    Science.gov (United States)

    Margolis, S. B.

    1999-01-01

    For liquid-propellant combustion, the Landau/Levich hydrodynamic models have been combined and extended to account for a dynamic dependence of the burning rate on the local pressure and temperature fields. Analysis of these extended models is greatly facilitated by exploiting the realistic smallness of the gas-to-liquid density ratio rho. Neglecting thermal coupling effects, an asymptotic expression was then derived for the cellular stability boundary A(sub p)(k) where A(sub p) is the pressure sensitivity of the burning rate and k is the disturbance wavenumber. The results explicitly indicate the stabilizing effects of gravity on long-wave disturbances, and those of viscosity and surface tension on short-wave perturbations, and the instability associated with intermediate wavenumbers for critical negative values of A(sub p). In the limit of weak gravity, hydrodynamic instability in liquid-propellant combustion becomes a long-wave, instability phenomenon, whereas at normal gravity, this instability is first manifested through O(1) wavenumbers. In addition, surface tension and viscosity (both liquid and gas) each produce comparable effects in the large-wavenumber regime, thereby providing important modifications to the previous analyses in which one or more of these effects was neglected. For A(sub p)= O, the Landau/Levich results are recovered in appropriate limiting cases, although this typically corresponds to a hydrodynamically unstable parameter regime for p nitrate (HAN)-based liquid propellants, which often exhibit negative pressure sensitivities. While nonsteady combustion may correspond to secondary and higher-order bifurcations above the cellular boundary, it may also be a manifestation of this pulsating type of hydrodynamic instability. In the present work, a nonzero temperature sensitivity is incorporated into our previous asymptotic analyses. This entails a coupling of the energy equation to the previous purely hydrodynamic problem, and leads to a

  5. A hydrodynamics-reaction kinetics coupled model for evaluating bioreactors derived from CFD simulation.

    Science.gov (United States)

    Wang, Xu; Ding, Jie; Guo, Wan-Qian; Ren, Nan-Qi

    2010-12-01

    Investigating how a bioreactor functions is a necessary precursor for successful reactor design and operation. Traditional methods used to investigate flow-field cannot meet this challenge accurately and economically. Hydrodynamics model can solve this problem, but to understand a bioreactor in sufficient depth, it is often insufficient. In this paper, a coupled hydrodynamics-reaction kinetics model was formulated from computational fluid dynamics (CFD) code to simulate a gas-liquid-solid three-phase biotreatment system for the first time. The hydrodynamics model is used to formulate prediction of the flow field and the reaction kinetics model then portrays the reaction conversion process. The coupled model is verified and used to simulate the behavior of an expanded granular sludge bed (EGSB) reactor for biohydrogen production. The flow patterns were visualized and analyzed. The coupled model also demonstrates a qualitative relationship between hydrodynamics and biohydrogen production. The advantages and limitations of applying this coupled model are discussed.

  6. Effective Hydrodynamic Boundary Conditions for Corrugated Surfaces

    CERN Document Server

    Mongruel, Anne; Asmolov, Evgeny S; Vinogradova, Olga I

    2012-01-01

    We report measurements of the hydrodynamic drag force acting on a smooth sphere falling down under gravity to a plane decorated with microscopic periodic grooves. Both surfaces are lyophilic, so that a liquid (silicone oil) invades the surface texture being in the Wenzel state. A significant decrease in the hydrodynamic resistance force as compared with that predicted for two smooth surfaces is observed. To quantify the effect of roughness we use the effective no-slip boundary condition, which is applied at the imaginary smooth homogeneous isotropic surface located at an intermediate position between top and bottom of grooves. Such an effective condition fully characterizes the force reduction measured with the real surface, and the location of this effective plane is related to geometric parameters of the texture by a simple analytical formula.

  7. A strategy to couple the material point method (MPM) and smoothed particle hydrodynamics (SPH) computational techniques

    Science.gov (United States)

    Raymond, Samuel J.; Jones, Bruce; Williams, John R.

    2016-12-01

    A strategy is introduced to allow coupling of the material point method (MPM) and smoothed particle hydrodynamics (SPH) for numerical simulations. This new strategy partitions the domain into SPH and MPM regions, particles carry all state variables and as such no special treatment is required for the transition between regions. The aim of this work is to derive and validate the coupling methodology between MPM and SPH. Such coupling allows for general boundary conditions to be used in an SPH simulation without further augmentation. Additionally, as SPH is a purely particle method, and MPM is a combination of particles and a mesh. This coupling also permits a smooth transition from particle methods to mesh methods, where further coupling to mesh methods could in future provide an effective farfield boundary treatment for the SPH method. The coupling technique is introduced and described alongside a number of simulations in 1D and 2D to validate and contextualize the potential of using these two methods in a single simulation. The strategy shown here is capable of fully coupling the two methods without any complicated algorithms to transform information from one method to another.

  8. New Relativistic Effects in the Dynamics of Nonlinear Hydrodynamical Waves

    CERN Document Server

    Rezzolla, L

    2002-01-01

    In Newtonian and relativistic hydrodynamics the Riemann problem consists of calculating the evolution of a fluid which is initially characterized by two states having different values of uniform rest-mass density, pressure and velocity. When the fluid is allowed to relax, one of three possible wave-patterns is produced, corresponding to the propagation in opposite directions of two nonlinear hydrodynamical waves. New effects emerge in a special relativistic Riemann problem when velocities tangential to the initial discontinuity surface are present. We show that a smooth transition from one wave-pattern to another can be produced by varying the initial tangential velocities while otherwise maintaining the initial states unmodified. These special relativistic effects are produced by the coupling through the relativistic Lorentz factors and do not have a Newtonian counterpart.

  9. Effect of geometry on hydrodynamic film thickness

    Science.gov (United States)

    Brewe, D. E.; Hamrock, B. J.; Taylor, C. M.

    1978-01-01

    The influence of geometry on the isothermal hydrodynamic film separating two rigid solids was investigated. Pressure-viscosity effects were not considered. The minimum film thickness is derived for fully flooded conjunctions by using the Reynolds boundary conditions. It was found that the minimum film thickness had the same speed, viscosity, and load dependence as Kapitza's classical solution. However, the incorporation of Reynolds boundary conditions resulted in an additional geometry effect. Solutions using the parabolic film approximation are compared with those using the exact expression for the film in the analysis. Contour plots are shown that indicate in detail the pressure developed between the solids.

  10. Photobioreactors for microalgal cultures: A Lagrangian model coupling hydrodynamics and kinetics.

    Science.gov (United States)

    Olivieri, Giuseppe; Gargiulo, Luigi; Lettieri, Paola; Mazzei, Luca; Salatino, Piero; Marzocchella, Antonio

    2015-01-01

    Closed photobioreactors have to be optimized in terms of light utilization and overall photosynthesis rate. A simple model coupling the hydrodynamics and the photosynthesis kinetics has been proposed to analyze the photosynthesis dynamics due to the continuous shuttle of microalgae between dark and lighted zones of the photobioreactor. Microalgal motion has been described according to a stochastic Lagrangian approach adopting the turbulence model suitable for the photobioreactor configuration (single vs. two-phase flows). Effects of light path, biomass concentration, turbulence level and irradiance have been reported in terms of overall photosynthesis rate. Different irradiation strategies (internal, lateral and rounding) and several photobioreactor configurations (flat, tubular, bubble column, airlift) have been investigated. Photobioreactor configurations and the operating conditions to maximize the photosynthesis rate have been pointed out. Results confirmed and explained the common experimental observation that high concentrated cultures are not photoinhibited at high irradiance level.

  11. Effects of hydrodynamic interactions in bacterial swimming.

    Science.gov (United States)

    Chattopadhyay, Suddhashil; Lun Wu, Xiao

    2008-03-01

    The lack of precise experimental data has prevented the investigation of the effects of long range hydrodynamic interactions in bacterial swimming. We perform measurements on various strains of bacteria with the aid of optical tweezers to shed light on this aspect of bacterial motility. Geometrical parameters recorded by fluorescence microscopy are used with theories which model flagella propulsion (Resistive force theory & Lighthill's formulation which includes long range interactions). Comparison of the predictions of these theories with experimental data, observed directly from swimming bacterium, led to the conclusion that while long range inetractions were important for single polar flagellated strains (Vibrio Alginolyticus & Caulobacter Crescentus), local force theory was adequate to describe the swimming of multi-flagellated Esherichia Coli. We performed additional measurements on E. Coli minicells (miniature cells with single polar flagellum) to try and determine the cause of this apparent effect of shielding of long range interactions in multiple flagellated bacteria.

  12. Effect of Second-Order Hydrodynamics on a Floating Offshore Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Roald, L.; Jonkman, J.; Robertson, A.

    2014-05-01

    The design of offshore floating wind turbines uses design codes that can simulate the entire coupled system behavior. At the present, most codes include only first-order hydrodynamics, which induce forces and motions varying with the same frequency as the incident waves. Effects due to second- and higher-order hydrodynamics are often ignored in the offshore industry, because the forces induced typically are smaller than the first-order forces. In this report, first- and second-order hydrodynamic analysis used in the offshore oil and gas industry is applied to two different wind turbine concepts--a spar and a tension leg platform.

  13. A coupled three-dimensional hydrodynamic model for predicting hypolimnetic oxygenation and epilimnetic mixing in a shallow eutrophic reservoir

    Science.gov (United States)

    Chen, Shengyang; Lei, Chengwang; Carey, Cayelan C.; Gantzer, Paul A.; Little, John C.

    2017-01-01

    Artificial mixing and hypolimnetic oxygenation are two common methods for improving water quality in reservoirs. To examine the effects of their operation on the thermal structure of the water column, we used a three-dimensional hydrodynamic model coupled with a newly developed water-jet model and an existing linear bubble-plume model in conjunction with whole-reservoir in situ mixing experiments in a drinking-water reservoir. This reservoir has a side-stream supersaturation (SSS) hypolimnetic oxygenation system and a bubble-plume epilimnetic mixing (EM) system installed to reduce hypolimnetic hypoxia and algal blooms. The results show that the SSS successfully adds dissolved oxygen to the hypolimnion without destratifying the reservoir, whereas the EM, located at the lower metalimnetic boundary, deepens this boundary and partially mixes the metalimnion and epilimnion. The newly developed water-jet model coupled with the hydrodynamic model can successfully predict the variation of the thermal structure in the reservoir. The extent to which the SSS and EM systems affect the thermal structure of the reservoir is also quantified by further application of the coupled hydrodynamic model.

  14. A hydrodynamic model for granular material flows including segregation effects

    Science.gov (United States)

    Gilberg, Dominik; Klar, Axel; Steiner, Konrad

    2017-06-01

    The simulation of granular flows including segregation effects in large industrial processes using particle methods is accurate, but very time-consuming. To overcome the long computation times a macroscopic model is a natural choice. Therefore, we couple a mixture theory based segregation model to a hydrodynamic model of Navier-Stokes-type, describing the flow behavior of the granular material. The granular flow model is a hybrid model derived from kinetic theory and a soil mechanical approach to cover the regime of fast dilute flow, as well as slow dense flow, where the density of the granular material is close to the maximum packing density. Originally, the segregation model has been formulated by Thornton and Gray for idealized avalanches. It is modified and adapted to be in the preferred form for the coupling. In the final coupled model the segregation process depends on the local state of the granular system. On the other hand, the granular system changes as differently mixed regions of the granular material differ i.e. in the packing density. For the modeling process the focus lies on dry granular material flows of two particle types differing only in size but can be easily extended to arbitrary granular mixtures of different particle size and density. To solve the coupled system a finite volume approach is used. To test the model the rotational mixing of small and large particles in a tumbler is simulated.

  15. A Tightly Coupled Non-Equilibrium Magneto-Hydrodynamic Model for Inductively Coupled RF Plasmas

    Science.gov (United States)

    2016-02-29

    effects are described based on a hybrid State-to-State (StS) approach. A multi-temperature formulation is used to account for thermal non-equilibrium...for Inductively Coupled Radio-Frequency (RF) Plasmas. Non Local Thermodynamic Equilibrium (NLTE) effects are described based on a hybrid State-to-State...usually obtained through quantum chemistry calculations51–56 or through phenomenological models providing a simplified descrip- tion of the kinetic

  16. Dynamically Coupled Food-web and Hydrodynamic Modeling with ADH-CASM

    Science.gov (United States)

    Piercy, C.; Swannack, T. M.

    2012-12-01

    Oysters and freshwater mussels are "ecological engineers," modifying the local water quality by filtering zooplankton and other suspended particulate matter from the water column and flow hydraulics by impinging on the near-bed flow environment. The success of sessile, benthic invertebrates such as oysters depends on environmental factors including but not limited to temperature, salinity, and flow regime. Typically food-web and other types of ecological models use flow and water quality data as direct input without regard to the feedback between the ecosystem and the physical environment. The USACE-ERDC has developed a coupled hydrodynamic-ecological modeling approach that dynamically couples a 2-D hydrodynamic and constituent transport model, Adaptive Hydraulics (ADH), with a bioenergetics food-web model, the Comprehensive Aquatics Systems Model (CASM), which captures the dynamic feedback between aquatic ecological systems and the environment. We present modeling results from restored oyster reefs in the Great Wicomico River on the western shore of the Chesapeake Bay, which quantify ecosystem services such as the influence of the benthic ecosystem on water quality. Preliminary results indicate that while the influence of oyster reefs on bulk flow dynamics is limited due to the localized influence of oyster reefs, large reefs and the associated benthic ecosystem can create measurable changes in the concentrations of nitrogen, phosphorus, and carbon in the areas around reefs. We also present a sensitivity analysis to quantify the relative sensitivity of the coupled ADH-CASM model to both hydrodynamic and ecological parameter choice.

  17. Effect of hydrodynamic cavitation on zooplankton: A tool for disinfection

    Digital Repository Service at National Institute of Oceanography (India)

    Sawant, S.S.; Anil, A.C.; Venkat, K.; Gaonkar, C.; Kolwalkar, J.; Khandeparker, L.; Desai, D.V.; Mahulkar, A.V.; Ranade, V.V.; Pandit, A.B.

    Application of hydrodynamic cavitation for disinfection of water is gaining momentum, as it provides environmentally and economically sound options. In this effort, the effect of cavitating conditions created by differential pump valve opening...

  18. Non-dissipative hydrodynamics: Effective actions versus entropy current

    CERN Document Server

    Bhattacharya, Jyotirmoy; Rangamani, Mukund

    2012-01-01

    While conventional hydrodynamics incorporating dissipative effects is hard to derive from an action principle, it is nevertheless possible to construct classical actions when the dissipative terms are switched off. In this note we undertake a systematic exploration of such constructions from an effective field theory approach and argue for the existence of non-trivial second order non-dissipative hydrodynamics involving pure energy-momentum transport. We find these fluids to be characterized by five second-order transport coefficients based on the effective action (a three parameter family is Weyl invariant). On the other hand since all flows of such fluids are non-dissipative, they entail zero entropy production; one can therefore understand them using the entropy current formalism which has provided much insight into hydrodynamic transport. An analysis of the most general stress tensor with zero entropy production however turns out to give a seven parameter family of non-dissipative hydrodynamics (a four pa...

  19. The early phases of galaxy clusters formation in IR: coupling hydrodynamical simulations with GRASIL3D

    CERN Document Server

    Granato, Gian Luigi; Dominguez-Tenreiro, Rosa; Obreja, Aura; Borgani, Stefano; De Lucia, Gabriella; Murante, Giuseppe

    2014-01-01

    We compute and study the infrared and sub-mm properties of high redshift (z>1) simulated clusters and proto-clusters, by coupling the results of a large set of hydro-dynamical zoom-in simulations including active galactic nuclei (AGN) feedback (Ragone-Figueroa et al. 2013), with the recently developed radiative transfer code GRASIL3D (Dominguez-Tenreiro et al. 2014), which accounts for the effect of dust reprocessing in an arbitrary geometry, and we customized for the present purpose. While this field is in its infancy from the observational point of view, a rapid development is expected in the near future, thanks to observations performed in the far IR and sub-mm bands. Notably, we find that in this spectral regime our prediction are little affected by the assumption required by this post-processing, and the emission is mostly powered by star formation rather than accretion onto super massive black hole (SMBH). The comparison with the little observational information available so far, highlights that the sim...

  20. Detecting Inception of Hydrodynamic Cavitation Noise of Ships using Quadratic Phase Coupling Index as an Indicator

    Directory of Open Access Journals (Sweden)

    M. Sandhya

    2015-03-01

    Full Text Available There is ever increasing interest in underwater noise control onboard ships as part of concerted efforts to reduce ship’s radiated noise. Reduction of radiated noise is considered important as it will affect the performance of hydro-acoustic systems such as sonars, echo sounders, towed systems, etc. Out of three major sources of noise onboard ships, viz., machinery, propeller, and hydrodynamic noise, propeller noise is considered a major source beyond certain speed at which propellers cavitate produces cavitation noise. The inception speed of propeller cavitation is generally accompanied by sudden increase in radiated noise level of 8-15 dB when measured using a hydrophone placed on the seabed. This paper attempts to establish the concept of quadratic phase coupling index as an indicator to detect inception of cavitation of ship propellers. This concept was tested on actual ship radiated noise data measured at sea for evaluating its effectiveness.Defence Science Journal, Vol. 65, No. 1, January 2015, pp.53-62, DOI:http://dx.doi.org/10.14429/dsj.65.7885

  1. Planetesimal Growth through the Accretion of Small Solids: Hydrodynamics Simulations with Gas-Particle Coupling

    Science.gov (United States)

    Hughes, Anna; Boley, Aaron C.

    2016-10-01

    The growth and migration of planetesimals in young protoplanetary disks are fundamental to the planet formation process. A number of mechanisms seemingly inhibit small grains from growing to sizes much larger than a centimeter, limiting planetesimal growth. In spite of this, the meteoritic record, abundance of exoplanets, and the lifetimes of disks considered altogether indicate that growth must be rapid and common. If a small number of 100-km sized planetesimals do form by some method such as the streaming instability, then gas drag effects could enable those objects to accrete small solids efficiently. In particular, accretion rates for such planetesimals could be higher or lower than rates based on the geometric cross-section and gravitational focusing alone. The local gas conditions and properties of accreting bodies select a locally optimal accretion size for the pebbles. As planetesimals accrete pebbles, they feel an additional angular momentum exchange - causing the planetesimal to slowly drift inward, which becomes significant at short orbital periods. We present self-consistent hydrodynamic simulations with direct particle integration and gas-drag coupling to evaluate the rate of planetesimal growth due to pebble accretion. We explore a range of particle sizes, planetesimal properties, and disk conditions using wind tunnel simulations. These results are followed by numerical analysis of planetesimal drift rates at a variety of stellar distances.

  2. Calculating rotating hydrodynamic and magneto-hydrodynamic waves to understand magnetic effects on dynamical tides

    CERN Document Server

    Wei, Xing

    2016-01-01

    For understanding magnetic effects on dynamical tides, we study the rotating magneto-hydrodynamic (MHD) flow driven by harmonic forcing. The linear responses are analytically derived in a periodic box under the local WKB approximation. Both the kinetic and Ohmic dissipations at the resonant frequencies are calculated and the various parameters are investigated. Although magnetic pressure may be negligible compared to thermal pressure, magnetic field can be important for the first-order perturbation, e.g. dynamical tides. It is found that magnetic field splits the resonant frequency, namely the rotating hydrodynamic flow has only one resonant frequency but the rotating MHD flow has two, one positive and the other negative. In the weak field regime the dissipations are asymmetric around the two resonant frequencies and this asymmetry is more striking with a weaker magnetic field. It is also found that both the kinetic and Ohmic dissipations at the resonant frequencies are inversely proportional to the Ekman num...

  3. Coupled discrete element and smoothed particle hydrodynamics simulations of the die filling process

    Science.gov (United States)

    Breinlinger, Thomas; Kraft, Torsten

    2016-11-01

    Die filling is an important part of the powder compaction process chain, where defects in the final part can be introduced—or prevented. Simulation of this process is therefore a goal for many part producers and has been studied by some researchers already. In this work, we focus on the influence of the surrounding air on the powder flow. We demonstrate the implementing and coupling of the discrete element method for the granular powder and the smoothed particle hydrodynamics method for the gas flow. Application of the method to the die filling process is demonstrated.

  4. The dynamic coupling of a third-generation wave model and a 3D hydrodynamic model through boundary layers

    Science.gov (United States)

    Zhang, M. Y.; Li, Y. S.

    1997-08-01

    A third-generation wind wave model based on the energy balance equation taking into account the effects of time-varying currents and coupled dynamically with a semi-implicit three-dimensional hydrodynamic model incorporating the influences of time- and space-varying vertical eddy viscosity, bottom topography and wave-current interactions is presented in this paper. The wave model is synchronously coupled with the three-dimensional hydrodynamic model through the surface atmospheric turbulent boundary layer and the bottom boundary layer. The theory of Janssen (1991) (in Journal of Physical Oceanography21, 1631-1642) is used to incorporate the effects of waves on the surface boundary layer, while the theory of Grant and Maddsen (1979) [in Journal of Geophysical Research (Oceans)84, 1797-1808], which was used by Signell et al. (1990) (in Journal of Geophysical Research95, 9671-9678) on the bottom boundary layer for constant waves, is modified for the inclusion of time-varying waves. The mutual influences between waves and currents are investigated through an idealized continental shelf case and hindcastings of storm events in the sea area adjacent to Hong Kong in the northern South China Sea. Calculations are compared with other computed results and observations. Calculations show that the wave-dependent surface stress incorporated in the three-dimensional hydrodynamic model has significant impact on water surface velocities and surface elevations (over 10% higher). The inclusion of wave-dependent bottom stress also shows some effects; however, in the presence of the wave-dependent surface stress, its effect on surge levels becomes negligible. The effect of currents on waves amounts to the reduction of the significant wave height by about 8% and less for wave mean periods. However, the inclusion of the wave-dependent bottom stress in the three-dimensional hydrodynamic model has little effect on wave characteristics whether or not the wave-dependent surface stress is

  5. Galilean Anomalies and Their Effect on Hydrodynamics

    CERN Document Server

    Jain, Akash

    2015-01-01

    We extend the null background construction of [arXiv:1505.05677,arXiv:1509.04718] to include torsion and a conserved spin current, and use it to study gauge and gravitational anomalies in Galilean theories coupled to torsional Newton-Cartan backgrounds. We establish that the relativistic anomaly inflow mechanism with an appropriately modified anomaly polynomial, can be used to generate these anomalies. Similar to relativistic case, we find that Galilean anomalies also survive only in even dimensions. Further, these anomalies only effect the gauge and rotational symmetries of a Galilean theory; in particular the Milne boost symmetry remains non-anomalous. We also extend the transgression machinery used in relativistic fluids to fluids on null backgrounds, and use it to determine how these anomalies affect the constitutive relations of a Galilean fluid. Unrelated to Galilean fluids, we propose an analogue of the off-shell second law of thermodynamics for relativistic fluids introduced by [arXiv:1106.0277], to i...

  6. Coupling of Smoothed Particle Hydrodynamics with Finite Volume method for free-surface flows

    Science.gov (United States)

    Marrone, S.; Di Mascio, A.; Le Touzé, D.

    2016-04-01

    A new algorithm for the solution of free surface flows with large front deformation and fragmentation is presented. The algorithm is obtained by coupling a classical Finite Volume (FV) approach, that discretizes the Navier-Stokes equations on a block structured Eulerian grid, with an approach based on the Smoothed Particle Hydrodynamics (SPH) method, implemented in a Lagrangian framework. The coupling procedure is formulated in such a way that each solver is applied in the region where its intrinsic characteristics can be exploited in the most efficient and accurate way: the FV solver is used to resolve the bulk flow and the wall regions, whereas the SPH solver is implemented in the free surface region to capture details of the front evolution. The reported results clearly prove that the combined use of the two solvers is convenient from the point of view of both accuracy and computing time.

  7. Coupling hydrodynamic and wave models: first step and sensitivity experiments in the Mediterranean Sea

    Science.gov (United States)

    Clementi, Emanuela; Oddo, Paolo; Drudi, Massimiliano; Pinardi, Nadia; Korres, Gerasimos; Grandi, Alessandro

    2017-07-01

    This work describes the first step towards a fully coupled modelling system composed of an ocean circulation and a wind wave model. Sensitivity experiments are presented for the Mediterranean Sea where the hydrodynamic model NEMO is coupled with the third-generation wave model WaveWatchIII (WW3). Both models are implemented at 1/16° horizontal resolution and are forced by ECMWF 1/4° horizontal resolution atmospheric fields. The models are two-way coupled at hourly intervals exchanging the following fields: sea surface currents and temperature are transferred from NEMO to WW3 by modifying the mean momentum transfer of waves and the wind speed stability parameter, respectively. The neutral drag coefficient computed by WW3 is then passed to NEMO, which computes the surface stress. Five-year (2009-2013) numerical experiments were carried out in both uncoupled and coupled mode. In order to validate the modelling system, numerical results were compared with coastal and drifting buoys and remote sensing data. The results show that the coupling of currents with waves improves the representation of the wave spectrum. However, the wave-induced drag coefficient shows only minor improvements in NEMO circulation fields, such as temperature, salinity, and currents.

  8. Coupling hydrodynamic and wave models: first step and sensitivity experiments in the Mediterranean Sea

    Science.gov (United States)

    Clementi, Emanuela; Oddo, Paolo; Drudi, Massimiliano; Pinardi, Nadia; Korres, Gerasimos; Grandi, Alessandro

    2017-10-01

    This work describes the first step towards a fully coupled modelling system composed of an ocean circulation and a wind wave model. Sensitivity experiments are presented for the Mediterranean Sea where the hydrodynamic model NEMO is coupled with the third-generation wave model WaveWatchIII (WW3). Both models are implemented at 1/16° horizontal resolution and are forced by ECMWF 1/4° horizontal resolution atmospheric fields. The models are two-way coupled at hourly intervals exchanging the following fields: sea surface currents and temperature are transferred from NEMO to WW3 by modifying the mean momentum transfer of waves and the wind speed stability parameter, respectively. The neutral drag coefficient computed by WW3 is then passed to NEMO, which computes the surface stress. Five-year (2009-2013) numerical experiments were carried out in both uncoupled and coupled mode. In order to validate the modelling system, numerical results were compared with coastal and drifting buoys and remote sensing data. The results show that the coupling of currents with waves improves the representation of the wave spectrum. However, the wave-induced drag coefficient shows only minor improvements in NEMO circulation fields, such as temperature, salinity, and currents.

  9. Parametric Design of Hydrodynamic Coupling%液力偶合器参数化设计系统的开发

    Institute of Scientific and Technical Information of China (English)

    刘刚

    2012-01-01

    利用UG二次开发,对液力偶合器进行参数化设计,并开发液力偶合器参数化设计系统。通过改变偶合器的5个参数:有效直径、腔型半径、叶片缩进距离、叶片数量、泵轮与涡轮间隙,得到满足需求的偶合器三维图形。%Parametric design of the hydrodynamic coupling is proposed using the secondary development of UG, and exploiting parametric design system of hydrodynamic coupling. Through changing the five different parameters, namely, effective diameter, chamber radius, blade indent distance, blade number, and interspace between pump and turbine, the three dimensional model of coupling which suffice the requirement is achieved.

  10. Bulk Viscosity Effects in Event-by-Event Relativistic Hydrodynamics

    CERN Document Server

    Noronha-Hostler, Jacquelyn; Noronha, Jorge; Andrade, Rone P G; Grassi, Frederique

    2013-01-01

    Bulk viscosity effects on the collective flow harmonics in heavy ion collisions are investigated, on an event by event basis, using a newly developed 2+1 Lagrangian hydrodynamic code named v-USPhydro which implements the Smoothed Particle Hydrodynamics (SPH) algorithm for viscous hydrodynamics. A new formula for the bulk viscous corrections present in the distribution function at freeze-out is derived starting from the Boltzmann equation for multi-hadron species. Bulk viscosity is shown to enhance the collective flow Fourier coefficients from $v_2(p_T)$ to $v_5(p_T)$ when $% p_{T}\\sim 1-3$ GeV even when the bulk viscosity to entropy density ratio, $% \\zeta/s$, is significantly smaller than $1/(4\\pi)$.

  11. Non-dissipative hydrodynamics: effective actions versus entropy current

    Science.gov (United States)

    Bhattacharya, Jyotirmoy; Bhattacharyya, Sayantani; Rangamani, Mukund

    2013-02-01

    While conventional hydrodynamics incorporating dissipative effects is hard to derive from an action principle, it is nevertheless possible to construct classical actions when the dissipative terms are switched off. In this note we undertake a systematic exploration of such constructions from an effective field theory approach and argue for the existence of non-trivial second order non-dissipative hydrodynamics involving pure energy-momentum transport. We find these fluids to be characterized by five second-order transport coefficients based on the effective action (a three parameter family is Weyl invariant). On the other hand since all flows of such fluids are non-dissipative, they entail zero entropy production; one can therefore understand them using the entropy current formalism which has provided much insight into hydrodynamic transport. An analysis of the most general stress tensor with zero entropy production however turns out to give a seven parameter family of non-dissipative hydrodynamics (a four parameter sub-family being Weyl invariant). The non-dissipative fluids derived from the effective action approach are a special case of the fluid dynamics constrained by conservation of the entropy current. We speculate on the reasons for the mismatch and potential limitations of the effective action approach.

  12. A COUPLED MODEL OF HYDRODYNAMICS AND WATER QUALITY FOR YUQIAO RESERVOIR IN HAIHE RIVER BASIN

    Institute of Scientific and Technical Information of China (English)

    LIU Xiao-bo; PENG Wen-qi; HE Guo-jian; LIU Jing-ling; WANG Yu-chun

    2008-01-01

    In order to simulate the characteristics of hydrodynamic field and mass transport processes in the Yuqiao Reservoir (YQR), a 2-D coupled model of hydrodynamics and water quality was developed, and the water-quality related state variables in this model included CODMn, TN and TP. The hydrodynamic model was driven by employing observed winds and daily measured flow data to simulate the seasonal water cycle of the reservoir. The simulation of the mass transport and transformation processes of CODMn, TN and TP was based on the unsteady diffusion equations, driven by observed meteorological forcing and external Ioadings, with the fluxes form the bottom of reservoir and the plant photosynthesis and respiration as internal sources and sinks. A finite volume method and Alternating Direction Implicit (ADI) scheme were used to solve these equations. The model was calibrated and verified by using the data observed from YQR in two different years. The results showed that in YQR, the wind-driven current was an important style of lake current, while the concentration of water quality item was decreasing from east to west because of the external pollutant loadings. There was a good agreement between the simulated and measured values, with the minimal calculation error percent of 0.1% and 2.6% and the mean error percent of 44.0% and 51.2% for TN and TP separately. The simulation also showed that, in YQR, the convection was the main process in estuaries of inflow river, and diffusion and biochemical processes dominate in center of reservoir. So it was necessary to build a pre-pond to reduce the external Ioadings into the reservoir.

  13. Ultrasmooth surface polishing based on the hydrodynamic effect.

    Science.gov (United States)

    Peng, Wenqiang; Guan, Chaoliang; Li, Shengyi

    2013-09-01

    This study will examine the feasibility of applying the hydrodynamic effect to ultrasmooth surface polishing. Differing from conventional pad polishing, hydrodynamic effect polishing is noncontact, as the polishing wheel is floated on the workpiece under the hydrodynamic effect. The material removal mechanism and the removal contour are analyzed in detail. Dynamic pressure and shear stress distribution on the workpiece are numerically simulated in three dimensions under different clearances between the polishing wheel and the workpiece, showing that the dynamic pressure distribution and the magnitude of shear stress on the workpiece are greatly influenced by the clearance. It is clearly demonstrated from fixed-point polishing experiments that material removal rates and contours are determined by the combined action of dynamic pressure and shear stress. A material removal analytic model is presented with the hydrodynamic effect polishing method. Finally, a polishing experiment is conducted on a quartz glass and the plastic scratches, cracks, and bumpy structures on the initial surface are clearly removed. Moreover, the processed surface roughness is improved to 0.145 nm rms, 0.116 nm Ra.

  14. Oil dehydration using hydrodynamic effects and electrical fields

    Energy Technology Data Exchange (ETDEWEB)

    Skipin, V.S.; Cherepnin, V.V.; Didenko, V.I.

    1980-01-01

    This article examines the influence of hydrodynamic effects and electrical fields upon the water content of commercial oil. It is demonstrated that increasing the period of contact of the emulsion with a reagent and a unit for emulsive perturbation and reagent transfer, leads to a dosage reduction with a resulting high-quality of oil.

  15. Coupled 1D-2D hydrodynamic inundation model for sewer overflow: Influence of modeling parameters

    Directory of Open Access Journals (Sweden)

    Adeniyi Ganiyu Adeogun

    2015-10-01

    Full Text Available This paper presents outcome of our investigation on the influence of modeling parameters on 1D-2D hydrodynamic inundation model for sewer overflow, developed through coupling of an existing 1D sewer network model (SWMM and 2D inundation model (BREZO. The 1D-2D hydrodynamic model was developed for the purpose of examining flood incidence due to surcharged water on overland surface. The investigation was carried out by performing sensitivity analysis on the developed model. For the sensitivity analysis, modeling parameters, such as mesh resolution Digital Elevation Model (DEM resolution and roughness were considered. The outcome of the study shows the model is sensitive to changes in these parameters. The performance of the model is significantly influenced, by the Manning's friction value, the DEM resolution and the area of the triangular mesh. Also, changes in the aforementioned modeling parameters influence the Flood characteristics, such as the inundation extent, the flow depth and the velocity across the model domain.

  16. Computational hydrodynamics and optical performance of inductively-coupled plasma adaptive lenses

    Energy Technology Data Exchange (ETDEWEB)

    Mortazavi, M.; Urzay, J., E-mail: jurzay@stanford.edu; Mani, A. [Center for Turbulence Research, Stanford University, Stanford, California 94305-3024 (United States)

    2015-06-15

    This study addresses the optical performance of a plasma adaptive lens for aero-optical applications by using both axisymmetric and three-dimensional numerical simulations. Plasma adaptive lenses are based on the effects of free electrons on the phase velocity of incident light, which, in theory, can be used as a phase-conjugation mechanism. A closed cylindrical chamber filled with Argon plasma is used as a model lens into which a beam of light is launched. The plasma is sustained by applying a radio-frequency electric current through a coil that envelops the chamber. Four different operating conditions, ranging from low to high powers and induction frequencies, are employed in the simulations. The numerical simulations reveal complex hydrodynamic phenomena related to buoyant and electromagnetic laminar transport, which generate, respectively, large recirculating cells and wall-normal compression stresses in the form of local stagnation-point flows. In the axisymmetric simulations, the plasma motion is coupled with near-wall axial striations in the electron-density field, some of which propagate in the form of low-frequency traveling disturbances adjacent to vortical quadrupoles that are reminiscent of Taylor-Görtler flow structures in centrifugally unstable flows. Although the refractive-index fields obtained from axisymmetric simulations lead to smooth beam wavefronts, they are found to be unstable to azimuthal disturbances in three of the four three-dimensional cases considered. The azimuthal striations are optically detrimental, since they produce high-order angular aberrations that account for most of the beam wavefront error. A fourth case is computed at high input power and high induction frequency, which displays the best optical properties among all the three-dimensional simulations considered. In particular, the increase in induction frequency prevents local thermalization and leads to an axisymmetric distribution of electrons even after introduction of

  17. Eigenmodes of a hydrodynamically coupled micron-size multiple-particle ring

    Science.gov (United States)

    di Leonardo, R.; Keen, S.; Leach, J.; Saunter, C. D.; Love, G. D.; Ruocco, G.; Padgett, M. J.

    2007-12-01

    We use a continuous acquisition, high-speed camera with integrated centroid tracking to simultaneously measure the positions of a ring of micron-sized particles held in holographic optical tweezers. Hydrodynamic coupling between the particles gives a set of eigenmodes, each one independently relaxing with a characteristic decay rate (eigenvalue) that can be measured using our positional data. Despite the finite particle size, we find an excellent agreement between the measured eigenvalues and those numerically predicted by Oseen theory applied to the two-dimensional (2D) ring geometry. Particle motions are also analyzed in terms of the alternative eigenmode set obtained by wrapping onto the ring the eigenmodes of a 1D periodic chain. We identify the modes for which the periodic chain is a good approximation to the ring and those for which it is not.

  18. ONE- AND TWO-DIMENSIONAL COUPLED HYDRODYNAMICS MODEL FOR DAM BREAK FLOW

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    1-D and 2-D mathematical models for dam break flow were established and verified with the measured data in laboratory. The 1-D and 2-D models were then coupled, and used to simulate the dam break flow from the reservoir tail to the dam site, the propagation of dam break waves in the downstream channel, and the submergence of dam break flow in the downstream town with the hydrodynamics method. As a numerical example, the presented model was employed to simulate dam break flow of a hydropower station under construction. In simulation, different dam-break durations, upstream flows and water levels in front of dam were considered, and these influencing factors of dam break flow were analyzed, which could be referenced in planning and designing hydropower stations.

  19. Effect of Second-Order Hydrodynamics on Floating Offshore Wind Turbines: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Roald, L.; Jonkman, J.; Robertson, A,; Chokani, N.

    2013-07-01

    Offshore winds are generally stronger and more consistent than winds on land, making the offshore environment attractive for wind energy development. A large part of the offshore wind resource is however located in deep water, where floating turbines are the only economical way of harvesting the energy. The design of offshore floating wind turbines relies on the use of modeling tools that can simulate the entire coupled system behavior. At present, most of these tools include only first-order hydrodynamic theory. However, observations of supposed second-order hydrodynamic responses in wave-tank tests performed by the DeepCwind consortium suggest that second-order effects might be critical. In this paper, the methodology used by the oil and gas industry has been modified to apply to the analysis of floating wind turbines, and is used to assess the effect of second-order hydrodynamics on floating offshore wind turbines. The method relies on combined use of the frequency-domain tool WAMIT and the time-domain tool FAST. The proposed assessment method has been applied to two different floating wind concepts, a spar and a tension-leg-platform (TLP), both supporting the NREL 5-MW baseline wind turbine. Results showing the hydrodynamic forces and motion response for these systems are presented and analysed, and compared to aerodynamic effects.

  20. Consistent temperature coupling with thermal fluctuations of smooth particle hydrodynamics and molecular dynamics.

    Science.gov (United States)

    Ganzenmüller, Georg C; Hiermaier, Stefan; Steinhauser, Martin O

    2012-01-01

    We propose a thermodynamically consistent and energy-conserving temperature coupling scheme between the atomistic and the continuum domain. The coupling scheme links the two domains using the DPDE (Dissipative Particle Dynamics at constant Energy) thermostat and is designed to handle strong temperature gradients across the atomistic/continuum domain interface. The fundamentally different definitions of temperature in the continuum and atomistic domain - internal energy and heat capacity versus particle velocity - are accounted for in a straightforward and conceptually intuitive way by the DPDE thermostat. We verify the here-proposed scheme using a fluid, which is simultaneously represented as a continuum using Smooth Particle Hydrodynamics, and as an atomistically resolved liquid using Molecular Dynamics. In the case of equilibrium contact between both domains, we show that the correct microscopic equilibrium properties of the atomistic fluid are obtained. As an example of a strong non-equilibrium situation, we consider the propagation of a steady shock-wave from the continuum domain into the atomistic domain, and show that the coupling scheme conserves both energy and shock-wave dynamics. To demonstrate the applicability of our scheme to real systems, we consider shock loading of a phospholipid bilayer immersed in water in a multi-scale simulation, an interesting topic of biological relevance.

  1. Consistent temperature coupling with thermal fluctuations of smooth particle hydrodynamics and molecular dynamics.

    Directory of Open Access Journals (Sweden)

    Georg C Ganzenmüller

    Full Text Available We propose a thermodynamically consistent and energy-conserving temperature coupling scheme between the atomistic and the continuum domain. The coupling scheme links the two domains using the DPDE (Dissipative Particle Dynamics at constant Energy thermostat and is designed to handle strong temperature gradients across the atomistic/continuum domain interface. The fundamentally different definitions of temperature in the continuum and atomistic domain - internal energy and heat capacity versus particle velocity - are accounted for in a straightforward and conceptually intuitive way by the DPDE thermostat. We verify the here-proposed scheme using a fluid, which is simultaneously represented as a continuum using Smooth Particle Hydrodynamics, and as an atomistically resolved liquid using Molecular Dynamics. In the case of equilibrium contact between both domains, we show that the correct microscopic equilibrium properties of the atomistic fluid are obtained. As an example of a strong non-equilibrium situation, we consider the propagation of a steady shock-wave from the continuum domain into the atomistic domain, and show that the coupling scheme conserves both energy and shock-wave dynamics. To demonstrate the applicability of our scheme to real systems, we consider shock loading of a phospholipid bilayer immersed in water in a multi-scale simulation, an interesting topic of biological relevance.

  2. A quantification of hydrodynamical effects on protoplanetary dust growth

    CERN Document Server

    Sellentin, E; Windmark, F; Dullemond, C P

    2013-01-01

    Context. The growth process of dust particles in protoplanetary disks can be modeled via numerical dust coagulation codes. In this approach, physical effects that dominate the dust growth process often must be implemented in a parameterized form. Due to a lack of these parameterizations, existing studies of dust coagulation have ignored the effects a hydrodynamical gas flow can have on grain growth, even though it is often argued that the flow could significantly contribute either positively or negatively to the growth process. Aims. We intend to provide a quantification of hydrodynamical effects on the growth of dust particles, such that these effects can be parameterized and implemented in a dust coagulation code. Methods. We numerically integrate the trajectories of small dust particles in the flow of disk gas around a proto-planetesimal, sampling a large parameter space in proto-planetesimal radii, headwind velocities, and dust stopping times. Results. The gas flow deflects most particles away from the pr...

  3. Numerical analysis of the texture effect on the hydrodynamic performance of a mechanical seal

    Science.gov (United States)

    Adjemout, M.; Brunetiere, N.; Bouyer, J.

    2016-03-01

    The purpose of this paper is to analyze the effect of the main geometrical characteristics of texture on the hydrodynamic lubrication of a mechanical seal. A parametric study was carried out in order to improve the performance of a mechanical seal. The numerical model used in this study solves the Reynolds equation coupled with a mass conservative model which takes into account the cavitation phenomenon. It is shown that among the six dimple shapes tested herein, namely cylinder, square, triangle, truncated cone, truncated pyramid, and spherical cap, the triangular dimples placed symmetrically with respect to their bases are more effective for enhancing the hydrodynamic performance of the mechanical seal. The effect of the area and depth ratios is studied and optimized as well. The optimized solution is able to minimize friction and leakage under a range of operating conditions.

  4. Radiation hydrodynamics of triggered star formation: the effect of the diffuse radiation field

    CERN Document Server

    Haworth, Thomas J

    2011-01-01

    We investigate the effect of including diffuse field radiation when modelling the radiatively driven implosion of a Bonnor-Ebert sphere (BES). Radiation-hydrodynamical calculations are performed by using operator splitting to combine Monte Carlo photoionization with grid-based Eulerian hydrodynamics that includes self-gravity. It is found that the diffuse field has a significant effect on the nature of radiatively driven collapse which is strongly coupled to the strength of the driving shock that is established before impacting the BES. This can result in either slower or more rapid star formation than expected using the on-the-spot approximation depending on the distance of the BES from the source object. As well as directly compressing the BES, stronger shocks increase the thickness and density in the shell of accumulated material, which leads to short, strong, photo-evaporative ejections that reinforce the compression whenever it slows. This happens particularly effectively when the diffuse field is includ...

  5. The unreasonable effectiveness of hydrodynamics in heavy ion collisions

    Science.gov (United States)

    Noronha-Hostler, Jacquelyn; Noronha, Jorge; Gyulassy, Miklos

    2016-12-01

    Event-by-event hydrodynamic simulations of AA and pA collisions involve initial energy densities with large spatial gradients. This is associated with the presence of large Knudsen numbers (Kn ≈ 1) at early times, which may lead one to question the validity of the hydrodynamic approach in these rapidly evolving, largely inhomogeneous systems. A new procedure to smooth out the initial energy densities is employed to show that the initial spatial eccentricities, εn, are remarkably robust with respect to variations in the underlying scale of initial energy density spatial gradients, λ. For √{sNN} = 2.76 TeV LHC initial conditions generated by the MCKLN code, εn (across centralities) remains nearly constant if the fluctuation scale varies by an order of magnitude, i.e., when λ varies from 0.1 to 1 fm. Given that the local Knudsen number Kn ≈ 1 / λ, the robustness of the initial eccentricities with respect to changes in the fluctuation scale suggests that the vn's cannot be used to distinguish between events with large Kn from events where Kn is in the hydrodynamic regime. We use the 2+1 Lagrangian hydrodynamic code v-USPhydro to show that this is indeed the case: anisotropic flow coefficients computed within event-by-event viscous hydrodynamics are only sensitive to long wavelength scales of order 1 /ΛQCD ≈ 1 fm and are incredibly robust with respect to variations in the initial local Knudsen number. This robustness can be used to justify the somewhat unreasonable effectiveness of the nearly perfect fluid paradigm in heavy ion collisions.

  6. Application of an Ensemble Kalman filter to a 1-D coupled hydrodynamic-ecosystem model of the Ligurian Sea

    NARCIS (Netherlands)

    Lenartz, F.; Raick, C.; Soetaert, K.E.R.; Grégoire, M.

    2007-01-01

    The Ensemble Kalman filter (EnKF) has been applied to a 1-D complex ecosystem model coupled with a hydrodynamic model of the Ligurian Sea. In order to improve the performance of the EnKF, an ensemble subsampling strategy has been used to better represent the covariance matrices and a pre-analysis st

  7. Critical behavior of non-hydrodynamic quasinormal modes in a strongly coupled plasma

    CERN Document Server

    Finazzo, Stefano I; Zaniboni, Maicon; Critelli, Renato; Noronha, Jorge

    2016-01-01

    We study the behavior of quasinormal modes in a top-down holographic dual corresponding to a strongly coupled $\\mathcal{N} = 4$ super Yang-Mills plasma charged under a $U(1)$ subgroup of the global $SU(4)$ R-symmetry. In particular, we analyze the spectra of quasinormal modes in the external scalar and vector diffusion channels near the critical point and obtain the behavior of the characteristic equilibration times of the plasma as the system evolves towards the critical point of its phase diagram. Except close to the critical point, we observe that by increasing the chemical potential one generally increases the damping rate of the quasinormal modes, which leads to a reduction of the characteristic equilibration times in the dual strongly coupled plasma. However, as one approaches the critical point the equilibration times associated with non-hydrodynamic modes at zero wavenumber are enhanced, acquiring an infinite slope at the critical point. We obtain that the derivatives of all the characteristic equilib...

  8. Piezoviscous effects in nonconformal contacts lubricated hydrodynamically

    Science.gov (United States)

    Jeng, Yeau-Ren; Hamrock, Bernard J.; Brewe, David E.

    1987-10-01

    The analysis is concerned with the piezoviscous-rigid regime of lubrication for the general case of elliptical contacts. In this regime several formulas of the lubricant film thickness have been proposed by Hamrock and Dowson, by Dowson et al., and more recently by Houpert. However, either they do not include the load parameter W, which has a strong effect on film thickness, or they overestimate the film thickness by using the Barus formula for pressure-viscosity characteristics. The Roelands formula was used for the pressure-viscosity relationship. The effects of the dimensionless load, speed, and materials parameters, the radius ratio, and the lubricant entrainment direction were investigated. The dimensionless load parameter was varied over a range of one order of magnitude. The dimensionless speed parameter was varied by 5.6 times the lowest value. Conditions corresponding to the use of solid materials of steel, bronze, and silicon nitride and lubricants of paraffinic and naphthenic mineral oil were considered in obtaining the exponent in the dimensionless materials parameter. The radius ratio was varied from 0.2 to 64 (a configuration approaching a line contact). Forty-one cases were used in obtaining a minimum film thickness formula. Contour plots indicate in detail the pressure developed between the contacting solids.

  9. Dissipation in the effective field theory for hydrodynamics: First order effects

    CERN Document Server

    Endlich, Solomon; Porto, Rafael A; Wang, Junpu

    2013-01-01

    We introduce dissipative effects in the effective field theory of hydrodynamics. We do this in a model-independent fashion by coupling the long-distance degrees of freedom explicitly kept in the effective field theory to a generic sector that "lives in the fluid", which corresponds physically to the microscopic constituents of the fluid. At linear order in perturbations, the symmetries, the derivative expansion, and the assumption that this microscopic sector is thermalized, allow us to characterize the leading dissipative effects at low frequencies via three parameters only, which correspond to bulk viscosity, shear viscosity, and--in the presence of a conserved charge--heat conduction. Using our methods we re-derive the Kubo relations for these transport coefficients.

  10. Atomistic Hydrodynamics and the Dynamical Hydrophobic Effect in Porous Graphene.

    Science.gov (United States)

    Strong, Steven E; Eaves, Joel D

    2016-05-19

    Mirroring their role in electrical and optical physics, two-dimensional crystals are emerging as novel platforms for fluid separations and water desalination, which are hydrodynamic processes that occur in nanoscale environments. For numerical simulation to play a predictive and descriptive role, one must have theoretically sound methods that span orders of magnitude in physical scales, from the atomistic motions of particles inside the channels to the large-scale hydrodynamic gradients that drive transport. Here, we use constraint dynamics to derive a nonequilibrium molecular dynamics method for simulating steady-state mass flow of a fluid moving through the nanoscopic spaces of a porous solid. After validating our method on a model system, we use it to study the hydrophobic effect of water moving through pores of electrically doped single-layer graphene. The trend in permeability that we calculate does not follow the hydrophobicity of the membrane but is instead governed by a crossover between two competing molecular transport mechanisms.

  11. Anisotropic hydrodynamics, holography and the chiral magnetic effect

    Energy Technology Data Exchange (ETDEWEB)

    Gahramanov, Ilmar; Kalaydzhyan, Tigran; Kirsch, Ingo [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Hamburg Univ. (Germany). Zentrum fuer Mathematische Physik

    2012-03-15

    We discuss a possible dependence of the chiral magnetic effect (CME) on the elliptic flow coefficient {upsilon}{sub 2}. We first study this in a hydrodynamic model for a static anisotropic plasma with multiple anomalous U(1) currents. In the case of two charges, one axial and one vector, the CME formally appears as a first-order transport coefficient in the vector current. We compute this transport coefficient and show its dependence on {upsilon}{sub 2}. We also determine the CME-coefficient from first-order corrections to the dual AdS background using the fluid-gravity duality. For small anisotropies, we find numerical agreement with the hydrodynamic result. (orig.)

  12. Effect of short range hydrodynamic on bimodal colloidal gel systems

    Science.gov (United States)

    Boromand, Arman; Jamali, Safa; Maia, Joao

    2015-03-01

    Colloidal Gels and disordered arrested systems has been studied extensively during the past decades. Although, they have found their place in multiple industries such as cosmetic, food and so on, their physical principals are still far beyond being understood. The interplay between different types of interactions from quantum scale, Van der Waals interaction, to short range interactions, depletion interaction, and long range interactions such as electrostatic double layer makes this systems challenging from simulation point of view. Many authors have implemented different simulation techniques such as molecular dynamics (MD) and Brownian dynamics (BD) to capture better picture during phase separation of colloidal system with short range attractive force. However, BD is not capable to include multi-body hydrodynamic interaction and MD is limited by the computational resources and is limited to short time and length scales. In this presentation we used Core-modified dissipative particle dynamics (CM-DPD) with modified depletion potential, as a coarse-grain model, to address the gel formation process in short ranged-attractive colloidal suspensions. Due to the possibility to include and separate short and long ranged-hydrodynamic forces in this method we studied the effect of each of those forces on the final morphology and report one of the controversial question in this field on the effect of hydrodynamics on the cluster formation process on bimodal, soft-hard colloidal mixtures.

  13. Coastal erosion vulnerability estimations by coupling field data and hydrodynamic modeling

    Science.gov (United States)

    Finikianaki, Vasilia; Alexandrakis, George; Poulos, Serafim; Ghionis, George; Kampanis, Nikolaos

    2017-04-01

    Wind generated waves are a dominant factor of coastal zone evolution as they induce nearshore sediment movement. Significant sediment transport and the associated morphological changes of the coastal zone are related, mainly, to storm events. In this study, the effects of a severe storm event, associated with the Etesian winds, that took place from the 24th to 30th of July at Gouves beach (north coast of Crete) were monitored ([1], [2]) and subsequently simulated, with the use of the Delft3D model, in order to provide necessary data for estimating beach vulnerability. Beach vulnerability to erosion was estimated by the BVI method ([3]), which has the ability to refer to smaller sectors of an individual beach. The interaction between waves and currents, which is required for the computation of the BVI, was obtained by the coupling of two models included in Delft3D: the Delft3D - FLOW, for the hydrodynamic computations and the sediment transport processes; and the Delft3D - WAVE, for the computation of the wave field. Boundary conditions were derived from the field data, assuming a JONSWAP spectrum. Additionally, 3 observation points were used for the monitoring of the computed quantities as a function of time. Their positions coincide with those of the three Valeport Autonomous Benthic Recorders, which were deployed at water depths of 2.60m, 3.95m and 5.62m during the field measurements. The outputs of the simulation fit well with the measured data, leading to accurate forecasted results regarding the morphodynamic conditions of the study area. Bottom changes occur mainly during the first peak of the event. The model slightly overestimates the significant wave height, the current velocity in the nearshore area and the suspended sediment concentration near the bed at the observation points. Furthermore, the model predicts a shoreward increase of sediment concentration at the observation points, with the value of accumulation at the second observation point being

  14. Coupling of an Individual-Based Model of Anchovy with Lower Trophic Level and Hydrodynamic Models

    Institute of Scientific and Technical Information of China (English)

    WANG Yuheng; WEI Hao; Michio J. Kishi

    2013-01-01

    Anchovy (Engraulisjaponicus),a small pelagic fish and food of other economic fishes,is a key species in the Yellow Sea ecosystem.Understanding the mechanisms of its recruitment and biomass variation is important for the prediction and management of fishery resources.Coupled with a hydrodynamic model (POM) and a lower trophic level ecosystem model (NEMURO),an individual-based model of anchovy is developed to study the influence of physical environment on anchovy's biomass variation.Seasonal variations of circulation,water temperature and mix-layer depth from POM are used as external forcing for NEMURO and the anchovy model.Biomasses of large zooplankton and predatory zooplankton which anchovy feeds on are output from NEMURO and are controlled by the consumption of anchovy on them.Survival fitness theory related to temperature and food is used to determine the swimming action of anchovy in the model.The simulation results agree well with observations and elucidate the influence of temperature in over-wintering migration and food in feeding migration.

  15. Maxwell-Chern-Simons Hydrodynamics for the Chiral Magnetic Effect

    CERN Document Server

    Ozonder, Sener

    2010-01-01

    The rate of vacuum changing topological solutions of the gluon field, sphalerons, is estimated to be large at the typical temperatures of heavy-ion collisions, particularly at the Relativistic Heavy Ion Collider. Such windings in the gluon field are expected to produce parity-odd bubbles, which cause separation of positively and negatively charged quarks along the axis of the external magnetic field. This Chiral Magnetic Effect can be mimicked by Chern-Simons modified electromagnetism. Here we present a model of relativistic hydrodynamics including the effects of axial anomalies via the Chern-Simons term.

  16. Protein Simulations in Fluids: Coupling the OPEP Coarse-Grained Force Field with Hydrodynamics.

    Science.gov (United States)

    Sterpone, Fabio; Derreumaux, Philippe; Melchionna, Simone

    2015-04-14

    A novel simulation framework that integrates the OPEP coarse-grained (CG) model for proteins with the Lattice Boltzmann (LB) methodology to account for the fluid solvent at mesoscale level is presented. OPEP is a very efficient, water-free and electrostatic-free force field that reproduces at quasi-atomistic detail processes like peptide folding, structural rearrangements, and aggregation dynamics. The LB method is based on the kinetic description of the solvent in order to solve the fluid mechanics under a wide range of conditions, with the further advantage of being highly scalable on parallel architectures. The capabilities of the approach are presented, and it is shown that the strategy is effective in exploring the role of hydrodynamics on protein relaxation and peptide aggregation. The end result is a strategy for modeling systems of thousands of proteins, such as in the case of dense protein suspensions. The future perspectives of the multiscale approach are also discussed.

  17. Coupled Modeling of Flow, Transport, and Deformation during Hydrodynamically Unstable Displacement in Fractured Rocks

    Science.gov (United States)

    Jha, B.; Juanes, R.

    2015-12-01

    Coupled processes of flow, transport, and deformation are important during production of hydrocarbons from oil and gas reservoirs. Effective design and implementation of enhanced recovery techniques such as miscible gas flooding and hydraulic fracturing requires modeling and simulation of these coupled proceses in geologic porous media. We develop a computational framework to model the coupled processes of flow, transport, and deformation in heterogeneous fractured rock. We show that the hydrocarbon recovery efficiency during unstable displacement of a more viscous oil with a less viscous fluid in a fractured medium depends on the mechanical state of the medium, which evolves due to permeability alteration within and around fractures. We show that fully accounting for the coupling between the physical processes results in estimates of the recovery efficiency in agreement with observations in field and lab experiments.

  18. The Raspberry model for hydrodynamic interactions revisited. II. The effect of confinement

    Science.gov (United States)

    de Graaf, Joost; Peter, Toni; Fischer, Lukas P.; Holm, Christian

    2015-08-01

    The so-called "raspberry" model refers to the hybrid lattice-Boltzmann (LB) and Langevin molecular dynamics schemes for simulating the dynamics of suspensions of colloidal particles, originally developed by Lobaskin and Dünweg [New J. Phys. 6, 54 (2004)], wherein discrete surface points are used to achieve fluid-particle coupling. In this paper, we present a follow up to our study of the effectiveness of the raspberry model in reproducing hydrodynamic interactions in the Stokes regime for spheres arranged in a simple-cubic crystal [Fischer et al., J. Chem. Phys. 143, 084107 (2015)]. Here, we consider the accuracy with which the raspberry model is able to reproduce such interactions for particles confined between two parallel plates. To this end, we compare our LB simulation results to established theoretical expressions and finite-element calculations. We show that there is a discrepancy between the translational and rotational mobilities when only surface coupling points are used, as also found in Part I of our joint publication. We demonstrate that adding internal coupling points to the raspberry can be used to correct said discrepancy in confining geometries as well. Finally, we show that the raspberry model accurately reproduces hydrodynamic interactions between a spherical colloid and planar walls up to roughly one LB lattice spacing.

  19. Thermomechanically coupled conduction mode laser welding simulations using smoothed particle hydrodynamics

    Science.gov (United States)

    Hu, Haoyue; Eberhard, Peter

    2016-10-01

    Process simulations of conduction mode laser welding are performed using the meshless Lagrangian smoothed particle hydrodynamics (SPH) method. The solid phase is modeled based on the governing equations in thermoelasticity. For the liquid phase, surface tension effects are taken into account to simulate the melt flow in the weld pool, including the Marangoni force caused by a temperature-dependent surface tension gradient. A non-isothermal solid-liquid phase transition with the release or absorption of additional energy known as the latent heat of fusion is considered. The major heat transfer through conduction is modeled, whereas heat convection and radiation are neglected. The energy input from the laser beam is modeled as a Gaussian heat source acting on the initial material surface. The developed model is implemented in Pasimodo. Numerical results obtained with the model are presented for laser spot welding and seam welding of aluminum and iron. The change of process parameters like welding speed and laser power, and their effects on weld dimensions are investigated. Furthermore, simulations may be useful to obtain the threshold for deep penetration welding and to assess the overall welding quality. A scalability and performance analysis of the implemented SPH algorithm in Pasimodo is run in a shared memory environment. The analysis reveals the potential of large welding simulations on multi-core machines.

  20. Protein simulations in fluids: coupling the OPEP coarse-grained force field with hydrodynamics

    Science.gov (United States)

    Sterpone, Fabio; Derreumaux, Philippe; Melchionna, Simone

    2017-01-01

    A novel simulation framework that integrates the OPEP coarse-grained (CG) model for proteins with the Lattice Boltzmann (LB) methodology to account for the fluid solvent at mesoscale level, is presented. OPEP is a very efficient, water-free and electrostatic-free force field that reproduces at quasi-atomistic detail processes like peptide folding, structural rearrangements and aggregation dynamics. The LB method is based on the kinetic description of the solvent in order to solve the fluid mechanics under a wide range of conditions, with the further advantage of being highly scalable on parallel architectures. The capabilities of the approach are presented and it is shown that the strategy is effective in exploring the role of hydrodynamics on protein relaxation and peptide aggregation. The end result is a strategy for modelling systems made up to thousands of proteins, such as in the case of dense protein suspensions. The future perspectives of the multi-scale approach are also discussed. PMID:26574390

  1. Hydrodynamic Boundary Effects on Thermophoresis of Confined Colloids

    Science.gov (United States)

    Würger, Alois

    2016-04-01

    We study hydrodynamic slowing down of a particle moving in a temperature gradient perpendicular to a wall. At distances much smaller than the particle radius, h ≪a , the lubrication approximation leads to the reduced velocity u /u0=3 (h /a )[ln (a /h )-9/4 ] , where u0 is the velocity in the bulk. With Brenner's result for confined diffusion, we find that the trapping efficiency, or effective Soret coefficient, increases logarithmically as the particle gets very close to the wall. Our results provide a quantitative explanation for the recently observed enhancement of thermophoretic trapping at short distances. Our discussion of parallel and perpendicular thermophoresis in a capillary reveals a good agreement with experiments on charged polystyrene particles, and sheds some light on a controversy concerning the size dependence and the nonequilibrium nature of the Soret effect.

  2. Performance analysis of coupled and uncoupled hydrodynamic and wave models in the northern Adriatic Sea

    Science.gov (United States)

    Busca, Claudia; Coluccelli, Alessandro; Valentini, Andrea; Benetazzo, Alvise; Bonaldo, Davide; Bortoluzzi, Giovanni; Carniel, Sandro; Falcieri, Francesco; Paccagnella, Tiziana; Ravaioli, Mariangela; Riminucci, Francesco; Sclavo, Mauro; Russo, Aniello

    2014-05-01

    The complex dynamics of the Adriatic Sea are the result of geographical position, orography and bathymetry, as well as rivers discharge and meteorological conditions that influence, more strongly, the shallow northern part. Such complexity requires a constant monitoring of marine conditions in order to support several activities (marine resources management, naval operations, emergency management, shipping, tourism, as well as scientific ones). Platforms, buoys and mooring located in Adriatic Sea supply almost continuously real time punctual information, which can be spatially extended, with some limitations, by drifters and remote sensing. Operational forecasting systems represent valid tools to provide a complete tridimensional coverage of the area, with a high spatial and temporal resolution. The Hydro-Meteo-Clima Service of the Emilia-Romagna Environmental Agency (ARPA-SIMC, Bologna, Italy) and the Dept. of Life and Environmental Sciences of Università Politecnica delle Marche (DISVA-UNIVPM, Ancona, Italy), in collaboration with the Institute of Marine Science of the National Research Council (ISMAR-CNR, Italy) operationally run several wave and hydrodynamic models on the Adriatic Sea. The main implementations are based on the Regional Ocean Modeling System (ROMS), the wave model Simulating WAves Nearshore (SWAN), and the coupling of the former two models in the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) system. Horizontal resolutions of the different systems range from the 2 km of AdriaROMS to the 0.5 km of the recently implemented northern Adriatic COAWST. Forecasts are produced every day for the subsequent 72 hour with hourly resolution. All the systems compute the fluxes exchanged through the interface with the atmosphere from the numerical weather prediction system named COSMO-I7, an implementation for Italy of the Consortium for Small-scale Modeling (COSMO) model, at 7 km horizontal resolution. Considering the several operational

  3. Coupling between hydrodynamics, acoustics, and heat release in a self-excited unstable combustor

    Science.gov (United States)

    Harvazinski, Matthew E.; Huang, Cheng; Sankaran, Venkateswaran; Feldman, Thomas W.; Anderson, William E.; Merkle, Charles L.; Talley, Douglas G.

    2015-04-01

    The unsteady gas dynamic field in a closed combustor is determined by the nonlinear interactions between chamber acoustics, hydrodynamics, and turbulent combustion that can energize these modes. These interactions are studied in detail using hybrid RANS/large eddy simulations (RANS = Reynolds Averaged Navier-Stokes) of a non-premixed, high-pressure laboratory combustor that produces self-excited longitudinal instabilities. The main variable in the study is the relative acoustic length between the combustion chamber and the tube that injects oxidizer into the combustor. Assuming a half-wave (closed-closed) combustion chamber, the tube lengths approximately correspond to quarter-, 3/8-, and half-wave resonators that serve to vary the phasing between the acoustic modes in the tube and the combustion chamber. The simulation correctly predicts the relatively stable behavior measured with the shortest tube and the very unstable behavior measured with the intermediate tube. Unstable behavior is also predicted for the longest tube, a case for which bifurcated stability behavior was measured in the experiment. In the first (stable) configuration, fuel flows into the combustor uninterrupted, and heat release is spatially continuous with a flame that remains attached to the back step. In the second (unstable) configuration, a cyclic process is apparent comprising a disruption in the fuel flow, subsequent detachment of the flame from the back step, and accumulation of fuel in the recirculation zone that ignites upon arrival of a compression wave reflected from the downstream boundary of the combustion chamber. The third case (mixed stable/unstable) shares features with both of the other cases. The major difference between the two cases predicted to be unstable is that, in the intermediate length tube, a pressure wave reflection inside the tube pushes unburnt fuel behind the back step radially outward, leading to a post-coupled reignition mechanism, while in the case of the

  4. Numerical analysis of anisotropic diffusion effect on ICF hydrodynamic instabilities

    Directory of Open Access Journals (Sweden)

    Olazabal-Loumé M.

    2013-11-01

    Full Text Available The effect of anisotropic diffusion on hydrodynamic instabilities in the context of Inertial Confinement Fusion (ICF flows is numerically assessed. This anisotropy occurs in indirect-drive when laminated ablators are used to modify the lateral transport [1,2]. In direct-drive, non-local transport mechanisms and magnetic fields may modify the lateral conduction [3]. In this work, numerical simulations obtained with the code PERLE [4], dedicated to linear stability analysis, are compared with previous theoretical results [5]. In these approaches, the diffusion anisotropy can be controlled by a characteristic coefficient which enables a comprehensive study. This work provides new results on the ablative Rayleigh-Taylor (RT, ablative Richtmyer-Meshkov (RM and Darrieus-Landau (DL instabilities.

  5. Surfactant effect on drop coalescence and film drainage hydrodynamics

    Science.gov (United States)

    Weheliye, Weheliye; Chinaud, Maxime; Voulgaropoulos, Victor; Angeli, Panagiota

    2015-11-01

    Coalescence of a drop on an aqueous-organic interface is studied in two test geometries A rectangular acrylic vessel and a Hele-Shaw cell (two parallel plates placed 2mm apart) are investigated for the experiments. Time resolved Particle Image Velocimetry (PIV) measurements provide information on the hydrodynamics during the bouncing stage of the droplet and on the vortices generated at the bulk fluid after the droplet has coalesced. The velocity field inside the droplet during its coalescence is presented. By localizing the rupture point of the coalescence in the quasi two dimensional cell, the film drainage dynamics are discussed by acquiring its flow velocity by PIV measurements with a straddling camera. The effect of surface tension forces in the coalescence of the droplet is investigated by introducing surface active agents at various concentrations extending on both sides of the critical micelle concentration.

  6. Driven polymer translocation in good and bad solvent: effects of hydrodynamics and tension propagation

    CERN Document Server

    Moisio, Jaakko E; Linna, Riku P

    2016-01-01

    We investigate the driven polymer translocation through a nanometer-scale pore in the presence and absence of hydrodynamics both in good and bad solvent. We measure tension of the polymer segment on the {\\it cis} side of the pore in the course of translocations simulated using stochastic rotation dynamics, also called multi-particle collision dynamics. We find that in the good solvent the tension propagates similarly whether hydrodynamics is included or not. Only the tensed segment is by a constant factor shorter in the presence of hydrodynamics. The shorter tensed segment and the hydrodynamic interactions contribute to a smaller friction for the translocating polymer when hydrodynamics is included, which shows as smaller waiting times and a smaller exponent in the scaling of the translocation time with the polymer length. Hydrodynamics speeds up translocation in the good solvent, whereas it has a minimal effect on polymer translocation in the bad solvent. Under bad-solvent conditions tension does not spread ...

  7. Radiation hydrodynamics of triggered star formation: the effect of the diffuse radiation field

    Science.gov (United States)

    Haworth, Thomas J.; Harries, Tim J.

    2012-02-01

    We investigate the effect of including diffuse field radiation when modelling the radiatively driven implosion of a Bonnor-Ebert sphere (BES). Radiation-hydrodynamical calculations are performed by using operator splitting to combine Monte Carlo photoionization with grid-based Eulerian hydrodynamics that includes self-gravity. It is found that the diffuse field has a significant effect on the nature of radiatively driven collapse which is strongly coupled to the strength of the driving shock that is established before impacting the BES. This can result in either slower or more rapid star formation than expected using the on-the-spot approximation depending on the distance of the BES from the source object. As well as directly compressing the BES, stronger shocks increase the thickness and density in the shell of accumulated material, which leads to short, strong, photoevaporative ejections that reinforce the compression whenever it slows. This happens particularly effectively when the diffuse field is included as rocket motion is induced over a larger area of the shell surface. The formation and evolution of 'elephant trunks' via instability is also found to vary significantly when the diffuse field is included. Since the perturbations that seed instabilities are smeared out elephant trunks form less readily and, once formed, are exposed to enhanced thermal compression.

  8. Coupling Magnetic Fields and ALE Hydrodynamics for 3D Simulations of MFCG's

    Energy Technology Data Exchange (ETDEWEB)

    White, D; Rieben, R; Wallin, B

    2006-09-20

    We review the development of a full 3D multiphysics code for the simulation of explosively driven Magnetic Flux Compression Generators (MFCG) and related pulse power devices. In a typical MFCG the device is seeded with an initial electric current and the device is then detonated. The detonation compresses the magnetic field and amplifies the current. This is a multiphysics problem in that detonation kinetics, electromagnetic diffusion and induction, material deformation, and thermal effects are all important. This is a tightly coupled problem in that the different physical quantities have comparable spatial and temporal variation, and hence should be solved simultaneously on the same computational mesh.

  9. Coupling hydrodynamics and radiation calculations for star-jet interactions in AGN

    CERN Document Server

    de la Cita, Víctor M; Paredes-Fortuny, Xavier; Khangulyan, Dmitry; Perucho, Manel

    2016-01-01

    Stars and their winds can contribute to the non-thermal (NT) emission in extragalactic jets. Given the complexity of jet-star interactions, the properties of the resulting emission are strongly linked to those of the emitting flows. We simulate the interaction between a stellar wind and a relativistic extragalactic jet and use the hydrodynamic results to compute the NT emission under different conditions. We perform relativistic axisymmetric hydrodynamical simulations of a relativistic jet interacting with a supersonic, non-relativistic stellar wind. We compute the corresponding streamlines out of the simulation results, and calculate the injection, evolution, and emission of NT particles accelerated in the jet shock, focusing on electrons or $e^\\pm$-pairs. Several cases are explored, considering different jet-star interaction locations, magnetic fields and observer lines of sight. The jet luminosity and star properties are fixed, but the results are easily scalable under changes of these parameters. Individu...

  10. TPCI: the PLUTO-CLOUDY Interface . A versatile coupled photoionization hydrodynamics code

    Science.gov (United States)

    Salz, M.; Banerjee, R.; Mignone, A.; Schneider, P. C.; Czesla, S.; Schmitt, J. H. M. M.

    2015-04-01

    We present an interface between the (magneto-) hydrodynamics code PLUTO and the plasma simulation and spectral synthesis code CLOUDY. By combining these codes, we constructed a new photoionization hydrodynamics solver: the PLUTO-CLOUDY Interface (TPCI), which is well suited to simulate photoevaporative flows under strong irradiation. The code includes the electromagnetic spectrum from X-rays to the radio range and solves the photoionization and chemical network of the 30 lightest elements. TPCI follows an iterative numerical scheme: first, the equilibrium state of the medium is solved for a given radiation field by CLOUDY, resulting in a net radiative heating or cooling. In the second step, the latter influences the (magneto-) hydrodynamic evolution calculated by PLUTO. Here, we validated the one-dimensional version of the code on the basis of four test problems: photoevaporation of a cool hydrogen cloud, cooling of coronal plasma, formation of a Strömgren sphere, and the evaporating atmosphere of a hot Jupiter. This combination of an equilibrium photoionization solver with a general MHD code provides an advanced simulation tool applicable to a variety of astrophysical problems. A copy of the code is available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/576/A21

  11. Numerical simulation of landslide-generated waves using a soil-water coupling smoothed particle hydrodynamics model

    Science.gov (United States)

    Shi, Chuanqi; An, Yi; Wu, Qiang; Liu, Qingquan; Cao, Zhixian

    2016-06-01

    We simulate the generation of a landslide-induced impulse wave with a newly-developed soil-water coupling model in the smoothed particle hydrodynamics (SPH) framework. The model includes an elasto-plastic constitutive model for soil, a Navier-Stokes equation based model for water, and a bilateral coupling model at the interface. The model is tested with simulated waves induced by a slow and a fast landslide. Good agreement is obtained between simulation results and experimental data. The generated wave and the deformation of the landslide body can both be resolved satisfactorily. All parameters in our model have their physical meaning in soil mechanics and can be obtained from conventional soil mechanics experiments directly. The influence of the dilatancy angle of soil shows that the non-associated flow rule must be selected, and the value of the dilatancy angle should not be chosen arbitrarily, if it is not determined with relative experiments.

  12. Nanoflow hydrodynamics

    DEFF Research Database (Denmark)

    Hansen, Jesper Schmidt; Dyre, Jeppe C.; Daivis, Peter J.;

    2011-01-01

    We show by nonequilibrium molecular dynamics simulations that the Navier-Stokes equation does not correctly describe water flow in a nanoscale geometry. It is argued that this failure reflects the fact that the coupling between the intrinsic rotational and translational degrees of freedom becomes...... important for nanoflows. The coupling is correctly accounted for by the extended Navier-Stokes equations that include the intrinsic angular momentum as an independent hydrodynamic degree of freedom. © 2011 American Physical Society....

  13. A Coupled Model of the 1D River Network and 3D Estuary Based on Hydrodynamics and Suspended Sediment Simulation

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2014-01-01

    Full Text Available River networks and estuaries are very common in coastal areas. Runoff from the upper stream interacts with tidal current from open sea in these two systems, leading to a complex hydrodynamics process. Therefore, it is necessary to consider the two systems as a whole to study the flow and suspended sediment transport. Firstly, a 1D model is established in the Pearl River network and a 3D model is applied in its estuary. As sufficient mass exchanges between the river network and its estuary, a strict mathematical relationship of water level at the interfaces can be adopted to couple the 1D model with the 3D model. By doing so, the coupled model does not need to have common nested grids. The river network exchanges the suspended sediment with its estuary by adding the continuity conditions at the interfaces. The coupled model is, respectively, calibrated in the dry season and the wet season. The results demonstrate that the coupled model works excellently in simulating water level and discharge. Although there are more errors in simulating suspended sediment concentration due to some reasons, the coupled model is still good enough to evaluate the suspended sediment transport in river network and estuary systems.

  14. EFFECTS OF WATER-DEPTH ON HYDRODYNAMIC FORCE OF ARTIFICIAL REEF

    Institute of Scientific and Technical Information of China (English)

    MIAO Zhen-qing; XIE Yong-he

    2007-01-01

    The effects of water-depth on the hydrodynamic force of the artificial reef were studied by simulating regular and irregular waves. The computational results show that the water-depth has a substantial effect on hydrodynamic force. The hydrodynamic force increases with the decrease of water-depth in shallow. Especially, in the ultra-shallow water these loads increase very evidently with the decrease of water-depth. The long-term values of hydrodynamic force increase with the decrease of the ratio of water-depth to reef height, and are about 10% larger than those of deep water when the ratio of water-depth to reef height is 4.0. However water-depth hardly affects the long term values of hydrodynamic force when the ratio of water-depth to reef height is larger than 6.0.

  15. The effect of superfluid hydrodynamics on pulsar glitch sizes and waiting times

    CERN Document Server

    Haskell, Brynmor

    2016-01-01

    Pulsar glitches, sudden jumps in frequency observed in many radio pulsars, may be the macroscopic manifestation of superfluid vortex avalanches on the microscopic scale. Small scale quantum mechanical simulations of vortex motion in a decelerating container have shown that such events are possible and predict power-law distributions for the size of the events, and exponential distributions for the waiting time. Despite a paucity of data, this prediction is consistent with the size and waiting time distributions of most glitching pulsars. Nevertheless a few object appear to glitch quasi-periodically, and exhibit many large glitches, while a recent study of the Crab pulsar has suggested a cut-off deviations from a power-law distribution for smaller glitches. In this paper we incorporate the results of quantum mechanical simulations in a macroscopic scale superfluid hydrodynamics simulation. We show that the effect of vortex coupling to the neutron and proton fluids in the neutron star naturally leads to deviati...

  16. The long-time dynamics of two hydrodynamically-coupled swimming cells

    CERN Document Server

    Michelin, Sebastien

    2009-01-01

    Swimming micro-organisms such as bacteria or spermatozoa are typically found in dense suspensions, and exhibit collective modes of locomotion qualitatively different from that displayed by isolated cells. In the dilute limit where fluid-mediated interactions can be treated rigorously, the long-time hydrodynamics of a collection of cells result from interactions with many other cells, and as such typically eludes an analytical approach. Here we consider the only case where such problem can be treated rigorously analytically, namely when the cells have spatially confined trajectories, such as the spermatozoa of some marine invertebrates. We consider two spherical cells swimming, when isolated, with arbitrary circular trajectories, and derive the long-time kinematics of their relative locomotion. We show that in the dilute limit where the cells are much further away than their size, and the size of their circular motion, a separation of time scale occurs between a fast (intrinsic) swimming time, and a slow time ...

  17. Driven polymer translocation in good and bad solvent: Effects of hydrodynamics and tension propagation.

    Science.gov (United States)

    Moisio, J E; Piili, J; Linna, R P

    2016-08-01

    We investigate the driven polymer translocation through a nanometer-scale pore in the presence and absence of hydrodynamics both in good and bad solvent. We present our results on tension propagating along the polymer segment on the cis side that is measured for the first time using our method that works also in the presence of hydrodynamics. For simulations we use stochastic rotation dynamics, also called multiparticle collision dynamics. We find that in the good solvent the tension propagates very similarly whether hydrodynamics is included or not. Only the tensed segment is by a constant factor shorter in the presence of hydrodynamics. The shorter tensed segment and the hydrodynamic interactions contribute to a smaller friction for the translocating polymer when hydrodynamics is included, which shows as smaller waiting times and a smaller exponent in the scaling of the translocation time with the polymer length. In the bad solvent hydrodynamics has a minimal effect on polymer translocation, in contrast to the good solvent, where it speeds up translocation. We find that under bad-solvent conditions tension does not spread appreciably along the polymer. Consequently, translocation time does not scale with the polymer length. By measuring the effective friction in a setup where a polymer in free solvent is pulled by a constant force at the end, we find that hydrodynamics does speed up collective polymer motion in the bad solvent even more effectively than in the good solvent. However, hydrodynamics has a negligible effect on the motion of individual monomers within the highly correlated globular conformation on the cis side and hence on the entire driven translocation under bad-solvent conditions.

  18. A lattice Boltzmann study of non-hydrodynamic effects in shell models of turbulence

    Science.gov (United States)

    Benzi, R.; Biferale, L.; Sbragaglia, M.; Succi, S.; Toschi, F.

    2004-10-01

    A lattice Boltzmann scheme simulating the dynamics of shell models of turbulence is developed. The influence of high-order kinetic modes (ghosts) on the dissipative properties of turbulence dynamics is studied. It is analytically found that when ghost fields relax on the same timescale as the hydrodynamic ones, their major effect is a net enhancement of the fluid viscosity. The bare fluid viscosity is recovered by letting ghost fields evolve on a much longer timescale. Analytical results are borne out by high-resolution numerical simulations. These simulations indicate that the hydrodynamic manifold is very robust towards large fluctuations of non-hydrodynamic fields.

  19. Hydrodynamical simulations of coupled and uncoupled quintessence models I: Halo properties and the cosmic web

    CERN Document Server

    Carlesi, Edoardo; Lewis, Geraint F; Wales, Scott; Yepes, Gustavo

    2014-01-01

    We present the results of a series of adiabatic hydrodynamical simulations of several quintessence models (both with a free and an interacting scalar field) in comparison to a standard \\LCDM\\ cosmology. For each we use $2\\times1024^3$ particles in a $250$\\hMpc\\ periodic box assuming WMAP7 cosmology. In this work we focus on the properties of haloes in the cosmic web at $z=0$. The web is classified into \\emph{voids}, \\emph{sheets}, \\emph{filaments} and \\emph{knots} depending on the eigenvalues of the velocity shear tensor, which are an excellent proxy for the underlying overdensity distribution. We find that the properties of objects classified according to their surrounding environment shows a substantial dependence on the underlying cosmology; for example, while $V_{\\rm max}$ shows average deviations of $\\approx5$ per cent across the different models when considering the full halo sample, comparing objects classified according to their environment, the size of the deviation can be as large as $20$ per cent. ...

  20. Effects of fundamental structure parameters on dynamic responses of submerged floating tunnel under hydrodynamic loads

    Institute of Scientific and Technical Information of China (English)

    Xu Long; Fei Ge; Lei Wang; Youshi Hong

    2009-01-01

    This paper investigates the effects of structure parameters on dynamic responses of submerged floating tunnel (SFT) under hydrodynamic loads. The structure parameters includes buoyancy-weight ratio (BWR), stiffness coefficients of the cable systems, tunnel net buoyancy and tunnel length. First, the importance of structural damp in relation to the dynamic responses of SFT is demonstrated and the mechanism of structural damp effect is discussed. Thereafter, the fundamental structure parameters are investi-gated through the analysis of SFT dynamic responses under hydrodynamic loads. The results indicate that the BWR of SFT is a key structure parameter. When BWR is 1.2, there is a remarkable trend change in the vertical dynamic response of SFT under hydrodynamic loads. The results also indicate that the ratio of the tunnel net buoyancy to the cable stiffness coefficient is not a characteristic factor affecting the dynamic responses of SFT under hydrodynamic loads.

  1. Radiation Hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Castor, J I

    2003-10-16

    The discipline of radiation hydrodynamics is the branch of hydrodynamics in which the moving fluid absorbs and emits electromagnetic radiation, and in so doing modifies its dynamical behavior. That is, the net gain or loss of energy by parcels of the fluid material through absorption or emission of radiation are sufficient to change the pressure of the material, and therefore change its motion; alternatively, the net momentum exchange between radiation and matter may alter the motion of the matter directly. Ignoring the radiation contributions to energy and momentum will give a wrong prediction of the hydrodynamic motion when the correct description is radiation hydrodynamics. Of course, there are circumstances when a large quantity of radiation is present, yet can be ignored without causing the model to be in error. This happens when radiation from an exterior source streams through the problem, but the latter is so transparent that the energy and momentum coupling is negligible. Everything we say about radiation hydrodynamics applies equally well to neutrinos and photons (apart from the Einstein relations, specific to bosons), but in almost every area of astrophysics neutrino hydrodynamics is ignored, simply because the systems are exceedingly transparent to neutrinos, even though the energy flux in neutrinos may be substantial. Another place where we can do ''radiation hydrodynamics'' without using any sophisticated theory is deep within stars or other bodies, where the material is so opaque to the radiation that the mean free path of photons is entirely negligible compared with the size of the system, the distance over which any fluid quantity varies, and so on. In this case we can suppose that the radiation is in equilibrium with the matter locally, and its energy, pressure and momentum can be lumped in with those of the rest of the fluid. That is, it is no more necessary to distinguish photons from atoms, nuclei and electrons, than it is

  2. Coupling a nano-particle with isothermal fluctuating hydrodynamics: Coarse-graining from microscopic to mesoscopic dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Español, Pep [Dept. Física Fundamental, Universidad Nacional de Educación a Distancia, Aptdo. 60141, E-28080 Madrid (Spain); Donev, Aleksandar [Dept. Física Fundamental, Universidad Nacional de Educación a Distancia, Aptdo. 60141, E-28080 Madrid (Spain); Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, New York 10012 (United States)

    2015-12-21

    We derive a coarse-grained description of the dynamics of a nanoparticle immersed in an isothermal simple fluid by performing a systematic coarse graining of the underlying microscopic dynamics. As coarse-grained or relevant variables, we select the position of the nanoparticle and the total mass and momentum density field of the fluid, which are locally conserved slow variables because they are defined to include the contribution of the nanoparticle. The theory of coarse graining based on the Zwanzing projection operator leads us to a system of stochastic ordinary differential equations that are closed in the relevant variables. We demonstrate that our discrete coarse-grained equations are consistent with a Petrov-Galerkin finite-element discretization of a system of formal stochastic partial differential equations which resemble previously used phenomenological models based on fluctuating hydrodynamics. Key to this connection between our “bottom-up” and previous “top-down” approaches is the use of the same dual orthogonal set of linear basis functions familiar from finite element methods (FEMs), both as a way to coarse-grain the microscopic degrees of freedom and as a way to discretize the equations of fluctuating hydrodynamics. Another key ingredient is the use of a “linear for spiky” weak approximation which replaces microscopic “fields” with a linear FE interpolant inside expectation values. For the irreversible or dissipative dynamics, we approximate the constrained Green-Kubo expressions for the dissipation coefficients with their equilibrium averages. Under suitable approximations, we obtain closed approximations of the coarse-grained dynamics in a manner which gives them a clear physical interpretation and provides explicit microscopic expressions for all of the coefficients appearing in the closure. Our work leads to a model for dilute nanocolloidal suspensions that can be simulated effectively using feasibly short molecular dynamics

  3. The role of Joule heating in dispersive mixing effects in electrophoretic cells: hydrodynamic considerations.

    Science.gov (United States)

    Bosse, M A; Arce, P

    2000-03-01

    The analysis described in this contribution is focused on the effect of Joule heating generation on the hydrodynamics of batch electrophoretic cells (i.e., cells that do not display a forced convective term in the motion equation). The hydrodynamics of these cells is controlled by the viscous forces and by the buoyancy force caused by the temperature gradients due to the Joule heating generation. The analysis is based on differential models that lead to analytical and/or asymptotic solutions for the temperature and velocity profiles of the cell. The results are useful in determining the characteristics of the temperature and velocity profiles inside the cell. Furthermore, the results are excellent tools to be used in the analysis of the dispersive-mixing of solute when Joule heating generation must be accounted for. The analysis is performed by identifying two sequentially coupled problems. Thus, the "carrier fluid problem" and the "solute problem" are outlined. The former is associated with all the factors affecting the velocity profile and the latter is related to the convective-diffusion aspects that control the spreading of the solute inside the cell. The analysis of this contribution is centered on the discussion of the "carrier fluid problem" only. For the boundary conditions selected in the contribution, the study leads to the derivation of an analytical temperature and a "universal" velocity profile that feature the Joule heating number. The Grashof number is a scaling factor of the actual velocity profile. Several characteristics of these profiles are studied and some numerical illustrations have been included.

  4. Effects of Second-Order Hydrodynamics on a Semisubmersible Floating Offshore Wind Turbine: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Bayati, I.; Jonkman, J.; Robertson, A.; Platt, A.

    2014-07-01

    The objective of this paper is to assess the second-order hydrodynamic effects on a semisubmersible floating offshore wind turbine. Second-order hydrodynamics induce loads and motions at the sum- and difference-frequencies of the incident waves. These effects have often been ignored in offshore wind analysis, under the assumption that they are significantly smaller than first-order effects. The sum- and difference-frequency loads can, however, excite eigenfrequencies of the system, leading to large oscillations that strain the mooring system or vibrations that cause fatigue damage to the structure. Observations of supposed second-order responses in wave-tank tests performed by the DeepCwind consortium at the MARIN offshore basin suggest that these effects might be more important than originally expected. These observations inspired interest in investigating how second-order excitation affects floating offshore wind turbines and whether second-order hydrodynamics should be included in offshore wind simulation tools like FAST in the future. In this work, the effects of second-order hydrodynamics on a floating semisubmersible offshore wind turbine are investigated. Because FAST is currently unable to account for second-order effects, a method to assess these effects was applied in which linearized properties of the floating wind system derived from FAST (including the 6x6 mass and stiffness matrices) are used by WAMIT to solve the first- and second-order hydrodynamics problems in the frequency domain. The method has been applied to the OC4-DeepCwind semisubmersible platform, supporting the NREL 5-MW baseline wind turbine. The loads and response of the system due to the second-order hydrodynamics are analysed and compared to first-order hydrodynamic loads and induced motions in the frequency domain. Further, the second-order loads and induced response data are compared to the loads and motions induced by aerodynamic loading as solved by FAST.

  5. Development of a coupled hydrological - hydrodynamic model for probabilistic catchment flood inundation modelling

    Science.gov (United States)

    Quinn, Niall; Freer, Jim; Coxon, Gemma; Dunne, Toby; Neal, Jeff; Bates, Paul; Sampson, Chris; Smith, Andy; Parkin, Geoff

    2017-04-01

    Computationally efficient flood inundation modelling systems capable of representing important hydrological and hydrodynamic flood generating processes over relatively large regions are vital for those interested in flood preparation, response, and real time forecasting. However, such systems are currently not readily available. This can be particularly important where flood predictions from intense rainfall are considered as the processes leading to flooding often involve localised, non-linear spatially connected hillslope-catchment responses. Therefore, this research introduces a novel hydrological-hydraulic modelling framework for the provision of probabilistic flood inundation predictions across catchment to regional scales that explicitly account for spatial variability in rainfall-runoff and routing processes. Approaches have been developed to automate the provision of required input datasets and estimate essential catchment characteristics from freely available, national datasets. This is an essential component of the framework as when making predictions over multiple catchments or at relatively large scales, and where data is often scarce, obtaining local information and manually incorporating it into the model quickly becomes infeasible. An extreme flooding event in the town of Morpeth, NE England, in 2008 was used as a first case study evaluation of the modelling framework introduced. The results demonstrated a high degree of prediction accuracy when comparing modelled and reconstructed event characteristics for the event, while the efficiency of the modelling approach used enabled the generation of relatively large ensembles of realisations from which uncertainty within the prediction may be represented. This research supports previous literature highlighting the importance of probabilistic forecasting, particularly during extreme events, which can be often be poorly characterised or even missed by deterministic predictions due to the inherent

  6. Coupling effects in optical metamaterials.

    Science.gov (United States)

    Liu, Na; Giessen, Harald

    2010-12-17

    Metamaterials have become one of the hottest fields of photonics since the pioneering work of John Pendry on negative refractive index, invisibility cloaking, and perfect lensing. Three-dimensional metamaterials are required for practical applications. In these materials, coupling effects between individual constituents play a dominant role for the optical and electronic properties. Metamaterials can show both electric and magnetic responses at optical frequencies. Thus, electric as well as magnetic dipolar and higher-order multipolar coupling is the essential mechanism. Depending on the structural composition, both longitudinal and transverse coupling occur. The intricate interplay between different coupling effects in a plasmon hybridization picture provides a useful tool to intuitively understand the evolution from molecule-like states to solid-state-like bands.

  7. Evaluation of hydrodynamic chromatography coupled with UV-visible, fluorescence and inductively coupled plasma mass spectrometry detectors for sizing and quantifying colloids in environmental media.

    Science.gov (United States)

    Philippe, Allan; Schaumann, Gabriele E

    2014-01-01

    In this study, we evaluated hydrodynamic chromatography (HDC) coupled with inductively coupled plasma mass spectrometry (ICP-MS) for the analysis of nanoparticles in environmental samples. Using two commercially available columns (Polymer Labs-PDSA type 1 and 2), a set of well characterised calibrants and a new external time marking method, we showed that flow rate and eluent composition have few influence on the size resolution and, therefore, can be adapted to the sample particularity. Monitoring the agglomeration of polystyrene nanoparticles over time succeeded without observable disagglomeration suggesting that even weak agglomerates can be measured using HDC. Simultaneous determination of gold colloid concentration and size using ICP-MS detection was validated for elemental concentrations in the ppb range. HDC-ICP-MS was successfully applied to samples containing a high organic and ionic background. Indeed, online combination of UV-visible, fluorescence and ICP-MS detectors allowed distinguishing between organic molecules and inorganic colloids during the analysis of Ag nanoparticles in synthetic surface waters and TiO₂ and ZnO nanoparticles in commercial sunscreens. Taken together, our results demonstrate that HDC-ICP-MS is a flexible, sensitive and reliable method to measure the size and the concentration of inorganic colloids in complex media and suggest that there may be a promising future for the application of HDC in environmental science. Nonetheless the rigorous measurements of agglomerates and of matrices containing natural colloids still need to be studied in detail.

  8. Evaluation of hydrodynamic chromatography coupled with UV-visible, fluorescence and inductively coupled plasma mass spectrometry detectors for sizing and quantifying colloids in environmental media.

    Directory of Open Access Journals (Sweden)

    Allan Philippe

    Full Text Available In this study, we evaluated hydrodynamic chromatography (HDC coupled with inductively coupled plasma mass spectrometry (ICP-MS for the analysis of nanoparticles in environmental samples. Using two commercially available columns (Polymer Labs-PDSA type 1 and 2, a set of well characterised calibrants and a new external time marking method, we showed that flow rate and eluent composition have few influence on the size resolution and, therefore, can be adapted to the sample particularity. Monitoring the agglomeration of polystyrene nanoparticles over time succeeded without observable disagglomeration suggesting that even weak agglomerates can be measured using HDC. Simultaneous determination of gold colloid concentration and size using ICP-MS detection was validated for elemental concentrations in the ppb range. HDC-ICP-MS was successfully applied to samples containing a high organic and ionic background. Indeed, online combination of UV-visible, fluorescence and ICP-MS detectors allowed distinguishing between organic molecules and inorganic colloids during the analysis of Ag nanoparticles in synthetic surface waters and TiO₂ and ZnO nanoparticles in commercial sunscreens. Taken together, our results demonstrate that HDC-ICP-MS is a flexible, sensitive and reliable method to measure the size and the concentration of inorganic colloids in complex media and suggest that there may be a promising future for the application of HDC in environmental science. Nonetheless the rigorous measurements of agglomerates and of matrices containing natural colloids still need to be studied in detail.

  9. The unreasonable effectiveness of hydrodynamics in heavy ion collisions

    CERN Document Server

    Noronha-Hostler, Jacquelyn; Gyulassy, Miklos

    2015-01-01

    Event-by-event hydrodynamic simulations of AA and pA collisions involve initial energy densities with large spatial gradients. This is associated with the presence of large Knudsen numbers ($K_n\\approx 1$) at early times, which may lead one to question the validity of the hydrodynamic approach in these rapidly evolving, largely inhomogeneous systems. A new procedure to smooth out the initial energy densities is employed to show that the initial spatial eccentricities, $\\varepsilon_n$, are remarkably robust with respect to variations in the underlying scale of initial energy density spatial gradients, $\\lambda$. For $\\sqrt{s_{NN}}=2.76$ TeV LHC initial conditions generated by the MCKLN code, $\\varepsilon_n$ (across centralities) remains nearly constant if the fluctuation scale varies by an order of magnitude, i.e., when $\\lambda$ varies from 0.1 to 1 fm. Given that the local Knudsen number $K_n\\approx \\frac{1}{\\lambda}$, the robustness of the initial eccentricities with respect to changes in the fluctuation sc...

  10. Coupled Modeling of Hydrodynamics and Sound in Coastal Ocean for Renewable Ocean Energy Development

    Energy Technology Data Exchange (ETDEWEB)

    Long, Wen; Jung, Ki Won; Yang, Zhaoqing; Copping, Andrea; Deng, Z. Daniel

    2016-03-01

    An underwater sound model was developed to simulate sound propagation from marine and hydrokinetic energy (MHK) devices or offshore wind (OSW) energy platforms. Finite difference methods were developed to solve the 3D Helmholtz equation for sound propagation in the coastal environment. A 3D sparse matrix solver with complex coefficients was formed for solving the resulting acoustic pressure field. The Complex Shifted Laplacian Preconditioner (CSLP) method was applied to solve the matrix system iteratively with MPI parallelization using a high performance cluster. The sound model was then coupled with the Finite Volume Community Ocean Model (FVCOM) for simulating sound propagation generated by human activities, such as construction of OSW turbines or tidal stream turbine operations, in a range-dependent setting. As a proof of concept, initial validation of the solver is presented for two coastal wedge problems. This sound model can be useful for evaluating impacts on marine mammals due to deployment of MHK devices and OSW energy platforms.

  11. Virus-bacterium coupling driven by both turbidity and hydrodynamics in an Amazonian floodplain lake.

    Science.gov (United States)

    Barros, Nathan; Farjalla, Vinicius F; Soares, Maria C; Melo, Rossana C N; Roland, Fábio

    2010-11-01

    The importance of viruses in aquatic ecosystem functioning has been widely described. However, few studies have examined tropical aquatic ecosystems. Here, we evaluated for the first time viruses and their relationship with other planktonic communities in an Amazonian freshwater ecosystem. Coupling between viruses and bacteria was studied, focusing both on hydrologic dynamics and anthropogenic forced turbidity in the system (Lake Batata). Samples were taken during four hydrologic seasons at both natural and impacted sites to count virus-like particles (VLP) and bacteria. In parallel, virus-infected bacteria were identified and quantified by transmission electron microscopy (TEM). Viral abundance ranged from 0.5 × 10⁷ ± 0.2 × 10⁷ VLP ml⁻¹ (high-water season, impacted site) to 1.7 × 10⁷ ± 0.4 × 10⁷ VLP ml⁻¹ (low-water season, natural site). These data were strongly correlated with the bacterial abundance (r² = 0.84; P < 0.05), which ranged from 1.0 × 10⁶ ± 0.5 × 10⁶ cells ml⁻¹ (high water, impacted site) to 3.4 × 10⁶ ± 0.7 × 10⁶ cells ml⁻¹ (low water, natural site). Moreover, the viral abundance was weakly correlated with chlorophyll a, suggesting that most viruses were bacteriophages. TEM quantitative analyses revealed that the frequency of visibly infected cells was 20%, with 10 ± 3 phages per cell section. In general, we found a low virus-bacterium ratio (<7). Both the close coupling between the viral and bacterial abundances and the low virus-bacterium ratio suggest that viral abundance tends to be driven by the reduction of hosts for viral infection. Our results demonstrate that viruses are controlled by biological substrates, whereas in addition to grazing, bacteria are regulated by physical processes caused by turbidity, which affect underwater light distribution and dissolved organic carbon availability.

  12. Trying to understand the ridge effect in hydrodynamic model

    CERN Document Server

    Hama, Yogiro; Grassi, Frederique; Qian, Wei-Liang

    2009-01-01

    In a recent paper, the hydrodynamic code NeXSPheRIO was used in conjunction with STAR analysis methods to study two-particle correlations as function of Delta_eta and Delta_phi. Both the ridge-like near-side and the double-hump away-side structures were obtained. However, the mechanism of ridge production was not clear. In order to understand it, we study a simple model with only one high-energy density peripheral tube in a smooth cylindrical back-ground, with longitudinal boost invariance. The results are rather surprising, but the model does produce the triple-ridge structure with one high ridge plus two lower ones placed symmetrically with respect to the former one. The shape of this structure is rather stable in a wide range of parameters.

  13. A high-resolution hydrodynamic-biogeochemical coupled model of the Gulf of Cadiz – Alboran Sea region.

    Directory of Open Access Journals (Sweden)

    D. M. MACIAS

    2014-12-01

    Full Text Available The southern Iberia regional seas comprise the Gulf of Cadiz and the Alboran Sea sub-basins connected by the narrow Strait of Gibraltar. Both basins are very different in their hydrological and biological characteristics but are, also, tightly connected to each other. Integrative studies of the whole regional oceanic system are scarce and difficult to perform due to the relative large area to cover and the different relevant time-scales of the main forcings in each sub-basin. Here we propose, for the first time, a fully coupled, 3D, hydrodynamic-biogeochemical model that covers, in a single domain (~2km resolution both marine basins for a 20 years simulation (1989-2008. Model performance is assessed against available data in terms of spatial and temporal distributions of biological variables. In general, the proposed model is able to represent the climatological distributions of primary and secondary producers and also the main seasonality of primary production in the different sub-regions of the analyzed basins. Potential causes of the observed mismatches between model and data are identified and some solutions are proposed for future model development. We conclude that most of these mismatches could be attributed to the missing tidal forcing in the actual model configuration. This model is a first step to obtain a meaningful tool to study past and future oceanographic conditions in this important marine region constituting the unique connection of the Mediterranean Sea with the open world’s ocean.

  14. Suitability of a Coupled Hydrodynamic Water Quality Model to Predict Changes in Water Quality from Altered Meteorological Boundary Conditions

    Directory of Open Access Journals (Sweden)

    Leon van der Linden

    2015-01-01

    Full Text Available Downscaled climate scenarios can be used to inform management decisions on investment in infrastructure or alternative water sources within water supply systems. Appropriate models of the system components, such as catchments, rivers, lakes and reservoirs, are required. The climatic sensitivity of the coupled hydrodynamic water quality model ELCOM-CAEDYM was investigated, by incrementally altering boundary conditions, to determine its suitability for evaluating climate change impacts. A series of simulations were run with altered boundary condition inputs for the reservoir. Air and inflowing water temperature (TEMP, wind speed (WIND and reservoir inflow and outflow volumes (FLOW were altered to investigate the sensitivity of these key drivers over relevant domains. The simulated water quality variables responded in broadly plausible ways to the altered boundary conditions; sensitivity of the simulated cyanobacteria population to increases in temperature was similar to published values. However the negative response of total chlorophyll-a suggested by the model was not supported by an empirical analysis of climatic sensitivity. This study demonstrated that ELCOM-CAEDYM is sensitive to climate drivers and may be suitable for use in climate impact studies. It is recommended that the influence of structural and parameter derived uncertainty on the results be evaluated. Important factors in determining phytoplankton growth were identified and the importance of inflowing water quality was emphasized.

  15. Mathematical modelling of the performance of hydrodynamic couplings using hybrid models; Mathematische Modellierung des Betriebsverhaltens hydrodynamischer Kupplungen mit hybriden Modellansaetzen

    Energy Technology Data Exchange (ETDEWEB)

    Jaschke, P.

    2000-02-01

    Mathematical models of the dynamic performance of hydrodynamic couplings are developed using hybrid modelling, i.e. a combination of analytical physical modelling and black box identification. The models developed were verified by measurements on a model powertrain. [German] In dieser Arbeit werden mit Hilfe der hybriden Modellierung mathematische Modelle zur Beschreibung des dynamischen Betriebsverhaltens hydrodynamischer Kupplungen ermittelt. Die Hybride Modellierung stellt eine Kombination der analytisch physikalischen Modellierung und der Black-Box-Identifikation dar. Diese Modellierungsart ist ausgewaehlt worden, um die Vorteile der analytisch physikalischen Modellierung und der Black-Box-Identifikation hydrodynamischer Kupplungen zu verbinden und deren Nachteile gering zu halten. Auf dieser Basis ist eine Vorgehensweise vorgestellt worden, die die Ermittlung der Modelle mit wenig Aufwand ermoeglicht. Mit Hilfe der Modelltheorie wird gezeigt, wie die ermittelten mathematischen Modelle zur Simulation des dynamischen Betriebsverhaltens geometrisch aehnlicher Kupplungen unterschiedlicher Baugroessen verwendet werden koennen. Darueber hinaus wird dargelegt, wie die ermittelten Modelle mit Modellen anderer Antriebsstrangelemente gekoppelt werden koennen, um Antriebsstrangsimulationen zu ermoeglichen. Verifikationsmessungen an einem Modellantriebsstrang verdeutlichen die Guete und Verwendbarkeit der mathematischen Modelle. (orig.)

  16. A coupled wave-3-D hydrodynamics model of the Taranto Sea (Italy): a multiple-nesting approach

    Science.gov (United States)

    Gaeta, Maria Gabriella; Samaras, Achilleas G.; Federico, Ivan; Archetti, Renata; Maicu, Francesco; Lorenzetti, Giuliano

    2016-09-01

    The present work describes an operational strategy for the development of a multiscale modeling system, based on a multiple-nesting approach and open-source numerical models. The strategy was applied and validated for the Gulf of Taranto in southern Italy, scaling large-scale oceanographic model results to high-resolution coupled wave-3-D hydrodynamics simulations for the area of Mar Grande in the Taranto Sea. The spatial and temporal high-resolution simulations were performed using the open-source TELEMAC suite, forced by wind data from the COSMO-ME database, boundary wave spectra from the RON buoy at Crotone and results from the Southern Adriatic Northern Ionian coastal Forecasting System (SANIFS) regarding sea levels and current fields. Model validation was carried out using data collected in the Mar Grande basin from a fixed monitoring station and during an oceanographic campaign in October 2014. The overall agreement between measurements and model results in terms of waves, sea levels, surface currents, circulation patterns and vertical velocity profiles is deemed to be satisfactory, and the methodology followed in the process can constitute a useful tool for both research and operational applications in the same field and as support of decisions for management and design of infrastructures.

  17. A high-resolution hydrodynamic-biogeochemical coupled model of the Gulf of Cadiz – Alboran Sea region.

    Directory of Open Access Journals (Sweden)

    D. M. MACIAS

    2015-01-01

    Full Text Available The southern Iberia regional seas comprise the Gulf of Cadiz and the Alboran Sea sub-basins connected by the narrow Strait of Gibraltar. Both basins are very different in their hydrological and biological characteristics but are, also, tightly connected to each other. Integrative studies of the whole regional oceanic system are scarce and difficult to perform due to the relative large area to cover and the different relevant time-scales of the main forcings in each sub-basin. Here we propose, for the first time, a fully coupled, 3D, hydrodynamic-biogeochemical model that covers, in a single domain (~2km resolution both marine basins for a 20 years simulation (1989-2008. Model performance is assessed against available data in terms of spatial and temporal distributions of biological variables. In general, the proposed model is able to represent the climatological distributions of primary and secondary producers and also the main seasonality of primary production in the different sub-regions of the analyzed basins. Potential causes of the observed mismatches between model and data are identified and some solutions are proposed for future model development. We conclude that most of these mismatches could be attributed to the missing tidal forcing in the actual model configuration. This model is a first step to obtain a meaningful tool to study past and future oceanographic conditions in this important marine region constituting the unique connection of the Mediterranean Sea with the open world’s ocean.

  18. Density waves in a lattice hydrodynamic traffic flow model with the anticipation effect

    Institute of Scientific and Technical Information of China (English)

    Zhao Min; Sun Di-Hua; Tian Chuan

    2012-01-01

    By introducing the traffic anticipation effect in the real world into the original lattice hydrodynamic model,we present a new anticipation effect lattice hydrodynamic (AELH) model,and obtain the linear stability condition of the model by applying the linear stability theory.Through nonlinear analysis,we derive the Burgers equation and Korteweg-de Vries (KdV) equation,to describe the propagating behaviour of traffic density waves in the stable and the metastable regions,respectively.The good agreement between simulation results and analytical results shows that the stability of traffic flow can be enhanced when the anticipation effect is considered.

  19. RANS SIMULATION OF HYDROFOIL EFFECTS ON HYDRODYNAMIC COEFFICIENTS OF A PLANING CATAMARAN

    Directory of Open Access Journals (Sweden)

    Amin Najafi

    2016-03-01

    Full Text Available Determination of high-speed crafts’ hydrodynamic coefficients will help to analyze the dynamics of these kinds of vessels and the factors affecting their dynamic stabilities. Also, it can be useful and effective in controlling the vessel instabilities. The main purpose of this study is to determine the coefficients of longitudinal motions of a planing catamaran with and without a hydrofoil using RANS method to evaluate the foil effects on them. Determination of hydrodynamic coefficients by experimental approach is costly, and requires meticulous laboratory equipment; therefore, utilizing numerical methods and developing a virtual laboratory seems highly efficient. In the present study, the numerical results for hydrodynamic coefficients of a high-speed craft are verified against Troesch’s (1992 experimental results. In the following, after determination of hydrodynamic coefficients of a planing catamaran with and without foil, the foil effects on its hydrodynamic coefficients are evaluated. The results indicate that most of the coefficients are frequency independent especially at high frequencies.

  20. Electro-hydrodynamic synchronization of piezoelectric flags

    CERN Document Server

    Xia, Yifan; Michelin, Sebastien

    2016-01-01

    Hydrodynamic coupling of flexible flags in axial flows may profoundly influence their flapping dynamics, in particular driving their synchronization. This work investigates the effect of such coupling on the harvesting efficiency of coupled piezoelectric flags, that convert their periodic deformation into an electrical current. Considering two flags connected to a single output circuit, we investigate using numerical simulations the relative importance of hydrodynamic coupling to electrodynamic coupling of the flags through the output circuit due to the inverse piezoelectric effect. It is shown that electrodynamic coupling is dominant beyond a critical distance, and induces a synchronization of the flags' motion resulting in enhanced energy harvesting performance. We further show that this electrodynamic coupling can be strengthened using resonant harvesting circuits.

  1. Hydrodynamic Interactions between Two Forced Objects of Arbitrary Shape: I Effect on Alignment

    CERN Document Server

    Goldfriend, Tomer; Witten, Thomas A

    2015-01-01

    We study the properties and symmetries governing the hydrodynamic interaction between two identical, arbitrarily shaped objects, driven through a viscous fluid. We treat analytically the leading (dipolar) terms of the pair-mobility matrix, affecting the instantaneous relative linear and angular velocities of the two objects at large separation. We find that the ability to align asymmetric objects by an external time-dependent drive [Moths and Witten, Phys. Rev. Lett. 110, 028301 (2013)] is degraded by the hydrodynamic interaction. The effects of hydrodynamic interactions are explicitly demonstrated through numerically calculated time-dependent trajectories of model alignable objects composed of four stokeslets. In addition to the orientational effect, we find that the two objects generally repel each other, thus restoring full alignment at long times.

  2. Assessing the Effects of Sea Level Rise on Plum Island Estuary Marshes Using a Hydrodynamic-marsh Modeling Tool

    Science.gov (United States)

    Demissie, H. K.; Bilskie, M. V.; Hagen, S. C.; Morris, J. T.; Alizad, K.

    2015-12-01

    Sea level rise (SLR) can significantly impact both human and ecological habitats in coastal and inland regions. Studies show that coastal estuaries and marsh systems are at the risk of losing their productivity under increasing rates of SLR (Donnelly and Bertness, 2001; Warren and Niering, 1993). The integrated hydrodynamic-marsh model (Hagen et al., 2013 & Alizad et al., 2015) uses a set of parameters and conditions to simulate tidal flow through the salt marsh of Plum Island Estuary, Massachusetts. The hydrodynamic model computes mean high water (MHW) and mean low water (MLW) and is coupled to the zero-dimensional Marsh Equilibrium Model (Morris et al. 2002) to estimate changes in biomass productivity and accretion. The coupled hydrodynamic-marsh model was used to examine the effects of different scenarios of SLR (Parris et al., 2012) on salt marsh productivity for the year 2100 in the Plum Island Estuary. In this particular study, responses of salt marsh production for different scenarios of SLR were compared. The study shows higher productivity of salt marsh under a low SLR scenario and lower productivity under the higher SLR. The study also demonstrates the migration of salt marshes under higher SLR scenarios. References: Alizad, K., S. C. Hagen, Morris, J.T., Bacopoulos, P., Bilskie, M.V., and John, F.W. 2015. A coupled, two-dimensional hydrodynamic-marsh model with biological feedback. Limnology and Oceanography, In review. Donnelly, J.P., and M.D. Bertness. 2001. Rapid shoreward encroachment of salt marsh cordgrass in response to accelerated sea-level rise. Proceedings of the National Academy of Sciences 98: 14218-14223.Hagen, S.C., J.T. Morris, P. Bacopoulos, and J. Weishampel. 2013. Sea-Level Rise Impact on a Salt Marsh System of the Lower St. Johns River. ASCE Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 139, No. 2, March/April 2013, pp. 118-125.Morris, J.T., P.V. Sundareshwar, C.T. Nietch, B. Kjerfve, and D.R. Cahoon. 2002. Responses

  3. Mutual coupling of hydrologic and hydrodynamic models - a viable approach for improved large-scale inundation estimates?

    Science.gov (United States)

    Hoch, Jannis; Winsemius, Hessel; van Beek, Ludovicus; Haag, Arjen; Bierkens, Marc

    2016-04-01

    Due to their increasing occurrence rate and associated economic costs, fluvial floods are large-scale and cross-border phenomena that need to be well understood. Sound information about temporal and spatial variations of flood hazard is essential for adequate flood risk management and climate change adaption measures. While progress has been made in assessments of flood hazard and risk on the global scale, studies to date have made compromises between spatial resolution on the one hand and local detail that influences their temporal characteristics (rate of rise, duration) on the other. Moreover, global models cannot realistically model flood wave propagation due to a lack of detail in channel and floodplain geometry, and the representation of hydrologic processes influencing the surface water balance such as open water evaporation from inundated water and re-infiltration of water in river banks. To overcome these restrictions and to obtain a better understanding of flood propagation including its spatio-temporal variations at the large scale, yet at a sufficiently high resolution, the present study aims to develop a large-scale modeling tool by coupling the global hydrologic model PCR-GLOBWB and the recently developed hydrodynamic model DELFT3D-FM. The first computes surface water volumes which are routed by the latter, solving the full Saint-Venant equations. With DELFT3D FM being capable of representing the model domain as a flexible mesh, model accuracy is only improved at relevant locations (river and adjacent floodplain) and the computation time is not unnecessarily increased. This efficiency is very advantageous for large-scale modelling approaches. The model domain is thereby schematized by 2D floodplains, being derived from global data sets (HydroSHEDS and G3WBM, respectively). Since a previous study with 1way-coupling showed good model performance (J.M. Hoch et al., in prep.), this approach was extended to 2way-coupling to fully represent evaporation

  4. Exact Bremsstrahlung and Effective Couplings

    CERN Document Server

    Mitev, Vladimir

    2015-01-01

    We calculate supersymmetric Wilson loops on the ellipsoid for a large class of $\\mathcal{N}=2$ SCFT using the localization formula of Hama and Hosomichi. From them we extract the radiation emitted by an accelerating heavy probe quark as well as the entanglement entropy following the recent works of Lewkowycz-Maldacena and Fiol-Gerchkovitz-Komargodski. Comparing our results with the $\\mathcal{N}=4$ SYM ones, we obtain interpolating functions $f(g^2)$ such that a given $\\mathcal{N}=2$ SCFT observable is obtained by replacing in the corresponding $\\mathcal{N}=4$ SYM result the coupling constant by $f(g^2)$. These ``exact effective couplings'' encode the finite, relative renormalization between the $\\mathcal{N}=2$ and the $\\mathcal{N}=4$ gluon propagator, they interpolate between the weak and the strong coupling. We discuss the range of their applicability.

  5. Exact Bremsstrahlung and effective couplings

    Science.gov (United States)

    Mitev, Vladimir; Pomoni, Elli

    2016-06-01

    We calculate supersymmetric Wilson loops on the ellipsoid for a large class of mathcal{N} = 2 SCFT using the localization formula of Hama and Hosomichi. From them we extract the radiation emitted by an accelerating heavy probe quark as well as the entanglement entropy following the recent works of Lewkowycz-Maldacena and Fiol-Gerchkovitz-Komargodski. Comparing our results with the mathcal{N} = 4 SYM ones, we obtain interpolating functions f ( g 2) such that a given mathcal{N} = 2 SCFT observable is obtained by replacing in the corresponding mathcal{N} = 4 SYM result the coupling constant by f ( g 2). These "exact effective couplings" encode the finite, relative renormalization between the mathcal{N} = 2 and the mathcal{N} = 4 gluon propagator and they interpolate between the weak and the strong coupling. We discuss the range of their applicability.

  6. Exact Bremsstrahlung and effective couplings

    Energy Technology Data Exchange (ETDEWEB)

    Mitev, Vladimir [Mainz Univ. (Germany). Inst. fuer Physik, WA THEP; Humboldt-Univ. Berlin (Germany). Inst. fuer Mathematik und Inst. fuer Physik; Pomoni, Elli [DESY Hamburg (Germany). Theory Group; National Technical Univ., Athens (Greece). Physics Div.

    2015-11-15

    We calculate supersymmetric Wilson loops on the ellipsoid for a large class of N=2 SCFT using the localization formula of Hama and Hosomichi. From them we extract the radiation emitted by an accelerating heavy probe quark as well as the entanglement entropy following the recent works of Lewkowycz-Maldacena and Fiol-Gerchkovitz-Komargodski. Comparing our results with the N=4 SYM ones, we obtain interpolating functions f(g{sup 2}) such that a given N=2 SCFT observable is obtained by replacing in the corresponding N=4 SYM result the coupling constant by f(g{sup 2}). These ''exact effective couplings'' encode the finite, relative renormalization between the N = 2 and the N = 4 gluon propagator, they interpolate between the weak and the strong coupling. We discuss the range of their applicability.

  7. Dynamic flow simulation and performance prediction of torque limited hydrodynamic coupling%限矩型液力耦合器动态分流仿真与性能预测

    Institute of Scientific and Technical Information of China (English)

    卢秀泉; 吴岳诗; 马文星; 陈钰尘

    2015-01-01

    为了获得耦合器负载突然变化的动态工况下的内部流体环流形态及油液向辅助腔分流的动态运动规律,通过对YOXD200型液力耦合器进行建模并抽取三维全流道,视工作腔内介质的运动为层流运动,采用流体体积法(VOF)两相流模型,通过用户自定义函数 UDF对耦合器动态工况进行描述,使得耦合器由同步工况降至制动工况以及由启动工况升至同步工况,从而进行连续工况下的C FD数值模拟分析.研究结果表明:耦合器转矩启动时由于泵轮与涡轮的速度差而达到最大,涡轮输出转矩突然升高,但在前辅腔分流降转矩作用下迅速降低,达到降低启动转矩形成软启动效果;耦合器转矩在高转速比时较小,随着转速比的降低,耦合器转矩逐渐增大;耦合器转速比降低时流体俯冲入前辅腔从而降低转矩,使得转矩在转速比为0.63附近突然跌落,符合耦合器实际工作过程的转矩变化规律.%To achieve the internal fluid circulation patterns and the dynamic movement rules of oil from working chamber to auxiliary chamber of hydrodynamic couplings under dynamic conditions , through the modeling of YOXD200 hydrodynamic coupling ,the 3D whole flow channel was extracted . Medium motion was considered as laminar flow by the volume of fluid (VOF) two‐phase flow model , and user‐defined function (UDF) was used to describe the dynamic conditions while the hydrodynamic coupling was under continuous conditions from synchronous condition to brake condition and from start condition to synchronous condition .Thus ,the CFD numerical simulation under continuous con‐ditions was conducted .The results show that :The torque of hydrodynamic coupling raises to the top when it starts for the speed difference between pump and turbine ,the output torque of turbine increa‐ses suddenly ,and then decreases rapidly for the effect of split flow of the front

  8. Numerical study of coastal hydrodynamics using a coupled model for Hudhud cyclone in the Bay of Bengal

    Science.gov (United States)

    Murty, P. L. N.; Bhaskaran, Prasad K.; Gayathri, R.; Sahoo, Bishnupriya; Srinivasa Kumar, T.; SubbaReddy, B.

    2016-12-01

    The past decade has witnessed an increased intensity of cyclones in the Bay of Bengal region. With higher winds spread over a larger area, the associated risk and coastal vulnerability have increased with wider destructive potential from high waves, storm surges, and associated coastal inundation. The very severe cyclones that made landfall over the Bay of Bengal in the past decade had strong winds in their outer cores, unlike those cyclones that made landfall in previous years. The original parametric wind formulation performs well for more compact cyclones, but at a radial distance far away from the cyclone centre, the winds are under-estimated. Hence, there is a need to revisit and modify this formula for practical applications, and this study attempts to provide a better representation of the overall radial distance in the wind field envelope. The study postulates a 3/5-power law fitted to the original wind formulae, which provides a reasonably good estimate for the surface wind field. The recent very severe cyclones that developed over the Bay of Bengal provided an excellent test-bed to verify this hypothesis, which is supported by validation from six in-situ buoys. The modified wind formula used with a coupled hydrodynamic model (ADCIRC + SWAN) simulated the storm surge and wave characteristics associated with a recent very severe cyclonic storm 'Hudhud' that made landfall in Andhra, located on the east coast of India in 2014. The study also investigated the dependence of coastal geomorphic features and beach slope on the variability of wave-induced setup. Computed significant wave height and storm surge show an excellent match with wave-rider buoy and tide gauge observations.

  9. EFFECT OF GEOMETRIC CONFIGURATIONS ON HYDRODYNAMIC PERFORMANCE ASSESSMENT OF A MARINE PROPELLER

    Directory of Open Access Journals (Sweden)

    Samir. E. Belhenniche

    2016-12-01

    Full Text Available The present paper deals with the effect of the geometric characteristics on the propeller hydrodynamic performances. Several propeller configurations are created by changing number of blades, expanded area and pitch ratios. The Reynolds-Averaged Navier-Stokes (RANS equations are solved using the commercial code FLUENT 6.3.26. The standard

  10. Resonance shifts and spill-out effects in self-consistent hydrodynamic nanoplasmonics

    DEFF Research Database (Denmark)

    Toscano, Giuseppe; Straubel, Jakob; Kwiatkowski, Alexander;

    2015-01-01

    The standard hydrodynamic Drude model with hard-wall boundary conditions can give accurate quantitative predictions for the optical response of noble-metal nanoparticles. However, it is less accurate for other metallic nanosystems, where surface effects due to electron density spill-out in free s...

  11. Hydrodynamic shocks in microroller suspensions

    Science.gov (United States)

    Delmotte, Blaise; Driscoll, Michelle; Chaikin, Paul; Donev, Aleksandar

    2017-09-01

    We combine experiments, large-scale simulations, and continuum models to study the emergence of coherent structures in a suspension of magnetically driven microrollers sedimented near a floor. Collective hydrodynamic effects are predominant in this system, leading to strong density-velocity coupling. We characterize a uniform suspension and show that density waves propagate freely in all directions in a dispersive fashion. When sharp density gradients are introduced in the suspension, we observe the formation of a shock. Unlike Burgers' shocklike structures observed in other active and driven confined hydrodynamic systems, the shock front in our system has a well-defined finite width and moves rapidly compared to the mean suspension velocity. We introduce a continuum model demonstrating that the finite width of the front is due to far-field nonlocal hydrodynamic interactions and governed by a geometric parameter, the average particle height above the floor.

  12. Renormalon's Contribution to Effective Couplings

    CERN Document Server

    Suzuki, H

    1998-01-01

    When an asymptotically non-free theory possesses a mass scale, the ultraviolet (UV) renormalon gives rise to non-perturbative contributions to dimension-four operators and dimensionless couplings, thus has a similar effect as the instanton. We illustrate this phenomenon in O(N) symmetric massive briefly compared with non-perturbative corrections in the magnetic picture of the Seiberg-Witten theory.

  13. Intraguild Predation Dynamics in a Lake Ecosystem Based on a Coupled Hydrodynamic-Ecological Model: The Example of Lake Kinneret (Israel).

    Science.gov (United States)

    Makler-Pick, Vardit; Hipsey, Matthew R; Zohary, Tamar; Carmel, Yohay; Gal, Gideon

    2017-03-29

    The food web of Lake Kinneret contains intraguild predation (IGP). Predatory invertebrates and planktivorous fish both feed on herbivorous zooplankton, while the planktivorous fish also feed on the predatory invertebrates. In this study, a complex mechanistic hydrodynamic-ecological model, coupled to a bioenergetics-based fish population model (DYCD-FISH), was employed with the aim of revealing IGP dynamics. The results indicate that the predation pressure of predatory zooplankton on herbivorous zooplankton varies widely, depending on the season. At the time of its annual peak, it is 10-20 times higher than the fish predation pressure. When the number of fish was significantly higher, as occurs in the lake after atypical meteorological years, the effect was a shift from a bottom-up controlled ecosystem, to the top-down control of planktivorous fish and a significant reduction of predatory and herbivorous zooplankton biomass. Yet, seasonally, the decrease in predatory-zooplankton biomass was followed by a decrease in their predation pressure on herbivorous zooplankton, leading to an increase of herbivorous zooplankton biomass to an extent similar to the base level. The analysis demonstrates the emergence of non-equilibrium IGP dynamics due to intra-annual and inter-annual changes in the physico-chemical characteristics of the lake, and suggests that IGP dynamics should be considered in food web models in order to more accurately capture mass transfer and trophic interactions.

  14. Dual cloud point extraction coupled with hydrodynamic-electrokinetic two-step injection followed by micellar electrokinetic chromatography for simultaneous determination of trace phenolic estrogens in water samples.

    Science.gov (United States)

    Wen, Yingying; Li, Jinhua; Liu, Junshen; Lu, Wenhui; Ma, Jiping; Chen, Lingxin

    2013-07-01

    A dual cloud point extraction (dCPE) off-line enrichment procedure coupled with a hydrodynamic-electrokinetic two-step injection online enrichment technique was successfully developed for simultaneous preconcentration of trace phenolic estrogens (hexestrol, dienestrol, and diethylstilbestrol) in water samples followed by micellar electrokinetic chromatography (MEKC) analysis. Several parameters affecting the extraction and online injection conditions were optimized. Under optimal dCPE-two-step injection-MEKC conditions, detection limits of 7.9-8.9 ng/mL and good linearity in the range from 0.05 to 5 μg/mL with correlation coefficients R(2) ≥ 0.9990 were achieved. Satisfactory recoveries ranging from 83 to 108% were obtained with lake and tap water spiked at 0.1 and 0.5 μg/mL, respectively, with relative standard deviations (n = 6) of 1.3-3.1%. This method was demonstrated to be convenient, rapid, cost-effective, and environmentally benign, and could be used as an alternative to existing methods for analyzing trace residues of phenolic estrogens in water samples.

  15. Self-organized Hydrodynamics in an Annular Domain: Modal Analysis and Nonlinear Effects

    OpenAIRE

    Degond, Pierre; Yu, Hui

    2014-01-01

    The Self-Organized Hydrodynamics model of collective behavior is studied on an annular domain. A modal analysis of the linearized model around a perfectly polarized steady-state is conducted. It shows that the model has only pure imaginary modes in countable number and is hence stable. Numerical computations of the low-order modes are provided. The fully non-linear model is numerically solved and nonlinear mode-coupling is then analyzed. Finally, the efficiency of the modal decomposition to a...

  16. Hydrodynamic effects on β-amyloid (16-22) peptide aggregation

    Science.gov (United States)

    Chiricotto, Mara; Melchionna, Simone; Derreumaux, Philippe; Sterpone, Fabio

    2016-07-01

    Computer simulations based on simplified representations are routinely used to explore the early steps of amyloid aggregation. However, when protein models with implicit solvent are employed, these simulations miss the effect of solvent induced correlations on the aggregation kinetics and lifetimes of metastable states. In this work, we apply the multi-scale Lattice Boltzmann Molecular Dynamics technique (LBMD) to investigate the initial aggregation phases of the amyloid Aβ16-22 peptide. LBMD includes naturally hydrodynamic interactions (HIs) via a kinetic on-lattice representation of the fluid kinetics. The peptides are represented by the flexible OPEP coarse-grained force field. First, we have tuned the essential parameters that control the coupling between the molecular and fluid evolutions in order to reproduce the experimental diffusivity of elementary species. The method is then deployed to investigate the effect of HIs on the aggregation of 100 and 1000 Aβ16-22 peptides. We show that HIs clearly impact the aggregation process and the fluctuations of the oligomer sizes by favouring the fusion and exchange dynamics of oligomers between aggregates. HIs also guide the growth of the leading largest cluster. For the 100 Aβ16-22 peptide system, the simulation of ˜300 ns allowed us to observe the transition from ellipsoidal assemblies to an elongated and slightly twisted aggregate involving almost the totality of the peptides. For the 1000 Aβ16-22 peptides, a system of unprecedented size at quasi-atomistic resolution, we were able to explore a branched disordered fibril-like structure that has never been described by other computer simulations, but has been observed experimentally.

  17. Coupled Hydrodynamic-Water Quality Model for Pollution Control Scenarios in El-Burullus Lake (Nile Delta, Egypt

    Directory of Open Access Journals (Sweden)

    A. El-Adawy

    2014-01-01

    Full Text Available El-Burullus Lake is affected by increasing and extensive human activities, rapid social-economic development and the construction of fish ponds nearby. This has significantly impacted the health of the lake eco-system. On the foundation of the two-dimensional depth averaged hydrodynamic model, distributions of the salinity, Dissolved Oxygen (DO, Biochemical Oxygen Demand (BOD, Chemical Oxygen Demand (COD and Ammonium (NH4 were modeled. The heat flux model was also utilized to enhance the accuracy of the calculations in the water quality modeling stage. The calibration and the verification of this model were based on spatially distributed water quality measurements during the period 2010-2011. The correlation coefficients between measured and simulated salinity was found to be 0.79 in January 2011 and 0.84 in August 2010 with a mean errors of 1.3407 and 2.0727 ppt in August 2010 and January 2011 respectively. The results generally agree with the observations, but this indicates that more measurements are needed to verify the predictability of the simulations. In addition, Delft-3D model has been applied in evaluating the feasibility of adding a new artificial inlet or diversion of some drains. The model proved to be an effective tool for the water dynamics, water quality simulation and evaluating different scenarios of such shallow Lake.

  18. EFFECT OF ESCAPE DEVICE FOR SUBMERGED FLOATING TUNNEL (SFT) ON HYDRODYNAMIC LOADS APPLIED TO SFT

    Institute of Scientific and Technical Information of China (English)

    DONG Man-sheng; MIAO Guo-ping; YONG Long-chang; NIU Zhong-rong; PANG Huan-ping; HOU Chao-qun

    2012-01-01

    This paper presents a potential approach to settle the problem of surviving major safety accidents in Submerged Floating Tunnel (SFT) that detachable emergency escape devices are set up outside SFT.The Computational Fluid Dynamics (CFD)technology is used to investigate the effect of emergency escape devices on the hydrodynamic load acting on SFT in uniform and oscillatory flows and water waves by numerical test.The governing equations,i.e.,the Reynolds-Averaged Navier-Stokes (RANS)equations and k - ε standard turbulence equations,are solved by the Finite Volume Method (FVM).Analytic solutions for the Airy wave are applied to set boundary conditions to generate water wave.The VOF method is used to trace the free surface.In uniform flow,hydrodynamic loads,applied to SFT with emergency escape device,reduce obviously.But,in oscillatory flow,it has little influence on hydrodynamic loads acting on SFT.Horizontal and vertical wave loads of SFT magnify to some extend due to emergency escape devices so that the influence of emergency escape devices on hydrodynamic loads of SFT should be taken into consideration when designed.

  19. Effects of a phase transition on HBT correlations in an integrated Boltzmann+Hydrodynamics approach

    CERN Document Server

    Li, Qingfeng; Petersen, Hannah; Bleicher, Marcus; Stoecker, Horst

    2008-01-01

    A systematic study of HBT radii of pions, produced in heavy ion collisions in the intermediate energy regime (SPS), from an integrated (3+1)d Boltzmann+hydrodynamics approach is presented. The calculations in this hybrid approach, incorporating an hydrodynamic stage into the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) transport model, allow for a comparison of different equations of state (EoS) retaining the same initial conditions and final freeze-out. The results are also compared to the pure cascade transport model calculations in the context of the available data. Furthermore, the effect of different treatments of the hydrodynamic freeze-out procedure on the HBT radii are investigated. It is found that the HBT radii are essentially insensitive to the details of the freeze-out prescription as long as the final state interactions in the cascade are taken into account. The HBT radii $R_L$ and $R_O$ and the $R_O/R_S$ ratio are sensitive to the EoS that is employed during the hydrodynamic evolution. ...

  20. Effects of a phase transition on HBT correlations in an integrated Boltzmann + hydrodynamics approach

    Science.gov (United States)

    Li, Qingfeng; Steinheimer, Jan; Petersen, Hannah; Bleicher, Marcus; Stöcker, Horst

    2009-04-01

    A systematic study of HBT radii of pions, produced in heavy ion collisions in the intermediate energy regime (SPS), from an integrated (3 + 1)d Boltzmann + hydrodynamics approach is presented. The calculations in this hybrid approach, incorporating an hydrodynamic stage into the Ultra-relativistic Quantum Molecular Dynamics transport model, allow for a comparison of different equations of state retaining the same initial conditions and final freeze-out. The results are also compared to the pure cascade transport model calculations in the context of the available data. Furthermore, the effect of different treatments of the hydrodynamic freeze-out procedure on the HBT radii are investigated. It is found that the HBT radii are essentially insensitive to the details of the freeze-out prescription as long as the final hadronic interactions in the cascade are taken into account. The HBT radii RL and RO and the RO /RS ratio are sensitive to the EoS that is employed during the hydrodynamic evolution. We conclude that the increased lifetime in case of a phase transition to a QGP (via a Bag Model equation of state) is not supported by the available data.

  1. Effects of a phase transition on HBT correlations in an integrated Boltzmann + hydrodynamics approach

    Energy Technology Data Exchange (ETDEWEB)

    Li Qingfeng [School of Science, Huzhou Teachers College, Huzhou 313000 (China); Frankfurt Institute for Advanced Studies (FIAS), Johann Wolfgang Goethe-Universitaet, Ruth-Moufang-Str. 1, D-60438 Frankfurt am Main (Germany)], E-mail: liqf@fias.uni-frankfurt.de; Steinheimer, Jan [Institut fuer Theoretische Physik, Johann Wolfgang Goethe-Universitaet, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main (Germany)], E-mail: steinheimer@th.physik.uni-frankfurt.de; Petersen, Hannah [Frankfurt Institute for Advanced Studies (FIAS), Johann Wolfgang Goethe-Universitaet, Ruth-Moufang-Str. 1, D-60438 Frankfurt am Main (Germany); Institut fuer Theoretische Physik, Johann Wolfgang Goethe-Universitaet, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main (Germany)], E-mail: petersen@th.physik.uni-frankfurt.de; Bleicher, Marcus [Institut fuer Theoretische Physik, Johann Wolfgang Goethe-Universitaet, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main (Germany)], E-mail: bleicher@th.physik.uni-frankfurt.de; Stoecker, Horst [Frankfurt Institute for Advanced Studies (FIAS), Johann Wolfgang Goethe-Universitaet, Ruth-Moufang-Str. 1, D-60438 Frankfurt am Main (Germany); Institut fuer Theoretische Physik, Johann Wolfgang Goethe-Universitaet, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main (Germany); Gesellschaft fuer Schwerionenforschung (GSI), Planckstr. 1, D-64291 Darmstadt (Germany)], E-mail: h.stoecker@gsi.de

    2009-04-13

    A systematic study of HBT radii of pions, produced in heavy ion collisions in the intermediate energy regime (SPS), from an integrated (3+1)d Boltzmann + hydrodynamics approach is presented. The calculations in this hybrid approach, incorporating an hydrodynamic stage into the Ultra-relativistic Quantum Molecular Dynamics transport model, allow for a comparison of different equations of state retaining the same initial conditions and final freeze-out. The results are also compared to the pure cascade transport model calculations in the context of the available data. Furthermore, the effect of different treatments of the hydrodynamic freeze-out procedure on the HBT radii are investigated. It is found that the HBT radii are essentially insensitive to the details of the freeze-out prescription as long as the final hadronic interactions in the cascade are taken into account. The HBT radii R{sub L} and R{sub O} and the R{sub O}/R{sub S} ratio are sensitive to the EoS that is employed during the hydrodynamic evolution. We conclude that the increased lifetime in case of a phase transition to a QGP (via a Bag Model equation of state) is not supported by the available data.

  2. Effective field theory for hydrodynamics: Wess-Zumino term and anomalies in two spacetime dimensions

    CERN Document Server

    Dubovsky, Sergei; Nicolis, Alberto

    2011-01-01

    We develop the formalism that incorporates quantum anomalies in the effective field theory of non-dissipative fluids. We consider the effect of adding a Wess-Zumino-like term to the low-energy effective action to account for anomalies. In this paper we restrict to two spacetime dimensions. We find modifications to the constitutive relations for the current and the stress-energy tensor, and, more interestingly, half a new propagating mode (one-and-a-halfth sound): a left- or right-moving wave with propagation speed that goes to zero with the anomaly coefficient. Unlike for the chiral magnetic wave in four dimensions, this mode propagates even in the absence of external fields. We check our results against a more standard, purely hydrodynamical derivation. Unitarity of the effective field theory suggests an upper bound on the anomaly coefficient in hydrodynamics.

  3. Holography and hydrodynamics in small systems

    Science.gov (United States)

    Chesler, Paul M.

    2016-12-01

    Using holographic duality, we present results for the off-center collision of Gaussian wave packets in strongly coupled N = 4 supersymmetric Yang-Mills theory. The wave packets are thin along the collision axis and superficially at least resemble Lorentz contracted colliding protons. The collision results in the formation of a droplet of liquid of size R ∼ 1 /Teff where Teff is the effective temperature, which is the characteristic microscopic scale in strongly coupled plasma. These results demonstrate the applicability of hydrodynamics to microscopically small systems and bolster the notion that hydrodynamics can be applied to heavy-light ion collisions as well as proton-proton collisions.

  4. High-Throughput Particle Manipulation Based on Hydrodynamic Effects in Microchannels

    Directory of Open Access Journals (Sweden)

    Chao Liu

    2017-03-01

    Full Text Available Microfluidic techniques are effective tools for precise manipulation of particles and cells, whose enrichment and separation is crucial for a wide range of applications in biology, medicine, and chemistry. Recently, lateral particle migration induced by the intrinsic hydrodynamic effects in microchannels, such as inertia and elasticity, has shown its promise for high-throughput and label-free particle manipulation. The particle migration can be engineered to realize the controllable focusing and separation of particles based on a difference in size. The widespread use of inertial and viscoelastic microfluidics depends on the understanding of hydrodynamic effects on particle motion. This review will summarize the progress in the fundamental mechanisms and key applications of inertial and viscoelastic particle manipulation.

  5. Flare loop radiative hydrodynamics. III - Nonlocal radiative transfer effects

    Science.gov (United States)

    Canfield, R. C.; Fisher, G. H.; Mcclymont, A. N.

    1983-01-01

    The study has three goals. The first is to demonstrate that processes exist whose intrinsic nonlocal nature cannot be represented by local approximations. The second is to elucidate the physical nature and origins of these nonlocal processes. The third is to suggest that the methods and results described here may prove useful in constructing semiempirical models of the chromosphere by means more efficient than trial and error. Matrices are computed that describe the effect of a temperature perturbation at an arbitrary point in the loop on density, hydrogen ionized fraction, total radiative loss rate, and radiative loss rate of selected hydrogen lines and continua at all other points. It is found that the dominant nonlocal radiative transfer effects can be separated into flux divergence coefficient effects and upper level population effects. The former are most important when the perturbation takes place in a region of significant opacity. Upper level population effects arise in both optically thick and thin regions in response to nonlocal density, ionization, and interlocking effects.

  6. Multiple flux difference effect in the lattice hydrodynamic model

    Institute of Scientific and Technical Information of China (English)

    Wang Tao; Gao Zi-You; Zhao Xiao-Mei

    2012-01-01

    Considering the effect of multiple flux difference,an extended lattice model is proposed to improve the stability of traffic flow.The stability condition of the new model is obtained by using linear stability theory.The theoretical analysis result shows that considering the flux difference effect ahead can stabilize traffic flow.The nonlinear analysis is also conducted by using a reductive perturbation method.The modified KdV (mKdV) equation near the critical point is derived and the kink-antikink solution is obtained from the mKdV equation.Numerical simulation results show that the multiple flux difference effect can suppress the traffic jam considerably,which is in line with the analytical result.

  7. EFFECTS OF DIFFERENT NUMERICAL INTERFACE METHODS ON HYDRODYNAMICS INSTABILITY

    Energy Technology Data Exchange (ETDEWEB)

    FRANCOIS, MARIANNE M. [Los Alamos National Laboratory; DENDY, EDWARD D. [Los Alamos National Laboratory; LOWRIE, ROBERT B. [Los Alamos National Laboratory; LIVESCU, DANIEL [Los Alamos National Laboratory; STEINKAMP, MICHAEL J. [Los Alamos National Laboratory

    2007-01-11

    The authors compare the effects of different numerical schemes for the advection and material interface treatments on the single-mode Rayleigh-Taylor instability, using the RAGE hydro-code. The interface growth and its surface density (interfacial area) versus time are investigated. The surface density metric shows to be better suited to characterize the difference in the flow, than the conventional interface growth metric. They have found that Van Leer's limiter combined to no interface treatment leads to the largest surface area. Finally, to quantify the difference between the numerical methods they have estimated the numerical viscosity in the linear-regime at different scales.

  8. Hydrodynamic collective effects of active proteins in biological membranes

    CERN Document Server

    Koyano, Yuki; Mikhailov, Alexander S

    2016-01-01

    Lipid bilayers forming biological membranes are known to behave as viscous 2D fluids on submicrometer scales; usually they contain a large number of active protein inclusions. Recently, it has been shown [Proc. Nat. Acad. Sci. USA 112, E3639 (2015)] that such active proteins should in- duce non-thermal fluctuating lipid flows leading to diffusion enhancement and chemotaxis-like drift for passive inclusions in biomembranes. Here, a detailed analytical and numerical investigation of such effects is performed. The attention is focused on the situations when proteins are concentrated within lipid rafts. We demonstrate that passive particles tend to become attracted by active rafts and are accumulated inside them.

  9. Non-linear hydrodynamics of axion dark matter: relative velocity effects and "quantum forces"

    CERN Document Server

    Marsh, David J E

    2015-01-01

    The non-linear hydrodynamic equations for axion/scalar field dark matter (DM) in the non-relativistic Madelung-Shcr\\"{o}dinger form are derived in a simple manner, including the effects of universal expansion and Hubble drag. The hydrodynamic equations are used to investigate the relative velocity between axion DM and baryons, and the moving-background perturbation theory (MBPT) derived. Axions massive enough to be all of the DM do not affect the coherence length of the relative velocity, but the MBPT equations are modified by the inclusion of the axion effective sound speed. These MBPT equations are necessary for accurately modelling the effects of axion DM on the formation of the first cosmic structures, and suggest that the 21cm power spectrum could improve constraints on axion mass by up to four orders of magnitude with respect to the current best constraints. A further application of these results uses the "quantum force" analogy to model scalar field gradient energy in a smoothed-particle hydrodynamics ...

  10. Self-consistent hydrodynamic approach to nanoplasmonics: Resonance shifts and spill-out effects

    CERN Document Server

    Toscano, Giuseppe; Evers, Ferdinand; Xu, Hongxing; Mortensen, N Asger; Wubs, Martijn

    2014-01-01

    The standard hydrodynamic Drude model with hard-wall boundary conditions can give accurate quantitative predictions for the optical response of noble-metal nanoparticles. However, it is less accurate for other metallic nanosystems, where surface effects due to electron density spill-out in free space cannot be neglected. Here we address the fundamental question whether the description of surface effects in plasmonics necessarily requires a fully quantum-mechanical approach, such as time-dependent density-functional theory (TD-DFT), that goes beyond an effective Drude-type model. We present a more general formulation of the hydrodynamic model for the inhomogeneous electron gas, which additionally includes gradients of the electron density in the energy functional. In doing so, we arrive at a Self-Consistent Hydrodynamic Model (SC-HDM), where spill-out emerges naturally. We find a redshift for the optical response of Na nanowires, and a blueshift for Ag nanowires, which are both in quantitative agreement with e...

  11. Hydrodynamic collective effects of active proteins in biological membranes

    Science.gov (United States)

    Koyano, Yuki; Kitahata, Hiroyuki; Mikhailov, Alexander S.

    2016-08-01

    Lipid bilayers forming biological membranes are known to behave as viscous two-dimensional fluids on submicrometer scales; usually they contain a large number of active protein inclusions. Recently, it was shown [A. S. Mikhailov and R. Kapral, Proc. Natl. Acad. Sci. USA 112, E3639 (2015), 10.1073/pnas.1506825112] that such active proteins should induce nonthermal fluctuating lipid flows leading to diffusion enhancement and chemotaxislike drift for passive inclusions in biomembranes. Here, a detailed analytical and numerical investigation of such effects is performed. The attention is focused on the situations when proteins are concentrated within lipid rafts. We demonstrate that passive particles tend to become attracted by active rafts and are accumulated inside them.

  12. Electro-hydrodynamic effects on lipid membranes in giant vesicles

    Science.gov (United States)

    Staykova, Margarita; Yamamoto, Tetsuya; Lipowsky, Reinhard; Dimova, Rumiana

    2009-11-01

    Electric fields are widely applied for cell manipulation in numerous micron-scale systems. Here, we show for the first time that alternating electric fields may cause pronounced flows in the membrane of giant lipid vesicles as well as in the surrounding fluid media.^ The lipid vesicles are not only biomimetic model for the cell membrane but also have many potential biotechnological applications, e.g. as drug-delivery systems and micro-reactors. The reported effects should be considered in electric micro-manipulation procedures on cells and vesicles. They might be useful for applications in microfluidic technologies, for lipid mixing, trapping and displacement, as will be demonstrated. We also believe that our method for visualization of the lipid flows by fluorescently labeled intra-membrane domains will be helpful for studies on membrane behavior in vesicles subjected to shear or mechanical stresses.

  13. Effect of hydrodynamic interaction on the free volume distribution of SGFR-PBT composites

    Science.gov (United States)

    Munirathnamma, L. M.; Ningaraju, S.; Kumar, K. V. Aneesh; Ravikumar, H. B.

    2016-05-01

    In order to explore the effect of short glass fiber (SGF) reinforcement on the mechanical properties of Polybutylene terephthalate (PBT), short glass fibers of different proportion (10 - 40 wt %) are reinforced into PBT matrix. The free volume distribution of SGFR-PBT composites derived from CONTIN-PALS2 program exhibits the narrow full width at half maximum (FWHM). This is attributed to the improved adhesion resulted by the hydrodynamic interaction between the polymeric chains of PBT matrix and SGF. The hydrodynamic interaction parameter (h) decreases as a function of SGF wt% and becomes more negative for 40 wt% SGFR-PBT composites suggest the generation of excess friction at the interface. This improves the adhesion between the polymeric chains of PBT matrix and SGF and hence the mechanical strength of the SGFR-PBT composites.

  14. Effect of Coastal Waves on Hydrodynamics in One-Inlet Coastal Nador Lagoon, Morocco

    Directory of Open Access Journals (Sweden)

    Jeyar Mohammed

    2015-01-01

    Full Text Available Nador lagoon is a coastal system connected to the sea through a narrow and shallow inlet; understanding its hydraulic performance is required for its design and operation. This paper investigates the hydrodynamic impacts of the whole lagoon due to tidal waves using a numerical approach. In this study we use a two-dimensional, depth-averaged hydrodynamic model based on so-called shallow water equations solved within triangular mesh by a developed efficient finite volume method. The method was calibrated and validated against observed data and applied to analyze and predict water levels, tidal currents, and wind effects within the lagoon. Two typical idealized scenarios were investigated: tide only and tide with wind forcing. The predicted sea surface elevations and current speeds have been presented during a typical tidal period and show correct physics in different scenarios.

  15. The effect of wall depletion and hydrodynamic interactions on stress-gradient-induced polymer migration.

    Science.gov (United States)

    Rezvantalab, Hossein; Zhu, Guorui; Larson, Ronald G

    2016-07-21

    We generalize our recent continuum theory for the stress-gradient-induced migration of polymers [Zhu et al., J. Rheol., 2016, 60, 327-343] by incorporating the effect of solid boundaries on concentration variations. For a model flow in a channel with periodic slip wall velocity, which can in principle be produced by an electric field in the presence of a sinusoidal wall charge, we obtain theoretical results for the steady-state distribution of dilute solutions of polymer dumbbells using a systematic perturbation analysis in Weissenberg number Wi. We find that the presence of a thin wall depletion zone changes the lowest order solution from second to first in Wi and drastically affects the concentration field far from the depletion layer, due both to a coupling of the second derivative of the velocity field to the concentration gradient, and to convection of the polymer-depleted fluid in this layer into the bulk of the fluid. Additional effects induced by wall hydrodynamic interaction (HI) are assessed by incorporating polymer flux from the wall-HI migration theory of Ma and Graham into our continuum theory. We establish the range of validity of our theory by comparing the theoretical results with Brownian dynamics (BD) simulations: excellent agreement is achieved for relatively small molecules, while the theory breaks down when the Gradient number Gd is greater than 0.5, where Gd is the ratio of polymer coil size to the length scale over which the velocity gradient changes. The BD simulations are also extended to the case of long Hookean chains with numbers of springs per chain ranging from 1 to 32, where it is found that for fixed Gd and Wi, the results are nearly identical, showing that all important phenomena are captured by a simple dumbbell model, thus supporting the continuum theory which was derived for the case of dumbbells. In addition, the Stochastic Rotation Dynamics (SRD) method is employed to evaluate the role of HI on the migration pattern, producing

  16. Effects of basin bottom slope on jet hydrodynamics and river mouth bar formation

    Science.gov (United States)

    Jiménez-Robles, A. M.; Ortega-Sánchez, M.; Losada, M. A.

    2016-06-01

    River mouth bars are strategic morphological units primarily responsible for the development of entire deltaic systems. This paper addresses the role of receiving basin slope in the hydrodynamics of an exiting sediment-laden turbulent jet and in resulting mouth bar morphodynamics. We use Delft3D, a coupled hydrodynamic and morphodynamic numerical model, along with a theoretical formulation to reproduce the physics of the problem, characterized by a fluvially dominated inlet free of waves and tides. We propose an updated theoretical model with a slope-dependent entrainment coefficient, showing that the rate at which ambient fluid is incorporated into a jet increases with higher basin slopes. Transient results reveal that the magnitude of a basin slope can alter the stability of a jet, favoring the formation of an unstable meandering jet. While a stable jet gives rise to "middle-ground" bars accompanied by diverging channels, a "lunate" mouth bar results from unstable jets. Additional morphodynamic simulations demonstrate that the time required for mouth bar stagnation in its final position increases linearly with the basin slope. In contrast, the distance at which the mouth bar eventually forms decreases until reaching an asymptotic value for slopes higher than 2%. Moreover, the basin slope highly influences sedimentary processes responsible for bar formation: for milder slopes, progradation processes prevail, while in steeper basins aggradation is more relevant. Finally, the minimum relative water depth over a bar crest that forces the flow to bifurcate around a fully developed bar decreases with the basin slope.

  17. Effect of Liquid Viscosity and Solid Inventory on Hydrodynamics in a Liquid - solid Circulating Fluidized Bed

    Directory of Open Access Journals (Sweden)

    Nirmala sundaram

    2017-01-01

    Full Text Available A comprehensive hydrodynamic study of a Liquid - Solid Circulating Fluidized Bed (LSCFB is conducted with changes in viscosity of the fluidizing medium and the inventory height of solids initially fed into the system. An LSCFB of height 2.95m and riser outer diameter 0.1m was chosen for experimentation. The three liquid media systems with varying viscosities that were chosen were water, glycerol 10% (v/v and glycerol 20% (v/v. Effect of inventory on the hydrodynamics was also studied, by taking initial heights of inventory to be 15cm, 25cm and 35cm. The hydrodynamic studies concentrated on pressure gradients along the axial pressure tapings, axial solid holdup, average solid holdup, solid circulation rate and slip velocity. Uniformity in axial solid holdup and average solid holdup was validated for changes in viscosity and inventory. Solid flux was seen to follow an inverse relationship to holdup. The changes in slip velocity with varying viscosity and inventory were studied, and found to decrease with both variables. The distribution parameter, Co of the drift flux model was found to be in the range of 0.983-0.994, suggesting non-uniformity in radial solid distribution, with higher solid concentration by the walls compared to the core of the column.

  18. An experimental study of the effect of different onshore cliff angles on near shore hydrodynamics

    Science.gov (United States)

    Sim, S.; Xu, C.; Huang, Z.

    2013-12-01

    As a tsunami propagates towards the shore, they will shoal and then break. This will lead to an up rush of water. In scenarios where there are no distinct obstacles that affect the near shore coastal topography, this inundation process will not be halted and the water will travel to its farthest extent without any hindrance. As the water recedes, the return flow will be that of a shallow sheet flow. However, these expected hydrodynamic observations may not be recorded if there are significant alterations to the near shore topographical settings. In this study we investigated the effect of an onshore cliff on near shore hydrodynamics. A series of laboratory experiments were conducted in a wave flume to examine how different onshore cliff angles can affect the near shore hydrodynamics. Key parameters recorded were the run-up and inundation values. The recorded measurements showed that when the cliff angle is very steep, the flow depth in front of the cliff will be amplified significantly. This is evidenced by video recordings of the side profile of the wave flume. The video recording also showed a return plunging breaker wave which entrained air; this could imply that the near shore morphology could also be affected as sediment near shore can be entrained by this turbulence generated and then carried further offshore.

  19. Coupling hydrodynamic models with GIS for storm surge simulation: application to the Yangtze Estuary and the Hangzhou Bay, China

    Institute of Scientific and Technical Information of China (English)

    Liang WANG; Xiaodong ZHAO; Yongming SHEN

    2012-01-01

    Storm surge is one of the most serious oceanic disasters.Accurate and timely numerical prediction is one of the primary measures for disaster control.Traditional storm surge models lack of accuracy and time effects.To overcome the disadvantages,in this paper,an analytical cyclone model was first added into the Finite-Volume Coastal Ocean Model (FVCOM) consisting of high resolution,flooding and drying capabilities for 3D storm surge modeling.Then,we integrated MarineTools Pro into a geographic information system (GIS) to supplement the storm surge model.This provided end users with a friendly modeling platform and easy access to geographically referenced data that was required for the model input and output.A temporal GIS tracking analysis module was developed to create a visual path from storm surge numerical results.It was able to track the movement of a storm in space and time.Marine Tools Pro' capabilities could assist the comprehensive understanding of complex storm events in data visualization,spatial query,and analysis of simulative results in an objective and accurate manner.The tools developed in this study further supported the idea that the coupled system could enhance productivity by providing an efficient operating environment for accurate inversion or storm surge prediction.Finally,this coupled system was used to reconstruct the storm surge generated by Typhoon Agnes (No.8114) and simulated typhoon induced-wind field and water elevations of Yangtze Estuary and Hangzhou Bay.The simulated results show good correlation with actual surveyed data.The simple operating interface of the coupled system is very convenient for users,who want to learn the usage of the storm surge model,especially for first-time users,which can save their modeling time greatly.

  20. Elasto-hydrodynamic lubrication

    CERN Document Server

    Dowson, D; Hopkins, D W

    1977-01-01

    Elasto-Hydrodynamic Lubrication deals with the mechanism of elasto-hydrodynamic lubrication, that is, the lubrication regime in operation over the small areas where machine components are in nominal point or line contact. The lubrication of rigid contacts is discussed, along with the effects of high pressure on the lubricant and bounding solids. The governing equations for the solution of elasto-hydrodynamic problems are presented.Comprised of 13 chapters, this volume begins with an overview of elasto-hydrodynamic lubrication and representation of contacts by cylinders, followed by a discussio

  1. Effects of hydrodynamic interaction on random adhesive loose packings of micron-sized particles

    Directory of Open Access Journals (Sweden)

    Liu Wenwei

    2017-01-01

    Full Text Available Random loose packings of monodisperse spherical micron-sized particles under a uniform flow field are investigated via an adhesive discrete-element method with the two-way coupling between the particles and the fluid. Characterized by a dimensionless adhesion parameter, the packing fraction follows the similar law to that without fluid, but results in larger values due to the hydrodynamic compression. The total pressure drop through the packed bed shows a critical behaviour at the packing fraction of ϕ ≈ 0.22 in the present study. The normalized permeability of the packed bed for different parameters increases with the increase of porosities and is also in consistent with the Kozeny-Carman equation.

  2. Effects of hydrodynamic interaction on random adhesive loose packings of micron-sized particles

    Science.gov (United States)

    Liu, Wenwei; Tao, Ran; Chen, Sheng; Zhang, Huang; Li, Shuiqing

    2017-06-01

    Random loose packings of monodisperse spherical micron-sized particles under a uniform flow field are investigated via an adhesive discrete-element method with the two-way coupling between the particles and the fluid. Characterized by a dimensionless adhesion parameter, the packing fraction follows the similar law to that without fluid, but results in larger values due to the hydrodynamic compression. The total pressure drop through the packed bed shows a critical behaviour at the packing fraction of ϕ ≈ 0.22 in the present study. The normalized permeability of the packed bed for different parameters increases with the increase of porosities and is also in consistent with the Kozeny-Carman equation.

  3. Flow Field Analysis of Variable Speed Hydrodynamic Coupling on Braking Condition%调速型液力偶合器制动工况流场分析

    Institute of Scientific and Technical Information of China (English)

    何延东; 刘刚

    2012-01-01

    The unsteady two phase flow of variable speed hydrodynamic coupling on braking condition was numerical simulated based on the three dimensional multi-phase flow theory and computational fluid dynamics (CFD). The results show that the pressure distribution of pump flow is regular.it is increased gradually along the radial direction,but the inner flow of turbine is more complicated. Small irregular flow appears in suction surface of turbine. Velocity distribution of middle axode is complicated,and turbine velocity is less than pump velocity. Some secondary flow arises in the low velocity of the middle interface which can reduce the coupling efficiency. It is helpful to guide the design of hydrodynamic coupling and improve its performance through the field analysis of variable speed hydrodynamic coupling on braking condition to reveal the flow rule and characteristic of pump and turbine.%基于三维多相流动理论和计算流体动力学(CFD),对调速型液力偶合器制动工况下的非稳态两相流动进行数值模拟.结果表明:泵轮流道的压力分布较规律,沿径向成比例逐渐增大,而涡轮流道的内部流动则较复杂;涡轮吸力面出现了小范围的不规则流动现象;中间轴面的速度分布较复杂,涡轮速度小于泵轮速度;Interface中部的低速区出现降低偶合器效率的二次流.对调速型液力偶合器制动工况进行流场分析,揭示其泵轮和涡轮的流场流动规律和特性,有助于指导液力偶合器的设计,提高偶合器的性能.

  4. Experimental Study on the Effect of Exit Geometric Configurations on Hydrodynamics in CFB

    Directory of Open Access Journals (Sweden)

    Xiaolei Qiao

    2013-05-01

    Full Text Available The exit configurations of CFB strongly influence the bulk density profile and the internal circulation of the bed material, which is called the end effect. This study analyzes the influence of three exit geometries and two narrowed exit geometries on hydrodynamics. Experiments indicate that the exit with the projected roof in CFB may be used as a separator and the projected height has a maximum. Narrowing the bed cross section near the bed exit zone is a simple and effective way to enhance the internal circulation and reduce the circulation of bed material simultaneously.

  5. A new lattice hydrodynamic traffic flow model with a consideration of multi-anticipation effect

    Institute of Scientific and Technical Information of China (English)

    Tian Chuan; Sun Di-Hua; Yang Shu-Hong

    2011-01-01

    We present a new multi-anticipation lattice hydrodynamic model based on the traffic anticipation effect in the real world.Applying the linear stability theory,we obtain the linear stability condition of the model.Through nonlinear analysis,we derive the modified Korteweg-de Vries equation to describe the propagating behaviour of a traffic density wave near the critical point.The good agreement between the simulation results and the analytical results shows that the stability of traffic flow can be enhanced when the multi-anticipation effect is considered.

  6. Improved Large-Scale Inundation Modelling by 1D-2D Coupling and Consideration of Hydrologic and Hydrodynamic Processes - a Case Study in the Amazon

    Science.gov (United States)

    Hoch, J. M.; Bierkens, M. F.; Van Beek, R.; Winsemius, H.; Haag, A.

    2015-12-01

    Understanding the dynamics of fluvial floods is paramount to accurate flood hazard and risk modeling. Currently, economic losses due to flooding constitute about one third of all damage resulting from natural hazards. Given future projections of climate change, the anticipated increase in the World's population and the associated implications, sound knowledge of flood hazard and related risk is crucial. Fluvial floods are cross-border phenomena that need to be addressed accordingly. Yet, only few studies model floods at the large-scale which is preferable to tiling the output of small-scale models. Most models cannot realistically model flood wave propagation due to a lack of either detailed channel and floodplain geometry or the absence of hydrologic processes. This study aims to develop a large-scale modeling tool that accounts for both hydrologic and hydrodynamic processes, to find and understand possible sources of errors and improvements and to assess how the added hydrodynamics affect flood wave propagation. Flood wave propagation is simulated by DELFT3D-FM (FM), a hydrodynamic model using a flexible mesh to schematize the study area. It is coupled to PCR-GLOBWB (PCR), a macro-scale hydrological model, that has its own simpler 1D routing scheme (DynRout) which has already been used for global inundation modeling and flood risk assessments (GLOFRIS; Winsemius et al., 2013). A number of model set-ups are compared and benchmarked for the simulation period 1986-1996: (0) PCR with DynRout; (1) using a FM 2D flexible mesh forced with PCR output and (2) as in (1) but discriminating between 1D channels and 2D floodplains, and, for comparison, (3) and (4) the same set-ups as (1) and (2) but forced with observed GRDC discharge values. Outputs are subsequently validated against observed GRDC data at Óbidos and flood extent maps from the Dartmouth Flood Observatory. The present research constitutes a first step into a globally applicable approach to fully couple

  7. The investigation of ship maneuvering with hydrodynamic effects between ships in curved narrow channel

    Directory of Open Access Journals (Sweden)

    Chun-Ki Lee

    2016-01-01

    Full Text Available The hydrodynamic interaction between two large vessels can't be neglected when two large vessels are closed to each other in restricted waterways such as in a harbor or narrow channel. This paper is mainly concerned with the ship maneuvering motion based on the hydrodynamic interaction effects between two large vessels moving each other in curved narrow channel. In this research, the characteristic features of the hydrodynamic interaction forces between two large vessels are described and illustrated, and the effects of velocity ratio and the spacing between two vessels are summarized and discussed. Also, the Inchon outer harbor area through the PALMI island channel in Korea was selected, and the ship maneuvering simulation was carried out to propose an appropriate safe speed and distance between two ships, which is required to avoid sea accident in confined waters. From the inspection of this investigation, it indicates the following result. Under the condition of SP12≤0.5L, it may encounter a dangerous tendency of grounding or collision due to the combined effect of the interaction between ships and external forces. Also considering the interaction and wind effect as a parameter, an overtaken and overtaking vessel in narrow channel can navigate while keeping its own original course under the following conditions; the lateral separation between two ships is about kept at 0.6 times of ship length and 15 degrees of range in maximum rudder angle. On the other hand, two ships while overtaking in curved narrow channel such as Inchon outer harbor in Korea should be navigated under the following conditions; SP12 is about kept at 1.0 times of ship length and the wind velocity should not be stronger than 10 m/s.

  8. Inverse Vernier Effects in Coupled Lasers

    CERN Document Server

    Ge, Li

    2015-01-01

    In this report we study the Vernier effect in coupled laser systems consisting of two cavities. We show that depending on the nature of their coupling, not only can the "supermodes" formed at the overlapping resonances of the coupled cavities have the lowest thresholds and lase first as previously suggested, leading to a manifestation of the typical Vernier effect now in an active system; these supermodes can also have increased thresholds and are hence suppressed, which can be viewed as an inverse Vernier effect. We attribute this effect to detuning-dependent Q-spoiling, and it can lead to an increased free spectrum range and possibly single-mode lasing, which may explain the experimental findings of several previous work. We illustrate this effect using two coupled micro-ring cavities and a micro-ring cavity coupled to a slab cavity, and we discuss its relation to the existence of exceptional points in coupled lasers.

  9. Hydrodynamics of Exploding Foil X-Ray Lasers with Time-Dependent Ionization Effect

    Science.gov (United States)

    Wang, Yu; Su, Dandan; Li, Yingjun

    2016-12-01

    A simple modified model is presented based on R. A. London's self-similarity model on time-independent ionization hydrodynamics of exploding foil X-ray lasers. In our model, the time-dependent ionization effect is under consideration and the average ion charge depends on the temperature. Then we obtain the new scaling laws for temperature, scale length and electron density, which have better agreement with experimental results. supported by National Natural Science Foundation of China (Nos. 11574390, 11374360, 41472130) and the National Basic Research Program of China (No. 2013CBA01504)

  10. The effect of nanoparticles on thin film elasto-hydrodynamic lubrication

    Science.gov (United States)

    Ghaednia, Hamed; Babaei, Hasan; Jackson, Robert L.; Bozack, Michael J.; Khodadadi, J. M.

    2013-12-01

    Carefully conducted friction tests of a nano-lubricant in the thin film elasto-hydrodynamic lubrication regime showed that the presence of nanoparticles reduces friction. By using surface analyses techniques and molecular dynamics simulations, we explored the effectiveness of different interactions in the system, namely the interactions between nanoparticles with the lubricant or surfaces. Based on the results, the friction reduction mechanism was found to be that the nanoparticles induce an obstructed flow (plug flow) in the thin film between lubricated surfaces. This reduces friction by forcing only a few layers of lubricant molecules to slide on each other.

  11. Effects of surfactant on bubble hydrodynamic behavior under flotation-related conditions in wastewater.

    Science.gov (United States)

    Li, Yanpeng; Zhu, Tingting; Liu, Yanyan; Tian, Ye; Wang, Huanran

    2012-01-01

    Bubble behavior is fundamental to the performance of froth flotation operations used in wastewater treatment processes. To fully understand and characterize bubble behavior under flotation-related conditions in wastewater, the high-speed photographic method has been employed to examine the motion of single bubbles and size distribution of bubble swarms with intermediate sizes ranging from 1 to 4 mm in the presence of surfactants in a laboratory scale flotation column. Both distilled water and synthetic municipal wastewater have been used to make solutions as well as two types of common surfactants. The instantaneous bubble motion has been recorded by a high speed camera. Subsequently, bubble trajectory, dimensions, velocity and distribution have been determined from the recorded frames using the image analysis software. The experimental results show that the addition of surfactant into wastewater has similar effects on bubble hydrodynamic behavior as in pure water (e.g., improving trajectory stabilization, dampening bubble deformation, slowing down terminal velocity, reducing bubble size and increasing the specific surface area of bubble swarm) due to the Marangoni effect. However, it is interesting to note that surfactant effects on single bubble hydrodynamics in wastewater are slightly stronger than those in pure water while surfactant effects on size parameters of bubble swarms in wastewater are significantly stronger than those in pure water. This finding suggests that besides surfactant, inorganic salts present in synthetic wastewater have an important influence on bubble dispersion.

  12. Hydrodynamic effects on contaminants release due to rususpension and diffu-sion from sediments

    Institute of Scientific and Technical Information of China (English)

    朱红伟; 程鹏达; 钟宝昌; 王道增

    2013-01-01

    Hydrodynamic effects play a very important role in the contaminants release from sediments. Experiments were perfor-med to study contaminants releasing characteristics due to resuspension. The time-dependent variation of COD concentration and re-lative roles under static and dynamic state of the overlying water were analyzed. Experimental results showed that COD concen-tration in the water column got a striking increment on the dynamic conditions, mainly by reducing the thickness of concentration boundary layer near sediment-water interface and destructing the surface structure of sediment. Hydrodynamics increased contamina-nts release rates and flux in unit time. Before reaching an equilibrium stage, the dynamic release caused by the resuspension was more effective than static one due to molecular diffusion. The release rate of COD increased with flow velocity and decreased with water depth. But at a shallow water depth, wave effects would dominate the causing resuspension, resulting in contaminants release in large quantity. The intensity of pollutant release increased with time in a rather circuitous process. The diffusion of pollutant from internal sediment to the sediment-water interface would maintain the endogenous release effects.

  13. EXPERIMENTAL INVESTIGATION OF EFFECTS OF INNER-TANK SLOSHING ON HYDRODYNAMICS OF AN FLNG SYSTEM

    Institute of Scientific and Technical Information of China (English)

    ZHAO Wen-hua; YANG Jian-min; HU Zhi-qiang; XIAO Long-fei

    2012-01-01

    The present research focuses on experimentally clarifying the effect of inner-tank sloshing on the hydrodynamics of an Floating Liquefied Natural Gas (FLNG) system.Through the comparisons of the results obtained from the model tests carried out with the vessel model ballasted with liquid and solid cargo separately,the effects of the inner-tank sloshing on the hydrodynamics of an FLNG system are highlighted and presented.Statistical languages of the maximum,minimum,mean values and the standard deviations and power density spectra calculated with the help of the algorithm of Fast Fourier Transformation (FFT) are provided.It is concluded that the effects of the inner-tank sloshing on the responses of the FLNG system are sensitive to wave excitation frequencies,and that the effects of the inner-tank sloshing play an important role,particularly in the roll motion of the FLNG hull.The outcome of the proposed technique would offer constructive feedback,which can lead to more practical applications and can serve as a reference for the verification of the potential numerical simulations by other researchers.

  14. Submarine hydrodynamics

    CERN Document Server

    Renilson, Martin

    2015-01-01

    This book adopts a practical approach and presents recent research together with applications in real submarine design and operation. Topics covered include hydrostatics, manoeuvring, resistance and propulsion of submarines. The author briefly reviews basic concepts in ship hydrodynamics and goes on to show how they are applied to submarines, including a look at the use of physical model experiments. The issues associated with manoeuvring in both the horizontal and vertical planes are explained, and readers will discover suggested criteria for stability, along with rudder and hydroplane effectiveness. The book includes a section on appendage design which includes information on sail design, different arrangements of bow planes and alternative stern configurations. Other themes explored in this book include hydro-acoustic performance, the components of resistance and the effect of hull shape. Readers will value the author’s applied experience as well as the empirical expressions that are presented for use a...

  15. Hydrodynamic effects of air sparging on hollow fiber membranes in a bubble column reactor.

    Science.gov (United States)

    Xia, Lijun; Law, Adrian Wing-Keung; Fane, Anthony G

    2013-07-01

    Air sparging is now a standard approach to reduce concentration polarization and fouling of membrane modules in membrane bioreactors (MBRs). The hydrodynamic shear stresses, bubble-induced turbulence and cross flows scour the membrane surfaces and help reduce the deposit of foulants onto the membrane surface. However, the detailed quantitative knowledge on the effect of air sparging remains lacking in the literature due to the complex hydrodynamics generated by the gas-liquid flows. To date, there is no valid model that describes the relationship between the membrane fouling performance and the flow hydrodynamics. The present study aims to examine the impact of hydrodynamics induced by air sparging on the membrane fouling mitigation in a quantitative manner. A modelled hollow fiber module was placed in a cylindrical bubble column reactor at different axial heights with the trans-membrane pressure (TMP) monitored under constant flux conditions. The configuration of bubble column without the membrane module immersed was identical to that studied by Gan et al. (2011) using Phase Doppler Anemometry (PDA), to ensure a good quantitative understanding of turbulent flow conditions along the column height. The experimental results showed that the meandering flow regime which exhibits high flow instability at the 0.3 m is more beneficial to fouling alleviation compared with the steady flow circulation regime at the 0.6 m. The filtration tests also confirmed the existence of an optimal superficial air velocity beyond which a further increase is of no significant benefit on the membrane fouling reduction. In addition, the alternate aeration provided by two air stones mounted at the opposite end of the diameter of the bubble column was also studied to investigate the associated flow dynamics and its influence on the membrane filtration performance. It was found that with a proper switching interval and membrane module orientation, the membrane fouling can be effectively

  16. Simulating pH effects in an algal-growth hydrodynamics model(1).

    Science.gov (United States)

    James, Scott C; Janardhanam, Vijayasarathi; Hanson, David T

    2013-06-01

    Models and numerical simulations are relatively inexpensive tools that can be used to enhance economic competitiveness through operation and system optimization to minimize energy and resource consumption, while maximizing algal oil yield. This work uses modified versions of the U.S. Environmental Protection Agency's Environmental Fluid Dynamics Code (EFDC) in conjunction with the U.S. Army Corp of Engineers' water-quality code (CE-QUAL) to simulate flow hydrodynamics coupled to algal growth kinetics. The model allows the flexibility of manipulating a host of variables associated with algal growth such as temperature, light intensity, and nutrient availability. pH of the medium is a newly added operational parameter governing algal growth that affects algal photosynthesis, differential availability of inorganic forms of carbon, enzyme activity in algae cell walls, and oil production rates. A single-layer algal-growth/hydrodynamic model without pH limitation was verified by comparing solution curves of algal biomass and phosphorus concentrations to an analytical solution. Media pH, now included in the model as a growth-limiting factor, can be entered as a measured value or calculated based on CO2 concentrations. Upon adding the ability to limit growth due to pH, physically reasonable results have been obtained from the model both with and without pH limitation. When the model was used to simulate algal growth from a pond experiment in the greenhouse, a least-squares fitting technique yielded a maximum algal production (subsequently modulated by limitation factors) of 1.05 d(-1) . Overall, the measured and simulated biomass concentrations in the greenhouse pond were in close agreement. © 2013 Phycological Society of America.

  17. The potential of coordinated reservoir operation for flood mitigation in large basins - A case study on the Bavarian Danube using coupled hydrological-hydrodynamic models

    Science.gov (United States)

    Seibert, S. P.; Skublics, D.; Ehret, U.

    2014-09-01

    The coordinated operation of reservoirs in large-scale river basins has great potential to improve flood mitigation. However, this requires large scale hydrological models to translate the effect of reservoir operation to downstream points of interest, in a quality sufficient for the iterative development of optimized operation strategies. And, of course, it requires reservoirs large enough to make a noticeable impact. In this paper, we present and discuss several methods dealing with these prerequisites for reservoir operation using the example of three major floods in the Bavarian Danube basin (45,000 km2) and nine reservoirs therein: We start by presenting an approach for multi-criteria evaluation of model performance during floods, including aspects of local sensitivity to simulation quality. Then we investigate the potential of joint hydrologic-2d-hydrodynamic modeling to improve model performance. Based on this, we evaluate upper limits of reservoir impact under idealized conditions (perfect knowledge of future rainfall) with two methods: Detailed simulations and statistical analysis of the reservoirs' specific retention volume. Finally, we investigate to what degree reservoir operation strategies optimized for local (downstream vicinity to the reservoir) and regional (at the Danube) points of interest are compatible. With respect to model evaluation, we found that the consideration of local sensitivities to simulation quality added valuable information not included in the other evaluation criteria (Nash-Sutcliffe efficiency and Peak timing). With respect to the second question, adding hydrodynamic models to the model chain did, contrary to our expectations, not improve simulations, despite the fact that under idealized conditions (using observed instead of simulated lateral inflow) the hydrodynamic models clearly outperformed the routing schemes of the hydrological models. Apparently, the advantages of hydrodynamic models could not be fully exploited when

  18. Inverse Vernier effect in coupled lasers

    Science.gov (United States)

    Ge, Li; Türeci, Hakan E.

    2015-07-01

    In this report we study the Vernier effect in coupled laser systems consisting of two cavities. We show that depending on the nature of their coupling, not only can the "supermodes" formed at overlapping resonances of these two cavities have the lowest thresholds as previously found, leading to lasing at these overlapping resonances and a manifestation of the typical Vernier effect, but also they can have increased thresholds and are hence suppressed, which can be viewed as an inverse Vernier effect. The inverse Vernier effect can also lead to an increased free spectrum range and possibly single-mode lasing, which may explain the experimental findings in several previous studies. We illustrate this effect using two coupled micro-ring cavities and a micro-ring cavity coupled to a slab cavity, and we discuss its relation to the existence of exceptional points in coupled lasers.

  19. NIF laboratory astrophysics simulations investigating the effects of a radiative shock on hydrodynamic instabilities

    Science.gov (United States)

    Angulo, A. A.; Kuranz, C. C.; Drake, R. P.; Huntington, C. M.; Park, H.-S.; Remington, B. A.; Kalantar, D.; MacLaren, S.; Raman, K.; Miles, A.; Trantham, Matthew; Kline, J. L.; Flippo, K.; Doss, F. W.; Shvarts, D.

    2016-10-01

    This poster will describe simulations based on results from ongoing laboratory astrophysics experiments at the National Ignition Facility (NIF) relevant to the effects of radiative shock on hydrodynamically unstable surfaces. The experiments performed on NIF uniquely provide the necessary conditions required to emulate radiative shock that occurs in astrophysical systems. The core-collapse explosions of red supergiant stars is such an example wherein the interaction between the supernova ejecta and the circumstellar medium creates a region susceptible to Rayleigh-Taylor (R-T) instabilities. Radiative and nonradiative experiments were performed to show that R-T growth should be reduced by the effects of the radiative shocks that occur during this core-collapse. Simulations were performed using the radiation hydrodynamics code Hyades using the experimental conditions to find the mean interface acceleration of the instability and then further analyzed in the buoyancy drag model to observe how the material expansion contributes to the mix-layer growth. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas under Grant Number DE-FG52-09NA29548.

  20. Effects of Solution Hydrodynamics on Corrosion Inhibition of Steel by Citric Acid in Cooling Water

    Science.gov (United States)

    Ashassi-Sorkhabi, H.; Asghari, E.; Mohammadi, M.

    2014-08-01

    Corrosion is a major problem in cooling water systems, which is often controlled using corrosion inhibitors. Solution hydrodynamics is one of the factors affecting corrosion inhibition of metals in these systems. The present work focuses on the study of the combined effects of citric acid concentration (as a green corrosion inhibitor) and fluid flow on corrosion of steel in simulated cooling water. Electrochemical techniques including Tafel polarization and electrochemical impedance spectroscopy were used for corrosion studies. Laminar flow was simulated using a rotating disk electrode. The effects of solution hydrodynamics on inhibition performance of citric acid were discussed. The citric acid showed low inhibition performance in quiescent solution; however, when the electrode rotated at 200 rpm, inhibition efficiency increased remarkably. It was attributed mainly to the acceleration of inhibitor mass transport toward metal surface. The efficiencies were then decreased at higher rotation speeds due to enhanced wall shear stresses on metal surface and separation of adsorbed inhibitor molecules. This article is first part of authors' attempts in designing green inhibitor formulations for industrial cooling water. Citric acid showed acceptable corrosion inhibition in low rotation rates; thus, it can be used as a green additive to the corrosion inhibitor formulations.

  1. Effect of particle size distribution on the hydrodynamics of dense CFB risers

    Science.gov (United States)

    Bakshi, Akhilesh; Khanna, Samir; Venuturumilli, Raj; Altantzis, Christos; Ghoniem, Ahmed

    2015-11-01

    Circulating Fluidized Beds (CFB) are favorable in the energy and chemical industries, due to their high efficiency. While accurate hydrodynamic modeling is essential for optimizing performance, most CFB riser simulations are performed assuming equally-sized solid particles, owing to limited computational resources. Even though this approach yields reasonable predictions, it neglects commonly observed experimental findings suggesting the strong effect of particle size distribution (psd) on the hydrodynamics and chemical conversion. Thus, this study is focused on the inclusion of discrete particle sizes to represent the psd and its effect on fluidization via 2D numerical simulations. The particle sizes and corresponding mass fluxes are obtained using experimental data in dense CFB riser while the modeling framework is described in Bakshi et al 2015. Simulations are conducted at two scales: (a) fine grid to resolve heterogeneous structures and (b) coarse grid using EMMS sub-grid modifications. Using suitable metrics which capture bed dynamics, this study provides insights into segregation and mixing of particles as well as highlights need for improved sub-grid models.

  2. Quasiparticle anisotropic hydrodynamics

    CERN Document Server

    Alqahtani, Mubarak

    2016-01-01

    We study an azimuthally-symmetric boost-invariant quark-gluon plasma using quasiparticle anisotropic hydrodynamics including the effects of both shear and bulk viscosities. We compare results obtained using the quasiparticle method with the standard anisotropic hydrodynamics and viscous hydrodynamics. We consider the predictions of the three methods for the differential particle spectra and mean transverse momentum. We find that the three methods agree for small shear viscosity to entropy density ratio, $\\eta/s$, but show differences at large $\\eta/s$. Additionally, we find that the standard anisotropic hydrodynamics method shows suppressed production at low transverse-momentum compared to the other two methods, and the bulk-viscous correction can drive the primordial particle spectra negative at large $p_T$ in viscous hydrodynamics.

  3. Effect of head swing motion on hydrodynamic performance of fishlike robot propulsion

    Institute of Scientific and Technical Information of China (English)

    夏丹; 陈维山; 刘军考; 吴泽

    2016-01-01

    This paper studies the effect of the head swing motion on the fishlike robot swimming performance numerically. Two critical parameters are employed in describing the kinematics of the head swing: the leading edge amplitude of the head and the trailing edge amplitude of the head. Three-dimensional Navier-Stokes equations are used to compute the viscous flow over the robot. The user-defined functions and the dynamic mesh technology are used to simulate the fishlike swimming with the head swing motion. The results reveal that it is of great benefit for the fish to improve the thrust and also the propulsive efficiency by increasing the two amplitudes properly. Superior hydrodynamic performance can be achieved at the leading edge amplitudes of0.05L (L is the fish length) and the trailing edge amplitudes of0.08L. The unsteady flow fields clearly indicate the evolution process of the flow structures along the swimming fish. Thrust-indicative flow structures with two pairs of pressure cores in a uniform mode are generated in the superior performance case with an appropriate head swing, rather than with one pair of pressure cores in the case of no head swing. The findings suggest that the swimming biological device design may improve its hydrodynamic performance through the head swing motion.

  4. Study of Parameters Effect on Hydrodynamics of a Gas-Solid Chamber Experimentally and Numerically

    Directory of Open Access Journals (Sweden)

    Rahimzadeh Hassan

    2012-04-01

    Full Text Available In this research, gas velocity, initial static bed height and particle size effect on hydrodynamics of a non-reactive gas–solid fluidized bed chamber were studied experimentally and computationally. A multi fluid Eulerian model incorporating the kinetic theory for solid particles was applied to simulate the unsteady state behavior of this chamber and momentum exchange coefficients were calculated by using the Syamlal- O’Brien drag functions. Simulation results were compared with the experimental data in order to validate the CFD model. Pressure drops predicted by the simulations at different particle sizes and initial static bed height were in good agreement with experimental measurements at superficial gas velocity higher than the minimum fluidization velocity. Simulation results also indicated that small bubbles were produced at the bottom of the bed. These bubbles collided with each other as they moved upwards forming larger bubbles. Furthermore, this comparison showed that the model can predict hydrodynamic behavior of gas solid fluidized bed chambers reasonably well.

  5. HYDRODYNAMIC AND THERMODYNAMIC EFFECTS IN PHASE INVERSION EMULSIFICATION PROCESS OF EPOXY RESIN IN WATER

    Institute of Scientific and Technical Information of China (English)

    Yuan-ze Xu; Yu-zhe Wu; Jian-mao Yang

    2006-01-01

    The mechanism of phase inversion emulsification process (PIE) was studied for waterborne dispersion of highly viscous epoxy resin using non-ionic polymeric surfactants. Drop deformation and breakup, rheological properties,conductivity, and particle size measurements reveal the micro-structural transition amid emulsification. It is revealed that strong flow causes water drop to burst with the formation of droplets and huge interface. Phase inversion corresponds to an abrupt rheological transition from a type of viscous melt with weak elasticity to a highly elastic type of aqueous gel. This implies that the phase inversion equivalent to a curvature inversion. Based on this, a geometric model is postulated to correlate process variables to the particle size. The coverage and conformation of the surfactant plays key role for the particle size of the final emulsion. The interactions of thermodynamic and hydrodynamic effects are also discussed. It is concluded that the thermodynamics control the PIE while the hydrodynamics drives the creation of interface and involves every step of PIE.

  6. Effect of forward looking sites on a multi-phase lattice hydrodynamic model

    Science.gov (United States)

    Redhu, Poonam; Gupta, Arvind Kumar

    2016-03-01

    A new multi-phase lattice hydrodynamic traffic flow model is proposed by considering the effect of multi-forward looking sites on a unidirectional highway. We examined the qualitative properties of proposed model through linear as well as nonlinear stability analysis. It is shown that the multi-anticipation effect can significantly enlarge the stability region on the phase diagram and exhibit three-phase traffic flow. It is also observed that the multi-forward looking sites have prominent influence on traffic flow when driver senses the relative flux of leading vehicles. Theoretical findings are verified using numerical simulation which confirms that the traffic jam is suppressed efficiently by considering the information of leading vehicles in unidirectional multi-phase traffic flow.

  7. Hydrodynamic interactions of two nearly touching Brownian spheres in a stiff potential: Effect of fluid inertia

    Energy Technology Data Exchange (ETDEWEB)

    Radiom, Milad, E-mail: milad.radiom@unige.ch; Ducker, William, E-mail: wducker@vt.edu [Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24060 (United States); Robbins, Brian; Paul, Mark [Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24060 (United States)

    2015-02-15

    The hydrodynamic interaction of two closely spaced micron-scale spheres undergoing Brownian motion was measured as a function of their separation. Each sphere was attached to the distal end of a different atomic force microscopy cantilever, placing each sphere in a stiff one-dimensional potential (0.08 Nm{sup −1}) with a high frequency of thermal oscillations (resonance at 4 kHz). As a result, the sphere’s inertial and restoring forces were significant when compared to the force due to viscous drag. We explored interparticle gap regions where there was overlap between the two Stokes layers surrounding each sphere. Our experimental measurements are the first of their kind in this parameter regime. The high frequency of oscillation of the spheres means that an analysis of the fluid dynamics would include the effects of fluid inertia, as described by the unsteady Stokes equation. However, we find that, for interparticle separations less than twice the thickness of the wake of the unsteady viscous boundary layer (the Stokes layer), the hydrodynamic interaction between the Brownian particles is well-approximated by analytical expressions that neglect the inertia of the fluid. This is because elevated frictional forces at narrow gaps dominate fluid inertial effects. The significance is that interparticle collisions and concentrated suspensions at this condition can be modeled without the need to incorporate fluid inertia. We suggest a way to predict when fluid inertial effects can be ignored by including the gap-width dependence into the frequency number. We also show that low frequency number analysis can be used to determine the microrheology of mixtures at interfaces.

  8. Hydrodynamic effects on phase separation morphologies in evaporating thin films of polymer solutions

    Science.gov (United States)

    Zoumpouli, Garyfalia A.; Yiantsios, Stergios G.

    2016-08-01

    We examine effects of hydrodynamics on phase separation morphologies developed during drying of thin films containing a volatile solvent and two dissolved polymers. Cahn-Hilliard and Flory-Huggins theories are used to describe the free energy of the phase separating systems. The thin films, considered as Newtonian fluids, flow in response to Korteweg stresses arising due to concentration non-uniformities that develop during solvent evaporation. Numerical simulations are employed to investigate the effects of a Peclet number, defined in terms of system physical properties, as well as the effects of parameters characterizing the speed of evaporation and preferential wetting of the solutes at the gas interface. For systems exhibiting preferential wetting, diffusion alone is known to favor lamellar configurations for the separated phases in the dried film. However, a mechanism of hydrodynamic instability of a short length scale is revealed, which beyond a threshold Peclet number may deform and break the lamellae. The critical Peclet number tends to decrease as the evaporation rate increases and to increase with the tendency of the polymers to selectively wet the gas interface. As the Peclet number increases, the instability moves closer to the gas interface and induces the formation of a lateral segregation template that guides the subsequent evolution of the phase separation process. On the other hand, for systems with no preferential wetting or any other property asymmetries between the two polymers, diffusion alone favors the formation of laterally separated configurations. In this case, concentration perturbation modes that lead to enhanced Korteweg stresses may be favored for sufficiently large Peclet numbers. For such modes, a second mechanism is revealed, which is similar to the solutocapillary Marangoni instability observed in evaporating solutions when interfacial tension increases with the concentration of the non-volatile component. This mechanism may lead

  9. Sub- and super-luminar propagation of structures satisfying Poynting-like theorem for incompressible generalized hydrodynamic fluid model depicting strongly coupled dusty plasma medium

    Energy Technology Data Exchange (ETDEWEB)

    Dharodi, Vikram; Das, Amita, E-mail: amita@ipr.res.in; Patel, Bhavesh; Kaw, Predhiman [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

    2016-01-15

    The strongly coupled dusty plasma has often been modelled by the Generalized Hydrodynamic (GHD) model used for representing visco-elastic fluid systems. The incompressible limit of the model which supports transverse shear wave mode is studied in detail. In particular, dipole structures are observed to emit transverse shear waves in both the limits of sub- and super-luminar propagation, where the structures move slower and faster than the phase velocity of the shear waves, respectively. In the sub-luminar limit the dipole gets engulfed within the shear waves emitted by itself, which then backreacts on it and ultimately the identity of the structure is lost. However, in the super-luminar limit the emission appears like a wake from the tail region of the dipole. The dipole, however, keeps propagating forward with little damping but minimal distortion in its form. A Poynting-like conservation law with radiative, convective, and dissipative terms being responsible for the evolution of W, which is similar to “enstrophy” like quantity in normal hydrodynamic fluid systems, has also been constructed for the incompressible GHD equations. The conservation law is shown to be satisfied in all the cases of evolution and collision amidst the nonlinear structures to a great accuracy. It is shown that monopole structures which do not move at all but merely radiate shear waves, the radiative term, and dissipative losses solely contribute to the evolution of W. The dipolar structures, on the other hand, propagate in the medium and hence convection also plays an important role in the evolution of W.

  10. Hydrodynamical chemistry simulations of the SZ effect and the impacts from primordial non-Gaussianities

    CERN Document Server

    Pace, Francesco

    2013-01-01

    The impacts of Compton scattering of hot cosmic gas with the cosmic microwave background radiation (Sunyaev-Zel'dovich effect, SZ) are consistently quantified in Gaussian and non-Gaussian scenarios, by means of 3D numerical, N-body, hydrodynamic simulations, including cooling, star formation, stellar evolution and metal pollution (He, C, O, Si, Fe, S, Mg, etc.) from different stellar phases, according to proper yields for individual metal species and mass-dependent stellar lifetimes. Light cones are built through the simulation outputs and samples of one hundred maps for the resulting temperature fluctuations are derived for both Gaussian and non-Gaussian primordial perturbations. From them, we estimate the possible changes due to early non-Gaussianities on: SZ maps, probability distribution functions, angular power spectra and corresponding bispectra. We find that the different growth of structures in the different cases induces significant spectral distortions only in models with large non-Gaussian paramete...

  11. The effect of surface roughness on thermal-elasto-hydrodynamic model of contact mechanical seals

    Science.gov (United States)

    Wen, QingFeng; Liu, Ying; Huang, WeiFeng; Suo, ShuangFu; Wang, YuMing

    2013-10-01

    In this paper, the effect of surface roughness on sealing clearance, pressure distribution, friction torque and leakage is studied by the thermal-elasto-hydrodynamic mixed lubrication model. A convergent nominal clearance is formed by the pressure deformation and thermal deformation of the seal faces. This causes more serious wear in the inner side than that of the outer side of the contact area. Mass leakage increases with the growing of the surface roughness. The temperature and thermal deformation on the seal surface increases substantially if the roughness is reduced. The contact mechanical seals have consistent performance when the standard deviation of surface roughness is approximately 0.2 μm. In order to validate the theoretical analysis model, a method combining the measurement of three-dimensioned profile and Raman spectrum is proposed.

  12. Stirring a fluid at low Reynolds numbers: Hydrodynamic collective effects of active proteins in biological cells

    Science.gov (United States)

    Kapral, Raymond; Mikhailov, Alexander S.

    2016-04-01

    Most of the proteins in the cell, including not only molecular motors and machines, but also enzymes, are active. When ATP or other substrates are supplied, these macromolecules cyclically change their conformations. Therefore, they mechanically stir the cytoplasm and nucleoplasm, so that non-thermal fluctuating flows are produced. As we have recently shown (Mikhailov and Kapral, 2015), stochastic advection by such flows might lead to substantial diffusion enhancement of particles inside a living cell. Additionally, when gradients in the concentrations of active particles or in the ATP/substrate supply are present, chemotaxis-like drift should take place. Here, the motion of passive tracers with various sizes in a mixture of different kinds of active proteins is analyzed. Moreover, effects of hydrodynamic interactions on the motion of active proteins are explored. Theoretical results are compared with available experimental data for ATP-dependent diffusion of natural and microinjected particles in biological cells.

  13. CFD Study of Industrial FCC Risers: The Effect of Outlet Configurations on Hydrodynamics and Reactions

    Directory of Open Access Journals (Sweden)

    Gabriela C. Lopes

    2012-01-01

    Full Text Available Fluid catalytic cracking (FCC riser reactors have complex hydrodynamics, which depend not only on operating conditions, feedstock quality, and catalyst particles characteristics, but also on the geometric configurations of the reactor. This paper presents a numerical study of the influence of different riser outlet designs on the dynamic of the flow and reactor efficiency. A three-dimensional, three-phase flow model and a four-lump kinetic scheme were used to predict the performance of the reactor. The phenomenon of vaporization of the liquid oil droplets was also analyzed. Results showed that small changes in the outlet configuration had a significant effect on the flow patterns and consequently, on the reaction yields.

  14. The Effect of Hydrodynamics on Riser Reactor Performance of the FCCU

    Directory of Open Access Journals (Sweden)

    Digieneni Yousuo

    2016-09-01

    Full Text Available The effect of hydrodynamics on the riser reactor performance was studied. The simulation was carried out using COMSOL Multiphysics software. The simulation results showed that reaction rate increased with increase in temperature. The results also showed that an increase in pressure leads to an increases in the velocity of the riser reactor. A maximum on gasoline yield appears when the gas oil inlet temperature is 600K,the catalyst inlet temperature is 1100K and the steam inlet temperature is 400K making gasoline yield between 52% to 55%. A minimum on Coke yield appears when the gas oil inlet temperature is 300K, the catalyst inlet temperature is 800K and the steam inlet temperature is 200K making coke yield between 1% to 2%.

  15. Electroweak effective couplings for future precision experiments

    Energy Technology Data Exchange (ETDEWEB)

    Jegerlehner, F. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik

    2011-07-15

    The leading hadronic effects in electroweak theory derive from vacuum polarization which are non-perturbative hadronic contributions to the running of the gauge couplings, the electromagnetic {alpha}{sub em}(s) and the SU(2){sub L} coupling {alpha}{sub 2}(s). I report on my recent package alphaQED [1], which besides the effective fine structure constant {alpha}{sub em}(s) also allows for a fairly precise calculation of the SU(2){sub L} gauge coupling {alpha}{sub 2}(s). I will briefly review the role, future requirements and possibilities. Applied together with the Rhad package by Harlander and Steinhauser [2], the package allows to calculate all SM running couplings as well as running sin{sup 2} {theta} versions with state-of-the-art accuracy. (orig.)

  16. Virus-Bacterium Coupling Driven by both Turbidity and Hydrodynamics in an Amazonian Floodplain Lake ▿ † ‡

    Science.gov (United States)

    Barros, Nathan; Farjalla, Vinicius F.; Soares, Maria C.; Melo, Rossana C. N.; Roland, Fábio

    2010-01-01

    The importance of viruses in aquatic ecosystem functioning has been widely described. However, few studies have examined tropical aquatic ecosystems. Here, we evaluated for the first time viruses and their relationship with other planktonic communities in an Amazonian freshwater ecosystem. Coupling between viruses and bacteria was studied, focusing both on hydrologic dynamics and anthropogenic forced turbidity in the system (Lake Batata). Samples were taken during four hydrologic seasons at both natural and impacted sites to count virus-like particles (VLP) and bacteria. In parallel, virus-infected bacteria were identified and quantified by transmission electron microscopy (TEM). Viral abundance ranged from 0.5 × 107 ± 0.2 × 107 VLP ml−1 (high-water season, impacted site) to 1.7 × 107 ± 0.4 × 107 VLP ml−1 (low-water season, natural site). These data were strongly correlated with the bacterial abundance (r2 = 0.84; P < 0.05), which ranged from 1.0 × 106 ± 0.5 × 106 cells ml−1 (high water, impacted site) to 3.4 × 106 ± 0.7 × 106 cells ml−1 (low water, natural site). Moreover, the viral abundance was weakly correlated with chlorophyll a, suggesting that most viruses were bacteriophages. TEM quantitative analyses revealed that the frequency of visibly infected cells was 20%, with 10 ± 3 phages per cell section. In general, we found a low virus-bacterium ratio (<7). Both the close coupling between the viral and bacterial abundances and the low virus-bacterium ratio suggest that viral abundance tends to be driven by the reduction of hosts for viral infection. Our results demonstrate that viruses are controlled by biological substrates, whereas in addition to grazing, bacteria are regulated by physical processes caused by turbidity, which affect underwater light distribution and dissolved organic carbon availability. PMID:20833790

  17. Hydrodynamic Effects on Drug Dissolution and Deaggregation in the Small Intestine-A Study with Felodipine as a Model Drug.

    Science.gov (United States)

    Lindfors, Lennart; Jonsson, Malin; Weibull, Emelie; Brasseur, James G; Abrahamsson, Bertil

    2015-09-01

    The aim of this study was to understand and predict the influence of hydrodynamic effects in the small intestine on dissolution of primary and aggregated drug particles. Dissolution tests of suspensions with a low-solubility drug, felodipine, were performed in a Couette cell under hydrodynamic test conditions corresponding to the fed small intestine. Dissolution was also performed in the USP II apparatus at two paddle speeds of 25 and 200 rpm and at different surfactant concentrations below critical micelle concentration. The experimental dissolution rates were compared with theoretical calculations. The different levels of shear stress in the in vitro tests did not influence the dissolution of primary or aggregated particles and experimental dissolution rates corresponded very well to calculations. The dissolution rate for the aggregated drug particles increased after addition of surfactant because of deaggregation, but there were still no effect of hydrodynamics. In conclusion, hydrodynamics do not influence dissolution and deaggregation of micronized drug particles in the small intestine of this model drug. Surface tension has a strong effect on the deaggregation and subsequent dissolution. Addition of surfactants at in vivo relevant surface tension levels is thus critical for in vivo predictive in vitro dissolution testing. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  18. Analysis and experimental verification of turbulence models in flow simulation for hydrodynamic coupling under braking condition%制动工况下液力偶合器流场湍流模型分析与验证

    Institute of Scientific and Technical Information of China (English)

    柴博森; 项玥; 马文星; 遇超; 寇尊权

    2016-01-01

    合理选择湍流模型是获取准确和可靠数值模拟结果的关键。该文采用3种湍流模型(标准k-ε模型、分离涡模型、大涡模拟模型)仿真制动工况下方形腔液力偶合器流场,提取流速场和涡量场。基于粒子图像测速(particle image velocimetry,PIV)技术测量液力偶合器制动工况下流场,将数值模拟结果与PIV试验结果进行对比,以PIV试验测量结果作为评价基准,分析采用3种湍流模型计算流场结果的差异性,完成湍流模型的适用性分析。结果表明,标准k-ε模型仿真结果与PIV试验结果误差较大;采用大涡模拟模型模拟主流区域流场结构分布更加真实,仿真结果能够较好地解释主流区域多尺度涡旋运动规律和能量耗散机理;采用分离涡模型能够更准确地捕捉近壁面和角涡区高梯度流场结构分布。研究结果可为液力偶合器流场精确计算与性能预测提供参考。%Hydrodynamic coupling is used for power transmission in heavy duty drives, such as power stations, ship propulsion, band conveyers, mills, and larger transport vehicles. Their hydrodynamic principle enables a low-wear torque to convert from a drive to a load. The flow in a hydrodynamic coupling is one of the most complex problems encountered in engineering fluid mechanics. The external performance of hydrodynamic coupling is determined by its internal distribution of flow field. It is very important to make a deep research on the internal distribution of flow field for the performance improvement and structural optimization in the design of hydrodynamic coupling. Numerical simulation is a main way to study the internal flow field of hydrodynamic coupling. The results of numerical simulation that are calculated by different turbulence models are quite different. In order to obtain accurate and reliable results of numerical simulation, it is a key to choose a reasonable turbulence model. The

  19. Simulation and prediction on fluid-gas circulation characteristics of torque limited hydrodynamic coupling%限矩型液力偶合器气-液两相环流特性仿真预测

    Institute of Scientific and Technical Information of China (English)

    卢秀泉; 马文星; 李雪松; 吴岳诗; 许文

    2014-01-01

    , but it is lack of quantitative basis theoretical guidance in design process. In this paper, the three-dimensional transient gas-liquid two-phase flow of torque limited hydrodynamic coupling can be carried on numerical simulation in the way of CFD, and focused on forecasting and analyzing its characteristics of the gas-liquid two-phase flow and its ability of overloading. The torque limited hydrodynamic coupling with front auxiliary oil chamber can be treated as analysis model and its cycle diameter is 200 mm. The high-quality full flow channel model was built by using hexahedral structured mesh, and the sliding mesh method was established for solving the transient flow field. The volume of fluid (VOF) model was used, along with realizable k-εmodel on the turbulence model and second-order upwind scheme for solving the momentum and kinetic energy equation, and PISO algorithm was used for pressure and velocity coupling. Finally the numerical simulation can be calculated to analyzing the gas-liquid circulation at different working conditions such as i=0.96, i=0.6 and i=0 when the filled ratio at q=40%, q=60% and q=80%. The results of the numerical simulation show the process clearly that the distribution of the gas-liquid two-phase flow varies with load increasing. By comparing with flow field test results which were acquired by installing the plane array sensor on the pressure surface and suction surface of pump blades, it verified the effectiveness of the emulation algorithms and the calculation results. The research provides a numerical calculation method to forecast the torque dropping condition and estimate the overload capacity of the torque limited hydrodynamic coupling, and provides a theoretical reference for advising the parameters design of the flow channel structure qualitatively and quantitatively.

  20. Dual coupling effective band model for polarons

    Science.gov (United States)

    Marchand, Dominic J. J.; Stamp, Philip C. E.; Berciu, Mona

    2017-01-01

    Nondiagonal couplings to a bosonic bath completely change polaronic dynamics, from the usual diagonally coupled paradigm of smoothly varying properties. We study, using analytic and numerical methods, a model having both diagonal Holstein and nondiagonal Su-Schrieffer-Heeger (SSH) couplings. The critical coupling found previously in the pure SSH model, at which the k =0 effective mass diverges, now becomes a transition line in the coupling constant plane—the form of the line depends on the adiabaticity parameter. Detailed results are given for the quasiparticle and ground-state properties, over a wide range of couplings and adiabaticity ratios. The new paradigm involves a destabilization, at the transition line, of the simple Holstein polaron to one with a finite ground-state momentum, but with everywhere a continuously evolving band shape. No "self-trapping transition" exists in any of these models. The physics may be understood entirely in terms of competition between different hopping terms in a simple renormalized effective band theory. The possibility of further transitions is suggested by the results.

  1. Assessing the impact of spatial resolution of flexible meshes on discharge and inundation estimates from spatially coupled hydrologic-hydrodynamic models

    Science.gov (United States)

    Hoch, Jannis; van Beek, Rens; Winsemius, Hessel; Bierkens, Marc

    2017-04-01

    In recent years, losses due to riverine inundations have been increasing due to growth of both population and asset values in floodplain areas as well as changes in river regimes. As global flood risk will even increase in the future, it is paramount for the scientific community to provide sound flood hazard, exposure, and vulnerability estimates for improved flood risk management. Since inundations are a large-scale hazard, two main requirements for modelling efforts can be formulated. First, large-scale models need to be applied to capture the spatial correlation of flood events in neighbouring river basins, and second, modelling approaches need to be able to simulate future climate conditions and the resulting hydrologic response. Both requirements can be met by employing global hydrologic models (GHM). Obtaining the required information from GHM at a locally relevant resolution, however, remains a major research challenge. For instance, the coarse spatial resolution of such models hampers a detailed representation of channel and floodplain geometry, and simplistic routing schemes implemented often fail to capture discharge dynamics. In addition to other current approaches trying to overcome these issues, Hoch et al. (2016, in review) applied a spatially explicit coupling scheme between the global hydrologic model PCR-GLOBWB and the hydrodynamic model Delft3D Flexible Mesh. Two main features are central to this study. First, the water balance computations were performed by PCR-GLOBWB, while the routing was explicitly performed by FM solving the full shallow water equations. Results indeed showed that such a spatial coupling approach can simulate discharge more accurately than both models stand-alone. Second, the model domain was schematized by a flexible mesh which allows for smaller grids for areas such as channel and floodplain areas while preserving coarser spatial resolution in more remote areas. As a result, computational costs can be strongly reduced

  2. Relativistic hydrodynamics

    CERN Document Server

    Luciano, Rezzolla

    2013-01-01

    Relativistic hydrodynamics is a very successful theoretical framework to describe the dynamics of matter from scales as small as those of colliding elementary particles, up to the largest scales in the universe. This book provides an up-to-date, lively, and approachable introduction to the mathematical formalism, numerical techniques, and applications of relativistic hydrodynamics. The topic is typically covered either by very formal or by very phenomenological books, but is instead presented here in a form that will be appreciated both by students and researchers in the field. The topics covered in the book are the results of work carried out over the last 40 years, which can be found in rather technical research articles with dissimilar notations and styles. The book is not just a collection of scattered information, but a well-organized description of relativistic hydrodynamics, from the basic principles of statistical kinetic theory, down to the technical aspects of numerical methods devised for the solut...

  3. A theoretical study on the frequency-dependent electric conductivity of electrolyte solutions. II. Effect of hydrodynamic interaction.

    Science.gov (United States)

    Yamaguchi, T; Matsuoka, T; Koda, S

    2009-03-07

    The theory on the frequency-dependent electric conductivity of electrolyte solutions proposed previously by Yamaguchi et al. [J. Chem. Phys. 127, 234501 (2007)] is extended to include the hydrodynamic interaction between ions. The theory is applied to the aqueous solution of NaCl and the concentration dependence of the conductivity agrees well with that determined by experiments. The effects of the hydrodynamic and relaxation effects are highly nonadditive in the concentrated solution, because the hydrodynamic interaction between ions affects the time-dependent response of the ionic atmosphere. The decrease in the electric conductivity is divided into the contributions of ion pair distribution at various distances. The long-range ionic atmosphere plays a major role at the concentration as low as 0.01 mol/kg, whereas the contribution of the contact ion pair region is important at 1 mol/kg. The magnitude of the contribution of the contact ion pair region is scarcely dependent on the presence of the hydrodynamic interaction. The transport number of cation is calculated to be a decreasing function of concentration as is observed in experiments.

  4. EFFECT OF HYDROPLANE PROFILE ON HYDRODYNAMIC COEFFICIENTS OF AN AUTONOMOUS UNDERWATER VEHICLE

    Directory of Open Access Journals (Sweden)

    Ahmad Hajivand

    2016-03-01

    Full Text Available AUVs are the most suitable tool for conduction survey concerning with global environmental problems. AUVs maneuverability should be carefully checked so as to improve energy efficiency of the vehicle and avoid unexpected motion. Oblique towing test (OTT is simulated virtually in a computational fluid dynamic (CFD environment to obtain hydrodynamic damping coefficients of a full-scale autonomous underwater vehicle. Simulations are performed for bare hull and hull equipped with four different hydroplanes. The hydrodynamic forces and moment are obtained to calculate hydrodynamic coefficients. Nonlinear damping coefficients are also obtained by using suitable curve fitting. Experiments of resistance and OTT are carried out in specific condition, for validation purpose. Following the extracting numerical results a mathematical model is developed to calculate hydrodynamic force for different sail type in order to predict autonomous underwater vehicle (AUV maneuverability. The results shows good agreement between theory and experiment.

  5. Earthquake Response of Concrete Gravity Dams Including Hydrodynamic and Foundation Interaction Effects,

    Science.gov (United States)

    1980-01-01

    Presas y Depositos", Boletin Sociedad Mexicana de Ingenieria Sismica, Vol. 1, No. 2, October 1963. 10. A. K. Chopra,"Hydrodynamic Pressures on Dams...Veracruz, Mexico , 1968. 12. A. Flores, I. Herrera and C. Lozano, "Hydrodynamic Pressure Generated by Vertical Earthquake Component", Proceedings, Fourth...transform of the ground motion and Nthe inverse transforms of the re- sponses are obtained at the first -T points spaced at equal intervals of time At

  6. Effect of hydrodynamic cavitation in the tissue erosion by pulsed high-intensity focused ultrasound (pHIFU)

    Science.gov (United States)

    Zhou, Yufeng; Gao, Xiaobin Wilson

    2016-09-01

    High-intensity focused ultrasound (HIFU) is emerging as an effective therapeutic modality in clinics. Besides the thermal ablation, tissue disintegration is also possible because of the interaction between the distorted HIFU bursts and either bubble cloud or boiling bubble. Hydrodynamic cavitation is another type of cavitation and has been employed widely in industry, but its role in mechanical erosion to tissue is not clearly known. In this study, the bubble dynamics immediately after the termination of HIFU exposure in the transparent gel phantom was captured by high-speed photography, from which the bubble displacement towards the transducer and the changes of bubble size was quantitatively determined. The characteristics of hydrodynamic cavitation due to the release of the acoustic radiation force and relaxation of compressed surrounding medium were found to associate with the number of pulses delivered and HIFU parameters (i.e. pulse duration and pulse repetition frequency). Because of the initial big bubble (~1 mm), large bubble expansion (up to 1.76 folds), and quick bubble motion (up to ~1 m s-1) hydrodynamic cavitation is significant after HIFU exposure and may lead to mechanical erosion. The shielding effect of residual tiny bubbles would reduce the acoustic energy delivered to the pre-existing bubble at the focus and, subsequently, the hydrodynamic cavitation effect. Tadpole shape of mechanical erosion in ex vivo porcine kidney samples was similar to the contour of bubble dynamics in the gel. Liquefied tissue was observed to emit towards the transducer through the punctured tissue after HIFU exposure in the sonography. In summary, the release of HIFU exposure-induced hydrodynamic cavitation produces significant bubble expansion and motion, which may be another important mechanism of tissue erosion. Understanding its mechanism and optimizing the outcome would broaden and enhance HIFU applications.

  7. A Velocity Prediction Procedure for Sailing Yachts with a hydrodynamic Model based on integrated fully coupled RANSE-Free-Surface Simulations

    NARCIS (Netherlands)

    Boehm, C.

    2014-01-01

    One of the most important tools in today's sailing yacht design is the Velocity Prediction Program (VPP). VPPs calculate boat speed from the equilibrium of aero- and hydrodynamic flow forces. Consequently their accuracy is linked to the accuracy of the aero- and hydrodynamic data used to represent a

  8. A Velocity Prediction Procedure for Sailing Yachts with a hydrodynamic Model based on integrated fully coupled RANSE-Free-Surface Simulations

    NARCIS (Netherlands)

    Boehm, C.

    2014-01-01

    One of the most important tools in today's sailing yacht design is the Velocity Prediction Program (VPP). VPPs calculate boat speed from the equilibrium of aero- and hydrodynamic flow forces. Consequently their accuracy is linked to the accuracy of the aero- and hydrodynamic data used to represent a

  9. The improvement of laser induced damage resistance of optical workpiece surface by hydrodynamic effect polishing

    Science.gov (United States)

    Peng, Wenqiang; Guan, Chaoliang; Li, Shengyi; Wang, Zhuo

    2016-10-01

    Surface and subsurface damage in optical element will greatly decrease the laser induced damage threshold (LIDT) in the intense laser optical system. Processing damage on the workpiece surface can be inevitably caused when the material is removed in brittle or plastic mode. As a non-contact polishing technology, hydrodynamic effect polishing (HEP) shows very good performance on generating an ultra-smooth surface without damage. The material is removed by chemisorption between nanoparticle and workpiece surface in the elastic mode in HEP. The subsurface damage and surface scratches can be effectively removed after the polishing process. Meanwhile ultra-smooth surface with atomic level surface roughness can be achieved. To investigate the improvement of LIDT of optical workpiece, polishing experiment was conducted on a magnetorheological finishing (MRF) silica glass sample. AFM measurement results show that all the MRF directional plastic marks have been removed clearly and the root-mean-square (rms) surface roughness has decreased from 0.673nm to 0.177nm after HEP process. Laser induced damage experiment was conducted with laser pulse of 1064nm wavelength and 10ns time width. Compared with the original state, the LEDT of the silica glass sample polished by HEP has increased from 29.78J/cm2 to 45.47J/cm2. It demonstrates that LIDT of optical element treated by HEP can be greatly improved for ultra low surface roughness and nearly defect-free surface/subsurface.

  10. Effects of aqueous humor hydrodynamics on human eye heat transfer under external heat sources.

    Science.gov (United States)

    Tiang, Kor L; Ooi, Ean H

    2016-08-01

    The majority of the eye models developed in the late 90s and early 00s considers only heat conduction inside the eye. This assumption is not entirely correct, since the anterior and posterior chambers are filled aqueous humor (AH) that is constantly in motion due to thermally-induced buoyancy. In this paper, a three-dimensional model of the human eye is developed to investigate the effects AH hydrodynamics have on the human eye temperature under exposure to external heat sources. If the effects of AH flow are negligible, then future models can be developed without taking them into account, thus simplifying the modeling process. Two types of external thermal loads are considered; volumetric and surface irradiation. Results showed that heat convection due to AH flow contributes to nearly 95% of the total heat flow inside the anterior chamber. Moreover, the circulation inside the anterior chamber can cause an upward shift of the location of hotspot. This can have significant consequences to our understanding of heat-induced cataractogenesis. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  11. Effect of geometry of hydrodynamically cavitating device on degradation of orange-G.

    Science.gov (United States)

    Saharan, Virendra Kumar; Rizwani, Manav A; Malani, Aqeel A; Pandit, Aniruddha B

    2013-01-01

    In this research work, we have carried out geometric optimization of different cavitating devices using degradation of orange-G dye [OG] as a model pollutant. Three different cavitating devices viz. orifice plate, circular venturi and slit venturi were optimized and the degradation of orange-G dye was studied. The optimization of all three cavitating devices was done in terms of fluid inlet pressure to the cavitating devices and cavitation number. The effect of pH and initial concentration of the dye on the degradation rate was also studied. The geometry of cavitating device (flow cross sectional area, perimeter, shape, etc.) was found to be an important parameter in getting the maximum cavitational effect using hydrodynamic cavitation. The cavitational yield of all three cavitating devices were compared on the basis of mg of total organic carbon (TOC) reduction per unit energy supplied. The slit venturi gives almost 50% higher degradation rate and cavitational yield among all three cavitating devices studied for the same amount of energy supplied.

  12. 3D Simulation of Dam-break effect on a Solid Wall using Smoothed Particle Hydrodynamics

    CERN Document Server

    Suprijadi,; Naa, Christian; Putra, Anggy Trisnawan

    2013-01-01

    Dam is built for water supply, water flow or flooding control and electricity energy storage, but in other hand, dam is one of the most dangerous natural disaster in many countries including in Indonesia. The impact of dam break in neighbour area and is huge and many flooding in remote area, as happen in Dam Situ Gintung in Tangerang (close to Jakarta) in 2009. Smoothed Particle Hydrodynamics (SPH), is one of numerical method based on Lagrangian grid which is ap- plied in astrophysical simulation may be used to solve the simulation on dam break effect. The development of SPH methods become alternative methods to solving Navier Stokes equation, which is main key in fluid dynamic simulation. In this paper, SPH is developed for supporting solid par- ticles in use for 3D dam break effect (3D-DBE) simulation. Solid particle have been treated same as fluid particles with additional calculation for converting gained position became translation and rotation of solid object in a whole body. With this capability, the r...

  13. Chern-Simons effect on the dual hydrodynamics in the Maxwell-Gauss-Bonnet gravity

    Energy Technology Data Exchange (ETDEWEB)

    Hu Yapeng, E-mail: huyp@pku.edu.cn [Center for High-Energy Physics, Peking University, Beijing 100871 (China); Center for Quantum Spacetime, Sogang University, Seoul 121-742 (Korea, Republic of); Park, Chanyong, E-mail: cyong21@sogang.ac.kr [Center for Quantum Spacetime, Sogang University, Seoul 121-742 (Korea, Republic of)

    2012-08-14

    Following the previous work (arXiv:1103.3773 [hep-th]), we give a more general and systematic discussion on the Chern-Simons effect in the 5-dimensional Maxwell-Gauss-Bonnet gravity. After constructing the first order perturbative black brane solution, we extract the stress tensor and charge current of dual fluid. From these results, we find out the dependence of some transport coefficients on the Gauss-Bonnet coupling {alpha} and Chern-Simons coupling {kappa}{sub cs}. We also show that the new anomalous term can provide an additional contribution to the anomalous chiral magnetic conductivity.

  14. Higgs Couplings in an Effective Theory Framework

    CERN Document Server

    Belusca-Maito, Hermes

    2015-01-01

    The study of the properties of the scalar boson recently discovered at the LHC (ATLAS and CMS experiments) may allow us to know whether it is well described by the Standard Model. In the case where deviations from SM predictions are present, this would be an evidence for the presence of new physics. We focus on the study of the Higgs couplings to matter in a model-independent approach by introducing a dimension-6 effective Lagrangian that includes both CP-even and CP-odd effective couplings. Constraints are set on some of these coefficients using experimental data from ATLAS and CMS as well as electroweak precision measurements from LEP, SLC and Tevatron. These data meaningfully constrain CP-even and some CP-odd couplings.

  15. Theoretical hydrodynamics

    CERN Document Server

    Milne-Thomson, L M

    2011-01-01

    This classic exposition of the mathematical theory of fluid motion is applicable to both hydrodynamics and aerodynamics. Based on vector methods and notation with their natural consequence in two dimensions - the complex variable - it offers more than 600 exercises and nearly 400 diagrams. Prerequisites include a knowledge of elementary calculus. 1968 edition.

  16. Hydrodynamic bearings

    CERN Document Server

    Bonneau, Dominique; Souchet, Dominique

    2014-01-01

    This Series provides the necessary elements to the development and validation of numerical prediction models for hydrodynamic bearings. This book describes the rheological models and the equations of lubrication. It also presents the numerical approaches used to solve the above equations by finite differences, finite volumes and finite elements methods.

  17. Ship Hydrodynamics

    Science.gov (United States)

    Lafrance, Pierre

    1978-01-01

    Explores in a non-mathematical treatment some of the hydrodynamical phenomena and forces that affect the operation of ships, especially at high speeds. Discusses the major components of ship resistance such as the different types of drags and ways to reduce them and how to apply those principles for the hovercraft. (GA)

  18. Hydrodynamics studies of cyclic voltammetry for electrochemical micro biosensors

    DEFF Research Database (Denmark)

    Adesokan, Bolaji James; Quan, Xueling; Evgrafov, Anton

    2015-01-01

    We investigate the effect of flow rate on the electrical current response to the applied voltage in a micro electrochemical system. To accomplish this, we considered an ion-transport model that is governed by the Nernst-Planck equation coupled to the Navier-Stokes equations for hydrodynamics. The...

  19. The effect of particle inlet conditions on FCC riser hydrodynamics and product yields.

    Energy Technology Data Exchange (ETDEWEB)

    Chang, S. L.; Golchert, B.; Lottes, S. A.; Zhou, C. Q.; Huntsinger, A.; Petrick, M.

    1999-10-11

    Essential to today's modern refineries and the gasoline production process are fluidized catalytic cracking units. By using a computational fluid dynamics (CFD) code developed at Argonne National Laboratory to simulate the riser, parametric and sensitivity studies were performed to determine the effect of catalyst inlet conditions on the riser hydrodynamics and on the product yields. Simulations were created on the basis of a general riser configuration and operating conditions. The results of this work are indications of riser operating conditions that will maximize specific product yields. The CFD code is a three-dimensional, multiphase, turbulent, reacting flow code with phenomenological models for particle-solid interactions, droplet evaporation, and chemical kinetics. The code has been validated against pressure, particle loading, and product yield measurements. After validation of the code, parametric studies were performed on various parameters such as the injection velocity of the catalyst, the angle of injection, and the particle size distribution. The results indicate that good mixing of the catalyst particles with the oil droplets produces a high degree of cracking in the riser.

  20. Ventilation Inception and Washout, Scaling, and Effects on Hydrodynamic Performance of a Surface Piercing Strut

    Science.gov (United States)

    Harwood, Casey; Young, Yin Lu; Ceccio, Steven

    2014-11-01

    High-lift devices that operate at or near a fluid free surface (such as surface-piercing or shallowly-submerged propellers and hydrofoils) are prone to a multiphase flow phenomenon called ventilation, wherein non-condensable gas is entrained in the low-pressure flow, forming a cavity around the body and dramatically altering the global hydrodynamic forces. Experiments are being conducted at the University of Michigan's towing tank using a canonical surface-piercing strut to investigate atmospheric ventilation. The goals of the work are (i) to gain an understanding of the dominant physics in fully wetted, partially ventilated, and fully ventilated flow regimes, (ii) to quantify the effects of governing dimensionless parameters on the transition between flow regimes, and (iii) to develop scaling relations for the transition between flow regimes. Using theoretical arguments and flow visualization techniques, new criteria are developed for classifying flow regimes and transition mechanisms. Unsteady transition mechanisms are described and mapped as functions of the governing non-dimensional parameters. A theoretical scaling relationship is developed for ventilation washout, which is shown to adequately capture the experimentally-observed washout boundary. This material is based upon work supported by the National Science Foundation Graduate Student Research Fellowship under Grant No. DGE 1256260. Support also comes from the Naval Engineering Education Center (Award No. N65540-10-C-003).

  1. Porous media grain size distribution and hydrodynamic forces effects on transport and deposition of suspended particles.

    Science.gov (United States)

    Ahfir, Nasre-Dine; Hammadi, Ahmed; Alem, Abdellah; Wang, HuaQing; Le Bras, Gilbert; Ouahbi, Tariq

    2017-03-01

    The effects of porous media grain size distribution on the transport and deposition of polydisperse suspended particles under different flow velocities were investigated. Selected Kaolinite particles (2-30μm) and Fluorescein (dissolved tracer) were injected in the porous media by step input injection technique. Three sands filled columns were used: Fine sand, Coarse sand, and a third sand (Mixture) obtained by mixing the two last sands in equal weight proportion. The porous media performance on the particle removal was evaluated by analysing particles breakthrough curves, hydro-dispersive parameters determined using the analytical solution of convection-dispersion equation with a first order deposition kinetics, particles deposition profiles, and particle-size distribution of the recovered and the deposited particles. The deposition kinetics and the longitudinal hydrodynamic dispersion coefficients are controlled by the porous media grain size distribution. Mixture sand is more dispersive than Fine and Coarse sands. More the uniformity coefficient of the porous medium is large, higher is the filtration efficiency. At low velocities, porous media capture all sizes of suspended particles injected with larger ones mainly captured at the entrance. A high flow velocity carries the particles deeper into the porous media, producing more gradual changes in the deposition profile. The median diameter of the deposited particles at different depth increases with flow velocity. The large grain size distribution leads to build narrow pores enhancing the deposition of the particles by straining. Copyright © 2016. Published by Elsevier B.V.

  2. Effect of Elevated Free Stream Turbulence on the Hydrodynamic Performance of a Tidal Turbine Blade Section

    Science.gov (United States)

    Vinod, Ashwin; Lawrence, Angela; Banerjee, Arindam

    2016-11-01

    The effects of elevated freestream turbulence (FST) on the performance of a tidal turbine blade is studied using laboratory experiments. Of interest for the current investigation is elevated levels of FST in the range of 6-24% that is prevalent in deployment sites of tidal turbines. A constant chord, no twist blade section (SG6043) is tested at an operating Reynolds number of 1.5x105 and at angles of attack ranging from -90o to +90o. The parameter space encompasses the entire operational range of a tidal turbine that includes flow reversal. Multiple levels of controlled FST are achieved using an active grid type turbulence generator placed at the entrance to the water tunnel test section. The hydrodynamic loads experienced by the blade section are measured using a 3-axis load cell; a Stereo-PIV technique is used to analyze the flow field around the blade. The results indicate that elevated levels of FST cause a delay in flow separation when compared to the case of a laminar freestream. Furthermore, the lift to drag ratio of the blade is considerably altered depending on the level of FST and angle of attack tested.

  3. The influence of hydrodynamic diameter and core composition on the magnetoviscous effect of biocompatible ferrofluids.

    Science.gov (United States)

    Nowak, J; Wiekhorst, F; Trahms, L; Odenbach, S

    2014-04-30

    Suspensions of magnetic nanoparticles have received increasing interest in the biomedical field. While these ferrofluids are already used for magnetic resonance imaging, emerging research on cancer treatment focuses, for example, on employing the particles as drug carriers, or using them in magnetic hyperthermia to destroy diseased cells by heating of the particles. To enable safe and effective applications, an understanding of the flow behaviour of the ferrofluids is essential. Regarding the applications mentioned above, in which flow phenomena play an important role, viscosity under the influence of an external magnetic field is of special interest. In this respect, the magnetoviscous effect (MVE) leading to an increasing viscosity if an external magnetic field of a certain strength is applied, is well-known for singlecore ferrofluids used in the engineering context. In the biomedical context, multicore ferrofluids are preferred in order to avoid remanence magnetization and to enable a deposition of the particles by the organism without complications. This study focuses on a comparison of the MVE for three ferrofluids whose composition is identical except in relation to their hydrodynamic diameter and core composition-one of the fluids contains singlecore particles, while the other two feature multicore particles. This enables confident conclusions about the influence of those parameters on flow behaviour under the influence of a magnetic field. The strong effects found for two of the fluids should be taken into account, both in future investigations and in the potential use of such ferrofluids, as well as in manufacturing, in relation to the optimization of flow behaviour.

  4. Scenario-based projections of future urban inundation within a coupled hydrodynamic model framework: A case study in Dongguan City, China

    Science.gov (United States)

    Wu, Xushu; Wang, Zhaoli; Guo, Shenglian; Liao, Weilin; Zeng, Zhaoyang; Chen, Xiaohong

    2017-04-01

    One major threat to cities at present is the increased inundation hazards owing to changes in climate and accelerated human activity. Future evolution of urban inundation is still an unsolved issue, given large uncertainties in future environmental conditions within urbanized areas. Developing model techniques and urban inundation projections are essential for inundation management. In this paper, we proposed a 2D hydrodynamic inundation model by coupling SWMM and LISFLOOD-FP models, and revealed how future urban inundation would evolve for different storms, sea level rise and subsidence scenarios based on the developed model. The Shiqiao Creek District (SCD) in Dongguan City was used as the case study. The model ability was validated against the June 13th, 2008 inundation event, which occurred in SCD, and proved capable of simulating dynamic urban inundation. Scenario analyses revealed a high degree of consistency in the inundation patterns among different storms, with larger magnitudes corresponding to greater return periods. Inundations across SCD generally vary as a function of storm intensity, but for lowlands or regions without drainage facilities inundations tend to aggravate over time. In riverfronts, inundations would exacerbate with sea level rise or subsidence; however, the inland inundations are seemingly insensitive to both factors. For the combined scenario of 100-yr storm, 0.5 m subsidence and 0.7 m sea level rise, the riverside inundations would occur much in advance, whilst catastrophic inundations sweep across SCD. Furthermore, the optimal low-impact development found for this case study includes 0.2 km2 of permeable pavements, 0.1 km2 of rain barrels and 0.7 km2 of green roofs.

  5. Impact of urban effluents on summer hypoxia in the highly turbid Gironde Estuary, applying a 3D model coupling hydrodynamics, sediment transport and biogeochemical processes

    Science.gov (United States)

    Lajaunie-Salla, Katixa; Wild-Allen, Karen; Sottolichio, Aldo; Thouvenin, Bénédicte; Litrico, Xavier; Abril, Gwenaël

    2017-10-01

    Estuaries are increasingly degraded due to coastal urban development and are prone to hypoxia problems. The macro-tidal Gironde Estuary is characterized by a highly concentrated turbidity maximum zone (TMZ). Field observations show that hypoxia occurs in summer in the TMZ at low river flow and a few days after the spring tide peak. In situ data highlight lower dissolved oxygen (DO) concentrations around the city of Bordeaux, located in the upper estuary. Interactions between multiple factors limit the understanding of the processes controlling the dynamics of hypoxia. A 3D biogeochemical model was developed, coupled with hydrodynamics and a sediment transport model, to assess the contribution of the TMZ and the impact of urban effluents through wastewater treatment plants (WWTPs) and sewage overflows (SOs) on hypoxia. Our model describes the transport of solutes and suspended material and the biogeochemical mechanisms impacting oxygen: primary production, degradation of all organic matter (i.e. including phytoplankton respiration, degradation of river and urban watershed matter), nitrification and gas exchange. The composition and the degradation rates of each variable were characterized by in situ measurements and experimental data from the study area. The DO model was validated against observations in Bordeaux City. The simulated DO concentrations show good agreement with field observations and satisfactorily reproduce the seasonal and neap-spring time scale variations around the city of Bordeaux. Simulations show a spatial and temporal correlation between the formation of summer hypoxia and the location of the TMZ, with minimum DO centered in the vicinity of Bordeaux. To understand the contribution of the urban watershed forcing, different simulations with the presence or absence of urban effluents were compared. Our results show that in summer, a reduction of POC from SO would increase the DO minimum in the vicinity of Bordeaux by 3% of saturation. Omitting

  6. Retarded correlators in kinetic theory: branch cuts, poles and hydrodynamic onset transitions

    Energy Technology Data Exchange (ETDEWEB)

    Romatschke, Paul [University of Colorado, Department of Physics, Boulder, CO (United States); University of Colorado, Center for Theory of Quantum Matter, Boulder, CO (United States)

    2016-06-15

    In this work the collective modes of an effective kinetic theory description based on the Boltzmann equation in a relaxation-time approximation applicable to gauge theories at weak but finite coupling and low frequencies are studied. Real time retarded two-point correlators of the energy-momentum tensor and the R-charge current are calculated at finite temperature in flat space-times for large N gauge theories. It is found that the real-time correlators possess logarithmic branch cuts which in the limit of large coupling disappear and give rise to non-hydrodynamic poles that are reminiscent of quasi-normal modes in black holes. In addition to branch cuts, correlators can have simple hydrodynamic poles, generalizing the concept of hydrodynamic modes to intermediate wavelength. Surprisingly, the hydrodynamic poles cease to exist for some critical value of the wavelength and coupling reminiscent of the properties of onset transitions. (orig.)

  7. Cooperative Effects of Noise and Coupling on Stochastic Dynamics of a Membrane-Bulk Coupling Model

    Institute of Scientific and Technical Information of China (English)

    TANG Jun; JIA Ya; YI Ming

    2009-01-01

    Based on a membrane-bulk coupling cell model proposed by Gomez-Marin et al. [ Phys. Rev. Lett. 98 (2007) 168303], the cooperative effects of noise and coupling on the stochastic dynamical behavior are investigated, For parameters in a certain region, the oscillation can be induced by the cooperative effect of noise and coupling. Whether considering the coupling or not, corresponding coherence resonance phenomena are observed. Furthermore, the effects of two coupling parameters, cell size L and coupling intensity k, on the noise-induced oscillation of membranes are studied. Contrary effects of noise are found in and out of the deterministic oscillatory regions.

  8. Potential increase in coastal wetland vulnerability to sea-level rise suggested by considering hydrodynamic attenuation effects

    Science.gov (United States)

    Rodríguez, José F.; Saco, Patricia M.; Sandi, Steven; Saintilan, Neil; Riccardi, Gerardo

    2017-07-01

    The future of coastal wetlands and their ecological value depend on their capacity to adapt to the interacting effects of human impacts and sea-level rise. Even though extensive wetland loss due to submergence is a possible scenario, its magnitude is highly uncertain due to limited understanding of hydrodynamic and bio-geomorphic interactions over time. In particular, the effect of man-made drainage modifications on hydrodynamic attenuation and consequent wetland evolution is poorly understood. Predictions are further complicated by the presence of a number of vegetation types that change over time and also contribute to flow attenuation. Here, we show that flow attenuation affects wetland vegetation by modifying its wetting-drying regime and inundation depth, increasing its vulnerability to sea-level rise. Our simulations for an Australian subtropical wetland predict much faster wetland loss than commonly used models that do not consider flow attenuation.

  9. Bacterial hydrodynamics

    CERN Document Server

    Lauga, Eric

    2015-01-01

    Bacteria predate plants and animals by billions of years. Today, they are the world's smallest cells yet they represent the bulk of the world's biomass, and the main reservoir of nutrients for higher organisms. Most bacteria can move on their own, and the majority of motile bacteria are able to swim in viscous fluids using slender helical appendages called flagella. Low-Reynolds-number hydrodynamics is at the heart of the ability of flagella to generate propulsion at the micron scale. In fact, fluid dynamic forces impact many aspects of bacteriology, ranging from the ability of cells to reorient and search their surroundings to their interactions within mechanically and chemically-complex environments. Using hydrodynamics as an organizing framework, we review the biomechanics of bacterial motility and look ahead to future challenges.

  10. Effects of hydrodynamic interactions and control within a point absorber array on electrical output

    DEFF Research Database (Denmark)

    Nambiar, Anup J.; Forehand, David I.M.; Kramer, Morten

    2015-01-01

    the WECs and the total power extracted by the array can be modified. In this paper, different resistive and reactive PTO control strategies, applied to a time-domain wave-to-wire model of a three-float Danish Wavestar device, are compared. The time-domain modelling approach, as opposed to the frequency...... and farms of WECs. The total power extracted by an array of WECs is influenced by the hydrodynamic interactions between them, especially when the WECs are spaced very closely. By control of the power take-off (PTO) forces and moments acting on the WECs within the array, the hydrodynamic interactions between...

  11. Hydrodynamic self-consistent field theory for inhomogeneous polymer melts.

    Science.gov (United States)

    Hall, David M; Lookman, Turab; Fredrickson, Glenn H; Banerjee, Sanjoy

    2006-09-15

    We introduce a mesoscale technique for simulating the structure and rheology of block-copolymer melts and blends in hydrodynamic flows. The technique couples dynamic self-consistent field theory with continuum hydrodynamics and flow penalization to simulate polymeric fluid flows in channels of arbitrary geometry. We demonstrate the method by studying phase separation of an ABC triblock copolymer melt in a submicron channel with neutral wall wetting conditions. We find that surface wetting effects and shear effects compete, producing wall-perpendicular lamellae in the absence of flow and wall-parallel lamellae in cases where the shear rate exceeds some critical Weissenberg number.

  12. Determining the effective parameters of a Shallow-Water bottom from wideband signal spectra under conditions of hydrodynamic variability

    Science.gov (United States)

    Grigor'ev, V. A.; Katsnel'son, B. G.; Lynch, J. F.

    2016-05-01

    We propose a method for determining the effective parameters of the upper marine sediment layer on extended tracks from the spectra of wideband signals in conditions of hydrodynamic variability. As an example, we consider the Shallow Water 2006 experiment on the Atlantic shelf of the United States, which used signals with a band of 300 ± 30 Hz received by a vertical array. The length of the track was ~20 km at a sea depth of ~80 m. Frequency-mode analysis of the received signals showed that spatiotemporal fluctuations of the wave medium lead to random changes in mode amplitudes while retaining the relative stability of the mode phase difference. This is the basis of the proposed method, which makes it possible to determine the track-averaged values of the sound velocity in the bottom and density of the bottom under conditions of hydrodynamic variability.

  13. Gravitomagnetic effect and spin-torsion coupling

    CERN Document Server

    Sousa, A A

    2003-01-01

    We study the gravitomagnetic effect in the context of absolute parallelism with the use of a modified geodesic equation via a free parameter b. We calculate the time difference in two atomic clocks orbiting the Earth in opposite directions and find a small correction due to the coupling between the torsion of the spacetime and the internal structure of atomic clocks measured by the free parameter.

  14. The effect of operational conditions on the hydrodynamic characteristics of the sludge bed in UASB reactors

    NARCIS (Netherlands)

    Leitao, R.C.; Santaellla, S.T.; Haandel, van A.C.; Zeeman, G.; Lettinga, G.

    2011-01-01

    This work aims to evaluate the hydrodynamic properties of the sludge bed of Upflow Anaerobic Sludge Blanket (UASB) reactors based on its settleability and expansion characteristics. The methodologies used for the evaluation of the settleability of aerobic activated sludge, and for the expansibility

  15. Anisotropic hydrodynamics: Motivation and methodology

    Energy Technology Data Exchange (ETDEWEB)

    Strickland, Michael

    2014-06-15

    In this proceedings contribution I review recent progress in our understanding of the bulk dynamics of relativistic systems that possess potentially large local rest frame momentum-space anisotropies. In order to deal with these momentum-space anisotropies, a reorganization of relativistic viscous hydrodynamics can be made around an anisotropic background, and the resulting dynamical framework has been dubbed “anisotropic hydrodynamics”. I also discuss expectations for the degree of momentum-space anisotropy of the quark–gluon plasma generated in relativistic heavy ion collisions at RHIC and LHC from second-order viscous hydrodynamics, strong-coupling approaches, and weak-coupling approaches.

  16. Effect of quantum corrections on Rayleigh-Taylor instability and internal waves in strongly coupled magnetized viscoelastic fluid

    Science.gov (United States)

    Prajapati, Ramprasad

    2016-07-01

    The Rayleigh-Taylor (R-T) instability is recently investigated is strongly coupled plasma looking to its importance in dense stellar systems and Inertial Confinement Fusion [1-3]. In the present work, the effect of quantum corrections are studied on Rayleigh-Taylor (R-T) instability and internal wave propagation in a strongly coupled, magnetized, viscoelastic fluid. The modified generalized hydrodynamic model is used to derive the analytical dispersion relation. The internal wave mode and dispersion relation are modified due to the presence of quantum corrections and viscoelastic effects. We observe that strong coupling effects and quantum corrections significantly modifies the dispersion characteristics. The dispersion relation is also discussed in weakly coupled (hydrodynamic) and strongly coupled (kinetic) limits. The explicit expression of R-T instability criterion is derived which is influenced by shear velocity and quantum corrections. Numerical calculations are performed in astrophysical and experimental relevance and it is examined that both the shear and quantum effects suppresses the growth rate of R-T instability. The possible application of the work is discussed in Inertial Confinement Fusion (ICF) to discuss the suppression of R-T instability under considered situation. References: [1] R. P. Prajapati, Phys. Plasmas 23, 022106 (2016). [2] K. Avinash and A. Sen, Phys. Plasmas 22, 083707 (2015). [3] A. Das and P. Kaw, Phys. Plasmas 21 (2014) 062102.

  17. Partially obstructed channel: Contraction ratio effect on the flow hydrodynamic structure and prediction of the transversal mean velocity profile

    Science.gov (United States)

    Ben Meftah, M.; Mossa, M.

    2016-11-01

    In this manuscript, we focus on the study of flow structures in a channel partially obstructed by arrays of vertical, rigid, emergent, vegetation/cylinders. Special attention is given to understand the effect of the contraction ratio, defined as the ratio of the obstructed area width to the width of the unobstructed area, on the flow hydrodynamic structures and to analyze the transversal flow velocity profile at the obstructed-unobstructed interface. A large data set of transversal mean flow velocity profiles and turbulence characteristics is reported from experiments carried out in a laboratory flume. The flow velocities and turbulence intensities have been measured with a 3D Acoustic Doppler Velocimeter (ADV)-Vectrino manufactured by Nortek. It was observed that the arrays of emergent vegetation/cylinders strongly affect the flow structures, forming a shear layer immediately next to the obstructed-unobstructed interface, followed by an adjacent free-stream region of full velocity flow. The experimental results show that the contraction ratio significantly affects the flow hydrodynamic structure. Adaptation of the Prandtl's log-law modified by Nikuradse led to the determination of a characteristic hydrodynamic roughness height to define the array resistance to the flow. Moreover, an improved modified log-law predicting the representative transversal profile of the mean flow velocity, at the obstructed-unobstructed interface, is proposed. The benefit of this modified log-law is its easier practical applicability, i.e., it avoids the measurements of some sensitive turbulence parameters, in addition, the flow hydrodynamic variables forming it are predictable, using the initial hydraulic conditions.

  18. Assessment of Tidal Energy Removal Impacts on Physical Systems: Development of MHK Module and Analysis of Effects on Hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhaoqing; Wang, Taiping

    2011-09-01

    In this report we describe (1) the development, test, and validation of the marine hydrokinetic energy scheme in a three-dimensional coastal ocean model (FVCOM); and (2) the sensitivity analysis of effects of marine hydrokinetic energy configurations on power extraction and volume flux in a coastal bay. Submittal of this report completes the work on Task 2.1.2, Effects of Physical Systems, Subtask 2.1.2.1, Hydrodynamics and Subtask 2.1.2.3, Screening Analysis, for fiscal year 2011 of the Environmental Effects of Marine and Hydrokinetic Energy project.

  19. Hydrodynamic function of biomimetic shark skin: effect of denticle pattern and spacing.

    Science.gov (United States)

    Wen, Li; Weaver, James C; Thornycroft, Patrick J M; Lauder, George V

    2015-11-18

    The structure of shark skin has been the subject of numerous studies and recently biomimetic shark skin has been fabricated with rigid denticles (scales) on a flexible substrate. This artificial skin can bend and generate thrust when attached to a mechanical controller. The ability to control the manufacture of biomimetic shark skin facilitates manipulation of surface parameters and understanding the effects of changing denticle patterns on locomotion. In this paper we investigate the effect of changing the spacing and arrangement of denticles on the surface of biomimetic shark skin on both static and dynamic locomotor performance. We designed 3D-printed flexible membranes with different denticle patterns and spacings: (1) staggered-overlapped, (2) linear-overlapped, and (3) linear-non-overlapped, and compared these to a 3D-printed smooth-surfaced control. These 3D printed shark skin models were then tested in a flow tank with a mechanical flapping device that allowed us to either hold the models in a stationary position or move them dynamically. We swam the membranes at a frequency of 1 Hz with different heave amplitudes (from ±1 cm to ±3 cm) while measuring forces, torques, self-propelled swimming speed, and cost of transport (COT). Static tests revealed drag reduction of denticle patterns compared to a smooth control at low speeds, but increased drag at speeds above 25 cm s(-1). However, during dynamic (swimming) tests, the staggered-overlapped pattern produced the fastest swimming speeds with no significant increase in the COT at lower heave values. For instance, at a heave frequency of 1 Hz and amplitude of ±1 cm, swimming speed of the staggered-overlapped pattern increased by 25.2% over the smooth control. At higher heave amplitudes, significantly faster self-propelled swimming speeds were achieved by the staggered-overlapped pattern, but with higher COT. Only the staggered-overlapped pattern provides a significant swimming performance advantage over the

  20. Transport and fluctuations in granular fluids from Boltzmann equation to hydrodynamics, diffusion and motor effects

    CERN Document Server

    Puglisi, Andrea

    2015-01-01

    This brief offers a concise presentation of granular fluids from the  point of view of non-equilibrium statistical physics. The emphasis is on fluctuations, which can be large in granular fluids due to the small system size (the number of grains is many orders of magnitude smaller than in molecular fluids). Firstly, readers will be introduced to the most intriguing experiments on fluidized granular fluids. Then granular fluid theory, which goes through increasing levels of coarse-graining and emerging collective phenomena, is described. Problems and questions are initially posed at the level of kinetic theory, which describes particle densities in full or reduced phase-space. Some answers become clear through hydrodynamics, which describes the evolution of slowly evolving fields. Granular fluctuating hydrodynamics, which builds a bridge to the most recent results in non-equilibrium statistical mechanics, is also introduced. Further and more interesting answers come when the dynamics of a massive intruder are...

  1. Introduction to Hydrodynamics

    CERN Document Server

    Jeon, Sangyong

    2015-01-01

    We give a pedagogical review of relativistic hydrodynamics relevant to relativistic heavy ion collisions. Topics discussed include linear response theory derivation of 2nd order viscous hydrodynamics including the Kubo formulas, kinetic theory derivation of 2nd order viscous hydrodynamics, anisotropic hydrodynamics and a brief review of numerical algorithms. Emphasis is given to the theory of hydrodynamics rather than phenomenology.

  2. One-loop effective actions and 2D hydrodynamics with anomalies

    Directory of Open Access Journals (Sweden)

    Gim Seng Ng

    2015-06-01

    Full Text Available We revisit the study of a 2D quantum field theory in the hydrodynamic regime and develop a formalism based on Euclidean one-loop partition functions that is suitable to analyze transport properties due to gauge and gravitational anomalies. To do so, we generalize the method of a modified Dirac operator developed for zero-temperature anomalies to finite temperature, chemical potentials and rotations.

  3. The assessment of extactable tidal energy and the effect of tidal energy turbine deployment on the hydrodynamics in Zhoushan

    Institute of Scientific and Technical Information of China (English)

    HOU Fang; BAO Xianwen; LI Benxia; LIU Qianqian

    2015-01-01

    In this study, we construct one 2–dimensional tidal simulation, using an unstructured Finite Volume Coastal Ocean Model (FVCOM). In the 2–D model, we simulated the tidal turbines through adding additional bottom drag in the element where the tidal turbines reside. The additional bottom drag was calculated from the relationship of the bottom friction dissipation and the rated rotor efficiency of the tidal energy turbine. This study analyzed the effect of the tidal energy turbine to the hydrodynamic environment, and calculated the amount of the extractable tidal energy resource at the Guishan Hangmen Channel, considering the rotor wake effect.

  4. Longitudinal coupling effect in microfiber Bragg gratings

    Science.gov (United States)

    Zhao, Ping; Zhang, Jihua; Wang, Guanghui; Jiang, Meng; Ping Shum, Perry; Zhang, Xinliang

    2012-10-01

    We theoretically present longitudinal coupling effect (LCE) in air-cladding microfiber Bragg gratings (MFBGs). Distinct from conventional weakly-guiding optical fibers, large longitudinal electric field (Ez) exists in wavelength-scale microfibers. Due to LCE, MFBG reflectivity can be reduced by more than 30% within the band-gap and the full width at half maximum (FWHM) is obviously narrowed. This theoretical analytical work is instructive to precisely design and fabricate MFBGs that are promising in the areas of optical sensing and nanophotonics.

  5. Strong coupling effective theory with heavy fermions

    CERN Document Server

    Fromm, Michael; Lottini, Stefano; Philipsen, Owe

    2011-01-01

    We extend the recently developed strong coupling, dimensionally reduced Polyakov-loop effective theory from finite-temperature pure Yang-Mills to include heavy fermions and nonzero chemical potential by means of a hopping parameter expansion. Numerical simulation is employed to investigate the weakening of the deconfinement transition as a function of the quark mass. The tractability of the sign problem in this model is exploited to locate the critical surface in the (M/T, mu/T, T) space over the whole range of chemical potentials from zero up to infinity.

  6. Noise Effects on Synchronized Globally Coupled Oscillators

    OpenAIRE

    Moro, Esteban; Sánchez, Angel

    1998-01-01

    The synchronized phase of globally coupled identical nonlinear oscillators subject to noise fluctuations is studied by means of a new analytical approach able to tackle general couplings, nonlinearities, and noise temporal correlations. Our results show that the interplay between coupling and noise modi es the e ective frequency of the system in a nontrivial way. Whereas for linear couplings the e ect of noise is always to increase the e ective frequency, for nonlinear coupling...

  7. Edge Effects and Coupling Effects in Atomic Force Microscope Images

    Institute of Scientific and Technical Information of China (English)

    ZHANGXiang-jun; MENGYong-gang; WENShi-zhu

    2004-01-01

    The AFM images were obtained by an atomic force microscope (AFM) and transformed from the deformation of AFM micro cantilever probe. However, due to the surface topography and surface forces applied on the AFM tip of sample, the deformation of AFM probe results in obvious edge effects and coupling effects in the AFM images. The deformation of AFM probe was analyzed,the mechanism of the edge effects and the coupling effects was investigated, and their results in the AFM images were studied. It is demanstrated by the theoretical analysis and AFM experiments that the edge effects make lateral force images more clear than the topography images, also make extraction of frictional force force from lateral force images mare complex and difficult. While the coupling effects make the comparison between topography images and lateral force images mare advantage to acquire precise topography information by AFM.

  8. An effective stress approach for hydro-mechanical coupling of unsaturated soils

    Directory of Open Access Journals (Sweden)

    Arroyo Hiram

    2016-01-01

    Full Text Available The simulation of the mechanical and hydraulic behaviour of soils is one of the most important tasks in soil mechanics. It is inaccurate to consider that the behaviour of saturated and unsaturated soils as if their governing laws were utterly different, this last condition is not sufficient to do so. However, unlike the laws governing the behaviour of saturated soils, those used to describe the behaviour of unsaturated soils lack the simplicity and predictability associated to the complexity of the phenomena that occur within these porous media. This is why it is important to establish a unified soil mechanics theory to reconcile saturated and unsaturated soil mechanics. In the present work, we describe a simple analytical equation to obtain effective stresses for any type of soil. The equation is coupled to an elastoplastic constitutive model which is capable to reproduce the stress-strain relationship of soil taking into account the hydro-dynamic coupling.

  9. HYDRODYNAMIC INTERACTION BETWEEN FLNG VESSEL AND LNG CARRIER IN SIDE BY SIDE CONFIGURATION

    Institute of Scientific and Technical Information of China (English)

    ZHAO Wen-hua; YANG Jian-min; HU Zhi-qiang

    2012-01-01

    The Floating Liquefied Natural Gas (FLNG) is a new type of floating platform for the exploitation of stranded offshore oil/gas fields.The side by side configuration for the FLNG vessel and the LNG carrier arranged in parallel is one of the possible choices for the LNG offloading.During the offioading operations,the multiple floating bodies would have very complex responses due to their hydrodynamic interactions.In this study,numerical simulations of multiple floating bodies in close proximity in the side by side offioading configuration are carried out with the time domain coupled analysis code SIMO.Hydrodynamic interactions between the floating bodies and the mechanical coupling effects between the floating bodies and their connection systems are included in the coupled analysis model.To clarify the hydrodynamic effects of the two vessels,numerical simulations under the same environmental condition are also conducted without considering the hydrodynamic interactions,for comparison.It is shown that the hydrodynamic interactions play an important role in the low frequency motion responses of the two vessels,but have little effect on the wave frequency motion responses.In addition,the comparison results also show that the hydrodynamic interactions can affect the loads on the connection systems.

  10. Pulsating Hydrodynamic Instability and Thermal Coupling in an Extended Landau/Levich Model of Liquid-Propellant Combustion -- I. Inviscid Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Stephen B. Margolis; Forman A. Williams

    1999-03-01

    Hydrodynamic (Landau) instability in combustion is typically associated with the onset of wrinkling of a flame surface, corresponding to the formation of steady cellular structures as the stability threshold is crossed. In the context of liquid-propellant combustion, such instability has recently been shown to occur for critical values of the pressure sensitivity of the burning rate and the disturbance wavenumber, significantly generalizing previous classical results for this problem that assumed a constant normal burning rate. Additionally, however, a pulsating form of hydrodynamic instability has been shown to occur as well, corresponding to the onset of temporal oscillations in the location of the liquid/gas interface. In the present work, we consider the realistic influence of a nonzero temperature sensitivity in the local burning rate on both types of stability thresholds. It is found that for sufficiently small values of this parameter, there exists a stable range of pressure sensitivities for steady, planar burning such that the classical cellular form of hydrodynamic instability and the more recent pulsating form of hydrodynamic instability can each occur as the corresponding stability threshold is crossed. For larger thermal sensitivities, however, the pulsating stability boundary evolves into a C-shaped curve in the (disturbance-wavenumber, pressure-sensitivity) plane, indicating loss of stability to pulsating perturbations for all sufficiently large disturbance wavelengths. It is thus concluded, based on characteristic parameter values, that an equally likely form of hydrodynamic instability in liquid-propellant combustion is of a nonsteady, long-wave nature, distinct from the steady, cellular form originally predicted by Landau.

  11. Hydrodynamic Interaction Between a Platelet and an Erythrocyte: Effect of Erythrocyte Deformability, Dynamics, and Wall Proximity

    OpenAIRE

    Vahidkhah, Koohyar; Diamond, Scott L.; Bagchi, Prosenjit

    2013-01-01

    We present three-dimensional numerical simulations of hydrodynamic interaction between a red blood cell (RBC) and a platelet in a wall-bounded shear flow. The dynamics and large deformation of the RBC are fully resolved in the simulations using a front-tracking method. The objective is to quantify the influence of tank treading and tumbling dynamics of the RBC, and the presence of a bounding wall on the deflection of platelet trajectories. We observe two types of interaction: A crossing event...

  12. Dynamic nonlinear thermal optical effects in coupled ring resonators

    Directory of Open Access Journals (Sweden)

    Chenguang Huang

    2012-09-01

    Full Text Available We investigate the dynamic nonlinear thermal optical effects in a photonic system of two coupled ring resonators. A bus waveguide is used to couple light in and out of one of the coupled resonators. Based on the coupling from the bus to the resonator, the coupling between the resonators and the intrinsic loss of each individual resonator, the system transmission spectrum can be classified by three different categories: coupled-resonator-induced absorption, coupled-resonator-induced transparency and over coupled resonance splitting. Dynamic thermal optical effects due to linear absorption have been analyzed for each category as a function of the input power. The heat power in each resonator determines the thermal dynamics in this coupled resonator system. Multiple “shark fins” and power competition between resonators can be foreseen. Also, the nonlinear absorption induced thermal effects have been discussed.

  13. Hydrodynamic Effects on Modeling and Control of a High Temperature Active Magnetic Bearing Pump with a Canned Rotor

    Energy Technology Data Exchange (ETDEWEB)

    Melin, Alexander M [ORNL; Kisner, Roger A [ORNL; Fugate, David L [ORNL; Holcomb, David Eugene [ORNL

    2015-01-01

    Embedding instrumentation and control Embedding instrumentation and control (I\\&C) at the component level in nuclear power plants can improve component performance, lifetime, and resilience by optimizing operation, reducing the constraints on physical design, and providing on-board prognostics and diagnostics. However, the extreme environments that many nuclear power plant components operate in makes embedding instrumentation and control at the component level difficult. Successfully utilizing embedded I\\&C requires developing a deep understanding of the system's dynamics and using that knowledge to overcome material and physical limitations imposed by the environment. In this paper, we will develop a coupled dynamic model of a high temperature (700 $^\\circ$C) canned rotor pump that incorporates rotordynamics, hydrodynamics, and active magnetic bearing dynamics. Then we will compare two control design methods, one that uses a simplified decoupled model of the system and another that utilizes the full coupled system model. It will be seen that utilizing all the available knowledge of the system dynamics in the controller design yield an order of magnitude improvement in the magnitude of the magnetic bearing response to disturbances at the same level of control effort, a large reduction in the settling time of the system, and a smoother control action.

  14. Hydrodynamic Nambu Brackets derived by Geometric Constraints

    CERN Document Server

    Blender, Richard

    2015-01-01

    A geometric approach to derive the Nambu brackets for ideal two-dimensional (2D) hydrodynamics is suggested. The derivation is based on two-forms with vanishing integrals in a periodic domain, and with resulting dynamics constrained by an orthogonality condition. As a result, 2D hydrodynamics with vorticity as dynamic variable emerges as a generic model, with conservation laws which can be interpreted as enstrophy and energy functionals. Generalized forms like surface quasi-geostrophy and fractional Poisson equations for the stream-function are also included as results from the derivation. The formalism is extended to a hydrodynamic system coupled to a second degree of freedom, with the Rayleigh-B\\'{e}nard convection as an example. This system is reformulated in terms of constitutive conservation laws with two additive brackets which represent individual processes: a first representing inviscid 2D hydrodynamics, and a second representing the coupling between hydrodynamics and thermodynamics. The results can b...

  15. Recent development of hydrodynamic modeling

    Science.gov (United States)

    Hirano, Tetsufumi

    2014-09-01

    In this talk, I give an overview of recent development in hydrodynamic modeling of high-energy nuclear collisions. First, I briefly discuss about current situation of hydrodynamic modeling by showing results from the integrated dynamical approach in which Monte-Carlo calculation of initial conditions, quark-gluon fluid dynamics and hadronic cascading are combined. In particular, I focus on rescattering effects of strange hadrons on final observables. Next I highlight three topics in recent development in hydrodynamic modeling. These include (1) medium response to jet propagation in di-jet asymmetric events, (2) causal hydrodynamic fluctuation and its application to Bjorken expansion and (3) chiral magnetic wave from anomalous hydrodynamic simulations. (1) Recent CMS data suggest the existence of QGP response to propagation of jets. To investigate this phenomenon, we solve hydrodynamic equations with source term which exhibits deposition of energy and momentum from jets. We find a large number of low momentum particles are emitted at large angle from jet axis. This gives a novel interpretation of the CMS data. (2) It has been claimed that a matter created even in p-p/p-A collisions may behave like a fluid. However, fluctuation effects would be important in such a small system. We formulate relativistic fluctuating hydrodynamics and apply it to Bjorken expansion. We found the final multiplicity fluctuates around the mean value even if initial condition is fixed. This effect is relatively important in peripheral A-A collisions and p-p/p-A collisions. (3) Anomalous transport of the quark-gluon fluid is predicted when extremely high magnetic field is applied. We investigate this possibility by solving anomalous hydrodynamic equations. We found the difference of the elliptic flow parameter between positive and negative particles appears due to the chiral magnetic wave. Finally, I provide some personal perspective of hydrodynamic modeling of high energy nuclear collisions

  16. Dissipative particle dynamics simulation of dilute polymer solutions—Inertial effects and hydrodynamic interactions

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Tongyang; Wang, Xiaogong, E-mail: wxg-dce@mail.tsinghua.edu.cn [Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084 (China); Jiang, Lei [Department of Physics, University of Michigan, Ann Arbor, Michigan (United States); Larson, Ronald G., E-mail: rlarson@umich.edu [Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan (United States)

    2014-07-01

    We examine the accuracy of dissipative particle dynamics (DPD) simulations of polymers in dilute solutions with hydrodynamic interaction (HI), at the theta point, modeled by setting the DPD conservative interaction between beads to zero. We compare the first normal-mode relaxation time extracted from the DPD simulations with theoretical predictions from a normal-mode analysis for theta chains. We characterize the influence of bead inertia within the coil by a ratio L{sub m}/R{sub g}, where L{sub m} is the ballistic distance over which bead inertia is lost, and R{sub g} is the radius of gyration of the polymer coil, while the HI strength per bead h* is determined by the ratio of bead hydrodynamic radius (r{sub H}) to the equilibrium spring length. We show how to adjust h* through the spring length and monomer mass, and how to optimize the accuracy of DPD for fixed h* by increasing the friction coefficient (γ ≥ 9) and by incorporating a nonlinear distance dependence into the frictional interaction. Even with this optimization, DPD simulations exhibit deviations of over 20% from the theoretical normal-mode predictions for high HI strength with h* ≥ 0.20, for chains with as many as 100 beads, which is a larger deviation than is found for Stochastic rotation dynamics simulations for similar chains lengths and values of h*.

  17. Effects of sharp vorticity gradients in two-dimensional hydrodynamic turbulence

    DEFF Research Database (Denmark)

    Kuznetsov, E.A.; Naulin, Volker; Nielsen, Anders Henry;

    2007-01-01

    The appearance of sharp vorticity gradients in two-dimensional hydrodynamic turbulence and their influence on the turbulent spectra are considered. We have developed the analog of the vortex line representation as a transformation to the curvilinear system of coordinates moving together with the ......The appearance of sharp vorticity gradients in two-dimensional hydrodynamic turbulence and their influence on the turbulent spectra are considered. We have developed the analog of the vortex line representation as a transformation to the curvilinear system of coordinates moving together...... with the divorticity lines. Compressibility of this mapping can be considered as the main reason for the formation of the sharp vorticity gradients at high Reynolds numbers. For two-dimensional turbulence in the case of strong anisotropy the sharp vorticity gradients can generate spectra which fall off as k−3 at large...... k, resembling the Kraichnan spectrum for the enstrophy cascade. For turbulence with weak anisotropy the k dependence of the spectrum due to the sharp gradients coincides with the Saffman spectrum, E(k)~k−4. We have compared the analytical predictions with direct numerical solutions of the two...

  18. Hydrodynamic interaction on large-Reynolds-number aligned bubbles: Drag effects

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez-Munoz, J., E-mail: jrm@correo.azc.uam.mx [Departamento de Energia, Universidad Autonoma Metropolitana-Azcapotzalco, Av. San Pablo 180, Col. Reynosa Tamaulipas, 02200 Mexico D.F. (Mexico); Centro de Investigacion en Polimeros, Marcos Achar Lobaton No. 2, Tepexpan, 55885 Acolman, Edo. de Mexico (Mexico); Salinas-Rodriguez, E.; Soria, A. [Departamento de IPH, Universidad Autonoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, 09340 Mexico D.F. (Mexico); Gama-Goicochea, A. [Centro de Investigacion en Polimeros, Marcos Achar Lobaton No. 2, Tepexpan, 55885 Acolman, Edo. de Mexico (Mexico)

    2011-07-15

    Graphical abstract: Display Omitted Highlights: > The hydrodynamic interaction of a pair aligned equal-sized bubbles is analyzed. > The leading bubble wake decreases the drag on the trailing bubble. > A new semi-analytical model for the trailing bubble's drag is presented. > The equilibrium distance between bubbles is predicted. - Abstract: The hydrodynamic interaction of two equal-sized spherical gas bubbles rising along a vertical line with a Reynolds number (Re) between 50 and 200 is analyzed. An approach to estimate the trailing bubble drag based on the search of a proper reference fluid velocity is proposed. Our main result is a new, simple semi-analytical model for the trailing bubble drag. Additionally, the equilibrium separation distance between bubbles is predicted. The proposed models agree quantitatively up to small distances between bubbles, with reported data for 50 {<=} Re {<=} 200. The relative average error for the trailing bubble drag, Er, is found to be in the range 1.1 {<=} Er {<=} 1.7, i.e., it is of the same order of the analytical predictions in the literature.

  19. Hydraulic visibility and effective cross sections based on hydrodynamical modeling of flow lines gained by satellite altimetry

    Science.gov (United States)

    Biancamaria, S.; Garambois, P. A.; Calmant, S.; Roux, H.; Paris, A.; Monnier, J.; Santos da Silva, J.

    2015-12-01

    Hydrodynamic laws predict that irregularities in a river bed geometry produce spatial and temporal variations in the water level, hence in its slope. Conversely, observation of these changes is a goal of the SWOT mission with the determination of the discharge as a final objective. In this study, we analyse the relationship between river bed undulations and water surface for an ungauged reach of the Xingu river, a first order tributary of the Amazon river. It is crosscut more than 10 times by a single ENVISAT track over a hundred of km. We have determined time series of water levelsat each of these crossings, called virtual stations (VS), hence slopes of the flow line. Using the discharge series computed by Paiva et al. (2013) between 1998 and 2009, Paris et al. (submitted) determined at each VS a rating curve relating these simulated discharge with the ENVISAT height series. One parameter of these rating curves is the zero-flow depth Z 0 . We show that it is possible to explain the spatial and temporal variations of the water surface slope in terms of hydrodynamical response of the longitudinal changes of the river bed geometry given by the successive values of Z 0 . Our experiment is based on an effective, single thread representation of a braided river, realistic values for the Manning coefficient and river widths picked up on JERS images. This study confirms that simulated flow lines are consistent with water surface elevations (WSE) and slopes gained by satellite altimetry. Hydrodynamical signatures are more visible where the river bed geometry varies significantly, and for reaches with a strong downstream control. Therefore, this study suggests that the longitudinal variations of the slope might be an interesting criteria for the question of river segmentation into elementary reaches for the SWOT mission which will provide continuous measurements of the water surface elevation, the slope and the reach width.

  20. Quark and pion effective couplings from polarization effects

    Energy Technology Data Exchange (ETDEWEB)

    Braghin, Fabio L. [Federal University of Goias, Instituto de Fisica, Goiania, GO (Brazil)

    2016-05-15

    A flavor SU(2) effective model for pions and quarks is derived by considering polarization effects departing from the usual quark-quark effective interaction induced by dressed gluon exchange, i.e. a global color model for QCD. For that, the quark field is decomposed into a component that yields light mesons and the quark-antiquark condensate, being integrated out by means of the auxiliary field method, and another component which yields constituent quarks, which is basically a background quark field. Within a long-wavelength and weak quark field expansion (or large quark effective mass expansion) of a quark determinant, the leading terms are found up to the second order in a zero-order derivative expansion, by neglecting vector mesons that are considerably heavier than the pion. Pions are considered in the structureless limit and, besides the chiral invariant terms that reproduce previously derived expressions, symmetry breaking terms are also presented. The leading chiral quark-quark effective couplings are also found corresponding to a NJL and a vector-NJL couplings. All the resulting effective coupling constants and parameters are expressed in terms of the current and constituent quark masses and of the coupling g. (orig.)

  1. Combined effects of laser and non-thermal electron beams on hydrodynamics and shock formation in the Shock Ignition scheme

    Science.gov (United States)

    Nicolai, Ph.; Feugeas, J. L.; Touati, M.; Breil, J.; Dubroca, B.; Nguyen-Buy, T.; Ribeyre, X.; Tikhonchuk, V.; Gus'kov, S.

    2014-10-01

    An issue to be addressed in Inertial Confinement Fusion (ICF) is the detailed description of the kinetic transport of relativistic or non-thermal electrons generated by laser within the time and space scales of the imploded target hydrodynamics. We have developed at CELIA the model M1, a fast and reduced kinetic model for relativistic electron transport. The latter has been implemented into the 2D radiation hydrodynamic code CHIC. In the framework of the Shock Ignition (SI) scheme, it has been shown in simplified conditions that the energy transferred by the non-thermal electrons from the corona to the compressed shell of an ICF target could be an important mechanism for the creation of ablation pressure. Nevertheless, in realistic configurations, taking the density profile and the electron energy spectrum into account, the target has to be carefully designed to avoid deleterious effects on compression efficiency. In addition, the electron energy deposition may modify the laser-driven shock formation and its propagation through the target. The non-thermal electron effects on the shock propagation will be analyzed in a realistic configuration.

  2. Pulsating hydrodynamic instability and thermal coupling in an extended Landau/Levich model of liquid-propellant combustion. 2. Viscous analysis

    Energy Technology Data Exchange (ETDEWEB)

    Stephen B. Margolis

    2000-01-01

    A pulsating form of hydrodynamic instability has recently been shown to arise during liquid-propellant deflagration in those parameter regimes where the pressure-dependent burning rate is characterized by a negative pressure sensitivity. This type of instability can coexist with the classical cellular, or Landau, form of hydrodynamic instability, with the occurrence of either dependent on whether the pressure sensitivity is sufficiently large or small in magnitude. For the inviscid problem, it has been shown that when the burning rate is realistically allowed to depend on temperature as well as pressure, that sufficiently large values of the temperature sensitivity relative to the pressure sensitivity causes the pulsating form of hydrodynamic instability to become dominant. In that regime, steady, planar burning becomes intrinsically unstable to pulsating disturbances whose wavenumbers are sufficiently small. In the present work, this analysis is extended to the fully viscous case, where it is shown that although viscosity is stabilizing for intermediate and larger wavenumber perturbations, the intrinsic pulsating instability for small wavenumbers remains. Under these conditions, liquid-propellant combustion is predicted to be characterized by large unsteady cells along the liquid/gas interface.

  3. Hydrodynamic dispersion within porous biofilms

    KAUST Repository

    Davit, Y.

    2013-01-23

    Many microorganisms live within surface-associated consortia, termed biofilms, that can form intricate porous structures interspersed with a network of fluid channels. In such systems, transport phenomena, including flow and advection, regulate various aspects of cell behavior by controlling nutrient supply, evacuation of waste products, and permeation of antimicrobial agents. This study presents multiscale analysis of solute transport in these porous biofilms. We start our analysis with a channel-scale description of mass transport and use the method of volume averaging to derive a set of homogenized equations at the biofilm-scale in the case where the width of the channels is significantly smaller than the thickness of the biofilm. We show that solute transport may be described via two coupled partial differential equations or telegrapher\\'s equations for the averaged concentrations. These models are particularly relevant for chemicals, such as some antimicrobial agents, that penetrate cell clusters very slowly. In most cases, especially for nutrients, solute penetration is faster, and transport can be described via an advection-dispersion equation. In this simpler case, the effective diffusion is characterized by a second-order tensor whose components depend on (1) the topology of the channels\\' network; (2) the solute\\'s diffusion coefficients in the fluid and the cell clusters; (3) hydrodynamic dispersion effects; and (4) an additional dispersion term intrinsic to the two-phase configuration. Although solute transport in biofilms is commonly thought to be diffusion dominated, this analysis shows that hydrodynamic dispersion effects may significantly contribute to transport. © 2013 American Physical Society.

  4. High-throughput particle manipulation by hydrodynamic, electrokinetic, and dielectrophoretic effects in an integrated microfluidic chip

    KAUST Repository

    Li, Shunbo

    2013-03-20

    Integrating different steps on a chip for cell manipulations and sample preparation is of foremost importance to fully take advantage of microfluidic possibilities, and therefore make tests faster, cheaper and more accurate. We demonstrated particle manipulation in an integrated microfluidic device by applying hydrodynamic, electroosmotic (EO), electrophoretic (EP), and dielectrophoretic (DEP) forces. The process involves generation of fluid flow by pressure difference, particle trapping by DEP force, and particle redirect by EO and EP forces. Both DC and AC signals were applied, taking advantages of DC EP, EO and AC DEP for on-chip particle manipulation. Since different types of particles respond differently to these signals, variations of DC and AC signals are capable to handle complex and highly variable colloidal and biological samples. The proposed technique can operate in a high-throughput manner with thirteen independent channels in radial directions for enrichment and separation in microfluidic chip. We evaluated our approach by collecting Polystyrene particles, yeast cells, and E. coli bacteria, which respond differently to electric field gradient. Live and dead yeast cells were separated successfully, validating the capability of our device to separate highly similar cells. Our results showed that this technique could achieve fast pre-concentration of colloidal particles and cells and separation of cells depending on their vitality. Hydrodynamic, DC electrophoretic and DC electroosmotic forces were used together instead of syringe pump to achieve sufficient fluid flow and particle mobility for particle trapping and sorting. By eliminating bulky mechanical pumps, this new technique has wide applications for in situ detection and analysis.

  5. Cross-Beam Energy Transfer (CBET) Effect with Additional Ion Heating Integrated into the 2-D Hydrodynamics Code DRACO

    Science.gov (United States)

    Marozas, J. A.; Collins, T. J. B.

    2012-10-01

    The cross-beam energy transfer (CBET) effect causes pump and probe beams to exchange energy via stimulated Brillouin scattering.footnotetext W. L. Kruer, The Physics of Laser--Plasma Interactions, Frontiers in Physics, Vol. 73, edited by D. Pines (Addison-Wesley, Redwood City, CA, 1988), p. 45. The total energy gained does not, in general, equate to the total energy lost; the ion-acoustic wave comprises the residual energy balance, which can decay, resulting in ion heating.footnotetext E. A. Williams et al., Phys. Plasmas 11, 231 (2004). The additional ion heating can retune the conditions for CBET affecting the overall energy transfer as a function of time. CBET and the additional ion heating are incorporated into the 2-D hydrodynamics code DRACOfootnotetext P. B. Radha et al., Phys. Plasmas 12, 056307 (2005). as an integral part of the 3-D ray trace where CBET is treated self-consistently within on the hydrodynamic evolution. DRACO simulation results employing CBET will be discussed. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-08NA28302.

  6. The Effect of Non-Circular Bearing Shapes in Hydrodynamic Journal Bearings on the Vibration Behavior of Turbocharger Structures

    Directory of Open Access Journals (Sweden)

    Lukas Bernhauser

    2017-03-01

    Full Text Available Increasing quality demands of combustion engines require, amongst others, improvements of the engine’s acoustics and all (subcomponents mounted to the latter. A significant impact to the audible tonal noise spectrum results from the vibratory motions of fast-rotating turbocharger rotor systems in multiple hydrodynamic bearings such as floating bearing rings. Particularly, the study of self-excited non-linear vibrations of the rotor-bearing systems is crucial for the understanding, prevention or reduction of the noise and, consequently, for a sustainable engine acoustics development. This work presents an efficient modeling approach for the investigation, optimization, and design improvement of complex turbocharger rotors in hydrodynamic journal bearings, including floating bearing rings with circular and non-circular bearing geometries. The capability of tonal non-synchronous vibration prevention using non-circular bearing shapes is demonstrated with dynamic run-up simulations of the presented model. These findings and the performance of our model are compared and validated with results of a classical Laval/Jeffcott rotor-bearing model and a specific turbocharger model found in the literature. It is shown that the presented simulation method yields fast and accurate results and furthermore, that non-circular bearing shapes are an effective measure to reduce or even prevent self-excited tonal noise.

  7. Study on solar collector utilizing electro-hydrodynamical effect; Denki ryutai rikigaku koka wo riyosuru taiyo shunetsuki no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Sato, M.; Aoki, H.; Wako, Y. [Hachinohe Institute of Technology, Aomori (Japan)

    1997-11-25

    This paper proposes a cone type electro-hydrodynamical (EHD) heat collector, describes its structure and principle, and mentions possibility of improving the heat collecting efficiency. The paper proposes a heat collector with a shape close to a cone. Trees are of cone form so that their every leaf, branch and truck can capture solar energy efficiently. Imitating this fact existing in the natural world, a cone-shaped heat collector was fabricated on a trial basis to discuss its heat collecting efficiency. Furthermore, black round stones are placed in the inner cone of the cone- shaped heat collector of double-glass structure. A low boiling point medium is placed between the inner and outer cones to cause corona discharge in vapor generated by absorbing the solar heat, and generate corona wind for an attempt to accelerate heat transfer into a heat exchanger. Thus, development was made on a cone-shaped high-efficiency heat collector utilizing electro-hydrodynamical (EHD) effect, and elucidation was given on dynamic phenomena of an electro-thermal fluid. Heat transfer in the EHD heat collector has a possibility of being accelerated by generation of ionic wind. In addition, it is thought that there would be an optimum value in applied voltage to increase electric charge supply as a result of corona discharge. 1 ref., 2 figs.

  8. Mercury depuration effectiveness on green mussel (Perna viridis L.) and blood cockle (Anadara granosa L.) from Jakarta Bay using ozone, chitosan and hydrodynamic technique

    Science.gov (United States)

    Widiah Ningrum, Endar; Duryadi Solihin, Dedy; Butet, Nurlisa A.

    2016-01-01

    Depuration has been used to eliminate microorganism and toxic chemical contaminants in bivalve. However, scientific research still needs to discover the effectiveness of depuration. This research aimed at assessing the best depuration effectiveness in decreasing mercury (Hg) concentration level in two species of bivalves, green mussel (Perna viridis L.) and blood cockle (Anadara granosa L.). The depuration treatments applied 1.5 ppm ozon, 0.5 ppm chitosan, hydrodynamic technique (1.3 m/s), combination between hydrodynamic-ozon, hydrodynamic-chitosan and ozon-chitosan. The experiment were conducted in mini aquaria for 60 minutes. Mercury concentration was measured in 10 g dry weight of green mussel (4.05±0.020 ppm) and blood cockle (3.27 ± 0.666 ppm). The result showed that mercury depuration were highly effective by combination of ozone-chitosan in green mussel (96.51%) and 1.5 ppm ozone in blood cockle (87.06%).

  9. Effects of spin-orbit coupling on quantum transport

    NARCIS (Netherlands)

    Bardarson, Jens Hjorleifur

    2008-01-01

    The effect of spin-orbit coupling on various quantum transport phenomena is considered. The main topics discussed are: * How spin-orbit coupling can induce shot noise through trajectory splitting. * How spin-orbit coupling can degrade electron-hole entanglement (created by a tunnel barrier) by mo

  10. Cosmological effects of coupled dark matter

    CERN Document Server

    Morris, Sophie C F; Padilla, Antonio; Tarrant, Ewan R M

    2013-01-01

    Many models have been studied that contain more than one species of dark matter and some of these couple the Cold Dark Matter (CDM) to a light scalar field. In doing this we introduce additional long range forces, which in turn can significantly affect our estimates of cosmological parameters if not properly accounted for. It is, therefore, important to study these models and their resulting cosmological implications. We present a model in which a fraction of the total cold dark matter density is coupled to a scalar field. We study the background and perturbation evolution and calculate the resulting Cosmic Microwave Background anisotropy spectra. The greater the fraction of dark matter coupled to the scalar field and the stronger the coupling strength, the greater the deviation of the background evolution from LCDM. Previous work, with a single coupled dark matter species, has found an upper limit on the coupling strength of order O(0.1). We find that with a coupling of this magnitude more than half the dark...

  11. The effect of coupling line loss in microstrip to dielectric resonator coupling

    Science.gov (United States)

    Hearn, C. P.; Bradshaw, E. S.; Trew, R. J.

    1990-01-01

    The interaction between a dielectric resonator and a microstrip transmission line is fundamentally a field phenomenon. However, the model of Figure 1b widely is used to represent the arrangement in Figure 1a, and predicts the behavior encountered in practice. The microstrip line of length l = n(lambda)/4 between the input and coupling planes and the lambda/4 open-circuit stub usually is assumed to be lossless. This paper considers the effect of coupling line loss on the unloaded-Q and coupling coefficient beta of the combination. It shows that transmission line loss can cause the decrease in unloaded-Q that has been observed to occur with tight coupling, and limits the coupling coefficient to a much lower value than would be obtained with a lossless coupling line.

  12. Hydrodynamic effect on the three-dimensional flow past a vertical porous plate

    Directory of Open Access Journals (Sweden)

    M. Guria

    2005-01-01

    Full Text Available The study of unsteady hydrodynamic free convective flow of a viscous incompressible fluid past a vertical porous plate in the presence of a variable suction has been made. Approximate solutions have been derived for the velocity and temperature fields, shear stress, and rate of heat transfer using perturbation technique. It is observed that main fluid velocity decreases with increase in Prandtl number, while it increases with increase in suction parameter. The cross-velocity decreases near the plate and increases away from the plate with increase in suction parameter. On the other hand, it increases near the plate and decreases away from the plate with increase in frequency parameter. The amplitude and the tangent of phase shift of the shear stress due to main flow decrease with increase in either Prandtl number, Grashof number, or frequency parameter. It is seen that the temperature decreases with increase in either suction parameter, Prandtl number, or frequency parameter. It is also seen that the amplitude of the rate of heat transfer increases and the tangent of phase shift of rate of heat transfer decreases with increase in Prandtl number.

  13. Effects of humic acid on physical and hydrodynamic properties of kaolin flocs by particle image velocimetry.

    Science.gov (United States)

    Zhong, Runsheng; Zhang, Xihui; Xiao, Feng; Li, Xiaoyan; Cai, Zhonghua

    2011-07-01

    The physical and hydrodynamic properties of kaolin flocs including floc size, strength, regrowth, fractal structure and settling velocity were investigated by in situ particle image velocimetry technique at different humic acid concentration. Jar-test experimental results showed that the adsorbed humic acid had a significant influence on the coagulation process for alum and ferric chloride. Kaolin flocs formed with the ferric chloride were larger and stronger than those for alum at same humic acid concentration. Floc strength and regrowth were estimated by strength factor and recovery factor at different humic acid concentration. It was found that the increased humic acid concentration had a slight influence on the strength of kaolin flocs and resulted in much worse floc regrowth. In addition, the floc regrowth after breakage depended on the shear history and coagulants under investigation. The changes in fractal structure recorded continuously by in situ particle image velocimetry technique during the growth-breakage-regrowth processes provided a supporting information that the kaolin flocs exhibited a multilevel structure. It was proved that the increased humic acid concentration resulted in decrease in mass fractal dimension of kaolin flocs and consequently worse sedimentation performance through free-settling and microbalance techniques. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Effect of the hydrodynamic conditions of electrolyte flow on critical states in electrochemical machining

    Science.gov (United States)

    Sawicki, Jerzy; Paczkowski, Tomasz

    2015-05-01

    The paper presents the results of experimental studies of electrochemical machining process oriented on occurring in the treatment critical states caused by electrolyte flow hydrodynamic conditions in the gap between electrodes. Material forming in electrochemical machining is carried out by anodic dissolution. In general in ECM process, the essence of the treatment is that the workpiece is the anode and the tool is the cathode. The space between the anode and cathode is filled by electrolyte. The current flow between the electrodes causes anodic dissolution process, resulting in the removal of material from the anode. Choosing in the process of electrochemical machining, respectively: anode and cathode material, electrolyte and processing parameters, such conditions can be created that enable a high process efficiency and smoothness of the surface. Inappropriate selection of machining parameters can cause the emergence of critical states in the ECM, which are mainly related to the flow of the electrolyte in the gap between electrodes. This work is an attempt to assess the occurring critical states in ECM on the example of machining of curved surfaces with any sort of outline and curved rotating surfaces.

  15. The effect of blade pitch in the rotor hydrodynamics of a cross-flow turbine

    Science.gov (United States)

    Somoano, Miguel; Huera-Huarte, Francisco

    2016-11-01

    In this work we will show how the hydrodynamics of the rotor of a straight-bladed Cross-Flow Turbine (CFT) are affected by the Tip Speed Ratio (TSR), and the blade pitch angle imposed to the rotor. The CFT model used in experiments consists of a three-bladed (NACA-0015) vertical axis turbine with a chord (c) to rotor diameter (D) ratio of 0.16. Planar Digital Particle Image Velocimetry (DPIV) was used, with the laser sheet aiming at the mid-span of the blades, illuminating the inner part of the rotor and the near wake of the turbine. Tests were made by forcing the rotation of the turbine with a DC motor, which provided precise control of the TSR, while being towed in a still-water tank at a constant Reynolds number of 61000. A range of TSRs from 0.7 to 2.3 were covered for different blade pitches, ranging from 8° toe-in to 16° toe-out. The interaction between the blades in the rotor will be discussed by examining dimensionless phase-averaged vorticity fields in the inner part of the rotor and mean velocity fields in the near wake of the turbine. Supported by the Spanish Ministry of Economy and Competitiveness, Grant BES-2013-065366 and project DPI2015-71645-P.

  16. Effect of Under Connected Plates on the Hydrodynamic Efficiency of the Floating Breakwater

    Institute of Scientific and Technical Information of China (English)

    A.S.Koraima; O.S.Rageh

    2014-01-01

    In this paper, the hydrodynamic efficiency of a floating breakwater system is experimentally studied by use of physical models. Regular waves with wide ranges of wave heights and periods are tested. The efficiency of the breakwater is presented as a function of the wave transmission, reflection, and energy dissipation coefficients. Different parameters affecting the breakwater efficiency are investigated, e.g. the number of the under connected vertical plates, the length of the mooring wire, and the wave length. It is found that, the transmission coefficient kt decreases with the increase of the relative breakwater width B/L, the number of plates n and the relative wire length l/h, while the reflection coefficient kr takes the opposite trend. Therefore, it is possible to achieve kt values smaller than 0.25 and kr values larger than 0.80 when B/L is larger than 0.25 for the case of l/h=1.5 and n=4. In addition, empirical equations used for estimating the transmission and reflection coefficients are developed by using the dimensionless analysis, regression analysis and measured data and verified by different theoretical and experimental results.

  17. The Effects of Surface Debris Diversion Devices on River Hydrodynamic Conditions and Implications for In-Stream Hydrokinetic Development

    Directory of Open Access Journals (Sweden)

    Horacio Toniolo

    2014-07-01

    Full Text Available Floating objects designed to divert woody debris—known as debris diversion devices—can protect hydrokinetic turbines deployed in rivers; they also change the hydrodynamic conditions of a river, at least locally. Modifications associated with velocity adjustments in both magnitude and direction would be expected. Thus, one could assume that extra macro-turbulent levels would be found immediately behind a device and downstream of that location. This article presents a set of cross-sectional and longitudinal velocity measurements carried out to quantify these effects. Results show important changes in the velocity components. In addition, significant changes in the vorticity field, calculated along cross-sectional profiles, demonstrate the role of a submerged chain used to maintain the debris diversion device in place. More importantly, findings suggest that hydrokinetic turbines should not be installed in a river’s central area behind a debris diversion device, due to the additional turbulence created by the submerged chain.

  18. Interplay of Laser-Plasma Interactions and Inertial Fusion Hydrodynamics

    Science.gov (United States)

    Strozzi, D. J.; Bailey, D. S.; Michel, P.; Divol, L.; Sepke, S. M.; Kerbel, G. D.; Thomas, C. A.; Ralph, J. E.; Moody, J. D.; Schneider, M. B.

    2017-01-01

    The effects of laser-plasma interactions (LPI) on the dynamics of inertial confinement fusion hohlraums are investigated via a new approach that self-consistently couples reduced LPI models into radiation-hydrodynamics numerical codes. The interplay between hydrodynamics and LPI—specifically stimulated Raman scatter and crossed-beam energy transfer (CBET)—mostly occurs via momentum and energy deposition into Langmuir and ion acoustic waves. This spatially redistributes energy coupling to the target, which affects the background plasma conditions and thus, modifies laser propagation. This model shows reduced CBET and significant laser energy depletion by Langmuir waves, which reduce the discrepancy between modeling and data from hohlraum experiments on wall x-ray emission and capsule implosion shape.

  19. Tree level hydrodynamic approach for resolving aboveground water storage and stomatal conductance and modeling the effects of tree hydraulic strategy

    Science.gov (United States)

    Mirfenderesgi, Golnazalsadat; Bohrer, Gil; Matheny, Ashley M.; Fatichi, Simone; Moraes Frasson, Renato Prata; Schäfer, Karina V. R.

    2016-07-01

    The finite difference ecosystem-scale tree crown hydrodynamics model version 2 (FETCH2) is a tree-scale hydrodynamic model of transpiration. The FETCH2 model employs a finite difference numerical methodology and a simplified single-beam conduit system to explicitly resolve xylem water potentials throughout the vertical extent of a tree. Empirical equations relate water potential within the stem to stomatal conductance of the leaves at each height throughout the crown. While highly simplified, this approach brings additional realism to the simulation of transpiration by linking stomatal responses to stem water potential rather than directly to soil moisture, as is currently the case in the majority of land surface models. FETCH2 accounts for plant hydraulic traits, such as the degree of anisohydric/isohydric response of stomata, maximal xylem conductivity, vertical distribution of leaf area, and maximal and minimal xylem water content. We used FETCH2 along with sap flow and eddy covariance data sets collected from a mixed plot of two genera (oak/pine) in Silas Little Experimental Forest, NJ, USA, to conduct an analysis of the intergeneric variation of hydraulic strategies and their effects on diurnal and seasonal transpiration dynamics. We define these strategies through the parameters that describe the genus level transpiration and xylem conductivity responses to changes in stem water potential. Our evaluation revealed that FETCH2 considerably improved the simulation of ecosystem transpiration and latent heat flux in comparison to more conventional models. A virtual experiment showed that the model was able to capture the effect of hydraulic strategies such as isohydric/anisohydric behavior on stomatal conductance under different soil-water availability conditions.

  20. Effect of Bearing Compliance on Thermo-hydrodynamic Lubrication of High Speed Misaligned Journal Bearing Lubricated with Bubbly Oil

    Directory of Open Access Journals (Sweden)

    Basim Ajeel Abass

    2015-03-01

    Full Text Available In the present work the effect of bearing compliance on the performance of high speed misaligned journal bearing lined with a compliant PTFE liner lubricated with bubbly oil at high speeds has been studied. The effect of induced oil film temperature due to shearing effect has been implemented. Hydrodynamic effect of the complaint bearing and the influence of aerated oil have been examined by the classical thermohydrodynamic lubrication theory modified to include the effect of oil film turbulence and oil film temperature with suitable models for bubbly oil viscosity and density. The effect of liner elastic deformation has been implemented by using Winkler model. The effects of variable density and specific heat on the most importantbearing parameters such as maximum pressure, maximum temperature, bearing load carrying capacity and power losses have been investigated.The results obtained show that the oil film pressure and load carrying capacity increased for the bearing lubricated with bubbly oil of higher aeration level and smaller size of air bubbles. Including the effect of elastic deformation of the bearing liner reduces the oil film pressure, load carrying capacity and frictional power loss for the misaligned bearing working at the same circumstances

  1. NUMERICAL SIMULATION OF THE EFFECTS OF WEIGHT SYSTEM ON THE HYDRODYNAMIC BEHAVIOR OF 3-D NET OF GRAVITY CAGE IN CURRENT

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this article, a model of 3-D net is set up by using lumped mass method. Model test results made by Lader and Enerhaug are cited to verify the numerical model. The aim of this paper is to investigate the effects of weight system on the hydrodynamic behavior of 3-D net of gravity cage in current. Using the 3-D net model, with different styles and masses of weight system, hydrodynamic behavior of gravity cage net in current is simulated. In this article, two styles of common weight system are used, which include: (1) sinker system , (2) bottom collar-sinker system. Under each style, three different masses of weight system are adopted. The numerical results indicate that the bottom collar-sinker system is practically feasible in improving the cage net volume deformation. Results of this study will give references for better knowledge of hydrodynamic behavior of gravity cage.

  2. Effect of load and speed on warship power rear drive system helical gear anti-scuffing properties in thermal elasto-hydrodynamic lubrication

    Directory of Open Access Journals (Sweden)

    Yongmei Wang

    2016-12-01

    Full Text Available The key parameters which caused the scoring failure of helical gears are operating load and speed. In this study, the simulations using geometric meshing theory were carried out to investigate the effect of load and speed of warship transmission helical gear system on thermal elasto-hydrodynamic lubrication. The numerical algorithm for the analysis of three-dimensional thermal elasto-hydrodynamic lubrication used in this work has advantage that the film pressure and distributions can be calculated from Reynolds equation for all mixed lubrication regions without any specific boundary condition for the edge of solid contact region. Oil film pressure, film thickness as well as film temperature under different load and speed conditions were obtained and compared. In addition, experimental tests were conducted to determine gear surface temperature under different load and speed conditions. This work provided a guidance to understand the load- and speed-dependent thermal elasto-hydrodynamic lubrication.

  3. Investigation on the Hydrodynamic Performance of An Ultra Deep Turret-Moored FLNG System

    Institute of Scientific and Technical Information of China (English)

    ZHAO Wen-hua; YANG Jian-min; HU Zhi-qiang; XIAO Long-fei; PENG Tao

    2012-01-01

    Hydrodynamic performance of an ultra deep turret-moored Floating Liquefied Natural Gas (FLNG) system is investigated.Hydrodynamic modeling of a turret-moored FLNG system,in consideration of the coupling effects of the vessel and its mooring lines,has been addressed in details.Based on the boundary element method,a 3-D panel model of the FLNG vessel and the related free water surface model are established,and the first-order and second-order mean-drift wave loads and other hydrodynamic coefficients are calculated.A systematic model test program consisting of the white noise wave test,offset test and irregular wave test combined with current and wind,etc.is performed to verify the numerical model.Owing to the depth limit of the water basin,the model test is carried out for the hydrodynamics of the FLNG coupled with only the truncated mooring system.The numerical simulation model features well the hydrodynamic performance of the FLNG system obtained from the model tests.The hydrodynamic characteristics presented in both the numerical simulations and the physical model tests would serve as the guidance for the ongoing project of FLNG system.

  4. Surface-effect corrections for solar-like oscillations using 3D hydrodynamical simulations. I. Adiabatic oscillations

    Science.gov (United States)

    Sonoi, T.; Samadi, R.; Belkacem, K.; Ludwig, H.-G.; Caffau, E.; Mosser, B.

    2015-11-01

    Context. The CoRoT and Kepler space-borne missions have provided us with a wealth of high-quality observational data that allows for seismic inferences of stellar interiors. This requires the computation of precise and accurate theoretical frequencies, but imperfect modeling of the uppermost stellar layers introduces systematic errors. To overcome this problem, an empirical correction has been introduced by Kjeldsen et al. (2008, ApJ, 683, L175) and is now commonly used for seismic inferences. Nevertheless, we still lack a physical justification allowing for the quantification of the surface-effect corrections. Aims: Our aim is to constrain the surface-effect corrections across the Hertzsprung-Russell (HR) diagram using a set of 3D hydrodynamical simulations. Methods: We used a grid of these simulations computed with the CO5BOLD code to model the outer layers of solar-like stars. Upper layers of the corresponding 1D standard models were then replaced by the layers obtained from the horizontally averaged 3D models. The frequency differences between these patched models and the 1D standard models were then calculated using the adiabatic approximation and allowed us to constrain the Kjeldsen et al. power law, as well as a Lorentzian formulation. Results: We find that the surface effects on modal frequencies depend significantly on both the effective temperature and the surface gravity. We further provide the variation in the parameters related to the surface-effect corrections using their power law as well as a Lorentzian formulation. Scaling relations between these parameters and the elevation (related to the Mach number) is also provided. The Lorentzian formulation is shown to be more robust for the whole frequency spectrum, while the power law is not suitable for the frequency shifts in the frequency range above νmax. Finally, we show that, owing to turbulent pressure, the elevation of the uppermost layers modifies the location of the hydrogen ionization zone and

  5. Spatio-temporal dynamics of growth and survival of Lesser Sandeel early life-stages in the North Sea: Predictions from a coupled individual-based and hydrodynamic-biogeochemical model

    DEFF Research Database (Denmark)

    Gurkan, Zeren; Christensen, Asbjørn; Maar, Marie

    2013-01-01

    of larval and early juvenile Lesser Sandeel (Ammodytes marinus) in the North Sea to local feeding conditions by an adapted version of a generic bioenergetic individual-based model for larval fish describing growth and survival. Prey encounter and physiological processes are described explicitly in the model......, which allows analyzing the influence of prey on the growth and survival of sandeel. The model is coupled to a hydrodynamic-biogeochemical model with physical and prey fields and implemented in temporal and three-dimensional spatial settings. Zooplankton biomass simulated by the biogeochemical model...... is validated by Continuous Plankton Recorder survey time series data. Spatio-temporal dynamics of the sandeel cohorts are simulated by the integrated model framework for the period 2004-2006 and five major area divisions of suitable sandeel habitats in the North Sea. This allows obtaining insight...

  6. Hydrodynamic chromatography coupled to single-particle ICP-MS for the simultaneous characterization of AgNPs and determination of dissolved Ag in plasma and blood of burn patients.

    Science.gov (United States)

    Roman, Marco; Rigo, Chiara; Castillo-Michel, Hiram; Munivrana, Ivan; Vindigni, Vincenzo; Mičetić, Ivan; Benetti, Federico; Manodori, Laura; Cairns, Warren R L

    2016-07-01

    Silver nanoparticles (AgNPs) are increasingly used in medical devices as innovative antibacterial agents, but no data are currently available on their chemical transformations and fate in vivo in the human body, particularly on their potential to reach the circulatory system. To study the processes involving AgNPs in human plasma and blood, we developed an analytical method based on hydrodynamic chromatography (HDC) coupled to inductively coupled plasma mass spectrometry (ICP-MS) in single-particle detection mode. An innovative algorithm was implemented to deconvolute the signals of dissolved Ag and AgNPs and to extrapolate a multiparametric characterization of the particles in the same chromatogram. From a single injection, the method provides the concentration of dissolved Ag and the distribution of AgNPs in terms of hydrodynamic diameter, mass-derived diameter, number and mass concentration. This analytical approach is robust and suitable to study quantitatively the dynamics and kinetics of AgNPs in complex biological fluids, including processes such as agglomeration, dissolution and formation of protein coronas. The method was applied to study the transformations of AgNP standards and an AgNP-coated dressing in human plasma, supported by micro X-ray fluorescence (μXRF) and micro X-ray absorption near-edge spectroscopy (μXANES) speciation analysis and imaging, and to investigate, for the first time, the possible presence of AgNPs in the blood of three burn patients treated with the same dressing. Together with our previous studies, the results strongly support the hypothesis that the systemic mobilization of the metal after topical administration of AgNPs is driven by their dissolution in situ. Graphical Abstract Simplified scheme of the combined analytical approach adopted for studying the chemical dynamics of AgNPs in human plasma/blood.

  7. Improvements to SOIL: An Eulerian hydrodynamics code

    Energy Technology Data Exchange (ETDEWEB)

    Davis, C.G.

    1988-04-01

    Possible improvements to SOIL, an Eulerian hydrodynamics code that can do coupled radiation diffusion and strength of materials, are presented in this report. Our research is based on the inspection of other Eulerian codes and theoretical reports on hydrodynamics. Several conclusions from the present study suggest that some improvements are in order, such as second-order advection, adaptive meshes, and speedup of the code by vectorization and/or multitasking. 29 refs., 2 figs.

  8. Quark and pion effective couplings from polarization effects

    CERN Document Server

    Braghin, Fabio L

    2016-01-01

    A flavor SU(2) effective model for pions and quarks is derived by considering polarization effects departing from the usual quark-quark effective interaction induced by dressed gluon exchange, i.e. a global color model for QCD. For that, the quark field is decomposed into a component that yields light mesons and the quark-antiquark condensate, being integrated out by means of the auxiliary field method, and another component which yields constituent quarks. Within a longwavelength and weak quark field expansion (or large quark effective mass expansion) of a quark determinant, the leading terms are found up to the second order in a zero order derivative expansion, by neglecting vector mesons that are considerably heavier than the pion. Pions are considered in the structureless limit and, besides the chiral invariant pion self interaction terms that reproduce previously derived expressions, symmetry breaking terms are also presented. The leading chiral quark-quark effective couplings are also found correspondin...

  9. Hydrodynamic interaction between a platelet and an erythrocyte: effect of erythrocyte deformability, dynamics, and wall proximity.

    Science.gov (United States)

    Vahidkhah, Koohyar; Diamond, Scott L; Bagchi, Prosenjit

    2013-05-01

    We present three-dimensional numerical simulations of hydrodynamic interaction between a red blood cell (RBC) and a platelet in a wall-bounded shear flow. The dynamics and large deformation of the RBC are fully resolved in the simulations using a front-tracking method. The objective is to quantify the influence of tank treading and tumbling dynamics of the RBC, and the presence of a bounding wall on the deflection of platelet trajectories. We observe two types of interaction: A crossing event in which the platelet comes in close proximity to the RBC, rolls over it, and continues to move in the same direction; and a turning event in which the platelet turns away before coming close to the RBC. The crossing events occur when the initial lateral separation between the cells is above a critical separation, and the turning events occur when it is below the critical separation. The critical lateral separation is found to be higher during the tumbling motion than that during the tank treading. When the RBC is flowing closer to the wall than the platelet, the critical separation increases by several fold, implying the turning events have higher probability to occur than the crossing events. On the contrary, if the platelet is flowing closer to the wall than the RBC, the critical separation decreases by several folds, implying the crossing events are likely to occur. Based on the numerical results, we propose a mechanism of continual platelet drift from the RBC-rich region of the vessel towards the wall by a succession of turning and crossing events. The trajectory deflection in the crossing events is found to depend nonmonotonically on the initial lateral separation, unlike the monotonic trend observed in tracer particle deflection and in deformable sphere-sphere collision. This nonmonotonic trend is shown to be a consequence of the deformation of the RBC caused by the platelet upon collision. An estimation of the platelet diffusion coefficient yields values that are

  10. Inter-dot coupling effects on transport through correlated parallel coupled quantum dots

    Indian Academy of Sciences (India)

    Shyam Chand; G Rajput; K C Sharma; P K Ahluwalia

    2009-05-01

    Transport through symmetric parallel coupled quantum dot system has been studied, using non-equilibrium Green function formalism. The inter-dot tunnelling with on-dot and inter-dot Coulomb repulsion is included. The transmission coefficient and Landaur–Buttiker like current formula are shown in terms of internal states of quantum dots. The effect of inter-dot tunnelling on transport properties has been explored. Results, in intermediate inter-dot coupling regime show signatures of merger of two dots to form a single composite dot and in strong coupling regime the behaviour of the system resembles the two decoupled dots.

  11. Synergetic effect of combination of AOP's (hydrodynamic cavitation and H{sub 2}O{sub 2}) on the degradation of neonicotinoid class of insecticide

    Energy Technology Data Exchange (ETDEWEB)

    Raut-Jadhav, Sunita [Vishwakarma Institute of Technology, Pune 411037 (India); Saharan, Virendra Kumar [Chemical Engineering Department, M. N. I. T, Jaipur, Rajasthan, 302001 (India); Pinjari, Dipak [Chemical Engineering Department, Institute of Chemical Technology, (ICT), Matunga, Mumbai, 400019 (India); Sonawane, Shirish, E-mail: shirishsonawane09@gmail.com [Chemical Engineering Department, N. I. T Warangal, Andhra Pradesh 506004 (India); Saini, Daulat, E-mail: dsaini2010@gmail.com [National Chemical Laboratory, Pune, 411008 (India); Pandit, Aniruddha, E-mail: dr.pandit@gmail.com [Chemical Engineering Department, Institute of Chemical Technology, (ICT), Matunga, Mumbai, 400019 (India)

    2013-10-15

    Highlights: • Degradation of imidacloprid using hydrodynamic cavitation based techniques. • Combination of hydrodynamic cavitation and H{sub 2}O{sub 2} shows substantial synergetic effect. • Synergetic coefficient of combined process is 22.79. • Degradation mechanism of imidacloprid has been proposed. -- Abstract: In the present work, degradation of imidacloprid (neonicotinoid class of insecticide) in aqueous solution has been systematically investigated using hydrodynamic cavitation and combination of hydrodynamic cavitation (HC) and H{sub 2}O{sub 2}. Initially, effect of different operating parameters such as inlet pressure to the cavitating device (5–20 bar) and operating pH (2–7.5) has been investigated. Optimization of process parameters was followed by the study of effect of combination of HC and H{sub 2}O{sub 2} process on the rate of degradation of imidacloprid. Significant enhancement in the rate of degradation of imidacloprid has been observed using HC + H{sub 2}O{sub 2} process which lead to a complete degradation of imidacloprid in 45 min of operation using optimal molar ratio of imidacloprid:H{sub 2}O{sub 2} as 1:40. Substantial synergetic effect has been observed using HC + H{sub 2}O{sub 2} process which confer the synergetic coefficient of 22.79. An attempt has been made to investigate and compare the energy efficiency and extent of mineralization of individual and combined processes applied in the present work. Identification of the byproducts formed during degradation of imidacloprid has also been done using LC–MS analysis. The present work has established a fact that hydrodynamic cavitation in combination with H{sub 2}O{sub 2} can be effectively used for degradation of imidacloprid.

  12. Spin-orbit coupled potential energy surfaces and properties using effective relativistic coupling by asymptotic representation

    Science.gov (United States)

    Ndome, Hameth; Eisfeld, Wolfgang

    2012-08-01

    A new method has been reported recently [H. Ndome, R. Welsch, and W. Eisfeld, J. Chem. Phys. 136, 034103 (2012)], 10.1063/1.3675846 that allows the efficient generation of fully coupled potential energy surfaces (PESs) including derivative and spin-orbit (SO) coupling. The method is based on the diabatic asymptotic representation of the molecular fine structure states and an effective relativistic coupling operator and therefore is called effective relativistic coupling by asymptotic representation (ERCAR). The resulting diabatic spin-orbit coupling matrix is constant and the geometry dependence of the coupling between the eigenstates is accounted for by the diabatization. This approach allows to generate an analytical model for the fully coupled PESs without performing any ab initio SO calculations (except perhaps for the atoms) and thus is very efficient. In the present work, we study the performance of this new method for the example of hydrogen iodide as a well-established test case. Details of the diabatization and the accuracy of the results are investigated in comparison to reference ab initio calculations. The energies of the adiabatic fine structure states are reproduced in excellent agreement with reference ab initio data. It is shown that the accuracy of the ERCAR approach mainly depends on the quality of the underlying ab initio data. This is also the case for dissociation and vibrational level energies, which are influenced by the SO coupling. A method is presented how one-electron operators and the corresponding properties can be evaluated in the framework of the ERCAR approach. This allows the computation of dipole and transition moments of the fine structure states in good agreement with ab initio data. The new method is shown to be very promising for the construction of fully coupled PESs for more complex polyatomic systems to be used in quantum dynamics studies.

  13. Coupling constant corrections in holographic heavy ion collisions

    CERN Document Server

    Grozdanov, Sašo

    2016-01-01

    We initiate a holographic study of coupling-dependent heavy ion collisions by analysing for the first time the effects of leading-order, inverse coupling constant corrections. In the dual description, this amounts to colliding gravitational shock waves in a theory with curvature-squared terms. We find that at intermediate coupling, nuclei experience less stopping and have more energy deposited near the lightcone. When the decreased coupling results in an 80% larger shear viscosity, the time at which hydrodynamics becomes a good description of the plasma created from high energy collisions increases by 25%. The hydrodynamic phase of the evolution starts with a wider rapidity profile and smaller entropy.

  14. Hydrodynamization and transient modes of expanding plasma in kinetic theory

    CERN Document Server

    Heller, Michal P; Spalinski, Michal

    2016-01-01

    We study the transition to hydrodynamics in a weakly-coupled model of quark-gluon plasma given by kinetic theory in the relaxation time approximation. Our studies uncover qualitative similarities to the results on hydrodynamization in strongly coupled gauge theories. In particular, we demonstrate that the gradient expansion in this model has vanishing radius of convergence. The asymptotic character of the hydrodynamic gradient expansion is crucial for the recently discovered applicability of hydrodynamics at large gradients. Furthermore, the analysis of the resurgent properties of the series provides, quite remarkably, indication for the existence of a novel transient, damped oscillatory mode of expanding plasmas in kinetic theory.

  15. Improvement of water-repellent and hydrodynamic drag reduction properties on bio-inspired surface and exploring sharkskin effect mechanism

    Science.gov (United States)

    Luo, Yuehao; Liu, Yufei; Anderson, James; Li, Xiang; Li, Yuanyue

    2015-07-01

    Bio-inspired/biomimetic surface technologies focusing on sharkskin, lotus leaf, gecko feet, and others have attracted so lots of attentions from all over the world; meanwhile, they have also brought great advantages and profits for mankind. Sharkskin drag-reducing/low-resistance surface is the imperative consequence of nature selection and self-evolution in the long history, which can enable itself accommodate the living environments perfectly. Generally speaking, sharkskin effect can become transparent only in some certain velocity scope. How to expand its application range and enhance the drag reduction function further has developed into the urgent issue. In this article, the water-repellent and hydrodynamic drag-reducing effects are improved by adjusting sharkskin texture. The experimental results show that contact angle of more than 150° is achieved, and drag-reducing property is improved to some extent. In addition, the drag-reducing mechanism is explored and generalized from different aspects adopting the numerical simulation, which has important significance to comprehend sharkskin effect.

  16. Disentangling running coupling and conformal effects in QCD

    CERN Document Server

    Brodsky, S J; Grunberg, G; Rathsman, J

    2001-01-01

    We investigate the relation between a postulated skeleton expansion and the conformal limit of QCD. We begin by developing some consequences of an Abelian-like skeleton expansion, which allows one to disentangle running-coupling effects from the remaining skeleton coefficients. The latter are by construction renormalon free, and hence hopefully better behaved. We consider a simple ansatz for the expansion, where an observable is written as a sum of integrals over the running coupling. We show that in this framework one can set a unique Brodsky-Lepage-Mackenzie (BLM) scale-setting procedure as an approximation to the running-coupling integrals, where the BLM coefficients coincide with the skeleton ones. Alternatively, the running-coupling integrals can be approximated using the effective charge method. We discuss the limitations in disentangling running coupling effects in the absence of a diagrammatic construction of the skeleton expansion. Independently of the assumed skeleton structure we show that BLM coef...

  17. Effects of Coupling Lens on Optical Refrigeration of Semiconductors

    Institute of Scientific and Technical Information of China (English)

    DING Kai; ZENG Yi-Ping

    2008-01-01

    Optical refrigeration of semiconductors is encountering efficiency difficulties caused by nonradiative recombination and luminescence trapping.A commonly used approach for enhancing luminescence efficiency of a semiconductor device is coupling a lens with the device. We quantitatively study the effects of a coupling lens on optical refrigeration based on rate equations and photon recycling,and calculated cooling efficiencies of different coupling mechanisms and of different lens materials.A GaAs/GaInP heterostructure coupled with a homo-epitaxial GaInP hemispherical lens is recommended.

  18. The effect of anxiety and depression scores of couples who ...

    African Journals Online (AJOL)

    The effect of anxiety and depression scores of couples who underwent assisted ... using a semi-structured questionnaire and the Turkish version of the State-Trait Anxiety Inventory (STAI), and Beck .... tics (age, education, marriage history and infertility) of couples ..... however, for both groups, the mean trait anxiety scores.

  19. Macrostatistical hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Brenner, H.

    1992-01-01

    During the course of these efforts we have been studying suspension of particles in Newtonian and non-Newtonian liquids, embodying a combination of analysis, experiments, and numerical simulations. Experiments primarily involved tracking small balls as they fall slowly through otherwise quiescent suspensions of neutrally buoyant particles. Detailed trajectories of the balls, obtained either with new experimental techniques or by numerical simulation, were statistically interpreted in terms of the mean settling velocity and the dispersion about the mean. We showed that falling-ball rheometry, using small balls relative to the suspended particles, could be a means of measuring the macroscopic zero-shear-rate viscosity without significantly disturbing the original microstructure; therefore, falling-ball rheometry can be a powerful tool for use in studying the effects of microstructures on the macroscopic properties of suspensions. We plan to extend this work to the study of more complex, structured fluids, and to use other tools (e.g., rolling-ball rheometry) to study boundary effects. We also propose to study flowing suspensions to obtain non-zero-shear-rate viscosities. The intent is to develop an understanding of the basic principles needed to treat generic multiphase flow problems, through a detailed study of model systems. 8 refs.

  20. Experimental determination of the effective strong coupling constant

    Energy Technology Data Exchange (ETDEWEB)

    Alexandre Deur; Volker Burkert; Jian-Ping Chen; Wolfgang Korsch

    2007-07-01

    We extract an effective strong coupling constant from low Q{sup 2} data on the Bjorken sum. Using sum rules, we establish its Q{sup 2}-behavior over the complete Q{sup 2}-range. The result is compared to effective coupling constants extracted from different processes and to calculations based on Schwinger-Dyson equations, hadron spectroscopy or lattice QCD. Although the connection between the experimentally extracted effective coupling constant and the calculations is not clear, the results agree surprisingly well.

  1. Micelles Hydrodynamics

    CERN Document Server

    Svintradze, David V

    2016-01-01

    A micelle consists of monolayer of lipid molecules containing hydrophilic head and hydrophobic tail. These amphiphilic molecules in aqueous environment aggregate spontaneously into monomolecular layer held together due to hydrophobic effect by weak non-covalent forces. Micelles are flexible surfaces that show variety of shapes of different topology, but remarkably in mechanical equilibrium conditions they are spherical in shape. The shape and size of a micelle are functions of many variables such as lipid concentration, temperature, ionic strength, etc. Addressing the question, why the shape of micelles is sphere in mechanical equilibrium conditions, analytically proved to be a difficult problem. In the following paper we offer the shortest and elegant analytical proof of micelles spheroidal nature when they are thermodynamically equilibrated with solvent. The formalism presented in this paper can be readily extended to any homogenous surfaces, such are vesicles and membranes.

  2. Effects of Loading Paths on Hydrodynamic Deep Drawing with Independent Radial Hydraulic Pressure of Aluminum Alloy Based on Numerical Simulation

    Institute of Scientific and Technical Information of China (English)

    Xiaojing LIU; Yongchao XU; Shijian YUAN

    2008-01-01

    In order to meet the forming demands for low plasticity materials and large height-diameter ratio parts, a new process of hydrodynamic deep drawing (HDD) with independent radial hydraulic pressure is proposed. To investigate the effects of loading paths on the HDD with independent radial hydraulic pressure, the forming process of 5A06 aluminum alloy cylindrical cup with a hemispherical bottom was studied by numerical simula- tion. By employing the dynamic explicit analytical software ETA/Dynaform based on LS-DYNA3D, the effects of loading paths on the sheet-thickness distribution and surface quality were analyzed. The corresponding relations of the radial hydraulic pressure loading paths and the part's strain status on the forming limit diagram (FLD) were also discussed. The results indicated that a sound match between liquid chamber pressure and independent radial hydraulic pressure could restrain the serious thinning at the hemisphere bottom and that through adjusting radial hydraulic pressure could reduce the radial tensile strain and change the strain paths. Therefore, the drawing limit of the aluminum cylindrical cup with a hemispherical bottom could be increased significantly.

  3. Assessing and Testing Hydrokinetic Turbine Performance and Effects on Open Channel Hydrodynamics: An Irrigation Canal Case Study.

    Energy Technology Data Exchange (ETDEWEB)

    Gunawan, Budi [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Neary, Vincent Sinclair [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mortensen, Josh [United States Bureau of Reclamation, Denver, CO (United States); Roberts, Jesse D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-01

    Hydrokinetic energy from flowing water in open channels has the potential to support local electricity needs with lower regulatory or capital investment than impounding water with more conventional means. MOU agencies involved in federal hydropower development have identified the need to better understand the opportunities for hydrokinetic (HK) energy development within existing canal systems that may already have integrated hydropower plants. This document provides an overview of the main considerations, tools, and assessment methods, for implementing field tests in an open-channel water system to characterize current energy converter (CEC) device performance and hydrodynamic effects. It describes open channel processes relevant to their HK site and perform pertinent analyses to guide siting and CEC layout design, with the goal of streamlining the evaluation process and reducing the risk of interfering with existing uses of the site. This document outlines key site parameters of interest and effective tools and methods for measurement and analysis with examples drawn from the Roza Main Canal, in Yakima, WA to illustrate a site application.

  4. Angular diameter distance from the Sunyaev-Zel'dovich effect in galaxy clusters: calibration from hydrodynamical simulations

    CERN Document Server

    Ameglio, S; Diaferio, A; Dolag, K

    2005-01-01

    The angular-diameter distance D_A of a galaxy cluster can be measuread by combining its X-ray emission with the cosmic microwave background fluctution due to the Sunyaev-Zeldovich effect. The application of this distance indicator usually assumes that the cluster is spherically symmetric, the gas is distributed according to the isothermal beta-model, and the X-ray temperature is an unbiased measure of the electron temperature. We test these assumptions with galaxy clusters extracted from an extended set of cosmological N-body/hydrodynamical simulations of a LCDM concordance cosmology, which include the effect of radiative cooling, star formation and energy feedback from supernovae. We find that, due to the steep temperature gradients which are present in the central regions of simulated clusters, the assumption of isothermal gas leads to a significant underestimate of D_A. This bias is efficiently corrected by using the polytropic version of the beta-model to account for the presence of temperature gradients....

  5. Predicting Event-Scale Floodplain Change with Coupled Hydrodynamic (ANUGA) and Landscape Evolution (CHILD) Models: a Case Study of the Rio Puerco Arroyo, NM

    Science.gov (United States)

    Perignon, M. C.; Tucker, G. E.; Griffin, E. R.; Friedman, J. M.; Vincent, K. R.

    2010-12-01

    A powerful flood can alter channel geometry and conveyance capacity, erode or bury riparian vegetation, enhance or degrade the fertility of floodplain soils, and in extreme cases even change the entire channel pattern. A fundamental goal in fluvial hydrology and geomorphology is to understand these impacts at a quantitative and ultimately predictive level, yet our ability to forecast potential flood impacts is currently limited by our inability to both simulate the detailed hydraulics and the evolution of the topography during the flood through a numerical model. We present the first steps towards creating a predictive model of channel and floodplain evolution during a single flood event. We combined the hydrologic modules of the ANUGA software tool for 2D hydrodynamic modeling with the sediment transport and topographic evolution modules of the CHILD landscape evolution model to create a tool that can predict erosion and deposition on a model topography for short-period events. The resulting model solves the shallow-water equations using a finite volume method on a triangular mesh grid. The reliability of this new software was tested by performing a model run using the 2006 flood of the Rio Puerco in New Mexico as a case study. This event caused extensive erosion in a reach of the lower Rio Puerco where all vegetation had been removed by herbicides. This material was transported downstream, where it deposited across the channel and floodplain. LiDAR surveys were obtained for sections of the river in 2005 and then in 2010, providing a unique data set that brackets a major flood event and thereby making the Rio Puerco an ideal location for testing the performance of our model.

  6. Probing the Hydrodynamic Limit of (Super)gravity

    CERN Document Server

    Di Dato, Adriana; Pedersen, Andreas Vigand

    2015-01-01

    We study the long-wavelength effective description of two general classes of charged dilatonic (asymptotically flat) black p-branes including D/NS/M-branes in ten and eleven dimensional supergravity. In particular, we consider gravitational brane solutions in a hydrodynamic derivative expansion (to first order) for arbitrary dilaton coupling and for general brane and co-dimension and determine their effective electro-fluid-dynamic descriptions by exacting the characterizing transport coefficients. We also investigate the stability properties of the corresponding hydrodynamic systems by analyzing their response to small long-wavelength perturbations. For branes carrying unsmeared charge, we find that in a certain regime of parameter space there exists a branch of stable charged configurations. This is in accordance with the expectation that D/NS/M-branes have stable configurations, except for the D5, D6, and NS5. In contrast, we find that Maxwell charged brane configurations are Gregory-Laflamme unstable indep...

  7. Hydrodynamic interactions in two dimensions

    Science.gov (United States)

    di Leonardo, R.; Keen, S.; Ianni, F.; Leach, J.; Padgett, M. J.; Ruocco, G.

    2008-09-01

    We measure hydrodynamic interactions between colloidal particles confined in a thin sheet of fluid. The reduced dimensionality, compared to a bulk fluid, increases dramatically the range of couplings. Using optical tweezers we force a two body system along the eigenmodes of the mobility tensor and find that eigenmobilities change logarithmically with particle separation. At a hundred radii distance, the mobilities for rigid and relative motions differ by a factor of 2, whereas in bulk fluids, they would be practically indistinguishable. A two dimensional counterpart of Oseen hydrodynamic tensor quantitatively reproduces the observed behavior, once the relevant boundary conditions are recognized. These results highlight the importance of dimensionality for transport and interactions in colloidal systems and proteins in biological membranes.

  8. Hydrodynamic models of a Cepheid atmosphere

    Science.gov (United States)

    Karp, A. H.

    1975-01-01

    Instead of computing a large number of coarsely zoned hydrodynamic models covering the entire atmospheric instability strip, the author computed a single model as well as computer limitations allow. The implicit hydrodynamic code of Kutter and Sparks was modified to include radiative transfer effects in optically thin zones.

  9. Comparative hydrodynamics of bacterial polymorphism

    CERN Document Server

    Spagnolie, Saverio E

    2011-01-01

    Most bacteria swim through fluids by rotating helical flagella which can take one of twelve distinct polymorphic shapes. The most common helical waveform is the "normal" form, used during forward swimming runs. To shed light on the prevalence of the normal form in locomotion, we gather all available experimental measurements of the various polymorphic forms and compute their intrinsic hydrodynamic efficiencies. The normal helical form is found to be the most hydrodynamically efficient of the twelve polymorphic forms by a significant margin - a conclusion valid for both the peritrichous and polar flagellar families, and robust to a change in the effective flagellum diameter or length. The hydrodynamic optimality of the normal polymorph suggests that, although energetic costs of locomotion are small for bacteria, fluid mechanical forces may have played a significant role in the evolution of the flagellum.

  10. Quantum Plasmas An Hydrodynamic Approach

    CERN Document Server

    Haas, Fernando

    2011-01-01

    This book provides an overview of the basic concepts and new methods in the emerging scientific area known as quantum plasmas. In the near future, quantum effects in plasmas will be unavoidable, particularly in high density scenarios such as those in the next-generation intense laser-solid density plasma experiment or in compact astrophysics objects. Currently, plasmas are in the forefront of many intriguing questions around the transition from microscopic to macroscopic modeling of charged particle systems. Quantum Plasmas: an Hydrodynamic Approach is devoted to the quantum hydrodynamic model paradigm, which, unlike straight quantum kinetic theory, is much more amenable to investigate the nonlinear realm of quantum plasmas. The reader will have a step-by-step construction of the quantum hydrodynamic method applied to plasmas. The book is intended for specialists in classical plasma physics interested in methods of quantum plasma theory, as well as scientists interested in common aspects of two major areas of...

  11. Modelling of the magnetic field effects in hydrodynamic codes using a second order tensorial diffusion scheme

    Energy Technology Data Exchange (ETDEWEB)

    Breil, J; Maire, P-H; Nicolai, P; Schurtz, G [CELIA, Universite Bordeaux I, CNRS, CEA, 351 cours de la Liberation, 33405 Talence (France)], E-mail: breil@celia.u-bordeaux1.fr

    2008-05-15

    In laser produced plasmas large self-generated magnetic fields have been measured. The classical formulas by Braginskii predict that magnetic fields induce a reduction of the magnitude of the heat flux and its rotation through the Righi-Leduc effect. In this paper a second order tensorial diffusion method used to correctly solve the Righi-Leduc effect in multidimensional code is presented.

  12. Phase-space densities and effects of resonance decays in a hydrodynamic approach to heavy ion collisions

    CERN Document Server

    Akkelin, S V; 10.1103/PhysRevC.70.064901

    2004-01-01

    A method allowing analysis of the overpopulation of phase space in heavy ion collisions in a model-independent way is proposed within the hydrodynamic approach. It makes it possible to extract a chemical potential of thermal pions at freeze-out, irrespective of the form of freeze-out (isothermal) hypersurface in Minkowski space and transverse flows on it. The contributions of resonance (with masses up to 2 GeV) decays to spectra, interferometry volumes, and phase- space densities are calculated and discussed in detail. The estimates of average phase-space densities and chemical potentials of thermal pions are obtained for SPS and RHIC energies. They demonstrate that multibosonic phenomena at those energies might be considered as a correction factor rather than as a significant physical effect. The analysis of the evolution of the pion average phase-space density in chemically frozen hadron systems shows that it is almost constant or slightly increases with time while the particle density and phase- space dens...

  13. Effect of reversal of the flow direction on hydrodynamic characteristics and plants cultivated in constructed wetland systems

    Directory of Open Access Journals (Sweden)

    Gheila Corrêa Ferres Baptestini

    2016-01-01

    Full Text Available The objective of the present study was to evaluate the effect of reversal of the flow direction, when used the surface flow as an operating criteria, on hydrodynamic characteristics and plants grown in horizontal subsurface-flow constructed wetland systems (HSF-CWs. For this purpose, six HSF-CWs were used: two non-cultivated (HSF-CWs 1 and 4, two cultivated with Tifton 85 grass (Cynodon spp. (HSF-CWs 2 and 5 and two cultivated with Alternanthera (Alternanthera philoxeroides (HSF-CWs 3 and 6. It was made a reversal in the flow direction of the HSF-CWs 1, 2 and 3. The reversal of the wastewater flow direction was performed when the superficial flow of the wastewater applied (SF reached 50% of the length of the HSF-CWs. There was a single reversal for each system, on different dates. Reversing the flow direction promoted distinction on the dry matter yield of Tifton 85 grass. This was not observed in HSF-CWs cultivated with Alternanthera. The reversal of the wastewater flow direction promoted, in principle, the extinction of the SF advance in the HSF-CWs, but did not prevent its return. Waiting for the SF to reach 50% of the length was not the best criterion for reversing the flow direction.

  14. Long-distance correlation-length effects and hydrodynamics of 4He films in a Corbino geometry

    Science.gov (United States)

    Thomson, Stephen R. D.; Perron, Justin K.; Gasparini, Francis M.

    2016-09-01

    Previous measurements of the superfluid density ρs and specific heat for 4He have identified effects that are manifest at distances much larger than the correlation length ξ3 D [Perron et al., Nat. Phys. 6, 499 (2010), 10.1038/nphys1671; Perron and Gasparini, Phys. Rev. Lett. 109, 035302 (2012), 10.1103/PhysRevLett.109.035302; Perron et al., Phys. Rev. B 87, 094507 (2013), 10.1103/PhysRevB.87.094507]. We report here measurements of the superfluid density which are designed to explore this phenomenon further. We determine the superfluid fraction ρs/ρ from the resonance of 34-nm films of varying widths 4 ≤W ≤100 μ m . The films are formed across a Corbino ring separating two chambers where a thicker 268-nm film is formed. This arrangement is realized using lithography and direct Si-wafer bonding. We identify two effects in the behavior of ρs/ρ : one is hydrodynamic, for which we present an analysis, and the other is a correlation-length effect which manifests as a shift in the transition temperature Tc relative to that of a uniform 34-nm film uninfluenced by proximity effects. We find that one can collapse both ρs/ρ and the quality factor of the resonance onto universal curves by shifting Tc as Δ Tc˜W-ν . This scaling is a surprising result on two counts: it involves a very large length scale W relative to the magnitude of ξ3 D and the dependence on W is not what is expected from correlation-length finite-size scaling which would predict Δ Tc˜W-1 /ν .

  15. A mechanistic modelling and data assimilation approach to estimate the carbon/chlorophyll and carbon/nitrogen ratios in a coupled hydrodynamical-biological model

    Directory of Open Access Journals (Sweden)

    B. Faugeras

    2004-01-01

    Full Text Available The principal objective of hydrodynamical-biological models is to provide estimates of the main carbon fluxes such as total and export oceanic production. These models are nitrogen based, that is to say that the variables are expressed in terms of their nitrogen content. Moreover models are calibrated using chlorophyll data sets. Therefore carbon to chlorophyll (C:Chl and carbon to nitrogen (C:N ratios have to be assumed. This paper addresses the problem of the representation of these ratios. In a 1D framework at the DYFAMED station (NW Mediterranean Sea we propose a model which enables the estimation of the basic biogeochemical fluxes and in which the spatio-temporal variability of the C:Chl and C:N ratios is fully represented in a mechanical way. This is achieved through the introduction of new state variables coming from the embedding of a phytoplankton growth model in a more classical Redfieldian NNPZD-DOM model (in which the C:N ratio is assumed to be a constant. Following this modelling step, the parameters of the model are estimated using the adjoint data assimilation method which enables the assimilation of chlorophyll and nitrate data sets collected at DYFAMED in 1997.Comparing the predictions of the new Mechanistic model with those of the classical Redfieldian NNPZD-DOM model which was calibrated with the same data sets, we find that both models reproduce the reference data in a comparable manner. Both fluxes and stocks can be equally well predicted by either model. However if the models are coinciding on an average basis, they are diverging from a variability prediction point of view. In the Mechanistic model biology adapts much faster to its environment giving rise to higher short term variations. Moreover the seasonal variability in total production differs from the Redfieldian NNPZD-DOM model to the Mechanistic model. In summer the Mechanistic model predicts higher production values in carbon unit than the Redfieldian NNPZD

  16. Defect-Mediated Stability: An Effective Hydrodynamic Theory of Spatio-Temporal Chaos

    OpenAIRE

    Chow, Carson C.; Hwa, Terence

    1994-01-01

    Spatiotemporal chaos (STC) exhibited by the Kuramoto-Sivashinsky (KS) equation is investigated analytically and numerically. An effective stochastic equation belonging to the KPZ universality class is constructed by incorporating the chaotic dynamics of the small KS system in a coarse-graining procedure. The bare parameters of the effective theory are computed approximately. Stability of the system is shown to be mediated by space-time defects that are accompanied by stochasticity. The method...

  17. Effect of interfacial coupling on rectification in organic spin rectifiers

    Science.gov (United States)

    Hu, Gui-Chao; Zuo, Meng-Ying; Li, Ying; Zhang, Zhao; Ren, Jun-Feng; Wang, Chuan-Kui

    2015-07-01

    The effect of interfacial coupling on rectification in an organic co-oligomer spin diode is investigated theoretically by considering spin-independent and spin-resolved couplings respectively. In the case of spin-independent coupling, an optimal interfacial coupling strength with a significant enhanced rectification ratio is found, whose value depends on the structural asymmetry of the molecule. In the case of spin-resolved coupling, we found that only the variation of the interfacial coupling with specific spin is effective to modulate the rectification, which is due to the spin-filtering property of the central asymmetric magnetic molecule. A transition of the spin-current rectification between parallel spin-current rectification and antiparallel spin-current rectification may be observed with the variation of the spin-resolved interfacial coupling. The interfacial effect on rectification is further analyzed from the spin-dependent transmission spectrum at different biases. Project supported by the National Natural Science Foundation of China (Grant No. 1374195), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2014AM017), and the Excellent Young Scholars Research Fund of Shandong Normal University, China.

  18. Hydrodynamics of a quark droplet

    DEFF Research Database (Denmark)

    Bjerrum-Bohr, Johan J.; Mishustin, Igor N.; Døssing, Thomas

    2012-01-01

    We present a simple model of a multi-quark droplet evolution based on the hydrodynamical description. This model includes collective expansion of the droplet, effects of the vacuum pressure and surface tension. The hadron emission from the droplet is described following Weisskopf's statistical...

  19. Effect of residual oil saturation on hydrodynamic properties of porous media

    Science.gov (United States)

    Zhang, Junjie; Zheng, Xilai; Chen, Lei; Sun, Yunwei

    2014-07-01

    To understand the effect of residual oil on hydraulic properties and solute dispersive behavior of porous media, miscible displacement column experiments were conducted using two petroleum products (diesel and engine oil) and a sandy soil. The effective water permeability, effective water-filled porosity, and dispersivity were investigated in two-fluid systems of water and oil as a function of residual oil saturation (ROS). At the end of each experiment, the distribution of ending ROS along the sand column was determined by the method of petroleum ether extraction-ultraviolet spectrophotometry. Darcy’s Law was used to determine permeability, while breakthrough curves (BTCs) of a tracer, Cl-, were used to calibrate effective porosity and dispersivity. The experimental results indicate that the maximum saturated zone residual saturation of diesel and engine oil in this study are 16.0% and 45.7%, respectively. Cl- is found to have no sorption on the solid matrix. Generated BTCs are sigmoid in shape with no evidence of tailing. The effective porosity of sand is inversely proportional to ROS. For the same level of ROS, the magnitude of reduction in effective porosity by diesel is close to that by engine oil. The relative permeability of sand to water saturation decreases with increasing amount of trapped oil, and the slope of the relative permeability-saturation curve for water is larger at higher water saturations, indicating that oil first occupies larger pores, which have the most contribution to the conductivity of the water. In addition, the reduction rate of relative permeability by diesel is greater than that by engine oil. The dispersivity increases with increasing ROS, suggesting that the blockage of pore spaces by immobile oil globules may enhance local velocity variations and increase the tortuosity of aqueous-phase flow paths.

  20. Cost effective optical coupling for polymer optical fiber communication

    Science.gov (United States)

    Chandrappan, Jayakrishnan; Zhang, Jing; Mohan, Ramkumar V.; Gomez, Philbert Oliver; Aung, Than Aye; Xiao, Yongfei; Ramana, Pamidighantam V.; Lau, John Hon Shing; Kwong, Dim Lee

    2008-02-01

    Polymer Optical Fiber (POF) optical modules are gaining momentum due to their applications in short distance communications. POFs offer more flexibility for plug and play applications and provide cost advantages. They also offer significant weight advantage in automotive and avionic networks. One of the most interesting field of application is home networking. Low cost optical components are required, since cost is a major concern in local and home networks. In this publication, a fast and easy to install, low cost solution for efficient light coupling in and out of Step Index- POF is explored. The efficient coupling of light from a large core POF to a small area detector is the major challenge faced. We simulated direct coupling, lens coupling and bend losses for step index POF using ZEMAX R optical simulation software. Simulations show that a lensed fiber tip particularly at the receiver side improves the coupling efficiency. The design is optimized for 85% coupling efficiency and explored the low cost fabrication method to implement it in the system level. The two methods followed for lens fabrication is described here in detail. The fabricated fiber lenses are characterized using a beam analyzer. The fabrication process was reiterated to optimize the lens performance. It is observed that, the fabricated lenses converge the POF output spot size by one fourth, there by enabling a higher coupling efficiency. This low cost method proves to be highly efficient and effective optical coupling scheme in POF communications.

  1. Elementary classical hydrodynamics

    CERN Document Server

    Chirgwin, B H; Langford, W J; Maxwell, E A; Plumpton, C

    1967-01-01

    Elementary Classical Hydrodynamics deals with the fundamental principles of elementary classical hydrodynamics, with emphasis on the mechanics of inviscid fluids. Topics covered by this book include direct use of the equations of hydrodynamics, potential flows, two-dimensional fluid motion, waves in liquids, and compressible flows. Some general theorems such as Bernoulli's equation are also considered. This book is comprised of six chapters and begins by introducing the reader to the fundamental principles of fluid hydrodynamics, with emphasis on ways of studying the motion of a fluid. Basic c

  2. Analysis of fluid motion and heat transport on magnetohydrodynamic boundary layer past a vertical power law stretching sheet with hydrodynamic and thermal slip effects

    Directory of Open Access Journals (Sweden)

    Badr Alkahtani

    2015-12-01

    Full Text Available The present model is committed to the study of MHD boundary layer flow and heat transfer past a nonlinear vertically stretching porous stretching sheet with the effects of hydrodynamic and thermal slip. The boundary value problem, consisting of boundary layer equations of motion and heat transfer, which are nonlinear partial differential equations are transformed into nonlinear ordinary differential equations, with the aid of similarity transformation. This problem has been solved, using Runge Kutta fourth order method with shooting technique. The effects of various physical parameters, such as, stretching parameter m, magnetic parameter M, porosity parameter fw, buoyancy parameter λ, Prandtl number Pr, Eckert number Ec, hydrodynamic slip parameter γ, and thermal slip parameter δ, on flow and heat transfer characteristics, are computed and represented graphically.

  3. Immediate effect of couple relationship education on low-satisfaction couples: a randomized clinical trial plus an uncontrolled trial replication.

    Science.gov (United States)

    Kim Halford, W; Pepping, Christopher A; Hilpert, Peter; Bodenmann, Guy; Wilson, Keithia L; Busby, Dean; Larson, Jeffry; Holman, Thomas

    2015-05-01

    Couple relationship education (RE) usually is conceived of as relationship enhancement for currently satisfied couples, with a goal of helping couples sustain satisfaction. However, RE also might be useful as a brief, accessible intervention for couples with low satisfaction. Two studies were conducted that tested whether couples with low relationship satisfaction show meaningful gains after RE. Study 1 was a three-condition randomized controlled trial in which 182 couples were randomly assigned to RELATE with Couple CARE (RCC), a flexible delivery education program for couples, or one of two control conditions. Couples with initially low satisfaction receiving RCC showed a moderate increase in relationship satisfaction (d=0.50) relative to the control. In contrast, couples initially high in satisfaction showed little change and there was no difference between RCC and the control conditions. Study 2 was an uncontrolled trial of the Couple Coping Enhancement Training (CCET) administered to 119 couples. Couples receiving CCET that had initially low satisfaction showed a moderate increase in satisfaction (g=.44), whereas initially highly satisfied couples showed no change. Brief relationship education can assist somewhat distressed couples to enhance satisfaction, and has potential as a cost-effective way of enhancing the reach of couple interventions.

  4. Flow difference effect in the two-lane lattice hydrodynamic model

    Institute of Scientific and Technical Information of China (English)

    Wang Tao; Gao Zi-You; Zhao Xiao-Mei; Tian Jun-Fang; Zhang Wen-Yi

    2012-01-01

    By introducing a flow difference effect,a modified lattice two-lane traffic flow model is proposed,which is proved to be capable of improving the stability of traffic flow.Both the linear stability condition and the kink-antikink solution derived from the modified Korteweg-de Vries (mKdV) equation are analyzed.Numerical simulations verify the theoretical analysis.Furthermore,the evolution laws under different disturbances in the metastable region are studied.

  5. Airlift column photobioreactors for Porphyridium sp. culturing: part I. effects of hydrodynamics and reactor geometry.

    Science.gov (United States)

    Luo, Hu-Ping; Al-Dahhan, Muthanna H

    2012-04-01

    Photosynthetic microorganisms have been attracting world attention for their great potential as renewable energy sources in recent years. Cost effective production in large scale, however, remains a major challenge to overcome. It is known to the field that turbulence could help improving the performance of photobioreactors due to the so-called flashing light effects. Better understanding of the multiphase fluid dynamics and the irradiance distribution inside the reactor that cause the flashing light effects, as well as quantifying their impacts on the reactor performance, thus, are crucial for successful design and scale-up of photobioreactors. In this study, a species of red marine microalgae, Porphyridium sp., was grown in three airlift column photobioreactors (i.e., draft tube column, bubble column, and split column). The physical properties of the culture medium, the local fluid dynamics and the photobioreactor performances were investigated and are reported in this part of the manuscript. Results indicate that the presence of microalgae considerably affected the local multiphase flow dynamics in the studied draft tube column. Results also show that the split column reactor works slightly better than the draft tube and the bubble columns due to the spiral flow pattern inside the reactor.

  6. Hydrodynamic synchronization of nonlinear oscillators at low Reynolds number.

    Science.gov (United States)

    Leoni, M; Liverpool, T B

    2012-04-01

    We introduce a generic model of a weakly nonlinear self-sustained oscillator as a simplified tool to study synchronization in a fluid at low Reynolds number. By averaging over the fast degrees of freedom, we examine the effect of hydrodynamic interactions on the slow dynamics of two oscillators and show that they can lead to synchronization. Furthermore, we find that synchronization is strongly enhanced when the oscillators are nonisochronous, which on the limit cycle means the oscillations have an amplitude-dependent frequency. Nonisochronity is determined by a nonlinear coupling α being nonzero. We find that its (α) sign determines if they synchronize in phase or antiphase. We then study an infinite array of oscillators in the long-wavelength limit, in the presence of noise. For α>0, hydrodynamic interactions can lead to a homogeneous synchronized state. Numerical simulations for a finite number of oscillators confirm this and, when α<0, show the propagation of waves, reminiscent of metachronal coordination.

  7. Radiation-Hydrodynamics of Hot Jupiter Atmospheres

    CERN Document Server

    Menou, Kristen

    2009-01-01

    Radiative transfer in planetary atmospheres is usually treated in the static limit, i.e., neglecting atmospheric motions. We argue that hot Jupiter atmospheres, with possibly fast (sonic) wind speeds, may require a more strongly coupled treatment, formally in the regime of radiation-hydrodynamics. To lowest order in v/c, relativistic Doppler shifts distort line profiles along optical paths with finite wind velocity gradients. This leads to flow-dependent deviations in the effective emission and absorption properties of the atmospheric medium. Evaluating the overall impact of these distortions on the radiative structure of a dynamic atmosphere is non-trivial. We present transmissivity and systematic equivalent width excess calculations which suggest possibly important consequences for radiation transport in hot Jupiter atmospheres. If winds are fast and bulk Doppler shifts are indeed important for the global radiative balance, accurate modeling and reliable data interpretation for hot Jupiter atmospheres may p...

  8. An analysis of smoothed particle hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Swegle, J.W.; Attaway, S.W.; Heinstein, M.W.; Mello, F.J. [Sandia National Labs., Albuquerque, NM (United States); Hicks, D.L. [Michigan Technological Univ., Houghton, MI (United States)

    1994-03-01

    SPH (Smoothed Particle Hydrodynamics) is a gridless Lagrangian technique which is appealing as a possible alternative to numerical techniques currently used to analyze high deformation impulsive loading events. In the present study, the SPH algorithm has been subjected to detailed testing and analysis to determine its applicability in the field of solid dynamics. An important result of the work is a rigorous von Neumann stability analysis which provides a simple criterion for the stability or instability of the method in terms of the stress state and the second derivative of the kernel function. Instability, which typically occurs only for solids in tension, results not from the numerical time integration algorithm, but because the SPH algorithm creates an effective stress with a negative modulus. The analysis provides insight into possible methods for removing the instability. Also, SPH has been coupled into the transient dynamics finite element code PRONTO, and a weighted residual derivation of the SPH equations has been obtained.

  9. Hydrodynamic theory of thermoelectric transport and negative magnetoresistance in Weyl semimetals

    Science.gov (United States)

    Lucas, Andrew; Davison, Richard A.; Sachdev, Subir

    2016-08-01

    We present a theory of thermoelectric transport in weakly disordered Weyl semimetals where the electron-electron scattering time is faster than the electron-impurity scattering time. Our hydrodynamic theory consists of relativistic fluids at each Weyl node, coupled together by perturbatively small intervalley scattering, and long-range Coulomb interactions. The conductivity matrix of our theory is Onsager reciprocal and positive semidefinite. In addition to the usual axial anomaly, we account for the effects of a distinct, axial-gravitational anomaly expected to be present in Weyl semimetals. Negative thermal magnetoresistance is a sharp, experimentally accessible signature of this axial-gravitational anomaly, even beyond the hydrodynamic limit.

  10. Hydrodynamic theory of thermoelectric transport and negative magnetoresistance in Weyl semimetals.

    Science.gov (United States)

    Lucas, Andrew; Davison, Richard A; Sachdev, Subir

    2016-08-23

    We present a theory of thermoelectric transport in weakly disordered Weyl semimetals where the electron-electron scattering time is faster than the electron-impurity scattering time. Our hydrodynamic theory consists of relativistic fluids at each Weyl node, coupled together by perturbatively small intervalley scattering, and long-range Coulomb interactions. The conductivity matrix of our theory is Onsager reciprocal and positive semidefinite. In addition to the usual axial anomaly, we account for the effects of a distinct, axial-gravitational anomaly expected to be present in Weyl semimetals. Negative thermal magnetoresistance is a sharp, experimentally accessible signature of this axial-gravitational anomaly, even beyond the hydrodynamic limit.

  11. Hydrodynamics of pair-annihilating disclinations in SmC films.

    Science.gov (United States)

    Svensek, D; Zumer, S

    2003-04-18

    The pair annihilation of smectic c-director defects with winding numbers +/-1 in a freestanding SmC film as a representative of the XY model is studied numerically, considering a full coupling of orientational degrees of freedom and hydrodynamics. A reduction of the annihilation time compared to the nonhydrodynamic treatment is observed. It is demonstrated that the +1 disclination moves considerably faster than the -1 one primarily due to hydrodynamic flow, weakly assisted also by elastic anisotropy. The stress tensor terms and material parameters relevant for this effect are identified.

  12. Bearing misalignment effects on the hydrostatic and hydrodynamic behaviour of gears in fixed clearance end plates

    Science.gov (United States)

    Koc, E.

    1994-04-01

    Lubrication and sealing mechanisms of fixed clearance end plates in high-pressure pumps have been analysed theoretically and experimentally. Bearing misalignment was found to be the main lubrication mechanism, and it was effective in determining the gear position between two end plates. The minimum film thickness between the gear end and end plate has been found to depend on the magnitude of the relative tilt of the surfaces and the position of the maximum clearance. The theory developed can predict the film thickness between the end plate and gear end face, and this corresponds very closely to the clearances measured experimentally under a variety of operating conditions.

  13. Hydrodynamic causes and effects of air bubbles rising in very viscous media

    CERN Document Server

    Ravinuthala, Sharad Chand

    2013-01-01

    Detailed understanding of two-phase gas liquid flows is imperative for developing efficient multi-phase reactors through precise control of mixing and reaction kinetics. The bubble column is a good apparatus for elementary studies of such flows. In the current study experiments are conducted to assess the effect of liquid viscosity on flow dynamics inside a bubble column. Corn oil and water are used as the continuous media, and air was the dispersed media. The objective of this effort is to use the results for a qualitative validation of the numerical simulations.

  14. T cell--associated immunoregulation and antiviral effect of oxymatrine in hydrodynamic injection HBV mouse model.

    Science.gov (United States)

    Sang, Xiuxiu; Wang, Ruilin; Han, Yanzhong; Zhang, Cong'en; Shen, Honghui; Yang, Zhirui; Xiong, Yin; Liu, Huimin; Liu, Shijing; Li, Ruisheng; Yang, Ruichuang; Wang, Jiabo; Wang, Xuejun; Bai, Zhaofang; Xiao, Xiaohe

    2017-05-01

    Although oxymatrine (OMT) has been shown to directly inhibit the replication of hepatitis B virus (HBV) in vitro, limited research has been done with this drug in vivo. In the present study, the antiviral effect of OMT was investigated in an immunocompetent mouse model of chronic HBV infection. The infection was achieved by tail vein injection of a large volume of DNA solution. OMT (2.2, 6.7 and 20 mg/kg) was administered by daily intraperitoneal injection for 6 weeks. The efficacy of OMT was evaluated by the levels of HBV DNA, hepatitis B surface antigen (HBsAg), hepatitis B e antigen (HBeAg) and hepatitis B core antigen (HBcAg). The immunoregulatory activity of OMT was evaluated by serum ELISA and flow cytometry. Results shows that OMT at 20 mg/kg inhibited HBV replication, and it was more efficient than entecavir (ETV) in the elimination of serum HBsAg and intrahepatic HBcAg. In addition, OMT accelerated the production of interferon-γ (IFN-γ) in a dose-dependent manner in CD4(+) T cells. Our findings demonstrate the beneficial effects of OMT on the enhancement of immunological function and in the control of HBV antigens. The findings suggest this drug to be a good antiviral therapeutic candidate for the treatment of HBV infection.

  15. T cell--associated immunoregulation and antiviral effect of oxymatrine in hydrodynamic injection HBV mouse model

    Directory of Open Access Journals (Sweden)

    Xiuxiu Sang

    2017-05-01

    Full Text Available Although oxymatrine (OMT has been shown to directly inhibit the replication of hepatitis B virus (HBV in vitro, limited research has been done with this drug in vivo. In the present study, the antiviral effect of OMT was investigated in an immunocompetent mouse model of chronic HBV infection. The infection was achieved by tail vein injection of a large volume of DNA solution. OMT (2.2, 6.7 and 20 mg/kg was administered by daily intraperitoneal injection for 6 weeks. The efficacy of OMT was evaluated by the levels of HBV DNA, hepatitis B surface antigen (HBsAg, hepatitis B e antigen (HBeAg and hepatitis B core antigen (HBcAg. The immunoregulatory activity of OMT was evaluated by serum ELISA and flow cytometry. Results shows that OMT at 20 mg/kg inhibited HBV replication, and it was more efficient than entecavir (ETV in the elimination of serum HBsAg and intrahepatic HBcAg. In addition, OMT accelerated the production of interferon-γ (IFN-γ in a dose-dependent manner in CD4+ T cells. Our findings demonstrate the beneficial effects of OMT on the enhancement of immunological function and in the control of HBV antigens. The findings suggest this drug to be a good antiviral therapeutic candidate for the treatment of HBV infection.

  16. Flocculation and redispersion of cellulosic fiber suspensions: A review of effects of hydrodynamic shear and polyelectrolytes

    Directory of Open Access Journals (Sweden)

    Hubbe, M. A.

    2007-05-01

    Full Text Available Cellulosic fibers in aqueous suspensions are subject to flocculation effects that involve two contrasting scales of dimension. The net effect of flocculation determines how uniformly fibers can become formed into a sheet during the manufacture of paper. At a macroscopic level, the highly elongated shape of typical wood-derived fibers in agitated sus-pensions can give rise to frequent inter-fiber collisions and the formation of fiber flocs. At a submicroscopic scale, surfaces of suspended materials can become joined by macromolecular bridges. Although such bridges tend to reduce paper’s uniformity, polyelectrolyte flocculants are used in most paper machine systems to achieve relatively high retention efficiencies of fine particles as paper is being formed. By adjusting the papermaking equipment, judiciously selecting points of addition of chemicals, and by managing chemical dosages, papermakers employ a variety of strategies to achieve favorable combinations of retention and uniformity. This review considers scholarly work that has been directed towards a greater understanding of the underlying mechanisms.

  17. Z' effects and anomalous gauge couplings at LC with polarization

    CERN Document Server

    Pankov, A A; Verzegnassi, Claudio

    1998-01-01

    We show that the availability of longitudinally polarized electron beams at a $500 GeV$ Linear Collider would allow, from an analysis of the reaction $e^+e^-\\to W^+W^-$, to set stringent bounds on the couplings of a Z' of the most general type. In addition, to some extent it would be possible to disentangle observable effects of the Z' from analogous ones due to competitor models with anomalous trilinear gauge couplings.

  18. Effect of hydrodynamics on kinetics of gluconic acid enzymatic production in bubble column reactor

    Directory of Open Access Journals (Sweden)

    Ramezani Mohammad

    2013-01-01

    Full Text Available Oxidation of glucose by homogeneous glucose oxidase was performed in rectangular bubble column reactor at 40°C, ambient pressure and pH of 5.5 while superficial gas (oxygen velocity was varied in the homogeneous and transition regime in the range of 0.0014 - 0.0112 m s-1. Effect of superficial gas (oxygen velocity on the apparent reaction rate and its parameters was determined and it was observed that the apparent reaction rate on the basis of volume of the liquid increased with increasing the superficial gas (oxygen velocity. The apparent reaction rate was assumed to be in the form of Michaelis-Menten equation and its apparent kinetic parameters were evaluated by the nonlinear regression method.

  19. Quasiparticle anisotropic hydrodynamics for central collisions

    CERN Document Server

    Alqahtani, Mubarak; Strickland, Michael

    2016-01-01

    We use quasiparticle anisotropic hydrodynamics to study an azimuthally-symmetric boost-invariant quark-gluon plasma including the effects of both shear and bulk viscosities. In quasiparticle anisotropic hydrodynamics, a single finite-temperature quasiparticle mass is introduced and fit to the lattice data in order to implement a realistic equation of state. We compare results obtained using the quasiparticle method with the standard method of imposing the equation of state in anisotropic hydrodynamics and viscous hydrodynamics. Using these three methods, we extract the primordial particle spectra, total number of charged particles, and average transverse momentum for various values of the shear viscosity to entropy density ratio eta/s. We find that the three methods agree well for small shear viscosity to entropy density ratio, eta/s, but differ at large eta/s. We find, in particular, that when using standard viscous hydrodynamics, the bulk-viscous correction can drive the primordial particle spectra negative...

  20. Effects of Second-Order Hydrodynamic Forces on Floating Offshore Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, T.; Sarmento, A. J. N. A.; Jonkman, J.

    2014-04-01

    Relative to first-order, second-order wave-excitation loads are known to cause significant motions and additional loads in offshore oil and gas platforms. The design of floating offshore wind turbines was partially inherited from the offshore oil and gas industry. Floating offshore wind concepts have been studied with powerful aero-hydro-servo-elastic tools; however, most of the existing work on floating offshore wind turbines has neglected the contribution of second-order wave-excitation loads. As a result, this paper presents a computationally efficient methodology to consider these loads within FAST, a wind turbine computer-aided engineering tool developed by the National Renewable Energy Laboratory. The method implemented was verified against the commercial OrcaFlex tool, with good agreement, and low computational time. A reference floating offshore wind turbine was studied under several wind and wave load conditions, including the effects of second-order slow-drift and sum-frequency loads. Preliminary results revealed that these loads excite the turbine's natural frequencies, namely the surge and pitch natural frequencies.

  1. Laser-induced hydrodynamics in water-saturated tissue: III. Optoacoustic effects

    Science.gov (United States)

    Yusupov, V. I.; Bulanov, V. V.; Chudnovskii, V. M.; Bagratashvili, V. N.

    2014-01-01

    Studied in this work are specific features of acoustic vibrations generated at the hot blackened tip of an optical fiber (the so-called hot tip) delivering moderate-power (1-10 W) CW laser radiation in contact with water or a water-saturated biotissue. Generated upon such contact is a wideband acoustic signal whose characteristics largely depend on the object exposed and treatment scheme. Placing the hot tip in an acoustic resonator is demonstrated to cause distinct amplitude modulation of the acoustic noise. The formation of laser channels in an intervertebral disc or the intramedullary cavity of a bovine thighbone gives rise to the emission of a quasiperiodic train of pulses associated with the explosive growth and collapse of steam-gas bubbles in the hot-tip-to-biotissue contact region. The resultant pressure pulses, 20 ± 15 MPa in amplitude, cause damage to the adjacent tissue and facilitate the production of a laser channel at a rate of some 0.4-5 mm s-1. During the course of laser treatment the biotissue gradually gets saturated with steam-gas bubbles, which results in the development of low-frequency pressure oscillations in the range 0.1-10 Hz and a gradual pressure rise to around 200 kPa, leading to reduction of the natural frequencies of the resonance modes of the biotissue. The possible effect of these acoustic vibrations on the biotissue is discussed.

  2. Surface-effect corrections for solar-like oscillations using 3D hydrodynamical simulations

    CERN Document Server

    Sonoi, T; Belkacem, K; Ludwig, H -G; Caffau, E; Mosser, B

    2015-01-01

    The space-borne missions have provided us with a wealth of high-quality observational data that allows for seismic inferences of stellar interiors. This requires the computation of precise and accurate theoretical frequencies, but imperfect modeling of the uppermost stellar layers introduces systematic errors. To overcome this problem, an empirical correction has been introduced by Kjeldsen et al. (2008, ApJ, 683, L175) and is now commonly used for seismic inferences. Nevertheless, we still lack a physical justification allowing for the quantification of the surface-effect corrections. We used a grid of these simulations computed with the CO$^5$BOLD code to model the outer layers of solar-like stars. Upper layers of the corresponding 1D standard models were then replaced by the layers obtained from the horizontally averaged 3D models. The frequency differences between these patched models and the 1D standard models were then calculated using the adiabatic approximation and allowed us to constrain the Kjeldsen...

  3. Lifshitz Superfluid Hydrodynamics

    CERN Document Server

    Chapman, Shira; Oz, Yaron

    2014-01-01

    We construct the first order hydrodynamics of quantum critical points with Lifshitz scaling and a spontaneously broken symmetry. The fluid is described by a combination of two flows, a normal component that carries entropy and a super-flow which has zero viscosity and carries no entropy. We analyze the new transport effects allowed by the lack of boost invariance and constrain them by the local second law of thermodynamics. Imposing time-reversal invariance, we find eight new parity even transport coefficients. The formulation is applicable, in general, to any superfluid/superconductor with an explicit breaking of boost symmetry, in particular to high $T_c$ superconductors. We discuss possible experimental signatures.

  4. Hydrodynamical chemistry simulations of the Sunyaev-Zel'dovich effect and the impacts from primordial non-Gaussianities

    Science.gov (United States)

    Pace, Francesco; Maio, Umberto

    2014-01-01

    The impacts of Compton scattering of hot cosmic gas with the cosmic microwave background radiation [Sunyaev-Zel'dovich (SZ) effect] are consistently quantified in Gaussian and non-Gaussian scenarios, by means of 3D numerical, N-body, hydrodynamic simulations, including cooling, star formation, stellar evolution and metal pollution (He, C, O, Si, Fe, S, Mg, etc.) from different stellar phases, according to proper yields for individual metal species and mass-dependent stellar lifetimes. Light cones are built through the simulation outputs and samples of 100 maps for the resulting temperature fluctuations are derived for both Gaussian and non-Gaussian primordial perturbations. From them, we estimate the possible changes due to early non-Gaussianities on SZ maps, probability distribution functions, angular power spectra and corresponding bispectra. We find that the different growth of structures in the different cases induces significant spectral distortions only in models with large non-Gaussian parameters, fNL. In general, the overall trends are covered by the non-linear, baryonic evolution, whose feedback mechanisms tend to randomize the gas behaviour and homogenize its statistical features, quite independently from the background matter distribution. Deviations due to non-Gaussianity are almost undistinguishable for fNL ≲ 100, remaining always at few per cent level, within the error bars of the Gaussian scenario. Rather extreme models with fNL ˜ 1000 present more substantial deviations from the Gaussian case, overcoming baryon contaminations and showing discrepancies up to a factor of a few in the spectral properties.

  5. Lifetime Effects in Color Superconductivity at Weak Coupling

    CERN Document Server

    Manuel, C

    2000-01-01

    Present computations of the gap of color superconductivity in weak coupling assume that the quarks which participate in the condensation process are infinitely long-lived. However, the quasiparticles in a plasma are characterized by having a finite lifetime. In this article we take into account this fact to evaluate its effect in the computation of the color gap. By first considering the Schwinger-Dyson equations in weak coupling, when one-loop self-energy corrections are included, a general gap equation is written in terms of the spectral densities of the quasiparticles. To evaluate lifetime effects, we then model the spectral density by a Lorentzian function. We argue that the decay of the quasiparticles limits their efficiency to condense. The value of the gap at the Fermi surface is then reduced. To leading order, these lifetime effects can be taken into account by replacing the coupling constant of the gap equation by a reduced effective one.

  6. DEVELOPMENT OF A HYDRODYNAMIC MODEL OF A HYDROCYCLONE INCLUDING THE SIMULATION OF AIR-CORE EFFECT, USING THE FINITE VOLUME METHOD

    Directory of Open Access Journals (Sweden)

    Gabriel Felipe Aguilera

    2014-07-01

    Full Text Available The hydrocyclone is one of the most used classification equipment in industry, particularly in mineral processing. Maybe its main characteristic is to be a hydrodynamic separation equipment, whereby it has a high production capability and different levels of efficiency are depending on the geometrical configuration, operational parameters and the type of material to be processed. Nevertheless, there are a few successful studies regarding the modelling and simulation of its hydrodynamic principles, because the flow behavior inside is quite complex. Most of the current models are empirical and they are not applicable to all cases and types of minerals. One of the most important problems to be solved, besides the cut size and the effect of the physical properties of the particles, is the distribution of the flow inside the hydrocyclone, because if the work of the equipment is at low slurry densities, very clear for small hydrocyclones, its mechanic behavior is a consequence of the kind of liquid used as continuous phase, being water the most common liquid. This work shows the modelling and simulation of the hydrodynamic behavior of a suspension inside a hydrocyclone, including the air core effect, through the use of finite differences method. For the developing of the model, the Reynolds Stress Model (RSM for the evaluation of turbulence, and the Volume of Fluid (VOF to study the interaction between water and air were used. Finally, the model shows to be significant for experimental data, and for different conditions of an industrial plant.

  7. A multiple-relaxation-time lattice-boltzmann model for bacterial chemotaxis: effects of initial concentration, diffusion, and hydrodynamic dispersion on traveling bacterial bands.

    Science.gov (United States)

    Yan, Zhifeng; Hilpert, Markus

    2014-10-01

    Bacterial chemotaxis can enhance the bioremediation of contaminants in aqueous and subsurface environments if the contaminant is a chemoattractant that the bacteria degrade. The process can be promoted by traveling bands of chemotactic bacteria that form due to metabolism-generated gradients in chemoattractant concentration. We developed a multiple-relaxation-time (MRT) lattice-Boltzmann method (LBM) to model chemotaxis, because LBMs are well suited to model reactive transport in the complex geometries that are typical for subsurface porous media. This MRT-LBM can attain a better numerical stability than its corresponding single-relaxation-time LBM. We performed simulations to investigate the effects of substrate diffusion, initial bacterial concentration, and hydrodynamic dispersion on the formation, shape, and propagation of bacterial bands. Band formation requires a sufficiently high initial number of bacteria and a small substrate diffusion coefficient. Uniform flow does not affect the bands while shear flow does. Bacterial bands can move both upstream and downstream when the flow velocity is small. However, the bands disappear once the velocity becomes too large due to hydrodynamic dispersion. Generally bands can only be observed if the dimensionless ratio between the chemotactic sensitivity coefficient and the effective diffusion coefficient of the bacteria exceeds a critical value, that is, when the biased movement due to chemotaxis overcomes the diffusion-like movement due to the random motility and hydrodynamic dispersion.

  8. Electron-phonon coupling of light-actinides. Effect of spin-orbit coupling

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Castelazo, Paola; Pena-Seaman, Omar de la [Benemerita Universidad Autonoma de Puebla (BUAP), Institute of Physics (IFUAP) (Mexico); Heid, Rolf; Bohnen, Klaus-Peter [Karlsruher Institut fuer Technologie (KIT), Institut fuer Festkoerperphysik (IFP) (Germany)

    2014-07-01

    The physics of actinide metals is quite complex and rich due to the behavior of 5f electrons in the valence region: it goes from itinerant on the early stages of the actinide series to highly localized for the elements with a higher number of 5f electrons involved. In addition, in this systems should be mandatory the inclusion of spin-orbit coupling (SOC). However, only in few cases on electronic and lattice dynamical properties the SOC has been taking into account, while for the electron-phonon (e-ph) coupling such analysis has not been performed so far. Thus, as a first approach we have systematically studied the SOC influence on the full-phonon dispersion and the e-ph coupling for the simplest light-actinide metals: Ac and Th. These elements have been studied within the framework of density functional perturbation theory, using a mixed-basis pseudopotential method. The full-phonon dispersion as well as the Eliashberg spectral function and the electron-phonon coupling parameter have been calculated with and without SOC. The observed effects of SOC in the full-phonon dispersion and Eliashberg function are discussed in detail, together with an analysis of the differences on the electronic properties due to the SOC inclusion in the calculations.

  9. Effect of Coriolis coupling in chemical reaction dynamics.

    Science.gov (United States)

    Chu, Tian-Shu; Han, Ke-Li

    2008-05-14

    It is essential to evaluate the role of Coriolis coupling effect in molecular reaction dynamics. Here we consider Coriolis coupling effect in quantum reactive scattering calculations in the context of both adiabaticity and nonadiabaticity, with particular emphasis on examining the role of Coriolis coupling effect in reaction dynamics of triatomic molecular systems. We present the results of our own calculations by the time-dependent quantum wave packet approach for H + D2 and F(2P3/2,2P1/2) + H2 as well as for the ion-molecule collisions of He + H2 +, D(-) + H2, H(-) + D2, and D+ + H2, after reviewing in detail other related research efforts on this issue.

  10. Hydrodynamics of sediment threshold

    Science.gov (United States)

    Ali, Sk Zeeshan; Dey, Subhasish

    2016-07-01

    A novel hydrodynamic model for the threshold of cohesionless sediment particle motion under a steady unidirectional streamflow is presented. The hydrodynamic forces (drag and lift) acting on a solitary sediment particle resting over a closely packed bed formed by the identical sediment particles are the primary motivating forces. The drag force comprises of the form drag and form induced drag. The lift force includes the Saffman lift, Magnus lift, centrifugal lift, and turbulent lift. The points of action of the force system are appropriately obtained, for the first time, from the basics of micro-mechanics. The sediment threshold is envisioned as the rolling mode, which is the plausible mode to initiate a particle motion on the bed. The moment balance of the force system on the solitary particle about the pivoting point of rolling yields the governing equation. The conditions of sediment threshold under the hydraulically smooth, transitional, and rough flow regimes are examined. The effects of velocity fluctuations are addressed by applying the statistical theory of turbulence. This study shows that for a hindrance coefficient of 0.3, the threshold curve (threshold Shields parameter versus shear Reynolds number) has an excellent agreement with the experimental data of uniform sediments. However, most of the experimental data are bounded by the upper and lower limiting threshold curves, corresponding to the hindrance coefficients of 0.2 and 0.4, respectively. The threshold curve of this study is compared with those of previous researchers. The present model also agrees satisfactorily with the experimental data of nonuniform sediments.

  11. Hydrodynamic modeling of juvenile mussel dispersal in a large river: The potential effects of bed shear stress and other parameters

    Science.gov (United States)

    Daraio, J.A.; Weber, L.J.; Newton, T.J.

    2010-01-01

    Because unionid mussels have a parasitic larval stage, they are able to disperse upstream and downstream as larvae while attached to their host fish and with flow as juveniles after excystment from the host. Understanding unionid population ecology requires knowledge of the processes that affect juvenile dispersal prior to establishment. We examined presettlement (transport and dispersion with flow) and early postsettlement (bed shear stress) hydraulic processes as negative censoring mechanisms. Our approach was to model dispersal using particle tracking through a 3-dimensional flow field output from hydrodynamic models of a reach of the Upper Mississippi River. We tested the potential effects of bed shear stress (??b) at 5 flow rates on juvenile mussel dispersal and quantified the magnitude of these effects as a function of flow rate. We explored the reach-scale relationships of Froude number (Fr), water depth (H), local bed slope (S), and unit stream power (QS) with the likelihood of juvenile settling (??). We ran multiple dispersal simulations at each flow rate to estimate ??, the parameter of a Poisson distribution, from the number of juveniles settling in each grid cell, and calculated dispersal distances. Virtual juveniles that settled in areas of the river where b > critical shear stress (c) were resuspended in the flow and transported further downstream, so we ran simulations at 3 different conditions for ??c (??c = ??? no resuspension, 0.1, and 0.05 N/m2). Differences in virtual juvenile dispersal distance were significantly dependent upon c and flow rate, and effects of b on settling distribution were dependent upon c. Most simulations resulted in positive correlations between ?? and ??b, results suggesting that during early postsettlement, ??b might be the primary determinant of juvenile settling distribution. Negative correlations between ?? and ??b occurred in some simulations, a result suggesting that physical or biological presettlement processes

  12. Effect of a bearing gap on hemolytic property in a hydrodynamically levitated centrifugal blood pump with a semi-open impeller.

    Science.gov (United States)

    Kosaka, Ryo; Nishida, Masahiro; Maruyama, Osamu; Yambe, Tomoyuki; Imachi, Kou; Yamane, Takashi

    2013-01-01

    We have developed a hydrodynamically levitated centrifugal blood pump with a semi-open impeller for long-term circulatory assist. The pump uses hydrodynamic bearings to enhance durability and reliability without additional displacement-sensors or control circuits. However, a narrow bearing gap of the pump has a potential for hemolysis. The purpose of this study is to develop the hydrodynamically levitated centrifugal blood pump with a semi-open impeller, and to evaluate the effect of a bearing gap on hemolytic property. The impeller levitates using a spiral-groove type thrust bearing, and a herringbone-groove type radial bearing. The pump design was improved by adopting a step type thrust bearing and optimizing the pull-up magnetic force. The pump performance was evaluated by a levitation performance test, a hemolysis test and an animal experiment. In these tests, the bearing gap increased from 1 to 63 μm. In addition, the normalized index of hemolysis (NIH) improved from 0.415 to 0.005 g/100 l, corresponding to the expansion of the bearing gap. In the animal experiment for 24 h, the plasma-free hemoglobin remained within normal ranges (pump was improved to the acceptable level by expanding the bearing gap greater than 60 μm.

  13. A Higher Order Godunov Method for Radiation Hydrodynamics: Radiation Subsystem

    CERN Document Server

    Sekora, Michael

    2009-01-01

    A higher order Godunov method for the radiation subsystem of radiation hydrodynamics is presented. A key ingredient of the method is the direct coupling of stiff source term effects to the hyperbolic structure of the system of conservation laws; it is composed of a predictor step that is based on Duhamel's principle and a corrector step that is based on Picard iteration. The method is second order accurate in both time and space, unsplit, asymptotically preserving, and uniformly well behaved from the photon free streaming (hyperbolic) limit through the weak equilibrium diffusion (parabolic) limit and to the strong equilibrium diffusion (hyperbolic) limit. Numerical tests demonstrate second order convergence across various parameter regimes.

  14. Effects of Surface Irregularities on Piston Ring-Cylinder Tribo Pair of a Two Stroke Motor Engine in Hydrodynamic Lubrication

    Directory of Open Access Journals (Sweden)

    A. Zavos

    2015-03-01

    Full Text Available Tribological parameters such as friction, lubrication and wear influence strongly the engine component's life. In this study, a piston ring-cylinder system simulated taking into account the surface modifications under fully flooded lubrication and normal engine conditions. The hydrodynamic pressure field solved based on the Navier Stokes equations by Fluid Structure Interaction analysis. A real experimental data of piston ring-cylinder was used from a two stroke motor engine 50 cc. The surface irregularities are measured by 3D coordinate measurement machine while the engine has been worked about 4000 hours. The friction force, the hydrodynamic pressure, the oil film and the mechanical stresses were predicted for different engine conditions. Results show that the worn profile ring reduces the friction as well as the mechanical stresses increased. Surface condition of worn top ring was observed after a metallurgical profile analysis.

  15. Effect of stretching-induced changes in hydrodynamic screening on coil-stretch hysteresis of unentangled polymer solutions

    Science.gov (United States)

    Prabhakar, Ranganathan; Sasmal, Chandi; Nguyen, Duc At; Sridhar, Tam; Prakash, J. Ravi

    2017-01-01

    Extensional rheometry and Brownian dynamics simulations of flexible polymer solutions confirm predictions based on blob concepts that coil-stretch hysteresis in extensional flows increases with concentration, reaching a maximum at the critical overlap concentration c* before progressively vanishing in the semidilute regime. These observations demonstrate that chain stretching strengthens intermolecular hydrodynamic screening in dilute solutions, but weakens it in semidilute solutions. Flow can thus strongly modify the concentration dependence of viscoelastic properties of polymer solutions.

  16. The Effectiveness of Cognitive Behavioural Couple Therapy on Marital Stress and Emotional Skills of Infidel Couples in Shiraz

    Directory of Open Access Journals (Sweden)

    Aida Honari

    2017-02-01

    Full Text Available The present study aims at investigating the effectiveness of cognitive behavioural couple therapy on marital stress and emotional skills of infidel couples. Methods: A pre-test, post-test methodology with one control group is used. Forty couples were chosen purposefully from the statistical population of all infidel couples who referred to psychological clinics in Shiraz. The samples of 40 couples were put in to two groups consisting of a control group and experimental group. The measuring tools were Stockholm marital stress scale (SMSS and Toronto alexithymia scale. The data and hypothesis were analyzed via SPSS-22, using multivariable analysis of covariance (MANCOVA. Result: The results of the study show that cognitive behavioural couple therapy has a meaningful effect on marital stress and emotional skills of infidel couples.

  17. Synchronization of coupled stochastic oscillators: The effect of topology

    Indian Academy of Sciences (India)

    Amitabha Nandi; Ram Ramaswamy

    2008-06-01

    We study sets of genetic networks having stochastic oscillatory dynamics. Depending on the coupling topology we find regimes of phase synchronization of the dynamical variables. We consider the effect of time-delay in the interaction and show that for suitable choices of delay parameter, either in-phase or anti-phase synchronization can occur.

  18. Interfacial effects in electromagnetic coupling within piezoelectric phononic crystals

    Institute of Scientific and Technical Information of China (English)

    F. J. Sabina; A. B. Movchan

    2009-01-01

    In this paper, we discuss waves in piezoelectric periodic composite, with the emphasis on the connection between the electromechanical coupling and the effects of dispersion of Bloch-Floquet waves. A particular attention is given to structures containing interfaces between dissimi-lar media and localization of the electrical fields near such interfaces.

  19. Hydrodynamic interactions between two bodies in waves in 3D time domain

    Institute of Scientific and Technical Information of China (English)

    WANG Jian-fang; LI Ji-de; CAI Xin-gong; TIAN Ming-qi; Hao Jin-feng

    2005-01-01

    In this paper, a 3D time domain technique is adopted to calculate the coupled hydrodynamic interaction between two bodies without flare in waves. For verifying the code, two same cylinders are selected to calculate coupled hydrodynamic effects by comparison with the results obtained by 3D frequency method which has been proved to be efficient for solving such problems. In order to improve efficiency of calculation, the effect of history time has been discussed, and an improved method is presented. Moreover, the effect of lateral separation distance is also discussed in detail. The technique developed here may serve as a more rigorous tool to analyze the related transient problems of two ships doing underway replenishment in waves.

  20. Hydro-Coupling Effects on Compression Symmetry in Gas-Filled Hohlraum Experiments at the Omega Laser

    Energy Technology Data Exchange (ETDEWEB)

    Dewalds, E L; Pollaine, S W; Landen, O L; Amendt, P A; Turner, R E; Wallace, R; Campbell, K M; Glenzer, S H

    2003-08-26

    Ignition hohlraum designs use low Z gas fill to slow down the inward progress of high Z ablated plasma from the hohlraum walls preventing large laser spot motion and capsule drive asymmetries. In order to optimize the ignition design, the gas hydro-coupling effect to a fusion capsule asymmetry is presently being assessed in experiments at the Omega laser facility with gas filled hohlraums and foam balls. Our experiments measure the effects of the pressure spike that is generated by direct gas heating by the drive laser beams on the capsule surrogate for various hohlraum gas fill densities (0-2.5 mg/cc). To isolate the effect of the gas-hydro coupling pressure, we have begun by using plastic ''hohlraums'' to reduce the x-ray ablation pressure. The foam ball images measured by x-ray backlighting show increasing pole-hot pressure asymmetry for increasing gas pressure. In addition, the gas hydrodynamics is studied by imaging of a low concentration Xe gas fill dopant. The gas fill self-emission. shows the early pressure spike and its propagation towards the foam ball, as well as the gas stagnation on the holraum axis at later times, both contributing to the capsule asymmetry. These first gas hydro-coupling results are compared to LASNEX simulations.

  1. Parameterization of wind turbine impacts on hydrodynamics and sediment transport

    Science.gov (United States)

    Rivier, Aurélie; Bennis, Anne-Claire; Pinon, Grégory; Magar, Vanesa; Gross, Markus

    2016-10-01

    Monopile foundations of offshore wind turbines modify the hydrodynamics and sediment transport at local and regional scales. The aim of this work is to assess these modifications and to parameterize them in a regional model. In the present study, this is achieved through a regional circulation model, coupled with a sediment transport module, using two approaches. One approach is to explicitly model the monopiles in the mesh as dry cells, and the other is to parameterize them by adding a drag force term to the momentum and turbulence equations. Idealised cases are run using hydrodynamical conditions and sediment grain sizes typical from the area located off Courseulles-sur-Mer (Normandy, France), where an offshore windfarm is under planning, to assess the capacity of the model to reproduce the effect of the monopile on the environment. Then, the model is applied to a real configuration on an area including the future offshore windfarm of Courseulles-sur-Mer. Four monopiles are represented in the model using both approaches, and modifications of the hydrodynamics and sediment transport are assessed over a tidal cycle. In relation to local hydrodynamic effects, it is observed that currents increase at the side of the monopile and decrease in front of and downstream of the monopile. In relation to sediment transport effect, the results show that resuspension and erosion occur around the monopile in locations where the current speed increases due to the monopile presence, and sediments deposit downstream where the bed shear stress is lower. During the tidal cycle, wakes downstream of the monopile reach the following monopile and modify the velocity magnitude and suspended sediment concentration patterns around the second monopile.

  2. Parameterization of wind turbine impacts on hydrodynamics and sediment transport

    Science.gov (United States)

    Rivier, Aurélie; Bennis, Anne-Claire; Pinon, Grégory; Magar, Vanesa; Gross, Markus

    2016-09-01

    Monopile foundations of offshore wind turbines modify the hydrodynamics and sediment transport at local and regional scales. The aim of this work is to assess these modifications and to parameterize them in a regional model. In the present study, this is achieved through a regional circulation model, coupled with a sediment transport module, using two approaches. One approach is to explicitly model the monopiles in the mesh as dry cells, and the other is to parameterize them by adding a drag force term to the momentum and turbulence equations. Idealised cases are run using hydrodynamical conditions and sediment grain sizes typical from the area located off Courseulles-sur-Mer (Normandy, France), where an offshore windfarm is under planning, to assess the capacity of the model to reproduce the effect of the monopile on the environment. Then, the model is applied to a real configuration on an area including the future offshore windfarm of Courseulles-sur-Mer. Four monopiles are represented in the model using both approaches, and modifications of the hydrodynamics and sediment transport are assessed over a tidal cycle. In relation to local hydrodynamic effects, it is observed that currents increase at the side of the monopile and decrease in front of and downstream of the monopile. In relation to sediment transport effect, the results show that resuspension and erosion occur around the monopile in locations where the current speed increases due to the monopile presence, and sediments deposit downstream where the bed shear stress is lower. During the tidal cycle, wakes downstream of the monopile reach the following monopile and modify the velocity magnitude and suspended sediment concentration patterns around the second monopile.

  3. Salinity and eutrophication management by in situ continuous real-time monitoring and 3D modelling (hydrodynamics coupled with water quality): the case of the Berre lagoon (Mediterranean, France)

    Science.gov (United States)

    Martin, Laurent; Emma, Gouze

    2010-05-01

    . Since 2008, these three buoys have been also equipped with nitrate, chlorophyll and oxygen probes. Thanks to these measurements, a 3D hydrodynamic model (TELEMAC©) has been developped and validated to better qualify and quantify the relationships between the salinity of the lagoon, the fresh water inputs (from the powerplant and from the rivers), the water exchanges through the Caronte channel and the wind mixing. This model is currently used by the electricity producer to manage fresh water discharges complying with salinity indicators fixed by the European Court of Justice. Then, a biogeochemical model (DelWAQ©) coupled with the hydrodynamic model has been developped to understand the ecosystem functioning and to assess the hydroelectric powerplant implication in the eutrophication of the lagoon. Simulations reproduce quite well: 1/ the seasonal variations of nutrients, 2/ biogeochemical processes, 3/ anoxia events in connection with stratification periods at deep stations and 4/ are able to calculate nutrients budgets over a year. The results show that high primary production rates are based on high dynamical mineralization processes. The allochtonous nutrients sources are not sufficient to feed the phytoplanktonic demand (less than 1%). This models coupling is the only way to compile the physical and biogeochemical variables and processes. It's a tool aiming at a better assessment of the high complexity of the lagoon nutrients cycles. It will help us to understand the powerplant implication for the eutrophication with respect to the anthropised rivers. Moreover we would be able to test various managing scenarii (e.g. drop of nutrients loads) and to suggest new rehabilitation strategies.

  4. Hydrodynamics and black holes

    CERN Document Server

    Oz, Yaron

    2015-01-01

    This chapter describes how the AdS/CFT correspondence (the Holographic Principle) relates field theory hydrodynamics to perturbations of black hole (brane) gravitational backgrounds. The hydrodynamics framework is first presented from the field theory point of view, after which the dual gravitational description is outlined, first for relativistic fluids and then for the nonrelativistic case. Further details of the fluid/gravity correspondence are then discussed, including the bulk geometry and the dynamics of the black hole horizon.

  5. Inertial effect on spin–orbit coupling and spin transport

    Energy Technology Data Exchange (ETDEWEB)

    Basu, B., E-mail: sribbasu@gmail.com; Chowdhury, Debashree, E-mail: debashreephys@gmail.com

    2013-08-15

    We theoretically study the renormalization of inertial effects on the spin dependent transport of conduction electrons in a semiconductor by taking into account the interband mixing on the basis of k{sup →}⋅p{sup →} perturbation theory. In our analysis, for the generation of spin current we have used the extended Drude model where the spin–orbit coupling plays an important role. We predict enhancement of the spin current resulting from the renormalized spin–orbit coupling effective in our model in cubic and non-cubic crystals. Attention has been paid to clarify the importance of gauge fields in the spin transport of this inertial system. A theoretical proposition of a perfect spin filter has been done through the Aharonov–Casher like phase corresponding to this inertial system. For a time dependent acceleration, effect of k{sup →}⋅p{sup →} perturbation on the spin current and spin polarization has also been addressed. Furthermore, achievement of a tunable source of polarized spin current through the non uniformity of the inertial spin–orbit coupling strength has also been discussed. -- Highlights: •Study of the renormalization of inertial spin dependent transport of electrons. •Enhancement of the spin current due to the renormalized spin–orbit coupling. •A theoretical proposition of a perfect spin filter. •For a time dependent acceleration, spin current, spin polarization is addressed.

  6. The effect of plant water storage on water fluxes within the coupled soil-plant system.

    Science.gov (United States)

    Huang, Cheng-Wei; Domec, Jean-Christophe; Ward, Eric J; Duman, Tomer; Manoli, Gabriele; Parolari, Anthony J; Katul, Gabriel G

    2017-02-01

    In addition to buffering plants from water stress during severe droughts, plant water storage (PWS) alters many features of the spatio-temporal dynamics of water movement in the soil-plant system. How PWS impacts water dynamics and drought resilience is explored using a multi-layer porous media model. The model numerically resolves soil-plant hydrodynamics by coupling them to leaf-level gas exchange and soil-root interfacial layers. Novel features of the model are the considerations of a coordinated relationship between stomatal aperture variation and whole-system hydraulics and of the effects of PWS and nocturnal transpiration (Fe,night) on hydraulic redistribution (HR) in the soil. The model results suggest that daytime PWS usage and Fe,night generate a residual water potential gradient (Δψp,night) along the plant vascular system overnight. This Δψp,night represents a non-negligible competing sink strength that diminishes the significance of HR. Considering the co-occurrence of PWS usage and HR during a single extended dry-down, a wide range of plant attributes and environmental/soil conditions selected to enhance or suppress plant drought resilience is discussed. When compared with HR, model calculations suggest that increased root water influx into plant conducting-tissues overnight maintains a more favorable water status at the leaf, thereby delaying the onset of drought stress.

  7. Thermomechanical coupling effect of PVC sheet with defects

    Institute of Scientific and Technical Information of China (English)

    杨占宇; 罗迎社; 粟建新; 张永忠; 邓旭华; 陈胜铭; 邓瑞基; 马敏伟; 张亮

    2008-01-01

    Thermomechanical coupling of PVC sheet with defects under uniaxial loading at different rates and different sizes of microbores was studied.The local temperature field of the dynamic damage-rupture process zone at crack tip was surveyed with infrared thermographic sensor.Based on the irreversible thermomechanics theory,the dissipation law of deformation-heat effect during the whole process was found.Furthermore,the effect of thermoelasticity in the initial stage of extension was explained.

  8. Cotunneling Drag Effect in Coulomb-Coupled Quantum Dots

    Science.gov (United States)

    Keller, A. J.; Lim, J. S.; Sánchez, David; López, Rosa; Amasha, S.; Katine, J. A.; Shtrikman, Hadas; Goldhaber-Gordon, D.

    2016-08-01

    In Coulomb drag, a current flowing in one conductor can induce a voltage across an adjacent conductor via the Coulomb interaction. The mechanisms yielding drag effects are not always understood, even though drag effects are sufficiently general to be seen in many low-dimensional systems. In this Letter, we observe Coulomb drag in a Coulomb-coupled double quantum dot and, through both experimental and theoretical arguments, identify cotunneling as essential to obtaining a correct qualitative understanding of the drag behavior.

  9. Hydrodynamics of bacterial colonies: A model

    Science.gov (United States)

    Lega, J.; Passot, T.

    2003-03-01

    We propose a hydrodynamic model for the evolution of bacterial colonies growing on soft agar plates. This model consists of reaction-diffusion equations for the concentrations of nutrients, water, and bacteria, coupled to a single hydrodynamic equation for the velocity field of the bacteria-water mixture. It captures the dynamics inside the colony as well as on its boundary and allows us to identify a mechanism for collective motion towards fresh nutrients, which, in its modeling aspects, is similar to classical chemotaxis. As shown in numerical simulations, our model reproduces both usual colony shapes and typical hydrodynamic motions, such as the whirls and jets recently observed in wet colonies of Bacillus subtilis. The approach presented here could be extended to different experimental situations and provides a general framework for the use of advection-reaction-diffusion equations in modeling bacterial colonies.

  10. The RAGE radiation-hydrodynamic code

    CERN Document Server

    Gittings, Michael; Clover, Michael; Betlach, Thomas; Byrne, Nelson; Coker, Robert; Dendy, Edward; Hueckstaedt, Robert; New, Kim; Oakes, W Rob; Ranta, Dale; Stefan, Ryan

    2008-01-01

    We describe RAGE, the ``Radiation Adaptive Grid Eulerian'' radiation-hydrodynamics code, including its data structures, its parallelization strategy and performance, its hydrodynamic algorithm(s), its (gray) radiation diffusion algorithm, and some of the considerable amount of verification and validation efforts. The hydrodynamics is a basic Godunov solver, to which we have made significant improvements to increase the advection algorithm's robustness and to converge stiffnesses in the equation of state. Similarly, the radiation transport is a basic gray diffusion, but our treatment of the radiation-material coupling, wherein we converge nonlinearities in a novel manner to allow larger timesteps and more robust behavior, can be applied to any multi-group transport algorithm.

  11. Closed system of coupling effects in generalized thermo-elastoplasticity

    Directory of Open Access Journals (Sweden)

    Śloderbach Z.

    2016-05-01

    Full Text Available In this paper, the field equations of the generalized coupled thermoplasticity theory are derived using the postulates of classical thermodynamics of irreversible processses. Using the Legendre transformations two new thermodynamics potentials P and S depending upon internal thermodynamic forces Π are introduced. The most general form for all the thermodynamics potentials are assumed instead of the usually used additive form. Due to this assumption, it is possible to describe all the effects of thermomechanical couples and also the elastic-plastic coupling effects observed in such materials as rocks, soils, concretes and in some metalic materials. In this paper not only the usual postulate of existence of a dissipation qupotential (the Gyarmati postulate is used to derive the velocity equation. The plastic flow constitutive equations have the character of non-associated flow laws even when the Gyarmati postulate is assumed. In general formulation, the plastic strain rate tensor is normal to the surface of the generalized function of plastic flow defined in the the space of internal thermodynamic forces Π but is not normal to the yield surface. However, in general formulation and after the use the Gyarmati postulate, the direction of the sum of the plastic strain rate tensor and the coupled elastic strain rate tensor is normal to the yield surface.

  12. Closed system of coupling effects in generalized thermo-elastoplasticity

    Science.gov (United States)

    Śloderbach, Z.

    2016-05-01

    In this paper, the field equations of the generalized coupled thermoplasticity theory are derived using the postulates of classical thermodynamics of irreversible processses. Using the Legendre transformations two new thermodynamics potentials P and S depending upon internal thermodynamic forces Π are introduced. The most general form for all the thermodynamics potentials are assumed instead of the usually used additive form. Due to this assumption, it is possible to describe all the effects of thermomechanical couples and also the elastic-plastic coupling effects observed in such materials as rocks, soils, concretes and in some metalic materials. In this paper not only the usual postulate of existence of a dissipation qupotential (the Gyarmati postulate) is used to derive the velocity equation. The plastic flow constitutive equations have the character of non-associated flow laws even when the Gyarmati postulate is assumed. In general formulation, the plastic strain rate tensor is normal to the surface of the generalized function of plastic flow defined in the the space of internal thermodynamic forces Π but is not normal to the yield surface. However, in general formulation and after the use the Gyarmati postulate, the direction of the sum of the plastic strain rate tensor and the coupled elastic strain rate tensor is normal to the yield surface.

  13. {lambda}{lambda}-{xi} N coupling effects in light hypernuclei

    Energy Technology Data Exchange (ETDEWEB)

    Swe Myint, Khin [Department of Physics, Mandalay University (Myanmar); Shinmura, S. [Department of Information Science, Gifu University, Gifu 501-1193 (Japan); Akaishi, Y. [Institute of Particle and Nuclear Studies, KEK, Tsukuba 305-0801 (Japan)

    2003-01-01

    The significance of {lambda}{lambda}-{xi}N coupling in double-{lambda} hypernuclei has been studied. The Pauli suppression effect due to this coupling in {sup 6}{sub {lambda}}{sub {lambda}}He has been found to be 0.43MeV for the coupling strength of the NSC97e potential. This indicates that the free-space {lambda}{lambda} interaction is stronger by an about 5 phase shift than that deduced from the empirical data of {sup 6}{sub {lambda}}{sub {lambda}}He without including the Pauli suppression effect. In {sup 5}{sub {lambda}}{sub {lambda}}He and {sup 5}{sub {lambda}}{sub {lambda}}H, an attractive term arising from the {lambda}{lambda}-{xi}N conversion is enhanced by the formation of an alpha-particle in the intermediate {xi} states. According to this enhancement, we have found that the {lambda}{lambda} binding energy ({delta}B{sub {lambda}}{sub {lambda}}) of {sup 5}{sub {lambda}}{sub {lambda}}He is about 0.27MeV larger than that of {sup 6}{sub {lambda}}{sub {lambda}}He for the NSC97e coupling strength. This finding deviates from the general picture that the heavier is the core nucleus, the larger is {delta}B{sub {lambda}}{sub {lambda}}. (orig.)

  14. Effect of temperature coupling on ozone depletion prediction

    Science.gov (United States)

    Chandra, S.; Butler, D. M.; Stolarski, R. S.

    1978-01-01

    The effects of chlorine perturbations on both the temperature and the ozone distribution in the stratosphere have been studied using a simplified radiative-photochemical model. The model solves the hydrostatic equation for total density in a self-consistent manner as the temperature is changed. Radiative coupling is found to have a significant effect on both the thermal structure and the ozone distribution, particularly in the 35-50-km region. By increasing the ClX mixing ratio by 5.0 ppbv, the temperature in this region is decreased by 5 to 10 K with a slight increase below 30 km. The local ozone depletion around 40 km due to added ClX is smaller compared with the estimate made by keeping the temperature fixed to the ambient condition. However, the integrated effect of radiative coupling is to increase the calculated column ozone depletion by 15% to 25% in this model.

  15. Palladium nanoparticles decorated on reduced graphene oxide rotating disk electrodes toward ultrasensitive hydrazine detection: effects of particle size and hydrodynamic diffusion.

    Science.gov (United States)

    Krittayavathananon, Atiweena; Srimuk, Pattarachai; Luanwuthi, Santamon; Sawangphruk, Montree

    2014-12-16

    Although metal nanoparticle/graphene composites have been widely used as the electrode in electrochemical sensors, two effects, consisting of the particle size of the nanoparticles and the hydrodynamic diffusion of analytes to the electrodes, are not yet fully understood. In this work, palladium nanoparticles/reduced graphene oxide (PdNPs/rGO) composites were synthesized using an in situ polyol method. Palladium(II) ions and graphene oxide were reduced together with a reducing agent, ethylene glycol. By varying the concentration of palladium(II) nitrate, PdNPs with different sizes were decorated on the surface of rGO sheets. The as-fabricated PdNPs/rGO rotating disk electrodes (RDEs) were investigated toward hydrazine detection. Overall, a 3.7 ± 1.4 nm diameter PdNPs/rGO RDE exhibits high performance with a rather low limit of detection of about 7 nM at a rotation speed of 6000 rpm and provides a wide linear range of 0.1-1000 μM with R(2) = 0.995 at 2000 rpm. This electrode is highly selective to hydrazine without interference from uric acid, glucose, ammonia, caffeine, methylamine, ethylenediamine, hydroxylamine, n-butylamine, adenosine, cytosine, guanine, thymine, and l-arginine. The PdNPs/rGO RDEs with larger sizes show lower detection performance. Interestingly, the detection performance of the electrodes is sensitive to the hydrodynamic diffusion of hydrazine. The as-fabricated electrode can detect trace hydrazine in wastewater with high stability, demonstrating its practical use as an electrochemical sensor. These findings may lead to an awareness of the effect of the hydrodynamic diffusion of analyte that has been previously ignored, and the 3.7 ± 1.4 nm PdNPs/rGO RDE may be useful toward trace hydrazine detection, especially in wastewater from related chemical industries.

  16. Anisotropic hydrodynamics for conformal Gubser flow

    Energy Technology Data Exchange (ETDEWEB)

    Strickland, Michael; Nopoush, Mohammad [Kent State University, Kent OH 44242 (United States); Ryblewski, Radoslaw [The H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków (Poland)

    2016-12-15

    In this proceedings contribution, we review the exact solution of the anisotropic hydrodynamics equations for a system subject to Gubser flow. For this purpose, we use the leading-order anisotropic hydrodynamics equations which assume that the distribution function is ellipsoidally symmetric in local-rest-frame momentum. We then prove that the SO(3){sub q} symmetry in de Sitter space constrains the anisotropy tensor to be of spheroidal form with only one independent anisotropy parameter remaining. As a consequence, the exact solution reduces to the problem of solving two coupled non-linear differential equations. We show that, in the limit that the relaxation time goes to zero, one obtains Gubser's ideal hydrodynamic solution and, in the limit that the relaxation time goes to infinity, one obtains the exact free streaming solution obtained originally by Denicol et al. For finite relaxation time, we solve the equations numerically and compare to the exact solution of the relaxation-time-approximation Boltzmann equation subject to Gubser flow. Using this as our standard, we find that anisotropic hydrodynamics describes the spatio-temporal evolution of the system better than all currently known dissipative hydrodynamics approaches.

  17. Reactive Coupling Effects on Amplitude Death of Coupled Limit-Cycle Systems

    Institute of Scientific and Technical Information of China (English)

    WANG Jin-Hua; LI Xiao-Wen

    2009-01-01

    Amplitude death in coupled limit-cycle systems induced by the reactive coupling is studied. The presence of reactive coupling parameter changes the amplitude death process of the system,and increases the critical coupling strength for the emergence of amplitude death.When the systems are in the state of complete or partial amplitude death,increasing the reactive coupling will increase the number of partial synchronization groups,implying the increase of disorder of the system.Increasing the reactive coupling makes the elimination of the amplitude death of the systems harder.

  18. Analysis of capacitive effect and life estimation of hydrodynamic journal bearings on repeated starts and stops of a machine operating under the influence of shaft voltages

    Science.gov (United States)

    Prashad, Har; Rao, K. N.

    1994-07-01

    A theoretical analysis has been carried out to study the capacitive effect and life estimation of hydrodynamic journal bearings on repeated starts and stops of a machine operating under the influence of shaft voltages. The analysis gives the time required for the charge accumulation and increase of charge with time on the liner surface of a journal bearing based on bearing capacitance, resistance of film thickness, and the shaft voltage. Also, it investigates the effect of gradual leakage of the accumulated charges with time as the shaft voltage falls when the power supply to the machine is switched off. This paper gives an approach to determine the ratio of the number of shaft revolutions required for charge accumulation and gradual discharge of the accumulated charges on the liner surface of a bearing depending on bearing-to-shaft voltage. Also, the number of repeated starts and stops before initiation of craters on the liner surface of a hydrodynamic journal bearing is established to restrict deterioration and damage of the liner. The diagnosis has the potential to study the transient effect of the shaft voltages on a journal bearing during the start and stop cycle of a machine.

  19. Chemical Evolution of the Stellar and Gaseous Components of Galaxies in Hydrodynamical Cosmological Simulations

    CERN Document Server

    Cora, S A; Lambas, D G; Mosconi, M B

    2000-01-01

    We present preliminary results on the effects of mergers on the chemical properties of galactic objects in hierarchical clustering scenarios. We adopt a hydrodynamical chemical code that allows to describe the coupled evolution of dark matter and baryons within a cosmological context. We found that disk-like and spheroid-like objects have distinctive metallicity patterns that may be the result of different evolution.

  20. Adiabatic hydrodynamics: The eightfold way to dissipation

    CERN Document Server

    Haehl, Felix M; Rangamani, Mukund

    2015-01-01

    We provide a complete solution to hydrodynamic transport at all orders in the gradient expansion compatible with the second law constraint. The key new ingredient we introduce is the notion of adiabaticity, which allows us to take hydrodynamics off-shell. Adiabatic fluids are such that off-shell dynamics of the fluid compensates for entropy production. The space of adiabatic fluids is quite rich, and admits a decomposition into seven distinct classes. Together with the dissipative class this establishes the eightfold way of hydrodynamic transport. Furthermore, recent results guarantee that dissipative terms beyond leading order in the gradient expansion are agnostic of the second law. While this completes a transport taxonomy, we go on to argue for a new symmetry principle, an Abelian gauge invariance that guarantees adiabaticity in hydrodynamics. We suggest that this symmetry is the macroscopic manifestation of the microscopic KMS invariance. We demonstrate its utility by explicitly constructing effective ac...

  1. Dynamic Stark effect in strongly coupled microcavity exciton polaritons.

    Science.gov (United States)

    Hayat, Alex; Lange, Christoph; Rozema, Lee A; Darabi, Ardavan; van Driel, Henry M; Steinberg, Aephraim M; Nelsen, Bryan; Snoke, David W; Pfeiffer, Loren N; West, Kenneth W

    2012-07-20

    We present experimental observations of a nonresonant dynamic Stark shift in strongly coupled microcavity quantum well exciton polaritons--a system which provides a rich variety of solid-state collective phenomena. The Stark effect is demonstrated in a GaAs/AlGaAs system at 10 K by femtosecond pump-probe measurements, with the blueshift approaching the meV scale for a pump fluence of 2  mJ cm(-2) and 50 meV red detuning, in good agreement with theory. The energy level structure of the strongly coupled polariton Rabi doublet remains unaffected by the blueshift. The demonstrated effect should allow generation of ultrafast density-independent potentials and imprinting well-defined phase profiles on polariton condensates, providing a powerful tool for manipulation of these condensates, similar to dipole potentials in cold-atom systems.

  2. Effects of Swirl Bubble Injection on Mass Transfer and Hydrodynamics for Bubbly Flow Reactors: A Concept Paper

    Directory of Open Access Journals (Sweden)

    Farooqi Ahmad Salam

    2017-01-01

    Full Text Available Bubble flow reactors (BFR are commonly used for various industrial processes in the field of oil and gas production, pharmaceutical industries, biochemical and environmental engineering etc. The operation and performance of these reactors rely heavily on a range of hydrodynamic parameters; prominent among them are geometric configurations including gas injection geometry, operating conditions, mass transfer etc. A huge body of literature is available to describe the optimum design and performance of bubbly flow reactors with conventional bubble injection. Attempts were made to modify gas injection for improved efficiency of BFR’s. However, here instead of modifying the geometry of the gas injection, an attempt has been made to generate swirl bubbles for gaining larger mass transfer between gas and liquid. Here an exceptionally well thought strategies have been used in our numerical simulations towards the design of swirl injection mechanism, whose paramount aspect is to inhibit the rotary liquid motion but facilitates the swirl movement for bubbles in nearly stationary liquid. Our comprehension here is that the swirl motion can strongly affect the performance of bubbly reactor by identifying the changes in hydrodynamic parameters as compared to the conventional bubbly flows. In order to achieve this bubbly flow, an experimental setup has been designed as well as computational fluid dynamic (CFD code was used with to highlight a provision of swirl bubble injection by rotating the sparger plate.

  3. The effect of hair bundle shape on hair bundle hydrodynamics of inner ear hair cells at low and high frequencies.

    Science.gov (United States)

    Shatz, L F

    2000-03-01

    The relationship between size and shape of the hair bundle of a hair cell in the inner ear and its sensitivity at asymptotically high and low frequencies was determined, thereby extending the results of an analysis of hair bundle hydrodynamics in two dimensions (Freeman and Weiss, 1990. Hydrodynamic analysis of a two-dimensional model for micromechanical resonance of free-standing hair bundles. Hear. Res. 48, 37-68) to three dimensions. A hemispheroid was used to represent the hair bundle. The hemispheroid had a number of advantages: it could represent shapes that range from thin, pencil-like shapes, to wide, flat, disk-like shapes. Also analytic methods could be used in the high frequency range to obtain an exact solution to the equations of motion. In the low frequency range, where an approximate solution was found using boundary element methods, the sensitivity of the responses of hair cells was mainly proportional to the cube of the heights of their hair bundles, and at high frequencies, the sensitivity of the hair cells was mainly proportional to the inverse of their heights. An excellent match was obtained between measurements of sensitivity curves in the basillar papilla of the alligator and bobtail lizards and the model's predictions. These results also suggest why hair bundles of hair cells in vestibular organs which are sensitive to low frequencies have ranges of heights that are an order of magnitude larger than the range of heights of hair bundles of hair cells found in auditory organs.

  4. Simulation of hydrodynamically interacting particles confined by a spherical cavity

    Science.gov (United States)

    Aponte-Rivera, Christian; Zia, Roseanna N.

    2016-06-01

    We present a theoretical framework to model the behavior of a concentrated colloidal dispersion confined inside a spherical cavity. Prior attempts to model such behavior were limited to a single enclosed particle and attempts to enlarge such models to two or more particles have seen limited success owing to the challenges of accurately modeling many-body and singular hydrodynamic interactions. To overcome these difficulties, we have developed a set of hydrodynamic mobility functions that couple particle motion with hydrodynamic traction moments that, when inverted and combined with near-field resistance functions, form a complete coupling tensor that accurately captures both the far-field and near-field physics and is valid for an arbitrary number of spherical particles enclosed by a spherical cavity of arbitrary relative size a /R , where a and R are the particle and cavity size, respectively. This framework is then utilized to study the effect of spherical confinement on the self- and entrained motion of the colloids, for a range of particle-to-cavity size ratios. The self-motion of a finite-size enclosed particle is studied first, recovering prior results published in the literature: The hydrodynamic mobility of the particle is greatest at the center of the cavity and decays as (a /R ) /(1 -y2) , where y is the particle distance to the cavity center. Near the cavity wall, the no-slip surfaces couple strongly and mobility along the cavity radius vanishes as ξ ≡R -(a +y ) , where y is center-to-center distance from particle to cavity. Corresponding motion transverse to the cavity radius vanishes as [ln(1/ξ ) ] -1. The effect of confinement on entrainment of a particle in the flow created by the motion of others is also studied, where we find that confinement exerts a qualitative effect on the strength and anisotropy of entrainment of a passive particle dragged by the flow of a forced particle. As expected, entrainment strength decays with increased distance

  5. Stochastic-hydrodynamic model of halo formation in charged particle beams

    Directory of Open Access Journals (Sweden)

    Nicola Cufaro Petroni

    2003-03-01

    Full Text Available The formation of the beam halo in charged particle accelerators is studied in the framework of a stochastic-hydrodynamic model for the collective motion of the particle beam. In such a stochastic-hydrodynamic theory the density and the phase of the charged beam obey a set of coupled nonlinear hydrodynamic equations with explicit time-reversal invariance. This leads to a linearized theory that describes the collective dynamics of the beam in terms of a classical Schrödinger equation. Taking into account space-charge effects, we derive a set of coupled nonlinear hydrodynamic equations. These equations define a collective dynamics of self-interacting systems much in the same spirit as in the Gross-Pitaevskii and Landau-Ginzburg theories of the collective dynamics for interacting quantum many-body systems. Self-consistent solutions of the dynamical equations lead to quasistationary beam configurations with enhanced transverse dispersion and transverse emittance growth. In the limit of a frozen space-charge core it is then possible to determine and study the properties of stationary, stable core-plus-halo beam distributions. In this scheme the possible reproduction of the halo after its elimination is a consequence of the stationarity of the transverse distribution which plays the role of an attractor for every other distribution.

  6. Effective Supergravity from the Weakly Coupled HeteroticString

    Energy Technology Data Exchange (ETDEWEB)

    Gaillard, Mary K.

    2005-05-01

    The motivation for Calabi-Yau-like compactifications of the weakly coupled E{sub 8} {circle_times} E{sub 8} heterotic string theory, its particle spectrum and the issue of dilaton stabilization are briefly reviewed. Modular invariant models for hidden sector condensation and supersymmetry breaking are described at the quantum level of the effective field theory. Their phenomenological and cosmological implications, including a possible origin for R-parity, are discussed.

  7. Retrieval of vegetation hydrodynamic parameters from satellite multispectral data

    Science.gov (United States)

    Forzieri, Giovanni; Degetto, Massimo; Righetti, Maurizio; Castelli, Fabio; Preti, Federico

    2013-04-01

    Riparian vegetation plays a crucial role on affecting the floodplain hydraulic roughness, which in turn significantly influences the dynamics of flood waves. This work explores the potential accuracies of retrieving vegetation hydrodynamic parameters through satellite multispectral data. The method is focused on estimation of vegetation height and flexural rigidity for herbaceous patterns and of plant density, tree height, stem diameter, crown base height and crown diameter of high-forest and coppice consociations for arboreal and shrub patterns. The retrieval algorithm performs: (1) classification procedure of riparian corridor; (2) land cover-based Principal Component Analysis of spectral channels; (3) explorative analysis of correlation structure between principal components and biomechanical properties and (4) model identification/estimation/validation for floodplain roughness parameterization. To capture the impacts of stiff/flexible vegetation, a GIS hydrodynamic model has been coupled with a flow resistance external routine that estimates the hydraulic roughness by using simulated water stages and the remote sensing-derived vegetation parameters. The procedure is tested along a 3-km reach of the Avisio river (Trentino Alto Adige, Italy) by comparing extended field surveys and a synchronous SPOT-5 multispectral image acquired on 28/08/2004. Results showed significant correlation values between spectral-derived information and hydrodynamic parameters. Predictive models provided high coefficients of determination, especially for mixed arboreal and shrub land covers. The generated structural parameter maps represent spatially explicit data layers that can be used as inputs to hydrodynamic models to analyze flow resistance effects in different submergence conditions of vegetation. The hydraulic modelling results showed that the new method is able to provide accurate hydraulic output data and to enhance the roughness estimation up to 73% with respect to a

  8. Acquired Immune Deficiency Syndrome: A Preliminary Examination of the Effects on Gay Couples and Coupling.

    Science.gov (United States)

    Carl, Douglas

    1986-01-01

    The Acquired Immune Deficiency Syndrome (AIDS) epidemic significantly influences attitudes about life and lifestyles. Homosexuals have to give increased consideration to coupling, the nature of coupled relationships, sex and intimacy, and death long before the normal time. Discusses impact of AIDS on the early stages of gay coupling and on the…

  9. Acquired Immune Deficiency Syndrome: A Preliminary Examination of the Effects on Gay Couples and Coupling.

    Science.gov (United States)

    Carl, Douglas

    1986-01-01

    The Acquired Immune Deficiency Syndrome (AIDS) epidemic significantly influences attitudes about life and lifestyles. Homosexuals have to give increased consideration to coupling, the nature of coupled relationships, sex and intimacy, and death long before the normal time. Discusses impact of AIDS on the early stages of gay coupling and on the…

  10. Inertial effect on spin-orbit coupling and spin transport

    Science.gov (United States)

    Basu, B.; Chowdhury, Debashree

    2013-08-01

    We theoretically study the renormalization of inertial effects on the spin dependent transport of conduction electrons in a semiconductor by taking into account the interband mixing on the basis of k→ṡp→ perturbation theory. In our analysis, for the generation of spin current we have used the extended Drude model where the spin-orbit coupling plays an important role. We predict enhancement of the spin current resulting from the renormalized spin-orbit coupling effective in our model in cubic and non-cubic crystals. Attention has been paid to clarify the importance of gauge fields in the spin transport of this inertial system. A theoretical proposition of a perfect spin filter has been done through the Aharonov-Casher like phase corresponding to this inertial system. For a time dependent acceleration, effect of k→ ṡp→ perturbation on the spin current and spin polarization has also been addressed. Furthermore, achievement of a tunable source of polarized spin current through the non uniformity of the inertial spin-orbit coupling strength has also been discussed.

  11. Effective Prevention of Liver Fibrosis by Liver-targeted Hydrodynamic Gene Delivery of Matrix Metalloproteinase-13 in a Rat Liver Fibrosis Model

    Directory of Open Access Journals (Sweden)

    Hiroyuki Abe

    2016-01-01

    Full Text Available Liver fibrosis is the final stage of liver diseases that lead to liver failure and cancer. While various diagnostic methods, including the use of serum marker, have been established, no standard therapy has been developed. The objective of this study was to assess the approach of overexpressing matrix metalloproteinase-13 gene (MMP13 in rat liver to prevent liver fibrosis progression. A rat liver fibrosis model was established by ligating the bile duct, followed by liver-targeted hydrodynamic gene delivery of a MMP13 expression vector, containing a CAG promoter-MMP13-IRES-tdTomato-polyA cassette. After 14 days, the serum level of MMP13 peaked at 71.7 pg/ml in MMP13-treated group, whereas the nontreated group only showed a level of ≃5 pg/ml (P < 0.001. These levels were sustained for the next 60 days. The statistically lower level of the hyaluronic acids in treated group versus the nontreated group (P < 0.05 reveals the therapeutic effect of MMP13 overexpression. Quantitative analysis of tissue stained with sirius red showed a statistically larger volume of fibrotic tissue in the nontreated group compared to that of MMP13-treated rats (P < 0.05. These results suggest that the liver-targeted hydrodynamic delivery of MMP13 gene could be effective in the prevention of liver fibrosis.

  12. Viscosity to entropy ratio of QGP in relativistic heavy ion collisions: The second-order viscose hydrodynamics

    Science.gov (United States)

    Mehrabi Pari, Sharareh; Taghavi Shahri, Fatemeh; Javidan, Kurosh

    2016-10-01

    The nuclear suppression factor RAA and elliptic flow ν2 are calculated by considering the effects of shear viscosity to the entropy density ratio η/s, using the viscose hydrodynamics at the first- and second-orders of approximation and considering temperature dependent coupling αs(T). It is shown that the second-order viscose hydrodynamics (varying shear viscosity to entropy ratio) with averaged value of 4πη/s = 1.5 ± 0.1 gives the best results of RAA and ν2 in comparison to the experimental data.

  13. Anisotropic hydrodynamics -- basic concepts

    CERN Document Server

    Florkowski, Wojciech; Ryblewski, Radoslaw; Strickland, Michael

    2013-01-01

    Due to the rapid longitudinal expansion of the quark-gluon plasma created in relativistic heavy ion collisions, potentially large local rest frame momentum-space anisotropies are generated. The magnitude of these momentum-space anisotropies can be so large as to violate the central assumption of canonical viscous hydrodynamical treatments which linearize around an isotropic background. In order to better describe the early-time dynamics of the quark gluon plasma, one can consider instead expanding around a locally anisotropic background which results in a dynamical framework called anisotropic hydrodynamics. In this proceedings contribution we review the basic concepts of the anisotropic hydrodynamics framework presenting viewpoints from both the phenomenological and microscopic points of view.

  14. Hydrodynamic Coefficients of Ships with Forward Speed in Shallow Waters

    Institute of Scientific and Technical Information of China (English)

    M.HASANADIL; DUANWen-yang; WANGYu

    2004-01-01

    Effects of depth and forward speed on hydrodynamic coefficients of ships are presented in this paper. A modified simple Green function technique was used to calculate 2D coefficients while strip theory was used to calculate 3D coefficients. Numerical results are provided for hydrodynamic coefficients of parabolic hull ship. It is found out that both depth and forward speed have considerable effects on hydrodynamic coefficients of ship.

  15. Lyman-alpha radiation hydrodynamics of galactic winds before cosmic reionization

    CERN Document Server

    Smith, Aaron; Loeb, Abraham

    2016-01-01

    The dynamical impact of Lyman-alpha (Ly{\\alpha}) radiation pressure on galaxy formation depends on the rate and duration of momentum transfer between Ly{\\alpha} photons and neutral hydrogen gas. Although photon trapping has the potential to multiply the effective force, ionizing radiation from stellar sources may relieve the Ly{\\alpha} pressure before appreciably affecting the kinematics of the host galaxy or efficiently coupling Ly{\\alpha} photons to the outflow. We present self-consistent Ly{\\alpha} radiation-hydrodynamics simulations of high-$z$ galaxy environments by coupling the Cosmic Ly{\\alpha} Transfer code (COLT) with spherically symmetric Lagrangian frame hydrodynamics. The accurate but computationally expensive Monte-Carlo radiative transfer calculations are feasible under the one-dimensional approximation. In certain cases Ly{\\alpha} feedback significantly enhances the velocity of the shell of gas expanding around a central source. Radiative feedback alone is capable of ejecting baryons into the i...

  16. Dispersive hydrodynamics: Preface

    Science.gov (United States)

    Biondini, G.; El, G. A.; Hoefer, M. A.; Miller, P. D.

    2016-10-01

    This Special Issue on Dispersive Hydrodynamics is dedicated to the memory and work of G.B. Whitham who was one of the pioneers in this field of physical applied mathematics. Some of the papers appearing here are related to work reported on at the workshop "Dispersive Hydrodynamics: The Mathematics of Dispersive Shock Waves and Applications" held in May 2015 at the Banff International Research Station. This Preface provides a broad overview of the field and summaries of the various contributions to the Special Issue, placing them in a unified context.

  17. Effect of Transverse Coupling on Asymmetric Cooling in Compton Rings

    CERN Document Server

    Bulyak, E; Zimmermann, F

    2013-01-01

    Fast cooling of bunches circulating in a Compton ring is achieved by placing the collision point between electron bunches and laser pulses in a dispersive section and by, in addition, introducing a transverse offset between the laser pulse and the electron-beam closed orbit. Growth of the emittance in the dispersive transversal direction due to the additional excitation of betatron oscillations limits this type of cooling. Here we present the results of further studies on the fast cooling process, looking at the effect of the coupling of the transverse (betatron) oscillations. We first show theoretically that the transverse betatron coupling shortens the cooling time and hence reduces the steady-state energy spread of the electron beam, as well as the quantum losses. The theoretical estimates are then validated by simulations. Finally, a proof-of-principle experiment at the KEK ATF Damping Ring is proposed.

  18. MESA meets MURaM: Surface effects in main-sequence solar-like oscillators computed using three-dimensional radiation hydrodynamics simulations

    CERN Document Server

    Ball, W H; Cameron, R H; Gizon, L

    2016-01-01

    ... [C]urrent stellar models predict oscillation frequencies that are systematically affected by simplified modelling of the near-surface layers. We use three-dimensional radiation hydrodynamics simulations to better model the near-surface equilibrium structure of dwarfs with spectral types F3, G2, K0 and K5, and examine the differences between oscillation mode frequencies. ... We precisely match stellar models to the simulations' gravities and effective temperatures at the surface, and to the temporally- and horizontally-averaged densities and pressures at their deepest points. We then replace the near-surface structure with that of the averaged simulation and compute the change in the oscillation mode frequencies. We also fit the differences using several parametric models currently available in the literature. The surface effect in the stars of solar-type and later is qualitatively similar and changes steadily with decreasing effective temperature. In particular, the point of greatest frequency difference ...

  19. Laser driven hydrodynamic instability experiments. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Remington, B.A.; Weber, S.V.; Haan, S.W.; Kilkenny, J.D.; Glendinning, S.G.; Wallace, R.J.; Goldstein, W.H.; Wilson, B.G.; Nash, J.K.

    1993-02-17

    An extensive series of experiments has been conducted on the Nova laser to measure hydrodynamic instabilities in planar foils accelerated by x-ray ablation. Single mode experiments allow a measurement of the fundamental growth rates from the linear well into the nonlinear regime. Two-mode foils allow a first direct observation of mode coupling. Surface-finish experiments allow a measurement of the evolution of a broad spectrum of random initial modes.

  20. Hydrodynamic description of spin Calogero-Sutherland model

    Science.gov (United States)

    Abanov, Alexander; Kulkarni, Manas; Franchini, Fabio

    2009-03-01

    We study a non-linear collective field theory for an integrable spin-Calogero-Sutherland model. The hydrodynamic description of this SU(2) model in terms of charge density, charge velocity and spin currents is used to study non-perturbative solutions (solitons) and examine their correspondence with known quantum numbers of elementary excitations [1]. A conventional linear bosonization or harmonic approximation is not sufficient to describe, for example, the physics of spin-charge (non)separation. Therefore, we need this new collective bosonic field description that captures the effects of the band curvature. In the strong coupling limit [2] this model reduces to integrable SU(2) Haldane-Shastry model. We study a non-linear coupling of left and right spin currents which form a Kac-Moody algebra. Our quantum hydrodynamic description for the spin case is an extension for the one found in the spinless version in [3].[3pt] [1] Y. Kato,T. Yamamoto, and M. Arikawa, J. Phys. Soc. Jpn. 66, 1954-1961 (1997).[0pt] [2] A. Polychronakos, Phys Rev Lett. 70,2329-2331(1993).[0pt] [3] A.G.Abanov and P.B. Wiegmann, Phys Rev Lett 95, 076402(2005)

  1. Radiation hydrodynamics integrated in the PLUTO code

    Science.gov (United States)

    Kolb, Stefan M.; Stute, Matthias; Kley, Wilhelm; Mignone, Andrea

    2013-11-01

    Aims: The transport of energy through radiation is very important in many astrophysical phenomena. In dynamical problems the time-dependent equations of radiation hydrodynamics have to be solved. We present a newly developed radiation-hydrodynamics module specifically designed for the versatile magnetohydrodynamic (MHD) code PLUTO. Methods: The solver is based on the flux-limited diffusion approximation in the two-temperature approach. All equations are solved in the co-moving frame in the frequency-independent (gray) approximation. The hydrodynamics is solved by the different Godunov schemes implemented in PLUTO, and for the radiation transport we use a fully implicit scheme. The resulting system of linear equations is solved either using the successive over-relaxation (SOR) method (for testing purposes) or using matrix solvers that are available in the PETSc library. We state in detail the methodology and describe several test cases to verify the correctness of our implementation. The solver works in standard coordinate systems, such as Cartesian, cylindrical, and spherical, and also for non-equidistant grids. Results: We present a new radiation-hydrodynamics solver coupled to the MHD-code PLUTO that is a modern, versatile, and efficient new module for treating complex radiation hydrodynamical problems in astrophysics. As test cases, either purely radiative situations, or full radiation-hydrodynamical setups (including radiative shocks and convection in accretion disks) were successfully studied. The new module scales very well on parallel computers using MPI. For problems in star or planet formation, we added the possibility of irradiation by a central source.

  2. Slurry bubble column hydrodynamics

    Science.gov (United States)

    Rados, Novica

    Slurry bubble column reactors are presently used for a wide range of reactions in both chemical and biochemical industry. The successful design and scale up of slurry bubble column reactors require a complete understanding of multiphase fluid dynamics, i.e. phase mixing, heat and mass transport characteristics. The primary objective of this thesis is to improve presently limited understanding of the gas-liquid-solid slurry bubble column hydrodynamics. The effect of superficial gas velocity (8 to 45 cm/s), pressure (0.1 to 1.0 MPa) and solids loading (20 and 35 wt.%) on the time-averaged solids velocity and turbulent parameter profiles has been studied using Computer Automated Radioactive Particle Tracking (CARPT). To accomplish this, CARPT technique has been significantly improved for the measurements in highly attenuating systems, such as high pressure, high solids loading stainless steel slurry bubble column. At a similar set of operational conditions time-averaged gas and solids holdup profiles have been evaluated using the developed Computed Tomography (CT)/Overall gas holdup procedure. This procedure is based on the combination of the CT scans and the overall gas holdup measurements. The procedure assumes constant solids loading in the radial direction and axially invariant cross-sectionally averaged gas holdup. The obtained experimental holdup, velocity and turbulent parameters data are correlated and compared with the existing low superficial gas velocities and atmospheric pressure CARPT/CT gas-liquid and gas-liquid-solid slurry data. The obtained solids axial velocity radial profiles are compared with the predictions of the one dimensional (1-D) liquid/slurry recirculation phenomenological model. The obtained solids loading axial profiles are compared with the predictions of the Sedimentation and Dispersion Model (SDM). The overall gas holdup values, gas holdup radial profiles, solids loading axial profiles, solids axial velocity radial profiles and solids

  3. CALIBRATED HYDRODYNAMIC MODEL

    Directory of Open Access Journals (Sweden)

    Sezar Gülbaz

    2015-01-01

    Full Text Available The land development and increase in urbanization in a watershed affect water quantityand water quality. On one hand, urbanization provokes the adjustment of geomorphicstructure of the streams, ultimately raises peak flow rate which causes flood; on theother hand, it diminishes water quality which results in an increase in Total SuspendedSolid (TSS. Consequently, sediment accumulation in downstream of urban areas isobserved which is not preferred for longer life of dams. In order to overcome thesediment accumulation problem in dams, the amount of TSS in streams and inwatersheds should be taken under control. Low Impact Development (LID is a BestManagement Practice (BMP which may be used for this purpose. It is a land planningand engineering design method which is applied in managing storm water runoff inorder to reduce flooding as well as simultaneously improve water quality. LID includestechniques to predict suspended solid loads in surface runoff generated over imperviousurban surfaces. In this study, the impact of LID-BMPs on surface runoff and TSS isinvestigated by employing a calibrated hydrodynamic model for Sazlidere Watershedwhich is located in Istanbul, Turkey. For this purpose, a calibrated hydrodynamicmodel was developed by using Environmental Protection Agency Storm WaterManagement Model (EPA SWMM. For model calibration and validation, we set up arain gauge and a flow meter into the field and obtain rainfall and flow rate data. Andthen, we select several LID types such as retention basins, vegetative swales andpermeable pavement and we obtain their influence on peak flow rate and pollutantbuildup and washoff for TSS. Consequently, we observe the possible effects ofLID on surface runoff and TSS in Sazlidere Watershed.

  4. Effective method for calculation of the analytic QCD coupling constant

    CERN Document Server

    Alekseev, A Yu

    2002-01-01

    The analytic running coupling of strong interaction alpha sub a sub n for initial standard perturbative approximations up to three-loop order is studied. The nonperturbative contributions to alpha sub a sub n are obtained in an explicit form. They are shown to be represented in the form of the expansion in the inverse powers of Euclidean momentum squared. It is shown that two-loop and three-loop-order corrections result in partial compensation of one-loop-order leading in the ultraviolet region nonperturbative contribution of the form 1/q sup 2. On basis of the stated expansion the effective method for calculation of the analytic running coupling is developed for all q > LAMBDA. The comparative analysis of the perturbative and nonperturbative contributions is carried out in the momentum dependence of alpha sub a sub n and its perturbative component for one - three-loop cases leads to a conclusion on higher loop stability of the analytic running coupling and its low dependence on the n sub f -threshold matchin...

  5. Smoothed Particle Hydrodynamic Simulator

    Energy Technology Data Exchange (ETDEWEB)

    2016-10-05

    This code is a highly modular framework for developing smoothed particle hydrodynamic (SPH) simulations running on parallel platforms. The compartmentalization of the code allows for rapid development of new SPH applications and modifications of existing algorithms. The compartmentalization also allows changes in one part of the code used by many applications to instantly be made available to all applications.

  6. Hydrodynamic aspect of caves

    Directory of Open Access Journals (Sweden)

    Franci Gabrovsek

    2008-01-01

    Full Text Available From a hydrological point of view, active caves are a series of connected conduits which drain water through an aquifer. Water tends to choose the easiest way through the system but different geological and morphological barriers act as flow restrictions. The number and characteristics of restrictions depends on the particular speleogenetic environment, which is a function of geological, geomorphological, climatological and hydrological settings. Such a variety and heterogeneity of underground systems has presented a challenge for human understanding for many centuries. Access to many underground passages, theoretical knowledge and recent methods (modeling, water pressure-resistant dataloggers, precise sensors etc. give us the opportunity to get better insight into the hydrodynamic aspect of caves. In our work we tried to approach underground hydrodynamics from both theoretical and practical points of view. We present some theoretical background of open surface and pressurized flow in underground rivers and present results of some possible scenarios. Moreover, two case studies from the Ljubljanica river basin are presented in more detail: the cave system between Planinsko polje and Ljubljansko barje, and the cave system between Bloško polje and Cerkniško polje. The approach and methodology in each case is somewhat different, as the aims were different at the beginning of exploration. However, they both deal with temporal and spatial hydrodynamics of underground waters. In the case of Bloško polje-Cerkniško polje system we also explain the feedback loop between hydrodynamics and Holocene speleogenesis.

  7. Desired change in couples: gender differences and effects on communication.

    Science.gov (United States)

    Heyman, Richard E; Hunt-Martorano, Ashley N; Malik, Jill; Slep, Amy M Smith

    2009-08-01

    Using a sample (N = 453) drawn from a representative sampling frame of couples who are married or living together and have a 3 to 7 year-old child, this study investigates (a) the amount and specific areas of change desired by men and women, (b) the relation between relationship adjustment and desired change; and (c) the ways in which partners negotiate change. On the Areas of Change Questionnaire, women compared with men, wanted greater increases in their partners' emotional and companionate behaviors, instrumental support, and parenting involvement; men wanted greater increases in sex. Using the Actor-Partner Interdependence Model (Kenny, 1996), both men's and women's relationship adjustment predicted desired change (i.e., actor effects), over and above the effects of their partners' adjustment (i.e., partner effects); partner effects were not significant. Each couple was also observed discussing the man's and the woman's top desired change area. Both men and women behaved more positively during the partner-initiated conversations than during their own-initiated conversations. Women, compared with men, were more negative in their own and in their partners' conversations.

  8. First Numerical Simulations of Anomalous Hydrodynamics

    CERN Document Server

    Hongo, Masaru; Hirano, Tetsufumi

    2013-01-01

    Anomalous hydrodynamics is a low-energy effective theory that captures effects of quantum anomalies. We develop a numerical code of anomalous hydrodynamics and apply it to dynamics of heavy-ion collisions, where anomalous transports are expected to occur. This is the first attempt to perform fully non-linear numerical simulations of anomalous hydrodynamics. We discuss implications of the simulations for possible experimental observations of anomalous transport effects. From analyses of the charge-dependent elliptic flow parameters ($v_2^\\pm$) as a function of the net charge asymmetry $A_\\pm$, we quantitatively verify that the linear dependence of $\\Delta v_2 \\equiv v_2^- - v_2^+$ on the net charge asymmetry $A_\\pm$ cannot be regarded as a sensitive signal of anomalous transports, contrary to previous studies. We, however, find that the intercept $\\Delta v_2(A_\\pm=0)$ is sensitive to anomalous transport effects.

  9. Hydrodynamics of the Dirac spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yizhuang, E-mail: yizhuang.liu@stonybrook.edu [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States); Warchoł, Piotr, E-mail: piotr.warchol@uj.edu.pl [M. Smoluchowski Institute of Physics, Jagiellonian University, PL-30348 Krakow (Poland); Zahed, Ismail, E-mail: ismail.zahed@stonybrook.edu [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States)

    2016-02-10

    We discuss a hydrodynamical description of the eigenvalues of the Dirac spectrum in even dimensions in the vacuum and in the large N (volume) limit. The linearized hydrodynamics supports sound waves. The hydrodynamical relaxation of the eigenvalues is captured by a hydrodynamical (tunneling) minimum configuration which follows from a pertinent form of Euler equation. The relaxation from a phase of unbroken chiral symmetry to a phase of broken chiral symmetry occurs over a time set by the speed of sound.

  10. Quantum Effects of Mesoscopic Inductance and Capacity Coupling Circuits

    Institute of Scientific and Technical Information of China (English)

    LIU Jian-Xin; AN Zhan-Yuan; SONG Yong-Hua

    2006-01-01

    Using the quantum theory for a mesoscopic circuit based on the discretenes of electric charges, the finitedifference Schrodinger equation of the non-dissipative mesoscopic inductance and capacity coupling circuit is achieved.The Coulomb blockade effect, which is caused by the discreteness of electric charges, is studied. Appropriately choose the components in the circuits, the finite-difference Schrodinger equation can be divided into two Mathieu equations in p representation. With the WKBJ method, the currents quantum fluctuations in the ground states of the two circuits are calculated. The results show that the currents quantum zero-point fluctuations of the two circuits are exist and correlated.

  11. Hydrodynamics of marine and offshore structures

    Institute of Scientific and Technical Information of China (English)

    FALTINSEN O. M

    2014-01-01

    An overview of hydrodynamic problems related to the broad variety of ships and sea structures involved in transportation, oil and gas exploration and production, marine operations, recovery of oil-spill, renewable energy, infrastructure and aquaculture is given. An approximate hydroelastic model for wave and current induced response of a floating fish farm with circular plastic collar and net cage is discussed. Weakly nonlinear potential-flow problems such as slow-drift motions and stationkeeping, springing of ships and ringing are given special attention. Body-fixed coordinate system is recommended in weakly nonlinear potential-flow ana-lysis of bodies with sharp corners. Dynamic ship instabilities, Mathieu-type instabilities, chaos and two-phase flow involving inter-face instabilities are discussed. It is advocated that slamming must be coupled with structural mechanics in order to find important time scales of the many physical effects associated with slamming and that both water entry and exit matter in describing the global wetdeck slamming effects. Further, sloshing-induced slamming in prismatic LNG tanks is perhaps the most complicated slamming problem because many fluid mechanic and thermodynamic parameters as well as hydroelasticity may matter.

  12. DRAG REDUCTION EFFECT OF COUPLING FLEXIBLE TUBES WITH TURBULENT FLOW

    Institute of Scientific and Technical Information of China (English)

    CAI Shu-peng; JIN Guo-yu; LI Da-mei; Yang Lin

    2008-01-01

    To analyze the mechanism of drag reducing effect by coupling flexible tubes with turbulent flow, based on experimental examination of more obvious turbulent drag reduction effect in flexible tubes than in rigid tubes, experimental investigation was performed on the effect of turbulent drag reduction, fluctuating vibration characteristics of flexible tube and the correlations by using a double-tube system and laser displacement sensor. The results are as follows: with the decrease of the thickness of the flexible tubes, the root mean square of fluctuating amplitude of the outer wall of the tubes increases, and the non-dimensional burst period increases, resulting in the increase of the reduction rate of drag coefficient by coupling flexible tubes with turbulent flow. At applied pressure-balanced air on the outer wall and the Reynolds number of about 1.75 104, the non-dimensional burst periods of the flexible tubes with the thickness of 2 mm, 3 mm, 4 mm are 141, 126, 105, respectively.

  13. Hydrodynamic characteristics of UASB bioreactors.

    Science.gov (United States)

    John, Siby; Tare, Vinod

    2011-10-01

    The hydrodynamic characteristics of UASB bioreactors operated under different organic loading and hydraulic loading rates were studied, using three laboratory scale models treating concocted sucrose wastewater. Residence time distribution (RTD) analysis using dispersion model and tanks-in-series model was directed towards the characterization of the fluid flow pattern in the reactors and correlation of the hydraulic regime with the biomass content and biogas production. Empty bed reactors followed a plug flow pattern and the flow pattern changed to a large dispersion mixing with biomass and gas production. Effect of increase in gas production on the overall hydraulics was insignificant.

  14. Disruptive Innovation in Numerical Hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Waltz, Jacob I. [Los Alamos National Laboratory

    2012-09-06

    We propose the research and development of a high-fidelity hydrodynamic algorithm for tetrahedral meshes that will lead to a disruptive innovation in the numerical modeling of Laboratory problems. Our proposed innovation has the potential to reduce turnaround time by orders of magnitude relative to Advanced Simulation and Computing (ASC) codes; reduce simulation setup costs by millions of dollars per year; and effectively leverage Graphics Processing Unit (GPU) and future Exascale computing hardware. If successful, this work will lead to a dramatic leap forward in the Laboratory's quest for a predictive simulation capability.

  15. Hydrodynamics of slip wedge and optimization of surface slip property

    Institute of Scientific and Technical Information of China (English)

    MA GuoJun; WU ChengWei; ZHOU Ping

    2007-01-01

    The hydrodynamic load support generated by a slip wedge of a slider bearing was studied. The surface slip property was optimized so that a maximum hydrodynamic load support could be obtained. A multi-linearity method was given for the slip control equation of two-dimensional (2-D) wall slip. We investigated 2-D wall slip and the hydrodynamics of a finite length bearing with any values of the surface limiting shear stress. It was found that the hydrodynamic effect of the slip wedge is greater than the traditional geometrical convergent-wedge. Even though the geometrical gap is a parallel or divergent sliding gap, the slip wedge still gives rise to a very big hydrodynamic pressure. The optimized slip wedge can give rise to a hydrodynamic load support as high as 2.5 times of what the geometrical convergent-wedge can produce. Wall slip usually gives a small surface friction.

  16. Assessment for hydrodynamic masses of HANARO flow tubes

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jeong Soo; Cho, Yeong Garp; Kim, Doo Kie; Woo, Jong Sug; Park, Jin Ho

    2000-06-01

    The effect of hydrodynamic masses is investigated in dynamic characteristics and seismic response analyses of the submerged HANARO hexagonal flow tubes. Consistent hydrodynamic masses of the surrounding water are evaluated by the prepared program using the finite element method, in which arbitrary cross-sections of submerged structures and boundary conditions of the surrounding fluid can be considered. Also lumped hydrodynamic masses are calculated using simple formula applied to hexagonal flow tubes in the infinite fluid. Modal analyses and seismic response spectrum analyses were performed using hydrodynamic masses obtained by the finite element method and the simple formula. The results of modal analysis were verified by comparing the results measured from modal tests. And the displacement results of the seismic response spectrum analysis were assessed by comparing the consistent and the lumped hydrodynamic masses obtained by various methods. Finally practical criteria based on parametric studies are proposed as the lumped hydrodynamic masses for HANARO flow tubes.

  17. Numerical Simulation of Fixed-Bed Catalytic Reforming Reactors: Hydrodynamics / Chemical Kinetics Coupling Simulation numérique des réacteurs de reformage catalytique en lit fixe : couplage hydrodynamique-cinétique chimique

    Directory of Open Access Journals (Sweden)

    Ferschneider G.

    2006-11-01

    Full Text Available Fixed bed reactors with a single fluid phase are widely used in the refining or petrochemical industries for reaction processes catalysed by a solid phase. The design criteria for industrial reactors are relatively well known. However, they rely on a one-dimensional writing and on the separate resolution of the equation of conservation of mass and energy, and of momentum. Thus, with complex geometries, the influence of hydrodynamics on the effectiveness of the catalyst bed cannot be taken into account. The calculation method proposed is based on the multi-dimensional writing and the simultaneous resolution of the local conservation equations. The example discussed concerns fixed-bed catalytic reactors. These reactors are distinguished by their annular geometry and the radial circulation of the feedstock. The flow is assumed to be axisymmetric. The reaction process is reflected by a simplified kinetic mechanism involving ten chemical species. Calculation of the hydrodynamic (mean velocities, pressure, thermal and mass fields (concentration of each species serves to identify the influence of internal components in two industrial reactor geometries. The map of the quantity of coke formed and deposited on the catalyst, calculated by the model, reveals potential areas of poor operation. Les réacteurs à lit fixe avec une seule phase fluide sont largement utilisés dans l'industrie du raffinage et de la pétrochimie, pour mettre en oeuvre un processus réactionnel catalysé par une phase solide. Les règles de conception des réacteurs industriels sont relativement bien connues. Cependant, elles reposent sur l'écriture monodimensionnelle et la résolution séparée, d'une part, des équations de conservation de la masse et de l'énergie et d'autre part, de la quantité de mouvement. Ainsi dans le cas de géométries complexes, l'influence de l'hydrodynamique sur l'efficacité du lit catalytique ne peut être prise en compte. La méthode de calcul

  18. Effect of hydrodynamics and surface roughness on the electrochemical behaviour of carbon steel in CSG produced water

    Science.gov (United States)

    Eyu, Gaius Debi; Will, Geoffrey; Dekkers, Willem; MacLeod, Jennifer

    2015-12-01

    The influence of fluid flow, surface roughness and immersion time on the electrochemical behaviour of carbon steel in coal seam gas produced water under static and hydrodynamic conditions has been studied. The disc electrode surface morphology before and after the corrosion test was characterized using scanning electron microscopy (SEM). The corrosion product was examined using X-ray photoelectron spectroscopy (XPS) and X-ray diffractometry (XRD).The results show that the anodic current density increased with increasing surface roughness and consequently a decrease in corrosion surface resistance. Under dynamic flow conditions, the corrosion rate increased with increasing rotating speed due to the high mass transfer coefficient and formation of non-protective akaganeite β-FeO(OH) and goethite α-FeO(OH) corrosion scale at the electrode surface. The corrosion rate was lowest at 0 rpm. The corrosion rate decreased in both static and dynamic conditions with increasing immersion time. The decrease in corrosion rate is attributed to the deposition of corrosion products on the electrode surface. SEM results revealed that the rougher surface exhibited a great tendency toward pitting corrosion.

  19. Controlled hydrodynamic conditions on the formation of iron oxide nanostructures synthesized by electrochemical anodization: Effect of the electrode rotation speed

    Science.gov (United States)

    Lucas-Granados, Bianca; Sánchez-Tovar, Rita; Fernández-Domene, Ramón M.; García-Antón, Jose

    2017-01-01

    Iron oxide nanostructures are of particular interest because they can be used as photocatalysts in water splitting due to their advantageous properties. Electrochemical anodization is one of the best techniques to synthesize nanostructures directly on the metal substrate (direct back contact). In the present study, a novel methodology consisting of the anodization of iron under hydrodynamic conditions is carried out in order to obtain mainly hematite (α-Fe2O3) nanostructures to be used as photocatalysts for photoelectrochemical water splitting applications. Different rotation speeds were studied with the aim of evaluating the obtained nanostructures and determining the most attractive operational conditions. The synthesized nanostructures were characterized by means of Raman spectroscopy, Field Emission Scanning Electron Microscopy, photoelectrochemical water splitting, stability against photocorrosion tests, Mott-Schottky analysis, Electrochemical Impedance Spectroscopy (EIS) and band gap measurements. The results showed that the highest photocurrent densities for photoelectrochemical water splitting were achieved for the nanostructure synthesized at 1000 rpm which corresponds to a nanotubular structure reaching ∼0.130 mA cm-2 at 0.54 V (vs. Ag/AgCl). This is in agreement with the EIS measurements and Mott-Schottky analysis which showed the lowest resistances and the corresponding donor density values, respectively, for the nanostructure anodized at 1000 rpm.

  20. Experimental and numerical investigation into micro-flow cytometer with 3-D hydrodynamic focusing effect and micro-weir structure.

    Science.gov (United States)

    Hou, Hui-Hsiung; Tsai, Chien-Hsiung; Fu, Lung-Ming; Yang, Ruey-Jen

    2009-07-01

    This study presents a novel 3-D hydrodynamic focusing technique for micro-flow cytometers. In the proposed approach, the sample stream is compressed initially in the horizontal direction by a set of sheath flows such that it is constrained to the central region of the microchannel and is then focused in the vertical direction by a second pair of sheath flows. Thereafter, the focused sample stream passes over a micro-weir structure positioned directly beneath an optical detection system to capture polystyrene beads fluorescent signal. The microchannel configuration and operational parameters are optimized by performing a series of numerical simulations. An experimental investigation is then performed using a micro-flow cytometer fabricated using conventional micro-electro-mechanical systems techniques and an isotropic wet etching method. The results indicate that the two sets of sheath flows successfully constrain the sample stream within a narrow, well-defined region of the microchannel. Furthermore, the micro-weir structure prompts the separation of a mixed sample of 5 and 10 microm polystyrene beads in the vertical direction and ensures that the beads flow through the detection region of the microchannel in a sequential fashion and can therefore be reliably detected and counted.

  1. A Hydrodynamical Model of a Rotating Wind Source and Its Effects on the Collapse of a Rotating Core

    Directory of Open Access Journals (Sweden)

    Guillermo Arreaga-Garcia

    2015-01-01

    Full Text Available This work presents three-dimensional hydrodynamical simulations with the fully parallel GAGDET2 code, to model a rotating source that emits wind in order to study the subsequent dynamics of the wind in three independent scenarios. In the first scenario we consider several models of the wind source, which is characterized by a rotation velocity Vrot and an escape velocity Vesc, so that the models have a radially outward wind velocity magnitude Vrad given by 1, 2, 4, 6, and 8 times Vrot. In the second scenario, we study the interaction of winds emitted from a binary system in two kinds of models: one in which the source remains during the wind emission and a second one in which all the source itself becomes wind. In the third scenario we consider the interaction of a rotating source that emits wind within a collapsing and rotating core. In this scenario we consider only wind models of the second kind built over a new initial radial mesh, such that the angular velocity of the wind Ωw is 1, 100, and 1000 times the angular velocity of the core Ωc.

  2. 基于波流耦合模型的江苏沿海风暴潮数值模拟%Numerical simulation of typhoon-induced storm surge on the coast of Jiangsu Province, China, based on coupled hydrodynamic and wave models

    Institute of Scientific and Technical Information of China (English)

    徐宿东; 殷锴; 黄文锐; 郑炜

    2014-01-01

    In order to facilitate engineering design and coastal flooding protection, the potential storm surge induced by a typhoon is studied.Using an unstructured mesh, a coupled model which combines the advanced circulation ( ADCIRC ) hydrodynamic model and simulating waves nearshore ( SWAN ) model is applied to analyze the storm surge and waves on the coast of Jiangsu Province.The verifications of wind velocity, tidal levels and wave height show that this coupling model performs well to reflect the characteristics of the water levels and waves in the studied region.Results show that the effect of radiation stress on storm surge is significant, especially in shallow areas such as the coast of Jiangsu Province and the Yangtze estuary.By running the coupled model, the simulated potential flooding results can be employed in coastal engineering applications in the Jiangsu coastal area, such as storm surge warnings and extreme water level predictions.%为了方便工程设计以及沿海防洪减灾,对可能由台风引起的风暴潮进行了研究。利用三角形非结构网格建立ADCIRC水动力模型和SWAN波浪模型的耦合模型,并将其应用于江苏沿海风暴潮和波浪研究。风速、潮位和波高的验证表明该ADCIRC+SWAN耦合模型可以很好地模拟研究区域的水位和波高。研究结果表明辐射应力对风暴潮计算结果有影响,且在如江苏沿海和长江口此类的浅水区域影响更为显著。模型计算的水位结果在江苏沿海得到工程应用,例如风暴潮预警和极端水位预测。

  3. Exchange bias training effect in coupled all ferromagnetic bilayer structures

    Science.gov (United States)

    Polisetty, Srinivas; He, Xi; Binek, Christian; Berger, Andreas

    2006-03-01

    We study exchange coupled bilayers of soft and hard ferromagnetic (FM) thin films by means of Alternating Gradient Force Magnetometry. A CoCr thin film realizes the magnetically soft layer (SL) which is exchange coupled via a Ru-interlayer with a hard CoPtCrB pinning layer (HL). This new class of all FM bilayers shows remarkable analogies to conventional antiferromagnetic (AF)/FM exchange bias (EB) heterostructures. Not only do these all FM bilayers exhibit a tunable EB effect, they also show a distinct training behavior upon cycling the SL through consecutive hysteresis loops. Training resembles the cycle dependent evolution of the bias field and is to a large extend analogous to the gradual degradation of the EB field observed upon cycling the FM top layer of a AF/FM EB heterostructure through consecutive hysteresis loops. However, in contrast to these conventional EB systems, our all FM bilayer structures allow the observation of training induced changes in the bias-setting HL by means of simple magnetometry. Our experiments show unambiguously that the training effect is driven by deviations from equilibrium in the pinning layer. A comparison of the experimental data with predictions from a theory based upon triggered relaxation phenomena shows excellent agreement.

  4. Hydrodynamic force between a sphere and a soft, elastic surface.

    Science.gov (United States)

    Kaveh, Farzaneh; Ally, Javed; Kappl, Michael; Butt, Hans-Jürgen

    2014-10-07

    The hydrodynamic drainage force between a spherical silica particle and a soft, elastic polydimethylsiloxane surface was measured using the colloidal probe technique. The experimental force curves were compared to finite element simulations and an analytical model. The hydrodynamic repulsion decreased when the particle approached the soft surface as compared to a hard substrate. In contrast, when the particle was pulled away from the surface again, the attractive hydrodynamic force was increased. The hydrodynamic attraction increased because the effective area of the narrow gap between sphere and the plane on soft surfaces is larger than on rigid ones.

  5. Two-dimensional hydrodynamic modeling to quantify effects of peak-flow management on channel morphology and salmon-spawning habitat in the Cedar River, Washington

    Science.gov (United States)

    Czuba, Christiana; Czuba, Jonathan A.; Gendaszek, Andrew S.; Magirl, Christopher S.

    2010-01-01

    The Cedar River in Washington State originates on the western slope of the Cascade Range and provides the City of Seattle with most of its drinking water, while also supporting a productive salmon habitat. Water-resource managers require detailed information on how best to manage high-flow releases from Chester Morse Lake, a large reservoir on the Cedar River, during periods of heavy precipitation to minimize flooding, while mitigating negative effects on fish populations. Instream flow-management practices include provisions for adaptive management to promote and maintain healthy aquatic habitat in the river system. The current study is designed to understand the linkages between peak flow characteristics, geomorphic processes, riverine habitat, and biological responses. Specifically, two-dimensional hydrodynamic modeling is used to simulate and quantify the effects of the peak-flow magnitude, duration, and frequency on the channel morphology and salmon-spawning habitat. Two study reaches, representative of the typical geomorphic and ecologic characteristics of the Cedar River, were selected for the modeling. Detailed bathymetric data, collected with a real-time kinematic global positioning system and an acoustic Doppler current profiler, were combined with a LiDAR-derived digital elevation model in the overbank area to develop a computational mesh. The model is used to simulate water velocity, benthic shear stress, flood inundation, and morphologic changes in the gravel-bedded river under the current and alternative flood-release strategies. Simulations of morphologic change and salmon-redd scour by floods of differing magnitude and duration enable water-resource managers to incorporate model simulation results into adaptive management of peak flows in the Cedar River. PDF version of a presentation on hydrodynamic modelling in the Cedar River in Washington state. Presented at the American Geophysical Union Fall Meeting 2010.

  6. Hydrodynamic modeling of dense gas-fluidised beds using the kinetic theory of granular flow: effect of coefficient of restitution on bed dynamics

    NARCIS (Netherlands)

    Goldschmidt, M.J.V.; Kuipers, J.A.M.; van Swaaij, Willibrordus Petrus Maria

    2000-01-01

    A two-dimensional multi-fluid Eulerian CFD model with closure laws according to the kinetic theory of granular flow has been applied to study the influence of the coefficient of restitution on the hydrodynamics of dense gas-fluidised beds. It is demonstrated that hydrodynamics of dense gas-fluidised

  7. Hydrodynamic modeling of dense gas-fluidised beds using the kinetic theory of granular flow: effect of coefficient of restitution on bed dynamics.

    NARCIS (Netherlands)

    Goldschmidt, M.J.V.; Kuipers, J.A.M.; van Swaaij, Willibrordus Petrus Maria

    2001-01-01

    A two-dimensional multi-fluid Eulerian CFD model with closure laws according to the kinetic theory of granular flow has been applied to study the influence of the coefficient of restitution on the hydrodynamics of dense gas-fluidised beds. It is demonstrated that hydrodynamics of dense gas-fluidised

  8. Hydrodynamic modeling of dense gas-fluidised beds using the kinetic theory of granular flow: effect of coefficient of restitution on bed dynamics

    NARCIS (Netherlands)

    Goldschmidt, M.J.V.; Kuipers, J.A.M.; Swaaij, van W.P.M.

    2000-01-01

    A two-dimensional multi-fluid Eulerian CFD model with closure laws according to the kinetic theory of granular flow has been applied to study the influence of the coefficient of restitution on the hydrodynamics of dense gas-fluidised beds. It is demonstrated that hydrodynamics of dense gas-fluidised

  9. Hydrodynamic modelling of dense gas-fluidised beds using the kinetic theory of granular flow: effect of coefficient of restitution on bed dynamics.

    NARCIS (Netherlands)

    Goldschmidt, M.J.V.; Kuipers, J.A.M.; Swaaij, van W.P.M.

    2001-01-01

    A two-dimensional multi-fluid Eulerian CFD model with closure laws according to the kinetic theory of granular flow has been applied to study the influence of the coefficient of restitution on the hydrodynamics of dense gas-fluidised beds. It is demonstrated that hydrodynamics of dense gas-fluidised

  10. Exchange bias training effect in coupled all ferromagnetic bilayer structures.

    Science.gov (United States)

    Binek, Ch; Polisetty, S; He, Xi; Berger, A

    2006-02-17

    Exchange coupled bilayers of soft and hard ferromagnetic thin films show remarkable analogies to conventional antiferromagnetic/ferromagnetic exchange bias heterostructures. Not only do all these ferromagnetic bilayers exhibit a tunable exchange bias effect, they also show a distinct training behavior upon cycling the soft layer through consecutive hysteresis loops. In contrast with conventional exchange bias systems, such all ferromagnetic bilayer structures allow the observation of training induced changes in the bias-setting hardmagnetic layer by means of simple magnetometry. Our experiments show unambiguously that the exchange bias training effect is driven by deviations from equilibrium in the pinning layer. A comparison of our experimental data with predictions from a theory based upon triggered relaxation phenomena shows excellent agreement.

  11. Scalability of Hydrodynamic Simulations

    CERN Document Server

    Tang, Shikui

    2009-01-01

    Many hydrodynamic processes can be studied in a way that is scalable over a vastly relevant physical parameter space. We systematically examine this scalability, which has so far only briefly discussed in astrophysical literature. We show how the scalability is limited by various constraints imposed by physical processes and initial conditions. Using supernova remnants in different environments and evolutionary phases as application examples, we demonstrate the use of the scaling as a powerful tool to explore the interdependence among relevant parameters, based on a minimum set of simulations. In particular, we devise a scaling scheme that can be used to adaptively generate numerous seed remnants and plant them into 3D hydrodynamic simulations of the supernova-dominated interstellar medium.

  12. Relativistic Hydrodynamics with Wavelets

    CERN Document Server

    DeBuhr, Jackson; Anderson, Matthew; Neilsen, David; Hirschmann, Eric W

    2015-01-01

    Methods to solve the relativistic hydrodynamic equations are a key computational kernel in a large number of astrophysics simulations and are crucial to understanding the electromagnetic signals that originate from the merger of astrophysical compact objects. Because of the many physical length scales present when simulating such mergers, these methods must be highly adaptive and capable of automatically resolving numerous localized features and instabilities that emerge throughout the computational domain across many temporal scales. While this has been historically accomplished with adaptive mesh refinement (AMR) based methods, alternatives based on wavelet bases and the wavelet transformation have recently achieved significant success in adaptive representation for advanced engineering applications. This work presents a new method for the integration of the relativistic hydrodynamic equations using iterated interpolating wavelets and introduces a highly adaptive implementation for multidimensional simulati...

  13. EXPERIMENTS ON HYDRODYNAMIC INTERACTION BETWEEN 3-D OVAL AND WALL

    Institute of Scientific and Technical Information of China (English)

    SUN Ke; SHENG Qi-hu; ZHANG Liang; LI Feng-lai

    2007-01-01

    The boundary hydrodynamic interaction of a 3-D oval body was experimentally surveyed for different cases. The regression method was employed to find the experimental formulae of hydrodynamic coefficients relating to the attack angle, clearance to wall, and moving speed. The mechanism of interaction was discussed. The experimental results show that there exists a lifting effect, similar to wings in flow. The lifting effect is remarkable. The boundary hydrodynamic interaction of the small aspect ratio model is almost linearly dependent on the attack angle, but the effect of the moving speed of the body on the hydrodynamic coefficients is very small. The effect of clearance is related to the geometric shape. The boundary hydrodynamic interaction always enhances the lifting effect if the clearance is small.

  14. Theoretical description of effective heat transfer between two viscously coupled beads

    Science.gov (United States)

    Bérut, A.; Imparato, A.; Petrosyan, A.; Ciliberto, S.

    2016-11-01

    We analytically study the role of nonconservative forces, namely viscous couplings, on the statistical properties of the energy flux between two Brownian particles kept at different temperatures. From the dynamical model describing the system, we identify an energy flow that satisfies a fluctuation theorem both in the stationary and in transient states. In particular, for the specific case of a linear nonconservative interaction, we derive an exact fluctuation theorem that holds for any measurement time in the transient regime, and which involves the energy flux alone. Moreover, in this regime the system presents an interesting asymmetry between the hot and cold particles. The theoretical predictions are in good agreement with the experimental results already presented in our previous article [Imparato et al., Phys. Rev. Lett. 116, 068301 (2016), 10.1103/PhysRevLett.116.068301], where we investigated the thermodynamic properties of two Brownian particles, trapped with optical tweezers, interacting through a dissipative hydrodynamic coupling.

  15. Bulk Viscosity and Cavitation in Boost-Invariant Hydrodynamic Expansion

    CERN Document Server

    Rajagopal, Krishna

    2009-01-01

    We solve second order relativistic hydrodynamics equations for a boost-invariant 1+1-dimensional expanding fluid with an equation of state taken from lattice calculations of the thermodynamics of strongly coupled quark-gluon plasma. We investigate the dependence of the energy density as a function of proper time on the values of the shear viscosity, the bulk viscosity, and second order coefficients, confirming that large changes in the values of the latter have negligible effects. Varying the shear viscosity between zero and a few times s/(4 pi), with s the entropy density, has significant effects, as expected based on other studies. Introducing a nonzero bulk viscosity also has significant effects. In fact, if the bulk viscosity peaks near the crossover temperature Tc to the degree indicated by recent lattice calculations in QCD without quarks, it can make the fluid cavitate -- falling apart into droplets. It is interesting to see a hydrodynamic calculation predicting its own breakdown, via cavitation, at th...

  16. Hydrodynamic dispersion broadening of a sedimentation front

    Science.gov (United States)

    Martin, J.; Rakotomalala, N.; Salin, D.

    1994-10-01

    Hydrodynamic dispersion is responsible for the spreading of the sedimentation front even in a noncolloidal monodisperse suspension. Measurements of the broadening of the top front observed during sedimentation have been used in determining the hydrodynamic dispersion coefficient. Hindered settling has an opposed effect and leads to the self-sharpening of the front. Both effects have to be taken into account simultaneously. This Letter provides a simple, but complete determination of the space and time concentration profile and shows that the final front should consist of a steady-shape profile propagating at constant velocity. With such a solution, the data of Davis et al. [AIChE J. 34, 123 (1988); J. Fluid Mech. 196, 107 (1988)] give hydrodynamic dispersion coefficient five times larger than their former analysis, in agreement with Lee et al. [Phys. Fluids A 4, 2601 (1992)].

  17. Burst Mechanisms in Hydrodynamics

    CERN Document Server

    Knobloch, E

    1999-01-01

    Different mechanisms believed to be responsible for the generation of bursts in hydrodynamical systems are reviewed and a new mechanism capable of generating regular or irregular bursts of large dynamic range near threshold is described. The new mechanism is present in the interaction between oscillatory modes of odd and even parity in systems of large but finite aspect ratio, and provides an explanation for the bursting behavior observed in binary fluid convection. Additional applications of the new mechanism are proposed.

  18. Relativistic cosmological hydrodynamics

    CERN Document Server

    Hwang, J

    1997-01-01

    We investigate the relativistic cosmological hydrodynamic perturbations. We present the general large scale solutions of the perturbation variables valid for the general sign of three space curvature, the cosmological constant, and generally evolving background equation of state. The large scale evolution is characterized by a conserved gauge invariant quantity which is the same as a perturbed potential (or three-space curvature) in the comoving gauge.

  19. Simulation of Helical Flow Hydrodynamics in Meanders and Advection-Turbulent Diffusion Using Smoothed Particle Hydrodynamics

    Science.gov (United States)

    Gusti, T. P.; Hertanti, D. R.; Bahsan, E.; Soeryantono, H.

    2013-12-01

    Particle-based numerical methods, such as Smoothed Particle Hydrodynamics (SPH), may be able to simulate some hydrodynamic and morphodynamic behaviors better than grid-based numerical methods. This study simulates hydrodynamics in meanders and advection and turbulent diffusion in straight river channels using Microsoft Excel and Visual Basic. The simulators generate three-dimensional data for hydrodynamics and one-dimensional data for advection-turbulent diffusion. Fluid at rest, sloshing, and helical flow are simulated in the river meanders. Spill loading and step loading are done to simulate concentration patterns associated with advection-turbulent diffusion. Results indicate that helical flow is formed due to disturbance in morphology and particle velocity in the stream and the number of particles does not have a significant effect on the pattern of advection-turbulent diffusion concentration.

  20. Hydrodynamics of insect spermatozoa

    Science.gov (United States)

    Pak, On Shun; Lauga, Eric

    2010-11-01

    Microorganism motility plays important roles in many biological processes including reproduction. Many microorganisms propel themselves by propagating traveling waves along their flagella. Depending on the species, propagation of planar waves (e.g. Ceratium) and helical waves (e.g. Trichomonas) were observed in eukaryotic flagellar motion, and hydrodynamic models for both were proposed in the past. However, the motility of insect spermatozoa remains largely unexplored. An interesting morphological feature of such cells, first observed in Tenebrio molitor and Bacillus rossius, is the double helical deformation pattern along the flagella, which is characterized by the presence of two superimposed helical flagellar waves (one with a large amplitude and low frequency, and the other with a small amplitude and high frequency). Here we present the first hydrodynamic investigation of the locomotion of insect spermatozoa. The swimming kinematics, trajectories and hydrodynamic efficiency of the swimmer are computed based on the prescribed double helical deformation pattern. We then compare our theoretical predictions with experimental measurements, and explore the dependence of the swimming performance on the geometric and dynamical parameters.

  1. Hydrodynamics of fossil fishes.

    Science.gov (United States)

    Fletcher, Thomas; Altringham, John; Peakall, Jeffrey; Wignall, Paul; Dorrell, Robert

    2014-08-07

    From their earliest origins, fishes have developed a suite of adaptations for locomotion in water, which determine performance and ultimately fitness. Even without data from behaviour, soft tissue and extant relatives, it is possible to infer a wealth of palaeobiological and palaeoecological information. As in extant species, aspects of gross morphology such as streamlining, fin position and tail type are optimized even in the earliest fishes, indicating similar life strategies have been present throughout their evolutionary history. As hydrodynamical studies become more sophisticated, increasingly complex fluid movement can be modelled, including vortex formation and boundary layer control. Drag-reducing riblets ornamenting the scales of fast-moving sharks have been subjected to particularly intense research, but this has not been extended to extinct forms. Riblets are a convergent adaptation seen in many Palaeozoic fishes, and probably served a similar hydrodynamic purpose. Conversely, structures which appear to increase skin friction may act as turbulisors, reducing overall drag while serving a protective function. Here, we examine the diverse adaptions that contribute to drag reduction in modern fishes and review the few attempts to elucidate the hydrodynamics of extinct forms.

  2. Effects of complex hydrodynamic processes on the horizontal and vertical distribution of Tc-99 in the Irish Sea

    Energy Technology Data Exchange (ETDEWEB)

    Olbert, Agnieszka I., E-mail: indiana.olbert@nuigalway.ie [Civil Engineering Department, Environmental Change Institute, National University of Ireland, Galway (Ireland); Hartnett, Michael; Dabrowski, Tomasz [Civil Engineering Department, Environmental Change Institute, National University of Ireland, Galway (Ireland); Kelleher, Kevin [Radiological Protection Institute of Ireland, 3 Clonskeagh Square, Clonskeagh Road, Dublin 14 (Ireland)

    2010-12-01

    The increased discharge of Tc-99 from the Sellafield plant following the commissioning of the Enhance Actinide Removal Plant in 1994 was reflected in higher Tc-99 activity concentrations over much of the Irish Sea. The presence of this radionuclide in the marine environment is of concern not only because of its long half life but also high bio-concentration factor in commercially valuable species, such Norway lobster (Nephrops norvegicus) and common lobster (Homarus gammarus). Accurate predictions of the transport, and spatial and temporal distributions of Tc-99 in the Irish Sea have important environmental and commercial implications. In this study, transport of the Tc-99 material was simulated in order to develop an increased understanding of long-term horizontal and vertical distributions. In particular, impact of seasonal hydrodynamic features such as the summer stratification on the surface-to-bottom Tc-99 ratio was of interest. Also, material retention mechanisms within the western Irish Sea were explored and flushing rates under various release conditions and meteorological forcing were estimated. The results show that highest vertical gradients are observed between June and July in the deepest regions of the North Channel and the western Irish Sea where radionuclide-rich saline-poor water overlays radionuclide-poor saline-rich Atlantic water masses. Strong correlation between top-to-bottom ratio of Tc-99 and strength of stratification was found. Flushing studies demonstrate that as the stratification intensifies, residence times within the western Irish Sea increase. In stratified waters of the gyre Tc-99 material is flushed out from the upper layer much quicker than from the bottom zone. The research also shows that in the gyre the biologically active upper layers above the thermocline are likely to contain higher concentrations than the near-bed region. Long-term horizontal and vertical distributions as determined in this study provide a basis for

  3. Matrix effects in inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiaoshan [Iowa State Univ., Ames, IA (United States)

    1995-07-07

    The inductively coupled plasma is an electrodeless discharge in a gas (usually Ar) at atmospheric pressure. Radio frequency energy generated by a RF power source is inductively coupled to the plasma gas through a water cooled load coil. In ICP-MS the "Fassel" TAX quartz torch commonly used in emission is mounted horizontally. The sample aerosol is introduced into the central flow, where the gas kinetic temperature is about 5000 K. The aerosol is vaporized, atomized, excited and ionized in the plasma, and the ions are subsequently extracted through two metal apertures (sampler and skimmer) into the mass spectrometer. In ICP-MS, the matrix effects, or non-spectroscopic interferences, can be defined as the type of interferences caused by dissolved concomitant salt ions in the solution. Matrix effects can be divided into two categories: (1) signal drift due to the deposition of solids on the sampling apertures; and/or (2) signal suppression or enhancement by the presence of the dissolved salts. The first category is now reasonably understood. The dissolved salts, especially refractory oxides, tend to deposit on the cool tip of the sampling cone. The clogging of the orifices reduces the ion flow into the ICP-MS, lowers the pressure in the first stage of ICP-MS, and enhances the level of metal oxide ions. Because the extent of the clogging increases with the time, the signal drifts down. Even at the very early stage of the development of ICP-MS, matrix effects had been observed. Houk et al. found out that the ICP-MS was not tolerant to solutions containing significant amounts of dissolved solids.

  4. The effects of shape anisotropy and exchange coupling on spin precession frequencies in exchange coupled Co/Cu/Py trilayers

    Science.gov (United States)

    Keramati, Sam; Singh, Uday; Kurfman, Seth; Binek, Ch.; Adenwalla, S.

    2015-03-01

    Ultrafast high-power laser systems have successfully opened up the field of magnetization dynamics, studying subpicosecond laser-induced spin precession dynamics, demagnetization processes and magnetization reorientation. Here we investigate laser-induced magnetization dynamics in a series of photolithographically patterned microstructures of exchange coupled trilayers of Co/Cu/Py grown on Si substrates. The microstructures have different shape anisotropies as well as different exchange coupling parameters. The latter determines the magnetization state, varying from ferromagnetically to anti-ferromagnetically coupled. We explore how the different spin precession frequencies of the constituent exchange coupled magnetic layers with unequal relaxation times can trade-off with the differing shape anisotropies. The key physical point is that the precession frequency of ferromagnetic materials and their damping parameter vary with the effective field which depends on both the shape anisotropy, and exchange coupling, while their corresponding effects can be modulated through the action of the intense pump beam. Precession frequency maps of the behavior of the exchange coupling parameter of the samples with respect to their shape anisotropy and their laser-induced modulated precession frequencies will be generated through a pump-probe experiment to address the above-mentioned objective of our work. This work is supported by NSF Grant No. 1409622 and MRSEC DMR-0820521.

  5. Detecting effective connectivity in networks of coupled neuronal oscillators.

    Science.gov (United States)

    Boykin, Erin R; Khargonekar, Pramod P; Carney, Paul R; Ogle, William O; Talathi, Sachin S

    2012-06-01

    The application of data-driven time series analysis techniques such as Granger causality, partial directed coherence and phase dynamics modeling to estimate effective connectivity in brain networks has recently gained significant prominence in the neuroscience community. While these techniques have been useful in determining causal interactions among different regions of brain networks, a thorough analysis of the comparative accuracy and robustness of these methods in identifying patterns of effective connectivity among brain networks is still lacking. In this paper, we systematically address this issue within the context of simple networks of coupled spiking neurons. Specifically, we develop a method to assess the ability of various effective connectivity measures to accurately determine the true effective connectivity of a given neuronal network. Our method is based on decision tree classifiers which are trained using several time series features that can be observed solely from experimentally recorded data. We show that the classifiers constructed in this work provide a general framework for determining whether a particular effective connectivity measure is likely to produce incorrect results when applied to a dataset.

  6. Response of water temperature to surface wave effects in the Baltic Sea: simulations with the coupled NEMO-WAM model

    Science.gov (United States)

    Alari, Victor; Staneva, Joanna; Breivik, Øyvind; Bidlot, Jean-Raymond; Mogensen, Kristian; Janssen, Peter

    2016-04-01

    The effects of wind waves on the Baltic Sea water temperature has been studied by coupling the hydrodynamical model NEMO with the wave model WAM. The wave forcing terms that have been taken into consideration are: Stokes-Coriolis force, seastate dependent energy flux and sea-state dependent momentum flux. The combined role of these processes as well as their individual contributions on simulated temperature is analysed. The results indicate a pronounced effect of waves on surface temperature, on the distribution of vertical temperature and on upwellinǵs. In northern parts of the Baltic Sea a warming of the surface layer occurs in the wave included simulations. This in turn reduces the cold bias between simulated and measured data. The warming is primarily caused by sea-state dependent energy flux. Wave induced cooling is mostly observed in near coastal areas and is mainly due to Stokes-Coriolis forcing. The latter triggers effect of intensifying upwellings near the coasts, depending on the direction of the wind. The effect of sea-state dependent momentum flux is predominantly to warm the surface layer. During the summer the wave induced water temperature changes were up to 1 °C.

  7. Multistate Density Functional Theory for Effective Diabatic Electronic Coupling.

    Science.gov (United States)

    Ren, Haisheng; Provorse, Makenzie R; Bao, Peng; Qu, Zexing; Gao, Jiali

    2016-06-16

    Multistate density functional theory (MSDFT) is presented to estimate the effective transfer integral associated with electron and hole transfer reactions. In this approach, the charge-localized diabatic states are defined by block localization of Kohn-Sham orbitals, which constrain the electron density for each diabatic state in orbital space. This differs from the procedure used in constrained density functional theory that partitions the density within specific spatial regions. For a series of model systems, the computed transfer integrals are consistent with experimental data and show the expected exponential attenuation with the donor-acceptor separation. The present method can be used to model charge transfer reactions including processes involving coupled electron and proton transfer.

  8. Coupled effects of local movement and global interaction on contagion

    CERN Document Server

    Zhong, Li-Xin; Chen, Rong-Da; Qiu, Tian; Zhong, Chen-Yang

    2014-01-01

    By incorporating segregated spatial domain and individual-based linkage into the SIS (susceptible-infected-susceptible) model, we investigate the coupled effects of random walk and intragroup interaction on contagion. Compared with the situation where only local movement or individual-based linkage exists, the coexistence of them leads to a wider spread of infectious disease. The roles of narrowing segregated spatial domain and reducing mobility in epidemic control are checked, these two measures are found to be conducive to curbing the spread of infectious disease. Considering heterogeneous time scales between local movement and global interaction, a log-log relation between the change in the number of infected individuals and the timescale $\\tau$ is found. A theoretical analysis indicates that the evolutionary dynamics in the present model is related to the encounter probability and the encounter time. A functional relation between the epidemic threshold and the ratio of shortcuts, and a functional relation...

  9. Effective potential kinetic theory for strongly coupled plasmas

    Science.gov (United States)

    Baalrud, Scott D.; Daligault, Jérôme

    2016-11-01

    The effective potential theory (EPT) is a recently proposed method for extending traditional plasma kinetic and transport theory into the strongly coupled regime. Validation from experiments and molecular dynamics simulations have shown it to be accurate up to the onset of liquid-like correlation parameters (corresponding to Γ ≃ 10-50 for the one-component plasma, depending on the process of interest). Here, this theory is briefly reviewed along with comparisons between the theory and molecular dynamics simulations for self-diffusivity and viscosity of the one-component plasma. A number of new results are also provided, including calculations of friction coefficients, energy exchange rates, stopping power, and mobility. The theory is also cast in the Landau and Fokker-Planck kinetic forms, which may prove useful for enabling efficient kinetic computations.

  10. Effective gravitational couplings for cosmological perturbations in generalized Proca theories

    CERN Document Server

    De Felice, Antonio; Kase, Ryotaro; Mukohyama, Shinji; Tsujikawa, Shinji; Zhang, Ying-li

    2016-01-01

    We consider the finite interactions of the generalized Proca theory including the sixth-order Lagrangian and derive the full linear perturbation equations of motion on the flat Friedmann-Lema\\^{i}tre-Robertson-Walker background in the presence of a matter perfect fluid. By construction, the propagating degrees of freedom (besides the matter perfect fluid) are two transverse vector perturbations, one longitudinal scalar, and two tensor polarizations. The Lagrangians associated with intrinsic vector modes neither affect the background equations of motion nor the second-order action of tensor perturbations, but they do give rise to non-trivial modifications to the no-ghost condition of vector perturbations and to the propagation speeds of vector and scalar perturbations. We derive the effective gravitational coupling $G_{\\rm eff}$ with matter density perturbations under a quasi-static approximation on scales deep inside the sound horizon. We find that the existence of intrinsic vector modes allows a possibility ...

  11. Nonlocal effects: relevance for the spontaneous emission rates of quantum emitters coupled to plasmonic structures.

    Science.gov (United States)

    Filter, Robert; Bösel, Christoph; Toscano, Giuseppe; Lederer, Falk; Rockstuhl, Carsten

    2014-11-01

    The spontaneous emission rate of dipole emitters close to plasmonic dimers are theoretically studied within a nonlocal hydrodynamic model. A nonlocal model has to be used since quantum emitters in the immediate environment of a metallic nanoparticle probe its electronic structure. Compared to local calculations, the emission rate is significantly reduced. The influence is mostly pronounced if the emitter is located close to sharp edges. We suggest to use quantum emitters to test nonlocal effects in experimentally feasible configurations.

  12. Kinetic and hydrodynamic models of chemotactic aggregation

    CERN Document Server

    Chavanis, Pierre-Henri

    2007-01-01

    We derive general kinetic and hydrodynamic models of chemotactic aggregation that describe certain features of the morphogenesis of biological colonies (like bacteria, amoebae, endothelial cells or social insects). Starting from a stochastic model defined in terms of N coupled Langevin equations, we derive a nonlinear mean field Fokker-Planck equation governing the evolution of the distribution function of the system in phase space. By taking the successive moments of this kinetic equation and using a local thermodynamic equilibrium condition, we derive a set of hydrodynamic equations involving a damping term. In the limit of small frictions, we obtain a hyperbolic model describing the formation of network patterns (filaments) and in the limit of strong frictions we obtain a parabolic model which is a generalization of the standard Keller-Segel model describing the formation of clusters (clumps). Our approach connects and generalizes several models introduced in the chemotactic literature. We discuss the anal...

  13. Hydrodynamics of charge fluctuations and balance functions

    CERN Document Server

    Ling, B; Stephanov, M

    2013-01-01

    We apply stochastic hydrodynamics to the study of charge density fluctuations in QCD matter undergoing Bjorken expansion. We find that the charge density correlations are given by a time integral over the history of the system, with the dominant contribution coming from the QCD crossover region where the change of susceptibility per entropy, chi T/s, is most significant. We study the rapidity and azimuthal angle dependence of the resulting charge balance function using a simple analytic model of heavy-ion collision evolution. Our results are in agreement with experimental measurements, indicating that hydrodynamic fluctuations contribute significantly to the measured charge correlations in high energy heavy-ion collisions. The sensitivity of the balance function to the value of the charge diffusion coefficient D allows us to estimate the typical value of this coefficient in the crossover region to be rather small, of the order of 1/(2pi T), characteristic of a strongly coupled plasma.

  14. P -wave coupled channel effects in electron-positron annihilation

    Science.gov (United States)

    Du, Meng-Lin; Meißner, Ulf-G.; Wang, Qian

    2016-11-01

    P -wave coupled channel effects arising from the D D ¯, D D¯ *+c .c . , and D*D¯* thresholds in e+e- annihilations are systematically studied. We provide an exploratory study by solving the Lippmann-Schwinger equation with short-ranged contact potentials obtained in the heavy quark limit. These contact potentials can be extracted from the P -wave interactions in the e+e- annihilations, and then be employed to investigate possible isosinglet P -wave hadronic molecules. In particular, such an investigation may provide information about exotic candidates with quantum numbers JPC=1-+ . In the mass region of the D D ¯, D D¯ *+c .c . , and D*D¯* thresholds, there are two quark model bare states, i.e. the ψ (3770 ) and ψ (4040 ), which are assigned as (13D1) and (31S1) states, respectively. By an overall fit of the cross sections of e+e-→D D ¯, D D¯ *+c .c . , D*D¯*, we determine the physical coupling constants to each channel and extract the pole positions of the ψ (3770 ) and ψ (4040 ). The deviation of the ratios from that in the heavy quark spin symmetry (HQSS) limit reflects the HQSS breaking effect due to the mass splitting between the D and the D*. Besides the two poles, we also find a pole a few MeV above the D D¯ *+c .c . threshold which can be related to the so-called G (3900 ) observed earlier by BABAR and Belle. This scenario can be further scrutinized by measuring the angular distribution in the D*D¯* channel with high luminosity experiments.

  15. Development of a zoning-based environmental-ecological-coupled model for lakes to assess lake restoration effect

    Science.gov (United States)

    Xu, Mengjia; Zou, Changxin; Zhao, Yanwei

    2017-04-01

    Environmental/ecological models are widely used for lake management as they provide a means to understand physical, chemical and biological processes in highly complex ecosystems. Most research focused on the development of environmental (water quality) and ecological models, separately. Limited studies were developed to couple the two models, and in these limited coupled models, a lake was regarded as a whole for analysis (i.e., considering the lake to be one well-mixed box), which was appropriate for small-scale lakes and was not sufficient to capture spatial variations within middle-scale or large-scale lakes. This paper seeks to establish a zoning-based environmental-ecological-coupled model for a lake. The Baiyangdian Lake, the largest freshwater lake in Northern China, was adopted as the study case. The coupled lake models including a hydrodynamics and water quality model established by MIKE21 and a compartmental ecological model used STELLA software have been established for middle-sized Baiyangdian Lake to realize the simulation of spatial variations of ecological conditions. On the basis of the flow field distribution results generated by MIKE21 hydrodynamics model, four water area zones were used as an example for compartmental ecological model calibration and validation. The results revealed that the developed coupled lake models can reasonably reflected the changes of the key state variables although there remain some state variables that are not well represented by the model due to the low quality of field monitoring data. Monitoring sites in a compartment may not be representative of the water quality and ecological conditions in the entire compartment even though that is the intention of compartment-based model design. There was only one ecological observation from a single monitoring site for some periods. This single-measurement issue may cause large discrepancies particularly when sampled site is not representative of the whole compartment. The

  16. Fish stocking density impacts tank hydrodynamics

    DEFF Research Database (Denmark)

    Rasmussen, Michael R.; Lunger, Angela; Laursen, Jesper;

    2006-01-01

    hydrodynamics was established using in-tank-based Rhodamine WT fluorometry at a flow rate of 0.23 l s-1 (tank exchange rate of 1.9 h-1). With increasing numbers of animals, curvilinear relationships were observed for dispersion coefficients and tank mixing times. Stocking densities of 3, 6, 9 and 12 kg m-3......The effect of stocking density upon the hydrodynamics of a circular tank, configured in a recirculation system, was investigated. Red drums Sciaenops ocellatus of approximately 140 g wet weight, were stocked at five rates varying from 0 to 12 kg m-3. The impact of the presence of fish upon tank...

  17. Broken Lifshitz invariance, spin waves and hydrodynamics

    CERN Document Server

    Roychowdhury, Dibakar

    2016-01-01

    In this paper, based on the basic principles of thermodynamics, we explore the hydrodynamic regime of interacting Lifshitz field theories in the presence of broken rotational invariance. We compute the entropy current and discover new dissipative effects those are consistent with the principle of local entropy production in the fluid. In our analysis, we consider both the parity even as well as the parity odd sector upto first order in the derivative expansion. Finally, we argue that the present construction of the paper could be systematically identified as that of the hydrodynamic description associated with \\textit{spin waves} (away from the domain of quantum criticality) under certain limiting conditions.

  18. Colliding shockwaves and hydrodynamics in extreme conditions

    CERN Document Server

    Chesler, Paul M

    2015-01-01

    Using numerical holography, we study the collision of a planar sheet of energy with a bounded localized distribution of energy. The collision, which mimics proton-nucleus collisions, produces a localized lump of debris with transverse size $R \\sim 1/T_{\\rm eff}$ with $T_{\\rm eff}$ the effective temperature, and has large gradients and large transverse flow. Nevertheless, the post-collision evolution is well-described by viscous hydrodynamics. Our results bolster the notion that debris produced in proton-nucleus collisions may be modeled using hydrodynamics.

  19. Theoretical and simulation research of hydrodynamic instabilities in inertial-confinement fusion implosions

    Science.gov (United States)

    Wang, LiFeng; Ye, WenHua; He, XianTu; Wu, JunFeng; Fan, ZhengFeng; Xue, Chuang; Guo, HongYu; Miao, WenYong; Yuan, YongTeng; Dong, JiaQin; Jia, Guo; Zhang, Jing; Li, YingJun; Liu, Jie; Wang, Min; Ding, YongKun; Zhang, WeiYan

    2017-05-01

    Inertial fusion energy (IFE) has been considered a promising, nearly inexhaustible source of sustainable carbon-free power for the world's energy future. It has long been recognized that the control of hydrodynamic instabilities is of critical importance for ignition and high-gain in the inertial-confinement fusion (ICF) hot-spot ignition scheme. In this mini-review, we summarize the progress of theoretical and simulation research of hydrodynamic instabilities in the ICF central hot-spot implosion in our group over the past decade. In order to obtain sufficient understanding of the growth of hydrodynamic instabilities in ICF, we first decompose the problem into different stages according to the implosion physics processes. The decomposed essential physics pro- cesses that are associated with ICF implosions, such as Rayleigh-Taylor instability (RTI), Richtmyer-Meshkov instability (RMI), Kelvin-Helmholtz instability (KHI), convergent geometry effects, as well as perturbation feed-through are reviewed. Analyti- cal models in planar, cylindrical, and spherical geometries have been established to study different physical aspects, including density-gradient, interface-coupling, geometry, and convergent effects. The influence of ablation in the presence of preheating on the RTI has been extensively studied by numerical simulations. The KHI considering the ablation effect has been discussed in detail for the first time. A series of single-mode ablative RTI experiments has been performed on the Shenguang-II laser facility. The theoretical and simulation research provides us the physical insights of linear and weakly nonlinear growths, and nonlinear evolutions of the hydrodynamic instabilities in ICF implosions, which has directly supported the research of ICF ignition target design. The ICF hot-spot ignition implosion design that uses several controlling features, based on our current understanding of hydrodynamic instabilities, to address shell implosion stability, has

  20. Time-Domain Simulation for Coupled Motions of Three Barges Moored Side-by-Side in Floatover Operation

    Institute of Scientific and Technical Information of China (English)

    许鑫; 杨建民; 李欣; 徐亮瑜

    2015-01-01

    Simulating the coupled motions of multiple bodies in the time domain is a complex problem because of the strong hydrodynamic interactions and coupled effect of various mechanical connectors. In this study, we investigate the hydrodynamic responses of three barges moored side-by-side in a floatover operation in the frequency and time domains. In the frequency domain, the damping lid method is adopted to improve the overestimated hydrodynamic coefficients calculated from conventional potential flow theory. A time-domain computing program based on potential flow theory and impulse theory is compiled for analyses that consider multibody hydrodynamic interactions and mechanical effects from lines and fenders. Correspondingly, an experiment is carried out for comparison with the numerical results. All statistics, time series, and power density spectra from decay and irregular wave tests are in a fairly good agreement.

  1. Modeling coupled blast/structure interaction with Zapotec, benchmark calculations for the Conventional Weapon Effects Backfill (CONWEB) tests.

    Energy Technology Data Exchange (ETDEWEB)

    Bessette, Gregory Carl

    2004-09-01

    Modeling the response of buried reinforced concrete structures subjected to close-in detonations of conventional high explosives poses a challenge for a number of reasons. Foremost, there is the potential for coupled interaction between the blast and structure. Coupling enters the problem whenever the structure deformation affects the stress state in the neighboring soil, which in turn, affects the loading on the structure. Additional challenges for numerical modeling include handling disparate degrees of material deformation encountered in the structure and surrounding soil, modeling the structure details (e.g., modeling the concrete with embedded reinforcement, jointed connections, etc.), providing adequate mesh resolution, and characterizing the soil response under blast loading. There are numerous numerical approaches for modeling this class of problem (e.g., coupled finite element/smooth particle hydrodynamics, arbitrary Lagrange-Eulerian methods, etc.). The focus of this work will be the use of a coupled Euler-Lagrange (CEL) solution approach. In particular, the development and application of a CEL capability within the Zapotec code is described. Zapotec links two production codes, CTH and Pronto3D. CTH, an Eulerian shock physics code, performs the Eulerian portion of the calculation, while Pronto3D, an explicit finite element code, performs the Lagrangian portion. The two codes are run concurrently with the appropriate portions of a problem solved on their respective computational domains. Zapotec handles the coupling between the two domains. The application of the CEL methodology within Zapotec for modeling coupled blast/structure interaction will be investigated by a series of benchmark calculations. These benchmarks rely on data from the Conventional Weapons Effects Backfill (CONWEB) test series. In these tests, a 15.4-lb pipe-encased C-4 charge was detonated in soil at a 5-foot standoff from a buried test structure. The test structure was composed of a

  2. Foundations of radiation hydrodynamics

    CERN Document Server

    Mihalas, Dimitri

    1999-01-01

    Radiation hydrodynamics is a broad subject that cuts across many disciplines in physics and astronomy: fluid dynamics, thermodynamics, statistical mechanics, kinetic theory, and radiative transfer, among others. The theory developed in this book by two specialists in the field can be applied to the study of such diverse astrophysical phenomena as stellar winds, supernova explosions, and the initial phases of cosmic expansion, as well as the physics of laser fusion and reentry vehicles. As such, it provides students with the basic tools for research on radiating flows.Largely self-contained,

  3. Effect of mutual inductance coupling on superconducting flux qubit decoherence

    Institute of Scientific and Technical Information of China (English)

    Yanyan Jiang; Hualan Xu; Yinghua Ji

    2009-01-01

    In the Born-Markov approximation and two-level approximation, and using the Bloch-Redfield equation, the decoherence property of superconducting quantum circuit with a flux qubit is investigated. The influence on decoherence of the mutual inductance coupling between the circuit components is complicated. The mutual inductance coupling between different loops will decrease the decoherence time. However, the mutual inductance coupling of the same loop, in a certain interval, will increase the decoherence time. Therefore, we can control the decoherence time by changing the mutual inductance parameters such as the strength and direction of coupling.

  4. Impact of Hydrodynamics on Oral Biofilm Strength

    NARCIS (Netherlands)

    Paramonova, E.; Kalmykowa, O. J.; van der Mei, H. C.; Busscher, H. J.; Sharma, P. K.

    2009-01-01

    Mechanical removal of oral biofilms is ubiquitously accepted as the best way to prevent caries and periodontal diseases. Removal effectiveness strongly depends on biofilm strength. To investigate the influence of hydrodynamics on oral biofilm strength, we grew single- and multi-species biofilms of S

  5. Hydrodynamic stability and stellar oscillations

    Indian Academy of Sciences (India)

    H M Antia

    2011-07-01

    Chandrasekhar’s monograph on Hydrodynamic and hydromagnetic stability, published in 1961, is a standard reference on linear stability theory. It gives a detailed account of stability of fluid flow in a variety of circumstances, including convection, stability of Couette flow, Rayleigh–Taylor instability, Kelvin–Helmholtz instability as well as the Jean’s instability for star formation. In most cases he has extended these studies to include effects of rotation and magnetic field. In a later paper he has given a variational formulation for equations of non-radial stellar oscillations. This forms the basis for helioseismic inversion techniques as well as extension to include the effect of rotation, magnetic field and other large-scale flows using a perturbation treatment.

  6. Particle hydrodynamics with tessellation techniques

    CERN Document Server

    Hess, S

    2009-01-01

    Lagrangian smoothed particle hydrodynamics (SPH) is a well-established approach to model fluids in astrophysical problems, thanks to its geometric flexibility and ability to automatically adjust the spatial resolution to the clumping of matter. However, a number of recent studies have emphasized inaccuracies of SPH in the treatment of fluid instabilities. The origin of these numerical problems can be traced back to spurious surface effects across contact discontinuities, and to SPH's inherent prevention of mixing at the particle level. We here investigate a new fluid particle model where the density estimate is carried out with the help of an auxiliary mesh constructed as the Voronoi tessellation of the simulation particles instead of an adaptive smoothing kernel. This Voronoi-based approach improves the ability of the scheme to represent sharp contact discontinuities. We show that this eliminates spurious surface tension effects present in SPH and that play a role in suppressing certain fluid instabilities. ...

  7. Introduction to Magneto-Hydrodynamics

    Science.gov (United States)

    Pelletier, Guy

    Magneto-Hydrodynamics (hereafter MHD) describes plasmas on large scales and more generally electrically conducting fluids. This description does not discriminate between the various fluids that constitute the medium. In laboratory, it allows to globally describe a plasma machine, for instance a toroidal nuclear fusion reactor like a Tokamak. In astrophysics it plays an essential role in the description of cosmic objects and their environments, as well as the media, such as the interstellar or the intergalactic medium. A set of phenomena are specific to MHD description. Some of them will be presented in this lecture such as the tension effect, confinement, magnetic diffusivity, magnetic field freezing, Alfvén waves, magneto-sonic waves, reconnection. A celebrated phenomenon of MHD will not be introduced in this brief lecture, namely the dynamo effect.

  8. Molecular hydrodynamics from memory kernels

    CERN Document Server

    Lesnicki, Dominika; Carof, Antoine; Rotenberg, Benjamin

    2016-01-01

    The memory kernel for a tagged particle in a fluid, computed from molecular dynamics simulations, decays algebraically as $t^{-3/2}$. We show how the hydrodynamic Basset-Boussinesq force naturally emerges from this long-time tail and generalize the concept of hydrodynamic added mass. This mass term is negative in the present case of a molecular solute, at odds with incompressible hydrodynamics predictions. We finally discuss the various contributions to the friction, the associated time scales and the cross-over between the molecular and hydrodynamic regimes upon increasing the solute radius.

  9. Hydrodynamic effects of the tip movement on surface nanobubbles: a combined tapping mode, lift mode and force volume mode AFM study.

    Science.gov (United States)

    Walczyk, Wiktoria; Hain, Nicole; Schönherr, Holger

    2014-08-28

    We report on an Atomic Force Microscopy (AFM) study of AFM tip-nanobubble interactions in experiments conducted on argon surface nanobubbles on HOPG (highly oriented pyrolytic graphite) in water in tapping mode, lift mode and Force Volume (FV) mode AFM. By subsequent data acquisition on the same nanobubbles in these three different AFM modes, we could directly compare the effect of different tip-sample interactions. The tip-bubble interaction strength was found to depend on the vertical and horizontal position of the tip on the bubble with respect to the bubble center. The interaction forces measured experimentally were in good agreement with the forces calculated using the dynamic interaction model. The strength of the hydrodynamic effect was also found to depend on the direction of the tip movement. It was more pronounced in the FV mode, in which the tip approaches the bubble from the top, than in the lift mode, in which the tip approaches the bubble from the side. This result suggests that the direction of tip movement influences the bubble deformation. The effect should be taken into account when nanobubbles are analysed by AFM in various scanning modes.

  10. Two-pion interferometry for viscous hydrodynamic sources

    Institute of Scientific and Technical Information of China (English)

    Efaaf M.J.; SU Zhong-Qian; ZHANG Wei-Ning

    2012-01-01

    The space-time evolution of the (1+1)-dimensional viscous hydrodynamics with an initial quarkgluon plasma (QGP) produced in ultrarelativistic heavy ion collisions is studied numerically.The particleemitting sources undergo a crossover transition from the QGP to hadronic gas.We take into account a usual shear viscosity for the strongly coupled QGP as well as the bulk viscosity which increases significantly in the crossover region.The two-pion Hanbury-Brown-Twiss (HBT) interferometry for the viscous hydrodynamic sources is performed.The HBT analyses indicate that the viscosity effect on the two-pion HBT results is small if only the shear viscosity is taken into consideration in the calculations.The bulk viscosity leads to a larger transverse freeze-out configuration of the pion-emitting sources,and thus increases the transverse HBT radii.The results of the longitudinal HBT radius for the source with Bjorken longitudinal scaling are consistent with the experimental data.

  11. A Variational approach to thin film hydrodynamics of binary mixtures

    KAUST Repository

    Xu, Xinpeng

    2015-02-04

    In order to model the dynamics of thin films of mixtures, solutions, and suspensions, a thermodynamically consistent formulation is needed such that various coexisting dissipative processes with cross couplings can be correctly described in the presence of capillarity, wettability, and mixing effects. In the present work, we apply Onsager\\'s variational principle to the formulation of thin film hydrodynamics for binary fluid mixtures. We first derive the dynamic equations in two spatial dimensions, one along the substrate and the other normal to the substrate. Then, using long-wave asymptotics, we derive the thin film equations in one spatial dimension along the substrate. This enables us to establish the connection between the present variational approach and the gradient dynamics formulation for thin films. It is shown that for the mobility matrix in the gradient dynamics description, Onsager\\'s reciprocal symmetry is automatically preserved by the variational derivation. Furthermore, using local hydrodynamic variables, our variational approach is capable of introducing diffusive dissipation beyond the limit of dilute solute. Supplemented with a Flory-Huggins-type mixing free energy, our variational approach leads to a thin film model that treats solvent and solute in a symmetric manner. Our approach can be further generalized to include more complicated free energy and additional dissipative processes.

  12. Thermal energy conversion by coupled shape memory and piezoelectric effects

    Science.gov (United States)

    Zakharov, Dmitry; Lebedev, Gor; Cugat, Orphee; Delamare, Jerome; Viala, Bernard; Lafont, Thomas; Gimeno, Leticia; Shelyakov, Alexander

    2012-09-01

    This work gives experimental evidence of a promising method of thermal-to-electric energy conversion by coupling shape memory effect (SME) and direct piezoelectric effect (DPE) for harvesting quasi-static ambient temperature variations. Two original prototypes of thermal energy harvesters have been fabricated and tested experimentally. The first is a hybrid laminated composite consisting of TiNiCu shape memory alloy (SMA) and macro fiber composite piezoelectric. This composite comprises 0.1 cm3 of active materials and harvests 75 µJ of energy for each temperature variation of 60 °C. The second prototype is a SME/DPE ‘machine’ which uses the thermally induced linear strains of the SMA to bend a bulk PZT ceramic plate through a specially designed mechanical structure. The SME/DPE ‘machine’ with 0.2 cm3 of active material harvests 90 µJ over a temperature increase of 35 °C (60 µJ when cooling). In contrast to pyroelectric materials, such harvesters are also compatible with both small and slow temperature variations.

  13. Out-of-Equilibrium Chiral Magnetic Effect at Strong Coupling

    CERN Document Server

    Lin, Shu

    2013-01-01

    We study the charge transports originating from triangle anomaly in out-of-equilibrium conditions in the framework of AdS/CFT correspondence at strong coupling, to gain useful insights on possible charge separation effects that may happen in the very early stages of heavy-ion collisions. We first construct a gravity background of a homogeneous mass shell with a finite (axial) charge density gravitationally collapsing to a charged blackhole, which serves as a dual model for out-of-equilibrium charged plasma undergoing thermalization. We find that a finite charge density in the plasma slows down the thermalization. We then study the out-of-equilibrium properties of Chiral Magnetic Effect and Chiral Magnetic Wave in this background. As the medium thermalizes, the magnitude of chiral magnetic conductivity and the response time delay grow. We find a dynamical peak in the spectral function of retarded current correlator, which we identify as an out-of-equilibrium chiral magnetic wave. The group velocity of the out-...

  14. Tuning the effective spin-orbit coupling in molecular semiconductors

    KAUST Repository

    Schott, Sam

    2017-05-11

    The control of spins and spin to charge conversion in organics requires understanding the molecular spin-orbit coupling (SOC), and a means to tune its strength. However, quantifying SOC strengths indirectly through spin relaxation effects has proven difficult due to competing relaxation mechanisms. Here we present a systematic study of the g-tensor shift in molecular semiconductors and link it directly to the SOC strength in a series of high-mobility molecular semiconductors with strong potential for future devices. The results demonstrate a rich variability of the molecular g-shifts with the effective SOC, depending on subtle aspects of molecular composition and structure. We correlate the above g-shifts to spin-lattice relaxation times over four orders of magnitude, from 200 to 0.15 μs, for isolated molecules in solution and relate our findings for isolated molecules in solution to the spin relaxation mechanisms that are likely to be relevant in solid state systems.

  15. Reduction of Waste Water in Erhai Lake Based on MIKE21 Hydrodynamic and Water Quality Model

    Directory of Open Access Journals (Sweden)

    Changjun Zhu

    2013-01-01

    Full Text Available In order to study the ecological water environment in Erhai Lake, different monitoring sections were set to research the change of hydrodynamics and water quality. According to the measured data, MIKE21 Ecolab, the water quality simulation software developed by DHI, is applied to simulate the water quality in Erhai Lake. The hydrodynamics model coupled with water quality is established by MIKE21FM software to simulate the current situation of Erhai Lake. Then through the comparison with the monitoring data, the model parameters are calibrated and the simulation results are verified. Based on this, water quality is simulated by the two-dimensional hydrodynamics and water quality coupled model. The results indicate that the level of water quality in the north and south of lake is level III, while in the center of lake, the water quality is level II. Finally, the water environment capacity and total emmision reduction of pollutants are filtered to give some guidance for the water resources management and effective utilization in the Erhai Lake.

  16. A mesoscopic model for microscale hydrodynamics and interfacial phenomena: Slip, films, and contact angle hysteresis

    CERN Document Server

    Colosqui, Carlos E; Papathanasiou, Athanasios G; Kevrekidis, Ioannis G

    2012-01-01

    We present a model based on the lattice Boltzmann equation that is suitable for the simulation of dynamic wetting. The model is capable of exhibiting fundamental interfacial phenomena such as weak adsorption of fluid on the solid substrate and the presence of a thin surface film within which a disjoining pressure acts. Dynamics in this surface film, tightly coupled with hydrodynamics in the fluid bulk, determine macroscopic properties of primary interest: the hydrodynamic slip; the equilibrium contact angle; and the static and dynamic hysteresis of the contact angles. The pseudo- potentials employed for fluid-solid interactions are composed of a repulsive core and an attractive tail that can be independently adjusted. This enables effective modification of the functional form of the disjoining pressure so that one can vary the static and dynamic hysteresis on surfaces that exhibit the same equilibrium contact angle. The modeled solid-fluid interface is diffuse, represented by a wall probability function which...

  17. Effective fiber-coupling of entangled photons for quantum communication

    CERN Document Server

    Bovino, F A; Colla, A M; Castagnoli, G C; Giuseppe, G D; Sergienko, A V

    2003-01-01

    We report on theoretical and experimental demonstration of high-efficiency coupling of two-photon entangled states produced in the nonlinear process of spontaneous parametric down conversion into a single-mode fiber. We determine constraints for the optimal coupling parameters. This result is crucial for practical implementation of quantum key distribution protocols with entangled states.

  18. Hydrodynamics of pronuclear migration

    Science.gov (United States)

    Nazockdast, Ehssan; Needleman, Daniel; Shelley, Michael

    2014-11-01

    Microtubule (MT) filaments play a key role in many processes involved in cell devision including spindle formation, chromosome segregation, and pronuclear positioning. We present a direct numerical technique to simulate MT dynamics in such processes. Our method includes hydrodynamically mediated interactions between MTs and other cytoskeletal objects, using singularity methods for Stokes flow. Long-ranged many-body hydrodynamic interactions are computed using a highly efficient and scalable fast multipole method, enabling the simulation of thousands of MTs. Our simulation method also takes into account the flexibility of MTs using Euler-Bernoulli beam theory as well as their dynamic instability. Using this technique, we simulate pronuclear migration in single-celled Caenorhabditis elegans embryos. Two different positioning mechanisms, based on the interactions of MTs with the motor proteins and the cell cortex, are explored: cytoplasmic pulling and cortical pushing. We find that although the pronuclear complex migrates towards the center of the cell in both models, the generated cytoplasmic flows are fundamentally different. This suggest that cytoplasmic flow visualization during pronuclear migration can be utilized to differentiate between the two mechanisms.

  19. Self-dual vortices in Chern-Simons hydrodynamics

    CERN Document Server

    Li, D K

    2001-01-01

    One studies effect of nonlinear quantum potential on planar vortices occurring in (2+1)-dimensional problem for the Schroedinger equation with interaction with the Chern-Simons (CS) gauge field. Classical dynamics of a charged nonrelativistic particle moving in U(1)-gauge field is described in the form of the Schroedinger nonlinear (SN) wave equation with quantum potential. it is shown that deformation introduction into coupling constant of quantum potential depending on the Plank constant results either in the Schroedinger standard model or in diffusion-antidiffusion equations. The gauge theory in the form of the Abelian CS-theory interacting with SN field boils down to the theory of vortex hydrodynamics. Problem for a static flux moving with speed equal to quantum speed boils down to the Liouville equation. Paper contains description of the relevant vortex configurations

  20. Instability of aqueous solutions of polyacrylamide in a hydrodynamic field

    Science.gov (United States)

    Makogon, B. P.; Bykova, E. N.; Bezrukova, M. A.; Klenin, S. I.; Ivanyuta, Yu. F.; Povkh, I. L.; Toryanik, A. I.

    1985-09-01

    This article discusses findings obtained regarding the effect of a hydrodynamic field on the reduced viscosity, effect of turbulent friction reduction, light scattering, double refraction, and optical density of aqueous solutions of hydrolyzed polyacrylamide.

  1. The hydrodynamics of dolphin drafting

    Directory of Open Access Journals (Sweden)

    Weihs Daniel

    2004-05-01

    Full Text Available Abstract Background Drafting in cetaceans is defined as the transfer of forces between individuals without actual physical contact between them. This behavior has long been surmised to explain how young dolphin calves keep up with their rapidly moving mothers. It has recently been observed that a significant number of calves become permanently separated from their mothers during chases by tuna vessels. A study of the hydrodynamics of drafting, initiated in the hope of understanding the mechanisms causing the separation of mothers and calves during fishing-related activities, is reported here. Results Quantitative results are shown for the forces and moments around a pair of unequally sized dolphin-like slender bodies. These include two major effects. First, the so-called Bernoulli suction, which stems from the fact that the local pressure drops in areas of high speed, results in an attractive force between mother and calf. Second is the displacement effect, in which the motion of the mother causes the water in front to move forwards and radially outwards, and water behind the body to move forwards to replace the animal's mass. Thus, the calf can gain a 'free ride' in the forward-moving areas. Utilizing these effects, the neonate can gain up to 90% of the thrust needed to move alongside the mother at speeds of up to 2.4 m/sec. A comparison with observations of eastern spinner dolphins (Stenella longirostris is presented, showing savings of up to 60% in the thrust that calves require if they are to keep up with their mothers. Conclusions A theoretical analysis, backed by observations of free-swimming dolphin schools, indicates that hydrodynamic interactions with mothers play an important role in enabling dolphin calves to keep up with rapidly moving adult school members.

  2. Flagellar synchronization through direct hydrodynamic interactions.

    Science.gov (United States)

    Brumley, Douglas R; Wan, Kirsty Y; Polin, Marco; Goldstein, Raymond E

    2014-07-29

    Flows generated by ensembles of flagella are crucial to development, motility and sensing, but the mechanisms behind this striking coordination remain unclear. We present novel experiments in which two micropipette-held somatic cells of Volvox carteri, with distinct intrinsic beating frequencies, are studied by high-speed imaging as a function of their separation and orientation. Analysis of time series shows that the interflagellar coupling, constrained by lack of connections between cells to be hydrodynamical, exhibits a spatial dependence consistent with theory. At close spacings it produces robust synchrony for thousands of beats, while at increasing separations synchrony is degraded by stochastic processes. Manipulation of the relative flagellar orientation reveals in-phase and antiphase states, consistent with dynamical theories. Flagellar tracking with exquisite precision reveals waveform changes that result from hydrodynamic coupling. This study proves unequivocally that flagella coupled solely through a fluid can achieve robust synchrony despite differences in their intrinsic properties.DOI: http://dx.doi.org/10.7554/eLife.02750.001.

  3. COHERENS: A hydrodynamic model validated for the west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Betty, J.; Saheed, P.P.; Carlos, F; Vethamony, P.; Campos, E.J.D

    COHERENS (COupled Hydrodynamical and Ecological model for REgioNal and Shelf seas), a 3D hydrodynamic multi-purpose model, has been implemented for the coastal and shelf seas of eastern Arabian Sea to study the flow characteristics The model has...

  4. Effects of mode coupling between low-mode radiation flux asymmetry and intermediate-mode ablator roughness on ignition capsule implosions

    Directory of Open Access Journals (Sweden)

    Jianfa Gu

    2017-01-01

    Full Text Available The low-mode shell asymmetry and high-mode hot spot mixing appear to be the main reasons for the performance degradation of the National Ignition Facility (NIF implosion experiments. The effects of the mode coupling between low-mode P2 radiation flux asymmetry and intermediate-mode L = 24 capsule roughness on the implosion performance of ignition capsule are investigated by two-dimensional radiation hydrodynamic simulations. It is shown that the amplitudes of new modes generated by the mode coupling are in good agreement with the second-order mode coupling equation during the acceleration phase. The later flow field not only shows large areal density P2 asymmetry in the main fuel, but also generates large-amplitude spikes and bubbles. In the deceleration phase, the increasing mode coupling generates more new modes, and the perturbation spectrum on the hot spot boundary is mainly from the strong mode interactions rather than the initial perturbation conditions. The combination of the low-mode and high-mode perturbations breaks up the capsule shell, resulting in a significant reduction of the hot spot temperature and implosion performance.

  5. Bubbling effect in the electro-optic delayed feedback oscillator coupled network

    Science.gov (United States)

    Liu, Lingfeng; Lin, Jun; Miao, Suoxia

    2017-03-01

    Synchronization in the optical systems coupled network always suffers from bubbling events. In this paper, we numerically investigate the statistical properties of the synchronization characteristics and bubbling effects in the electro-optic delayed feedback oscillator coupled network with different coupling strength, delay time and gain coefficient. Furthermore, we compare our results with the synchronization properties of semiconductor laser (SL) coupled network, which indicates that the electro-optic delayed feedback oscillator can be better to suppress the bubbling effects in the synchronization of coupled network under the same conditions.

  6. Hydrodynamics of slip wedge and optimization of surface slip property

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The hydrodynamic load support generated by a slip wedge of a slider bearing was studied. The surface slip property was optimized so that a maximum hydrodynamic load support could be obtained. A multi-linearity method was given for the slip control equation of two-dimensional (2-D) wall slip. We investigated 2-D wall slip and the hydrodynamics of a finite length bearing with any values of the surface limiting shear stress. It was found that the hydrodynamic effect of the slip wedge is greater than the traditional geometrical convergent-wedge. Even though the geo- metrical gap is a parallel or divergent sliding gap, the slip wedge still gives rise to a very big hydrodynamic pressure. The optimized slip wedge can give rise to a hy- drodynamic load support as high as 2.5 times of what the geometrical conver- gent-wedge can produce. Wall slip usually gives a small surface friction.

  7. Elasto-hydrodynamic network analysis of colloidal gels

    Science.gov (United States)

    Swan, James; Varga, Zsigmond

    Colloidal gels formed at low particle volume fractions result from a competition between two rate processes: aggregation of colloids and compaction of pre-gel aggregates. Recent work has shown that the former process is highly sensitive to the nature of the hydrodynamic interactions between suspended colloids. This same sensitivity to hydrodynamic flows within the gel leads to pronounced differences in the spectrum of relaxation times and response to deformation of the gel. This talk explores those differences and their consequences through computational simulations and the framework of elasto-hydrodynamic network analysis. We demonstrate a significant impact of hydrodynamic interactions between gelled colloids on macroscopic gel dynamics and rheology as well as the effect of hydrodynamic screening in gelled materials.

  8. Orbital effects of spatial variations of fundamental coupling constants

    CERN Document Server

    Iorio, Lorenzo

    2011-01-01

    We deal with the effects induced on the orbit of a test particle revolving around a central body by putative spatial variations of fundamental coupling constants $\\zeta$. In particular, we assume a dipole gradient for $\\zeta(\\bds r)/\\bar{\\zeta}$ along a generic direction $\\bds{\\hat{k}}$ in space. We analytically work out the long-term variations of all the six standard Keplerian orbital elements parameterizing the orbit of a test particle in a gravitationally bound two-body system. It turns out that, apart from the semi-major axis $a$, the eccentricity $e$, the inclination $I$, the longitude of the ascending node $\\Omega$, the longitude of pericenter $\\pi$ and the mean anomaly $\\mathcal{M}$ undergo non-zero long-term changes. By using the usual decomposition along the radial ($R$), transverse ($T$) and normal ($N$) directions, we also analytically work out the long-term changes $\\Delta R,\\Delta T,\\Delta N$ and $\\Delta v_R,\\Delta v_T,\\Delta v_N$ experienced by the position and the velocity vectors $\\bds r$ and...

  9. Hydrodynamics of evaporating sessile drops

    CERN Document Server

    Barash, L Yu

    2010-01-01

    Several dynamical stages of the Marangoni convection of an evaporating sessile drop are obtained. We jointly take into account the hydrodynamics of an evaporating sessile drop, effects of the thermal conduction in the drop and the diffusion of vapor in air. The stages are characterized by different number of vortices in the drop and the spatial location of vortices. During the early stage the array of vortices arises near a surface of the drop and induces a non-monotonic spatial distribution of the temperature over the drop surface. The number of near-surface vortices in the drop is controlled by the Marangoni cell size, which is calculated similar to that given by Pearson for flat fluid layers. The number of vortices quickly decreases with time, resulting in three bulk vortices in the intermediate stage. The vortex structure finally evolves into the single convection vortex in the drop, existing during about 1/2 of the evaporation time.

  10. Decoherent Histories and Hydrodynamic Equations

    CERN Document Server

    Halliwell, J J

    1998-01-01

    For a system consisting of a large collection of particles, a set of variables that will generally become effectively classical are the local densities (number, momentum, energy). That is, in the context of the decoherent histories approach to quantum theory, it is expected that histories of these variables will be approximately decoherent, and that their probabilites will be strongly peaked about hydrodynamic equations. This possibility is explored for the case of the diffusion of the number density of a dilute concentration of foreign particles in a fluid. It is shown that, for certain physically reasonable initial states, the probabilities for histories of number density are strongly peaked about evolution according to the diffusion equation. Decoherence of these histories is also shown for a class of initial states which includes non-trivial superpositions of number density. Histories of phase space densities are also discussed. The case of histories of number, momentum and energy density for more general...

  11. Hydrodynamics of anisotropic quark and gluon fluids

    Science.gov (United States)

    Florkowski, Wojciech; Maj, Radoslaw; Ryblewski, Radoslaw; Strickland, Michael

    2013-03-01

    The recently developed framework of anisotropic hydrodynamics is generalized to describe the dynamics of coupled quark and gluon fluids. The quark and gluon components of the fluids are characterized by different dynamical anisotropy parameters. The dynamical equations describing such mixtures are derived from kinetic theory, with the collisional kernel treated in the relaxation-time approximation, allowing for different relaxation times for quarks and gluons. Baryon number conservation is enforced in the quark and antiquark components of the fluid, but overall parton number nonconservation is allowed in the system. The resulting equations are solved numerically in the (0+1)-dimensional boost-invariant case at zero and finite baryon density.

  12. Hydrodynamics of anisotropic quark and gluon fluids

    CERN Document Server

    Florkowski, Wojciech; Ryblewski, Radoslaw; Strickland, Michael

    2012-01-01

    The recently developed framework of anisotropic hydrodynamics is generalized to describe the dynamics of coupled quark and gluon fluids. The quark and gluon components of the fluids are characterized by different dynamical anisotropy parameters. The dynamical equations describing such mixtures are derived from kinetic theory with the collisional kernel treated in the relaxation-time approximation. Baryon number conservation is enforced in the quark and anti-quark components of the fluid, but overall parton number non-conservation is allowed in the system. The resulting equations are solved numerically in the (0+1)-dimensional boost-invariant case at zero and finite baryon density.

  13. Magnetocaloric effect at the exchange–inversion with magnetoelastic coupling

    Energy Technology Data Exchange (ETDEWEB)

    Piazzi, Marco, E-mail: m.piazzi@inrim.it; Basso, Vittorio

    2015-09-15

    We develop a thermodynamic model to describe antiferro- (AFM) to ferromagnetic (FM) phase transitions through magnetoelastic coupling in the framework of Kittel's exchange–inversion mechanism. By including both magnetic and structural contributions to the free energy, we derive the conditions to have a direct AFM–FM transition. These are represented either by the presence of a non-zero intra-sublattice coupling constant or by a sufficiently high value of the magnetoelastic coupling parameter. In the paper we establish these conditions by analytical means and we discuss the physical meaning of the model in relation to possible applications to magnetocaloric materials with AFM–FM transitions.

  14. Magnetocaloric effect at the exchange-inversion with magnetoelastic coupling

    Science.gov (United States)

    Piazzi, Marco; Basso, Vittorio

    2015-09-01

    We develop a thermodynamic model to describe antiferro- (AFM) to ferromagnetic (FM) phase transitions through magnetoelastic coupling in the framework of Kittel's exchange-inversion mechanism. By including both magnetic and structural contributions to the free energy, we derive the conditions to have a direct AFM-FM transition. These are represented either by the presence of a non-zero intra-sublattice coupling constant or by a sufficiently high value of the magnetoelastic coupling parameter. In the paper we establish these conditions by analytical means and we discuss the physical meaning of the model in relation to possible applications to magnetocaloric materials with AFM-FM transitions.

  15. Using Remotely Sensed Data and Watershed and Hydrodynamic Models to Evaluate the Effects of Land Cover Land Use Change on Aquatic Ecosystems in Mobile Bay, AL

    Science.gov (United States)

    Al-Hamdan, Mohammad; Estes, Maurice G., Jr.; Judd, Chaeli; Woodruff, Dana; Ellis, Jean; Quattrochi, Dale; Watson, Brian; Rodriquez, Hugo; Johnson, Hoyt

    2012-01-01

    Alabama coastal systems have been subjected to increasing pressure from a variety of activities including urban and rural development, shoreline modifications, industrial activities, and dredging of shipping and navigation channels. The impacts on coastal ecosystems are often observed through the use of indicator species. One such indicator species for aquatic ecosystem health is submerged aquatic vegetation (SAV). Watershed and hydrodynamic modeling has been performed to evaluate the impact of land cover land use (LCLU) change in the two counties surrounding Mobile Bay (Mobile and Baldwin) on SAV stressors and controlling factors (temperature, salinity, and sediment) in the Mobile Bay estuary. Watershed modeling using the Loading Simulation Package in C++ (LSPC) was performed for all watersheds contiguous to Mobile Bay for LCLU scenarios in 1948, 1992, 2001, and 2030. Remotely sensed Landsat-derived National Land Cover Data (NLCD) were used in the 1992 and 2001 simulations after having been reclassified to a common classification scheme. The Prescott Spatial Growth Model was used to project the 2030 LCLU scenario based on current trends. The LSPC model simulations provided output on changes in flow, temperature, and sediment for 22 discharge points into the estuary. These results were inputted in the Environmental Fluid Dynamics Computer Code (EFDC) hydrodynamic model to generate data on changes in temperature, salinity, and sediment on a grid throughout Mobile Bay and adjacent estuaries. The changes in the aquatic ecosystem were used to perform an ecological analysis to evaluate the impact on SAV habitat suitability. This is the key product benefiting the Mobile Bay coastal environmental managers that integrates the influences of temperature, salinity, and sediment due to LCLU driven flow changes with the restoration potential of SAVs. Data products and results are being integrated into NOAA s EcoWatch and Gulf of Mexico Data Atlas online systems for

  16. Quasistatic Metamaterials: Magnetic Coupling Enhancement by Effective Space Cancellation.

    Science.gov (United States)

    Prat-Camps, Jordi; Navau, Carles; Sanchez, Alvaro

    2016-06-01

    A novel and broadly applicable way to increase magnetic coupling between distant circuits in the quasistatic regime is introduced. It is shown how the use of magnetic metamaterials enhances the magnetic coupling between emitting and receiving coils. Results are experimentally demonstrated by measuring a boost on the efficiency of the wireless transmission of power between distant circuits. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Fluctuations in Relativistic Causal Hydrodynamics

    CERN Document Server

    Kumar, Avdhesh; Mishra, Ananta P

    2013-01-01

    The formalism to calculate the hydrodynamics fluctuation using the quasi-stationary fluctuation theory of Onsager to the relativistic Navier-Stokes hydrodynamics is already known. In this work we calculate hydrodynamic fluctuations in relativistic causal theory of Muller, Israel and Stewart and other related causal hydrodynamic theories. We show that expressions for the Onsager coefficients and the correlation functions have form similar to the ones obtained by using Navier-Stokes equation. However, temporal evolution of the correlation functions obtained using MIS and the other causal theories can be significantly different than the correlation functions obtained using the Navier-Stokes equation. Finally, as an illustrative example, we explicitly plot the correlation functions obtained using the causal-hydrodynamics theories and compare them with correlation functions obtained by earlier authors using the expanding boost-invariant (Bjorken) flows.

  18. Gradient expansion for anisotropic hydrodynamics

    CERN Document Server

    Florkowski, Wojciech; Spaliński, Michał

    2016-01-01

    We compute the gradient expansion for anisotropic hydrodynamics. The results are compared with the corresponding expansion of the underlying kinetic-theory model with the collision term treated in the relaxation time approximation. We find that a recent formulation of anisotropic hydrodynamics based on an anisotropic matching principle yields the first three terms of the gradient expansion in agreement with those obtained for the kinetic theory. This gives further support for this particular hydrodynamic model as a good approximation of the kinetic-theory approach. We further find that the gradient expansion of anisotropic hydrodynamics is an asymptotic series, and the singularities of the analytic continuation of its Borel transform indicate the presence of non-hydrodynamic modes.

  19. Hydrodynamics of Ship Propellers

    DEFF Research Database (Denmark)

    Breslin, John P.; Andersen, Poul

    This book deals with flows over propellers operating behind ships, and the hydrodynamic forces and moments which the propeller generates on the shaft and on the ship hull.The first part of the text is devoted to fundamentals of the flow about hydrofoil sections (with and without cavitation......) and about wings. It then treats propellers in uniform flow, first via advanced actuator disc modelling, and then using lifting-line theory. Pragmatic guidance is given for design and evaluation of performance, including the use of computer modelling.The second part covers the development of unsteady forces...... arising from operation in non-uniform hull wakes. First, by a number of simplifications, various aspects of the problem are dealt with separately until the full problem of a non-cavitating, wide-bladed propeller in a wake is treated by a new and completely developed theory. Next, the complicated problem...

  20. Hydrodynamics of a robotic fish tail: effects of the caudal peduncle, fin ray motions and the flow speed.

    Science.gov (United States)

    Ren, Ziyu; Yang, Xingbang; Wang, Tianmiao; Wen, Li

    2016-02-08

    Recent advances in understanding fish locomotion with robotic devices have included the use of biomimetic flapping based and fin undulatory locomotion based robots, treating two locomotions separately from each other. However, in most fish species, patterns of active movements of fins occur in concert with the body undulatory deformation during swimming. In this paper, we describe a biomimetic robotic caudal fin programmed with individually actuated fin rays to mimic the fin motion of the Bluegill Sunfish (Lepomis macrochirus) and coupled with heave and pitch oscillatory motions adding to the robot to mimic the peduncle motion which is derived from the undulatory fish body. Multiple-axis force and digital particle image velocimetry (DPIV) experiments from both the vertical and horizontal planes behind the robotic model were conducted under different motion programs and flow speeds. We found that both mean thrust and lift could be altered by changing the phase difference (φ) from 0° to 360° between the robotic caudal peduncle and the fin ray motion (spanning from 3 mN to 124 mN). Notably, DPIV results demonstrated that the caudal fin generated multiple wake flow patterns in both the vertical and horizontal planes by varying φ. Vortex jet angle and thrust impulse also varied significantly both in these two planes. In addition, the vortex shedding position along the spanwise tail direction could be shifted around the mid-sagittal position between the upper and lower lobes by changing the phase difference. We hypothesize that the fish caudal fin may serve as a flexible vectoring propeller during swimming and may be critical for the high maneuverability of fish.