Bonneau, Dominique; Souchet, Dominique
2014-01-01
This Series provides the necessary elements to the development and validation of numerical prediction models for hydrodynamic bearings. This book describes the rheological models and the equations of lubrication. It also presents the numerical approaches used to solve the above equations by finite differences, finite volumes and finite elements methods.
Vibration Characteristics of Hydrodynamic Fluid Film Pocket Journal Bearings
Directory of Open Access Journals (Sweden)
N. S. Feng
2010-01-01
Full Text Available Theoretical analyses of hydrodynamic fluid film bearings with different bearing profiles rely on solutions of the Reynolds equation. This paper presents an approach used for analysing the so-called pocket bearings formed from a combination of offset circular bearing profiles. The results show that the variation of the dynamic bearing characteristics with different load inclinations for the pocket bearings is less than that for the elliptic bearing counterpart. It is shown that the natural frequencies as well as the critical speeds, and hence the vibrational behaviour, can also be significantly different for an industrial rotor supported by the different bearings.
Modeling of dynamically loaded hydrodynamic bearings at low Sommerfeld numbers
DEFF Research Database (Denmark)
Thomsen, Kim
. The challenging main bearing operation conditions in a wind turbine pose a demanding development task for the design of a hydrodynamic bearing. In general these conditions include operation at low Reynolds numbers with frequent start and stop at high loads as well as difficult operating conditions dictated...
Theoretical Investigation on a Novel Hydrodynamic Journal Bearing
Institute of Scientific and Technical Information of China (English)
路长厚; 陈淑江; 张建川
2004-01-01
To improve the static and dynamic performance of hydrodynamic journal beatings, a novel bearing is developed, which is a cone-shaped hydrodynamic bearing with spiral oil wedges. The major structural feature of this bearing is the three spiral circular recesses on the beating's surface, leading to improved characteristics. This paper aims to develop a model for design and calculation of the geometric parameters and the oil film thickness, and to provide a theoretical analysis to the static characteristics using a f'mite element method. Some new features are introduced.
Mitamura, Yoshinori; Kido, Kazuyuki; Yano, Tetsuya; Sakota, Daisuke; Yambe, Tomoyuki; Sekine, Kazumitsu; OKamoto, Eiji
2007-03-01
To overcome the drive shaft seal and bearing problem in rotary blood pumps, a hydrodynamic bearing, a magnetic fluid seal, and a brushless direct current (DC) motor were employed in an axial flow pump. This enabled contact-free rotation of the impeller without material wear. The axial flow pump consisted of a brushless DC motor, an impeller, and a guide vane. The motor rotor was directly connected to the impeller by a motor shaft. A hydrodynamic bearing was installed on the motor shaft. The motor and the hydrodynamic bearing were housed in a cylindrical casing and were waterproofed by a magnetic fluid seal, a mechanically noncontact seal. Impeller shaft displacement was measured using a laser sensor. Axial and radial displacements of the shaft were only a few micrometers for motor speed up to 8500 rpm. The shaft did not make contact with the bearing housing. A flow of 5 L/min was obtained at 8000 rpm at a pressure difference of 100 mm Hg. In conclusion, the axial flow blood pump consisting of a hydrodynamic bearing, a magnetic fluid seal, and a brushless DC motor provided contact-free rotation of the impeller without material wear.
Steady State Thermo-Hydrodynamic Analysis of Two-Axial groove and Multilobe Hydrodynamic Bearings
Directory of Open Access Journals (Sweden)
C. Bhagat
2014-12-01
Full Text Available Steady state thermo-hydrodynamic analysis of two axial groove and multi lobe oil journal bearings is performed in this paper. To study the steady state thermo-hydrodynamic characteristics Reynolds equation is solved simultaneously along with the energy equation and heat conduction equation in bush and shaft. The effect of groove geometry, cavitation in the fluid film, the recirculation of lubricant, shaft speed has also been taken into account. Film temperature in case of three-lobe bearing is found to be high as compared to other studied bearing configurations. The data obtained from this analysis can be used conveniently in the design of such bearings, which are presented in dimensionless form.
Performance characteristics in hydrodynamic water cooled thrust bearings
Directory of Open Access Journals (Sweden)
Farooq Ahmad Najar
2016-09-01
Full Text Available This paper deals with the study of the influence on performance characteristics of a thrust bearing with the introduction of cooling circuit and flow velocity of coolant within the designed thrust bearings is described. New method of cooling circuit configuration is taken into consideration and water has been chosen as a coolant here in the present work. Flow velocity of coolant, ranging from 0.5m/s to 2.0m/s is proposed. The Finite difference based numerical model has been developed in order to notice the effect on the heat transfer on a large hydrodynamic lubrication thrust bearing in-terms of its performance characteristics. In the present work, the solution of Reynolds equation, an energy equation with viscosity variation and Fourier heat conduction equations, applied with appropriate boundary conditions. From the present investigation, it is observed significant amount of heat content is removed from the bearing with the increase of flow velocity of coolant in an embedded cooling duct within the pad. An important parameter among performance characteristics has prevailed a significant increase in hydrodynamic pressure generation which in turn subsequently increases the load carrying capacity which has been never ever documented in the background literature.
Analytic Modeling of the Hydrodynamic, Thermal, and Structural Behavior of Foil Thrust Bearings
Bruckner, Robert J.; DellaCorte, Christopher; Prahl, Joseph M.
2005-01-01
A simulation and modeling effort is conducted on gas foil thrust bearings. A foil bearing is a self acting hydrodynamic device capable of separating stationary and rotating components of rotating machinery by a film of air or other gaseous lubricant. Although simple in appearance these bearings have proven to be complicated devices in analysis. They are sensitive to fluid structure interaction, use a compressible gas as a lubricant, may not be in the fully continuum range of fluid mechanics, and operate in the range where viscous heat generation is significant. These factors provide a challenge to the simulation and modeling task. The Reynolds equation with the addition of Knudsen number effects due to thin film thicknesses is used to simulate the hydrodynamics. The energy equation is manipulated to simulate the temperature field of the lubricant film and combined with the ideal gas relationship, provides density field input to the Reynolds equation. Heat transfer between the lubricant and the surroundings is also modeled. The structural deformations of the bearing are modeled with a single partial differential equation. The equation models the top foil as a thin, bending dominated membrane whose deflections are governed by the biharmonic equation. A linear superposition of hydrodynamic load and compliant foundation reaction is included. The stiffness of the compliant foundation is modeled as a distributed stiffness that supports the top foil. The system of governing equations is solved numerically by a computer program written in the Mathematica computing environment. Representative calculations and comparisons with experimental results are included for a generation I gas foil thrust bearing.
Kosaka, Ryo; Yasui, Kazuya; Nishida, Masahiro; Kawaguchi, Yasuo; Maruyama, Osamu; Yamane, Takashi
2014-09-01
We have developed a hydrodynamically levitated centrifugal pump as a bridge-to-decision device. The purpose of the present study is to determine the optimal bearing gap of a multiarc radial bearing in the developed blood pump for the reduction of hemolysis. We prepared eight pump models having bearing gaps of 20, 30, 40, 80, 90, 100, 180, and 250 μm. The driving conditions were set to a pressure head of 200 mm Hg and a flow rate of 4 L/min. First, the orbital radius of the impeller was measured for the evaluation of the impeller stability. Second, the hemolytic property was evaluated in an in vitro hemolysis test. As a result, the orbital radius was not greater than 15 μm when the bearing gap was between 20 and 100 μm. The relative normalized index of hemolysis (NIH) ratios in comparison with BPX-80 were 37.67 (gap: 20 μm), 0.95 (gap: 30 μm), 0.96 (gap: 40 μm), 0.82 (gap: 80 μm), 0.77 (gap: 90 μm), 0.92 (gap: 100 μm), 2.76 (gap: 180 μm), and 2.78 (gap: 250 μm). The hemolysis tended to increase at bearing gaps of greater than 100 μm due to impeller instability. When the bearing gap decreased from 30 to 20 μm, the relative NIH ratios increased significantly from 0.95 to 37.67 times (P pump for the reduction of hemolysis.
Kosaka, Ryo; Yada, Toru; Nishida, Masahiro; Maruyama, Osamu; Yamane, Takashi
2011-01-01
We have developed a hydrodynamic levitation centrifugal blood pump with a semi-open impeller for a mechanically circulatory assist. The impeller levitated with original hydrodynamic bearings without any complicated control and sensors. However, narrow bearing gap has the potential for causing hemolysis. The purpose of the study is to investigate the geometric configuration of the hydrodynamic step bearing to minimize hemolysis by expansion of the bearing gap. Firstly, we performed the numerical analysis of the step bearing based on Reynolds equation, and measured the actual hydrodynamic force of the step bearing. Secondly, the bearing gap measurement test and the hemolysis test were performed to the blood pumps, whose step length were 0 %, 33 % and 67 % of the vane length respectively. As a result, in the numerical analysis, the hydrodynamic force was the largest, when the step bearing was around 70 %. In the actual evaluation tests, the blood pump having step 67 % obtained the maximum bearing gap, and was able to improve the hemolysis, compared to those having step 0% and 33%. We confirmed that the numerical analysis of the step bearing worked effectively, and the blood pump having step 67 % was suitable configuration to minimize hemolysis, because it realized the largest bearing gap.
Hydrodynamic Flow Confinement Technology in Microfluidic Perfusion Devices
Directory of Open Access Journals (Sweden)
Aldo Jesorka
2012-05-01
Full Text Available Hydrodynamically confined flow device technology is a young research area with high practical application potential in surface processing, assay development, and in various areas of single cell research. Several variants have been developed, and most recently, theoretical and conceptual studies, as well as fully developed automated systems, were presented. In this article we review concepts, fabrication strategies, and application areas of hydrodynamically confined flow (HCF devices.
A study on compliant layers and its influence on dynamic response of a hydrodynamic journal bearing
DEFF Research Database (Denmark)
Thomsen, Kim; Klit, Peder
2011-01-01
For some hydrodynamic bearing applications polymer-lined bearings are chosen over traditional metal alloy bearings due to their better wear and friction properties when operating at very thin films, e.g. in the mixed lubrication region. The introduction of a compliant layer also affects the dynamic...
Directory of Open Access Journals (Sweden)
Lukas Bernhauser
2017-03-01
Full Text Available Increasing quality demands of combustion engines require, amongst others, improvements of the engine’s acoustics and all (subcomponents mounted to the latter. A significant impact to the audible tonal noise spectrum results from the vibratory motions of fast-rotating turbocharger rotor systems in multiple hydrodynamic bearings such as floating bearing rings. Particularly, the study of self-excited non-linear vibrations of the rotor-bearing systems is crucial for the understanding, prevention or reduction of the noise and, consequently, for a sustainable engine acoustics development. This work presents an efficient modeling approach for the investigation, optimization, and design improvement of complex turbocharger rotors in hydrodynamic journal bearings, including floating bearing rings with circular and non-circular bearing geometries. The capability of tonal non-synchronous vibration prevention using non-circular bearing shapes is demonstrated with dynamic run-up simulations of the presented model. These findings and the performance of our model are compared and validated with results of a classical Laval/Jeffcott rotor-bearing model and a specific turbocharger model found in the literature. It is shown that the presented simulation method yields fast and accurate results and furthermore, that non-circular bearing shapes are an effective measure to reduce or even prevent self-excited tonal noise.
Murashige, Tomotaka; Kosaka, Ryo; Sakota, Daisuke; Nishida, Masahiro; Kawaguchi, Yasuo; Yamane, Takashi; Maruyama, Osamu
2015-01-01
We have developed a hydrodynamically levitated centrifugal blood pump for extracorporeal circulatory support. In the blood pump, a spiral groove bearing was adopted for a thrust bearing. In the spiral groove bearing, separation of erythrocytes and plasma by plasma skimming has been postulated to occur. However, it is not clarified that plasma skimming occurs in a spiral groove bearing. The purpose of this study is to verify whether plasma skimming occurs in the spiral groove bearing of a hydrodynamically levitated centrifugal blood pump. For evaluation of plasma skimming in the spiral groove bearing, an impeller levitation performance test using a laser focus displacement meter and a microscopic visualization test of erythrocyte flow using a high-speed microscope were conducted. Bovine blood diluted with autologous plasma to adjust hematocrit to 1.0% was used as a working fluid. Hematocrit on the ridge region in the spiral groove bearing was estimated using image analysis. As a result, hematocrits on the ridge region with gaps of 45 μm, 31 μm, and 25 μm were calculated as 1.0%, 0.6%, and 0.3%, respectively. Maximum skimming efficiency in this study was calculated as 70% with a gap of 25 μm. We confirmed that separation of erythrocyte and plasma occurred in the spiral groove bearing with decrease in bearing gap in a hydrodynamically levitated centrifugal blood pump.
A Dynamic Analysis of Hydrodynamic Wave Journal Bearings
Ene, Nicoleta M.; Dimofte, Florin; Keith, Theo G.
2008-01-01
The purpose of this paper is to study the dynamic behavior of a three-wave journal bearing using a transient approach. The transient analysis permits the determination of the rotor behavior after the fractional frequency whirl appears. The journal trajectory is determined by solving a set of nonlinear equations of motion using the Runge-Katta method. The fluid film forces are computed by integrating the transient Reynolds equation at each time step location of the shaft with respect to the bearing. Because of the large values of the rotational speeds, turbulent effects were included in the computations. The influence of the temperature on the viscosity was also considered. Numerical results were compared to experimenta1 results obtained at the NASA Glenn Research Center. Comparisons of the theoretical results with experimental data were found to be in good agreement. The numerical and experimental results showed that the fluid film of a three-wave journal bearing having a diameter of 30 mm, a length of 27 mm, and a wave amplitude ratio greater than 0.15 is stable even at rotational speeds of 60,000 RPM. For lower wave amplitude ratios, the threshold speed at which the fluid film becomes unstable depends on the wave amplitude and on the supply pocket pressure. Even if the fluid film is unstable, the wave bearing maintains the whirl orbit inside the bearing clearance.
Chen, Chi-Yin; Chuang, Jen-Chen; Tu, Jia-Ying
2016-09-01
This paper proposes modified coefficients for the dynamic model of hydraulic journal bearing system that integrates the hydrodynamic and hydrostatic properties. In recent years, design of hydraulic bearing for machine tool attracts worldwide attention, because hydraulic bearings are able to provide higher capacity and accuracy with lower friction, compared to conventional bearing systems. In order to achieve active control of the flow pressure and enhance the operation accuracy, the dynamic model of hydraulic bearings need to be developed. Modified coefficients of hydrostatic stiffness, hydrodynamic stiffness, and squeeze damping of the dynamic model are presented in this work, which are derived referring to small displacement analysis from literature. The proposed modified coefficients and model, which consider the pressure variations, relevant geometry size, and fluid properties of the journal bearings, are able to characterise the hydrodynamic and hydrostatic properties with better precision, thus offering the following pragmatic contribution: (1) on-line prediction of the eccentricity and the position of the shaft in the face of external force that results in vibration; (2) development of active control system to regulate the supply flow pressure and to minimize the eccentricity of the shaft. Theoretical derivation and simulation results with different vibration cases are discussed to verify the proposed techniques.
Directory of Open Access Journals (Sweden)
Basim Ajeel Abass
2015-03-01
Full Text Available In the present work the effect of bearing compliance on the performance of high speed misaligned journal bearing lined with a compliant PTFE liner lubricated with bubbly oil at high speeds has been studied. The effect of induced oil film temperature due to shearing effect has been implemented. Hydrodynamic effect of the complaint bearing and the influence of aerated oil have been examined by the classical thermohydrodynamic lubrication theory modified to include the effect of oil film turbulence and oil film temperature with suitable models for bubbly oil viscosity and density. The effect of liner elastic deformation has been implemented by using Winkler model. The effects of variable density and specific heat on the most importantbearing parameters such as maximum pressure, maximum temperature, bearing load carrying capacity and power losses have been investigated.The results obtained show that the oil film pressure and load carrying capacity increased for the bearing lubricated with bubbly oil of higher aeration level and smaller size of air bubbles. Including the effect of elastic deformation of the bearing liner reduces the oil film pressure, load carrying capacity and frictional power loss for the misaligned bearing working at the same circumstances
The Optimum Design of Hydrodynamic Lubrication Bearing for Minimization of the Total Life Cost
Iwatsubo, Takuzo; Yamabayashi, Jun
This paper proposes an optimum design method of journal bearing for minimizing the total life cost which includes not only the initial cost but also the running cost. Journal bearing is one of the typical friction part and physically severe part in machine elements. Therefore, maintenance is required to prevent failure and to keep performance. For this object, the running cost by the maintenance is user's burden. Thus, the optimum design method of the bearing for minimization of the total life cost is required. In this research, the evaluation functions of the total life cost which contains the initial cost and the running cost of the bearing are discussed and the optimum design is proposed under the physical constrain, that is Thermo Hydrodynamic Lubrication theory (THL theory), and inequality constraints. Then design valuables of the optimum journal bearing are obtained.
Tala-ighil, N.; Fillon, M.
2017-02-01
This study investigates the evolution of the main bearing performance of partially and fully textured hydrodynamic journal bearing. The viscosity effect is also analysed by the mean of numerical simulations for two types of oil: the oil 1 (ISO VG 32, 31.3 cSt at 40 °C) has a lower viscosity than oil 2 (ISO VG 100, 93 cSt at 40 °C). Reynolds equation is solved by finite difference and Gauss-Seidel methods with over-relaxation for various operating conditions. It is shown that, under hydrodynamic lubrication regime, the improvement of the most important characteristics (the friction coefficient and minimum film thickness) of a textured journal bearing depend strongly on the lubricant viscosity and the journal rotational speed. The fully textured journal bearing is highly favorable at very low speeds while the partially textured journal bearing is more suitable for slightly higher speeds. The gain in bearing performance due to the texturing of the bushing disappears at a critical speed of the journal and then, for higher rotational speeds, the presence of textures becomes detrimental.
Lubricant replacement in rolling element bearings for weapon surety devices
Energy Technology Data Exchange (ETDEWEB)
Steinhoff, R.; Dugger, M.T.; Varga, K.S. [Sandia National Laboratories, Albuquerque, NM (United States)
1996-05-01
Stronglink switches are a weapon surety device that is critical to the nuclear safety theme in modem nuclear weapons. These stronglink switches use rolling element bearings which contain a lubricant consisting of low molecular weight polytetrafluoroethylene (PTFE) fragments. Ozone-depleting solvents are used in both the manufacture and application of this lubricant. An alternate bearing lubrication for stronglink switches is needed that will provide long-term chemical stability, low migration and consistent performance. Candidates that were evaluated include bearings with sputtered MoS{sub 2} on the races and retainers, bearings with TiC-coated balls, and bearings with Si{sub 3}N{sub 4} balls and steel races. These candidates were compared to the lubricants currently used which are bearings lubricated with PTFE fragments of low molecular weight in a fluorocarbon solvent. The candidates were also compared to bearings lubricated with a diester oil which is representative of bearing lubricants used in industrial applications. Evaluation consisted of cycling preloaded bearings and subjecting them to 23 gRMS random vibration. All of the candidates are viable substitutes for low load application where bearing preload is approximately 1 pound. For high load applications where the bearing preload is approximately 10 pounds, bearings with sputtered MoS{sub 2} on the races and retainers appear to be the best substitutes. Bearings with TiC-coated balls also appear to be a viable candidate but these bearings did not perform as well as the sputtered MoS{sub 2}.
Kosaka, Ryo; Yoshida, Fumihiko; Nishida, Masahiro; Maruyama, Osamu; Kawaguchi, Yasuo; Yamane, Takashi
2015-01-01
The purpose of the present study is to investigate a bearing gap adjustment for improvement of levitation performance in a hydrodynamically levitated centrifugal blood pump to realize a blood pump with a low hemolysis level. The impeller levitates axially by balancing a gravitational force, buoyancy, a magnetic force, and hydrodynamic forces on the top and bottom sides of the impeller. To adjust the levitation position of the impeller, the balance of acting forces on the impeller was adjusted by changing the shroud area on the bottom impeller. Three pumps having various shroud area were prepared as tested models: 817 mm(2) (HH-S), 875 mm(2) (HH-M) and 931 mm(2) (HH-L). First, for evaluating the bearing gap adjustment, the bearing gap was estimated by calculating a balancing position of the acting forces on the impeller. We actually measured the gravitational force, buoyancy and the magnetic force, and numerically analyzed hydrodynamic forces on the top and bottom sides of the impeller. Second, to verify accuracy of the estimated bearing gap, the measurement test of the bearing gap was performed. Finally, an in-vitro hemolysis test was performed to evaluate a hemolysis level of the pump. As a result, bottom bearing gaps were estimated as 40 μm (HH-S), 60 μm (HH-M) and 238 μm (HH-L). In the measurement test, bottom bearing gaps were measured as 63 μm (HH-S), 219 μm (HH-M), and 231 μm (HH-L). The estimated bearing gaps had positively correlated with the measured bearing gaps in relation to the shroud area on the impeller. In the hemolysis test, hemolysis level in every model was almost equivalent to that of BPX-80, when the bearing gap was adjusted greater than 60 μm. We could adjust the bearing gap by changing the shroud area on the impeller for improvement of levitation performance to realize a blood pump with a low hemolysis level.
Influence of hydrodynamic thrust bearings on the nonlinear oscillations of high-speed rotors
Chatzisavvas, Ioannis; Boyaci, Aydin; Koutsovasilis, Panagiotis; Schweizer, Bernhard
2016-10-01
This paper investigates the effect of hydrodynamic thrust bearings on the nonlinear vibrations and the bifurcations occurring in rotor/bearing systems. In order to examine the influence of thrust bearings, run-up simulations may be carried out. To be able to perform such run-up calculations, a computationally efficient thrust bearing model is mandatory. Direct discretization of the Reynolds equation for thrust bearings by means of a Finite Element or Finite Difference approach entails rather large simulation times, since in every time-integration step a discretized model of the Reynolds equation has to be solved simultaneously with the rotor model. Implementation of such a coupled rotor/bearing model may be accomplished by a co-simulation approach. Such an approach prevents, however, a thorough analysis of the rotor/bearing system based on extensive parameter studies. A major point of this work is the derivation of a very time-efficient but rather precise model for transient simulations of rotors with hydrodynamic thrust bearings. The presented model makes use of a global Galerkin approach, where the pressure field is approximated by global trial functions. For the considered problem, an analytical evaluation of the relevant integrals is possible. As a consequence, the system of equations of the discretized bearing model is obtained symbolically. In combination with a proper decomposition of the governing system matrix, a numerically efficient implementation can be achieved. Using run-up simulations with the proposed model, the effect of thrust bearings on the bifurcations points as well as on the amplitudes and frequencies of the subsynchronous rotor oscillations is investigated. Especially, the influence of the magnitude of the axial force, the geometry of the thrust bearing and the oil parameters is examined. It is shown that the thrust bearing exerts a large influence on the nonlinear rotor oscillations, especially to those related with the conical mode of the
Alakhramsing, S.; Van Ostayen, R.A.J.; Eling, R.P.T.
2015-01-01
Accurate prediction of cavitation is an important feature in hydrodynamic bearing modeling. Especially for thermo-hydrodynamic modeling, it is crucial to use a mass-conservative cavitation algorithm. This paper introduces a new mass-conserving Reynolds cavitation algorithm, which provides fast conve
Dynamic characteristics of hard disk drive spindles supported by hydrodynamic bearings
Institute of Scientific and Technical Information of China (English)
2001-01-01
Most hard disk spindles currently used are supported by grease lubricated deep-groove ball bearings.However, in the trend of increasing spindle speed and reducing size and cost, the shortcomings of ball bearing spin-dles, such as high non-repeatable run out, high acoustic noise and short life time at high running speed, make themunsuitable for high performance hard disk drives (HDD). On the contrary, the dynamic characteristics of hydrody-namic bearing spindles are superior to that of ball bearing spindles. Therefore, they are considered to be the substi-tute of ball bearing spindles in HDD. In this paper, a simulative setup of HDD is build up. The dynamic characteristicsof liquid lubricated spiral groove bearing(SGB) spindles are studied. The effects of both operating condition andbearing clearance are investigated. It is found that running speed of the spindle has significant influence on its dy-namic performance, while the load has little influence. The effect of clearance is also evident.
Kosaka, Ryo; Yada, Toru; Nishida, Masahiro; Maruyama, Osamu; Yamane, Takashi
2013-09-01
A hydrodynamically levitated centrifugal blood pump with a semi-open impeller has been developed for mechanical circulatory assistance. However, a narrow bearing gap has the potential to cause hemolysis. The purpose of the present study is to optimize the geometric configuration of the hydrodynamic step bearing in order to reduce hemolysis by expansion of the bearing gap. First, a numerical analysis of the step bearing, based on lubrication theory, was performed to determine the optimal design. Second, in order to assess the accuracy of the numerical analysis, the hydrodynamic forces calculated in the numerical analysis were compared with those obtained in an actual measurement test using impellers having step lengths of 0%, 33%, and 67% of the vane length. Finally, a bearing gap measurement test and a hemolysis test were performed. As a result, the numerical analysis revealed that the hydrodynamic force was the largest when the step length was approximately 70%. The hydrodynamic force calculated in the numerical analysis was approximately equivalent to that obtained in the measurement test. In the measurement test and the hemolysis test, the blood pump having a step length of 67% achieved the maximum bearing gap and reduced hemolysis, as compared with the pumps having step lengths of 0% and 33%. It was confirmed that the numerical analysis of the step bearing was effective, and the developed blood pump having a step length of approximately 70% was found to be a suitable configuration for the reduction of hemolysis.
A Stability Analysis for a Hydrodynamic Three-Wave Journal Bearing
Ene, Nicoleta M.; Dimofte, Florin; Keith, Theo G., Jr.
2007-01-01
The influence of the wave amplitude and oil supply pressure on the dynamic behavior of a hydrodynamic three-wave journal bearing is presented. Both, a transient and a small perturbation technique, were used to predict the threshold to fractional frequency whirl (FFW). In addition, the behavior of the rotor after FFW appeared was determined from the transient analysis. The turbulent effects were also included in the computations. Bearings having a diameter of 30 mm, a length of 27.5 mm, and a clearance of 35 microns were analyzed. Numerical results were compared to experimental results obtained at the NASA GRC. Numerical and experimental results showed that the above-mentioned wave bearing with a wave amplitude ratio of 0.305 operates stably at rotational speeds up to 60,000 rpm, regardless of the oil supply pressure. For smaller wave amplitude ratios, a threshold of stability was found. It was observed that the threshold of stability for lower wave amplitude strongly depends on the oil supply pressure and on the wave amplitude. When the FFW occurs, the journal center maintains its trajectory inside the bearing clearance and therefore the rotor can be run safely without damaging the bearing surfaces.
Highly stable and routinely convergent 2-dimensional hydrodynamic device simulation
Lin, Qi; Goldsman, Neil; Tai, Gwo-Chung
1994-02-01
This paper presents a new method for solving the hydrodynamic (HD) model in submicron semiconductor device simulation. The main feature of this method is that the Poisson, current-continuity and energy-balance equations in the HD model are all expressed in self-adjoint forms through a set of new Slotboom-like variables. As a consequence, the discretization results in a system of finite-difference equations with a diagonally dominant coefficient matrix for each HD equation. The simultaneous HD equations are decoupled by using the Gummel block iteration method. To solve each equation, a fixed-point iteration technique is employed which explicitly updates the state variables at each spatial mesh-point. In addition to avoiding direct solution of large matrix equations, the diagonal dominance guarantees that each HD equation will converge for any initial value. We demonstrate the method by simulating a 2-D submicron MOSFET, and by comparison with Monte Carlo calculations. Excellent numerical convergence, stability, and efficiency are observed.
NONLINEAR DYNAMIC CHARACTERISTICS OF HYDRODYNAMIC JOURNAL BEARING-FLEXIBLE ROTOR SYSTEM
Institute of Scientific and Technical Information of China (English)
Lu Yanjun; Yu Lie; Liu Heng
2005-01-01
The nonlinear dynamic behaviors of flexible rotor system with hydrodynamic bearing supports are analyzed. The shaft is modeled by using the finite element method that takes the effect of inertia and shear into consideration. According to the nonlinearity of the hydrodynamic journal bearing-flexible rotor system, a modified modal synthesis technique with free-interface is represented to reduce degrees-of-freedom of model of the flexible rotor system. According to physical character of oil film, variational constrain approach is introduced to continuously revise the variational form of Reynolds equation at every step of dynamic integration and iteration. Fluid lubrication problem with Reynolds boundary is solved by the isoparametric finite element method without the increasing of computing efforts. Nonlinear oil film forces and their Jacobians are simultaneously calculated and -Newton-Floquet (PNF) method. A method, combining the predictor-corrector mechanism to the PNF method, is presented to calculate the bifurcation point of periodic motions to be subject to change of system parameters. The local stability and bifurcation behaviors of periodic motions are obtained by Floquet theory. The chaotic motions of the beating-rotor system are investigated by power spectrum.The numerical examples show that the scheme of this study saves computing efforts but also is of good precision.
Biofeedback in Partial Weight Bearing: Validity of 3 Different Devices.
van Lieshout, Remko; Stukstette, Mirelle J; de Bie, Rob A; Vanwanseele, Benedicte; Pisters, Martijn F
2016-11-01
Study Design Controlled laboratory study to assess criterion-related validity, with a cross-sectional within-subject design. Background Patients with orthopaedic conditions have difficulties complying with partial weight-bearing instructions. Technological advances have resulted in biofeedback devices that offer real-time feedback. However, the accuracy of these devices is mostly unknown. Inaccurate feedback can result in incorrect lower-limb loading and may lead to delayed healing. Objectives To investigate validity of peak force measurements obtained using 3 different biofeedback devices under varying levels of partial weight-bearing categories. Methods Validity of 3 biofeedback devices (OpenGo science, SmartStep, and SensiStep) was assessed. Healthy participants were instructed to walk at a self-selected speed with crutches under 3 different weight-bearing conditions, categorized as a percentage range of body weight: 1% to 20%, greater than 20% to 50%, and greater than 50% to 75%. Peak force data from the biofeedback devices were compared with the peak vertical ground reaction force measured with a force plate. Criterion validity was estimated using simple and regression-based Bland-Altman 95% limits of agreement and weighted kappas. Results Fifty-five healthy adults (58% male) participated. Agreement with the gold standard was substantial for the SmartStep, moderate for OpenGo science, and slight for SensiStep (weighted ± = 0.76, 0.58, and 0.19, respectively). For the 1% to 20% and greater than 20% to 50% weight-bearing categories, both the OpenGo science and SmartStep had acceptable limits of agreement. For the weight-bearing category greater than 50% to 75%, none of the devices had acceptable agreement. Conclusion The OpenGo science and SmartStep provided valid feedback in the lower weight-bearing categories, and the SensiStep showed poor validity of feedback in all weight-bearing categories. J Orthop Sports Phys Ther 2016;46(11):-1. Epub 12 Oct 2016. doi:10
Cherabi, Bilal; Hamrani, Abderrachid; Belaidi, Idir; Khelladi, Sofiane; Bakir, Farid
2016-10-01
In the present work, a reduced-order method, "Proper Generalized Decomposition (PGD)" is extended and applied to the resolution of the Reynolds equation describing the behavior of the lubricant in hydrodynamic journal bearing. The PGD model is employed to solve the characteristic 'Reynolds' partial differential equation using the separation technique through the alternating direction strategy. The resulting separated-dimension system has a low computation cost compared to classical finite-difference resolution. Several numerical benchmark examples are investigated to verify the validity and accuracy of the proposed method. It has been found that numerical results obtained by the PGD method can achieve an improved convergence rate with a very low computation cost.
Non-Parabolic Hydrodynamic Formulations for the Simulation of Inhomogeneous Semiconductor Devices
Smith, A. W.; Brennan, K. F.
1996-01-01
Hydrodynamic models are becoming prevalent design tools for small scale devices and other devices in which high energy effects can dominate transport. Most current hydrodynamic models use a parabolic band approximation to obtain fairly simple conservation equations. Interest in accounting for band structure effects in hydrodynamic device simulation has begun to grow since parabolic models cannot fully describe the transport in state of the art devices due to the distribution populating non-parabolic states within the band. This paper presents two different non-parabolic formulations or the hydrodynamic model suitable for the simulation of inhomogeneous semiconductor devices. The first formulation uses the Kane dispersion relationship ((hk)(exp 2)/2m = W(1 + alphaW). The second formulation makes use of a power law ((hk)(exp 2)/2m = xW(exp y)) for the dispersion relation. Hydrodynamic models which use the first formulation rely on the binomial expansion to obtain moment equations with closed form coefficients. This limits the energy range over which the model is valid. The power law formulation readily produces closed form coefficients similar to those obtained using the parabolic band approximation. However, the fitting parameters (x,y) are only valid over a limited energy range. The physical significance of the band non-parabolicity is discussed as well as the advantages/disadvantages and approximations of the two non-parabolic models. A companion paper describes device simulations based on the three dispersion relationships; parabolic, Kane dispersion and power law dispersion.
Non-Parabolic Hydrodynamic Formulations for the Simulation of Inhomogeneous Semiconductor Devices
Smith, A. W.; Brennan, K. F.
1996-01-01
Hydrodynamic models are becoming prevalent design tools for small scale devices and other devices in which high energy effects can dominate transport. Most current hydrodynamic models use a parabolic band approximation to obtain fairly simple conservation equations. Interest in accounting for band structure effects in hydrodynamic device simulation has begun to grow since parabolic models cannot fully describe the transport in state of the art devices due to the distribution populating non-parabolic states within the band. This paper presents two different non-parabolic formulations or the hydrodynamic model suitable for the simulation of inhomogeneous semiconductor devices. The first formulation uses the Kane dispersion relationship ((hk)(exp 2)/2m = W(1 + alphaW). The second formulation makes use of a power law ((hk)(exp 2)/2m = xW(exp y)) for the dispersion relation. Hydrodynamic models which use the first formulation rely on the binomial expansion to obtain moment equations with closed form coefficients. This limits the energy range over which the model is valid. The power law formulation readily produces closed form coefficients similar to those obtained using the parabolic band approximation. However, the fitting parameters (x,y) are only valid over a limited energy range. The physical significance of the band non-parabolicity is discussed as well as the advantages/disadvantages and approximations of the two non-parabolic models. A companion paper describes device simulations based on the three dispersion relationships; parabolic, Kane dispersion and power law dispersion.
Yasui, Kazuya; Kosaka, Ryo; Nishida, Masahiro; Maruyama, Osamu; Kawaguchi, Yasuo; Yamane, Takashi
2013-09-01
The purpose of the present study is to establish an optimal design of the multi-arc hydrodynamic bearing in a centrifugal blood pump for the improvement of bearing stiffness and hemolysis level. The multi-arc bearing was designed to fulfill the required specifications: (i) ensuring the uniform bearing stiffness for various bearing angles; (ii) ensuring a higher bearing stiffness than the centrifugal force to prevent impeller whirl; and (iii) adjusting the bearing clearance as much as possible to reduce hemolysis. First, a numerical analysis was performed to optimize three design parameters of the multi-arc bearing: number of arcs N, bearing clearance C, and groove depth H. To validate the accuracy of the numerical analysis, the impeller trajectories for six pump models were measured. Finally, an in vitro hemolysis test was conducted to evaluate the hemolytic property of the multi-arc bearing. As a result of the numerical analysis, the optimal parameter combination was determined as follows: N=4, C=100 μm, and H ≥ 100 μm. In the measurements of the impeller trajectory, the optimal parameter combination was found to be as follows: N=4, C=90 μm, and H=100 μm. This result demonstrated the high reliability of the numerical analysis. In the hemolysis test, the parameter combination that achieved the smallest hemolysis was obtained as follows: N=4, C=90 μm, and H=100 μm. In conclusion, the multi-arc bearing could be optimized for the improvement of bearing stiffness and hemolysis level.
一种新型流体动力轴承的理论研究%Theoretical Investigation on a Novel Hydrodynamic Journal Bearing
Institute of Scientific and Technical Information of China (English)
路长厚; 陈淑江; 张建川
2004-01-01
To improve the static and dynamic performance of hydrodynamic journal bearings, a novel bearing is developed, which is a cone-shaped hydrodynamic bearing with spiral oil wedges. The major structural feature of this bearing is the three spiral circular recesses on the bearing's surface, leading to improved characteristics. This paper aims to develop a model for design and calculation of the geometric parameters and the oil film thickness, and to provide a theoretical analysis to the static characteristics using a finite element method. Some new features are introduced.
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
A model for the non-linear axial vibrations of the hydrodynamic thrust bearing-rotor system in a turboexpander is described.The axial transient process of the system is investigated.The timedependent form ofthe Reynolds equation is solved by a finite difference method with successive overrelaxation scheme to obtain the hydrodynamic forces of the sector-shaped thrust bearing (SSTB).Using these forces,the equation of motion is solved by the fourth-order Runge-Kutta method and the Adams method to predict the transient behaviour of the thrust bearing-rotor system (TBRS).Also,the linearized stiffness and damping coefficients of the oil film hydrodynamic SSTB are calculated.The analyses of the axial transient response of the system under both linear and non-linear conditions are performed.The non-linearity of oil film forces can significantly contribute to the axial transient response.Conclusions obtained can be applied for evaluation of the reliability of the TBRS.
EFFECT OF ESCAPE DEVICE FOR SUBMERGED FLOATING TUNNEL (SFT) ON HYDRODYNAMIC LOADS APPLIED TO SFT
Institute of Scientific and Technical Information of China (English)
DONG Man-sheng; MIAO Guo-ping; YONG Long-chang; NIU Zhong-rong; PANG Huan-ping; HOU Chao-qun
2012-01-01
This paper presents a potential approach to settle the problem of surviving major safety accidents in Submerged Floating Tunnel (SFT) that detachable emergency escape devices are set up outside SFT.The Computational Fluid Dynamics (CFD)technology is used to investigate the effect of emergency escape devices on the hydrodynamic load acting on SFT in uniform and oscillatory flows and water waves by numerical test.The governing equations,i.e.,the Reynolds-Averaged Navier-Stokes (RANS)equations and k - ε standard turbulence equations,are solved by the Finite Volume Method (FVM).Analytic solutions for the Airy wave are applied to set boundary conditions to generate water wave.The VOF method is used to trace the free surface.In uniform flow,hydrodynamic loads,applied to SFT with emergency escape device,reduce obviously.But,in oscillatory flow,it has little influence on hydrodynamic loads acting on SFT.Horizontal and vertical wave loads of SFT magnify to some extend due to emergency escape devices so that the influence of emergency escape devices on hydrodynamic loads of SFT should be taken into consideration when designed.
Hydrodynamics of a Free Floating Vertical Axisymmetric Oscillating Water Column Device
Directory of Open Access Journals (Sweden)
S. A. Mavrakos
2012-01-01
Full Text Available This paper aims at presenting a general formulation of the hydrodynamic problem of a floating or restrained oscillating water column device. Three types of first-order boundary value problems are investigated in order to calculate the velocity potential of the flow field around the device. The horizontal and vertical exciting wave forces, the rolling moment, the hydrodynamic parameters, the volume flows, and the drift forces are obtained in order to find the loads on the structure. The efficiency rate of the device is calculated in connection with the absorbed power and the capture length of energy absorption. Finally, the resulting wave motion inside and outside the device and the inner air pressure are examined.
Simulation and Modeling of Submicron Semiconductor Devices by a New Hydrodynamic Method.
Lin, Qi.
Robust numerical methods for the solution of the hydrodynamic model are developed and implemented for the simulation of submicron semiconductor devices. The hydrodynamic equations are reformulated into readily solvable self-adjoint forms with the aid of newly defined HD-Slotboom state variables. A new discretization strategy is developed to resolve the rapid variation in the carrier densities and carrier temperatures. The approach also yields a coefficient matrix for each discretized hydrodynamic equation, which is guaranteed to be diagonally dominant. The hydrodynamic equations are decoupled by using a Gummel block iteration method. A fixed-point iteration technique is employed to solve the discretized equations, which guarantees that each decoupled equation converges for any starting value. Furthermore, the decoupling of equations and use of the fixed-point iteration scheme obviate the need for direct solutions of large matrix equations, and thereby eliminate the need for large memory allocations. The algorithm is inherently parallel, so it can be readily implemented on parallel machines to increase computation speed. Using these methods, several simulation packages are developed for the analysis of one-dimensional (1-D) n^+-n-n^+ devices, and square electric fields, two-dimensional (2-D) & three-dimensional (3-D) MOSFET's, and two-dimensional SOI MOSFET's. Various simulation results for these devices are presented. Some one-dimensional simulation results are compared with Monte Carlo calculations, and a good agreement is observed. Also convergence, stability, and efficiency of the methods are examined by a set of numerical experiments. The device simulators are applied to investigate the hot-electron induced degradation in submicron SOI devices and EPROM's. The impact of localized interface charge on device characteristics is studied. Some measured results are used to calibrate the process parameters in the simulators so that the simulators can predict device
Leme, Juliana; da Silva, Cibele; Fonseca, Jeison; da Silva, Bruno Utiyama; Uebelhart, Beatriz; Biscegli, José F; Andrade, Aron
2013-11-01
A new model of centrifugal blood pump for temporary ventricular assist devices has been developed and evaluated. The design of the device is based on centrifugal pumping principles and the usage of ceramic bearings, resulting in a pump with reduced priming (35 ± 2 mL) that can be applied for up to 30 days. Computational fluid dynamic (CFD) analysis is an efficient tool to optimize flow path geometry, maximize hydraulic performance, and minimize shear stress, consequently decreasing hemolysis. Initial studies were conducted by analyzing flow behavior with different impellers, aiming to determine the best impeller design. After CFD studies, rapid prototyping technology was used for production of pump prototypes with three different impellers. In vitro experiments were performed with those prototypes, using a mock loop system composed of Tygon tubes, oxygenator, digital flow meter, pressure monitor, electronic driver, and adjustable clamp for flow control, filled with a solution (1/3 water, 1/3 glycerin, 1/3 alcohol) simulating blood viscosity and density. Flow-versus-pressure curves were obtained for rotational speeds of 1000, 1500, 2000, 2500, and 3000 rpm. As the next step, the CFD analysis and hydrodynamic performance results will be compared with the results of flow visualization studies and hemolysis tests.
Influence of wall slip on the hydrodynamic behavior of a two-dimensional slider bearing
Institute of Scientific and Technical Information of China (English)
G.J.Ma; C.W.Wu; P.Zhou
2007-01-01
In the present paper, a multi-linearity method is used to address the nonlinear slip control equation for the hydrodynamic analysis of a two-dimensional (2-D) slip gap flow. Numerical analysis of a finite length slider beating with wall slip shows that the surface limiting shear stress exerts complicated influences on the hydrodynamic behavior of the gap flow. If the slip occurs at either the stationary surface or the moving surface (especially at the stationary surface),there is a transition point in the initial limiting shear stress for the proportional coefficient to affect the hydrodynamic load support in two opposite ways: it increases the hydrody-namic load support at higher initial limiting shear stresses, but decreases the hydrodynamic load support at lower ini-tial limiting shear stresses. If the slip occurs at the moving surface only, no fluid pressure is generated in the case of null initial limiting shear stress. If the slip occurs at both the surfaces with the same slip property, the hydrodynamic load support goes off after a critical sliding speed is reached. A small initial limiting shear stress and a small proportionality coefficient always give rise to a low friction drag.
Kosaka, Ryo; Nishida, Masahiro; Maruyama, Osamu; Yambe, Tomoyuki; Imachi, Kou; Yamane, Takashi
2013-01-01
We have developed a hydrodynamically levitated centrifugal blood pump with a semi-open impeller for long-term circulatory assist. The pump uses hydrodynamic bearings to enhance durability and reliability without additional displacement-sensors or control circuits. However, a narrow bearing gap of the pump has a potential for hemolysis. The purpose of this study is to develop the hydrodynamically levitated centrifugal blood pump with a semi-open impeller, and to evaluate the effect of a bearing gap on hemolytic property. The impeller levitates using a spiral-groove type thrust bearing, and a herringbone-groove type radial bearing. The pump design was improved by adopting a step type thrust bearing and optimizing the pull-up magnetic force. The pump performance was evaluated by a levitation performance test, a hemolysis test and an animal experiment. In these tests, the bearing gap increased from 1 to 63 μm. In addition, the normalized index of hemolysis (NIH) improved from 0.415 to 0.005 g/100 l, corresponding to the expansion of the bearing gap. In the animal experiment for 24 h, the plasma-free hemoglobin remained within normal ranges (pump was improved to the acceptable level by expanding the bearing gap greater than 60 μm.
External pneumatic compression device prevents fainting in standing weight-bearing MRI
DEFF Research Database (Denmark)
Hansen, Bjarke Brandt; Bouert, Rasmus; Bliddal, Henning
2013-01-01
To investigate if a peristaltic external pneumatic compression device attached to the legs, while scanning, can reduce a substantial risk of fainting in standing weight-bearing magnetic resonance imaging (MRI).......To investigate if a peristaltic external pneumatic compression device attached to the legs, while scanning, can reduce a substantial risk of fainting in standing weight-bearing magnetic resonance imaging (MRI)....
Numerical simulation of shock wave phenomena in hydrodynamic model of semiconductor devices
Institute of Scientific and Technical Information of China (English)
XU Ning; YANG Geng
2007-01-01
We propose a finite element method to investigate the phenomena of shock wave and to simulate the hydrodynamic model in semiconductor devices. An introduction of this model is discussed first. Then some scaling factors and a relationship between the changing variables are discussed. And then, we use a finite element method (P1-iso-P2 element) to discrete the equations. Some boundary conditions are also discussed. Finally,a sub-micron n+-n-n+ silicon diode and Si MESFET device are simulated and the results are analyzed. Numerical results show that electronic fluids are transonic under some conditions.
Tunable Microfluidic Devices for Hydrodynamic Fractionation of Cells and Beads: A Review
Directory of Open Access Journals (Sweden)
Jafar Alvankarian
2015-11-01
Full Text Available The adjustable microfluidic devices that have been developed for hydrodynamic-based fractionation of beads and cells are important for fast performance tunability through interaction of mechanical properties of particles in fluid flow and mechanically flexible microstructures. In this review, the research works reported on fabrication and testing of the tunable elastomeric microfluidic devices for applications such as separation, filtration, isolation, and trapping of single or bulk of microbeads or cells are discussed. Such microfluidic systems for rapid performance alteration are classified in two groups of bulk deformation of microdevices using external mechanical forces, and local deformation of microstructures using flexible membrane by pneumatic pressure. The main advantage of membrane-based tunable systems has been addressed to be the high capability of integration with other microdevice components. The stretchable devices based on bulk deformation of microstructures have in common advantage of simplicity in design and fabrication process.
Effect of geometry of hydrodynamically cavitating device on degradation of orange-G.
Saharan, Virendra Kumar; Rizwani, Manav A; Malani, Aqeel A; Pandit, Aniruddha B
2013-01-01
In this research work, we have carried out geometric optimization of different cavitating devices using degradation of orange-G dye [OG] as a model pollutant. Three different cavitating devices viz. orifice plate, circular venturi and slit venturi were optimized and the degradation of orange-G dye was studied. The optimization of all three cavitating devices was done in terms of fluid inlet pressure to the cavitating devices and cavitation number. The effect of pH and initial concentration of the dye on the degradation rate was also studied. The geometry of cavitating device (flow cross sectional area, perimeter, shape, etc.) was found to be an important parameter in getting the maximum cavitational effect using hydrodynamic cavitation. The cavitational yield of all three cavitating devices were compared on the basis of mg of total organic carbon (TOC) reduction per unit energy supplied. The slit venturi gives almost 50% higher degradation rate and cavitational yield among all three cavitating devices studied for the same amount of energy supplied.
EMP径向滑动轴承热弹流分析与仿真%Thermo-elasto-hydrodynamic Analysis and Simulation of EMP Journal Bearing
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Elastic metal plastic (EMP) journal bearing is a kind of original bearing. Because of the specialty of the composite materials, elastic and thermal deformations of the EMP bush are much larger than that of common metal bush. In this paper, the three-dimensional mathematical model is established to analyze thermo-elasto-hydrodynamics (TEHD) of EMP. The numerical TEHD analysis software is programmed. An example is given to prove the lubrication performance of EMP.
中间轴承流体润滑性能分析%Hydrodynamic Lubrication Analysis of the Intermediate Bearing
Institute of Scientific and Technical Information of China (English)
王明新
2013-01-01
As an important supporting unit for ship shafting,the lubrication performance of intermediate bearing has an effect on the dynamic performance of ship propulsion system.In this paper,based on the theory of hydrodynamic lubrication,a three-dimensional lubrication model has been presented to analyze the lubrication performance characteristics of intermediate bearing.The average Reynolds equation is solved by the finite difference method.The parameters of lubrication performance,such as oil film thickness,friction force,friction coeffcient and friction power loss are determined to analyze the lubrication performances of intermediate bearing.To complete the evaluation,the lubrication performance characteristics of intermediate bearing are compared on the conditions of different speed and lubricant temperature.%中间轴承是船舶轴系主要支承单元,其运行性能直接影响到船舶动力推进系统性能的优劣.以流体润滑理论为基础,建立中间轴承三维流体润滑数值分析模型.采用有限差分法求解Reynolds方程,获得了油膜厚度、摩擦力、摩擦系数及摩擦功耗等润滑性能参数.对比分析了不同转速工况及润滑油温度对中间轴承润滑性能的影响,完成了中间轴承运行性能的评价.
Energy Technology Data Exchange (ETDEWEB)
Melin, Alexander M [ORNL; Kisner, Roger A [ORNL; Fugate, David L [ORNL; Holcomb, David Eugene [ORNL
2015-01-01
Embedding instrumentation and control Embedding instrumentation and control (I\\&C) at the component level in nuclear power plants can improve component performance, lifetime, and resilience by optimizing operation, reducing the constraints on physical design, and providing on-board prognostics and diagnostics. However, the extreme environments that many nuclear power plant components operate in makes embedding instrumentation and control at the component level difficult. Successfully utilizing embedded I\\&C requires developing a deep understanding of the system's dynamics and using that knowledge to overcome material and physical limitations imposed by the environment. In this paper, we will develop a coupled dynamic model of a high temperature (700 $^\\circ$C) canned rotor pump that incorporates rotordynamics, hydrodynamics, and active magnetic bearing dynamics. Then we will compare two control design methods, one that uses a simplified decoupled model of the system and another that utilizes the full coupled system model. It will be seen that utilizing all the available knowledge of the system dynamics in the controller design yield an order of magnitude improvement in the magnitude of the magnetic bearing response to disturbances at the same level of control effort, a large reduction in the settling time of the system, and a smoother control action.
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
The famous physicist made for his scholars this riddle. A fellow encountered a bear in a wasteland. There was nobody else there. Both were frightened and ran away. Fellow to the north, bear to the west. Suddenly the fellow stopped, aimed his gun to the south and shot the bear. What colour was the bear?
Prashad, Har; Rao, K. N.
1994-07-01
A theoretical analysis has been carried out to study the capacitive effect and life estimation of hydrodynamic journal bearings on repeated starts and stops of a machine operating under the influence of shaft voltages. The analysis gives the time required for the charge accumulation and increase of charge with time on the liner surface of a journal bearing based on bearing capacitance, resistance of film thickness, and the shaft voltage. Also, it investigates the effect of gradual leakage of the accumulated charges with time as the shaft voltage falls when the power supply to the machine is switched off. This paper gives an approach to determine the ratio of the number of shaft revolutions required for charge accumulation and gradual discharge of the accumulated charges on the liner surface of a bearing depending on bearing-to-shaft voltage. Also, the number of repeated starts and stops before initiation of craters on the liner surface of a hydrodynamic journal bearing is established to restrict deterioration and damage of the liner. The diagnosis has the potential to study the transient effect of the shaft voltages on a journal bearing during the start and stop cycle of a machine.
Koc, E.
1994-04-01
Lubrication and sealing mechanisms of fixed clearance end plates in high-pressure pumps have been analysed theoretically and experimentally. Bearing misalignment was found to be the main lubrication mechanism, and it was effective in determining the gear position between two end plates. The minimum film thickness between the gear end and end plate has been found to depend on the magnitude of the relative tilt of the surfaces and the position of the maximum clearance. The theory developed can predict the film thickness between the end plate and gear end face, and this corresponds very closely to the clearances measured experimentally under a variety of operating conditions.
Hybrid Superconducting Magnetic Bearing (HSMB) for high load devices
McMichael, C. K.; Ma, K. B.; Lamb, M. A.; Lin, M. W.; Chow, L.; Meng, R. L.; Hor, P. H.; Chu, W. K.
1992-05-01
Lifting capacities greater than 41 N/cm(exp 2) (60 psi) at 77 K have been achieved with a new type of levitation (hybrid) using a combination of permanent magnets and high quality melt-mixtured YBa2Cu3O(7-delta) (YBCO). The key concept of the hybrid superconducting magnetic bearing (HSMB) is the use of strong magnetic repulsion and attraction from permanent magnets for high levitation or suspension forces in conjunction with a superconductor's flux pinning characteristics to counteract the inherent instabilities in a system consisting of magnets only. To illustrate this concept, radial and axial forces between magnet/superconductor, magnet/magnet, and magnet/superconductor/magnet, were measured and compared for the thrust bearing configuration
STABILITY ANALYSIS OF THREE LOBE HYDRODYNAMIC JOURNAL BEARING: COUPLE STRESS FLUID EFFECTS
Directory of Open Access Journals (Sweden)
N.P.Mehta
2010-10-01
Full Text Available The effects of couple stress fluid, when added to a Newtonian base, are studied by deriving a generalized form of the Reynolds equation. A couple stress parameter ‘l’ has been used to indicate the length of the long chain molecule being added. Finite element method has been used to solve the generalized Reynolds equation for each lobe to obtain the respective pressure distributions. Stable equilibrium conditions in terms of eccentricity ratios and the attitude angles have been obtained for the vertical load condition. The journal has been perturbed from this equilibrium condition to give the stiffness and the damping coefficients. It has been observed that slight variation of the coupe stress parameter ‘l’ has great influence on the dynamic characteristics, i.e. the stiffness and the dampingcoefficients. The threshold speed and the critical mass of the journal, obtained as a solution to the linearized equations of motion, are used to demonstrate the increased stability of the journal bearing system.
Han, Qing; Zou, Jun; Ruan, Xiaodong; Fu, Xin; Yang, Huayong
2012-08-01
Good washout is very important in spiral groove bearing (SGB) designs when applied to blood pumps due to the micrometer scales of lubrication films and groove depths. To improve washout, flow rate or leakage through SGBs should be as large as possible. However, this special goal violates conventional SGB designs in which no leakage is desired as the leakage would decrease load-carrying capacity significantly. So, a design concept is formed fulfilling the two goals of high load-carrying capacity and large flow rate: let groove width decrease along flow path and the mating surface of the rotor rotate with a direction facilitating the flow through the grooves. Under this concept, a novel SGB is designed, contrary to conventional ones, with groove width decreasing with increasing spiral radius. This SGB is mounted on the motionless upper plate of our designed centrifugal blood pump, with the mating surface of rotor rotating with a direction facilitating the outward flow. To assess SGB designs, a characteristic plane is originally presented relating to pressure-normalized load-carrying capacity and flow rate. Comparisons between various kinds of SGB designs are made, and computational fluid dynamics (CFD) results are plotted in this characteristic plane from which load/flow performances can be directly read out. CFD and comparison results show that the new designs have superior load/flow characteristics. However, the impact of SGB designs upon hemolysis/thrombus formation is still to be verified according to the concept presented.
Guoyu, Li; Yejin, Zhang; Xiaojian, Li; Lilin, Tian
2010-10-01
Characteristics of a uni-traveling-carrier photodiode (UTC-PD) are investigated. A hydro-dynamic model is introduced which takes into account the electrons' velocity overshoot in the depletion region, which is a more accurate high speed device than using the normal drift—diffuse model. Based on previous results, two modified UTC-PDs are presented, and an optimized device is obtained, the bandwidth of which is more than twice that of the original.
Leg muscle activity during walking with assistive devices at varying levels of weight bearing.
Clark, Brian C; Manini, Todd M; Ordway, Nathaniel R; Ploutz-Snyder, Lori L
2004-09-01
To evaluate the muscle activation patterns at varying levels of weight-bearing forces during assisted walking with an axillary crutch and a recently designed device that allows weight transfer through the pelvic girdle (ED Walker). Descriptive, repeated measures. University-based research laboratory. Twelve healthy volunteers (age, 39.6+/-13.6 y). Not applicable. Electromyographic activity was recorded from the anterior tibialis, soleus, biceps femoris, and vastus lateralis muscles on a test leg during assisted axillary crutch and ED Walker ambulation. Force platform readings measured weight-bearing load (non, light, heavy). These values were normalized to normal walking gait. In the vastus lateralis and soleus muscles, both devices allowed for approximately 50% and 65% reductions in electromyographic activity during the non-weight-bearing condition. During crutch ambulation, electromyographic activity of the soleus was significantly reduced compared with that required for normal walking at all levels of weight-bearing load. In the vastus lateralis for the weight-bearing conditions, the ED Walker required significantly higher electromyographic activity than crutch ambulation (light: 105.0%+/-12.3% vs 72.7%+/-10.1%; heavy: 144.8%+/-23.5% vs 100.0%+/-13.5%). Both devices required similar peak vertical ground reaction forces during the heavy weight-bearing conditions (crutch: 75%+/-1.6%; ED Walker: 73%+/-1.8%), whereas axillary crutch gait produced less force than the ED Walker in the light condition (32%+/-2.0% vs 48%+/-1.6%). During walking with assistive devices, muscle activation patterns varied with weight-bearing load. The leg extensor muscles appeared to incur a greater reduction in muscle activity when compared with their flexor counterparts. Additionally, the ED Walker and axillary crutch differed with respect to their muscle activity levels and weight-bearing characteristics. Clinically, knowledge of these muscle activity and force characteristics may aid in
van Lieshout, Remko; Pisters, Martijn F; Vanwanseele, Benedicte; de Bie, Rob A; Wouters, Eveline J; Stukstette, Mirelle J
2016-01-01
BACKGROUND: Partial weight bearing is frequently instructed by physical therapists in patients after lower-limb trauma or surgery. The use of biofeedback devices seems promising to improve the patient's compliance with weight-bearing instructions. SmartStep and OpenGo-Science are biofeedback devices
A Novel Bearing Lubricating Device Based on the Piezoelectric Micro-Jet
Directory of Open Access Journals (Sweden)
Kai Li
2016-02-01
Full Text Available A novel bearing lubricating device, which is embedded in gyroscope’s bearing system and based on the theory of the piezoelectric micro-jet, was designed for this study. The embedded structure of a bearing lubricating system can make effective use of the limited space of bearing systems without increasing the whole mass of the system. The drop-on-demand (DOD lubrication can be realized by the piezoelectric micro-jet system to implement the long acting lubrication of the bearing system. A mathematical model of inlet boundary conditions was established to carry on the numerical simulation based on CFD. The motion states of the droplets with different voltage excitations were analyzed via numerical simulations, and the injection performances of the piezoelectric micro-jet lubricating device were tested in accordance with past experiments. The influences of different parameters of voltage excitation on injection performance were obtained, and the methods of adjusting the injection performance to meet different requirements are given according to the analyses of the results. The mathematical model and numerical simulation method were confirmed by comparing the results of past simulations and experiments.
Allaire, P; Hilton, E; Baloh, M; Maslen, E; Bearnson, G; Noh, D; Khanwilkar, P; Olsen, D
1998-06-01
A new centrifugal continuous flow ventricular assist device, the CFVAD III, which is fully magnetic bearing suspended, has been developed. It has only one moving part (the impeller), has no contact (magnetic suspension), is compact, and has minimal heating. A centrifugal impeller of 2 inch outer diameter is driven by a permanent magnet brushless DC motor. This paper discusses the design, construction, testing, and performance of the magnetic bearings in the unit. The magnetic suspension consists of an inlet side magnetic bearing and an outlet side magnetic bearing, each divided into 8 pole segments to control axial and radial displacements as well as angular displacements. The magnetic actuators are composed of several different materials to minimize size and weight while having sufficient load capacity to support the forces on the impeller. Flux levels in the range of 0.1 T are employed in the magnetic bearings. Self sensing electronic circuits (without physical sensors) are employed to determine the impellar position and provide the feedback control signal needed for the magnetic bearing control loops. The sensors provide position sensitivity of approximately 0.025 mm. A decentralized 5 axis controller has been developed using modal control techniques. Proportional integral derivative controls are used for each axis to levitate the magnetically supported impeller.
In Vitro Durability - Pivot bearing with Diamond Like Carbon for Ventricular Assist Devices
de Sá, Rosa Corrêa Leoncio; Leão, Tarcísio Fernandes; da Silva, Evandro Drigo; da Fonseca, Jeison Willian Gomes; da Silva, Bruno Utiyama; Leal, Edir Branzoni; Moro, João Roberto; de Andrade, Aron José Pazin; Bock, Eduardo Guy Perpétuo
2015-01-01
Institute Dante Pazzanese of Cardiology (IDPC) develops Ventricular Assist Devices (VAD) that can stabilize the hemodynamics of patients with severe heart failure before, during and/or after the medical practice; can be temporary or permanent. The ADV's centrifugal basically consist of a rotor suspended for system pivoting bearing; the PIVOT is the axis with movement of rotational and the bearing is the bearing surface. As a whole system of an implantable VAD should be made of long-life biomaterial so that there is no degradation or deformation during application time; surface modification techniques have been widely studied and implemented to improve properties such as biocompatibility and durability of applicable materials. The Chemical Vapour Deposition technique allows substrates having melting point higher than 300 {\\deg}C to be coated, encapsulated, with a diamond like carbon film (DLC); The test simulated the actual conditions in which the system of support remains while applying a ADV. The results hav...
Jiang, Xi; Zhang, Yu; Chen, Bo; Lin, Ye
2017-04-01
Extraction socket remodeling and ridge preservation strategies have been extensively explored. To evaluate the efficacy of applying a micro-titanium stent as a pressure bearing device on extraction socket remodeling of maxillary anterior tooth. Twenty-four patients with a extraction socket of maxillary incisor were treated with spontaneous healing (control group) or by applying a micro-titanium stent as a facial pressure bearing device over the facial bone wall (test group). Two virtual models obtained from cone beam computed tomography data before extraction and 4 months after healing were 3-dimenionally superimposed. Facial bone wall resorption, extraction socket remodeling features and ridge width preservation rate were determined and compared between the groups. Thin facial bone wall resulted in marked resorption in both groups. The greatest palatal shifting distance of facial bone located at the coronal level in the control group, but middle level in the test group. Compared with the original extraction socket, 87.61 ± 5.88% ridge width was preserved in the test group and 55.09 ± 14.46% in the control group. Due to the facial pressure bearing property, the rigid micro-titanium stent might preserve the ridge width and alter the resorption features of extraction socket. © 2016 Wiley Periodicals, Inc.
Energy Technology Data Exchange (ETDEWEB)
Yabana, Shuichi; Matsuda, Akihiro [Central Research Inst. of Electric Power Industry, Abiko, Chiba (Japan). Abiko Research Lab
1999-10-01
Rubber bearings with thick rubber layers to be used for 3-dimensional base isolation system are developed. Design parameters of the rubber bearings are determined to effectively reduce both horizontal and vertical seismic loads especially for equipment in the system; horizontal natural period and vertical natural frequency of the system supported by the rubber bearings are 3 sec. and 3 Hz, respectively. Furthermore, primary and secondary shape factors and design vertical stress of the rubber bearings are determined to give stable mechanical properties. Using scale models of the rubber bearings, static, dynamic and failure tests were carried out to evaluate the mechanical characteristics and the performance of the rubber bearings. From these tests, it is shown that the developed rubber bearings are efficient as 3-dimensional base isolation device. (author)
Groom, N. J.
1984-01-01
An overview of magnetic bearing control and linearization approaches which have been considered for annular magnetically suspended devices is presented. These devices include the Annular Momentum Control Device and the Annular Suspension and Pointing System. Two approaches were investigated for controlling the magnetic actuator. One approach involves controlling the upper and lower electromagnets differentially about a bias flux. The bias flux can either be supplied by permanent magnets in the magnetic circuit or by bias currents. In the other approach, either the upper electromagnet or the lower electromagnet is controlled depending on the direction of force required. One advantage of the bias flux is that for small gap perturbations about a fixed operating point, the force-current characteristic is linear. Linearization approaches investigated for individual element control include an analog solution of the nonlinear electromagnet force equation and a microprocessor-based table lookup method.
Directory of Open Access Journals (Sweden)
Horacio Toniolo
2014-07-01
Full Text Available Floating objects designed to divert woody debris—known as debris diversion devices—can protect hydrokinetic turbines deployed in rivers; they also change the hydrodynamic conditions of a river, at least locally. Modifications associated with velocity adjustments in both magnitude and direction would be expected. Thus, one could assume that extra macro-turbulent levels would be found immediately behind a device and downstream of that location. This article presents a set of cross-sectional and longitudinal velocity measurements carried out to quantify these effects. Results show important changes in the velocity components. In addition, significant changes in the vorticity field, calculated along cross-sectional profiles, demonstrate the role of a submerged chain used to maintain the debris diversion device in place. More importantly, findings suggest that hydrokinetic turbines should not be installed in a river’s central area behind a debris diversion device, due to the additional turbulence created by the submerged chain.
Hydrodynamics of domain walls in ferroelectrics and multiferroics: Impact on memory devices
Scott, J. F.; Evans, D. M.; Gregg, J. M.; Gruverman, A.
2016-07-01
The standard "Kittel Law" for the thickness and shape of ferroelectric, ferroelastic, or ferromagnet domains assumes mechanical equilibrium. The present paper shows that such domains may be highly nonequilibrium, with unusual thicknesses and shapes. In lead germanate and multiferroic lead zirconate titanate iron tantalate domain wall instabilities resemble hydrodynamics (Richtmyer-Meshkov and Helfrich-Hurault, respectively).
Energy Technology Data Exchange (ETDEWEB)
Ruiz, Rafael O.; Di Liscia, Marcelo H.; Diaz, Sergio E. [Universidad Simon Bolivar, Sartendejas, Baruta (Venezuela)
2007-11-15
The identification of the dynamic coefficients in air bearings is fundamental for a suitable roto-dynamic analysis. The present paper shows the development of an algorithm that allows the direct obtaining of the dynamic coefficients in hydrodynamic air bearings as much of numerical form as experimental. The testing bench used consists of two magnetic bearings, which support the rotor in their ends and work as well as actuators allowing inducing controlled orbits in the rotor. The test bearing is located between the magnetic bearings. The dynamic forces generated in the air bearing are registered from three load cells. The algorithm was developed in a commercial code of graphical programming, through which the signals can be collected, controlled and processed. The nonlinear behavior of this type of bearings makes difficult the calculation of the dynamic coefficients, therefore the processing of the signals in frequencial space facilitates, in a certain way, its handling. On the other hand, the numerical model was compared with the experimental results obtaining acceptable approaches in magnitude as well as in behavior. The numerical dynamic coefficients calculation was realized solving the Reynolds differential equation for a compressible fluid in the thickness of the gas film, taking into consideration the fluid mass flow that is introduced, as well as the pressure loss suffered by the same in passing through the feeding orifices. The numerical methods utilized include the solution of the differential equation of Reynolds for finite differences, the calculation of the profile realizing successive iterations and the calculation of the hydrodynamics forces through the Simpson numerical integration. The numerical dynamic coefficients were found applying a minimum squared technique to the hydrodynamic stresses generated in simulating an orbit of the rotor at a determined frequency and velocity, allowing in this way the calculation of the synchronous and asynchronous
Energy Technology Data Exchange (ETDEWEB)
Ruiz, Rafael O.; Di Liscia, Marcelo H.; Diaz, Sergio E. [Universidad Simon Bolivar, Sartendejas, Baruta (Venezuela)
2007-11-15
The identification of the dynamic coefficients in air bearings is fundamental for a suitable roto-dynamic analysis. The present paper shows the development of an algorithm that allows the direct obtaining of the dynamic coefficients in hydrodynamic air bearings as much of numerical form as experimental. The testing bench used consists of two magnetic bearings, which support the rotor in their ends and work as well as actuators allowing inducing controlled orbits in the rotor. The test bearing is located between the magnetic bearings. The dynamic forces generated in the air bearing are registered from three load cells. The algorithm was developed in a commercial code of graphical programming, through which the signals can be collected, controlled and processed. The nonlinear behavior of this type of bearings makes difficult the calculation of the dynamic coefficients, therefore the processing of the signals in frequencial space facilitates, in a certain way, its handling. On the other hand, the numerical model was compared with the experimental results obtaining acceptable approaches in magnitude as well as in behavior. The numerical dynamic coefficients calculation was realized solving the Reynolds differential equation for a compressible fluid in the thickness of the gas film, taking into consideration the fluid mass flow that is introduced, as well as the pressure loss suffered by the same in passing through the feeding orifices. The numerical methods utilized include the solution of the differential equation of Reynolds for finite differences, the calculation of the profile realizing successive iterations and the calculation of the hydrodynamics forces through the Simpson numerical integration. The numerical dynamic coefficients were found applying a minimum squared technique to the hydrodynamic stresses generated in simulating an orbit of the rotor at a determined frequency and velocity, allowing in this way the calculation of the synchronous and asynchronous
Nisar, Ubaid Ahmed; Ashraf, Waqas; Qamar, Shamsul
In this article, one and two-dimensional hydrodynamical models of semiconductor devices are numerically investigated. The models treat the propagation of electrons in a semiconductor device as the flow of a charged compressible fluid. It plays an important role in predicting the behavior of electron flow in semiconductor devices. Mathematically, the governing equations form a convection-diffusion type system with a right hand side describing the relaxation effects and interaction with a self consistent electric field. The proposed numerical scheme is a splitting scheme based on the kinetic flux-vector splitting (KFVS) method for the hyperbolic step, and a semi-implicit Runge-Kutta method for the relaxation step. The KFVS method is based on the direct splitting of macroscopic flux functions of the system on the cell interfaces. The second order accuracy of the scheme is achieved by using MUSCL-type initial reconstruction and Runge-Kutta time stepping method. Several case studies are considered. For validation, the results of current scheme are compared with those obtained from the splitting scheme based on the NT central scheme. The effects of various parameters such as low field mobility, device length, lattice temperature and voltage are analyzed. The accuracy, efficiency and simplicity of the proposed KFVS scheme validates its generic applicability to the given model equations. A two dimensional simulation is also performed by KFVS method for a MESFET device, producing results in good agreement with those obtained by NT-central scheme.
Apparao, Siddangouda; Biradar, Trimbak Vaijanath; Naduvinamani, Neminath Bhujappa
2014-01-01
Theoretical study of non-Newtonian effects of second-order fluids on the performance characteristics of inclined slider bearings is presented. An approximate method is used for the solution of the highly nonlinear momentum equations for the second-order fluids. The closed form expressions for the fluid film pressure, load carrying capacity, frictional force, coefficient of friction, and centre of pressure are obtained. The non-Newtonian second order fluid model increases the film pressure, load carrying capacity, and frictional force whereas the center of pressure slightly shifts towards exit region. Further, the frictional coefficient decreases with an increase in the bearing velocity as expected for an ideal fluid.
Zhang, Xiaoyong; Yan, Xiaojun; Zhang, Shaowei; Nie, Jingxu
2014-01-01
The current investigation proposes a shape memory alloy (SMA)-actuated resettable locking device for magnetic bearing reaction wheel. The device employed two SMA wire-based actuators to realize locking and unlocking. Dual-slope mating surfaces were used on one hand to transmit the motion between a moving part and a clamp, and on the other hand to achieve a self-locking linkage in the locking state. Moreover, geometric parameters of the two SMA wires and corresponding bias springs were also designed. Based on the proposed design scheme, four locking devices were manufactured and assembled. Performance and environmental tests were performed to verify the proposed locking device. Test results show that the locking device can protect the magnetic bearing reaction wheel from launch vibration damage, and can withstand the thermal environment in the launch and on-orbit stage. Moreover, the device can be successfully operated for 76 times, and the response time for the locking and unlocking processes under 7 V power supply is 0.9 s and 5.6 s, respectively. Considering the results obtained from these tests, we conclude that the proposed resettable locking device is an attractive alternative technology to conventional motor-driven or pyrotechnics-based technologies, and can be applied reliably in the magnetic bearing reaction wheel.
Additively manufactured custom load-bearing implantable devices: grounds for caution
Directory of Open Access Journals (Sweden)
Elisabetta M Zanetti
2017-08-01
Full Text Available Background Additive manufacturing technologies are being enthusiastically adopted by the orthopaedic community since they are providing new perspectives and new possibilities. First applications were finalised for educational purposes, pre-operative planning, and design of surgical guides; recent applications also encompass the production of implantable devices where 3D printing can bring substantial benefits such as customization, optimization, and manufacturing of very complex geometries. The conceptual smoothness of the whole process may lead to the idea that any medical practitioner can use a 3D printer and her/his imagination to design and produce novel products for personal or commercial use. Aims Outlining how the whole process presents more than one critical aspects, still demanding further research in order to allow a safe application of this technology for fully-custom design, in particular confining attention to orthopaedic/orthodontic prostheses defined as components responding mainly to a structural function. Methods Current knowledge of mechanical properties of additively manufactured components has been examined along with reasons why the behaviour of these components might differ from traditionally manufactured components. The structural information still missing for mechanical design is outlined. Results Mechanical properties of additively manufactured components are not completely known, and especially fatigue limit needs to be examined further. Conclusion At the present stage, with reference to load-bearing implants subjected to many loading cycles, the indication of custom-made additively manufactured medical devices should be restricted to the cases with no viable alternative.
Batavia, M; Gianutsos, J G; Vaccaro, A; Gold, J T
2001-04-01
An augmented auditory feedback device comprised of a thin membrane switch mini-buzzer, and battery is described as a modification of a previously described feedback device. The membrane switch can be customized for the patient and is designed to fit inside a patient's shoe without altering the heel height. Its appeal lies in its simplicity of construction, low cost, and ease of implementation during a patient's training for weight bearing and gait. An ever-present source of information, it provides performance-relevant cues to both patient and clinician about the occurrence, duration, and location of a force component of motor performance. The report includes suggested applications of the device, instructions to construct it, and a case report in which the device was used to improve weight bearing and gait in a cognitively healthy person with spina bifida.
Directory of Open Access Journals (Sweden)
Robin M.
2006-11-01
-length bearing has been developed, and ifs opération has been investigated with pure minéral cils. The results are close ta those theoretically predicted. However, thé Sommerfeld number does notsuffice for defining thé behavior of this bearing. At on equal Sommerfeld number, if thé rotation speed is voried and thé eccentricity is examined, this latter is found ta be all thé smallerasthe rotation speed is faster. The appearance of forces perpendicular ta thé sheor planes inside lubricants containing some viscosity improvers is revealed by a Weissenberg rheogoniometer.
Ma, Yong; Li, Teng-fei; Zhang, Liang; Sheng, Qi-hu; Zhang, Xue-wei; Jiang, Jin
2016-10-01
To study the characteristics of attenuation, hydrostatic towage and wave response of the vertical-axis floating tidal current energy power generation device (VAFTCEPGD), a prototype is designed and experiment is carried out in the towing tank. Free decay is conducted to obtain attenuation characteristics of the VAFTCEPGD, and characteristics of mooring forces and motion response, floating condition, especially the lateral displacement of the VAFTCEPGD are obtained from the towing in still water. Tension response of the #1 mooring line and vibration characteristics of the VAFTCEPGD in regular waves as well as in level 4 irregular wave sea state with the current velocity of 0.6 m/s. The results can be reference for theoretical study and engineering applications related to VAFTCEPGD.
Horwatich, Judy A.; Bannerman, Roger T.
2012-01-01
A hydrodynamic-settling device was installed in 2004 to treat stormwater runoff from a roof and parking lot located at the Water Utility Administration Building in Madison, Wis. The U.S. Geological Survey, in cooperation with the Wisconsin Department of Natural Resources, the City of Madison, cities in the Waukesha Permit Group, Hydro International, Earth Tech, Inc., National Sanitation Foundation International, and the U.S. Environmental Protection Agency, monitored the device from November 2005 through September 2006 to evaluate it as part of the U.S. Environmental Protection Agency's Environmental Technology Verification Program. Twenty-three runoff events monitored for flow volume and water quality at the device's inlet and outlet were used to calculate the percentage of pollutant reduction for the device. The geometric mean concentrations of suspended sediment (SS), "adjusted" total suspended solids (TSS), total phosphorus (TP), dissolved phosphorus (DP), total recoverable zinc (TZn), and total recoverable copper (TCu) measured at the inlet were 107 mg/L (milligrams per liter), 92 mg/L, 0.17 mg/L, 0.05 mg/L, 38 μg/L (micrograms per liter), and 12 μg/L, respectively, and these concentrations are in the range of values observed in stormwater runoff from other parking lots in Wisconsin and Michigan. Efficiency of the settling device was calculated using the efficiency ratio and summation of loads (SOL) methods. Using the efficiency ratio method, the device reduced concentrations of SS, and DP, by 19, and 15, percent, respectively. Using the efficiency ratio method, the device increased "adjusted" TSS and TZn concentrations by 5 and 19, respectively. Bypass occurred for 3 of the 23 runoff events used in this assessment, and the bypass flow and water-quality concentrations were used to determine the efficiency of the bypass system. Concentrations of SS, "adjusted" TSS, and DP were reduced for the system by 18, 5, and 18, respectively; however, TZn increased by 5
Horwatich, Judy A.; Bannerman, Roger T.; Pearson, Robert
2011-01-01
The treatment efficiencies of two prefabricated stormwater-treatment devices were tested at a freeway site in a high-density urban part of Milwaukee, Wisconsin. One treatment device is categorized as a hydrodynamic-settling device (HSD), which removes pollutants by sedimentation and flotation. The other treatment device is categorized as a stormwater-filtration device (SFD), which removes pollutants by filtration and sedimentation. During runoff events, flow measurements were recorded and water-quality samples were collected at the inlet and outlet of each device. Efficiency-ratio and summation-of-load (SOL) calculations were used to estimate the treatment efficiency of each device. Event-mean concentrations and loads that were decreased by passing through the HSD include total suspended solids (TSS), suspended sediment (SS), total phosphorus (TP), total copper (TCu), and total zinc (TZn). The efficiency ratios for these constituents were 42, 57, 17, 33, and 23 percent, respectively. The SOL removal rates for these constituents were 25, 49, 10, 27, and 16 percent, respectively. Event-mean concentrations and loads that increased by passing through the HSD include chloride (Cl), total dissolved solids (TDS), and dissolved zinc (DZn). The efficiency ratios for these constituents were -347, -177, and 20 percent, respectively. Four constituents—dissolved phosphorus (DP), chemical oxygen demand (COD), total polycyclic aromatic hydrocarbon (PAH), and dissolved copper (DCu)—are not included in the list of computed efficiency ratio and SOL because the variability between sampled inlet and outlet pairs were not significantly different. Event-mean concentrations and loads that decreased by passing through the SFD include TSS, SS, TP, DCu, TCu, DZn, TZn, and COD. The efficiency ratios for these constituents were 59, 90, 40, 21, 66, 23, 66, and 18, respectively. The SOLs for these constituents were 50, 89, 37, 19, 60, 20, 65, and 21, respectively. Two constituents—DP and
Gauvin, P.; Huard, P.
2016-11-01
High temperature level recorded on the thrust bearing of a 45 MW hydro generating unit was resulting in frequent production stoppage. In spite of improvements brought to the oil cooling system since the rehabilitation in 2008, the operator had to activate the bearing oil lift system to keep the temperature below acceptable limits. Primary root cause analysis first pointed to the design of the shoe that was centrally pivoted, not allowing the formation of a thick hydrodynamic film. The removal of a strip of the soft metal layer near the trailing edge of the shoe resulted in a significant surface temperature reduction (about 15 deg. C), as predicted by a CFD model of the oil film. The goal of this machining was to increase the pivoting angle by moving the centre of hydrodynamic pressure. Proximity sensors were installed at each corner of the redesigned shoe to measure the film thickness and the bearing attitude. Signal analysis revealed a step of a magnitude close to the oil film thickness between the two halves of the rotating thrust block. This was the cause of another failure few hours since restarting the unit. The lessons learnt through these measurements and analyses were carefully applied to the ultimate build. The unit now runs with a robust thrust bearing and even survived a significant cooling flow reduction event. This paper presents the CFD analysis results and the measurements acquired during these events.
Microstructures and fatigue life of SnAgCu solder joints bearing Nano-Al particles in QFP devices
Zhang, Liang; Fan, Xi-ying; Guo, Yong-huan; He, Cheng-wen
2014-05-01
Microstructures and fatigue life of SnAgCu and SnAgCu bearing nano-Al particles in QFP (Quad flat package) devices were investigated, respectively. Results show that the addition of nano-Al particles into SnAgCu solder can refine the microstructures of matrix microstructure. Moreover, the nano-Al particles present in the solder matrix, act as obstacles which can create a back stress, resisting the motion of dislocations. In QFP device, it is found that the addition of nano-Al particles can increase the fatigue life by 32% compared with the SnAgCu solder joints during thermal cycling loading.
Nisar, Ubaid Ahmed; Ashraf, Waqas; Qamar, Shamsul
2016-08-01
Numerical solutions of the hydrodynamical model of semiconductor devices are presented in one and two-space dimension. The model describes the charge transport in semiconductor devices. Mathematically, the models can be written as a convection-diffusion type system with a right hand side describing the relaxation effects and interaction with a self consistent electric field. The proposed numerical scheme is a splitting scheme based on the conservation element and solution element (CE/SE) method for hyperbolic step, and a semi-implicit scheme for the relaxation step. The numerical results of the suggested scheme are compared with the splitting scheme based on Nessyahu-Tadmor (NT) central scheme for convection step and the same semi-implicit scheme for the relaxation step. The effects of various parameters such as low field mobility, device length, lattice temperature and voltages for one-space dimensional hydrodynamic model are explored to further validate the generic applicability of the CE/SE method for the current model equations. A two dimensional simulation is also performed by CE/SE method for a MESFET device, producing results in good agreement with those obtained by NT-central scheme.
Ma, W.
2013-04-01
Microfiltration is an important microfluidic technique suitable for enrichment and isolation of cells. However, cell lysing could occur due to hydrodynamic damage that may be detrimental for medical diagnostics. Therefore, we conducted a systematic study of hydrodynamic cell lysing in a high-throughput Circular Multi-Channel Microfiltration (CMCM) device integrated with a polycarbonate membrane. HeLa cells (cervical cancer cells) were driven into the CMCM at different flow rates. The viability of the cells in the CMCM was examined by fluorescence microscopy using Acridine Orange (AO)/Ethidium Bromide (EB) as a marker for viable/dead cells. A simple analytical cell viability model was derived and a 3D numerical model was constructed to examine the correlation of between cell lysing and applied shear stress under varying flow rate and Reynolds number. The measured cell viability as a function of the shear stress was consistent with theoretical and numerical predictions when accounting for cell size distribution. © 2013 IEEE.
Institute of Scientific and Technical Information of China (English)
范寿孝; 全日光; 朱亲林
2015-01-01
为了解决大型抽水蓄能机组可倾瓦导轴承性能计算的问题,笔者根据流体润滑理论,建立了大型可倾瓦导轴承的流体动力润滑数学模型,设计了计算程序,并以此程序对某350 MW级抽水蓄能机组的导轴承润滑性能进行了计算分析和研究.其结果表明,大型可倾瓦导轴承的流体动力润滑计算程序运行稳定可靠,导轴承的动力润滑性能会受到轴承负荷、机组转速、油槽进油温度等因素的影响,最高油膜温度、最小油膜厚度是制约轴承运行工况参数变化范围的关键因素.%In order to solve the calculation problem of the tilting pad guide bearing for large pumped-storage u-nits, according to hydro lubricating theory, the author established the hydrodynamic lubricating mathematical model of the tilting pad guide bearing and analyzed and studies the hydrodynamic lubrication of a 350 MW pumped-stor-age unit by the designed calculation program. The result shows that the calculation program operates stably and reli-ably. Besides, the lubricating character of guide bearing is affected by factors including bearing load, unit speed and inlet oil temperature of oil tank. The maximum oil film temperature and the minimum oil film thickness become the critical factor restricting the variation range of operating parameters.
da Silva, Isaias; Horikawa, Oswaldo; Cardoso, Jose R; Camargo, Fernando A; Andrade, Aron J P; Bock, Eduardo G P
2011-05-01
In previous studies, we presented main strategies for suspending the rotor of a mixed-flow type (centrifugal and axial) ventricular assist device (VAD), originally presented by the Institute Dante Pazzanese of Cardiology (IDPC), Brazil. Magnetic suspension is achieved by the use of a magnetic bearing architecture in which the active control is executed in only one degree of freedom, in the axial direction of the rotor. Remaining degrees of freedom, excepting the rotation, are restricted only by the attraction force between pairs of permanent magnets. This study is part of a joint project in development by IDPC and Escola Politecnica of São Paulo University, Brazil. This article shows advances in that project, presenting two promising solutions for magnetic bearings. One solution uses hybrid cores as electromagnetic actuators, that is, cores that combine iron and permanent magnets. The other solution uses actuators, also of hybrid type, but with the magnetic circuit closed by an iron core. After preliminary analysis, a pump prototype has been developed for each solution and has been tested. For each prototype, a brushless DC motor has been developed as the rotor driver. Each solution was evaluated by in vitro experiments and guidelines are extracted for future improvements. Tests have shown good results and demonstrated that one solution is not isolated from the other. One complements the other for the development of a single-axis-controlled, hybrid-type magnetic bearing for a mixed-flow type VAD.
Institute of Scientific and Technical Information of China (English)
武中德; 王黎钦; 曲大庄; 齐毓霖
2001-01-01
The thermo-elastic-hydrodynamic (TEHD) lubrication performance ofthe thrust bearings with Babbitt layer and/or teflon layer of large hydrogenerators was investigated by means of finite element analysis. The physical model established takes into account the lubricating oil film, thrust bearing, runner and thrust head. The thermo-elastic-deformation (TED) of the thrust bearing and runner was analyzed based on ADINA(T) program. It has been found that the calculated results of the thrust bearings conform well to the measured ones.%以巴氏合金瓦和弹性金属塑料瓦推力轴承为例，介绍了大型水轮发电机推力轴承热弹性流体动力润滑性能的有限元分析方法.物理模型包括润滑油膜、推力轴承和镜板推力头.采用ADINA(T)程序计算水口巴氏合金瓦和三峡弹性金属塑料瓦推力轴承和镜板推力头的热弹性变形，并对轴承性能的计算结果和测量结果进行了对比分析.结果表明，计算结果和实测结果吻合.
Institute of Scientific and Technical Information of China (English)
黎伟; 陈志祥; 汪久根
2011-01-01
The journal bearings with multiple tilting pads are widely used to support the shaft assembly of turbo generators. With the considerations of variable viscosity and density, a model of tilting-pad journal bearing with multiple-pads was established, and was analyzed using finite difference method. A computer program was developed to calculate the minimum film thickness, pressure distribution and three-dimensional temperature distribution of each pad, and the effects of radial loads, rotational speeds and oil viscosity grades of nine cases on the thermal hydrodynamic lubrication ( THD ) of the bearings were analyzed. The results indicate that this model and its computer program are able to analyze the features of thermal hydrodynamic lubrication of multi-tilting-pad journal bearings. The oil viscosity and rotational speed have much effect on the THD of bearing. The titling angle and its position of pad influence the THD of some of the pads,result in some difference with the situation of circular journal bearing.%考虑变黏度、密度的情况,建立多瓦可倾瓦径向滑动轴承的数学模型,用有限差分法求解其热流体动力润滑(THD)模型,分别计算12块瓦可倾瓦径向滑动轴承的最小油膜、压力分布和三维温度场分布,分析不同载荷、不同转速、不同润滑油黏度等对轴承各瓦的热润滑性能影响.结果显示,建立的模型及其计算程序能计算分析多瓦可倾瓦径向滑动轴承的热润滑问题.润滑油黏度和转子转速对多瓦可倾瓦径向滑动轴承的热润滑性能有较大的影响；瓦块绕支点的倾斜以及瓦块所处的角度位置会影响部分瓦块的热润滑性能,出现与普通圆形径向滑动轴承不一致的润滑性能变化.
Berthou, J; Chrétien, F C; Driguez, P A
1998-11-01
Copper release from copper-bearing IUD's was studied in vitro and in vivo using atomic absorption spectrophotometry in deionized water, normal saline solution and normal ovulatory cervical mucus. In these media, copper release from a 375 mm2 DIU occurs without latency, showing comparable amounts for identical time intervals. Daily copper release was shown to be respectively 8 and 11 times higher in cervical mucus and normal saline solution than in deionized water. Although copper ions are detectable in ovulatory cervical mucus under physiological conditions, the copper content appears 5 to 6 times higher in women bearing a copper IUD. Obviously, the copper amount is dependent on the copper exposed surface: the daily in vitro release from a 250 mm2 IUD is 18% inferior to that observed from a 375 mm2 model. In vivo, the daily copper release in ovulatory mucus of 380 or 200 mm2 IUD users is respectively 5 and 3.5 times higher than in controls.
FUNDAMENTALS OF STRUCTURAL TYPOLOGY DEVICE DESIGN WITH A GAS BEARING LAYER
Directory of Open Access Journals (Sweden)
I. A. Аvtsinоv
2015-01-01
Full Text Available We describe the typical stages of a structural typology of devices allowing them to design quality in the automatic mode on the known parameters of products (parts and the required processing operations with them. In the first stage classification it was organized as a piece of specific products and devices for the manipulation of the latter. Specifics items described their physical – mechanical properties, geometry and their application. The most frequently described specific products are used in pharmaceutical, perfume, food, microelectronics, electrical engineering, electronics. The main elements of the proposed device is a carrier working surface over which a thin layer of gas is created. Depending on the position (horizontal or vertical of the form of its movement (rotation, rotational – translational or is stationary, and the configuration of the carrier operating the surface implement various manufacturing operations (targeting, positioning, shaping, classification, transport, heat treatment, weight control, assembly, culling, and others. The second stage was to mathematically describe the relationship of the specificity of piece goods, with design features of devices supporting the work surface and sold them operations. For this purpose, the device has been used in discrete mathematics, with which you can produce a description of all types of devices, and then make a conclusion such as the work surface meets the specified requirements. The apparent advantage of using predicate logic to this problem is fairly simple implementation of the algorithm of structural typology, which can be expressed using a declarative programming language. In the third phase, work is underway to create the necessary algorithmic language program "Prolog" and presented the structure of the imperative and declarative implementation of the algorithm.
Chen, Xingxing; Zhang, Zijian; Ding, Zicheng; Liu, Jun; Wang, Lixiang
2016-08-22
Conjugated polymers are essential for solution-processable organic opto-electronic devices. In contrast to the great efforts on developing new conjugated polymer backbones, research on developing side chains is rare. Herein, we report branched oligo(ethylene glycol) (OEG) as side chains of conjugated polymers. Compared with typical alkyl side chains, branched OEG side chains endowed the resulting conjugated polymers with a smaller π-π stacking distance, higher hole mobility, smaller optical band gap, higher dielectric constant, and larger surface energy. Moreover, the conjugated polymers with branched OEG side chains exhibited outstanding photovoltaic performance in polymer solar cells. A power conversion efficiency of 5.37 % with near-infrared photoresponse was demonstrated and the device performance could be insensitive to the active layer thickness.
Kumenko, A. I.; Kostyukov, V. N.; Kuz'minykh, N. Yu.
2016-10-01
To visualize the physical processes that occur in the journal bearings of the shafting of power generating turbosets, a technique for preliminary calculation of a set of characteristics of the journal bearings in the domain of possible movements (DPM) of the rotor journals is proposed. The technique is based on interpolation of the oil film characteristics and is designed for use in real-time diagnostic system COMPACS®. According to this technique, for each journal bearing, the domain of possible movement of the shaft journal is computed, then triangulation of the area is performed, and the corresponding mesh is constructed. At each node of the mesh, all characteristics of the journal bearing required by the diagnostic system are calculated. Via shaft-position sensors, the system measures—in the online mode—the instantaneous location of the shaft journal in the bearing and determines the averaged static position of the journals (the pivoting vector). Afterwards, continuous interpolation in the triangulation domain is performed, which allows the real-time calculation of the static and dynamic forces that act on the rotor journal, the flow rate and the temperature of the lubricant, and power friction losses. Use of the proposed method on a running turboset enables diagnosing the technical condition of the shafting support system and promptly identifying the defects that determine the vibrational state and the overall reliability of the turboset. The authors report a number of examples of constructing the DPM and computing the basic static characteristics for elliptical journal bearings typical of large-scale power turbosets. To illustrate the interpolation method, the traditional approach to calculation of bearing properties is applied. This approach is based on a Reynolds two-dimensional isothermal equation that accounts for the mobility of the boundary of the oil film continuity.
Performance Improvement of tilting-pad journal bearings by means of controllable lubrication
DEFF Research Database (Denmark)
Cerda, Alejandro; Santos, Ilmar
2012-01-01
for these mechanical devices, achieving nowadays an elasto-thermo-hydrodynamic formulation. On the other hand, the basic design of the Tilting-Pad Journal Bearing has been modified in order to transform it into a smart machine element. One approach to do so is to inject pressurized oil directly into the bearing...... clearance through holes drilled across the bearing pads. By adjusting the injection pressure, it is possible to modify the dynamic characteristics of the bearing. A controllable lubrication regime is obtained, allowing to expand the operational boundaries of the original design. This work focuses...
DEFF Research Database (Denmark)
Thomsen, Kim; Klit, Peder
2012-01-01
A flexure journal bearing design is proposed that will improve operational behaviour of a journal bearing at pronounced misalignment. Using a thermoelastohydrodynamic model, it is shown that the proposed flexure journal bearing has vastly increased the hydrodynamic performance compared to the stiff...... bearing when misaligned. The hydrodynamic performance is evaluated on lubricant film thickness, pressure and temperature. Furthermore, the influence of a compliant bearing liner is investigated and it is found that it increases the hydrodynamic performance when applied to a stiff bearing, whereas...... the liner has practically no influence on the flexure journal bearing's performance....
Zhou, Jie; Tan, Xiaodong; Song, Xiangjing; Zhang, Kaining; Fang, Jing; Peng, Lin; Qi, Wencai; Nie, Zonghui; Li, Ming; Deng, Rui; Yan, Chaofang
2015-03-01
Copper-bearing intrauterine device (IUD) insertion for long-term contraceptive use is high in China, but there has been evidence that first-year discontinuation rate of copper-bearing IUD has also increased rapidly in recent years especially among rural married women. To investigate long-term use of copper-bearing IUD, the authors examined the 7-year temporal trends of copper-bearing IUD discontinuation in a population-based birth-cohort study among 720 rural married women in China, from 2004 to 2012. Women requesting contraception were followed-up twice per year after the insertion of IUD. The gross cumulative life table discontinuation rates were calculated for each of the main reasons for discontinuation as well as for all reasons combined. By the end of 7 years, 384 discontinuations were observed. With a stepped-up trend, the gross cumulative life table rate for discontinuation increased from 10.06 (95% confidence interval = 7.86-12.27) per 100 women by the first year to 52.69 (95% confidence interval = 48.94-56.44) per 100 women by the end of 7 years, which increased rapidly in the first 2 years after copper-bearing IUD insertion, flattened out gradually in the following 2 years, then increased again in the last 3 years. Among reported method failure, expulsion and side effects were the main reasons for discontinuation of the copper-bearing IUD but not pregnancy. Personal reasons, such as renewal by personal will had influenced copper-bearing IUD use since the second year and should not be neglected. Based on this study, the temporal trends of copper-bearing IUD discontinuation was in a stepped-up trend in 7 years after insertion. Both reported method failure (expulsion and side effect) and personal reason had effect on the discontinuation of copper-bearing IUD, but pregnancy was no more the most important reason affecting the use of copper-bearing IUD.
The Multi-aim Probability Optimal Design of Hydrodynamical Journal Bearing%液体动压径向滑动轴承的概率多目标优化设计
Institute of Scientific and Technical Information of China (English)
张鄂; 蒙娟; 贾焕如
2001-01-01
运用可靠性设计理论和优化设计技术，提出 了液体动压径向滑动轴承的概率优化设计方法；建立了其概率多目标优化设计的数学模型； 求解该模型，可得到总体最优的设计方案，使轴承在满足承载能力及强度要求条件下，功耗 和温升最低，体积减小。%According to the reliability theory and the optimal design principle, a multi-aim probability optimal design method of hydrodynamical journal bearing is discussed in this paper. The establishment of mathematical model for this method is introduced in details. With solving the model, optimal paramaters for falling bearing power waste and oil temperature are obtained. The calculation results show that this optimal design method is effective.
Lay, Christophe; Teo, Cheng Yong; Zhu, Liang; Peh, Xue Li; Ji, Hong Miao; Chew, Bi-Rong; Murthy, Ramana; Feng, Han Hua; Liu, Wen-Tso
2008-05-01
Ultra-fine (drop bypass architecture, which significantly reduces the likelihood of clogging at the cost of limited cell loss. The new rain drop bypass architecture configuration has a substantially lower pressure drop and allows a better efficiency in trapping protozoan cells (Cryptosporidium parvum and Giardia lamblia) in comparison to our previous generation of a microfilter device. A modified version displaying sub-micron filter gaps was adapted to trap and detect bacterial cells (Escherichia coli), through a method of cells labeling, which aims to amplify the fluorescence signal emission and therefore the sensitivity of detection.
Directory of Open Access Journals (Sweden)
Fabien Bogard
2017-01-01
Full Text Available Bearings allow external loadings to be transferred from one raceway to the other through rolling elements, which induces strains in the bearing constituents. In order to measure the radial component of these forces, the fixed ring is inserted within a housing equipped with capacitive probes able to measure displacements with very high sensitivity. This work mainly focuses on determining the optimal housing shape using FE simulations and their influence on the global stress state undergone by the structure. Finally, an averaged global stiffness is computed, allowing proper calculation of the contact forces involved in the bearing.
Luciano, Rezzolla
2013-01-01
Relativistic hydrodynamics is a very successful theoretical framework to describe the dynamics of matter from scales as small as those of colliding elementary particles, up to the largest scales in the universe. This book provides an up-to-date, lively, and approachable introduction to the mathematical formalism, numerical techniques, and applications of relativistic hydrodynamics. The topic is typically covered either by very formal or by very phenomenological books, but is instead presented here in a form that will be appreciated both by students and researchers in the field. The topics covered in the book are the results of work carried out over the last 40 years, which can be found in rather technical research articles with dissimilar notations and styles. The book is not just a collection of scattered information, but a well-organized description of relativistic hydrodynamics, from the basic principles of statistical kinetic theory, down to the technical aspects of numerical methods devised for the solut...
Performance of Simple Gas Foil Thrust Bearings in Air
Bruckner, Robert J.
2012-01-01
Foil bearings are self-acting hydrodynamics devices used to support high speed rotating machinery. The advantages that they offer to process fluid lubricated machines include: high rotational speed capability, no auxiliary lubrication system, non-contacting high speed operation, and improved damping as compared to rigid hydrodynamic bearings. NASA has had a sporadic research program in this technology for almost 6 decades. Advances in the technology and understanding of foil journal bearings have enabled several new commercial products in recent years. These products include oil-free turbochargers for both heavy trucks and automobiles, high speed electric motors, microturbines for distributed power generation, and turbojet engines. However, the foil thrust bearing has not received a complimentary level of research and therefore has become the weak link of oil-free turbomachinery. In an effort to both provide machine designers with basic performance parameters and to elucidate the underlying physics of foil thrust bearings, NASA Glenn Research Center has completed an effort to experimentally measure the performance of simple gas foil thrust bearing in air. The database includes simple bump foil supported thrust bearings with full geometry and manufacturing techniques available to the user. Test conditions consist of air at ambient pressure and temperatures up to 500 C and rotational speeds to 55,000 rpm. A complete set of axial load, frictional torque, and rotational speed is presented for two different compliant sub-structures and inter-pad gaps. Data obtained from commercially available foil thrust bearings both with and without active cooling is presented for comparison. A significant observation made possible by this data set is the speed-load capacity characteristic of foil thrust bearings. Whereas for the foil journal bearing the load capacity increases linearly with rotational speed, the foil thrust bearing operates in the hydrodynamic high speed limit. In
Milne-Thomson, L M
2011-01-01
This classic exposition of the mathematical theory of fluid motion is applicable to both hydrodynamics and aerodynamics. Based on vector methods and notation with their natural consequence in two dimensions - the complex variable - it offers more than 600 exercises and nearly 400 diagrams. Prerequisites include a knowledge of elementary calculus. 1968 edition.
Lafrance, Pierre
1978-01-01
Explores in a non-mathematical treatment some of the hydrodynamical phenomena and forces that affect the operation of ships, especially at high speeds. Discusses the major components of ship resistance such as the different types of drags and ways to reduce them and how to apply those principles for the hovercraft. (GA)
Energy Technology Data Exchange (ETDEWEB)
Castor, J I
2003-10-16
The discipline of radiation hydrodynamics is the branch of hydrodynamics in which the moving fluid absorbs and emits electromagnetic radiation, and in so doing modifies its dynamical behavior. That is, the net gain or loss of energy by parcels of the fluid material through absorption or emission of radiation are sufficient to change the pressure of the material, and therefore change its motion; alternatively, the net momentum exchange between radiation and matter may alter the motion of the matter directly. Ignoring the radiation contributions to energy and momentum will give a wrong prediction of the hydrodynamic motion when the correct description is radiation hydrodynamics. Of course, there are circumstances when a large quantity of radiation is present, yet can be ignored without causing the model to be in error. This happens when radiation from an exterior source streams through the problem, but the latter is so transparent that the energy and momentum coupling is negligible. Everything we say about radiation hydrodynamics applies equally well to neutrinos and photons (apart from the Einstein relations, specific to bosons), but in almost every area of astrophysics neutrino hydrodynamics is ignored, simply because the systems are exceedingly transparent to neutrinos, even though the energy flux in neutrinos may be substantial. Another place where we can do ''radiation hydrodynamics'' without using any sophisticated theory is deep within stars or other bodies, where the material is so opaque to the radiation that the mean free path of photons is entirely negligible compared with the size of the system, the distance over which any fluid quantity varies, and so on. In this case we can suppose that the radiation is in equilibrium with the matter locally, and its energy, pressure and momentum can be lumped in with those of the rest of the fluid. That is, it is no more necessary to distinguish photons from atoms, nuclei and electrons, than it is
Lauga, Eric
2015-01-01
Bacteria predate plants and animals by billions of years. Today, they are the world's smallest cells yet they represent the bulk of the world's biomass, and the main reservoir of nutrients for higher organisms. Most bacteria can move on their own, and the majority of motile bacteria are able to swim in viscous fluids using slender helical appendages called flagella. Low-Reynolds-number hydrodynamics is at the heart of the ability of flagella to generate propulsion at the micron scale. In fact, fluid dynamic forces impact many aspects of bacteriology, ranging from the ability of cells to reorient and search their surroundings to their interactions within mechanically and chemically-complex environments. Using hydrodynamics as an organizing framework, we review the biomechanics of bacterial motility and look ahead to future challenges.
DEFF Research Database (Denmark)
Hansen, Jesper Schmidt; Dyre, Jeppe C.; Daivis, Peter J.;
2011-01-01
We show by nonequilibrium molecular dynamics simulations that the Navier-Stokes equation does not correctly describe water flow in a nanoscale geometry. It is argued that this failure reflects the fact that the coupling between the intrinsic rotational and translational degrees of freedom becomes...... important for nanoflows. The coupling is correctly accounted for by the extended Navier-Stokes equations that include the intrinsic angular momentum as an independent hydrodynamic degree of freedom. © 2011 American Physical Society....
Vela Arvizo, Dagoberto; Rodríguez Lelis, José Maria; Vargas Treviño, Marciano; Flores Gil, Aarón; May Alarcón, Manuel; Villanueva Luna, Adrián E.
2007-03-01
Bearings are elements of rotating machinery that are widely used as low friction joint elements between other machine elements. Like any other machine element they posses a finite life which is dependent on a number of factors, among them manufacture, assembling, maintenances, load, etc. Bearing failures are amongst the principal causes of machinery overhaul. They by themselves are a source of vibration which is a function of surface conditions, clearances, misalignment, etc. Each of these defects present a specific dynamic signature, and can be analyzed by a number of techniques already in used, among them the laser vibrometry. This is a non-contact, non-disturbing method commonly used for measurements of vibrations on static objects. The technique offers the possibility to measure vibrations on thin-walled (light), and rotating objects as well as sound fields. Common vibration signal analysis in rotating machinery are restricted to low frequencies, up to 3000 Hz, and in some cases when analyzing contact problems and fatigue at 7000 up to 15000 Hz. In this work, are presented the primary results to employ laser interferometry to study the dynamic signals generated by rolling bearings, and the feasibility to employ it to study high frequency problems of these machine elements.
Turbulence Models of Hydrodynamic Lubrication
Institute of Scientific and Technical Information of China (English)
张直明; 王小静; 孙美丽
2003-01-01
The main theoretical turbulence models for application to hydrodynamic lubrication problems were briefly reviewed, and the course of their development and their fundamentals were explained. Predictions by these models on flow fields in turbulent Couette flows and shear-induced countercurrent flows were compared to existing measurements, and Zhang & Zhang' s combined k-ε model was shown to have surpassingly satisfactory results. The method of application of this combined k-ε model to high speed journal bearings and annular seals was summarized, and the predicted results were shown to be satisfactory by comparisons with existing experiments of journal bearings and annular seals.
Jeon, Sangyong
2015-01-01
We give a pedagogical review of relativistic hydrodynamics relevant to relativistic heavy ion collisions. Topics discussed include linear response theory derivation of 2nd order viscous hydrodynamics including the Kubo formulas, kinetic theory derivation of 2nd order viscous hydrodynamics, anisotropic hydrodynamics and a brief review of numerical algorithms. Emphasis is given to the theory of hydrodynamics rather than phenomenology.
磁悬浮飞轮用可重复抱式锁紧装置%Repeated clamping locking device for magnetic bearing flywheel
Institute of Scientific and Technical Information of China (English)
刘强; 房建成
2012-01-01
As the integral carbon fiber slice for a locking device is not easy to disassemble and the one-off locking device can not repeat locking/unlocking in a magnetic bearing flywheel, a novel repeated clamping locking device based on a separate elastic slice as release mechanism was presented. The composition,, operating principles and the scheme of elastic slice for the device were introduced. To be equivalent the elastic slice for a cantilever beam-mass mode, the static and dynamic analysis was performed for the device. Upon this, the structure parameters of high sensitivity were selected as design variables, and the structural strength, unlocking force and the first resonance frequency were concerned. Then, the software of multidisciplinary design optimization (iSIGHT) was used for the optimization of elastic slice. The results indicate that the total mass of elastic slices has been reached to the minimum of 207 g corresponding to 10 elastic slices, which is reduced by 56. 6% compared with initial mass of 477 g. According to optimization results, a locking device was manufactured and it isverified by sine-swept vibration and random vibration. The verification shows that the locking device can protect magnetic bearing flywheels and has great significance and values for space applications of magnetic bearing flywheels.%针对磁悬浮飞轮锁紧装置用整体碳纤维弹片不便拆卸和一次性锁紧装置不可重复锁紧/解锁的缺点,提出了一种基于分立式弹片释放机构的可重复抱式锁紧装置.介绍了锁紧装置的结构、工作原理和弹片方案,通过将弹片释放机构等效为悬臂梁质量块模型,对其进行了静力学和动力学分析.基于分析结果,选择灵敏度较高的结构参数作为优化设计变量,并考虑结构强度、解锁力和一阶共振频率,以软件iSIGHT为平台,对弹片进行多学科优化设计.优化结果表明,弹片个数为10时,弹片总质量达到最小为207 g
Renilson, Martin
2015-01-01
This book adopts a practical approach and presents recent research together with applications in real submarine design and operation. Topics covered include hydrostatics, manoeuvring, resistance and propulsion of submarines. The author briefly reviews basic concepts in ship hydrodynamics and goes on to show how they are applied to submarines, including a look at the use of physical model experiments. The issues associated with manoeuvring in both the horizontal and vertical planes are explained, and readers will discover suggested criteria for stability, along with rudder and hydroplane effectiveness. The book includes a section on appendage design which includes information on sail design, different arrangements of bow planes and alternative stern configurations. Other themes explored in this book include hydro-acoustic performance, the components of resistance and the effect of hull shape. Readers will value the author’s applied experience as well as the empirical expressions that are presented for use a...
Axial magnetic bearing development for the BiVACOR rotary BiVAD/TAH.
Greatrex, Nicholas A; Timms, Daniel L; Kurita, Nobuyuki; Palmer, Edward W; Masuzawa, Toru
2010-03-01
A suspension system for the BiVACOR biventricular assist device (BiVAD) has been developed and tested. The device features two semi-open centrifugal impellers mounted on a common rotating hub. Flow balancing is achieved through the movement of the rotor in the axial direction. The rotor is suspended in the pump casings by an active magnetic suspension system in the axial direction and a passive hydrodynamic bearing in the radial direction. This paper investigates the axial movement capacity of the magnetic bearing system and the power consumption at various operating points. The force capacity of the passive hydrodynamic bearing is investigated using a viscous glycerol solution. Axial rotor movement in the range of +/-0.15 mm is confirmed and power consumption is under 15.5 W. The journal bearing is shown to stabilize the rotor in the radial direction at the required operating speed. Magnetic levitation is a viable suspension technique for the impeller of an artificial heart to improve device lifetime and reduce blood damage.
Institute of Scientific and Technical Information of China (English)
Jie GAO; Ying LI; Jian-ping LIU; Xuan GU
2007-01-01
Objective To compare the cupric ion releasing in vitro of the three IUDs.Methods The stability of cupric ion releasing of IUDs including TCu 380A IUD (TCu 380A), Multiload Cu375 IUD (MCu 375) and Yuangong 365 copper-bearing indomethacin-releasing IUD (Yuangong 365) by the determination of cupric ion releasing in simulated uterine fluid. The simulated uterine fluid was used for releasing media. Copper ion was determined by flame atomic absorption spectrometerResults The cupric ion releasing of three IUDs were instable at the beginning and tend to be stable gradually. In the stable phase, the average level of cupric ion releasing of TCu380A, MCu375 and Yuangong 365 were 4.25±2.71 -7.62±6.42 μg,4.92±1.23 -8.62±3.08 μg and 2.19±0.40-4.68±1.66 μg, respectively. TCu380A had higher instable releasing level than those of Yuangong 365 (P＜0. 05).Conclusion TCu 380A and MCu 375 showed a "burst release" during the first few days and the former was of great significance(P＜0. 05). The initial cupric ion releasing of Yuangong 365 appeared to be the lowest, followed by MCu375 and TCu380A in a releasing order.
Hydrodynamics of slip wedge and optimization of surface slip property
Institute of Scientific and Technical Information of China (English)
MA GuoJun; WU ChengWei; ZHOU Ping
2007-01-01
The hydrodynamic load support generated by a slip wedge of a slider bearing was studied. The surface slip property was optimized so that a maximum hydrodynamic load support could be obtained. A multi-linearity method was given for the slip control equation of two-dimensional (2-D) wall slip. We investigated 2-D wall slip and the hydrodynamics of a finite length bearing with any values of the surface limiting shear stress. It was found that the hydrodynamic effect of the slip wedge is greater than the traditional geometrical convergent-wedge. Even though the geometrical gap is a parallel or divergent sliding gap, the slip wedge still gives rise to a very big hydrodynamic pressure. The optimized slip wedge can give rise to a hydrodynamic load support as high as 2.5 times of what the geometrical convergent-wedge can produce. Wall slip usually gives a small surface friction.
Novel Repeatable Inner Locking Device for Magnetic Bearing Flywheel%磁悬浮飞轮用新型可重复内锁紧机构
Institute of Scientific and Technical Information of China (English)
刘强; 曹建树; 房建成; 徐宝东
2014-01-01
为减小磁悬浮飞轮整机的体积质量和降低发射成本，提出了一种基于锥面锁紧和摩擦自锁的可重复内锁紧机构，并介绍了其结构、工作原理。根据发射振动条件对锁紧机构进行静力学分析，得到锁紧机构各项锁紧参数。在此基础上，通过选择锁台位置和锥面约束面积，采用有限元法对锁紧状态下的飞轮转子进行动力学模态计算。根据设计结果研制了一套锁紧机构，并通过正弦扫频振动和随机振动模拟卫星发射振动工况，检验锁紧机构对磁悬浮飞轮系统的保护效果。结果显示，振动试验中飞轮系统无明显共振发生，飞轮定、转子间最大相对振动位移为30μm，远小于飞轮保护间隙200μm，表明锁紧机构能够对飞轮系统实施有效保护。%In order to reduce the volume, weight and launch cost of magnetic bearing flywheel as a whole, a repeatable inner loc⁃king device based on conical surface to lock and friction self⁃locking to keep locking was presented. Its composition and operating prin⁃ciple were introduced. According to launch vibration condition, the static analysis of locking device was carried out and the locking pa⁃rameters were obtained. Upon this basis, by choosing locking step position and conical constraint area, the dynamics modals of flywheel rotor under locking state were calculated by finite element method ( FEM) . According to design results, a locking device was devel⁃oped, and vibration working condition of satellite launching was simulated by swept⁃sine vibration and random vibration, so as to verify the protection effects on the magnetic bearing flywheel by the locking device. The result shows that, no resonance occurs during testing of the flywheel, and the maximum relative vibration displacement between stator and rotor is at 30 μm far less than the protection gap of 200 μm, which indicates the locking device can effectively protect flywheel
Hydrodynamics of slip wedge and optimization of surface slip property
Institute of Scientific and Technical Information of China (English)
2007-01-01
The hydrodynamic load support generated by a slip wedge of a slider bearing was studied. The surface slip property was optimized so that a maximum hydrodynamic load support could be obtained. A multi-linearity method was given for the slip control equation of two-dimensional (2-D) wall slip. We investigated 2-D wall slip and the hydrodynamics of a finite length bearing with any values of the surface limiting shear stress. It was found that the hydrodynamic effect of the slip wedge is greater than the traditional geometrical convergent-wedge. Even though the geo- metrical gap is a parallel or divergent sliding gap, the slip wedge still gives rise to a very big hydrodynamic pressure. The optimized slip wedge can give rise to a hy- drodynamic load support as high as 2.5 times of what the geometrical conver- gent-wedge can produce. Wall slip usually gives a small surface friction.
Method to Increase Performance of Foil Bearings Through Passive Thermal Management
Bruckner, Robert
2013-01-01
This invention is a new approach to designing foil bearings to increase their load capacity and improve their reliability through passive thermal management. In the present case, the bearing is designed in such a way as to prevent the carryover of lubricant from the exit of one sector to the inlet of the ensuing sector of the foil bearing. When such passive thermal management techniques are used, bearing load capacity is improved by multiples, and reliability is enhanced when compared to current foil bearings. This concept has recently been tested and validated, and shows that load capacity performance of foil bearings can be improved by a factor of two at relatively low speeds with potentially greater relative improvements at higher speeds. Such improvements in performance with respect to speed are typical of foil bearings. Additionally, operation of these newly conceived bearings shows much more reliability and repeatable performance. This trait can be exploited in machine design to enhance safety, reliability, and overall performance. Finally, lower frictional torque has been demonstrated when operating at lower (non-load capacity) loads, thus providing another improvement above the current state of the art. The objective of the invention is to incorporate features into a foil bearing that both enhance passive thermal management and temperature control, while at the same time improve the hydrodynamic (load capacity) performance of the foil bearing. Foil bearings are unique antifriction devices that can utilize the working fluid of a machine as a lubricant (typically air for turbines and motors, liquids for pumps), and as a coolant to remove excess energy due to frictional heating. The current state of the art of foil bearings utilizes forced cooling of the bearing and shaft, which represents poor efficiency and poor reliability. This invention embodies features that utilize the bearing geometry in such a manner as to both support load and provide an inherent and
Identification of dynamic properties of radial air-foil bearings
Arora, V.; Hoogt, van der P.J.M.; Aarts, R.G.K.M.; Boer, de A.
2010-01-01
Air-foil bearings (AFBs) are self acting hydrodynamic bearings made from sheet metal foils comprised of at least two layers. The innermost “top foil” layer traps a gas pressure film that supports a load while the layer or layers underneath provide an elastic foundation. Air-foil bearings are current
Identification of dynamic properties of radial air-foil bearings
Arora, V.; Hoogt, van der P.J.M.; Aarts, R.G.K.M.; Boer, de A.
2010-01-01
Air-foil bearings (AFBs) are self acting hydrodynamic bearings made from sheet metal foils comprised of at least two layers. The innermost ‘‘top foil’’ layer traps a gas pressure film that supports a load while the layer or layers underneath provide an elastic foundation. Air-foil bearings are curre
Magnetic bearings grow more attractive
1993-10-01
Advances in materials and electronics have enabled designers to devise simpler, smaller magnetic bearings. As a result, costs have dropped, widening the applications for these very-low-friction devices. Avcon (Advanced Controls Technology) has patented a permanent-magnet bias actively controlled bearing. Here high-energy rare earth permanent-magnet materials supply the basic bearing load levitation, while servo-driven electromagnets generate stabilization and centering forces for motion contol. Previous heavy-duty magnetic bearings used electromagnets entirely for suspension and control, which led to large bearings and control systems with higher power requirements. Avcon has developed several types of permanent-magnet bias bearings. The simplest is the radial repulsion bearing. Avcon's homopolar permanent-magnet bias active bearing is the most versatile of the company's designs.
Menke, John R.; Boeker, Gilbert F.
1976-05-11
1. An improved journal bearing comprising in combination a non-rotatable cylindrical bearing member having a first bearing surface, a rotatable cylindrical bearing member having a confronting second bearing surface having a plurality of bearing elements, a source of lubricant adjacent said bearing elements for supplying lubricant thereto, each bearing element consisting of a pair of elongated relatively shallowly depressed surfaces lying in a cylindrical surface co-axial with the non-depressed surface and diverging from one another in the direction of rotation and obliquely arranged with respect to the axis of rotation of said rotatable member to cause a flow of lubricant longitudinally along said depressed surfaces from their distal ends toward their proximal ends as said bearing members are rotated relative to one another, each depressed surface subtending a radial angle of less than 360.degree., and means for rotating said rotatable bearing member to cause the lubricant to flow across and along said depressed surfaces, the flow of lubricant being impeded by the non-depressed portions of said second bearing surface to cause an increase in the lubricant pressure.
Institute of Scientific and Technical Information of China (English)
张杰民; 姜洋; 李雪; 王伟; 王洪武; 贾克刚; 刘雯; 高航; 张磊; 刘晓程; 刘志刚; 李翼鹏; 韩志富; 许剑; 荣彦生; 刘天文; 张嵬
2014-01-01
Objective To verify the function of magnetic and hydrodynamic suspension centrifugal ventricular assist device in a sheep model .Methods The device was implanted into left ventricular apex on beating hearts.The outflow graft of each device was anastomosed to descending aorta in 11 animals. Hematologic , biochemical and blood clotting tests before and after surgery were performed .The data of pump functions were collected continuously .Results Among them, there were death from ventricular fibrillation (n=3), acute pulmonary edema (n=1) and left ventricular thrombus and molar cardiac muscle (n=5). One animal survived for 75 days and died from bacterial infection after pumping for 59 hours.During assistance for 120 days, the flow rate was 3.0 -3.4 L/min.All hematologic and biochemical parameters were within normal ranges in one sheep .The walking sheep wore the controller and lithium battery with a blood pump.Neither mechanical wearing nor thrombus formation was observed for inflow and outflow conduits or pump interior .Conclusions The magnetic and hydrodynamic suspension centrifugal ventricular assist device demonstrates excellent hemocompatibility and reliability .And there is a great prospect of clinical success .%目的：检测左心辅助羊应用磁液双悬浮离心血泵和控制器的各项性能。方法在全麻、非体外循环、心脏跳动下，将血泵流出端人工血管吻合于降主动脉，左心尖植入血泵流入端，建立左心辅助实验模型，记录术前术后血液、生化和血泵的各项指标。共完成11只左心辅助羊的动物实验。结果11只左心辅助羊，心室颤动死亡3例，急性肺水肿死亡1例；左室血栓及左室碎肉至血泵停止工作5例；1例血泵左心辅助59 h，因血泵电流逐渐增高人为停泵，羊存活75 d，死于感染；1例术后应用华法林抗凝，血泵正常工作，辅助流量3.0～3.4 L/min，血液、生化及尿液各项指标基
Schwartz, C.C.; Miller, S.D.; Haroldson, M.A.; Feldhamer, G.; Thompson, B.; Chapman, J.
2003-01-01
The grizzly bear inspires fear, awe, and respect in humans to a degree unmatched by any other North American wild mammal. Like other bear species, it can inflict serious injury and death on humans and sometimes does. Unlike the polar bear (Ursus maritimus) of the sparsely inhabited northern arctic, however, grizzly bears still live in areas visited by crowds of people, where presence of the grizzly remains physically real and emotionally dominant. A hike in the wilderness that includes grizzly bears is different from a stroll in a forest from which grizzly bears have been purged; nighttime conversations around the campfire and dreams in the tent reflect the presence of the great bear. Contributing to the aura of the grizzly bear is the mixture of myth and reality about its ferocity. unpredictable disposition, large size, strength, huge canines, long claws, keen senses, swiftness, and playfulness. They share characteristics with humans such as generalist life history strategies. extended periods of maternal care, and omnivorous diets. These factors capture the human imagination in ways distinct from other North American mammals. Precontact Native American legends reflected the same fascination with the grizzly bear as modern stories and legends (Rockwell 1991).
Elasto-hydrodynamic lubrication
Dowson, D; Hopkins, D W
1977-01-01
Elasto-Hydrodynamic Lubrication deals with the mechanism of elasto-hydrodynamic lubrication, that is, the lubrication regime in operation over the small areas where machine components are in nominal point or line contact. The lubrication of rigid contacts is discussed, along with the effects of high pressure on the lubricant and bounding solids. The governing equations for the solution of elasto-hydrodynamic problems are presented.Comprised of 13 chapters, this volume begins with an overview of elasto-hydrodynamic lubrication and representation of contacts by cylinders, followed by a discussio
Elementary classical hydrodynamics
Chirgwin, B H; Langford, W J; Maxwell, E A; Plumpton, C
1967-01-01
Elementary Classical Hydrodynamics deals with the fundamental principles of elementary classical hydrodynamics, with emphasis on the mechanics of inviscid fluids. Topics covered by this book include direct use of the equations of hydrodynamics, potential flows, two-dimensional fluid motion, waves in liquids, and compressible flows. Some general theorems such as Bernoulli's equation are also considered. This book is comprised of six chapters and begins by introducing the reader to the fundamental principles of fluid hydrodynamics, with emphasis on ways of studying the motion of a fluid. Basic c
Institute of Scientific and Technical Information of China (English)
王树杰; 李华军; 李冬; 鹿兰帅; 单忠德; 赵龙武
2009-01-01
The paper puts forward a new type of marine current energy conversion device, a flexible vane turbine. Its flexible vane is made of flexible material, which can deform to adapt to fluid. Thus the turbine can adjust the attack angle automatically to take full advantage of the lift effect and drag effect and produce as more power as possible, so it has unique hydrodynamic performances. Focusing on the power efficiency coefficient ( C_p ) , the authors studied its hydrodynamic characteristics and the affecting factors on them via a model test in a water tank. The results proved its characteristics and showed that, the shape of flexible vane and the structure of turbine rotor are the main factors affecting on its performance. Based on the analysis of the results, an optimal scheme of the flexible vane turbine having higher coefficient of power was proposed.%提出了一种新型海洋潮流能获取装置--潮流能柔性叶片水轮机.其叶片采用柔性材料,可适应流体发生形变,从而它能自动调节攻角,能充分利用流体的升力效应和阻力效应做功,具有独特的水动力学特性.以柔性叶片水轮机获能系数(C_p)为主要研究目标,通过水槽模型实验对其影响因素进行了研究.实验证实了该柔性叶片水轮机的独特水动力学特性,而且证明,叶片形状和水轮机结构形式是其性能的主要影响因素,并通过分析得到了具有较佳水动力学特性的水轮机的叶片形状和水轮机结构形式.
Hydrostatic and hybrid bearing design
Rowe, W B
1983-01-01
Hydrostatic and Hybrid Bearing Design is a 15-chapter book that focuses on the bearing design and testing. This book first describes the application of hydrostatic bearings, as well as the device pressure, flow, force, power, and temperature. Subsequent chapters discuss the load and flow rate of thrust pads; circuit design, flow control, load, and stiffness; and the basis of the design procedures and selection of tolerances. The specific types of bearings, their design, dynamics, and experimental methods and testing are also shown. This book will be very valuable to students of engineering des
Nonlocal transport and the hydrodynamic shear viscosity in graphene
Torre, Iacopo; Tomadin, Andrea; Geim, Andre K.; Polini, Marco
2015-10-01
Motivated by recent experimental progress in preparing encapsulated graphene sheets with ultrahigh mobilities up to room temperature, we present a theoretical study of dc transport in doped graphene in the hydrodynamic regime. By using the continuity and Navier-Stokes equations, we demonstrate analytically that measurements of nonlocal resistances in multiterminal Hall bar devices can be used to extract the hydrodynamic shear viscosity of the two-dimensional (2D) electron liquid in graphene. We also discuss how to probe the viscosity-dominated hydrodynamic transport regime by scanning probe potentiometry and magnetometry. Our approach enables measurements of the viscosity of any 2D electron liquid in the hydrodynamic transport regime.
Quasiparticle anisotropic hydrodynamics
Alqahtani, Mubarak
2016-01-01
We study an azimuthally-symmetric boost-invariant quark-gluon plasma using quasiparticle anisotropic hydrodynamics including the effects of both shear and bulk viscosities. We compare results obtained using the quasiparticle method with the standard anisotropic hydrodynamics and viscous hydrodynamics. We consider the predictions of the three methods for the differential particle spectra and mean transverse momentum. We find that the three methods agree for small shear viscosity to entropy density ratio, $\\eta/s$, but show differences at large $\\eta/s$. Additionally, we find that the standard anisotropic hydrodynamics method shows suppressed production at low transverse-momentum compared to the other two methods, and the bulk-viscous correction can drive the primordial particle spectra negative at large $p_T$ in viscous hydrodynamics.
含铜宫内节育器的致畸作用评价%Evaluation of the teratogenicity of copper-bearing intrauterine device
Institute of Scientific and Technical Information of China (English)
叶向锋; 刘芷含; 张淑敏; 王灵芝; 王爱平; 魏金锋
2011-01-01
OBJECTIVE: To study the teratogenicity of copper-bearing inirauterine device(Cu-IUD) using Sprague-Dawley rats. METHODS: Timed-pregnant rats were divided into 4 groups(24 for each group), including three. Treatment groups (0.1, 0.3, and 0.9 g/ml, IV) and vehicle control group (NS, IV.). Rats received extract solution of Cu-IUO or vehicle on geslational days(GD) 6 through 15. Body weight and clinical signs of maternal rate were monitored at regular intervals throughout gestation. At termination(GD 20), pregnant females were evaluated for clinical status and gestational outcome; live fetuses were examined for external appearance, visceral, and skeletal malformation and variations. RESULTS: There were no maternal deaths and no dose-related clinical signs. Maternal weight gain, liver weight, number of corpora lutea, implantation and live fetuses, body length and tail length of fetuses were not affected. IUD did not affect prenatal viability or incidences of fetal malformations or variations. Percent of resorbed embryos in high dose group was significantly higher than that in control group. CONCLUSION: No maternal toxicily and teratogenicity, but toxic effects in early embryo development were found when rats were treated with extract solution of Cu- IUD at a dose of 0.9 g/ml.%目的:评价含铜官内节育器对SD大鼠的致畸作用.方法:试验设4组,分别为溶剂对照组(生理盐水)、给药组含铜宫内节育器浸提液,浸提比例分别为0.1、0.3和0.9 g/ml),每组24只孕鼠.各组于妊娠期第6～15天静脉注射给予受试物,于孕第20天时处死孕鼠,观察孕鼠一般状况、体质量、活胎数、胎鼠外观、骨骼及内脏等.结果:受试组孕鼠孕期的体质量增长、窝质量、黄体数、着床数、活胎数、胎鼠的身长、尾长等指标与溶剂对照组相比,差异均无统计学意义(P>0.05).但0.9 g/ml组的吸收胎率(7.3%)较对照组(3.4%)明显升高(P<0.05).胎鼠外观、内脏及骨骼检查均未
1996-01-01
AVCON, Inc. produces advanced magnetic bearing systems for industrial use, offering a unique technological approach based on contract work done at Marshall Space Flight Center and Lewis Research Center. Designed for the turbopump of the Space Shuttle main engine, they are now used in applications such as electric power generation, petroleum refining, machine tool operation and natural gas pipelines. Magnetic bearings support moving machinery without physical contact; AVCON's homopolar approach is a hybrid of permanent and electromagnets which are one-third the weight, smaller and more power- efficient than previous magnetic bearings.
Elrod, David A.
1993-01-01
The rolling element bearings (REB's) which support many turbomachinery rotors offer high load capacity, low power requirements, and durability. Two disadvantages of REB's are: (1) rolling or sliding contact within the bearing has life-limiting consequences; and (2) REB's provide essentially no damping. The REB's in the Space Shuttle Main Engine (SSME) turbopumps must sustain high static and dynamic loads, at high speeds, with a cryogenic fluid as lubricant and coolant. The pump end ball bearings limit the life of the SSME high pressure oxygen turbopump (HPOTP). Compliant foil bearing (CFB) manufacturers have proposed replacing turbopump REB's with CFB's CFB's work well in aircraft air cycle machines, auxiliary power units, and refrigeration compressors. In a CFB, the rotor only contracts the foil support structure during start up and shut down. CFB damping is higher than REB damping. However, the load capacity of the CFB is low, compared to a REB. Furthermore, little stiffness and damping data exists for the CFB. A rotordynamic analysis for turbomachinery critical speeds and stability requires the input of bearing stiffness and damping coefficients. The two basic types of CFB are the tension-dominated bearing and the bending-dominated bearing. Many investigators have analyzed and measured characteristics of tension-dominated foil bearings, which are applied principally in magnetic tape recording. The bending-dominated CFB is used more in rotating machinery. This report describes the first phase of a structural analysis of a bending-dominated, multileaf CFB. A brief discussion of CFB literature is followed by a description and results of the present analysis.
Elrod, David A.
1993-11-01
The rolling element bearings (REB's) which support many turbomachinery rotors offer high load capacity, low power requirements, and durability. Two disadvantages of REB's are: (1) rolling or sliding contact within the bearing has life-limiting consequences; and (2) REB's provide essentially no damping. The REB's in the Space Shuttle Main Engine (SSME) turbopumps must sustain high static and dynamic loads, at high speeds, with a cryogenic fluid as lubricant and coolant. The pump end ball bearings limit the life of the SSME high pressure oxygen turbopump (HPOTP). Compliant foil bearing (CFB) manufacturers have proposed replacing turbopump REB's with CFB's CFB's work well in aircraft air cycle machines, auxiliary power units, and refrigeration compressors. In a CFB, the rotor only contracts the foil support structure during start up and shut down. CFB damping is higher than REB damping. However, the load capacity of the CFB is low, compared to a REB. Furthermore, little stiffness and damping data exists for the CFB. A rotordynamic analysis for turbomachinery critical speeds and stability requires the input of bearing stiffness and damping coefficients. The two basic types of CFB are the tension-dominated bearing and the bending-dominated bearing. Many investigators have analyzed and measured characteristics of tension-dominated foil bearings, which are applied principally in magnetic tape recording. The bending-dominated CFB is used more in rotating machinery. This report describes the first phase of a structural analysis of a bending-dominated, multileaf CFB. A brief discussion of CFB literature is followed by a description and results of the present analysis.
静压轴承在球磨机改造中的应用%Application of Hydrostatic Bearing in Renovation of Ball-Grinding Equipment Device
Institute of Scientific and Technical Information of China (English)
徐广普; 吴晓元; 陈忠基; 王安清
2001-01-01
By analysing 3231 case about ball-grinding equipment of Anshanmine corportion and discussing about hydrostatic bearing design and the implement of renovation. It is showed that the hydrostatic bearings have wide application in the low speed and heavy loads, meanwhile the considerable profit for enterprises can be brought.%通过对东烧厂3231球磨机的工况分析、静压轴承设计方案讨论和实施球磨机静压轴承改造的总结，表明静压轴承在低速重载设备上的应用前景广阔，可为企业带来十分可观的经济效益.
Oz, Yaron
2015-01-01
This chapter describes how the AdS/CFT correspondence (the Holographic Principle) relates field theory hydrodynamics to perturbations of black hole (brane) gravitational backgrounds. The hydrodynamics framework is first presented from the field theory point of view, after which the dual gravitational description is outlined, first for relativistic fluids and then for the nonrelativistic case. Further details of the fluid/gravity correspondence are then discussed, including the bulk geometry and the dynamics of the black hole horizon.
Schemes for applying active lubrication to main engine bearings
DEFF Research Database (Denmark)
Estupinan, Edgar Alberto; Santos, Ilmar
2009-01-01
and consequently reducing viscous friction losses and vibrations. One refers to active lubrication when conventional hydrodynamic lubrication is combined with dynamically modified hydrostatic lubrication. In this case, the hydrostatic lubrication is modified by injecting oil at controllable pressures, through......The work presented here is a theoretical study that describes two different schemes for the oil injection system in actively lubricated main engine bearings. The use of active lubrication in journal bearings helps to enhance the hydrodynamic fluid film by increasing the fluid film thickness...... orifices circumferentially located around the bearing surface. The pressure distribution of the hydrodynamic fluid film in journal bearings is governed by the Reynolds equation, which is modified to accommodate the dynamics of active lubrication, and which can be numerically solved using finite...
Anisotropic hydrodynamics -- basic concepts
Florkowski, Wojciech; Ryblewski, Radoslaw; Strickland, Michael
2013-01-01
Due to the rapid longitudinal expansion of the quark-gluon plasma created in relativistic heavy ion collisions, potentially large local rest frame momentum-space anisotropies are generated. The magnitude of these momentum-space anisotropies can be so large as to violate the central assumption of canonical viscous hydrodynamical treatments which linearize around an isotropic background. In order to better describe the early-time dynamics of the quark gluon plasma, one can consider instead expanding around a locally anisotropic background which results in a dynamical framework called anisotropic hydrodynamics. In this proceedings contribution we review the basic concepts of the anisotropic hydrodynamics framework presenting viewpoints from both the phenomenological and microscopic points of view.
Dispersive hydrodynamics: Preface
Biondini, G.; El, G. A.; Hoefer, M. A.; Miller, P. D.
2016-10-01
This Special Issue on Dispersive Hydrodynamics is dedicated to the memory and work of G.B. Whitham who was one of the pioneers in this field of physical applied mathematics. Some of the papers appearing here are related to work reported on at the workshop "Dispersive Hydrodynamics: The Mathematics of Dispersive Shock Waves and Applications" held in May 2015 at the Banff International Research Station. This Preface provides a broad overview of the field and summaries of the various contributions to the Special Issue, placing them in a unified context.
Institute of Scientific and Technical Information of China (English)
闫晓军; 张小勇; 聂景旭; 张绍卫
2011-01-01
磁悬浮飞轮锁紧机构在卫星发射时锁紧飞轮,减小其振动和冲击载荷;在发射后解锁,保证飞轮正常工作.目前已有的以火工品或步进电机驱动的锁紧机构具有冲击大、体积较大、不可重复使用等缺点.提出了一种采用形状记忆合金(SMA,Shape Memory Alloy)驱动的空间磁悬浮飞轮锁紧机构的设计方案,并在Liang本构模型的基础上发展了机构驱动单元的设计方法.之后,完成了锁紧机构的样机研制和调试,并开展了地面的性能测试、振动试验和高温环境试验.研究结果表明:SMA锁紧机构安装体积小,在星载28 V电压下能在6 s内完全锁紧,在1 s内完全解锁,并能够通过振动和环境实验.SMA驱动的磁悬浮飞轮锁紧机构具有锁紧力大、同步性好、可重复使用、低冲击、无污染等优势,有很大的工程应用潜力.%Based on magnetic levitation principle, the magnetic bearing flywheel is a new type of inertial actuator used in satellite attitude control. A locking device was used to eliminate the gap between the rotor and stator of magnetic bearing flywheel so as to protect it from shock and vibration damage during launch phase. The present pyrotechnical or motor actuated locking devices have the disadvantages of high shock, large size and un-resetable. A prototype shape memory alloys (SMA)actuated locking device for small space magnetic bearing flywheel was developed in this investigation. A method and procedures to design the actuator element based on Liang's constitutive model was presented. Then the SMA locking device was assembled and the function, environment and vibration tests were carried out. Test results show that the device can complete lock function within 6 s and release function within 1 s under satellite power supply of 28 V. It can also undergo the environment and vibration tests which simulate the launch phase. It is concluded that the new SMA locking device owning advantages of great
Self-Bearing Motor-Generator for Flywheels Project
National Aeronautics and Space Administration — Self-bearing or ?bearingless? motors perform both motor and bearing support functions but such devices have not yet achieved speeds above 15,000 rpm. The innovation...
Smoothed Particle Hydrodynamic Simulator
Energy Technology Data Exchange (ETDEWEB)
2016-10-05
This code is a highly modular framework for developing smoothed particle hydrodynamic (SPH) simulations running on parallel platforms. The compartmentalization of the code allows for rapid development of new SPH applications and modifications of existing algorithms. The compartmentalization also allows changes in one part of the code used by many applications to instantly be made available to all applications.
Directory of Open Access Journals (Sweden)
Franci Gabrovsek
2008-01-01
Full Text Available From a hydrological point of view, active caves are a series of connected conduits which drain water through an aquifer. Water tends to choose the easiest way through the system but different geological and morphological barriers act as flow restrictions. The number and characteristics of restrictions depends on the particular speleogenetic environment, which is a function of geological, geomorphological, climatological and hydrological settings. Such a variety and heterogeneity of underground systems has presented a challenge for human understanding for many centuries. Access to many underground passages, theoretical knowledge and recent methods (modeling, water pressure-resistant dataloggers, precise sensors etc. give us the opportunity to get better insight into the hydrodynamic aspect of caves. In our work we tried to approach underground hydrodynamics from both theoretical and practical points of view. We present some theoretical background of open surface and pressurized flow in underground rivers and present results of some possible scenarios. Moreover, two case studies from the Ljubljanica river basin are presented in more detail: the cave system between Planinsko polje and Ljubljansko barje, and the cave system between Bloško polje and Cerkniško polje. The approach and methodology in each case is somewhat different, as the aims were different at the beginning of exploration. However, they both deal with temporal and spatial hydrodynamics of underground waters. In the case of Bloško polje-Cerkniško polje system we also explain the feedback loop between hydrodynamics and Holocene speleogenesis.
Pal, Amlan K; Cordes, David B; Slawin, Alexandra M Z; Momblona, Cristina; Ortı, Enrique; Samuel, Ifor D W; Bolink, Henk J; Zysman-Colman, Eli
2016-10-17
The structure-property relationship study of a series of cationic Ir(III) complexes in the form of [Ir(C^N)2(dtBubpy)]PF6 [where dtBubpy = 4,4'-di-tert-butyl-2,2'-bipyridine and C^N = cyclometallating ligand bearing an electron-withdrawing group (EWG) at C4 of the phenyl substituent, i.e., -CF3 (1), -OCF3 (2), -SCF3 (3), -SO2CF3 (4)] has been investigated. The physical and optoelectronic properties of the four complexes were comprehensively characterized, including by X-ray diffraction analysis. All the complexes exhibit quasireversible dtBubpy-based reductions from -1.29 to -1.34 V (vs SCE). The oxidation processes are likewise quasireversible (metal + C^N ligand) and are between 1.54 and 1.72 V (vs SCE). The relative oxidation potentials follow a general trend associated with the Hammett parameter (σ) of the EWGs. Surprisingly, complex 4 bearing the strongest EWG does not adhere to the expected Hammett behavior and was found to exhibit red-shifted absorption and emission maxima. Nevertheless, the concept of introducing EWGs was found to be generally useful in blue-shifting the emission maxima of the complexes (λem = 484-545 nm) compared to that of the prototype complex [Ir(ppy)2(dtBubpy)]PF6 (where ppy = 2-phenylpyridinato) (λem = 591 nm). The complexes were found to be bright emitters in solution at room temperature (ΦPL = 45-66%) with microsecond excited-state lifetimes (τe = 1.14-4.28 μs). The photophysical properties along with density functional theory (DFT) calculations suggest that the emission of these complexes originates from mixed contributions from ligand-centered (LC) transitions and mixed metal-to-ligand and ligand-to-ligand charge transfer (LLCT/MLCT) transitions, depending on the EWG. In complexes 1, 3, and 4 the (3)LC character is prominent over the mixed (3)CT character, while in complex 2, the mixed (3)CT character is much more pronounced, as demonstrated by DFT calculations and the observed positive solvatochromism effect. Due to the
Hydrodynamics of the Dirac spectrum
Energy Technology Data Exchange (ETDEWEB)
Liu, Yizhuang, E-mail: yizhuang.liu@stonybrook.edu [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States); Warchoł, Piotr, E-mail: piotr.warchol@uj.edu.pl [M. Smoluchowski Institute of Physics, Jagiellonian University, PL-30348 Krakow (Poland); Zahed, Ismail, E-mail: ismail.zahed@stonybrook.edu [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States)
2016-02-10
We discuss a hydrodynamical description of the eigenvalues of the Dirac spectrum in even dimensions in the vacuum and in the large N (volume) limit. The linearized hydrodynamics supports sound waves. The hydrodynamical relaxation of the eigenvalues is captured by a hydrodynamical (tunneling) minimum configuration which follows from a pertinent form of Euler equation. The relaxation from a phase of unbroken chiral symmetry to a phase of broken chiral symmetry occurs over a time set by the speed of sound.
Institute of Scientific and Technical Information of China (English)
马勇; 张亮; 盛其虎; 杨仲
2012-01-01
The test model and system were designed to study the hydrodynamic characteristics of the floating tidal power device with vertical-axis tidal turbine. The turbine was controlled to rotate or not during towing test in still water. In the two cases above, the tensile force on the mooring line and the movement of the model was compared. The test shows, when the towage speed is 0.4 m/s or 0.5 m/ s, the turbine will not rotate, and the tensile force on line 1 and 2 in flow direction are similar; when the towage speed is 0.6 m/s or more, the turbine will rotate, and the tensile force on line 1 is much greater than that on line 2, the model turns out an apparent lateral displacement; the tensile force on line 1 when the turbine is controlled to rotate is 1.6~2.0 times greater than that when the turbine is controlled not to rotate; the lateral displacement will increase when the towage speed increase, and the lateral displacement when the turbine is controlled to rotate is about 2.2 times greater than that when the turbine is controlled not to rotate; the trim by the bow, pitch, heel, roll, yaw will occur in towing test; the pitch, roll, yaw will increase when the turbine is rotating.%为了研究基于竖轴水轮机的漂浮式潮流能发电装置的水动力特性，设计试验模型和装置，进行静水拖航试验，测量系泊链拉力；控制水轮机转与不转，进行比较试验，测量水轮机转与不转时系泊链拉力和运动情况．试验表明：拖航速度为0．4m／s和0．5m／s时，水轮机不转，来流方向的1号和2号系泊链拉力相近；拖航速度为0．6m／s以上时，水轮机转动，1号系泊链拉力大于2号系泊链拉力，模型发生明显侧向位移；水轮机转动时1号系泊链的拉力为水轮机不转时的1．6～2．o倍；拖航速度增大，侧向位移变大，水轮机转动时的侧向位移量约为水轮机不转时的2．2倍；拖航过程中模型产生首倾和纵摇、横倾和横
Institute of Scientific and Technical Information of China (English)
刘天文; 张杰民; 刘志刚; 刘晓程
2015-01-01
Objective To evaluate the magnetic and hydrodynamic suspension-centrifugal ventricular auxiliary device (blood pump) by using stimulated circulating experimental device in vitro,and to verify the performance and reliability of the blood pump in animal experiment,for continual optimization and improvement of the device.Methods 500 ml fresh sheep blood was obtained,added with 3.8％ sodium citrate in a volume ratio of 1:9 for anticoagulation.Under the fixed rotation speed of the blood pump,the pipe diameter of the outflow tract was regulated to maintain the outflow and inflow tract pressure difference at 100± 2 mmHg.Before and after the rotation in the blood pump at 1,2,3 and 4 hours,the blood samples were obtained and the free hemoglobin (FHB) contents were measured.Using off-pump method,the blood pump inlet was implanted into the left cardiac apex of the sheep,and the outlet was sutured with the descending aorta.The blood pump parameters,and the biochemical parameters and blood parameters before and after surgery in the sheep were recorded.Results In the in vitro experiment,the blood pump operated steadily,the temperature rise ≤2.6 ℃,and the Normalized Index of Hemolysis (NIH) was 0.002 ～ 0.006 g/100L.In the in vivo animal experiment,the blood pump flow was 60％,and the plasma FHB＜45 mg/L.The seventh generation of the blood pump achieved great improvement.Conclusion In the in vitro experiment,the blood pump operated steadily,the temperature rise ≤2.6 ℃,and the Normalized Index of Hemolysis (NIH) was 0.002～0.006 g/100L.In the in vivo animal experiment,the blood pump flow was 60％,and the plasma FHB＜45 mg/L.The seventh generation of the blood pump achieved great improvement.%目的 应用体外模拟循环实验装置,对磁液悬浮离心式心室辅助装置(以下简称血泵)进行评估.通过动物实验,验证血泵的性能及可靠性.对血泵持续优化、改进.方法 取新鲜羊血500 ml,3.8％枸橼酸钠1∶9抗凝.固定转速
Microflow Cytometers with Integrated Hydrodynamic Focusing
Directory of Open Access Journals (Sweden)
Martin Schmidt
2013-04-01
Full Text Available This study demonstrates the suitability of microfluidic structures for high throughput blood cell analysis. The microfluidic chips exploit fully integrated hydrodynamic focusing based on two different concepts: Two-stage cascade focusing and spin focusing (vortex principle. The sample—A suspension of micro particles or blood cells—is injected into a sheath fluid streaming at a substantially higher flow rate, which assures positioning of the particles in the center of the flow channel. Particle velocities of a few m/s are achieved as required for high throughput blood cell analysis. The stability of hydrodynamic particle positioning was evaluated by measuring the pulse heights distributions of fluorescence signals from calibration beads. Quantitative assessment based on coefficient of variation for the fluorescence intensity distributions resulted in a value of about 3% determined for the micro-device exploiting cascade hydrodynamic focusing. For the spin focusing approach similar values were achieved for sample flow rates being 1.5 times lower. Our results indicate that the performances of both variants of hydrodynamic focusing suit for blood cell differentiation and counting. The potential of the micro flow cytometer is demonstrated by detecting immunologically labeled CD3 positive and CD4 positive T-lymphocytes in blood.
Hejazi, Fatemeh; Mirzadeh, Hamid; Contessi, Nicola; Tanzi, Maria Cristina; Faré, Silvia
2017-05-01
Adequate porosity, appropriate pore size, and 3D-thick shape are crucial parameters in the design of scaffolds, as they should provide the right space for cell adhesion, spreading, migration, and growth. In this work, a novel design for fabricating a 3D nanostructured scaffold by electrospinning was taken into account. Helical spring-shaped collector was purposely designed and used for electrospinning PCL fibers. Improved morphological properties and more uniform diameter distribution of collected nanofibers on the turns of helical spring-shaped collector are confirmed by SEM analysis. SEM images elaboration showed 3D pores with average diameter of 4 and 5.5 micrometer in x-y plane and z-direction, respectively. Prepared 3D scaffold possessed 99.98% porosity which led to the increased water uptake behavior in PBS at 37°C up to 10 days, and higher degradation rate compared to 2D flat structure. Uniaxial compression test on 3D scaffolds revealed an elastic modulus of 7 MPa and a stiffness of 10(2) MPa, together with very low hysteresis area and residual strain. In vitro cytocompatibility test with MG-63 osteoblast-like cells using AlamarBlue(™) colorimetric assay, indicated a continuous increase in cell viability for the 3D structure over the test duration. SEM observation showed enhanced cells spreading and diffusion into the underneath layers for 3D scaffold. Accelerated calcium deposition in 3D substrate was confirmed by EDX analysis. Obtained morphological, physical, and mechanical properties together with in vitro cytocompatibility results, suggest this novel technique as a proper method for the fabrication of 3D nanofibrous scaffolds for the regeneration of critical-size load bearing defects. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1535-1548, 2017.
Magnetic Bearings at Draper Laboratory
Kondoleon, Anthony S.; Kelleher, William P.; Possel, Peter D.
1996-01-01
Magnetic bearings, unlike traditional mechanical bearings, consist of a series of components mated together to form a stabilized system. The correct design of the actuator and sensor will provide a cost effective device with low power requirements. The proper choice of a control system utilizes the variables necessary to control the system in an efficient manner. The specific application will determine the optimum design of the magnetic bearing system including the touch down bearing. Draper for the past 30 years has been a leader in all these fields. This paper summarizes the results carried out at Draper in the field of magnetic bearing development. A 3-D radial magnetic bearing is detailed in this paper. Data obtained from recently completed projects using this design are included. One project was a high radial load (1000 pound) application. The second was a high speed (35,000 rpm), low loss flywheel application. The development of a low loss axial magnetic bearing is also included in this paper.
Novel nano bearings constructed by physical adsorption
Zhang, Yongbin
2015-09-01
The paper proposes a novel nano bearing formed by the physical adsorption of the confined fluid to the solid wall. The bearing is formed between two parallel smooth solid plane walls sliding against one another, where conventional hydrodynamic lubrication theory predicted no lubricating effect. In this bearing, the stationary solid wall is divided into two subzones which respectively have different interaction strengths with the lubricating fluid. It leads to different physical adsorption and slip properties of the lubricating fluid at the stationary solid wall respectively in these two subzones. It was found that a significant load-carrying capacity of the bearing can be generated for low lubricating film thicknesses, because of the strong physical adsorption and non-continuum effects of the lubricating film.
Scalability of Hydrodynamic Simulations
Tang, Shikui
2009-01-01
Many hydrodynamic processes can be studied in a way that is scalable over a vastly relevant physical parameter space. We systematically examine this scalability, which has so far only briefly discussed in astrophysical literature. We show how the scalability is limited by various constraints imposed by physical processes and initial conditions. Using supernova remnants in different environments and evolutionary phases as application examples, we demonstrate the use of the scaling as a powerful tool to explore the interdependence among relevant parameters, based on a minimum set of simulations. In particular, we devise a scaling scheme that can be used to adaptively generate numerous seed remnants and plant them into 3D hydrodynamic simulations of the supernova-dominated interstellar medium.
Relativistic Hydrodynamics with Wavelets
DeBuhr, Jackson; Anderson, Matthew; Neilsen, David; Hirschmann, Eric W
2015-01-01
Methods to solve the relativistic hydrodynamic equations are a key computational kernel in a large number of astrophysics simulations and are crucial to understanding the electromagnetic signals that originate from the merger of astrophysical compact objects. Because of the many physical length scales present when simulating such mergers, these methods must be highly adaptive and capable of automatically resolving numerous localized features and instabilities that emerge throughout the computational domain across many temporal scales. While this has been historically accomplished with adaptive mesh refinement (AMR) based methods, alternatives based on wavelet bases and the wavelet transformation have recently achieved significant success in adaptive representation for advanced engineering applications. This work presents a new method for the integration of the relativistic hydrodynamic equations using iterated interpolating wavelets and introduces a highly adaptive implementation for multidimensional simulati...
Burst Mechanisms in Hydrodynamics
Knobloch, E
1999-01-01
Different mechanisms believed to be responsible for the generation of bursts in hydrodynamical systems are reviewed and a new mechanism capable of generating regular or irregular bursts of large dynamic range near threshold is described. The new mechanism is present in the interaction between oscillatory modes of odd and even parity in systems of large but finite aspect ratio, and provides an explanation for the bursting behavior observed in binary fluid convection. Additional applications of the new mechanism are proposed.
Relativistic cosmological hydrodynamics
Hwang, J
1997-01-01
We investigate the relativistic cosmological hydrodynamic perturbations. We present the general large scale solutions of the perturbation variables valid for the general sign of three space curvature, the cosmological constant, and generally evolving background equation of state. The large scale evolution is characterized by a conserved gauge invariant quantity which is the same as a perturbed potential (or three-space curvature) in the comoving gauge.
Hydrodynamics of insect spermatozoa
Pak, On Shun; Lauga, Eric
2010-11-01
Microorganism motility plays important roles in many biological processes including reproduction. Many microorganisms propel themselves by propagating traveling waves along their flagella. Depending on the species, propagation of planar waves (e.g. Ceratium) and helical waves (e.g. Trichomonas) were observed in eukaryotic flagellar motion, and hydrodynamic models for both were proposed in the past. However, the motility of insect spermatozoa remains largely unexplored. An interesting morphological feature of such cells, first observed in Tenebrio molitor and Bacillus rossius, is the double helical deformation pattern along the flagella, which is characterized by the presence of two superimposed helical flagellar waves (one with a large amplitude and low frequency, and the other with a small amplitude and high frequency). Here we present the first hydrodynamic investigation of the locomotion of insect spermatozoa. The swimming kinematics, trajectories and hydrodynamic efficiency of the swimmer are computed based on the prescribed double helical deformation pattern. We then compare our theoretical predictions with experimental measurements, and explore the dependence of the swimming performance on the geometric and dynamical parameters.
Hydrodynamics of fossil fishes.
Fletcher, Thomas; Altringham, John; Peakall, Jeffrey; Wignall, Paul; Dorrell, Robert
2014-08-07
From their earliest origins, fishes have developed a suite of adaptations for locomotion in water, which determine performance and ultimately fitness. Even without data from behaviour, soft tissue and extant relatives, it is possible to infer a wealth of palaeobiological and palaeoecological information. As in extant species, aspects of gross morphology such as streamlining, fin position and tail type are optimized even in the earliest fishes, indicating similar life strategies have been present throughout their evolutionary history. As hydrodynamical studies become more sophisticated, increasingly complex fluid movement can be modelled, including vortex formation and boundary layer control. Drag-reducing riblets ornamenting the scales of fast-moving sharks have been subjected to particularly intense research, but this has not been extended to extinct forms. Riblets are a convergent adaptation seen in many Palaeozoic fishes, and probably served a similar hydrodynamic purpose. Conversely, structures which appear to increase skin friction may act as turbulisors, reducing overall drag while serving a protective function. Here, we examine the diverse adaptions that contribute to drag reduction in modern fishes and review the few attempts to elucidate the hydrodynamics of extinct forms.
Hemocompatibility of a hydrodynamic levitation centrifugal blood pump.
Yamane, Takashi; Maruyama, Osamu; Nishida, Masahiro; Kosaka, Ryo; Sugiyama, Daisuke; Miyamoto, Yusuke; Kawamura, Hiroshi; Kato, Takahisa; Sano, Takeshi; Okubo, Takeshi; Sankai, Yoshiyuki; Shigeta, Osamu; Tsutsui, Tatsuo
2007-01-01
A noncontact type centrifugal pump without any complicated control or sensing modules has been developed as a long-term implantable artificial heart. Centrifugal pumps with impellers levitated by original hydrodynamic bearings were designed and have been modified through numerical analyses and in vitro tests. The hemolysis level was reduced by changing the pressure distribution around the impeller and subsequently expanding the bearing gap. Thrombus formation in the bearing was examined with in vitro thrombogenesis tests and was reduced by changing the groove shapes to increase the bearing-gap flow to 3% of the external flow. Unnecessary vortices around the vanes were also eliminated by changing the number of vanes from four to six.
Fluid dynamic design for low hemolysis in a hydrodynamically levitated centrifugal blood pump.
Murashige, Tomotaka; Kosaka, Ryo; Nishida, Masahiro; Maruyama, Osamu; Yamane, Takashi; Kuwana, Katsuyuki; Kawaguchi, Yasuo
2013-01-01
We have developed a hydrodynamically levitated centrifugal blood pump for extracorporeal circulatory support as a bridge to decision pump. The impeller is levitated using hydrodynamic bearings without any complicated control circuit or displacement sensor. However, the effect of the outer circumferential velocity and the bearing area on the hemolytic property has not been clarified, even if the bearing gap is same size. The purpose of this study is to experimentally evaluate the effect of the outer circumferential velocity and the bearing area in the bearing gaps on the hemolytic property in a hydrodynamically levitated centrifugal blood pump. We prepared three models for testing. These models have the same bearing gap size by adjusting the impeller levitation position. However, the outer circumferential velocity of the impeller and the bearing area in the minimum bearing gaps are different. The outer circumferential velocity of the impeller and the bearing area were assumed to be related to the maximum shear rate and the exposure time. For the evaluation, we conducted an impeller levitation performance test and an in vitro hemolysis test. As a result, the normalized index of hemolysis (NIH) was reduced from 0.084 g/100 L to 0.040 g/100 L corresponding to a reduction in the outer circumferential velocity and a reduction in the bearing area, even if the minimum bearing gaps were same size. We confirmed that, even if the bearing gap was same size under the stably levitated condition, the outer circumferential velocity and the bearing area should be decreased in order to improve the hemolytic property.
Filter-less submicron hydrodynamic size sorting.
Fouet, M; Mader, M-A; Iraïn, S; Yanha, Z; Naillon, A; Cargou, S; Gué, A-M; Joseph, P
2016-02-21
We propose a simple microfluidic device able to separate submicron particles (critical size ∼0.1 μm) from a complex sample with no filter (minimum channel dimension being 5 μm) by hydrodynamic filtration. A model taking into account the actual velocity profile and hydrodynamic resistances enables prediction of the chip sorting properties for any geometry. Two design families are studied to obtain (i) small sizes within minutes (low-aspect ratio, two-level chip) and (ii) micron-sized sorting with a μL flow rate (3D architecture based on lamination). We obtain quantitative agreement of sorting performances both with experiments and with numerical solving, and determine the limits of the approach. We therefore demonstrate a passive, filter-less sub-micron size sorting with a simple, robust, and easy to fabricate design.
Numerical investigation of cavitation flow in journal bearing geometry
Riedel, M.; Schmidt, M.; Stücke, P.
2013-04-01
The appearance of cavitation is still a problem in technical and industrial applications. Especially in automotive internal combustion engines, hydrodynamic journal bearings are used due to their favourable wearing quality and operating characteristics. Cavitation flows inside the bearings reduces the load capacity and leads to a risk of material damages. Therefore an understanding of the complex flow phenomena inside the bearing is necessary for the design development of hydrodynamic journal bearings. Experimental investigations in the fluid domain of the journal bearing are difficult to realize founded by the small dimensions of the bearing. In the recent years more and more the advantages of the computational fluid dynamics (CFD) are used to investigate the detail of the cavitation flows. The analysis in the paper is carried out in a two-step approach. At first an experimental investigation of journal bearing including cavitation is selected from the literature. The complex numerical model validated with the experimental measured data. In a second step, typically design parameters, such as a groove and feed hole, which are necessary to distribute the oil supply across the gap were added into the model. The paper reflects on the influence of the used design parameters and the variation of the additional supply flow rate through the feed hole regarding to cavitation effects in the bearing. Detailed pictures of the three-dimensional flow structures and the cavitation regions inside the flow film of the bearing are presented.
Mechanical design problems associated with turbopump fluid film bearings
Evces, Charles R.
1990-01-01
Most high speed cryogenic turbopumps for liquid propulsion rocket engines currently use ball or roller contact bearings for rotor support. The operating speeds, loads, clearances, and environments of these pumps combine to make bearing wear a limiting factor on turbopump life. An example is the high pressure oxygen turbopump (HPOTP) used in the Space Shuttle Main Engine (SSME). Although the HPOTP design life is 27,000 seconds at 30,000 rpms, or approximately 50 missions, bearings must currently be replaced after 2 missions. One solution to the bearing wear problem in the HPOTP, as well as in future turbopump designs, is the utilization of fluid film bearings in lieu of continuous contact bearings. Hydrostatic, hydrodynamic, and damping seal bearings are all replacement candidates for contact bearings in rocket engine high speed turbomachinery. These three types of fluid film bearings have different operating characteristics, but they share a common set of mechanical design opportunities and difficulties. Results of research to define some of the mechanical design issues are given. Problems considered include transient strat/stop rub, non-operational rotor support, bearing wear inspection and measurement, and bearing fluid supply route. Emphasis is given to the HPOTP preburner pump (PBP) bearing, but the results are pertinent to high-speed cryogenic turbomachinery in general.
Foundations of radiation hydrodynamics
Mihalas, Dimitri
1999-01-01
Radiation hydrodynamics is a broad subject that cuts across many disciplines in physics and astronomy: fluid dynamics, thermodynamics, statistical mechanics, kinetic theory, and radiative transfer, among others. The theory developed in this book by two specialists in the field can be applied to the study of such diverse astrophysical phenomena as stellar winds, supernova explosions, and the initial phases of cosmic expansion, as well as the physics of laser fusion and reentry vehicles. As such, it provides students with the basic tools for research on radiating flows.Largely self-contained,
Molecular hydrodynamics from memory kernels
Lesnicki, Dominika; Carof, Antoine; Rotenberg, Benjamin
2016-01-01
The memory kernel for a tagged particle in a fluid, computed from molecular dynamics simulations, decays algebraically as $t^{-3/2}$. We show how the hydrodynamic Basset-Boussinesq force naturally emerges from this long-time tail and generalize the concept of hydrodynamic added mass. This mass term is negative in the present case of a molecular solute, at odds with incompressible hydrodynamics predictions. We finally discuss the various contributions to the friction, the associated time scales and the cross-over between the molecular and hydrodynamic regimes upon increasing the solute radius.
Hydrodynamics of pronuclear migration
Nazockdast, Ehssan; Needleman, Daniel; Shelley, Michael
2014-11-01
Microtubule (MT) filaments play a key role in many processes involved in cell devision including spindle formation, chromosome segregation, and pronuclear positioning. We present a direct numerical technique to simulate MT dynamics in such processes. Our method includes hydrodynamically mediated interactions between MTs and other cytoskeletal objects, using singularity methods for Stokes flow. Long-ranged many-body hydrodynamic interactions are computed using a highly efficient and scalable fast multipole method, enabling the simulation of thousands of MTs. Our simulation method also takes into account the flexibility of MTs using Euler-Bernoulli beam theory as well as their dynamic instability. Using this technique, we simulate pronuclear migration in single-celled Caenorhabditis elegans embryos. Two different positioning mechanisms, based on the interactions of MTs with the motor proteins and the cell cortex, are explored: cytoplasmic pulling and cortical pushing. We find that although the pronuclear complex migrates towards the center of the cell in both models, the generated cytoplasmic flows are fundamentally different. This suggest that cytoplasmic flow visualization during pronuclear migration can be utilized to differentiate between the two mechanisms.
Wear fault diagnosis of an emulsion pump crank bearing
Institute of Scientific and Technical Information of China (English)
HAN Xiao-ming; DU Chang-long; ZHANG Yong-zhong; TIE Zhan-xu
2008-01-01
The total load on a crank bearing was calculated by performing a load analysis of the crank connecting rod mechanism.The Reynolds equation for hydrodynamic lubrication of the crank bearing was established at the Reynolds boundary condition and was then solved using the Holland method. From this the regular track of the bearing axis was obtained. As the crank bearing gradually wears the eccentricity ratio corresponding to the minimum oil film thickness increases gradually. The oil-bound film eventually breaks down, which allows friction and collision between the metal surfaces of the crank pin and the bearing. The rigid impact leads to excitation of high frequency vibrations at the natural frequencies of the connecting rod. The experiments show that the wear condition of the crank bearing can be identified correctly through the vibration signature at the natural frequencies of the connecting rod. The degree of wear can be predicted accurately through the energy content of the high frequency bands.
Testing of a centrifugal blood pump with a high efficiency hybrid magnetic bearing.
Locke, Dennis H; Swanson, Erik S; Walton, James F; Willis, John P; Heshmat, Hooshang
2003-01-01
The purpose of this article is to present test results for a second generation, high efficiency, nonpulsatile centrifugal blood pump that is being developed for use as a left ventricular assist device (LVAD). The LVAD pump uses a hybrid passive-active magnetic bearing support system that exhibits extremely low power loss, low vibration, and high reliability under transient conditions and varying pump orientations. A unique feature of the second generation design configuration is the very simple and direct flow path for both main and washing blood flows. The pump was tested in both vertical and horizontal orientations using a standard flow loop to demonstrate the performance and durability of the second generation LVAD. Steady state and transient orientation pump operating characteristics including pressure, flow, speed, temperatures, vibration, and rotor orientation were measured. During the tests, pump performance was mapped at several operating conditions including points above and below the nominal design of 5 L/min at 100 mm Hg pressure rise. Flow rates from 2 to 7 L/min and pressure rises from 50 to 150 mm Hg were measured. Pump speeds were varied during these tests from 2,500 to 3,500 rpm. The nominal design flow of 5 L/min at 100 mm Hg pressure rise was successfully achieved at the design speed of 3,000 rpm. After LVAD performance testing, both 28 day continuous duty and 5 day transient orientation durability tests were completed without incident. A hydrodynamic backup bearing design feasibility study was also conducted. Results from this design study indicate that an integral hydrodynamic backup bearing may be readily incorporated into the second generation LVAD and other magnetically levitated pump rotors.
Quantum hydrodynamics in the rotating reference frame
Trukhanova, Mariya Iv
2016-01-01
In this paper we apply quantum hydrodynamics (QHD) to study the quantum evolution of a system of spinning particles and particles that have the electric dipole moments EDM in the rotating reference frame. The method presented is based on the many-particle microscopic Schrodinger equation in the rotating reference frame. Fundamental QHD equations for charged or neutral spinning and EDM-bearing particles were shaped due to this method and contain the spin-dependent inertial force field. The polarization dynamics in systems of neutral particles in the rotating frame is shown to cause formation of a new type of waves, the dipole-inertial waves. We have analyzed elementary excitations in a system of neutral polarized fluids placed into an external electric field in 2D and 3D cases. We predict the novel type of 2D dipole-inertial wave and 3D - polarization wave modified by rotation in systems of particles with dipole-dipole interactions.
VibroCav: Hydrodynamic Vibration and Cavitation Technology
Bakker, T.W.
2012-01-01
Vibration and cavitation can be generated in many ways and serve many useful purposes. This study describes physical aspects of useful vibration and cavitation for a broad spectrum of applications at atmospheric or elevated pressures. After a review of available devices, hydrodynamic vibrating-body
VibroCav: Hydrodynamic Vibration and Cavitation Technology
Bakker, T.W.
2012-01-01
Vibration and cavitation can be generated in many ways and serve many useful purposes. This study describes physical aspects of useful vibration and cavitation for a broad spectrum of applications at atmospheric or elevated pressures. After a review of available devices, hydrodynamic vibrating-body
Analysis of thermoelastohydrodynamic performance of journal misaligned engine main bearings
Bi, Fengrong; Shao, Kang; Liu, Changwen; Wang, Xia; Zhang, Jian
2015-05-01
To understand the engine main bearings' working condition is important in order to improve the performance of engine. However, thermal effects and thermal effect deformations of engine main bearings are rarely considered simultaneously in most studies. A typical finite element model is selected and the effect of thermoelastohydrodynamic(TEHD) reaction on engine main bearings is investigated. The calculated method of main bearing's thermal hydrodynamic reaction and journal misalignment effect is finite difference method, and its deformation reaction is calculated by using finite element method. The oil film pressure is solved numerically with Reynolds boundary conditions when various bearing characteristics are calculated. The whole model considers a temperature-pressure-viscosity relationship for the lubricant, surface roughness effect, and also an angular misalignment between the journal and the bearing. Numerical simulations of operation of a typical I6 diesel engine main bearing is conducted and importance of several contributing factors in mixed lubrication is discussed. The performance characteristics of journal misaligned main bearings under elastohydrodynamic(EHD) and TEHD loads of an I6 diesel engine are received, and then the journal center orbit movement, minimum oil film thickness and maximum oil film pressure of main bearings are estimated over a wide range of engine operation. The model is verified through the comparison with other present models. The TEHD performance of engine main bearings with various effects under the influences of journal misalignment is revealed, this is helpful to understand EHD and TEHD effect of misaligned engine main bearings.
Survey of Damage Investigation of Babbitted Industrial Bearings
Directory of Open Access Journals (Sweden)
Lyle A. Branagan
2015-04-01
Full Text Available This survey collects the efforts to understand the sources and consequences of damage to babbitted industrial bearings, which operate by means of a hydrodynamic, or hydrostatic, film. Major individual damage types are discussed in the context of major damage categories.
Fluctuations in Relativistic Causal Hydrodynamics
Kumar, Avdhesh; Mishra, Ananta P
2013-01-01
The formalism to calculate the hydrodynamics fluctuation using the quasi-stationary fluctuation theory of Onsager to the relativistic Navier-Stokes hydrodynamics is already known. In this work we calculate hydrodynamic fluctuations in relativistic causal theory of Muller, Israel and Stewart and other related causal hydrodynamic theories. We show that expressions for the Onsager coefficients and the correlation functions have form similar to the ones obtained by using Navier-Stokes equation. However, temporal evolution of the correlation functions obtained using MIS and the other causal theories can be significantly different than the correlation functions obtained using the Navier-Stokes equation. Finally, as an illustrative example, we explicitly plot the correlation functions obtained using the causal-hydrodynamics theories and compare them with correlation functions obtained by earlier authors using the expanding boost-invariant (Bjorken) flows.
Gradient expansion for anisotropic hydrodynamics
Florkowski, Wojciech; Spaliński, Michał
2016-01-01
We compute the gradient expansion for anisotropic hydrodynamics. The results are compared with the corresponding expansion of the underlying kinetic-theory model with the collision term treated in the relaxation time approximation. We find that a recent formulation of anisotropic hydrodynamics based on an anisotropic matching principle yields the first three terms of the gradient expansion in agreement with those obtained for the kinetic theory. This gives further support for this particular hydrodynamic model as a good approximation of the kinetic-theory approach. We further find that the gradient expansion of anisotropic hydrodynamics is an asymptotic series, and the singularities of the analytic continuation of its Borel transform indicate the presence of non-hydrodynamic modes.
Lifshitz Superfluid Hydrodynamics
Chapman, Shira; Oz, Yaron
2014-01-01
We construct the first order hydrodynamics of quantum critical points with Lifshitz scaling and a spontaneously broken symmetry. The fluid is described by a combination of two flows, a normal component that carries entropy and a super-flow which has zero viscosity and carries no entropy. We analyze the new transport effects allowed by the lack of boost invariance and constrain them by the local second law of thermodynamics. Imposing time-reversal invariance, we find eight new parity even transport coefficients. The formulation is applicable, in general, to any superfluid/superconductor with an explicit breaking of boost symmetry, in particular to high $T_c$ superconductors. We discuss possible experimental signatures.
Hydrodynamics of Ship Propellers
DEFF Research Database (Denmark)
Breslin, John P.; Andersen, Poul
This book deals with flows over propellers operating behind ships, and the hydrodynamic forces and moments which the propeller generates on the shaft and on the ship hull.The first part of the text is devoted to fundamentals of the flow about hydrofoil sections (with and without cavitation......) and about wings. It then treats propellers in uniform flow, first via advanced actuator disc modelling, and then using lifting-line theory. Pragmatic guidance is given for design and evaluation of performance, including the use of computer modelling.The second part covers the development of unsteady forces...... arising from operation in non-uniform hull wakes. First, by a number of simplifications, various aspects of the problem are dealt with separately until the full problem of a non-cavitating, wide-bladed propeller in a wake is treated by a new and completely developed theory. Next, the complicated problem...
Hydrodynamic effects on coalescence.
Energy Technology Data Exchange (ETDEWEB)
Dimiduk, Thomas G.; Bourdon, Christopher Jay; Grillet, Anne Mary; Baer, Thomas A.; de Boer, Maarten Pieter; Loewenberg, Michael (Yale University, New Haven, CT); Gorby, Allen D.; Brooks, Carlton, F.
2006-10-01
The goal of this project was to design, build and test novel diagnostics to probe the effect of hydrodynamic forces on coalescence dynamics. Our investigation focused on how a drop coalesces onto a flat surface which is analogous to two drops coalescing, but more amenable to precise experimental measurements. We designed and built a flow cell to create an axisymmetric compression flow which brings a drop onto a flat surface. A computer-controlled system manipulates the flow to steer the drop and maintain a symmetric flow. Particle image velocimetry was performed to confirm that the control system was delivering a well conditioned flow. To examine the dynamics of the coalescence, we implemented an interferometry capability to measure the drainage of the thin film between the drop and the surface during the coalescence process. A semi-automated analysis routine was developed which converts the dynamic interferogram series into drop shape evolution data.
Hydrodynamics of sediment threshold
Ali, Sk Zeeshan; Dey, Subhasish
2016-07-01
A novel hydrodynamic model for the threshold of cohesionless sediment particle motion under a steady unidirectional streamflow is presented. The hydrodynamic forces (drag and lift) acting on a solitary sediment particle resting over a closely packed bed formed by the identical sediment particles are the primary motivating forces. The drag force comprises of the form drag and form induced drag. The lift force includes the Saffman lift, Magnus lift, centrifugal lift, and turbulent lift. The points of action of the force system are appropriately obtained, for the first time, from the basics of micro-mechanics. The sediment threshold is envisioned as the rolling mode, which is the plausible mode to initiate a particle motion on the bed. The moment balance of the force system on the solitary particle about the pivoting point of rolling yields the governing equation. The conditions of sediment threshold under the hydraulically smooth, transitional, and rough flow regimes are examined. The effects of velocity fluctuations are addressed by applying the statistical theory of turbulence. This study shows that for a hindrance coefficient of 0.3, the threshold curve (threshold Shields parameter versus shear Reynolds number) has an excellent agreement with the experimental data of uniform sediments. However, most of the experimental data are bounded by the upper and lower limiting threshold curves, corresponding to the hindrance coefficients of 0.2 and 0.4, respectively. The threshold curve of this study is compared with those of previous researchers. The present model also agrees satisfactorily with the experimental data of nonuniform sediments.
Identification of stiffness and damping characteristics of axial air-foil bearings
Arora, Vikas; Hoogt, van der P.J.M.; Aarts, R.G.K.M.; Boer, de A.
2011-01-01
Air-foil bearings (AFBs) are self acting hydrodynamic bearings made from sheet metal foils comprised of at least two layers. The innermost “top foil” layer traps a gas pressure film that supports a load while the layer or layers underneath provide an elastic foundation. AFBs are currently used in ma
Analysis of a Thrust Bearing with Flexible Pads and Flexible Supports
DEFF Research Database (Denmark)
Klit, Peder; Thomsen, Kim
2007-01-01
A theoretical analysis of a hydrodynamic thrust bearing is presented. The bearing investigated is used in an ndustrial product. The lubricant is water, but the results are valid also for other lubricants.At first the results from a 1-dimensional model for the fluid film forces and the associated...
Superconductor bearings, flywheels and transportation
Werfel, F. N.; Floegel-Delor, U.; Rothfeld, R.; Riedel, T.; Goebel, B.; Wippich, D.; Schirrmeister, P.
2012-01-01
This paper describes the present status of high temperature superconductors (HTS) and of bulk superconducting magnet devices, their use in bearings, in flywheel energy storage systems (FESS) and linear transport magnetic levitation (Maglev) systems. We report and review the concepts of multi-seeded REBCO bulk superconductor fabrication. The multi-grain bulks increase the averaged trapped magnetic flux density up to 40% compared to single-grain assembly in large-scale applications. HTS magnetic bearings with permanent magnet (PM) excitation were studied and scaled up to maximum forces of 10 kN axially and 4.5 kN radially. We examine the technology of the high-gradient magnetic bearing concept and verify it experimentally. A large HTS bearing is tested for stabilizing a 600 kg rotor of a 5 kWh/250 kW flywheel system. The flywheel rotor tests show the requirement for additional damping. Our compact flywheel system is compared with similar HTS-FESS projects. A small-scale compact YBCO bearing with in situ Stirling cryocooler is constructed and investigated for mobile applications. Next we show a successfully developed modular linear Maglev system for magnetic train operation. Each module levitates 0.25t at 10 mm distance during one-day operation without refilling LN2. More than 30 vacuum cryostats containing multi-seeded YBCO blocks are fabricated and are tested now in Germany, China and Brazil.
Institute of Scientific and Technical Information of China (English)
刘强; 房建成; 韩邦成
2012-01-01
To verify the protective effect of novel repeated locking device for magnetic bearing flywheel during satellite launch vibration, swept-sine vibration and random vibration in three principal axes are carried out. Two methods are used for evaluating the protective effect. Macroscopically, the eddy current displacement sensor is applied to measuring the vibration displacement between the stator and the rotor. Microscopically, the locking contact surfaces are investigated by SEM (scanning electron microscopy) and EDS (energy dispersive spectroscopy). The results show that the maximum macroscopic vibration displacement is 45 microns, less than the protect gap of 100 microns. It indicates that the novel repeated locking device can effectively carry out the locking protection function to the flywheel system. Moreover, microscopic analysis discloses that two wear mechanisms of brittle fracture and fatigue facture occurre in locking contact surfaces, with the occurrence of oxidation. The microscopic protective effect can be improved by means of suppression fretting wear.%为了检验新型可重复锁紧装置在卫星发射主动段对磁悬浮飞轮的保护效果,采用三轴正弦扫频振动和随机振动模拟发射振动工况对其进行振动测试实验.提出了基于电涡流位移传感器的转子振动位移检测方法,以及基于扫描电子显微镜(scanning electron microscopy,简称SEM)和能量色散谱仪(energy dispersive spectroscopy,简称EDS)的锁紧接触面形貌分析方法,对锁紧装置的宏观、微观保护效果进行评估分析.振动测试结果表明,飞轮转子最大振动位移为45μm,小于100μm的飞轮保护间隙,锁紧装置对飞轮起到了有效的保护作用.微观分析则揭示出,锁紧接触面内存在脆性断裂和疲劳断裂两种微动磨损机制,并伴有氧化反应发生,可以采取徽动抑制措施进一步改善锁紧保护效果.
Directory of Open Access Journals (Sweden)
A. Marcello Anile
2002-01-01
Full Text Available To accurately describe non-stationary carrier transport in GaAs devices, it is necessary to use Monte Carlo methods or hydrodynamical (or energy transport models which incorporate population transfer between valleys.We present here simulations of Gunn oscillations in a GaAs diode based on two-valley hydrodynamical models: the classic Bløtekjær model and two recently developed moment expansion models. Scattering parameters within the models are obtained from homogeneous Monte Carlo simulations, and these are compared against expressions in the literature. Comparisons are made between our hydrodynamical results, existing work, and direct Monte Carlo simulations of the oscillator device.
Recent development of hydrodynamic modeling
Hirano, Tetsufumi
2014-09-01
In this talk, I give an overview of recent development in hydrodynamic modeling of high-energy nuclear collisions. First, I briefly discuss about current situation of hydrodynamic modeling by showing results from the integrated dynamical approach in which Monte-Carlo calculation of initial conditions, quark-gluon fluid dynamics and hadronic cascading are combined. In particular, I focus on rescattering effects of strange hadrons on final observables. Next I highlight three topics in recent development in hydrodynamic modeling. These include (1) medium response to jet propagation in di-jet asymmetric events, (2) causal hydrodynamic fluctuation and its application to Bjorken expansion and (3) chiral magnetic wave from anomalous hydrodynamic simulations. (1) Recent CMS data suggest the existence of QGP response to propagation of jets. To investigate this phenomenon, we solve hydrodynamic equations with source term which exhibits deposition of energy and momentum from jets. We find a large number of low momentum particles are emitted at large angle from jet axis. This gives a novel interpretation of the CMS data. (2) It has been claimed that a matter created even in p-p/p-A collisions may behave like a fluid. However, fluctuation effects would be important in such a small system. We formulate relativistic fluctuating hydrodynamics and apply it to Bjorken expansion. We found the final multiplicity fluctuates around the mean value even if initial condition is fixed. This effect is relatively important in peripheral A-A collisions and p-p/p-A collisions. (3) Anomalous transport of the quark-gluon fluid is predicted when extremely high magnetic field is applied. We investigate this possibility by solving anomalous hydrodynamic equations. We found the difference of the elliptic flow parameter between positive and negative particles appears due to the chiral magnetic wave. Finally, I provide some personal perspective of hydrodynamic modeling of high energy nuclear collisions
Special Relativistic Hydrodynamics with Gravitation
Hwang, Jai-chan; Noh, Hyerim
2016-12-01
Special relativistic hydrodynamics with weak gravity has hitherto been unknown in the literature. Whether such an asymmetric combination is possible has been unclear. Here, the hydrodynamic equations with Poisson-type gravity, considering fully relativistic velocity and pressure under the weak gravity and the action-at-a-distance limit, are consistently derived from Einstein’s theory of general relativity. An analysis is made in the maximal slicing, where the Poisson’s equation becomes much simpler than our previous study in the zero-shear gauge. Also presented is the hydrodynamic equations in the first post-Newtonian approximation, now under the general hypersurface condition. Our formulation includes the anisotropic stress.
Special relativistic hydrodynamics with gravitation
Hwang, Jai-chan
2016-01-01
The special relativistic hydrodynamics with weak gravity is hitherto unknown in the literature. Whether such an asymmetric combination is possible was unclear. Here, the hydrodynamic equations with Poisson-type gravity considering fully relativistic velocity and pressure under the weak gravity and the action-at-a-distance limit are consistently derived from Einstein's general relativity. Analysis is made in the maximal slicing where the Poisson's equation becomes much simpler than our previous study in the zero-shear gauge. Also presented is the hydrodynamic equations in the first post-Newtonian approximation, now under the {\\it general} hypersurface condition. Our formulation includes the anisotropic stress.
Feasibility of Applying Active Lubrication to Dynamically Loaded Fluid Film Bearings
DEFF Research Database (Denmark)
Estupinan, Edgar Alberto; Santos, Ilmar
2009-01-01
The feasibility of modifying the dynamics of the thin fluid films of dynamically loaded journal bearings, using different strategies of active lubrication is studied in this work. A significant reduction in the vibration levels, wear and power friction losses, is expected. Particularly, the focus...... of this study is on the analysis of main crankshaft bearings, where the conventional hydrodynamic lubrication is modified by injecting oil at actively controllable pressures, through orifices circumferentially located along the bearing surface....
Directory of Open Access Journals (Sweden)
Kustosz R.
2015-09-01
Full Text Available Constructions of the mechanical-bearingless centrifugal blood pumps utilize different types of non-contact physical bearings, which allows to balance the forces that have an impact on the pump impeller, stabilizing its position in the pump house without wall contact. The paper presents investigations of the hybrid (passive magnetic bearings and hydrodynamic bearings suspension system for the centrifugal blood pump. Numerical simulations were used to evaluate the hydrodynamic bearing lifting force and magnetic bearing forces interaction. An important aspect of rotor suspension system design was the nominal gap in hydrodynamic bearing area in order to reduce the blood damage risk in this region. The analyses results confirmed that for a small diameter centrifugal pump, the nominal operating hydrodynamic bearing gap could be established within the range from 0.033 to 0.072 mm.
Analysis of a Thrust Bearing with Flexible Pads and Flexible Supports
DEFF Research Database (Denmark)
Klit, Peder; Thomsen, Kim
2007-01-01
A theoretical analysis of a hydrodynamic thrust bearing is presented. The bearing investigated is used in an ndustrial product. The lubricant is water, but the results are valid also for other lubricants.At first the results from a 1-dimensional model for the fluid film forces and the associated...... deformation of the bearing geometry is presented. This model enlightens the influence of pad flexibility and support location and flexibility. Subsequently results from a 2-dimensional model of the bearing is presented. The model is used to carry out an optimization of the bearing design, and the obtained...
Estimation of Alignment and Transverse Load in Multi-Bearing Rotor System
1997-01-01
The paper presents a method for estimation of a multi-bearing machine alignment on the basis of measured eccentricities of the shaft in machine bearings. The method uses a linear FEM model of the rotor and the non-linear models of machine bearings. In the presented example, the non-linear models of hydrodynamic bearings are used, but it is shown, that the method could be easily applied to other types of bearings. In addition to the alignment estimation, the method allows to est...
Bosonization and quantum hydrodynamics
Indian Academy of Sciences (India)
Girish S Setlur
2006-03-01
It is shown that it is possible to bosonize fermions in any number of dimensions using the hydrodynamic variables, namely the velocity potential and density. The slow part of the Fermi field is defined irrespective of dimensionality and the commutators of this field with currents and densities are exponentiated using the velocity potential as conjugate to the density. An action in terms of these canonical bosonic variables is proposed that reproduces the correct current and density correlations. This formalism in one dimension is shown to be equivalent to the Tomonaga-Luttinger approach as it leads to the same propagator and exponents. We compute the one-particle properties of a spinless homogeneous Fermi system in two spatial dimensions with long-range gauge interactions and highlight the metal-insulator transition in the system. A general formula for the generating function of density correlations is derived that is valid beyond the random phase approximation. Finally, we write down a formula for the annihilation operator in momentum space directly in terms of number conserving products of Fermi fields.
Engineering Hydrodynamic AUV Hulls
Allen, J.
2016-12-01
AUV stands for autonomous underwater vehicle. AUVs are used in oceanography and are similar to gliders. MBARIs AUVs as well as other AUVs map the ocean floor which is very important. They also measure physical characteristics of the water, such as temperature and salinity. My science fair project for 4th grade was a STEM activity in which I built and tested 3 different AUV bodies. I wanted to find out which design was the most hydrodynamic. I tested three different lengths of AUV hulls to see which AUV would glide the farthest. The first was 6 inches. The second was 12 inches and the third was 18 inches. I used clay for the nosecone and cut a ruler into two and made it the fin. Each AUV used the same nosecone and fin. I tested all three designs in a pool. I used biomimicry to create my hypothesis. When I was researching I found that long slim animals swim fastest. So, my hypothesis is the longer AUV will glide farthest. In the end I was right. The longer AUV did glide the farthest.
Plain bearing stresses due to forming and oil film pressure
Burke-Veliz, A.; Wang, D.; Wahdy, N.; Reed, P. A. S.; Merritt, D.; Syngellakis, S.
2009-08-01
This paper describes a methodology for assessing critical stress ranges arising in automotive plain bearings during engine operations. An industry-produced and run simulation program provides information on oil film pressure and overall bearing deformation during accelerated performance tests. This code performs an elasto-hydrodynamic lubrication analysis accounting for the compliance of the housing and journal. Finite element analyses of a multilayer bearing are performed to assess the conditions responsible for possible fatigue damage over the bearing lining. The residual stresses arising from the forming and fitting process are first assessed. The stress analyses over the engine cycle show the intensity and distribution of cyclic tensile and compressive stresses in the bearing. The location of maximum stress range is found to be consistent with the damage observed in accelerated fatigue tests. Critical zones are identified in the lining for possible fatigue crack initiation and growth studies.
Plain bearing stresses due to forming and oil film pressure
Energy Technology Data Exchange (ETDEWEB)
Burke-Veliz, A; Reed, P A S; Syngellakis, S [University of Southampton, School of Engineering Sciences, Southampton SO17 1BJ (United Kingdom); Wang, D; Wahdy, N; Merritt, D, E-mail: allan.burke@itesm.m [MAHLE Engine Systems UK Ltd, 2 Central park Drive, Rugby CV23 0WE (United Kingdom)
2009-08-01
This paper describes a methodology for assessing critical stress ranges arising in automotive plain bearings during engine operations. An industry-produced and run simulation program provides information on oil film pressure and overall bearing deformation during accelerated performance tests. This code performs an elasto-hydrodynamic lubrication analysis accounting for the compliance of the housing and journal. Finite element analyses of a multilayer bearing are performed to assess the conditions responsible for possible fatigue damage over the bearing lining. The residual stresses arising from the forming and fitting process are first assessed. The stress analyses over the engine cycle show the intensity and distribution of cyclic tensile and compressive stresses in the bearing. The location of maximum stress range is found to be consistent with the damage observed in accelerated fatigue tests. Critical zones are identified in the lining for possible fatigue crack initiation and growth studies.
Reciprocal relations in dissipationless hydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Melnikovsky, L. A., E-mail: leva@kapitza.ras.ru [Russian Academy of Sciences, Kapitza Institute for Physical Problems (Russian Federation)
2014-12-15
Hidden symmetry in dissipationless terms of arbitrary hydrodynamics equations is recognized. We demonstrate that all fluxes are generated by a single function and derive conventional Euler equations using the proposed formalism.
Relativistic Hydrodynamics on Graphic Cards
Gerhard, Jochen; Bleicher, Marcus
2012-01-01
We show how to accelerate relativistic hydrodynamics simulations using graphic cards (graphic processing units, GPUs). These improvements are of highest relevance e.g. to the field of high-energetic nucleus-nucleus collisions at RHIC and LHC where (ideal and dissipative) relativistic hydrodynamics is used to calculate the evolution of hot and dense QCD matter. The results reported here are based on the Sharp And Smooth Transport Algorithm (SHASTA), which is employed in many hydrodynamical models and hybrid simulation packages, e.g. the Ultrarelativistic Quantum Molecular Dynamics model (UrQMD). We have redesigned the SHASTA using the OpenCL computing framework to work on accelerators like graphic processing units (GPUs) as well as on multi-core processors. With the redesign of the algorithm the hydrodynamic calculations have been accelerated by a factor 160 allowing for event-by-event calculations and better statistics in hybrid calculations.
Gradient expansion for anisotropic hydrodynamics
Florkowski, Wojciech; Ryblewski, Radoslaw; Spaliński, Michał
2016-12-01
We compute the gradient expansion for anisotropic hydrodynamics. The results are compared with the corresponding expansion of the underlying kinetic-theory model with the collision term treated in the relaxation time approximation. We find that a recent formulation of anisotropic hydrodynamics based on an anisotropic matching principle yields the first three terms of the gradient expansion in agreement with those obtained for the kinetic theory. This gives further support for this particular hydrodynamic model as a good approximation of the kinetic-theory approach. We further find that the gradient expansion of anisotropic hydrodynamics is an asymptotic series, and the singularities of the analytic continuation of its Borel transform indicate the presence of nonhydrodynamic modes.
Institute of Scientific and Technical Information of China (English)
刘强; 房建成; 韩邦成; 白国长
2012-01-01
According to the repeated electromagnetic locking device based on the self-locking principle for magnetic bearing flywheel, the electromagnetic and mechanics characteristics of primary explicit electromagnet are analyzed. It is concluded that the minimum unlocking residual force is much too large, while the adoption of the implicit electromagnet can get rid of it and increase the unlocking reliability. The equivalent magnetic circuit method is applied to magnetic analysis of implicit electromagnet, and its mechanics model under four statuses including carrying out locking/unlocking and keeping locking/unlocking is got. The electromagnetic numerical analysis method is used for a solid example design for the implicit electromagnet. Additionally, to verify the protective effect of the improved locking device for the flywheel system during satellite launch, the swept-sine vibration and random vibration are carried out The results show that the minimum unlocking residual force of locking device is 0.2S N, far smaller than that of explicit electromagnet about 29.3 N. Moreover, the maximum vibration displacement between the flywheel stator and rotor is 70 urn and its maximum amplitude is 10 urn. Both of them are less than the flywheel system protective gap of 100 um. This indicates that the improved implicit electromagnet can effectively carry out the locking protection function to the flywheel system while raising the unlocking reliability.%针对磁悬浮飞轮用基于机构自锁原理的可重复电磁锁紧装置,分析其原有显式电磁铁执行机构的电磁力学特性,得知其最小解锁残余力过大,若采用隐式电磁铁,可以消除解锁残余力,从而提高锁紧装置解锁可靠性.采用等效磁路法对隐式电磁铁进行磁路分析,并给出该电磁铁在执行锁紧、保持锁紧、执行解锁和保持解锁四种状态下的力学模型.利用电磁场数值分析法,对隐式电磁铁进行实例设计,并通过卫星发射过程
An introduction to astrophysical hydrodynamics
Shore, Steven N
1992-01-01
This book is an introduction to astrophysical hydrodynamics for both astronomy and physics students. It provides a comprehensive and unified view of the general problems associated with fluids in a cosmic context, with a discussion of fluid dynamics and plasma physics. It is the only book on hydrodynamics that addresses the astrophysical context. Researchers and students will find this work to be an exceptional reference. Contents include chapters on irrotational and rotational flows, turbulence, magnetohydrodynamics, and instabilities.
Conformational Manipulation of DNA in Nanochannels Using Hydrodynamics
He, Qihao; Carrivain, Pascal; Viero, Yannick; Lacroix, Joris; Blatché, Charline; Daran, Emmanuelle; Victor, Jean-Marc; Bancaud, Aurélien
2014-01-01
The control over DNA elongation in nanofluidic devices holds great potential for large-scale genomic analysis. So far, the manipulation of DNA in nanochannels has been mostly carried out with electrophoresis and seldom with hydrodynamics, although the physics of soft matter in nanoscale flows has raised considerable interest over the past decade. In this report the migration of DNA is studied in nanochannels of lateral dimension spanning 100 to 500 nm using both actuation principles. We show that the relaxation kinetics are 3-fold slowed down and the extension increases up to 3-fold using hydrodynamics. We propose a model to account for the onset in elongation with the flow, which assumes that DNA response is determined by the shear-driven lift forces mediated by the proximity of the channels' walls. Overall, we suggest that hydrodynamic actuation allows for an improved manipulation of DNA in nanochannels.
Slurry bubble column hydrodynamics
Rados, Novica
Slurry bubble column reactors are presently used for a wide range of reactions in both chemical and biochemical industry. The successful design and scale up of slurry bubble column reactors require a complete understanding of multiphase fluid dynamics, i.e. phase mixing, heat and mass transport characteristics. The primary objective of this thesis is to improve presently limited understanding of the gas-liquid-solid slurry bubble column hydrodynamics. The effect of superficial gas velocity (8 to 45 cm/s), pressure (0.1 to 1.0 MPa) and solids loading (20 and 35 wt.%) on the time-averaged solids velocity and turbulent parameter profiles has been studied using Computer Automated Radioactive Particle Tracking (CARPT). To accomplish this, CARPT technique has been significantly improved for the measurements in highly attenuating systems, such as high pressure, high solids loading stainless steel slurry bubble column. At a similar set of operational conditions time-averaged gas and solids holdup profiles have been evaluated using the developed Computed Tomography (CT)/Overall gas holdup procedure. This procedure is based on the combination of the CT scans and the overall gas holdup measurements. The procedure assumes constant solids loading in the radial direction and axially invariant cross-sectionally averaged gas holdup. The obtained experimental holdup, velocity and turbulent parameters data are correlated and compared with the existing low superficial gas velocities and atmospheric pressure CARPT/CT gas-liquid and gas-liquid-solid slurry data. The obtained solids axial velocity radial profiles are compared with the predictions of the one dimensional (1-D) liquid/slurry recirculation phenomenological model. The obtained solids loading axial profiles are compared with the predictions of the Sedimentation and Dispersion Model (SDM). The overall gas holdup values, gas holdup radial profiles, solids loading axial profiles, solids axial velocity radial profiles and solids
Directory of Open Access Journals (Sweden)
Sezar Gülbaz
2015-01-01
Full Text Available The land development and increase in urbanization in a watershed affect water quantityand water quality. On one hand, urbanization provokes the adjustment of geomorphicstructure of the streams, ultimately raises peak flow rate which causes flood; on theother hand, it diminishes water quality which results in an increase in Total SuspendedSolid (TSS. Consequently, sediment accumulation in downstream of urban areas isobserved which is not preferred for longer life of dams. In order to overcome thesediment accumulation problem in dams, the amount of TSS in streams and inwatersheds should be taken under control. Low Impact Development (LID is a BestManagement Practice (BMP which may be used for this purpose. It is a land planningand engineering design method which is applied in managing storm water runoff inorder to reduce flooding as well as simultaneously improve water quality. LID includestechniques to predict suspended solid loads in surface runoff generated over imperviousurban surfaces. In this study, the impact of LID-BMPs on surface runoff and TSS isinvestigated by employing a calibrated hydrodynamic model for Sazlidere Watershedwhich is located in Istanbul, Turkey. For this purpose, a calibrated hydrodynamicmodel was developed by using Environmental Protection Agency Storm WaterManagement Model (EPA SWMM. For model calibration and validation, we set up arain gauge and a flow meter into the field and obtain rainfall and flow rate data. Andthen, we select several LID types such as retention basins, vegetative swales andpermeable pavement and we obtain their influence on peak flow rate and pollutantbuildup and washoff for TSS. Consequently, we observe the possible effects ofLID on surface runoff and TSS in Sazlidere Watershed.
Axial Halbach Magnetic Bearings
Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.
2008-01-01
Axial Halbach magnetic bearings have been investigated as part of an effort to develop increasingly reliable noncontact bearings for future high-speed rotary machines that may be used in such applications as aircraft, industrial, and land-vehicle power systems and in some medical and scientific instrumentation systems. Axial Halbach magnetic bearings are passive in the sense that unlike most other magnetic bearings that have been developed in recent years, they effect stable magnetic levitation without need for complex active control.
Piezoelectric actuators in the active vibration control system of journal bearings
Tůma, J.; Šimek, J.; Mahdal, M.; Pawlenka, M.; Wagnerova, R.
2017-07-01
The advantage of journal hydrodynamic bearings is high radial load capacity and operation at high speeds. The disadvantage is the excitation of vibrations, called an oil whirl, after crossing a certain threshold of the rotational speed. The mentioned vibrations can be suppressed using the system of the active vibration control with piezoactuators which move the bearing bushing. The motion of the bearing bushing is controlled by a feedback controller, which responds to the change in position of the bearing journal which is sensed by a pair of capacitive sensors. Two stacked linear piezoactuators are used to actuate the position of the bearing journal. This new bearing enables not only to damp vibrations but also serves to maintain the desired bearing journal position with an accuracy of micrometers. The paper will focus on the effect of active vibration control on the performance characteristics of the journal bearing.
Analysis of Thermoelastohydrodynamic Performance of Journal Misaligned Engine Main Bearings
Institute of Scientific and Technical Information of China (English)
BI Fengrong; SHAO Kang; LIU Changwen; WANG Xia; ZHANG Jian
2015-01-01
To understand the engine maln bearings’ working condition is important in order to improve the performance of engine. However, thermal effects and thermal effect deformations of engine maln bearings are rarely considered simultaneously in most studies. A typical finite element model is selected and the effect of thermoelastohydrodynamic(TEHD) reaction on engine maln bearings is investigated. The calculated method of maln bearing’s thermal hydrodynamic reaction and journal misalignment effect is finite difference method, and its deformation reaction is calculated by using finite element method. The oil film pressure is solved numerically with Reynolds boundary conditions when various bearing characteristics are calculated. The whole model considers a temperature-pressure-viscosity relationship for the lubricant, surface roughness effect, and also an angular misalignment between the journal and the bearing. Numerical simulations of operation of a typical I6 diesel engine maln bearing is conducted and importance of several contributing factors in mixed lubrication is discussed. The performance characteristics of journal misaligned maln bearings under elastohydrodynamic(EHD) and TEHD loads of an I6 diesel engine are received, and then the journal center orbit movement, minimum oil film thickness and maximum oil film pressure of maln bearings are estimated over a wide range of engine operation. The model is verified through the comparison with other present models. The TEHD performance of engine maln bearings with various effects under the influences of journal misalignment is revealed, this is helpful to understand EHD and TEHD effect of misaligned engine maln bearings.
The hydrodynamics of colloidal gelation.
Varga, Zsigmond; Wang, Gang; Swan, James
2015-12-14
Colloidal gels are formed during arrested phase separation. Sub-micron, mutually attractive particles aggregate to form a system spanning network with high interfacial area, far from equilibrium. Models for microstructural evolution during colloidal gelation have often struggled to match experimental results with long standing questions regarding the role of hydrodynamic interactions. In nearly all models, these interactions are neglected entirely. In the present work, we report simulations of gelation with and without hydrodynamic interactions between the suspended particles executed in HOOMD-blue. The disparities between these simulations are striking and mirror the experimental-theoretical mismatch in the literature. The hydrodynamic simulations agree with experimental observations, however. We explore a simple model of the competing transport processes in gelation that anticipates these disparities, and conclude that hydrodynamic forces are essential. Near the gel boundary, there exists a competition between compaction of individual aggregates which suppresses gelation and coagulation of aggregates which enhances it. The time scale for compaction is mildly slowed by hydrodynamic interactions, while the time scale for coagulation is greatly accelerated. This enhancement to coagulation leads to a shift in the gel boundary to lower strengths of attraction and lower particle concentrations when compared to models that neglect hydrodynamic interactions. Away from the gel boundary, differences in the nearest neighbor distribution and fractal dimension persist within gels produced by both simulation methods. This result necessitates a fundamental rethinking of how dynamic, discrete element models for gelation kinetics are developed as well as how collective hydrodynamic interactions influence the arrest of attractive colloidal dispersions.
Cryogenic Hybrid Magnetic Bearing
Meeks, Crawford R.; Dirusso, Eliseo; Brown, Gerald V.
1994-01-01
Cryogenic hybrid magnetic bearing is example of class of magnetic bearings in which permanent magnets and electromagnets used to suspend shafts. Electromagnets provide active control of position of shaft. Bearing operates at temperatures from -320 degrees F (-196 degrees C) to 650 degrees F (343 degrees C); designed for possible use in rocket-engine turbopumps, where effects of cryogenic environment and fluid severely limit lubrication of conventional ball bearings. This and similar bearings also suitable for terrestrial rotating machinery; for example, gas-turbine engines, high-vacuum pumps, canned pumps, precise gimbals that suspend sensors, and pumps that handle corrosive or gritty fluids.
TOPICAL REVIEW: Superconducting bearings
Hull, John R.
2000-02-01
The physics and technology of superconducting bearings is reviewed. Particular attention is given to the use of high-temperature superconductors (HTSs) in rotating bearings. The basic phenomenology of levitational forces is presented, followed by a brief discussion of the theoretical models that can be used for conceptual understanding and calculations. The merits of various HTS bearing designs are presented, and the behaviour of HTS bearings in typical situations is discussed. The article concludes with a brief survey of various proposed applications for HTS bearings.
DEFF Research Database (Denmark)
van Leeuwen, Theo; Caldas-Coulthardt, Carmen
2014-01-01
This paper presents a semiotic analysis of a key cultural artefact, the teddy bear. After introducing the iconography of the teddy bear, it analyses different kinds of stories to show how teddy bears are endowed with meaning in everyday life: stories from children's books, reminiscenses by adults...... about their childhood teddy bears, and children's accounts of what they do with teddy bears, both written for school and told 'out of school', The chapter sees teddy bears as artefacts that provide a cultural channeling for the child's need of a transitional object and argues that the meanings of teddy...... bears have traditionally centred on interpersonal relations within the nuclear family, but have recently been institutionalized and commercialized....
Recent progress in anisotropic hydrodynamics
Strickland, Michael
2016-01-01
The quark-gluon plasma created in a relativistic heavy-ion collisions possesses a sizable pressure anisotropy in the local rest frame at very early times after the initial nuclear impact and this anisotropy only slowly relaxes as the system evolves. In a kinetic theory picture, this translates into the existence of sizable momentum-space anisotropies in the underlying partonic distribution functions, . In such cases, it is better to reorganize the hydrodynamical expansion by taking into account momentum-space anisotropies at leading-order in the expansion instead of as a perturbative correction to an isotropic distribution. The resulting anisotropic hydrodynamics framework has been shown to more accurately describe the dynamics of rapidly expanding systems such as the quark-gluon plasma. In this proceedings contribution, I review the basic ideas of anisotropic hydrodynamics, recent progress, and present a few preliminary phenomenological predictions for identified particle spectra and elliptic flow.
Numerical Hydrodynamics in Special Relativity
Directory of Open Access Journals (Sweden)
Martí José Maria
2003-01-01
Full Text Available This review is concerned with a discussion of numerical methods for the solution of the equations of special relativistic hydrodynamics (SRHD. Particular emphasis is put on a comprehensive review of the application of high-resolution shock-capturing methods in SRHD. Results of a set of demanding test bench simulations obtained with different numerical SRHD methods are compared. Three applications (astrophysical jets, gamma-ray bursts and heavy ion collisions of relativistic flows are discussed. An evaluation of various SRHD methods is presented, and future developments in SRHD are analyzed involving extension to general relativistic hydrodynamics and relativistic magneto-hydrodynamics. The review further provides FORTRAN programs to compute the exact solution of a 1D relativistic Riemann problem with zero and nonzero tangential velocities, and to simulate 1D relativistic flows in Cartesian Eulerian coordinates using the exact SRHD Riemann solver and PPM reconstruction.
Comparative hydrodynamics of bacterial polymorphism
Spagnolie, Saverio E
2011-01-01
Most bacteria swim through fluids by rotating helical flagella which can take one of twelve distinct polymorphic shapes. The most common helical waveform is the "normal" form, used during forward swimming runs. To shed light on the prevalence of the normal form in locomotion, we gather all available experimental measurements of the various polymorphic forms and compute their intrinsic hydrodynamic efficiencies. The normal helical form is found to be the most hydrodynamically efficient of the twelve polymorphic forms by a significant margin - a conclusion valid for both the peritrichous and polar flagellar families, and robust to a change in the effective flagellum diameter or length. The hydrodynamic optimality of the normal polymorph suggests that, although energetic costs of locomotion are small for bacteria, fluid mechanical forces may have played a significant role in the evolution of the flagellum.
Quantum Plasmas An Hydrodynamic Approach
Haas, Fernando
2011-01-01
This book provides an overview of the basic concepts and new methods in the emerging scientific area known as quantum plasmas. In the near future, quantum effects in plasmas will be unavoidable, particularly in high density scenarios such as those in the next-generation intense laser-solid density plasma experiment or in compact astrophysics objects. Currently, plasmas are in the forefront of many intriguing questions around the transition from microscopic to macroscopic modeling of charged particle systems. Quantum Plasmas: an Hydrodynamic Approach is devoted to the quantum hydrodynamic model paradigm, which, unlike straight quantum kinetic theory, is much more amenable to investigate the nonlinear realm of quantum plasmas. The reader will have a step-by-step construction of the quantum hydrodynamic method applied to plasmas. The book is intended for specialists in classical plasma physics interested in methods of quantum plasma theory, as well as scientists interested in common aspects of two major areas of...
HYDRODYNAMIC INTERACTIONS BETWEEN TWO BODIES
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
On the basis of model tests, potential flow theory, and viscous Computational Fluid Dynamics (CFD) method, the hydrodynamic interactions between two underwater bodies were investigated to determine the influencing factors, changing rule, interaction mechanism, and appropriate methods describing them. Some special phenomena were discovered in two series of near-wall interaction experiments. The mathematical model and predicting methods were presented for interacting forces near wall, and the calculation results agreed well with the experimental ones. From the comparisons among numerical results with respect to nonviscosity, numerical results with respect to viscosity, and measured results, data on the influence of viscosity on hydrodynamic interactions were obtained. For hydrodynamic interaction related to multi-body unsteady motions with six degrees of freedom that is difficult to simulate in tests, numerical predictions of unsteady interacting forces were given.
Hydrodynamic shocks in microroller suspensions
Delmotte, Blaise; Driscoll, Michelle; Chaikin, Paul; Donev, Aleksandar
2017-09-01
We combine experiments, large-scale simulations, and continuum models to study the emergence of coherent structures in a suspension of magnetically driven microrollers sedimented near a floor. Collective hydrodynamic effects are predominant in this system, leading to strong density-velocity coupling. We characterize a uniform suspension and show that density waves propagate freely in all directions in a dispersive fashion. When sharp density gradients are introduced in the suspension, we observe the formation of a shock. Unlike Burgers' shocklike structures observed in other active and driven confined hydrodynamic systems, the shock front in our system has a well-defined finite width and moves rapidly compared to the mean suspension velocity. We introduce a continuum model demonstrating that the finite width of the front is due to far-field nonlocal hydrodynamic interactions and governed by a geometric parameter, the average particle height above the floor.
Numerical Hydrodynamics in Special Relativity.
Martí, José Maria; Müller, Ewald
2003-01-01
This review is concerned with a discussion of numerical methods for the solution of the equations of special relativistic hydrodynamics (SRHD). Particular emphasis is put on a comprehensive review of the application of high-resolution shock-capturing methods in SRHD. Results of a set of demanding test bench simulations obtained with different numerical SRHD methods are compared. Three applications (astrophysical jets, gamma-ray bursts and heavy ion collisions) of relativistic flows are discussed. An evaluation of various SRHD methods is presented, and future developments in SRHD are analyzed involving extension to general relativistic hydrodynamics and relativistic magneto-hydrodynamics. The review further provides FORTRAN programs to compute the exact solution of a 1D relativistic Riemann problem with zero and nonzero tangential velocities, and to simulate 1D relativistic flows in Cartesian Eulerian coordinates using the exact SRHD Riemann solver and PPM reconstruction.
Anisotropic hydrodynamics: Motivation and methodology
Energy Technology Data Exchange (ETDEWEB)
Strickland, Michael
2014-06-15
In this proceedings contribution I review recent progress in our understanding of the bulk dynamics of relativistic systems that possess potentially large local rest frame momentum-space anisotropies. In order to deal with these momentum-space anisotropies, a reorganization of relativistic viscous hydrodynamics can be made around an anisotropic background, and the resulting dynamical framework has been dubbed “anisotropic hydrodynamics”. I also discuss expectations for the degree of momentum-space anisotropy of the quark–gluon plasma generated in relativistic heavy ion collisions at RHIC and LHC from second-order viscous hydrodynamics, strong-coupling approaches, and weak-coupling approaches.
Hydrodynamics of oceans and atmospheres
Eckart, Carl
1960-01-01
Hydrodynamics of Oceans and Atmospheres is a systematic account of the hydrodynamics of oceans and atmospheres. Topics covered range from the thermodynamic functions of an ideal gas and the thermodynamic coefficients for water to steady motions, the isothermal atmosphere, the thermocline, and the thermosphere. Perturbation equations, field equations, residual equations, and a general theory of rays are also presented. This book is comprised of 17 chapters and begins with an introduction to the basic equations and their solutions, with the aim of illustrating the laws of dynamics. The nonlinear
Abnormal pressures as hydrodynamic phenomena
Neuzil, C.E.
1995-01-01
So-called abnormal pressures, subsurface fluid pressures significantly higher or lower than hydrostatic, have excited speculation about their origin since subsurface exploration first encountered them. Two distinct conceptual models for abnormal pressures have gained currency among earth scientists. The static model sees abnormal pressures generally as relict features preserved by a virtual absence of fluid flow over geologic time. The hydrodynamic model instead envisions abnormal pressures as phenomena in which flow usually plays an important role. This paper develops the theoretical framework for abnormal pressures as hydrodynamic phenomena, shows that it explains the manifold occurrences of abnormal pressures, and examines the implications of this approach. -from Author
HYDRODYNAMIC ANALYSIS OF SHORELINE OWC TYPE WAVE ENERGY CONVERTERS
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
A numerical model to predict the hydrodynamic performance of a shoreline-mounted wave energy converter, normally referred to as Oscillating Water Column (OWC), was established. Based on the 3D boundary integral equation method, the 3D Green's function was utilized to describe the hydrodynamic flow around the device. Using geometrical data of a wave absorber device symmetrically placed in a channel with various barrier depths, the hydrodynamic efficiencies were calculated for regular waves. The results were the ncompared with analytical results published elsewhere Malmo[8] . And the comparison is shown to be good, thus validating the proposed numerical model. Furthermore, extensive experiments were also made in a wave tank with a 1:12 scale model of an OWC device of different geometrical configurations. The experimental measurements were compared with calculations using the newly developed numerical model. The comparison, which is also shown to be satisfactory, provides further support of the correctness and the accuracy of the numerical method presented in the paper.
NANO-BEARING: THE DESIGN OF A NEW TYPE OF AIR BEARING WITH FLEXURE STRUCTURE
Institute of Scientific and Technical Information of China (English)
KO Pui Hang; DU Ruxu
2007-01-01
A new type of air bearing with flexure structure is introduced. The new bearing is designed for precision mechanical engineering devices such as mechanical watch movement. The new design uses the flexure structure to provide 3D damping to absorb shocks from all directions. Two designs are presented: one has 12 T-shape slots in the radian direction while the other has 8 spiral slots in the radian direction. Both designs have flexure mountings on the axial directions. Based on the finite element analysis (FEA), the new bearing can reduce the vibration (displacement) by as much as 8.37% and hence, can better protect the shafts.
Hydrodynamics of a quark droplet
DEFF Research Database (Denmark)
Bjerrum-Bohr, Johan J.; Mishustin, Igor N.; Døssing, Thomas
2012-01-01
We present a simple model of a multi-quark droplet evolution based on the hydrodynamical description. This model includes collective expansion of the droplet, effects of the vacuum pressure and surface tension. The hadron emission from the droplet is described following Weisskopf's statistical...
Numerical Hydrodynamics in General Relativity
Directory of Open Access Journals (Sweden)
Font José A.
2003-01-01
Full Text Available The current status of numerical solutions for the equations of ideal general relativistic hydrodynamics is reviewed. With respect to an earlier version of the article, the present update provides additional information on numerical schemes, and extends the discussion of astrophysical simulations in general relativistic hydrodynamics. Different formulations of the equations are presented, with special mention of conservative and hyperbolic formulations well-adapted to advanced numerical methods. A large sample of available numerical schemes is discussed, paying particular attention to solution procedures based on schemes exploiting the characteristic structure of the equations through linearized Riemann solvers. A comprehensive summary of astrophysical simulations in strong gravitational fields is presented. These include gravitational collapse, accretion onto black holes, and hydrodynamical evolutions of neutron stars. The material contained in these sections highlights the numerical challenges of various representative simulations. It also follows, to some extent, the chronological development of the field, concerning advances on the formulation of the gravitational field and hydrodynamic equations and the numerical methodology designed to solve them.
Anomalous hydrodynamics in two dimensions
Indian Academy of Sciences (India)
Rabin Banerjee
2016-02-01
A new approach is presented to discuss two-dimensional hydrodynamics with gauge and gravitational anomalies. Exact constitutive relations for the stress tensor and charge current are obtained. Also, a connection between response parameters and anomaly coefficients is discussed. These are new results which, in the absence of the gauge sector, reproduce the results found by the gradient expansion approach.
Hydrodynamic Noise and Surface Compliance.
1982-09-08
Lighthill, 3,4 Ffowcs-Wiiliams, 5-7 and Morse and Ingard .8 Ffowcs-Williams’ 7 excellent review identifies five distinctly different theoretical...Williams, "Hydrodynamic Noise," Annual Review of Fluid Mechanics (Annual Reviews, Palo Alto, CA), vol. 1, 1969, pp. 197-222. 8. P. Morse and K. V. Ingard
Hydrodynamic slip in silicon nanochannels
Ramos-Alvarado, Bladimir; Kumar, Satish; Peterson, G. P.
2016-03-01
Equilibrium and nonequilibrium molecular dynamics simulations were performed to better understand the hydrodynamic behavior of water flowing through silicon nanochannels. The water-silicon interaction potential was calibrated by means of size-independent molecular dynamics simulations of silicon wettability. The wettability of silicon was found to be dependent on the strength of the water-silicon interaction and the structure of the underlying surface. As a result, the anisotropy was found to be an important factor in the wettability of these types of crystalline solids. Using this premise as a fundamental starting point, the hydrodynamic slip in nanoconfined water was characterized using both equilibrium and nonequilibrium calculations of the slip length under low shear rate operating conditions. As was the case for the wettability analysis, the hydrodynamic slip was found to be dependent on the wetted solid surface atomic structure. Additionally, the interfacial water liquid structure was the most significant parameter to describe the hydrodynamic boundary condition. The calibration of the water-silicon interaction potential performed by matching the experimental contact angle of silicon led to the verification of the no-slip condition, experimentally reported for silicon nanochannels at low shear rates.
DEFF Research Database (Denmark)
Nielsen, Nick; Pedersen, Sandra Bleuenn; Sørensen, Jens Ager
2015-01-01
In this paper, we introduce the EcoBears concept that aims to augment household appliances with functional and aesthetic features to promote their "use'' and "longevity of use'' to prevent their disposal. The EcoBears also aim to support the communication of environmental issues in the home setting....... We present our initial design and implementation of the EcoBears that consist of two bear modules (a mother and her cub). We also present our preliminary concept validations and lessons learned to be considered for future directions....
Three Types of Active Lubrication Systems for the Main Bearings of Reciprocating Machines
DEFF Research Database (Denmark)
Santos, Ilmar; Pulido, E. E.
2010-01-01
thickness and consequently reducing viscous friction losses and vibrations. One refers to active lubrication when conventional hydrodynamic lubrication is combined with dynamically modified hydrostatic lubrication. In this case, the hydrostatic lubrication is modified by injecting oil at controllable......In the paper the authors investigate three different schemes for the realization of the controllable oil injection system to be couple to the main engine bearings. The use of active lubrication in fluid film bearings helps to enhance the hydrodynamic fluid film by increasing the fluid film...
The helical flow pump with a hydrodynamic levitation impeller.
Abe, Yusuke; Ishii, Kohei; Isoyama, Takashi; Saito, Itsuro; Inoue, Yusuke; Ono, Toshiya; Nakagawa, Hidemoto; Nakano, Emiko; Fukazawa, Kyoko; Ishihara, Kazuhiko; Fukunaga, Kazuyoshi; Ono, Minoru; Imachi, Kou
2012-12-01
The helical flow pump (HFP) is a novel rotary blood pump invented for developing a total artificial heart (TAH). The HFP with a hydrodynamic levitation impeller, which consists of a multi-vane impeller involving rotor magnets, stator coils at the core position, and double helical-volute pump housing, was developed. Between the stator and impeller, a hydrodynamic bearing is formed. Since the helical volutes are formed at both sides of the impeller, blood flows with a helical flow pattern inside the pump. The developed HFP showed maximum output of 19 l/min against 100 mmHg of pressure head and 11 % maximum efficiency. The profile of the H-Q (pressure head vs. flow) curve was similar to that of the undulation pump. Hydrodynamic levitation of the impeller was possible with higher than 1,000 rpm rotation speed. The normalized index of the hemolysis ratio of the HFP to centrifugal pump (BPX-80) was from 2.61 to 8.07 depending on the design of the bearing. The HFP was implanted in two goats with a left ventricular bypass method. After surgery, hemolysis occurred in both goats. The hemolysis ceased on postoperative days 14 and 9, respectively. In the first experiment, no thrombus was found in the pump after 203 days of pumping. In the second experiment, a white thrombus was found in the pump after 23 days of pumping. While further research and development are necessary, we are expecting to develop an excellent TAH with the HFP.
Elrod, David A.
1990-01-01
High side loads reduce the life of the Space Shuttle Main Engine (SSME) High Pressure Oxygen Turbopump (HPOTP) bearings. High stiffness damper seals were recommended to reduce the loads on the pump and turbine end bearings in the HPOTP. The seals designed for use on the pump end are expected to adequately reduce the bearing loads; the predicted performance of the planned turbine end seal is marginal. An alternative to the suggested turbine end seal design is a damper bearing with radial holes from the pressurized center of the turbopump rotor, feeding a smooth land region between two rough-stator/smooth-rotor annular seals. An analysis was prepared to predict the leakage and rotor dynamic coefficients (stiffness, damping, and added mass) of the damper bearing. Governing equations of the seal analysis modified to model the damper bearing; differences between the upstream conditions of the damper bearing and a typical annular seal; prediction of the damper bearing analysis; and assumptions of the analysis which require further investigation are described.
Amaral, Felipe; Gross-Hardt, Sascha; Timms, Daniel; Egger, Christina; Steinseifer, Ulrich; Schmitz-Rode, Thomas
2013-10-01
The rapid evolution of rotary blood pump (RBP) technology in the last few decades was shaped by devices with increased durability, frequently employing magnetic or hydrodynamic suspension techniques. However, the potential for low flow in small gaps between the rotor and pump casing is still a problem for hemocompatibility. In this study, a spiral groove hydrodynamic bearing (SGB) is applied with two distinct objectives: first, as a mechanism to enhance the washout in the secondary flow path of a centrifugal RBP, lowering the exposure to high shear stresses and avoiding thrombus formation; and second, as a way to allow smaller gaps without compromising the washout, enhancing the overall pump efficiency. Computational fluid dynamics was applied and verified via bench-top experiments. An optimization of selected geometric parameters (groove angle, width and depth) focusing on the washout in the gap rather than generating suspension force was conducted. An optimized SGB geometry reduced the residence time of the cells in the gap from 31 to 27 ms, an improvement of 14% compared with the baseline geometry of 200 μm without grooves. When optimizing for pump performance, a 15% smaller gap yielded a slightly better rate of fluid exchange compared with the baseline, followed by a 22% reduction in the volumetric loss from the primary pathway. Finally, an improved washout can be achieved in a pulsatile environment due to the SGB ability to pump inwardly, even in the absence of a pressure head.
The salmon bears: giants of the great bear rainforest
National Research Council Canada - National Science Library
McAllister, I; Read, N
2010-01-01
The Salmon Bears explores the delicate balance that exists between the grizzly, black and spirit bears of the Great Bear Rainforest and their natural environment on the central coast of British Columbia...
Brain vascular and hydrodynamic physiology
Tasker, Robert C.
2013-01-01
Protecting the brain in vulnerable infants undergoing surgery is a central aspect of perioperative care. Understanding the link between blood flow, oxygen delivery and oxygen consumption leads to a more informed approach to bedside care. In some cases, we need to consider how high can we let the partial pressure of carbon dioxide go before we have concerns about risk of increased cerebral blood volume and change in intracranial hydrodynamics? Alternatively, in almost all such cases, we have to address the question of how low can we let the blood pressure drop before we should be concerned about brain perfusion? This review, provides a basic understanding of brain bioenergetics, hemodynamics, hydrodynamics, autoregulation and vascular homeostasis to changes in blood gases that is fundamental to our thinking about bedside care and monitoring. PMID:24331089
Hydrodynamic interactions in two dimensions
di Leonardo, R.; Keen, S.; Ianni, F.; Leach, J.; Padgett, M. J.; Ruocco, G.
2008-09-01
We measure hydrodynamic interactions between colloidal particles confined in a thin sheet of fluid. The reduced dimensionality, compared to a bulk fluid, increases dramatically the range of couplings. Using optical tweezers we force a two body system along the eigenmodes of the mobility tensor and find that eigenmobilities change logarithmically with particle separation. At a hundred radii distance, the mobilities for rigid and relative motions differ by a factor of 2, whereas in bulk fluids, they would be practically indistinguishable. A two dimensional counterpart of Oseen hydrodynamic tensor quantitatively reproduces the observed behavior, once the relevant boundary conditions are recognized. These results highlight the importance of dimensionality for transport and interactions in colloidal systems and proteins in biological membranes.
Algorithm refinement for fluctuating hydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Williams, Sarah A.; Bell, John B.; Garcia, Alejandro L.
2007-07-03
This paper introduces an adaptive mesh and algorithmrefinement method for fluctuating hydrodynamics. This particle-continuumhybrid simulates the dynamics of a compressible fluid with thermalfluctuations. The particle algorithm is direct simulation Monte Carlo(DSMC), a molecular-level scheme based on the Boltzmann equation. Thecontinuum algorithm is based on the Landau-Lifshitz Navier-Stokes (LLNS)equations, which incorporate thermal fluctuations into macroscopichydrodynamics by using stochastic fluxes. It uses a recently-developedsolver for LLNS, based on third-order Runge-Kutta. We present numericaltests of systems in and out of equilibrium, including time-dependentsystems, and demonstrate dynamic adaptive refinement by the computationof a moving shock wave. Mean system behavior and second moment statisticsof our simulations match theoretical values and benchmarks well. We findthat particular attention should be paid to the spectrum of the flux atthe interface between the particle and continuum methods, specificallyfor the non-hydrodynamic (kinetic) time scales.
Hydrodynamics from Landau initial conditions
Energy Technology Data Exchange (ETDEWEB)
Sen, Abhisek [University of Tennessee, Knoxville (UTK); Gerhard, Jochen [Frankfurt Institute for Advanced Studies (FIAS), Germany; Torrieri, Giorgio [Universidade Estadual de Campinas, Instituto de Física " Gleb Wataghin" (IFGW), Sao Paulo, Brazil; Read jr, Kenneth F. [University of Tennessee (UTK) and Oak Ridge National Laboratory (ORNL); Wong, Cheuk-Yin [ORNL
2015-01-01
We investigate ideal hydrodynamic evolution, with Landau initial conditions, both in a semi-analytical 1+1D approach and in a numerical code incorporating event-by-event variation with many events and transverse density inhomogeneities. The object of the calculation is to test how fast would a Landau initial condition transition to a commonly used boost-invariant expansion. We show that the transition to boost-invariant flow occurs too late for realistic setups, with corrections of O (20 - 30%) expected at freezeout for most scenarios. Moreover, the deviation from boost-invariance is correlated with both transverse flow and elliptic flow, with the more highly transversely flowing regions also showing the most violation of boost invariance. Therefore, if longitudinal flow is not fully developed at the early stages of heavy ion collisions, 2+1 dimensional hydrodynamics is inadequate to extract transport coefficients of the quark-gluon plasma. Based on [1, 2
Non-boost-invariant dissipative hydrodynamics
Florkowski, Wojciech; Strickland, Michael; Tinti, Leonardo
2016-01-01
The one-dimensional non-boost-invariant evolution of the quark-gluon plasma, presumably produced during the early stages of heavy-ion collisions, is analyzed within the frameworks of viscous and anisotropic hydrodynamics. We neglect transverse dynamics and assume homogeneous conditions in the transverse plane but, differently from Bjorken expansion, we relax longitudinal boost invariance in order to study the rapidity dependence of various hydrodynamical observables. We compare the results obtained using several formulations of second-order viscous hydrodynamics with a recent approach to anisotropic hydrodynamics, which treats the large initial pressure anisotropy in a non-perturbative fashion. The results obtained with second-order viscous hydrodynamics depend on the particular choice of the second-order terms included, which suggests that the latter should be included in the most complete way. The results of anisotropic hydrodynamics and viscous hydrodynamics agree for the central hot part of the system, ho...
Hydrodynamics of catheter biofilm formation
Sotolongo-Costa, Oscar; Rodriguez-Perez, Daniel; Martinez-Escobar, Sergio; Fernandez-Barbero, Antonio
2009-01-01
A hydrodynamic model is proposed to describe one of the most critical problems in intensive medical care units: the formation of biofilms inside central venous catheters. The incorporation of approximate solutions for the flow-limited diffusion equation leads to the conclusion that biofilms grow on the internal catheter wall due to the counter-stream diffusion of blood through a very thin layer close to the wall. This biological deposition is the first necessary step for the subsequent bacteria colonization.
Soliton propagation in relativistic hydrodynamics
Fogaça, D A; 10.1016/j.nuclphysa.2007.03.104
2013-01-01
We study the conditions for the formation and propagation of Korteweg-de Vries (KdV) solitons in nuclear matter. In a previous work we have derived a KdV equation from Euler and continuity equations in non-relativistic hydrodynamics. In the present contribution we extend our formalism to relativistic fluids. We present results for a given equation of state, which is based on quantum hadrodynamics (QHD).
Hydrodynamic Evolution of GRB Afterglow
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
We investigate the dynamics of a relativistic fireball which decelerates as it sweeps up ambient matter. Not only the radiative and adiabatic cases, but also the realistic intermediate cases are calculated. We perform numerical calcula-tion for various ambient media and sizes of beaming expansion, and find that the deceleration radius R0 may play an important role for the hydrodynamic evolution of GRB afterglow.
Recent progress in anisotropic hydrodynamics
Directory of Open Access Journals (Sweden)
Strickland Michael
2017-01-01
Full Text Available The quark-gluon plasma created in a relativistic heavy-ion collisions possesses a sizable pressure anisotropy in the local rest frame at very early times after the initial nuclear impact and this anisotropy only slowly relaxes as the system evolves. In a kinetic theory picture, this translates into the existence of sizable momentum-space anisotropies in the underlying partonic distribution functions, 〈 pL2〉 ≪ 〈 pT2〉. In such cases, it is better to reorganize the hydrodynamical expansion by taking into account momentum-space anisotropies at leading-order in the expansion instead of as a perturbative correction to an isotropic distribution. The resulting anisotropic hydrodynamics framework has been shown to more accurately describe the dynamics of rapidly expanding systems such as the quark-gluon plasma. In this proceedings contribution, I review the basic ideas of anisotropic hydrodynamics, recent progress, and present a few preliminary phenomenological predictions for identified particle spectra and elliptic flow.
2015-01-01
A surface modification of stainless steel bearing sleeves is developed to improve the tribology characteristics at high temperature. Solid lubricant nano- and microparticles are applied for this purpose. To create the quasi-hydrodynamic lubrication regimes, the solid lubricant powder layer is made by developed pressure impregnation technique. Porous sliding bearing sleeve prototypes were made by powder metallurgy technique. The purpose of the paper is to define the friction and wear character...
Touchdown Ball-Bearing System for Magnetic Bearings
Kingsbury, Edward P.; Price, Robert; Gelotte, Erik; Singer, Herbert B.
2003-01-01
The torque-limited touchdown bearing system (TLTBS) is a backup mechanical-bearing system for a high-speed rotary machine in which the rotor shaft is supported by magnetic bearings in steady-state normal operation. The TLTBS provides ball-bearing support to augment or supplant the magnetic bearings during startup, shutdown, or failure of the magnetic bearings. The TLTBS also provides support in the presence of conditions (in particular, rotational acceleration) that make it difficult or impossible to control the magnetic bearings or in which the magnetic bearings are not strong enough (e.g., when the side load against the rotor exceeds the available lateral magnetic force).
Liu, Yifan; Shen, Yusheng; Duan, Lian; Yobas, Levent
2016-10-01
Two-dimensional hydrodynamic flow focusing is demonstrated through a microfluidic device featuring a monolithic integrated glass micronozzle inside a flow-focusing geometry. Such a coaxial configuration allows simple one-step focusing of a sample fluid stream, jetted from the micronozzle tip, in both in-plane and out-of-plane directions. The width of the focused filament can be precisely controlled and further scaled down to the submicrometer regime to facilitate rapid hydrodynamic mixing. Fluorescence quenching experiments reveal ultra-fast microsecond mixing of the denaturant into the focused filament. This device offers new possibilities to a set of applications such as the study of protein folding kinetics.
Load-Induced Hydrodynamic Lubrication of Porous Films.
Khosla, Tushar; Cremaldi, Joseph; Erickson, Jeffrey S; Pesika, Noshir S
2015-08-19
We present an exploratory study of the tribological properties and mechanisms of porous polymer surfaces under applied loads in aqueous media. We show how it is possible to change the lubrication regime from boundary lubrication to hydrodynamic lubrication even at relatively low shearing velocities by the addition of vertical pores to a compliant polymer. It is hypothesized that the compressed, pressurized liquid in the pores produces a repulsive hydrodynamic force as it extrudes from the pores. The presence of the fluid between two shearing surfaces results in low coefficients of friction (μ ≈ 0.31). The coefficient of friction is reduced further by using a boundary lubricant. The tribological properties are studied for a range of applied loads and shear velocities to demonstrate the potential applications of such materials in total joint replacement devices.
Dynamics Models of Interacting Torques of Hydrodynamic Retarder Braking Process
Directory of Open Access Journals (Sweden)
Wenhao Shen
2013-01-01
Full Text Available Hydrodynamic retarder is a kind of assist braking device, which can transfer the vehicle kinetic energy into the heat energy of working medium. There are complicated three-dimensional viscous incompressible turbulent flows in hydrodynamic retarder, so that it is difficult to represent the parameters changing phenomenon and investigate the interactional law. In order to develop a kind of reliable theoretical model for internal flow field, in this study, the dynamics models of interacting torques between impellers and working fluid were constructed based on braking energy transfer principle by using Euler theory to describe the flow state in view of time scale. The model can truly represent the dynamic braking process.
3D hydrodynamic focusing microfluidics for emerging sensing technologies.
Daniele, Michael A; Boyd, Darryl A; Mott, David R; Ligler, Frances S
2015-05-15
While the physics behind laminar flows has been studied for 200 years, understanding of how to use parallel flows to augment the capabilities of microfluidic systems has been a subject of study primarily over the last decade. The use of one flow to focus another within a microfluidic channel has graduated from a two-dimensional to a three-dimensional process and the design principles are only now becoming established. This review explores the underlying principles for hydrodynamic focusing in three dimensions (3D) using miscible fluids and the application of these principles for creation of biosensors, separation of cells and particles for sample manipulation, and fabrication of materials that could be used for biosensors. Where sufficient information is available, the practicality of devices implementing fluid flows directed in 3D is evaluated and the advantages and limitations of 3D hydrodynamic focusing for the particular application are highlighted.
Wardle, F
2015-01-01
Ultra-precision bearings can achieve extreme accuracy of rotation, making them ideal for use in numerous applications across a variety of fields, including hard disk drives, roundness measuring machines and optical scanners. Ultraprecision Bearings provides a detailed review of the different types of bearing and their properties, as well as an analysis of the factors that influence motion error, stiffness and damping. Following an introduction to basic principles of motion error, each chapter of the book is then devoted to the basic principles and properties of a specific type of bearin
Hydrodynamic analysis of oscillating water column wave energy devices
DEFF Research Database (Denmark)
Bingham, Harry B.; Ducasse, Damien; Nielsen, Kim
2015-01-01
in the experiments and compared to calculations. The model is considered in both fixed and freely floating, slack-moored conditions. Comparisons are also made to experimental measurements on a single fixed chamber. The capture width ratio in each case is predicted based on the pressures in the chambers. Good...
Magnetic design for the PediaFlow ventricular assist device.
Noh, Myounggyu D; Antaki, James F; Ricci, Michael; Gardiner, Jeff; Paden, Dave; Wu, Jingchun; Prem, Ed; Borovetz, Harvey; Paden, Bradley E
2008-02-01
This article describes a design process for a new pediatric ventricular assist device, the PediaFlow. The pump is embodied in a magnetically levitated turbodynamic design that was developed explicitly based on the requirements for chronic support of infants and small children. The procedure entailed the consideration of multiple pump topologies, from which an axial mixed-flow configuration was chosen for further development. The magnetic design includes permanent-magnet (PM) passive bearings for radial support of the rotor, an actively controlled thrust actuator for axial support, and a brushless direct current (DC) motor for rotation. These components are closely coupled both geometrically and magnetically, and were therefore optimized in parallel, using electromagnetic, rotordynamic models and fluid models, and in consideration of hydrodynamic requirements. Multiple design objectives were considered, including efficiency, size, and margin between critical speeds to operating speed. The former depends upon the radial and yaw stiffnesses of the PM bearings. Analytical expressions for the stiffnesses were derived and verified through finite element analysis (FEA). A toroidally wound motor was designed for high efficiency and minimal additional negative radial stiffness. The design process relies heavily on optimization at the component level and system level. The results of this preliminary design optimization yielded a pump design with an overall stability margin of 15%, based on a pressure rise of 100 mm Hg at 0.5 lpm running at 16,000 rpm.
Entropy-limited hydrodynamics: a novel approach to relativistic hydrodynamics
Guercilena, Federico; Radice, David; Rezzolla, Luciano
2017-07-01
We present entropy-limited hydrodynamics (ELH): a new approach for the computation of numerical fluxes arising in the discretization of hyperbolic equations in conservation form. ELH is based on the hybridisation of an unfiltered high-order scheme with the first-order Lax-Friedrichs method. The activation of the low-order part of the scheme is driven by a measure of the locally generated entropy inspired by the artificial-viscosity method proposed by Guermond et al. (J. Comput. Phys. 230(11):4248-4267, 2011, doi: 10.1016/j.jcp.2010.11.043). Here, we present ELH in the context of high-order finite-differencing methods and of the equations of general-relativistic hydrodynamics. We study the performance of ELH in a series of classical astrophysical tests in general relativity involving isolated, rotating and nonrotating neutron stars, and including a case of gravitational collapse to black hole. We present a detailed comparison of ELH with the fifth-order monotonicity preserving method MP5 (Suresh and Huynh in J. Comput. Phys. 136(1):83-99, 1997, doi: 10.1006/jcph.1997.5745), one of the most common high-order schemes currently employed in numerical-relativity simulations. We find that ELH achieves comparable and, in many of the cases studied here, better accuracy than more traditional methods at a fraction of the computational cost (up to {˜}50% speedup). Given its accuracy and its simplicity of implementation, ELH is a promising framework for the development of new special- and general-relativistic hydrodynamics codes well adapted for massively parallel supercomputers.
CHF Enhancement by Surface Patterning based on Hydrodynamic Instability Model
Energy Technology Data Exchange (ETDEWEB)
Seo, Han; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of)
2015-05-15
If the power density of a device exceeds the CHF point, bubbles and vapor films will be covered on the whole heater surface. Because vapor films have much lower heat transfer capabilities compared to the liquid layer, the temperature of the heater surface will increase rapidly, and the device could be damaged due to the heater burnout. Therefore, the prediction and the enhancement of the CHF are essential to maximizing the efficient heat removal region. Numerous studies have been conducted to describe the CHF phenomenon, such as hydrodynamic instability theory, macrolayer dryout theory, hot/dry spot theory, and bubble interaction theory. The hydrodynamic instability model, proposed by Zuber, is the predominant CHF model that Helmholtz instability attributed to the CHF. Zuber assumed that the Rayleigh-Taylor (RT) instability wavelength is related to the Helmholtz wavelength. Lienhard and Dhir proposed a CHF model that Helmholtz instability wavelength is equal to the most dangerous RT wavelength. In addition, they showed the heater size effect using various heater surfaces. Lu et al. proposed a modified hydrodynamic theory that the Helmholtz instability was assumed to be the heater size and the area of the vapor column was used as a fitting factor. The modified hydrodynamic theories were based on the change of Helmholtz wavelength related to the RT instability wavelength. In the present study, the change of the RT instability wavelength, based on the heater surface modification, was conducted to show the CHF enhancement based on the heater surface patterning in a plate pool boiling. Sapphire glass was used as a base heater substrate, and the Pt film was used as a heating source. The patterning surface was based on the change of RT instability wavelength. In the present work the study of the CHF was conducted using bare Pt and patterned heating surfaces.
Numerical Solution of Hydrodynamics Lubrications with Non-Newtonian Fluid Flow
Osman, Kahar; Sheriff, Jamaluddin Md; Bahak, Mohd. Zubil; Bahari, Adli; Asral
2010-06-01
This paper focuses on solution of numerical model for fluid film lubrication problem related to hydrodynamics with non-Newtonian fluid. A programming code is developed to investigate the effect of bearing design parameter such as pressure. A physical problem is modeled by a contact point of sphere on a disc with certain assumption. A finite difference method with staggered grid is used to improve the accuracy. The results show that the fluid characteristics as defined by power law fluid have led to a difference in the fluid pressure profile. Therefore a lubricant with special viscosity can reduced the pressure near the contact area of bearing.
High Performance Magnetic Bearings for Aero Applications
Allaire, P. E.; Knospe, C. R.; Williams, R. D.; Lewis, D. W.; Barrett, L. E.; Maslen, E. H.; Humphris, R. R.
1997-01-01
Several previous annual reports were written and numerous papers published on the topics for this grant. That work is not repeated here in this final report. Only the work completed in the final year of the grant is presented in this final report. This final year effort concentrated on power loss measurements in magnetic bearing rotors. The effect of rotor power losses in magnetic bearings are very important for many applications. In some cases, these losses must be minimized to maximize the length of time the rotating machine can operate on a fixed energy or power supply. Examples include aircraft gas turbine engines, space devices, or energy storage flywheels. In other applications, the heating caused by the magnetic bearing must be removed. Excessive heating can be a significant problem in machines as diverse as large compressors, electric motors, textile spindles, and artificial heart pumps.
流体动力润滑的紊流理论模式%Turbulence Models of Hydrodynamic Lubrication
Institute of Scientific and Technical Information of China (English)
张直明; 王小静; 孙美丽
2003-01-01
The main theoretical turbulence models for application to hydrodynamic lubrication problems were briefly reviewed, and thecourse of their development and their fundamentals were explained. Predictions by these models on flow fields in turbulent Couetteflows and shear-induced countercurrent flows were compared to existing measurements, and Zhang & Zhang' s combined κ-ε modelwas shown to have surpassingly satisfactory results. The method of application of this combined κ-ε model to high speed journal bear-ings and annular seals was summarized, and the predicted results were shown to be satisfactory by comparisons with existing experi-ments of journal bearings and annular seals.
Weinberg, Brian (Inventor); Mavroidis, Constantinos (Inventor); Vranish, John M. (Inventor)
2011-01-01
A gear bearing drive provides a compact mechanism that operates as an actuator providing torque and as a joint providing support. The drive includes a gear arrangement integrating an external rotor DC motor within a sun gear. Locking surfaces maintain the components of the drive in alignment and provide support for axial loads and moments. The gear bearing drive has a variety of applications, including as a joint in robotic arms and prosthetic limbs.
Harris, Tedric A
2001-01-01
One of the most well-known experts in the field brings cutting-edge research to practitioners in the new edition of this important reference. Covers the improved mathematical calculations for rolling bearing endurance developed by the American Society of Mechanical Engineers and the Society of Lubrication and Tribology Engineers. Updated with new material on Condition-Based Maintenance, new testing methods, and new bearing materials.
Institute of Scientific and Technical Information of China (English)
钱佳楠
2005-01-01
@@ As Valentine's Day came closer,every shop was full of colourful gifts such as cookies in the shape of heart, chocolates,Teddy Bears and so on.When I step into a shop on February 14th,I felt most lonely as I was alone.With mv eves fixed on a lovely Teddy Bear, I wished that someone could send me this stuffed toy.
Numerical analysis of bump foil bearings without nominal radial clearance
Institute of Scientific and Technical Information of China (English)
LIU Zhan-sheng; XU Huai-jin; ZHANG Guang-hui
2008-01-01
Bump foil bearings without nominal radial clearance were analyzed. An air film thickness model and a bearing theoretical analytical model were developed accounting for air compressibility and foil deformation. To analyze hydrodynamic characteristics of bump foil beatings with different operating eccentricities, the air film thickness equation and Reynolds equation were coupled through pressure and solved by Newton-Raphson Method(NRM) and Finite Difference Method (FDM). The characteristics of an bump foil bearing model were dis-cussed including load carrying capacity, film thickness and pressure distributions. The results of simulation show that bump foil beating without nominal radial clearance can provide better stability and greater load capaci-ty. This numerical analytical method also reveals a good convergence in numerical calculation.
A numerical approach for the analysis of deformable journal bearings
Directory of Open Access Journals (Sweden)
D. Benasciutti
2012-07-01
Full Text Available This paper presents a numerical approach for the analysis of hydrodynamic radial journal bearings. The effect of shaft and housing elastic deformation on pressure distribution within oil film is investigated. An iterative algorithm that couples Reynolds equation with a plane finite elements structural model is solved. Temperature and pressure effects on viscosity are also included with the Vogel-Barus model. The deformed lubrication gap and the overall stress state were calculated. Numerical results are presented with reference to a typical journal bearing configuration at two different inlet oil temperatures. Obtained results show the great influence of elastic deformation of bearing components on oil pressure distribution, compared with results for ideally rigid components obtained by Raimondi and Boyd solution.
How to react to shallow water hydrodynamics: The larger benthic foraminifera solution
Briguglio, Antonino; Hohenegger, Johann
2011-01-01
Symbiont-bearing larger benthic foraminifera inhabit the photic zone to provide their endosymbiotic algae with light. Because of the hydrodynamic conditions of shallow water environments, tests of larger foraminifera can be entrained and transported by water motion. To resist water motion, these foraminifera have to build a test able to avoid transport or have to develop special mechanisms to attach themselves to substrate or to hide their test below sediment grains. For those species which r...
Annual Report: Hydrodynamics and Radiative Hydrodynamics with Astrophysical Applications
Energy Technology Data Exchange (ETDEWEB)
R. Paul Drake
2005-12-01
We report the ongoing work of our group in hydrodynamics and radiative hydrodynamics with astrophysical applications. During the period of the existing grant, we have carried out two types of experiments at the Omega laser. One set of experiments has studied radiatively collapsing shocks, obtaining high-quality scaling data using a backlit pinhole and obtaining the first (ever, anywhere) Thomson-scattering data from a radiative shock. Other experiments have studied the deeply nonlinear development of the Rayleigh-Taylor (RT) instability from complex initial conditions, obtaining the first (ever, anywhere) dual-axis radiographic data using backlit pinholes and ungated detectors. All these experiments have applications to astrophysics, discussed in the corresponding papers either in print or in preparation. We also have obtained preliminary radiographs of experimental targets using our x-ray source. The targets for the experiments have been assembled at Michigan, where we also prepare many of the simple components. The above activities, in addition to a variety of data analysis and design projects, provide good experience for graduate and undergraduates students. In the process of doing this research we have built a research group that uses such work to train junior scientists.
Galaxy clusters as hydrodynamics laboratories
Roediger, Elke; Sheardown, Alexander; Fish, Thomas; ZuHone, John; Hunt, Matthew; Su, Yuanyuan; Kraft, Ralph P.; Nulsen, Paul; Forman, William R.; Churazov, Eugene; Randall, Scott W.; Jones, Christine; Machacek, Marie E.
2017-08-01
The intra-cluster medium (ICM) of galaxy clusters shows a wealth of hydrodynamical features that trace the growth of clusters via the infall of galaxies or smaller subclusters. Such hydrodynamical features include the wakes of the infalling objects as well as the interfaces between the host cluster’s ICM and the atmosphere of the infalling object. Furthermore, the cluster dynamics can be traced by merger shocks, bow shocks, and sloshing motions of the ICM.The characteristics of these dynamical features, e.g., the direction, length, brightness, and temperature of the galaxies' or subclusters' gas tails varies significantly between different objects. This could be due to either dynamical conditions or ICM transport coefficients such as viscosity and thermal conductivity. For example, the cool long gas tails of of some infalling galaxies and groups have been attributed to a substantial ICM viscosity suppressing mixing of the stripped galaxy or group gas with the hotter ambient ICM.Using hydrodynamical simulations of minor mergers we show, however, that these features can be explained naturally by the dynamical conditions of each particular galaxy or group infall. Specifically, we identify observable features to distinguish the first and second infall of a galaxy or group into its host cluster as well as characteristics during apocentre passage. Comparing our simulations with observations, we can explain several puzzling observations such as the long and cold tail of M86 in Virgo and the very long and tangentially oriented tail of the group LEDA 87445 in Hydra A.Using our simulations, we also assess the validity of the stagnation pressure method that is widely used to determine an infalling galaxy's velocity. We show that near pericentre passage the method gives reasonable results, but near apocentre it is not easily applicable.
Linear and Non-Linear Control Techniques Applied to Actively Lubricated Journal Bearings
DEFF Research Database (Denmark)
Nicoletti, Rodrigo; Santos, Ilmar
2003-01-01
The main objectives of actively lubricated bearings are the simultaneous reduction of wear and vibration between rotating and stationary machinery parts. For reducing wear and dissipating vibration energy until certain limits, one can count with the conventional hydrodynamic lubrication. For furt...
Multi Body Analysis Of A Turbocharger Supported By A Fully Floating Ring Bearing
Directory of Open Access Journals (Sweden)
Knotek Jiří
2015-06-01
Full Text Available This paper describes an advanced tool for turbocharger rotor dynamics analysis and its development. The hydrodynamic model of the journal bearing based on Reynolds equation is presented. The paper also describes assembly of the turbocharger rotor model. At the end the basic results are presented and analyzed.
Optimal design of Tilting-Pad Thrust Bearings with High Pressure Injection Pockets
DEFF Research Database (Denmark)
Heinrichson, Niels; Santos, Ilmar
2006-01-01
A thermo-elasto-hydrodynamic(TEHD) model based on the Reynolds equation has been used to study the effect of oil injection pockets on the performance of tilting pad thrust bearings. The optimal position of the pivot both with respect to load carrying capacity and minimal power consumption is seen...
Optimal design of Tilting-Pad Thrust Bearings with High Pressure Injection Pockets
DEFF Research Database (Denmark)
Heinrichson, Niels; Santos, Ilmar
2006-01-01
A thermo-elasto-hydrodynamic(TEHD) model based on the Reynolds equation has been used to study the effect of oil injection pockets on the performance of tilting pad thrust bearings. The optimal position of the pivot both with respect to load carrying capacity and minimal power consumption is seen...
Hydrodynamic characteristics of UASB bioreactors.
John, Siby; Tare, Vinod
2011-10-01
The hydrodynamic characteristics of UASB bioreactors operated under different organic loading and hydraulic loading rates were studied, using three laboratory scale models treating concocted sucrose wastewater. Residence time distribution (RTD) analysis using dispersion model and tanks-in-series model was directed towards the characterization of the fluid flow pattern in the reactors and correlation of the hydraulic regime with the biomass content and biogas production. Empty bed reactors followed a plug flow pattern and the flow pattern changed to a large dispersion mixing with biomass and gas production. Effect of increase in gas production on the overall hydraulics was insignificant.
Disruptive Innovation in Numerical Hydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Waltz, Jacob I. [Los Alamos National Laboratory
2012-09-06
We propose the research and development of a high-fidelity hydrodynamic algorithm for tetrahedral meshes that will lead to a disruptive innovation in the numerical modeling of Laboratory problems. Our proposed innovation has the potential to reduce turnaround time by orders of magnitude relative to Advanced Simulation and Computing (ASC) codes; reduce simulation setup costs by millions of dollars per year; and effectively leverage Graphics Processing Unit (GPU) and future Exascale computing hardware. If successful, this work will lead to a dramatic leap forward in the Laboratory's quest for a predictive simulation capability.
Highly-anisotropic hydrodynamics for central collisions
Ryblewski, Radoslaw
2016-01-01
The framework of leading-order anisotropic hydrodynamics is supplemented with realistic equation of state and self-consistent freeze-out prescription. The model is applied to central proton-nucleus collisions. The results are compared to those obtained within standard Israel-Stewart second-order viscous hydrodynamics. It is shown that the resulting hadron spectra are highly-sensitive to the hydrodynamic approach that has been used.
Thermal degradation of the performance of elastomeric bearings for seismic isolation
Shirazi, Ali
2010-01-01
Concern about reliability of elastomeric bearings is increasing along with the rapid development in application of such devices. Studies on experimental and in-service bearings have revealed the occurrence of permanent and transient changes in engineering properties of these devices. This property loss, however, varies in quality and magnitude, depending on service or environmental conditions at which bearings are employed. Knowledge about the magnitude of the lost property and the rate of de...
Institute of Scientific and Technical Information of China (English)
史国宁; 陈庆良; 陈彤云; 刘建实
2015-01-01
目的：对我国自主研发气动搏动性心室辅助装置进行体外流体力学检验及活体动物应用实验，检验其是否满足临床心室辅助装置要求。方法通过体外模拟循环实验台，30%甘油水溶液作为循环介质，接入心室辅助装置，测定不同模式下血泵的后负荷和流量，以此检测装置的流体力学效果。对6只实验犬应用心室辅助装置左心辅助模式1 h，之后药物KCl诱颤心脏，5 min后除颤。监测心室辅助装置对实验犬的心率、血压支持效果。结果心室辅助装置流体力学实验后负荷100 mmHg条件下，流量可达到4 L/min以上。实验犬经左室安装辅助装置后，各时间点心率无明显变化。辅助后即刻与辅助前相比收缩压升高约30 mmHg，舒张压升高约19 mmHg。辅助过程中未见明显血压波动。诱颤后可维持收缩压60 mmHg，除颤后撤除装置存活良好。结论该心室辅助装置所产生的流体压力可基本满足临床心室辅助要求，短期应用于实验犬有效、安全、稳定，长期使用效果尚需进一步实验证明。%Objective To study in vitro hydrodynamics of a pneumatic pulsatile ventricular assist device developed ex⁃clusively by China, and establish an animal model for the detection by the device. Methods The hydromechanics experi⁃ment was performed on an in vitro test loop using MEDOS-System to drive the ventricular assist device, and lycerl-water so⁃lution was used as circulating medium. The changes of afterload pressure and the output of the pump were monitored, and the impermeability and stability were also assessed after the experiment. Six adult dogs were used as the experimental animals. The device worked in the left heart assistance mode for 1 hour then the ventricular fibrillation was induced by potassium chloride, and then defibrillated after 5 min while the device remained working. The hemodynamics data were monitored con⁃secutively during
Hydrodynamic design of the humpback whale flipper.
Fish, F E; Battle, J M
1995-07-01
The humpback whale (Megaptera novaeangliae) is reported to use its elongate pectoral flippers during swimming maneuvers. The morphology of the flipper from a 9.02-m whale was evaluated with regard to this hydrodynamic function. The flipper had a wing-like, high aspect ratio planform. Rounded tubercles were regularly interspersed along the flipper's leading edge. The flipper was cut into 71 2.5-cm cross-sections and photographed. Except for sections near the distal tip, flipper sections were symmetrical with no camber. Flipper sections had a blunt, rounded leading edge and a highly tapered trailing edge. Placement of the maximum thickness placement for each cross-section varied from 49% of chord at the tip to 19% at mid-span. Section thickness ratio averaged 0.23 with a range of 0.20-0.28. The humpback whale flipper had a cross-sectional design typical of manufactured aerodynamic foils for lift generation. The morphology and placement of leading edge tubercles suggest that they function as enhanced lift devices to control flow over the flipper and maintain lift at high angles of attack. The morphology of the humpback whale flipper suggests that it is adapted for high maneuverability associated with the whale's unique feeding behavior.
Magnetic Bearing Consumes Low Power
Studer, P. A.
1982-01-01
Energy-efficient linear magnetic bearing maintains a precise small separation between its moving and stationary parts. Originally designed for cryogenic compressors on spacecraft, proposed magnetic bearing offers an alternative to roller or gas bearing in linear motion system. Linear noncontacting bearing operates in environments where lubricants cannot be used.
Zechner, A.; Stock, M.; Kellner, D.; Ziegler, I.; Keuschnigg, P.; Huber, P.; Mayer, U.; Sedlmayer, F.; Deutschmann, H.; Steininger, P.
2016-11-01
Image guidance during highly conformal radiotherapy requires accurate geometric calibration of the moving components of the imager. Due to limited manufacturing accuracy and gravity-induced flex, an x-ray imager’s deviation from the nominal geometrical definition has to be corrected for. For this purpose a ball bearing phantom applicable for nine degrees of freedom (9-DOF) calibration of a novel cone-beam computed tomography (CBCT) scanner was designed and validated. In order to ensure accurate automated marker detection, as many uniformly distributed markers as possible should be used with a minimum projected inter-marker distance of 10 mm. Three different marker distributions on the phantom cylinder surface were simulated. First, a fixed number of markers are selected and their coordinates are randomly generated. Second, the quasi-random method is represented by setting a constraint on the marker distances in the projections. The third approach generates the ball coordinates helically based on the Golden ratio, ϕ. Projection images of the phantom incorporating the CBCT scanner’s geometry were simulated and analysed with respect to uniform distribution and intra-marker distance. Based on the evaluations a phantom prototype was manufactured and validated by a series of flexmap calibration measurements and analyses. The simulation with randomly distributed markers as well as the quasi-random approach showed an insufficient uniformity of the distribution over the detector area. The best compromise between uniform distribution and a high packing fraction of balls is provided by the Golden section approach. A prototype was manufactured accordingly. The phantom was validated for 9-DOF geometric calibrations of the CBCT scanner with independently moveable source and detector arms. A novel flexmap calibration phantom intended for 9-DOF was developed. The ball bearing distribution based on the Golden section was found to be highly advantageous. The phantom showed
Directory of Open Access Journals (Sweden)
P.C. Mishra
2014-06-01
Full Text Available Performance characteristics of a rough elliptic bore journal bearing are studied. The bearing bore of isotropic roughness orientation is characterized by stochastic function and the film geometry is quantified to elliptic shape. There after the Reynolds equation and energy equation are descretized for pressure and temperature respectively. A finite difference model is developed to evaluate hydrodynamic pressure and oil temperature. Solution to this model is done using effective influence Newton-Raphson method. Performance parameters such as load bearing ability, friction, flow-in and side leakages are computed and discussed.
On the stability analysis of flexible rotors supported by Hybrid Aerostatic - Gas Journal Bearings
DEFF Research Database (Denmark)
Morosi, Stefano; Santos, Ilmar
environment and great efficiency. However, the drawback are inherent poor carrying capacity and dynamic characteristics of passive systems, which often translate to a reduced range of stability. In order to enhance these characteristics, one solution is to combine the hydrodynamic effect with the addition...... of external pressurization. The present contribution presents a detailed mathematical modeling for hybrid lubrication of a compressible fluid film journal bearing. Piezo-actuated valves are used in order to inject pressurized air into the bearing gap through orifices located on the bearing walls. A modified...
Some open questions in hydrodynamics
Dyndal, Mateusz
2014-01-01
When speaking of unsolved problems in physics, this is surprising at first glance to discuss the case of fluid mechanics. However, there are many deep open questions that come with the theory of fluid mechanics. In this paper, we discuss some of them that we classify in two categories, the long term behavior of solutions of equations of hydrodynamics and the definition of initial (boundary) conditions. The first set of questions come with the non-relativistic theory based on the Navier-Stokes equations. Starting from smooth initial conditions, the purpose is to understand if solutions of Navier-Stokes equations remain smooth with the time evolution. Existence for just a finite time would imply the evolution of finite time singularities, which would have a major influence on the development of turbulent phenomena. The second set of questions come with the relativistic theory of hydrodynamics. There is an accumulating evidence that this theory may be relevant for the description of the medium created in high en...
Tribology of alternative bearings.
Fisher, John; Jin, Zhongmin; Tipper, Joanne; Stone, Martin; Ingham, Eileen
2006-12-01
The tribological performance and biological activity of the wear debris produced has been compared for highly cross-linked polyethylene, ceramic-on-ceramic, metal-on-metal, and modified metal bearings in a series of in vitro studies from a single laboratory. The functional lifetime demand of young and active patients is 10-fold greater than the estimated functional lifetime of traditional polyethylene. There is considerable interest in using larger diameter heads in these high demand patients. Highly cross-linked polyethylene show a four-fold reduction in functional biological activity. Ceramic-on-ceramic bearings have the lowest wear rates and least reactive wear debris. The functional biological activity is 20-fold lower than with highly cross-linked polyethylene. Hence, ceramic-on-ceramic bearings address the tribological lifetime demand of highly active patients. Metal-on-metal bearings have substantially lower wear rates than highly cross-linked polyethylene and wear decreases with head diameter. Bedding in wear is also lower with reduced radial clearance. Differential hardness ceramic-on-metal bearings and the application of ceramic-like coatings reduce metal wear and ion levels.
Institute of Scientific and Technical Information of China (English)
张丹丹; 王溢; 王春仁; 王召旭
2014-01-01
BACKGROUND:At present, the copper-bearing intrauterine device, a kind of class III medical devices, is commonly used in China. However, there is no clear conclusion about whether it has impact on the embryo or fetus in some cases, such as unexpected pregnancy during long-term implantation and pregnancy in a short time after removing it. OBJECTIVE: To evaluate the safety of copper-bearing intrauterine device by observing the influence of copper-bearing intrauterine device extracts on pregnant rats and rat fetuses by tail vein injection in the sensitive period of teratogenesis. METHODS: A total of 60 fertilized rats were divided into control group, high dosage group, middle dosage group, and low dosage group. The copper-bearing intrauterine device extracts were prepared by the continuous extraction method. Different concentrations (0.2, 0.1, 0.05 g/mL) of copper-bearing intrauterine device extracts were injected by the tail vein at the 1st day of pregnancy in the latter three groups at a dosage of 0.01 mL/g per day. The control group was given the same amount of normal saline. The injection lasted for 20 days. Then, the pregnant rats were sacrificed to measure body mass, check both sides of the uterus and internal organs, isolate fetal rats, as wel as record the quality of uterus and fetal rats, corpus luteum, implantation numbers, the number of stilbirths, then number of live births and the number of fetal absorption. The fetal rats were determined in the folowing aspects: body mass, body height, tail length, the ossification degree and appearance of the occipital bone, bone and visceral anomalies. RESULTS AND CONCLUSION: The number of births, implantation numbers, the number of live births, the number of corpus luteum, the percentages of live births and stilbirths, the number of resorbed fetuses, and the weight of uterus and fetal rats in the control group showed no difference from those in the other three groups (P > 0.05). No malformation in the internal organs
DEFF Research Database (Denmark)
Heinrichson, Niels; Santos, Ilmar; Fuerst, Axel
2006-01-01
This is Part I of a two-part series of papers describing the effects of high pressure injection pockets on the operating conditions of tilting-pad thrust bearings. A numerical model based on the Reynolds equation is developed extending the three dimensional thermo-elasto-hydrodynamic (TEHD......) analysis of tilting-pad thrust bearings to include the effects of high pressure injection and recesses in the bearing pad. The model is applied to the analysis of an existing bearing of large dimensions and the influence of the pocket is analyzed. It is shown that a shallow pocket positively influences...
Physics of semiconductor devices
Rudan, Massimo
2015-01-01
This book describes the basic physics of semiconductors, including the hierarchy of transport models, and connects the theory with the functioning of actual semiconductor devices. Details are worked out carefully and derived from the basic physics, while keeping the internal coherence of the concepts and explaining various levels of approximation. Examples are based on silicon due to its industrial importance. Several chapters are included that provide the reader with the quantum-mechanical concepts necessary for understanding the transport properties of crystals. The behavior of crystals incorporating a position-dependent impurity distribution is described, and the different hierarchical transport models for semiconductor devices are derived (from the Boltzmann transport equation to the hydrodynamic and drift-diffusion models). The transport models are then applied to a detailed description of the main semiconductor-device architectures (bipolar, MOS). The final chapters are devoted to the description of s...
Radial Halbach Magnetic Bearings
Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.
2009-01-01
Radial Halbach magnetic bearings have been investigated as part of an effort to develop increasingly reliable noncontact bearings for future high-speed rotary machines that may be used in such applications as aircraft, industrial, and land-vehicle power systems and in some medical and scientific instrumentation systems. Radial Halbach magnetic bearings are based on the same principle as that of axial Halbach magnetic bearings, differing in geometry as the names of these two types of bearings suggest. Both radial and axial Halbach magnetic bearings are passive in the sense that unlike most other magnetic bearings that have been developed in recent years, they effect stable magnetic levitation without need for complex active control. Axial Halbach magnetic bearings were described in Axial Halbach Magnetic Bearings (LEW-18066-1), NASA Tech Briefs, Vol. 32, No. 7 (July 2008), page 85. In the remainder of this article, the description of the principle of operation from the cited prior article is recapitulated and updated to incorporate the present radial geometry. In simplest terms, the basic principle of levitation in an axial or radial Halbach magnetic bearing is that of the repulsive electromagnetic force between (1) a moving permanent magnet and (2) an electric current induced in a stationary electrical conductor by the motion of the magnetic field. An axial or radial Halbach bearing includes multiple permanent magnets arranged in a Halbach array ("Halbach array" is defined below) in a rotor and multiple conductors in the form of wire coils in a stator, all arranged so the rotary motion produces an axial or radial repulsion that is sufficient to levitate the rotor. A basic Halbach array (see Figure 1) consists of a row of permanent magnets, each oriented so that its magnetic field is at a right angle to that of the adjacent magnet, and the right-angle turns are sequenced so as to maximize the magnitude of the magnetic flux density on one side of the row while
Vranish, John M. (Inventor)
2010-01-01
A partial gear bearing including an upper half, comprising peak partial teeth, and a lower, or bottom, half, comprising valley partial teeth. The upper half also has an integrated roller section between each of the peak partial teeth with a radius equal to the gear pitch radius of the radially outwardly extending peak partial teeth. Conversely, the lower half has an integrated roller section between each of the valley half teeth with a radius also equal to the gear pitch radius of the peak partial teeth. The valley partial teeth extend radially inwardly from its roller section. The peak and valley partial teeth are exactly out of phase with each other, as are the roller sections of the upper and lower halves. Essentially, the end roller bearing of the typical gear bearing has been integrated into the normal gear tooth pattern.
Hydrodynamic Interactions between Two Equally Sized Spheres in Viscoelastic Fluids in Shear Flow
Snijkers, F.; Pasquino, R.; Vermant, J.
2013-01-01
The effect of using a viscoelastic suspending medium, on the;in-plane hydrodynamic interaction between two equally sized spheres in shear flow is studied experimentally to understand flow-induced assembly behavior (i.e., string formation). A counterrotating device equipped with a Couette geometry is
A chip sustem for size separation of macromolecules and particles by hydrodynamic chromatography
Chmela, Emil; Tijssen, Robert; Blom, M.T.; Gardeniers, Johannes G.E.; van den Berg, Albert
2002-01-01
For the first time, a miniaturized hydrodynamic chromatography chip system has been developed and tested on separation of fluorescent nanospheres and macromolecules. The device can be applied to size characterization of synthetic polymers, biopolymers, and particles, as an attractive alternative to
Institute of Scientific and Technical Information of China (English)
林战峰; 乐伟国
2007-01-01
@@ 一、故事内容 A little bear has a magic stick.It can make his wishes come true. One day,the little bear is walking in the forest.He sees a bird.It is flying in the sky.It has two beautiful wings."I want two beautiful wings.I wish I can fly like a bird,"he says to the magic stick.Two beautiful wings come out from his back and he can fly like a bird now.He is very happy.
Vranish, John M. (Inventor)
2009-01-01
A gearing system using modular gear bearing components. Each component is composed of a core, one or more modules attached to the core and two or more fastening modules rigidly attaching the modules to the core. The modules, which are attached to the core, may consist of gears, rollers or gear bearing components. The core orientation affects the orientation of the modules attached to the core. This is achieved via the keying arrangement of the core and the component modules that attach to the core. Such an arrangement will also facilitate the phase tuning of gear modules with respect to the core and other gear modules attached to the core.
Relativistic Hydrodynamics for Heavy-Ion Collisions
Ollitrault, Jean-Yves
2008-01-01
Relativistic hydrodynamics is essential to our current understanding of nucleus-nucleus collisions at ultrarelativistic energies (current experiments at the Relativistic Heavy Ion Collider, forthcoming experiments at the CERN Large Hadron Collider). This is an introduction to relativistic hydrodynamics for graduate students. It includes a detailed…
Hydrodynamic models of a Cepheid atmosphere
Karp, A. H.
1975-01-01
Instead of computing a large number of coarsely zoned hydrodynamic models covering the entire atmospheric instability strip, the author computed a single model as well as computer limitations allow. The implicit hydrodynamic code of Kutter and Sparks was modified to include radiative transfer effects in optically thin zones.
Hydrodynamic correlation functions in nematic liquid crystals
Lekkerkerker, H.N.W.; Carle, D.; Laidlaw, W.G.
1976-01-01
The result, recently discovered by Forster, that the strength factors of the nonpropagating modes in certain hydrodynamic correlation functions in nematic liquid crystals are not fully determined by the hydrodynamic matrix is reconsidered. Using time reversal and space inversion symmetry one finds t
Hydrodynamic Overview at Hot Quarks 2016
Noronha-Hostler, Jacquelyn
2016-01-01
This presents an overview of relativistic hydrodynamic modeling in heavy-ion collisions prepared for Hot Quarks 2016, at South Padre Island, TX, USA. The influence of the initial state and viscosity on various experimental observables are discussed. Specific problems that arise in the hydrodynamical modeling at the Beam Energy Scan are briefly discussed.
Measurement of the hydrodynamic resistance of microdroplets.
Jakiela, Slawomir
2016-10-07
Here, we demonstrate a novel method of measurement which determines precisely the hydrodynamic resistance of a droplet flowing through a channel. The obtained results show that the hydrodynamic resistance of a droplet in a microchannel achieves its maximum for lengths of the droplet ranging from 3w to 4w and that interactions between beads in a train exist.
Hydrodynamic correlation functions in nematic liquid crystals
Lekkerkerker, H.N.W.; Carle, D.; Laidlaw, W.G.
1976-01-01
The result, recently discovered by Forster, that the strength factors of the nonpropagating modes in certain hydrodynamic correlation functions in nematic liquid crystals are not fully determined by the hydrodynamic matrix is reconsidered. Using time reversal and space inversion symmetry one finds t
Institute of Scientific and Technical Information of China (English)
马宏忠; 郭晓宁; 陈远俊
2011-01-01
由于水轮发电机轴向重力负荷电磁悬浮承重系统的励磁线圈密封在装置内部,无法与外界空气对流,从而会出现温升过高.为解决此问题,提出了分别在该系统电磁铁的上铁心和衔铁(推力盘)上设置一定数量的通风孔,以便使线圈表面形成对流散热.针对通风孔设计,选用适合此模型结构的对流散热数值模型,推导出对流散热系数的数值,并利用有限元分析软件Ansys进行了温度和磁场仿真分析.结果显示,在满足水轮机组承重要求的前提下,合理设计通风孔可以使电磁悬浮装置线圈温度大大降低,满足系统应用要求.%Since the excitation coils of electromagnetic-levitation bearing system for the axial load of hydraulic turbine-generator are sealed inside of the system, the heat inside is difficult to be dissipated, and then over-high temperature rise would occur therein.For solving this problem, it is put forward that a few vents are respectively arranged on both the electromagnet core and the armature ( thrust disc) of the system, so as to create a convection heat dissipation on the surface of coils.So far as the design of the vent is concerned, suitable numerical models are selected for this model along with the deduction of the coefficient of convection heat dissipation, and then the simulation analysis on the temperature and the magnetic field is made with the softwareAnsys.The results show that under the premise to satisfy the bearing requirement of hydraulic turbine-generator unit, the temperature of the coils can be greatly lowered with the reasonably designed vents, therefore, the application requirement of the system can be met as well.
Cholla: 3D GPU-based hydrodynamics code for astrophysical simulation
Schneider, Evan E.; Robertson, Brant E.
2016-07-01
Cholla (Computational Hydrodynamics On ParaLLel Architectures) models the Euler equations on a static mesh and evolves the fluid properties of thousands of cells simultaneously using GPUs. It can update over ten million cells per GPU-second while using an exact Riemann solver and PPM reconstruction, allowing computation of astrophysical simulations with physically interesting grid resolutions (>256^3) on a single device; calculations can be extended onto multiple devices with nearly ideal scaling beyond 64 GPUs.
Biomimetic shark skin: design, fabrication and hydrodynamic function.
Wen, Li; Weaver, James C; Lauder, George V
2014-05-15
Although the functional properties of shark skin have been of considerable interest to both biologists and engineers because of the complex hydrodynamic effects of surface roughness, no study to date has successfully fabricated a flexible biomimetic shark skin that allows detailed study of hydrodynamic function. We present the first study of the design, fabrication and hydrodynamic testing of a synthetic, flexible, shark skin membrane. A three-dimensional (3D) model of shark skin denticles was constructed using micro-CT imaging of the skin of the shortfin mako (Isurus oxyrinchus). Using 3D printing, thousands of rigid synthetic shark denticles were placed on flexible membranes in a controlled, linear-arrayed pattern. This flexible 3D printed shark skin model was then tested in water using a robotic flapping device that allowed us to either hold the models in a stationary position or move them dynamically at their self-propelled swimming speed. Compared with a smooth control model without denticles, the 3D printed shark skin showed increased swimming speed with reduced energy consumption under certain motion programs. For example, at a heave frequency of 1.5 Hz and an amplitude of ± 1 cm, swimming speed increased by 6.6% and the energy cost-of-transport was reduced by 5.9%. In addition, a leading-edge vortex with greater vorticity than the smooth control was generated by the 3D printed shark skin, which may explain the increased swimming speeds. The ability to fabricate synthetic biomimetic shark skin opens up a wide array of possible manipulations of surface roughness parameters, and the ability to examine the hydrodynamic consequences of diverse skin denticle shapes present in different shark species.
Quasiparticle anisotropic hydrodynamics for central collisions
Alqahtani, Mubarak; Strickland, Michael
2016-01-01
We use quasiparticle anisotropic hydrodynamics to study an azimuthally-symmetric boost-invariant quark-gluon plasma including the effects of both shear and bulk viscosities. In quasiparticle anisotropic hydrodynamics, a single finite-temperature quasiparticle mass is introduced and fit to the lattice data in order to implement a realistic equation of state. We compare results obtained using the quasiparticle method with the standard method of imposing the equation of state in anisotropic hydrodynamics and viscous hydrodynamics. Using these three methods, we extract the primordial particle spectra, total number of charged particles, and average transverse momentum for various values of the shear viscosity to entropy density ratio eta/s. We find that the three methods agree well for small shear viscosity to entropy density ratio, eta/s, but differ at large eta/s. We find, in particular, that when using standard viscous hydrodynamics, the bulk-viscous correction can drive the primordial particle spectra negative...
Hydrodynamic Approaches in Relativistic Heavy Ion Reactions
de Souza, Rafael Derradi; Kodama, Takeshi
2016-01-01
We review several facets of the hydrodynamic description of the relativistic heavy ion collisions, starting from the historical motivation to the present understandings of the observed collective aspects of experimental data, especially those of the most recent RHIC and LHC results. In this report, we particularly focus on the conceptual questions and the physical foundations of the validity of the hydrodynamic approach itself. We also discuss recent efforts to clarify some of the points in this direction, such as the various forms of derivations of relativistic hydrodynamics together with the limitations intrinsic to the traditional approaches, variational approaches, known analytic solutions for special cases, and several new theoretical developments. Throughout this review, we stress the role of course-graining procedure in the hydrodynamic description and discuss its relation with the physical observables through the analysis of a hydrodynamic mapping of a microscopic transport model. Several questions to...
Hydrodynamics research of wastewater treatment bioreactors
Institute of Scientific and Technical Information of China (English)
REN Nan-qi; ZHANG Bing; ZHOU Xue-fei
2009-01-01
To optimize the design and improve the performance of wastewater treatment bioreactors, the review concerning the hydrodynamics explored by theoretical equations, process experiments, modeling of the hydrody-namics and flow field measurement is presented. Results of different kinds of experiments show that the hydro-dynamic characteristics can affect sludge characteristics, mass transfer and reactor performance significantly. A-long with the development of theoretical equations, turbulence models including large eddy simulation models and Reynolds-averaged Navier-Stokes (RANS) models are widely used at present. Standard and modified k-ε models are the most widely used eddy viscosity turbulence models for simulating flows in bioreactors. Numericalsimulation of hydrodynamics is proved to be efficient for optimizing design and operation. The development of measurement techniques with high accuracy and low intrusion enables the flow filed in the bioreactors to be transparent. Integration of both numerical simulation and experimental measurement can describe the hydrody-namics very well.
Hydrodynamic Nambu Brackets derived by Geometric Constraints
Blender, Richard
2015-01-01
A geometric approach to derive the Nambu brackets for ideal two-dimensional (2D) hydrodynamics is suggested. The derivation is based on two-forms with vanishing integrals in a periodic domain, and with resulting dynamics constrained by an orthogonality condition. As a result, 2D hydrodynamics with vorticity as dynamic variable emerges as a generic model, with conservation laws which can be interpreted as enstrophy and energy functionals. Generalized forms like surface quasi-geostrophy and fractional Poisson equations for the stream-function are also included as results from the derivation. The formalism is extended to a hydrodynamic system coupled to a second degree of freedom, with the Rayleigh-B\\'{e}nard convection as an example. This system is reformulated in terms of constitutive conservation laws with two additive brackets which represent individual processes: a first representing inviscid 2D hydrodynamics, and a second representing the coupling between hydrodynamics and thermodynamics. The results can b...
Hydrodynamics of evaporating sessile drops
Barash, L Yu
2010-01-01
Several dynamical stages of the Marangoni convection of an evaporating sessile drop are obtained. We jointly take into account the hydrodynamics of an evaporating sessile drop, effects of the thermal conduction in the drop and the diffusion of vapor in air. The stages are characterized by different number of vortices in the drop and the spatial location of vortices. During the early stage the array of vortices arises near a surface of the drop and induces a non-monotonic spatial distribution of the temperature over the drop surface. The number of near-surface vortices in the drop is controlled by the Marangoni cell size, which is calculated similar to that given by Pearson for flat fluid layers. The number of vortices quickly decreases with time, resulting in three bulk vortices in the intermediate stage. The vortex structure finally evolves into the single convection vortex in the drop, existing during about 1/2 of the evaporation time.
Decoherent Histories and Hydrodynamic Equations
Halliwell, J J
1998-01-01
For a system consisting of a large collection of particles, a set of variables that will generally become effectively classical are the local densities (number, momentum, energy). That is, in the context of the decoherent histories approach to quantum theory, it is expected that histories of these variables will be approximately decoherent, and that their probabilites will be strongly peaked about hydrodynamic equations. This possibility is explored for the case of the diffusion of the number density of a dilute concentration of foreign particles in a fluid. It is shown that, for certain physically reasonable initial states, the probabilities for histories of number density are strongly peaked about evolution according to the diffusion equation. Decoherence of these histories is also shown for a class of initial states which includes non-trivial superpositions of number density. Histories of phase space densities are also discussed. The case of histories of number, momentum and energy density for more general...
Hydrodynamic stability and stellar oscillations
Indian Academy of Sciences (India)
H M Antia
2011-07-01
Chandrasekhar’s monograph on Hydrodynamic and hydromagnetic stability, published in 1961, is a standard reference on linear stability theory. It gives a detailed account of stability of ﬂuid ﬂow in a variety of circumstances, including convection, stability of Couette ﬂow, Rayleigh–Taylor instability, Kelvin–Helmholtz instability as well as the Jean’s instability for star formation. In most cases he has extended these studies to include effects of rotation and magnetic ﬁeld. In a later paper he has given a variational formulation for equations of non-radial stellar oscillations. This forms the basis for helioseismic inversion techniques as well as extension to include the effect of rotation, magnetic ﬁeld and other large-scale ﬂows using a perturbation treatment.
Integration of quantum hydrodynamical equation
Ulyanova, Vera G.; Sanin, Andrey L.
2007-04-01
Quantum hydrodynamics equations describing the dynamics of quantum fluid are a subject of this report (QFD).These equations can be used to decide the wide class of problem. But there are the calculated difficulties for the equations, which take place for nonlinear hyperbolic systems. In this connection, It is necessary to impose the additional restrictions which assure the existence and unique of solutions. As test sample, we use the free wave packet and study its behavior at the different initial and boundary conditions. The calculations of wave packet propagation cause in numerical algorithm the division. In numerical algorithm at the calculations of wave packet propagation, there arises the problem of division by zero. To overcome this problem we have to sew together discrete numerical and analytical continuous solutions on the boundary. We demonstrate here for the free wave packet that the numerical solution corresponds to the analytical solution.
Particle hydrodynamics with tessellation techniques
Hess, S
2009-01-01
Lagrangian smoothed particle hydrodynamics (SPH) is a well-established approach to model fluids in astrophysical problems, thanks to its geometric flexibility and ability to automatically adjust the spatial resolution to the clumping of matter. However, a number of recent studies have emphasized inaccuracies of SPH in the treatment of fluid instabilities. The origin of these numerical problems can be traced back to spurious surface effects across contact discontinuities, and to SPH's inherent prevention of mixing at the particle level. We here investigate a new fluid particle model where the density estimate is carried out with the help of an auxiliary mesh constructed as the Voronoi tessellation of the simulation particles instead of an adaptive smoothing kernel. This Voronoi-based approach improves the ability of the scheme to represent sharp contact discontinuities. We show that this eliminates spurious surface tension effects present in SPH and that play a role in suppressing certain fluid instabilities. ...
Nonstandard Gaits in Unsteady Hydrodynamics
Fairchild, Michael; Rowley, Clarence
2016-11-01
Marine biology has long inspired the design and engineering of underwater vehicles. The literature examining the kinematics and dynamics of fishes, ranging from undulatory anguilliform swimmers to oscillatory ostraciiform ones, is vast. Past numerical studies of these organisms have principally focused on gaits characterized by sinusoidal pitching and heaving motions. It is conceivable that more sophisticated gaits could perform better in some respects, for example as measured by thrust generation or by cost of transport. This work uses an unsteady boundary-element method to numerically investigate the hydrodynamics and propulsive efficiency of high-Reynolds-number swimmers whose gaits are encoded by Fourier series or by Jacobi elliptic functions. Numerical results are presented with an emphasis on identifying particular wake structures and modes of motion that are associated with optimal swimming. This work was supported by the Office of Naval Research through MURI Grant N00014-14-1-0533.
Introduction to Magneto-Hydrodynamics
Pelletier, Guy
Magneto-Hydrodynamics (hereafter MHD) describes plasmas on large scales and more generally electrically conducting fluids. This description does not discriminate between the various fluids that constitute the medium. In laboratory, it allows to globally describe a plasma machine, for instance a toroidal nuclear fusion reactor like a Tokamak. In astrophysics it plays an essential role in the description of cosmic objects and their environments, as well as the media, such as the interstellar or the intergalactic medium. A set of phenomena are specific to MHD description. Some of them will be presented in this lecture such as the tension effect, confinement, magnetic diffusivity, magnetic field freezing, Alfvén waves, magneto-sonic waves, reconnection. A celebrated phenomenon of MHD will not be introduced in this brief lecture, namely the dynamo effect.
Polar bears: the fate of an icon.
Fitzgerald, Kevin T
2013-11-01
Polar bears are one of the most iconic animals on our planet. Worldwide, even people who would never see one are drawn to these charismatic arctic ice hunters. They are the world's largest terrestrial carnivore, and despite being born on land, they spend most of their lives out on the sea ice and are considered a marine mammal. Current global studies estimate there are around 20,000 animals in some 19 discrete circumpolar populations. Aside from pregnant females denning in the winter months to give birth, the white bears do not hibernate. They spend their winters on the sea ice hunting seals, an activity they are spectacularly adapted for. Research on these animals is incredibly difficult because of the inhospitable surroundings they inhabit and how inaccessible they make the bears. For many years, the sum of our understanding of the natural history of polar bears came from tracks, scats, the remains of their kills, abandoned dens, and anecdotal observations of native hunters, explorers, and early biologists. Nonetheless, the last 40 years have seen a much better picture of their biology emerge thanks to, first, dedicated Canadian researchers and, later, truly international efforts of workers from many countries. Veterinarians have contributed to our knowledge of the bears by delivering and monitoring anesthesia, obtaining blood samples, performing necropsies, investigating their reproduction, conducting radiotelemetry studies, and examining their behavior. Recently, new technologies have been developed that revolutionize the study of the lives and natural history of undisturbed polar bears. These advances include better satellite radiotelemetry equipment and the development of remote-controlled miniature devices equipped with high-definition cameras. Such new modalities provide dramatic new insights into the life of polar bears. The remarkable degree of specialized adaptation to life on the sea ice that allowed the bears to be successful is the very reason that
Hydrodynamic dispersion within porous biofilms
Davit, Y.
2013-01-23
Many microorganisms live within surface-associated consortia, termed biofilms, that can form intricate porous structures interspersed with a network of fluid channels. In such systems, transport phenomena, including flow and advection, regulate various aspects of cell behavior by controlling nutrient supply, evacuation of waste products, and permeation of antimicrobial agents. This study presents multiscale analysis of solute transport in these porous biofilms. We start our analysis with a channel-scale description of mass transport and use the method of volume averaging to derive a set of homogenized equations at the biofilm-scale in the case where the width of the channels is significantly smaller than the thickness of the biofilm. We show that solute transport may be described via two coupled partial differential equations or telegrapher\\'s equations for the averaged concentrations. These models are particularly relevant for chemicals, such as some antimicrobial agents, that penetrate cell clusters very slowly. In most cases, especially for nutrients, solute penetration is faster, and transport can be described via an advection-dispersion equation. In this simpler case, the effective diffusion is characterized by a second-order tensor whose components depend on (1) the topology of the channels\\' network; (2) the solute\\'s diffusion coefficients in the fluid and the cell clusters; (3) hydrodynamic dispersion effects; and (4) an additional dispersion term intrinsic to the two-phase configuration. Although solute transport in biofilms is commonly thought to be diffusion dominated, this analysis shows that hydrodynamic dispersion effects may significantly contribute to transport. © 2013 American Physical Society.
The hydrodynamics of dolphin drafting
Directory of Open Access Journals (Sweden)
Weihs Daniel
2004-05-01
Full Text Available Abstract Background Drafting in cetaceans is defined as the transfer of forces between individuals without actual physical contact between them. This behavior has long been surmised to explain how young dolphin calves keep up with their rapidly moving mothers. It has recently been observed that a significant number of calves become permanently separated from their mothers during chases by tuna vessels. A study of the hydrodynamics of drafting, initiated in the hope of understanding the mechanisms causing the separation of mothers and calves during fishing-related activities, is reported here. Results Quantitative results are shown for the forces and moments around a pair of unequally sized dolphin-like slender bodies. These include two major effects. First, the so-called Bernoulli suction, which stems from the fact that the local pressure drops in areas of high speed, results in an attractive force between mother and calf. Second is the displacement effect, in which the motion of the mother causes the water in front to move forwards and radially outwards, and water behind the body to move forwards to replace the animal's mass. Thus, the calf can gain a 'free ride' in the forward-moving areas. Utilizing these effects, the neonate can gain up to 90% of the thrust needed to move alongside the mother at speeds of up to 2.4 m/sec. A comparison with observations of eastern spinner dolphins (Stenella longirostris is presented, showing savings of up to 60% in the thrust that calves require if they are to keep up with their mothers. Conclusions A theoretical analysis, backed by observations of free-swimming dolphin schools, indicates that hydrodynamic interactions with mothers play an important role in enabling dolphin calves to keep up with rapidly moving adult school members.
Evaluation of outer race tilt and lubrication on ball wear and SSME bearing life reductions
Kannel, J. W.; Merriman, T. L.; Stockwell, R. D.; Dufrane, K. F.
1983-01-01
Several aspects of the SSME bearing operation were evaluated. The possibility of elastohydrodynamics (EHD) lubrication with a cryogenic fluid was analyzed. Films as thick as .61 microns were predicted with one theory which may be thick enough to provide hydrodynamic support. The film formation, however, is heavily dependent on good surface finish and a low bulk bearing temperature. Bearing dynamics to determine if the radial stiffness of a bearing which are dependent on bearing misalignment were analyzed. Four ball tests were conducted at several environmental conditions from an LN2 bath to 426 C in air. Surface coatings and ball materials are evaluated. Severe wear and high friction are measured for all ball materials except when the balls have surface lubricant coatings.
Hybrid superconductor magnet bearings
Chu, Wei-Kan
1995-01-01
Hybrid superconductor magnet bearings (HSMB's) utilize high temperature superconductors (HTS's) together with permanent magnets to form a frictionless interface between relatively rotating parts. They are low mass, stable, and do not incur expenditure of energy during normal operation. There is no direct physical contact between rotor and stator, and hence there is no wear and tear. However, just as any other applications of HTS's, it requires a very cold temperature to function. Whereas this might be perceived as a disadvantage on earth, it is of no great concern in space or on the moon. To astronomers, the moon is an excellent site for an observatory, but the cold and dusty vacuum environment on the moon precludes the use of mechanical bearings on the telescope mounts. Furthermore, drive mechanisms with very fine steps, and hence bearings with extremely low friction are needed to track a star from the moon, because the moon rotates very slowly. All aspects considered, the HSMB is about the only candidate that fits in naturally. Here, we present a design for one such bearing, capable of supporting a telescope that weighs about 3 lbs on Earth.
Institute of Scientific and Technical Information of China (English)
LIU YUNYUN
2010-01-01
@@ Chinese director Wang Quan'an won the Silver Bear Prize at the 60th Berlin International Film Festival that lasted during February 11 to 21 tor the best screenplay for his movie Apart Together.The film also opened the festival.
Magnetic bearings for cryogenic turbomachines
Iannello, Victor; Sixsmith, Herbert
1991-01-01
Magnetic bearings offer a number of advantages over gas bearings for the support of rotors in cryogenic turboexpanders and compressors. Their performance is relatively independent of the temperature or pressure of the process gas for a large range of conditions. Active magnetic bearing systems that use capacitive sensors have been developed for high speed compressors for use in cryogenic refrigerators. Here, the development of a magnetic bearing system for a miniature ultra high speed compressor is discussed. The magnetic bearing has demonstrated stability at rotational speeds exceeding 250,000 rpm. This paper describes the important features of the magnetic bearing and presents test results demonstrating its performance characteristics.
Lin, Shiang-Chi; Yen, Pei-Wen; Peng, Chien-Chung; Tung, Yi-Chung
2012-09-07
Flow cytometry is a technique capable of optically characterizing biological particles in a high-throughput manner. In flow cytometry, three dimensional (3D) hydrodynamic focusing is critical for accurate and consistent measurements. Due to the advantages of microfluidic techniques, a number of microfluidic flow cytometers with 3D hydrodynamic focusing have been developed in recent decades. However, the existing devices consist of multiple layers of microfluidic channels and tedious fluidic interconnections. As a result, these devices often require complicated fabrication and professional operation. Consequently, the development of a robust and reliable microfluidic flow cytometer for practical biological applications is desired. This paper develops a microfluidic device with a single channel layer and single sheath-flow inlet capable of achieving 3D hydrodynamic focusing for flow cytometry. The sheath-flow stream is introduced perpendicular to the microfluidic channel to encircle the sample flow. In this paper, the flow fields are simulated using a computational fluidic dynamic (CFD) software, and the results show that the 3D hydrodynamic focusing can be successfully formed in the designed microfluidic device under proper flow conditions. The developed device is further characterized experimentally. First, confocal microscopy is exploited to investigate the flow fields. The resultant Z-stack confocal images show the cross-sectional view of 3D hydrodynamic with flow conditions that agree with the simulated ones. Furthermore, the flow cytometric detections of fluorescence beads are performed using the developed device with various flow rate combinations. The measurement results demonstrate that the device can achieve great detection performances, which are comparable to the conventional flow cytometer. In addition, the enumeration of fluorescence-labelled cells is also performed to show its practicality for biological applications. Consequently, the microfluidic
Optical Electronic Bragg Reflection Sensor System with Hydrodynamic Flow Applications
Lyons, D. R.
2003-01-01
This project, as described in the following report, involved design and fabrication of fiber optic sensors for the detection and measurement of dynamic fluid density variations. These devices are created using UV (ultraviolet) ablation and generally modified transverse holographic fiber grating techniques. The resulting phase gratings created on or immediately underneath the flat portion of D-shaped optical waveguides are characterized as evanescent field sensing devices. The primary applications include the sensor portion of a real-time localized or distributed measurement system for hydrodynamic flow, fluid density measurements, and phase change phenomena. Several design modifications were implemented in an attempt to accomplish the tasks specified in our original proposal. In addition, we have established key collaborative relationships with numerous people and institutions.
Gas Foil Bearing Misalignment and Unbalance Effects
Howard, Samuel A.
2008-01-01
The effects of misalignment and unbalance on gas foil bearings are presented. The future of U.S. space exploration includes plans to conduct science missions aboard space vehicles, return humans to the Moon, and place humans on Mars. All of these endeavors are of long duration, and require high amounts of electrical power for propulsion, life support, mission operations, etc. One potential source of electrical power of sufficient magnitude and duration is a nuclear-fission-based system. The system architecture would consist of a nuclear reactor heat source with the resulting thermal energy converted to electrical energy through a dynamic power conversion and heat rejection system. Various types of power conversion systems can be utilized, but the Closed Brayton Cycle (CBC) turboalternator is one of the leading candidates. In the CBC, an inert gas heated by the reactor drives a turboalternator, rejects excess heat to space through a heat exchanger, and returns to the reactor in a closed loop configuration. The use of the CBC for space power and propulsion is described in more detail in the literature (Mason, 2003). In the CBC system just described, the process fluid is a high pressure inert gas such as argon, krypton, or a helium-xenon mixture. Due to the closed loop nature of the system and the associated potential for damage to components in the system, contamination of the working fluid is intolerable. Since a potential source of contamination is the lubricant used in conventional turbomachinery bearings, Gas Foil Bearings (GFB) have high potential for the rotor support system. GFBs are compliant, hydrodynamic journal and thrust bearings that use a gas, such as the CBC working fluid, as their lubricant. Thus, GFBs eliminate the possibility of contamination due to lubricant leaks into the closed loop system. Gas foil bearings are currently used in many commercial applications, both terrestrial and aerospace. Aircraft Air Cycle Machines (ACMs) and ground
CHOLLA: A New Massively Parallel Hydrodynamics Code for Astrophysical Simulation
Schneider, Evan E.; Robertson, Brant E.
2015-04-01
We present Computational Hydrodynamics On ParaLLel Architectures (Cholla ), a new three-dimensional hydrodynamics code that harnesses the power of graphics processing units (GPUs) to accelerate astrophysical simulations. Cholla models the Euler equations on a static mesh using state-of-the-art techniques, including the unsplit Corner Transport Upwind algorithm, a variety of exact and approximate Riemann solvers, and multiple spatial reconstruction techniques including the piecewise parabolic method (PPM). Using GPUs, Cholla evolves the fluid properties of thousands of cells simultaneously and can update over 10 million cells per GPU-second while using an exact Riemann solver and PPM reconstruction. Owing to the massively parallel architecture of GPUs and the design of the Cholla code, astrophysical simulations with physically interesting grid resolutions (≳2563) can easily be computed on a single device. We use the Message Passing Interface library to extend calculations onto multiple devices and demonstrate nearly ideal scaling beyond 64 GPUs. A suite of test problems highlights the physical accuracy of our modeling and provides a useful comparison to other codes. We then use Cholla to simulate the interaction of a shock wave with a gas cloud in the interstellar medium, showing that the evolution of the cloud is highly dependent on its density structure. We reconcile the computed mixing time of a turbulent cloud with a realistic density distribution destroyed by a strong shock with the existing analytic theory for spherical cloud destruction by describing the system in terms of its median gas density.
Design of hydrodynamically confined microfluidics: controlling flow envelope and pressure.
Christ, Kevin V; Turner, Kevin T
2011-04-21
Closed-channel microfluidic devices are widely used in a number of chemical and biological applications; however, it is often difficult to interact with samples, such as cells, that are enclosed inside them. Hydrodynamically confined microflows (HCMs) allow microfluidic-type flows to be generated in open liquid environments, such as Petri dishes, thus greatly increasing the flexibility of microfluidic approaches. HCMs have previously been used for protein patterning and selective cell treatment applications, but the underlying fluid mechanics is not fully understood. Here, we examine the effect of device geometry and flow parameters on the properties of the flow envelope and pressure drop of several two-port HCM devices using a combination of experiments and modeling. A three-port device, which allows for different flow envelope shapes to be generated, is also analyzed. The experimental results agree well with the 3-D computational fluid dynamics simulations, with the majority of the measurements within 10% of the simulations. The results presented provide a framework for understanding the fluid mechanics of HCMs and will aid in the design of HCM devices for a broad range of applications.
Effects of hydrodynamic interactions and control within a point absorber array on electrical output
DEFF Research Database (Denmark)
Nambiar, Anup J.; Forehand, David I.M.; Kramer, Morten
2015-01-01
the WECs and the total power extracted by the array can be modified. In this paper, different resistive and reactive PTO control strategies, applied to a time-domain wave-to-wire model of a three-float Danish Wavestar device, are compared. The time-domain modelling approach, as opposed to the frequency...... and farms of WECs. The total power extracted by an array of WECs is influenced by the hydrodynamic interactions between them, especially when the WECs are spaced very closely. By control of the power take-off (PTO) forces and moments acting on the WECs within the array, the hydrodynamic interactions between...
Influence of hydrodynamic conditions on quantitative cellular assays in microfluidic systems.
Yin, Huabing; Zhang, Xunli; Pattrick, Nicola; Klauke, Norbert; Cordingley, Hayley C; Haswell, Stephen J; Cooper, Jonathan M
2007-09-15
This study demonstrates the importance of the hydrodynamic environment in microfluidic systems in quantitative cellular assays using live cells. Commonly applied flow conditions used in microfluidics were evaluated using the quantitative intracellular Ca2+ analysis of Chinese hamster ovary (CHO) cells as a model system. Above certain thresholds of shear stress, hydrodynamically induced intracellular Ca2+ fluxes were observed which mimic the responses induced by chemical stimuli, such as the agonist uridine 5'-triphosphate tris salt (UTP). This effect is of significance given the increasing application of microfluidic devices in high-throughput cellular analysis for biophysical applications and pharmacological screening.
A Displayer of Stellar Hydrodynamics Processes
Vigo, José Antonio Escartín; Senz, Domingo García
The graphics display tool that we present here was originally developed to meet the needs of the Astronomy and Astrophysics group at the UPC (GAA). At present, it is used to display the plots obtained from hydrodynamic simulations using the SPH (smoothed particle hydrodynamics) method. It is, however, a generic program that can be used for other multidimensional hydrodynamic methods. The application combines the most widely used features of other programs (most of them commercial) such as GnuPlot, Surfer, Grapher, IDL, Voxler, etc.
Non abelian hydrodynamics and heavy ion collisions
Energy Technology Data Exchange (ETDEWEB)
Calzetta, E. [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Ciudad Universitaria, Buenos Aires 1428 (Argentina)
2014-01-14
The goal of the relativistic heavy ion collisions (RHIC) program is to create a state of matter where color degrees of freedom are deconfined. The dynamics of matter in this state, in spite of the complexities of quantum chromodynamics, is largely determined by the conservation laws of energy momentum and color currents. Therefore it is possible to describe its main features in hydrodynamic terms, the very short color neutralization time notwithstanding. In this lecture we shall give a simple derivation of the hydrodynamics of a color charged fluid, by generalizing the usual derivation of hydrodynamics from kinetic theory to the non abelian case.
Quantum ideal hydrodynamics on the lattice
Burch, Tommy
2013-01-01
After discussing the problem of defining the hydrodynamic limit from microscopic scales, we give an introduction to ideal hydrodynamics in the Lagrange picture, and show that it can be viewed as a field theory, which can be quantized using the usual Feynman sum-over-paths prescription. We then argue that this picture can be connected to the usually neglected thermal microscopic scale in the hydrodynamic expansion. After showing that this expansion is generally non-perturbative, we show how the lattice can be used to understand the impact quantum and thermal fluctuations can have on the fluid behavior.
Non abelian hydrodynamics and heavy ion collisions
Calzetta, Esteban
2013-01-01
The goal of the relativistic heavy ion collisions (RHIC) program is to create a state of matter where color degrees of freedom are deconfined. The dynamics of matter in this state, in spite of the complexities of quantum chromodynamics, is largely determined by the conservation laws of energy momentum and color currents. Therefore it is possible to describe its main features in hydrodynamic terms, the very short color neutralization time notwithstanding. In this lecture we shall give a simple derivation of the hydrodynamics of a color charged fluid, by generalizing the usual derivation of hydrodynamics from kinetic theory to the non abelian case.
1993-01-01
The u.s. government bulks large in the nation's financial markets. The huge volume of government-issued and -sponsored debt affects the pricing and volume ofprivate debt and, consequently, resource allocation between competing alternatives. What is often not fully appreciated is the substantial influence the federal government wields overresource allocation through its provisionofcreditandrisk-bearing services to the private economy. Because peopleand firms generally seekto avoid risk, atsomeprice they are willing to pay another party to assume the risk they would otherwise face. Insurance companies are a class of private-sector firms one commonly thinks of as providing these services. As the federal government has expanded its presence in the U.S. economy during this century, it has increasingly developed programs aimed at bearing risks that the private sector either would not take on at any price, or would take on but atapricethoughtto besogreatthatmostpotentialbeneficiarieswouldnotpurchase the coverage. To...
Centrifugally decoupling touchdown bearings
Post, Richard F
2014-06-24
Centrifugally decoupling mechanical bearing systems provide thin tensioned metallic ribbons contained in a support structure. This assembly rotates around a stationary shaft being centered at low speeds by the action of the metal ribbons. Tension springs are connected on one end to the ribbons and on the other end to the support structure. The ribbons pass through slots in the inner ring of the support structure. The spring preloading thus insures contact (or near-contact) between the ribbons and the shaft at rotation speeds below the transition speed. Above this speed, however, the centrifugal force on the ribbons produces a tensile force on them that exceeds the spring tensile force so that the ribbons curve outward, effectively decoupling them from mechanical contact with the shaft. They still remain, however, in position to act as a touchdown bearing in case of abnormally high transverse accelerations.
Trend of Self-bearing Motors(Magnetic Bearings)
上野, 哲; Satoshi, UENO; 立命館大学
2008-01-01
This paper introduces a trend of a self-bearing motor that combines the functions of a motor and active magnetic bearing. The self-bearing motor has advantages, such as miniaturization, low cost, and high speed rotation in addition to the advantages of the active magnetic bearing. Various types of self-bearing motors such as a radial type, axial type, permanent magnet type, induction type, and reluctance type, have been proposed. In this paper, technologies and applications of the self-bearin...
Pinkus, O.; Etsion, I.
1976-01-01
A new concept of a journal bearing is developed which prevents side leakage of the lubricant, thus eliminating the need for sealing and collecting this leakage. The cooling of the bearing is accomplished by the prevailing circumferential flow. An analysis is performed and solutions are given for the bearing geometries and inlet pressures required to achieve the above purpose.
Smoothed particle hydrodynamics and magnetohydrodynamics
Price, Daniel J.
2012-02-01
This paper presents an overview and introduction to smoothed particle hydrodynamics and magnetohydrodynamics in theory and in practice. Firstly, we give a basic grounding in the fundamentals of SPH, showing how the equations of motion and energy can be self-consistently derived from the density estimate. We then show how to interpret these equations using the basic SPH interpolation formulae and highlight the subtle difference in approach between SPH and other particle methods. In doing so, we also critique several 'urban myths' regarding SPH, in particular the idea that one can simply increase the 'neighbour number' more slowly than the total number of particles in order to obtain convergence. We also discuss the origin of numerical instabilities such as the pairing and tensile instabilities. Finally, we give practical advice on how to resolve three of the main issues with SPMHD: removing the tensile instability, formulating dissipative terms for MHD shocks and enforcing the divergence constraint on the particles, and we give the current status of developments in this area. Accompanying the paper is the first public release of the NDSPMHD SPH code, a 1, 2 and 3 dimensional code designed as a testbed for SPH/SPMHD algorithms that can be used to test many of the ideas and used to run all of the numerical examples contained in the paper.
Fluctuating hydrodynamics for ionic liquids
Lazaridis, Konstantinos; Wickham, Logan; Voulgarakis, Nikolaos
2017-04-01
We present a mean-field fluctuating hydrodynamics (FHD) method for studying the structural and transport properties of ionic liquids in bulk and near electrified surfaces. The free energy of the system consists of two competing terms: (1) a Landau-Lifshitz functional that models the spontaneous separation of the ionic groups, and (2) the standard mean-field electrostatic interaction between the ions in the liquid. The numerical approach used to solve the resulting FHD-Poisson equations is very efficient and models thermal fluctuations with remarkable accuracy. Such density fluctuations are sufficiently strong to excite the experimentally observed spontaneous formation of liquid nano-domains. Statistical analysis of our simulations provides quantitative information about the properties of ionic liquids, such as the mixing quality, stability, and the size of the nano-domains. Our model, thus, can be adequately parameterized by directly comparing our prediction with experimental measurements and all-atom simulations. Conclusively, this work can serve as a practical mathematical tool for testing various theories and designing more efficient mixtures of ionic liquids.
Hydrodynamically driven colloidal assembly in dip coating.
Colosqui, Carlos E; Morris, Jeffrey F; Stone, Howard A
2013-05-01
We study the hydrodynamics of dip coating from a suspension and report a mechanism for colloidal assembly and pattern formation on smooth substrates. Below a critical withdrawal speed where the coating film is thinner than the particle diameter, capillary forces induced by deformation of the free surface prevent the convective transport of single particles through the meniscus beneath the film. Capillary-induced forces are balanced by hydrodynamic drag only after a minimum number of particles assemble within the meniscus. The particle assembly can thus enter the thin film where it moves at nearly the withdrawal speed and rapidly separates from the next assembly. The interplay between hydrodynamic and capillary forces produces periodic and regular structures below a critical ratio Ca(2/3)/sqrt[Bo] particles in suspension. The hydrodynamically driven assembly documented here is consistent with stripe pattern formations observed experimentally in dip coating.
Adiabatic hydrodynamics: The eightfold way to dissipation
Haehl, Felix M; Rangamani, Mukund
2015-01-01
We provide a complete solution to hydrodynamic transport at all orders in the gradient expansion compatible with the second law constraint. The key new ingredient we introduce is the notion of adiabaticity, which allows us to take hydrodynamics off-shell. Adiabatic fluids are such that off-shell dynamics of the fluid compensates for entropy production. The space of adiabatic fluids is quite rich, and admits a decomposition into seven distinct classes. Together with the dissipative class this establishes the eightfold way of hydrodynamic transport. Furthermore, recent results guarantee that dissipative terms beyond leading order in the gradient expansion are agnostic of the second law. While this completes a transport taxonomy, we go on to argue for a new symmetry principle, an Abelian gauge invariance that guarantees adiabaticity in hydrodynamics. We suggest that this symmetry is the macroscopic manifestation of the microscopic KMS invariance. We demonstrate its utility by explicitly constructing effective ac...
Novel Integration Radial and Axial Magnetic Bearing
Blumenstock, Kenneth; Brown, Gary
2000-01-01
Typically, fully active magnetically suspended systems require one axial and two radial magnetic bearings. Combining radial and axial functions into a single device allows for more compact and elegant packaging. Furthermore, in the case of high-speed devices such as energy storage flywheels, it is beneficial to minimize shaft length to keep rotor mode frequencies as high as possible. Attempts have been made to combine radial and axial functionality, but with certain drawbacks. One approach requires magnetic control flux to flow through a bias magnet reducing control effectiveness, thus resulting in increased resistive losses. This approach also requires axial force producing magnetic flux to flow in a direction into the rotor laminate that is undesirable for minimizing eddy-current losses resulting in rotational losses. Another approach applies a conical rotor shape to what otherwise would be a radial heteropolar magnetic bearing configuration. However, positional non-linear effects are introduced with this scheme and the same windings are used for bias, radial, and axial control adding complexity to the controller and electronics. For this approach, the amount of axial capability must be limited. It would be desirable for an integrated radial and axial magnetic bearing to have the following characteristics; separate inputs for radial and axial control for electronics and control simplicity, all magnetic control fluxes should only flow through their respective air gaps and should not flow through any bias magnets for minimal resistive losses, be of a homopolar design to minimize rotational losses, position related non-linear effects should be minimized, and dependent upon the design parameters, be able to achieve any radial/axial force or power ratio as desired. The integrated radial and axial magnetic bearing described in this paper exhibits all these characteristics. Magnetic circuit design, design equations, and magnetic field modeling results will be presented.
Novel Integrated Radial and Axial Magnetic Bearing
Blumenstock, Kenneth A.; Brown, Gary L.; Powers, Edward I. (Technical Monitor)
2000-01-01
Typically, fully active magnetically suspended systems require one axial and two radial magnetic bearings. Combining radial and axial functions into a single device allows for more compact and elegant packaging. Furthermore, in the case of high-speed devices such as energy storage flywheels, it is beneficial to minimize shaft length to keep rotor mode frequencies as high as possible. Attempts have been made to combine radial and axial functionality, but with certain drawbacks. One approach requires magnetic control flux to flow through a bias magnet reducing control effectiveness, thus resulting in increased resistive losses. This approach also requires axial force producing magnetic flux to flow in a direction into the rotor laminate that is undesirable for minimizing eddy-current losses resulting in rotational losses. Another approach applies a conical rotor shape to what otherwise would be a radial heteropolar magnetic bearing configuration. However, positional non-linear effects are introduced with this scheme and the same windings are used for bias, radial, and axial control adding complexity to the controller and electronics. For this approach, the amount of axial capability must be limited. It would be desirable for an integrated radial and axial magnetic bearing to have the following characteristics, separate inputs for radial and axial control for electronics and control simplicity, all magnetic control fluxes should only flow through their respective air gaps and should not flow through any bias magnets for minimal resistive losses, be of a homopolar design to minimize rotational losses, position related non-linear effects should be minimized, and dependent upon the design parameters, be able to achieve any radial/axial force or power ratio as desired. The integrated radial and axial magnetic bearing described in this paper exhibits all these characteristics. Magnetic circuit design, design equations, and analysis results will be presented.
Institute of Scientific and Technical Information of China (English)
臧晓秋; 曹志峰; 吴成亮
2016-01-01
以高速铁路简支箱梁桥隔震研究为例，建立了采用摩擦摆支座与 U 型钢防落梁装置组合地震保护方案的全桥地震响应分析模型，针对支座位移、墩底剪力、墩底弯矩等地震响应，考虑了场地类别、桥墩高度、桥梁跨数、桥梁跨度、激励方向等影响因素，并根据各因素选定的水平级别，实施了混合正交试验，再应用极差分析方法对支座位移、墩底剪力、墩底弯矩等地震响应进行了影响因素的敏感性分析，明确了各因素对相关响应量影响的主次情况，为高速铁路简支箱梁桥隔震研究及优化设计奠定了基础。%In this paper,the seismic isolation of simply supported box girder bridges on high speed railway was studied. A bridge model with friction pendulum bearings and a U-shaped steel combined earthquake protection device was built for seismic response analysis,including the seismic response of bearing displacement,and shear and moment at the pier bottom. Multiple factors including site types,pier height,number of bridge spans,bridge span length and excitation direction were considered. A mixed orthogonal test was carried out according to the selected level of each factor. Using range analysis method,sensitivity analysis of each factor was carried out on the seismic response of bearing displacement,and shear and moment at the pier bottom. The primary and secondary cases of the impact of various factors on the relevant response were analyzed. It may provide guidelines for seismic isolation and design optimization of simply supported box girder bridges on high speed railway.
Thermo--hydrodynamics As a Field Theory
Jezierski, Jacek
2011-01-01
The field theoretical description of thermo-hydrodynamics is given. It is based on the duality between the physical space--time and the "material space-time" which we construct here. The material space appearing in a natural way in the canonical formulation of the hydrodynamics is completed with a material time playing role of the field potential for temperature. Both Lagrangian and Hamiltonian formulations, the canonical structure, Poisson bracket, N\\"other theorem and conservation laws are discussed.
Hydrodynamics of bacterial colonies: Phase diagrams
Lega, J.; Passot, T.
2004-09-01
We present numerical simulations of a recent hydrodynamic model describing the growth of bacterial colonies on agar plates. We show that this model is able to qualitatively reproduce experimentally observed phase diagrams, which relate a colony shape to the initial quantity of nutrients on the plate and the initial wetness of the agar. We also discuss the principal features resulting from the interplay between hydrodynamic motions and colony growth, as described by our model.
Improvements to SOIL: An Eulerian hydrodynamics code
Energy Technology Data Exchange (ETDEWEB)
Davis, C.G.
1988-04-01
Possible improvements to SOIL, an Eulerian hydrodynamics code that can do coupled radiation diffusion and strength of materials, are presented in this report. Our research is based on the inspection of other Eulerian codes and theoretical reports on hydrodynamics. Several conclusions from the present study suggest that some improvements are in order, such as second-order advection, adaptive meshes, and speedup of the code by vectorization and/or multitasking. 29 refs., 2 figs.
Relabeling symmetries in hydrodynamics and magnetohydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Padhye, N.; Morrison, P.J.
1996-04-01
Lagrangian symmetries and concomitant generalized Bianchi identities associated with the relabeling of fluid elements are found for hydrodynamics and magnetohydrodynamics (MHD). In hydrodynamics relabeling results in Ertel`s theorem of conservation of potential vorticity, while in MHD it yields the conservation of cross helicity. The symmetries of the reduction from Lagrangian (material) to Eulerian variables are used to construct the Casimir invariants of the Hamiltonian formalism.
Vranish, John M. (Inventor)
2009-01-01
A gear bearing having a first gear and a second gear, each having a plurality of teeth. Each gear operates on two non-parallel surfaces of the opposing gear teeth to perform both gear and bearing functions simultaneously. The gears are moving at substantially the same speed at their contact points. The gears may be roller gear bearings or phase-shifted gear bearings, and may be arranged in a planet/sun system or used as a transmission. One preferred embodiment discloses and describes an anti-backlash feature to counter ''dead zones'' in the gear bearing movement.
Control devices incorporated with shape memory alloy
Institute of Scientific and Technical Information of China (English)
Xue Suduo; Li Xiongyan
2007-01-01
Shape Memory Alloy (SMA) is a type of material that offers some unique characteristics for use in devices for vibration control applications. Based on SMA's material properties, four types of control devices that incorporate NiTi SMA wires are introduced in this paper, which include three types of dampers (SMA damper, SMA-MR damper and SMA-friction damper) and one kind of isolation bearing (SMA-rubber bearing). Mechanical models of these devices and their experimental verifications are presented. To investigate the control performance of these devices, the SMA-MR damper and SMA-rubber bearing are applied to structures. The results show that the control devices could be effective in reducing the seismic response of structures.
Damping Bearings In High-Speed Turbomachines
Von Pragenau, George L.
1994-01-01
Paper presents comparison of damping bearings with traditional ball, roller, and hydrostatic bearings in high-speed cryogenic turbopumps. Concept of damping bearings described in "Damping Seals and Bearings for a Turbomachine" (MFS-28345).
Hydrodynamics of soft active matter
Marchetti, M. C.; Joanny, J. F.; Ramaswamy, S.; Liverpool, T. B.; Prost, J.; Rao, Madan; Simha, R. Aditi
2013-07-01
This review summarizes theoretical progress in the field of active matter, placing it in the context of recent experiments. This approach offers a unified framework for the mechanical and statistical properties of living matter: biofilaments and molecular motors in vitro or in vivo, collections of motile microorganisms, animal flocks, and chemical or mechanical imitations. A major goal of this review is to integrate several approaches proposed in the literature, from semimicroscopic to phenomenological. In particular, first considered are “dry” systems, defined as those where momentum is not conserved due to friction with a substrate or an embedding porous medium. The differences and similarities between two types of orientationally ordered states, the nematic and the polar, are clarified. Next, the active hydrodynamics of suspensions or “wet” systems is discussed and the relation with and difference from the dry case, as well as various large-scale instabilities of these nonequilibrium states of matter, are highlighted. Further highlighted are various large-scale instabilities of these nonequilibrium states of matter. Various semimicroscopic derivations of the continuum theory are discussed and connected, highlighting the unifying and generic nature of the continuum model. Throughout the review, the experimental relevance of these theories for describing bacterial swarms and suspensions, the cytoskeleton of living cells, and vibrated granular material is discussed. Promising extensions toward greater realism in specific contexts from cell biology to animal behavior are suggested, and remarks are given on some exotic active-matter analogs. Last, the outlook for a quantitative understanding of active matter, through the interplay of detailed theory with controlled experiments on simplified systems, with living or artificial constituents, is summarized.
Novel maglev pump with a combined magnetic bearing.
Onuma, Hiroyuki; Murakami, Michiko; Masuzawa, Toru
2005-01-01
The newly developed pump is a magnetically levitated centrifugal blood pump in which active and passive magnetic bearings are integrated to construct a durable ventricular assist device. The developed maglev centrifugal pump consists of an active magnetic bearing, a passive magnetic bearing, a levitated impeller, and a motor stator. The impeller is set between the active magnetic bearing and the motor stator. The active magnetic bearing uses four electromagnets to control the tilt and the axial position of the impeller. The radial movement of the levitated impeller is restricted with the passive stability dependent upon the top stator and the passive permanent magnetic bearing to reduce the energy consumption and the control system complexity. The top stator was designed based upon a magnetic field analysis to develop the maglev pump with sufficient passive stability in the radial direction. By implementing this analysis design, the oscillating amplitude of the impeller in the radial direction was cut in half when compared with the simple shape stator. This study concluded that the newly developed maglev centrifugal pump displayed excellent levitation performance and sufficient pump performance as a ventricular assist device.
DEFF Research Database (Denmark)
Heinrichson, Niels; Santos, Ilmar; Fuerst, Axel
2006-01-01
This is Part I of a two-part series of papers describing the effects of high pressure injection pockets on the operating conditions of tilting-pad thrust bearings. A numerical model based on the Reynolds equation is developed extending the three dimensional thermo-elasto-hydrodynamic (TEHD) analy...
Bagal, Manisha V; Gogate, Parag R
2014-05-01
Diclofenac sodium, a widely detected pharmaceutical drug in wastewater samples, has been selected as a model pollutant for degradation using novel combined approach of hydrodynamic cavitation and heterogeneous photocatalysis. A slit venturi has been used as cavitating device in the hydrodynamic cavitation reactor. The effect of various operating parameters such as inlet fluid pressure (2-4 bar) and initial pH of the solution (4-7.5) on the extent of degradation have been studied. The maximum extent of degradation of diclofenac sodium was obtained at inlet fluid pressure of 3 bar and initial pH as 4 using hydrodynamic cavitation alone. The loadings of TiO2 and H2O2 have been optimised to maximise the extent of degradation of diclofenac sodium. Kinetic study revealed that the degradation of diclofenac sodium fitted first order kinetics over the selected range of operating protocols. It has been observed that combination of hydrodynamic cavitation with UV, UV/TiO2 and UV/TiO2/H2O2 results in enhanced extents of degradation as compared to the individual schemes. The maximum extent of degradation as 95% with 76% reduction in TOC has been observed using hydrodynamic cavitation in conjunction with UV/TiO2/H2O2 under the optimised operating conditions. The diclofenac sodium degradation byproducts have been identified using LC/MS analysis.
Fabrication of a rotary carbon nanotube bearing test apparatus
Cook, E. H.; Weinberg, M. S.; Spakovszky, Z. S.; Carter, D. J. D.
2015-12-01
Carbon Nanotubes (CNTs) are attractive elements for bearings in Micro-Electro-Mechanical Systems (MEMS), because their structure comprises nested shells with no bonding and sub-nanometre spacing between them, enabling relative motion with low friction and wear. A reliable bearing technology is critical to bringing rotating MEMS machines from laboratory demonstrations to common use. We report here the design and fabrication of a test rotor, a testing apparatus and testing attempts, and integration of CNTs with MEMS. The device improves on existing CNT bearing demonstrators by establishing a vertical bearing orientation (enabling superior rotor balance and speed, and drive mechanism placement flexibility) and a manufacturable process (employing CNTs grown in place by chemical vapour deposition (CVD)). The main outstanding challenge to demonstrating rotation is available CVD CNT quality.
Aerospace applications of magnetic bearings
Downer, James; Goldie, James; Gondhalekar, Vijay; Hockney, Richard
1994-01-01
Magnetic bearings have traditionally been considered for use in aerospace applications only where performance advantages have been the primary, if not only, consideration. Conventional wisdom has been that magnetic bearings have certain performance advantages which must be traded off against increased weight, volume, electric power consumption, and system complexity. These perceptions have hampered the use of magnetic bearings in many aerospace applications because weight, volume, and power are almost always primary considerations. This paper will review progress on several active aerospace magnetic bearings programs at SatCon Technology Corporation. The magnetic bearing programs at SatCon cover a broad spectrum of applications including: a magnetically-suspended spacecraft integrated power and attitude control system (IPACS), a magnetically-suspended momentum wheel, magnetic bearings for the gas generator rotor of a turboshaft engine, a vibration-attenuating magnetic bearing system for an airborne telescope, and magnetic bearings for the compressor of a space-rated heat pump system. The emphasis of these programs is to develop magnetic bearing technologies to the point where magnetic bearings can be truly useful, reliable, and well tested components for the aerospace community.
Thermal equilibrium solution to new model of bipolar hybrid quantum hydrodynamics
Di Michele, Federica; Mei, Ming; Rubino, Bruno; Sampalmieri, Rosella
2017-08-01
In this paper we study the hybrid quantum hydrodynamic model for nano-sized bipolar semiconductor devices in thermal equilibrium. By introducing a hybrid version of the Bhom potential, we derive a bipolar hybrid quantum hydrodynamic model, which is able to account for quantum effects in a localized region of the device for both electrons and holes. Coupled with Poisson equation for the electric potential, the steady-state system is regionally degenerate in its ellipticity, due to the quantum effect only in part of the device. This regional degeneracy of ellipticity makes the study more challenging. The main purpose of the paper is to investigate the existence and uniqueness of the weak solutions to this new type of equations. We first establish the uniform boundedness of the smooth solutions to the modified bipolar quantum hydrodynamic model by the variational method, then we use the compactness technique to prove the existence of weak solutions to the original hybrid system by taking hybrid limit. In particular, we account for two different kinds of hybrid behaviour. We perform the first hybrid limit when both electrons and holes behave quantum in a given region of the device, and the second one when only one carrier exhibits hybrid behaviour, whereas the other one is presented classically in the whole domain. The semi-classical limit results are also obtained. Finally, the theoretical results are tested numerically on a simple toy model.
Simulation of Plain Bearings in Turbo-Generators Using the Stand ISO7902
Directory of Open Access Journals (Sweden)
Alejandra Elena García Toll
2011-02-01
Full Text Available The study of plain bearings is fundamental in guaranteeing the full running and maintenance of machines. Due to the fluctuations in working conditions, the simulation of plain bearing in turbines and generators has become increasingly necessary. The procedure used to obtain data is based on ISO Standards 7902:1998 which involves the calculation of the load capacity of plain bearings under hydrodynamic lubricant conditions. This method can be used to determine if the plain bearing under load and working conditions will be able to form and maintain a film of lubricant which is important to separate completely the shaft and bearing sliding surfaces in order to prevent friction between these two. Also, with this method it is possible to determine the ideal working conditions and limiting factors in the functioning of plain bearing. Some of these factors are: relative bearing clearance, shaft velocity, lubricant viscosity, diameter and width of bearing, average peak-to-valley height of sliding surfaces and nominal radial. Additionally, a calculation sample is presented
Nanoprecipitation in bearing steels
Energy Technology Data Exchange (ETDEWEB)
Barrow, A.T.W. [SKF University Technology Centre, Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB2 3QZ (United Kingdom); Rivera-Diaz-del-Castillo, P.E.J., E-mail: pejr2@cam.ac.uk [SKF University Technology Centre, Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB2 3QZ (United Kingdom)
2011-11-15
{theta}-phase is the main hardening species in bearing steels and appears in both martensitically and bainitically hardened microstructures. This work presents a survey of the microstrucural features accompanying nanoprecipitation in bearing steels. Nanoprecipitate structures formed in 1C-1.5Cr wt.% with additions of Cr, Mn, Mo, Si and Ni are studied. The work is combined with thermodynamic calculations and neural networks to predict the expected matrix composition, and whether this will transform martensitically or bainitically. Martensite tetragonality, composition and the amount of retained austenite are related to hardness and the type of nanoprecipitate structures in martensitic grades. The {theta}-phase volume fraction, the duration of the bainite to austenite transformation and the amount of retained austenite are related to hardness and a detailed quantitative description of the precipitate nanostructures. Such description includes compositional studies using energy-dispersive spectroscopy, which shows that nanoprecipitate formation takes place under paraequilibrium. Special attention is devoted to a novel two-step bainite tempering process which shows maximum hardness; we prove that this is the most effective process for incorporating solute into the precipitates, which are finer than those resulting from one-step banitic transformation processes.
A novel left ventricular assist device with impeller pump and brushless motor compacted in one unit
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The impeller pump we developed has assisted the circulation of calves for two months, but further improvements to solve the problems of bearing wear and thrombosis along the bearing are desirable. Thus we have designed a new left ventricular assist device (LVAD) with impeller pump and brushless motor compacted in one unit, for which a ceramic bearing and a purge system through the bearing have been devised. The first experiments indicate that this new device could prospectively work for more than one year.
Modeling multi-scale resource selection for bear rub trees in northwestern Montana
Morgan Henderson, Matthew J.; Hebblewhite, Mark; Mitchell, Michael S.; Stetz, Jeffrey B.; Kendall, Katherine C.; Carlson, Ross T.
2015-01-01
Both black (Ursus americanus) and grizzly bears (U. arctos) are known to rub on trees and other objects, producing a network of repeatedly used and identifiable rub sites. In 2012, we used a resource selection function to evaluate hypothesized relationships between locations of 887 bear rubs in northwestern Montana, USA, and elevation, slope angle, density of open roads and distance from areas of heightened plant-productivity likely containing forage for bears. Slope and density of open roads were negatively correlated with rub presence. No other covariates were supported as explanatory variables. We also hypothesized that bear rubs would be more strongly associated with closed roads and developed trails than with game trails. The frequencies of bear rubs on 30 paired segments of developed tracks and game trails were not different. Our results suggest bear rubs may be associated with bear travel routes, and support their use as “random” sampling devices for non-invasive spatial capture–recapture population monitoring.
Computational design of rolling bearings
Nguyen-Schäfer, Hung
2016-01-01
This book comprehensively presents the computational design of rolling bearings dealing with many interdisciplinary difficult working fields. They encompass elastohydrodynamics (EHD), Hertzian contact theory, oil-film thickness in elastohydrodynamic lubrication (EHL), bearing dynamics, tribology of surface textures, fatigue failure mechanisms, fatigue lifetimes of rolling bearings and lubricating greases, Weibull distribution, rotor balancing, and airborne noises (NVH) in the rolling bearings. Furthermore, the readers are provided with hands-on essential formulas based on the up-to-date DIN ISO norms and helpful examples for computational design of rolling bearings. The topics are intended for undergraduate and graduate students in mechanical and material engineering, research scientists, and practicing engineers who want to understand the interactions between these working fields and to know how to design the rolling bearings for automotive industry and many other industries.
Hydrodynamic Modeling and Its Application in AUC.
Rocco, Mattia; Byron, Olwyn
2015-01-01
The hydrodynamic parameters measured in an AUC experiment, s(20,w) and D(t)(20,w)(0), can be used to gain information on the solution structure of (bio)macromolecules and their assemblies. This entails comparing the measured parameters with those that can be computed from usually "dry" structures by "hydrodynamic modeling." In this chapter, we will first briefly put hydrodynamic modeling in perspective and present the basic physics behind it as implemented in the most commonly used methods. The important "hydration" issue is also touched upon, and the distinction between rigid bodies versus those for which flexibility must be considered in the modeling process is then made. The available hydrodynamic modeling/computation programs, HYDROPRO, BEST, SoMo, AtoB, and Zeno, the latter four all implemented within the US-SOMO suite, are described and their performance evaluated. Finally, some literature examples are presented to illustrate the potential applications of hydrodynamics in the expanding field of multiresolution modeling.
Anisotropic hydrodynamics for conformal Gubser flow
Energy Technology Data Exchange (ETDEWEB)
Strickland, Michael; Nopoush, Mohammad [Kent State University, Kent OH 44242 (United States); Ryblewski, Radoslaw [The H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków (Poland)
2016-12-15
In this proceedings contribution, we review the exact solution of the anisotropic hydrodynamics equations for a system subject to Gubser flow. For this purpose, we use the leading-order anisotropic hydrodynamics equations which assume that the distribution function is ellipsoidally symmetric in local-rest-frame momentum. We then prove that the SO(3){sub q} symmetry in de Sitter space constrains the anisotropy tensor to be of spheroidal form with only one independent anisotropy parameter remaining. As a consequence, the exact solution reduces to the problem of solving two coupled non-linear differential equations. We show that, in the limit that the relaxation time goes to zero, one obtains Gubser's ideal hydrodynamic solution and, in the limit that the relaxation time goes to infinity, one obtains the exact free streaming solution obtained originally by Denicol et al. For finite relaxation time, we solve the equations numerically and compare to the exact solution of the relaxation-time-approximation Boltzmann equation subject to Gubser flow. Using this as our standard, we find that anisotropic hydrodynamics describes the spatio-temporal evolution of the system better than all currently known dissipative hydrodynamics approaches.
Optimization of residual heat removal pump axial thrust and axial bearing
Energy Technology Data Exchange (ETDEWEB)
Schubert, F.
1996-12-01
The residual heat removal (RHR) pumps of German 1300 megawatt pressurized-water reactor (PWR) power plants are of the single stage end suction type with volute casing or with diffuser and forged circular casing. Due to the service conditions the pumps have to cover the full capacity range as well as a big variation in suction static pressure. This results in a big difference in the axial thrust that has to be borne by the axial bearing. Because these pumps are designed to operate without auxiliary systems (things that do not exist can not fail), they are equipped with antifriction bearings and sump oil lubrication. To minimize the heat production within the bearing casing, a number of PWR plants have pumps with combined axial/radial bearings of the ball type. Due to the fact that the maximum axial thrust caused by static pressure and hydrodynamic forces on the impeller is too big to be borne by that type of axial bearing, the impellers were designed to produce a hydrodynamic axial force that counteracts the static axial force. Thus, the resulting axial thrust may change direction when the static pressure varies.
Prototype testing of magnetic bearings
Plant, David P.; Jayaraman, Chaitanya P.; Frommer, David A.; Kirk, James A.; Anand, Davinder K.
1987-01-01
The testing and evaluation of the performance of a magnetic bearing assembly for flywheel energy storage applications are discussed. The experimental set up for determining the passive radial stiffness, active radial stiffness, and curent force sensitivity of the coils follows the method developed by Frommer (1986). Magnetic bearings design should preclude saturation and current limiting in the desired operating range, so that the system will be linear. A larger linear range will lead to a more stable magnetic bearing.
Grease lubrication in rolling bearings
Lugt, Piet M
2012-01-01
The definitive book on the science of grease lubrication for roller and needle bearings in industrial and vehicle engineering. Grease Lubrication in Rolling Bearings provides an overview of the existing knowledge on the various aspects of grease lubrication (including lubrication systems) and the state of the art models that exist today. The book reviews the physical and chemical aspects of grease lubrication, primarily directed towards lubrication of rolling bearings. The first part of the book covers grease composition, properties and rheology, including thermal
Controllable Lubrication for Main Engine Bearings Using Mechanical and Piezoelectric Actuators
DEFF Research Database (Denmark)
Estupinan, Edgar; Santos, Ilmar
2012-01-01
Although mechatronic systems are nowadays implemented in a large number of systems in vehicles, active lubrication systems are still incipient in industrial applications. This study is an attempt to extend the active lubrication concept to combustion engines and gives a theoretical contribution...... to this field. One refers to active lubrication when conventional hydrodynamic lubrication is combined with dynamically modified hydrostatic lubrication. In this study, two different schemes for the oil injection system in actively lubricated main engine bearings are presented. The use of active lubrication...... in journal bearings helps to enhance the hydrodynamic fluid film by increasing the fluid film thickness and consequently reducing viscous friction losses and vibrations. In this study, the hydrostatic lubrication is modified by injecting oil at controllable pressures through orifices circumferentially...
Cyanines Bearing Quaternary Azaaromatic Moieties
Sbliwa, Wanda; Matusiak, Grazyna; Bachowska, Barbara
2006-01-01
Selected cyanines bearing quaternary azaaromatic moieties are presented, showing their monomers, dimers and polymers, as well as their possible applications. Cyanines having NLO properties are also briefly described.
Mirror-type Boundary Condition in Smoothed Particle Hydrodynamics
Marjani, A.; Edge, B. L.
2013-12-01
The main purpose of this study is to enhance the Smoothed Particle Hydrodynamics (SPH) method that can accurately simulate the hydrodynamic forces on a structure and can be used for determining efficient designs for wave energy devices. Smoothed particle hydrodynamics is a method used in various fields of study. Unlike the finite difference method (FDM), SPH is a Lagrangian mesh-free method in which each particle moves according to the property of the surrounding flow and governing conservation equations, and carries the properties of water such as density, pressure and mass. Smoothed Particle Hydrodynamics is recently applied to a wide range of fluid mechanics problems. Although it is known as a highly accurate model, slow performance in 3D interface is one of its drawbacks. Not only the computational time becomes very long but also the number of processors and required memory are not easily available. Practical applications deal with high Reynolds numbers that requires high resolution to achieve adequate accuracy. A large number of coastal engineering problems are geometrically symmetric; hence, as a solution, mirror boundary condition is introduced and applied to two different tests in this paper, one is the impact of solitary wave on a large circular cylinder and the other is the interaction of dam break wave and structure. Mirror boundary condition can either produce a remarkable speedup with the same number of processors or the same running time with less number of processors. Regarding the fact that SPH algorithm yields Np log(Np) particle interactions at each time step, reducing the number of particles by a factor of 2 decreases the total number of interactions by a factor greater than 2. In other words, the relation between computational time and the number of particles does not behave like a linear function. Results show that smaller number of particles results in fewer particle interactions and less communications between processors. We believe that this
Directory of Open Access Journals (Sweden)
R. Fargère
2012-01-01
Full Text Available Some interactions between the dynamic and tribological behaviour of geared transmissions are examined, and a number of experimental and simulation results are compared. A model is introduced which incorporates most of the possible interactions between gears, shafts and hydrodynamic journal bearings. It combines (i a specific element for wide-faced gears that includes the normal contact conditions between actual mating teeth, that is, with tooth shape deviations and mounting errors, (ii shaft finite elements, and (iii the external forces generated by journal bearings determined by directly solving Reynolds' equation. The simulation results are compared with the measurement obtained on a high-precision test rig with single-stage spur and helical gears supported by hydrodynamic journal bearings. The experimental and simulation results compare well thus validating the simulation strategy both at the global and local scales.
Active control of magneto-hydrodynamic instabilities in hot plasmas
Energy Technology Data Exchange (ETDEWEB)
Igochine, Valentin (ed.) [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)
2015-04-01
Written and edited by leading plasma physics researchers. Provides a toolkit for scientists and engineers aiming to optimize plasma performance. Comprehensive treatment of different plasma instabilities. During the past century, world-wide energy consumption has risen dramatically, which leads to a quest for new energy sources. Fusion of hydrogen atoms in hot plasmas is an attractive approach to solve the energy problem, with abundant fuel, inherent safety and no long-lived radioactivity. However, one of the limits on plasma performance is due to the various classes of magneto-hydrodynamic instabilities that may occur. The physics and control of these instabilities in modern magnetic confinement fusion devices is the subject of this book. Written by foremost experts, the contributions will provide valuable reference and up-to-date research reviews for ''old hands'' and newcomers alike.
Thermal rectification based on phonon hydrodynamics and thermomass theory
Directory of Open Access Journals (Sweden)
Dong Yuan
2016-06-01
Full Text Available The thermal diode is the fundamental device for phononics. There are various mechanisms for thermal rectification, e.g. different temperature dependent thermal conductivity of two ends, asymmetric interfacial resistance, and nonlocal behavior of phonon transport in asymmetric structures. The phonon hydrodynamics and thermomass theory treat the heat conduction in a fluidic viewpoint. The phonon gas flowing through the media is characterized by the balance equation of momentum, like the Navier-Stokes equation for fluid mechanics. Generalized heat conduction law thereby contains the spatial acceleration (convection term and the viscous (Laplacian term. The viscous term predicts the size dependent thermal conductivity. Rectification appears due to the MFP supersession of phonons. The convection term also predicts rectification because of the inertia effect, like a gas passing through a nozzle or diffuser.
Active control of magneto-hydrodynamic instabilities in hot plasmas
2015-01-01
During the past century, world-wide energy consumption has risen dramatically, which leads to a quest for new energy sources. Fusion of hydrogen atoms in hot plasmas is an attractive approach to solve the energy problem, with abundant fuel, inherent safety and no long-lived radioactivity. However, one of the limits on plasma performance is due to the various classes of magneto-hydrodynamic instabilities that may occur. The physics and control of these instabilities in modern magnetic confinement fusion devices is the subject of this book. Written by foremost experts, the contributions will provide valuable reference and up-to-date research reviews for "old hands" and newcomers alike.
How to react to shallow water hydrodynamics: The larger benthic foraminifera solution.
Briguglio, Antonino; Hohenegger, Johann
2011-11-01
Symbiont-bearing larger benthic foraminifera inhabit the photic zone to provide their endosymbiotic algae with light. Because of the hydrodynamic conditions of shallow water environments, tests of larger foraminifera can be entrained and transported by water motion. To resist water motion, these foraminifera have to build a test able to avoid transport or have to develop special mechanisms to attach themselves to substrate or to hide their test below sediment grains. For those species which resist transport by the construction of hydrodynamic convenient shapes, the calculation of hydrodynamic parameters of their test defines the energetic input they can resist and therefore the scenario where they can live in. Measuring the density, size and shape of every test, combined with experimental data, helps to define the best mathematical approach for the settling velocity and Reynolds number of every shell. The comparison between water motion at the sediment-water interface and the specimen-specific settling velocity helps to calculate the water depths at which, for a certain test type, transport, deposition and accumulation may occur. The results obtained for the investigated taxa show that the mathematical approach gives reliable results and can discriminate the hydrodynamic behaviour of different shapes. Furthermore, the study of the settling velocities, calculated for all the investigated taxa, shows that several species are capable to resist water motion and therefore they appear to be functionally adapted to the hydrodynamic condition of its specific environment. The same study is not recommended on species which resist water motion by adopting hiding or anchoring strategies to avoid the effect of water motion.
Status and future of hydrodynamical model atmospheres
Ludwig, H G
2004-01-01
Since about 25 years ago work has been dedicated to the development of hydrodynamical model atmospheres for cool stars (of A to T spectral type). Despite their obviously sounder physical foundation in comparison with standard hydrostatic models, their general application has been rather limited. In order to understand why this is, and how to progress, we review the present status of hydrodynamical modelling of cool star atmospheres. The development efforts were and are motivated by the theoretical interest of understanding the dynamical processes operating in stellar atmospheres. To show the observational impact, we discuss examples in the fields of spectroscopy and stellar structure where hydrodynamical modelling provided results on a level qualitatively beyond standard models. We stress present modelling challenges, and highlight presently possible and future observations that would be particularly valuable in the interplay between model validation and interpretation of observables, to eventually widen the ...
First Numerical Simulations of Anomalous Hydrodynamics
Hongo, Masaru; Hirano, Tetsufumi
2013-01-01
Anomalous hydrodynamics is a low-energy effective theory that captures effects of quantum anomalies. We develop a numerical code of anomalous hydrodynamics and apply it to dynamics of heavy-ion collisions, where anomalous transports are expected to occur. This is the first attempt to perform fully non-linear numerical simulations of anomalous hydrodynamics. We discuss implications of the simulations for possible experimental observations of anomalous transport effects. From analyses of the charge-dependent elliptic flow parameters ($v_2^\\pm$) as a function of the net charge asymmetry $A_\\pm$, we quantitatively verify that the linear dependence of $\\Delta v_2 \\equiv v_2^- - v_2^+$ on the net charge asymmetry $A_\\pm$ cannot be regarded as a sensitive signal of anomalous transports, contrary to previous studies. We, however, find that the intercept $\\Delta v_2(A_\\pm=0)$ is sensitive to anomalous transport effects.
Hydrodynamics of a unitary Bose gas
Man, Jay; Fletcher, Richard; Lopes, Raphael; Navon, Nir; Smith, Rob; Hadzibabic, Zoran
2016-05-01
In general, normal-phase Bose gases are well described by modelling them as ideal gases. In particular, hydrodynamic flow is usually not observed in the expansion dynamics of normal gases, and is more readily observable in Bose-condensed gases. However, by preparing strongly-interacting clouds, we observe hydrodynamic behaviour in normal-phase Bose gases, including the `maximally' hydrodynamic unitary regime. We avoid the atom losses that often hamper experimental access of this regime by using radio-frequency injection, which switches on interactions much faster than trap or loss timescales. At low phase-space densities, we find excellent agreement with a collisional model based on the Boltzmann equation. At higher phase-space densities our results show a deviation from this model in the vicinity of an Efimov resonance, which cannot be accounted for by measured losses.
Hydrodynamics of the Chiral Dirac Spectrum
Liu, Yizhuang; Zahed, Ismail
2016-01-01
We derive a hydrodynamical description of the eigenvalues of the chiral Dirac spectrum in the vacuum and in the large $N$ (volume) limit. The linearized hydrodynamics supports sound waves. The stochastic relaxation of the eigenvalues is captured by a hydrodynamical instanton configuration which follows from a pertinent form of Euler equation. The relaxation from a phase of localized eigenvalues and unbroken chiral symmetry to a phase of de-localized eigenvalues and broken chiral symmetry occurs over a time set by the speed of sound. We show that the time is $\\Delta \\tau=\\pi\\rho(0)/2\\beta N$ with $\\rho(0)$ the spectral density at zero virtuality and $\\beta=1,2,4$ for the three Dyson ensembles that characterize QCD with different quark representations in the ergodic regime.
Hydrodynamics of bacterial colonies: A model
Lega, J.; Passot, T.
2003-03-01
We propose a hydrodynamic model for the evolution of bacterial colonies growing on soft agar plates. This model consists of reaction-diffusion equations for the concentrations of nutrients, water, and bacteria, coupled to a single hydrodynamic equation for the velocity field of the bacteria-water mixture. It captures the dynamics inside the colony as well as on its boundary and allows us to identify a mechanism for collective motion towards fresh nutrients, which, in its modeling aspects, is similar to classical chemotaxis. As shown in numerical simulations, our model reproduces both usual colony shapes and typical hydrodynamic motions, such as the whirls and jets recently observed in wet colonies of Bacillus subtilis. The approach presented here could be extended to different experimental situations and provides a general framework for the use of advection-reaction-diffusion equations in modeling bacterial colonies.
Dynamo efficiency controlled by hydrodynamic bistability.
Miralles, Sophie; Herault, Johann; Herault, Johann; Fauve, Stephan; Gissinger, Christophe; Pétrélis, François; Daviaud, François; Dubrulle, Bérengère; Boisson, Jean; Bourgoin, Mickaël; Verhille, Gautier; Odier, Philippe; Pinton, Jean-François; Plihon, Nicolas
2014-06-01
Hydrodynamic and magnetic behaviors in a modified experimental setup of the von Kármán sodium flow-where one disk has been replaced by a propeller-are investigated. When the rotation frequencies of the disk and the propeller are different, we show that the fully turbulent hydrodynamic flow undergoes a global bifurcation between two configurations. The bistability of these flow configurations is associated with the dynamics of the central shear layer. The bistable flows are shown to have different dynamo efficiencies; thus for a given rotation rate of the soft-iron disk, two distinct magnetic behaviors are observed depending on the flow configuration. The hydrodynamic transition controls the magnetic field behavior, and bifurcations between high and low magnetic field branches are investigated.
Hydrodynamics, resurgence and trans-asymptotics
Basar, Gokce
2015-01-01
The second-order hydrodynamical description of a homogeneous conformal plasma that undergoes a boost- invariant expansion is given by a single nonlinear ordinary differential equation, whose resurgent asymptotic properties we study, developing further the recent work of Heller and Spalinski [Phys. Rev. Lett. 115, 072501 (2015)]. Resurgence clearly identifies the non-hydrodynamic modes that are exponentially suppressed at late times, analogous to the quasi-normal-modes in gravitational language, organizing these modes in terms of a trans-series expansion. These modes are analogs of instantons in semi-classical expansions, where the damping rate plays the role of the instanton action. We show that this system displays the generic features of resurgence, with explicit quantitative relations between the fluctuations about different orders of these non-hydrodynamic modes. The imaginary part of the trans-series parameter is identified with the Stokes constant, and the real part with the freedom associated with init...
Holography, Hydrodynamization and Heavy-Ion Collisions
Heller, Michal P
2016-01-01
In the course of the past several years holography has emerged as an ab initio tool in exploring strongly-time-dependent phenomena in gauge theories. These lecture notes overview recent developments in this area driven by phenomenological questions concerning applicability of hydrodynamics under extreme conditions occurring in ultrarelativistic heavy-ion collisions at RHIC and LHC. The topics include equilibration time scales, holographic collisions and hydrodynamization from the point of view of the asymptotic character of the hydrodynamic gradient expansion. The emphasis is put on concepts rather than calculational techniques and particular attention is devoted to present these developments in the context of the most recent advances and some of the open problems.
The RAGE radiation-hydrodynamic code
Gittings, Michael; Clover, Michael; Betlach, Thomas; Byrne, Nelson; Coker, Robert; Dendy, Edward; Hueckstaedt, Robert; New, Kim; Oakes, W Rob; Ranta, Dale; Stefan, Ryan
2008-01-01
We describe RAGE, the ``Radiation Adaptive Grid Eulerian'' radiation-hydrodynamics code, including its data structures, its parallelization strategy and performance, its hydrodynamic algorithm(s), its (gray) radiation diffusion algorithm, and some of the considerable amount of verification and validation efforts. The hydrodynamics is a basic Godunov solver, to which we have made significant improvements to increase the advection algorithm's robustness and to converge stiffnesses in the equation of state. Similarly, the radiation transport is a basic gray diffusion, but our treatment of the radiation-material coupling, wherein we converge nonlinearities in a novel manner to allow larger timesteps and more robust behavior, can be applied to any multi-group transport algorithm.
Hydrodynamic simulations with the Godunov SPH
Murante, Giuseppe; Brunino, Riccardo; Cha, Suneg-Hoon
2011-01-01
We present results based on an implementation of the Godunov Smoothed Particle Hydrodynamics (GSPH), originally developed by Inutsuka (2002), in the GADGET-3 hydrodynamic code. We first review the derivation of the GSPH discretization of the equations of moment and energy conservation, starting from the convolution of these equations with the interpolating kernel. The two most important aspects of the numerical implementation of these equations are (a) the appearance of fluid velocity and pressure obtained from the solution of the Riemann problem between each pair of particles, and (b the absence of an artificial viscosity term. We carry out three different controlled hydrodynamical three-dimensional tests, namely the Sod shock tube, the development of Kelvin-Helmholtz instabilities in a shear flow test, and the "blob" test describing the evolution of a cold cloud moving against a hot wind. The results of our tests confirm and extend in a number of aspects those recently obtained by Cha (2010): (i) GSPH provi...
Hydrodynamic dispersion broadening of a sedimentation front
Martin, J.; Rakotomalala, N.; Salin, D.
1994-10-01
Hydrodynamic dispersion is responsible for the spreading of the sedimentation front even in a noncolloidal monodisperse suspension. Measurements of the broadening of the top front observed during sedimentation have been used in determining the hydrodynamic dispersion coefficient. Hindered settling has an opposed effect and leads to the self-sharpening of the front. Both effects have to be taken into account simultaneously. This Letter provides a simple, but complete determination of the space and time concentration profile and shows that the final front should consist of a steady-shape profile propagating at constant velocity. With such a solution, the data of Davis et al. [AIChE J. 34, 123 (1988); J. Fluid Mech. 196, 107 (1988)] give hydrodynamic dispersion coefficient five times larger than their former analysis, in agreement with Lee et al. [Phys. Fluids A 4, 2601 (1992)].
Experimental Investigation of Hydrodynamic Self-Acting Gas Bearings at High Knudsen Numbers.
1980-07-01
Electronics Devision Ampex Corporation 100 Morse Street Advanced Technology Division Norwood, MA 02062 401 Broadway Redwood City, CA 94063 CMr. R. G. Jordan ...98195 and Technology 400 1st Street, NW Mr. Arthur Huxley Washington, D.C. 20545 Admiralty Compass Observatory Ditton Park Professor J. V. Foa Slough
Simulation of the dynamic behaviour of a geared transmission on hydrodynamic journal bearings
2012-01-01
International audience; Geared transmissions are inherently noisy but their capacity to match the speeds and torques from one machine to another makes them irreplaceable in a number of high power applications such as marine propulsion. In such systems, stealthiness is often crucial and the prediction and control of the radiated noise is therefore an important research topic. In this paper, an original approach is proposed which combines (i) a mechanical model for gears based on finite element...
Radiation hydrodynamics integrated in the PLUTO code
Kolb, Stefan M.; Stute, Matthias; Kley, Wilhelm; Mignone, Andrea
2013-11-01
Aims: The transport of energy through radiation is very important in many astrophysical phenomena. In dynamical problems the time-dependent equations of radiation hydrodynamics have to be solved. We present a newly developed radiation-hydrodynamics module specifically designed for the versatile magnetohydrodynamic (MHD) code PLUTO. Methods: The solver is based on the flux-limited diffusion approximation in the two-temperature approach. All equations are solved in the co-moving frame in the frequency-independent (gray) approximation. The hydrodynamics is solved by the different Godunov schemes implemented in PLUTO, and for the radiation transport we use a fully implicit scheme. The resulting system of linear equations is solved either using the successive over-relaxation (SOR) method (for testing purposes) or using matrix solvers that are available in the PETSc library. We state in detail the methodology and describe several test cases to verify the correctness of our implementation. The solver works in standard coordinate systems, such as Cartesian, cylindrical, and spherical, and also for non-equidistant grids. Results: We present a new radiation-hydrodynamics solver coupled to the MHD-code PLUTO that is a modern, versatile, and efficient new module for treating complex radiation hydrodynamical problems in astrophysics. As test cases, either purely radiative situations, or full radiation-hydrodynamical setups (including radiative shocks and convection in accretion disks) were successfully studied. The new module scales very well on parallel computers using MPI. For problems in star or planet formation, we added the possibility of irradiation by a central source.
Bahrdt, J
2006-01-01
The interaction of an insertion device with the electron beam in a storage ring is discussed. The radiation property including brightness, ux and polarization of an ideal and real planar and helical / elliptical device is described. The magnet design of planar, helical, quasiperiodic devices and of devices with a reduced on axis power density are resumed.
Micro flow cytometer with 3D hydrodynamic focusing
Testa, Genni; Bernini, Romeo
2012-01-01
This paper reports a micro flow cytometer fabricated in Polymethylmethacrylate (PMMA) in which a 3d hydrodynamic flow focusing is employed in order to align the particles in a single line along the focused stream. The device has been fabricated by direct micro milling of two parts of PMMA that were finally bonded together. With a suitable choice of the fluidic channel geometry, a circular sample stream located in the center of the channel is obtained. Numerical simulations have been performed in order to investigate the flow characteristic of the structure and find the desiderated geometry. Three dimensional hydrofocusing of the sample fluid was analysed and demonstrated by cross sectional fluorescence imaging in good agreement with numerical simulations. Flow cytometry measurements have been performed by using 10μm particles. From the analysis of the fluorescence signals collected at each transit event we can confirm that the device was capable of creating a single-file particle stream. The results show that the device was capable of discriminating single microparticles with a good signal-to-noise ratio and a high throughput.
Fish stocking density impacts tank hydrodynamics
DEFF Research Database (Denmark)
Rasmussen, Michael R.; Lunger, Angela; Laursen, Jesper;
2006-01-01
hydrodynamics was established using in-tank-based Rhodamine WT fluorometry at a flow rate of 0.23 l s-1 (tank exchange rate of 1.9 h-1). With increasing numbers of animals, curvilinear relationships were observed for dispersion coefficients and tank mixing times. Stocking densities of 3, 6, 9 and 12 kg m-3......The effect of stocking density upon the hydrodynamics of a circular tank, configured in a recirculation system, was investigated. Red drums Sciaenops ocellatus of approximately 140 g wet weight, were stocked at five rates varying from 0 to 12 kg m-3. The impact of the presence of fish upon tank...
Bounce-free Spherical Hydrodynamic Implosion
Kagan, Grigory; Hsu, Scott C; Awe, Thomas J
2011-01-01
In a bounce-free spherical hydrodynamic implosion, the post-stagnation hot core plasma does not expand against the imploding flow. Such an implosion scheme has the advantage of improving the dwell time of the burning fuel, resulting in a higher fusion burn-up fraction. The existence of bounce-free spherical implosions is demonstrated by explicitly constructing a family of self-similar solutions to the spherically symmetric ideal hydrodynamic equations. When applied to a specific example of plasma liner driven magneto-inertial fusion, the bounce-free solution is found to produce at least a factor of four improvement in dwell time and fusion energy gain.
Introduction to physics mechanics, hydrodynamics thermodynamics
Frauenfelder, P
2013-01-01
Introduction of Physics: Mechanics , Hydrodynamics, Thermodynamics covers the principles of matter and its motion through space and time, as well as the related concepts of energy and force. This book is composed of eleven chapters, and begins with an introduction to the basic principles of mechanics, hydrodynamics, and thermodynamics. The subsequent chapters deal with the statics of rigid bodies and the dynamics of particles and rigid bodies. These topics are followed by discussions on elasticity, mechanics of fluids, the basic concept of thermodynamic, kinetic theory, and crystal structure o
Supernova hydrodynamics experiments using the Nova laser
Energy Technology Data Exchange (ETDEWEB)
Remington, B.A.; Glendinning, S.G.; Estabrook, K.; Wallace, R.J.; Rubenchik, A. [Lawrence Livermore National Lab., CA (United States); Kane, J.; Arnett, D. [Arizona Univ., Tucson, AZ (United States). Stewart Observatory; Drake, R.P. [Michigan Univ., Ann Arbor, MI (United States); McCray, R. [Colorado Univ., Boulder, CO (United States)
1997-04-01
We are developing experiments using the Nova laser to investigate two areas of physics relevant to core-collapse supernovae (SN): (1) compressible nonlinear hydrodynamic mixing and (2) radiative shock hydrodynamics. In the former, we are examining the differences between the 2D and 3D evolution of the Rayleigh-Taylor instability, an issue critical to the observables emerging from SN in the first year after exploding. In the latter, we are investigating the evolution of a colliding plasma system relevant to the ejecta-stellar wind interactions of the early stages of SN remnant formation. The experiments and astrophysical implications are discussed.
Broken Lifshitz invariance, spin waves and hydrodynamics
Roychowdhury, Dibakar
2016-01-01
In this paper, based on the basic principles of thermodynamics, we explore the hydrodynamic regime of interacting Lifshitz field theories in the presence of broken rotational invariance. We compute the entropy current and discover new dissipative effects those are consistent with the principle of local entropy production in the fluid. In our analysis, we consider both the parity even as well as the parity odd sector upto first order in the derivative expansion. Finally, we argue that the present construction of the paper could be systematically identified as that of the hydrodynamic description associated with \\textit{spin waves} (away from the domain of quantum criticality) under certain limiting conditions.
Colliding shockwaves and hydrodynamics in extreme conditions
Chesler, Paul M
2015-01-01
Using numerical holography, we study the collision of a planar sheet of energy with a bounded localized distribution of energy. The collision, which mimics proton-nucleus collisions, produces a localized lump of debris with transverse size $R \\sim 1/T_{\\rm eff}$ with $T_{\\rm eff}$ the effective temperature, and has large gradients and large transverse flow. Nevertheless, the post-collision evolution is well-described by viscous hydrodynamics. Our results bolster the notion that debris produced in proton-nucleus collisions may be modeled using hydrodynamics.
Hydrodynamic interactions between nearby slender filaments
Man, Yi; Lauga, Eric
2016-01-01
Cellular biology abound with filaments interacting through fluids, from intracellular microtubules, to rotating flagella and beating cilia. While previous work has demonstrated the complexity of capturing nonlocal hydrodynamic interactions between moving filaments, the problem remains difficult theoretically. We show here that when filaments are closer to each other than their relevant length scale, the integration of hydrodynamic interactions can be approximately carried out analytically. This leads to a set of simplified local equations, illustrated on a simple model of two interacting filaments, which can be used to tackle theoretically a range of problems in biology and physics.
Holography and hydrodynamics in small systems
Chesler, Paul M.
2016-12-01
Using holographic duality, we present results for the off-center collision of Gaussian wave packets in strongly coupled N = 4 supersymmetric Yang-Mills theory. The wave packets are thin along the collision axis and superficially at least resemble Lorentz contracted colliding protons. The collision results in the formation of a droplet of liquid of size R ∼ 1 /Teff where Teff is the effective temperature, which is the characteristic microscopic scale in strongly coupled plasma. These results demonstrate the applicability of hydrodynamics to microscopically small systems and bolster the notion that hydrodynamics can be applied to heavy-light ion collisions as well as proton-proton collisions.
Modeling and Simulation of Marine Hydrokinetic Devices
Shoele, K.; Previsic, M.
2012-12-01
To accurately design a wave energy conversion system, the time domain numerical model is necessary. This is due to nonlinearities in the system from different sources such as hydrodynamic forces, device dynamics, control mechanisms, and mooring lines. Combining model accuracy with efficient and fast calculation of hydrodynamic forces in time domain is challenging and time-consuming. This article describes an easy to use and unified computational framework that handles those challenges efficiently for different types of wave energy converters. The framework has been generated as a Matlab toolbox that contains the key components of a wave to wire model. It can be used for initial performance evaluation of wave energy converters as well as detailed nonlinear analysis in the time domain. The preprocessing, post-processing, and standard modeling procedure are among the unique capabilities of the toolbox that enable users to check different device concepts and optimize device performance without dealing with modeling troubles. The hydrodynamic parameters are initially computed using the three-dimensional panel method and transformed to time domain by systematic identification techniques to accelerate computation of the hydrodynamic radiation forces. The dynamics of the whole system including nonlinear viscous forces, multi-body dynamics, mooring lines, and power takeoff units is then modeled in Matlab Simulink interface. Validation of the model with experimental studies is described and the responses of different wave energy conversion systems, especially their converted power, are presented.
Bursey, Roger W., Jr.; Haluck, David A.; Olinger, John B.; Owen, Samuel S.; Poole, William E.
1995-01-01
High-performance bearing features strong, lightweight, self-lubricating cage with self-lubricating liners in ball apertures. Designed to operate at high speed (tens of thousands of revolutions per minute) in cryogenic environment like liquid-oxygen or liquid-hydrogen turbopump. Includes inner race, outer race, and cage keeping bearing balls equally spaced.
Permanent-Magnet Meissner Bearing
Robertson, Glen A.
1994-01-01
Permanent-magnet meissner bearing features inherently stable, self-centering conical configuration. Bearing made stiffer or less stiff by selection of magnets, springs, and spring adjustments. Cylindrical permanent magnets with axial magnetization stacked coaxially on rotor with alternating polarity. Typically, rare-earth magnets used. Magnets machined and fitted together to form conical outer surface.
Bursey, Roger W., Jr.; Haluck, David A.; Olinger, John B.; Owen, Samuel S.; Poole, William E.
1995-01-01
High-performance bearing features strong, lightweight, self-lubricating cage with self-lubricating liners in ball apertures. Designed to operate at high speed (tens of thousands of revolutions per minute) in cryogenic environment like liquid-oxygen or liquid-hydrogen turbopump. Includes inner race, outer race, and cage keeping bearing balls equally spaced.
Superconducting bearings for flywheel applications
DEFF Research Database (Denmark)
Abrahamsen, A.B.
2001-01-01
A literature study on the application of superconducting bearings in energy storage flywheel systems. The physics of magnetic levitation and superconductors are presented in the first part of the report, followed by a discussion of the literature found onthe applications of superconducting bearings...
Jentink, F.A.
1898-01-01
The other day I read in a dutch popular periodical a paper dealing with the different species of Bears and their geographical distribution. To my great surprise the Malayan Bear was mentioned from Java: the locality Java being quite new to me I wrote to the author of that paper and asked him some in
Space Station alpha joint bearing
Everman, Michael R.; Jones, P. Alan; Spencer, Porter A.
1987-01-01
Perhaps the most critical structural system aboard the Space Station is the Solar Alpha Rotary Joint which helps align the power generation system with the sun. The joint must provide structural support and controlled rotation to the outboard transverse booms as well as power and data transfer across the joint. The Solar Alpha Rotary Joint is composed of two transition sections and an integral, large diameter bearing. Alpha joint bearing design presents a particularly interesting problem because of its large size and need for high reliability, stiffness, and on orbit maintability. The discrete roller bearing developed is a novel refinement to cam follower technology. It offers thermal compensation and ease of on-orbit maintenance that are not found in conventional rolling element bearings. How the bearing design evolved is summarized. Driving requirements are reviewed, alternative concepts assessed, and the selected design is described.
Geophagy by yellowstone grizzly bears
Mattson, D.J.; Green, G.I.; Swalley, R.
1999-01-01
We documented 12 sites in the Yellowstone ecosystem where grizzly bears (Ursus arctos horribilis) had purposefully consumed soil (an activity known as geophagy). We also documented soil in numerous grizzly bear feces. Geophagy primarily occurred at sites barren of vegetation where surficial geology had been modified by geothermal activity. There was no evidence of ungulate use at most sites. Purposeful consumption of soil by bears peaked first from March to May and again from August to October, synchronous with peaks in consumption of ungulate meat and mushrooms. Geophageous soils were distinguished from ungulate mineral licks and soils in general by exceptionally high concentrations of potassium (K) and high concentrations of magnesium (Mg) and sulphur (S). Our results do not support the hypotheses that bears were consuming soil to detoxify secondary compounds in grazed foliage, as postulated for primates, or to supplement dietary sodium, as known for ungulates. Our results suggest that grizzly bears could have been consuming soil as an anti-diarrheal.
Optimum design of flywheel storage system using superconducting magnetic bearings
Energy Technology Data Exchange (ETDEWEB)
Lee, Soo Hun; Kim, Jong Soo; Kim, Jung Guen [Ajou University, Suwon (Korea)
1999-03-01
The flywheel energy storage system using superconducting magnetic bearings is a device to store electrical energy as rotational kinetic energy by motor and to convert it to electrical energy by generator when it is necessary. An analytical model of the SMB-FESS is necessary to identify the system behavior. At first, we have to model the superconducting magnetic bearings that have different characteristics from mechanical and the electric magnetic bearing. Modeling the SMB is same as estimating the bearing parameter. The theoretical modal parameter is calculated through the equation of motion and the experimental modal parameter is estimated through the impact testing (modal testing). The bearing parameter is searched by using the non-linear least square method until the theoretical result corresponds to the experimental result. The suggested modeling method is verified by comparing experimental and analytical frequency response function. The loss mechanisms associated with the combined effects of magnetic unbalance and hysteretic damping in the superconducting flywheel system have been modeled under the assumption that dynamic characteristics of the bearing can be approximated by a linear, elastic anisotropic spring with complex stiffness. Theoretical energy loss model effected by unbalance is derived from generalized rotational model including gyroscopic effect and generalized response. The validity of suggested energy loss model is confirmed by comparing experimental deceleration curve. (author). 12 refs., 28 figs., 10 tabs.
Stabilizing geometry for hydrodynamic rotary seals
Dietle, Lannie L.; Schroeder, John E.
2010-08-10
A hydrodynamic sealing assembly including a first component having first and second walls and a peripheral wall defining a seal groove, a second component having a rotatable surface relative to said first component, and a hydrodynamic seal comprising a seal body of generally ring-shaped configuration having a circumference. The seal body includes hydrodynamic and static sealing lips each having a cross-sectional area that substantially vary in time with each other about the circumference. In an uninstalled condition, the seal body has a length defined between first and second seal body ends which varies in time with the hydrodynamic sealing lip cross-sectional area. The first and second ends generally face the first and second walls, respectively. In the uninstalled condition, the first end is angulated relative to the first wall and the second end is angulated relative to the second wall. The seal body has a twist-limiting surface adjacent the static sealing lip. In the uninstalled condition, the twist-limiting surface is angulated relative to the peripheral wall and varies along the circumference. A seal body discontinuity and a first component discontinuity mate to prevent rotation of the seal body relative to the first component.
Hydrodynamic modelling of hydrostatic magnesium extrusion
Moodij, E.; Rooij, de M.B.; Schipper, D.J.
2006-01-01
Wilson’s hydrodynamic model of the hydrostatic extrusion process is extended to meet the geometry found on residual billets. The transition from inlet to work zone of the process is not considered sharp as in the model of Wilson but as a rounded edge, modelled by a parabolic function. It is shown th
Hydrodynamic limits of the Vlasov equation
Energy Technology Data Exchange (ETDEWEB)
Caprino, S. (Universita' de L' Aquila Coppito (Italy)); Esposito, R.; Marra, R. (Universita' di Roma tor Vergata, Roma (Italy)); Pulvirenti, M. (Universita' di Roma la Sapienza, Roma (Italy))
1993-01-01
In the present work, the authors study the Vlasov equation for repulsive forces in the hydrodynamic regime. For initial distributions at zero temperature the limit equations turn out to be the compressible and incompressible Euler equations under suitable space-time scalings. 17 refs.
Hydrodynamics and Roughness of Irregular Boundaries
2011-01-01
principle component analysis (PCA) similar to that used by Preston (2009) for ship- mounted multibeam data. Several variables derived from the...complex boundaries as well as characterization of acoustic and optical processes. Turbulent processes at the seabed are at the foundation of littoral...nearshore hydrodynamics, turbulence over rough beds influences optical and acoustic properties. Bed roughness also directly affects acoustic propagation in
Impact of Hydrodynamics on Oral Biofilm Strength
Paramonova, E.; Kalmykowa, O. J.; van der Mei, H. C.; Busscher, H. J.; Sharma, P. K.
2009-01-01
Mechanical removal of oral biofilms is ubiquitously accepted as the best way to prevent caries and periodontal diseases. Removal effectiveness strongly depends on biofilm strength. To investigate the influence of hydrodynamics on oral biofilm strength, we grew single- and multi-species biofilms of S
Hydrodynamic erosion process of undisturbed clay
Zhao, G.; Visser, P.J.; Vrijling, J.K.
2011-01-01
This paper describes the hydrodynamic erosion process of undisturbed clay due to the turbulent flow, based on theoretical analysis and experimental results. The undisturbed clay has the unique and complicated characteristics of cohesive force among clay particles, which are highly different from dis
Hydrodynamic impact response, a flexible view
Vredeveldt, A.W.; Hoogeland, M.; Janssen, G.Th.M.
2001-01-01
The popularity of high-speed craft is steadily increasing. Until now, much attention has been focussed on the hydrodynamic aspects of these craft. The structural design of these vessels is usually considered in a quasi static sense. However, due to the requirement of light ship structures, fast ship
Hydrodynamics: Fluctuating initial conditions and two-particle correlations
Energy Technology Data Exchange (ETDEWEB)
Andrade, R.P.G.; Grassi, F. [Instituto de Fisica, Universidade de Sao Paulo (Brazil); Hama, Y., E-mail: hama@fma.if.usp.b [Instituto de Fisica, Universidade de Sao Paulo (Brazil); Qian, W.-L. [Instituto de Fisica, Universidade de Sao Paulo (Brazil)
2011-03-15
Event-by-event hydrodynamics (or hydrodynamics with fluctuating initial conditions) has been developed in the past few years. Here we discuss how it may help to understand the various structures observed in two-particle correlations.
Pressurized waterproof case electronic device
Berumen, Michael L.
2013-01-31
A pressurized waterproof case for an electronic device is particularly adapted for fluid-tight containment and operation of a touch-screen electronic device or the like therein at some appreciable water depth. In one example, the case may be formed as an enclosure having an open top panel or face covered by a flexible, transparent membrane or the like for the operation of the touchscreen device within the case. A pressurizing system is provided for the case to pressurize the case and the electronic device therein to slightly greater than ambient in order to prevent the external water pressure from bearing against the transparent membrane and pressing it against the touch screen, thereby precluding operation of the touch screen device within the case. The pressurizing system may include a small gas cartridge or may be provided from an external source.
EVALUATION OF A LOW FRICTION - HIGH EFFICIENCY ROLLER BEARING ENGINE
Energy Technology Data Exchange (ETDEWEB)
Kolarik, Robert V. II; Shattuck, Charles W.; Copper, Anthony P.
2009-06-30
This Low Friction (High Efficiency Roller Bearing) Engine (LFE) report presents the work done by The Timken Company to conduct a technology demonstration of the benefits of replacing hydrodynamic bearings with roller bearings in the crankshaft and camshaft assemblies of an internal combustion engine for the purpose of collecting data sufficient to prove merit. The engines in the present study have been more extensively converted to roller bearings than any previous studies (40 needle roller bearings per engine) to gain understanding of the full potential of application of bearing technology. The project plan called for comparative testing of a production vehicle which was already respected for having demonstrated low engine friction levels with a rollerized version of that engine. Testing was to include industry standard tests for friction, emissions and fuel efficiency conducted on instrumented dynamometers. Additional tests for fuel efficiency, cold start resistance and other measures of performance were to be made in the actual vehicle. Comparative measurements of noise, vibration and harshness (NVH), were planned, although any work to mitigate the suspected higher NVH level in the rollerized engine was beyond the scope of this project. Timken selected the Toyota Avalon with a 3.5L V-6 engine as the test vehicle. In an attempt to minimize cost and fabrication time, a ‘made-from’ approach was proposed in which as many parts as possible would be used or modified from production parts to create the rollerized engine. Timken commissioned its test partner, FEV Engine Technology, to do a feasibility study in which they confirmed that using such an approach was possible to meet the required dimensional restrictions and tolerances. In designing the roller bearing systems for the crank and cam trains, Timken utilized as many production engine parts as possible. The crankshafts were produced from production line forgings, which use Timken steel, modified with special
Three-dimensional hydrodynamic simulations of L2 Puppis
Chen, Zhuo; Frank, Adam; Blackman, Eric G
2016-01-01
Recent observations of the L2 Puppis system suggest that the Mira-like variable may be in the early stages of forming a bipolar planetary nebula (PN). As one of nearest and brightest AGB stars, and due to its status as a binary, L2 Puppis serves as a benchmark object for studying the late-stages of stellar evolution. We perform global, three-dimensional, adaptive-mesh-refinement hydrodynamic simulations of the L2 Puppis system with AstroBEAR. The broad-band spectral-energy-distribution (SED) and synthetic observational images are post-processed from our simulations using the radiative transfer code RADMC-3D. Given the reported binary parameters, we are able to reproduce the current observational data if a short pulse of dense material is released from the AGB star with a velocity sufficient to escape the primary but not the binary. Such a situation could emanate from a thermal pulse, be induced by a periastron passage of the secondary, or could be launched if the primary ingests a planet.
Hydrodynamic lift for single cell manipulation in a femtosecond laser fabricated optofluidic chip
Directory of Open Access Journals (Sweden)
Bragheri Francesca
2017-08-01
Full Text Available Single cell sorting based either on fluorescence or on mechanical properties has been exploited in the last years in microfluidic devices. Hydrodynamic focusing allows increasing the efficiency of theses devices by improving the matching between the region of optical analysis and that of cell flow. Here we present a very simple solution fabricated by femtosecond laser micromachining that exploits flow laminarity in microfluidic channels to easily lift the sample flowing position to the channel portion illuminated by the optical waveguides used for single cell trapping and analysis.
Hydrodynamic lift for single cell manipulation in a femtosecond laser fabricated optofluidic chip
Bragheri, Francesca; Osellame, Roberto
2017-08-01
Single cell sorting based either on fluorescence or on mechanical properties has been exploited in the last years in microfluidic devices. Hydrodynamic focusing allows increasing the efficiency of theses devices by improving the matching between the region of optical analysis and that of cell flow. Here we present a very simple solution fabricated by femtosecond laser micromachining that exploits flow laminarity in microfluidic channels to easily lift the sample flowing position to the channel portion illuminated by the optical waveguides used for single cell trapping and analysis.
Gusti, T. P.; Hertanti, D. R.; Bahsan, E.; Soeryantono, H.
2013-12-01
Particle-based numerical methods, such as Smoothed Particle Hydrodynamics (SPH), may be able to simulate some hydrodynamic and morphodynamic behaviors better than grid-based numerical methods. This study simulates hydrodynamics in meanders and advection and turbulent diffusion in straight river channels using Microsoft Excel and Visual Basic. The simulators generate three-dimensional data for hydrodynamics and one-dimensional data for advection-turbulent diffusion. Fluid at rest, sloshing, and helical flow are simulated in the river meanders. Spill loading and step loading are done to simulate concentration patterns associated with advection-turbulent diffusion. Results indicate that helical flow is formed due to disturbance in morphology and particle velocity in the stream and the number of particles does not have a significant effect on the pattern of advection-turbulent diffusion concentration.
Scaling supernova hydrodynamics to the laboratory
Energy Technology Data Exchange (ETDEWEB)
Kane, J.O.
1999-06-01
Supernova (SN) 1987A focused attention on the critical role of hydrodynamic instabilities in the evolution of supernovae. To test the modeling of these instabilities, we are developing laboratory experiments of hydrodynamic mixing under conditions relevant to supernovae. Initial results were reported in J. Kane et al., Astrophys. J.478, L75 (1997) The Nova laser is used to shock two-layer targets, producing Richtmyer-Meshkov (RM) and Rayleigh-Taylor (RT) instabilities at the interfaces between the layers, analogous to instabilities seen at the interfaces of SN 1987A. Because the hydrodynamics in the laser experiments at intermediate times (3-40 ns) and in SN 1987A at intermediate times (5 s-10{sup 4} s) are well described by the Euler equations, the hydrodynamics scale between the two regimes. The experiments are modeled using the hydrodynamics codes HYADES and CALE, and the supernova code PROMETHEUS, thus serving as a benchmark for PROMETHEUS. Results of the experiments and simulations are presented. Analysis of the spike and bubble velocities in the experiment using potential flow theory and a modified Ott thin shell theory is presented. A numerical study of 2D vs. 3D differences in instability growth at the O-He and He-H interface of SN 1987A, and the design for analogous laser experiments are presented. We discuss further work to incorporate more features of the SN in the experiments, including spherical geometry, multiple layers and density gradients. Past and ongoing work in laboratory and laser astrophysics is reviewed, including experimental work on supernova remnants (SNRs). A numerical study of RM instability in SNRs is presented.
Eastern slopes grizzly bear project
Energy Technology Data Exchange (ETDEWEB)
NONE
2001-01-01
The cumulative effects of human activities on the grizzly bears in the central Canadian Rockies are not well known. As a result, a project was initiated in 1994 to address the urgent requirement for accurate scientific information on the habitat and populations of grizzly bears in the area of the Banff National Park and Kananaskis Country. This area is probably the most heavily used and developed area where the grizzly still survives. The information gathered throughout the course of this study will be used to better protect and manage the bears and other sensitive carnivores in the region. Using telemetry, researchers are monitoring 25 grizzly bears which were radio-collared in a 22,000 square-kilometer area in the upper Bow Valley drainage of the eastern Alberta slopes. The researchers involved in the project are working with representatives from Husky Oil and Talisman Energy on the sound development of the Moose Mountain oil and gas field without adversely affecting the grizzly bear population. Information collected over seven years indicated that the grizzly bears have few and infrequent offspring. Using the information gathered so far, the location of the Moose Mountain to Jumping Pound pipeline was carefully selected, since the bears recover very slowly from high mortality, and also considering that the food and cover had already been compromised by the high number of roads, trails and other human activities in the area. The status of the population and habitat of the grizzly bear will be assessed upon the conclusion of the field research phase in 2001. Models will be updated using the data obtained during eight years and will assist in the understanding of complex variables that affect grizzly bears.
EFFECT OF BEARING MACROGEOMETRY ON BEARING PERFORMANCE IN ELASTOHYDRODYNAMIC LUBRICATION
Directory of Open Access Journals (Sweden)
Emin GÜLLÜ
2000-01-01
Full Text Available During manufacturing, ideal dimension and mutual positioning of machine elements proposed in project desing can be achieved only within certain range of tolerances. These tolerances, being classified in two groups, related to micro and macro geometry of machine elements, don't have to effect the functioning of these elements. So, as for all machine elements, investigation of the effects of macro and micro tolerances for journal bearings is important. In this study, we have investigated the effect of macro geometric irregularities of journal bearings on performance characteristics. In this regard, we have studied the change of bearing performance in respect to deviation from ideal circle for an elliptic shaft with small ovality rolling in circular journal bearing.
Passive magnetic bearing in the 3rd generation miniature axial flow pump-the valvo pump 2.
Okamoto, Eiji; Ishida, Yuya; Yano, Tetsuya; Mitamura, Yoshinori
2015-06-01
The new miniature axial flow pump (valvo pump 2) that is installed at the base of the ascending aorta consists of a six-phase stator, an impeller in which four neodymium magnets are incorporated, and passive magnetic bearings that suspend the impeller for axial levitation. The impeller is sustained by hydrodynamic force between the blade tip of the impeller and the inner housing of the stator. The passive magnetic bearing consists of a ring neodymium magnet and a columnar neodymium magnet. The ring neodymium magnet is set in the stationary side and the columnar neodymium magnet is incorporated in the impeller shaft. Both neodymium magnets are coaxially mounted, and the anterior and posterior passive magnetic bearings suspend the impeller by repulsion force against the hydrodynamic force that acts to move the impeller in the inflow port direction. The passive magnetic bearing was evaluated by a tensile test, and the levitation force of 8.5 N and stiffness of 2.45 N/mm was obtained. Performance of the axial flow pump was evaluated by an in vitro experiment. The passive magnetic bearing showed sufficient levitation capacity to suspend the impeller in an axial direction. In conclusion, the passive magnetic bearing is promising to be one of levitation technology for the third-generation axial flow blood pump.
Meng, Qingen; Gao, Leiming; Liu, Feng; Yang, Peiran; Fisher, John; Jin, Zhongmin
2010-03-22
Diameter and diametral clearance of the bearing surfaces of metal-on-metal hip implants and structural supports have been recognised as key factors to reduce the dry contact and hydrodynamic pressures and improve lubrication performance. On the other hand, application of aspherical bearing surfaces can also significantly affect the contact mechanics and lubrication performance by changing the radius of the curvature of a bearing surface and consequently improving the conformity between the head and the cup. In this study, a novel metal-on-metal hip implant employing a specific aspherical bearing surface, Alpharabola, as the acetabular surface was investigated for both contact mechanics and elastohydrodynamic lubrication under steady-state conditions. When compared with conventional spherical bearing surfaces, a more uniform pressure distribution and a thicker lubricant film thickness within the loaded conjunction were predicted for this novel Alpharabola hip implant. The effects of the geometric parameters of this novel acetabular surface on the pressure distribution and lubricant thickness were investigated. A significant increase in the predicted lubricant film thickness and a significant decrease in the dry contact and hydrodynamic pressures were found with appropriate combinations of these geometric parameters, compared with the spherical bearing surface.
Non-contacting "snubber bearing" for passive magnetic bearing systems
Energy Technology Data Exchange (ETDEWEB)
Post, Richard F
2017-08-22
A new non-contacting magnetic "snubber" bearing is provided for application to rotating systems such as vehicular electromechanical battery systems subject to frequent accelerations. The design is such that in the equilibrium position the drag force of the snubber is very small (milliwatts). However in a typical case, if the rotor is displaced by as little as 2 millimeters a large restoring force is generated without any physical contact between the stationary and rotating parts of the snubber bearing.
FLUID-STRUCTURE INTERACTION OF HYDRODYNAMIC DAMPER DURING THE RUSH INTO THE WATER CHANNEL
Institute of Scientific and Technical Information of China (English)
XU Qing-xin; SHEN Rong-ying
2008-01-01
The hydrodynamic damper is a device to decrease the motion of armament carrier by use of the water resistance. When hydrodynamic damper rushes into the water channel with high velocity, it is a complicated flow phenomenon with fluid-structure interaction, free surface and moving interface. Numerical simulation using the Smoothed Particle Hydrodynamics (SPH) method coupled with the Finite Element (FE) method was successfully conducted to predict the dynamic characteristics of hydrodynamic damper. The water resistance, the pressure in the interface and the stress of structure were investigated, and the relationship among the peak of water resistance, initial velocity and actual draught was also discussed. The empirical formula was put forward to predict the water resistance. And it is found that the resistance coefficient is commonly in the range of 0.3≤C ≤0.5, when the initial velocity is larger than 50 m/s. It can be seen that the SPH method coupled with the FE method has many obvious advantages over other numerical methods for this complicated flow problem with fluid-structure interaction.
Energy Technology Data Exchange (ETDEWEB)
Reese, Jason A; Keenihan, James R; Gaston, Ryan S; Kauffmann, Keith L; Langmaid, Joseph A; Lopez, Leonardo; Maak, Kevin D; Mills, Michael E; Ramesh, Narayan; Teli, Samar R
2017-03-21
The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device with a multilayered photovoltaic cell assembly and a body portion joined at an interface region and including an intermediate layer, at least one interconnecting structural member, relieving feature, unique component geometry, or any combination thereof.
Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.
2015-06-02
The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device with a multilayered photovoltaic cell assembly and a body portion joined at an interface region and including an intermediate layer, at least one interconnecting structural member, relieving feature, unique component geometry, or any combination thereof.
DEFF Research Database (Denmark)
2013-01-01
A concentration device (2) for filter filtration concentration of particles (4) from a volume of a fluid (6). The concentration device (2) comprises a filter (8) configured to filter particles (4) of a predefined size in the volume of the fluid (6). The concentration device (2) comprises...
Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.
2015-09-01
The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device (10) with a multilayered photovoltaic cell assembly (100) and a body portion (200) joined at an interface region (410) and including an intermediate layer (500), at least one interconnecting structural member (1500), relieving feature (2500), unique component geometry, or any combination thereof.
Bears, Big and Little. Young Discovery Library Series.
Pfeffer, Pierre
This book is written for children 5 through 10. Part of a series designed to develop their curiosity, fascinate them and educate them, this volume describes: (1) the eight species of bears, including black bear, brown bear, grizzly bear, spectacled bear, sun bear, sloth bear, polar bear, and giant panda; (2) geographical habitats of bears; (3)…
Biswas, Nabarun; Chakraborti, Prasun; Saha, Ankuran; Biswas, Srijit
2016-07-01
3-lobe Hydrodynamic oil journal bearings are widely used in heavy industries as a part of different rotating machinery due to their high level of performances. 3-lobe hydrodynamic oil journal bearing allows the transmission of large amounts of loads at a mean speed of rotation. In this present work, an attempt has been made to investigate the pressure domain and subsequent effects in a 3 lobe journal bearing under different static loads in a stable operating speed. Analytical calculations were carried out with codes generated using Matlab software. Experiments were performed in Journal Bearing test rig incorporating 3-lobe under different loads with stable operating speed of 1000 RPM. It has been observed that an increase in load resulted rise in pressure profile, maximum pressure angle and temperature. A further attempt has been made to see the effect of eccentricity ratio and dynamic viscosity considering no change in the RPM. It has also been observed that dynamic viscosity has a significant effect on the stable operating speed. With the reduction in static load, the stability of operating speed attained at higher values.
Hydrodynamic Cell Trapping for High Throughput Single-Cell Applications
Directory of Open Access Journals (Sweden)
Amin Abbaszadeh Banaeiyan
2013-12-01
Full Text Available The possibility to conduct complete cell assays under a precisely controlled environment while consuming minor amounts of chemicals and precious drugs have made microfluidics an interesting candidate for quantitative single-cell studies. Here, we present an application-specific microfluidic device, cellcomb, capable of conducting high-throughput single-cell experiments. The system employs pure hydrodynamic forces for easy cell trapping and is readily fabricated in polydimethylsiloxane (PDMS using soft lithography techniques. The cell-trapping array consists of V-shaped pockets designed to accommodate up to six Saccharomyces cerevisiae (yeast cells with the average diameter of 4 μm. We used this platform to monitor the impact of flow rate modulation on the arsenite (As(III uptake in yeast. Redistribution of a green fluorescent protein (GFP-tagged version of the heat shock protein Hsp104 was followed over time as read out. Results showed a clear reverse correlation between the arsenite uptake and three different adjusted low = 25 nL min−1, moderate = 50 nL min−1, and high = 100 nL min−1 flow rates. We consider the presented device as the first building block of a future integrated application-specific cell-trapping array that can be used to conduct complete single cell experiments on different cell types.
Ball Bearings Equipped for In Situ Lubrication on Demand
Marchetti, Mario; Jones, William R., Jr.; Pepper, Stephen V.; Jansen, Mark; Predmore, Roamer
2005-01-01
In situ systems that provide fresh lubricants to ball/race contacts on demand have been developed to prolong the operational lives of ball bearings. These systems were originally intended to be incorporated into ball bearings in mechanisms that are required to operate in outer space for years, in conditions in which lubricants tend to deteriorate and/or evaporate. These systems may also be useful for similarly prolonging bearing lifetimes on Earth. Reservoirs have been among the means used previously to resupply lubricants. Lubricant- resupply reservoirs are bulky and add complexity to bearing assemblies. In addition, such a reservoir cannot be turned on or off as needed: it supplies lubricant continuously, often leading to an excess of lubricant in the bearing. A lubricator of the present type includes a porous ring cartridge attached to the inner or the outer ring of a ball bearing (see Figure 1). Oil is stored in the porous cartridge and is released by heating the cartridge: Because the thermal expansion of the oil exceeds that of the cartridge, heating causes the ejection of some oil. A metal film can be deposited on a face of the cartridge to serve as an electrical-resistance heater. The heater can be activated in response to a measured increase in torque that signals depletion of oil from the bearing/race contacts. Because the oil has low surface tension and readily wets the bearing-ring material, it spreads over the bearing ring and eventually reaches the ball/race contacts. The Marangoni effect (a surface-tension gradient associated with a temperature gradient) is utilized to enhance the desired transfer of lubricant to the ball/race contacts during heating. For a test, a ball bearing designed for use at low speed was assembled without lubricant and equipped with a porous-ring lubricator, the resistance heater of which consumed a power of less than 1 W when triggered on by a torque-measuring device. In the test, a load of 20 lb (.89 N) was applied and the
A Passive Magnetic Bearing Flywheel
Siebert, Mark; Ebihara, Ben; Jansen, Ralph; Fusaro, Robert L.; Morales, Wilfredo; Kascak, Albert; Kenny, Andrew
2002-01-01
A 100 percent passive magnetic bearing flywheel rig employing no active control components was designed, constructed, and tested. The suspension clothe rotor was provided by two sets of radial permanent magnetic bearings operating in the repulsive mode. The axial support was provided by jewel bearings on both ends of the rotor. The rig was successfully operated to speeds of 5500 rpm, which is 65 percent above the first critical speed of 3336 rpm. Operation was not continued beyond this point because of the excessive noise generated by the air impeller and because of inadequate containment in case of failure. Radial and axial stiffnesses of the permanent magnetic bearings were experimentally measured and then compared to finite element results. The natural damping of the rotor was measured and a damping coefficient was calculated.
Gas bearing operates in vacuum
Perkins, G. S.
1975-01-01
Bearing has restrictions to reduce air leaks and is connected to external pumpout facility which removes exhausted air. Token amount of air which is lost to vacuum is easily removed by conventional vacuum pump.
Mixed-mu superconducting bearings
Energy Technology Data Exchange (ETDEWEB)
Hull, John R. (Hinsdale, IL); Mulcahy, Thomas M. (Western Springs, IL)
1998-01-01
A mixed-mu superconducting bearing including a ferrite structure disposed for rotation adjacent a stationary superconductor material structure and a stationary permanent magnet structure. The ferrite structure is levitated by said stationary permanent magnet structure.
Segmented Hybrid Gasostatic Bearing Optimization
Directory of Open Access Journals (Sweden)
Prodan Nikolay Vasilevich
2014-07-01
Full Text Available The purpose of research-development of methods of numerical optimization rotatable support pads gasostatic hybrid bearing. In the world‘s aerospace engineering the gas-dynamic bearings are currently most common. They are characterized by the supporting layer of different designs, which ensures the workability of the rotors during starts and stops. The main problem of this bearing type, apart from the construction complexity is the wear of this supporting layer. Gas-static bearing has no such defect, since there is no physical contact between solid surfaces. This study presents the results of the hybrid bearing’s calculation, combining both technologies. The slotted nozzle of non-conventional shape that mirrors the solution of Reynolds equation’s isoline is studied. The dependences of the main parameters on the speed of the shaft’s rotation are discussed. The aerodynamic resistance of pads for different regimes of operation is investigated.
US Fish and Wildlife Service, Department of the Interior — Based on observations, 117 bears were estimated to live in the Karluk Lake area. The estimate was lower than estimates from 1952, and 1954-1955. Annual loss to...
Myrmecophagy by Yellowstone grizzly bears
Mattson, D.J.
2001-01-01
I used data collected during a study of radio-marked grizzly bears (Ursus arctos horribilis) in the Yellowstone region from 1977 to 1992 to investigate myrmecophagy by this population. Although generally not an important source of energy for the bears (averaging 8 mm long) nested in logs over small ants (6 mm long) nested under stones. Optimal conditions for consumption of ants occurred on the warmest sites with ample substrate suitable for ant nests. For ants in mounds, this occurred at low elevations at non-forested sites. For ants in logs, this occurred at low elevations or on southerly aspects where there was abundant, large-diameter, well-decomposed woody debris under an open forest canopy. Grizzly bears selected moderately decomposed logs 4a??5 dm in diameter at midpoint. Ants will likely become a more important food for Yellowstone's grizzly bears as currently important foods decline, owing to disease and warming of the regional climate.
Nonlinear Control of Magnetic Bearings
Institute of Scientific and Technical Information of China (English)
Khac Duc Do; Dang Hoe Nguyen; Thanh Binh Nguyen
2010-01-01
In this paper, recent results controling nonlinear systems with output tracking error constraints are applied to the design of new tracking controllers for magnetic bearings. The proposed controllers can force the rotor to track a bounded and sufficiently smooth refer-ence trajectory asymptotically and guarantee non-contactedness be-tween the rotor and the stator of the magnetic bearings. Simulation results are included to illustrate the effectiveness of the proposed con-trollers.
Directory of Open Access Journals (Sweden)
Vélez-Restrepo J.M.
2012-07-01
Full Text Available As an answer to the need for reducing friction losses on bearings, dynamic seals, piston rings, cutting tools and others, a lot of work has been dedicated to mechanical systems study whose surfaces have been textured in a controlled way. Theoretical models and experimental results have shown improvements on the tribological performance of these systems regarding untextured systems, working under the same conditions. This paper presents a numerical model for getting relationships among the operational conditions (load, speed, and dynamic viscosity, the minimum lubricate film thickness, the friction coefficient and the conditioned micro-topography of a plain sliding bearing working under a hydrodynamic regime. Moreover, regarding other similar works the constructed model allows studying the combined effect of the micro-wedges that work as micro-bearings, and the typical convergent macro-wedge of these study elements.
Effective Hydrodynamic Boundary Conditions for Corrugated Surfaces
Mongruel, Anne; Asmolov, Evgeny S; Vinogradova, Olga I
2012-01-01
We report measurements of the hydrodynamic drag force acting on a smooth sphere falling down under gravity to a plane decorated with microscopic periodic grooves. Both surfaces are lyophilic, so that a liquid (silicone oil) invades the surface texture being in the Wenzel state. A significant decrease in the hydrodynamic resistance force as compared with that predicted for two smooth surfaces is observed. To quantify the effect of roughness we use the effective no-slip boundary condition, which is applied at the imaginary smooth homogeneous isotropic surface located at an intermediate position between top and bottom of grooves. Such an effective condition fully characterizes the force reduction measured with the real surface, and the location of this effective plane is related to geometric parameters of the texture by a simple analytical formula.
Axially symmetric pseudo-Newtonian hydrodynamics code
Kim, Jinho; Choptuik, Matthew William; Lee, Hyung Mok
2012-01-01
We develop a numerical hydrodynamics code using a pseudo-Newtonian formulation that uses the weak field approximation for the geometry, and a generalized source term for the Poisson equation that takes into account relativistic effects. The code was designed to treat moderately relativistic systems such as rapidly rotating neutron stars. The hydrodynamic equations are solved using a finite volume method with High Resolution Shock Capturing (HRSC) techniques. We implement several different slope limiters for second order reconstruction schemes and also investigate higher order reconstructions. We use the method of lines (MoL) to convert the mixed spatial-time partial differential equations into ordinary differential equations (ODEs) that depend only on time. These ODEs are solved using 2nd and 3rd order Runge-Kutta methods. The Poisson equation for the gravitational potential is solved with a multigrid method. In order to confirm the validity of our code, we carry out four different tests including one and two...
Kinetic and hydrodynamic models of chemotactic aggregation
Chavanis, Pierre-Henri
2007-01-01
We derive general kinetic and hydrodynamic models of chemotactic aggregation that describe certain features of the morphogenesis of biological colonies (like bacteria, amoebae, endothelial cells or social insects). Starting from a stochastic model defined in terms of N coupled Langevin equations, we derive a nonlinear mean field Fokker-Planck equation governing the evolution of the distribution function of the system in phase space. By taking the successive moments of this kinetic equation and using a local thermodynamic equilibrium condition, we derive a set of hydrodynamic equations involving a damping term. In the limit of small frictions, we obtain a hyperbolic model describing the formation of network patterns (filaments) and in the limit of strong frictions we obtain a parabolic model which is a generalization of the standard Keller-Segel model describing the formation of clusters (clumps). Our approach connects and generalizes several models introduced in the chemotactic literature. We discuss the anal...
SPHGR: Smoothed-Particle Hydrodynamics Galaxy Reduction
Thompson, Robert
2015-02-01
SPHGR (Smoothed-Particle Hydrodynamics Galaxy Reduction) is a python based open-source framework for analyzing smoothed-particle hydrodynamic simulations. Its basic form can run a baryonic group finder to identify galaxies and a halo finder to identify dark matter halos; it can also assign said galaxies to their respective halos, calculate halo & galaxy global properties, and iterate through previous time steps to identify the most-massive progenitors of each halo and galaxy. Data about each individual halo and galaxy is collated and easy to access. SPHGR supports a wide range of simulations types including N-body, full cosmological volumes, and zoom-in runs. Support for multiple SPH code outputs is provided by pyGadgetReader (ascl:1411.001), mainly Gadget (ascl:0003.001) and TIPSY (ascl:1111.015).
VH1 Hydrodynamics for Introductory Astronomy
Christian, Wolfgang; Blondin, John
1997-05-01
Improvements in personal computer operating systems and hardware now makes it possible to run research grade Fortran simulations on student computers. Unfortunately, many legacy applications do not have a graphical user interface and are sometimes hard coded to a specific problem making them unsuitable for beginning students. A good way to re-purpose such legacy code for undergraduate teaching is to build a graphical front end using a Rapid Application Development, RAD, tool that starts the simulation as a separate thread. This technique is being used with Virginia Hydrodynamics One, VH1, to provide an introduction to computational hydrodynamics. Standard test problems including gravitational collapse of an interstellar cloud, radiation cooling, and formation of shocks are demonstrated using this on Microsoft Windows 95/NT.
Electro-hydrodynamic synchronization of piezoelectric flags
Xia, Yifan; Michelin, Sebastien
2016-01-01
Hydrodynamic coupling of flexible flags in axial flows may profoundly influence their flapping dynamics, in particular driving their synchronization. This work investigates the effect of such coupling on the harvesting efficiency of coupled piezoelectric flags, that convert their periodic deformation into an electrical current. Considering two flags connected to a single output circuit, we investigate using numerical simulations the relative importance of hydrodynamic coupling to electrodynamic coupling of the flags through the output circuit due to the inverse piezoelectric effect. It is shown that electrodynamic coupling is dominant beyond a critical distance, and induces a synchronization of the flags' motion resulting in enhanced energy harvesting performance. We further show that this electrodynamic coupling can be strengthened using resonant harvesting circuits.
Application of hydrodynamics to heavy ion collisions
Energy Technology Data Exchange (ETDEWEB)
Felsberger, Lukas
2014-12-02
The Bjorken model is a simple tool for making rough predictions of the hydrodynamic evolution of the thermalized matter created in a heavy ion collision. The advantage of the model clearly lies in its simplicity, rather than accuracy. As it is still used for making rough estimations 'by hand', in this thesis, I investigate in which cases the Bjorken model gives useful results and in which it is not recommended. For central collisions, I show which critical size the nuclei should have so that the Bjorken model can be applied. For non-central collisions, I demonstrate that using Glauber initial conditions combined with the Bjorken evolution, leads to reasonable results up to large impact parameters. Finally, I study the case of a non-ideal (viscous) description of the thermalized matter which leads to strongly differing results if first- or second-order hydrodynamics is applied.
Simple Waves in Ideal Radiation Hydrodynamics
Johnson, Bryan M
2008-01-01
In the dynamic diffusion limit of radiation hydrodynamics, advection dominates diffusion; the latter primarily affects small scales and has negligible impact on the large scale flow. The radiation can thus be accurately regarded as an ideal fluid, i.e., radiative diffusion can be neglected along with other forms of dissipation. This viewpoint is applied here to an analysis of simple waves in an ideal radiating fluid. It is shown that much of the hydrodynamic analysis carries over by simply replacing the material sound speed, pressure and index with the values appropriate for a radiating fluid. A complete analysis is performed for a centered rarefaction wave, and expressions are provided for the Riemann invariants and characteristic curves of the one-dimensional system of equations. The analytical solution is checked for consistency against a finite difference numerical integration, and the validity of neglecting the diffusion operator is demonstrated. An interesting physical result is that for a material comp...
Pursuit and Synchronization in Hydrodynamic Dipoles
Kanso, Eva
2015-01-01
We study theoretically the behavior of a class of hydrodynamic dipoles. This study is motivated by recent experiments on synthetic and biological swimmers in microfluidic \\textit{Hele-Shaw} type geometries. Under such confinement, a swimmer's hydrodynamic signature is that of a potential source dipole, and the long-range interactions among swimmers are obtained from the superposition of dipole singularities. Here, we recall the equations governing the positions and orientations of interacting asymmetric swimmers in doubly-periodic domains, and focus on the dynamics of swimmer pairs. We obtain two families of `relative equilibria'-type solutions that correspond to pursuit and synchronization of the two swimmers, respectively. Interestingly, the pursuit mode is stable for large tail swimmers whereas the synchronization mode is stable for large head swimmers. These results have profound implications on the collective behavior reported in several recent studies on populations of confined microswimmers.
Hydrodynamic Electron Flow and Hall Viscosity
Scaffidi, Thomas; Nandi, Nabhanila; Schmidt, Burkhard; Mackenzie, Andrew P.; Moore, Joel E.
2017-06-01
In metallic samples of small enough size and sufficiently strong momentum-conserving scattering, the viscosity of the electron gas can become the dominant process governing transport. In this regime, momentum is a long-lived quantity whose evolution is described by an emergent hydrodynamical theory. Furthermore, breaking time-reversal symmetry leads to the appearance of an odd component to the viscosity called the Hall viscosity, which has attracted considerable attention recently due to its quantized nature in gapped systems but still eludes experimental confirmation. Based on microscopic calculations, we discuss how to measure the effects of both the even and odd components of the viscosity using hydrodynamic electronic transport in mesoscopic samples under applied magnetic fields.
Hyperbolic metamaterial lens with hydrodynamic nonlocal response
DEFF Research Database (Denmark)
Yan, Wei; Mortensen, N. Asger; Wubs, Martijn
2013-01-01
in the local-response approximation and in the hydrodynamic Drude model can differ considerably. In particular, the optimal frequency for imaging in the nonlocal theory is blueshifted with respect to that in the local theory. Thus, to detect whether nonlocal response is at work in a hyperbolic metamaterial, we......We investigate the effects of hydrodynamic nonlocal response in hyperbolic metamaterials (HMMs), focusing on the experimentally realizable parameter regime where unit cells are much smaller than an optical wavelength but much larger than the wavelengths of the longitudinal pressure waves...... of the free-electron plasma in the metal constituents. We derive the nonlocal corrections to the effective material parameters analytically, and illustrate the noticeable nonlocal effects on the dispersion curves numerically. As an application, we find that the focusing characteristics of a HMM lens...
Hyperbolic metamaterial lens with hydrodynamic nonlocal response.
Yan, Wei; Mortensen, N Asger; Wubs, Martijn
2013-06-17
We investigate the effects of hydrodynamic nonlocal response in hyperbolic metamaterials (HMMs), focusing on the experimentally realizable parameter regime where unit cells are much smaller than an optical wavelength but much larger than the wavelengths of the longitudinal pressure waves of the free-electron plasma in the metal constituents. We derive the nonlocal corrections to the effective material parameters analytically, and illustrate the noticeable nonlocal effects on the dispersion curves numerically. As an application, we find that the focusing characteristics of a HMM lens in the local-response approximation and in the hydrodynamic Drude model can differ considerably. In particular, the optimal frequency for imaging in the nonlocal theory is blueshifted with respect to that in the local theory. Thus, to detect whether nonlocal response is at work in a hyperbolic metamaterial, we propose to measure the near-field distribution of a hyperbolic metamaterial lens.
Low Mach Number Fluctuating Hydrodynamics for Electrolytes
Péraud, Jean-Philippe; Chaudhri, Anuj; Bell, John B; Donev, Aleksandar; Garcia, Alejandro L
2016-01-01
We formulate and study computationally the low Mach number fluctuating hydrodynamic equations for electrolyte solutions. We are interested in studying transport in mixtures of charged species at the mesoscale, down to scales below the Debye length, where thermal fluctuations have a significant impact on the dynamics. Continuing our previous work on fluctuating hydrodynamics of multicomponent mixtures of incompressible isothermal miscible liquids (A. Donev, et al., Physics of Fluids, 27, 3, 2015), we now include the effect of charged species using a quasielectrostatic approximation. Localized charges create an electric field, which in turn provides additional forcing in the mass and momentum equations. Our low Mach number formulation eliminates sound waves from the fully compressible formulation and leads to a more computationally efficient quasi-incompressible formulation. We demonstrate our ability to model saltwater (NaCl) solutions in both equilibrium and nonequilibrium settings. We show that our algorithm...
Hydrodynamics of charge fluctuations and balance functions
Ling, B; Stephanov, M
2013-01-01
We apply stochastic hydrodynamics to the study of charge density fluctuations in QCD matter undergoing Bjorken expansion. We find that the charge density correlations are given by a time integral over the history of the system, with the dominant contribution coming from the QCD crossover region where the change of susceptibility per entropy, chi T/s, is most significant. We study the rapidity and azimuthal angle dependence of the resulting charge balance function using a simple analytic model of heavy-ion collision evolution. Our results are in agreement with experimental measurements, indicating that hydrodynamic fluctuations contribute significantly to the measured charge correlations in high energy heavy-ion collisions. The sensitivity of the balance function to the value of the charge diffusion coefficient D allows us to estimate the typical value of this coefficient in the crossover region to be rather small, of the order of 1/(2pi T), characteristic of a strongly coupled plasma.
Frictionless dispersive hydrodynamics of Stokes flows
Maiden, Michelle D; Anderson, Dalton V; Schubert, Marika E; Hoefer, Mark A
2016-01-01
Effectively frictionless, dispersive flow characterizes superfluids, nonlinear optical diffraction, and geophysical fluid interfaces. Dispersive shock waves (DSWs) and solitons are fundamental nonlinear excitations in these media, but DSW studies to date have been severely constrained by a loss of coherence. Here we report on a novel dispersive hydrodynamics testbed: the effectively frictionless flow of interfacial waves between two high contrast, low Reynolds' number Stokes fluids. This system enables high fidelity observations of large amplitude DSWs, found to agree quantitatively with a nonlinear wave averaging theory. We then report on observations of highly coherent phenomena including DSW backflow, the refraction or absorption of solitons by DSWs, and multi-phase DSW-DSW merger. The complex, coherent, nonlinear mixing of DSWs and solitons observed here are universal features of dissipationless, dispersive hydrodynamic flows.
Electro-hydrodynamics near Hydrophobic Surfaces
Maduar, S R; Lobaskin, V; Vinogradova, O I
2014-01-01
We show that the dynamics of the electrostatic diffuse layer at the slippery hydrophobic surface depends strongly on the mobility of surface charges. For a hydrophobic surface with immobile charges the fluid transport is considerably amplified by the existence of a hydrodynamic slippage. In contrast, near the hydrophobic surface with mobile adsorbed charges it is also controlled by an additional electric force, which increases the shear stress at the slipping interface. To account for this we formulate electro-hydrodynamic boundary conditions at the slipping interface, which are applied to quantify electro-osmotic flows. Our theoretical predictions are fully supported by dissipative particle dynamics simulations with explicit charges. These results lead to a new general concept of zeta-potential of hydrophobic surfaces.
Hydrodynamic theory of tissue shear flow
Popović, Marko; Merkel, Matthias; Etournay, Raphaël; Eaton, Suzanne; Jülicher, Frank; Salbreux, Guillaume
2016-01-01
We propose a hydrodynamic theory to describe shear flows in developing epithelial tissues. We introduce hydrodynamic fields corresponding to state properties of constituent cells as well as a contribution to overall tissue shear flow due to rearrangements in cell network topology. We then construct a constitutive equation for the shear rate due to topological rearrangements. We identify a novel rheological behaviour resulting from memory effects in the tissue. We show that anisotropic deformation of tissue and cells can arise from two distinct active cellular processes: generation of active stress in the tissue, and actively driven cellular rearrangements. These two active processes result in distinct cellular and tissue shape changes, depending on boundary conditions applied on the tissue. Our findings have consequences for the understanding of tissue morphogenesis during development.
Hydrodynamics of ultra-relativistic bubble walls
Directory of Open Access Journals (Sweden)
Leonardo Leitao
2016-04-01
Full Text Available In cosmological first-order phase transitions, gravitational waves are generated by the collisions of bubble walls and by the bulk motions caused in the fluid. A sizeable signal may result from fast-moving walls. In this work we study the hydrodynamics associated to the fastest propagation modes, namely, ultra-relativistic detonations and runaway solutions. We compute the energy injected by the phase transition into the fluid and the energy which accumulates in the bubble walls. We provide analytic approximations and fits as functions of the net force acting on the wall, which can be readily evaluated for specific models. We also study the back-reaction of hydrodynamics on the wall motion, and we discuss the extrapolation of the friction force away from the ultra-relativistic limit. We use these results to estimate the gravitational wave signal from detonations and runaway walls.
Chaos in hydrodynamic BL Herculis models
Smolec, R
2014-01-01
We present non-linear, convective, BL Her-type hydrodynamic models that show complex variability characteristic for deterministic chaos. The bifurcation diagram reveals a rich structure, with many phenomena detected for the first time in hydrodynamic models of pulsating stars. The phenomena include not only period doubling cascades en route to chaos (detected in earlier studies) but also periodic windows within chaotic band, type-I and type-III intermittent behaviour, interior crisis bifurcation and others. Such phenomena are known in many textbook chaotic systems, from the simplest discrete logistic map, to more complex systems like Lorenz equations. We discuss the physical relevance of our models. Although except of period doubling such phenomena were not detected in any BL Her star, chaotic variability was claimed in several higher luminosity siblings of BL Her stars - RV Tau variables, and also in longer-period, luminous irregular pulsators. Our models may help to understand these poorly studied stars. Pa...
Novel techniques for slurry bubble column hydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Dudukovic, M.P.
1999-05-14
The objective of this cooperative research effort between Washington University, Ohio State University and Exxon Research Engineering Company was to improve the knowledge base for scale-up and operation of slurry bubble column reactors for syngas conversion and other coal conversion processes by increased reliance on experimentally verified hydrodynamic models. During the first year (July 1, 1995--June 30, 1996) of this three year program novel experimental tools (computer aided radioactive particle tracking (CARPT), particle image velocimetry (PIV), heat probe, optical fiber probe and gamma ray tomography) were developed and tuned for measurement of pertinent hydrodynamic quantities, such as velocity field, holdup distribution, heat transfer and bubble size. The accomplishments were delineated in the First Technical Annual Report. The second year (July, 1996--June 30, 1997) was spent on further development and tuning of the novel experimental tools (e.g., development of Monte Carlo calibration for CARPT, optical probe development), building up the hydrodynamic data base using these tools and comparison of the two techniques (PIV and CARPT) for determination of liquid velocities. A phenomenological model for gas and liquid backmixing was also developed. All accomplishments were summarized in the Second Annual Technical Report. During the third and final year of the program (July 1, 1997--June 30, 1998) and during the nine months no cost extension, the high pressure facility was completed and a set of data was taken at high pressure conditions. Both PIV, CT and CARPT were used. More fundamental hydrodynamic modeling was also undertaken and model predictions were compared to data. The accomplishments for this period are summarized in this report.
VH-1: Multidimensional ideal compressible hydrodynamics code
Hawley, John; Blondin, John; Lindahl, Greg; Lufkin, Eric
2012-04-01
VH-1 is a multidimensional ideal compressible hydrodynamics code written in FORTRAN for use on any computing platform, from desktop workstations to supercomputers. It uses a Lagrangian remap version of the Piecewise Parabolic Method developed by Paul Woodward and Phil Colella in their 1984 paper. VH-1 comes in a variety of versions, from a simple one-dimensional serial variant to a multi-dimensional version scalable to thousands of processors.
On the convexity of Relativistic Hydrodynamics
Ibáñez, José María; Martí, José María; Miralles, Juan Antonio; 10.1088/0264-9381/30/5/057002
2013-01-01
The relativistic hydrodynamic system of equations for a perfect fluid obeying a causal equation of state is hyperbolic (Anile 1989 {\\it Relativistic Fluids and Magneto-Fluids} (Cambridge: Cambridge University Press)). In this report, we derive the conditions for this system to be convex in terms of the fundamental derivative of the equation of state (Menikoff and Plohr 1989 {\\it Rev. Mod. Phys.} {\\bf 61} 75). The classical limit is recovered.
Modeling Water Waves with Smoothed Particle Hydrodynamics
2013-09-30
flows, such as undertow, longshore currents, and rip currents. APPROACH The approach is based on improving various aspects of the SPH code ...Smoothed Particle Hydrodynamics ( SPH ) is a meshless numerical method that is being developed for the study of nearshore waves and other Navy needs. The...Lagrangian nature of SPH allows the modeling of wave breaking, surf zones, ship waves, and wave-structure interaction, where the free surface becomes
An Owner's Guide to Smoothed Particle Hydrodynamics
Martin, T.J.; Pearce, F. R.; Thomas, P. A.
1993-01-01
We present a practical guide to Smoothed Particle Hydrodynamics (\\SPH) and its application to astrophysical problems. Although remarkably robust, \\SPH\\ must be used with care if the results are to be meaningful since the accuracy of \\SPH\\ is sensitive to the arrangement of the particles and the form of the smoothing kernel. In particular, the initial conditions for any \\SPH\\ simulation must consist of particles in dynamic equilibrium. We describe some of the numerical difficulties that may be...
Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity
Directory of Open Access Journals (Sweden)
Font José A.
2008-09-01
Full Text Available This article presents a comprehensive overview of numerical hydrodynamics and magnetohydrodynamics (MHD in general relativity. Some significant additions have been incorporated with respect to the previous two versions of this review (2000, 2003, most notably the coverage of general-relativistic MHD, a field in which remarkable activity and progress has occurred in the last few years. Correspondingly, the discussion of astrophysical simulations in general-relativistic hydrodynamics is enlarged to account for recent relevant advances, while those dealing with general-relativistic MHD are amply covered in this review for the first time. The basic outline of this article is nevertheless similar to its earlier versions, save for the addition of MHD-related issues throughout. Hence, different formulations of both the hydrodynamics and MHD equations are presented, with special mention of conservative and hyperbolic formulations well adapted to advanced numerical methods. A large sample of numerical approaches for solving such hyperbolic systems of equations is discussed, paying particular attention to solution procedures based on schemes exploiting the characteristic structure of the equations through linearized Riemann solvers. As previously stated, a comprehensive summary of astrophysical simulations in strong gravitational fields is also presented. These are detailed in three basic sections, namely gravitational collapse, black-hole accretion, and neutron-star evolutions; despite the boundaries, these sections may (and in fact do overlap throughout the discussion. The material contained in these sections highlights the numerical challenges of various representative simulations. It also follows, to some extent, the chronological development of the field, concerning advances in the formulation of the gravitational field, hydrodynamics and MHD equations and the numerical methodology designed to solve them. To keep the length of this article reasonable
Laser driven hydrodynamic instability experiments. Revision 1
Energy Technology Data Exchange (ETDEWEB)
Remington, B.A.; Weber, S.V.; Haan, S.W.; Kilkenny, J.D.; Glendinning, S.G.; Wallace, R.J.; Goldstein, W.H.; Wilson, B.G.; Nash, J.K.
1993-02-17
An extensive series of experiments has been conducted on the Nova laser to measure hydrodynamic instabilities in planar foils accelerated by x-ray ablation. Single mode experiments allow a measurement of the fundamental growth rates from the linear well into the nonlinear regime. Two-mode foils allow a first direct observation of mode coupling. Surface-finish experiments allow a measurement of the evolution of a broad spectrum of random initial modes.
Smoothed Particle Hydrodynamics: Applications Within DSTO
2006-10-01
dimensional SPH code. They used SPH to model wave overtopping on the decks of offshore platforms and ships and used moving boundary particles to create...loading on offshore structures is a subject area which is now becoming amenable to detailed study using sophisticated computational fluid dynamics codes...incorporation of bending, torsional stiffness, and hydrodynamic loads, thus making it ideal for the simulation of umbilical cables on ROVs and AUVs
A hydrodynamic approach to QGP instabilities
Calzetta, E
2013-01-01
We show that the usual linear analysis of QGP Weibel instabilities based on the Maxwell-Boltzmann equation may be reproduced in a purely hydrodynamic model. The latter is derived by the Entropy Production Variational Method from a transport equation including collisions, and can describe highly nonequilibrium flow. We find that, as expected, collisions slow down the growth of Weibel instabilities. Finally, we discuss the strong momentum anisotropy limit.
2D Transonic Hydrodynamics in General Relativity
Beskin, V S
2002-01-01
The goal of my lecture is to present the introduction into the hydrodynamical version of the Grad-Shafranov equation. Although not so well-known as the full MHD one, it allows us to clarify the nontrivial structure of the Grad-Shafranov approach as well as to discuss the simplest version of the 3+1-split language -- the most convenient one for the description of the ideal flows in the vicinity of a rotating black hole.
2012-11-26
... Energy Regulatory Commission Black Bear Hydro Partners, LLC and Black Bear Development Holdings, LLC and Black Bear SO, LLC; Notice of Application for Partial Transfer of Licenses, and Soliciting Comments and Motions To Intervene On October 25, 2012, Black Bear Hydro Partners, LLC, sole licensee (transferor)...
Testing hydrodynamics schemes in galaxy disc simulations
Few, C. G.; Dobbs, C.; Pettitt, A.; Konstandin, L.
2016-08-01
We examine how three fundamentally different numerical hydrodynamics codes follow the evolution of an isothermal galactic disc with an external spiral potential. We compare an adaptive mesh refinement code (RAMSES), a smoothed particle hydrodynamics code (SPHNG), and a volume-discretized mesh-less code (GIZMO). Using standard refinement criteria, we find that RAMSES produces a disc that is less vertically concentrated and does not reach such high densities as the SPHNG or GIZMO runs. The gas surface density in the spiral arms increases at a lower rate for the RAMSES simulations compared to the other codes. There is also a greater degree of substructure in the SPHNG and GIZMO runs and secondary spiral arms are more pronounced. By resolving the Jeans length with a greater number of grid cells, we achieve more similar results to the Lagrangian codes used in this study. Other alterations to the refinement scheme (adding extra levels of refinement and refining based on local density gradients) are less successful in reducing the disparity between RAMSES and SPHNG/GIZMO. Although more similar, SPHNG displays different density distributions and vertical mass profiles to all modes of GIZMO (including the smoothed particle hydrodynamics version). This suggests differences also arise which are not intrinsic to the particular method but rather due to its implementation. The discrepancies between codes (in particular, the densities reached in the spiral arms) could potentially result in differences in the locations and time-scales for gravitational collapse, and therefore impact star formation activity in more complex galaxy disc simulations.
MUFASA: galaxy formation simulations with meshless hydrodynamics
Davé, Romeel; Thompson, Robert; Hopkins, Philip F.
2016-11-01
We present the MUFASA suite of cosmological hydrodynamic simulations, which employs the GIZMO meshless finite mass (MFM) code including H2-based star formation, nine-element chemical evolution, two-phase kinetic outflows following scalings from the Feedback in Realistic Environments zoom simulations, and evolving halo mass-based quenching. Our fiducial (50 h-1 Mpc)3 volume is evolved to z = 0 with a quarter billion elements. The predicted galaxy stellar mass functions (GSMFs) reproduces observations from z = 4 → 0 to ≲ 1.2σ in cosmic variance, providing an unprecedented match to this key diagnostic. The cosmic star formation history and stellar mass growth show general agreement with data, with a strong archaeological downsizing trend such that dwarf galaxies form the majority of their stars after z ˜ 1. We run 25 and 12.5 h-1 Mpc volumes to z = 2 with identical feedback prescriptions, the latter resolving all hydrogen-cooling haloes, and the three runs display fair resolution convergence. The specific star formation rates broadly agree with data at z = 0, but are underpredicted at z ˜ 2 by a factor of 3, re-emphasizing a longstanding puzzle in galaxy evolution models. We compare runs using MFM and two flavours of smoothed particle hydrodynamics, and show that the GSMF is sensitive to hydrodynamics methodology at the ˜×2 level, which is sub-dominant to choices for parametrizing feedback.
Hydrodynamic slip length as a surface property
Ramos-Alvarado, Bladimir; Kumar, Satish; Peterson, G. P.
2016-02-01
Equilibrium and nonequilibrium molecular dynamics simulations were conducted in order to evaluate the hypothesis that the hydrodynamic slip length is a surface property. The system under investigation was water confined between two graphite layers to form nanochannels of different sizes (3-8 nm). The water-carbon interaction potential was calibrated by matching wettability experiments of graphitic-carbon surfaces free of airborne hydrocarbon contamination. Three equilibrium theories were used to calculate the hydrodynamic slip length. It was found that one of the recently reported equilibrium theories for the calculation of the slip length featured confinement effects, while the others resulted in calculations significantly hindered by the large margin of error observed between independent simulations. The hydrodynamic slip length was found to be channel-size independent using equilibrium calculations, i.e., suggesting a consistency with the definition of a surface property, for 5-nm channels and larger. The analysis of the individual trajectories of liquid particles revealed that the reason for observing confinement effects in 3-nm nanochannels is the high mobility of the bulk particles. Nonequilibrium calculations were not consistently affected by size but by noisiness in the smallest systems.
Crystallization: Key thermodynamic, kinetic and hydrodynamic aspects
Indian Academy of Sciences (India)
Sreepriya Vedantam; Vivek V Ranade
2013-12-01
Crystallization is extensively used in different industrial applications, including the production of a wide range of materials such as fertilizers, detergents, food and pharmaceutical products, as well as in the mineral processing industries and treatment of waste effluents. In spite of the wide-spread use of crystallization, a clear understanding of the thermodynamic, kinetic and hydrodynamic aspects of the design methodologies are not yet well established. More often than not crystallization is still considered an art especially in fine-chemicals, pharmaceuticals and life-sciences sector. It is essential to understand and relate key thermodynamic, kinetic and hydrodynamic aspects to crystallizer performance, not just in terms of yield but also in terms of product quality (characterized by particle size distribution, morphology, polymorphism and the amount of strain as well as the uptake of solvent or impurities in the crystal lattice). This paper attempts to do that by critically reviewing published experimental and modelling studies on establishing and enhancing state-of-the-art thermodynamic, kinetic and hydrodynamic aspects of crystallization. Efforts are made to discuss and raise points for emerging modelling tools needed for a flexible design and operation of crystallizers and crystallization processes that are needed to meet the ever increasing demand on precise product specifications. Focus is on bringing out the trends which can be used as perspectives for future studies in this field.
Hydrodynamics of an Electrochemical Membrane Bioreactor
Wang, Ya-Zhou; Wang, Yun-Kun; He, Chuan-Shu; Yang, Hou-Yun; Sheng, Guo-Ping; Shen, Jin-You; Mu, Yang; Yu, Han-Qing
2015-05-01
An electrochemical membrane bioreactor (EMBR) has recently been developed for energy recovery and wastewater treatment. The hydrodynamics of the EMBR would significantly affect the mass transfers and reaction kinetics, exerting a pronounced effect on reactor performance. However, only scarce information is available to date. In this study, the hydrodynamic characteristics of the EMBR were investigated through various approaches. Tracer tests were adopted to generate residence time distribution curves at various hydraulic residence times, and three hydraulic models were developed to simulate the results of tracer studies. In addition, the detailed flow patterns of the EMBR were acquired from a computational fluid dynamics (CFD) simulation. Compared to the tank-in-series and axial dispersion ones, the Martin model could describe hydraulic performance of the EBMR better. CFD simulation results clearly indicated the existence of a preferential or circuitous flow in the EMBR. Moreover, the possible locations of dead zones in the EMBR were visualized through the CFD simulation. Based on these results, the relationship between the reactor performance and the hydrodynamics of EMBR was further elucidated relative to the current generation. The results of this study would benefit the design, operation and optimization of the EMBR for simultaneous energy recovery and wastewater treatment.
Hydrodynamics of spacetime and vacuum viscosity
Eling, Christopher
2008-01-01
It has recently been shown that the Einstein equation can be derived by demanding a non-equilibrium entropy balance law dS = dQ/T + dS_i hold for all local acceleration horizons through each point in spacetime. The entropy change dS is proportional to the change in horizon area while dQ and T are the energy flux across the horizon and Unruh temperature seen by an accelerating observer just inside the horizon. The internal entropy production term dS_i is proportional to the squared shear of the horizon and the ratio of the proportionality constant to the area entropy density must be \\hbar/4\\pi. Here we will show that this derivation can be reformulated in the language of hydrodynamics. We postulate that the vacuum thermal state in the Rindler wedge of spacetime obeys the holographic principle. Hydrodynamic perturbations of this state exist and are manifested in the dynamics of a stretched horizon fluid at the horizon boundary. Using the equations of hydrodynamics we derive the entropy balance law and show the ...
Hydrodynamic simulations of the core helium flash
Mocak, M; Weiss, A; Kifonidis, K; 10.1017/S1743921308022813
2009-01-01
We describe and discuss hydrodynamic simulations of the core helium flash using an initial model of a 1.25 M_sol star with a metallicity of 0.02 near at its peak. Past research concerned with the dynamics of the core helium flash is inconclusive. Its results range from a confirmation of the standard picture, where the star remains in hydrostatic equilibrium during the flash (Deupree 1996), to a disruption or a significant mass loss of the star (Edwards 1969; Cole & Deupree 1980). However, the most recent multidimensional hydrodynamic study (Dearborn 2006) suggests a quiescent behavior of the core helium flash and seems to rule out an explosive scenario. Here we present partial results of a new comprehensive study of the core helium flash, which seem to confirm this qualitative behavior and give a better insight into operation of the convection zone powered by helium burning during the flash. The hydrodynamic evolution is followed on a computational grid in spherical coordinates using our new version of th...
Hydrodynamic slip length as a surface property.
Ramos-Alvarado, Bladimir; Kumar, Satish; Peterson, G P
2016-02-01
Equilibrium and nonequilibrium molecular dynamics simulations were conducted in order to evaluate the hypothesis that the hydrodynamic slip length is a surface property. The system under investigation was water confined between two graphite layers to form nanochannels of different sizes (3-8 nm). The water-carbon interaction potential was calibrated by matching wettability experiments of graphitic-carbon surfaces free of airborne hydrocarbon contamination. Three equilibrium theories were used to calculate the hydrodynamic slip length. It was found that one of the recently reported equilibrium theories for the calculation of the slip length featured confinement effects, while the others resulted in calculations significantly hindered by the large margin of error observed between independent simulations. The hydrodynamic slip length was found to be channel-size independent using equilibrium calculations, i.e., suggesting a consistency with the definition of a surface property, for 5-nm channels and larger. The analysis of the individual trajectories of liquid particles revealed that the reason for observing confinement effects in 3-nm nanochannels is the high mobility of the bulk particles. Nonequilibrium calculations were not consistently affected by size but by noisiness in the smallest systems.
Accurate, Meshless Methods for Magneto-Hydrodynamics
Hopkins, Philip F
2016-01-01
Recently, we developed a pair of meshless finite-volume Lagrangian methods for hydrodynamics: the 'meshless finite mass' (MFM) and 'meshless finite volume' (MFV) methods. These capture advantages of both smoothed-particle hydrodynamics (SPH) and adaptive mesh-refinement (AMR) schemes. Here, we extend these to include ideal magneto-hydrodynamics (MHD). The MHD equations are second-order consistent and conservative. We augment these with a divergence-cleaning scheme, which maintains div*B~0 to high accuracy. We implement these in the code GIZMO, together with a state-of-the-art implementation of SPH MHD. In every one of a large suite of test problems, the new methods are competitive with moving-mesh and AMR schemes using constrained transport (CT) to ensure div*B=0. They are able to correctly capture the growth and structure of the magneto-rotational instability (MRI), MHD turbulence, and the launching of magnetic jets, in some cases converging more rapidly than AMR codes. Compared to SPH, the MFM/MFV methods e...
Microfluidic delivery of small molecules into mammalian cells based on hydrodynamic focusing.
Wang, Fen; Wang, Hao; Wang, Jun; Wang, Hsiang-Yu; Rummel, Peter L; Garimella, Suresh V; Lu, Chang
2008-05-01
Microfluidics-based cell assays offer high levels of automation and integration, and allow multiple assays to be run in parallel, based on reduced sample volumes. These characteristics make them attractive for studies associated with drug discovery. Controlled delivery of drug molecules or other exogenous materials into cells is a critical issue that needs to be addressed before microfluidics can serve as a viable platform for drug screening and studies. In this study, we report the application of hydrodynamic focusing for controlled delivery of small molecules into cells immobilized on the substrate of a microfluidic device. We delivered calcein AM which was permeant to the cell membrane into cells, and monitored its enzymatic conversion into fluorescent calcein during and after the delivery. Different ratios of the sample flow to the side flow were tested to determine how the conditions of hydrodynamic focusing affected the delivery. A 3D numerical model was developed to help understand the fluid flow, molecular diffusion due to hydrodynamic focusing in the microfluidic channel. The results from the simulation indicated that the calcein AM concentration on the outer surface of a cell was determined by the conditions of hydrodynamic focusing. By comparing the results from the simulation with those from the experiment, we found that the calcein AM concentration on the cell outer surface correlated very well with the amount of the molecules delivered into the cell. This suggests that hydrodynamic focusing provides an effective way for potentially quantitative delivery of exogenous molecules into cells at the single cell or subcellular level. We expect that our technique will pave the way to high-throughput drug screening and delivery on a microfluidic platform.
Tai, Yu-Chong (Inventor); Zheng, Siyang (Inventor); Lin, Jeffrey Chun-Hui (Inventor); Kasdan, Harvey L. (Inventor)
2017-01-01
Described herein are particular embodiments relating to a microfluidic device that may be utilized for cell sensing, counting, and/or sorting. Particular aspects relate to a microfabricated device that is capable of differentiating single cell types from dense cell populations. One particular embodiment relates a device and methods of using the same for sensing, counting, and/or sorting leukocytes from whole, undiluted blood samples.
Woo, Youngjun; Heo, Youhee; Shin, Kwanwoo; Yi, Gi-Ra
2013-04-01
We have developed hydrodynamic filtration method in microfluidic device for the efficient size-selection of polydisperse lipid vesicles for giant unilamellar vesicles (GUVs), in which vesicles were formed by electroformation method. Combining pinched flow channel design before hydrodynamic filtration, GUVs were flowed and guided to filtration channels, in which small lipid vesicles were further filtered and GUV were remained in main flow channels. For increasing the selectivity of GUV in outlets, length of slit section, or relative flow rate were controlled and drain channels were introduced for avoiding back flow. At higher flow rate in a pinched flow, the fraction of recovered GUVs (>10 microm) were increased, in which most of small vesicles were filtered.
GPU-accelerated simulation of colloidal suspensions with direct hydrodynamic interactions
Kopp, Michael
2012-01-01
Solvent-mediated hydrodynamic interactions between colloidal particles can significantly alter their dynamics. We discuss the implementation of Stokesian dynamics in leading approximation for streaming processors as provided by the compute unified device architecture (CUDA) of recent graphics processors (GPUs). Thereby, the simulation of explicit solvent particles is avoided and hydrodynamic interactions can easily be accounted for in already available, highly accelerated molecular dynamics simulations. Special emphasis is put on efficient memory access and numerical stability. The algorithm is applied to the periodic sedimentation of a cluster of four suspended particles. Finally, we investigate the runtime performance of generic memory access patterns of complexity $O(N^2)$ for various GPU algorithms relying on either hardware cache or shared memory.
Institute of Scientific and Technical Information of China (English)
张磊; 张妍; 车焱; 周维谨
2011-01-01
目的:评价曼月乐宫内节育器(IUD)的有效性、副反应和续用情况.方法:通过电子检索查阅1999年1月～2010年12月国内外发表的相关文献,并依照循证医学的方法对纳入评估的文献进行筛选、评价和分析.结果:共获得合格文献9篇,均为临床对照试验且正式发表.评估结果显示,置器后12个月和24个月,曼月乐与同属高铜表面积(≥300mm2)的GyneFix330、MLCu375和TCu380A IUD及低铜表面积(＜300mm2)的TCu220C和MCu110 IUD的带器妊娠率和脱落率类似.与高铜表面积IUD相比,放置曼月乐妇女的月经量增多、不规则出血和腰、腹痛等副反应发生率略低,而闭经发生率略高.置器后12个月,曼月乐的因症取出率低于TCu220C IUD,续用率高于TCu220C IUD.而与其他IUD相比无统计学意义.结论:曼月乐临床综合效果略优于TCu220C IUD,而与高铜表面积及MCu110 IUD相比,则互有优劣,尚无法得出明确结论.%Objective: To explore the effectiveness, side effects, and acceptability of Mirena intrauterine device (IUD). Methods; Electronic searches were used to identify relevant literatures published between January 1999 and December 2010. Papers were included and evaluated according to established criteria of evidence - based medicine. Results: Nine papers were included and all of them were controlled clinical trials. Within 12/24 months of follow - up after IUD insertion, the pregnancy rate with IUD in situ and the expulsion rate of Mirena were similar to those of GyneFix330, MLCu375, TCu380A, TCu220C and MCu110 IUDs. Compared with women using IUDs with high surface area of copper ( ≥300mm2) , those using Mirena had slightly lower rates of heavy menstrual bleeding, irregular vaginal bleeding and low back - abdominal pain, but slightly higher rate of amenorrhea. Within 12 months of follow - up after IUD insertion, the removal rate due to medical reasons was significantly lower, but the continuation rate was
2010-04-01
... metal/polyacetal cemented prosthesis. 888.3380 Section 888.3380 Food and Drugs FOOD AND DRUG... Devices § 888.3380 Hip joint femoral (hemi-hip) trunnion-bearing metal/polyacetal cemented prosthesis. (a) Identification. A hip joint femoral (hemi-hip) trunnion-bearing metal/polyacetal cemented prosthesis is a...
Numerical simulation of strained Si/SiGe devices: the hierarchical approach
Meinerzhagen, B.; Jungemann, C.; Neinhüs, B.; Bartels, M.
2004-03-01
Performance predictions for 25 nm strained Si CMOS devices which are based on full-band Monte Carlo (FBMC) device simulations and which are in good agreement with the most recent experimental trends are presented. The FBMC simulator itself is part of a hierarchical device simulation system which allows to perform time-efficient hierarchical hydrodynamic (HD) device simulations of modern SiGe HBTs. As demonstrated below, the accuracy of a such a hydrodynamic-based dc, ac, transient, and noise analysis is comparable to FBMC device simulations. In addition, the new hierarchical numerical noise simulation method is experimentally verified based on a modern rf-CMOS technology of Philips Research. The MC-enhanced simulation accuracy of the hierarchical hydrodynamic and drift diffusion (DD) models can be also exploited for mixed-mode circuit simulations, which is shown by typical power sweep simulations of an industrial rf power amplifier.
Magnetic bearings with zero bias
Brown, Gerald V.; Grodsinsky, Carlos M.
1991-01-01
A magnetic bearing operating without a bias field has supported a shaft rotating at speeds up to 12,000 rpm with the usual four power supplies and with only two. A magnetic bearing is commonly operated with a bias current equal to half of the maximum current allowable in its coils. This linearizes the relation between net force and control current and improves the force slewing rate and hence the band width. The steady bias current dissipates power, even when no force is required from the bearing. The power wasted is equal to two-thirds of the power at maximum force output. Examined here is the zero bias idea. The advantages and disadvantages are noted.
Assessment for hydrodynamic masses of HANARO flow tubes
Energy Technology Data Exchange (ETDEWEB)
Ryu, Jeong Soo; Cho, Yeong Garp; Kim, Doo Kie; Woo, Jong Sug; Park, Jin Ho
2000-06-01
The effect of hydrodynamic masses is investigated in dynamic characteristics and seismic response analyses of the submerged HANARO hexagonal flow tubes. Consistent hydrodynamic masses of the surrounding water are evaluated by the prepared program using the finite element method, in which arbitrary cross-sections of submerged structures and boundary conditions of the surrounding fluid can be considered. Also lumped hydrodynamic masses are calculated using simple formula applied to hexagonal flow tubes in the infinite fluid. Modal analyses and seismic response spectrum analyses were performed using hydrodynamic masses obtained by the finite element method and the simple formula. The results of modal analysis were verified by comparing the results measured from modal tests. And the displacement results of the seismic response spectrum analysis were assessed by comparing the consistent and the lumped hydrodynamic masses obtained by various methods. Finally practical criteria based on parametric studies are proposed as the lumped hydrodynamic masses for HANARO flow tubes.
Hydrodynamic chromatography and field flow fractionation in finite aspect ratio channels.
Shendruk, T N; Slater, G W
2014-04-25
Hydrodynamic chromatography (HC) and field-flow fractionation (FFF) separation methods are often performed in 3D rectangular channels, though ideal retention theory assumes 2D systems. Devices are commonly designed with large aspect ratios; however, it can be unavoidable or desirable to design rectangular channels with small or even near-unity aspect ratios. To assess the significance of finite-aspect ratio effects and interpret experimental retention results, an ideal, analytical retention theory is needed. We derive a series solution for the ideal retention ratio of HC and FFF rectangular channels. Rather than limiting devices' ability to resolve samples, our theory predicts that retention curves for normal-mode FFF are well approximated by the infinite plate solution and that the performance of HC is actually improved. These findings suggest that FFF devices need not be designed with large aspect ratios and that rectangular HC channels are optimal when the aspect ratio is unity.
An overview of hydrodynamic studies of mineralization
Directory of Open Access Journals (Sweden)
Guoxiang Chi
2011-07-01
Full Text Available Fluid flow is an integral part of hydrothermal mineralization, and its analysis and characterization constitute an important part of a mineralization model. The hydrodynamic study of mineralization deals with analyzing the driving forces, fluid pressure regimes, fluid flow rate and direction, and their relationships with localization of mineralization. This paper reviews the principles and methods of hydrodynamic studies of mineralization, and discusses their significance and limitations for ore deposit studies and mineral exploration. The driving forces of fluid flow may be related to fluid overpressure, topographic relief, tectonic deformation, and fluid density change due to heating or salinity variation, depending on specific geologic environments and mineralization processes. The study methods may be classified into three types, megascopic (field observations, microscopic analyses, and numerical modeling. Megascopic features indicative of significantly overpressured (especially lithostatic or supralithostatic fluid systems include horizontal veins, sand injection dikes, and hydraulic breccias. Microscopic studies, especially microthermometry of fluid inclusions and combined stress analysis and microthermometry of fluid inclusion planes (FIPs can provide important information about fluid temperature, pressure, and fluid-structural relationships, thus constraining fluid flow models. Numerical modeling can be carried out to solve partial differential equations governing fluid flow, heat transfer, rock deformation and chemical reactions, in order to simulate the distribution of fluid pressure, temperature, fluid flow rate and direction, and mineral precipitation or dissolution in 2D or 3D space and through time. The results of hydrodynamic studies of mineralization can enhance our understanding of the formation processes of hydrothermal deposits, and can be used directly or indirectly in mineral exploration.
2012-01-01
Some interactions between the dynamic and tribological behaviour of geared transmissions are examined, and a number of experimental and simulation results are compared. A model is introduced which incorporates most of the possible interactions between gears, shafts and hydrodynamic journal bearings. It combines (i) a specific element for wide-faced gears that includes the normal contact conditions between actual mating teeth, that is, with tooth shape deviations and mounting errors, (ii) shaf...
DEFF Research Database (Denmark)
Santos, Ilmar; Svendsen, Peter Kjær
2017-01-01
In recent years, theoretical and experimental efforts have transformed the conventional tilting-pad journal bearing (TPJB) into a smart mechatronic machine element. The application of electromechanical elements into rotating systems makes feasible the generation of controllable forces over...... forces, resulting from a strong coupling between hydrodynamic, hydrostatic and controllable lubrication regimes, can be used either to control or to excite rotor lateral vibrations. If non-invasive forces are generated via lubricant fluid film, in situ parameter identification can be carried out...
Kinetics and Hydrodynamics of Silver Ion Flotation
2012-01-01
This paper studies and determines the dispersion properties (Jg, Eg and Db), kinetics parameters and hydrodynamics of the process and its effect on the recovery of silver contained in spent diluted fixers by techniques of ion flotation in columns. The experimental results show silver recoveries of 97 % using sodium isopropyl xanthate (SIX) 0.06 g·L-1 and 0.04 g·L-1 of frother, at a Jg of 1.0 cm·s-1 and Jl of 0.72 cm·s-1. Xanthate-promoter combinations do not improve the separation; however, r...
Anomalous transport in second order hydrodynamics
Megías, Eugenio; Valle, Manuel
2016-11-01
We study the non-dissipative transport effects appearing at second order in the hydrodynamic expansion for a non-interacting gas of chiral fermions by using the partition function formalism. We discuss some features of the corresponding constitutive relations, derive the explicit expressions for the conductivities and compare with existing results in the literature. Talk given by E. Megías at the 4th International Conference on New Frontiers in Physics (ICNFP 2015), 23-30 August 2015, Kolymbari, Crete, Greece.
Dual-support Smoothed Particle Hydrodynamics
Ren, Huilong; Zhuang, Xiaoying; Rabczuk, Timon
2016-01-01
In this paper we develop a dual-support smoothed particle hydrodynamics (DS-SPH) that naturally satisfies the conservation of momentum, angular momentum and energy when the varying smoothing length is utilized. The DS-SPH is based on the concept of dual-support, which is introduced to consider the unbalanced interactions between the particles with different smoothing lengths. Our DS-SPH formulation can be implemented in traditional SPH with little changes and improve the computational efficiency. Several numerical examples are presented to demonstrate the capability of the method.
Energy Technology Data Exchange (ETDEWEB)
Bożek, Piotr, E-mail: piotr.bozek@ifj.edu.pl [AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, PL-30059 Kraków (Poland); Institute of Nuclear Physics PAN, PL-31342 Kraków (Poland); Broniowski, Wojciech, E-mail: wojciech.broniowski@ifj.edu.pl [Institute of Nuclear Physics PAN, PL-31342 Kraków (Poland); Institute of Physics, Jan Kochanowski University, PL-25406 Kielce (Poland)
2014-06-15
The formation and collective expansion of the fireball formed in ultrarelativistic p–A and d–A collisions is discussed. Predictions of the hydrodynamic model are compared to recent experimental results. The presence of strong final state interaction effects in the small dense systems is consistent with the observed azimuthal anisotropy of the flow and with the mass dependence of the average transverse momentum and of the elliptic flow. This raises the question of the mechanism explaining such a rapid build-up of the collective flow and the large degree of local equilibration needed to justify this scenario.
Postexplosion hydrodynamics of supernovae in red supergiants
Herant, Marc; Woosley, S. E.
1994-01-01
Shock propagation, mixing, and clumping are studied in the explosion of red supergiants as Type II supernovae using a two-dimensional smooth particle hydrodynamic (SPH) code. We show that extensive Rayleigh-Talor instabilities develop in the ejecta in the wake of the reverse shock wave. In all cases, the shell structure of the progenitor is obliterated to leave a clumpy, well-mixed supernova remnant. However, the occurrence of mass loss during the lifetime of the progenitor can significantly reduce the amount of mixing. These results are independent of the Type II supernova explosion mechanism.
Fast lattice Boltzmann solver for relativistic hydrodynamics.
Mendoza, M; Boghosian, B M; Herrmann, H J; Succi, S
2010-07-01
A lattice Boltzmann formulation for relativistic fluids is presented and numerically validated through quantitative comparison with recent hydrodynamic simulations of relativistic fluids. In order to illustrate its capability to handle complex geometries, the scheme is also applied to the case of a three-dimensional relativistic shock wave, generated by a supernova explosion, impacting on a massive interstellar cloud. This formulation opens up the possibility of exporting the proven advantages of lattice Boltzmann methods, namely, computational efficiency and easy handling of complex geometries, to the context of (mildly) relativistic fluid dynamics at large, from quark-gluon plasmas up to supernovae with relativistic outflows.
Hydrodynamic modeling of ns-laser ablation
Directory of Open Access Journals (Sweden)
David Autrique
2013-10-01
Full Text Available Laser ablation is a versatile and widespread technique, applied in an increasing number of medical, industrial and analytical applications. A hydrodynamic multiphase model describing nanosecond-laser ablation (ns-LA is outlined. The model accounts for target heating and mass removal mechanisms as well as plume expansion and plasma formation. A copper target is placed in an ambient environment consisting of helium and irradiated by a nanosecond-laser pulse. The effect of variable laser settings on the ablation process is explored in 1-D numerical simulations.
The flow of heavy flavor in hydrodynamics
Song, Taesoo; Lee, Su Houng
2011-01-01
The flow of charm is calculated in 2+1 ideal hydrodynamics by introducing the charge of $c\\bar{c}$ pair assuming that the number of $c\\bar{c}$ pairs is conserved in relativistic heavy-ion collisions. It is found that the mean radial flow velocity of charm quarks is smaller than that of bulk matter by 10$\\sim$15 \\% and the measured $v_2$ of heavy-flavor electrons is reproduced up to $p_T^e=$ 1.5 GeV/c in Au+Au collision at RHIC. The same flow is applied to regenerated $J/\\psi$ and its $v_2$ is discussed.
Impact modeling with Smooth Particle Hydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Stellingwerf, R.F.; Wingate, C.A.
1993-07-01
Smooth Particle Hydrodynamics (SPH) can be used to model hypervelocity impact phenomena via the addition of a strength of materials treatment. SPH is the only technique that can model such problems efficiently due to the combination of 3-dimensional geometry, large translations of material, large deformations, and large void fractions for most problems of interest. This makes SPH an ideal candidate for modeling of asteroid impact, spacecraft shield modeling, and planetary accretion. In this paper we describe the derivation of the strength equations in SPH, show several basic code tests, and present several impact test cases with experimental comparisons.
Hydrodynamics of anisotropic quark and gluon fluids
Florkowski, Wojciech; Maj, Radoslaw; Ryblewski, Radoslaw; Strickland, Michael
2013-03-01
The recently developed framework of anisotropic hydrodynamics is generalized to describe the dynamics of coupled quark and gluon fluids. The quark and gluon components of the fluids are characterized by different dynamical anisotropy parameters. The dynamical equations describing such mixtures are derived from kinetic theory, with the collisional kernel treated in the relaxation-time approximation, allowing for different relaxation times for quarks and gluons. Baryon number conservation is enforced in the quark and antiquark components of the fluid, but overall parton number nonconservation is allowed in the system. The resulting equations are solved numerically in the (0+1)-dimensional boost-invariant case at zero and finite baryon density.
Hydrodynamics of anisotropic quark and gluon fluids
Florkowski, Wojciech; Ryblewski, Radoslaw; Strickland, Michael
2012-01-01
The recently developed framework of anisotropic hydrodynamics is generalized to describe the dynamics of coupled quark and gluon fluids. The quark and gluon components of the fluids are characterized by different dynamical anisotropy parameters. The dynamical equations describing such mixtures are derived from kinetic theory with the collisional kernel treated in the relaxation-time approximation. Baryon number conservation is enforced in the quark and anti-quark components of the fluid, but overall parton number non-conservation is allowed in the system. The resulting equations are solved numerically in the (0+1)-dimensional boost-invariant case at zero and finite baryon density.
Effect of geometry on hydrodynamic film thickness
Brewe, D. E.; Hamrock, B. J.; Taylor, C. M.
1978-01-01
The influence of geometry on the isothermal hydrodynamic film separating two rigid solids was investigated. Pressure-viscosity effects were not considered. The minimum film thickness is derived for fully flooded conjunctions by using the Reynolds boundary conditions. It was found that the minimum film thickness had the same speed, viscosity, and load dependence as Kapitza's classical solution. However, the incorporation of Reynolds boundary conditions resulted in an additional geometry effect. Solutions using the parabolic film approximation are compared with those using the exact expression for the film in the analysis. Contour plots are shown that indicate in detail the pressure developed between the solids.
Hydrodynamic Study Of Column Bioleaching Processes
Directory of Open Access Journals (Sweden)
Sadowski Zygmunt
2015-06-01
Full Text Available The modelling of flow leaching solution through the porous media has been considered. The heap bioleaching process can be tested using the column experimental equipment. This equipment was employed to the hydrodynamic studies of copper ore bioleaching. The copper ore (black shale ore with the support, inertial materials (glass small balls and polyethylene beads was used to the bioleaching tests. The packed beds were various composition, the ore/support ratio was changed. The correlation between the bed porosity and bioleaching kinetics, and copper recovery was investigated.
Rapidity Correlation Structures from Causal Hydrodynamics
Gavin, Sean; Zin, Christopher
2016-01-01
Viscous diffusion can broaden the rapidity dependence of two-particle transverse momentum fluctuations. Surprisingly, measurements at RHIC by the STAR collaboration demonstrate that this broadening is accompanied by the appearance of unanticipated structure in the rapidity distribution of these fluctuations in the most central collisions. Although a first order classical Navier-Stokes theory can roughly explain the rapidity broadening, it cannot explain the additional structure. We propose that the rapidity structure can be explained using the second order causal Israel-Stewart hydrodynamics with stochastic noise.
Hydrodynamic instabilities in an ablation front
Energy Technology Data Exchange (ETDEWEB)
Piriz, A R; Portugues, R F [E.T.S.I. Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain)
2004-06-01
The hydrodynamic stability of an ablation front is studied for situations in which the wavelength of the perturbations is larger than the distance to the critical surface where the driving radiation is absorbed. An analytical model is presented, and it shows that under conditions in which the thermal flux is limited within the supercritical region of the ablative corona, the front may behave like a flame or like an ablation front, depending on the perturbation wavelength. For relatively long wavelengths the critical and ablation surfaces practically lump together into a unique surface and the front behaves like a flame, whereas for the shortest wavelengths the ablation front substructure is resolved.