WorldWideScience

Sample records for hydrodesulfurization hds catalysts

  1. Recent density functional studies of hydrodesulfurization catalysts: insight into structure and mechanism

    International Nuclear Information System (INIS)

    Hinnemann, Berit; Moses, Poul Georg; Noerskov, Jens K

    2008-01-01

    The present article will highlight some recent density functional theory (DFT) studies of hydrodesulfurization (HDS) catalysts. It will be summarized how DFT in combination with experimental studies can give a detailed picture of the structure of the active phase. Furthermore, we have used DFT to investigate the reaction pathway for thiophene HDS, and we find that the reaction entails a complex interplay of different active sites, depending on reaction conditions. An investigation of pyridine inhibition confirmed some of these results. These fundamental insights constitute a basis for rational improvement of HDS catalysts, as they have provided important structure-activity relationships

  2. Evaluation of phase separator number in hydrodesulfurization (HDS) unit

    Science.gov (United States)

    Jayanti, A. D.; Indarto, A.

    2016-11-01

    The removal process of acid gases such as H2S in natural gas processing industry is required in order to meet sales gas specification. Hydrodesulfurization (HDS)is one of the processes in the refinery that is dedicated to reduce sulphur.InHDS unit, phase separator plays important role to remove H2S from hydrocarbons, operated at a certain pressure and temperature. Optimization of the number of separator performed on the system is then evaluated to understand the performance and economics. From the evaluation, it shows that all systems were able to meet the specifications of H2S in the desired product. However, one separator system resulted the highest capital and operational costs. The process of H2S removal with two separator systems showed the best performance in terms of both energy efficiency with the lowest capital and operating cost. The two separator system is then recommended as a reference in the HDS unit to process the removal of H2S from natural gas.

  3. New insides in the characterization of HDS industrial catalysts by HAADF-STEM

    Science.gov (United States)

    Del Angel, Paz; Ponce, Arturo; Arellano, Josefina; Yacaman, Miguel J.; Hernandez-Pichardo, Martha; Montoya, J. Ascencion; Escobar, Jose

    2015-03-01

    Hydrodesulfurization (HDS) catalysts are of great importance in the petroleum industry. Transition metal sulphides catalysts of Ni(Co)Mo(W)/Al2O3 are widely used for hydrotreating reactions, like hydrodenitrogenation and HDS. One of the main issue in these catalysts is to understand the mechanism of the reaction, where MoS2 plays the most important role in the catalytic activity. We studied an industrial NiMo/Alumina sulfide catalyst highly active by using aberration-corrected HAADF-STEM techniques. The used catalysts was a state-of- the art commercial nickel-molybdenum alumina-supported formulation, including organic agent modifier. This type of material belongs to a novel family of catalysts specially designed for ultra-low sulfur production from straight-run gas oil (SRGO), cycle oil, coker gas oil, or their combinations at operating conditions of commercial interest in hydrotreating units at industrial scale. Aberration corrected HAADF-STEM allowed to observe the nanostructure and location of MoS2 and his interaction with the alumina. The results indicate that the MoS2 is highly dispersed on the alumina, however the location of Ni is one of the task of this kind of catalyst.

  4. The functionalities of Pt/{gamma}-Al{sub 2}O{sub 3} catalysts in simultaneous HDS and HDA reactions

    Energy Technology Data Exchange (ETDEWEB)

    V.G. Baldovino-Medrano; Sonia A. Giraldo; Aristobulo Centeno [Universidad Industrial de Santander (UIS), Bucaramanga (Colombia). Centro de Investigaciones en Catalisis (CICAT)

    2008-08-15

    A Pt/{gamma}-Al{sub 2}O{sub 3} catalyst was tested in simultaneous hydrodesulfurization (HDS) of dibenzothiophene and hydrodearomatization (HDA) of naphthalene reactions. Samples of it were subjected to different pretreatments: reduction, reduction-sulfidation, sulfidation with pure H{sub 2}S and non-activation. The reduced catalyst presented the best performance, even comparable to that of Co(Ni)Mo catalysts. All catalyst samples were selective to the HDS reaction over HDA, and to the direct desulfurization pathway of dibenzothiophene HDS over the hydrogenation reaction pathway of HDS. The effect of H{sub 2}S partial pressure on the functionalities of the reduced Pt/{gamma}-Al{sub 2}O{sub 3} catalyst was studied. The results showed that an increase in H{sub 2}S partial pressure does not cause poisoning, but an inhibition effect, without changing the catalyst selectivity. Accordingly, the activity trends were ascribed to adsorption differences between the different reactive molecules over the same catalytic active site. TPR characterization along with a thermodynamics analysis showed that the active phase of reduced Pt/{gamma}-Al{sub 2}O{sub 3} is constituted by Pt{sup 0} particles. However, presulfidation of the catalyst leads to a mixture of PtS and Pt{sup 0}which has a negative effect on the catalytic performance without changing catalyst functionalities. 61 refs., 4 figs., 1 tab.

  5. Hydrodesulfurization of Iraqi Atmospheric Gasoil by Ti-Ni-Mo/γ-Al2O3 Prepared Catalyst

    Directory of Open Access Journals (Sweden)

    Abdul Halim Abdul Karim Mohammed

    2017-11-01

    Full Text Available This study investigates the improvement of Iraqi atmospheric gas oil characteristics which contains 1.402 wt. % sulfur content and 16.88 wt. % aromatic content supplied from Al-Dura Refinery by using hydrodesulfurization (HDS process using Ti-Ni-Mo/γ-Al2O3 prepared catalyst in order to achieve low sulfur and aromatic saturation gas oil. Hydrodearomatization (HDA occurs simultaneously with hydrodesulfurization (HDS process. The effect of titanium on the conventional catalyst Ni-Mo/γ-Al2O3 was investigated by physical adsorption and catalytic activity test.Ti-Ni-Mo/γ-Al2O3 catalyst was prepared under vacuum impregnation condition to ensure efficient precipitation of metals within the carrier γ-Al2O3. The loading percentage of metals as oxide; titanium oxide 3 wt. %, nickel oxide 5 wt. % and molybdenum oxide 12 wt. %. The performance of the synthesized catalyst for removing sulfur and aromatic saturation were tested at various temperatures 275 to 350°C, LHSV 1 to 4h-1, constant pressure 40 bar and H2/HC ratio 500 ml/ml.Results showed that the sulfur and aromatic content were reduced at all operating conditions. Maximum sulfur removal was 75.52 wt. % in gas oil on Ti-Ni-Mo/γ-Al2O3 at temperature 350˚C, LHSV 1h-1, while minimum aromatic content achieved was 15.6 wt. % at the same conditions.

  6. Hydrodesulfurization and hydrodearomatization activities of catalyst containing ETS-10 and AlPO{sub 4}-5 on Daqing FCC diesel

    Energy Technology Data Exchange (ETDEWEB)

    Ye Zhao; Baojian Shen; Wencheng Zhang; Ran Tian; Zhihua Zhang; Jinsen Gao [China University of Petroleum, Beijing (China). State Key Laboratory of Heavy Oil Processing

    2008-08-15

    A Ni-W loaded ETS-10/AlPO{sub 4}-5/Al{sub 2}O{sub 3} composite support catalyst was optimized and used in hydrodesulfurization (HDS) and hydrodearomatization (HDA) of Daqing FCC diesel feedstock. The result indicated that ETS-10 and AlPO{sub 4}-5 showed positive synergism effect. The effects of operating conditions on its catalytic performance were investigated by using a 100 mL hydrotreating test unit. The catalyst showed a remarkable HDS conversion of 99.9% and a HDA conversion of 73.2%. A clean diesel product with ultra-low sulfur content (<1.0 {mu}g/g) and very low polycyclic aromatic content (<2.0 wt.%) was obtained. Short communication. 21 refs., 4 tabs.

  7. Enabling Ultra Deep Hydrodesulfurization by Nanoscale Engineering of New Catalysts

    DEFF Research Database (Denmark)

    Christoffersen, Ann-Louise Nygård

    The HYDECAT project was initiated to make a targeted effort in the field of hydrodesulfurization (HDS), which is the process where sulfur is removed from crude oil by addition of hydrogen to form hydrocarbons and hydrogen sulfide. This PhD thesis represents my share in the project. Due to the adv......The HYDECAT project was initiated to make a targeted effort in the field of hydrodesulfurization (HDS), which is the process where sulfur is removed from crude oil by addition of hydrogen to form hydrocarbons and hydrogen sulfide. This PhD thesis represents my share in the project. Due...... the process of introducing them in their gaseous form into the µ-reactor at ambient pressure, and a specially designed flange with an incorporated ion source and internal heat tracing was implemented.  HDS of DBT and 4,6-DMDBT at 800 mbar on six mass-selected Pt samples were conducted. Two Pt samples of ∼3 nm...

  8. Dibenzothiophene hydrodesulfurization over Ru promoted alumina based catalysts using in situ generated hydrogen

    International Nuclear Information System (INIS)

    Muhammad, Yaseen; Lu Yingzhou; Shen Chong; Li Chunxi

    2011-01-01

    Catalytic hydrodesulfurization (HDS) of dibenzothiophene (DBT) was carried out in a temperature range of 320-400 o C using in situ generated hydrogen coupled with the effect of selected organic additives for the first time. Four kinds of alumina based catalysts i.e. Co-Mo/Al 2 O 3 , Ni-Mo/Al 2 O 3 , Ru-Co-Mo/Al 2 O 3 and Ru-Ni-Mo/Al 2 O 3 were used for the desulfurization process, which were prepared following incipient impregnation method with fixed metal loadings (wt.%) of Co, Ni, Mo and Ru. The surface area, average pore diameter and pore volume distribution of the fresh and used catalysts were measured by N 2 adsorption using BET method. Catalytic activity was investigated in a batch autoclave reactor in the complete absence of external hydrogen gas. Addition and mutual reaction of specific quantities of water and ethanol provided the necessary in situ hydrogen for the desulfurization reaction. Organic additives like diethylene glycol (DEG), phenol, naphthalene, anthracene, o-xylene, tetralin, decalin and pyridine did impinge the HDS activity of the catalysts in different ways. Liquid samples from reaction products were quantitatively analyzed by HPLC technique while qualitative analyses were made using GC-MS. Both of these techniques showed that Ni-based catalysts were more active than Co-based ones at all conditions. Moreover, incorporation of Ru to both Co and Ni-based catalysts greatly promoted desulfurization activity of these catalysts. DBT conversion of up to 84% was achieved with Ru-Ni-Mo/Al 2 O 3 catalyst at 380 o C temperature for 11 h. Catalyst systems followed the HDS activity order as: Ru-Ni-Mo/Al 2 O 3 > Ni-Mo/Al 2 O 3 > Ru-Co-Mo/Al 2 O 3 > Co-Mo/Al 2 O 3 at all conditions. Cost effectiveness, mild operating conditions and reasonably high catalytic activity using in situ generated hydrogen mechanism proved our process to be useful for HDS of DBT.

  9. Catalytic Activities of Noble Metal Phosphides for Hydrogenation and Hydrodesulfurization Reactions

    Directory of Open Access Journals (Sweden)

    Yasuharu Kanda

    2018-04-01

    Full Text Available In this work, the development of a highly active noble metal phosphide (NMXPY-based hydrodesulfurization (HDS catalyst with a high hydrogenating ability for heavy oils was studied. NMXPY catalysts were obtained by reduction of P-added noble metals (NM-P, NM: Rh, Pd, Ru supported on SiO2. The order of activities for the hydrogenation of biphenyl was Rh-P > NiMoS > Pd-P > Ru-P. This order was almost the same as that of the catalytic activities for the HDS of dibenzothiophene. In the HDS of 4,6-dimethyldibenzothiophene (4,6-DMDBT, the HDS activity of the Rh-P catalyst increased with increasing reaction temperature, but the maximum HDS activity for the NiMoS catalyst was observed at 270 °C. The Rh-P catalyst yielded fully hydrogenated products with high selectivity compared with the NiMoS catalyst. Furthermore, XRD analysis of the spent Rh-P catalysts revealed that the Rh2P phase possessed high sulfur tolerance and resistance to sintering.

  10. Modeling the Thiophene HDS reaction on a molecular level

    NARCIS (Netherlands)

    Diemann, E.; Weber, T.; Müller, A.

    1994-01-01

    The structure of MoS2/Al2O3 catalyst and the initial step of the hydrodesulfurization (HDS) reaction using an experimental model have been studied by in situ Raman-, infrared emission (IRE)-, inelastic electron tunneling (IET)-spectroscopy and thermal desorption measurements accompanied by molecular

  11. Thiophene hydrodesulfurization over CoMo/Al2O3-CuY catalysts: Temperature effect study

    Directory of Open Access Journals (Sweden)

    Yamina Boukoberine

    2016-09-01

    Full Text Available CoMo/γ-Al2O3-CuY catalysts are prepared by physically mixing CoMo/γ-Al2O3 catalyst with Cu-exchanged Y zeolite. The CuY zeolite is prepared by the solid state ion exchange technique. The thiophene hydrodesulfurization is performed in a fixed bed reactor at high temperature and atmospheric pressure. The results show that the presence of CuY zeolite particles in CoMo/Al2O3 catalyst can have a noticeable effect on both the conversion and product selectivities. An increasing zeolite loading in catalyst results in a decrease of the thiophene HDS activity. This decrease is probably caused by the formation of heavy compounds and the deactivation of the zeolite at high temperatures.

  12. Preparation, characterization of Mo catalysts supported on Ni- containing calcium deficient hydroxyapatite and reactivity for the thiophene HDS reaction

    Directory of Open Access Journals (Sweden)

    Cherif A.

    2013-09-01

    Full Text Available Ni-containing Calcium Hydroxyapatite (NiCaHAp; 3.31 wt.% Ni was synthesized by coprecipitation and used as catalyst support. Molybdenum was supported on NiCaHAp by impregnation using ammonium heptamolybdate. The prepared catalysts Mo(x/NiCaHAp (x: 2 to 8 wt % in Mo were characterized by elemental analysis, XRD, FT-IR, N2 adsorption-desorption and TEM-EDX. The catalysts were sulfided in-situ at 673 K under flowing H2S/H2 (15 Vol.% H2S and tested in hydrodesulfurization (HDS of thiophene at 673 K. The main XRD peaks of hydroxyapatite CaHAp phase were observed in all samples and a peak due probably to crystalline MoO3 phase was also identified from the results. However, no crystalline phase of NiO was found for the catalysts, which showed its Ni species were highly dispersed. The sulfided catalysts Mo(x/NiCaHAp presented are active in HDS of thiophene, despite the presence of some large MoO3 crystallites and incomplete sulfidation. This activity may be due to interaction of NiO and MoO3 on CaHAp resulting in the formation of Ni-Mo-S phase under flowing H2S/H2. When the molybdenum content increased the HDS activity increasead slightly, which was caused by the agglomeration of MoO3. The Mo(8/NiCaHAp catalyst is about two times less active for thiophene HDS than the commercial NiMoP/Al2O3.

  13. Elucidation of hydrodesulfurization mechanism using 35S radioisotope pulse tracer methods

    International Nuclear Information System (INIS)

    Kabe, Toshiaki; Qian, Weihua; Ishihara, Atsushi

    1997-01-01

    Molybdenum-based catalysts as hydrodesulfurization (HDS) catalysts are among the most important industrial catalysts. One of the new approaches characterizing the structure of such catalysts and the behavior of sulfur over the 'working' catalyst is a 35S radioisotope pulse tracer method (RPTM). By tracing the behavior of sulfur in the HDS reaction and sulfur exchange reaction over the sulfided Mo/Al 2 O 3 and Co-Mo/Al 2 O 3 catalysts under practical reaction conditions, it becomes possible for us to observe the catalytic behavior of the catalyst in situ. The formation process of active sites, the important role that H 2 S plays in this process, and the promotion by cobalt for Mo/Al 2 O 3 catalyst have become better understood

  14. Dibenzothiophene hydrodesulfurization over Ru promoted alumina based catalysts using in situ generated hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Muhammad, Yaseen; Shen, Chong; Li, Chunxi [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Lu, Yingzhou [College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029 (China)

    2011-02-15

    Catalytic hydrodesulfurization (HDS) of dibenzothiophene (DBT) was carried out in a temperature range of 320-400 C using in situ generated hydrogen coupled with the effect of selected organic additives for the first time. Four kinds of alumina based catalysts i.e. Co-Mo/Al{sub 2}O{sub 3}, Ni-Mo/Al{sub 2}O{sub 3}, Ru-Co-Mo/Al{sub 2}O{sub 3} and Ru-Ni-Mo/Al{sub 2}O{sub 3} were used for the desulfurization process, which were prepared following incipient impregnation method with fixed metal loadings (wt.%) of Co, Ni, Mo and Ru. The surface area, average pore diameter and pore volume distribution of the fresh and used catalysts were measured by N{sub 2} adsorption using BET method. Catalytic activity was investigated in a batch autoclave reactor in the complete absence of external hydrogen gas. Addition and mutual reaction of specific quantities of water and ethanol provided the necessary in situ hydrogen for the desulfurization reaction. Organic additives like diethylene glycol (DEG), phenol, naphthalene, anthracene, o-xylene, tetralin, decalin and pyridine did impinge the HDS activity of the catalysts in different ways. Liquid samples from reaction products were quantitatively analyzed by HPLC technique while qualitative analyses were made using GC-MS. Both of these techniques showed that Ni-based catalysts were more active than Co-based ones at all conditions. Moreover, incorporation of Ru to both Co and Ni-based catalysts greatly promoted desulfurization activity of these catalysts. DBT conversion of up to 84% was achieved with Ru-Ni-Mo/Al{sub 2}O{sub 3} catalyst at 380 C temperature for 11 h. Catalyst systems followed the HDS activity order as: Ru-Ni-Mo/Al{sub 2}O{sub 3}> Ni-Mo/Al{sub 2}O{sub 3}> Ru-Co-Mo/Al{sub 2}O{sub 3}> Co-Mo/Al{sub 2}O{sub 3} at all conditions. Cost effectiveness, mild operating conditions and reasonably high catalytic activity using in situ generated hydrogen mechanism proved our process to be useful for HDS of DBT. (author)

  15. Commercial application of titania-supported hydrodesulfurization catalysts in the production of hydrogen using full-range FCC off-gas

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shaohu [SINOPEC Wuhan Branch, Qingshan, Wuhan 430082 (China); Shen, Binglong; Qu, Lianglong [Beijing Haishunde Titanium Catalyst Co. Ltd., A-1 North East-Ring Road, Beijing Economic-Technological Development Area, Beijing 100176 (China)

    2004-11-24

    This paper provides an alternative for low-cost feed used for on-purpose hydrogen production. Full-range FCC off-gas was applied to steam-reforming process as feed after treating with hydrogenation and hydrodesulfurization catalysts. Commercial run results were reported with novel TiO{sub 2}-supported Mo-based catalysts, T205A-1 and T205. The processes of catalysts loading, sulfidation, start-up and long-term run were described in details. Long-term run showed that TiO{sub 2}-supported Mo catalysts have good low-temperature hydrogenation activity, excellent HDS activity, and outstanding stability. Use of FCC off-gas as feed for hydrogen production is quite promising and will increase margins for refiners today.

  16. Hydrodesulfurization and hydrodemetalation reactions of residue oils over CoMo/aluminum borate catalysts in a trickle bed reactor

    International Nuclear Information System (INIS)

    Tsai, M.C.; Chen, Y.W.; Kang, B.C.; Wu, J.C.; Leu, L.J.

    1991-01-01

    In this paper, a series of aluminum borates (AB) with various Al/B mole ratios is prepared by the precipitation method. The results indicated that the exhibited properties are dependent on the Al/B ratio of the material. The monodisperse pore size distributions of these samples simply that it is a true microcomposite structure rather than a mixture of the individual materials. Hydrodesulfurization (HDS) and hydrodemetalation (HDM) of heavy Kuwait atmospheric residuum over CoMo/AB catalysts were carried out in a bench-scale trickle bed reactor at 663 K and 7582 kPa. The weight hourly space velocity of residue oils was 1.5, and the hydrogen flow rate was kept constant at 300 mL/min (STP). The results showed that these catalysts are much more active than the conventional CoMo/Al 2 O 3 catalyst in HDS and HDM reactions. The results of desulfurization activity are mainly interpreted on the basis of difference in dispersion and the interaction of Mo species with the support. The demetalation activity was strongly influenced by the intraparticle diffusion of metal porphyrins

  17. Engineering Ni-Mo-S Nanoparticles for Hydrodesulfurization

    DEFF Research Database (Denmark)

    Bodin, Anders; Christoffersen, Ann-Louise N.; Elkjær, Christian F.

    2018-01-01

    Nanoparticle engineering for catalytic applications requires both a synthesis technique for the production of well-defined nanoparticles and measurements of their catalytic performance. In this paper, we present a new approach to rationally engineering highly active Ni-Mo-S nanoparticle catalysts...... for hydrodesulfurization (HDS), i.e., the removal of sulfur from fossil fuels. Nanoparticle catalysts are synthesized by the sputtering of a Mo75Ni25 metal target in a reactive atmosphere of Ar and H2S followed by the gas aggregation of the sputtered material into nanoparticles. The nanoparticles are filtered...

  18. Phosphorus poisoning of molybdenum sulfide hydrodesulfurization catalysts supported on carbon and alumina

    NARCIS (Netherlands)

    Bouwens, S.M.A.M.; Vissers, J.P.R.; Beer, de V.H.J.; Prins, R.

    1988-01-01

    Phosphorus-containing Mo sulfide catalysts supported on ¿-Al2O3 and activated carbon were evaluated for their thiophene HDS activities. Phosphorus was added as phosphoric acid to the carrier material prior to the molybdenum component. The thiophene HDS activity of the carbon-supported catalysts was

  19. A new approach to synthesize supported ruthenium phosphides for hydrodesulfurization

    International Nuclear Information System (INIS)

    Wang, Qingfang; Wang, Zhiqiang; Yin, Xiaoqian; Zhou, Linxi; Zhang, Minghui

    2016-01-01

    Highlights: • We bring out a new method to synthesize noble metal phosphides at low temperature. • Both RuP and Ru_2P were synthesized using triphenylphosphine as phosphorus sources. • Ru_2P was the better active phase for HDS than RuP and metal Ru. • RuP/SiO_2 prepared by new method had better HDS activity to that by TPR method. - Abstract: Supported noble metal ruthenium phosphides were synthesized by one-step H_2-thermal treatment method using triphenylphosphine (TPP) as phosphorus sources at low temperatures. Two phosphides RuP and Ru_2P can be prepared by this method via varying the molar ratio of metal salt and TPP. The as-prepared phosphides were characterized by X-ray powder diffraction (XRD), low-temperature N_2 adsorption, CO chemisorption and transmission electronic microscopy (TEM). The supported ruthenium phosphides prepared by new method and conventional method together with contradistinctive metallic ruthenium were evaluated in hydrodesulfurization (HDS) of dibenzothiophene (DBT). The catalytic results showed that metal-rich Ru_2P was the better active phase for HDS than RuP and metal Ru. Besides this, ruthenium phosphide catalyst prepared by new method exhibited superior HDS activity to that prepared by conventional method.

  20. A new approach to synthesize supported ruthenium phosphides for hydrodesulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qingfang [Tianjin Key Laboratory of Water Environment and Resources, Tianjin Normal University, Tianjin 300387 (China); Key Laboratory of Advanced Energy Materials Chemistry (MOE), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071 (China); Wang, Zhiqiang [Tianjin Key Laboratory of Water Environment and Resources, Tianjin Normal University, Tianjin 300387 (China); Yin, Xiaoqian; Zhou, Linxi [Key Laboratory of Advanced Energy Materials Chemistry (MOE), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071 (China); Zhang, Minghui, E-mail: zhangmh@nankai.edu.cn [Key Laboratory of Advanced Energy Materials Chemistry (MOE), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071 (China); College of Chemistry and Environmental Science, Kashgar University, Kashgar 844006 (China)

    2016-02-15

    Highlights: • We bring out a new method to synthesize noble metal phosphides at low temperature. • Both RuP and Ru{sub 2}P were synthesized using triphenylphosphine as phosphorus sources. • Ru{sub 2}P was the better active phase for HDS than RuP and metal Ru. • RuP/SiO{sub 2} prepared by new method had better HDS activity to that by TPR method. - Abstract: Supported noble metal ruthenium phosphides were synthesized by one-step H{sub 2}-thermal treatment method using triphenylphosphine (TPP) as phosphorus sources at low temperatures. Two phosphides RuP and Ru{sub 2}P can be prepared by this method via varying the molar ratio of metal salt and TPP. The as-prepared phosphides were characterized by X-ray powder diffraction (XRD), low-temperature N{sub 2} adsorption, CO chemisorption and transmission electronic microscopy (TEM). The supported ruthenium phosphides prepared by new method and conventional method together with contradistinctive metallic ruthenium were evaluated in hydrodesulfurization (HDS) of dibenzothiophene (DBT). The catalytic results showed that metal-rich Ru{sub 2}P was the better active phase for HDS than RuP and metal Ru. Besides this, ruthenium phosphide catalyst prepared by new method exhibited superior HDS activity to that prepared by conventional method.

  1. Comparison of P-containing {gamma}-Al{sub 2}O{sub 3} supported Ni-Mo bimetallic carbide, nitride and sulfide catalysts for HDN and HDS of gas oils derived from Athabasca bitumen

    Energy Technology Data Exchange (ETDEWEB)

    Sundaramurthy, V.; Dalai, A.K. [Catalysis and Chemical Reaction Engineering Laboratories, Department of Chemical Engineering, University of Saskatchewan, Saskatoon, SK (Canada); Adjaye, J. [Syncrude Edmonton Research Centre, Edmonton, AB (Canada)

    2006-09-01

    Phosphorus containing {gamma}-Al{sub 2}O{sub 3} supported bimetallic Ni-Mo carbide, nitride and sulfide catalysts have been synthesized from an oxide precursor containing 12.73wt.% Mo, 2.54wt.% Ni and 2.38wt.% P and characterized by elemental analysis, pulsed CO chemisorption, surface area measurements, X-ray diffraction, temperature-programmed reduction and DRIFT spectroscopy of CO adsorption. DRIFT spectroscopy of adsorbed CO on activated catalysts showed that carbide and nitride catalysts have surface exposed sites of Mo{sup o+} (0hydrodesulfurization (HDS) activities of the bimetallic Ni-Mo carbide, nitride and sulfide catalysts were compared against commercial Ni-Mo/Al{sub 2}O{sub 3} catalyst in a trickle bed reactor using light gas oil and heavy gas oil derived from Athabasca bitumen in the temperature range 340-370 and 375-400{sup o}C respectively at 8.8MPa. The gradual transformation of Ni-Mo carbide and nitride phases into Ni-Mo sulfide phases was observed during precoking period, and the formed Ni-Mo sulfide phases enhanced the HDN and HDS activities of carbide and nitride catalysts. The {gamma}-Al{sub 2}O{sub 3} supported Ni-Mo bimetallic sulfide catalyst was found to be more active for HDN and HDS of light gas oil and heavy gas oil than the corresponding carbide and nitride catalysts on the basis of unit weight. (author)

  2. Performance Testing of Hydrodesulfurization Catalysts Using a Single-Pellet-String Reactor

    NARCIS (Netherlands)

    Moonen, Roel; Ras, Erik Jan; Harvey, Clare; Alles, Jeroen; Moulijn, J.A.

    2017-01-01

    Small-scale parallel trickle-bed reactors were used to evaluate the performance of a commercial hydrodesulfurization catalyst under industrially relevant conditions. Catalyst extrudates were loaded as a single string in reactor tubes. It is demonstrated that product sulfur levels and densities

  3. From biomass to fuels: hydrotreating of oxygen-containing feeds on a CoMo/Al{sub 2}O{sub 3} hydrodesulfurization catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Viljava, T.-R.

    2001-07-01

    Biomass is a renewable alternative to fossil raw materials in the production of liquid fuels and chemicals. Liquefied biomass contains an abundance of oxygen-containing molecules that need to be removed to improve the stability of the liquids. A hydrotreating process, hydrodeoxygenation (HDO), is used for the purpose. Hydrodeoxygenation is similar to the hydrodesulfurization (HDS) process used in oil refining, relying upon a presulfided CoMo/{gamma}-Al{sub 2}O{sub 2}; catalyst. The stability of the sulfided catalyst is critical in HDO because biocrudes usually do not contain the sulfur compounds needed to maintain the sulfidation of the catalyst. The aim of this work was to examine the role of sulfur in maintaining the activity of the HDO catalyst. Sulfur was introduced as an organic sulfur-containing co-reactant or as a sulfur substituent in an oxygen-containing reactant molecule as a way of simulating mixed feeds composed of biocrudes and conventional crudes, or it was introduced as a low molecular weight sulfiding agent. In addition, the stability of the sulfided catalyst against changes in the feed composition was studied to find out whether the activity of the catalyst could be maintained by carrying out HDO alternately with HDS. Simultaneous HDO and HDS was studied in a batch reactor with model compounds having a sulfur-containing (inercapto or inethylmercapto) and an oxygen-containing (hydroxyl or inethoxy) substituent in the same molecule, and with binary mixtures of mono-substituted benzene compounds. In both cases, the reactions of the oxygencontaining substituents were strongly suppressed as long as a sulfur-containing functionality was present. HDS reactions of inercapto and inethylinercapto groups were either enhanced or retarded in the presence of oxygen-containing functionality. HDS was enhanced when the oxygen-containing substituent was located in Para-position to the sulfur substituent thereby increasing the electronegativity of the sulfur atom and

  4. The role of Ni in sulfided carbon-supported Ni-Mo hydrodesulfurization catalysts

    NARCIS (Netherlands)

    Bouwens, S.M.A.M.; Barthe-Zahir, N.; Beer, de V.H.J.; Prins, R.

    1991-01-01

    The thiophene hydrodesulfurization activities of Ni and Ni---Mo sulfide catalysts supported on activated carbon were measured at atmospheric pressure and the catalyst structures were studied by means of X-ray photoelectron spectroscopy, dynamic oxygen chemisorption, and chemical sulfur analysis. The

  5. Studies on recycling and utilization of spent catalysts. Preparation of active hydrodemetallization catalyst compositions from spent residue hydroprocessing catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Marafi, Meena; Stanislaus, Antony [Petroleum Refining Department, Petroleum Research and Studies Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat (Kuwait)

    2007-02-15

    Spent catalysts form a major source of solid wastes in the petroleum refining industries. Due to environmental concerns, increasing emphasis has been placed on the development of recycling processes for the waste catalyst materials as much as possible. In the present study the potential reuse of spent catalysts in the preparation of active new catalysts for residual oil hydrotreating was examined. A series of catalysts were prepared by mixing and extruding spent residue hydroprocessing catalysts that contained C, V, Mo, Ni and Al{sub 2}O{sub 3} with boehmite in different proportions. All prepared catalysts were characterized by chemical analysis and by surface area, pore volume, pore size and crushing strength measurements. The hydrodesulfurization (HDS) and hydrodemetallization (HDM) activities of the catalysts were evaluated by testing in a high pressure fixed-bed microreactor unit using Kuwait atmospheric residue as feed. A commercial HDM catalyst was also tested under similar operating conditions and their HDS and HDM activities were compared with that of the prepared catalysts. The results revealed that catalyst prepared with addition of up to 40 wt% spent catalyst to boehmite had fairly high surface area and pore volume together with large pores. The catalyst prepared by mixing and extruding about 40 wt% spent catalyst with boehmite was relatively more active for promoting HDM and HDS reactions than a reference commercial HDM catalyst. The formation of some kind of new active sites from the metals (V, Mo and Ni) present in the spent catalyst is suggested to be responsible for the high HDM activity of the prepared catalyst. (author)

  6. Monometallic Pd and Pt and Bimetallic Pd-Pt/Al2O3-TiO2 for the HDS of DBT: Effect of the Pd and Pt Incorporation Method

    Directory of Open Access Journals (Sweden)

    Reynaldo Martínez Guerrero

    2014-01-01

    Full Text Available The effect of the preparation method of monometallic Pd and Pt and bimetallic Pd-Pt/Al2O3-TiO2 catalysts on the hydrodesulfurization (HDS of dibenzothiophene (DBT was investigated in this study. The synthesis was accomplished using three methods: (A impregnation, (B metal organic chemical vapor deposition (MOCVD, and (C impregnation-MOCVD. The bimetallic Pd-Pt catalyst prepared by the impregnation-MOCVD method was most active for the HDS of DBT compared to those prepared by the single impregnation or MOCVD method due to the synergetic effect between both noble metals. The greater selectivity toward biphenyl indicated that this bimetallic Pd-Pt catalyst preferentially removes sulfur via the direct desulfurization mechanism. However, the bimetallic Pd-Pt catalyst prepared using the single MOCVD method did not produce any cyclohexylbenzene, which is most likely associated with the hydrogenation/dehydrogenation sites.

  7. Activity and selectivity of three molybdenum catalysts for coal liquefaction reactions

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W.; Pellegrino, J.L.

    The activity and selectivity of three different molybdenum catalysts for reactions occurring in coal liquefaction, specifically for hydrogenation (HYD), hydrodeoxygenation (HDO), hydrodenitrogenation (HDN), hydrodesulfurization (HDS), and hydrocracking (HYC), have been examined. The three molybdenum catalysts used were molybdenum napthenate, molybdenum on ..gamma..-alumina, and a precipitated, disordered MoS/sub 2/. Molybdenum naphthenate was most selective for HYD and HDN. All three catalysts exhibited approximately equal activity for HDS and HDO and little selectivity for HYC of alkyl bridge structures. The activity and selectivity of the three molybdenum catalysts for producing hydrocarbons and removing heteroatoms from coal during liquefaction were determined and compared. Molybdenum naphthenate was the most active catalyst for hydrocarbon production and removal of nitrogen- and oxygen-containing species during coal liquefaction. 31 refs., 4 figs., 7 tabs.

  8. Catalytic hydroprocessing of coal-derived gasification residues to fuel blending stocks: effect of reaction variables and catalyst on hydrodeoxygenation (HDO), hydrodenitrogenation (HDN), and hydrodesulfurization (HDS)

    Energy Technology Data Exchange (ETDEWEB)

    Dieter Leckel [Sasol Technology Research and Development, Sasolburg (South Africa). Fischer-Tropsch Refinery Catalysis

    2006-10-15

    Gas liquors, tar oils, and tar products resulting from the coal gasification of a high-temperature Fischer-Tropsch plant can be successfully refined to fuel blending components by the use of severe hydroprocessing conditions. High operating temperatures and pressures combined with low space velocities ensure the deep hydrogenation of refractory oxygen, sulfur, and nitrogen compounds. Hydrodeoxygenation, particularly the removal of phenolic components, hydrodesulfurization, and hydrodenitrogenation were obtained at greater than 99% levels using the NiMo and NiW on {gamma}-Al{sub 2}O{sub 3} catalysts. Maximum deoxygenation activity was achieved using the NiMo/{gamma}-Al{sub 2}O{sub 3} catalyst having a maximum pore size distribution in the range of 110-220{angstrom}. The NiMo/{gamma}-Al{sub 2}O{sub 3} catalyst, which also has a relatively high proportion of smaller pore sizes (35-60 {angstrom}), displays lower hydrogenation activity. 30 refs., 1 fig. 8 tabs.

  9. A series of NiMo/Al{sub 2}O{sub 3} catalysts containing boron and phosphorus. Part 2. Hydrodenitrogenation and hydrodesulfurization using heavy gas oil derived from Athabasca bitumen

    Energy Technology Data Exchange (ETDEWEB)

    Ferdous, D.; Dalai, A.K. [Catalysis and Chemical Reactor Engineering Laboratories, Department of Chemical Engineering, University of Saskatchewan, Saskatoon (Canada) SK S7N 5C9; Adjaye, J. [Syncrude Canada Ltd., Edmonton Research Center (Canada)

    2004-04-08

    The hydrodenitrogenation (HDN) and hydrodesulfurization (HDS) activity of a series of NiMo/Al{sub 2}O{sub 3} catalyst containing boron (B) and phosphorus (P) were tested in a trickle bed reactor using heavy gas oil derived from Athabasca bitumen. Detailed characterization of these catalysts is given in Part I of this paper. Addition of B and P caused the formation of extremely strong acid sites on the catalyst and enhanced its HDN activity. The total (TN), basic (BN) and non-basic nitrogen (NBN) conversions increased from 61.9 to 78.0wt.%, from 78.9 to 93.0wt.% and from 52.8 to 70.0wt.%, respectively, with the increase in B concentration from 0 to 1.7wt.% to NiMo/Al{sub 2}O{sub 3} catalyst. Similarly, TN, BN and NBN conversions increased from 61.9 to 78.4wt.%, from 78.9 to 91.0wt.%, and from 52.8 to 71.6wt.% with the addition of 2.7wt.% P. Though the addition of B and P to NiMo/Al{sub 2}O{sub 3} catalyst did not show any significant effect on S conversion, the HDN and HDS activities of the catalyst containing 1.7wt.% B and the one containing 2.7wt.% P are comparable to those of a commercial catalyst. The activity over extended period indicated that catalysts L and K were more stable (lower deactivation rate) in terms of nitrogen removal activity than catalyst B (reference catalyst). On the other hand, the stability for sulfur removal was comparable with catalyst B. Selected catalysts after use were characterized using BET surface area, TPR, TPD and SEM techniques which were correlated further with their activities.

  10. Hydrothermal synthesis of Ni_2P nanoparticle and its hydrodesulfurization of dibenzothiophene

    International Nuclear Information System (INIS)

    Zhao, Qi; Han, Yang; Huang, Xiang; Dai, Jinhui; Tian, Jintao; Zhu, Zhibin; Yue, Li

    2017-01-01

    Nanosized nickel phosphide (Ni_2P) has been synthesized via hydrothermal reaction with environmental-friendly red phosphorus and nickel chloride. The reaction mechanism has been studied by measurement techniques of IC, XRD ,TEM, EDS, and XPS. The results showed that the particle sizes of as-prepared Ni_2P are in nanoscale ranging from 10 to 30 nm. In hydrothermal reaction, red phosphorus reacts with water to its oxyacids, especially its hypophosphorous acid (or hypophosphite) which can reduce nickel chloride to nickel, and then metallic nickel will penetrate into the rest of red phosphorus to generate nano-Ni_2P. Furthermore, the catalytic performance of as-synthesized Ni_2P for the hydrodesulfurization of dibenzothiophene has been tested. It has been shown that the HDS reaction process over Ni_2P catalyst agrees well with the pseudo-first order kinetic equation, and the HDS conversion can reach up to 43.83% in 5 h with a stable increasing catalytic activity during the whole examination process.

  11. Hydrotreating catalyst deactivation by coke from SRC-II oil

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Y.; Kumata, F.; Massoth, F.E.

    1988-10-01

    Samples of a CoMo/Al/sub 2/O/sub 3/ catalyst were partially deactivated with SRC-II feed in an autoclave reactor to give coked samples of 5 to 18% C. The coked catalysts were analyzed for surface area, pore volume, coronene adsorption and diffusivity, and their catalytic activity determined for hydrodesulfurization (HDS), hydrodeoxygenation (HDO) and C-N hydrogenolysis (CNH) using model compounds. All of the above measurements decreased with increase in coke content. Property data indicate that some pores are blocked by coke and diffusivity results show narrowing of pore mouths with increasing coke content. Catalyst deactivation versus coke level was identical for HDS and HDO, but less for CNH. A simple model of coke deactivation was developed to relate activity to coke content. Coke is envisioned as forming wedge-like deposits in the catalyst pores. 11 refs., 5 figs., 3 tabs.

  12. Catalysts for petroleum desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, A.; Diemann, E.; Baumann, F.W.

    1988-01-01

    In order to obtain marketable products from low-quality oils, efficient hydrogenation processes are required for removing sulfur (hydrodesulfurization, HDS), nitrogen (hydrodenitrification, HDN), and oxygen (hydrodeoxygenation, HDO), which would poison the noble metal catalysts of the downstream petrochemical processes. Hydrogenation will produce low-sulfur, low-nitrogen fuels and thus contribute to the reduction of SO/sub 2/ and NO/sub x/ emissions which is long overdue from the ecological point of view (forest decline, acidification of surface bodies of water, etc.).

  13. Hydrotreating NiMo/sepiolite catalysts: influence of catalyst preparation on activity for HDS, hydrogenation and chain isomerization reactions

    International Nuclear Information System (INIS)

    Melo, F.V.; Sanz, E.; Corma, A.; Mifsud, A.

    1987-01-01

    A series of NiMo catalysts supported on a sepiolite: a) in its natural state, b) modified by acid leaching, and c) modified by cation exchange, have been prepared. The preparation variables studied were: Method of metal deposition, amount of active phase, sepiolite pretreatment, and temperature and time of sulfurization. The catalytic activity for HDS, hydrogenation, and cracking-isomerization has been studied by feeding a thiophene-cyclohexene-cyclohexane mixture and carrying out the reaction in the following conditions: 300 0 and 400 0 C reaction temperature, 20 Kg.cm -2 total pressure, and 3 to 1 molar ratio of H 2 to hydrocarbons. An optimium for HDS and hydrogenation activity was found for a 12% wt MoO 3 , and 5% wt NiO, prepared by simultaneous impregnation by the pore volume method at Ph = 5.0. The optimum conditions with these catalysts are 400 0 C and 3 hours of sulfurization. An increase in the acidity of the support produces a decrease of HDS and hydrogenation and an increase of the cracking-isomerization activities. A good correlation between HDS and the concentration of an XNiO.MoO 3 phase is found. The XNiO.MoO 3 phase is completely sulfurized to a modified MoS 2 , while NiMoO 4 and MoO 3 are only slightly sulfurized. 31 refs.; 7 figs.; 1 table

  14. Engelhard and IFP/Procatalyse set up worldwide catalysts venture

    International Nuclear Information System (INIS)

    Hunter, D.

    1992-01-01

    The new joint venture between Engelhard (Iselin, N) and Procatalyse (Paris), jointly owned by process licenser Institut Francais de Petrole (IFP; Rueil Malmaison, France) and Rhone-Poulenc (RP; Paris), marks the latest episode in the worldwide catalyst industry's restructuring. The operation will combine Engelhard's catalyst line, apart from its fluid catalytic cracking (FCC) and emission catalysts, with Procatalyse's offering. To be launched at the beginning of 1993, the venture will have annual sales of about $75 million. Reforming catalysts will be the biggest part of the venture's lineup at the outset, making it number three in the US, behind UOP - which dominates the sector - and Criterion. IFP is starting to establish a presence in North America with its reforming technology. But flat gasoline demand and reductions on aromatics in gasoline limit requirements for new reforming units, comments one competitor. Although lower sulfur specifications are putting some new demand into the hydrodesulfurization (HDS) catalyst market, both partners play down their prospects. The sector, whose leaders are Akzo and Crtierion, is continuing to suffer from severe overcapacity. Procatalyse's HDS business is mainly linked to IFP licensees, while Engelhard is due to mothball its Salt Lake City HDS catalyst plant by year-end, transferring output to Elyria

  15. Hydrodesulfurization on Transition Metal Catalysts: Elementary Steps of C-S Bond Activation and Consequences of Bifunctional Synergies

    Science.gov (United States)

    Yik, Edwin Shyn-Lo

    The presence of heteroatoms (e.g. S, N) in crude oil poses formidable challenges in petroleum refining processes as a result of their irreversible binding on catalytically active sites at industrially relevant conditions. With increasing pressures from legislation that continues to lower the permissible levels of sulfur content in fuels, hydrodesulfurization (HDS), the aptly named reaction for removing heteroatoms from organosulfur compounds, has become an essential feedstock pretreatment step to remove deleterious species from affecting downstream processing. Extensive research in the area has identified the paradigm catalysts for desulfurization; MoSx or WSx, promoted with Co or Ni metal; however, despite the vast library of both empirical and fundamental studies, a clear understanding of site requirements, the elementary steps of C-S hydrogenolysis, and the properties that govern HDS reactivity and selectivity have been elusive. While such a lack of rigorous assessments has not prevented technological advancements in the field of HDS catalysis, fundamental interpretations can inform rational catalyst and process design, particularly in light of new requirements for "deep" desulfurization and in the absence of significant hydrotreatment catalyst developments in recent decades. We report HDS rates of thiophene, which belongs to a class of compounds that are most resistant to sulfur removal (i.e. substituted alkyldibenzothiophenes), over a range of industrially relevant temperatures and pressures, measured at differential conditions and therefore revealing their true kinetic origins. These rates, normalized by the number of exposed metal atoms, on various SiO 2-supported, monometallic transition metals (Re, Ru, Pt), range several orders of magnitude. Under relevant HDS conditions, Pt and Ru catalysts form a layer of chemisorbed sulfur on surfaces of a metallic bulk, challenging reports that assume the latter exists as its pyrite sulfide phase during reaction. While

  16. Hydrothermal synthesis of Ni{sub 2}P nanoparticle and its hydrodesulfurization of dibenzothiophene

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Qi; Han, Yang; Huang, Xiang, E-mail: materials@ouc.edu.cn; Dai, Jinhui; Tian, Jintao; Zhu, Zhibin; Yue, Li [Ocean University of China, Institute of Materials Science and Engineering (China)

    2017-04-15

    Nanosized nickel phosphide (Ni{sub 2}P) has been synthesized via hydrothermal reaction with environmental-friendly red phosphorus and nickel chloride. The reaction mechanism has been studied by measurement techniques of IC, XRD ,TEM, EDS, and XPS. The results showed that the particle sizes of as-prepared Ni{sub 2}P are in nanoscale ranging from 10 to 30 nm. In hydrothermal reaction, red phosphorus reacts with water to its oxyacids, especially its hypophosphorous acid (or hypophosphite) which can reduce nickel chloride to nickel, and then metallic nickel will penetrate into the rest of red phosphorus to generate nano-Ni{sub 2}P. Furthermore, the catalytic performance of as-synthesized Ni{sub 2}P for the hydrodesulfurization of dibenzothiophene has been tested. It has been shown that the HDS reaction process over Ni{sub 2}P catalyst agrees well with the pseudo-first order kinetic equation, and the HDS conversion can reach up to 43.83% in 5 h with a stable increasing catalytic activity during the whole examination process.

  17. Catalytic hydrotreatment of coal-derived naphtha using commercial catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Liaw, S.-J.; Keogh, R.A.; Thomas, G.A.; Davis, B.H. (University of Kentucky, Lexington, KY (United States). Center for Applied Energy Research)

    Naphtha samples derived from the liquefaction of a bituminous Illinois No. 6 and a subbituminous Black Thunder coal were hydrotreated using commercial Co-Mo/Al[sub 2]O[sub 3], Ni-Mo/Al[sub 2]O[sub 3], and Ni-W/Al[sub 2]O[sub 3] catalysts. It was easier to remove the N, O and S heteroatoms from Illinois No. 6 naphtha than from the Black Thunder naphtha. Nitrogen and oxygen were more difficult to remove than sulfur in the temperature range 200-400[degree]C. Considerable differences in catalyst activity for the hydrodenitrogenation (HDN), hydrodeoxygenation (HDO), and hydrodesulfurization (HDS) reactions were observed. The Ni-Mo catalyst was found to be the most active catalyst for the HDN and HDO reactions and the least active catalyst for the HDS. The Co-Mo catalyst was the most active catalyst for the sulfur removal. For the Illinois No. 6 naphtha, a first-order reaction applies for the HDN and HDO reactions for all three catalysts. However, for the Black Thunder naphtha, the first-order reaction applies only at the lower space velocities; a large deviation is observed at higher space velocities. 11 refs., 15 figs., 4 tabs.

  18. Reuse of Hydrotreating Spent Catalyst

    International Nuclear Information System (INIS)

    Habib, A.M.; Menoufy, M.F.; Amhed, S.H.

    2004-01-01

    All hydro treating catalysts used in petroleum refining processes gradually lose activity through coking, poisoning by metal, sulfur or halides or lose surface area from sintering at high process temperatures. Waste hydrotreating catalyst, which have been used in re-refining of waste lube oil at Alexandria Petroleum Company (after 5 years lifetime) compared with the same fresh catalyst were used in the present work. Studies are conducted on partial extraction of the active metals of spent catalyst (Mo and Ni) using three leaching solvents,4% oxidized oxalic acid, 10% aqueous sodium hydroxide and 10% citric acid. The leaching experiments are conducting on the de coked extrude [un crushed] spent catalyst samples. These steps are carried out in order to rejuvenate the spent catalyst to be reused in other reactions. The results indicated that 4% oxidized oxalic acid leaching solution gave total metal removal 45.6 for de coked catalyst samples while NaOH gave 35% and citric acid gave 31.9 % The oxidized leaching agent was the most efficient leaching solvent to facilitate the metal removal, and the rejuvenated catalyst was characterized by the unchanged crystalline phase The rejuvenated catalyst was applied for hydrodesulfurization (HDS) of vacuum gas oil as a feedstock, under different hydrogen pressure 20-80 bar in order to compare its HDS activity

  19. CFD Model of HDS Catalyst Tests in Trickle-Bed Reactor

    OpenAIRE

    Tukač, V.

    2014-01-01

    The goal of this study was to evaluate hydrodynamic influence on experimental HDS catalyst activity measurement carried out in pilot scale trickle-bed reactor. Hydrodynamic data were evaluated by RTD method in laboratory glass model of pilot reactor. Mathematical models of the process were formulated both like 1D pseudohomogeneou and 3D heterogeneous ones. The aim of this work was to forecast interaction between intrinsic reaction kinetic, hydrodynamics and mass transfer.

  20. In situ X-ray absorption fine structure studies on the structure of nickel phosphide catalyst supported on K-USY

    CERN Document Server

    Kawai, T; Suzuki, S

    2003-01-01

    Local structure around Ni in a nickel phosphide catalyst supported on K-USY was investigated by an situ X-ray absorption fine structure (XAFS) method during the reduction process of the catalyst and the hydrodesulfurization (HDS) reaction of thiophene. In the passivated sample, Ni phosphide was partially oxidized but after the reduction, 1.1 nm diameter Ni sub 2 P particles were formed with Ni-P and Ni-Ni distances at 0.218 and 0.261 nm, respectively, corresponding to those of bulk Ni sub 2 P. In situ XAFS cleary revealed that the Ni sub 2 P structure was stable under reaction conditions and was an active structure for the HDS process.

  1. Thiophene hydrodesulfurization over CoMo/Al2O3-CuY catalysts: Temperature effect study

    OpenAIRE

    Boukoberine, Yamina; Hamada, Boudjema

    2016-01-01

    CoMo/γ-Al2O3-CuY catalysts are prepared by physically mixing CoMo/γ-Al2O3 catalyst with Cu-exchanged Y zeolite. The CuY zeolite is prepared by the solid state ion exchange technique. The thiophene hydrodesulfurization is performed in a fixed bed reactor at high temperature and atmospheric pressure. The results show that the presence of CuY zeolite particles in CoMo/Al2O3 catalyst can have a noticeable effect on both the conversion and product selectivities. An increasing zeolite loading in ca...

  2. Basic study of catalyst aging in the H-coal process

    Energy Technology Data Exchange (ETDEWEB)

    Cable, T.L.; Massoth, F.E.; Thomas, M.G.

    1985-04-01

    Samples of CoMo/Al/sub 2/O/sub 3/ catalysts used in an H-coal process demonstration run were studied to determine causes of catalyst deactivation. Physical and surface properties of the aged and regenerated catalysts were examined. Model compounds were used to assess four catalyst activity functions, viz., hydrodesulfurization (HDS), hydrogenation, cracking and hydrodeoxygenation (HDO). Other tests were performed to study the effects of coke and metals separately on the four catalyst activity functions. Catalyst coke content and metal deposits first increased rapidly, then more gradually with exposure time in the process run. Surface area and pore volume markedly decreased with exposure time. Catalyst activities of aged catalysts showed a rapid decline with exposure time. One-day exposure to coal resulted in significant losses in HDS and hydrogenation activities and nearly complete loss in cracking and HDO activities. Although metal deposits caused some permanent catalyst deactivation, coke had a much greater effect. Regenerated catalysts showed less recovery of catalytic activity as processing time increased. These results agreed well with product inspections from the process run. Oxygen chemisorption on aged-regenerated catalysts decreased with catalyst exposure time, indicating a significant loss of active sites. However, ESCA results showed no evidence of extensive sintering of the active MoS/sub 2/ phase. Permanent deactivation of the longer-time exposed catalysts can be ascribed, at least partly, to lateral growth of the active molybdenum sulfide phase. In addition, some loss in cobalt promotion occurred early in the process, which may account for the rapid loss in HDS and HDO activity in regenerated catalysts. 24 references.

  3. Microwave effects on NiMoS and CoMoS single-sheet catalysts.

    Science.gov (United States)

    Borges, I; Silva, Alexander M; Modesto-Costa, Lucas

    2018-05-04

    Single-sheet nanoclusters of MoS 2 , NiMoS or CoMoS are widely used in hydrodesulfurization (HDS) catalysis in the petroleum industry. In HDS reactions under microwave irradiation, experiments indirectly pointed out that for pristine MoS 2 reaction rates are accelerated because hot spots are generated on the catalyst bed. In this work, we investigated NiMoS and CoMoS isolated single-sheet substituted catalysts before and after thiophene adsorption focusing on quantifying the effect of microwave irradiation. For that purpose, density functional theory (DFT) molecular charge densities of each system were decomposed according to the distributed multipole analysis (DMA) of Stone. Site dipole values of each system were directly associated with a larger or smaller interaction with the microwave field according to a proposed general approach. We showed that microwave enhancement of HDS reaction rates can occur more efficiently in the CoMoS and NiMoS promoted clusters compared to pristine MoS 2 in the following order: CoMoS > NiMoS > MoS 2 . The atomic origin of the catalyst hot spots induced by microwaves was clearly established in the promoted clusters.

  4. Second row transition metal sulfides for the hydrotreatment of coal-derived naphtha. 1. Catalyst preparation, characterization and comparison of rate of simultaneous removal of total sulfur, nitrogen and oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Raje, A.P.; Liaw, S.-J.; Srinivasan, R.; Davis, B.H. [University of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

    1997-03-13

    Naphtha derived from an Illinois No. 6 coal contains appreciable quantities of sulfur-, nitrogen- and oxygen-containing compounds. The hydrotreatment of this naphtha was evaluated over unsupported transition metal sulfide catalysts (Ru, Rh, Mo, Pd, Zr, Mb). The catalysts were prepared by a room temperature precipitation reaction. Surface areas, crystalline phase and particle size distributions were determined by Brunauer-Emmet-Teller (BET), X-ray diffraction (XRD) and transmission electron microscopy (TEM), respectively. A comparison of average particle sizes calculated from these three techniques has enable the understanding of the morphology of the transition metal sulfides. The catalysts exhibit a so-called volcano plot for the HDS of dibenzothiophene. Similar so-called volcano plots are also exhibited for the simultaneous hydrodesulfurization (HDS), hydrodenitrogenation (HDN) and the hydrodeoxygenation (HDO) of the coal-derived naphtha containing a mixture of heteroatoms. The order of reactivity of the transition metal catalysts is the same for all three of the processes. Ruthenium sulfide is the most active catalyst for HDS, HDN and HDO of the coal-derived naphtha. 22 refs., 3 figs., 4 tabs.

  5. Study to improve the quality of a Mexican straight run gasoil over NiMo/γ-Al2O3 catalysts

    International Nuclear Information System (INIS)

    Dominguez-Crespo, M.A.; Diaz-Garcia, L.; Arce-Estrada, E.M.; Torres-Huerta, A.M.; Cortez de la Paz, M.T.

    2006-01-01

    Four NiMo catalyst supported on Al 2 O 3 with different textural properties have been studied in the hydrodesulfurization (HDS), hydrodenitrogenation (HDN) and hydrodearomatization (HDA) of a Mexican straight run gasoil (SRGO). All reactions were carried out at three different temperatures 613, 633, and 653 K. Alumina supports were analysed by pyridine FTIR-TPD and nitrogen physisorption in order to determine their surface acidity and textural properties, respectively. TPR studies of the NiMo catalysts were analysed to correlate their hydrogenating properties. Metallic particles were characterized (after sulfidation) using transmission electron microscopy (TEM). Catalytic activities are discussed in relation to the physicochemical properties of NiMo catalysts. The importance of textural properties on coke deposition has been emphasized. The results of catalytic activity of these materials varied depending on dispersed MoS particles and pore distribution in final catalysts. The optimum pore diameter was found around 80 A for HDS and HDN

  6. Study to improve the quality of a Mexican straight run gasoil over NiMo/γ-Al 2O 3 catalysts

    Science.gov (United States)

    Domínguez-Crespo, M. A.; Díaz-García, L.; Arce-Estrada, E. M.; Torres-Huerta, A. M.; Cortéz-De la Paz, M. T.

    2006-11-01

    Four NiMo catalyst supported on Al 2O 3 with different textural properties have been studied in the hydrodesulfurization (HDS), hydrodenitrogenation (HDN) and hydrodearomatization (HDA) of a Mexican straight run gasoil (SRGO). All reactions were carried out at three different temperatures 613, 633, and 653 K. Alumina supports were analysed by pyridine FTIR-TPD and nitrogen physisorption in order to determine their surface acidity and textural properties, respectively. TPR studies of the NiMo catalysts were analysed to correlate their hydrogenating properties. Metallic particles were characterized (after sulfidation) using transmission electron microscopy (TEM). Catalytic activities are discussed in relation to the physicochemical properties of NiMo catalysts. The importance of textural properties on coke deposition has been emphasized. The results of catalytic activity of these materials varied depending on dispersed MoS particles and pore distribution in final catalysts. The optimum pore diameter was found around 80 Å for HDS and HDN.

  7. Investigation and development of heavy oil upgrading catalysts. 3

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.K.; Lee, I.C.; Yoon, W.L.; Lee, H.T.; Chung, H.; Hwang, Y.J.; Park, S.H. [Korea Inst. of Energy Research, Taejon (Korea, Republic of)

    1995-12-01

    This study aimed at the domestic development of HDS catalysts which are most fundamental and wide-used in the petroleum refinery. In this year, some experimental works were conducted for developing the effective utilization technology of the novel dispersed-catalysts in the hydro-desulfurization of heavy oils, and improving the reaction performance of alumina-supported Mo-based hydro-treating catalysts conventionally used in most of refineries. First, it was experimentally proved that the dispersed catalysts of Co-Mo could be employed for the hydro-desulfurization of a heavy atmospheric residual oil excluding the catalyst deactivation. The utilization of a carbon-expanded reactor in combination with this dispersed catalyst system exhibited an enhanced reaction performance and provided an efficient way for the separation and recovery of the dispersed catalytic component from oils. Second, the tungsten-incorporated WCoMo/{gamma}-Al{sub 2}O{sub 3} catalyst revealed the improved catalytic performance in the various hydro-treating reactions and in the initial deactivation rates for the high pressure hydro-treatment of a heavy oil as compared with the commercial CoMo/{gamma}-Al{sub 2}O{sub 3} catalyst. This new experimental finding for the promoting role of the monomeric WO{sub 3} species in CoMo/{gamma}-Al{sub 2}O{sub 3} catalyst may be generally applicable to the Mo-based alumina-sulfide phase, higher catalytic activity, and more extended service life. (author). 101 refs., 33 figs., 18 tabs.

  8. EXAFS Determination of the Structure of Cobalt in Carbon-Supported Cobalt and Cobalt-Molybdenum Sulfide Hydrodesulfurization Catalysts.

    NARCIS (Netherlands)

    Koningsberger, D.C.; Bouwens, S.M.A.M.; Veen, J.A.R. van; Beer, V.H.J. de; Prins, R.

    1991-01-01

    The structure of the cobalt present in carbon-supported Co and Co-Mo sulfide catalysts was studied by means of X-ray absorption spectroscopy at the Co K-edge and by X-ray photoelectron spectroscopy (XPS). Thiophene hydrodesulfurization activities were used to measure the catalytic properties of

  9. Syntheses, Characterization and Kinetics of Nickel-Tungsten Nitride Catalysts for Hydrotreating of Gas Oil

    Science.gov (United States)

    Botchwey, Christian

    This thesis summarizes the methods and major findings of Ni-W(P)/gamma-Al 2O3 nitride catalyst synthesis, characterization, hydrotreating activity, kinetic analysis and correlation of the catalysts' activities to their synthesis parameters and properties. The range of parameters for catalyst synthesis were W (15-40 wt%), Ni (0-8 wt%), P (0-5 wt%) and nitriding temperature (TN) (500-900 °C). Characterization techniques used included: N2 sorption studies, chemisorption, elemental analysis, temperature programmed studies, x-ray diffraction, scanning electron microscopy, energy dispersive x-ray, infrared spectroscopy, transmission electron microscopy and x-ray absorption near edge structure. Hydrodesulfurization (HDS), hydrodenitrogenation (HDN) and hydrodearomatization (HDA) were performed at: temperature (340-380 °C), pressure (6.2-9.0 MPa), liquid hourly space velocity (1-3 h-1) and hydrogen to oil ratio (600 ml/ml, STP). The predominant species on the catalyst surface were Ni3N, W2N and bimetallic Ni2W3N. The bimetallic Ni-W nitride species was more active than the individual activities of the Ni3N and W2N. P increased weak acid sites while nitriding temperature decreased amount of strong acid sites. Low nitriding temperature enhanced dispersion of metal particles. P interacted with Al 2O3 which increased the dispersion of metal nitrides on the catalyst surface. HDN activity increased with Ni and P loading but decreased with increase in nitriding temperature (optimum conversion; 60 wt%). HDS and HDA activities went through a maximum with increase in the synthesis parameters (optimum conversions; 88. wt% for HDS and 47 wt% for HDA). Increase in W loading led to increase in catalyst activity. The catalysts were stable to deactivation and had the nitride structure conserved during hydrotreating in the presence of hydrogen sulfide. The results showed good correlation between hydrotreating activities (HDS and HDN) and the catalyst nitrogen content, number of exposed

  10. TiO2 nanotubes supported NiW hydrodesulphurization catalysts: Characterization and activity

    International Nuclear Information System (INIS)

    Palcheva, R.; Dimitrov, L.; Tyuliev, G.; Spojakina, A.; Jiratova, K.

    2013-01-01

    Highlights: ► NiW catalysts supported on TiO 2 nanotubes, titania and alumina. ► The best results are obtained with NiW/TiO 2 nanotubes in hydrodesulfurization (HDS) of thiophene. ► Active phase is Ni-WO x S y . ► Electronic promotion of W by Ti. - Abstract: High surface area TiO 2 nanotubes (Ti-NT) synthesized by alkali hydrothermal method were used as a support for NiW hydrodesulphurization catalyst. Nickel salt of 12-tungstophosphoric acid – Ni 3/2 PW 12 O 40 was applied as oxide precursor of the active components. The catalyst was characterized by S BET , XRD, UV–vis DRS, Raman spectroscopy, XPS, TPR and HRTEM. The results obtained were compared with those for the NiW catalysts prepared over high surface area titania and alumina supports. A polytungstate phase evidenced by Raman spectroscopy was observed indicating the destruction of the initial heteropolyanion. The catalytic experiments revealed two times higher thiophene conversion on NiW catalyst supported on Ti-NT than those of catalysts supported on alumina and titania. Increased HDS activity of the NiW catalyst supported on Ti-NT could be related to a higher amount of W oxysulfide entities interacting with Ni sulfide particles as consequence of the electronic effects of the Ti-NT observed with XPS analysis.

  11. Support effects on hydrotreating activity of NiMo catalysts

    International Nuclear Information System (INIS)

    Dominguez-Crespo, M.A.; Arce-Estrada, E.M.; Torres-Huerta, A.M.; Diaz-Garcia, L.; Cortez de la Paz, M.T.

    2007-01-01

    The effect of the gamma alumina particle size on the catalytic activity of NiMoS x catalysts prepared by precipitation method of aluminum acetate at pH = 10 was studied. The structural characterization of the supports was measured by using XRD, pyridine FTIR-TPD and nitrogen physisorption. NiMo catalysts were characterized during the preparation steps (annealing and sulfidation) using transmission electron microscopy (TEM). Hydrogen TPR studies of the NiMo catalysts were also carried out in order to correlate their hydrogenating properties and their catalytic functionality. Catalytic tests were carried out in a pilot plant at 613, 633 and 653 K temperatures. The results showed that the rate constants of hydrodesulfurization (HDS), hydrodenitrogenation (HDN) and hydrodearomatizing (HDA) at 613-653 K decreased in the following order: A > B > C corresponding to the increase of NiMoS particle size associated to these catalysts

  12. Chemistry and engineering of catalytic hydrodesulfurization

    NARCIS (Netherlands)

    Schuit, G.C.A.; Gates, B.C.

    1973-01-01

    A review with 74 refs. on catalytic hydrodesulfurization of pure compds. and petroleum feedstocks, with emphasis on reaction intermediates and structures of Al2O3-supported Ni-W and Co-Mo catalysts. [on SciFinder (R)

  13. 4,6-Dimethyl-dibenzothiophene conversion over Al{sub 2}O{sub 3}-TiO{sub 2}-supported noble metal catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, Sara [Departamento de Ingenieria de Procesos e Hidraulica, Universidad Autonoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Vicentina, Iztapalapa, 09340, Mexico, D.F. (Mexico); Escobar, Jose, E-mail: jeaguila@imp.mx [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, San Bartolo Atepehuacan, Gustavo A. Madero, 07730, Mexico, D.F. (Mexico); Vazquez, Armando; Reyes, Jose Antonio de los [Departamento de Ingenieria de Procesos e Hidraulica, Universidad Autonoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Vicentina, Iztapalapa, 09340, Mexico, D.F. (Mexico); Hernandez-Barrera, Melissa [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, San Bartolo Atepehuacan, Gustavo A. Madero, 07730, Mexico, D.F. (Mexico)

    2011-03-15

    Research highlights: {yields} Al{sub 2}O{sub 3} and Al{sub 2}O{sub 3}-TiO{sub 2} (molar ratio Al/Ti = 2, AT2) mixed oxides were pore-filling impregnated to obtain Pd, Pt and Pd-Pt catalysts with {approx}1 wt% nominal metal loading. {yields} Reduced catalysts were tested in the 4,6-dimethyl-dibenzothiophene hydrodesulfurization (HDS). {yields} In Pd-containing materials, TiO{sub 2} incorporation into the alumina support was favorable to the catalytic activity of noble metal catalysts. {yields} Enhanced intrinsic activity (per exposed metallic site) was obtained in Pt-containing catalysts supported on the AT2 mixed oxide. {yields} Yield to different products over various catalysts seemed to be strongly influenced by metallic particles dispersion. - Abstract: Al{sub 2}O{sub 3} and Al{sub 2}O{sub 3}-TiO{sub 2} (molar ratio Al/Ti = 2, AT2) mixed oxides were synthesized using a low-temperature sol-gel method and were further pore-filling impregnated to obtain Pd and Pt catalysts with {approx}1 wt% nominal metal loading. Simultaneous impregnation was used to prepare bimetallic materials at Pd:Pt = 80:20. Solids characterization was carried out by N{sub 2}-physisorption, high-resolution transmission electron microscopy (HR-TEM and E-FTEM), X-ray diffraction, temperature-programmed reduction and CO-chemisorption. Reduced (350 deg. C, H{sub 2} flow) catalysts were tested in the 4,6-dimethyl-dibenzothiophene hydrodesulfurization (HDS) (in n-dodecane, at 300 deg. C and 5.5 MPa, batch reactor). In Pd-containing materials, TiO{sub 2} incorporation into the alumina support was favorable to the catalytic activity of noble metal catalysts, where bimetallic Pd-Pt with AT2 carrier had the highest organo-S compound conversion. Enhanced intrinsic activity (per exposed metallic site) was obtained in Pt-containing catalysts supported on the AT2 mixed oxide (as compared to alumina-supported ones). Yield to different products over various catalysts seemed to be strongly influenced by

  14. Influence of the sulfidation procedure on the performance and the selectivity of hydro-treating catalysts; Influence de la procedure de sulfuration sur la performance et la selectivite des catalyseurs d'hydrotraitement

    Energy Technology Data Exchange (ETDEWEB)

    Texier, S

    2004-10-15

    This work is part of a general effort to reduce the sulfur content of fuels to satisfy new European regulations. The objective was to determine the influence of several activating agents during sulfidation on the activity of hydro-desulfurization (HDS) catalysts. Indeed, sulfidation is a critical step to achieve a good level of HDS activity on sulfide catalysts. Under industrial conditions, the activation by organo-sulfide compounds would be more beneficial to obtain active catalysts than the use of hydrogen sulfide. A systematic study of the various operational parameters of the activation process was thus carried out by comparing precisely activation by H{sub 2}S or by organo-sulfides. This study reveals that the recognized advantage of organo-sulfides compounds has not a 'purely chemical origin' but would be more probably related to a heating and/or thermodynamic effect which depends on the processes and on the implementation of sulfidation under the industrial conditions. (author)

  15. Novel catalysts for upgrading coal-derived liquids. Final technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, L.T.; Savage, P.E.; Briggs, D.E.

    1995-03-31

    Research described in this report was aimed at synthesizing and evaluating supported Mo oxynitrides and oxycarbides for the selective removal of nitrogen, sulfur and oxygen from model and authentic coal-derived liquids. The Al{sub 2}O{sub 3}-supported oxynitrides and oxycarbides were synthesized via the temperature programmed reaction of supported molybdenum oxides or hydrogen bronzes with NH{sub 3} or an equimolar mixture of CH{sub 4} and H{sub 2}. Phase constituents and composition were determined by X-ray diffraction, CHN analysis, and neutron activation analysis. Oxygen chemisorption was used to probe the surface structure of the catalysts. The reaction rate data was collected using specially designed micro-batch reactors. The Al{sub 2}O{sub 3}-supported Mo oxynitrides and oxycarbides were competitively active for quinoline hydrodenitrogenation (HDN), benzothiophene hydrodesulfurization (HDS) and benzofuran hydrodeoxygenation (HDO). In fact, the HDN and HDO specific reaction rates for several of the oxynitrides and oxycarbides were higher than those of a commercial Ni-Mo/Al{sub 2}O{sub 3} hydrotreatment catalyst. Furthermore, the product distributions indicated that the oxynitrides and oxycarbides were more hydrogen efficient than the sulfide catalysts. For HDN and HDS the catalytic activity was a strong inverse function of the Mo loading. In contrast, the benzofuran hydrodeoxygenation (HDO) activities did not appear to be affected by the Mo loading but were affected by the heating rate employed during nitridation or carburization. This observation suggested that HDN and HDS occurred on the same active sites while HDO was catalyzed by a different type of site.

  16. Influence of the sulfidation procedure on the performance and the selectivity of hydro-treating catalysts; Influence de la procedure de sulfuration sur la performance et la selectivite des catalyseurs d'hydrotraitement

    Energy Technology Data Exchange (ETDEWEB)

    Texier, S.

    2004-10-15

    This work is part of a general effort to reduce the sulfur content of fuels to satisfy new European regulations. The objective was to determine the influence of several activating agents during sulfidation on the activity of hydro-desulfurization (HDS) catalysts. Indeed, sulfidation is a critical step to achieve a good level of HDS activity on sulfide catalysts. Under industrial conditions, the activation by organo-sulfide compounds would be more beneficial to obtain active catalysts than the use of hydrogen sulfide. A systematic study of the various operational parameters of the activation process was thus carried out by comparing precisely activation by H{sub 2}S or by organo-sulfides. This study reveals that the recognized advantage of organo-sulfides compounds has not a 'purely chemical origin' but would be more probably related to a heating and/or thermodynamic effect which depends on the processes and on the implementation of sulfidation under the industrial conditions. (author)

  17. A New Approach to Deep Desulfurization of Light Cycle Oil over Ni2P Catalysts: Combined Selective Oxidation and Hydrotreating

    Directory of Open Access Journals (Sweden)

    Gwang-Nam Yun

    2018-03-01

    Full Text Available Amphiphilic phosphotungstic acid (A-PTA and Ni2P/SBA-15 catalysts were prepared to apply for selective oxidation of refractory sulfur compounds in light cycle oils and hydrotreating of the oxidized S compounds, respectively. Physical properties of the catalyst samples were analyzed by BET, CO uptake chemisorption, and TEM. Structural properties for the supported Ni2P catalysts were analyzed by X-ray diffraction (XRD and extended X-ray absorption fine structure (XAFS spectroscopy. The selective oxidation of S compounds in the LCO feed was conducted in a batch reactor at H2O2/S ratio of 10, atmospheric pressure and 353 K and then the products were fed to a continuous flow fixed-bed reactor for hydrotreating at 623 K, 3.0 MPa, and LHSV’s of 0.5–2.0 h−1. A-PTA catalyst showed a high oxidation conversion of 95% for a real LCO feed. The following hydrotreating led to a hydrodesulfurization (HDS conversion of 99.6% and a hydrodenitrogenation (HDN conversion of 94.7% over Ni2P/SBA-15, which were much higher than those of direct hydrotreating results which gave an HDS conversion of 63.5% and an HDN conversion of 17.5% based on the same LHSV of 2.0 h−1. It was revealed that the reduction in refractory nitrogen compounds after oxidative treatment contributed to the increase of the following HDS activity.

  18. Insight into thiophene hydrodesulfurization on clean and S-modified MoP(010): a periodic density functional theory study.

    Science.gov (United States)

    Li, Guixia; Zhao, Lianming; Zhu, Houyu; Liu, Xiuping; Ma, Huifang; Yu, Yanchen; Guo, Wenyue

    2017-07-05

    The hydrodesulfurization (HDS) of thiophene on clean and S-modified MoP(010) is investigated to understand the HDS mechanism as well as the surface sulfur (S) atom effect using periodic density functional theory (DFT). The results show that thiophene prefers strongly flat adsorption on both the clean and S-modified surfaces, in either the molecular state or the dissociative state breaking simultaneously one C-S bond, and the adsorption of thiophene can be slightly weakened by the surface S atom. Thermodynamic and kinetic analysis indicates that the HDS of thiophene in both the molecular and dissociative adsorption states prefers to take place along the direct desulfurization (DDS) pathway rather than hydrogenation on both the clean and S-modified MoP(010) surfaces. Surface S shows a promotion effect on the HDS catalytic activity of MoP(010), because the energy barrier/rate constant of the rate-determining step on the DDS pathway is decreased/enlarged under the S modification. Compared with the situation of MoP(001), MoP(010) should have relatively low HDS activity, since a higher energy barrier as well as weaker exothermicity is involved in the reaction on the latter surface.

  19. HDS, HDN and HDA activities of nickel-molybdenum catalysts supported on alumina

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez-Crespo, M.A. [Instituto Mexicano del Petroleo, Programa de Tratamiento de Crudo Maya. Avenida Eje Central Lazaro Cardenas No.152, Col. San Bartolo Atepehuacan, 07730, Mexico D. F. (Mexico); Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada (CICATA-Altamira, IPN) Km 14.5 Carretera Tampico-puerto Industrial 89600, Altamira, Tamaulipas (Mexico); Torres-Huerta, A.M.; Ramirez-Meneses, E. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada (CICATA-Altamira, IPN) Km 14.5 Carretera Tampico-puerto Industrial 89600, Altamira, Tamaulipas (Mexico); Diaz-Garcia, L. [Instituto Mexicano del Petroleo, Programa de Tratamiento de Crudo Maya. Avenida Eje Central Lazaro Cardenas No.152, Col. San Bartolo Atepehuacan, 07730, Mexico D. F. (Mexico); Arce-Estrada, E.M. [Instituto Politecnico Nacional, Departamento de Metalurgia y Materiales. A.P. 75-876, 07300 Mexico, D. F. (Mexico)

    2008-08-15

    In this work, NiMo-Al{sub 2}O{sub 3} catalysts were prepared by using different alumina precursors. The supports were impregnated by means of the spray at incipient wetness technique in both basic and acid media. Both the supports and fresh catalysts were characterized by the adsorption-desorption isotherms, Temperature-Programmed Reduction (TPR), Thermal Pyridine Adsorption-Desorption (TPD) and X-Ray Diffraction analyses (XRD). After sulfidation, the NiMoS metallic particles were characterized by Transmission Electron Microscopy (TEM). The initial analyses were performed in a trickle-bed reactor by using a real feedstock (Mexican heavy gas oil) and performing hydrotreating reactions (HDS, HDN and HDA) at three different temperatures: 613, 633 and 653 K; and 54 kg cm{sup -} {sup 2}. The catalytic activities are discussed in relation to the physicochemical properties of the NiMo catalysts, alumina phase and pH of the impregnating solution. The catalytic results show an increase in the conversion profiles with temperature. The sulfur conversion was increased from 89 to 99.25%, 91-99%, 90.8-97%, 83-95% and 78-96% when the crystal size of the support varied from 3 to 20 nm, respectively. The nitrogen and aromatic conversions were also increased in the range of 23-45 wt.%. It was found that the {gamma} phase reached a higher catalytic performance than the {eta} phase. The NiMo catalysts synthesized in a basic medium showed a better catalytic performance than that obtained with those prepared in acid solutions. The significance of the kinetic data to compare the catalysts is discussed. The maximum value of the catalytic activity was reached with the catalysts with the smallest particle sizes. (author)

  20. Theoretical Studies in Heterogenous Catalysis: Towards a Rational Design of Novel Catalysts for Hydrodesulfurization and Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez,J.A.; Liu, P.

    2008-10-01

    important advantage of the cluster approach is that one can use the whole spectrum of quantum-chemical methods developed for small molecules with relatively minor modifications. On the other hand, the numerical effort involved in cluster calculations increases rather quickly with the size of the cluster. This problem does not exist when using slab models. Due to the explicit incorporation of the periodicity of the crystal lattice through the Bloch theorem, the actual dimension of a slab calculation depends only on the size of the unit cell. In practical terms, the slab approach is mainly useful for investigating the behavior of adsorbates at medium and high coverages. Very large unit cells are required at the limit of low to zero coverage, or when examining the properties and chemical behavior of isolated defect sites in a surface. In these cases, from a computational viewpoint, the cluster approach can be much more cost effective than the slab approach. Slab and cluster calculations can be performed at different levels of sophistication: semi-empirical methods, simple ab initio Hartree-Fock, ab initio post-Hartree-Fock (CI, MP2, etc), and density functional theory. Density-functional (DF) based calculations frequently give adsorption geometries with a high degree of accuracy and predict reliable trends for the energetics of adsorption reactions. This article provides a review of recent theoretical studies that deal with the behavior of novel catalysts used for hydrodesulfurization (HDS) reactions and the production of hydrogen (i.e. catalytic processes employed in the generation of clean fuels). These studies involve a strong coupling of theory and experiment. A significant fraction of the review is focused on the importance of size-effects and correlations between the electronic and chemical properties of catalytic materials. The article begins with a discussion of results for the desulfurization of thiophene on metal carbides and phosphides, systems which have the

  1. Highly active sulfided CoMo catalysts supported on (ZrO{sub 2}–TiO{sub 2})/Al{sub 2}O{sub 3} ternary oxides

    Energy Technology Data Exchange (ETDEWEB)

    Escobar, José, E-mail: jeaguila@imp.mx [Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas 152, Col. San Bartolo Atepehuacan, Gustavo A. Madero, México, D.F. 07730 (Mexico); De Los Reyes, José A., E-mail: jarh@xanum.uam.mx [Area de Ing. Química, UAM – Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, México, D.F. 09340 (Mexico); Ulín, Carlos A. [Area de Ing. Química, UAM – Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, México, D.F. 09340 (Mexico); Barrera, María C., E-mail: mcbdgavilan@gmail.com [Facultad de Ciencias Químicas, Universidad Veracruzana, Av. Universidad km. 7.5, Col. Santa Isabel, Coatzacoalcos, Veracruz, México, D.F. 96538 (Mexico)

    2013-12-16

    (ZrO{sub 2}–TiO{sub 2})/Al{sub 2}O{sub 3} ternary oxide at 20 mol% Al{sub 2}O{sub 3} (80% ZrO{sub 2}–TiO{sub 2}, in turn at 40–60 mol ratio) prepared by controlled co-precipitation (by urea thermal decomposition) of zirconium (ZrOCl{sub 2}·8H{sub 2}O) and titanium (TiCl{sub 4}) chlorides over a ground alumina substrate constitutes a promising material to be used as carrier of sulfided hydrodesulfurization (HDS) catalysts. After calcining (at 500 °C), the ternary oxide presented textural properties (S{sub g} = 387 m{sup 2} g{sup −1}, V{sub p} = 0.74 ml g{sup −1}, mean pore diameter = 7.6 nm) suitable to its utilization as carrier of catalysts applied in the oil-derived middle distillates HDS. As determined by temperature programmed-reduction and Raman and UV–vis spectroscopies ZrO{sub 2}–TiO{sub 2} deposition over alumina substrate resulted in decreased proportion of Mo{sup 6+} species in tetrahedral coordination on the oxidic impregnated material. As those species constitute hardly reducible precursors, their diminished concentration could be reflected in enhanced amount of Mo species susceptible of activation by sulfiding (H{sub 2}S/H{sub 2} at 400 °C) over our ternary carrier. Limiting the concentration of zirconia-titania (at 40–60 mol ratio) to 20 mol% in the mixed oxides support allowed the preparation of highly active promoted (by cobalt, at Co/(Co + Mo) = 0.3) MoS{sub 2} phase (at 2.8 atoms/nm{sup 2}), that formulation showing excellent properties in hydrodesulfurization (HDS) of both dibenzothiophene and highly-refractory 4,6-dimethyl-dibenzothiophene. Due to alike yields to various HDS products over CoMo/(ZrO{sub 2}–TiO{sub 2})/Al{sub 2}O{sub 3} and the corresponding Al{sub 2}O{sub 3}-supported formulation, presence of similar actives sites over those catalysts was strongly suggested. It seemed that enhanced concentration of octahedral Mo{sup 6+} over the oxidic impregnated precursor with (ZrO{sub 2}–TiO{sub 2})/Al{sub 2}O{sub 3

  2. HDS unit revamp and operating experience

    Energy Technology Data Exchange (ETDEWEB)

    Reinhardt, J. [Veba Oel Verarbeitungs-GmbH, Gelsenkirchen (Germany); Balfanz, U. [Aral Forschung, Gelsenkirchen (Germany); Dimmig, T. [TU Bergakademie Freiberg, Freiberg (Germany)

    2002-12-01

    Ruhr Oel GmbH, a joint venture between BP and PDVSA, operates a HDS unit at its Gelsenkirchen-Scholven site. The unit produces a major blend component for diesel fuel. Driven by ambitious German environmental policy and by an agreement between the German car and oil industries on the one hand and the government on the other, more stringent low sulphur fuel specifications will be enforced in Germany much earlier than in the rest of the European Union. In view of this situation a project was developed to fulfill the new product specifications with minimum investment. In a joint effort involving the refinery, the company research facilities and the catalyst supplier (AKZO NOBEL), pilot plant tests were performed to develop the best catalyst system and the new process conditions. Based on these results, an existing HDS unit was accordingly revamped. After the revamp, the unit produced diesel fuel with 50 ppm sulphur content and furthermore test runs at 10 ppm were carried out successfully. These results are displayed in this article. (orig.)

  3. Regeneration of Hydrotreating and FCC Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    CM Wai; JG Frye; JL Fulton; LE Bowman; LJ Silva; MA Gerber

    1999-09-30

    Hydrotreating, hydrocracking, and fluid catalytic cracking (FCC) catalysts are important components of petroleum refining processes. Hydrotreating and hydrocracking catalysts are used to improve the yield of high-quality light oil fractions from heavier crude oil and petroleum feedstocks containing high levels of impurities. FCC catalysts improve the yield of higher octane gasoline from crude oil. Residuum hydrotreating and cracking catalysts are susceptible to irreversible deactivation caused by adsorption of sulfur and by metals impurities, such as vanadium and nickel. The gradual buildup of these impurities in a hydrotreating catalyst eventually plugs the pores and deactivates it. Nickel and vanadium adversely affect the behavior of cracking catalysts, reducing product yield and quality. Replacing deactivated catalysts represents a significant cost in petroleum refining. Equally important are the costs and potential liabilities associated with treating and disposing spent catalysts. For example, recent US Environmental Protection Agency rulings have listed spent hydrotreating and hydrorefining catalysts as hazardous wastes. FCC catalysts, though more easily disposed of as road-base or as filler in asphalt and cement, are still an economic concern mainly because of the large volumes of spent catalysts generated. New processes are being considered to increase the useful life of catalysts or for meeting more stringent disposal requirements for spent catalysts containing metals. This report discusses a collaborative effort between Pacific Northwest National Laboratory (PNNL) and Phillips Petroleum, Inc., to identify promising chemical processes for removing metals adhered to spent hydrodesulfurization (HDS, a type of hydrotreating catalyst) and FCC catalysts. This study, conducted by PNNL, was funded by the US Department of Energy's Bartlesville Project Office. Fresh and spent catalysts were provided by Phillips Petroleum. The FCC catalyst was a rare

  4. Comparison of Nitrogen Tolerance of PdMo/Al2O3 and CoMo/Al2O3 Catalysts in Hydrodesulfurization of Model Compounds

    Czech Academy of Sciences Publication Activity Database

    Vít, Zdeněk; Kaluža, Luděk; Gulková, Daniela

    2014-01-01

    Roč. 120, MAR (2014), s. 86-90 ISSN 0016-2361 R&D Projects: GA ČR GA104/09/0751; GA ČR GAP106/11/0902 Institutional support: RVO:67985858 Keywords : hydrodesulfurization * nitrogen inhibition * PdMo catalyst Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.520, year: 2014

  5. Catalytic hydrotreatment of Illinois No. 6 coal-derived naphtha: comparison of molybdenum nitride and molybdenum sulfide for heteroatom removal

    Energy Technology Data Exchange (ETDEWEB)

    Raje, A.; Liaw, S.J.; Chary, K.V.R.; Davis, B.H. [University of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

    1995-03-16

    The hydrotreatment of naphtha derived from Illinois No. 6 coal was investigated using molybdenum sulfide and nitride catalysts. The two catalysts are compared on the basis of total catalyst weight. Molybdenum sulfide is more active than molybdenum nitride for hydrodesulfurization (HDS) of a coal-derived naphtha. The rate of hydrodeoxygenation (HDO) of the naphtha over both catalysts are comparable. For hydrodenitrogenation (HDN), the sulfide is more active than the nitride only at higher temperatures ({gt}325{degree}C). Based upon conversion data, the naphtha can be lumped into a reactive and a less reactive fraction with each following first-order kinetics for heteroatom removal. The HDS and HDN rates and activation energies of the less reactive lump are smaller for the nitride than for the sulfide catalyst.

  6. Synthesis, characterization, and application of hydrotalcites in hydrodesulfurization of FCC gasoline

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Ruiyu; Yin, Changlong; Zhao, Huiji; Liu, Chenguang [College of Chemistry and Chemical Engineering, Key Laboratory of Catalysis, CNPC, University of Petroleum, Dongying, Shandong 257061 (China)

    2003-05-25

    Magnesium-aluminum, copper-aluminum, zinc-aluminum hydrotalcite(HT) compounds were synthesized using co-precipitation method. The effects of stirring rate, feeding rate of reactants, pH, calcination temperature on the properties of Mg-Al mixed oxides were investigated by using XRD, TG-DTA and BET techniques. The catalytic activity and selectivity of CoMo/{gamma}-Al{sub 2}O{sub 3}, CoMo/{gamma}-Al{sub 2}O{sub 3}+HT catalysts for hydrodesulfurization of FCC gasoline were examined in a high pressure microreactor. The results showed that the catalysts with mixed oxide obtained from hydrotalcite as support give lower levels of olefin hydrogenation than the catalyst with {gamma}-Al{sub 2}O{sub 3} as support, and lower octane number reduction and hydrodesulfurization yield, too. The hydrodesulfurization activity order was as follows: CoMo/{gamma}-Al{sub 2}O{sub 3}>CoMo/{gamma}-Al{sub 2}O{sub 3}+Mg-Al(HT)>CoMo/{gamma}-Al{sub 2}O{sub 3}+Cu-A l(HT)>CoMo/{gamma}-Al{sub 2}O{sub 3}+Zn-Al(HT), and the olefin hydrogenation activity and octane number reduction order were as follows: CoMo/{gamma}-Al{sub 2}O{sub 3}+Zn-Al(HT)

  7. Selective recovery of molybdenum from spent HDS catalyst using oxidative soda ash leach/carbon adsorption method

    International Nuclear Information System (INIS)

    Park, Kyung Ho; Mohapatra, D.; Reddy, B. Ramachandra

    2006-01-01

    The petroleum refining industry makes extensive use of hydroprocessing catalysts. These catalysts contain environmentally critical and economically valuable metals such as Mo, V, Ni and Co. In the present study, a simple hydrometallurgical processing of spent hydrodesulphurization (HDS) catalyst for the recovery of molybdenum using sodium carbonate and hydrogen peroxide mixture was investigated. Recovery of molybdenum was largely dependent on the concentrations of Na 2 CO 3 and H 2 O 2 in the reaction medium, which in turn controls the pH of leach liquor and the presence of Al and Ni as impurities. Under the optimum leaching conditions (40 g L -1 Na 2 CO 3 , 6 vol.% H 2 O 2 , room temperature, 1 h) about 85% recovery of Mo was achieved. The leach liquor was processed by the carbon adsorption method, which selectively adsorbs Mo at pH around 0.75. Desorption of Mo was selective at 15 vol.% NH 4 OH. With a single stage contact, it was found possible to achieve >99%, adsorption and desorption efficiency. Using this method, recovery of molybdenum as MoO 3 product of 99.4% purity was achieved

  8. A review of metal recovery from spent petroleum catalysts and ash.

    Science.gov (United States)

    Akcil, Ata; Vegliò, Francesco; Ferella, Francesco; Okudan, Mediha Demet; Tuncuk, Aysenur

    2015-11-01

    With the increase in environmental awareness, the disposal of any form of hazardous waste has become a great concern for the industrial sector. Spent catalysts contribute to a significant amount of the solid waste generated by the petrochemical and petroleum refining industry. Hydro-cracking and hydrodesulfurization (HDS) catalysts are extensively used in the petroleum refining and petrochemical industries. The catalysts used in the refining processes lose their effectiveness over time. When the activity of catalysts decline below the acceptable level, they are usually regenerated and reused but regeneration is not possible every time. Recycling of some industrial waste containing base metals (such as V, Ni, Co, Mo) is estimated as an economical opportunity in the exploitation of these wastes. Alkali roasted catalysts can be leached in water to get the Mo and V in solution (in which temperature plays an important role during leaching). Several techniques are possible to separate the different metals, among those selective precipitation and solvent extraction are the most used. Pyrometallurgical treatment and bio-hydrometallurgical leaching were also proposed in the scientific literature but up to now they did not have any industrial application. An overview on patented and commercial processes was also presented. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Hydrotreatment activities of supported molybdenum nitrides and carbides

    Energy Technology Data Exchange (ETDEWEB)

    Dolce, G.M.; Savage, P.E.; Thompson, L.T. [University of Michigan, Ann Arbor, MI (United States). Dept. of Chemical Engineering

    1997-05-01

    The growing need for alternative sources of transportation fuels encourages the development of new hydrotreatment catalysts. These catalysts must be active and more hydrogen efficient than the current commercial hydrotreatment catalysts. Molybdenum nitrides and carbides are attractive candidate materials possessing properties that are comparable or superior to those of commercial sulfide catalysts. This research investigated the catalytic properties of {gamma}-Al{sub 2}O{sub 3}-supported molybdenum nitrides and carbides. These catalysts were synthesized via temperature-programmed reaction of supported molybdenum oxides with ammonia or methane/hydrogen mixtures. Phase constituents and compositions were determined by X-ray diffraction, elemental analysis, and neutral activation analysis. Oxygen chemisorption was used to probe the surface properties of the catalysts. Specific activities of the molybdenum nitrides and carbides were competitive with those of a commercial sulfide catalyst for hydrodenitrogenation (HDN), hydrodesulfurization (HDS), and hydrodeoxygenation (HDO). For HDN and HDS, the catalytic activity on a molybdenum basis was a strong inverse function of the molybdenum loading. Product distributions of the HDN, HDO and HDS of a variety of heteroatom compounds indicated that several of the nitrides and carbides were more hydrogen efficient than the sulfide catalyst. 35 refs., 8 figs., 7 tabs.

  10. A density functional study of inhibition of the HDS hydrogenation pathway by pyridine, benzene, and H2S on MoS2-based catalysts

    DEFF Research Database (Denmark)

    Logadottir, A.; Moses, Poul Georg; Hinnemann, Berit

    2006-01-01

    hydrogen from neighboring SH group can he transferred to the pyridine molecule resulting in the creation of more strongly held pyridinium ions. At the so-called S edge, hydrogen is tightly bound and this transfer is not favored. The present results, therefore, also stress the importance of the hydrogen...... binding properties of HDS catalysts. (c) 2005 Elsevier B.V. All rights reserved....

  11. Secondary promoters in alumina-supported nickel-molybdenum hydroprocessing catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, J.M.

    1992-01-01

    Two secondary promoters, phosphorus and fluoride, have been investigated for their influences on the physicochemical properties of alumina-supported nickel-molybdenum hydroprocessing catalysts. Model compound reactions and infrared spectroscopy were used to probe the functionalities of the different catalysts, and the catalysts were tested in the hydroprocessing of a low-nitrogen and a high-nitrogen (quinoline-spiked) gas oil feed to assess the utility of the model compound reaction studies. Fluoride-promoted catalysts with high cumene hydrocracking activity and with comparable thiophene hydrodesulphurization (HDS) activity to Ni-Mo/Al[sub 2]O[sub 3] can be prepared by coimpregnation of the F, Ni and Mo additives. Fluoride promotes the hydrogenation (HYD) and HDS activity of Ni-Mo/Al[sub 2]O[sub 3] in the hydroprocessing (HYD) and HDS activity of Ni-Mo/Al[sub 2]O[sub 3] in the hydroprocessing of a low-nitrogen feed. Fluoride promotes the quinoline hydrodenitrogenation (HDN) activity of Ni-Mo/Al[sub 2]O[sub 3] catalysts. Impregnation of phosphorus prior to the metal additives results in catalysts which are more active in HDS. Phosphorus increases indirectly the Broensted acidity of the catalyst by increasing the activity of the MoS[sub 2]-associated acid sites. Phosphorus promotes the HDSW and HYD activities of Ni-Mo/Al[sub 2]O[sub 3] in the hydroprocessing of the low-N feed. A promotional effect of phosphorus is seen in quinoline HDN. P- and F-promoted Ni-MO/Al[sub 2]O[sub 3] catalysts are very active in quinoline HDN and maintain good activity in HDS and HYD of the high-N feed. Thiophene HDS was a good reaction for probing the activity of catalysts in the HDS of sterically-unhindered molecules, but an inaccurate probe for the HDS of hindered compounds.

  12. Effect of phosphorus addition on the hydrotreating activity of NiMo/Al{sub 2}O{sub 3} carbide catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Sundaramurthy, V.; Dalai, A.K. [Catalysis and Chemical Reaction Engineering Laboratories, Department of Chemical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9 (Canada); Adjaye, J. [Syncrude Edmonton Research Centre, Edmonton, AB T6N 1H4 (Canada)

    2007-07-30

    A series of phosphorus promoted {gamma}-Al{sub 2}O{sub 3} supported NiMo carbide catalysts with 0-4.5 wt.% P, 13 wt.% Mo and 2.5 wt.% Ni were synthesized and characterized by elemental analysis, pulsed CO chemisorption, BET surface area measurement, X-ray diffraction, near-edge X-ray absorption fine structure, DRIFT spectroscopy of CO adsorption and H{sub 2} temperature programmed reduction. X-ray diffraction patterns and CO uptake showed the P addition to NiMo/{gamma}-Al{sub 2}O{sub 3} carbide, increased the dispersion of {beta}-Mo{sub 2}C particles. DRIFT spectra of adsorbed CO revealed that P addition to NiMo/{gamma}-Al{sub 2}O{sub 3} carbide catalyst not only increases the dispersion of Ni-Mo carbide phase, but also changes the nature of surface active sites. The hydrodenitrogenation (HDN) and hydrodesulfurization (HDS) activities of these P promoted NiMo/{gamma}-Al{sub 2}O{sub 3} carbide catalysts were performed in trickle bed reactor using light gas oil (LGO) derived from Athabasca bitumen and model feed containing quinoline and dibenzothiophene at industrial conditions. The P added NiMo/{gamma}-Al{sub 2}O{sub 3} carbide catalysts showed enhanced HDN activity compared to the NiMo/{gamma}-Al{sub 2}O{sub 3} catalysts with both the feed stocks. The P had almost no influence on the HDS activity of NiMo/{gamma}-Al{sub 2}O{sub 3} carbide with LGO and dibenzothiophene. P addition to NiMo/{gamma}-Al{sub 2}O{sub 3} carbide accelerated C-N bond breaking and thus increased the HDN activity. (author)

  13. Oxidation of Commercial Petronas Diesel with Tert-Butyl Hydroperoxide Over Poly molybdate Alumina Supported Catalyst Modified With Alkaline Earth Metals

    International Nuclear Information System (INIS)

    Wan Nazwanie Wan Abdullah; Rusmidah Ali; Wan Azlee Wan Abu Bakar

    2016-01-01

    Due to strict environmental legislation for ultra-low sulfur diesel fuels, increasing technical and operational challenges are imposed to conventional hydrodesulfurization (HDS) technology. Therefore, catalytic oxidative desulfurization (Cat-ODS) has been suggested to be an alternative method to replace a conventional method which is hydrodesulfurization. In this study, catalytic oxidation of commercial diesel was performed using an oil-soluble oxidant, tert-butyl hydroperoxide (TBHP), over poly molybdate supported on alumina MoO_3-PO_4/ Al_2O_3 catalyst. A commercial Petronas diesel with 440 ppm of total sulfur was employed to evaluate the elimination of sulfur compounds. Besides, the percentage of sulfur removal was measured by (GC-FPD). Alkaline earth metals, such as Calcium (Ca), Barium (Ba) and Strontium (Sr) were introduced on the surface of MoO_3-PO_4/ Al_2O_3. The results showed that the catalytic activity decreased in the order, Ca/ MoO_3-PO_4/ Al_2O_3>Sr/ MoO_3-PO_4/ Al_2O_3> Ba/ MoO_3-PO_4/ Al_2O_3. The Ca/ MoO_3-PO_4/ Al_2O_3 catalyst was characterized by XRD and FESEM. XRD results showed that the best catalyst was highly amorphous while FESEM micrograph illustrated an aggregation and agglomeration of various particle sizes. The catalytic activity of Ca/ MoO_3-PO_4/ Al_2O_3 catalyst with various Ca/ Mo ratios were also studied. When the Ca/ Mo ratio was 15:85, the sulfur removal was the highest (79 %) at 45 degree Celsius, 30 min and O/ S molar ratio 3.0 with solvent = dimethylformamide (DMF), diesel/ solvent ratio = 1.0. (author)

  14. Studies of the kinetics and mechanisms of ammonia synthesis and hydrodesulfurization on metal single-crystal surfaces

    International Nuclear Information System (INIS)

    Gellman, A.J.; Asscher, M.; Somorjai, G.A.

    1985-01-01

    The authors studied the ammonia synthesis reaction over Fe and Re single crystal surfaces and the hydrodesulfurization of thiophene over the Mo(100) single crystal surface. The studies have been performed using UHV surface science tools with the capability of exposing the surfaces to high pressure, high temperature reaction conditions. The ammonia synthesis reaction was shown to be extremely sensitive to surface structure on both Fe and Re, favoring surfaces with a rough or open topography. The HDS reaction on the Mo(100) surface has been shown to be similar to that on MoS/sub 2/ and appears to proceed via a reaction path that does not produce a strong Mo-S bond as an intermediate species

  15. The structure and function of supported molybdenum nitride and molybdenum carbide hydrotreating catalysts

    Science.gov (United States)

    Dolce, Gregory Martin

    1997-11-01

    A series of gamma-Alsb2Osb3 supported molybdenum nitrides and carbides were prepared by the temperature programmed reaction of supported molybdates with ammonia and methane/hydrogen mixtures, respectively. In the first part of this research, the effects of synthesis heating rates and molybdenum loading on the catalytic properties of the materials were examined. A significant amount of excess carbon was deposited on the surface of the carbides during synthesis. The materials consisted of small particles which were very highly dispersed. Oxygen chemisorption indicated that the nitride particles may have been two-dimensional. The dispersion of the carbides, however, appeared to decrease as the loading increased. The catalysts were evaluated for hydrodenitrogenation (HDN), hydrodesulfurization (HDS), and hydrodeoxygenation (HDO). The molybdenum loading had the largest effect on the activity of the materials. For the nitrides, the HDN and HDS activities were inverse functions of the loading. This suggested that the most active HDN and HDS sites were located at the perimeter of the two-dimensional particles. The HDN and HDS activities of the carbides followed the same trend as the oxygen uptake. This result suggested that oxygen titrated the active sites on the supported carbides. Selected catalysts were evaluated for methylcarbazole HDN, dibenzothiophene HDS, and dibenzofuran HDO. The activity and selectivity of the nitrides and carbides were competitive with a presulfided commercial catalyst. In the second part of this work, a series of supported nitrides and carbides were prepared using a wider range of loadings (5-30 wt% Mo). Thermogravimetric analysis was used to determine the temperature at which excess carbon was deposited on the carbides. By modifying the synthesis parameters, the deposition of excess carbon was effectively inhibited. The dispersions of the supported nitrides and carbides were constant and suggested that the materials consisted of two

  16. Integrating principal component analysis and vector quantization with support vector regression for sulfur content prediction in HDS process

    Directory of Open Access Journals (Sweden)

    Shokri Saeid

    2015-01-01

    Full Text Available An accurate prediction of sulfur content is very important for the proper operation and product quality control in hydrodesulfurization (HDS process. For this purpose, a reliable data- driven soft sensors utilizing Support Vector Regression (SVR was developed and the effects of integrating Vector Quantization (VQ with Principle Component Analysis (PCA were studied on the assessment of this soft sensor. First, in pre-processing step the PCA and VQ techniques were used to reduce dimensions of the original input datasets. Then, the compressed datasets were used as input variables for the SVR model. Experimental data from the HDS setup were employed to validate the proposed integrated model. The integration of VQ/PCA techniques with SVR model was able to increase the prediction accuracy of SVR. The obtained results show that integrated technique (VQ-SVR was better than (PCA-SVR in prediction accuracy. Also, VQ decreased the sum of the training and test time of SVR model in comparison with PCA. For further evaluation, the performance of VQ-SVR model was also compared to that of SVR. The obtained results indicated that VQ-SVR model delivered the best satisfactory predicting performance (AARE= 0.0668 and R2= 0.995 in comparison with investigated models.

  17. Application of magnetic resonance imaging (MRI) to determine the influence of fluid dynamics on desulfurization in Bench scale reactors

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, N.L.; Reimert, R. [Engler-Bunte-Institut, Bereich Gas, Erdoel und Kohle, Universitaet Karlsruhe (T.H.) (Germany); Hardy, E.H. [Institut fuer Mechanische Verfahrenstechnik und Mechanik, Universitaet Karlsruhe (T.H.) (Germany)

    2006-07-15

    The influence of fluid dynamics on the hydrodesulfurization (HDS) reactions of a diesel oil in bench-scale reactors was evaluated. The porosities and liquid saturations of catalyst beds were quantified by using the MRI technique. The gas-liquid systems used in the experiments were nitrogen diesel and hydrogen diesel. An apparatus was especially constructed, allowing in situ measurements of gas and liquid distributions in packed beds at elevated pressure and temperature up to 20 bar and 200 C, respectively. The reactor itself had a length of 500 mm and an internal diameter of 19 mm. The packed beds used in this MRI study consisted of: (1) 2 mm diameter nonporous spherical glass beads and (2) 1.3 mm diameter porous Al{sub 2}O{sub 3} trilobes having the same size as the original trilobe catalyst used in HDS bench-scale experiments. The superficial gas and liquid velocities were set within the range of trickle flow, e.g., u{sub 0G} = 20-500 mm/s and u{sub 0L} = 0.1-6 mm/s. In parallel with the MRI experiments, the hydrodesulfurization of a gas oil was investigated in a bench-scale plant. Its reactor had the same dimensions of the trickle-bed column used in the MRI experiments and was filled with original trilobe catalyst. These catalytic experiments were carried out at a wide range of operating conditions (p = 30-80 bar, T = 300-380 C, LHSV = 1-4 h{sup -1}). The results of both fluid dynamic and catalytic reaction experiments were then combined for developing a simulation model to predict the HDS performance by accounting for fluid dynamic nonidealities. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  18. High-activity MgO-supported CoMo Hydrodesulfurization Catalysts Prepared by Non-aqueous Impregnation

    Czech Academy of Sciences Publication Activity Database

    Kaluža, Luděk; Gulková, Daniela; Vít, Zdeněk; Zdražil, Miroslav

    2015-01-01

    Roč. 162, JAN 2015 (2015), s. 430-436 ISSN 0926-3373 R&D Projects: GA ČR GAP106/11/0902 Institutional support: RVO:67985858 Keywords : CoMo/MgO * benzothiophene hydrodesulfurization * non-aqueous impregnation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 8.328, year: 2015

  19. Derivation of elastic stiffness formula for leaf type HDS and conceptual design of leaf type HDS of SMART FA

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kee Nam; Kang, Heung Seok; Yoon, Kyung Ho; Suh, Jung Min; Lee, Jin Seok

    1997-12-01

    Based on the strain energy method and Euler beam theory, an elastic stiffness formula for the leaf type HDS, now widely used as the holddown spring for the FA of Westinghouse type PWRs, has been derived. Through comparisons with the characteristic test results of the test produced HDSs, it has been found that the derived formula is useful to reliably estimate an elastic stiffness with material properties and the geometric data of an HDS. Through sensitivity analysis of HDS`s elastic stiffness, the elastic stiffness sensitivity with respect to different design variables was identified, as well as the design variables having remarkable sensitivity. In addition, finite element analysis using surface-to-surface contact elements on the contact surface between the leaves shows that the analysis results are in good agreement with the elastic stiffness determined from the derived formula. It is therefore expected that the finite element model and the analysis method will be useful in the analysis of the elasto-plastic behavior of the leaf type HDS in the future. To both reduce the cobalt content, which is considered to be the source of radioactive contamination in the reactor core, and to design the HDS to meet the holddown requirements of the SMART FA, a conceptual design for the HDS of the SMART FA has been performed through two analyses of the elastic characteristics of the HDS : the possibility of substitution of the leaf spring`s material from Inconel 718 to Zircaloy and the effects on the HDS`s elastic characteristics according to the variation of leaf thickness and the number of leaves composing the HDS. (author). 34 refs., 33 tabs., 37 figs.

  20. Relation between Hydrogen Evolution and Hydrodesulfurization Catalysis

    DEFF Research Database (Denmark)

    Šaric, Manuel; Moses, Poul Georg; Rossmeisl, Jan

    2016-01-01

    A relation between hydrogen evolution and hydrodesulfurization catalysis was found by density functional theory calculations. The hydrogen evolution reaction and the hydrogenation reaction in hydrodesulfurization share hydrogen as a surface intermediate and, thus, have a common elementary step...

  1. Atomic-scale investigation of the interaction of organic molecules with MoS2-based hydrotreating model catalysts

    DEFF Research Database (Denmark)

    Salazar Moreira, Norberto José

    The aim of this work is to provide new insight into the formation, activation and reactivity of hydrotreating catalysts extensively used in the refinery for the conversion of heavy feedstocks and for improving the quality of the final oil products. This is done through numerous studies of the con......The aim of this work is to provide new insight into the formation, activation and reactivity of hydrotreating catalysts extensively used in the refinery for the conversion of heavy feedstocks and for improving the quality of the final oil products. This is done through numerous studies...... of the conversion of molybdenum oxides and metallic precursors into molybdenum disulfide (MoS2), the active phase involved in most of the hydrotreating reactions, especially for those dedicated to the removal of sulfur from various fuel fractions, commonly referred to as hydrodesulfurization (HDS). The evolution...... the presence of the reduced MoOx phase impedes the MoS2 growth and leads to rather stable amorphous oxysulfide phases. The sulfidation in H2S atmosphere of molybdenum metal and bimetallic cobalt-molybdenum clusters deposited on Au(111) facilitate instead the formation of well-dispersed MoS2 and Co-promoted Mo...

  2. Sulphurfree diesel - modifications and experiences on a HDS-unit; Modifikationen und Betriebserfahrungen an einer Mitteldestillatentschwefelung

    Energy Technology Data Exchange (ETDEWEB)

    Reinhardt, J. [Veba Oel-Verarbeitungs-GmbH, Gelsenkirchen (Germany); Balfanz, U. [Aral Forschung FDT, Gelsenkirchen (Germany); Dimmig, T. [TU Bergakademie Freiberg (Germany)

    2002-10-01

    Ruhr Oel GmbH, a joint venture between BP and PDVSA, is operating a HDS-unit at their facilities at Gelsenkirchen-Scholven. The product of this unit is a major blend component for Diesel fuel. Driven by ambitious German environmental policy and by an agreement between the German car and oil industry on the one side and the government on the other side, more stringent low sulphur fuels will be introduced in Germany much earlier than in the rest of the European Union. In view of this background a project was developed to realise the new product specifications with minimum investment. In cooperation between the refinery, company research facilities and the catalyst supplier (AKZO NOBEL), pilot plant test were performed to find out the best catalyst system and the new process conditions. Based on this, an existing HDS-unit was revamped. After the revamp, the unit produce Diesel fuel with 50 ppm sulphur content, test runs for 10 ppm were carried out successfully. These results were demonstrated in this article. (orig.)

  3. Hydrodesulfurization device for diesel fuel

    International Nuclear Information System (INIS)

    Al Asadi, Nadija

    2004-01-01

    New gas oil hydrodesulfurization unit was erected in OKTA Refinery. This unit is meant to produce low sulfur diesel. Capacity of the unit s 363.000 tons. Actually unit is producing diesel fuel with sulfur content of 0.035% wt, with possibility of decreasing sulfur content up to 0.005% wt. With this possibility OKTA reaches the target to supply market with diesel fuel satisfying local, and European fuel specifications. Feedstock for this unit are two gas oil fractions from the Crude oil atmospheric distillation column. As a result of new generation of CoMo and NiMo catalysts performance, high degree of desulfurization is reached at lower temperatures. Milder conditions enables longer operating period between two regenerations, savings of fuel, power etc. With further investments, and practically without changes, the unit will be able of producing diesel with sulfur content of 50 ppm and later with upgrading, 10 ppm. This means that OKTA has solved diesel quality problem for longer period. (Author)

  4. Comparison of Tungsten and Molybdenum Carbide Catalysts for the Hydrodeoxygenation of Oleic Acid

    NARCIS (Netherlands)

    Hollak, S.A.W.; Gosselink, R.J.A.; Es, van D.S.; Bitter, J.H.

    2013-01-01

    Group 6 (W, Mo) metal carbide catalysts are promising alternatives to hydrodesulfurization (NiMo, CoMo) catalysts and group 10 (Pd) type catalysts in the deoxygenation of vegetable fats/oils. Herein, we report a comparison of carbon nanofiber-supported W2C and Mo2C catalysts on activity,

  5. The Effect of gamma-Al2O3, TiO2, and ZrO2 Supports on Hydrodesulfurization Activity of Transition-Metal Sulfides

    Czech Academy of Sciences Publication Activity Database

    Kaluža, Luděk; Zdražil, Miroslav

    2008-01-01

    Roč. 73, 8-9 (2008), s. 945-955 ISSN 0010-0765 R&D Projects: GA ČR GP104/06/P034 Institutional research plan: CEZ:AV0Z40720504 Keywords : hydrodesulfurization * transition metal sulfides * sulfide catalysts Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.784, year: 2008

  6. Achievement report for fiscal 2000 on development of technologies to reduce pollutants in oil refining; 2000 nendo sekiyu seisei osen busshitsu teigen nado gijutsu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Research and development has been made on technologies to reduce sulfur content in light oil and on optimization of light oil quality. This paper summarizes the achievements in fiscal 2000. In the study of enhancing the desulfurization rate in gas oil deep hydrodesulfurization process, it was found that NiHY zeolite having Ni introduced by using the ion exchange method shows stable activity, whereas the target of sulfur content of 50 ppm or lower was achieved by adding the third constituent and by optimizing the impregnation solution to pH3. In the study of the Ni, Mo/alumina catalyst, the desulfurization activity was enhanced by optimization of carrier pore size to 120 to 140 angstroms and by addition of phosphorus and silica, having the target of sulfur content of 50 ppm or lower achieved. In the research of manufacturing low-sulfur light oil using heavy oil desulfurization and hydrocracking, optimization was performed on the catalyst used in the latter stage of heavy oil desulfurization, and evaluation was given on the performance in combination of commercially available hydrometallation catalyst/middle part HDS catalyst/bottom part HDS catalyst. As a result, achievement of the target of sulfur content in the desulfurized light oil of 300 ppm or lower was verified. Life evaluation test is in continuation on the heavy oil hydrocracking catalyst. (NEDO)

  7. Polyfunctional catalyst for processiing benzene fractions

    Energy Technology Data Exchange (ETDEWEB)

    G. Byakov; B.D. Zubitskii; B.G. Tryasunov; I.Ya. Petrov [Kuznetsk Basin State Technical University, Kemerovo (Russian Federation)

    2009-05-15

    A by-product of the coke industry is a raw benzene fraction benzene- 1 which may serve as for catalytic processes. The paper reports a study on the influence of the composition and temperatures on the activity and selectivity of NiO-V{sub 2}O{sub 6}-MoO{sub 3}/{gamma}-Al{sub 2}O{sub 3} catalysts and the corresponding binary and tertiary subsystems are studied by a pulse method in model reactions; the hydrodealkylating of toluene and the hydrodesulfurizing of thioprhene. The optimal catalyst composition is established. The new catalyst is compared with industrial catalysts.

  8. Hydrotreating and hydrocracking of Athabasca bitumen derived heavy gas oils using NiMo catalyst supported on titania modified alumina

    Energy Technology Data Exchange (ETDEWEB)

    Ferdous, D.; Bakhshi, N.N.; Dalai, A.K.; Adjaye, J. [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Chemical Engineering, Catalysis and Chemical Reaction Engineering Laboratories]|[Syncrude Canada Ltd., Edmonton, AB (Canada)

    2006-07-01

    Different NiMo catalysts supported on titania modified Al{sub 2}O{sub 3} were synthesized and characterized in an effort to study the hydrodenitrigenation (HDN) and hydrodesulfurization (HDS) of different gas oils derived from Athabasca bitumen. The Al{sub x}O{sub 3} supports were modified by incorporating up to 9 wt per cent titanium (Ti). All modified supports as well as fresh and spent catalysts were characterized by BET surface area, pore volume and pore diameter, XRD, TPR, TPD and SEM. A trickle-bed reactor using 3 different gas oils from the Athabasca bitumen was used to test the initial activity of these catalysts. The 3 oils were light gas oil (LGO), heavy gas oil (HGO) and blended gas oil having 50 per cent LGO and 50 per cent HGO. The study showed that nitrogen conversion increased for all the gas oils when Ti was incorporated into the alumina. With an increase in Ti concentrations from 0 to 6 wt per cent, nitrogen conversion increased from 57-69.5 wt per cent, 75-80.2 wt per cent, 83-91.5 wt per cent and for LGO, HGO and blended, respectively. Nearly 86 wt per cent sulphur conversion was obtained for all Ti concentrations for LGO, while HGO and blended sulphur conversions were in the range of 96-97 wt per cent. Detailed hydrotreating and hydrocracking of HGO was then performed using the 6 wt per cent Ti modified catalyst because it achieved the maximum nitrogen conversion. This paper also presented the temperature, pressure and liquid hourly space velocity for this catalyst along with the maximum nitrogen and sulphur conversions. Results were compared with those of commercial catalysts. tabs., figs.

  9. Co-Processing of Jatropha-Derived Bio-Oil with Petroleum Distillates over Mesoporous CoMo and NiMo Sulfide Catalysts

    Directory of Open Access Journals (Sweden)

    Shih-Yuan Chen

    2018-02-01

    Full Text Available The co-processing of an unconventional type of Jatropha bio-oil with petroleum distillates over mesoporous alumina-supported CoMo and NiMo sulfide catalysts (denoted CoMo/γ-Al2O3 and NiMo/γ-Al2O3 was studied. Either a stainless-steel high-pressure batch-type reactor or an up-flow fixed-bed reaction system was used under severe reaction conditions (330–350 °C and 5–7 MPa, similar to the conditions of the conventional diesel hydrodesulfurization (HDS process. To understand the catalytic performance of the mesoporous sulfide catalysts for co-processing, we prepared two series of oil feedstocks. First, model diesel oils, consisting of hydrocarbons and model molecules with various heteroatoms (sulfur, oxygen, and nitrogen were used for the study of the reaction mechanisms. Secondly, low-grade oil feedstocks, which were prepared by dissolving of an unconventional type of Jatropha bio-oil (ca. 10 wt % in the petroleum distillates, were used to study the practical application of the catalysts. Surface characterization by gas sorption, spectroscopy, and electron microscopy indicated that the CoMo/γ-Al2O3 sulfide catalyst, which has a larger number of acidic sites and coordinatively unsaturated sites (CUS on the mesoporous alumina framework, was associated with small Co-incorporated MoS2-like slabs with high stacking numbers and many active sites at the edges and corners. In contrast, the NiMo/γ-Al2O3 sulfide catalyst, which had a lower number of acidic sites and CUS on mesoporous alumina framework, was associated with large Ni-incorporated MoS2-like slabs with smaller stacking numbers, yielding more active sites at the brims and corresponding to high hydrogenation (HYD activity. Concerning the catalytic performance, the mesoporous CoMo/γ-Al2O3 sulfide catalyst with large CUS number was highly active for the conventional diesel HDS process; unfortunately, it was deactivated when oxygen- and nitrogen-containing model molecules or Jatropha bio

  10. Novel, high-activity hydroprocessing catalysts: Iron group phosphides

    Science.gov (United States)

    Wang, Xianqin

    A series of iron, cobalt and nickel transition metal phosphides was synthesized by means of temperature-programmed reduction (TPR) of the corresponding phosphates. The same materials, Fe2P, CoP and NO, were also prepared on a silica (SiO2) support. The phase purity of these catalysts was established by x-ray diffraction (XRD), and the surface properties were determined by N2 BET specific surface area (Sg) measurements and CO chemisorption. The activities of the silica-supported catalysts were tested in a three-phase trickle bed reactor for the simultaneous hydrodenitrogenation (HDN) of quinoline and hydrodesulfurization (HDS) of dibenzothiophene using a model liquid feed at realistic conditions (30 atm, 370°C). The reactivity studies showed that the nickel phosphide (Ni2P/SiO2) was the most active of the catalysts. Compared with a commercial Ni-Mo-S/gamma-Al 2O3 catalyst at the same conditions, Ni2P/silica had a substantially higher HDS activity (100% vs. 76%) and HDN activity (82% vs. 38%). Because of their good hydrotreating activity, an extensive study of the preparation of silica supported nickel phosphides, Ni2P/SiO 2, was carried out. The parameters investigated were the phosphorus content and the weight loading of the active phase. The most active composition was found to have a starting synthesis Ni/P ratio close to 1/2, and the best loading of this sample on silica was observed to be 18 wt.%. Extended x-ray absorption fine structure (EXAFS) and x-ray absorption near edge spectroscopy (XANES) measurements were employed to determine the structures of the supported samples. The main phase before and after reaction was found to be Ni2P, but some sulfur was found to be retained after reaction. A comprehensive scrutiny of the HDN reaction mechanism was also made over the Ni2P/SiO2 sample (Ni/P = 1/2) by comparing the HDN activity of a series of piperidine derivatives of different structure. It was found that piperidine adsorption involved an alpha-H activation

  11. A kinetic study on non-catalytic reactions in hydroprocessing Boscan crude oil

    Energy Technology Data Exchange (ETDEWEB)

    A. Marafi; E. Kam; A. Stanislaus [Kuwait Institute for Scientific Research, Safat (Kuwait). Petroleum Refining Department, Petroleum Research and Studies Center

    2008-08-15

    Non-catalytic hydrothermal cracking reactions are known to associate with catalytic hydrocracking reactions. In a recent study on hydroprocessing of Boscan crude over a specific catalyst system containing three distinct catalysts, it was found that hydrodesulfurization (HDS) and hydrodemetallation (HDM) reactions continued even when the catalyst is severely deactivated. Since the reactor was packed with considerable amount of inert material besides the three catalysts, it will be advantage to determine if the inert materials can also facilitate hydroprocessing reactions. A series of kinetic experiments for the inert particles was undertaken under different space velocity and temperature conditions. The extent of catalytic and non-catalytic hydroprocessing reactions was assessed. Through statistical analysis, the initial reaction rate constant, reaction order and activation energy for various hydroprocessing reactions were then determined. The absolute average deviations (AAD) of the kinetics values obtained for inert materials are less than 10%. 25 refs., 7 figs., 4 tabs.

  12. Modeling of a three-phase reactor for bitumen-derived gas oil hydrotreating

    International Nuclear Information System (INIS)

    Chacon, R.; Canale, A.; Bouza, A.; Sanchez, Y.

    2012-01-01

    A three-phase reactor model for describing the hydrotreating reactions of bitumen-derived gas oil was developed. The model incorporates the mass-transfer resistance at the gas-liquid and liquid-solid interfaces and a kinetic rate expression based on a Langmuir-Hinshelwood-type model. We derived three correlations for determining the solubility of hydrogen (H 2 ), hydrogen sulfide (H 2 S) and ammonia (NH 3 ) in hydrocarbon mixtures and the calculation of the catalyst effectiveness factor was included. Experimental data taken from the literature were used to determine the kinetic parameters (stoichiometric coefficients, reaction orders, reaction rate and adsorption constants for hydrodesulfuration (HDS) and hydrodenitrogenation (HDN)) and to validate the model under various operating conditions. Finally, we studied the effect of operating conditions such as pressure, temperature, LHSV, H 2 /feed ratio and the inhibiting effect of H 2 S on HDS and NH 3 on HDN. (author)

  13. Hydrotreating of compounds and mixtures of compounds having mercapto and hydroxyl groups

    Energy Technology Data Exchange (ETDEWEB)

    Viljava, T.R.; Krause, A.O.I. [Helsinki University of Technology, Espoo (Finland)

    1997-07-01

    Simultaneous hydrodesulfurization (HDS) and hydrodeoxygenation (HDO) of mercapto and hydroxyl group containing benzenes was studied using a commercial presulfided CoMo/{gamma}- Al{sub 2}O{sub 3} catalyst under hydrotreating conditions (150-280 deg C, 7 MPa). Mercaptobenzene, phenol and 4-mercaptophenol were used as model compounds, and CS{sub 2} was used as precursor for H{sub 2}S. The HDS rate of a mercapto group in the presence of a hydroxyl substituent in the para position was higher than that for the molecule containing only a mercapto group. When the hydroxyl group was present as phenol, the HDS rate of the mercapto group was about 30% lower than that for mercaptobenzene without an oxygen-containing additive. The decrease in the HDS rate was independent of the initial molar ratio of sulfur and oxygen within the ratios studied (5:1-1:1). The HDO rate of a hydroxyl group was suppressed by the mercapto group present either in the same or in a separate molecule. HDO reactions did not start until HDS conversion was almost complete. CS{sub 2} also decreased the HDO rate of phenol. When compared to the reactions of phenol alone, the rate of the hydrogenolysis route to benzene was decreased in the presence of a sulfur additive more than the hydrogenolysis- hydrogenation route to cyclohexane. 19 refs.

  14. The effect of passivation on the activity and structure of sulfided hydrotreating catalysts

    NARCIS (Netherlands)

    Louwers, S.P.A.; Crajé, M.W.J.; Kraan, van der A.M.; Geantet, C.; Prins, R.

    1993-01-01

    Air exposure (passivation) and subsequent resulfidation caused a substantial increase in the thiophene hydrodesulfurization activity of sulfided Co-Mo/Al2O3 catalysts. Since no effect was observed for Mo/Al2O3 and Co/Al2O3 catalysts, the passivation effect must be related to the Co---Mo---S

  15. A catalytic distillation process for light gas oil hydrodesulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Vargas-Villamil, F.D.; Marroquin, J.O.; Paz, C. de la; Rodriguez, E. [Prog. de Matematicas Aplicadas y Computacion, Prog. de Tratamiento de Crudo Maya, Instituto Mexicano del Petroleo, Mexico City, DF (Mexico)

    2004-07-01

    A light gas oil hydrodesulfurization process via catalytic distillation is developed and compared to a conventional process. By integrating the separation and reaction into a single unit, the catalytic distillation may produce a diesel with low concentration of sulfur compounds at a lower cost than the traditional reaction/separation process. The process proposed in this work is compared to an optimised conventional hydrodesulfurization unit which represents fairly well a plant that belongs to the National System of Refineries. During the optimisation of the conventional process, a compromise is established among the production of diesel and naphtha and the operating costs. The results show that the light gas oil hydrodesulfurization via catalytic distillation is as or more efficient than the conventional process. However, the removal of the sulfur compounds is carried out under less rigorous conditions. This design reduces the fix and operational costs. (author)

  16. Hydrous titanium oxide-supported catalysts

    International Nuclear Information System (INIS)

    Dosch, R.G.; Stohl, F.V.; Richardson, J.T.

    1990-01-01

    Catalysts were prepared on hydrous titanium oxide (HTO) supports by ion exchange of an active metal for Na + ions incorporated in the HTO support during preparation by reaction with the parent Ti alkoxide. Strong active metal-HTO interactions as a result of the ion exchange reaction can require significantly different conditions for activation as compared to catalysts prepared by more widely used incipient wetness methods. The latter catalysts typically involve conversion or while the HTO catalysts require the alteration of electrostatic bonds between the metal and support with subsequent alteration of the support itself. In this paper, the authors discuss the activation, via sulfidation or reduction, of catalysts consisting of Co, Mo, or Ni-Mo dispersed on HTO supports by ion exchange. Correlations between the activation process and the hydrogenation, hydrodeoxygenation, and hydrodesulfurization activities of the catalysts are presented

  17. Iridium Sulfide and Ir Promoted Mo Based Catalysts.

    Czech Academy of Sciences Publication Activity Database

    Vít, Zdeněk

    2007-01-01

    Roč. 322, - (2007), s. 142-151 ISSN 0926-860X R&D Projects: GA ČR(CZ) GA104/06/0870 Institutional research plan: CEZ:AV0Z40720504 Keywords : iridium sulfide * IrMo catalyst * hydrodesulfurization Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.166, year: 2007

  18. Modeling of a three-phase reactor for bitumen-derived gas oil hydrotreating

    Energy Technology Data Exchange (ETDEWEB)

    Chacon, R.; Canale, A.; Bouza, A. [Departamento de Termodinamica y Fenomenos de Transporte. Universidad Simon Bolivar, Caracas (Venezuela, Bolivarian Republic of); Sanchez, Y. [Departamento de Procesos y Sistemas. Universidad Simon Bolivar (Venezuela, Bolivarian Republic of)

    2012-01-15

    A three-phase reactor model for describing the hydrotreating reactions of bitumen-derived gas oil was developed. The model incorporates the mass-transfer resistance at the gas-liquid and liquid-solid interfaces and a kinetic rate expression based on a Langmuir-Hinshelwood-type model. We derived three correlations for determining the solubility of hydrogen (H{sub 2}), hydrogen sulfide (H{sub 2}S) and ammonia (NH{sub 3}) in hydrocarbon mixtures and the calculation of the catalyst effectiveness factor was included. Experimental data taken from the literature were used to determine the kinetic parameters (stoichiometric coefficients, reaction orders, reaction rate and adsorption constants for hydrodesulfuration (HDS) and hydrodenitrogenation (HDN)) and to validate the model under various operating conditions. Finally, we studied the effect of operating conditions such as pressure, temperature, LHSV, H{sub 2}/feed ratio and the inhibiting effect of H{sub 2}S on HDS and NH{sub 3} on HDN. (author)

  19. MoO3/Al2O3 Catalyst: Comparison of Catalysts Prepared by New Slurry Impregnation with Molybdic Acid with Conventional Samples

    Czech Academy of Sciences Publication Activity Database

    Spojakina, A. A.; Kostova, N. G.; Vít, Zdeněk; Zdražil, Miroslav

    2003-01-01

    Roč. 77, - (2003), s. 767-778 ISSN 0137- 5083 R&D Projects: GA AV ČR IAA4072802 Institutional research plan: CEZ:AV0Z4072921 Keywords : hydrodesulfurization * molybdenum sulphide catalyst * alumina supported molybdenum oxide Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 0.515, year: 2003

  20. Effect of The Preparation of Ir-Mo/Al2O3 Sulfide Catalyst on Activity and HDN/HDS Selectivity

    Czech Academy of Sciences Publication Activity Database

    Cinibulk, Josef; Gulková, Daniela; Yoshimura, Y.; Vít, Zdeněk

    2003-01-01

    Roč. 255, č. 2 (2003), s. 321-329 ISSN 0926-860X R&D Projects: GA AV ČR IAA4072103 Institutional research plan: CEZ:AV0Z4072921 Keywords : hydrodenitrogenation * hds * iridium Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.825, year: 2003

  1. Coke formation on hydrodesulphurization catalysts. [Including effects of different promoters

    Energy Technology Data Exchange (ETDEWEB)

    Ternan, M.; Furimsky, E.; Parsons, B.I.

    1979-02-01

    The extent of coke formation was measured on a number of different hydrodesulfurization catalysts, primarily as a function of the catalyst chemical composition. Variations in the concentration of MoO/sub 3/ on the alumina, the type of catalyst promoter, the promoter/MoO/sub 3/ ratio, the presulfiding material and the reaction temperature were made. Increases in the reaction rate caused by either changes in the catalyst composition or by moderate changes in the reaction temperature were compared to the catalyst coke content. It was suggested that two types of coke were present on the catalyst, a reactive coke which is subsequently converted to reaction products and an unreactive coke which blocks catalytic sites.

  2. Probing topological electronic effects in catalysis: thiophene adsorption on NiMoS and CoMoS clusters

    Energy Technology Data Exchange (ETDEWEB)

    Borges Junior, Itamar; Silva, Alexander M., E-mail: itamar@ime.eb.br [Instituto Militar de Engenharia (IME), Rio de Janeiro-RJ (Brazil). Programa de Pos-Graduacao em Engenharia de Defesa

    2012-10-15

    A general two-step theoretical approach to study electronic redistributions in catalytic processes is presented. In the first step, density functional theory (DFT) is used to fully optimize two geometries: the cluster representing the catalyst and the cluster plus adsorbed molecule system. In the second step, the converged electron density is divided into multipoles centered on atomic sites according to a distributed multipole analysis which provides detailed topological information on the charge redistribution of catalyst and molecule before and after adsorption. This approach is applied to thiophene adsorption on the 10{sup -}10 metal edge of Ni(Co)MoS catalysts and compared to the same reaction on bare MoS{sub 2}. Calculated adsorption energies, geometries and multipole analysis indicate weak thiophene chemisorption on both cases. A Coulombic bond model showed that surface metal-sulfur bond strengths in Ni(Co)MoS promoted catalysts are considerably smaller than in bare MoS{sub 2}, thus confirming the origin of the enhancement of hydrodesulfurization (HDS) activity in these catalysts. (author)

  3. Support Effect in Hydrodesulfurization over Ruthenium Sulfide

    Czech Academy of Sciences Publication Activity Database

    Gulková, Daniela; Kaluža, Luděk; Vít, Zdeněk; Zdražil, Miroslav

    2009-01-01

    Roč. 51, č. 2 (2009), s. 146-149 ISSN 1337-7027 R&D Projects: GA ČR GA104/06/0705 Institutional research plan: CEZ:AV0Z40720504 Keywords : ruthenium sulfide * hydrodesulfurization * support effect Subject RIV: CC - Organic Chemistry

  4. Hydrodenitrogenation and hydrodesulphurization of heavy gas oil using NiMo/Al{sub 2}O{sub 3} catalyst containing phosphorous : experimental and kinetic studies

    Energy Technology Data Exchange (ETDEWEB)

    Ferdous, D.; Dalai, A.K. [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Chemical Engineering; Adjaye, J. [Syncrude Canada Ltd., Edmonton, AB (Canada). Edmonton Research Centre

    2005-10-01

    Oil sand bitumens and their derived products contain high levels of nitrogen and sulfur compounds which cause the formation of SOx and NOx in the atmosphere. These compounds also deactivate the catalysts used in fluid catalytic cracking and hydrocracking. This study focused on finding a better catalyst to efficiently remove sulphur and nitrogen from oil sand-derived heavy gas oils. The NiMo/Al{sub 2}O{sub 3} catalyst with phosphorous (P) was used in a trickle-bed reactor under a range of temperature and pressure conditions to study the reactivity of vacuum, atmospheric and hydrocracked heavy gas oils produced from Athabasca bitumen. The concentration of phosphorous was maintained at 2.7 wt per cent, while the hydrogen flow rate and catalyst weight were maintained constant at 50 mL/min and 4 g respectively. An ANOVA analysis of experimental data was performed to optimize the process conditions for hydrodenitrogenation (HDN) and hydrodesulphurization (HDS) reactions. Kinetic studies for HDN and HDS reactions were studied within the temperature range of 340 to 400 degrees C using the power law model and the Langmuir-Hinshelhood model. It was shown that HDN and HDS of heavy gas oil follows first order kinetics. The activation energies for HDN and HDS reactions from the power law and Langmuir-Hinshelhood models were 94 and 96 kJ/mol and 113 and 137 kJ/mol, respectively. It was concluded that nitrogen and hydrogen sulfide adsorption have a significant influence on HDN and HDS reactions. 32 refs., 8 tabs., 7 figs.

  5. An EXAFS study of the structure of Co-Mo hydrodesulfurization catalysts

    International Nuclear Information System (INIS)

    Clausen, B.S.; Topsoe, H.; Candia, R.; Villadsen, J.; Lengeler, B.

    1981-05-01

    By analysing the extended X-ray absorption fine structure (EXAFS) of the Mo absorption edge, structural information about both calcined and sulfided Mo/Al 2 O 3 and Co-Mo/Al 2 O 3 catalysts has been obtained. The calcined catalysts show only one strong backscatterer peak in the radial distribution function, which indicates that molybdenum is present in a highly disordered structure. For the Co-Mo/Al 2 O 3 catalyst the presence of cobalt seems to have some effect on the immediate surroundings of molybdenum. Upon sulfiding the catalysts, an ordering of the molybdenum-containing phase takes place as evidenced by the observation of a contribution from the second coordination shell. From a comparison with EXAFS data obtained on well-crystallized MoS 2 it is concluded that the molybdenum atoms in the catalysts are present in MoS 2 -like structures. Furthermore, from a comparison of the amplitude of the Mo-backscatterer peak it is found that these MoS 2 -like structures are ordered in very small domains. (orig.)

  6. NiMo Catalysts Supported on the Nb Modified Mesoporous SBA-15 and HMS: Effect of Thioglycolic Acid Addition on HDS.

    Czech Academy of Sciences Publication Activity Database

    Palcheva, R.; Kaluža, Luděk; Dimitrov, L.; Tyuliev, G.; Avdeev, G.; Jirátová, Květa; Spojakina, A.

    2016-01-01

    Roč. 50, JUN 25 (2016), s. 24-34 ISSN 0926-860X R&D Projects: GA ČR GAP106/11/0902 Institutional support: RVO:67985858 Keywords : HDS * mesoporous SBA-15 and HMS * thioglycolic acid Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 4.339, year: 2016

  7. Trends in hydrodesulfurization catalysis based on realistic surface models

    DEFF Research Database (Denmark)

    Moses, P.G.; Grabow, L.C.; Fernandez Sanchez, Eva

    2014-01-01

    elementary reactions in HDS of thiophene. These linear correlations are used to develop a simple kinetic model, which qualitatively describes experimental trends in activity. The kinetic model identifies the HS-binding energy as a descriptor of HDS activity. This insight contributes to understanding...... the effect of promotion and structure-activity relationships. Graphical Abstract: [Figure not available: see fulltext.] © 2014 Springer Science+Business Media New York....

  8. First-principles study of low Miller index Ni3S2 surfaces in hydrotreating conditions.

    Science.gov (United States)

    Aray, Yosslen; Vega, David; Rodriguez, Jesus; Vidal, Alba B; Grillo, Maria Elena; Coll, Santiago

    2009-03-12

    Density functional theory (DFT) calculations combined with surface thermodynamic arguments and the Gibbs-Curie-Wulff equilibrium morphology formalism have been employed to explore the effect of the reaction conditions, temperature (T), and gas-phase partial pressures (PH2 and PH2S) on the stability of nickel sulfide (Ni3S2) surfaces. Furthermore, the strength and nature of chemical bonds for selected Ni3S2 surface cuts were investigated with the quantum theory of atoms in molecules methodology. A particular analysis of the electrostatic potential within this theoretical framework is performed to study the potential activity of nickel sulfide nanoparticles as hydrodesulfurization (HDS) catalysts. The calculated thermodynamic surface stabilities and the resulting equilibrium morphology model suggest that unsupported Ni3S2 nanoparticles mainly expose (111) and (111) type surface faces in HDS conditions. Analysis of the electrostatic potential mapped onto a selected electron density isocontour (0.001 au) on those expose surface reveals a poor potential reactivity toward electron-donating reagents (i.e., low Lewis acidity). Consequently, a very low attraction between coordinatively unsaturated active sites (Lewis sites) exposed at the catalytic particles and the S atoms coming from reagent polluting molecules does inactive these kinds of particles for HDS.

  9. Synthesis of carbon nanotubes by CCVD of natural gas using hydrotreating catalysts

    Directory of Open Access Journals (Sweden)

    Ahmed E. Awadallah

    2012-12-01

    Full Text Available Carbon nanotubes have been successfully synthesized using the catalytic chemical vapor deposition (CCVD technique over typical refining hydrotreating catalysts (hydrodesulfurization and hydrodenitrogenation containing Ni–Mo and Co–Mo supported on Al2O3 catalysts at 700°C in a fixed bed horizontal reactor using natural gas as a carbon source. The catalysts and the as-grown CNTs were characterized by transmission electron microscopy, HRTEM, X-ray diffraction patterns, EDX and TGA–DTG. The obtained data clarified that the Ni–Mo catalyst gives higher yield, higher purity and selectivity for CNTs compared to Co–Mo catalyst. XRD, TEM and TGA reveal also that the Ni–Mo catalyst produces mostly CNTs with different diameters whereas the Co–Mo catalyst produces largely amorphous carbon.

  10. Structure and catalytic activity of regenerated spent hydrotreating catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C.S.; Massoth, F.E.; Furimsky, E. (Utah University, Salt Lake City, UT (USA). Dept. of Fuels Engineering)

    1992-11-01

    Two spent catalysts, obtained from different hydrodemetallation operations, were regenerated by two different treatments, viz. 2% (V/V) O[sub 2]/N[sub 2] and air. One spent catalyst (B), contained 3 wt% V and 15 wt% C, while the other (H) contained 10 wt% V, 14 wt% C and 8 wt% Fe. After regeneration in the O[sub 2]/N[sub 2] stream, catalyst B showed essentially complete recovery of its original surface area, whereas catalyst H showed only 70% recovery. Both catalysts showed substantial losses in surface area by the air treatment. Catalytic activity tests on the regenerated catalysts for hydrodesulfurization of thiophene and for hydrogenation of 1-hexene showed low recovery of activities, even for the regenerated catalyst in which the surface area had been completely recovered. X-ray diffraction analyses of the spent-regenerated catalysts revealed substantial changes in catalyst structure. Surface area and catalytic activity results were qualitatively explained by these catalyst structural changes. 17 refs., 1 fig., 3 tabs.

  11. Petroleum residue upgrading with dispersed catalysts. Part 1. Catalysts activity and selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Panariti, N.; Del Bianco, A.; Del Piero, G. [ENITECNOLOGIE S.p.A, Via Maritano 26, 20097 San Donato Mil. (Italy); Marchionna, M. [SNAMPROGETTI S.p.A, Via Maritano 26, 20097 San Donato Mil. (Italy)

    2000-12-04

    The results of a study aimed at the identification of the relevant chemical aspects involved in the process of upgrading heavy feedstocks in the presence of dispersed catalysts are discussed. The catalytic activity of different compounds was compared in terms of products yields and quality. Moreover, a detailed and systematic characterization of the catalysts recovered at the end of the reactions was achieved. The experimental work provided quite a large set of data, allowing to investigate the factors that may affect catalyst activity (precursor solubility, rate of activation, degree of dispersion, presence of promoters, etc.). The results of this study demonstrate that the best performances are obtained by the microcrystalline molybdenite generated in situ by oil-soluble precursors. The nature of the organic ligand does not play a very relevant role in influencing the hydrogenation activity. The presence of phosphorus, however, significantly enhances hydrodemetallation, at least in terms of vanadium removal. Bimetallic precursors show a slight synergistic effect towards the hydrodesulfurization reaction. Microsized powdered catalyst precursors have a much lower catalytic activity compared to the oil-soluble ones.

  12. Investigation into the use of cement kiln dust in high density sludge (HDS) treatment of acid mine water.

    Science.gov (United States)

    Mackie, Allison L; Walsh, Margaret E

    2015-11-15

    The purpose of this study was to investigate the potential to replace lime with cement kiln dust (CKD) in high density sludge (HDS) treatment of acid mine drainage (AMD). The bench-scale study used two water samples: AMD sampled from a lead-zinc mine with high concentrations of iron (Fe), zinc (Zn), and arsenic (As) (Fe/Zn-AMD) and a synthetic AMD solution (Syn-AMD) spiked with ferric sulfate (Fe2(SO4)3). Arsenic was found to be significantly reduced with CKD-HDS treatment of Fe/Zn-AMD compared to lime-HDS treatment, to concentrations below the stringent mine effluent discharge regulation of 0.10 mg As/L (i.e., 0.04 ± 0.02 mg/L). Both CKD- and lime-HDS treatment of the two AMD samples resulted in settled water Fe concentrations above the stringent discharge guideline of 0.3 mg Fe/L. CKD addition in the HDS process also resulted in high settled water turbidity, above typical discharge guidelines of 15 mg TSS/L. CKD-HDS treatment was found to result in significantly improved settled solids (i.e., sludge) quality compared to that generated in the lime-HDS process. HDS treatment with CKD resulted in 25-88% lower sludge volume indices, 2 to 9 times higher % wet solids, and 10 to 20 times higher % dry solids compared to lime addition. XRD and XPS testing indicated that CKD-HDS sludge consisted of mainly CaCO3 and SiO2 with Fe(3+) precipitates attached at particle surfaces. XRD and XPS testing of the lime-HDS generated sludge showed that it consisted of non-crystalline Fe oxides typical of sludge formed from precipitates with a high water concentration. Increased sedimentation rates were also found for CKD (1.3 cm/s) compared to lime (0.3 cm/s). The increased solids loading with CKD addition compared to lime addition in the HDS process was suggested to both promote surface complexation of metal precipitates with insoluble CKD particles and increase compression effects during Type IV sedimentation. These mechanisms collectively contributed to the reduced water content of

  13. Sensitivity analysis of a light gas oil deep hydrodesulfurization process via catalytic distillation

    Energy Technology Data Exchange (ETDEWEB)

    Rosales-Quintero, A.; Vargas-Villamil, F.D. [Prog. de Matematicas Aplicadas y Computacion, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, Mexico, D.F. 07330 (Mexico); Arce-Medina, E. [Instituto Politecnico Nacional, ESIQIE, Ed. 8 Col. Lindavista, Mexico, D.F. 07738 (Mexico)

    2008-01-30

    In this work, a sensitivity analysis of a light gas oil deep hydrodesulfurization catalytic distillation column is presented. The aim is to evaluate the effects of various parameters and operating conditions on the organic sulfur compound elimination by using a realistic light gas oil fraction. The hydrocarbons are modeled using pseudocompounds, while the organic sulfur compounds are modeled using model compounds, i.e., dibenzothiophene (DBT) and 4,6-dimethyl dibenzothiophene (4,6-DMDBT). These are among the most refractive sulfur compounds present in the oil fractions. A sensitivity analysis is discussed for the reflux ratio, bottom flow rate, condenser temperature, hydrogen and gas oil feed stages, catalyst loading, the reactive, stripping, and rectifying stages, feed disturbances, and multiple feeds. The results give insight into the qualitative effect of some of the operating variables and disturbances on organic sulfur elimination. In addition, they show that special attention must be given to the bottom flow rate and LGO feed rate control. (author)

  14. Coking of residue hydroprocessing catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Gray, M.R.; Zhao, Y.X. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical Engineering; McKnight, C.A. [Syncrude Canada Ltd., Edmonton, AB (Canada); Komar, D.A.; Carruthers, J.D. [Cytec Industries Inc., Stamford, CT (United States)

    1997-11-01

    One of the major causes of deactivation of Ni/Mo and Co/Mo sulfide catalysts for hydroprocessing of heavy petroleum and bitumen fractions is coke deposition. The composition and amount of coke deposited on residue hydroprocessing catalysts depends on the composition of the liquid phase of the reactor. In the Athabasca bitumen, the high molecular weight components encourage coke deposition at temperatures of 430 to 440 degrees C and at pressures of 10 to 20 MPa hydrogen pressure. A study was conducted to determine which components in the heavy residual oil fraction were responsible for coking of catalysts. Seven samples of Athabasca vacuum residue were prepared by supercritical fluid extraction with pentane before being placed in the reactor. Carbon content and hydrodesulfurization activity was measured. It was concluded that the deposition of coke depended on the presence of asphaltenes and not on other compositional variables such as content of nitrogen, aromatic carbon or vanadium.

  15. Mesoporous Silica-Alumina as Support for Pt and Pt-Mo Sulfide Catalysts; Effect of Pt Loading on Activity and Selectivity in HDS and HDN of Model Compounds

    Czech Academy of Sciences Publication Activity Database

    Gulková, Daniela; Yoshimura, Y.; Vít, Zdeněk

    2009-01-01

    Roč. 87, 3-4 (2009), s. 171-180 ISSN 0926-3373 R&D Projects: GA ČR GA104/06/0870 Institutional research plan: CEZ:AV0Z40720504 Keywords : platinum * hydrodesulfurization * msa Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.252, year: 2009

  16. Hydrodenitrogenation of heavy oil--1. Survey of hydrodenitrogenation catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, M.; Ono, T.; Togari, O.

    1979-11-01

    Forty catalysts consisting of binary oxides of silica/alumina, zirconium dioxide, titanium dioxide, or magnesium oxide or alumina/boron oxide, titanium dioxide, zirconium dioxide, or phosphorus pentoxide in various proportions, or of alumina alone, were screened for their activity for hydrodenitrogenation (kn) and hydrodesulfurization (ks) of a Gach Saran vacuum gas oil containing 0.16Vertical Bar3< nitrogen and 2.0Vertical Bar3< sulfur. The activities were correlated with the acid amount and acid strength of the catalysts as measured by temperature-programed desorption of ammonia. The mixed oxides of silica had low kn and low ks, and the kn was proportional to the acidity. The unmixed alumina catalysts showed low kn and high ks and no obvious relationship between activity and acidity. The binary alumina catalysts showed high kn and high ks and no obvious correlation between acidity and activity. Generally, catalysts with high acid strength had the lowest kn, especially the unmixed alumina.

  17. Carbons and carbon supported catalysts in hydroprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, Edward

    2009-07-01

    This book is a comprehensive summary of recent research in the field and covers all areas of carbons and carbon materials. The potential application of carbon supports, particularly those of carbon black (CB) and activated carbon (AC) in hydroprocessing catalysis are covered. Novel carbon materials such as carbon fibers and carbon nano tubes (CNT) are also covered, including the more recent developments in the use of fullerenes in hydroprocessing applications. Although the primary focus of this book is on carbons and carbon supported catalysts, it also identifies the difference in the effect of carbon supports compared with the oxidic supports, particularly that of the Al{sub 2}O{sub 3}. The difference in catalyst activity and stability was estimated using both model compounds and real feeds under variable conditions. The conditions applied during the preparation of carbon supported catalysts are also comprehensively covered and include various methods of pretreatment of carbon supports to enhance catalyst performance. The model compounds results consistently show higher hydrodesulfurization and hydrodeoxygenation activities of carbon supported catalysts than that of the Al{sub 2}O{sub 3} supported catalysts. Also, the deactivation of the former catalysts by coke deposition was much less evident. Chapter 6.3.1.3 is on carbon-supported catalysts: coal-derived liquids.

  18. Atomic-scale insight into the origin of pyridine inhibition of MoS2-based hydrotreating catalysts

    DEFF Research Database (Denmark)

    Temel, Burcin; Tuxen, Anders K.; Kibsgaard, Jakob

    2010-01-01

    in earlier IR experiments on high surface alumina-supported MoS2 catalyst. The adsorption sites appear to be very similar to the brim sites involved in hydrogenation reactions in HDS. Thus, the combined STM and DFT results provide new atomic-scale insight into the inhibition effect of basic N......-compounds in HDS and the first direct observation of the adsorption mode of basic N-compounds on the catalytically active MoS2 edges. Our results lend further support to previously reported correlations between inhibiting strength and proton affinity for the N-containing compounds....

  19. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Technical progress report, October 1995--December 1995

    Energy Technology Data Exchange (ETDEWEB)

    Song, C.; Cooke, W.S.; Schmidt, E.; Schobert, H.H.

    1996-02-01

    Coal liquefaction involves cleavage of methylene, dimethylene and ether bridges connecting polycyclic aromatic units and the reactions of various oxygen functional groups. Here in this quarterly, we report on the catalytic effects of several molybdenum-, cobalt-, and iron-containing compounds in the reactions of dibenzothiophene (DBT) with hydrogen under conditions related to coal liquefaction. The catalytic effects of several molybdenum-, cobalt-, and iron-containing compounds have been examined in the hydrogenation and hydrodesulfurization reactions of dibenzothiophene (DBT) under conditions related to coal liquefaction. The metal compounds are candidate catalyst precursors for direct coal liquefaction. The reactions were carried out in batch microautoclave reactors at 400{degrees}C for 30 minutes with 6.9 MPa (cold) hydrogen pressure, and tridecane solvent. A metal loading of 0.5 mol% resulted in low conversion and only hydrogenation. Addition of sulfur in 4:1 molar ratio led only to a minor increase in conversion and hydrodesulfurization. The use of a higher boiling solvent (octadecane vs. tridecane) was beneficial in providing increased conversion, hydrodesulfurization, and hydrogenation. An increase in metal compound loading to 36.2 mol% led to a dramatic increase in conversion, hydrodesulfurization, and hydrocracking. Molybdenum hexacarbonyl at 36 mol% loading, with added sulfur at 6:1 ratio and octadecane solvent, gave 100% conversion of dibenzothiophene to other products with 100% hydrodesulfurization. Ammonium tetrathiomolybdate and molybdenum(III) chloride are less active under similar conditions. A cobalt-molybdenum thiocubane complex gave unexpectedly low conversions. Iron and cobalt carbonyls also provided very low conversions, even with added sulfur.

  20. Effect of radiation-thermal treatment on the physicochemical properties of the Ni-Mo/Al2O3 hydrotreatment catalyst

    International Nuclear Information System (INIS)

    Solovetskij, Yu.I.; Lunin, V.V.; Miroshnichenko, I.I.

    1993-01-01

    A study was made on reasons of radiation-thermal damage by 2.0 MeV accelerated electron beams of surface and active metal phases of Al, Ni, Mo base hydrodesulfurization catalysts. Data of diffusion reflection electron spectra for coked industrial and model systems after radiation-thermal treatment are presented. 14 refs., 2 figs

  1. Effect of Promotion Metals on the Activity of MoS2/ZrO2 Catalyst in the Parallel Hydrodesulfurization of 1-Benzothiophene and Hydrogenation of 1-Methyl-Cyclohex-1-ene.

    Czech Academy of Sciences Publication Activity Database

    Kaluža, Luděk; Gulková, Daniela

    2016-01-01

    Roč. 118, č. 1 (2016), s. 313-324 ISSN 1878-5190 R&D Projects: GA ČR GAP106/11/0902 Institutional support: RVO:67985858 Keywords : hydrodesulfurization * hydrogenation * support effect Subject RIV: CI - Industrial Chemistry , Chemical Engineering Impact factor: 1.264, year: 2016

  2. The Arf-GDP-regulated recruitment of GBF1 to Golgi membranes requires domains HDS1 and HDS2 and a Golgi-localized protein receptor.

    Science.gov (United States)

    Quilty, Douglas; Chan, Calvin J; Yurkiw, Katherine; Bain, Alexandra; Babolmorad, Ghazal; Melançon, Paul

    2018-04-19

    We previously proposed a novel mechanism by which the enzyme Golgi-specific Brefeldin A resistance factor 1 (GBF1) is recruited to the membranes of the cis -Golgi, based on in vivo experiments. Here, we extended our in vivo analysis on the production of regulatory Arf-GDP and observed that ArfGAP2 and ArfGAP3 do not play a role in GBF1 recruitment. We confirm that Arf-GDP localization is critical, as a TGN-localized Arf-GDP mutant protein fails to promote GBF1 recruitment. We also reported the establishment of an in vitro GBF1 recruitment assay that supports the regulation of GBF1 recruitment by Arf-GDP. This in vitro assay yielded further evidence for the requirement of a Golgi-localized protein because heat denaturation or protease treatment of Golgi membranes abrogated GBF1 recruitment. Finally, combined in vivo and in vitro measurements indicated that the recruitment to Golgi membranes via a putative receptor requires only the HDS1 and HDS2 domains in the C-terminal half of GBF1. © 2018. Published by The Company of Biologists Ltd.

  3. Flame spray synthesis of CoMo/Al2O3 hydrotreating catalysts

    DEFF Research Database (Denmark)

    Høj, Martin; Linde, Kasper; Hansen, Thomas Klint

    2011-01-01

    containing 16wt.% Mo (atomic ratio Co/Mo=1/3), which did not contain crystalline MoO3 and only small amounts of CoAl2O4. The hydrotreating activity was approximately 75% of that of commercial cobalt molybdenum catalysts prepared by wet impregnation of pre-shaped alumina extrudates. Since the commercial...... obtained consisted mostly of γ-Al2O3 with some CoAl2O4, as evidenced by X-ray diffraction (XRD) and UV–vis spectroscopy. Bulk MoO3 was not detected by XRD, except at the highest molybdenum content (32wt.%) and in the unsupported sample, indicating that molybdenum is well dispersed on the surface.......After activation by sulfidation the activity of the catalysts were measured for the three hydrotreating reactions hydrodesulfurization, hydrodenitrogenation and hydrogenation using a model oil containing dibenzothiophene, indole and naphthalene in n-heptane solution. The best catalyst was the FSP-produced material...

  4. Effect of temperature in hydrocracking of light cycle oil on a noble metal-supported catalyst for fuel production

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, A.; Arandes, J.M.; Castano, P.; Olazar, M.; Bilbao, J. [Universidad del Pais Vasco (UPV-EHU), Departamento de Ingenieria Quimica, Bilbao (Spain); Barona, A. [Universidad del Pais Vasco (UPV-EHU), Escuela de Ingenieria, Departamento de Ingenieria Quimica y Medio Ambiente, Alda, Urkijo s/n, Bilbao (Spain)

    2012-04-15

    The effect of temperature has been studied in hydrocracking of light cycle oil (LCO), byproduct of fluidized catalytic cracking (FCC) units on a bifunctional catalyst (Pt-Pd/HY zeolite). The increase in both temperature and H{sub 2} partial pressure have an important attenuating effect on catalyst deactivation, given that they decrease sulfur equilibrium adsorption and enhance hydrocracking of coke precursors. Therefore, the catalyst maintains significant hydrodesulfurization and hydrocracking activity. As the temperature is increased, hydrocracking conversion and naphtha selectivity increase, although there is no significant dearomatization of the medium distillate fraction in the range of the studied experimental conditions. 400 C is the more suitable temperature for obtaining a high yield of naphtha with a high content of i-paraffins. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chunshan Song; Schobert, H.H.; Parfitt, D.P. [and others

    1997-11-01

    Development of new catalysts is a promising approach to more efficient coal liquefaction. It has been recognized that dispersed catalysts are superior to supported catalysts for primary liquefaction of coals, because the control of initial coal dissolution or depolymerization requires intimate contact between the catalyst and coal. This research is a fundamental and exploratory study on catalytic coal liquefaction, with the emphasis on exploring novel bimetallic dispersed catalysts for coal liquefaction and the effectiveness of temperature-programmed liquefaction using dispersed catalysts. The primary objective of this research was to explore novel bimetallic dispersed catalysts from organometallic molecular precursors, that could be used in low concentrations but exhibit relatively high activity for efficient hydroliquefaction of coals under temperature-programmed conditions. We have synthesized and tested various catalyst precursors in liquefaction of subbituminous and bituminous coals and in model compound studies to examine how do the composition and structure of the catalytic precursors affect their effectiveness for coal liquefaction under different reaction conditions, and how do these factors affect their catalytic functions for hydrogenation of polyaromatic hydrocarbons, for cleavage of C-C bonds in polycyclic systems such as 4-(1-naphthylmethyl)bibenzyl, for hydrogenolysis of C-O bond such as that in dinaphthylether, for hydrodeoxygenation of phenolic compounds and other oxygen-containing compounds such as xanthene, and for hydrodesulfurization of polycyclic sulfur compounds such as dibenzothiophene. The novel bimetallic and monometallic precursors synthesized and tested in this project include various Mo- and Fe-based compounds.

  6. The Rearrangement of 1-Methylcyclohex-1-ene during the Hydrodesulfurization of FCC Gasoline over Supported Co(Ni)Mo/Al2O3 Sulfide Catalysts: the Isolation and Identification of Branched Cyclic C7 Olefins

    Czech Academy of Sciences Publication Activity Database

    Žáček, Petr; Kaluža, Luděk; Karban, Jindřich; Storch, Jan; Sýkora, Jan

    2014-01-01

    Roč. 112, č. 2 (2014), s. 335-346 ISSN 1878-5190 R&D Projects: GA ČR GAP106/11/0902 Institutional support: RVO:67985858 ; RVO:61388963 Keywords : hydrodesulfurization * olefin hydrogenation * branched cyclic olefins Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.170, year: 2014

  7. Assessment of the severity of dementia: validity and reliability of the Chinese (Cantonese) version of the Hierarchic Dementia Scale (CV-HDS).

    Science.gov (United States)

    Poon, Vickie Wan-kei; Lam, Linda Chiu-wa; Wong, Samuel Yeung-shan

    2008-09-01

    With the rapid growth of the older population, early detection of cognitive deficits is crucial in slowing down functional deterioration of the elderly persons. To examine the validity and reliability of the Chinese (Cantonese) version of the Hierarchic Dementia Scale (CV-HDS) for Chinese older persons in Hong Kong. The HDS was translated into Cantonese Chinese. The content and cultural validity were evaluated by six expert panel members. Sixty-two participants with diagnosis of dementia were recruited for evaluation. Inter-rater reliability, test-retest reliability, internal consistency and concurrent validity were examined. The CV-HDS demonstrated satisfactory psychometric properties. inter-rater reliability and test-retest reliability were high (alpha=0.89 and alpha=0.94 respectively). High value of Cronbach's alpha (alpha=0.94) demonstrated good internal consistency. The concurrent validity of CV-HDS, through correlation with its scores with that of the Chinese version of Mini Mental Status Examination, was established (ranged from r=0.58 to r=0.78, pCantonese speaking Chinese people with dementia. It facilitates treatment planning to optimize the effects of functional training and rehabilitation.

  8. ESTUDIO DE LA ESTABILIDAD ESTRUCTURAL DE ÓXIDOS MIXTOS Zn-Al TIPO HIDROTALCITA EN PRECURSORES CATALÍTICOS CoNiMo FRENTE HDS DE TIOFENO

    Directory of Open Access Journals (Sweden)

    Ruth Alvarez

    2017-07-01

    Full Text Available The oil industry is one of the main sources responsible for atmospheric emissions such as: CO, CO2, SO2, NOX, hydrocarbons and suspended particles, which seeks to mitigate environmental pollution from its refineries using some processes, such as hydrotreatment (HDT. The heart of the HDT is the catalysts used, depending on the catalytic support and the metals used during its formulation. Therefore, this research focused on studying the structural stability of mixed Zn-Al type hydrotalcite (HT oxides in catalysts CoNiMo versus thiophene HDS at a calcination temperature of 450 ° C. Initially, the catalytic support HT was synthesized at varying Zn-Al ratios of 0,00 to 1, 00Al, once the optimal range of HT (0,00-0,33Al was obtained, the catalytic precursors CoMo / NiMo, through two stages of calcination, the first is impregnated the support type hydrotalcite (HT without calcining with the metals CoNi and CoMo, after impregnating with these metals is calcined once only; While in the second stage the solids are calcined before impregnation and after impregnation with the aforementioned metals. The obtained results show an excellent performance for the catalysts with double calcination stage, being CoMo precursors more effective than NiMo; this can be justified by the physicochemical characteristics of the phases of the metals involved and their coordination vacancies.

  9. The effect of radiation-thermal treatment on the physicochemical properties of the Ni-Mo/Al2O3 hydrotreatment catalyst. II. UV-Vis diffuse reflectance spectra of surface compounds after irradiation

    International Nuclear Information System (INIS)

    Solovetskii, Yu.I.; Miroshinichenko, I.I.; Lunin, V.V.

    1993-01-01

    Radiation-thermal damage of the surface and the active metal phases of hydrodesulfurization Ni-Mo/Al 2 O 3 catalysts by a fast electron beam of up to 2.0 MeV energy was studied. UV-Vis diffuse reflectance spectra of the industrial and model coked systems after radiation-thermal treatment were measured. 14 refs., 2 figs

  10. Dispersed catalysts for co-processing and coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Bockrath, B.; Parfitt, D.; Miller, R. [Pittsburgh Energy Technology Center, PA (United States)

    1995-12-31

    The basic goal is to improve dispersed catalysts employed in the production of clean fuels from low value hydrocarbons. The immediate objective is to determine how the properties of the catalysts may be altered to match the demands placed on them by the properties of the feedstock, the qualities of the desired end products, and the economic constraints put upon the process. Several interrelated areas of the application of dispersed catalysts to co-processing and coal conversion are under investigation. The first involves control of the selectivity of MoS{sub 2} catalysts for HDN, HDS, and hydrogenation of aromatics. A second area of research is the development and use of methods to evaluate dispersed catalysts by means of activity and selectivity tests. A micro-flow reactor has been developed for determining intrinsic reactivities using model compounds, and will be used to compare catalysts prepared in different ways. Micro-autoclaves will also be used to develop data in batch experiments at higher partial pressures of hydrogen. The third area under investigation concerns hydrogen spillover reactions between MoS{sub 2} catalysts and carbonaceous supports. Preliminary results obtained by monitoring H{sub 2}/D{sub 2} exchange reactions with a pulse-flow microreactor indicate the presence of spillover between MoS{sub 2} and a graphitic carbon. A more complete study will be made at a later stage of the project. Accomplishments and conclusions are discussed.

  11. Sites and reactivity of sulfides in hydro-treatment catalysis: theoretical ab-initio study; Sites et reactivite des sulfures en catalyse d`hydrotraitement: etude theorique ab-initio

    Energy Technology Data Exchange (ETDEWEB)

    Raybaud, P.

    1998-10-28

    Ab-initio calculations within the DFT and GGA have been carried out in an attempt to understand better which property sets the activity of transition metal sulfides (TMS) in the hydro-desulfurization reaction (HDS), a most important step in the refining of crude oil. A systematic study of the structural cohesive and electronic properties of more than thirty bulk TMS has allowed us to find a new simple relationship between the experimental catalytic activities known in HDS, and the properly defined sulfur-metal (S-M) bond energy. On this volcano curve reminiscent of the Sabatier principles, ionic metallic sulfides (as Ni{sub 3}S{sub 2}, Ci{sub 9}S{sub 8}) exhibit the weakest bonds whereas ion-covalent semi-conductors (as MoS{sub 2}) exhibit the strongest bonds: the highest activities correspond to intermediate bond strengths (RuS{sub 2}). Our study of the electronic structure of the MoS{sub 2} edge surfaces has revealed acceptor surface states localized on Coordinatively Unsaturated Mo ions and the significance of those states for the activation of hetero-aromatic molecules like thiophene. On such surfaces, the energetic profiles we establish for the thiophene HDS reaction point out the surface anionic vacancy regeneration steps as rate determining. We have calculated the optimal positions of Co (Ni) in decoration on the MoS{sub 2} edge planes, in excellent agreement with available EXAFS data on real catalysts. Introducing the promoter Co (Ni) induces a lower optimal sulfur coverage and a lower surface S-M bond strength in proportion of the Co (Ni) coverage, and lower for Ni than for Co. Simplified energy profiles for the thiophene HDS reactions on promoted (101-bar 0) surfaces show that the C-S scission step is likely to become rate determining. Our results show altogether that bulk and surface S-M strengths in TMS systems show similar trends, insofar as they are primarily determined by the local electronic structure. (author)

  12. Controllable synthesis in a continuous mode of unsupported molybdenum catalysts with micro/nano size for heavy oil upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.; Hill, J.M.; Pereira Almao, P.R. [Calgary Univ., AB (Canada)

    2004-07-01

    Heavy oils contain significant amounts of impurities compared to conventional oils, thereby posing a challenge for hydroprocessing operations at refineries. Hydrodesulfurization is one of the important reactions involved in hydroprocessing. Transition metal sulfides have excellent properties in terms of sulphur removal. Molybdenum based catalysts have been used extensively in the petroleum industry for hydrotreating heavy oil fractions. Supported molybdenum based catalysts suffer strong deactivation in the traditional hydrotreating process due to the deposition of carbonaceous components on the surface of the catalyst when they are used in conventional fixed bed reactors. Unsupported catalysts have higher catalytic activity with better metal dispersion. Laboratory experiments were conducted in which micro/nano size unsupported molybdenum catalysts were synthesized from a water/oil emulsion. The catalysts were prepared in a continuous mode for online application to hydroprocessing or in situ upgrading. Dispersed molybdenum catalysts are more suitable for processing heavier feeds because they are less prone to deactivation. Also, their submicron size ensure high activities due to a large specific surface area. They are also sufficiently small to be readily dispersed in the residual oil. 4 refs., 1 tab., 2 figs.

  13. MoO3/Al2O3 catalyst: Comparison of catalysts prepared by new slurry impregnation with molybdic acid with conventional samples

    International Nuclear Information System (INIS)

    Spojakina, A.; Kostova, N.; Vit, Z.; Zdrazil, M.

    2003-01-01

    Alumina-supported molybdena catalysts were prepared by conventional impregnation with (NH 4 ) 6 Mo 7 O 24 (CIM) and by a new slurry impregnation method (SIM). SIM is the reaction of alumina support with a slurry of MoO 3 in water. Two commercial supports were used and the commercial Mo 3 /Al 2 O 3 catalyst was included for comparison. Maximum amount of MoO 3 deposited by SIM was about 19-20 % MoO 3 with the surface area of the support of 260-280 m 2 g -1 and this corresponded to saturation monolayer of similar density as described in literature for CIM catalysts. At the ratios of MoO 3 to Al 2 O 3 in the impregnation slurry below saturation monolayer, the pH of the slurry was 3.5-6 (depending on loading) and chemical erosion of alumina is negligible. However, using the large excess of MoO 3 (35% MoO 3 ) the pH was 2.4-3.4 and chemical erosion of alumina occurred. Silica contained in alumina supports was partly extracted as soluble silicomolybdic anions during SIM. The catalysts were characterized by BET, IR, DRS (UV-vis and NIR), TPR and catalytic activity in hydrodesulfurization of thiophene. Calcination had no significant effect on the properties of SIM catalysts and this proved that calcination is not needed in that method. All catalysts exhibited features of high monolayer dispersion of molybdena and no significant difference in structure and catalytic properties was observed between SIM and CIM catalysts. This confirmed that SIM is a simple, clean and reliable method of preparation of monolayer type MoO 3 /Al 2 O 3 catalysts. (author)

  14. Study on the influence of nickel and Al{sub 2}O{sub 3} support on MoS{sub 2} as hydrodenitrogenation catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Hein, J.; Hrabar, A.; Gutierrez, O.Y.; Lercher, J.A. [Technische Univ. Muenchen, Garching (Germany). Catalysis Research Center

    2012-07-01

    Alumina-supported Mo and Ni-Mo catalysts as well as an unsupported NiMo catalyst were characterized and tested in the hydrodenitrogenation (HDN) of quinoline in the presence of dibenzothiophene (DBT). The supported catalysts had a well dispersed MoS{sub 2} phase with an average stacking degree around two and slabs length below 10 nm. The unsupported NiMo sulfide catalyst exhibited long, multistacked MoS{sub 2} slabs and contained segregated Ni{sub x}S{sub y} phases. The formation of the Ni-Mo-S phase in both Ni containing catalysts was verified by X-ray absorption spectroscopy, whereas the concentration of coordinatively unsaturated sites was higher for the supported Mo and Ni-Mo catalysts than for the unsupported one. All catalysts were active in the HDN of quinoline and hydrodesulfurization of DBT. The catalytic activity increased in the order Mo/Al{sub 2}O{sub 3} < NiMo/unsupported < Ni-Mo/Al{sub 2}O{sub 3}. Thus, the influence on the catalytic activity of the promoter metal Ni is more important than the presence of a support due to the formation of the Ni-Mo-S phase (more active than MoS{sub 2}). (orig.)

  15. FY 1999 report on the results of the technology development for abatement of pollutants related to oil refining; 1999 nendo sekiyu seisei osen busshitsu teigen nado gijutsu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The technologies are developed for efficiently, economically improving quality of automobile fuels by, e.g., abatement of environmental pollutants present in the oil products. For improvement of hydrodesulfurization rate of gas oil deep hydrodesulfurization process, the catalyst components high in isomerization ability of the hard-to-desulfurize compounds are investigated, and effectiveness of zeolite is confirmed. For production of low-sulfur gas oil by hydrodesulfurization and hydrocracking of heavy oil, the catalyst with small pores is preferable for desulfurization of gas oil as the co-product of the treatment of heavy oil in the presence of catalyst for heavy oil desulfurization. For hydrocracking, the catalysts are prepared, on a trial basis, for achieving the target gas oil sulfur content of 10ppm or less by optimizing the zeolite and matrix properties. For suitability of gas oil qualities, it is found that the hydrogenation step is the rate-determining step among the reaction routes involved in the hydrogenation of difficult-to-desulfurize compounds. The data of low-sulfur gas oil qualities in Europe are collected. (NEDO)

  16. 76 FR 21748 - Health Disparities Subcommittee (HDS), Advisory Committee to the Director, Centers for Disease...

    Science.gov (United States)

    2011-04-18

    ... Disparities Subcommittee (HDS), Advisory Committee to the Director, Centers for Disease Control and Prevention... through the ACD on strategic and other health disparities and health equity issues and provide guidance on... update including the CDC Health Disparities and Inequalities Report, U.S. 2011; the National Prevention...

  17. HDN and HDS of different gas oils derived from Athabasca bitumen over phosphorus-doped NiMo/{gamma}-Al{sub 2}O{sub 3} carbides

    Energy Technology Data Exchange (ETDEWEB)

    Sundaramurthy, V.; Dalai, A.K. [Catalysis and Chemical Reaction Engineering Laboratories, Department of Chemical Engineering, University of Saskatchewan, Saskatoon, Sask. S7N 5A9 (Canada); Adjaye, J. [Syncrude Edmonton Research Centre, Edmonton, Alta. T6N 1H4 (Canada)

    2006-10-26

    A series of phosphorous-doped {gamma}-Al{sub 2}O{sub 3} supported Ni-Mo bimetallic carbide catalysts (PNiMo{sub 2}C/Al{sub 2}O{sub 3}) with 0-4.5wt.% Ni, 13wt.% Mo and 2.5wt.% P were synthesized and characterized by elemental analysis, pulsed CO chemisorption, surface area measurement, X-ray diffraction (XRD), near-edge X-ray absorption fine structure (NEXAFS), DRIFT spectroscopy of CO adsorption and H{sub 2} temperature programmed reduction. XRD indicated the formation of pure {beta}-Mo{sub 2}C phase in these catalysts, whereas the near edge X-ray absorption fine structure of C K-edge confirmed the formation of carbidic carbons. DRIFT spectra of adsorbed CO revealed that Ni or P addition to Mo{sub 2}C/Al{sub 2}O{sub 3} catalyst not only increases the number of surface Mo sites, but also promotes the reducibility of Mo. The partial sulfidation of Mo{sub 2}C phase in the presence of H{sub 2}S/H{sub 2} gas mixture at 370{sup o}C was evidenced by DRIFTS of adsorbed CO. The HDN and HDS activities of these PNiMo{sub 2}C/Al{sub 2}O{sub 3} catalysts were performed in a trickle bed reactor using light gas oil (LGO) and heavy gas oil (HGO) derived from Athabasca bitumen at 8.8MPa and compared with the unpromoted Mo carbide (Mo{sub 2}C/Al{sub 2}O{sub 3}), P doped Mo carbide (PMo{sub 2}C/Al{sub 2}O{sub 3}) and Ni promoted Mo carbide (NiMo{sub 2}C/Al{sub 2}O{sub 3}). The P doped Ni-Mo bimetallic carbide catalysts showed enhanced HDN activity compared to the Mo{sub 2}C/Al{sub 2}O{sub 3}, NiMo{sub 2}C/Al{sub 2}O{sub 3} and PMo{sub 2}C/Al{sub 2}O{sub 3} catalysts. The maximum N and S conversions, respectively, were obtained over PNiMo{sub 2}C/Al{sub 2}O{sub 3} and NiMo{sub 2}C/Al{sub 2}O{sub 3} catalysts containing 2.5wt.% Ni. (author)

  18. Catalyst design for clean and efficient fuels

    OpenAIRE

    Šaric, Manuel; Jacobsen, Karsten Wedel; Moses, Poul Georg; Rossmeisl, Jan

    2016-01-01

    This thesis contains a theoretical approach to specific problems in catalysis and is based upon fundamental concepts from thermodynamics and density functional theory calculations. It investigates the already existing and well established process of hydrodesulfurization and a novel process of synthesizing dimethyl carbonate electrochemically.Hydrodesulfurization is an industrial refining process in which sulfur is removed from oil in order to reduce SO2 emissions. The study on hydrodesulfuriz...

  19. High-throughput heterogeneous catalyst research

    Science.gov (United States)

    Turner, Howard W.; Volpe, Anthony F., Jr.; Weinberg, W. H.

    2009-06-01

    With the discovery of abundant and low cost crude oil in the early 1900's came the need to create efficient conversion processes to produce low cost fuels and basic chemicals. Enormous investment over the last century has led to the development of a set of highly efficient catalytic processes which define the modern oil refinery and which produce most of the raw materials and fuels used in modern society. Process evolution and development has led to a refining infrastructure that is both dominated and enabled by modern heterogeneous catalyst technologies. Refineries and chemical manufacturers are currently under intense pressure to improve efficiency, adapt to increasingly disadvantaged feedstocks including biomass, lower their environmental footprint, and continue to deliver their products at low cost. This pressure creates a demand for new and more robust catalyst systems and processes that can accommodate them. Traditional methods of catalyst synthesis and testing are slow and inefficient, particularly in heterogeneous systems where the structure of the active sites is typically complex and the reaction mechanism is at best ill-defined. While theoretical modeling and a growing understanding of fundamental surface science help guide the chemist in designing and synthesizing targets, even in the most well understood areas of catalysis, the parameter space that one needs to explore experimentally is vast. The result is that the chemist using traditional methods must navigate a complex and unpredictable diversity space with a limited data set to make discoveries or to optimize known systems. We describe here a mature set of synthesis and screening technologies that together form a workflow that breaks this traditional paradigm and allows for rapid and efficient heterogeneous catalyst discovery and optimization. We exemplify the power of these new technologies by describing their use in the development and commercialization of a novel catalyst for the

  20. THE BIOCATALYTIC DESULFURIZATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Scott Collins; David Nunn

    2003-10-01

    The analysis of Petro Star diesel sulfur species is complete and a report is attached. Further analytical efforts will concentrate on characterization of diesel fuel, hydrodesulfurized to varying degrees, in order to determine sulfur species that may be problematic to hydrogen treatment and represent potential target substrates for biodesulfurization in a combined HDS-BDS process. Quotes have been received and are being considered for the partial treatment of Petro Star Inc. marine diesel fuel. Direction of research is changing slightly; economic analysis of the hyphenated--BDSHDS, BDS-CED--has shown the highest probability of success to be with a BDS-HDS process where the biodesulfurization precedes hydrodesulfurization. Thus, the microorganisms will be tailored to focus on those compounds that tend to be recalcitrant to hydrodesulfurization and decrease the severity of the hydrodesulfurization step. A separate, detailed justification for this change is being prepared. Research activities have continued in the characterization of the desulfurization enzymes from multiple sources. Genes for all DszA, -B, -C and -D enzymes (and homologs) have been cloned and expressed. Activity determinations, on a variety of substituted benzothiophene and dibenzothiophene substrates, have been carried out and continue. In addition, chemical synthesis efforts have been carried out to generate additional substrates for analytical standards and activity determinations. The generation of a GSSM mutant library of the ''Rhodococcus IGTS8 dszA'' gene has been completed and development of protocols for a high throughput screen to expand substrate specificity are nearing completion. In an effort to obtain improved hosts as biocatalyst, one hundred-thirty ''Rhodococcus'' and related strains are being evaluated for growth characteristics and other criteria deemed important for an optimal biocatalyst strain. We have also begun an effort to generate

  1. New catalysts for coal processing: Metal carbides and nitrides

    Energy Technology Data Exchange (ETDEWEB)

    S. Ted Oyama; David F. Cox

    1999-12-03

    The subject of this research project was to investigate the catalytic properties of a new class of materials, transition metal carbides and nitrides, for treatment of coal liquid and petroleum feedstocks. The main objectives were: (1) preparation of catalysts in unsupported and supported form; (2) characterization of the materials; (3) evaluation of their catalytic properties in HDS and HDN; (4) measurement of the surface properties; and (5) observation of adsorbed species. All of the objectives were substantially carried out and the results will be described in detail below. The catalysts were transition metal carbides and nitrides spanning Groups 4--6 in the Periodic Table. They were chosen for study because initial work had shown they were promising materials for hydrotreating. The basic strategy was first to prepare the materials in unsupported form to identify the most promising catalyst, and then to synthesize a supported form of the material. Already work had been carried out on the synthesis of the Group VI compounds Mo{sub 2}C, Mo{sub 2}N, and WC, and new methods were developed for the Group V compounds VC and NbC. All the catalysts were then evaluated in a hydrotreating test at realistic conditions. It was found that the most active catalyst was Mo{sub 2}C, and further investigations of the material were carried out in supported form. A new technique was employed for the study of the bulk and surface properties of the catalysts, near edge x-ray absorption spectroscopy (NEXAFS), that fingerprinted the electronic structure of the materials. Finally, two new research direction were explored. Bimetallic alloys formed between two transition metals were prepared, resulting in catalysts having even higher activity than Mo{sub 2}C. The performance of the catalysts in hydrodechloration was also investigated.

  2. Iron sulphide containing hydrodesulfurization catalysts : Mössbauer study of the sulfidibility of alpha-iron(III) oxide

    NARCIS (Netherlands)

    Ramselaar, W.L.T.M.; Beer, de V.H.J.; Kraan, van der A.M.

    1988-01-01

    As a first step in the study of the sulphidation of carbon-supported iron oxide catalyst systems the sulphiding of a well-characterized, unsupported model compound, viz. a-Fe2O3(mean particle diameter ca. 50 nm) was investigated using in-situ Mössbauer spectroscopy and the temperature-programmed

  3. MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction

    Science.gov (United States)

    Liu, Guoliang; Robertson, Alex W.; Li, Molly Meng-Jung; Kuo, Winson C. H.; Darby, Matthew T.; Muhieddine, Mohamad H.; Lin, Yung-Chang; Suenaga, Kazu; Stamatakis, Michail; Warner, Jamie H.; Tsang, Shik Chi Edman

    2017-08-01

    The conversion of oxygen-rich biomass into hydrocarbon fuels requires efficient hydrodeoxygenation catalysts during the upgrading process. However, traditionally prepared CoMoS2 catalysts, although efficient for hydrodesulfurization, are not appropriate due to their poor activity, sulfur loss and rapid deactivation at elevated temperature. Here, we report the synthesis of MoS2 monolayer sheets decorated with isolated Co atoms that bond covalently to sulfur vacancies on the basal planes that, when compared with conventionally prepared samples, exhibit superior activity, selectivity and stability for the hydrodeoxygenation of 4-methylphenol to toluene. This higher activity allows the reaction temperature to be reduced from the typically used 300 °C to 180 °C and thus allows the catalysis to proceed without sulfur loss and deactivation. Experimental analysis and density functional theory calculations reveal a large number of sites at the interface between the Co and Mo atoms on the MoS2 basal surface and we ascribe the higher activity to the presence of sulfur vacancies that are created local to the observed Co-S-Mo interfacial sites.

  4. Experimental and kinetics studies of aromatic hydrogenation in a two-stage hydrotreating process using NiMo/Al{sub 2}O{sub 3} and NiW/Al{sub 2}O{sub 3} catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Owusu-Boakye, A.; Dalai, A.K.; Ferdous, D. [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Chemical Engineering, Catalysis and Chemical Reaction Engineering Laboratories; Adjaye, J. [Syncrude Canada Ltd., Edmonton, AB (Canada)

    2006-10-15

    The degree of hydrogenation of aromatics in light gas oil (LGO) feed from Athabasca bitumen was examined using a two-stage process. Experiments were conducted in a trickle-bed reactor using 2 catalysts, namely nickel molybdenum alumina (NiMo/Al{sub 2}O{sub 3}) in stage one and nickel tungsten alumina (NiW/Al{sub 2}O{sub 3}) in the second stage. NiMo/Al{sub 2}O{sub 3} was used in the first stage in order to remove nitrogen and sulphur containing heteroatoms. NiW/Al{sub 2}O{sub 3} was used in the second stage for saturation of the aromatic rings in the hydrocarbon species. The catalysts were used under a range of temperature and pressure condition. Temperature and liquid hourly space velocity ranged from 350 to 390 degrees C and 1.0 to 1.5 per hour, respectively. Pressure was kept constant at 11.0 MPa for all experiments. Reaction time results from the two-stage process were compared with those from a single-stage where hydrotreating was performed over NiMo/AL{sub 2}O{sub 3}. Product samples from different feedstocks were analyzed with respect to sulfur, nitrogen and aromatic content. Gasoline selectivity and kinetic parameters for hydrodesulphurization (HDS) or hydrodenitrogenation (HDN) reactions for the feed materials were also compared. The effect of hydrogen sulphide (H{sub 2}S) inhibition on aromatics hydrogenation (HDA) was also kinetically modelled using the Langmuir-Hinshelwood approach. Kinetic analysis of the single-stage hydrotreating process showed that HDA and HDS activities were slowed by the presence of hydrogen sulphide that is produced as a by-product of the HDS process. However, with inter-stage removal of hydrogen sulphide in the two-stage process, significant improvement of the HDA and HDS activities were noted. It was concluded that the experimental data was successfully predicted by the Langmuir-Hinshelwood kinetic models. 27 refs., 4 tabs., 8 figs.

  5. Performance of NiWP/Al2O3 catalyst for hydroprocessing of light gas oils derived from Athabasca bitumen

    Energy Technology Data Exchange (ETDEWEB)

    Owusu-Boakye, A.; Ferdous, D.; Dalai, A.K. [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Chemistry and Chemical Engineering; Adjaye, J. [Syncrude Canada Ltd., Edmonton, AB (Canada). Edmonton Research Centre

    2004-07-01

    The quality of diesel fuel in terms of cetane number and coloring is diminished if it has a high content of aromatics which cause the formation of undesirable emissions in exhaust gases. These compounds typically occur as mono, di, tri and polyaromatics. In response to strict environmental regulations, middle distillates now have fewer aromatics. Sulphur and nitrogen compounds in diesel fuels also cause the formation of SOx and NOx in the atmosphere, but the aromatic hydrogenation of diesel fuels is more complex than any of the hydrodesulphurization (HDS) or hydrodenitrogenation (HDN) processes. The NiWP/Al{sub 2}O{sub 3} catalyst in a trickle-bed reactor was used under a range of temperature and pressure conditions to study the reactivity of vacuum, atmospheric and hydrocracked light gas oils produced from Athabasca bitumen. The hydrogen feed ratio was kept constant and product samples from different feedstocks were analyzed with respect to sulfur, nitrogen and aromatic content. The study also included a comparison of gasoline selectivity and kinetic parameters for HDS and HDN reactions for the feed materials.

  6. Shouldn't catalysts shape up?

    Energy Technology Data Exchange (ETDEWEB)

    Kreutzer, Michiel T.; Kapteijn, Freek; Moulijn, Jacob A. [Reactor and Catalysis Engineering, DelftChemTech, Faculty of Applied Sciences, Delft University of Technology, Julianalaan 136, 2628 BL Delft (Netherlands)

    2006-01-15

    In this paper, the advantage of structuring catalytic reactors is discussed. In structured systems, the exact shape of all column internals is determined by design rather than chance. This results in two advantages for the engineer in charge of designing a reactor: (1) the structuring introduces additional characteristic length scales, leading to new degrees of freedom that allow decoupling of phenomena that otherwise would need a sub-optimal compromise and (2) full control over the entire geometry results in higher precision. Taking full control over the geometry boosts performance, especially if the catalyst is tailored to the reactor design. The monolith structure is the best-known example of a structured catalyst. We discuss the industrial benefits and practical pitfalls of this honeycomb of parallel capillaries that allows the advantages of microfluidics to be applied on an enormous scale. In this paper it is argued that the monolith is most suitable for processes that are (1) stable enough for packed-bed operation and (2) need better mass transfer than can be obtained in any conventional reactor, including the trickle bed and the stirred tank reactor. This includes several large-scale processes such as HDS. Fine chemical synthesis, where the objective of robust scale-up and predictability will never be met using stirred tanks, may equally benefit from the scalable ultra-high mass transfer that is obtained in monoliths.

  7. A bright side, facet analysis of histrionic personality disorder: the relationship between the HDS Colourful factor and the NEO-PI-R facets in a large adult sample.

    Science.gov (United States)

    Furnham, Adrian

    2014-01-01

    This study looks at "bright-side," Big Five Personality trait correlates of a "dark-side" Personality Disorder, namely Histrionic Personality Disorder (HPD). More than 5000 British adults completed the Neuroticism Extraversion Openness Personality Inventory-Revised (Costa & McCrae, 1985), which measures the Big Five Personality factors at the Domain (Super Factor) and the Facet (Factor) level, as well as the Hogan Development Survey (HDS; Hogan & Hogan, 2009), which has a measure of HPD, exclusively called "Colourful" in the HDS terminology. Correlation and regression results confirmed many of the associations between these "bright" and "dark" side individual difference variables. The Colourful (HPD) score from the HDS was the criterion variable in all analyses. Colourful individuals are high on Extraversion and Openness, but also Stable and disagreeable. The Facet analysis identified Assertiveness and Immodesty as particularly characteristic of that type. The study confirmed work on HPD using different population groups and different measures, showing that personality traits are predictable and correlated with various personality disorders.

  8. Improvement of the deep desulphurization of diesel oil by pre-saturation and a recycle of the liquid phase

    Energy Technology Data Exchange (ETDEWEB)

    Datsevitch, L.; Jess, A.; Schmitz, C. [Bayreuth Univ. (Germany). Dept. of Chemical Engineering; Gudde, N.J. [BP Oil, Sunbury-on-Thames (United Kingdom). Refining Technology

    2003-07-01

    Within the next decade, the S-content both for gasoline and diesel oil will probably be set to a value of about 10 ppm. Desulfurization is usually obtained by hydrotreating (HDS) in a trickle bed reactor, i.e. in a three phase system with gaseous H{sub 2}, liquid oil (with dissolved H{sub 2}) and solid catalyst. The HDS-process has several problems, particularly if residual S-contents of less than 100 ppm are needed, because the remaining, refractory S-compounds like 4,6-dimethyldibenzothiophene are hard to convert. The amount of H{sub 2} fed to the reactor - after all in case of deep HDS - is much higher than the amount chemically needed and consumed by HDS. So the unconsumed H{sub 2} has to be recycled. As shown in this paper, the so-called presaturation concept using a two phase reactor (solid catalyst and oil externally pre-saturated with H{sub 2}) is an interesting alternative to the common trickle bed reactor. A recycle of H{sub 2} is not needed, and the reaction rate of HDS will higher or at least the same. (orig.)

  9. MATHEMATICAL OPTIMIZATION METHODS TO ESTABLISH ACTIVE PHASES ON HETEROGENEOUS CATALYSIS: CASE OF BULK TRANSITION METAL SULPHIDES

    Directory of Open Access Journals (Sweden)

    Iván Machín

    2015-03-01

    Full Text Available This paper presents a set of procedures based on mathematical optimization methods to establish optimal active sulphide phases with higher HDS activity. This paper proposes a list of active phases as a guide for orienting the experimental work in the search of new catalysts that permit optimize the HDS process. Studies in this paper establish Co-S, Cr-S, Nb-S and Ni-S systems have the greatest potential to improve HDS activity.

  10. Kinetic modelling of hydro-treatment reactions by study of different chemical groups; Modelisation cinetique des reactions d`hydrotraitement par regroupement en familles chimiques

    Energy Technology Data Exchange (ETDEWEB)

    Bonnardot, J

    1998-11-19

    Hydro-treatment of petroleum shortcuts permits elimination of unwanted components in order to increase combustion in engine and to decrease atmospheric pollution. Hydro-desulfurization (HDS), Hydro-denitrogenation (HDN) and Hydrogenation of aromatics (HDA) of a LCO (Light Cycle Oil)-Type gas oil have been studied using a new pilot at a fixed temperature with a NiMo/Al{sub 2}O{sub 3} catalyst. A hydrodynamic study showed that reactions occurring in the up-flow fixed bed reactor that has been used during the experiments, were governed exclusively by chemical reaction rates and not by diffusion. Through detailed chemical analysis, height chemical groups have been considered: three aromatics groups, one sulfided group, one nitrogenized and NH{sub 3}, H{sub 2}S, H{sub 2}. Two Langmuir-Hinshelwood-type kinetic models with either one or two types of sites have been established. The model with two types of site - one site of hydrogenation and one site of hydrogenolysis - showed a better fit in the modeling of the experimental results. This model enables to forecast the influence of partial pressure of H{sub 2}S and partial pressure of H{sub 2} on hydro-treatment reactions of a LCO-type gas oil. (author) 119 refs.

  11. In-situ stripping of H{sub 2}S in gasoil hydrodesulphurization - reactor design considerations

    Energy Technology Data Exchange (ETDEWEB)

    Nava, J.A.O.; Krishna, R. [Amsterdam Univ., Dept. of Chemical Engineering, Amsterdam (Netherlands)

    2004-02-01

    In order to meet future diesel specifications the sulphur content of diesel would need to be reduced to below 50 ppm. This requirement would require improved reactor configurations. In this study we examine the benefits of counter-current contacting of gas oil with H{sub 2}, over conventional co-current contacting in a trickle bed hydrodesulphurization (HDS) reactor. In counter-current contacting, we achieve in-situ stripping of H{sub 2}S from the liquid phase; this is beneficial to the HDS kinetics. A comparison simulation study shows that counter-current contacting would require about 20% lower catalyst load than co-current contacting. However, counter-current contacting of gas and liquid phases in conventionally used HDS catalysts, of 1.5 mm sizes, is not possible due to flooding limitations. The catalysts need to be housed in special wire gauze envelopes as in the catalytic bales or KATAPAK-S configurations. A preliminary hardware design of a counter-current HDS reactor using catalytic bales was carried out in order to determine the technical feasibility. Using a realistic sulphur containing feedstock, the target of 50 ppm S content of desulphurized oil could be met in a reactor of reasonable dimensions. The study also underlines the need for accurate modelling of thermal effects during desulphurization. Our study also shows that interphase mass transfer is unlikely to be a limiting factor and there is a need to develop improved reactor configurations allowing for increased catalyst loading, at the expense of gas-liquid interfacial area. (Author)

  12. Integration of non linearities in the economic refining model. Case of the hydro-desulfurization unit; Prise en compte de non-linearites dans la modelisation economique du raffinage. Cas de l`unite d`hydrodesulfuration

    Energy Technology Data Exchange (ETDEWEB)

    Baudouin, C.

    1998-12-08

    In recent years, the modifications in oil products demand and the increased quality requirements of European specifications have driven the oil industry towards more and more complex refining schemes. This situation should become even more pronounced in the future. Under these conditions, a technical analysis of the units operation must be carried out and combined with an economic approach. The research undertaken is divided into two parts. The first part is dedicated to the study of the European refining industry and its representation by the classic linear programming model. In these models, the units` operation is represented by typical running. The technical parameters are not explicitly taken into account. Therefore, in order to meet future requirements and to represent this activity in the best way, the current model must be improved. The second part relates to an analysis with forecasts future developments in the European refining sector up to 2010 and how linear programming models themselves will be adapted. Thus, the straight run gas oil hydro-desulfurization unit is completely redefined. The operating conditions and the design parameters of this unit are introduced into the model. Depending on the feed, they determine the performances and the material balance of the unit. Some of these operating conditions are new variables and appear in non linear equations. Therefore, we need non linear programming (the augmented Lagrangians method) to solve this detailed model. The results of the second part confirm those determined by the first part. They also provide us with a better representation of the hydro-desulfurization unit (taking the optimisation of the operating conditions into account). Using these models and the analysis described above, we can develop an outline plan of the future European refining industry. This shows that sizeable investments in both conventional and deep conversion capacity will be required to meet the requirements of changes in

  13. Hydrodesulphurization of Light Gas Oil using hydrogen from the Water Gas Shift Reaction

    Science.gov (United States)

    Alghamdi, Abdulaziz

    2009-12-01

    The production of clean fuel faces the challenges of high production cost and complying with stricter environmental regulations. In this research, the ability of using a novel technology of upgrading heavy oil to treat Light Gas Oil (LGO) will be investigated. The target of this project is to produce cleaner transportation fuel with much lower cost of production. Recently, a novel process for upgrading of heavy oil has been developed at University of Waterloo. It is combining the two essential processes in bitumen upgrading; emulsion breaking and hydroprocessing into one process. The water in the emulsion is used to generate in situ hydrogen from the Water Gas Shift Reaction (WGSR). This hydrogen can be used for the hydrogenation and hydrotreating reaction which includes sulfur removal instead of the expensive molecular hydrogen. This process can be carried out for the upgrading of the bitumen emulsion which would improve its quality. In this study, the hydrodesulphurization (HDS) of LGO was conducted using in situ hydrogen produced via the Water Gas Shift Reaction (WGSR). The main objective of this experimental study is to evaluate the possibility of producing clean LGO over dispersed molybdenum sulphide catalyst and to evaluate the effect of different promoters and syn-gas on the activity of the dispersed Mo catalyst. Experiments were carried out in a 300 ml Autoclave batch reactor under 600 psi (initially) at 391°C for 1 to 3 hours and different amounts of water. After the hydrotreating reaction, the gas samples were collected and the conversion of carbon monoxide to hydrogen via WGSR was determined using a refinery gas analyzer. The sulphur content in liquid sample was analyzed via X-Ray Fluorescence. Experimental results showed that using more water will enhance WGSR but at the same time inhibits the HDS reaction. It was also shown that the amount of sulfur removed depends on the reaction time. The plan is to investigate the effect of synthesis gas (syngas

  14. Mapping Catalytically Relevant Edge Electronic States of MoS2

    Science.gov (United States)

    2018-01-01

    Molybdenum disulfide (MoS2) is a semiconducting transition metal dichalcogenide that is known to be a catalyst for both the hydrogen evolution reaction (HER) as well as for hydro-desulfurization (HDS) of sulfur-rich hydrocarbon fuels. Specifically, the edges of MoS2 nanostructures are known to be far more catalytically active as compared to unmodified basal planes. However, in the absence of the precise details of the geometric and electronic structure of the active catalytic sites, a rational means of modulating edge reactivity remain to be developed. Here we demonstrate using first-principles calculations, X-ray absorption spectroscopy, as well as scanning transmission X-ray microscopy (STXM) imaging that edge corrugations yield distinctive spectroscopic signatures corresponding to increased localization of hybrid Mo 4d states. Independent spectroscopic signatures of such edge states are identified at both the S L2,3 and S K-edges with distinctive spatial localization of such states observed in S L2,3-edge STXM imaging. The presence of such low-energy hybrid states at the edge of the conduction band is seen to correlate with substantially enhanced electrocatalytic activity in terms of a lower Tafel slope and higher exchange current density. These results elucidate the nature of the edge electronic structure and provide a clear framework for its rational manipulation to enhance catalytic activity. PMID:29721532

  15. Ambient Pressure Hydrodesulfurization of Refractory Sulfur Compounds in Highly Sensitive μ-Reactor Platform Coupled to a Time-of-Flight Mass Spectrometer

    DEFF Research Database (Denmark)

    Christoffersen, Ann-Louise N.; Bodin, Anders; Elkjær, Christian F.

    2018-01-01

    the refractory sulfur from different petroleum streams mostly found in the form of the alkyl-substituted dibenzothiophenes (β-DBTs). In this work we demonstrate how a setup dedicated to testing minute amounts (nanogram) of well-defined catalytic systems in μ-reactors can be used in the gas-phase HDS of the model...

  16. Analysis and removal of heteroatom containing species in coal liquid distillate over NiMo catalysts

    Energy Technology Data Exchange (ETDEWEB)

    S.D. Sumbogo Murtia; Ki-Hyouk Choi; Kinya Sakanishi; Osamu Okuma; Yozo Korai; Isao Mochida [Kyushu University, Fukuoka (Japan). Institute for Materials Chemistry and Engineering

    2005-02-01

    Heteroatom containing molecules in South Banko coal liquid (SBCL) distillate were identified with a gas chromatograph equipped with an atomic emission detector (GC-AED). Thiophenes and benzothiophenes were found to be the major sulfur compounds. Pyridines, anilines, and phenols were the major nitrogen and oxygen compounds, respectively. Reactivities of heteroatom containing species in hydrotreatment over conventional NiMoS/Al{sub 2}O{sub 3}, NiMoS/Al{sub 2}O{sub 3}-SiO{sub 2} catalysts were very different according to their cyclic structure as well as the kind of heteroatom in the species. The sulfur species were completely desulfurized over the catalysts examined in the present study by 60 min at 360{degree}C under initial hydrogen pressure of 5 MPa. However, hydrodenitrogenation was more difficult than hydrodesulfurization even at 450{degree}C. Anilines were found the most refractory ones among the nitrogen species. Hydrodeoxygenation of SBCL was also difficult in the hydrotreatment conditions examined in the present study. Dibenzofuran was the most refractory molecule among the oxygen species. A two-stage reaction configuration at 340 and 360{degree}C improved HDN and HDO reactivities, although the conversions were still insufficient. Increasing the acidity of the support as well as the loading of the metals on the NiMoS/Al{sub 2}O{sub 3} catalysts improved very much the heteroatom reduction to achieve complete removal of nitrogen by two-stage reaction configuration at 340-360{degree}C and oxygen at 360{degree}C, respectively. The addition of H{sub 2}S in the reaction atmosphere inhibited the HDN reaction but increased markedly the HDO conversion. The acidic support increased the activity in hydrotreatment through enhancing the hydrogenation activity, while H{sub 2}S maintained the catalyst in a sufficiently sulfided state. 19 refs., 4 figs., 8 tabs.

  17. Application of molybdenum(VI) dichloride dioxide (MoO2 Cl2 ) in ...

    Indian Academy of Sciences (India)

    Administrator

    A major use is in the hydrodesulfurisation (HDS) of petroleum, petro- chemicals and coal-derived liquids. Molybdenum catalysts are resistant to poisoning by sulfur and hence used for conversion of hydrogen and carbon monoxide to alcohols even in the presence of sulfur which would poison precious metal catalysts. Simi-.

  18. Three-dimensional interconnected nickel phosphide networks with hollow microstructures and desulfurization performance

    International Nuclear Information System (INIS)

    Zhang, Shuna; Zhang, Shujuan; Song, Limin; Wu, Xiaoqing; Fang, Sheng

    2014-01-01

    Graphical abstract: Three-dimensional interconnected nickel phosphide networks with hollow microstructures and desulfurization performance. - Highlights: • Three-dimensional Ni 2 P has been prepared using foam nickel as a template. • The microstructures interconnected and formed sponge-like porous networks. • Three-dimensional Ni 2 P shows superior hydrodesulfurization activity. - Abstract: Three-dimensional microstructured nickel phosphide (Ni 2 P) was fabricated by the reaction between foam nickel (Ni) and phosphorus red. The as-prepared Ni 2 P samples, as interconnected networks, maintained the original mesh structure of foamed nickel. The crystal structure and morphology of the as-synthesized Ni 2 P were characterized by X-ray diffraction, scanning electron microscopy, automatic mercury porosimetry and X-ray photoelectron spectroscopy. The SEM study showed adjacent hollow branches were mutually interconnected to form sponge-like networks. The investigation on pore structure provided detailed information for the hollow microstructures. The growth mechanism for the three-dimensionally structured Ni 2 P was postulated and discussed in detail. To investigate its catalytic properties, SiO 2 supported three-dimensional Ni 2 P was prepared successfully and evaluated for the hydrodesulfurization (HDS) of dibenzothiophene (DBT). DBT molecules were mostly hydrogenated and then desulfurized by Ni 2 P/SiO 2

  19. Microstructural Properties and HDS Activity of CoMo Catalysts Supported on Activated Carbon, Al2O3, ZrO2 and TiO2

    Czech Academy of Sciences Publication Activity Database

    Soukup, Karel; Procházka, Martin; Kaluža, Luděk

    2015-01-01

    Roč. 43, č. 2015 (2015), s. 841-846 ISSN 1974-9791. [International Conference on Chemical and Process Engineering - ICheaP12 /12./. Milano, 19.05.2015-22.05.2015] R&D Projects: GA ČR GAP106/11/0902 Institutional support: RVO:67985858 Keywords : CoMo catalysts * surface area * activated carbon Subject RIV: CF - Physical ; Theoretical Chemistry

  20. Influence of the size of MoS{sub 2} particles supported on alumina on the activity and the selectivity of hydro-treating reactions; Influence de la taille des particules de MoS{sub 2} supportees sur alumine sur l`activite et la selectivite des reactions d`hydrotraitement

    Energy Technology Data Exchange (ETDEWEB)

    Da Silva, P.

    1998-01-14

    The influence of the size of molybdenum disulfide particles supported on alumina on hydro-desulfurization and hydrogenation reactions has been studied. Different methods have been used to modify the length and the stacking of MoS{sub 2} slabs. MoS{sub 2} slab length measured from Electron Microscopy is increased from 20 to 40 angstroms by increasing loading from 4 to 22 % pds in Mo. These catalysts have been tested and characterised by different techniques. Increasing the sulfiding temperature also leads to an increase in MoS{sub 2} slab length. Bulk MoS{sub 2} and MoS{sub 2}/Al{sub 2}O{sub 3} showing high MoS{sub 2} slab stacking have been prepared from ammonium tetra-thio-molybdate salt. Sulfide phase characterisation results and an hexagonal MoS{sub 2} slab model have been used to estimate a number of edge and corner Mo ions. Catalysts have been characterised by Temperature Programmed Reduction and by CO adsorption at low temperatures (infra-red). Edge and corner Mo ions site densities determined by these techniques are linearly correlated with the number of sites calculated from the hexagonal MoS{sub 2} slab model and the characterisation results. Catalysts have been tested at 350 deg. C, under a total pressure of 4,5 MPa for dibenzo-thiophene hydro-desulfurization and 1-methyl naphthalene hydrogenation in the presence of nitrogen compounds. Linear correlations have been obtained between the catalytic activity and the number of edge and corner Mo sites estimated from different techniques. These results obtained from independent techniques clearly show the essential part played by edge and corner sites on catalytic activity. MoS{sub 2} slab length has no influence on the selectivity hydrogenation/hydro-desulfurization of tested catalysts. On the other side, the increase o stacking of MoS{sub 2} slab un-favours the hydrogenation reaction when compared to the hydro-desulfurization reaction. (author) 169 refs.

  1. Catalysis in high-temperature fuel cells.

    Science.gov (United States)

    Föger, K; Ahmed, K

    2005-02-17

    Catalysis plays a critical role in solid oxide fuel cell systems. The electrochemical reactions within the cell--oxygen dissociation on the cathode and electrochemical fuel combustion on the anode--are catalytic reactions. The fuels used in high-temperature fuel cells, for example, natural gas, propane, or liquid hydrocarbons, need to be preprocessed to a form suitable for conversion on the anode-sulfur removal and pre-reforming. The unconverted fuel (economic fuel utilization around 85%) is commonly combusted using a catalytic burner. Ceramic Fuel Cells Ltd. has developed anodes that in addition to having electrochemical activity also are reactive for internal steam reforming of methane. This can simplify fuel preprocessing, but its main advantage is thermal management of the fuel cell stack by endothermic heat removal. Using this approach, the objective of fuel preprocessing is to produce a methane-rich fuel stream but with all higher hydrocarbons removed. Sulfur removal can be achieved by absorption or hydro-desulfurization (HDS). Depending on the system configuration, hydrogen is also required for start-up and shutdown. Reactor operating parameters are strongly tied to fuel cell operational regimes, thus often limiting optimization of the catalytic reactors. In this paper we discuss operation of an authothermal reforming reactor for hydrogen generation for HDS and start-up/shutdown, and development of a pre-reformer for converting propane to a methane-rich fuel stream.

  2. Removal of organic nitrogen compounds in LCO reduces the hydrodesulphurization severity

    Energy Technology Data Exchange (ETDEWEB)

    Yang, H.; Chen, J.; Ring, Z. [National Centre for Upgrading Technology, Devon, AB (Canada)

    2006-07-01

    Canada and the United States committed to reducing diesel sulphur from 500 to 15 part per million by 2006. Refineries could benefit from a better understanding of the effects of feed matrix on sulphur removal by hydrodesulphurization (HDS) in selecting the right feed or feed pre-treatment options for their existing HDS units and achieve the required sulphur level at minimum cost. This paper presented a study that examined the influence of nitrogen compounds on the HDS activities of substituted dibenzothiophenes in light oil cycle over a nitrogen/molybdenum on alumina oxide (Al{sub 2}O{sub 3}) commercial catalyst using five light cycle oil feeds with different concentrations of organic nitrogen compounds. The paper discussed experiments that were conducted under conditions close to industrial HDS processes. The paper addressed feed preparation; the nitrogen effect on HDS reactivity of dibenzothiophene, 4-methyldibenzothiophene, and 4,6-dimethyl dibenzothiophene; sulphur composition analysis; hydrodenitrogenation; and kinetic modeling. It was concluded that organic nitrogen compounds have more of an inhibition effect on sulphur removal by the hydrogenation pathway than by the hydrogenolysis pathway. Nitrogen removal by feed pre-treatment was found to be an attractive alternative to achieve the ultra-low sulphur goal. 26 refs., 3 tabs., 9 figs.

  3. Deep hydrotreating of middle distillates from crude and shale oils

    Energy Technology Data Exchange (ETDEWEB)

    Landau, M.V. [The Blechner Center for Industrial Catalysis and Process Development, Ben-Gurion University of the Negev, Beer-Sheva (Israel)

    1997-06-20

    The potential scientific and technological solutions to the problems that appear as a result of shifting the hydrotreating of crude oil middle distillates and shale oils from the `normal` to the `deep` mode are considered on the basis of the reactivities and transformation routes of the least-reactive sulfur-, nitrogen-, and oxygen-containing compounds. The efficiency of selecting the optimal feedstock, increasing the process severity, improving the catalysts activity, and using alternative catalytic routes are compared, taking into account the specific issues related to deep hydrodesulfurization/hydrodenitrogenation/hydrodeoxygenation, i.e., chemical aspects, kinetics and catalysts

  4. H-coal fluid dynamics. Final report, August 1, 1977-December 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-04-16

    This report presents the results of work aimed at understanding the hydrodynamic behavior of the H-Coal reactor. A summary of the literature search related to the fluid dynamic behavior of gas/liquid/solid systems has been presented. Design details of a cold flow unit were discussed. The process design of this cold flow model followed practices established by HRI in their process development unit. The cold fow unit has been used to conduct experiments with nitrogen, kerosene, or kerosene/coal char slurries, and HDS catalyst, which at room temperature have properties similar to those existing in the H-Coal reactor. Mineral oil, a high-viscosity liquid, was also used. The volume fractions occupied by gas/liquid slurries and catalyst particles were determined by several experimental techniques. The use of a mini-computer for data collection and calculation has greatly accelerated the analysis and reporting of data. Data on nitrogen/kerosene/HDS catalyst and coal char fines are presented in this paper. Correlations identified in the literature search were utilized to analyze the data. From this analysis it became evident that the Richardson-Zaki correlation describes the effect of slurry flow rate on catalyst expansion. Three-phase fluidization data were analyzed with two models.

  5. Future production of gasoline in Brazil; Producao futura de gasolina no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Perisse, Juarez B.; Oddone, Maria Regina R.; Lemos, Solange S.F.; Lucena, Sergio Cunha de; Gomes, Hedemir F. [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    Faced with the challenge of making 2014 gasoline, PETROBRAS established the planning of a new refining park that made possible this production. The proposal comprised new process units with hydrotreating and conversion. These units have the function to work synergistically, according to the needs and characteristics of each refinery. The large reduction in the sulfur content generated the need to use cracked naphtha hydrodesulfurization units (HDS) in the refining scheme. However, these units, in addition to removing sulfur, reduce octane number due to saturation of some olefins, which would imply a drop in gasoline production. The reduction of the content of olefins in the specification led the need to dilute the produced olefins in the blend, as PETROBRAS gasoline is composed on average of 70% cracked naphtha. Catalytic Reforming Units (CCR) will become part of the refining scheme with two main functions, dilute olefins and restore the octane number loss in the hydrodesulfurization process. This is possible because reformed naphtha has no olefins and a high octane index. The feedstock must be hydrotreated to remove contaminants, and such units become even more severe if the feedstock is combined with naphtha from Delayed coking units (DCU). As a result, new hydrotreatment of naphtha (distillation and DCU) were also included in the new refinery schemes. All this new refining structure, focusing on the new gasoline specification, is being implemented. Each refinery has a new scheme of its own, according to its characteristics. (author)

  6. High pressure flow reactor for in situ X-ray absorption spectroscopy of catalysts in gas-liquid mixtures—A case study on gas and liquid phase activation of a Co-Mo/Al2O3 hydrodesulfurization catalyst

    NARCIS (Netherlands)

    van Haandel, L.; Hensen, E.J.M.; Weber, Th.

    2017-01-01

    An in situ characterization of heterogeneous catalysts under industrial operating conditions may involve high pressure and reactants in both the gas and the liquid phase. In this paper, we describe an in situ XAS flow reactor, which is suitable to operate under such conditions (pmax 20 bar, Tmax 350

  7. Synergism between Ni and W in the NiW/gama-Al2O3 Hydrotreating Catalysts

    Czech Academy of Sciences Publication Activity Database

    Spojakina, A.A.; Palcheva, R.; Jirátová, Květa; Tyuliev, G.; Petrov, L.

    2005-01-01

    Roč. 104, 1-2 (2005), s. 45-52 ISSN 1011-372X Institutional research plan: CEZ:AV0Z40720504 Keywords : NiW/gama-Al2O3 * Thiophene hydrodesulfurization * TPR, XPS Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.088, year: 2005

  8. From biomass to fuels: Hydrotreating of oxygenated compounds

    Energy Technology Data Exchange (ETDEWEB)

    Gandarias, I.; Barrio, V.L.; Requies, J.; Arias, P.L.; Cambra, J.F.; Gueemez, M.B. [School of Engineering (UPV/EHU), c/ Alameda Urquijo s/n, 48013 Bilbao (Spain)

    2008-07-15

    Biomass is a renewable alternative to fossil raw materials in the production of liquid fuels and chemicals. Pyrolyzed biomass derived liquids contain oxygenated molecules that need to be removed to improve the stability of these liquids. A hydrotreating process, hydrodeoxygenation (HDO), is commonly used for this purpose. Thus, the aim of this work is to examine the role of advanced NiMo and NiW catalysts developed for HDS purposes in a HDO reaction. In addition, product distribution and catalyst stability are studied against changes in the feed composition, the solvent, and the catalyst pretreatment. (author)

  9. Bio-desulfurization technology in Japan; Wagakuni ni okeru baio datsuryu gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Maruhashi, K. [Petroleum Energy Center, Tokyo (Japan)

    2000-05-01

    A bio-reaction of microbes (catalytic reaction by an enzyme) is characterized in that the reaction is carried out at a normal temperature and under a normal pressure and has particularly high specificity with respect to substrate (reactant). It is considered that a low loading process of environment harmony type can be constructed by applying the bio-reaction in petroleum refinery process. CO{sub 2} exhaust and energy consumption in the bio-desulfurization (BDS) is estimated to be 70 to 80% lower than those in hydrodesulfurization (HDS). The bio-technologies that can be applied to the petroleum refinery process include, for example, desulfurization, demetallation, dewaxing, denitration, cracking and so on. In this paper, the present state of bio-desulphurization technology is introduced. Particularly, as the research results in Japan, acquirement of mesophile R.erythropolis KA2-5-1 strain, thermophile Paenibacillus sp. A11-2 strain whose optimum temperature is 50 degrees C, BT degradation fungus Rhodococcus sp. T09 and the like are introduced. (NEDO)

  10. Process developments in gasoil hydrotreating

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, R.C.; Kinley, D.H.; Wood, M.A. [Davy Process Technology Limited, London (United Kingdom)

    1997-07-01

    Changing demand patterns and legislation increase the pressure upon hydrotreating capacities at many refineries. To meet these pressures, improvements have been and will be necessary not only in catalysts, but also in the hydrotreating process. On the basis of its hydrogenation experience, Davy Process Technology has developed and tested a number of concepts aimed at improving the effectiveness of the basic process - enabling economic deep desulfurisation and opening up the potential for an integrated HDS/HDA flowsheet using sulphur tolerant HDA Catalysts.

  11. Oxidation catalyst

    Science.gov (United States)

    Ceyer, Sylvia T.; Lahr, David L.

    2010-11-09

    The present invention generally relates to catalyst systems and methods for oxidation of carbon monoxide. The invention involves catalyst compositions which may be advantageously altered by, for example, modification of the catalyst surface to enhance catalyst performance. Catalyst systems of the present invention may be capable of performing the oxidation of carbon monoxide at relatively lower temperatures (e.g., 200 K and below) and at relatively higher reaction rates than known catalysts. Additionally, catalyst systems disclosed herein may be substantially lower in cost than current commercial catalysts. Such catalyst systems may be useful in, for example, catalytic converters, fuel cells, sensors, and the like.

  12. Pd-Pt Catalysts on Mesoporous SiO2-Al2O3 with Superior Activity for HDS of 4,6-Dimethyldibenzothiophene: Effect of Metal Loading and Support Composition

    Czech Academy of Sciences Publication Activity Database

    Vít, Zdeněk; Gulková, Daniela; Kaluža, Luděk; Kupčík, Jaroslav

    2015-01-01

    Roč. 179, DEC 2015 (2015), s. 44-53 ISSN 0926-3373 R&D Projects: GA ČR GAP106/11/0902 Institutional support: RVO:67985858 ; RVO:61388980 Keywords : Pd-Pt catalyst * mesoporous silica-alumina * 4,6-DMDBT Subject RIV: CF - Physical ; Theoretical Chemistry ; CA - Inorganic Chemistry (UACH-T) Impact factor: 8.328, year: 2015

  13. Novel geochemistry-inspired method for the deep removal of vanadium from molybdate solution

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jialiang [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083 (China); Beijing Key Laboratory of Green Recycling and Extraction of Metals, Beijing, 100083 (China); Deng, Yuping; Zhou, Qiuyue; Qin, Peixin; Liu, Yubo [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083 (China); Wang, Chengyan, E-mail: chywang@yeah.net [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083 (China)

    2017-06-05

    Highlights: • A geochemistry-inspired method was developed for removal of V from molybdates. • Magnetic separation of the Fe{sub 3}O{sub 4} adsorbent took 10 s. • Vanadium can be deeply removed in 5 min at pH of 7.0–11.0. • Fe{sub 3}O{sub 4} adsorbent has excellent V selectivity and reusability. • A flowchart is presented for Mo/V separation in the leachate of spent HDS catalyst. - Abstract: Separation of vanadium from molybdates is an essential task for processing the leaching solution of hazardous spent hydrodesulphurization (HDS) catalyst. In this study, the difference in the main naturally occurring mineral forms of Mo and V inspired us to develop a method for the deep removal of V from molybdate solution using Fe{sub 3}O{sub 4} as an adsorbent. First, the adsorbent was synthesized with coprecipitation method, and then it was characterized by XRD, TEM, and VSM. The synthesized material consisted of pure Fe{sub 3}O{sub 4} nanoparticles that exhibited paramagnetic property, with a saturated magnetization of 68.6 emu g{sup −1}. The V removal efficiency was investigated using batch adsorption experiments in varying conditions. Results indicated that V could be deeply removed from various concentrations of molybdate solution at pH of 7.0–11.0 within 5 min. A slight decrease was found in the adsorption ratio after the adsorbent had been reused for 4 cycles. The resulting molybdate solution contained less than 0.02 g L{sup −1} of V, which satisfies the requirement for preparing high-quality products. Finally, a process flowchart is presented for the separation of Mo and V from the leaching solution of spent HDS catalyst, based on the excellent V removal performance and rapid separation rate of the Fe{sub 3}O{sub 4} adsorbent.

  14. Catalysts, methods of making catalysts, and methods of use

    KAUST Repository

    Renard, Laetitia; El Eter, Mohamad; Caps, Valerie; Basset, Jean-Marie

    2014-01-01

    Embodiments of the present disclosure provide for catalysts, methods of making catalysts, methods of using catalysts, and the like. In an embodiment, the method of making the catalysts can be performed in a single step with a metal nanoparticle precursor and a metal oxide precursor, where a separate stabilizing agent is not needed.

  15. Catalysts, methods of making catalysts, and methods of use

    KAUST Repository

    Renard, Laetitia

    2014-03-06

    Embodiments of the present disclosure provide for catalysts, methods of making catalysts, methods of using catalysts, and the like. In an embodiment, the method of making the catalysts can be performed in a single step with a metal nanoparticle precursor and a metal oxide precursor, where a separate stabilizing agent is not needed.

  16. Effect of Co Mo/HSO3-functionalized MCM-41 over heavy oil

    International Nuclear Information System (INIS)

    Schacht, P.; Ramirez G, M.; Ramirez, S.; Aguilar P, J.; Norena F, L.; Abu, I.

    2010-01-01

    The potential of Co-Mo metals supported on functionalized MCM-41 as catalyst to hydrodesulfurization of heavy oil has been explored in this work. The MCM-41 functionalized sample was synthesized according to method previously reported into the support by simultaneous impregnation. The catalyst was characterized by specific surface area and X-ray diffraction. The pore channel of MCM-41 was confirmed by transmission electronic microscopy and infra red spectroscopy. Catalytic activity tests were carried out using heavy oil from Gulf of Mexico. The API gravity was increased from 12.5 to 20.2, the kinematics viscosity was decreased from 18,700 to 110 c St at 298 K, the contents of asphaltene and sulfur were also reduced. (Author)

  17. Effect of Co Mo/HSO{sub 3}-functionalized MCM-41 over heavy oil

    Energy Technology Data Exchange (ETDEWEB)

    Schacht, P.; Ramirez G, M.; Ramirez, S. [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas No. 152, 07730 Mexico D. F. (Mexico); Aguilar P, J.; Norena F, L. [Universidad Autonoma Metropolitana, Unidad Azcapotzalco, Av. San Pablo No. 180, 02200 Mexico D. F. (Mexico); Abu, I., E-mail: pschacha@imp.m [University of Calgary, Department of Chemical and Petroleum Engineering, 2500 University Drive NW, Calgary, Alberta T2N 1N4 (Canada)

    2010-07-01

    The potential of Co-Mo metals supported on functionalized MCM-41 as catalyst to hydrodesulfurization of heavy oil has been explored in this work. The MCM-41 functionalized sample was synthesized according to method previously reported into the support by simultaneous impregnation. The catalyst was characterized by specific surface area and X-ray diffraction. The pore channel of MCM-41 was confirmed by transmission electronic microscopy and infra red spectroscopy. Catalytic activity tests were carried out using heavy oil from Gulf of Mexico. The API gravity was increased from 12.5 to 20.2, the kinematics viscosity was decreased from 18,700 to 110 c St at 298 K, the contents of asphaltene and sulfur were also reduced. (Author)

  18. Deactivation-resistant catalyst for selective catalyst reduction of NOx

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to a catalyst for selective catalytic reduction of NOx in alkali metal containing flue gas using ammonia as reductant, the catalyst comprising a surface with catalytically active sites, wherein the surface is at least partly coated with a coating comprising at least...... one metal oxide. In another aspect the present invention relates to the use of said catalyst and to a method of producing said catalyst. In addition, the present invention relates to a method of treating an catalyst for conferring thereon an improved resistance to alkali poisoning....

  19. Effects of catalytic hydrotreating on light cycle oil fuel quality

    International Nuclear Information System (INIS)

    Anabtawi, J.A.; Ali, S.A.

    1991-01-01

    This paper reports on a pilot plant study that was conducted to evaluate three commercial catalysts for hydrotreating of light cycle oil to reduce its aromatic content and improve the cetane index. The operating parameters were varied between 325 and 400 degrees C, 1 and 3 h - 1 , and 4 and 10 MPa at 535 L/L. The data showed that, in general, the product density and aromatic content decreased as the temperature or pressure increased or space velocity decreased. The cetane index improvement ranged from 7.3 to 10.0 for the Ni-W/Al 2 O 3 catalyst and from 6.1 to 10.1 for the Ni-Mo/Al 2 O 3 catalysts. The catalyst performance was evaluated in terms of hydrodesulfurization, hydrodenitrogenation, hydrogenation, aromatic saturation, and hydrogen consumption. This study confirms that light cycle oil can be hydrotreated to improve its cetane quality, thus increasing the extent of its blending ratio into the diesel pool

  20. Studies on catalytic hydrotreating of recycled solvents from coal liquefaction process. Part 1. Characteristics changes of recycled solvents during hydrotreating

    Energy Technology Data Exchange (ETDEWEB)

    Morimura, Y.; Nakata, S.; Yokota, Y.; Shirota, Y.; Nakamura, M. [Chiyoda Corp., Tokyo (Japan); Mitarai, Y. [Sumitomo Metal Mining Co. Ltd., Tokyo (Japan); Inoue, Y. [Nippon Ketjen Co. Ltd., Tokyo (Japan)

    1995-07-01

    A bituminous coal liquefaction process, called the NEDOL process, is under development by the New Energy and Industrial Technology Development Organization (NEDO). Important features of this process include the capacity to produce hydrogen-donatable solvents, obtained by hydrogenation of middle distillates of coal derived oils, and to recycle these solvents to a liquefaction stage as hydrogen donor solvents. These recycled solvents, obtained by liquefaction of Wandoan coal, and their catalytic hydrotreated oils, have been extensively characterized, using a variety of analytical methods. The following items have been examined and are discussed in this study: (1) Influence of chemical hydrogen consumption on the reactivities of hydrodesulfurization (HDS), hydrodenitrogenation (HDN), hydrodeoxygenation (HDO) and hydrogenation of aromatic-rings, during hydrotreating; (2) Changes in composition of hydrocarbon types, nitrogen- and oxygen-containing compounds, as a function of chemical hydrogen consumption; (3) Changes of average molecular weights; (4) Characteristics changes of oxygen- and nitrogen-containing compounds, and reactivities of HDO and HDN; (5) Characteristics changes of donatable hydrogen as a function of a degree of hydrogenation ({delta}fa). 14 refs., 14 figs., 3 tabs.

  1. Combined spectroscopy and microscopy of supported MoS2 nanoparticles

    DEFF Research Database (Denmark)

    Nielsen, Jane Hvolbæk; Bech, Lone; Nielsen, Kenneth

    2009-01-01

    Supported molybdenum-sulfide nanoparticles are known catalysts for petroleum hydrodesulfurization as well as for electrochemical hydrogen evolution. In this study, we investigate molybdenum-sulfide nanoparticles supported on Au(111) using X-ray photoelectron spectroscopy (XPS) and scanning...... tunneling microscopy (STM), aiming to correlate spectroscopically determined chemical states with atomically resolved nanostructure. The results of this study allow us to conclude the following: (1) the XPS results from our model system are in good agreement with previously published results on supported Mo...

  2. An introduction to catalyst

    International Nuclear Information System (INIS)

    Jeon, Hak Je

    1988-11-01

    This book explains basic conception of catalyst such as definition, velocity of chemical reaction and velocity of catalyst reaction, absorption with absorption energy and chemical absorption, pore structure with the role of pore and measurement of pore structure, catalyst activity on solid structure, electrical property on catalyst activity, choice and design of catalyst, catalytic reaction with reaction velocity and chemical equilibrium and reaction velocity model, measurement of reaction velocity and material analysis, catalyst for mixed compound, catalyst for solid acid and catalyst for supported metal.

  3. A review of catalytic upgrading of bio-oil to engine fuels

    DEFF Research Database (Denmark)

    Mortensen, Peter Mølgaard; Grunwaldt, Jan-Dierk; Jensen, Peter Arendt

    2011-01-01

    As the oil reserves are depleting the need of an alternative fuel source is becoming increasingly apparent. One prospective method for producing fuels in the future is conversion of biomass into bio-oil and then upgrading the bio-oil over a catalyst, this method is the focus of this review article...... are traditional hydrodesulphurization (HDS) catalysts, such as Co–MoS2/Al2O3, or metal catalysts, as for example Pd/C. However, catalyst lifetimes of much more than 200h have not been achieved with any current catalyst due to carbon deposition. Zeolite cracking is an alternative path, where zeolites, e.g. HZSM-5...... produce fuels of acceptable grade for the current infrastructure. HDO is evaluated as being a path to fuels in a grade and at a price equivalent to present fossil fuels, but several tasks still have to be addressed within this process. Catalyst development, understanding of the carbon forming mechanisms...

  4. Impeded solid state reactions and transformations in ceramic catalysts supports and catalysts

    Directory of Open Access Journals (Sweden)

    Ernő E. Kiss

    2012-12-01

    Full Text Available Impeded chemical reactions and impeded polymorphous transformation in materials are discussed, as desired effects, for stabilization of ceramic catalyst supports and ceramic based catalysts. This paper gives a short overview about the possibilities of slowing down the aging processes in ceramic catalyst supports and catalysts. Special attention is given to alumina and titania based catalysts.

  5. Studies in coal liquefaction with application to the SRC and related processes. Quarterly report, August 1981-October 1981. [Using model compounds

    Energy Technology Data Exchange (ETDEWEB)

    Tarrer, A. R.; Guin, J. A.; Curtis, C. W.

    1981-01-01

    Model compound reactions were studied to evaluate the effects of mass transfer, solvent type, solvent blending, hydrogen partial pressure, temperature, reactant concentration, additive loading and its preparation, etc. Naphthalene hydrogenation and benzothiophene hydrodesulfurization were investigated under the conditions comparable to commercial coal liquefaction and related processes. Both of these reaction systems were observed to be surface reaction controlled under the reaction conditions used in this work. Certain aromatic compounds were observed to cause a reduction in the reaction rates of naphthalene and benzothiophene. Single stage coal dissolution was investigated using tetralin as a hydrogen donor solvent and a commercial cobalt-molybdate catalyst. A spinning basket system was developed to allow injection of the catalyst at a desired time in the reaction cycle. This catalyst injection technique proved to be reliable for the exploratory work done here. The degree of catalyst deactivation was rated by comparing the activities of the spent catalyst for model compound (naphthalene and cumene) reactivities relative to those of the fresh catalyst. No substantial reduction in deactivation was observed to result with delayed contacting of the catalyst with the coal-tetralin reaction mixture. The effect of reaction temperature on the initial rate of catalyst deactivation was also studied.

  6. Catalyst support structure, catalyst including the structure, reactor including a catalyst, and methods of forming same

    Science.gov (United States)

    Van Norman, Staci A.; Aston, Victoria J.; Weimer, Alan W.

    2017-05-09

    Structures, catalysts, and reactors suitable for use for a variety of applications, including gas-to-liquid and coal-to-liquid processes and methods of forming the structures, catalysts, and reactors are disclosed. The catalyst material can be deposited onto an inner wall of a microtubular reactor and/or onto porous tungsten support structures using atomic layer deposition techniques.

  7. Hydrodesulfurization and hydrodemetallization of different origin vacuum residues : new modeling approach.

    OpenAIRE

    Ferreira , Cristina; Tayakout-Fayolle , Melaz; Guibard , Isabelle; Lemos , Francisco

    2014-01-01

    International audience; In order to be able to upgrade the heaviest part of the crude oil one needs to remove several impurities, such as sulfur or metals. Residue hydrotreatment in fixed beds, under high hydrogen pressure can achieve high removal performances, with an industrial catalysts optimized staging. Despite the recent improvements, petroleum residues remain very difficult to describe and characterize in detail. Several kinetic models have been developed, but mostly they are feed depe...

  8. Design of heterogeneous catalysts

    DEFF Research Database (Denmark)

    Frey, Anne Mette

    was inspired by a computational screening, suggesting that alloys such as Ni-Fe, Co-Ni, and Co-Fe should show superior activity to the industrially used nickel catalyst. Especially the Ni-Fe system was considered to be interesting, since such alloy catalysts should be both more active and cheaper than the Ni...... catalyst. The results from the screening were experimentally verified for CO hydrogenation, CO2 hydrogenation, and simultaneous CO and CO2 hydrogenation by bimetallic Ni-Fe catalysts. These catalysts were found to be highly active and selective. The Co-Ni and Co-Fe systems were investigated for CO...... well, and the best catalyst prepared had a C5+ yield almost a factor of two higher than a standard air calcined Co catalyst. In the NH3-SCR reaction it is desirable to develop an active and stable catalyst for NOx removal in automotive applications, since the traditionally used vanadium-based catalyst...

  9. Highly dispersed metal catalyst

    Science.gov (United States)

    Xiao, Xin; West, William L.; Rhodes, William D.

    2016-11-08

    A supported catalyst having an atomic level single atom structure is provided such that substantially all the catalyst is available for catalytic function. A process of forming a single atom catalyst unto a porous catalyst support is also provided.

  10. Effect of coke and catalyst structure on oxidative regeneration of hydroprocessing catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E. (CANMET, Ottawa, ON (Canada). Energy Research Laboratories)

    1991-04-01

    Two industrial hydroprocessing catalysts used for upgrading an atmospheric residue and a gas oil, respectively were regenerated in a fixed bed using air and 2 vol.% O{sub 2}+N{sub 2} balance mixture. The regeneration in air resulted in a significant sintering of the catalyst's material. The surface area of catalysts regenerated in 2 vol.% O{sub 2} mixture was similar to that of fresh catalysts, whereas a significant loss of surface area was observed after regeneration in air. The X-ray diffraction pattern of catalysts regenerated in 2 vol.% O{sub 2}+N{sub 2} balance mixture was also similar to that of fresh catalysts. 22 refs., 9 figs., 7 tabs.

  11. Hydroprocessing catalyst development

    Energy Technology Data Exchange (ETDEWEB)

    Boorman, P.M.; Kydd, R.A.; Sorensen, T.S.; Chong, K.; Lewis, J.

    1992-08-01

    Co-Mo and Ni-Mo hydroprocessing catalysts were examined for their activity in removal of sulfur from thiophene in model compounds, and in the cracking and hydrocracking of cumene. Three types of support materials were examined: carbon, modified carbon, and carbon covered alumina. The objective of the study was to examine the correlation between catalyst activity in the hydrodenitrogenation of model compounds, and the resistance of the catalyst to nitrogen poisoning during use in the hydroprocessing of gas oils. The use of model compound testing provided information on the individual catalytic reactions promoted by those materials. Infrared spectroscopy was used to study surface species on the catalysts and to explain many of the trends in activity observed, revealing the role of fluoride and phosphorus as a secondary promoter. Testing of the catalysts in hydrotreating of gas oils allowed comparison of model compound results with those from a real feedstock. The gas oil was also spiked with a model nitrogen compound and the results from catalytic hydrotreating of this material were compared with those from unspiked material. A key finding was that the carbon supported catalysts were the most effective in treating high-nitrogen feeds. The very favorable deactivation properties of carbon and carbon-covered alumina supported catalysts make these promising from an industrial point of view where catalyst deactivation is a limiting factor. 171 refs., 25 figs., 43 tabs.

  12. Supported catalyst systems and method of making biodiesel products using such catalysts

    Science.gov (United States)

    Kim, Manhoe; Yan, Shuli; Salley, Steven O.; Ng, K. Y. Simon

    2015-10-20

    A heterogeneous catalyst system, a method of preparing the catalyst system and a method of forming a biodiesel product via transesterification reactions using the catalyst system is disclosed. The catalyst system according to one aspect of the present disclosure represents a class of supported mixed metal oxides that include at least calcium oxide and another metal oxide deposited on a lanthanum oxide or cerium oxide support. Preferably, the catalysts include CaO--CeO.sub.2ZLa.sub.2O.sub.3 or CaO--La.sub.2O.sub.3/CeO.sub.2. Optionally, the catalyst may further include additional metal oxides, such as CaO--La.sub.2O.sub.3--GdOxZLa.sub.2O.sub.3.

  13. Deep desulfurization of jet fuel for applications in mobile fuel cell systems; Tiefentschwefelung von Flugturbinenkraftstoffen fuer die Anwendung in mobilen Brennstoffzellensystemen

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yong

    2012-07-01

    Fuel cell powered APUs are promising for the on-board electricity supply in heavy vehicles, aircraft and ships because of their high efficiency and low emission of pollutants. The catalytical reforming with subsequent gas processing units is applied to operate the fuel cell system with onboard available fuels. Within the reformer the liquid fuel is converted into a hydrogen-rich synthesis gas in the presence of metal catalysts. However, an on-board desulfurization of fuels is required to avoid the deactivation of catalysts in the fuel processing unit as well as in the fuel cell. The present work aims at developing a technically feasible deep desulfurization process for fuel cell powered APUs with theoretical and experimental study as well as procedural analysis. The focus of the work is on the desulfurization of jet fuels in liquid phase, since the reformer currently developed in IEK-3 is designed for aviation applications of fuel cell APUs and it can only be operated by liquid jet fuels. In addition, the desulfurization of marine gas oil was investigated to fulfill the sulfur requirement of the fuels for the application of fuel cell A PUs for inland navigation. In the petroleum industry, low-sulfur fuels are often obtained by hydrodesulfurization and the S-Zorb Process. However, these conventional methods are highly inconvenient for reducing sulfur compounds to the desired level in a mobile fuel cell system, since improvements of the desulfurization efficiency are limited by increasingly severe operating conditions and escalating costs. Moreover, the hydrodesulfurization and the S-Zorb Process are not suitable for mobile applications, since hydrogen recycling is required, which is not possible with H{sub 2} syngas. To this end, a large number of processes discussed in the literature were assessed with regard to their application in fuel cell APUs. Three potentially suitable processes were selected: pervaporation, adsorption, and hydrodesulfurization with pre

  14. Improved deep desulphurisation of middle distillates by a two-phase reactor with pre-saturator

    Energy Technology Data Exchange (ETDEWEB)

    Wieland Wache; Leonid Datsevich; Andreas Jess; Gerhard Neumann [University of Bayreuth, Bayreuth (Germany). Department of Chemical Engineering, Faculty of Applied Sciences

    2006-08-15

    Hydrodesulphurisation (HDS) of middle distillates is up to now performed in trickle bed reactors equipped with an expensive H{sub 2}-recycle. To meet future low S-limits, hydrotreating of already pre-desulphurised oils is needed. The H{sub 2}-supply is then far beyond what is chemically consumed. In addition, conventional three-phase HDS-reactors are generally problematic with respect to mass transfer, hydrodynamics, and therefore, scale-up. In this paper, an improved HDS-concept based on a two-phase reactor is discussed. The oil is thereby externally saturated with H{sub 2} and only the liquid is passed over the fixed bed. This concept was proven by experiments with light fuel oils (582 and 2252 ppm S, CoMo-catalyst, 1-6 MPa, 330-400{sup o}C, up to 100 days continuous operation). In addition, kinetic studies were done with model oil consisting of a mixture of n-dodecane and selected S-species such as di-, tri- and tetra-methyl-dibenzothiophenes. In case of the presented two-phase concept, the H{sub 2}-recycle is redundant, the intrinsic reaction rate can be utilised (and accurately measured), and scale-up problems do not occur. 18 refs., 9 figs., 5 tabs.

  15. High-Activity Dealloyed Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kongkanand, Anusorn [General Motors LLC, Pontiac, MI (United States)

    2014-09-30

    Reduction of costly Pt usage in proton exchange membrane fuel cell electrodes is one of the major challenges towards development and commercialization of fuel cell vehicles. Although few have met the initial-kinetic activity requirements in a realistic fuel cell device, no catalyst material has ever met the demanding fuel cell durability targets set by DOE. In this project, a team of 4 universities and 2 companies came together to investigate a concept that appeared promising in preliminary non-fuel cell tests then to further develop the catalyst to a mature level ready for vehicle implementation. The team consists of academia with technical leadership in their respective areas, a catalyst supplier, and a fuel cell system integrator.The tightly collaborative project enabled development of a highly active and durable catalyst with performance that significantly exceeds that of previous catalysts and meets the DOE targets for the first time (Figure 1A). The catalyst was then further evaluated in full-active-area stack in a realistic vehicle operating condition (Figure 1B). This is the first public demonstration that one can realize the performance benefit and Pt cost reduction over a conventional pure Pt catalyst in a long-term realistic PEMFC system. Furthermore, systematic analyses of a range of catalysts with different performance after fuel cell testing allowed for correlation between catalyst microstructure and its electrocatalytic activity and durability. This will in turn aid future catalyst development.

  16. Development of Molecular Catalysts to Bridge the Gap between Heterogeneous and Homogeneous Catalysts

    Science.gov (United States)

    Ye, Rong

    Catalysts, heterogeneous, homogeneous, and enzymatic, are comprised of nanometer-sized inorganic and/or organic components. They share molecular factors including charge, coordination, interatomic distance, bonding, and orientation of catalytically active atoms. By controlling the governing catalytic components and molecular factors, catalytic processes of a multichannel and multiproduct nature could be run in all three catalytic platforms to create unique end-products. Unifying the fields of catalysis is the key to achieving the goal of 100% selectivity in catalysis. Recyclable catalysts, especially those that display selective reactivity, are vital for the development of sustainable chemical processes. Among available catalyst platforms, heterogeneous catalysts are particularly well-disposed toward separation from the reaction mixture via filtration methods, which renders them readily recyclable. Furthermore, heterogeneous catalysts offer numerous handles - some without homogeneous analogues - for performance and selectivity optimization. These handles include nanoparticle size, pore profile of porous supports, surface ligands and interface with oxide supports, and flow rate through a solid catalyst bed. Despite these available handles, however, conventional heterogeneous catalysts are themselves often structurally heterogeneous compared to homogeneous catalysts, which complicates efforts to optimize and expand the scope of their reactivity and selectivity. Ongoing efforts are aimed to address the above challenge by heterogenizing homogeneous catalysts, which can be defined as the modification of homogeneous catalysts to render them in a separable (solid) phase from the starting materials and products. Specifically, we grow the small nanoclusters in dendrimers, a class of uniform polymers with the connectivity of fractal trees and generally radial symmetry. Thanks to their dense multivalency, shape persistence and structural uniformity, dendrimers have proven to

  17. Communicating catalysts

    Science.gov (United States)

    Weckhuysen, Bert M.

    2018-06-01

    The beauty and activity of enzymes inspire chemists to tailor new and better non-biological catalysts. Now, a study reveals that the active sites within heterogeneous catalysts actively cooperate in a fashion phenomenologically similar to, but mechanistically distinct, from enzymes.

  18. Methods of making textured catalysts

    Science.gov (United States)

    Werpy, Todd [West Richland, WA; Frye, Jr., John G.; Wang, Yong [Richland, WA; Zacher, Alan H [Kennewick, WA

    2010-08-17

    A textured catalyst having a hydrothermally-stable support, a metal oxide and a catalyst component is described. Methods of conducting aqueous phase reactions that are catalyzed by a textured catalyst are also described. The invention also provides methods of making textured catalysts and methods of making chemical products using a textured catalyst.

  19. In-situ hydrodeoxygenation of phenol by supported Ni catalyst-explanation for catalyst performance

    DEFF Research Database (Denmark)

    Wang, Ze; Zeng, Ying; Lin, Weigang

    2017-01-01

    In-situ hydrodeoxygenation of phenol with aqueous hydrogen donor over supported Ni catalyst was investigated. The supported Ni catalysts exerted very poor performance, if formic acid was used as the hydrogen donor. Catalyst modification by loading K, Na, Mg or La salt could not make the catalyst...... performance improved. If gaseous hydrogen was used as the hydrogen source the activity of Ni/Al2O3 was pretty high. CO2 was found poisonous to the catalysis, due to the competitive adoption of phenol with CO2. If formic acid was replaced by methanol, the catalyst performance improved remarkably, with major...... products of cyclohexanone and cyclohexanol. The better effect of methanol enlightened the application of the supported Ni catalyst in in-situ hydrodeoxygenation of phenol....

  20. Non-PGM cell catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Colon-Mercado, H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Elvington, M. [Savannah River Consulting, Aiken, SC (United States); Ganesan, P. [Savannah River Consulting, Aiken, SC (United States)

    2017-09-27

    A unique approach has been developed to probe the non-PGM catalyst active site for the Oxygen Reduction Reaction (ORR) for PEMFCs. Iron based functionalities have been engineered into a variety of catalysts to evaluate their impact on activity for the ORR. A series of high surface area catalysts were synthesized and the impact of the chemical structure on the electrochemical and electrocatalytic properties was investigated. Elemental and surface analyses of the prepared catalysts reveal the incorporation of iron in a targeted and controlled manner. A high surface area framework catalyst was prepared that shows exceptional activity, comparable to state-of-the-art materials. The results of this research project provided critical seed data for the newly awarded ElectroCat project, which focuses on rationally designed framework catalysts for the oxygen reduction reaction.

  1. Alloy catalyst material

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a novel alloy catalyst material for use in the synthesis of hydrogen peroxide from oxygen and hydrogen, or from oxygen and water. The present invention also relates to a cathode and an electrochemical cell comprising the novel catalyst material, and the process use...... of the novel catalyst material for synthesising hydrogen peroxide from oxygen and hydrogen, or from oxygen and water....

  2. Vibration measurements of automobile catalyst

    Science.gov (United States)

    Aatola, Seppo

    1994-09-01

    Vibration of catalyst cell, which is inside the casing of the catalyst, is difficult to measure with usual measuring instrumentation. When catalyst is in use, there is hot exhaust gas flow though the catalyst cell and temperature of the cell is approximately +900 degree(s)C. Therefore non-contact Laser- Doppler-Vibrometer was used to measure vibration velocity of the catalyst cell. The laser beam was directed towards the cell through pipe which was put through and welded to the casing of the catalyst. The outer end of the pipe was screw down with a tempered class to prevent exhaust gas flow from the pipe. The inner end of the pipe was open and few millimeters away from the measuring point. Catalyst was attached to the engine with two ways, rigidly close to the engine and flexible under the engine. The engine was running in test bench under controlled conditions. Vibration measurements were carried out during constant running speeds of the engine. Vibration signals were captured and analyzed with FFT-analyzer. Vibration of catalyst cell was strongest at running speed of 5000 rpm, from 10 to 20 g (1 g equals 9.81 ms-2), when catalyst was attached rigidly close to the engine. At running speed of 3000 rpm, vibration of catalyst cell was from 2 to 3 g in most cases, when catalyst was attached either rigidly or flexible to the engine. It is estimated that in real life, i.e. when catalyst is attached to car with same engine, vibration of catalyst cell at running speed of 5000 rpm is somewhere between 1 and 10 g. At running speed of 3000 rpm, which may be more often used when driving car (car speed approximately 100 kmh-1), vibration of catalyst cell is probably few g's.

  3. Catalyst for microelectromechanical systems microreactors

    Science.gov (United States)

    Morse, Jeffrey D [Martinez, CA; Sopchak, David A [Livermore, CA; Upadhye, Ravindra S [Pleasanton, CA; Reynolds, John G [San Ramon, CA; Satcher, Joseph H [Patterson, CA; Gash, Alex E [Brentwood, CA

    2010-06-29

    A microreactor comprising a silicon wafer, a multiplicity of microchannels in the silicon wafer, and a catalyst coating the microchannels. In one embodiment the catalyst coating the microchannels comprises a nanostructured material. In another embodiment the catalyst coating the microchannels comprises an aerogel. In another embodiment the catalyst coating the microchannels comprises a solgel. In another embodiment the catalyst coating the microchannels comprises carbon nanotubes.

  4. Catalysts for synthetic liquid fuels

    Energy Technology Data Exchange (ETDEWEB)

    Bruce, L.A.; Turney, T.W.

    1987-12-01

    Fischer-Tropsch catalysts have been designed, characterized and tested for the selective production of hydrocarbons suitable as synthetic liquid transport fuels from synthesis gas (i.e., by the reduction of carbon monoxide with hydrogen). It was found that hydrocarbons in the middle distillate range, or suitable for conversion to that range, could be produced over several of the new catalyst systems. The various catalysts examined included: (1) synthetic cobalt clays, mainly cobalt chlorites; (2) cobalt hydrotalcites; (3) ruthenium metal supported on rare earth oxides of high surface area; and (4) a novel promoted cobalt catalyst. Active and selective catalysts have been obtained, in each category. With the exception of the clays, reproducibility of catalyst performance has been good. Catalysts in groups 2 and 4 have exhibited very high activity, with long lifetimes and easy regeneration.

  5. Synthesis H-Zeolite catalyst by impregnation KI/KIO3 and performance test catalyst for biodiesel production

    Science.gov (United States)

    Widayat, W.; Rizky Wicaksono, Adit; Hakim Firdaus, Lukman; Okvitarini, Ndaru

    2016-02-01

    The objective of this research is to produce H-catalyst catalyst that was impregnated with KI/KIO3. The catalyst was analyzed about surface area, X-Ray Diffraction (XRD) and performance test of catalyst for biodiesel production. An H-Zeolite catalyst was synthesized from natural zeolite with chemical treatment processing, impregnation KI/KIO3 and physical treatment. The results shows that the surface area of the catalyst by 27.236 m2/g at a concentration of 5% KI. XRD analysis shows peak 2-θ at 23.627o indicating that KI was impregnated on H-zeolite catalyst. The catalyst was tested in production of biodiesel using palm oil with conventional methods for 3 hour at temperature of 70-80 oC. The result for conversion Fatty Acid Methyl Ester (FAME) reached maximum value on 87.91% under production process using catalyst 5% KIO3-H zeolite.

  6. Regeneration of LOHC dehydrogenation catalysts: In-situ IR spectroscopy on single crystals, model catalysts, and real catalysts from UHV to near ambient pressure

    International Nuclear Information System (INIS)

    Amende, Max; Kaftan, Andre; Bachmann, Philipp; Brehmer, Richard; Preuster, Patrick; Koch, Marcus

    2016-01-01

    Graphical abstract: - Highlights: • We examine the regeneration of Pt-based catalysts poisoned by LOHC degradation. • A microscopic mechanism of the removal of degradation products from Pt is proposed. • Results of our UHV studies on model catalysts are transferred to real catalysis. • Oxidative regeneration of Pt/alumina is possible under mild conditions (600 K). • The degree and temperature regime of regeneration depends on the catalyst morphology. - Abstract: The Liquid Organic Hydrogen Carrier (LOHC) concept offers an efficient route to store hydrogen using organic compounds that are reversibly hydrogenated and dehydrogenated. One important challenge towards application of the LOHC technology at a larger scale is to minimize degradation of Pt-based dehydrogenation catalysts during long-term operation. Herein, we investigate the regeneration of Pt/alumina catalysts poisoned by LOHC degradation. We combine ultrahigh vacuum (UHV) studies on Pt(111), investigations on well-defined Pt/Al_2O_3 model catalysts, and near-ambient pressure (NAP) measurements on real core–shell Pt/Al_2O_3 catalyst pellets. The catalysts were purposely poisoned by reaction with the LOHC perhydro-dibenzyltoluene (H18-MSH) and with dicyclohexylmethane (DCHM) as a simpler model compound. We focus on oxidative regeneration under conditions that may be applied in real dehydrogenation reactors. The degree of poisoning and regeneration under oxidative reaction conditions was quantified using CO as a probe molecule and measured by infrared reflection-absorption spectroscopy (IRAS) and diffuse reflectance Fourier transform IR spectroscopy (DRIFTS) for planar model systems and real catalysts, respectively. We find that regeneration strongly depends on the composition of the catalyst surface. While the clean surface of a poisoned Pt(111) single crystal is fully restored upon thermal treatment in oxygen up to 700 K, contaminated Pt/Al_2O_3 model catalyst and core–shell pellet were only

  7. Regeneration of LOHC dehydrogenation catalysts: In-situ IR spectroscopy on single crystals, model catalysts, and real catalysts from UHV to near ambient pressure

    Energy Technology Data Exchange (ETDEWEB)

    Amende, Max, E-mail: max.amende@fau.de [Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen (Germany); Kaftan, Andre, E-mail: andre.kaftan@fau.de [Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen (Germany); Bachmann, Philipp, E-mail: philipp.bachmann@fau.de [Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen (Germany); Brehmer, Richard, E-mail: richard.brehmer@fau.de [Lehrstuhl für Chemische Reaktionstechnik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen (Germany); Preuster, Patrick, E-mail: patrick.preuster@fau.de [Lehrstuhl für Chemische Reaktionstechnik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen (Germany); Koch, Marcus, E-mail: marcus.koch@crt.cbi.uni-erlangen.de [Lehrstuhl für Chemische Reaktionstechnik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen (Germany); and others

    2016-01-01

    Graphical abstract: - Highlights: • We examine the regeneration of Pt-based catalysts poisoned by LOHC degradation. • A microscopic mechanism of the removal of degradation products from Pt is proposed. • Results of our UHV studies on model catalysts are transferred to real catalysis. • Oxidative regeneration of Pt/alumina is possible under mild conditions (600 K). • The degree and temperature regime of regeneration depends on the catalyst morphology. - Abstract: The Liquid Organic Hydrogen Carrier (LOHC) concept offers an efficient route to store hydrogen using organic compounds that are reversibly hydrogenated and dehydrogenated. One important challenge towards application of the LOHC technology at a larger scale is to minimize degradation of Pt-based dehydrogenation catalysts during long-term operation. Herein, we investigate the regeneration of Pt/alumina catalysts poisoned by LOHC degradation. We combine ultrahigh vacuum (UHV) studies on Pt(111), investigations on well-defined Pt/Al{sub 2}O{sub 3} model catalysts, and near-ambient pressure (NAP) measurements on real core–shell Pt/Al{sub 2}O{sub 3} catalyst pellets. The catalysts were purposely poisoned by reaction with the LOHC perhydro-dibenzyltoluene (H18-MSH) and with dicyclohexylmethane (DCHM) as a simpler model compound. We focus on oxidative regeneration under conditions that may be applied in real dehydrogenation reactors. The degree of poisoning and regeneration under oxidative reaction conditions was quantified using CO as a probe molecule and measured by infrared reflection-absorption spectroscopy (IRAS) and diffuse reflectance Fourier transform IR spectroscopy (DRIFTS) for planar model systems and real catalysts, respectively. We find that regeneration strongly depends on the composition of the catalyst surface. While the clean surface of a poisoned Pt(111) single crystal is fully restored upon thermal treatment in oxygen up to 700 K, contaminated Pt/Al{sub 2}O{sub 3} model catalyst and

  8. Spent catalyst waste management. A review. Part 1. Developments in hydroprocessing catalyst waste reduction and use

    Energy Technology Data Exchange (ETDEWEB)

    Marafi, M.; Stanislaus, A. [Petroleum Refining Department, Petroleum Research and Studies Center, Kuwait Institute for Scientific Research, P.O. Box 24885, 13109-Safat (Kuwait)

    2008-04-15

    Solid catalysts containing metals, metal oxides or sulfides, which play a key role in the refining of petroleum to clean fuels and many other valuable products, become solid wastes after use. In many refineries, the spent catalysts discarded from hydroprocessing units form a major part of these solid wastes. Disposal of spent hydroprocessing catalysts requires compliance with stringent environmental regulations because of their hazardous nature and toxic chemicals content. Various options such as minimizing spent catalyst waste generation by regeneration and reuse, metals recovery, utilization to produce useful materials and treatment for safe disposal, could be considered to deal with the spent catalyst environmental problem. In this paper, information available in the literature on spent hydroprocessing catalyst waste reduction at source by using improved more active and more stable catalysts, regeneration, rejuvenation and reuse of deactivated catalysts in many cycles, and reusing in other processes are reviewed in detail with focus on recent developments. Available methods for recycling of spent hydroprocessing catalysts by using them as raw materials for the preparation of active new catalysts and many other valuable products are also reviewed. (author)

  9. Developing clean fuels: Novel techniques for desulfurization

    Science.gov (United States)

    Nehlsen, James P.

    The removal of sulfur compounds from petroleum is crucial to producing clean burning fuels. Sulfur compounds poison emission control catalysts and are the source of acid rain. New federal regulations require the removal of sulfur in both gasoline and diesel to very low levels, forcing existing technologies to be pushed into inefficient operating regimes. New technology is required to efficiently produce low sulfur fuels. Two processes for the removal of sulfur compounds from petroleum have been developed: the removal of alkanethiols by heterogeneous reaction with metal oxides; and oxidative desulfurization of sulfides and thiophene by reaction with sulfuric acid. Alkanethiols, common in hydrotreated gasoline, can be selectively removed and recovered from a hydrocarbon stream by heterogeneous reaction with oxides of Pb, Hg(II), and Ba. The choice of reactive metal oxides may be predicted from simple thermodynamic considerations. The reaction is found to be autocatalytic, first order in water, and zero order in thiol in the presence of excess oxide. The thiols are recovered by reactive extraction with dilute oxidizing acid. The potential for using polymer membrane hydrogenation reactors (PEMHRs) to perform hydrogenation reactions such as hydrodesulfurization is explored by hydrogenating ketones and olefins over Pt and Au group metals. The dependence of reaction rate on current density suggests that the first hydrogen addition to the olefin is the rate limiting step, rather than the adsorption of hydrogen, for all of the metals tested. PEMHRs proved unsuccessful in hydrogenating sulfur compounds to perform HDS. For the removal of sulfides, a two-phase reactor is used in which concentrated sulfuric acid oxidizes aromatic and aliphatic sulfides present in a hydrocarbon solvent, generating sulfoxides and other sulfonated species. The polar oxidized species are extracted into the acid phase, effectively desulfurizing the hydrocarbon. A reaction scheme is proposed for this

  10. Automotive Catalyst State Diagnosis Using Microwaves

    Directory of Open Access Journals (Sweden)

    Moos Ralf

    2015-01-01

    Full Text Available The state of catalysts plays a key role in automotive exhaust gas aftertreatment. The soot or ash loading of Diesel particulate filters, the oxygen loading degree in three-way catalysts, the amount of stored ammonia in SCR catalysts, or the NOx loading degree in NOx storage catalysts are important parameters that are today determined indirectly and in a model-based manner with gas sensors installed upstream and/or downstream of the catalysts. This contribution gives an overview on a novel approach to determine the catalyst state directly by a microwave-based technique. The method exploits the fact that the catalyst housing acts as a microwave cavity resonator. As “sensing” elements, one or two simple antennas are mounted inside the catalyst canning. The electrical properties of the catalyst device (ceramic honeycomb plus coating and storage material can be measured. Preferably, the resonance characteristics, e.g., the resonance frequencies, of selected cavity modes are observed. The information on the catalyst interior obtained in such a contactless manner is very well correlated with the catalyst state as will be demonstrated for different exhaust gas aftertreatment systems.

  11. Catalyst in Basic Oleochemicals

    Directory of Open Access Journals (Sweden)

    Eva Suyenty

    2007-10-01

    Full Text Available Currently Indonesia is the world largest palm oil producer with production volume reaching 16 million tones per annum. The high crude oil and ethylene prices in the last 3 – 4 years contribute to the healthy demand growth for basic oleochemicals: fatty acids and fatty alcohols. Oleochemicals are starting to replace crude oil derived products in various applications. As widely practiced in petrochemical industry, catalyst plays a very important role in the production of basic oleochemicals. Catalytic reactions are abound in the production of oleochemicals: Nickel based catalysts are used in the hydrogenation of unsaturated fatty acids; sodium methylate catalyst in the transesterification of triglycerides; sulfonic based polystyrene resin catalyst in esterification of fatty acids; and copper chromite/copper zinc catalyst in the high pressure hydrogenation of methyl esters or fatty acids to produce fatty alcohols. To maintain long catalyst life, it is crucial to ensure the absence of catalyst poisons and inhibitors in the feed. The preparation methods of nickel and copper chromite catalysts are as follows: precipitation, filtration, drying, and calcinations. Sodium methylate is derived from direct reaction of sodium metal and methanol under inert gas. The sulfonic based polystyrene resin is derived from sulfonation of polystyrene crosslinked with di-vinyl-benzene. © 2007 BCREC UNDIP. All rights reserved.[Presented at Symposium and Congress of MKICS 2007, 18-19 April 2007, Semarang, Indonesia][How to Cite: E. Suyenty, H. Sentosa, M. Agustine, S. Anwar, A. Lie, E. Sutanto. (2007. Catalyst in Basic Oleochemicals. Bulletin of Chemical Reaction Engineering and Catalysis, 2 (2-3: 22-31.  doi:10.9767/bcrec.2.2-3.6.22-31][How to Link/DOI: http://dx.doi.org/10.9767/bcrec.2.2-3.6.22-31 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/6

  12. Hydroprocessing catalysts utilization and regeneration schemes

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.

    The catalyst reactor inventory represents an important part of the cost of hydroprocessing operation. The selection of a suitable catalyst and reactor is influenced by feedstock properties. Processes ensuring an uninterrupted operation during catalyst addition and withdrawal are preferred for processing high asphaltene and metal content feedstocks. The spent catalyst can be regenerated and returned to the operation if the extent of its deactivation is not high. The regeneration may be performed either in-situ or off-site. The former is suitable for fixed bed reactors whereas the catalyst from ebullated bed reactors must be regenerated off-site. The regeneration of spent catalysts heavily loaded with metals such as V, Ni and Fe may not be economic. Such catalysts may be suitable for metal reclamation. An environmentally safe method for catalyst disposal must be found if neither regeneration nor metal reclamation from spent catalysts can be performed.

  13. Alternative alkali resistant deNOx catalysts

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Kristensen, Steffen Buus; Due-Hansen, Johannes

    2012-01-01

    by onepot sol–gel method. All catalysts were characterized by BET, XRPD and NH3-TPD. Initial SCR activities of 8 out of 9 catalysts showed higher NO conversion at least at one temperature in the temperature range 300–500 ◦C compared to the conventional V2O5-WO3/TiO2 catalyst. After potassium poisoning (100......Alternative alkali resistant deNOx catalysts were prepared using three different supports ZrO2, TiO2 and Mordenite zeolite. The majority of the catalysts were prepared by incipient wetness impregnation of a commercial support, with vanadium, copper or iron precursor, one catalyst was prepared......–130 µmol of K/g of catalyst) the relative drop in SCR activity and acidity was lower for all the alternative catalysts compared to the industrial V2O5-WO3/TiO2 catalyst. Furthermore, Cu/MOR and Nano-V2O5/Sul-TiO2 catalysts showed 8–16 times higher SCR activities than the conventional even after high...

  14. In-situ characterization of heterogeneous catalysts

    CERN Document Server

    Rodriguez, Jose A; Chupas, Peter J

    2013-01-01

    Helps researchers develop new catalysts for sustainable fuel and chemical production Reviewing the latest developments in the field, this book explores the in-situ characterization of heterogeneous catalysts, enabling readers to take full advantage of the sophisticated techniques used to study heterogeneous catalysts and reaction mechanisms. In using these techniques, readers can learn to improve the selectivity and the performance of catalysts and how to prepare catalysts as efficiently as possible, with minimum waste. In-situ Characterization of Heterogeneous Catalysts feat

  15. ALKALI RESISTANT CATALYST

    DEFF Research Database (Denmark)

    2008-01-01

    The present invention concerns the selective removal of nitrogen oxides (NOx) from gasses. In particular, the invention concerns a process, a catalyst and the use of a catalyst for the selective removal of nitrogen oxides in the presence of ammonia from gases containing a significant amount...... of alkali metal and/or alkali-earth compounds which process comprises using a catalyst combined of (i) a formed porous superacidic support, said superacidic support having an Hammett acidity stronger than Ho=-12, and (ii) a metal oxide catalytic component deposited on said superacidic support selected from...

  16. Paraffin Alkylation Using Zeolite Catalysts in a slurry reactor: Chemical Engineering Principles to Extend Catalyst Lifetime

    NARCIS (Netherlands)

    Jong, K.P. de; Mesters, C.M.A.M.; Peferoen, D.G.R.; Brugge, P.T.M. van; Groot, C. de

    1996-01-01

    The alkylation of isobutane with 2-butene is carried out using a zeolitic catalyst in a well stirred slurry reactor. Whereas application of fixed bed technology using a solid acid alkylation catalyst has in the led to catalysts lifetimes in the range of minutes, in this work we report catalyst

  17. Hydroxide catalysts for lignin depolymerization

    Science.gov (United States)

    Beckham, Gregg T; Biddy, Mary J.; Kruger, Jacob S.; Chmely, Stephen C.; Sturgeon, Matthew

    2017-10-17

    Solid base catalysts and their use for the base-catalyzed depolymerization (BCD) of lignin to compounds such as aromatics are presented herein. Exemplary catalysts include layered double hydroxides (LDHs) as recyclable, heterogeneous catalysts for BCD of lignin.

  18. Hydroxide catalysts for lignin depolymerization

    Energy Technology Data Exchange (ETDEWEB)

    Beckham, Gregg T.; Biddy, Mary J.; Chmely, Stephen C.; Sturgeon, Matthew

    2017-04-25

    Solid base catalysts and their use for the base-catalyzed depolymerization (BCD) of lignin to compounds such as aromatics are presented herein. Exemplary catalysts include layered double hydroxides (LDHs) as recyclable, heterogeneous catalysts for BCD of lignin.

  19. Enhanced E-bed bottoms upgrading using latest catalytic technology

    Energy Technology Data Exchange (ETDEWEB)

    Toshima, H.; Mayo, S.; Sedlacek, Z.; Hughes, T.; De Wind, M. [Albermarle Corp., Amsterdam (Netherlands)

    2009-07-01

    The profitability of refineries depends on heavy oil upgrading in terms of price, conversion, yields and quality of the product. The Ebullated-bed process represents a solution for the effective primary upgrading of heavy oils. Since the 1970s, Albemarle has commercialized several E-bed catalysts to upgrade the bottoms in low sediment and high hydrogenation operations. Although an E-bed is used to maximize the conversion of vacuum residuum (VR), it is often limited by fouling caused by sediment in the product. In order to reduce sedimentation in the product, Albemarle developed an improved E-bed catalytic technology by characterizing the asphaltenes and sediments in order to better understand the oil chemistry and compatibility. The most recent development involves the patented catalyst-staging technology and the improved single catalyst application. Both achieve very low sediment or higher hydrodesulphurization (HDS) and Conradson carbon (CCR) removal for improved bottom upgrading. tabs., figs.

  20. Methanol conversion to hydrocarbons using modified clinoptilolite catalysts. Investigation of catalyst lifetime and reactivation

    Energy Technology Data Exchange (ETDEWEB)

    Hutchings, G J; Themistocleous, T; Copperthwaite, R G

    1988-10-17

    A study of the deactivation and reactivation of modified clinoptilolite catalysts for methanol conversion to hydrocarbons is reported. Clinoptilolite catalysts, modified by either ammonium ion exchange or hydrochloric acid treatment, exhibit a short useful catalyst lifetime for this reaction (ca. 2-3 h) due to a high rate of coke deposition (3-5.10/sup -3/ g carbon/g catalyst/h). A comparative study of reactivation using oxygen, nitrous oxide and ozone/oxygen as oxidants indicated that nitrous oxide reactivation gives improved catalytic performance when compared to the activity and lifetime of the fresh catalyst. Both oxygen and ozone/oxygen were found to be ineffective for the reactivation of clinoptilolite. Initial studies of in situ on-line reactivation are also described. 3 figs., 15 refs., 4 tabs.

  1. Magnetic catalyst bodies

    NARCIS (Netherlands)

    Teunissen, Wendy; Bol, A.A.; Geus, John W.

    1999-01-01

    After a discussion about the importance of the size of the catalyst bodies with reactions in the liquid-phase with a suspended catalyst, the possibilities of magnetic separation are dealt with. Deficiencies of the usual ferromagnetic particles are the reactivity and the clustering of the

  2. Development of GREET Catalyst Module

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhichao [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Cronauer, Donald C. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division

    2014-09-01

    Catalysts are critical inputs for many pathways that convert biomass into biofuels. Energy consumption and greenhouse gas (GHG) emissions during the production of catalysts and chemical inputs influence the life-cycle energy consumption, and GHG emissions of biofuels and need to be considered in biofuel life-cycle analysis (LCA). In this report, we develop energy and material flows for the production of three different catalysts (tar reforming, alcohol synthesis, Zeolite Socony Mobil-5 [ZSM-5]) and two chemicals (olivine, dimethyl ether of polyethylene glycol [DEPG]). These compounds and catalysts are now included in the Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET™) catalyst module. They were selected because they are consumed in existing U.S. Department of Energy (DOE) analyses of biofuel processes. For example, a thermochemical ethanol production pathway (indirect gasification and mixed alcohol synthesis) developed by the National Renewable Energy Laboratory (NREL) uses olivine, DEPG, and tar reforming and alcohol synthesis catalysts (Dutta et al., 2011). ZSM-5 can be used in biofuel production pathways such as catalytic upgrading of sugars into hydrocarbons (Biddy and Jones, 2013). Other uses for these compounds and catalysts are certainly possible. In this report, we document the data sources and methodology we used to develop material and energy flows for the catalysts and compounds in the GREET catalyst module. In Section 2 we focus on compounds used in the model Dutta et al. (2011) developed. In Section 3, we report material and energy flows associated with ZSM-5 production. Finally, in Section 4, we report results.

  3. Fischer-Tropsch Synthesis over Iron Manganese Catalysts: Effect of Preparation and Operating Conditions on Catalyst Performance

    Directory of Open Access Journals (Sweden)

    Ali A. Mirzaei

    2009-01-01

    molar basis which is the most active catalyst for the conversion of synthesis gas to light olefins. The effects of different promoters and supports with loading of optimum support on the catalytic performance of catalysts are also studied. It was found that the catalyst containing 50%Fe/50%Mn/5 wt.%Al2O3 is an optimum-modified catalyst. The catalytic performance of optimal catalyst has been studied in operation conditions such as a range of reaction temperatures, H2/CO molar feed ratios and a range of total pressures. Characterization of both precursors and calcined catalysts is carried out by powder X-ray diffraction (XRD, scanning electron microscopy (SEM, BET specific surface area and thermal analysis methods such as TGA and DSC.

  4. Deactivation and regeneration of refinery catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.

    1979-08-01

    A discussion covers the mechanisms of catalyst aging, poisoning, coke deposition, and metals deposition; feedstock pretreatment to extend catalyst life; the effects of operating conditions; the effects of catalyst composition and structure on its stability; nonchemical deactivation processes; and methods of catalyst regeneration, including coke burn-off and solvent extraction.

  5. Oxidative desulfurization of synthetic diesel using supported catalysts. Part 3. Support effect on vanadium-based catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Cedeno-Caero, Luis; Gomez-Bernal, Hilda; Fraustro-Cuevas, Adriana; Guerra-Gomez, Hector D.; Cuevas-Garcia, Rogelio [UNICAT, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Cd. Universitaria 04510, Mexico D.F. (Mexico)

    2008-04-15

    Oxidesulfurization (ODS) of benzothiophenic compounds prevailing in diesel was conducted with hydrogen peroxide in presence of various catalysts, using a model diesel and actual diesel fuel. ODS activities of dibenzothiophenes (DBTs) in hexadecane for a series of V{sub 2}O{sub 5} catalysts supported on alumina, titania, ceria, niobia and silica, were evaluated. Results show that the oxidation activity of DBTs depends on the support used. It was observed that the sulfone yield is not proportional to textural properties or V content. For all catalysts, ODS of benzothiophene (BT), dibenzothiophene (DBT), 4-methyl dibenzothiophene (4-MDBT) and 4,6-dimethyl dibenzothiophene (4,6-DMDBT) decreased in the following order: DBT > 4-MDBT > 4,6-DMDBT > BT. This trend does not depend on the catalyst used or the textural properties of the catalysts and supports. In presence of indole ODS activities diminish, except with catalysts supported on alumina-titania mixed oxide, whereas with V{sub 2}O{sub 5}/TiO{sub 2} catalyst the performance is the highest. ODS of Mexican diesel fuel was carried out in presence of this catalyst and S level was diminished in about 99%. (author)

  6. Autothermal reforming catalyst having perovskite structure

    Science.gov (United States)

    Krumpel, Michael [Naperville, IL; Liu, Di-Jia [Naperville, IL

    2009-03-24

    The invention addressed two critical issues in fuel processing for fuel cell application, i.e. catalyst cost and operating stability. The existing state-of-the-art fuel reforming catalyst uses Rh and platinum supported over refractory oxide which add significant cost to the fuel cell system. Supported metals agglomerate under elevated temperature during reforming and decrease the catalyst activity. The catalyst is a perovskite oxide or a Ruddlesden-Popper type oxide containing rare-earth elements, catalytically active firs row transition metal elements, and stabilizing elements, such that the catalyst is a single phase in high temperature oxidizing conditions and maintains a primarily perovskite or Ruddlesden-Popper structure under high temperature reducing conditions. The catalyst can also contain alkaline earth dopants, which enhance the catalytic activity of the catalyst, but do not compromise the stability of the perovskite structure.

  7. Isotope exchange in oxide-containing catalyst

    Science.gov (United States)

    Brown, Kenneth G. (Inventor); Upchurch, Billy T. (Inventor); Hess, Robert V. (Inventor); Miller, Irvin M. (Inventor); Schryer, David R. (Inventor); Sidney, Barry D. (Inventor); Wood, George M. (Inventor); Hoyt, Ronald F. (Inventor)

    1989-01-01

    A method of exchanging rare-isotope oxygen for common-isotope oxygen in the top several layers of an oxide-containing catalyst is disclosed. A sample of an oxide-containing catalyst is exposed to a flowing stream of reducing gas in an inert carrier gas at a temperature suitable for the removal of the reactive common-isotope oxygen atoms from the surface layer or layers of the catalyst without damaging the catalyst structure. The reduction temperature must be higher than any at which the catalyst will subsequently operate. Sufficient reducing gas is used to allow removal of all the reactive common-isotope oxygen atoms in the top several layers of the catalyst. The catalyst is then reoxidized with the desired rare-isotope oxygen in sufficient quantity to replace all of the common-isotope oxygen that was removed.

  8. Bifunctional cobalt F-T catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.G.; Coughlin, P.K.; Yang, C.L.; Rabo, J.A.

    1986-03-01

    Results on the catalytic screening of Fischer-Tropsch catalysts containing shape selective components are reported. Catalysts consist of promoted cobalt intimately contacted with Union Carbide molecular sieves and were tested using a Berty type internally recycled reactor. Methods of preparation, promoters and shape selective components were varied and aimed at improving catalyst performance. Catalysts were developed demonstrating high C/sub 5/ + yields with high olefin content and low methane production while maintaining stability under both low and high H/sub 2/:CO ratio conditions.

  9. Nanoparticular metal oxide/anatase catalysts

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention concerns a method of preparation of nanoparticular metal oxide catalysts having a narrow particle size distribution. In particular, the invention concerns preparation of nanoparticular metal oxide catalyst precursors comprising combustible crystallization seeds upon which...... the catalyst metai oxide is co-precipitated with the carrier metal oxide, which crystallization seeds are removed by combustion in a final calcining step. The present invention also concerns processes wherein the nanoparticular metal oxide catalysts of the invention are used, such as SCR (deNOx) reactions...

  10. Oxygen-reducing catalyst layer

    Science.gov (United States)

    O'Brien, Dennis P [Maplewood, MN; Schmoeckel, Alison K [Stillwater, MN; Vernstrom, George D [Cottage Grove, MN; Atanasoski, Radoslav [Edina, MN; Wood, Thomas E [Stillwater, MN; Yang, Ruizhi [Halifax, CA; Easton, E Bradley [Halifax, CA; Dahn, Jeffrey R [Hubley, CA; O'Neill, David G [Lake Elmo, MN

    2011-03-22

    An oxygen-reducing catalyst layer, and a method of making the oxygen-reducing catalyst layer, where the oxygen-reducing catalyst layer includes a catalytic material film disposed on a substrate with the use of physical vapor deposition and thermal treatment. The catalytic material film includes a transition metal that is substantially free of platinum. At least one of the physical vapor deposition and the thermal treatment is performed in a processing environment comprising a nitrogen-containing gas.

  11. Control of dealkylation vs ring hydrogenation by use of ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Gultekin, S.; Satterfield, C.N. [King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia). Chemical Engineering Dept.

    1995-05-01

    Hydrotreating studies with propylbenzene as a model compound on a commercial NiMo/Al{sub 2}O{sub 3} catalyst at 300-360{degree}C and 6.9 MPa showed that selectivity to ring hydrogenation vs dealkylation was increased by addition of ammonia at partial pressures up to 49 kPa, although overall activity decreased. Both reactions followed first-order kinetics. Selectivity was markedly increased at the lowest temperatures but again was accompanied by the lowest overall activity. The poisoning effect of ammonia here is much greater than that previously observed on hydrodesulfurization of thiophene or hydrodeoxygenation of dibenzofuran under identical reaction conditions. 6 refs., 3 figs., 3 tabs.

  12. Metal catalysts fight back

    OpenAIRE

    George Marsh

    1998-01-01

    In recent years organometallic catalysts, especially metallocenes, have been a major focus of attention in terms of polymerisation chemistry. But the news earlier this year of a family of iron-based catalysts able to rival the effectiveness of both conventional and metallocene catalysts in the polymerisation of ethylene has excited the plastics industry. Because of the impact of this discovery and its potential as a route to lower-priced commodity plastics in the future, it may be useful at t...

  13. Rejuvenation of the SCR catalyst at Mehrum

    Energy Technology Data Exchange (ETDEWEB)

    Nagai, Y.; Inatsume, Y.; Morita, I.; Kato, Y.; Yokoyama, K.; Ito, K. [Babcock Hitachi K.K., Kure-shi, Hiroshima-ken (Japan)

    2004-07-01

    Babcock Hitachi K.K. (BHK) received the contract of the rejuvenation of the SCR catalyst at the 750 MW coal-fired Mehrum Power Station (in Hohenhameln, Germany) in March 2003. The contractual coverage was 160 m{sup 3} of the entire catalyst layer. The catalyst, which had been in operation for 16 years since 1987, was originally supplied by BHK. The rejuvenation process developed for the Mehrum project consisted of two major steps: the first is to dust off the catalyst and remove the catalyst poison, and the second step is to add active material to enhance the catalyst activity. The catalyst must be dried after each washing. In order to minimize transportation cost and time, the rejuvenation work was done at the Mehrum station site. The scope of the rejuvenation work was shared between the owner and BHK. It took about one and a half months to complete the (total) on-site rejuvenation worked. The performance of the rejuvenated catalyst was superior to show the same level of activity as the unused catalyst and maintain the same SO{sub 2} conversion rate as the spent catalyst. This paper gives the details of the spent coal-fired SCR catalyst rejuvenation work. 13 figs., 1 tab.

  14. Productions of palm oil bio diesel whit heterogeneous basic catalysts compared to conventional homogeneous catalysts

    International Nuclear Information System (INIS)

    Rios, Luis A; Franco C, Alexander; Zuleta S, Ernesto

    2009-01-01

    The conventional process to produce biodiesel involves the presence of homogeneous basic catalysts. However, these catalysts have disadvantages associated to the need of purification steps, which increase the cost of the final product and generate pollution problems caused by the effluents. This paper compares different homogeneous and heterogeneous catalysts for the biodiesel production from palm oil. For this, heterogeneous catalysts supported on alumina were prepared and characterized by nitrogen adsorption, scanning electron microscopy, energy dispersive X ray spectroscopy and X ray diffraction. Transesterification of palm oil with methanol was accomplished at 60 celsius degrade and one hour, varying methanol/oil ratio, the type of catalyst and its concentration. Yields of the reaction and purity of the so obtained biodiesel were evaluated. Comparing the catalysts performance, based on the amount, was found that sodium methoxide (CH 3 ONa) and potassium carbonate supported on alumina (K 2 CO 3 /Al 2 O 3 ) were the catalysts that give the higher purity of biodiesel (96.8 and 95.85% respectively). When was determined the active site quality, by dividing the performance by each mole of active sites, it was found that calcined Na 2 SO 4 /Al 2 O 3 has the most active sites.

  15. Reactivity of non conventional supported mixed sulfides for hydro-treatment reactions; Reactivite de sulfures mixtes supportes non conventionnels pour les reactions d`hydrotraitement

    Energy Technology Data Exchange (ETDEWEB)

    Quartararo, J

    1996-11-07

    The properties of non conventional NiM sulfides (M: Mn, Fe, Cu,Zn, Re, Ru) was evaluated for two hydro treating reactions: hydro desulfurization (HDS) of dibenzo thiophene and benzo thiophene and hydrogenation (HYD) of cyclohexyl. The reactions were t first studied on Ni, Mo and NiMo sulfide catalysts. The influence of the nature of the molecule on the magnitude of promoting effect was demonstrated. The non conventional mono-metallic and bimetallic catalysts studied in this work were characterized by XRD (X-ray diffraction), XPS (X-ray photoelectron spectroscopy) and TEM (transmission electron microscopy). Ni exhibits a negative effect on the activity of Mn, Cu, Zn and Re sulfide catalysts. This effect could be related to the formation of two separated sulfide phases: base metal sulfide and nickel sulfide. Nevertheless, a promoting effect was found in NiRu catalyst. In this catalyst, the Ru and the Ni are in a mixed phase. The results of this study demonstrate the importance of the type of metal associated to the nickel for the promoting effect and relate this effect to the formation of a mixed phase. (author)

  16. Novel metalloporphyrin catalysts for the oxidation of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Showalter, M.C.; Nenoff, T.M.; Shelnutt, J.A.

    1996-11-01

    Work was done for developing biomimetic oxidation catalysts. Two classes of metalloporphyrin catalysts were studied. The first class of catalysts studied were a novel series of highly substituted metalloporphyrins, the fluorinated iron dodecaphenylporphyrins. These homogeneous metalloporphyrin catalysts were screened for activity as catalysts in the oxidation of hydrocarbons by dioxygen. Results are discussed with respect to catalyst structural features. The second type of catalysts studied were heterogeneous catalysts consisting of metalloporphyrins applied to inorganic supports. Preliminary catalytic testing results with these materials are presented.

  17. Optimal catalyst curves: Connecting density functional theory calculations with industrial reactor design and catalyst selection

    DEFF Research Database (Denmark)

    Jacobsen, C.J.H.; Dahl, Søren; Boisen, A.

    2002-01-01

    For ammonia synthesis catalysts a volcano-type relationship has been found experimentally. We demonstrate that by combining density functional theory calculations with a microkinetic model the position of the maximum of the volcano curve is sensitive to the reaction conditions. The catalytic...... ammonia synthesis activity, to a first approximation, is a function only of the binding energy of nitrogen to the catalyst. Therefore, it is possible to evaluate which nitrogen binding energy is optimal under given reaction conditions. This leads to the concept of optimal catalyst curves, which illustrate...... the nitrogen binding energies of the optimal catalysts at different temperatures, pressures, and synthesis gas compositions. Using this concept together with the ability to prepare catalysts with desired binding energies it is possible to optimize the ammonia process. In this way a link between first...

  18. European workshop on spent catalysts. Book of abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    In 1999 and 2002 two well attended workshops on recycling, regeneration, reuse and disposal of spent catalysts took place in Frankfurt. This series has been continued in Berlin. The workshop was organized in collaboration with DGMK, the German Society for Petroleum and Coal Science and Technology. Contributions were in the following areas of catalyst deactivation: recycling of spent catalysts in chemical and petrochemical industry, recycling of precious metal catalysts and heterogenous base metal catalysts, legal aspects of transboundary movements, catalyst regeneration, quality control, slurry catalysts, commercial reactivation of hydrotreating catalysts. (uke)

  19. CO methanation over supported bimetallic Ni-Fe catalysts: From computational studies towards catalyst optimization

    DEFF Research Database (Denmark)

    Kustov, Arkadii; Frey, Anne Mette; Larsen, Kasper Emil

    2007-01-01

    with compositions 25Fe75Ni and 50Fe50Ni showed significantly better activity and in some cases also a higher selectivity to methane compared with the traditional monometallic Ni and Fe catalysts. A catalyst with composition 25Fe75Ni was found to be the most active in CO hydrogenation for the MgAl2O4 support at low...... metal loadings. At high metal concentrations, the maximum for the methanation activity was found for catalysts with composition 50Ni50Fe both on the MgAl2O4 and Al2O3 supports. This difference can be attributed to a higher reducibility of the constituting metals with increasing metal concentration......DFT calculations combined with a computational screening method have previously shown that bimetallic Ni-Fe alloys should be more active than the traditional Ni-based catalyst for CO methanation. That was confirmed experimentally for a number of bimetallic Ni-Fe catalysts supported on MgAl2O4. Here...

  20. Epoxidation catalyst and process

    Science.gov (United States)

    Linic, Suljo; Christopher, Phillip

    2010-10-26

    Disclosed herein is a catalytic method of converting alkenes to epoxides. This method generally includes reacting alkenes with oxygen in the presence of a specific silver catalyst under conditions suitable to produce a yield of the epoxides. The specific silver catalyst is a silver nanocrystal having a plurality of surface planes, a substantial portion of which is defined by Miller indices of (100). The reaction is performed by charging a suitable reactor with this silver catalyst and then feeding the reactants to the reactor under conditions to carry out the reaction. The reaction may be performed in batch, or as a continuous process that employs a recycle of any unreacted alkenes. The specific silver catalyst has unexpectedly high selectivity for epoxide products. Consequently, this general method (and its various embodiments) will result in extraordinarily high epoxide yields heretofore unattainable.

  1. Enhanced activity of Pt/CNTs anode catalyst for direct methanol fuel cells using Ni2P as co-catalyst

    Science.gov (United States)

    Li, Xiang; Luo, Lanping; Peng, Feng; Wang, Hongjuan; Yu, Hao

    2018-03-01

    The direct methanol fuel cell is a promising energy conversion device because of the utilization of the state-of-the-art platinum (Pt) anode catalyst. In this work, novel Pt/Ni2P/CNTs catalysts were prepared by the H2 reduction method. It was found that the activity and stability of Pt for methanol oxidation reaction (MOR) could be significantly enhanced while using nickel phosphide (Ni2P) nanoparticles as co-catalyst. X-ray photoelectron spectroscopy revealed that the existence of Ni2P affected the particle size and electronic distribution of Pt obviously. Pt/CNTs catalyst, Pt/Ni2P/CNTs catalysts with different Ni2P amount were synthesized, among which Pt/6%Ni2P/CNTs catalyst exhibited the best MOR activity of 1400 mAmg-1Pt, which was almost 2.5 times of the commercial Pt/C-JM catalyst. Moreover, compared to other Pt-based catalysts, this novel Pt/Ni2P/CNTs catalyst also exhibited higher onset current density and better steady current density. The result of this work may provide positive guidance to the research on high efficiency and stability of Pt-based catalyst for direct methanol fuel cells.

  2. Rare earth metals for automotive exhaust catalysts

    International Nuclear Information System (INIS)

    Shinjoh, Hirohumi

    2006-01-01

    The usage of rare earth metals for automotive exhaust catalysts is demonstrated in this paper. Rare earth metals have been widely used in automotive catalysts. In particular, three-way catalysts require the use of ceria compounds as oxygen storage materials, and lanthana as both a stabilizer of alumina and a promoter. The application for diesel catalysts is also illustrated. Effects of inclusion of rare earth metals in automotive catalysts are discussed

  3. Alkaline Ionic Liquid Modified Pd/C Catalyst as an Efficient Catalyst for Oxidation of 5-Hydroxymethylfurfural

    Directory of Open Access Journals (Sweden)

    Zou Bin

    2018-01-01

    Full Text Available Conversion of HMF into FDCA was carried out by a simple and green process based on alkaline ionic liquid (IL modified Pd/C catalyst (Pd/C-OH−. Alkaline ionic liquids were chosen to optimize Pd/C catalyst for special hydrophilicity and hydrophobicity, redox stability, and unique dissolving abilities for polar compounds. The Pd/C-OH− catalyst was successfully prepared and characterized by SEM, XRD, TG, FT-IR, and CO2-TPD technologies. Loading of alkaline ionic liquid on the surface of Pd/C was 2.54 mmol·g−1. The catalyst showed excellent catalytic activity in the HMF oxidation after optimization of reaction temperature, reaction time, catalyst amount, and solvent. Supported alkaline ionic liquid (IL could be a substitute and promotion for homogeneous base (NaOH. Under optimal reaction conditions, high HMF conversion of 100% and FDCA yield of 82.39% were achieved over Pd/C-OH− catalyst in water at 373 K for 24 h.

  4. Carbonaceous deposits on naptha reforming catalysts

    International Nuclear Information System (INIS)

    Redwan, D.S.

    1999-01-01

    Carbonaceous deposits on naphtha reforming catalysts play a decisive role in limiting process performance. The deposits negatively after catalyst activity, selectivity and the production cycle of a semi regenerative reformer. The magnitude of negative effect of those deposits is directly proportional to their amounts and complexity. Investigations on used reforming catalysts samples reveal that the amount and type (complexity of the chemical nature) of carbonaceous deposits are directly proportional to the catalysts life on stream and the severity of operating conditions. In addition, the combustibility behavior of carbonaceous deposits on the catalyst samples taken from different reformers are found to be different. Optimal carbon removal, for in situ catalyst regeneration, requires the specific conditions be developed, based on the results of well designed and properly performed investigations of the amount and type of carbonaceous deposits. (author)

  5. Reducible oxide based catalysts

    Science.gov (United States)

    Thompson, Levi T.; Kim, Chang Hwan; Bej, Shyamal K.

    2010-04-06

    A catalyst is disclosed herein. The catalyst includes a reducible oxide support and at least one noble metal fixed on the reducible oxide support. The noble metal(s) is loaded on the support at a substantially constant temperature and pH.

  6. Increasing the lifetime of fuel cell catalysts

    NARCIS (Netherlands)

    Latsuzbaia, R.

    2015-01-01

    In this thesis, I discuss a novel idea of fuel cell catalyst regeneration to increase lifetime of the PEM fuel cell electrode/catalyst operation and, therefore, reduce the catalyst costs. As many of the catalyst degradation mechanisms are difficult to avoid, the regeneration is alternative option to

  7. Hydroprocessing using regenerated spent heavy hydrocarbon catalyst

    International Nuclear Information System (INIS)

    Clark, F.T.; Hensley, A.L. Jr.

    1992-01-01

    This patent describes a process for hydroprocessing a hydrocarbon feedstock. It comprises: contacting the feedstock with hydrogen under hydroprocessing conditions with a hydroprocessing catalyst wherein the hydroprocessing catalyst contains a total contaminant metals build-up of greater than about 4 wt. % nickel plus vanadium, a hydrogenation component selected from the group consisting of Group VIB metals and Group VIII metals and is regenerated spent hydroprocessing catalyst regenerated by a process comprising the steps: partially decoking the spent catalyst in an initial coke-burning step; impregnating the partially decoked catalyst with a Group IIA metal-containing impregnation solution; and decoking the impregnated catalyst in a final coke-burning step wherein the impregnated catalyst is contacted with an oxygen-containing gas at a temperature of about 600 degrees F to about 1400 degrees F

  8. Extended Catalyst Longevity Via Supercritical Isobutane Regeneration of a Partially Deactivated USY Alkylation Catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Daniel M. Ginosar; David N. Thompson; Kyle C. Burch; David J. Zalewski

    2005-05-01

    Off-line, in situ activity recovery of a partially deactivated USY zeolite catalyst used for isobutane/butene alkylation was examined in a continuous-flow reaction system employing supercritical isobutane. Catalyst samples were deactivated in a controlled manner by running them to either to a fixed butene conversion level of 95% or a fixed time on stream of three hours, and then exposing the catalyst to supercritical isobutane to restore activity. Activity recovery was determined by comparing alkylation activity before and after the regeneration step. Both single and multiple regenerations were performed. Use of a 95% butene conversion level criterion to terminate the reaction step afforded 86% activity recovery for a single regeneration and provided nine sequential reaction steps for the multiple regeneration studies. Employing a fixed 3 h time on stream criterion resulted in nearly complete activity recovery for a single regeneration, and 24 reaction steps were demonstrated in sequence for the multiple regeneration process, producing only minor product yield declines per step. This resulted in a 12-fold increase in catalyst longevity versus unregenerated catalyst.

  9. The Stability of Supported Gold Catalysts

    NARCIS (Netherlands)

    Masoud, Nazila

    2018-01-01

    Gold has supreme cultural and financial value and, in form of nanoparticles smaller than 10 nm, is a unique catalyst for different industrially relevant reactions. Intriguing properties of the gold catalysts have spurred demand in the chemical industry for Au catalysts, the application of which

  10. A comparative evaluation of nitrogen compounds in petroleum distillates

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Dheer; Chopra, Anju; Patel, Mitra Bhanu; Sarpal, Amarjit Singh [Indian Oil Corporation Limited, Faridabad (India). Research and Development Centre

    2011-07-15

    Although the concentration of nitrogen compounds in crude oil is relatively low, they can become more concentrated in petroleum distillates and poison the catalysts used in refining processes. They cause undesirable deposits, color formation and odor in products; they also contribute to air pollution and some are highly carcinogenic. The poisoned catalyst becomes deactivated for hydrodesulfurization and unable to remove sulfur from middle distillates. In order to understand the effect on catalytic processes, it is desirable to identify the nitrogen compounds in various petroleum distillates. This paper compares the nitrogen species profiles in different petroleum distillates using a nitrogen chemiluminescence detector. In addition, four different petroleum distillate samples from different refineries were analyzed to find the variation in their nitrogen profiles. The nitrogen compounds in petroleum distillate samples were identified as anilines, quinolines, indoles, and carbazoles and their alkyl derivatives. Quantitation was carried out against known reference standards. The quantitative data were compared to the total nitrogen content determined by elemental analysis. (orig.)

  11. Nitrogen oxides storage catalysts containing cobalt

    Science.gov (United States)

    Lauterbach, Jochen; Snively, Christopher M.; Vijay, Rohit; Hendershot, Reed; Feist, Ben

    2010-10-12

    Nitrogen oxides (NO.sub.x) storage catalysts comprising cobalt and barium with a lean NO.sub.x storage ratio of 1.3 or greater. The NO.sub.x storage catalysts can be used to reduce NO.sub.x emissions from diesel or gas combustion engines by contacting the catalysts with the exhaust gas from the engines. The NO.sub.x storage catalysts can be one of the active components of a catalytic converter, which is used to treat exhaust gas from such engines.

  12. FCC catalyst technologies expand limits of process capability

    International Nuclear Information System (INIS)

    Leiby, S.

    1992-01-01

    This paper reports that over the past 30 or so years, many improvements in fluid catalytic cracking (FCC) operation have been achieved as the result of innovations in catalyst formulation. During the 1990s, new environmental regulations on issues such as reformulated gasoline will place new demands on both the refining industry and catalyst suppliers. An overview of cracking catalyst technology therefore seems in order. Today, high-technology innovations by catalyst manufacturers are rapid, but profit margins are slim. Catalyst formulations are shrouded in secrecy and probably depend almost as much on art as on science. Special formulations for specific cracking applications get the greatest emphasis today. To illustrate this point, OGJ's Worldwide Catalyst Report lists over 200 FCC catalyst designations. Catalysts containing components to enhance gasoline octane now account for about 70% of total U.S. FCC catalyst usage

  13. Catalyst Deactivation and Regeneration in Low Temperature Ethanol Steam Reforming with Rh/CeO2-ZrO2 Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Hyun-Seog; Platon, Alex; Wang, Yong; King, David L.

    2006-08-01

    Rh/CeO2-ZrO2 catalysts with various CeO2/ZrO2 ratios have been applied to H2 production from ethanol steam reforming at low temperatures. The catalysts all deactivated with time on stream (TOS) at 350 C. The addition of 0.5% K has a beneficial effect on catalyst stability, while 5% K has a negative effect on catalytic activity. The catalyst could be regenerated considerably even at ambient temperature and could recover its initial activity after regeneration above 200 C with 1% O2. The results are most consistent with catalyst deactivation due to carbonaceous deposition on the catalyst.

  14. Catalyst for Ammonia Oxidation

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a bimetallic catalyst for ammonia oxidation, a method for producing a bimetallic catalyst for ammonia oxidation and a method for tuning the catalytic activity of a transition metal. By depositing an overlayer of less catalytic active metal onto a more catalytic...

  15. DEVELOPMENT OF PRECIPITATED IRON FISCHER-TROPSCH CATALYSTS

    International Nuclear Information System (INIS)

    Bukur, Dragomir B.; Lang, X.; Chokkaram, S.; Nowicki, L.; Wei, G.; Ding, Y.; Reddy, B.; Xiao, S.

    1999-01-01

    Despite the current worldwide oil glut, the US will ultimately require large-scale production of liquid (transportation) fuels from coal. Slurry phase Fischer-Tropsch (F-T) technology, with its versatile product slate, may be expected to play a major role in production of transportation fuels via indirect coal liquefaction. Some of the F-T catalysts synthesized and tested at Texas A and M University under DOE Contract No. DE-AC22-89PC89868 were more active than any other known catalysts developed for maximizing production of high molecular weight hydrocarbons (waxes). The objectives of the present contract were to demonstrate repeatability of catalyst performance and reproducibility of preparation procedures of two of these catalysts on a laboratory scale. Improvements in the catalyst performance were attempted through the use of: (a) higher reaction pressure and gas space velocity to maximize the reactor productivity; (b) modifications in catalyst preparation steps; and (c) different pretreatment procedures. Repeatability of catalyst performance and reproducibility of catalyst synthesis procedure have been successfully demonstrated in stirred tank slurry reactor tests. Reactor space-time-yield was increased up to 48% by increasing reaction pressure from 1.48 MPa to 2.17 MPa, while maintaining the gas contact time and synthesis gas conversion at a constant value. Use of calcination temperatures above 300 C, additional CaO promoter, and/or potassium silicate as the source of potassium promoter, instead of potassium bicarbonate, did not result in improved catalyst performance. By using different catalyst activation procedures they were able to increase substantially the catalyst activity, while maintaining low methane and gaseous hydrocarbon selectivities. Catalyst productivity in runs SA-0946 and SA-2186 was 0.71 and 0.86 gHC/g-Fe/h, respectively, and this represents 45-75% improvement in productivity relative to that achieved in Rheinpreussen's demonstration plant

  16. Catalyst systems and uses thereof

    Science.gov (United States)

    Ozkan, Umit S [Worthington, OH; Holmgreen, Erik M [Columbus, OH; Yung, Matthew M [Columbus, OH

    2012-07-24

    A method of carbon monoxide (CO) removal comprises providing an oxidation catalyst comprising cobalt supported on an inorganic oxide. The method further comprises feeding a gaseous stream comprising CO, and oxygen (O.sub.2) to the catalyst system, and removing CO from the gaseous stream by oxidizing the CO to carbon dioxide (CO.sub.2) in the presence of the oxidation catalyst at a temperature between about 20 to about 200.degree. C.

  17. Highly Stable and Active Catalyst for Sabatier Reactions

    Science.gov (United States)

    Hu, Jianli; Brooks, Kriston P.

    2012-01-01

    Highly active Ru/TiO2 catalysts for Sabatier reaction have been developed. The catalysts have shown to be stable under repeated shutting down/startup conditions. When the Ru/TiO2 catalyst is coated on the engineered substrate Fe-CrAlY felt, activity enhancement is more than doubled when compared with an identically prepared engineered catalyst made from commercial Degussa catalyst. Also, bimetallic Ru-Rh/TiO2 catalysts show high activity at high throughput.

  18. Liver injury from Herbals and Dietary Supplements in the US Drug Induced Liver Injury Network

    Science.gov (United States)

    Navarro, Victor J.; Barnhart, Huiman; Bonkovsky, Herbert L.; Davern, Timothy; Fontana, Robert J.; Grant, Lafaine; Reddy, K. Rajender; Seeff, Leonard B.; Serrano, Jose; Sherker, Averell H.; Stolz, Andrew; Talwalkar, Jayant; Vega, Maricruz; Vuppalanchi, Raj

    2014-01-01

    Background The Drug-Induced Liver Injury Network (DILIN) studies hepatotoxicity due to conventional medications as well as herbals and dietary supplements (HDS). Rationale To characterize hepatotoxicity and its outcomes from HDS versus medications, patients with hepatotoxicity attributed to medications or HDS were enrolled prospectively between 2004 and 2013. The study took place among eight US referral centers that are part of the DILIN. Consecutive patients with liver injury referred to a DILIN center were eligible. The final sample comprised 130 (15.5%) of all subjects enrolled (839) who were judged to have experienced liver injury due to HDS. Hepatotoxicity due to HDS was evaluated by expert opinion. Demographic and clinical characteristics and outcome assessments including death and liver transplantation were ascertained. Cases were stratified and compared according to the type of agent implicated in liver injury; 45 had injury due to bodybuilding HDS, 85 due to non-bodybuilding HDS, and 709 due to medications. Main Results Liver injury due to HDS increased from 7% to 20% (p Bodybuilding HDS caused prolonged jaundice (median 91 days) in young men but did not result in any fatalities or liver transplantation. The remaining HDS cases presented as hepatocellular injury, predominantly in middle-aged women and more frequently led to death or transplantation compared to injury from medications (13% vs. 3%, p bodybuilding HDS is more severe than from bodybuilding HDS or medications, as evidenced by differences in unfavorable outcomes; death and transplantation. PMID:25043597

  19. Active carbon catalyst for heavy oil upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Fukuyama, Hidetsugu; Terai, Satoshi [Technology Research Center, Toyo Engineering Corporation, 1818 Azafujimi, Togo, Mobara-shi, Chiba 297-00017 (Japan); Uchida, Masayuki [Business Planning and Exploring Department, Overseas Business Development and Marketing Division, Toyo Engineering Corporation, 2-8-1 Akanehama, Narashino-shi, Chiba 275-0024 (Japan); Cano, Jose L.; Ancheyta, Jorge [Maya Crude Treatment Project, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas No. 152, Col. San Bartolo Atepehuacan, Mexico D.F. 07730 (Mexico)

    2004-11-24

    The active carbon (AC) catalyst was studied by hydrocracking of Middle Eastern vacuum residue (VR) for heavy oil upgrading. It was observed that the active carbon has the affinity to heavy hydrocarbon compounds and adsorption selectivity to asphaltenes, and exhibits better ability to restrict the coke formation during the hydrocracking reaction of VR. The mesopore of active carbon was thought to play an important role for effective conversion of heavy hydrocarbon compounds into lighter fractions restricting carbon formation. The performance of the AC catalyst was examined by continuous hydrocracking by CSTR for the removal of such impurities as sulfur and heavy metals (nickel and vanadium), which are mostly concentrated in the asphaltenes. The AC catalyst was confirmed to be very effective for the removal of heavy metals from Middle Eastern VR, Maya/Istmo VR and Maya VR. The extruded AC catalysts were produced by industrial manufacturing method. The application test of the extruded AC catalyst for ebullating-bed reactor as one of the commercially applicable reactors was carried out at the ebullating-bed pilot plant for 500h. The ebullition of the extruded AC catalyst was successfully traced and confirmed by existing {gamma}-ray density meter. The extruded AC catalyst showed stable performance with less sediment formation at an equivalent conversion by conventional alumina catalyst at commercial ebullating-bed unit. The degradation of the AC catalyst at the aging test was observed to be less than that of the conventional alumina catalyst. Thus, the AC catalyst was confirmed to be effective and suitable for upgrading of heavy oil, especially such heavy oils as Maya, which contains much heavy metals.

  20. Reactivation of a tin oxide-containing catalyst

    Science.gov (United States)

    Upchurch, Billy T. (Inventor); Miller, Irvin M. (Inventor); Brown, Kenneth G. (Inventor); Hess, Robert V. (Inventor); Schryer, David R. (Inventor); Sidney, Barry D. (Inventor); Wood, George M. (Inventor); Paulin, Patricia A. (Inventor)

    1989-01-01

    A method for the reactivation of a tin oxide-containing catalyst of a CO.sub.2 laser is provided. First, the catalyst is pretreated by a standard procedure. When the catalyst experiences diminished activity during usage, the heated zone surrounding the catalyst is raised to a temperature which is the operating temperature of the laser and 400.degree. C. for approximately one hour. The catalyst is exposed to the same laser gas mixture during this period. The temperature of the heated zone is then lowered to the operating temperature of the CO.sub.2 laser.

  1. In situ Transmission Electron Microscopy of catalyst sintering

    DEFF Research Database (Denmark)

    DeLaRiva, Andrew T.; Hansen, Thomas Willum; Challa, Sivakumar R.

    2013-01-01

    Recent advancements in the field of electron microscopy, such as aberration correctors, have now been integrated into Environmental Transmission Electron Microscopes (TEMs), making it possible to study the behavior of supported metal catalysts under operating conditions at atomic resolution. Here......, we focus on in situ electron microscopy studies of catalysts that shed light on the mechanistic aspects of catalyst sintering. Catalyst sintering is an important mechanism for activity loss, especially for catalysts that operate at elevated temperatures. Literature from the past decade is reviewed...... along with our recent in situ TEM studies on the sintering of Ni/MgAl2O4 catalysts. These results suggest that the rapid loss of catalyst activity in the earliest stages of catalyst sintering could result from Ostwald ripening rather than through particle migration and coalescence. The smallest...

  2. Catalyst for hydrocarbon conversion

    International Nuclear Information System (INIS)

    Duhaut, P.; Miquel, J.

    1975-01-01

    A description is given for a catalyst and process for hydrocarbon conversions, e.g., reforming. The catalyst contains an alumina carrier, platinum, iridium, at least one metal selected from uranium, vanadium, and gallium, and optionally halogen in the form of metal halide of one of the aforesaid components. (U.S.)

  3. Development of GREET Catalyst Module

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhichao [Argonne National Lab. (ANL), Argonne, IL (United States); Benavides, Pahola T. [Argonne National Lab. (ANL), Argonne, IL (United States); Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States); Cronauer, Donald C. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-01

    In this report, we develop energy and material flows for the production of five different catalysts (tar reforming, alcohol synthesis, Zeolite Socony Mobil-5 [ZSM-5], Mo/Co/ γ-Al2O3, and Pt/ γ-Al2O3) and two chemicals (olivine, dimethyl ether of polyethylene glycol [DEPG]). These compounds and catalysts are now included in the Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET™) catalyst module.

  4. Evaluation of documented drug interactions and contraindications associated with herbs and dietary supplements: a systematic literature review.

    Science.gov (United States)

    Tsai, H-H; Lin, H-W; Simon Pickard, A; Tsai, H-Y; Mahady, G B

    2012-11-01

    The use of herbs and dietary supplements (HDS) alone or concomitantly with medications can potentially increase the risk of adverse events experienced by the patients. This review aims to evaluate the documented HDS-drug interactions and contraindications. A structured literature review was conducted on PubMed, EMBASE, Cochrane Library, tertiary literature and Internet. While 85 primary literatures, six books and two web sites were reviewed for a total of 1,491 unique pairs of HDS-drug interactions, 213 HDS entities and 509 medications were involved. HDS products containing St. John's Wort, magnesium, calcium, iron, ginkgo had the greatest number of documented interactions with medications. Warfarin, insulin, aspirin, digoxin, and ticlopidine had the greatest number of reported interactions with HDS. Medications affecting the central nervous system or cardiovascular system had more documented interactions with HDS. Of the 882 HDS-drug interactions being described its mechanism and severity, 42.3% were due to altered pharmacokinetics and 240 were described as major interactions. Of the 152 identified HDS contraindications, the most frequent involved gastrointestinal (16.4%), neurological (14.5%), and renal/genitourinary diseases (12.5%). Flaxseed, echinacea, and yohimbe had the largest number of documented contraindications. Although HDS-drug interactions and contraindications primarily concerned a relatively small subset of commonly used medications and HDS entities, this review provides the summary to identify patients, HDS products, and medications that are more susceptible to HDS-drug interactions and contraindications. The findings would facilitate the health-care professionals to communicate these documented interactions and contraindications to their patients and/or caregivers thereby preventing serious adverse events and improving desired therapeutic outcomes. © 2012 Blackwell Publishing Ltd.

  5. Novel non-platinum metal catalyst material

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a novel non-platinum metal catalyst material for use in low temperature fuel cells and electrolysers and to fuel cells and electrolysers comprising the novel non-platinum metal catalyst material. The present invention also relates to a novel method for synthesizing...... the novel non-platinum metal catalyst material....

  6. Co-Assembled Supported Catalysts: Synthesis of Nano-Structured Supported Catalysts with Hierarchic Pores through Combined Flow and Radiation Induced Co-Assembled Nano-Reactors

    Directory of Open Access Journals (Sweden)

    Galip Akay

    2016-05-01

    Full Text Available A novel generic method of silica supported catalyst system generation from a fluid state is presented. The technique is based on the combined flow and radiation (such as microwave, thermal or UV induced co-assembly of the support and catalyst precursors forming nano-reactors, followed by catalyst precursor decomposition. The transformation from the precursor to supported catalyst oxide state can be controlled from a few seconds to several minutes. The resulting nano-structured micro-porous silica supported catalyst system has a surface area approaching 300 m2/g and X-ray Diffraction (XRD-based catalyst size controlled in the range of 1–10 nm in which the catalyst structure appears as lamellar sheets sandwiched between the catalyst support. These catalyst characteristics are dependent primarily on the processing history as well as the catalyst (Fe, Co and Ni studied when the catalyst/support molar ratio is typically 0.1–2. In addition, Ca, Mn and Cu were used as co-catalysts with Fe and Co in the evaluation of the mechanism of catalyst generation. Based on extensive XRD, Scanning Electron Microscopy (SEM and Transmission Electron Microscopy (TEM studies, the micro- and nano-structure of the catalyst system were evaluated. It was found that the catalyst and silica support form extensive 0.6–2 nm thick lamellar sheets of 10–100 nm planar dimensions. In these lamellae, the alternate silica support and catalyst layer appear in the form of a bar-code structure. When these lamellae structures pack, they form the walls of a micro-porous catalyst system which typically has a density of 0.2 g/cm3. A tentative mechanism of catalyst nano-structure formation is provided based on the rheology and fluid mechanics of the catalyst/support precursor fluid as well as co-assembly nano-reactor formation during processing. In order to achieve these structures and characteristics, catalyst support must be in the form of silane coated silica nano

  7. exchanged Mg-Al hydrotalcite catalyst

    Indian Academy of Sciences (India)

    ) catalysts, ... The catalyst can be easily separated by simple filtration ... surface area by the single-point N2 adsorption method ... concentration of carbonate anions (by treating the cat- .... hydrotalcite phase along with copper hydroxide and.

  8. Two Catalysts for Selective Oxidation of Contaminant Gases

    Science.gov (United States)

    Wright, John D.

    2011-01-01

    Two catalysts for the selective oxidation of trace amounts of contaminant gases in air have been developed for use aboard the International Space Station. These catalysts might also be useful for reducing concentrations of fumes in terrestrial industrial facilities especially facilities that use halocarbons as solvents, refrigerant liquids, and foaming agents, as well as facilities that generate or utilize ammonia. The first catalyst is of the supported-precious-metal type. This catalyst is highly active for the oxidation of halocarbons, hydrocarbons, and oxygenates at low concentrations in air. This catalyst is more active for the oxidation of hydrocarbons and halocarbons than are competing catalysts developed in recent years. This catalyst completely converts these airborne contaminant gases to carbon dioxide, water, and mineral acids that can be easily removed from the air, and does not make any chlorine gas in the process. The catalyst is thermally stable and is not poisoned by chlorine or fluorine atoms produced on its surface during the destruction of a halocarbon. In addition, the catalyst can selectively oxidize ammonia to nitrogen at a temperature between 200 and 260 C, without making nitrogen oxides, which are toxic. The temperature of 260 C is higher than the operational temperature of any other precious-metal catalyst that can selectively oxidize ammonia. The purpose of the platinum in this catalyst is to oxidize hydrocarbons and to ensure that the oxidation of halocarbons goes to completion. However, the platinum exhibits little or no activity for initiating the destruction of halocarbons. Instead, the attack on the halocarbons is initiated by the support. The support also provides a high surface area for exposure of the platinum. Moreover, the support resists deactivation or destruction by halogens released during the destruction of halocarbons. The second catalyst is of the supported- metal-oxide type. This catalyst can selectively oxidize ammonia to

  9. Calcium and lanthanum solid base catalysts for transesterification

    Science.gov (United States)

    Ng, K. Y. Simon; Yan, Shuli; Salley, Steven O.

    2015-07-28

    In one aspect, a heterogeneous catalyst comprises calcium hydroxide and lanthanum hydroxide, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g. In another aspect, a heterogeneous catalyst comprises a calcium compound and a lanthanum compound, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g, and a total basicity of about 13.6 mmol/g. In further another aspect, a heterogeneous catalyst comprises calcium oxide and lanthanum oxide, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g. In still another aspect, a process for preparing a catalyst comprises introducing a base precipitant, a neutral precipitant, and an acid precipitant to a solution comprising a first metal ion and a second metal ion to form a precipitate. The process further comprises calcining the precipitate to provide the catalyst.

  10. Novel anode catalyst for direct methanol fuel cells.

    Science.gov (United States)

    Basri, S; Kamarudin, S K; Daud, W R W; Yaakob, Z; Kadhum, A A H

    2014-01-01

    PtRu catalyst is a promising anodic catalyst for direct methanol fuel cells (DMFCs) but the slow reaction kinetics reduce the performance of DMFCs. Therefore, this study attempts to improve the performance of PtRu catalysts by adding nickel (Ni) and iron (Fe). Multiwalled carbon nanotubes (MWCNTs) are used to increase the active area of the catalyst and to improve the catalyst performance. Electrochemical analysis techniques, such as energy dispersive X-ray spectrometry (EDX), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and X-ray photoelectron spectroscopy (XPS), are used to characterize the kinetic parameters of the hybrid catalyst. Cyclic voltammetry (CV) is used to investigate the effects of adding Fe and Ni to the catalyst on the reaction kinetics. Additionally, chronoamperometry (CA) tests were conducted to study the long-term performance of the catalyst for catalyzing the methanol oxidation reaction (MOR). The binding energies of the reactants and products are compared to determine the kinetics and potential surface energy for methanol oxidation. The FESEM analysis results indicate that well-dispersed nanoscale (2-5 nm) PtRu particles are formed on the MWCNTs. Finally, PtRuFeNi/MWCNT improves the reaction kinetics of anode catalysts for DMFCs and obtains a mass current of 31 A g(-1) catalyst.

  11. Optimization of catalyst system reaps economic benefits

    International Nuclear Information System (INIS)

    Le Roy, C.F.; Hanshaw, M.J.; Fischer, S.M.; Malik, T.; Kooiman, R.R.

    1991-01-01

    Champlin Refining and Chemicals Inc. is learning to optimize its catalyst systems for hydrotreating Venezuelan gas oils through a program of research, pilot plant testing, and commercial unit operation. The economic results of this project have been evaluated, and the benefits are most evident in improvements in product yields and qualities. The project has involved six commercial test runs, to date (Runs 10-15), with a seventh run planned. A summary of the different types of catalyst systems used in the test runs, and the catalyst philosophy that developed is given. Runs 10 and 11 used standard CoMo and NiMo catalysts for heavy gas oils hydrotreating. These catalysts had small pore sizes and suffered high deactivation rates because of metals contamination. When it was discovered that metals contamination was a problem, catalyst options were reviewed

  12. Method of performing sugar dehydration and catalyst treatment

    Science.gov (United States)

    Hu, Jianli [Kennewick, WA; Holladay, Johnathan E [Kennewick, WA; Zhang, Xinjie [Burlington, MA; Wang, Yong [Richland, WA

    2010-06-01

    The invention includes a method of treating a solid acid catalyst. After exposing the catalyst to a mixture containing a sugar alcohol, the catalyst is washed with an organic solvent and is then exposed to a second reaction mixture. The invention includes a process for production of anhydrosugar alcohol. A solid acid catalyst is provided to convert sugar alcohol in a first sample to an anhydrosugar alcohol. The catalyst is then washed with an organic solvent and is subsequently utilized to expose a second sample. The invention includes a method for selective production of an anhydrosugar. A solid acid catalyst is provided within a reactor and anhydrosugar alcohol is formed by flowing a starting sugar alcohol into the reactor. The acid catalyst is then exposed to an organic solvent which allows a greater amount of additional anhydrosugar to be produced than would occur without exposing the acid catalyst to the organic solvent.

  13. Catalysts for oxidation of mercury in flue gas

    Science.gov (United States)

    Granite, Evan J [Wexford, PA; Pennline, Henry W [Bethel Park, PA

    2010-08-17

    Two new classes of catalysts for the removal of heavy metal contaminants, especially mercury (Hg) from effluent gases. Both of these classes of catalysts are excellent absorbers of HCl and Cl.sub.2 present in effluent gases. This adsorption of oxidizing agents aids in the oxidation of heavy metal contaminants. The catalysts remove mercury by oxidizing the Hg into mercury (II) moieties. For one class of catalysts, the active component is selected from the group consisting of iridium (Ir) and iridum-platinum (Ir/Pt) alloys. The Ir and Ir/Pt alloy catalysts are especially corrosion resistant. For the other class of catalyst, the active component is partially combusted coal or "Thief" carbon impregnated with Cl.sub.2. Untreated Thief carbon catalyst can be self-activating in the presence of effluent gas streams. The Thief carbon catalyst is disposable by means of capture from the effluent gas stream in a particulate collection device (PCD).

  14. Liver injury from herbals and dietary supplements in the U.S. Drug-Induced Liver Injury Network.

    Science.gov (United States)

    Navarro, Victor J; Barnhart, Huiman; Bonkovsky, Herbert L; Davern, Timothy; Fontana, Robert J; Grant, Lafaine; Reddy, K Rajender; Seeff, Leonard B; Serrano, Jose; Sherker, Averell H; Stolz, Andrew; Talwalkar, Jayant; Vega, Maricruz; Vuppalanchi, Raj

    2014-10-01

    The Drug-Induced Liver Injury Network (DILIN) studies hepatotoxicity caused by conventional medications as well as herbals and dietary supplements (HDS). To characterize hepatotoxicity and its outcomes from HDS versus medications, patients with hepatotoxicity attributed to medications or HDS were enrolled prospectively between 2004 and 2013. The study took place among eight U.S. referral centers that are part of the DILIN. Consecutive patients with liver injury referred to a DILIN center were eligible. The final sample comprised 130 (15.5%) of all subjects enrolled (839) who were judged to have experienced liver injury caused by HDS. Hepatotoxicity caused by HDS was evaluated by expert opinion. Demographic and clinical characteristics and outcome assessments, including death and liver transplantation (LT), were ascertained. Cases were stratified and compared according to the type of agent implicated in liver injury; 45 had injury caused by bodybuilding HDS, 85 by nonbodybuilding HDS, and 709 by medications. Liver injury caused by HDS increased from 7% to 20% (P Bodybuilding HDS caused prolonged jaundice (median, 91 days) in young men, but did not result in any fatalities or LT. The remaining HDS cases presented as hepatocellular injury, predominantly in middle-aged women, and, more frequently, led to death or transplantation, compared to injury from medications (13% vs. 3%; P bodybuilding HDS or medications, as evidenced by differences in unfavorable outcomes (death and transplantation). (Hepatology 2014;60:1399-1408). © 2014 by the American Association for the Study of Liver Diseases.

  15. Biomass processing over gold catalysts

    CERN Document Server

    Simakova, Olga A; Murzin, Dmitry Yu

    2014-01-01

    The book describes the valorization of biomass-derived compounds over gold catalysts. Since biomass is a rich renewable feedstock for diverse platform molecules, including those currently derived from petroleum, the interest in various transformation routes has become intense. Catalytic conversion of biomass is one of the main approaches to improving the economic viability of biorefineries.  In addition, Gold catalysts were found to have outstanding activity and selectivity in many key reactions. This book collects information about transformations of the most promising and important compounds derived from cellulose, hemicelluloses, and woody biomass extractives. Since gold catalysts possess high stability under oxidative conditions, selective oxidation reactions were discussed more thoroughly than other critical reactions such as partial hydrogenation, acetalization, and isomerization. The influence of reaction conditions, the role of the catalyst, and the advantages and disadvantages of using gold are pre...

  16. Palladium catalysts deposited on silica materials: Comparison of catalysts based on mesoporous and amorphous supports in Heck reaction

    Czech Academy of Sciences Publication Activity Database

    Demel, J.; Čejka, Jiří; Štěpnička, P.

    2010-01-01

    Roč. 329, 1-2 (2010), s. 13-20 ISSN 1381-1169 R&D Projects: GA ČR GA104/09/0561 Institutional research plan: CEZ:AV0Z40400503 Keywords : heterogeneous catalysts * immobolized catalysts * supported catalysts Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.872, year: 2010

  17. The Dependence of CNT Aerogel Synthesis on Sulfur-driven Catalyst Nucleation Processes and a Critical Catalyst Particle Mass Concentration.

    Science.gov (United States)

    Hoecker, Christian; Smail, Fiona; Pick, Martin; Weller, Lee; Boies, Adam M

    2017-11-06

    The floating catalyst chemical vapor deposition (FC-CVD) process permits macro-scale assembly of nanoscale materials, enabling continuous production of carbon nanotube (CNT) aerogels. Despite the intensive research in the field, fundamental uncertainties remain regarding how catalyst particle dynamics within the system influence the CNT aerogel formation, thus limiting effective scale-up. While aerogel formation in FC-CVD reactors requires a catalyst (typically iron, Fe) and a promotor (typically sulfur, S), their synergistic roles are not fully understood. This paper presents a paradigm shift in the understanding of the role of S in the process with new experimental studies identifying that S lowers the nucleation barrier of the catalyst nanoparticles. Furthermore, CNT aerogel formation requires a critical threshold of Fe x C y  > 160 mg/m 3 , but is surprisingly independent of the initial catalyst diameter or number concentration. The robustness of the critical catalyst mass concentration principle is proved further by producing CNTs using alternative catalyst systems; Fe nanoparticles from a plasma spark generator and cobaltocene and nickelocene precursors. This finding provides evidence that low-cost and high throughput CNT aerogel routes may be achieved by decoupled and enhanced catalyst production and control, opening up new possibilities for large-scale CNT synthesis.

  18. Development of industrial hydrogenating catalyst on rhenium base

    International Nuclear Information System (INIS)

    Chistyakova, G.A.; Bat', I.I.; Rebrova, V.V.

    1975-01-01

    Processes for forming rhenium catalysts on carbon carrier and their catalytic properties in nitrobenzene (NB) reduction were studied. Application of an ammonia preparation to the carbon surface produced impregnated carbon saturated at room temperature with a water solution of the ammonia preparation, taken in a volume equal to the volumetric capacity of the carbon. With one impregnation, 2% rhenium was taken up. Catalysts containing more than 5% rhenium were obtained by impregnating the carbon with heating and use of more concentrated solutions. Catalysts made in this way and dried at 100 0 C had the composition Re 2 OH/carbon/. The most active catalysts were those reduced at 200-250 0 C; higher temperatures, up to 300-500 0 C, decreased the activity. Study of the catalytic properties of the rhenium catalysts in a liquid phase reduction of NB showed that the specific activity of rhenium depends only slightly on the content of the active component in the catalyst and is close to the specific activity of palladium and considerably exceeds that of nickel. Study of the effect of the NB concentration and hydrogen pressure on the activity and stability of the 5% rhenium catalyst indicated that with NB concentrations from 50 to 10% the process takes place at an essentially constant rate; the order of the reaction was close to zero with an apparent activation energy of about 7000 cal/mole. At pressures of 15-200 atm the yield with the 5% catalyst was proportional to the hydrogen pressure. A big advantage of the rhenium catalysts in the reduction of NB is their high selectivity. With a higher activity than palladium and nickel catalysts, 5% rhenium catalyst produces a high operating capacity in a wide range of contact charges, which has considerable significance for industrial use in contact apparatus of the column type. Comparison of the costs of rhenium catalysts and granular carbon carrier with those of nickel, platinum, and palladium showed that 5% rhenium catalyst can

  19. Reactivation of a Tin-Oxide-Containing Catalyst

    Science.gov (United States)

    Hess, Robert; Sidney, Barry; Schryer, David; Miller, Irvin; Miller, George; Upchurch, Bill; Davis, Patricia; Brown, Kenneth

    2010-01-01

    The electrons in electric-discharge CO2 lasers cause dissociation of some CO2 into O2 and CO, and attach themselves to electronegative molecules such as O2, forming negative O2 ions, as well as larger negative ion clusters by collisions with CO or other molecules. The decrease in CO2 concentration due to dissociation into CO and O2 will reduce the average repetitively pulsed or continuous wave laser power, even if no disruptive negative ion instabilities occur. Accordingly, it is the primary object of this invention to extend the lifetime of a catalyst used to combine the CO and O2 products formed in a laser discharge. A promising low-temperature catalyst for combining CO and O2 is platinum on tin oxide (Pt/SnO2). First, the catalyst is pretreated by a standard procedure. The pretreatment is considered complete when no measurable quantity of CO2 is given off by the catalyst. After this standard pretreatment, the catalyst is ready for its low-temperature use in the sealed, high-energy, pulsed CO2 laser. However, after about 3,000 minutes of operation, the activity of the catalyst begins to slowly diminish. When the catalyst experiences diminished activity during exposure to the circulating gas stream inside or external to the laser, the heated zone surrounding the catalyst is raised to a temperature between 100 and 400 C. A temperature of 225 C was experimentally found to provide an adequate temperature for reactivation. During this period, the catalyst is still exposed to the circulating gas inside or external to the laser. This constant heating and exposing the catalyst to the laser gas mixture is maintained for an hour. After heating and exposing for an appropriate amount of time, the heated zone around the catalyst is allowed to return to the nominal operating temperature of the CO2 laser. This temperature normally resides in the range of 23 to 100 C. Catalyst activity can be measured as the percentage conversion of CO to CO2. In the specific embodiment

  20. Platinum-Bismuth Bimetallic Catalysts: Synthesis, Characterization and Applications

    OpenAIRE

    Saucedo, Jose A, Jr; Xiao, Yang; Varma, Arvind

    2015-01-01

    Bimetallic catalysts have been explored and shown to exhibit unique characteristics which are not present in monometallic catalysts. Platinum is well known as an effective catalyst for oxidation and reduction reactions, and it can be made more effective when bismuth is introduced as a promotor. Thus, the effectiveness of the Pt-Bi catalyst was demonstrated in prior work. What is not clear, however, is the mechanism behind the catalyst function; why addition of bismuth to platinum decreases de...

  1. Polymer-bound rhodium hydroformylation catalysts

    NARCIS (Netherlands)

    Jongsma, Tjeerd

    1992-01-01

    Homogeneous catalysts are superior in activity, selectivity as well as specificity, but heterogeneous catalyst are often preferred in industrial processes, because of their good recoverability and their applicability in continuous flow reactors. It would be of great environmental, commercial and

  2. Catalyst design for carbon nanotube growth using atomistic modeling

    International Nuclear Information System (INIS)

    Pint, Cary L; Bozzolo, Guillermo; Hauge, Robert

    2008-01-01

    The formation and stability of bimetallic catalyst particles, in the framework of carbon nanotube growth, is studied using the Bozzolo-Ferrante-Smith (BFS) method for alloys. Monte Carlo-Metropolis simulations with the BFS method are utilized in order to predict and study equilibrium configurations for nanoscale catalyst particles which are directly relevant to the catalyst state prior to growth of carbon nanotubes. At the forefront of possible catalyst combinations is the popular Fe-Mo bimetallic catalyst, which we have recently studied experimentally. We explain our experimental results, which indicate that the growth observed is dependent on the order of co-catalyst deposition, in the straightforward interpretation of BFS strain and chemical energy contributions toward the formation of Fe-Mo catalyst prior to growth. We find that the competition between the formation of metastable inner Mo cores and clusters of surface-segregated Mo atoms in Fe-Mo catalyst particles influences catalyst formation, and we investigate the role of Mo concentration and catalyst particle size in this process. Finally, we apply the same modeling approach to other prominent bimetallic catalysts and suggest that this technique can be a powerful tool to understand and manipulate catalyst design for highly efficient carbon nanotube growth

  3. TECHNOLOGY DEVELOPMENT FOR IRON FISCHER-TROPSCH CATALYSTS

    Energy Technology Data Exchange (ETDEWEB)

    Davis, B.H.

    1998-07-22

    The goal of the proposed work described in this Final Report was the development of iron-based Fischer-Tropsch catalysts that combined high activity, selectivity and life with physical robustness for slurry phase reactors that will produce either low-alpha or high-alpha products. The work described here has optimized the catalyst composition and pretreatment operation for a low-alpha catalyst. In parallel, work has been conducted to design a high-alpha iron catalyst that is suitable for slurry phase synthesis. Studies have been conducted to define the chemical phases present at various stages of the pretreatment and synthesis stages and to define the course of these changes. The oxidation/reduction cycles that are anticipated to occur in large, commercial reactors have been studied at the laboratory scale. Catalyst performance has been determined for catalysts synthesized in this program for activity, selectivity and aging characteristics.

  4. Novel Anode Catalyst for Direct Methanol Fuel Cells

    Directory of Open Access Journals (Sweden)

    S. Basri

    2014-01-01

    Full Text Available PtRu catalyst is a promising anodic catalyst for direct methanol fuel cells (DMFCs but the slow reaction kinetics reduce the performance of DMFCs. Therefore, this study attempts to improve the performance of PtRu catalysts by adding nickel (Ni and iron (Fe. Multiwalled carbon nanotubes (MWCNTs are used to increase the active area of the catalyst and to improve the catalyst performance. Electrochemical analysis techniques, such as energy dispersive X-ray spectrometry (EDX, X-ray diffraction (XRD, field emission scanning electron microscopy (FESEM, and X-ray photoelectron spectroscopy (XPS, are used to characterize the kinetic parameters of the hybrid catalyst. Cyclic voltammetry (CV is used to investigate the effects of adding Fe and Ni to the catalyst on the reaction kinetics. Additionally, chronoamperometry (CA tests were conducted to study the long-term performance of the catalyst for catalyzing the methanol oxidation reaction (MOR. The binding energies of the reactants and products are compared to determine the kinetics and potential surface energy for methanol oxidation. The FESEM analysis results indicate that well-dispersed nanoscale (2–5 nm PtRu particles are formed on the MWCNTs. Finally, PtRuFeNi/MWCNT improves the reaction kinetics of anode catalysts for DMFCs and obtains a mass current of 31 A g−1 catalyst.

  5. Immobilization of molecular catalysts in supported ionic liquid phases.

    Science.gov (United States)

    Van Doorslaer, Charlie; Wahlen, Joos; Mertens, Pascal; Binnemans, Koen; De Vos, Dirk

    2010-09-28

    In a supported ionic liquid phase (SILP) catalyst system, an ionic liquid (IL) film is immobilized on a high-surface area porous solid and a homogeneous catalyst is dissolved in this supported IL layer, thereby combining the attractive features of homogeneous catalysts with the benefits of heterogeneous catalysts. In this review reliable strategies for the immobilization of molecular catalysts in SILPs are surveyed. In the first part, general aspects concerning the application of SILP catalysts are presented, focusing on the type of catalyst, support, ionic liquid and reaction conditions. Secondly, organic reactions in which SILP technology is applied to improve the performance of homogeneous transition-metal catalysts are presented: hydroformylation, metathesis reactions, carbonylation, hydrogenation, hydroamination, coupling reactions and asymmetric reactions.

  6. Technology development for iron Fischer-Tropsch catalysts

    Energy Technology Data Exchange (ETDEWEB)

    O`Brien, R.J.; Raje, A.; Keogh, R.A. [and others

    1995-12-31

    The objective of this research project is to develop the technology for the production of physically robust iron-based Fischer-Tropsch catalysts that have suitable activity, selectivity and stability to be used in the slurry phase synthesis reactor development. The catalysts that are developed shall be suitable for testing in the Advanced Fuels Development Facility at LaPorte, Texas, to produce either low-or high-alpha product distributions. Previous work by the offeror has produced a catalyst formulation that is 1.5 times as active as the {open_quotes}standard-catalyst{close_quotes} developed by German workers for slurry phase synthesis. In parallel, work will be conducted to design a high-alpha iron catalyst this is suitable for slurry phase synthesis. Studies will be conducted to define the chemical phases present at various stages of the pretreatment and synthesis stages and to define the course of these changes. The oxidation/reduction cycles that are anticipated to occur in large, commercial reactors will be studied at the laboratory scale. Catalyst performance will be determined for catalysts synthesized in this program for activity, selectivity and aging characteristics.

  7. Iridium-catalyst-based autonomous bubble-propelled graphene micromotors with ultralow catalyst loading.

    Science.gov (United States)

    Wang, Hong; Sofer, Zdeněk; Eng, Alex Yong Sheng; Pumera, Martin

    2014-11-10

    A novel concept of an iridium-based bubble-propelled Janus-particle-type graphene micromotor with very high surface area and with very low catalyst loading is described. The low loading of Ir catalyst (0.54 at %) allows for fast motion of graphene microparticles with high surface area of 316.2 m(2)  g(-1). The micromotor was prepared with a simple and scalable method by thermal exfoliation of iridium-doped graphite oxide precursor composite in hydrogen atmosphere. Oxygen bubbles generated from the decomposition of hydrogen peroxide at the iridium catalytic sites provide robust propulsion thrust for the graphene micromotor. The high surface area and low iridium catalyst loading of the bubble-propelled graphene motors offer great possibilities for dramatically enhanced cargo delivery. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Catalytic Transformation of Ethylbenzene over Y-Zeolite-based Catalysts

    KAUST Repository

    Al-Khattaf, Sulaiman

    2008-11-19

    Catalytic transformation of ethylbenzene (EB) has been investigated over ultrastable Y (USY)-zeolite-based catalysts in a novel riser simulator at different operating conditions. The effect of reaction conditions on EB conversion is reported. The USY catalyst (FCC-Y) was modified by steaming to form a significantly lower acidity catalyst (FCC-SY). The current study shows that the FCC-SY catalyst favors EB disproportionation more than cracking. A comparison has been made between the results of EB conversion over the lowly acidic catalyst (FCC-SY) and the highly acidic catalyst (FCC-Y) under identical conditions. It was observed that increase in catalyst acidity favored cracking of EB at the expense of disproportionation. Kinetic parameters for EB disappearance during disproportionation reaction over the FCC-SY catalyst were calculated using the catalyst activity decay function based on time on stream (TOS). © 2008 American Chemical Society.

  9. Efficient epoxidation of propene using molecular catalysts

    DEFF Research Database (Denmark)

    Markovits, Iulius I. E.; Anthofer, Michael H.; Kolding, Helene

    2014-01-01

    The epoxidation of propene is performed in homogeneous phase using various molecular catalysts and H2O2 or tert-butyl hydroperoxide as oxidants. A comparison between some molybdenum catalysts and methyltrioxorhenium (MTO) shows that the well known Re catalyst is the best among the examined...

  10. Multiphase catalysts for selective reduction of NOx with hydrocarbons

    International Nuclear Information System (INIS)

    Maisuls, S.E.

    2000-01-01

    Among the existing proposed solutions to reduce emission of NOx there is a promising alternative, the so-called (HC-SCR) selective catalytic reduction of NOx using hydrocarbons as reductant. This thesis is part of a worldwide effort devoted to gain knowledge on the selective catalytic reduction of NOx with hydrocarbons with the final goal to contribute to the development of suitable catalysts for the above mentioned process. Chapter 2 describes the details of the experimental set-up and of the analytical methods employed. Among the catalyst for HC-SCR, Co-based catalyst are known to be active and selective, thus, a study on a series of Co-based catalysts, supported on zeolites, was undertaken and the results are presented in Chapter 3. Correlation between catalytic characteristics and kinetic results are employed to understand the working catalyst and this is used as a basis for catalyst optimization. With the intention to prepare a multi-functional catalyst that will preserve the desired characteristics of the individual components, minimizing their negative aspects, catalysts based on Co-Pt, supported on ZSM-5, were investigated. In Chapter 4 the results of this study are discussed. A bimetallic Co-Pt/ZSM-5 catalysts with low Pt contents (0.1 wt %) showed a synergistic effect by combining high stability and activity of Pt catalysts with the high N2 selectivity of Co catalysts. Furthermore, it was found to be sulfur- and water-tolerant. Its positive qualities brought us to study the mechanism that takes place over this catalyst during HC-SCR. The results of an in-situ i.r mechanistic study over this catalyst is reported in Chapter 5. From the results presented in Chapter 5 a mechanism operating over the Co-Pt/ZSM-5 catalyst is proposed. The modification of Co catalyst with Pt improved the catalysts. However, further improvement was found to be hindered by high selectivity to N2O. Since Rh catalysts are generally less selective to N2O, the modification of Co

  11. Power generation in microbial fuel cells using platinum group metal-free cathode catalyst: Effect of the catalyst loading on performance and costs.

    Science.gov (United States)

    Santoro, Carlo; Kodali, Mounika; Herrera, Sergio; Serov, Alexey; Ieropoulos, Ioannis; Atanassov, Plamen

    2018-02-28

    Platinum group metal-free (PGM-free) catalyst with different loadings was investigated in air breathing electrodes microbial fuel cells (MFCs). Firstly, the electrocatalytic activity towards oxygen reduction reaction (ORR) of the catalyst was investigated by rotating ring disk electrode (RRDE) setup with different catalyst loadings. The results showed that higher loading led to an increased in the half wave potential and the limiting current and to a further decrease in the peroxide production. The electrons transferred also slightly increased with the catalyst loading up to the value of ≈3.75. This variation probably indicates that the catalyst investigated follow a 2x2e - transfer mechanism. The catalyst was integrated within activated carbon pellet-like air-breathing cathode in eight different loadings varying between 0.1 mgcm -2 and 10 mgcm -2 . Performance were enhanced gradually with the increase in catalyst content. Power densities varied between 90 ± 9 μWcm -2 and 262 ± 4 μWcm -2 with catalyst loading of 0.1 mgcm -2 and 10 mgcm -2 respectively. Cost assessments related to the catalyst performance are presented. An increase in catalyst utilization led to an increase in power generated with a substantial increase in the whole costs. Also a decrease in performance due to cathode/catalyst deterioration over time led to a further increase in the costs.

  12. Activating catalysts with mechanical force

    NARCIS (Netherlands)

    Piermattei, A.; Karthikeyan, S.; Sijbesma, R.P.

    2009-01-01

    Homogeneously catalysed reactions can be ‘switched on’ by activating latent catalysts. Usually, activation is brought about by heat or an external chemical agent. However, activation of homogeneous catalysts with a mechanical trigger has not been demonstrated. Here, we introduce a general method to

  13. Dearomatization of jet fuel on irradiated platinum-supported catalyst

    International Nuclear Information System (INIS)

    Mucka, V.; Ostrihonova, A.; Kopernicky, I.; Mikula, O.

    1983-01-01

    The effect of ionizing radiation ( 60 Co #betta#-rays) on Pt-supported catalyst used for the dearomatization of jet fuel with distillation in the range 395 to 534 K has been studied. Pre-irradiation of the catalyst with doses in the range 10 2 to 5 x 10 4 Gy leads to the partial catalyst activation. Irradiation of the catalyst enhances its resistance to catalyst poisons, particularly to sulphur-compounds, and this is probably the reason for its catalytic activity being approx. 60 to 100% greater than that of un-irradiated catalyst. Optimum conditions for dearomatization on the irradiated catalyst were found and, by means of a rotary three-factorial experiment, it was shown that these lie at lower temperatures and lower pressures than those for un-irradiated catalyst. (author)

  14. Multi-stage catalyst systems and uses thereof

    Science.gov (United States)

    Ozkan, Umit S [Worthington, OH; Holmgreen, Erik M [Columbus, OH; Yung, Matthew M [Columbus, OH

    2009-02-10

    Catalyst systems and methods provide benefits in reducing the content of nitrogen oxides in a gaseous stream containing nitric oxide (NO), hydrocarbons, carbon monoxide (CO), and oxygen (O.sub.2). The catalyst system comprises an oxidation catalyst comprising a first metal supported on a first inorganic oxide for catalyzing the oxidation of NO to nitrogen dioxide (NO.sub.2), and a reduction catalyst comprising a second metal supported on a second inorganic oxide for catalyzing the reduction of NO.sub.2 to nitrogen (N.sub.2).

  15. Process of activation of a palladium catalyst system

    Science.gov (United States)

    Sobolevskiy, Anatoly [Orlando, FL; Rossin, Joseph A [Columbus, OH; Knapke, Michael J [Columbus, OH

    2011-08-02

    Improved processes for activating a catalyst system used for the reduction of nitrogen oxides are provided. In one embodiment, the catalyst system is activated by passing an activation gas stream having an amount of each of oxygen, water vapor, nitrogen oxides, and hydrogen over the catalyst system and increasing a temperature of the catalyst system to a temperature of at least 180.degree. C. at a heating rate of from 1-20.degree./min. Use of activation processes described herein leads to a catalyst system with superior NOx reduction capabilities.

  16. Characterization of catalysts by scanning transmission electron microscopy

    International Nuclear Information System (INIS)

    Targos, W.M.; Bradley, S.A.

    1989-01-01

    The dedicated scanning transmission electron microscope (STEM) is an integral tool for characterizing catalysts because of its unique ability to image and analyze nanosized volumes. This information is valuable in optimizing catalyst formulations and determining causes for reduced catalyst performance. For many commercial catalysts direct correlations between structural features of metal crystallites and catalytic performance are not attainable. When these instances occur, determination of elemental distribution may be the only information available. In this paper the authors discuss some of the techniques employed and limitations associated with characterizing commercial catalysts

  17. DEVELOPMENT OF ATTRITION RESISTANT IRON-BASED FISCHER-TROPSCH CATALYSTS

    International Nuclear Information System (INIS)

    Adeyinka A. Adeyiga

    2001-01-01

    The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO+H 2 ) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRs) can largely solve this problem. The use of iron-based catalysts is attractive not only due to their low cost and ready availability, but also due to their high water-gas shift activity which makes it possible to use these catalysts with low H 2 /CO ratios. However, a serious problem with use of Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment, makes the separation of catalyst from the oil/wax product very difficult if not impossible, and results in a steady loss of catalyst from the reactor. Recently, fundamental understanding of physical attrition is being addressed by incorporating suitable binders into the catalyst recipe. This has resulted in the preparation of a spray dried Fe-based catalyst having aps of 70 mm with high attrition resistance. This Fe-based attrition resistant, active and selective catalyst gave 95% CO conversion through 125 hours of testing in a fixed-bed at 270 C, 1.48 MPa, H 2 /CO=0.67 and 2.0 NL/g-cat/h with C 5 + selectivity of >78% and methane selectivity of <5%. However, further development of the catalyst is needed to address the chemical attrition due to phase changes that any Fe-catalyst goes through potentially causing internal stresses within the particle and resulting in weakening, spalling or cracking. The objective of this research is to develop robust iron-based Fischer-Tropsch catalysts that have suitable activity, selectivity and stability to be used in the slurry bubble column reactor. Specifically we aim to develop to: (i) improve the performance and preparation procedure of the high activity, high attrition resistant, high alpha iron

  18. Hydrodesulfurization Activities of NiMo Catalysts Supported on Mechanochemically Prepared Al‐Ce Mixed Oxides.

    Czech Academy of Sciences Publication Activity Database

    Jirátová, Květa; Spojakina, A.; Kaluža, Luděk; Palcheva, R.; Balabánová, Jana; Tyuliev, G.

    2016-01-01

    Roč. 37, č. 2 (2016), s. 258-267 ISSN 0253-9837 R&D Projects: GA ČR GAP106/11/0902 Institutional support: RVO:67985858 Keywords : nickel * molybdenum * alumina Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.813, year: 2016

  19. Catalysts and methods of using the same

    Energy Technology Data Exchange (ETDEWEB)

    Slowing, Igor Ivan; Kandel, Kapil

    2017-02-14

    The present invention provides a catalyst including a mesoporous silica nanoparticle and a catalytic material comprising iron. In various embodiments, the present invention provides methods of using and making the catalyst. In some examples, the catalyst can be used to hydrotreat fatty acids or to selectively remove fatty acids from feedstocks.

  20. Low platinum catalyst and method of preparation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Di-Jia; Chong, Lina

    2017-11-21

    A low platinum catalyst and method for making same. The catalyst comprises platinum-transition metal bimetallic alloy microcrystallites over a transition metal-nitrogen-carbon composite. A method of making a catalyst comprises preparation of transition metal organic frameworks, infusion of platinum, thermal treatment, and reduction to form the microcrystallites and composite.

  1. Chemical engineering design of CO oxidation catalysts

    Science.gov (United States)

    Herz, Richard K.

    1987-01-01

    How a chemical reaction engineer would approach the challenge of designing a CO oxidation catalyst for pulsed CO2 lasers is described. CO oxidation catalysts have a long history of application, of course, so it is instructive to first consider the special requirements of the laser application and then to compare them to the characteristics of existing processes which utilize CO oxidation catalysts. All CO2 laser applications require a CO oxidation catalyst with the following characteristics: (1) active at stoichiometric ratios of O2 and CO, (2) no inhibition by CO2 or other components of the laser environment, (3) releases no particulates during vibration or thermal cycling, and (4) long lifetime with a stable activity. In all applications, low consumption of power is desirable, a characteristic especially critical in aerospace applications and, thus, catalyst activity at low temperatures is highly desirable. High power lasers with high pulse repetition rates inherently require circulation of the gas mixture and this forced circulation is available for moving gas past the catalyst. Low repetition rate lasers, however, do not inherently require gas circulation, so a catalyst that did not require such circulation would be favorable from the standpoint of minimum power consumption. Lasers designed for atmospheric penetration of their infrared radiation utilize CO2 formed from rare isotopes of oxygen and this application has the additional constraint that normal abundance oxygen isotopes in the catalyst must not exchange with rare isotopes in the gas mixture.

  2. Roles of K2O on the CaO-ZnO Catalyst and Its Influence on Catalyst Basicity for Biodiesel Production

    Science.gov (United States)

    Buchori, Luqman; Istadi, I.; Purwanto; Marpaung, Louis Claudia; Safitri, Rahmatika Luthfiani

    2018-02-01

    This research aimed to study the effect of K2O impregnation on the basicity of the CaO-ZnO catalyst and its effect on biodiesel production. The effect of mole ratio of CaO to ZnO catalyst and %wt K2O were also studied. The mole ratio of CaO to ZnO catalyst was varied at 1:1, 1:1.5, 1:2, 1:3, and 3:1, while the %wt K2O was varied at 1, 3, and 5 %. The catalyst basicity was determined by titration method. The basicity of the catalyst increased after the CaO-ZnO catalyst was impregnated with K2O in all mole ratios of CaO-ZnO catalyst. The addition of K2O as a promoter also increase the basicity. The highest basicity was obtained at the CaO-ZnO mole ratio of 3:1 and 5%wt K2O. The tranesterification process was carried out in a batch reactor at a methanol to oil mole ratio of 15:1, a reaction temperature of 60°C, a reaction time of 4 h, and a catalyst loading of 5%wt oil. The FAME yields obtained were 41.33%. These results proved that K2O plays a role in enhancing the catalyst basicity. In addition, K2O also serves as a binding agent to improve the mechanical properties of the catalyst.

  3. Lunar CATALYST

    Data.gov (United States)

    National Aeronautics and Space Administration — Lunar Cargo Transportation and Landing by Soft Touchdown (Lunar CATALYST) is a NASA initiative to encourage the development of U.S. private-sector robotic lunar...

  4. Bi-metallic catalysts, methods of making, and uses thereof

    KAUST Repository

    Basset, Jean-Marie

    2017-01-19

    Provided herein are bi-metallic catalysts, methods of making, and uses thereof. In some embodiments, the bi-metallic catalyst contains two different metal catalysts that can be used in hydrocarbon metathesis reactions, in some embodiments, the methods of making the bi-metallic catalysts can include two steps utilizing a surface organometallic chemistry approach in which the two different metal catalysts are sequentially grafted onto a support.

  5. Bi-metallic catalysts, methods of making, and uses thereof

    KAUST Repository

    Basset, Jean-Marie; Samantaray, Manoja K.; Dey, Raju; Abou-Hamad, Edy; Kavitake, Santosh

    2017-01-01

    Provided herein are bi-metallic catalysts, methods of making, and uses thereof. In some embodiments, the bi-metallic catalyst contains two different metal catalysts that can be used in hydrocarbon metathesis reactions, in some embodiments, the methods of making the bi-metallic catalysts can include two steps utilizing a surface organometallic chemistry approach in which the two different metal catalysts are sequentially grafted onto a support.

  6. Evaluation report on the causal association between humidifier disinfectants and lung injury

    Directory of Open Access Journals (Sweden)

    Mina Ha

    2016-08-01

    Full Text Available OBJECTIVES As of November 2011, the Korean government recalled and banned humidifier disinfectants (HDs from the market, because four case-control studies and one retrospective epidemiological study proved the association between HDs and lung injury of unknown cause. The report reviewed the causal role of HDs in lung injury based on scientific evidences. METHODS A careful examination on the association between the HDs and lung injury was based on the criteria of causality inference by Hill and the US Surgeon General Expert Committee. RESULTS We found that all the evidences on the causality fulfilled the criteria (strength of association, consistency, specificity, temporality, biologic gradient, plausibility, coherence, experiment, analogy, consideration of alternative explanations, and cessation of exposure, which proved the unknown cause lung injury reported in 2011 was caused by the HDs. In particular, there was no single reported case of lung injury since the ban in selling HDs in November 2011 as well as before the HDs were sold in markets. CONCLUSIONS Although only a few epidemiological studies in Korea have evaluated the association between lung injury and the use of HDs, those studies contributed to proving the strong association between the use of the HDs and lung injury, based on scientific evidence.

  7. Method of Heating a Foam-Based Catalyst Bed

    Science.gov (United States)

    Fortini, Arthur J.; Williams, Brian E.; McNeal, Shawn R.

    2009-01-01

    A method of heating a foam-based catalyst bed has been developed using silicon carbide as the catalyst support due to its readily accessible, high surface area that is oxidation-resistant and is electrically conductive. The foam support may be resistively heated by passing an electric current through it. This allows the catalyst bed to be heated directly, requiring less power to reach the desired temperature more quickly. Designed for heterogeneous catalysis, the method can be used by the petrochemical, chemical processing, and power-generating industries, as well as automotive catalytic converters. Catalyst beds must be heated to a light-off temperature before they catalyze the desired reactions. This typically is done by heating the assembly that contains the catalyst bed, which results in much of the power being wasted and/or lost to the surrounding environment. The catalyst bed is heated indirectly, thus requiring excessive power. With the electrically heated catalyst bed, virtually all of the power is used to heat the support, and only a small fraction is lost to the surroundings. Although the light-off temperature of most catalysts is only a few hundred degrees Celsius, the electrically heated foam is able to achieve temperatures of 1,200 C. Lower temperatures are achievable by supplying less electrical power to the foam. Furthermore, because of the foam s open-cell structure, the catalyst can be applied either directly to the foam ligaments or in the form of a catalyst- containing washcoat. This innovation would be very useful for heterogeneous catalysis where elevated temperatures are needed to drive the reaction.

  8. Encapsulated heterogeneous base catalysts onto SBA-15 nanoporous material as highly active catalysts in the transesterification of sunflower oil to biodiesel

    Science.gov (United States)

    Albayati, Talib M.; Doyle, Aidan M.

    2015-02-01

    Alkali metals and their hydroxides, Na, NaOH, Li, and LiOH, were encapsulated onto SBA-15 nanoporous material as highly active catalysts for the production of biodiesel fuel from sunflower oil. The incipient wetness impregnation method was adopted for the prepared catalysts. The characterization properties of the catalysts and unmodified SBA-15 were determined using X-ray diffraction, scanning electron microscopy, EDAX, nitrogen adsorption-desorption porosimetry (Brunauer-Emmett-Teller), Fourier-transform infrared spectroscopy, and transmission electron microscopy. Transesterification was conducted in a batch reactor at atmospheric pressure and 65 °C. The catalysts were highly active with yields of fatty acid methyl ester (FAME) in the range 96-99 %. Na/SBA-15 catalyst was reused for seven consecutive cycles under the same reaction conditions; the yield to FAME on the final cycle was 96 %. This study shows that the alkali metals and their hydroxides supported on SBA-15-based catalyst are excellent catalysts for the biodiesel reaction.

  9. Encapsulated heterogeneous base catalysts onto SBA-15 nanoporous material as highly active catalysts in the transesterification of sunflower oil to biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Albayati, Talib M., E-mail: talib-albyati@yahoo.com [University of Technology, Department of Chemical Engineering (Iraq); Doyle, Aidan M., E-mail: a.m.doyle@mmu.ac.uk [Manchester Metropolitan University, Division of Chemistry and Environmental Science (United Kingdom)

    2015-02-15

    Alkali metals and their hydroxides, Na, NaOH, Li, and LiOH, were encapsulated onto SBA-15 nanoporous material as highly active catalysts for the production of biodiesel fuel from sunflower oil. The incipient wetness impregnation method was adopted for the prepared catalysts. The characterization properties of the catalysts and unmodified SBA-15 were determined using X-ray diffraction, scanning electron microscopy, EDAX, nitrogen adsorption–desorption porosimetry (Brunauer–Emmett–Teller), Fourier-transform infrared spectroscopy, and transmission electron microscopy. Transesterification was conducted in a batch reactor at atmospheric pressure and 65 °C. The catalysts were highly active with yields of fatty acid methyl ester (FAME) in the range 96–99 %. Na/SBA-15 catalyst was reused for seven consecutive cycles under the same reaction conditions; the yield to FAME on the final cycle was 96 %. This study shows that the alkali metals and their hydroxides supported on SBA-15-based catalyst are excellent catalysts for the biodiesel reaction.

  10. Encapsulated heterogeneous base catalysts onto SBA-15 nanoporous material as highly active catalysts in the transesterification of sunflower oil to biodiesel

    International Nuclear Information System (INIS)

    Albayati, Talib M.; Doyle, Aidan M.

    2015-01-01

    Alkali metals and their hydroxides, Na, NaOH, Li, and LiOH, were encapsulated onto SBA-15 nanoporous material as highly active catalysts for the production of biodiesel fuel from sunflower oil. The incipient wetness impregnation method was adopted for the prepared catalysts. The characterization properties of the catalysts and unmodified SBA-15 were determined using X-ray diffraction, scanning electron microscopy, EDAX, nitrogen adsorption–desorption porosimetry (Brunauer–Emmett–Teller), Fourier-transform infrared spectroscopy, and transmission electron microscopy. Transesterification was conducted in a batch reactor at atmospheric pressure and 65 °C. The catalysts were highly active with yields of fatty acid methyl ester (FAME) in the range 96–99 %. Na/SBA-15 catalyst was reused for seven consecutive cycles under the same reaction conditions; the yield to FAME on the final cycle was 96 %. This study shows that the alkali metals and their hydroxides supported on SBA-15-based catalyst are excellent catalysts for the biodiesel reaction

  11. Catalyst study for the plasma exhaust purification process

    International Nuclear Information System (INIS)

    Chabot, J.; Sannier, J.

    1990-01-01

    Several catalysts available from commercial sources have been screened to find out specific catalysts which allow complete methane oxidation and ammonia decomposition at temperature as low as possible in order to minimize tritium loss by permeation through processing equipment walls. Afterwards, an extended kinetic investigation has been performed on the best catalysts to achieve the data necessary to unit calculations. For methane oxidation, a palladium on alumina catalyst shows a very satisfactory low-temperature efficiency while a non-precious metal catalyst made of nickel oxide and alumina was found to be the more efficient for ammonia decomposition

  12. Attrition resistant Fischer-Tropsch catalyst and support

    Science.gov (United States)

    Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.

    2004-05-25

    A catalyst support having improved attrition resistance and a catalyst produced therefrom. The catalyst support is produced by a method comprising the step of treating calcined .gamma.-alumina having no catalytic material added thereto with an acidic aqueous solution having an acidity level effective for increasing the attrition resistance of the calcined .gamma.-alumina.

  13. Characterization of three-way automotive catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kenik, E.A.; More, K.L. [Oak Ridge National Lab., TN (United States); LaBarge, W. [Delphi Automotive Systems, Flint, MI (United States)] [and others

    1997-04-01

    The CRADA between Delphi Automotive Systems (Delphi; formerly General Motors - AC Delco, Systems) and Lockheed Martin Energy Research (LMER) on automotive catalysts was completed at the end of FY96, after a ten month, no-cost extension. The CRADA was aimed at improved performance and lifetime of noble metal based three-way-catalysts (TWC), which are the primary catalytic system for automotive emission control systems. While these TWC can meet the currently required emission standards, higher than optimum noble metal loadings are often required to meet lifetime requirements. In addition, more stringent emission standards will be imposed in the near future, demanding improved performance and service life from these catalysts. Understanding the changes of TWC conversion efficiency with ageing is a critical need in improving these catalysts. Initially in a fresh catalyst, the active material is often distributed on a very fine scale, approaching single atoms or small atomic clusters. As such, a wide range of analytical techniques have been employed to provide high spatial resolution characterization of the evolving state of the catalytic material.

  14. Alkali resistivity of Cu based selective catalytic reduction catalysts

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Jensen, Anker Degn; Riisager, Anders

    2012-01-01

    The deactivation of V2O5–WO3–TiO2, Cu–HZSM5 and Cu–HMOR plate type monolithic catalysts was investigated when exposed to KCl aerosols in a bench-scale reactor. Fresh and exposed catalysts were characterized by selective catalytic reduction (SCR) activity measurements, scanning electron microscope......–energy dispersive X-ray spectroscopy (SEM–EDX) and NH3-temperature programmed desorption (NH3-TPD). 95% deactivation was observed for the V2O5–WO3–TiO2 catalyst, while the Cu–HZSM5 and Cu–HMOR catalysts deactivated only 58% and 48%, respectively, after 1200 h KCl exposure. SEM analysis of the KCl aerosol exposed...... catalysts revealed that the potassium salt not only deposited on the catalyst surface, but also penetrated into the catalyst wall. Thus, the K/M ratio (M = V or Cu) was high on V2O5–WO3–TiO2 catalyst and comparatively less on Cu–HZSM5 and Cu–HMOR catalysts. NH3-TPD revealed that the KCl exposed Cu–HZSM5...

  15. Attrition Resistant Fischer-Tropsch Catalysts Based on FCC Supports

    Energy Technology Data Exchange (ETDEWEB)

    Adeyiga, Adeyinka

    2010-02-05

    Commercial spent fluid catalytic cracking (FCC) catalysts provided by Engelhard and Albemarle were used as supports for Fe-based catalysts with the goal of improving the attrition resistance of typical F-T catalysts. Catalysts with the Ruhrchemie composition (100 Fe/5 Cu/4.2 K/25 spent FCC on mass basis) were prepared by wet impregnation. XRD and XANES analysis showed the presence of Fe{sub 2}O{sub 3} in calcined catalysts. FeC{sub x} and Fe{sub 3}O{sub 4} were present in the activated catalysts. The metal composition of the catalysts was analyzed by ICP-MS. F-T activity of the catalysts activated in situ in CO at the same conditions as used prior to the attrition tests was measured using a fixed bed reactor at T = 573 K, P = 1.38 MPa and H{sub 2}:CO ratio of 0.67. Cu and K promoted Fe supported over Engelhard provided spent FCC catalyst shows relatively good attrition resistance (8.2 wt% fines lost), high CO conversion (81%) and C{sub 5}+ hydrocarbons selectivity (18.3%).

  16. Bio-oil hydrodeoxygenation catalysts produced using strong electrostatic adsorption

    Science.gov (United States)

    We synthesized hydrothermally stable metal catalysts with controlled particle size and distribution, with the goal of determining which catalyst(s) can selectively catalyze the production of aromatics from bio-oil (from pyrolysis of biomass). Both precious and base transition metal catalysts (Ru, Pt...

  17. Desulfurization of petroleum induced by ionization radiation: benzothiophene behavior

    International Nuclear Information System (INIS)

    Andrade, Luana S.; Calvo, Wilson A.P.; Duarte, Celina L.

    2013-01-01

    Hydrodesulfurization (HDS) is currently the most common method used by refineries; this removes significantly sulfur compounds from petroleum fractions, however, is not highly effective for removing thiophene compounds such as benzothiophene, and generates high costs for the oil industry. Another factor, are the environmental laws, which over the years has become increasingly strict, especially regarding the sulfur content. This compound cause incalculable damage both to the industry and to the environment. Therefore new methods for petroleum desulfurization should be studied in order to minimize the impacts that these compounds cause. In the present study it was used ionizing radiation, a promising method of advanced oxidation in reducing sulfur compounds. The analysis were performed after purge and trap concentration of samples, followed by gas chromatography-mass spectrometry (GC-MS). Then benzothiophene samples with the same concentration from 27 mg.L -1 to 139 mg.L -1 were irradiated with different absorbed doses of radiation ranging from 1 kGy to 20 kGy in gamma irradiator Cobalt-60, Gammacell. These samples were analyzed by the same procedure used for the calibration curve, and the removals of benzothiophene after ionizing radiation treatment were calculated. It was observed that at higher doses there was a greater degradation of this compound and the formation of fragments, such as 1,2-dimethylbenzene and toluene, which may be removed by simple processes. (author)

  18. Enhancement of alkylation catalysts for improved supercritical fluid regeneration

    Science.gov (United States)

    Ginosar, Daniel M.; Petkovic, Lucia M.

    2010-12-28

    A method of modifying an alkylation catalyst to reduce the formation of condensed hydrocarbon species thereon. The method comprises providing an alkylation catalyst comprising a plurality of active sites. The plurality of active sites on the alkylation catalyst may include a plurality of weakly acidic active sites, intermediate acidity active sites, and strongly acidic active sites. A base is adsorbed to a portion of the plurality of active sites, such as the strongly acidic active sites, selectively poisoning the strongly acidic active sites. A method of modifying the alkylation catalyst by providing an alkylation catalyst comprising a pore size distribution that sterically constrains formation of the condensed hydrocarbon species on the alkylation catalyst or by synthesizing the alkylation catalyst to comprise a decreased number of strongly acidic active sites is also disclosed, as is a method of improving a regeneration efficiency of the alkylation catalyst.

  19. Novel Fischer-Tropsch catalysts. [DOE patent

    Science.gov (United States)

    Vollhardt, K.P.C.; Perkins, P.

    Novel compounds are described which are used as improved Fischer-Tropsch catalysts particularly for the conversion of CO + H/sub 2/ to gaseous and liquid hydrocarbons at milder conditions than with prior catalysts.

  20. Molecular catalysts structure and functional design

    CERN Document Server

    Gade, Lutz H

    2014-01-01

    Highlighting the key aspects and latest advances in the rapidly developing field of molecular catalysis, this book covers new strategies to investigate reaction mechanisms, the enhancement of the catalysts' selectivity and efficiency, as well as the rational design of well-defined molecular catalysts. The interdisciplinary author team with an excellent reputation within the community discusses experimental and theoretical studies, along with examples of improved catalysts, and their application in organic synthesis, biocatalysis, and supported organometallic catalysis. As a result, readers wil

  1. Oxidation catalysts on alkaline earth supports

    Science.gov (United States)

    Mohajeri, Nahid

    2017-03-21

    An oxidation catalyst includes a support including particles of an alkaline earth salt, and first particles including a palladium compound on the support. The oxidation catalyst can also include precious metal group (PMG) metal particles in addition to the first particles intermixed together on the support. A gas permeable polymer that provides a continuous phase can completely encapsulate the particles and the support. The oxidation catalyst may be used as a gas sensor, where the first particles are chemochromic particles.

  2. Zircon Supported Copper Catalysts for the Steam Reforming of Methanol

    Science.gov (United States)

    Widiastri, M.; Fendy, Marsih, I. N.

    2008-03-01

    Steam reforming of methanol (SRM) is known as one of the most favorable catalytic processes for producing hydrogen. Current research on zirconia, ZrO2 supported copper catalyst revealed that CuO/ZrO2 as an active catalyst for the SRM. Zircon, ZrSiO4 is available from the by-product of tin mining. In the work presented here, the catalytic properties of CuO/ZrSiO4 with various copper oxide compositions ranging from 2.70% (catalyst I), 4.12% (catalyst II), and 7.12%-mass (catalyst III), synthesized by an incipient wetness impregnation technique, were investigated to methanol conversion, selectivity towards CO formation, and effect of ZnO addition (7.83%CuO/8.01%ZnO/ZrSiO4 = catalyst V). The catalytic activity was obtained using a fixed bed reactor and the zircon supported catalyst activity was compared to those of CuO/ZnO/Al2O3 catalyst (catalyst IV) and commercial Kujang LTSC catalyst. An X-ray powder diffraction (XRD) analysis was done to identify the abundant phases of the catalysts. The catalysts topography and particle diameter were measured with scanning electron microscopy (SEM) and composition of the catalysts was measured by SEM-EDX, scanning electron microscope-energy dispersive using X-ray analysis. The results of this research provide information on the possibility of using zircon (ZrSiO4) as solid support for SRM catalysts.

  3. Tritium transfer process using the CRNL wetproof catalyst

    International Nuclear Information System (INIS)

    Chuang, K.T.; Holtslander, W.J.

    1980-01-01

    The recovery of tritium from heavy water in CANDU reactor systems requires the transfer of the tritium atoms from water to hydrogen molecules prior to tritium concentration by cryogenic distillation. Isotopic exchange between liquid water and hydrogen using the CRNL-developed wetproof catalyst provides an effective method for the tritium transfer process. The development of this process has required the translation of the technology from a laboratory demonstration of catalyst activity for the exchange reaction to proving and demonstration that the process will meet the practical restraints in a full-scale tritium recovery plant. This has led to a program to demonstrate acceptable performance of the catalyst at operating conditions that will provide data for design of large plants. Laboratory and pilot plant work has shown adequate catalyst lifetimes, demonstrated catalyst regeneration techniques and defined and required feedwater purification systems to ensure optimum catalyst performance. The ability of the catalyst to promote the exchange of hydrogen isotopes between water and hydrogen has been shown to be technically feasible for the tritium transfer process

  4. Diethyl Ether Production Process with Various Catalyst Type

    Directory of Open Access Journals (Sweden)

    Widayat Widayat

    2012-12-01

    Full Text Available Several H-zeolite and HZSM-5 catalysts was preparated and their characters have also been investigated. H-zeolit Catalyst was preparated from Natural Zeolite that obtained from Malang District and Gunung Kidul District. Diethyl ether was produced by Ethanol with concentration of 95%. This research use fixed bed reactor that 1 gram of catalyst as bed catalyst, atmospheric pressure and temperature 140oC as the operating condition. Ethanol vapor from vaporization tank was driven by 200 ml/min Nitrogen stream. The responds in this research is liquid product concentration; diethyl ether, ethanol, methanol and water concentration. The results showed that the largest ethanol conversion was produced by the use of 56.44% HZSM-5 and the largest yield of diethyl ether diethyl was produced by the use of alumina and H-zeolite catalyst. The larger ratio between natural zeolite with HCl solvent will produce the larger surface area of catalyst and ethanol conversion. The largest ethanol conversion was produced at reactan ratio 1:20. [Keywords:  catalyst; ethanol conversion; dehydration process; yield of diethyl ether; natural zeolite].

  5. Micelle-derived catalysts for extended Schulz-Flory

    Energy Technology Data Exchange (ETDEWEB)

    Abrevaya, H.

    1986-01-01

    The objective of this program is to develop a synthesis gas conversion catalyst with higher selectivity to liquid fuels, while maintaining catalytic activity and stability at least equivalent relative to state-of-the-art precipitated iron catalysts. During this quarter, the emphasis in the program has been the investigation of the hydrocarbon cutoff hypothesis with supported ruthenium catalysts. An alumina-supported catalyst with smaller than 20[Angstrom] ruthenium particles was tested under conditions of maximal water gas shift activity. During this test more than 90% of the water made in the Fischer-Tropsch synthesis reaction was converted to H[sub 2]. However, the extent of ruthenium metal agglomeration was not reduced. Accordingly, it was not possible to conclude whether hydrocarbon cutoff occurs with smaller than 20[Angstrom] ruthenium particles on [gamma]-alumina. A ruthenium catalyst prepared on Y-type zeolite had 20[Angstrom] or smaller ruthenium particles according to STEM examination and a 15[Angstrom] average ruthenium metal particle size according to EXAFS examination. The ruthenium metal particle size was stable during the test with this catalyst. The hydrocarbon product distribution was Anderson-Schulz-Flory with no cutoff up to a carbon number of 160. A well-dispersed titania-supported ruthenium catalyst is going to be evaluated during the next quarter in order to determine whether hydrocarbon cutoff occurs.

  6. Reclaim/recycle of Pt/C catalysts for PEMFC

    International Nuclear Information System (INIS)

    Zhao, Jishi; He, Xiangming; Tian, Jianhua; Wan, Chunrong; Jiang, Changyin

    2007-01-01

    Platinum was reclaimed from Pt/C catalysts of the PEMFC by drying the degraded Pt/C catalysts at 80 o C for 3 h, followed by sintering at 600 o C for 6 h, dissolution by aqua fortis, purification with hydrochloric acid, reduction and filtration, successively. Pt/C catalysts were prepared again from the reclaimed Pt by two proposed processes, e.g., pH value control process and mass control process. The fuel cell with recycled catalysts presented a power density of over 0.18 W cm -2 . The reclaiming of Pt/C catalysts is a potential way for recycling Pt for PEMFC, reducing the cost of PEMFC

  7. Oxidative desulfurization of benzothiophene and thiophene with WOx/ZrO2 catalysts: effect of calcination temperature of catalysts.

    Science.gov (United States)

    Hasan, Zubair; Jeon, Jaewoo; Jhung, Sung Hwa

    2012-02-29

    Oxidative desulfurization (ODS) of model fuel containing benzothiophene (BT) or thiophene (Th) has been carried out with WO(x)/ZrO2 catalyst, which was calcined at various temperatures. Based on the conversion of BT in the model fuel, it can be shown that the optimum calcination temperature of WOx/ZrO2 catalyst is around 700 °C. The most active catalyst is composed of tetragonal zirconia (ZrO2) with well dispersed polyoxotungstate species and it is necessary to minimize the contents of the crystalline WO3 and monoclinic ZrO2 for a high BT conversion. The oxidation rate was interpreted with the first-order kinetics, and it demonstrated the importance of electron density since the kinetic constant for BT was higher than that for Th even though the BT is larger than Th in size. A WOx/ZrO2 catalyst, treated suitably, can be used as a reusable active catalyst in the ODS. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Dissolved oxygen removal in a column packed with catalyst

    International Nuclear Information System (INIS)

    Lee, Han Soo; Chung, Hong Suk; Cho, Young Hyun; Ahn, Do Hee; Kim, Eun Kee

    1996-01-01

    The dissolved oxygen removed by H 2 -O 2 reaction in column packed with various catalysts was examined. The catalysts employed were the prepared polymeric catalyst, platinum on activated carbon, and Lewatit OC-1045 which is available commercially. The column experiments with the prepared polymeric catalyst showed the dissolved oxygen reduced to 35 ppb which is below the limit in feel water of power plants. This implies the likely application of the prepared catalyst for practical use. The activated carbon required the pre-treatment for the removed of dissolved oxygen, since the surface of activated carbon contains much oxygen adsorbed initially. The Lewatit catalyst exposed the best performance, however, the aged one showed the gradual loss of catalytic activity due to degradation of resin catalyst. 14 refs., 6 figs., 2 tabs. (author)

  9. 40 CFR 90.427 - Catalyst thermal stress resistance evaluation.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Catalyst thermal stress resistance... Gaseous Exhaust Test Procedures § 90.427 Catalyst thermal stress resistance evaluation. (a) The purpose of... catalyst conversion efficiency for Phase 1 engines. The thermal stress is imposed on the test catalyst by...

  10. Tethered catalysts for the hydration of carbon dioxide

    Science.gov (United States)

    Valdez, Carlos A; Satcher, Jr., Joe H; Aines, Roger D; Wong, Sergio E; Baker, Sarah E; Lightstone, Felice C; Stolaroff, Joshuah K

    2014-11-04

    A system is provided that substantially increases the efficiency of CO.sub.2 capture and removal by positioning a catalyst within an optimal distance from the air-liquid interface. The catalyst is positioned within the layer determined to be the highest concentration of carbon dioxide. A hydrophobic tether is attached to the catalyst and the hydrophobic tether modulates the position of the catalyst within the liquid layer containing the highest concentration of carbon dioxide.

  11. CATALYSTS NHI Thermochemical Systems FY 2009 Year-End Report

    International Nuclear Information System (INIS)

    Ginosar, Daniel M.

    2009-01-01

    Fiscal Year 2009 work in the Catalysts project focused on advanced catalysts for the decomposition of sulfuric acid, a reaction common to both the Sulfur-Iodine (S-I) cycle and the Hybrid Sulfur cycle. Prior years effort in this project has found that although platinum supported on titanium oxide will be an acceptable catalyst for sulfuric acid decomposition in the integrated laboratory scale (ILS) project, the material has short comings, including significant cost and high deactivation rates due to sintering and platinum evaporation. For pilot and larger scale systems, the catalyst stability needs to be improved significantly. In Fiscal Year 2008 it was found that at atmospheric pressure, deactivation rates of a 1 wt% platinum catalyst could be reduced by 300% by adding either 0.3 wt% iridium (Ir) or 0.3 wt% ruthenium (Ru) to the catalyst. In Fiscal Year 2009, work focused on examining the platinum group metal catalysts activity and stability at elevated pressures. In addition, simple and complex metal oxides are known to catalyze the sulfuric acid decomposition reaction. These metal oxides could offer activities comparable to platinum but at significantly reduced cost. Thus a second focus for Fiscal Year 2009 was to explore metal oxide catalysts for the sulfuric acid decomposition reaction. In Fiscal Year 2007 several commercial activated carbons had been identified for the HI decomposition reaction; a reaction specific to the S-I cycle. Those materials should be acceptable for the pilot scale project. The activated carbon catalysts have some disadvantages including low activity at the lower range of reactor operating temperature (350 to 400 C) and a propensity to generate carbon monoxide in the presence of water that could contaminate the hydrogen product, but due to limited funding, this area had low priority in Fiscal Year 2009. Fiscal Year 2009 catalyst work included five tasks: development, and testing of stabilized platinum based H2SO4 catalysts

  12. Mordenite - Type Zeolite SCR Catalysts with Iron or Copper

    DEFF Research Database (Denmark)

    2012-01-01

    Cu/mordenite catalysts were found to be highly active for the SCR of NO with NH3 and exhibited high resistance to alkali poisoning. Redox and acidic properties of Cu/mordenite were well preserved after poisoning with potassium unlike that of vanadium catalysts. Fe-mordenite catalysts also reveale...... to be essential requirements for the high alkali resistance. Mordenite-type zeolite based catalysts could therefore be attractive alternatives to conventional SCR catalysts for biomass fired power plant flue gas treatment....

  13. NOVEL RU-NI-S ELECTRODE CATALYST FOR PEMFC

    Science.gov (United States)

    The expected results from this project include: a new formula and preparation procedures for Ru-Ni-S catalyst; demonstration of CO and S tolerance of the new catalyst; a small size PEMFC with Ru-Ni-S catalyst and good performance; an...

  14. Steam dealkylation catalyst and a method for its activation

    International Nuclear Information System (INIS)

    Dorawala, T.; Reinhard, R.

    1980-01-01

    The method of activating a supported catalyst containing oxides of a group viii metal and of a group 1 a metal which comprises heating said catalyst at a rate of 10 0 to 500 0 F/hr to a temperature of 650 0 to 1400 0 F in a hydrogen atmosphere; maintaining said heated catalyst in a hydrogen atmosphere at 650 0 to 1400 0 F for 2 to 30 hours thereby forming a hydrogen-treated catalyst; and maintaining the hydrogen-treated catalyst in a steam-hydrogen atmosphere at 650 0 to 1400 0 F for 2 to 20 hours thereby forming a steamed hydrogen-treated catalyst

  15. Ship-in-a-bottle catalysts

    Science.gov (United States)

    Haw, James F.; Song, Weiguo

    2006-07-18

    In accordance with the present invention there is provided a novel catalyst system in which the catalytic structure is tailormade at the nanometer scale using the invention's novel ship-in-a-bottle synthesis techniques. The invention describes modified forms of solid catalysts for use in heterogeneous catalysis that have a microporous structure defined by nanocages. Examples include zeolites, SAPOs, and analogous materials that have the controlled pore dimensions and hydrothermal stability required for many industrial processes. The invention provides for modification of these catalysts using reagents that are small enough to pass through the windows used to access the cages. The small reagents are then reacted to form larger molecules in the cages.

  16. Niobium, catalyst repair kit

    International Nuclear Information System (INIS)

    Tanabe, K.

    1991-01-01

    This paper reports that niobium oxides, when small amounts are added to known catalysts, enhance catalytic activity and selectivity and prolong catalyst life. Moreover, niobium oxides exhibit a pronounced effect as supports of metal or metal oxide catalysts. Recently we found that the surface acidity of hydrated niobium pentoxide, niobic acid (Nb 2 O 5 · nH 2 O), corresponds to the acidity of 70% sulfuric acid and exhibits high catalytic activity, selectivity, and stability for acid-catalyzed reactions in which water molecules participate. Although there are few differences in electronegativity and ionic radius between niobium and its neighbors in the periodic table, it is interesting that the promoter effect, support effect, and acidic nature of niobium compounds are quite different from those of compounds of the surrounding elements. Here we review what's known of niobium compounds from the viewpoint of their pronounced catalytic behavior

  17. Supported chromium-molybdenum and tungsten sulfide catalysts

    International Nuclear Information System (INIS)

    Chianelli, R.R.; Jacobson, A.J.; Young, A.R.

    1988-01-01

    This patent describes the process for preparing a supported hydroprocessing catalyst. The process comprising compositing a quantity of a particulate, porous catalyst support material comprising one or more refactory oxides with one or more catalyst precursor salts and heating the composite at elevated temperature of at least about 200/sup 0/C up to about 600/sup 0/, in the presence of a sulfur-bearing compound in an amount whereby sulfur in the form of the sulfur-bearing compound in an amount whereby sulfur in the form of the sulfur bearing compound is present in excess of that contained in the catalyst precursor and under oxygen-free conditions for a time sufficient to form the catalyst. The catalyst precursor salt contains a tetrathiometallate anion of Mo, W or mixture therof and a cation comprising trivalent chromium or a mixture of trivalent chromium with one or more divalent promoter metals selected from the group consisting of Fe, Ni, Co, Mn, Cu and a mixture thereof wherein the trivalent chromium and divalent promoter metals are chelated by at least one neutral, nitrogen-containing polydentate ligand, L

  18. Toxicity of middle distillates from dermal exposure.

    Science.gov (United States)

    Koschier, F J

    1999-02-01

    This report focuses on recent studies that investigated the effects of kerosine dermal exposure on neurotoxicity and reproductive/developmental toxicity. Background toxicity information will also be reviewed for kerosine range mid distillates. The kerosine range mid distillates have a carbon range of C9-C16 and have a boiling range of 302-554 degrees F (150-290 degrees C). This category includes kerosine, aviation fuels (e.g., Jet A, JP-5 and JP-8), no. 1 fuel oil and diesel fuel oil. In general, the kerosine range mid distillates demonstrate relatively low acute toxicity by any route of exposure. High inhalation exposures can induce central nervous system depression characterized by ataxia, hypoactivity and prostration. Kerosines are known to cause skin irritation and inflammation under conditions of acute and repeated exposure in animals and humans, but are only slightly irritating to the eye and are not skin sensitizers. In addition, the absorption of kerosine range mid distillates through the skin has been demonstrated to be fairly rapid, but limited to approximately 10-15% of the applied dose after 24 hours. The kerosine range mid distillates are generally inactive in genetic toxicity tests although positive studies have been reported. Positive results, while at times equivocal, have been reported for straight run kerosine and jet fuel A in the mouse lymphoma assay with metabolic activation, and hydrodesulfurized kerosine (mouse) and jet fuel A (rat) in the bone marrow cytogenetic assay. Effects on the nervous and reproductive systems have been reported in humans and experimental animals under conditions where inhalation and dermal exposure to specific kerosine type fuels are sometimes difficult to separate. Recent laboratory studies have addressed this point and examined the effects of dermal exposure. In these studies, rats were exposed to hydrodesulfurized kerosine by skin application to determine the potential of dermal contact to cause reproductive

  19. Model studies in hydrocarbon oxidation. Progress report, April 1--November 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Parkin, G.

    1993-12-31

    The research performed during the period 1 April--31 November 1993 has centered on an investigation of the chemistry of molecular terminal oxo complexes. In the long term, it is hoped that this research will provide results that are relevant to systems concerned with hydrocarbon oxidation. The authors have also carried studies of transition metal complexes that contain terminal sulfido, selenido and tellurido ligands, since a knowledge of the chemistry of the heavier congeners of this group will help provide a more complete understanding of the chemistry of transition metal oxo complexes. Furthermore, the chemistry of the metal sulfido derivatives will be directly related to hydrodesulfurization, an extremely important industrial process, for which transition metal-sulfido derivatives, e.g. MoS{sub 2}, are active catalysts.

  20. Factors influencing the charge distribution on Pd x Pt y bimetallic nanoparticles

    Directory of Open Access Journals (Sweden)

    Carlos M. Celis-Cornejo

    2013-12-01

    Full Text Available We performed quantum mechanics calculations to elucidate the electronic behavior of Pd-Pt bimetallic nanoparticles, using density functional theory, in response to particle size and stoichiometric composition. Using neutrally charged nanoparticles and the Bader charge analysis, we found that external Pd atoms were positively charged, which agrees with previous XPS observations of supported Pd-Pt nanoparticles. From the calculations, unsupported nanoparticles exhibit an electron transfer from Pd to Pt. This result supports the idea that Pd electron-deficient species are possibly responsible of the hydrogenating function of these catalysts, in the hydrodesulfurization of dibenzothiophene. Additionally, it was found that the particle size does not affect the electronic charge distribution and the stoichiometric composition is the factor that greatly influences this property in nanoparticles.

  1. Catalyst for Decomposition of Nitrogen Oxides

    Science.gov (United States)

    Schryer, David R. (Inventor); Jordan, Jeffrey D. (Inventor); Akyurtlu, Ates (Inventor); Akyurtlu, Jale (Inventor)

    2015-01-01

    This invention relates generally to a platinized tin oxide-based catalyst. It relates particularly to an improved platinized tin oxide-based catalyst able to decompose nitric oxide to nitrogen and oxygen without the necessity of a reducing gas.

  2. A novel magnetically recyclable heterogeneous catalyst

    Indian Academy of Sciences (India)

    propanesultone. 1. Introduction ... O. Scheme 2. The reaction of benzaldehyde with 1-phenyl-3- ... (2 mmol), catalyst (2 mol%, except for entries 7 and 9), room temperature. bCatalyst = 1 .... The electronic supporting information can be seen in.

  3. New catalysts for exhaust gas cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Haerkoenen, M [Kemira Metalkat Oy, Oulu (Finland)

    1997-12-31

    Major challenge for future catalyst systems was to develop thermally more stable washcoats for close coupled operating conditions and for engines operating under high speed and load conditions. To design these future emission systems extensive research and development was undertaken to develop methods to disperse and stabilize the key catalytic materials for operation at much higher temperatures. Second priority was to design catalysts that are more effective under low temperature exhaust conditions and have improved oxygen storage properties in the washcoats. Incorporating new materials and modified preparation technology a new generation of metallic catalyst formulations emerged, those being trimetallic K6 (Pt:Pd:Rh and bimetallic K7) (Pd+Pd:Rh). The target was to combine the best property of Pt:Rh (good NO{sub x} reduction) with that of the good HC oxidation activity of Pd and to ensure that precious metal/support interactions were positively maintained. Both K6 and K7 concepts contain special catalyst structures with optimized washcoat performance which can be brick converter configuration. Improvement in light-off, thermal stability and transient performance with these new catalyst formulations have clearly been shown in both laboratory and vehicle testing. (author) (20 refs.)

  4. New catalysts for exhaust gas cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Haerkoenen, M. [Kemira Metalkat Oy, Oulu (Finland)

    1996-12-31

    Major challenge for future catalyst systems was to develop thermally more stable washcoats for close coupled operating conditions and for engines operating under high speed and load conditions. To design these future emission systems extensive research and development was undertaken to develop methods to disperse and stabilize the key catalytic materials for operation at much higher temperatures. Second priority was to design catalysts that are more effective under low temperature exhaust conditions and have improved oxygen storage properties in the washcoats. Incorporating new materials and modified preparation technology a new generation of metallic catalyst formulations emerged, those being trimetallic K6 (Pt:Pd:Rh and bimetallic K7) (Pd+Pd:Rh). The target was to combine the best property of Pt:Rh (good NO{sub x} reduction) with that of the good HC oxidation activity of Pd and to ensure that precious metal/support interactions were positively maintained. Both K6 and K7 concepts contain special catalyst structures with optimized washcoat performance which can be brick converter configuration. Improvement in light-off, thermal stability and transient performance with these new catalyst formulations have clearly been shown in both laboratory and vehicle testing. (author) (20 refs.)

  5. Electron microscopic studies of natural gas oxidation catalyst – Effects of thermally accelerated aging on catalyst microstructure

    DEFF Research Database (Denmark)

    Honkanen, Mari; Hansen, Thomas Willum; Jiang, Hua

    2017-01-01

    Structural changes of PtPd nanoparticles in a natural gas oxidation catalyst were studied at elevated temperatures in air and low-oxygen conditions and in situ using environmental transmission electron microscopy (ETEM). The fresh catalyst shows

  6. Boron-containing catalysts for dry reforming of methane to synthesis gas

    KAUST Repository

    Takanabe, Kazuhiro

    2018-01-04

    The present invention uses a cobalt catalyst for carbon dioxide reforming of lower alkanes to synthesis gas having a cobalt catalyst on an oxide support where the supported cobalt catalyst has been modified with a boron precursor. The boron-treated cobalt catalyst systems as described herein show significant increases in the conversion of CH4 and CO2 during the dry reforming of methane (DRM) reaction as compared to traditional catalysts. Described herein are supported catalysts and methods of using the catalysts for the dry reforming of methane to synthesis gas, with the supported catalysts in the present invention include a boron-treated cobalt catalyst disposed on an oxide support. Also described herein are processes for preparing the supported catalysts.

  7. Effect of catalyst on melamine-formaldehyde organic aerogel

    International Nuclear Information System (INIS)

    Sun Zhipeng; Yang Xi; Fu Zhibing; Zhong Minglong; Wang Chaoyang; Ma Kangfu; Huang Xiaoli; Chang Lijuan

    2013-01-01

    A series of melamine-formaldehyde(MF) organic aerogel templates were prepared with different categories and concentration of catalyst. Their molecular structure, thermal stability and pore structure were tested by Fourier transform infrared spectroscopy, thermogravimetric analysis and nitrogen adsorption. It is indicated that the type and concentration of catalyst do not affect molecular structure and thermal stability of the MF organic aerogel template. The specific surface area and pore volume of the MF organic aerogel template using Na 2 CO 3 as catalyst are higher than those using NaOH, NaHCO 3 as catalyst. When the ratio of the concentration of melamine to that of catalyst is 500, the specific surface area is maximized. (authors)

  8. deNOx catalysts for biomass combustion

    DEFF Research Database (Denmark)

    Kristensen, Steffen Buus

    The present thesis revolves around the challenges involved in removal of nitrogen oxides in biomass fired power plants. Nitrogen oxides are unwanted byproducts formed to some extent during almost any combustion. In coal fired plants these byproducts are removed by selective catalytic reduction......, however the alkali in biomass complicate matters. Alkali in biomass severely deactivates the catalyst used for the selective catalytic reduction in matter of weeks, hence a more alkali resistant catalyst is needed. In the thesis a solution to the problem is presented, the nano particle deNOx catalyst...

  9. Catalyst for hydrogen-amine D exchange

    International Nuclear Information System (INIS)

    Holtslander, W.J.; Johnson, R.E.

    1976-01-01

    A process is claimed for deuterium isotopic enrichment (suitable for use in heavy water production) by amine-hydrogen exchange in which the exchange catalyst comprises a mixture of alkyl amides of two metals selected from the group consisting of the alkali metals. Catalyst mixtures comprising at least one of the alkali amides of lithium and potassium are preferred. At least one of the following benefits are obtained: decreased hydride formation, decreased thermal decomposition of alkyl amide, increased catalyst solubility in the amine phase, and increased exchange efficiency. 11 claims

  10. Enhanced gasification of wood in the presence of mixed catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Weber, S. L.; Mudge, L. K.; Sealock, Jr., L. J.; Robertus, R. J.; Mitchell, D. E.

    Experimental results obtained in laboratory investigations of steam gasification of wood in the presence of mixed catalysts are presented. These studies are designed to test the technical feasibility of producing specific gaseous products from wood by enhancing its reactivity and product specificity through the use of combined catalysts. The desired products include substitute natural gas, hydrocarbon synthesis gas and ammonia synthesis gas. The gasification reactions are controlled through the use of specific catalyst combinations and operating parameters. A primary alkali carbonate gasification catalyst impregnated into the wood combined with specific commercially available secondary catalysts produced the desired products. A yield of 50 vol % methane was obtained with a randomly mixed combination of a commercial nickel methanation catalyst and silica-alumina cracking catalyst at a weight ratio of 3:1 respectively. Steam gasification of wood in the presence of a commercial Si-Al cracking catalyst produced the desired hydrocarbon synthesis gas. Hydrogen-to-carbon monoxide ratios needed for Fischer-Tropsch synthesis of hydrocarbons were obtained with this catalyst system. A hydrogen-to-nitrogen ratio of 3:1 for ammonia synthesis gas was achieved with steam-air gasification of wood in the presence of catalysts. The most effective secondary catalyst system employed to produce the ammonia synthesis gas included two commercially prepared catalysts formulated to promote the water-gas shift reaction.

  11. Titanium Dioxide as a Catalyst Support in Heterogeneous Catalysis

    Science.gov (United States)

    Bagheri, Samira; Muhd Julkapli, Nurhidayatullaili; Bee Abd Hamid, Sharifah

    2014-01-01

    The lack of stability is a challenge for most heterogeneous catalysts. During operations, the agglomeration of particles may block the active sites of the catalyst, which is believed to contribute to its instability. Recently, titanium oxide (TiO2) was introduced as an alternative support material for heterogeneous catalyst due to the effect of its high surface area stabilizing the catalysts in its mesoporous structure. TiO2 supported metal catalysts have attracted interest due to TiO2 nanoparticles high activity for various reduction and oxidation reactions at low pressures and temperatures. Furthermore, TiO2 was found to be a good metal oxide catalyst support due to the strong metal support interaction, chemical stability, and acid-base property. The aforementioned properties make heterogeneous TiO2 supported catalysts show a high potential in photocatalyst-related applications, electrodes for wet solar cells, synthesis of fine chemicals, and others. This review focuses on TiO2 as a support material for heterogeneous catalysts and its potential applications. PMID:25383380

  12. Thin Film Catalyst Layers for Direct Methanol Fuel Cells

    Science.gov (United States)

    Witham, C. K.; Chun, W.; Ruiz, R.; Valdez, T. I.; Narayanan, S. R.

    2000-01-01

    One of the primary obstacles to the widespread use of the direct methanol fuel cell (DMFC) is the high cost of the catalyst. Therefore, reducing the catalyst loading well below the current level of 8-12 mg/cm 2 would be important to commercialization. The current methods for preparation of catalyst layers consisting of catalyst, ionomer and sometimes a hydrophobic additive are applied by either painting, spraying, decal transfer or screen printing processes. Sputter deposition is a coating technique widely used in manufacturing and therefore particularly attractive. In this study we have begun to explore sputtering as a method for catalyst deposition. Present experiments focus on Pt-Ru catalyst layers for the anode.

  13. Homogeneous deuterium exchange using rhenium and platinum chloride catalysts

    International Nuclear Information System (INIS)

    Fawdry, R.M.

    1979-01-01

    Previous studies of homogeneous hydrogen isotope exchange are mostly confined to one catalyst, the tetrachloroplatinite salt. Recent reports have indicated that chloride salts of iridium and rhodium may also be homogeneous exchange catalysts similar to the tetrachloroplatinite, but with much lower activities. Exchange by these homogeneous catalysts is frequently accompanied by metal precipitation with the termination of homogeneous exchange, particularly in the case of alkane exchange. The studies presented in this thesis describe two different approaches to overcome this limitation of homogeneous hydrogen isotope exchange catalysts. The first approach was to improve the stability of an existing homogeneous catalyst and the second was to develop a new homogeneous exchange catalyst which is free of the instability limitation

  14. Alkali promotion effect in Fischer-Tropsch cobalt-alumina catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Eliseev, O.L.; Tsapkina, M.V.; Davydov, P.E.; Kazantsev, R.V. [Russian Academy of Sciences, Moscow (Russian Federation). N.D. Zelinsky Inst. of Organic Chemistry; Belousova, O.S.; Lapidus, A.L. [Gubkin Russian State Univ. of Oil and Gas, Moscow (Russian Federation)

    2011-07-01

    Promoting Co-alumina Fischer-Tropsch synthesis catalysts with alkali and alkaline-earth metals was studied. XRD, oxygen titration and CO chemisorption were used for the characterization of the catalysts. The best results in terms of catalyst selectivity and long-chain alkanes content in synthesized products were obtained with K-promoted catalyst. Catalytic performance strongly depends on K:Co atomic ratio as well as preparation procedure. Effect of K loading on selectivities is non-linear with extreme point at K:Co=0.01. Significant increase in C{sub 5+} selectivity of K-promoted catalyst may be explained as a result of strong CO adsorption on the catalyst surface, as was confirmed in CO chemisorption experiments. (orig.)

  15. Cerium-containing catalysts for obtaining ethylene from ethanol

    Directory of Open Access Journals (Sweden)

    Kusman Dossumov

    2014-10-01

    Full Text Available The catalysts Се/γ-Al2O3 и Се-La/γ-Al2O3 were studied by methods of electron microscopy (EM and temperature-programmed desorption (TPD of ammonia. Their activity was studied in reaction of ethanol dehydration with formation of ethylene. Modification of Се/γ-Al2O3 catalyst by Lanthanum promotes dispersion of the catalyst and increases the amount of acidic sites. This modification positively affects the catalyst activity.

  16. Study of Pd-Au/MWCNTs formic acid electrooxidation catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Mikolajczuk, Anna; Borodzinski, Andrzej; Kedzierzawski, Piotr; Lesiak, Beata [Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warszawa (Poland); Stobinski, Leszek [Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warszawa (Poland); Faculty of Materials Science and Engineering, Warsaw University of Technology, ul. Woloska 141, 02-507 Warsaw (Poland); Koever, Laszlo; Toth, Jozsef [Institute of Nuclear Research, Hungarian Academy of Sciences (ATOMKI), P. O. Box 51, 4001 Debrecen (Hungary); Lin, Hong-Ming [Department of Materials Engineering, Tatung University, 40, Chungshan N. Rd., 3rd Sec, 104, Taipei (China)

    2010-12-15

    The Pd-Au multiwall carbon nanotubes (MWCNTs) supported catalyst exhibits higher power density in direct formic acid fuel cell (DFAFC) than similar Pd/MWCNTs catalyst. The Pd-Au/MWCNTs catalyst also exhibits higher activity and is more stable in electrooxidation reaction of formic acid during cyclic voltammetry (CV) measurements. After preparation by polyol method, the catalyst was subjected to two type of treatments: (I) annealing at 250 C in 100% of Ar, (II) reducing in 5% of H{sub 2} in Ar atmosphere at 200 C. It was observed that the catalyst after treatment I was completely inactive, whereas after treatment II exhibited high activity. In order to explain this effect the catalysts were characterized by electron spectroscopy methods. The higher initial catalytic activity of Pd-Au/MWCNTs catalyst than Pd/MWCNTs catalyst in reaction of formic acid electrooxidation was attributed to electronic effect of gold in Pd-Au solution, and larger content of small Au nanoparticles of 1 nm size. The catalytic inactivity of Pd-Au/MWCNTs catalysts annealed in argon is attributed to carbon amorphous overlayer covering of Pd oxide shell on the metallic nanoparticles. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Endurance testing of a WDS catalyst

    International Nuclear Information System (INIS)

    Vladu, Mihaela; Brad, Sebastian; Vijulie, Mihai; Vasut, Felicia; Constantin, Marin

    2007-01-01

    Full text: The Water Detritiation System (WDS) of ITER is a safety related component since it is the final barrier against tritium discharge into the environment. Therefore, its subcomponents have to be qualified and predictions on the time evolution of performances have to be made. During the activities devoted to JET WDS, test at lower concentrations of tritium and at small scale have been performed. The goal of this work is to extend the endurance testings and to check early results by tests under relevant conditions. The degradation of the WDS catalyst can strongly affect its separation performances and consequently it will entail a raise of the tritium releases into the environment. If a catalyst based on Teflon material is used for the LPCE column of WDS, the fluoride that may be formed and released due to the tritium presence causes the corrosion of the LPCE column with unpredictable effects. Therefore the quantification of catalyst degradation and the amount of fluoride released is needed for planning the maintenance activities and to predict the operation life time of the WDS components. The manufacturing of hydrophobic catalysts with activity that is not lowered by liquid water determined the rise of interest for the isotopes separation techniques in the hydrogen - water system. The active component of these catalysts is Pt (the only material to be further discussed) that enhances the exchange between the hydrogen and water vapors. The hydrophobic support does not allow the wetting and blocking by water of the active surface. Hydrophobic catalysts were manufactured by two methods: - direct deposition of Pt into the pores of a hydrophobic support (Teflon, carbon monofluoride, poly styrene, styrene di-vinyl benzene, etc.); - deposition on a hydrophilic support, most common charcoal, followed by hydrophobization by silicon oil or by homogenizing with hydrophobic polymer (Teflon, silicon resins). This type of catalysts is one of the most studied groups due to

  18. Preparation of hydrophobic Pt-catalysts for decontamination of nuclear effluents

    International Nuclear Information System (INIS)

    Ionita, Gh.; Popescu, I.; Retegan, T.; Stefanescu, I.

    2005-01-01

    Based on the long experience of the authors, in the preparation, testing and evaluation of the performances of hydrophobic catalysts, and based on the reviewed references, this paper presents up-to-date R and D activities on the preparation methods and applications of the hydrophobic catalysts, in deuterium and tritium separation. The objectives of the paper are: (1) to provide a database for selection of the most appropriate catalyst and catalytic packing for above mentioned processes, (2) to evaluate the potentiality of hydrophobic Pt-catalysts in the deuterium and tritium separation (3) to asses and to find a new procedure for preparation a new improved hydrophobic catalyst. The merits of the hydrophobic catalysts are shown in comparison to hydrophilic catalysts. As results of the review some general conclusions about the applications of hydrophobic catalysts in environmental field are as follow: (1) the hydrophobic Pt-catalysts packed in the trickle bed reactors showed a high catalytic activity and long stability; (2) the utilization of the hydrophobic Pt-catalysts for tritium removal from liquid and gaseous effluent in nuclear field was entirely confirmed on industrial scale; (3) the extension of the utilization of the hydrophobic Pt-catalysts in other new processes, which take place in presence of liquid water or high humidity are subjected to testing. (author)

  19. Preparation of hydrophobic Pt-catalysts for decontamination of nuclear effluents

    International Nuclear Information System (INIS)

    Ionita, Gh.; Popescu, I.; Retegan, T.; Stefanescu, I.

    2004-01-01

    Based on the long experience of the authors, in the preparation, testing and evaluation of the performances of hydrophobic catalysts, and based on the reviewed references, this paper presents up-to-date R and D activities on the preparation methods and applications of the hydrophobic catalysts, in deuterium and tritium separation. The objectives of the paper are: - to provide a database for selection of the most appropriate catalyst and catalytic packing for above mentioned processes; - to evaluate the potentiality of hydrophobic Pt-catalysts in the deuterium and tritium separation; - to assess and to find a new procedure for preparation a new improved hydrophobic catalyst. The merits of the hydrophobic catalysts are shown in comparison to hydrophilic catalysts. As results of the review some general conclusions about the applications of hydrophobic catalysts in environmental field are as follows: - the hydrophobic Pt-catalysts packed in the trickle bed reactors showed a high catalytic activity and long stability; - the utilization of the hydrophobic Pt-catalysts for tritium removal from liquid and gaseous effluent in nuclear field was entirely confirmed on industrial scale; - the extension of the utilization of the hydrophobic Pt-catalysts in other new processes, which take place in presence of liquid water or high humidity are subject to testing. (authors)

  20. Correlation between Fischer-Tropsch catalytic activity and composition of catalysts

    Directory of Open Access Journals (Sweden)

    Subbarao Duvvuri

    2011-11-01

    Full Text Available Abstract This paper presents the synthesis and characterization of monometallic and bimetallic cobalt and iron nanoparticles supported on alumina. The catalysts were prepared by a wet impregnation method. Samples were characterized using temperature-programmed reduction (TPR, temperature-programmed oxidation (TPO, CO-chemisorption, transmission electron microscopy (TEM, field emission scanning electron microscopy (FESEM-EDX and N2-adsorption analysis. Fischer-Tropsch synthesis (FTS was carried out in a fixed-bed microreactor at 543 K and 1 atm, with H2/CO = 2 v/v and space velocity, SV = 12L/g.h. The physicochemical properties and the FTS activity of the bimetallic catalysts were analyzed and compared with those of monometallic cobalt and iron catalysts at similar operating conditions. H2-TPR analysis of cobalt catalyst indicated three temperature regions at 506°C (low, 650°C (medium and 731°C (high. The incorporation of iron up to 30% into cobalt catalysts increased the reduction, CO chemisorption and number of cobalt active sites of the catalyst while an opposite trend was observed for the iron-riched bimetallic catalysts. The CO conversion was 6.3% and 4.6%, over the monometallic cobalt and iron catalysts, respectively. Bimetallic catalysts enhanced the CO conversion. Amongst the catalysts studied, bimetallic catalyst with the composition of 70Co30Fe showed the highest CO conversion (8.1% while exhibiting the same product selectivity as that of monometallic Co catalyst. Monometallic iron catalyst showed the lowest selectivity for C5+ hydrocarbons (1.6%.

  1. Thermal decomposition of supported lithium nitrate catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, Maria Lucia [INTEQUI (CONICET-UNSL), 25 de Mayo 384, V. Mercedes, 5730, San Luis (Argentina); Lick, Ileana Daniela [CINDECA (CONICET-UNLP), Calle 47 No 257, La Plata, 1900, Buenos Aires (Argentina); Ponzi, Marta Isabel [INTEQUI (CONICET-UNSL), 25 de Mayo 384, V. Mercedes, 5730, San Luis (Argentina); Castellon, Enrique Rodriguez; Jimenez-Lopez, Antonio [Departamento de Quimica Inorganica, Cristalografia y Mineralogia. Facultad de Ciencias, Universidad de Malaga, Campus de Teatinos, 29071 Malaga (Spain); Ponzi, Esther Natalia, E-mail: eponzi@quimica.unlp.edu.ar [CINDECA (CONICET-UNLP), Calle 47 No 257, La Plata, 1900, Buenos Aires (Argentina)

    2010-02-20

    New catalysts for soot combustion were prepared by impregnation of different supports (SiO{sub 2}, ZrO{sub 2} and ZrO{sub 2}.nH{sub 2}O) with a LiNO{sub 3} solution and then characterized by means of FTIR, XPS, TGA and UV-vis spectroscopy, whereby the presence of lithium nitrate in the prepared catalysts was identified and quantified. The soot combustion rate using this series of catalysts (LiNO{sub 3}/support) was compared with the activity of a series of impregnated catalysts prepared using LiOH (Li{sub 2}O/supports). Catalysts prepared using LiNO{sub 3} are found to be more active than those prepared using LiOH. The catalytic performance was also studied with a NO/O{sub 2} mixture in the feed, demonstrating that NO increases the combustion rate of soot, probably as a consequence of lithium oxide forming an 'in situ' nitrate ion.

  2. Hydrodeoxygenation of Guaiacol over Ceria-Zirconia Catalysts.

    Science.gov (United States)

    Schimming, Sarah M; LaMont, Onaje D; König, Michael; Rogers, Allyson K; D'Amico, Andrew D; Yung, Matthew M; Sievers, Carsten

    2015-06-22

    The hydrodeoxygenation of guaiacol is investigated over bulk ceria and ceria-zirconia catalysts with different elemental compositions. The reactions are performed in a flow reactor at 1 atm and 275-400 °C. The primary products are phenol and catechol, whereas cresol and benzene are formed as secondary products. No products with hydrogenated rings are formed. The highest conversion of guaiacol is achieved over a catalyst containing 60 mol % CeO2 and 40 mol % ZrO2 . Pseudo-first-order activation energies of 97-114 kJ mol(-1) are observed over the mixed metal oxide catalysts. None of the catalysts show significant deactivation during 72 h on stream. The important physicochemical properties of the catalysts are characterized by X-ray diffraction (XRD), temperature-programmed reduction, titration of oxygen vacancies, and temperature-programmed desorption of ammonia. On the basis of these experimental results, the reasons for the observed reactivity trends are identified. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Liquefaction of kraft lignin by hydrocracking with simultaneous use of a novel dual acid-base catalyst and a hydrogenation catalyst.

    Science.gov (United States)

    Wang, Jindong; Li, Wenzhi; Wang, Huizhen; Ma, Qiaozhi; Li, Song; Chang, Hou-Min; Jameel, Hasan

    2017-11-01

    In this study, a novel catalyst, S 2 O 8 2- -KNO 3 /TiO 2 , which has active acidic and basic sites, was prepared and used in lignin hydrocracking with a co-catalyst, Ru/C. Ru/C is an efficient hydrogenation catalyst and S 2 O 8 2- -KNO 3 /TiO 2 is a dual catalyst, which could efficiently degrade lignin. This catalytic hydrogenation system can reduce solid products to less than 1%, while giving a high liquid product yield of 93%. Catalytic hydrocracking of kraft lignin at 320°C for 6h gave 93% liquid product with 0.5% solid product. Most of this liquid product was soluble in petroleum ether (60% of 93%), which is a clear liquid and comprises mainly of monomeric and dimeric degradation products. These results demonstrated that the combination of the two catalysts is an efficient catalyst for liquefaction of lignin, with little char formation (∼1%). This concept has the potential to produce valuable chemicals and fuels from lignin under moderate conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Catalysts for conversion of syngas to liquid motor fuels

    Science.gov (United States)

    Rabo, Jule A.; Coughlin, Peter K.

    1987-01-01

    Synthesis gas comprising carbon monoxide and hydrogen is converted to C.sub.5.sup.+ hydrocarbons suitable for use as liquid motor fuels by contact with a dual catalyst composition capable of ensuring the production of only relatively minor amounts of heavy products boiling beyond the diesel oil range. The catalyst composition, having desirable stability during continuous production operation, employs a Fischer-Tropsch catalyst, together with a co-catalyst/support component. The latter component is a steam-stabilized zeolite Y catalyst of hydrophobic character, desirably in acid-extracted form.

  5. Catalyst Deactivation Simulation Through Carbon Deposition in Carbon Dioxide Reforming over Ni/CaO-Al2O3 Catalyst

    Directory of Open Access Journals (Sweden)

    Istadi Istadi

    2011-11-01

    Full Text Available Major problem in CO2 reforming of methane (CORM process is coke formation which is a carbonaceous residue that can physically cover active sites of a catalyst surface and leads to catalyst deactivation. A key to develop a more coke-resistant catalyst lies in a better understanding of the methane reforming mechanism at a molecular level. Therefore, this paper is aimed to simulate a micro-kinetic approach in order to calculate coking rate in CORM reaction. Rates of encapsulating and filamentous carbon formation are also included. The simulation results show that the studied catalyst has a high activity, and the rate of carbon formation is relatively low. This micro-kinetic modeling approach can be used as a tool to better understand the catalyst deactivation phenomena in reaction via carbon deposition. Copyright © 2011 BCREC UNDIP. All rights reserved.(Received: 10th May 2011; Revised: 16th August 2011; Accepted: 27th August 2011[How to Cite: I. Istadi, D.D. Anggoro, N.A.S. Amin, and D.H.W. Ling. (2011. Catalyst Deactivation Simulation Through Carbon Deposition in Carbon Dioxide Reforming over Ni/CaO-Al2O3 Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 6 (2: 129-136. doi:10.9767/bcrec.6.2.1213.129-136][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.6.2.1213.129-136 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/1213 ] | View in  |  

  6. Cerium promoted Fischer-Tropsch catalysts

    International Nuclear Information System (INIS)

    Fiato, R.A.; Bar-Gadda, R.; Miseo, S.

    1987-01-01

    This patent describes a hydrocarbon synthesis catalyst composition comprising sintered combination metal oxides having the following components in the stated weight percentage of the catalyst composition: (a) about 5 to about 80 weight percent Fe oxide; (b) about 4 to about 20 weight percent Zn oxide; (c) about 10 to about 40 weight percent Ti and/or Mn oxide; (d) about 1 to about 5 weight percent K, Rb, and/or Cs oxide; and (e) about 1 to about 10 weight percent Ce oxide, such that where the catalyst contains Fe, the sintered combination comprises a series of Fe, Zn, and/or Ti and/or Mn spinels and oxides of K, Rb and/or Cs, dispersed in a Ce oxide matrix

  7. Catalysts Efficiency Evaluation by using CC Analysis Test

    Directory of Open Access Journals (Sweden)

    Arina Negoitescu

    2011-10-01

    Full Text Available The study emphasizes the necessity of the catalysts efficiency testing. Diagnosis systems using lambda probes are based on the capacity of the catalyst oxygen storage. Comparing the lambda probe signals upstream and downstream of catalyst provides an indication on catalyst activity, although the correlation between oxygen storage capacity and catalyst efficiency is still difficult. Diagnosis for the 1.4 Renault Clio Symbol was accomplished in the Road Vehicles Lab at the Politehnica University of Timisoara using AVL Dicom 4000. The tests showed that the engine worked with lean mixture being necessary a fuel mixture correction calculated by the control unit ECU. A compensation of 0.14 % vol is required for the engine correct operation and emissions integration within permissible limits

  8. Heterogeneous Metal Catalysts for Oxidation Reactions

    Directory of Open Access Journals (Sweden)

    Md. Eaqub Ali

    2014-01-01

    Full Text Available Oxidation reactions may be considered as the heart of chemical synthesis. However, the indiscriminate uses of harsh and corrosive chemicals in this endeavor are threating to the ecosystems, public health, and terrestrial, aquatic, and aerial flora and fauna. Heterogeneous catalysts with various supports are brought to the spotlight because of their excellent capabilities to accelerate the rate of chemical reactions with low cost. They also minimize the use of chemicals in industries and thus are friendly and green to the environment. However, heterogeneous oxidation catalysis are not comprehensively presented in literature. In this short review, we clearly depicted the current state of catalytic oxidation reactions in chemical industries with specific emphasis on heterogeneous catalysts. We outlined here both the synthesis and applications of important oxidation catalysts. We believe it would serve as a reference guide for the selection of oxidation catalysts for both industries and academics.

  9. Designing Pd-based supported bimetallic catalysts for environmental applications

    OpenAIRE

    Nowicka, Ewa; Meenakshisundaram, Sankar

    2018-01-01

    Supported bimetallic nanoparticulate catalysts are an important class of heterogeneous catalysts for many reactions including selective oxidation, hydrogenation/hydrogenolysis, reforming, biomass conversion reactions, and many more. The activity, selectivity, and stability of these catalysts depend on their structural features including particle size, composition, and morphology. In this review, we present important structural features relevant to supported bimetallic catalysts focusing on Pd...

  10. Recycling of platinum group metals from the automotive catalysts

    International Nuclear Information System (INIS)

    Benevit, Mariana; Petter, Patricia Melo Halmenschlager; Veit, Hugo Marcelo

    2014-01-01

    Currently it is very important to use alternative sources of raw material for obtaining metals, avoiding the traditional mining. This work aims to characterize and evaluate the recoverability of platinum group metals present in automotive catalysts. Thus, the catalysts were divided into two groups: the first was catalysts used in 1.0 cars and the second was catalyst used in 2.0 cars. DRX and FRX techniques and chemical analysis performed by ICP/OES was used to characterized these materials. The results showed that there is a significant amount of platinum group elements in catalyst waste, which can be separated and reused. In the next step, hydro and pyrometallurgical routes, for metals extraction from catalyst waste, will be studied. (author)

  11. Oxidative desulfurization of benzothiophene and thiophene with WOx/ZrO2 catalysts: Effect of calcination temperature of catalysts

    International Nuclear Information System (INIS)

    Hasan, Zubair; Jeon, Jaewoo; Jhung, Sung Hwa

    2012-01-01

    Highlights: ► Oxidative desulfurization was studied with WO x /ZrO 2 calcined at different temp. ► The importance of the phases of zirconia and tungsten oxide was suggested. ► The catalyst was analyzed thoroughly with Raman and XRD techniques. ► The importance of electron density on S was confirmed with the kinetics of oxidation. - Abstract: Oxidative desulfurization (ODS) of model fuel containing benzothiophene (BT) or thiophene (Th) has been carried out with WO x /ZrO 2 catalyst, which was calcined at various temperatures. Based on the conversion of BT in the model fuel, it can be shown that the optimum calcination temperature of WO x /ZrO 2 catalyst is around 700 °C. The most active catalyst is composed of tetragonal zirconia (ZrO 2 ) with well dispersed polyoxotungstate species and it is necessary to minimize the contents of the crystalline WO 3 and monoclinic ZrO 2 for a high BT conversion. The oxidation rate was interpreted with the first-order kinetics, and it demonstrated the importance of electron density since the kinetic constant for BT was higher than that for Th even though the BT is larger than Th in size. A WO x /ZrO 2 catalyst, treated suitably, can be used as a reusable active catalyst in the ODS.

  12. Biomass Conversion over Heteropoly Acid Catalysts

    KAUST Repository

    Zhang, Jizhe

    2015-04-01

    Biomass is a natural resource that is both abundant and sustainable. Its efficient utilization has long been the focus of research and development efforts with the aim to substitute it for fossil-based feedstock. In addition to the production of biofuels (e.g., ethanol) from biomass, which has been to some degree successful, its conversion to high value-added chemicals is equally important. Among various biomass conversion pathways, catalytic conversion is usually preferred, as it provides a cost-effective and eco-benign route to the desired products with high selectivities. The research of this thesis is focused on the conversion of biomass to various chemicals of commercial interest by selective catalytic oxidation. Molecular oxygen is chosen as the oxidant considering its low cost and environment friendly features in comparison with commonly used hydrogen peroxide. However, the activation of molecular oxygen usually requires high reaction temperatures, leading to over oxidation and thus lower selectivities. Therefore, it is highly desirable to develop effective catalysts for such conversion systems. We use kegging-type heteropoly acids (HPAs) as a platform for catalysts design because of their high catalytic activities and ease of medication. Using HPA catalysts allows the conversion taking place at relatively low temperature, which is beneficial to saving production cost as well as to improving the reaction selectivity. The strong acidity of HPA promotes the hydrolysis of biomass of giant molecules (e.g. cellulose), which is the first as well as the most difficult step in the conversion process. Under certain circumstances, a HPA combines the merits of homogeneous and heterogeneous catalysts, acting as an efficient homogeneous catalyst during the reaction while being easily separated as a heterogeneous catalyst after the reaction. We have successfully applied HPAs in several biomass conversion systems. Specially, we prepared a HPA-based bi-functional catalyst

  13. Use of hydrophobic Pt-catalysts in tritium removal from effluents

    International Nuclear Information System (INIS)

    Gheorghe, Ionita; Popescu, Irina; Stefanescu, Ioan; Steflea, Dumitru; Varlam, Carmen

    2002-01-01

    Based on the long experience of the authors, in the preparation, testing and evaluation of the performances of hydrophobic catalysts, and based on the reviewed references, this paper presents up-to-date R and D activities on the application of the hydrophobic catalysts in tritium removal from nuclear effluents. Tritium removal from the heavy water reactor and nuclear reprocessing plant, the cleanup of atmosphere and gaseous effluents by hydrogen-oxygen recombination, removal of oxygen dissolved in water are presented and discussed. Unlike the conventional hydrophilic catalysts, the hydrophobic catalysts keep a high catalytic activity and stability, even under the direct contact to liquid water or in presence of saturated humidity. A large diversity of catalyst types (over 100 catalysts) was prepared and tested in order to make them feasible for such processes. The objectives of the review are: - to provide a database for selection of the most appropriate catalyst and catalytic packing for above mentioned processes; - the designing and operation of reactor packed with hydrophobic catalysts; - to evaluate the potentiality of hydrophobic Pt-catalysts in the present and future applications. The most important results are the following: - the hydrophobic Pt-catalysts packed in the trickle bed or separated bed reactors, showed a high catalytic activity and long stability; - the utilization of the hydrophobic Pt-catalysts for the hydrogen isotopes (tritium and deuterium) separation and for hydrogen-oxygen recombination in nuclear field was entirely confirmed on industrial scale; - the improvement of the inner geometry of the reactors and of the composition of mixed catalytic packing as well as the evaluation of performances of separation processes constitute a major contribution of the authors; - the extension of the utilization of the hydrophobic Pt-catalysts in the oxidation of volatile organic compounds from wastewater; - the removal of dissolved oxygen, and deuterium

  14. Transmission electron microscopy on live catalysts

    NARCIS (Netherlands)

    Bremmer, G.M.

    2017-01-01

    The dissertation describes TEM experiments on heterogeneous catalysts. Starting with characterization of (Ni/Co)MoS2 on Alumina and the effect of oxidation, and sequential resulfidation. After that, Co-based catalysts are used for high-resolution (S)TEM/EDX caracterization studies, and in situ

  15. Characterization of three-way automotive catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kenik, E.A.; More, K.L. [Oak Ridge National Laboratory, TN (United States); LaBarge, W. [General Motors-AC Delco Systems, Flint, MI (United States)] [and others

    1995-05-01

    This has been the second year of a CRADA between General Motors - AC Delco Systems (GM-ACDS) and Martin Marietta Energy Systems (MMES) aimed at improved performance/lifetime of platinum-rhodium based three-way-catalysts (TWC) for automotive emission control systems. While current formulations meet existing emission standards, higher than optimum Pt-Rh loadings are often required. In additionk, more stringent emission standards have been imposed for the near future, demanding improved performance and service life from these catalysts. Understanding the changes of TWC conversion efficiency with ageing is a critical need in improving these catalysts.

  16. Grafting heterogeneous catalyst with gamma radiation

    International Nuclear Information System (INIS)

    Garnett, J.L.; Long, M.A.; Levot, R.G.

    1984-01-01

    A process for the production of a heterogeneous catalyst comprises the steps of: irradiating an organic macromolecular substrate or a metal substrate with ionising or ultra violet radiation in the presence of a monomer selected from the group consisting of o-, m-, or p- styryl diphenyl phosphine and o-, m- or p- phenyl acrylyl diphenyl phosphine, to graft the monomer to the substrate; and reacting the graft copolymer with a homogeneous catalyst selected from the group consisting of catalytic metal salts and catalytic organometallic complexes such that the graft copolymer conjugate becomes a ligand of the catalyst

  17. Alumina/silica aerogel with zinc chloride as an alkylation catalyst

    Directory of Open Access Journals (Sweden)

    DEJAN U. SKALA

    2001-10-01

    Full Text Available The alumina/silica with zinc chloride aerogel alkylation catalyst was obtained using a one step sol-gel synthesis, and subsequent drying with supercritical carbon dioxide. The aerogel catalyst activity was found to be higher compared to the corresponding xerogel catalyst, as a result of the higher aerogel surface area, total pore volume and favourable pore size distribution. Mixed Al–O–Si bonds were present in both gel catalyst types. Activation by thermal treatment in air was needed prior to catalytic alkylation, due to the presence of residual organic groups on the aerogel surface. The optimal activation temperature was found to be in the range 185–225°C, while higher temperatures resulted in the removal of zinc chloride from the surface of the aerogel catalyst with a consequential decrease in the catalytic activity. On varying the zinc chloride content, the catalytic activity of the aerogel catalyst exhibited a maximum. High zinc chloride contents decreased the catalytic activity of the aerogel catalyst as the result of the pores of the catalyst being plugged with this compound, and the separation of the alumina/silica support into Al-rich and Si-rich phases. The surface area, total pore volume, pore size distribution and zinc chloride content had a similar influence on the activity of the aerogel catalyst as was the case of xerogel catalyst and supported zinc chloride catalysts.

  18. Rare behaviour of a catalyst pellet catalyst dynamics

    NARCIS (Netherlands)

    Westerterp, K.R.; Loonen, R.A.; Martens, A.

    1986-01-01

    Temperature overshoots and undershoots were found for a Pd on alumina catalyst pellet in its course towards a new steady state after a change in concentration of one of the reactants ethylene or hydrogen. When cooling the pellet, after heat-up by reaction, with pure hydrogen a sudden temperature

  19. Impact of catalyst reduction mode on selective hydrogenation of cinnamaldehyde over Ru-Sn sol-gel catalysts

    Czech Academy of Sciences Publication Activity Database

    Hájek, J.; Kumar, N.; Salmi, T.; Murzin, DY.; Karhu, H.; Väyrynen, J.; Červený, L.; Paseka, Ivo

    2003-01-01

    Roč. 42, č. 2 (2003), s. 295-305 ISSN 0888-5885 R&D Projects: GA ČR GA104/00/1009 Institutional research plan: CEZ:AV0Z4032918 Keywords : Supported ruthenium catalysts * Ru-Sn-Al2O3 catalysts * benzene Subject RIV: CA - Inorganic Chemistry Impact factor: 1.317, year: 2003

  20. Preparative characteristics of hydrophobic polymer catalyst for the tritium removal

    International Nuclear Information System (INIS)

    Kang, Hee Suk; Choi, H. J.; Lee, H. S.; Ahn, D. H.; Kim, K. R.; Paek, S. W.; Paek, S. W.; Kim, J. G.; Chung, H. S.

    2001-05-01

    The optimum method for the fabrication of hydrophobic catalyst was selected and the apparatuses for the preparation of catalyst support with high yield was developed for the large scale production. Also, we summarized the method of improving the physical property of the catalyst support, the loading characteristics of Pt metal as a catalyst, and the characteristics of the apparatus for the fabrication of the catalysts on a large scale

  1. Preparative characteristics of hydrophobic polymer catalyst for the tritium removal

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hee Suk; Choi, H. J.; Lee, H. S.; Ahn, D. H.; Kim, K. R.; Paek, S. W.; Kim, J. G.; Chung, H. S

    2001-05-01

    The optimum method for the fabrication of hydrophobic catalyst was selected and the apparatuses for the preparation of catalyst support with high yield was developed for the large scale production. Also, we summarized the method of improving the physical property of the catalyst support, the loading characteristics of Pt metal as a catalyst, and the characteristics of the apparatus for the fabrication of the catalysts on a large scale.

  2. Magnetic properties of carbon nanotubes with and without catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Lipert, Kamil; Ritschel, Manfred; Leonhardt, Albrecht; Krupskaya, Yulia; Buechner, Bernd; Klingeler, Ruediger, E-mail: k.lipert@ifw-dresden.d [Leibniz Institute for Solid State and Materials Research (IFW) Dresden (Germany)

    2010-01-01

    In this paper we report on the magnetic properties of single- and multiwalled carbon nanotubes synthesized using different chemical vapour deposition methods and with variety of catalyst materials (ferromagnetic Fe, FeCo and diamagnetic Re). Different methods yield carbon nanotubes with different morphologies and different quantity of residual catalyst material. Catalyst particles are usually encapsulated in the nanotubes and influence the magnetic respond of the samples. Varying ferromagnetic properties depending on the shape, size and type of catalyst are discussed in detail. The data are compared with M(H) characteristics of carbon nanotubes without catalysts and with nonmagnetic rhenium, as a reference.

  3. The modified high-density survival assay is the useful tool to predict the effectiveness of fractionated radiation exposure

    International Nuclear Information System (INIS)

    Kuwahara, Yoshikazu; Mori, Miyuki; Oikawa, Toshiyuki; Shimura, Tsutomu; Fukumoto, Manabu; Ohtake, Yosuke; Ohkubo, Yasuhito; Mori, Shiro

    2010-01-01

    The high-density survival (HDS) assay was originally elaborated to assess cancer cell responses to therapeutic agents under the influence of intercellular communication. Here, we simplified the original HDS assay and studied its applicability for the detection of cellular radioresistance. We have recently defined clinically relevant radioresistant (CRR) cells, which continue to proliferate with daily exposure to 2 gray (Gy) of X-rays for more than 30 days in vitro. We established human CRR cell lines, HepG2-8960-R from HepG2, and SAS-R1 and -R2 from SAS, respectively. In an attempt to apply the HDS assay to detect radioresistance with clinical relevance, we simplified the original HDS assay by scoring the total number of surviving cells after exposure to X-rays. The modified HDS assay successfully detected radioresistance with clinical relevance. The modified HDS assay detected CRR phenotype, which is not always detectable by clonogenic assay. Therefore, we believe that the modified HDS assay presented in this study is a powerful tool to predict the effectiveness of fractionated radiotherapy against malignant tumors. (author)

  4. Sabatier Catalyst Poisoning Investigation

    Science.gov (United States)

    Nallette, Tim; Perry, Jay; Abney, Morgan; Knox, Jim; Goldblatt, Loel

    2013-01-01

    The Carbon Dioxide Reduction Assembly (CRA) on the International Space Station (ISS) has been operational since 2010. The CRA uses a Sabatier reactor to produce water and methane by reaction of the metabolic CO2 scrubbed from the cabin air and the hydrogen byproduct from the water electrolysis system used for metabolic oxygen generation. Incorporating the CRA into the overall air revitalization system has facilitated life support system loop closure on the ISS reducing resupply logistics and thereby enhancing longer term missions. The CRA utilizes CO2 which has been adsorbed in a 5A molecular sieve within the Carbon Dioxide Removal Assembly, CDRA. There is a potential of compounds with molecular dimensions similar to, or less than CO2 to also be adsorbed. In this fashion trace contaminants may be concentrated within the CDRA and subsequently desorbed with the CO2 to the CRA. Currently, there is no provision to remove contaminants prior to entering the Sabatier catalyst bed. The risk associated with this is potential catalyst degradation due to trace organic contaminants in the CRA carbon dioxide feed acting as catalyst poisons. To better understand this risk, United Technologies Aerospace System (UTAS) has teamed with MSFC to investigate the impact of various trace contaminants on the CRA catalyst performance at relative ISS cabin air concentrations and at about 200/400 times of ISS concentrations, representative of the potential concentrating effect of the CDRA molecular sieve. This paper summarizes our initial assessment results.

  5. Ligand iron catalysts for selective hydrogenation

    Science.gov (United States)

    Casey, Charles P.; Guan, Hairong

    2010-11-16

    Disclosed are iron ligand catalysts for selective hydrogenation of aldehydes, ketones and imines. A catalyst such as dicarbonyl iron hydride hydroxycyclopentadiene) complex uses the OH on the five member ring and hydrogen linked to the iron to facilitate hydrogenation reactions, particularly in the presence of hydrogen gas.

  6. Sputtered catalysts

    International Nuclear Information System (INIS)

    Tyerman, W.J.R.

    1978-01-01

    A method is described for preparing a supported catalyst by a sputtering process. A material that is catalytic, or which is a component of a catalytic system, is sputtered on to the surface of refractory oxide particles that are compatible with the sputtered material and the sputtered particles are consolidated into aggregate form. The oxide particles before sputtering should have a diameter in the range 1000A to 50μ and a porosity less than 0.4 ml/g, and may comprise MgO, Al 2 O 3 or SiO 2 or mixtures of these oxides, including hydraulic cement. The particles may possess catalytic activity by themselves or in combination with the catalytic material deposited on them. Sputtering may be effected epitaxially and consolidation may be effected by compaction pelleting, extrusion or spray drying of a slurry. Examples of the use of such catalysts are given. (U.K.)

  7. Ni Catalysts Supported on Modified Alumina for Diesel Steam Reforming

    Directory of Open Access Journals (Sweden)

    Antonios Tribalis

    2016-01-01

    Full Text Available Nickel catalysts are the most popular for steam reforming, however, they have a number of drawbacks, such as high propensity toward coke formation and intolerance to sulfur. In an effort to improve their behavior, a series of Ni-catalysts supported on pure and La-, Ba-, (La+Ba- and Ce-doped γ-alumina has been prepared. The doped supports and the catalysts have been extensively characterized. The catalysts performance was evaluated for steam reforming of n-hexadecane pure or doped with dibenzothiophene as surrogate for sulphur-free or commercial diesel, respectively. The undoped catalyst lost its activity after 1.5 h on stream. Doping of the support with La improved the initial catalyst activity. However, this catalyst was completely deactivated after 2 h on stream. Doping with Ba or La+Ba improved the stability of the catalysts. This improvement is attributed to the increase of the dispersion of the nickel phase, the decrease of the support acidity and the increase of Ni-phase reducibility. The best catalyst of the series doped with La+Ba proved to be sulphur tolerant and stable for more than 160 h on stream. Doping of the support with Ce also improved the catalytic performance of the corresponding catalyst, but more work is needed to explain this behavior.

  8. Selection of catalysts and reactors for hydroprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E. [Imaf Group, Ottawa, ON (Canada)

    1998-07-13

    The performance of hydroprocessing units can be influenced by the selection of the catalysts and the type of reactor to suit a particular feed. The catalysts and reactors selected for light feeds differ markedly from those selected for heavy feeds. Fixed-bed reactors have been traditionally used for light feeds. High asphaltene and high metal content feeds are successfully processed using moving-bed and/or ebullated bed reactors. Multi-reactor systems consisting of moving-bed and/or ebullated bed reactors in series with fixed-bed reactors can be used to process difficult feeds. For heavy feeds, the physical properties (e.g. porosity), shape and size of the catalyst particles become crucial parameters. Pretreatment of catalysts by presulfiding improves the performance of the units.

  9. Diethyl Ether Production Process with Various Catalyst Type

    Directory of Open Access Journals (Sweden)

    Widayat

    2013-01-01

    Full Text Available Several H-zeolite and HZSM-5 catalysts was preparated and their characters have also been investigated. H-zeolit Catalyst was preparated from Natural Zeolite that obtained from Malang District and Gunung Kidul District. Diethyl ether was produced by Ethanol with concentration of 95%. This research use fixed bed reactor that 1 gram of catalyst as bed catalyst, atmospheric pressure and temperature 140oC as the operating condition. Ethanol vapor from vaporization tank was driven by 200 ml/min Nitrogen stream. The responds in this research is liquid product concentration; diethyl ether, ethanol, methanol and water concentration. The results showed that the largest ethanol conversion was produced by the use of 56.44% HZSM-5 and the largest yield of diethyl ether diethyl was produced by the use of alumina and H-zeolite catalyst. The larger ratio between natural zeolite with HCl solvent will produce the larger surface area of catalyst and ethanol conversion. The largest ethanol conversion was produced at reactan ratio 1:20.

  10. Catalyst for Carbon Monoxide Oxidation

    Science.gov (United States)

    Davis, Patricia; Brown, Kenneth; VanNorman, John; Brown, David; Upchurch, Billy; Schryer, David; Miller, Irvin

    2010-01-01

    In many applications, it is highly desirable to operate a CO2 laser in a sealed condition, for in an open system the laser requires a continuous flow of laser gas to remove the dissociation products that occur in the discharge zone of the laser, in order to maintain a stable power output. This adds to the operating cost of the laser, and in airborne or space applications, it also adds to the weight penalty of the laser. In a sealed CO2 laser, a small amount of CO2 gas is decomposed in the electrical discharge zone into corresponding quantities of CO and O2. As the laser continues to operate, the concentration of CO2 decreases, while the concentrations of CO and O2 correspondingly increase. The increasing concentration of O2 reduces laser power, because O2 scavenges electrons in the electrical discharge, thereby causing arcing in the electric discharge and a loss of the energetic electrons required to boost CO2 molecules to lasing energy levels. As a result, laser power decreases rapidly. The primary object of this invention is to provide a catalyst that, by composition of matter alone, contains chemisorbed water within and upon its structure. Such bound moisture renders the catalyst highly active and very long-lived, such that only a small quantity of it needs to be used with a CO2 laser under ambient operating conditions. This object is achieved by a catalyst that consists essentially of about 1 to 40 percent by weight of one or more platinum group metals (Pt, Pd, Rh, Ir, Ru, Os, Pt being preferred); about 1 to 90 percent by weight of one or more oxides of reducible metals having multiple valence states (such as Sn, Ti, Mn, Cu, and Ce, with SnO2 being preferred); and about 1 to 90 percent by weight of a compound that can bind water to its structure (such as silica gel, calcium chloride, magnesium sulfate, hydrated alumina, and magnesium perchlorate, with silica gel being preferred). Especially beneficial results are obtained when platinum is present in the

  11. Dynamics of Catalyst Nanoparticles

    DEFF Research Database (Denmark)

    Hansen, Thomas Willum; Cavalca, Filippo; Wagner, Jakob Birkedal

    and pharmaceuticals, and the cleanup of exhaust from automobiles and stationary power plants. Sintering, or thermal deactivation, is an important mechanism for the loss of catalyst activity. In order to initiate a systematic study of the dynamics and sintering of nanoparticles, various catalytic systems have been...... under gas exposure, dynamic phenomena such as sintering and growth can be observed with sub-Ångstrøm resolution. Metal nanoparticles contain the active sites in heterogeneous catalysts, which are important for many industrial applications including the production of clean fuels, chemicals...

  12. Brazilian experience using high-dose sequential therapy (HDS followed by autologous hematopoietic stem cell transplantation (ASCT for malignant lymphomas Experiência brasileira utilizando terapia sequencial de alta dose seguido de transplante autólogo de célula-tronco hematopoética para linfomas malignos

    Directory of Open Access Journals (Sweden)

    Cármino A. de Souza

    2009-08-01

    Full Text Available Using the overall survival (OS, disease free survival (DFS and progression free survival (PFS, as well as associated toxicity, the purpose of this work was to evaluate the effectiveness of HDS followed by ASCT as salvage therapy. A retrospective analysis was performed of 106 patients with high grade non-Hodgkin lymphoma receiving HDS followed by ASCT, between 1998 and 2006. Median age was 45 years (Range: 8-65, with 66 (62% men. Histopathological classification was: 78% DLBCL patients, 12% T and anaplastic and 9% Mantle cell lymphomas; 87% had B cell and 12% T cell lymphomas; 83% were stage III-IV (Ann Arbor Staging, 63% had B symptoms, 32% had bone marrow involvement, 62% bulky disease and 42% high-intermediate or high risk IPI. After HDCY, 9 patients died, 7 from toxicity and 2 from sepsis. Eighty patients underwent ASCT, 47% were in complete remission (CR and 15% died, all from toxicity. Their OS was 45% over 8 years. During the follow-up, another 35 patients died [4 CR, 1 partial response (PR, 2 relapsed disease (RD and 28 disease progression (DP], 11 (31% had not performed ASCT. OS was 37%; DFS was 49% and PFS 28%. OS by diagnosis was 42% for DLBCL, 40% for T-cell (8 y and 20% for Mantle Cell (6 y (P=NS. OS by B symptom patients was 22% vs. 58% (P=0.002 and PFS was 23% vs. 37% (P=0.03. Patients who achieved CR after HDCY (38 had significantly better OS and PFS (38% and 17% than patients who remained in DP (PA proposta deste trabalho foi avaliar a eficácia da HDS seguida do transplante autólogo como terapia de salvamento através da sobrevida global, livre de doença e livre de progressão bem como sua toxicidade. Realizou-se estudo retrospectivo com 106 pacientes com LNH de alto grau de malignidade entre 1998 e 2006. A mediana de idade foi 45 anos (8-65; 62% homens; DLBCL, 78%; 12%, T e anaplásico e 9%, linfoma da zona do manto; 87%, células B; 83% estádios III-IV; 63% com sintomas B; 32% com infiltração da medula óssea ao diagn

  13. Pd and S binding energies and Auger parameters on a model silica-supported Suzuki–Miyaura catalyst: Insights into catalyst activation

    International Nuclear Information System (INIS)

    Hanif, Mohammad A.; Ebralidze, Iraklii I.; Horton, J. Hugh

    2013-01-01

    Model Suzuki–Miyaura reaction catalysts have been developed by immobilizing palladium on a mercaptopropyltrimethoxysilane (MPTMS) functionalized Si substrate. Two types of Pd species were found on the fresh catalysts that may be attributed to a S-bound Pd (II) species and Pd nanoparticles. The binding energy of the nanoparticles is strongly size dependent, and is higher than that of metallic Pd. A sulfur species that has not been previously reported on this class of catalysts has also been observed. A systematic investigation of various palladium/sulfur complexes using XPS was carried out to identify this species, which may be assigned to high oxidation state sulfur formed by oxidation of thiol during the reduction of the Pd(OAc) 2 used to load the catalyst with Pd. Shifts in binding energy observed for both Pd and S spectra of the used catalysts were examined in order to probe the change of electronic environment of reactive palladium center and the thiol ligand during the reaction. Electron and atomic force microscopic imaging of the surfaces demonstrates the formation of Pd nanoparticles on fresh catalysts and subsequent size reduction of the Pd nano-particles following reaction.

  14. Surface science of single-site heterogeneous olefin polymerization catalysts

    OpenAIRE

    Kim, Seong H.; Somorjai, Gabor A.

    2006-01-01

    This article reviews the surface science of the heterogeneous olefin polymerization catalysts. The specific focus is on how to prepare and characterize stereochemically specific heterogeneous model catalysts for the Ziegler–Natta polymerization. Under clean, ultra-high vacuum conditions, low-energy electron irradiation during the chemical vapor deposition of model Ziegler–Natta catalysts can be used to create a “single-site” catalyst film with a surface structure that produces only isotactic ...

  15. Finding Furfural Hydrogenation Catalysts via Predictive Modelling.

    Science.gov (United States)

    Strassberger, Zea; Mooijman, Maurice; Ruijter, Eelco; Alberts, Albert H; Maldonado, Ana G; Orru, Romano V A; Rothenberg, Gadi

    2010-09-10

    We combine multicomponent reactions, catalytic performance studies and predictive modelling to find transfer hydrogenation catalysts. An initial set of 18 ruthenium-carbene complexes were synthesized and screened in the transfer hydrogenation of furfural to furfurol with isopropyl alcohol complexes gave varied yields, from 62% up to >99.9%, with no obvious structure/activity correlations. Control experiments proved that the carbene ligand remains coordinated to the ruthenium centre throughout the reaction. Deuterium-labelling studies showed a secondary isotope effect (k(H):k(D)=1.5). Further mechanistic studies showed that this transfer hydrogenation follows the so-called monohydride pathway. Using these data, we built a predictive model for 13 of the catalysts, based on 2D and 3D molecular descriptors. We tested and validated the model using the remaining five catalysts (cross-validation, R(2)=0.913). Then, with this model, the conversion and selectivity were predicted for four completely new ruthenium-carbene complexes. These four catalysts were then synthesized and tested. The results were within 3% of the model's predictions, demonstrating the validity and value of predictive modelling in catalyst optimization.

  16. 40 CFR 90.329 - Catalyst thermal stress test.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Catalyst thermal stress test. 90.329... Equipment Provisions § 90.329 Catalyst thermal stress test. (a) Oven characteristics. The oven used for thermally stressing the test catalyst must be capable of maintaining a temperature of 500 ±5 °C and 1000 ±10...

  17. 40 CFR 91.329 - Catalyst thermal stress test.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Catalyst thermal stress test. 91.329....329 Catalyst thermal stress test. (a) Oven characteristics. The oven used for termally stressing the test catalyst must be capable of maintaining a temperature of 500 ±5 °C and 1000 ±10 °C. (b) Evaluation...

  18. Effect of Catalyst Pellet-Diameter and Basicity on Transesterification of Soybean Oil into Biodiesel using K2O/CaO-ZnO Catalyst over Hybrid Catalytic-Plasma Reactor

    Directory of Open Access Journals (Sweden)

    Istadi I.

    2018-01-01

    Full Text Available This research is aimed to study the effect of catalyst pellet-diameter and catalyst basicity on the transesterification process of soybean oil into biodiesel over a hybrid catalytic-plasma reactor. Various catalyst diameters (3, 5, and 7 mm were tested in this reaction system. Catalyst basicity was also examined by comparing fresh and used catalyst as well as with and without K2O promoter. All catalysts testing were performed in a hybrid plasma-catalytic reactor (dielectric barrier discharge – DBD type. From the results, the synergistic effects roles of the catalyst and the plasma in the transesterification process are important, in which the energetic electrons within plasma assist the reaction on the catalyst surface by an exciting bonded electron. The catalyst basicity was influenced by the composition of CaO on the catalyst as well as roles of the alkaline K2O promoter. Catalyst basicity is important in producing biodiesel with high performance. Yield of fatty acid alkyl ester (FAAE or biodiesel is slightly influenced by the catalyst diameter within the range of diameter studied.

  19. Heterogeneous electro-Fenton catalyst for 1-butylpyridinium chloride degradation.

    Science.gov (United States)

    Meijide, Jessica; Pazos, Marta; Sanromán, Maria Ángeles

    2017-10-15

    The application of the electro-Fenton process for organic compound mineralisation has been widely reported over the past years. However, operational problems related to the use of soluble iron salt as a homogeneous catalyst involve the development of novel catalysts that are able to operate in a wide pH range. For this purpose, polyvinyl alcohol-alginate beads, containing goethite as iron, were synthesised and evaluated as heterogeneous electro-Fenton catalyst for 1-butylpyridinium chloride mineralisation. The influence of catalyst dosage and pH solution on ionic liquid degradation was analysed, achieving almost total oxidation after 60 min under optimal conditions (2 g/L catalyst concentration and pH 3). The results showed good catalyst stability and reusability, although its effectiveness decreases slightly after three successive cycles. Furthermore, a plausible mineralisation pathway was proposed based on the oxidation byproducts determined by chromatographic techniques. Finally, the Microtox® test revealed notable detoxification after treatment which demonstrates high catalyst ability for pyridinium-based ionic liquid degradation by the electro-Fenton process.

  20. Hydrogenation of citral into its derivatives using heterogeneous catalyst

    Science.gov (United States)

    Sudiyarmanto, Hidayati, Luthfiana Nurul; Kristiani, Anis; Aulia, Fauzan

    2017-11-01

    Citral as known as a monoterpene can be found in plants and citrus fruits. The hydrogenation of citral into its derivatives become interesting area for scientist. This compound and its derivatives can be used for many application in pharmaceuticals and food areas. The development of heterogeneous catalysts become an important aspect in catalytic hydrogenation citral process. Nickel supported catalysts are well known as hydrogenation catalyst. These heterogeneous catalysts were tested their catalytic activity in hydrogenation of citral. The effect of various operation conditions, in term of feed concentration, catalyst loading, temperature, and reaction time were also studied. The liquid products produced were analyzed by using Gas Chromatography-Mass Spectroscopy (GC-MS). The result of catalytic activity tests showed nickel skeletal catalyst exhibits best catalytic activity in hydrogenation of citral. The optimum of operation condition was achieved in citral concentration 0.1 M with nickel skeletal catalyst loading of 10% (w/w) at 80 °C and 20 bar for 2 hours produced the highest conversion as of 64.20% and the dominant product resulted was citronellal as of 56.48%.

  1. New antipollution processing of a used refining catalyst and complete recovery of the catalyst metallic components

    Energy Technology Data Exchange (ETDEWEB)

    Trinh Dinh Chan; Llido, E.

    1992-05-15

    The used refining catalyst, containing metals such as vanadium, nickel and iron, is first processed by stripping; it is then calcined in critical conditions and heat processed in the presence of a melted alkaline base; the resulting solid matter is then water processed. The antipollution process can be applied to oil fraction hydroconversion or hydroprocessing catalysts.

  2. Preparation of biodiesel from soybean oil by using heterogeneous catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Ferdous, Kaniz; Rakib Uddin, M.; Islam, M.A. [Department of Chemical Engineering and Polymer Science, Shah Jalal University of Science and Technology, Sylhet 3114 (Bangladesh); Khan, Maksudur R. [Department of Chemical Engineering and Polymer Science, Shah Jalal University of Science and Technology, Sylhet 3114 (Bangladesh); Faculty of Chemical and Natural Resources Engineering, University Malaysia Pahang, 26300 Gambang, Kuantan, Pahang (Malaysia)

    2013-07-01

    The predicted shortage of fossil fuels and related environmental concerns has recently attracted significant attention to search alternative fuel. Biodiesel is one of the alternatives to fossil fuel. Now-a-days, most biodiesel is produced by the transesterification of oils using methanol and a homogeneous base catalyst. The use of homogeneous catalysts is normally limited to batch mode processing followed by a catalyst separation step. The immiscible glycerol phase, which accumulates during the course of the reaction, solubilizes the homogeneous base catalyst and therefore, withdraws from the reaction medium. Moreover, other difficulties of using homogeneous base catalysts relate to their sensitivity to free fatty acid (FFA) and water and resulting saponification phenomenon. High energy consumption and costly separation of the catalyst from the reaction mixture have inspired the use of heterogeneous catalyst. The use of heterogeneous catalysts does not lead to the formation of soaps through neutralization of FFA and saponification of oil. In the present paper, biodiesel was prepared from crude (soybean) oil by transesterification reaction using heterogeneous base catalyst name calcium oxide (CaO). Various reaction parameters were optimized and the biodiesel properties were evaluated.

  3. Shining X-rays on catalysts at work

    Energy Technology Data Exchange (ETDEWEB)

    Grunwaldt, J-D, E-mail: jdg@kt.dtu.d [Technical University of Denmark, Department of Chemical and Biochemical Engineering, Building 229, DK-2800 Kgs. Lyngby (Denmark)

    2009-11-15

    Structure-performance relationships gained by studying catalysts at work are considered the key to further development of catalysts underlined here by a brief overview on our research in this area. The partial oxidation of methane to hydrogen and carbon monoxide over Pt- and Rh-based catalysts and the total combustion of hydrocarbons demonstrate the importance of structural identification of catalysts in its working state and the measurement of the catalytic performance at the same time. Moreover, proper cell design is a key both here and in liquid phase reactions including preparation or high pressure reactions. In several cases structural changes during preparation, activation and reaction occur on a subminute scale or the catalyst structure varies inside a reactor as a result of temperature or concentration gradients. This, additionally, requires time and spatial resolution. Examples from time-resolved QEXAFS studies during the partial oxidation of methane over Pt- and Rh-based catalysts demonstrate some of the recent developments of the technique (use not only of Si(111) but also Si(311) crystals, angular encoder, full EXAFS spectra at subsecond recording time, and modulation excitation spectroscopy). In order to obtain spectroscopic information on the oxidation state inside a microreactor, scanning and full field X-ray microscopy with X-ray absorption spectroscopic contrast were achieved under reaction conditions. If a microbeam is applied, fast scanning techniques like QEXAFS are required. In this way, even X-ray absorption spectroscopic tomographic images of a slice of a microreactor were obtained. The studies were recently extended to spatiotemporal studies that give important insight into the dynamics of the catalyst structure in a spatial manner with subsecond time-resolution.

  4. SiC nanocrystals as Pt catalyst supports for fuel cell applications

    DEFF Research Database (Denmark)

    Dhiman, Rajnish; Morgen, Per; Skou, E.M.

    2013-01-01

    A robust catalyst support is pivotal to Proton Exchange Membrane Fuel Cells (PEMFCs) to overcome challenges such as catalyst support corrosion, low catalyst utilization and overall capital cost. SiC is a promising candidate material which could be applied as a catalyst support in PEMFCs. Si...... on the nanocrystals of SiC-SPR and SiC-NS by the polyol method. The SiC substrates are subjected to an acid treatment to introduce the surface groups, which help to anchor the Pt nano-catalysts. These SiC based catalysts have been found to have a higher electrochemical activity than commercially available Vulcan...... based catalysts (BASF & HISPEC). These promising results signal a new era of SiC based catalysts for fuel cell applications....

  5. Highly sensitive silicon microreactor for catalyst testing

    DEFF Research Database (Denmark)

    Henriksen, Toke Riishøj; Olsen, Jakob Lind; Vesborg, Peter Christian Kjærgaard

    2009-01-01

    by directing the entire gas flow through the catalyst bed to a mass spectrometer, thus ensuring that nearly all reaction products are present in the analyzed gas flow. Although the device can be employed for testing a wide range of catalysts, the primary aim of the design is to allow characterization of model...... catalysts which can only be obtained in small quantities. Such measurements are of significant fundamental interest but are challenging because of the low surface areas involved. The relationship between the reaction zone gas flow and the pressure in the reaction zone is investigated experimentally......, it is found that platinum catalysts with areas as small as 15 mu m(2) are conveniently characterized with the device. (C) 2009 American Institute of Physics. [doi:10.1063/1.3270191]...

  6. Novel catalysts for isotopic exchange between hydrogen and liquid water

    International Nuclear Information System (INIS)

    Butler, J.P.; Rolston, J.H.; Stevens, W.H.

    1978-01-01

    Catalytic isotopic exchange between hydrogen and liquid water offers many inherent potential advantages for the separation of hydrogen isotopes which is of great importance in the Canadian nuclear program. Active catalysts for isotopic exchange between hydrogen and water vapor have long been available, but these catalysts are essentially inactive in the presence of liquid water. New, water-repellent platinum catalysts have been prepared by: (1) treating supported catalysts with silicone, (2) depositing platinum on inherently hydrophobic polymeric supports, and (3) treating platinized carbon with Teflon and bonding to a carrier. The activity of these catalysts for isotopic exchange between countercurrent streams of liquid water and hydrogen saturated with water vapor has been measured in a packed trickle bed integral reactor. The performance of these hydrophobic catalysts is compared with nonwetproofed catalysts. The mechanism of the overall exchange reaction is briefly discussed. 6 figures

  7. Catalyst containing oxygen transport membrane

    Science.gov (United States)

    Christie, Gervase Maxwell; Wilson, Jamie Robyn; van Hassel, Bart Antonie

    2012-12-04

    A composite oxygen transport membrane having a dense layer, a porous support layer and an intermediate porous layer located between the dense layer and the porous support layer. Both the dense layer and the intermediate porous layer are formed from an ionic conductive material to conduct oxygen ions and an electrically conductive material to conduct electrons. The porous support layer has a high permeability, high porosity, and a high average pore diameter and the intermediate porous layer has a lower permeability and lower pore diameter than the porous support layer. Catalyst particles selected to promote oxidation of a combustible substance are located in the intermediate porous layer and in the porous support adjacent to the intermediate porous layer. The catalyst particles can be formed by wicking a solution of catalyst precursors through the porous support toward the intermediate porous layer.

  8. ENVIRONMENTAL TECHNOLOGY VERIFICATION, TEST REPORT OF MOBILE SOURCE EMISSIONS CONTROL DEVICES/CLEAN DIESEL TECHNOLOGIES FUEL BORNE CATALYST WITH CLEANAIR SYSTEM'S DIESEL OXIDATION CATALYST

    Science.gov (United States)

    The Environmental Technology Verification report discusses the technology and performance of the Fuel-Borne Catalyst with CleanAir System's Diesel Oxidation Catalyst manufactured by Clean Diesel Technologies, Inc. The technology is a fuel-borne catalyst used in ultra low sulfur d...

  9. Concealed use of herbal and dietary supplements among Thai patients with type 2 diabetes mellitus.

    Science.gov (United States)

    Putthapiban, Prapaipan; Sukhumthammarat, Weera; Sriphrapradang, Chutintorn

    2017-01-01

    Diabetes mellitus (DM) has been one of the most common chronic diseases that create great impacts on both morbidities and mortalities. Many patients who suffering from this disease seek for complementary and alternative medicine. The aim of this study was to determine the prevalence and related factors of herbal and dietary supplement (HDS) use in patients with DM type 2 at a single university hospital in Thailand. A cross-sectional study was performed in 200 type 2 DM patients via face-to-face structured interviews using developed questionnaires comprised of demographic data, diabetes-specific information, details on HDS use, and medical adherence. From the endocrinology clinic, 61% of total patients reported HDS exposure and 28% were currently consuming. More than two-thirds of HDS users did not notify their physicians, mainly because of a lack of doctor concern; 73% of cases had no awareness of potential drug-herb interaction. The use of drumstick tree, turmeric and bitter gourd and holy mushroom were most frequently reported. The main reasons for HDS use were friend and relative suggestions and social media. Comparisons of demographic characteristics, medical adherence, and hemoglobin A1c among these non-HDS users, as well as current and former users, were not statistically significantly different. This study revealed a great number of DM patients interested in HDS use. The use of HDS for glycemic control is an emerging public health concern given the potential adverse effects, drug interactions and benefits associated with its use. Health care professionals should aware of HDS use and hence incorporate this aspect into the clinical practice.

  10. Catalytic dehydration of ethanol using transition metal oxide catalysts.

    Science.gov (United States)

    Zaki, T

    2005-04-15

    The aim of this work is to study catalytic ethanol dehydration using different prepared catalysts, which include Fe(2)O(3), Mn(2)O(3), and calcined physical mixtures of both ferric and manganese oxides with alumina and/or silica gel. The physicochemical properties of these catalysts were investigated via X-ray powder diffraction (XRD), acidity measurement, and nitrogen adsorption-desorption at -196 degrees C. The catalytic activities of such catalysts were tested through conversion of ethanol at 200-500 degrees C using a catalytic flow system operated under atmospheric pressure. The results obtained indicated that the dehydration reaction on the catalyst relies on surface acidity, whereas the ethylene production selectivity depends on the catalyst chemical constituents.

  11. Electroreduction of oxygen on carbon-supported gold catalysts

    International Nuclear Information System (INIS)

    Erikson, Heiki; Juermann, Gea; Sarapuu, Ave; Potter, Robert J.; Tammeveski, Kaido

    2009-01-01

    The electrochemical reduction of oxygen was studied on Au/C catalysts (20 and 30 wt%) in 0.5 M H 2 SO 4 and 0.1 M KOH solutions using the rotating disk electrode (RDE) method. The thickness of the Au/C-Nafion layers was varied between 1.5 and 10 μm. The specific activity of Au was independent of catalyst loading in both solutions, indicating that the transport of reactants through the catalyst layer does not limit the process of oxygen reduction under these conditions. The mass activity of 20 wt% Au/C catalysts was higher due to smaller particle size. The number of electrons involved in the reaction and the Tafel slopes were found; the values of these parameters are similar to that of bulk polycrystalline gold and indicate that the mechanism of O 2 reduction is not affected by carbon support or the catalyst configuration.

  12. Atomic Layer Deposited Catalysts for Fuel Cell Applications

    DEFF Research Database (Denmark)

    Johansson, Anne-Charlotte Elisabeth Birgitta

    catalyst toward the methanol oxidation reaction (MOR). In the work described in this PhD dissertation, two series of Pt-Ru ALD catalysts supported on nitrogen-doped multi-walled carbon nanotubes (N-CNTs) have been evaluated toward the CO oxidation and MOR at room temperature in a three......The micro direct methanol fuel cell (µDMFC) has been proposed as a candidate to power portable applications. The device can operate at room temperature on inexpensive, energy-dense methanol fuel, and it can be easily "recharged" by fuel refilling. Microfabrication techniques could be one route......-electrode electrochemical cell. The first series was comprised of Pt-Ru ALD catalysts of various Ru compositions, between 0 and 100 at.%. For the compositions investigated, the best catalyst had a Ru composition of 29 at.%. In the second series Ru-decorated Pt catalysts of various Ru loadings, i.e., various Ru ALD cycles...

  13. Sulfidization of an aluminocobaltomolybdenum catalyst using the 35S radioisotope

    International Nuclear Information System (INIS)

    Isagulyants, G.V.; Greish, A.A.; Kogan, V.M.

    1987-01-01

    It has been established that in aluminocobaltomolybdenum catalyst sulfidized with elemental sulfur there are two types of sulfur, free and bound. The maximum amount of bound sulfur in ACM catalyst is 6.6 wt. %, which corresponds to practically complete sulfidation of the ACM catalyst. In the presence of hydrogen an equilibrium distribution of bound sulfur is achieved in a granule of ACM catalyst irrespective of the temperature of sulfidation. In a nitrogen atmosphere it is primarily the surface layers of the catalyst that are sulfured

  14. Down-flow moving-bed gasifier with catalyst recycle

    Science.gov (United States)

    Halow, John S.

    1999-01-01

    The gasification of coal and other carbonaceous materials by an endothermic gasification reaction is achieved in the presence of a catalyst in a down-flow, moving-bed gasifier. Catalyst is removed along with ash from the gasifier and is then sufficiently heated in a riser/burner by the combustion of residual carbon in the ash to volatilize the catalyst. This volatilized catalyst is returned to the gasifier where it uniformly contacts and condenses on the carbonaceous material. Also, the hot gaseous combustion products resulting from the combustion of the carbon in the ash along with excess air are introduced into the gasifier for providing heat energy used in the endothermic reaction.

  15. Activation of molecular catalysts using semiconductor quantum dots

    Science.gov (United States)

    Meyer, Thomas J [Chapel Hill, NC; Sykora, Milan [Los Alamos, NM; Klimov, Victor I [Los Alamos, NM

    2011-10-04

    Photocatalytic materials based on coupling of semiconductor nanocrystalline quantum dots (NQD) and molecular catalysts. These materials have capability to drive or catalyze non-spontaneous chemical reactions in the presence of visible radiation, ultraviolet radiation, or both. The NQD functions in these materials as a light absorber and charge generator. Following light absorption, the NQD activates a molecular catalyst adsorbed on the surface of the NQD via transfer of one or more charges (either electrons or electron-holes) from the NQD to the molecular catalyst. The activated molecular catalyst can then drive a chemical reaction. A photoelectrolytic device that includes such photocatalytic materials is also described.

  16. Use of lanthanide catalysts in air electrodes

    International Nuclear Information System (INIS)

    Souza Parente, L.T. de

    1982-01-01

    A review on the lanthanide catalysts suitable for the reduction catalysis of oxygen in air electrodes is presented. The kinds of lanthanide indicated to be used as catalysts of oxygen reduction are shown. (A.R.H.) [pt

  17. Preparation of alveolate hydrophobic catalyst for tritium waste gas treatment

    International Nuclear Information System (INIS)

    Yang, Yong; Peng, Shuming; Wang, Heyi; Du, Yang; Li, Jiamao

    2016-01-01

    Highlights: • The catalyst is hydrophobic, it will not be poisoned by steam in room air at room temperature which is better than Pt-Al 2 O 3 . • At room temperature, the conversion of low concentration of H2 and tritium gas in room air over the catalyst is high. • The air resistance of catalyst is much lower than graininess Pt-Al 2 O 3 . • It is inorganic and will not burn. - Abstract: To prepare a catalyst for the detritiation of waste gases at high flow rates, a heat-resistant hydrophobic zeolitic molecular sieve coating was synthesized on the surface of alveolate cordierite by hydrothermal processing. The alveolate hydrophobic catalyst prepared from the support was essentially waterproof and not easily poisoned by moisture. At room temperature, the conversion of low concentrations of H 2 in humid air over the catalyst was higher than 95% at different space velocities (0–16,000 h −1 ) and different relative humidities. The reaction rate constant of the oxidation of tritium over alveolate hydrophobic catalyst is 0.182 s −1 at 293.3 K–293.7 K and 59%–60% RH, it is much higher than the catalyst of reference honeycomb catalyst.

  18. Pt Nanostructures/N-Doped Carbon hybrid, an Efficient Catalyst for Hydrogen Evolution/Oxidation Reactions: Enhancing its Base Media Activity through Bifunctionality of the Catalyst.

    Science.gov (United States)

    Barman, Sudip; Kundu, Manas; Bhowmik, Tanmay; Mishra, Ranjit

    2018-06-04

    Design and synthesis of active catalyst for HER/HOR are important for the development of hydrogen based renewable technologies. We report synthesis of Pt nanostructures-N-doped carbon hybrid (Pt-(PtO2)-NSs/C) for HER/HOR applications. The HER activity of this Pt-(PtOx)-NSs/C catalyst is 4 and 6.5 times better than commercial Pt/C in acid and base. The catalyst exhibits a current density of 10 mA/cm2 at overpotentials of 5 and 51 mV with tafel slopes of 29 and 64mV/dec in in 0.5 M H2SO4 and 0.5 M KOH. This catalyst also showed superior HOR activity at all pH values. The HER/HOR activity of Pt-(PtOx)-NSs/C and PtOx-free Pt-Nanostructures/C (PtNSs/C) catalysts are comparable in acid. The presence of PtOx in Pt-(PtOx)-NSs/C makes this Pt-catalyst more HER/HOR active in base media. The activity of Pt-(PtOx)NSs/C catalyst is 5 fold higher than that of PtNSs/C catalyst in basic medium although their activity is comparable in acid. Hydrogen binding energy and oxophilicity are the two equivalent descriptors for HER/HOR in basic media. We propose a bi-functional mechanism for the enhanced alkaline HER/HOR activity of Pt(PtOx)-NSs/C catalyst. In bi-functional Pt-(PtOx)-NSs/C catalyst, PtOx provide an active site for OH- adsorption to form OHads which reacts with hydrogen intermediate (Hads), present at neighbouring Pt sites to form H2O leading to enhancement of HOR activity in basic medium This work may provide opportunity to develop catalysts for various renewable energy technologies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Fuel cell catalyst degradation

    DEFF Research Database (Denmark)

    Arenz, Matthias; Zana, Alessandro

    2016-01-01

    Fuel cells are an important piece in our quest for a sustainable energy supply. Although there are several different types of fuel cells, the by far most popular is the proton exchange membrane fuel cell (PEMFC). Among its many favorable properties are a short start up time and a high power density...... increasing focus. Activity of the catalyst is important, but stability is essential. In the presented perspective paper, we review recent efforts to investigate fuel cell catalysts ex-situ in electrochemical half-cell measurements. Due to the amount of different studies, this review has no intention to give...

  20. Method for filling a reactor with a catalyst

    DEFF Research Database (Denmark)

    2013-01-01

    The invention relates to a method for filling a reactor with a catalyst for the carbonylation of carbonylated compounds in the gas phase. According to said method, a SILP catalyst is covered with a filling agent which is liquid under normal conditions and is volatile under carbonylation reaction...... conditions, and a thus-treated catalyst is introduced into the reactor and the reactor is sealed....

  1. Phenol Removal by a Novel Non-Photo-Dependent Semiconductor Catalyst in a Pilot-Scaled Study: Effects of Initial Phenol Concentration, Light, and Catalyst Loading

    Directory of Open Access Journals (Sweden)

    Xiao Chen

    2014-01-01

    Full Text Available A novel non-photo-dependent semiconductor catalyst (CT was employed to degrade phenol in the present pilot-scaled study. Effect of operational parameters such as phenol initial concentration, light area, and catalyst loading on phenol degradation, was compared between CT catalyst and the conventional photocatalyst titanium dioxide. CT catalyst excelled titanium dioxide in treating and mineralizing low-level phenol, under both mild UV radiation and thunder conditions of nonphoton. The result suggested that CT catalyst could be applied in circumstances when light is not easily accessible in pollutant-carrying media (e.g., particles, cloudy water, and colored water.

  2. A new catalyst for heavy water production and its prospect

    International Nuclear Information System (INIS)

    Sato, Toshio; Ohkoshi, Sumio; Takahashi, Tomiki

    1978-01-01

    The heavy water production process utilizing isotope exchange reaction between liquid water and hydrogen is the most promising method. Study was made for developing highly active and long life catalyst practically applied for this process. As platinum is used as this catalyst, catalytic activities using varieties of Polapacs and Shodexes instead of active carbon as the carriers of platinum catalyst were investigated. It became clear that the catalytic activity using Pt/Shodex 104 (3 wt %) was 1000 times as high as the activity using Pt/active carbon (1 wt %). This method is considered to be reasonable enough economically. There are many problems which must be solved hereafter for its practical use, and the further studies are required regarding the following points; forming of catalyst, life of catalyst, mass production of catalyst, most appropriate counter flow reacting device of hydrophobic catalyst, pressure and temperature effects on reaction. (Kobatake, H.)

  3. Sulfur deactivation of fatty ester hydrogenolysis catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Brands, D.S.; U-A-Sai, G.; Poels, E.K.; Bliek, A. [Univ. of Amsterdam (Netherlands). Dept. of Chemical Engineering

    1999-08-15

    Trace organosulfur compounds present as natural impurities in oleochemical feedstocks may lead to activation of copper-containing catalysts applied for hydrogenolysis of esters toward fatty alcohols. In this paper, the sulfur deactivation of Cu/SiO{sub 2} and Cu/ZnO/SiO{sub 2} catalysts was studied in the liquid-phase hydrogenolysis of methyl palmitate. The rate of deactivation is fast and increases as a function of the sulfur-containing compound present: octadecanethiol {approx} dihexadecyl disulfide < benzyl isothiocyanate < methyl p-toluene sulfonate < dihexadecyl sulfide < dibenzothiophene. The rapid deactivation is caused by the fact that sulfur is quantitatively removed from the reaction mixture and because mainly surface sulfides are formed under hydrogenolysis conditions. The life time of a zinc-promoted catalyst is up to two times higher than that of the Cu/SiO{sub 2} catalyst, most likely due to zinc surface sulfide formation. The maximum sulfur coverage obtained after full catalyst deactivation with dibenzothiophene and dihexadecyl sulfide--the sulfur compounds that cause the fastest deactivation--may be as low as 0.07. This is due to the fact that decomposition of these compounds as well as the hydrogenolysis reaction itself proceeds on ensembles of copper atoms. Catalyst regeneration studies reveal that activity cannot be regained by reduction or combined oxidation/reduction treatments. XRD, TPR, and TPO results confirm that no distinct bulk copper or zinc sulfide or sulfate phases are present.

  4. Finding Furfural Hydrogenation Catalysts via Predictive Modelling

    Science.gov (United States)

    Strassberger, Zea; Mooijman, Maurice; Ruijter, Eelco; Alberts, Albert H; Maldonado, Ana G; Orru, Romano V A; Rothenberg, Gadi

    2010-01-01

    Abstract We combine multicomponent reactions, catalytic performance studies and predictive modelling to find transfer hydrogenation catalysts. An initial set of 18 ruthenium-carbene complexes were synthesized and screened in the transfer hydrogenation of furfural to furfurol with isopropyl alcohol complexes gave varied yields, from 62% up to >99.9%, with no obvious structure/activity correlations. Control experiments proved that the carbene ligand remains coordinated to the ruthenium centre throughout the reaction. Deuterium-labelling studies showed a secondary isotope effect (kH:kD=1.5). Further mechanistic studies showed that this transfer hydrogenation follows the so-called monohydride pathway. Using these data, we built a predictive model for 13 of the catalysts, based on 2D and 3D molecular descriptors. We tested and validated the model using the remaining five catalysts (cross-validation, R2=0.913). Then, with this model, the conversion and selectivity were predicted for four completely new ruthenium-carbene complexes. These four catalysts were then synthesized and tested. The results were within 3% of the model’s predictions, demonstrating the validity and value of predictive modelling in catalyst optimization. PMID:23193388

  5. Friction coefficient and limiter load test analysis by flexibility coefficient model of Hold-Down Spring of nuclear reactor vessel internals

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Linjun [Zhejiang Univ. of Technology, Hangzhou (China). College of Mechanical Engineering; Xue, Guohong; Zhang, Ming [Shanghai Nuclear Engineering Research and Design Institute, Shanghai (China)

    2017-11-15

    The friction force between the contact surfaces of a reactor internal hold-down spring (HDS) and core barrel flanges can directly influence the axial stiffness of an HDS. However, friction coefficient cannot be obtained through theoretical analysis. This study performs a mathematical deduction of the physical model of an HDS. Moreover, a mathematical model of axial load P, displacement δ, and flexibility coefficient is established, and a set of test apparatuses is designed to simulate the preloading process of the HDS. According to the experimental research and theoretical analysis, P-δ curves and the flexibility coefficient λ are obtained in the loading processes of the HDS. The friction coefficient f of the M1000 HDS is further calculated as 0.224. The displacement limit load value (4,638 kN) can be obtained through a displacement limit experiment. With the friction coefficient considered, the theoretical load is 4,271 kN, which is relatively close to the experimental result. Thus, the friction coefficient exerts an influence on the displacement limit load P. The friction coefficient should be considered in the design analysis for HDS.

  6. Friction coefficient and limiter load test analysis by flexibility coefficient model of Hold-Down Spring of nuclear reactor vessel internals

    International Nuclear Information System (INIS)

    Xie, Linjun

    2017-01-01

    The friction force between the contact surfaces of a reactor internal hold-down spring (HDS) and core barrel flanges can directly influence the axial stiffness of an HDS. However, friction coefficient cannot be obtained through theoretical analysis. This study performs a mathematical deduction of the physical model of an HDS. Moreover, a mathematical model of axial load P, displacement δ, and flexibility coefficient is established, and a set of test apparatuses is designed to simulate the preloading process of the HDS. According to the experimental research and theoretical analysis, P-δ curves and the flexibility coefficient λ are obtained in the loading processes of the HDS. The friction coefficient f of the M1000 HDS is further calculated as 0.224. The displacement limit load value (4,638 kN) can be obtained through a displacement limit experiment. With the friction coefficient considered, the theoretical load is 4,271 kN, which is relatively close to the experimental result. Thus, the friction coefficient exerts an influence on the displacement limit load P. The friction coefficient should be considered in the design analysis for HDS.

  7. Method for reactivating solid catalysts used in alkylation reactions

    Science.gov (United States)

    Ginosar, Daniel M.; Thompson, David N.; Coates, Kyle; Zalewski, David J.; Fox, Robert V.

    2003-06-17

    A method for reactivating a solid alkylation catalyst is provided which can be performed within a reactor that contains the alkylation catalyst or outside the reactor. Effective catalyst reactivation is achieved whether the catalyst is completely deactivated or partially deactivated. A fluid reactivating agent is employed to dissolve catalyst fouling agents and also to react with such agents and carry away the reaction products. The deactivated catalyst is contacted with the fluid reactivating agent under pressure and temperature conditions such that the fluid reactivating agent is dense enough to effectively dissolve the fouling agents and any reaction products of the fouling agents and the reactivating agent. Useful pressures and temperatures for reactivation include near-critical, critical, and supercritical pressures and temperatures for the reactivating agent. The fluid reactivating agent can include, for example, a branched paraffin containing at least one tertiary carbon atom, or a compound that can be isomerized to a molecule containing at least one tertiary carbon atom.

  8. Single-site catalyst promoters accelerate metal-catalyzed nitroarene hydrogenation

    KAUST Repository

    Wang, Liang

    2018-04-04

    Atomically dispersed supported metal catalysts are drawing wide attention because of the opportunities they offer for new catalytic properties combined with efficient use of the metals. We extend this class of materials to catalysts that incorporate atomically dispersed metal atoms as promoters. The catalysts are used for the challenging nitroarene hydrogenation and found to have both high activity and selectivity. The promoters are single-site Sn on TiO2 supports that incorporate metal nanoparticle catalysts. Represented as M/Sn-TiO2 (M = Au, Ru, Pt, Ni), these catalysts decidedly outperform the unpromoted supported metals, even for hydrogenation of nitroarenes substituted with various reducible groups. The high activity and selectivity of these catalysts result from the creation of oxygen vacancies on the TiO2 surface by single-site Sn, which leads to efficient, selective activation of the nitro group coupled with a reaction involving hydrogen atoms activated on metal nanoparticles.

  9. Single-site catalyst promoters accelerate metal-catalyzed nitroarene hydrogenation

    KAUST Repository

    Wang, Liang; Guan, Erjia; Zhang, Jian; Yang, Junhao; Zhu, Yihan; Han, Yu; Yang, Ming; Cen, Cheng; Fu, Gang; Gates, Bruce C.; Xiao, Feng-Shou

    2018-01-01

    Atomically dispersed supported metal catalysts are drawing wide attention because of the opportunities they offer for new catalytic properties combined with efficient use of the metals. We extend this class of materials to catalysts that incorporate atomically dispersed metal atoms as promoters. The catalysts are used for the challenging nitroarene hydrogenation and found to have both high activity and selectivity. The promoters are single-site Sn on TiO2 supports that incorporate metal nanoparticle catalysts. Represented as M/Sn-TiO2 (M = Au, Ru, Pt, Ni), these catalysts decidedly outperform the unpromoted supported metals, even for hydrogenation of nitroarenes substituted with various reducible groups. The high activity and selectivity of these catalysts result from the creation of oxygen vacancies on the TiO2 surface by single-site Sn, which leads to efficient, selective activation of the nitro group coupled with a reaction involving hydrogen atoms activated on metal nanoparticles.

  10. Towards the computational design of solid catalysts

    DEFF Research Database (Denmark)

    Nørskov, Jens Kehlet; Bligaard, Thomas; Rossmeisl, Jan

    2009-01-01

    Over the past decade the theoretical description of surface reactions has undergone a radical development. Advances in density functional theory mean it is now possible to describe catalytic reactions at surfaces with the detail and accuracy required for computational results to compare favourably...... with experiments. Theoretical methods can be used to describe surface chemical reactions in detail and to understand variations in catalytic activity from one catalyst to another. Here, we review the first steps towards using computational methods to design new catalysts. Examples include screening for catalysts...

  11. The strange case of the "oscillating" catalysts

    NARCIS (Netherlands)

    Busico, [No Value; Cipullo, R; Kretschmer, W; Talarico, G; Vacatello, M; Castelli, VV

    The field of stereoselective propene polymerization has been dramatically innovated by the discovery of homogeneous metallocene-based catalysts with well-defined and tunable molecular structure. Of all, "oscillating" metallocenes are probably the most ingenious and challenging example of catalyst

  12. Flame spray deposition of porous catalysts on surfaces and in microsystems

    DEFF Research Database (Denmark)

    Thybo, Susanne; Jensen, Søren; Johansen, Johnny

    2004-01-01

    Flame spray synthesis is investigated as a method for one step synthesis and deposition of porous catalysts onto surfaces and into microreactors. Using a standard photolithographic lift-off process, catalyst can be deposited on flat surfaces in patterns with sub-millimeter feature sizes....... With shadow masks, porous catalyst layers can be deposited selectively into microchannels. Using Au/TiO$_2$ as test catalyst and CO-oxidation as test reaction, it is found that the apparent activation energy of the deposited catalyst is similar to what is normally seen for supported gold catalysts...

  13. 40 CFR 91.427 - Catalyst thermal stress resistance evaluation.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Catalyst thermal stress resistance... Procedures § 91.427 Catalyst thermal stress resistance evaluation. (a)(1) The purpose of the evaluation procedure specified in this section is to determine the effect of thermal stress on catalyst conversion...

  14. Platinum nanocube catalysts for methanol and ethanol electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Han, Sang-Beom; Song, You-Jung; Lee, Jong-Min; Kim, Jy-Yeon; Park, Kyung-Won [Department of Chemical and Environmental Engineering, Soongsil University, Seoul 156-743 (Korea)

    2008-07-15

    We prepared Pt nanocube catalyst with about 3.6 nm in size by a polyol process in the presence of PVP as a stabilizer and Fe ion as a kinetic controller. The crystal structure of Pt nanocube with {l_brace}1 0 0{r_brace} faces was confirmed by field-emission transmission electron microscopy. In a cyclic voltammogram, we found that the Pt nanocube catalyst showed relatively high ratio of the forward anodic peak current to the reverse anodic peak current resulting in less accumulation of residues on the catalyst. The Pt nanocube catalyst with the edge of stepped {l_brace}1 0 0{r_brace} faces was preferable to breakage of CH{sub 3}OH and CH{sub 3}CH{sub 2}OH compared to polycrystalline Pt nanocatalyst. In an electrochemical measurement for methanol and ethanol electrooxidation, the Pt nanocube catalyst showed an excellent catalytic activity, i.e., lower onset potential and higher current density, compared to the polycrystalline Pt nanocatalyst. (author)

  15. Catalyst performance in magnetic esterification methyl soy oil

    International Nuclear Information System (INIS)

    Araujo, N.O.; Pereira, K R. de O.; Barros, A.B. de S.; Moura, T.F.B. de; Vilar, E.; Dantas, J.; Costa, A.C.F. de M.

    2016-01-01

    Growing concerns about the environment have encouraged the search for new fuels, including biodiesel, obtained from lipid sources that react with alcohol and catalyst. This aimed of this study to synthesize type catalyst (Ni-Zn)Fe_2O_4 and evaluate it in soy oil esterification. The catalyst was synthesized by combustion reaction and characterized by XRD, FTIR and BET. The esterification was carried out at high pressure reactor at 140°C for 1 hour with molar ratio of oil:alcohol 1:15 to 1 and 3% catalyst. From the XRD it was observed the formation of inverted spinel phase. FTIR revealed the presence of the vibrational bands 586, 1381, 1628, 2352, 2922, 3147 and 3457cm"-"1 and surface area 48m"2g"-"1, 10nm pore diameter and type IV isotherm, suggesting mesoporous material characteristic. The results indicate biodiesel conversion of 31.9% and 27.3% when using 1% and 3% catalyst, respectively. (author)

  16. Solid Catalyst Nanoparticles derived from Oil-Palm Empty Fruit Bunches (OP-EFB) as a Renewable Catalyst for Biodiesel Production

    Science.gov (United States)

    Husin, H.; Asnawi, T. M.; Firdaus, A.; Husaini, H.; Ibrahim, I.; Hasfita, F.

    2018-05-01

    Solid nanocatalyst derived from oil-palm empty fruit bunches (OP-EFB) fiber was successfully synthesized and its application for biodiesel production was investigated. The OPEFB was treated by burning, milling and heating methods to generate ashes in a nanoparticle size. The nanoparticle palm-bunch ash was characterized by scanning electron microscopy (SEM) and x-ray diffraction (XRD). The effects of the calcination temperature and catalyst amounts for transesterification reactions were investigated. XRD analysis of palm bunch ash exhibited that the highest composition of peaks characteristic were potassium oxide (K2O). SEM analysis showed that the nano palm bunch ash have a particle size ranging of 150-400 nm. The highest conversion of palm-oil to biodiesel reach to 97.90% was observed by using of palm bunch ash nanocatalyst which heated at 600°C, 3 h reaction time and 1% catalyst amount. Reusability of palm bunch ash catalysts was also examined. It was found that of its high active sites, reusable solid catalyst was obtained by just heating of palm bunch ash. It has a capability to reduce not only the amount of catalyst consumption but also reduce the reaction time of transesterification process.

  17. Plasma and catalyst for the oxidation of NOx

    Science.gov (United States)

    Jõgi, Indrek; Erme, Kalev; Levoll, Erik; Raud, Jüri; Stamate, Eugen

    2018-03-01

    Efficient exhaust gas cleaning from NO x (NO and NO2) by absorption and adsorption based methods requires the oxidation of NO. The application of non-thermal plasma is considered as a promising oxidation method but the oxidation of NO by direct plasma remains limited due to the back-reaction of NO2 to NO mediated by O radicals in plasma. Indirect NO oxidation by plasma produced ozone allows to circumvent the back-reaction and further oxidize NO2 to N2O5 but the slow reaction rate for the latter process limits the efficiency of this process. Present paper gives an overview of the role of metal-oxide catalysts in the improvement of oxidation efficiency for both direct and indirect plasma oxidation of NO x . The plasma produced active oxygen species (O, O3) were shown to play an important role in the reactions taking place on the catalyst surfaces while the exact mechanism and extent of the effect were different for direct and indirect oxidation. In the case of direct plasma oxidation, both short and long lifetime oxygen species could reach the catalyst and participate in the oxidation of NO to NO2. The back-reaction in the plasma phase remained still important factor and limited the effect of catalyst. In the case of indirect oxidation, only ozone could reach the catalyst surface and improve the oxidation of NO2 to N2O5. The effect of catalyst at different experimental conditions was quantitatively described with the aid of simple global chemical kinetic models derived for the NO x oxidation either by plasma or ozone. The models allowed to compare the effect of different catalysts and to analyze the limitations for the efficiency improvement by catalyst.

  18. Facile synthesis of hierarchical double-shell WO{sub 3} microspheres with enhanced photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhenfeng [College of Environment and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387 (China); State Key Laboratory of Hollow-Fiber Membrane Materials and Membrane Processes, Tianjin 300387 (China); Chu, Deqing, E-mail: dqingchu@163.com [College of Environment and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387 (China); State Key Laboratory of Hollow-Fiber Membrane Materials and Membrane Processes, Tianjin 300387 (China); Wang, Limin, E-mail: wanglimin@tjpu.edu.cn [School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387 (China); State Key Laboratory of Hollow-Fiber Membrane Materials and Membrane Processes, Tianjin 300387 (China); Wang, Lipeng [School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387 (China); Hu, Wenhui; Chen, Xiangyu; Yang, Huifang [College of Environment and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387 (China); Sun, Jingjing [School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387 (China)

    2017-02-28

    Highlights: • HDS-WO{sub 3} were fabricated via mild process. • A possible growth mechanism for HDS-WO{sub 3} is proposed. • The excellent photocatalytic activity is attributed to the larger surface area of the HDS-WO{sub 3} nanostructures. - Abstract: Hierarchical double-shell WO{sub 3} microspheres (HDS-WO{sub 3}) have been successfully obtained through the thermal decomposition of WO{sub 3}·H{sub 2}O formed by metal salts as the templates. The products were characterized by X-ray diffraction (XRD), and the morphology was investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In addition, the HDS-WO{sub 3} microspheres were analyzed by the Thermogravimetric (TG) and Brunauer-Emmett-Teller (BET) analysis. The synthetic mechanism of the products with hierarchical structures was proposed. The obtained HDS-WO{sub 3} exhibits excellent photocatalytic efficiency (84.9%), which is much higher than other WO{sub 3} sample under visible light illumination.

  19. Experimental research of technology activating catalysts for SCR DeNOx in boiler

    Science.gov (United States)

    Zeng, Xi; Yang, Zhengde; Li, Yan; Chen, Donglin

    2018-01-01

    In order to improve activity of the catalysts used in SCR DeNOx system of flue gas, a series of catalysts activated by different activating liquids under varied conditions in boiler directly were conducted. Then these catalysts were characterized by SEM, FT-IR and BET technology. And NO conversions of the activated catalysts were studied and compared with that of inactivated catalyst. The above experiment shows that NO conversion of the activated catalyst can be up to 99%, which 30% higher than that of inactivated catalyst, so activity of catalysts were improved greatly. Furthermore, optimal activating liquid labeled L2 and effective technology parameters were gained in the experiment.

  20. Carbonized tantalum catalysts for catalytic chemical vapor deposition of silicon films

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Shimin [State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Dalian National Laboratory for Clean Energy, Dalian 116023 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Gao Huiping; Ren Tong; Ying Pinliang [State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Dalian National Laboratory for Clean Energy, Dalian 116023 (China); Li Can, E-mail: canli@dicp.ac.cn [State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Dalian National Laboratory for Clean Energy, Dalian 116023 (China)

    2012-06-01

    Catalytic chemical vapor deposition (Cat-CVD) has been demonstrated as a promising way to prepare device-quality silicon films. However, catalyst ageing due to Si contamination is an urgency to be solved for the practical application of the technique. In this study, the effect of carbonization of tantalum catalyst on its structure and performance was investigated. The carbonized Ta catalyst has a TaC surface layer which is preserved over the temperature range between 1450 and 1750 Degree-Sign C and no Si contamination occurs on the catalyst after long-term use. Si film prepared using the carbonized Ta catalyst has a similar crystal structure to that prepared by uncarbonized Ta catalyst. Formation of the TaC surface layer can alleviate the ageing problem of the catalyst, which shows great potential as a stable catalyst for Cat-CVD of Si films. - Highlights: Black-Right-Pointing-Pointer Si films prepared by catalytic chemical vapor deposition. Black-Right-Pointing-Pointer Carbonized Ta with a TaC surface layer used as catalyst. Black-Right-Pointing-Pointer TaC surface structure preserved after long-term use in a wide temperature range. Black-Right-Pointing-Pointer Help to solve the ageing problem of metal catalysts. Black-Right-Pointing-Pointer Si film obtained has a similar crystal structure to that prepared by Ta catalyst.

  1. Scalable synthesis of palladium nanoparticle catalysts by atomic layer deposition

    International Nuclear Information System (INIS)

    Liang Xinhua; Lyon, Lauren B.; Jiang Yingbing; Weimer, Alan W.

    2012-01-01

    Atomic layer deposition (ALD) was used to produce Pd/Al 2 O 3 catalysts using sequential exposures of Pd(II) hexafluoroacetylacetonate and formalin at 200 °C in a fluidized bed reactor. The ALD-prepared Pd/alumina catalysts were characterized by various methods including hydrogen chemisorption, XPS, and TEM, and compared with a commercially available 1 wt% Pd/alumina catalyst, which was also characterized. The content of Pd on alumina support and the size of Pd nanoparticles can be controlled by the number of ALD-coating cycles and the dose time of the Pd precursor. One layer of organic component from the Pd precursor remained on the Pd particle surface. The ALD 0.9 wt% Pd/alumina had greater active metal surface area and percent metal dispersion than the commercial 1 wt% Pd/alumina catalyst. The ALD and commercial catalysts were subjected to catalytic testing to determine their relative activities for glucose oxidation to gluconic acid in aqueous solution. The ALD 0.9 wt% Pd/alumina catalyst had comparable activity as compared to the commercial 1 wt% Pd catalyst. No noticeable amount of Pd leaching was observed for the ALD-prepared catalysts during the vigorously stirred reaction.

  2. Nano-Structured Bio-Inorganic Hybrid Material for High Performing Oxygen Reduction Catalyst.

    Science.gov (United States)

    Jiang, Rongzhong; Tran, Dat T; McClure, Joshua P; Chu, Deryn

    2015-08-26

    In this study, we demonstrate a non-Pt nanostructured bioinorganic hybrid (BIH) catalyst for catalytic oxygen reduction in alkaline media. This catalyst was synthesized through biomaterial hemin, nanostructured Ag-Co alloy, and graphene nano platelets (GNP) by heat-treatment and ultrasonically processing. This hybrid catalyst has the advantages of the combined features of these bio and inorganic materials. A 10-fold improvement in catalytic activity (at 0.8 V vs RHE) is achieved in comparison of pure Ag nanoparticles (20-40 nm). The hybrid catalyst reaches 80% activity (at 0.8 V vs RHE) of the state-of-the-art catalyst (containing 40% Pt and 60% active carbon). Comparable catalytic stability for the hybrid catalyst with the Pt catalyst is observed by chronoamperometric experiment. The hybrid catalyst catalyzes 4-electron oxygen reduction to produce water with fast kinetic rate. The rate constant obtained from the hybrid catalyst (at 0.6 V vs RHE) is 4 times higher than that of pure Ag/GNP catalyst. A catalytic model is proposed to explain the oxygen reduction reaction at the BIH catalyst.

  3. Atomic and nuclear methods in fossil energy research

    International Nuclear Information System (INIS)

    Filby, R.H.; Carpenter, B.S.; Ragaini, R.C.

    1982-01-01

    This book presents information on the following topics: analysis of oil shale products and effluents using a multitechnique approach; nuclear methods for trace elements in petroleum and petroleum products; uranium content of petroleum by fission; fast neutron activation analysis of fossil fuels and liquefaction products; determination of trace element forms in solvent refined coal products; an automated multidetector system for instrumental neutron activation analysis of geological and environmental materials; on-line nuclear analysis of coal and its uses; investigation of coal hydrogenation using deuterium as an isotopic tracer; the natural permeability reduction in porous media due to the presence of kaolinite; the application of photon induced x-ray fluorescence for the simultaneous determinations of cobalt, nickel and molybdenum in hydrodesulfurization catalysts; and applications of nuclear magnetic resonance of oil shale evaluation and processing

  4. NO formation during burnoff of spent hydroprocessing catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.; Zaitlin, L.; Laugher, R. (CANMET, Ottawa, ON (Canada). Energy Research Laboratories)

    1993-11-01

    Temperature-programmed oxidation (from room temperature to 600[degree]C) was performed on operating forms of aged CoMo (extrudate) and NiMo (chestnut bur-like) as well as powder forms, with continuous on-line analysis for NO, CO, CO[sub 2] and SO[sub 2]. For all catalysts, NO formation was delayed by that of CO and CO[sub 2], indicating either a strong interaction of nitrogen-containing compounds with the catalyst surface or a lower reactivity of nitrogen during burnoff compared with that of carbon. The existence of diffusion effects during burnoff was quite evident. These effects were influenced by the catalyst structure and the level of catalyst deactivation. 18 refs., 6 figs., 1 tab.

  5. Discovery of fuel cell anode electrocatalysts and dehydrogenation catalysts using combinatorial techniques

    Science.gov (United States)

    Chan, Benny Chun Wai

    A gas diffusion optical screening method was developed for the discovery of catalysts for the electro-oxidation of reformate gas (H2 with 100 ppm CO). The screening cell was designed to accommodate a gas diffusion layer, 715 member catalyst array, and an electrolyte container. Since protons are generated during H2 oxidation, a pH sensitive fluorphore was used to identify active compositions. The cell showed no detectable iR drop across the array and ranked activity of two commercial PtRu and one Pt catalysts. Over 95% of a given catalyst fluoresced at the initial onset potential and a 5 mV difference in onset potential of two different catalysts was statistically different. A gas diffusion half cell was designed similar to the optical screening cell to obtain current-potential curves of bulk catalysts. The screening results correlated with half cell and fuel cell data, internally validating the method. The combinatorial method was then applied to search for catalysts in the PtRuMoIrRh composition space. The catalysts on the array were prepared by hydrogen reduction of the metals salts on carbon. The most active catalysts were from the Pt enriched regions of the PtRuMoRh quaternary. Bulk catalysts were prepared from the active regions and tested in the gas diffusion half cell. The most active catalysts in the optical screening were also the most active catalysts in the half cell. When any homemade catalysts were compared to commercial PtRu, however, the performance was worse. A high surface area, high catalyst activity synthetic method is the most important factor to reliably screen catalysts for "real world" fuel cell application. High surface area catalysts were tested for direct methanol oxidation activity. The optical screening method was compared with disk electrode, high throughput fuel cell testing, and fuel cell testing. Six catalysts examined included two commercial PtRu catalysts, a Pt catalyst, and three homemade PtRu catalysts of varying activity

  6. Solid Catalysts and theirs Application in Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Ramli Mat

    2012-12-01

    Full Text Available The reduction of oil resources and increasing petroleum price has led to the search for alternative fuel from renewable resources such as biodiesel. Currently biodiesel is produced from vegetable oil using liquid catalysts. Replacement of liquid catalysts with solid catalysts would greatly solve the problems associated with expensive separation methods and corrosion problems, yielding to a cleaner product and greatly decreasing the cost of biodiesel production. In this paper, the development of solid catalysts and its catalytic activity are reviewed. Solid catalysts are able to perform trans-esterification and esterification reactions simultaneously and able to convert low quality oils with high amount of Free Fatty Acids. The parameters that effect the production of biodiesel are discussed in this paper. Copyright © 2012 by BCREC UNDIP. All rights reservedReceived: 6th April 2012, Revised: 24th October 2012, Accepted: 24th October 2012[How to Cite: R. Mat, R.A. Samsudin, M. Mohamed, A. Johari, (2012. Solid Catalysts and Their Application in Biodiesel Production. Bulletin of Chemical Reaction Engineering & Catalysis, 7(2: 142-149. doi:10.9767/bcrec.7.2.3047.142-149] [How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.2.3047.142-149 ] | View in 

  7. Catalyst for disproportionation/double-bond isomerization of olefins

    International Nuclear Information System (INIS)

    Hughes, W.; Reusser, R.

    1980-01-01

    An activated calcined homogenous catalyst composition consists essentially of a support uranium and at least one of tungsten and rhenium, wherein said composition contains about 0.1 to 25 weight percent total uranium, tungsten, and rhenium, each calculated as the metal; and a weight ratio of uranium:at least one of tungsten and rhenium of about 2:1 to 1:1. The activated catalyst composition is prepared by steps which comprise forming a homogenous composite, calcining said homogenous composite in a molecular oxygen-containing atmosphere at elevated temperatures, and subsequently activating said calcined homogenous composite under reducing conditions at elevated temperatures. The catalyst composition according to claim 1 is one in which the total of uranium, tungsten, and rhenium is about 1 to 15 weight percent. The catalyst composition according to claim 2 is one in which the ratio of uranium to at least one of tungsten and rhenium is about 2:1 to 0.5:1. The catalyst composition according to claim 3 is one in which the support is alumina, silica, silica-alumina, zirconia, titania, thoria, aluminum phosphate, magnisium silicate, zinc aluminate, or mixture. The catalyst composition according to claim 4is one in which support is silica

  8. Catalyst deterioration over the lifetime of small utility engines.

    Science.gov (United States)

    Doll, Nicholas J; Reisel, John R

    2007-10-01

    In this paper, the deterioration of catalysts in small, four-stroke, spark-ignition engines is described. The laboratory testing performed followed a proven test method that mimics the lifetime of a small air-cooled utility engine operating under normal field conditions. The engines used were single-cylinder, 6.5-hp, side-valve engines. These engines have a nominal 125-hr lifetime. The effectiveness of the catalysts was determined by testing exhaust emissions before and after the catalyst to determine the catalyst's efficiency. This was done several times during the lifetime of the engines to determine the deterioration in the performance of the catalysts at lowering pollutant emissions. Additional testing was performed on the catalysts to determine wear patterns, contamination, and recoverable activity. The results indicate that considerable catalyst deterioration is occurring over the lifetime of the engine. The results reveal that soot buildup, poisons, and active surface loss appear to be the contributing factors to the deterioration. These results were determined after analyzing the exhaust emissions data, scanning electron microscope results analysis, and the impact of regeneration attempts. An ANOVA statistical analysis was performed, and it was determined that the emissions are also impacted, to some degree, by time and the engine itself.

  9. Wet chemical synthesis of nickel supported on alumina catalysts

    International Nuclear Information System (INIS)

    Freire, Ranny Rodrigues; Costa, Talita Kenya Oliveira; Morais, Ana Carla da Fonseca Ferreira; Costa, Ana Cristina Figueiredo de Melo; Freitas, Normanda Lino de

    2016-01-01

    Heterogenic catalysts are those found to be in a different phase on the reaction when compared to the reactants and products. Preferred when compared to homogeneous catalysts due to the easiness on which the separation is processed. The objective of this study is to obtain and characterize Alumina based catalysts impregnated with Nickel (Al_2O_3), by wet impregnation. The alumina was synthesized by combustion reaction. Before and after the impregnation the catalysts were characterized by X-ray diffraction (XRD), granulometric analysis, the textural analysis will be held by nitrogen adsorption (BET), energy-dispersive X-ray spectroscopy (EDX) and scanning electron microscopy (SEM). The results show a presence of a stable crystalline phase of Al2O3 in all the studied samples and after the impregnation the second phase formed was of NiO and NiAl_2O_4. The Al_2O_3 e Ni/Al_2O_3 catalysts resulted in clusters with a medium diameter of 18.9 and 14.2 μm, respectively. The catalysts show a medium-pore characteristic (medium pore diameter between 2 and 50 nm), the superficial area to Al_2O_3 and Ni/Al_2O_3 catalysts were 8.69 m"2/g and 5.56 m"2/g, respectively. (author)

  10. The generation of efficient supported (Heterogeneous) olefin metathesis catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Grubbs, Robert H

    2013-04-05

    Over the past decade, a new family of homogeneous metathesis catalysts has been developed that will tolerate most organic functionalities as well as water and air. These homogeneous catalysts are finding numerous applications in the pharmaceutical industry as well as in the production of functional polymers. In addition the catalysts are being used to convert seed oils into products that can substitute for those that are now made from petroleum products. Seed oils are unsaturated, contain double bonds, and are a ready source of linear hydrocarbon fragments that are specifically functionalized. To increase the number of applications in the area of biomaterial conversion to petrol chemicals, the activity and efficiency of the catalysts need to be as high as possible. The higher the efficiency of the catalysts, the lower the cost of the conversion and a larger number of practical applications become available. Active supported catalysts were prepared and tested in the conversion of seed oils and other important starting materials. The outcome of the work was successful and the technology has been transferred to a commercial operation to develop viable applications of the discovered systems. A biorefinery that converts seed oils is under construction in Indonesia. The catalysts developed in this study will be considered for the next generation of operations.

  11. Protein Scaffolding for Small Molecule Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Baker, David [Univ. of Washington, Seattle, WA (United States)

    2014-09-14

    We aim to design hybrid catalysts for energy production and storage that combine the high specificity, affinity, and tunability of proteins with the potent chemical reactivities of small organometallic molecules. The widely used Rosetta and RosettaDesign methodologies will be extended to model novel protein / small molecule catalysts in which one or many small molecule active centers are supported and coordinated by protein scaffolding. The promise of such hybrid molecular systems will be demonstrated with the nickel-phosphine hydrogenase of DuBois et. al.We will enhance the hydrogenase activity of the catalyst by designing protein scaffolds that incorporate proton relays and systematically modulate the local environment of the catalyticcenter. In collaboration with DuBois and Shaw, the designs will be experimentally synthesized and characterized.

  12. Colloidal nanoparticles as catalysts and catalyst precursors for nitrite hydrogenation

    NARCIS (Netherlands)

    Zhao, Yingnan

    2015-01-01

    The most distinguished advantage to use colloidal methods for catalyst preparation is that the size and the shape of nanoparticles can be manipulated easily under good control, which is normally difficult to achieve by using traditional methods, such as impregnation and precipitation. This

  13. Coprecipitated nickel-alumina methanation catalysts

    International Nuclear Information System (INIS)

    Kruissink, E.C.

    1981-01-01

    In the last few years there has been a renewed interest in the methanation reaction CO+3H 2 =CH 4 +H 2 O. The investigations described in this thesis were performed in relation to the application of this reaction, within the framework of the so-called 'NFE' project, also called 'ADAM' and 'EVA' project. This project, which has been under investigation in West Germany for some years, aims at the investigation of the feasibility of transporting heat from a nuclear high temperature reactor by means of a chemical cycle. A promising possibility to realize such a cycle exists in applying the combination of the endothermic steam reforming of methane and the exothermic methanation reaction. This thesis describes the investigations into a certain type of methanation catalyst, viz. a coprecipitated nickel-alumina catalyst, with the aim to give more insight into the interrelationship between the preparation conditions on the one hand and catalyst properties such as activity and stability on the other hand. (Auth.)

  14. Study of ammonia synthesis using technetium catalysts

    International Nuclear Information System (INIS)

    Spitsyn, V.I.; Mikhajlenko, I.E.; Pokrovskaya, O.V.

    1982-01-01

    A study was made on catalytic properties of technetium in ammonia synthesis reaction. The preparation of technetium catalysts on ν-Al 2 O 3 , BaTiO 3 , BaO-ν-Al 2 O 3 substrates is described. The investigation of catalytic activity of catalysts was carried out at a pressure of 1 atm. in vertical reactor with volume rate of 15000 h - 1 in the temperature range of 350-425 deg. The amount of catalyst was 0.5-1 g, the volume- 0.5 ml, the size of granules- 2-3 mm. Rate constants of ammonia synthesis reaction were calculated. Seeming activation energies of the process have meanings wihtin the limits of 40-50 kcal/mol. It was shown that with increase in concentration of Tc on BaTiO 3 the catalytic activity rises in comparison with pure Tc. The reduction of catalytic activity with increase of metal content on Al 2 O 3 begins in the limits of 3.5-6.7% Tc/ν-Al 2 O 3 . The catalyst of 5.3% Tc/4.1% Ba/ν -Al 2 O 3 compound has the maximum activity. Technetium catalysts possess the stable catalytic activity and don't requre its reduction during several months

  15. Research on friction coefficient of nuclear Reactor Vessel Internals Hold Down Spring: Stress coefficient test analysis method

    International Nuclear Information System (INIS)

    Linjun, Xie; Guohong, Xue; Ming, Zhang

    2016-01-01

    Graphical abstract: HDS stress coefficient test apparatus. - Highlights: • This paper performs mathematic deduction to the physical model of Hold Down Spring (HDS), establishes a mathematic model of axial load P and stress, stress coefficient and friction coefficient and designs a set of test apparatuses for simulating the pretightening process of the HDS for the first time according to a model similarity criterion. • The mathematical relation between the load and the strain is obtained about the HDS, and the mathematical model of the stress coefficient and the friction coefficient is established. So, a set of test apparatuses for obtaining the stress coefficient is designed according to the model scaling criterion and the friction coefficient of the K1000 HDS is calculated to be 0.336 through the obtained stress coefficient. • The relation curve between the theoretical load and the friction coefficient is obtained through analysis and indicates that the change of the friction coefficient f would influence the pretightening load under the condition of designed stress. The necessary pretightening load in the design process is calculated to be 5469 kN according to the obtained friction coefficient. Therefore, the friction coefficient and the pretightening load under the design conditions can provide accurate pretightening data for the analysis and design of the reactor HDS according to the operations. - Abstract: This paper performs mathematic deduction to the physical model of Hold Down Spring (HDS), establishes a mathematic model of axial load P and stress, stress coefficient and friction coefficient and designs a set of test apparatuses for simulating the pretightening process of the HDS for the first time according to a model similarity criterion. By carrying out tests and researches through a stress testing technique, P–σ curves in loading and unloading processes of the HDS are obtained and the stress coefficient k f of the HDS is obtained. So, the

  16. Research on friction coefficient of nuclear Reactor Vessel Internals Hold Down Spring: Stress coefficient test analysis method

    Energy Technology Data Exchange (ETDEWEB)

    Linjun, Xie, E-mail: linjunx@zjut.edu.cn [College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014 (China); Guohong, Xue; Ming, Zhang [Shanghai Nuclear Engineering Research & Design Institute, Shanghai 200233 (China)

    2016-08-01

    Graphical abstract: HDS stress coefficient test apparatus. - Highlights: • This paper performs mathematic deduction to the physical model of Hold Down Spring (HDS), establishes a mathematic model of axial load P and stress, stress coefficient and friction coefficient and designs a set of test apparatuses for simulating the pretightening process of the HDS for the first time according to a model similarity criterion. • The mathematical relation between the load and the strain is obtained about the HDS, and the mathematical model of the stress coefficient and the friction coefficient is established. So, a set of test apparatuses for obtaining the stress coefficient is designed according to the model scaling criterion and the friction coefficient of the K1000 HDS is calculated to be 0.336 through the obtained stress coefficient. • The relation curve between the theoretical load and the friction coefficient is obtained through analysis and indicates that the change of the friction coefficient f would influence the pretightening load under the condition of designed stress. The necessary pretightening load in the design process is calculated to be 5469 kN according to the obtained friction coefficient. Therefore, the friction coefficient and the pretightening load under the design conditions can provide accurate pretightening data for the analysis and design of the reactor HDS according to the operations. - Abstract: This paper performs mathematic deduction to the physical model of Hold Down Spring (HDS), establishes a mathematic model of axial load P and stress, stress coefficient and friction coefficient and designs a set of test apparatuses for simulating the pretightening process of the HDS for the first time according to a model similarity criterion. By carrying out tests and researches through a stress testing technique, P–σ curves in loading and unloading processes of the HDS are obtained and the stress coefficient k{sub f} of the HDS is obtained. So, the

  17. OPTIMATION OF TIME AND CATALYST/FEED RATIO IN CATALYTIC CRACKING OF WASTE PLASTICS FRACTION TO GASOLINE FRACTION USING Cr/NATURAL ZEOLITE CATALYST

    Directory of Open Access Journals (Sweden)

    Wega Trisunaryanti

    2010-06-01

    Full Text Available Optimation of time and catalyst/feed ratio in catalytic cracking of waste plastics fraction to gasoline fraction using Cr/Natural Zeolite catalyst has been studied.The natural zeolite was calcined by using nitrogen gas at 500 oC for 5 hours. The chromium supported on to the zeolite was prepared by ion exchange methode with Cr(NO33.9H2O solution with chromium/zeolite concentration of 1% (w/w. The zeolite samples were then calcined  with nitrogen gas at 500 oC for 2 hours, oxidyzed with oxygen gas and reduced with hydrogen at 400 oC for 2 hours. The characterization of the zeolite catalyst by means of Si/Al ratio by UV-Vis spectroscopy, acidity with pyridine vapour adsorption and Na, Ca and Cr contents by atomic adsorption spectroscopy (AAS. The catalyst activity test was carried out in the cracking process of waste plastics fraction with boiling point range of 150 - 250 °C (consisted of C12 - C16 hydrocarbons at 450 oC for 30 min, 60 min and 90 min, and catalyst/feed ratio 1/1, 1/2, 1/3, ¼ (w/w. The result of catalyst activity test  showed  that  the maximum number  conversion of gasoline fraction (C5-C11 is 53,27% with relatively low coke formation using 1/3 catalyst/feed ratio and the cracking time of 60 min.. This  catalyst has  Si/Al ratio = 1,21 (w/w , acidity = 0,16 mmol/g and Na content = 0,81%, Ca content = 0,15% and Cr content 0,24%.   Keywords: zeolite, catalytic cracking, gasoline, chromium.

  18. Use and perception of herbal and dietary supplements in the Hutterites of South Dakota.

    Science.gov (United States)

    Peters, Stacy; Shiyanbola, Olayinka

    2013-12-01

    South Dakota is home to 6,000 Hutterites, the largest population of Hutterites in the United States. Observation of frequent supplement use by this population prompted the current survey based study. Use of supplements is on the rise with around 53 percent of Americans reporting at least one herbal and dietary supplement (HDS). Use and perception of HDS has not previously been evaluated in the Hutterite population. Participants were 18 years of age and older and had to be present at the time of survey administration. Surveys were administered before and after an educational presentation at five colonies to volunteer participants. Survey data was analyzed using descriptive analysis and chi-square tests. One-hundred and six surveys were completed with 81.1 percent being female. Approximately 78 percent reported using at least one type of HDS, with an average of 2.7 (SD = 1.4) supplements per person. Women were more likely to report supplement use than men. Hutterites reported they felt HDS were safer than prescription medications. Education was effective on some aspects such as telling their doctor if they are taking HDS. Some study limitations included small sample size, possible lack of survey understanding, and the limited number of male participants. The frequency of HDS use in South Dakota Hutterites appears to be very high. Baseline knowledge on the safety and regulation of HDS reveals that education of this population is needed. Further investigation of HDS use in Hutterites is warranted.

  19. Noble metal catalysts in the production of biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, A.

    2013-11-01

    The energy demand is increasing in the world together with the need to ensure energy security and the desire to decrease greenhouse gas emissions. While several renewable alternatives are available for the production of electricity, e.g. solar energy, wind power, and hydrogen, biomass is the only renewable source that can meet the demand for carbon-based liquid fuels and chemicals. The technology applied in the conversion of biomass depends on the type and complexity of the biomass, and the desired fuel. Hydrogen and hydrogen-rich mixtures (synthesis gas) are promising energy sources as they are more efficient and cleaner than existing fuels, especially when they are used in fuel cells. Hydrotreatment is a catalytic process that can be used in the conversion of biomass or biomass-derived liquids into fuels. In autothermal reforming (ATR), catalysts are used in the production of hydrogen-rich mixtures from conventional fuels or bio-fuels. The different nature of biomass and biomass-derived liquids and mineral oil makes the use of catalysts developed for the petroleum industry challenging. This requires the improvement of available catalysts and the development of new ones. To overcome the limitations of conventional hydrotreatment and ATR catalysts, zirconia-supported mono- and bimetallic rhodium, palladium, and platinum catalysts were developed and tested in the upgrading of model compounds for wood-based pyrolysis oil and in the production of hydrogen, using model compounds for gasoline and diesel. Catalysts were also tested in the ATR of ethanol. For comparative purposes commercial catalysts were tested and the results obtained with model compounds were compared with those obtained with real feedstocks (hydrotreatmet tests with wood-based pyrolysis oil and ATR tests with NExBTL renewable diesel). Noble metal catalysts were active and selective in the hydrotreatment of guaiacol used as the model compound for the lignin fraction of wood-based pyrolysis oil and wood

  20. Constrained Geometry Organotitanium Catalysts Supported on Nanosized Silica for Ethylene (co)Polymerization.

    Science.gov (United States)

    Li, Kuo-Tseng; Wu, Ling-Huey

    2017-05-05

    Supported olefin polymerization catalysts can prevent reactor-fouling problems and produce uniform polymer particles. Constrained geometry complexes (CGCs) have less sterically hindered active sites than bis-cyclopentadienyl metallocene catalysts. In the literature, micrometer-sized silica particles were used for supporting CGC catalysts, which might have strong mass transfer limitations. This study aims to improve the activity of supported CGC catalysts by using nanometer-sized silica. Ti[(C₅Me₄)SiMe₂(N t Bu)]Cl₂, a "constrained-geometry" titanium catalyst, was supported on MAO-treated silicas (nano-sized and micro-sized) by an impregnation method. Ethylene homo-polymerization and co-polymerization with 1-octene were carried out in a temperature range of 80-120 °C using toluene as the solvent. Catalysts prepared and polymers produced were characterized. For both catalysts and for both reactions, the maximum activities occurred at 100 °C, which is significantly higher than that (60 °C) reported before for supported bis-cyclopentadienyl metallocene catalysts containing zirconium, and is lower than that (≥140 °C) used for unsupported Ti[(C₅Me₄)SiMe₂(N t Bu)]Me₂ catalyst. Activities of nano-sized catalyst were 2.6 and 1.6 times those of micro-sized catalyst for homopolymerization and copolymerization, respectively. The former produced polymers with higher crystallinity and melting point than the latter. In addition, copolymer produced with nanosized catalyst contained more 1-octene than that produced with microsized catalyst.

  1. New efficient catalyst for ammonia synthesis: barium-promoted cobalt on carbon

    DEFF Research Database (Denmark)

    Hagen, Stefan; Barfod, Rasmus; Fehrmann, Rasmus

    2002-01-01

    Barium-promoted cobalt catalysts supported on carbon exhibit higher ammonia activities at synthesis temperatures than the commercial, multipromoted iron catalyst and also a lower ammonia......Barium-promoted cobalt catalysts supported on carbon exhibit higher ammonia activities at synthesis temperatures than the commercial, multipromoted iron catalyst and also a lower ammonia...

  2. Catalyst design for clean and efficient fuels

    DEFF Research Database (Denmark)

    Šaric, Manuel

    cobalt promoted MoS2 catalyst. Reactivity of a series of model molecules, found in oil prior to desulfurization, is studied on cobalt promoted MoS2. Such an approach has the potential to explain the underlying processes involved in the removal of sulfur at each specific site of the catalyst. The goal...... is to identify which sites are active towards specific molecules and in getting insight to what the ideal catalyst should look like in terms of morphology. Dimethyl carbonate is an environmentally benign compound that can be used as a solvent and precursor in chemical synthesis or as a fuel and fuel additive...... processes currently used. It is found that noble metals can be used as electrocatalysts for the synthesis of dimethyl carbonate, significantly lowering the potential when using copper instead of gold. Besides being active, copper was found to be selective towards dimethyl carbonate. A non-selective catalyst...

  3. Hydrothermal performance of catalyst supports

    Energy Technology Data Exchange (ETDEWEB)

    Elam, Jeffrey W.; Marshall, Christopher L.; Libera, Joseph A.; Dumesic, James A.; Pagan-Torres, Yomaira J.

    2018-04-10

    A high surface area catalyst with a mesoporous support structure and a thin conformal coating over the surface of the support structure. The high surface area catalyst support is adapted for carrying out a reaction in a reaction environment where the thin conformal coating protects the support structure within the reaction environment. In various embodiments, the support structure is a mesoporous silica catalytic support and the thin conformal coating comprises a layer of metal oxide resistant to the reaction environment which may be a hydrothermal environment.

  4. The effect of catalysts blending on coal pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, F.; Gulyurtlu, I.; Lobo, L.S.; Cabrita, I. [INETI, Lisbon (Portugal)

    1999-05-01

    The effect of several catalysts on coal hydropyrolysis efficiency was studied, having selected catalysts with different characteristics and behaviours. For the experimental conditions used Fe{sub 2}O{sub 3} and ICI 41-6 showed selectivity towards lighter fractions, whilst ZnCl{sub 2} led to the highest coal conversion and to the greatest preasphaltenes yields. These results suggested the use of mixtures of catalysts. The heavier molecules of asphaltenes produced as a result of ZnCl{sub 2} action, could then be converted into lighter fractions by the action of a selective catalyst. Coal hydropyrolysis tests were undertaken using ZnCl{sub 2} mixed with Fe{sub 2}O{sub 3} or ICI 41-6. These mixtures of catalysts led to increased conversions and higher product yields. The best results were obtained in the presence of ZnCl{sub 2} mixed with Fe{sub 2}O{sub 3}. In an attempt to interpret these results, coal structure before and after swelling pre-treatment was also studied using SEM. 17 refs., 11 figs., 1 tab.

  5. Self-regenerative function of the intelligent automotive catalyst

    International Nuclear Information System (INIS)

    Tanaka, Hirohisa; Nishihata, Yasuo

    2007-01-01

    Intelligent catalyst, in which noble metals are used as an active part of automotive catalyst, has been considered for keeping up their sufficient activity. The noble metals have a function of cleaning up the exhaust gas as well as that of self-regeneration. In 2002, a Pd system has been put to practical use, and continuously Rh and Pt systems have been commercialized. Now the catalyst has been used in more than three million vehicles. In this report, the atomic level mechanism of the catalyst and its self-regeneration function getting from analyses using synchrotron radiation are introduced. By the analysis using the Spring-8, the mechanism of keeping the active state of the Pd Perovskite Oxide without degradation was identified. The DXAFS (Dispersive X-ray Absorption Fine Structure) analysis in the ESRF (European Synchrotron Radiation Facility) made clear the self-regeneration mechanism of the Pd Perovskite Oxide. This knowledge could lead to the practical development of the Rh and Pt systems. The catalyst technology is counted on balancing resources of the noble metal and environmental sustainability. (A.H.)

  6. Hydrogen production from bio-fuels using precious metal catalysts

    Science.gov (United States)

    Pasel, Joachim; Wohlrab, Sebastian; Rotov, Mikhail; Löhken, Katrin; Peters, Ralf; Stolten, Detlef

    2017-11-01

    Fuel cell systems with integrated autothermal reforming unit require active and robust catalysts for H2 production. Thus, an experimental screening of catalysts for autothermal reforming of commercial biodiesel fuel was performed. Catalysts consisted of a monolithic cordierite substrate, an oxide support (γ-Al2O3) and Pt, Ru, Ni, PtRh and PtRu as active phase. Experiments were run by widely varying the O2/C and H2O/C molar ratios at different gas hourly space velocities. Fresh and aged catalysts were characterized by temperature programmed methods and thermogravimetry to find correlations with catalytic activity and stability.

  7. Formic acid oxidation at platinum-bismuth catalysts

    Directory of Open Access Journals (Sweden)

    Popović Ksenija Đ.

    2015-01-01

    Full Text Available The field of heterogeneous catalysis, specifically catalysis on bimetallic surfaces, has seen many advances over the past few decades. Bimetallic catalysts, which often show electronic and chemical properties that are distinct from those of their parent metals, offer the opportunity to obtain new catalysts with enhanced selectivity, activity, and stability. The oxidation of formic acid is of permanent interest as a model reaction for the mechanistic understanding of the electrooxidation of small organic molecules and because of its technical relevance for fuel cell applications. Platinum is one of the most commonly used catalysts for this reaction, despite the fact that it shows a few significant disadvantages: high cost and extreme susceptibility to poisoning by CO. To solve this problem, several approaches have been used, but generally, they all consist in the modification of platinum with a second element. Especially, bismuth has received significant attention as Pt modifier. According to the results presented in this survey dealing with the effects influencing the formic acid oxidation it was found that two types of Pt-Bi bimetallic catalysts (bulk and low loading deposits on GC showed superior catalytic activity in terms of the lower onset potential and oxidation current density, as well as exceptional stability compared to Pt. The findings in this report are important for the understanding of mechanism of formic acid electrooxidation on a bulk alloy and decorated surface, for the development of advanced anode catalysts for direct formic acid fuel cells, as well as for the synthesis of novel low-loading bimetallic catalysts. The use of bimetallic compounds as the anode catalysts is an effective solution to overcoming the problems of the formic acid oxidation current stability for long term applications. In the future, the tolerance of both CO poisoning and electrochemical leaching should be considered as the key factors in the development

  8. Catalytic Oxidation of Phenol over Zeolite Based Cu/Y-5 Catalyst: Part 1: Catalyst Preparation and Characterization

    Directory of Open Access Journals (Sweden)

    K. Maduna Valkaj

    2015-01-01

    Full Text Available The necessity to remove organic pollutants from the industrial wastewater streams has forced the development of new technologies that can produce better results in terms of pollutant removal and process efficiency in combination with low investment and operating costs. One of the new emerging processes with a potential to fulfil these demands is catalytic wet peroxide oxidation, commonly known as the CWPO process. The oxidative effect of the hydrogen peroxide is intensified by the addition of a heterogeneous catalyst that can reduce the operating conditions to atmospheric pressure and temperatures below 383 K. Zeolites, among others, are especially appealing as catalysts for selective oxidation processes due to their unique characteristics such as shape selectivity, thermal and chemical stability, and benign effect on nature and the living world. In this work, catalytic activity, selectivity and stability of Cu/Y-5 zeolite in phenol oxidation with hydrogen peroxide was examined. Catalyst samples were prepared by ion exchange method of the protonic form of commercial zeolite. The catalysts were characterized with powder X-ray diffraction (XRD, scanning electron microscopy (SEM, and AAS elemental analysis, while the adsorption techniques were used for the measurement of the specific surface area. The catalytic tests were carried out in a stainless steel Parr reactor in batch operation mode at the atmospheric pressure and in the temperature range from 323 to 353 K. The catalyst was prepared in powdered form and the mass fraction of the active metal component on the zeolite was 3.46 %. The initial concentration of phenol solution was equal to 0.01 mol dm−3 and the concentration of hydrogen peroxide ranged from 0.01 to 0.10 mol dm−3. The obtained experimental data was tested to a proposed kinetic model for phenol oxidation r = k1 cF cVP and hydrogen peroxide decomposition rHP = k2 cHP. The kinetic parameters were estimated using the Nelder

  9. Sol-gel based oxidation catalyst and coating system using same

    Science.gov (United States)

    Watkins, Anthony N. (Inventor); Leighty, Bradley D. (Inventor); Oglesby, Donald M. (Inventor); Patry, JoAnne L. (Inventor); Schryer, Jacqueline L. (Inventor)

    2010-01-01

    An oxidation catalyst system is formed by particles of an oxidation catalyst dispersed in a porous sol-gel binder. The oxidation catalyst system can be applied by brush or spray painting while the sol-gel binder is in its sol state.

  10. Magnetic nanoparticles conjugated to chiral imidazolidinone as recoverable catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Mondini, Sara [Consiglio Nazionale delle Ricerche, Laboratorio di Nanotecnologie, Istituto di Scienze e Tecnologie Molecolari (Italy); Puglisi, Alessandra; Benaglia, Maurizio, E-mail: maurizio.benaglia@unimi.it; Ramella, Daniela [Università degli Studi di Milano, Dipartimento di Chimica (Italy); Drago, Carmelo [Consiglio Nazionale delle Ricerche, Istituto di Chimica Biomolecolare (Italy); Ferretti, Anna M.; Ponti, Alessandro, E-mail: alessandro.ponti@istm.cnr.it [Consiglio Nazionale delle Ricerche, Laboratorio di Nanotecnologie, Istituto di Scienze e Tecnologie Molecolari (Italy)

    2013-11-15

    The immobilization of an ad hoc designed chiral imidazolidin-4-one onto iron oxide magnetic nanoparticles (MNPs) is described, to afford MNP-supported MacMillan’s catalyst. Morphological and structural analysis of the materials, during preparation, use, and recycle, has been carried out by transmission electron microscopy. The supported catalyst was tested in the Diels–Alder reaction of cyclopentadiene with cinnamic aldehyde, affording the products in good yields and enantiomeric excesses up to 93 %, comparable to those observed with the non-supported catalyst. Recovery of the chiral catalyst has been successfully performed by simply applying an external magnet to achieve a perfect separation of the MNPs from the reaction product. The recycle of the catalytic system has been also investigated. Noteworthy, this immobilized MacMillan’s catalyst proved to be able to efficiently promote the reaction in pure water.

  11. Magnetic nanoparticles conjugated to chiral imidazolidinone as recoverable catalyst

    International Nuclear Information System (INIS)

    Mondini, Sara; Puglisi, Alessandra; Benaglia, Maurizio; Ramella, Daniela; Drago, Carmelo; Ferretti, Anna M.; Ponti, Alessandro

    2013-01-01

    The immobilization of an ad hoc designed chiral imidazolidin-4-one onto iron oxide magnetic nanoparticles (MNPs) is described, to afford MNP-supported MacMillan’s catalyst. Morphological and structural analysis of the materials, during preparation, use, and recycle, has been carried out by transmission electron microscopy. The supported catalyst was tested in the Diels–Alder reaction of cyclopentadiene with cinnamic aldehyde, affording the products in good yields and enantiomeric excesses up to 93 %, comparable to those observed with the non-supported catalyst. Recovery of the chiral catalyst has been successfully performed by simply applying an external magnet to achieve a perfect separation of the MNPs from the reaction product. The recycle of the catalytic system has been also investigated. Noteworthy, this immobilized MacMillan’s catalyst proved to be able to efficiently promote the reaction in pure water

  12. Ziegler-Natta catalyst for polypropylene and polyethylene nanocomposites preparation

    International Nuclear Information System (INIS)

    Silvino, Alexandre C.; Dias, Marcos L.; Bezerra, Ana Beatriz F.

    2009-01-01

    Polypropylene and polyethylene nanocomposites are well known for their improved properties when compared with the neat polymers. In this work we report the preparation, characterization and the activity studies of a fourth generation Ziegler-Natta catalyst for the preparation of polyolefin/clay nanocomposites. The catalyst was prepared treating an organo-modified silicate with magnesium and titanium compounds. The content of titanium and that of the magnesium of the catalyst were determined by UV-vis spectroscopy and atomic absorption respectively. The first results show that the catalyst is active for propylene polymerization being suitable for polypropylene/clay nanocomposite preparation. The catalyst activity for ethylene polymerization was also investigated. The X-ray diffraction patterns of the polyethylene samples suggest the clay exfoliation occurs in the in situ polymerization, even with high clay loading (about 9 %) indicating that a nanocomposite was formed. (author)

  13. Application of a mixed metal oxide catalyst to a metallic substrate

    Science.gov (United States)

    Sevener, Kathleen M. (Inventor); Lohner, Kevin A. (Inventor); Mays, Jeffrey A. (Inventor); Wisner, Daniel L. (Inventor)

    2009-01-01

    A method for applying a mixed metal oxide catalyst to a metallic substrate for the creation of a robust, high temperature catalyst system for use in decomposing propellants, particularly hydrogen peroxide propellants, for use in propulsion systems. The method begins by forming a prepared substrate material consisting of a metallic inner substrate and a bound layer of a noble metal intermediate. Alternatively, a bound ceramic coating, or frit, may be introduced between the metallic inner substrate and noble metal intermediate when the metallic substrate is oxidation resistant. A high-activity catalyst slurry is applied to the surface of the prepared substrate and dried to remove the organic solvent. The catalyst layer is then heat treated to bind the catalyst layer to the surface. The bound catalyst layer is then activated using an activation treatment and calcinations to form the high-activity catalyst system.

  14. Application, Deactivation, and Regeneration of Heterogeneous Catalysts in Bio-Oil Upgrading

    Directory of Open Access Journals (Sweden)

    Shouyun Cheng

    2016-12-01

    Full Text Available The massive consumption of fossil fuels and associated environmental issues are leading to an increased interest in alternative resources such as biofuels. The renewable biofuels can be upgraded from bio-oils that are derived from biomass pyrolysis. Catalytic cracking and hydrodeoxygenation (HDO are two of the most promising bio-oil upgrading processes for biofuel production. Heterogeneous catalysts are essential for upgrading bio-oil into hydrocarbon biofuel. Although advances have been achieved, the deactivation and regeneration of catalysts still remains a challenge. This review focuses on the current progress and challenges of heterogeneous catalyst application, deactivation, and regeneration. The technologies of catalysts deactivation, reduction, and regeneration for improving catalyst activity and stability are discussed. Some suggestions for future research including catalyst mechanism, catalyst development, process integration, and biomass modification for the production of hydrocarbon biofuels are provided.

  15. Synthesis of palm biodiesel using sodium methoxide catalyst

    International Nuclear Information System (INIS)

    Azhari; Robiah Yunus; Rasyid, S.A.; Abdullah, L.C.

    2006-01-01

    Synthesis of palm biodiesel (methyl ester) was successfully carried out from refined bleached deodorized palm oil (RBDPO) by transesterification reaction. Two kinds of alkali catalyst were selected for this reaction namely sodium hydroxide (NaOH) and sodium methoxide (NaOCH 3 ), and the effects of operating variables such as molar ratio, reaction temperature and quantity of catalyst were also investigated. The reaction was carried out under atmosphere pressure. The reaction temperature and time were varied between 55 to 70 degree C and 50 to 90 minutes respectively. The methanol to oil molar ratios were also varied at 6:1, 5:1, 4:1 and 3:1 to examine its effect on reaction yield. The reaction conversion was 99% by use of NaOCH 3 as a catalyst. However, with NaOH as catalyst, the conversion was slightly lower compared to using NaOCH 3 . The optimum conditions for NaOCH 3 as catalyst were reaction temperature, 65 degree C; reaction time, 60 minutes; molar ratio, 6:1; and catalyst amount, 1.0% w/w. The kinetics study on transesterification of RBDPO with methanol established that the reaction occurred via two stepwise and irreversible elementary reactions following second order model. A vacuum distillation process was used to reduce the pour point of palm biodiesel. The lowest pour point attainable for palm biodiesel was at 3 degree C. (Author)

  16. Sulfur tolerant zeolite supported platinum catalysts for aromatics hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Bergem, Haakon

    1997-12-31

    The increased demand for transportation fuels at the expence of heavier fuel oil has forced the refinery industry to expand their conversion capacity with hydrotreating as one of the key processes. A shift towards more diesel powered vehicles along with tightening fuel regulations demanding cleaner fuels has lead to increasing interest in catalytic processes for the manufacturing of such environmentally acceptable fuels. This provides the motivation for this thesis. Its main objective was to study possible catalysts active for desulfurization, hydrogenation, and ring-opening of aromatics all in the presence of sulfur. A close examination of the physical properties and kinetical behaviour of the chosen catalysts has been performed. A high pressure reactor setup was designed and built for activity measurements. Zeolite supported platinum catalysts were prepared and both the metal and acid functions were characterized utilizing various experimental techniques. Hydrogenation of toluene was used as a model reaction and the effect of sulfur adsorption on the activity and kinetic behaviour of the catalysts was investigated. The catalyst samples showed hydrogenation activities comparable to a commercial Pt/Al2O3 catalyst. There were no clear differences in the effect of the various sulfur compounds studied. Platinum supported on zeolite Y gave considerably more sulfur tolerant catalysts compared to Al2O3 as support. 155 refs., 58 figs., 36 tabs.

  17. Inverting the diastereoselectivity of the mukaiyama-michael addition with graphite-based catalysts

    KAUST Repository

    Acocella, Maria Rosaria

    2014-02-07

    Here, we show that graphite-based catalysts, mainly graphite oxide (GO) and exfoliated GO, are effective recyclable catalysts for a relevant stereoselective Mukaiyama-Michael addition, outperforming currently available catalysts. Moreover, the graphite-based catalysts described here invert the diastereoselectivity relative to that observed with known catalysts, with the unprecedented large prevalence of the anti diastereoisomer. This inverted diastereoselectivity is increased when the catalyst concentration is reduced and after catalyst recycling. Density functional theory calculations suggest that the selectivity is determined by two types of supramolecular interactions operating between the catalyst and the substrates at the diastereoselectivity- determining transition state, specifically, the π-stacking of b-nitrostyrene with graphite and the van der Waals interaction between the SiMe3 group of the silyl ether and the graphite. © 2013 American Chemical Society.

  18. Relating FTS Catalyst Properties to Performance

    Science.gov (United States)

    Ma, Wenping; Ramana Rao Pendyala, Venkat; Gao, Pei; Jermwongratanachai, Thani; Jacobs, Gary; Davis, Burton H.

    2016-01-01

    During the reporting period June 23, 2011 to August 31, 2013, CAER researchers carried out research in two areas of fundamental importance to the topic of cobalt-based Fischer-Tropsch Synthesis (FTS): promoters and stability. The first area was research into possible substitute promoters that might be used to replace the expensive promoters (e.g., Pt, Re, and Ru) that are commonly used. To that end, three separate investigations were carried out. Due to the strong support interaction of ?-Al2O3 with cobalt, metal promoters are commonly added to commercial FTS catalysts to facilitate the reduction of cobalt oxides and thereby boost active surface cobalt metal sites. To date, the metal promoters examined have been those up to and including Group 11. Because two Group 11 promoters (i.e., Ag and Au) were identified to exhibit positive impacts on conversion, selectivity, or both, research was undertaken to explore metals in Groups 12 - 14. The three metals selected for this purpose were Cd, In, and Sn. At a higher loading of 25%Co on alumina, 1% addition of Cd, In, or Sn was found to-on average-facilitate reduction by promoting a heterogeneous distribution of cobalt consisting of larger lesser interacting cobalt clusters and smaller strongly interacting cobalt species. The lesser interacting species were identified in TPR profiles, where a sharp low temperature peak occurred for the reduction of larger, weakly interacting, CoO species. In XANES, the Cd, In, and Sn promoters were found to exist as oxides, whereas typical promoters (e.g., Re, Ru, Pt) were previously determined to exist in an metallic state in atomic coordination with cobalt. The larger cobalt clusters significantly decreased the active site density relative to the unpromoted 25%Co/Al2O3 catalyst. Decreasing the cobalt loading to 15%Co eliminated the large non-interacting species. The TPR peak for reduction of strongly interacting CoO in the Cd promoted catalyst occurred at a measurably lower temperature

  19. Characterization of catalysts by Moessbauer spectroscopy: An application to the study of Fischer-Tropsch, hydrotreating and super Claus catalysts

    International Nuclear Information System (INIS)

    Kraan, A.M. van der; Boellaard, E.; Craje, M.W.J.

    1993-01-01

    Moessbauer spectroscopy is an excellent in-situ technique for the identification of phases present in catalysts. Applied to metallic iron catalysts used in the Fischer-Tropsch reaction it reveals a detailed picture of the carburization process and provides insight into the relation between the properties of the catalytic material and its activity. The influence of a support and the effect of alloying iron with an (in)active metal on the catalytic performance is discussed for Fe, Cu-Fe and Ni-Fe systems. In addition, Moessbauer spectroscopy is used for the identification of 'Co-sulfide' species present in sulfided Co and CoMo catalysts applied in one of the largest chemical processes in the world, the hydrotreatment of crude oil. A structural model is proposed. Finally, the contribution of Moessbauer spectroscopic studies to the development of a new catalyst for cleaning of Claus tail gas via selective oxidation of hydrogen sulfide to elemental sulfur is discussed. (orig.)

  20. Magnesium oxide prepared via metal-chitosan complexation method: Application as catalyst for transesterification of soybean oil and catalyst deactivation studies

    Science.gov (United States)

    Almerindo, Gizelle I.; Probst, Luiz F. D.; Campos, Carlos E. M.; de Almeida, Rusiene M.; Meneghetti, Simoni M. P.; Meneghetti, Mario R.; Clacens, Jean-Marc; Fajardo, Humberto V.

    2011-10-01

    A simple method to prepare magnesium oxide catalysts for biodiesel production by transesterification reaction of soybean oil with ethanol is proposed. The method was developed using a metal-chitosan complex. Compared to the commercial oxide, the proposed catalysts displayed higher surface area and basicity values, leading to higher yield in terms of fatty acid ethyl esters (biodiesel). The deactivation of the catalyst due to contact with CO2 and H2O present in the ambient air was verified. It was confirmed that the active catalytic site is a hydrogenocarbonate adsorption site.

  1. Preparation-Properties Relation of Mn-Cu Hopcalite Catalyst

    OpenAIRE

    Ardita Mele; Ilo Mele; Altin Mele

    2012-01-01

    Problem statement: The Mn-Cu hopcalite catalyst was used for the conversion of CO to CO2 at low temperatures. It was the catalyst of choice in the gas masks for respiratory protection in mines, aircrafts, military, spatial laboratories. Approach: The efficiency of hopcalite catalyst depends on its surface parameters. Its surface characteristics can be influenced from the chosen way of the MnO2 and CuO precipitation and from the pressure of pelletizing. Results: The hopcalite samples has been ...

  2. On the potential of nickel catalysts for steam reforming in membrane reactors

    Energy Technology Data Exchange (ETDEWEB)

    Pieterse, J.A.Z.; Boon, J.; Van Delft, Y.C.; Dijkstra, J.W.; Van den Brink, R.W. [Energy research Center of the Netherlands, P.O. Box 1, 1755 ZG Petten (Netherlands)

    2010-10-15

    Hydrogen membrane reactors have been identified as a promising option for hydrogen production for power generation from natural gas with pre-combustion decarbonisation. While Pd or Pd-alloy membranes already provide good hydrogen permeances the most suitable catalyst design for steam reforming in membrane reactors (SRMR) is yet to be identified. This contribution aims to provide insight in the suitability of nickel based catalysts in SRMR. The use of nickel (Ni) catalysts would benefit the cost-effectiveness of membrane reactors and therefore its feasibility. For this, the activity of nickel catalysts in SRMR was assessed with kinetics reported in literature. A 1D model was composed in order to compare the hydrogen production rates derived from the kinetics with the rate of hydrogen withdrawal by permeation. Catalyst stability was studied by exposing the catalysts to reformate gas with two different H/C ratios to mimic the hydrogen lean reformate gas in the membrane reactor. For both the activity (modeling) and stability study the Ni-based catalysts were compared to relevant catalyst compositions based on rhodium (Rh). Using the high pressure kinetics reported for Al2O3 supported Rh and MgAl2O4 and Al2O3 supported Ni catalyst it showed that Ni and Rh catalysts may very well provide similar hydrogen production rates. Interestingly, the stability of Ni-based catalysts proved to be superior to precious metal based catalysts under exposure to simulated reformate feed gas with low H/C molar ratio. A commercial (pre-)reforming Ni-based catalyst was selected for further testing in an experimental membrane reactor for steam reforming at high pressure. During the test period 98% conversion at 873 K could be achieved. The conversion was adjusted to approximately 90% and stable conversion was obtained during the test period of another 3 weeks. Nonetheless, carbon quantification tests of the Ni catalyst indicated that a small amount of carbon had deposited onto the catalyst

  3. Thief carbon catalyst for oxidation of mercury in effluent stream

    Science.gov (United States)

    Granite, Evan J [Wexford, PA; Pennline, Henry W [Bethel Park, PA

    2011-12-06

    A catalyst for the oxidation of heavy metal contaminants, especially mercury (Hg), in an effluent stream is presented. The catalyst facilitates removal of mercury through the oxidation of elemental Hg into mercury (II) moieties. The active component of the catalyst is partially combusted coal, or "Thief" carbon, which can be pre-treated with a halogen. An untreated Thief carbon catalyst can be self-promoting in the presence of an effluent gas streams entrained with a halogen.

  4. Synthesis of Hydrocarbons from H2-Deficient Syngas in Fischer-Tropsch Synthesis over Co-Based Catalyst Coupled with Fe-Based Catalyst as Water-Gas Shift Reaction

    Directory of Open Access Journals (Sweden)

    Ting Ma

    2015-01-01

    Full Text Available The effects of metal species in an Fe-based catalyst on structural properties were investigated through the synthesis of Fe-based catalysts containing various metal species such, as Mn, Zr, and Ce. The addition of the metal species to the Fe-based catalyst resulted in high dispersions of the Fe species and high surface areas due to the formation of mesoporous voids about 2–4 nm surrounded by the catalyst particles. The metal-added Fe-based catalysts were employed together with Co-loaded beta zeolite for the synthesis of hydrocarbons from syngas with a lower H2/CO ratio of 1 than the stoichiometric H2/CO ratio of 2 for the Fischer-Tropsch synthesis (FTS. Among the catalysts, the Mn-added Fe-based catalyst exhibited a high activity for the water-gas shift (WGS reaction with a comparative durability, leading to the enhancement of the CO hydrogenation in the FTS in comparison with Co-loaded beta zeolite alone. Furthermore, the loading of Pd on the Mn-added Fe-based catalyst enhanced the catalytic durability due to the hydrogenation of carbonaceous species by the hydrogen activated over Pd.

  5. A catalyst for hydrogenating medium-distilled petroleum fractions

    Energy Technology Data Exchange (ETDEWEB)

    Mordanov, M A; Gasanova, Zh I; Isaev, A Ia; Khavkin, V A; Kurganov, V M; Musaeva, S K

    1982-01-01

    The catalyst for hydrogenating medium-distilled petroleum fractions, which contain Cr/sub 2/O/sub 3/ and Ni-concentrate components in the gamma-A1/sub 2/O/sub 3/ transfer agent, also contains, as a Ni-concentrate component, NiO and Re in the following component ratios (by percentage): Cr/sub 2/O/sub 3/ 25-44, NiO 4-25, Re 1-2 and the transfer agent the remainder, in order to improve catalytic resistance to catalyst toxins--nitrous and sulfurous compounds. The resistance of the proposed catalyst to toxins makes it possible to hydrogenate in less stringent conditions (280 degrees, 30 atmospheres) without first hydropurifying the raw material. Here, the catalyst's selectivity reaches 100 percent (aromatic hydrocarbons are absent); the yield of the target fraction is 99 percent.

  6. Water oxidation catalysts and methods of use thereof

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Craig L.; Gueletii, Yurii V.; Musaev, Djamaladdin G.; Yin, Qiushi; Botar, Bogdan

    2017-12-05

    Homogeneous water oxidation catalysts (WOCs) for the oxidation of water to produce hydrogen ions and oxygen, and methods of making and using thereof are described herein. In a preferred embodiment, the WOC is a polyoxometalate WOC which is hydrolytically stable, oxidatively stable, and thermally stable. The WOC oxidized waters in the presence of an oxidant. The oxidant can be generated photochemically, using light, such as sunlight, or electrochemically using a positively biased electrode. The hydrogen ions are subsequently reduced to form hydrogen gas, for example, using a hydrogen evolution catalyst (HEC). The hydrogen gas can be used as a fuel in combustion reactions and/or in hydrogen fuel cells. The catalysts described herein exhibit higher turn over numbers, faster turn over frequencies, and/or higher oxygen yields than prior art catalysts.

  7. Plasma and catalyst for the oxidation of NOx

    DEFF Research Database (Denmark)

    Jõgi, Indrek; Erme, Kalev; Levoll, Erik

    2018-01-01

    . In the case of indirect oxidation, only ozone could reach the catalyst surface and improve the oxidation of NO2 to N2O5. The effect of catalyst at different experimental conditions was quantitatively described with the aid of simple global chemical kinetic models derived for the NO x oxidation either...... by plasma or ozone. The models allowed to compare the effect of different catalysts and to analyze the limitations for the efficiency improvement by catalyst....... to NO mediated by O radicals in plasma. Indirect NO oxidation by plasma produced ozone allows to circumvent the back-reaction and further oxidize NO2 to N2O5 but the slow reaction rate for the latter process limits the efficiency of this process. Present paper gives an overview of the role of metal...

  8. EXAFS characterization of supported metal catalysts in chemically dynamic environments

    International Nuclear Information System (INIS)

    Robota, H.J.

    1991-01-01

    Characterization of catalysts focuses on the identification of an active site responsible for accelerating desirable chemical reactions. The identification, characterization, and selective modification of such sites is fundamental to the development of structure-function relationships. Unfortunately, this goal is far from realized in nearly all catalysts, and particularly in catalysts comprised of small supported metal particles. X-ray absorption spectroscopy (XAS) has had a dramatic effect on our understanding of supported metal particles in their resting state. However, the performance of a catalyst can not be assessed from such simple resting state measurements. Among the factors which influence catalyst performance are the exact catalyst composition, including the support and any modifiers; particle size; catalyst finishing and pretreatment conditions; pressure, composition, and temperature of the operating environment; time. Gaining an understanding of how the structure of a catalytic site can change with such an array of variables requires that we begin to develop measurement methods which are effective under chemically dynamic conditions. Ideally, it should be possible to obtain a full X-ray absorption spectrum of each element thought to have a causal relationship with observed catalyst properties. From these spectra, we can optimally extract only a relatively limited amount of information which we must then piece together with information derived from other characterization methods and intuition to arrive at a hypothetical structure of the operating catalyst. Information about crystallinity, homogeneity, and general disorder can be obtained from the Debye-Waller factor. Finally, through analogy with known compounds, the electronic structure of the active atoms can be inferred from near edge absorption features

  9. Green nano-catalyst for methanolysis of non-edible Jatropha oil

    International Nuclear Information System (INIS)

    Teo, Siow Hwa; Rashid, Umer; Taufiq-Yap, Yun Hin

    2014-01-01

    Highlights: • A green nano heterogeneous base catalyst was prepared from CaO. • Transesterified Jatropha curcas oil achieved 95% of biodiesel yield at 65 °C. • Parameters affecting catalyst reaction were optimized. • Biodiesel produced was satisfied the International biodiesel standards. - Abstract: Non-edible feedstocks are regarded as a sustainable source of renewable energy. In order to find renewable, cheaper and easier methods to obtain energy, attention has been paid to develop potential green catalyst to produce renewable biodiesel. The catalyst was characterized by X-ray diffraction (XRD) results in combination with thermogravimetry–differential thermal analysis (TG–DTA), Brunauer–Emmer–Teller (BET), Fourier transfrom-infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). TEM analysis depicted that calcium methoxide (Ca(OCH 3 ) 2 ) catalysts were in size of 34.7 nm. The reaction parameters namely; reaction time, methanol/oil molar ratio, catalyst dosage were investigated for fatty acid methyl ester (FAME) yield. The highest biodiesel yield (95%) was appraised under the optimum condition (i.e. catalyst amount of 2 wt.%; methanol/oil molar ratio of 15:1, reaction time of 90 min). The Ca(OCH 3 ) 2 phase of catalyst can be regarded as an active phase to get high yield of biodiesel which was confirmed from characterization study. Furthermore, important fuel properties were also investigated and satisfied the ASTM D6751 and European 14214 biodiesel standards. Thus, Ca(OCH 3 ) 2 catalyst prepared in this study was having efficient, low toxicity, cost effective and easy to prepare for green fuels production especially biodiesel

  10. Preparation of inorganic hydrophobic catalysts

    International Nuclear Information System (INIS)

    Yang, Yong; Wang, Heyi; Du, Yang

    2009-04-01

    In order to catalyse the oxidation of tritium gas, two inorganic hydrophobic catalysts are prepared. Under room temperature, the catalysed oxidation ratio of 0.3%-1% (V/V) hydrogen gas in air is higher than 95%. Pt-II inorganic hydrophobic catalysts has obviously better catalysing ability than Pt-PTFE and lower ability than Pt-SDB in H 2 -HTO isotopic exchange, because the pressure resistence of Pt-II is much higher than Pt-SDB, it can be used to the CECE cell of heavy water detritium system. (authors)

  11. Simple preparation of Fenton catalyst@bacterial cellulose for waste water treatment

    Science.gov (United States)

    Wibowo, Arie; Febi Indrawan, Radian; Triadhi, Untung; Hasdi Aimon, Akfiny; Iskandar, Ferry; Ardy, Husaini

    2018-02-01

    Heterogeneous fenton catalyst is one of the attractive technologies for destruction of persistent and non-biodegradable pollutant in wastewater, because it can be used in wide range of pH and recyclable. Herein, commercial bacterial celluloses (BCs) were used as an alternative support of fenton catalyst to improve their catalytic activity. Scanning Electron Microscope (SEM) observations indicated that the presence of BCs and decreasing precursor concentration might promote formation of smaller particle sizes of catalyst from 3.5 μm of bare catalyst to 0.7 μm of catalyst@BC. UV-vis measurement showed that fast degradation of dyes with half-time degradation at around 25 min was observed in sample using catalyst@BCs with precursor concentration of 0.01 M. Successful preparation of heterogeneous fenton catalyst with smaller particle size and better catalytic activity is important for their application in wastewater treatment.

  12. Hepatotoxicity of herbal and dietary supplements: an update.

    Science.gov (United States)

    Stickel, Felix; Shouval, Daniel

    2015-06-01

    Herbal and dietary supplements (HDS) have been used for health-related purposes since more than 5000 years, and their application is firmly anchored in all societies worldwide. Over last decades, a remarkable renaissance in the use of HDS can be noticed in affluent societies for manifold reasons. HDS are forms of complementary and alternative medicines commonly used to prevent or treat diseases, or simply as a health tonic. Another growing indication for HDS is their alleged benefit for weight loss or to increase physical fitness. Access is easy via internet and mail-order pharmacies, and their turnover reaches billions of dollars in the USA and Europe alone. However, HDS are generally not categorized as drugs and thus less strictly regulated in most countries. As a result, scientific evidence proving their beneficial effects is mostly lacking, although some HDS may have purported benefits. However, the majority lacks such proof of value, and their use is predominantly based on belief and hope. In addition to missing scientific evidence supporting their use, HDS are typically prone to batch-to-batch variability in composition and concentration, contamination, and purposeful adulteration. Moreover, numerous examples of preparations emerged which have been linked to significant liver injury. These include single ingredients, such as kava, germander, and several Chinese herbals. Other HDS products associated with liver toxicity consist of multiple, often ill-defined ingredients, such as Hydroxycut and Herbalife. Affirmative diagnostic tests are not available, and the assessment of liver injury ascribed to HDS depends on a thorough and proactive medical history, careful exclusion of other causes, and a search for available reports on similar events linked to the intake of the suspected preparation or ingredients contained therein.

  13. Catalyst recycling via specific non-covalent adsorption on modified silicas

    NARCIS (Netherlands)

    Kluwer, A.M.; Simons, C.; Knijnenburg, Q.; van der Vlugt, J.I.; de Bruin, B.; Reek, J.N.H.

    2013-01-01

    This article describes a new strategy for the recycling of a homogeneous hydroformylation catalyst, by selective adsorption of the catalyst to tailor-made supports after a batchwise reaction. The separation of the catalyst from the product mixture is based on selective non-covalent supramolecular

  14. An overview on the applications of 'Doyle catalysts' in asymmetric ...

    Indian Academy of Sciences (India)

    Administrator

    Johnson Matthey has recently obtained a worldwide exclusive licence to manufacture and sell a unique class of chiral dirhodium(II) carboxamidate catalysts called 'Doyle catalysts'. These homogeneous catalysts are capable of producing chiral cyclopropanes, cyclopropenes and C–H insertion products of very high ...

  15. Sulfidation of alumina-supported iron and iron-molybdenum oxide catalysts

    NARCIS (Netherlands)

    Ramselaar, W.L.T.M.; Crajé, M.W.J.; Hadders, R.H.; Gerkema, E.; Beer, de V.H.J.; Kraan, van der A.M.

    1990-01-01

    The transition of alumina-supported iron and iron-molybdenum catalysts from the oxidic precursor to the sulfided catalysts was systematically studied by means of in-situ Mössbauer spectroscopy at room temperature. This enabled the adjudgement of various sulfidic phases in the sulfided catalysts. The

  16. Bimetallic catalysts for continuous catalytic wet air oxidation of phenol.

    Science.gov (United States)

    Fortuny, A; Bengoa, C; Font, J; Fabregat, A

    1999-01-29

    Catalytic wet oxidation has proved to be effective at eliminating hazardous organic compounds, such as phenol, from waste waters. However, the lack of active long-life oxidation catalysts which can perform in aqueous phase is its main drawback. This study explores the ability of bimetallic supported catalysts to oxidize aqueous phenol solutions using air as oxidant. Combinations of 2% of CoO, Fe2O3, MnO or ZnO with 10% CuO were supported on gamma-alumina by pore filling, calcined and later tested. The oxidation was carried out in a packed bed reactor operating in trickle flow regime at 140 degrees C and 900 kPa of oxygen partial pressure. Lifetime tests were conducted for 8 days. The pH of the feed solution was also varied. The results show that all the catalysts tested undergo severe deactivation during the first 2 days of operation. Later, the catalysts present steady activity until the end of the test. The highest residual phenol conversion was obtained for the ZnO-CuO, which was significantly higher than that obtained with the 10% CuO catalyst used as reference. The catalyst deactivation is related to the dissolution of the metal oxides from the catalyst surface due to the acidic reaction conditions. Generally, the performance of the catalysts was better when the pH of the feed solution was increased.

  17. Thermal and electrochemical stability of tungsten carbide catalyst supports

    Energy Technology Data Exchange (ETDEWEB)

    Chhina, H. [Ballard Power Systems, 9000 Glenlyon Parkway, Burnaby, BC (Canada); Department of Materials Engineering, University of British Columbia, Vancouver, BC (Canada); Campbell, S. [Ballard Power Systems, 9000 Glenlyon Parkway, Burnaby, BC (Canada); Kesler, O. [Department of Mechanical Engineering, University of British Columbia, Vancouver, BC (Canada)

    2007-02-10

    The thermal and electrochemical stability of tungsten carbide (WC), with and without a catalyst dispersed on it, have been investigated to evaluate the potential suitability of the material as an oxidation-resistant catalyst support. Standard techniques currently used to disperse Pt on carbon could not be used to disperse Pt on WC, so an alternative method was developed and used to disperse Pt on both commercially available WC and on carbon for comparison of stability. Electrochemical testing was performed by applying oxidation cycles between +0.6 V and +1.8 V to the support-catalyst material combinations and monitoring the activity of the supported catalyst over 100 oxidation cycles. Comparisons of activity change with cumulative oxidation cycles were made between C and WC supports with comparable loadings of catalyst by weight, solid volume, and powder volume. WC was found to be more thermally and electrochemically stable than currently used carbon support material Vulcan XC-72R. However, further optimization of the particle sizes and dispersion of Pt/WC catalyst/support materials and of comparison standards between new candidate materials and existing carbon-based supports are required. (author)

  18. Hydroformylation of 1-Hexene over Rh/Nano-Oxide Catalysts

    Directory of Open Access Journals (Sweden)

    Sari Suvanto

    2013-03-01

    Full Text Available The effect of nanostructured supports on the activity of Rh catalysts was studied by comparing the catalytic performance of nano- and bulk-oxide supported Rh/ZnO, Rh/SiO2 and Rh/TiO2 systems in 1-hexene hydroformylation. The highest activity with 100% total conversion and 96% yield of aldehydes was obtained with the Rh/nano-ZnO catalyst. The Rh/nano-ZnO catalyst was found to be more stable and active than the corresponding rhodium catalyst supported on bulk ZnO. The favorable morphology of Rh/nano-ZnO particles led to an increased metal content and an increased number of weak acid sites compared to the bulk ZnO supported catalysts. Both these factors favored the improved catalytic performance. Improvements of catalytic properties were obtained also with the nano-SiO2 and nano-TiO2 supports in comparison with the bulk supports. All of the catalysts were characterized by scanning electron microscope (SEM, inductively coupled plasma mass spectrometry (ICP-MS, BET, powder X-ray diffraction (PXRD and NH3- temperature-programmed desorption (TPD.

  19. Studies on PEM fuel cell noble metal catalyst dissolution

    DEFF Research Database (Denmark)

    Andersen, S. M.; Grahl-Madsen, L.; Skou, E. M.

    2011-01-01

    A combination of electrochemical, spectroscopic and gravimetric methods was carried out on Proton Exchange Membrane (PEM) fuel cell electrodes with the focus on platinum and ruthenium catalysts dissolution, and the membrane degradation. In cyclic voltammetry (CV) experiments, the noble metals were...... found to dissolve in 1 M sulfuric acid solution and the dissolution increased exponentially with the upper potential limit (UPL) between 0.6 and 1.6 vs. RHE. 2-20% of the Pt (depending on the catalyst type) was found to be dissolved during the experiments. Under the same conditions, 30-100% of the Ru...... (depending on the catalyst type) was found to be dissolved. The faster dissolution of ruthenium compared to platinum in the alloy type catalysts was also confirmed by X-ray diffraction measurements. The dissolution of the carbon supported catalyst was found one order of magnitude higher than the unsupported...

  20. Acid Dissolution of Depleted Uranium from Catalyst using Microwave

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Jin Hyun; Jeong, Seong Gi; Park, Kwang Heon [Kyunghee University, Yongin (Korea, Republic of)

    2011-05-15

    The separation process of uranium is one of the most important fields in nuclear industry because uranium is used primary in nuclear power plants. Uranium ores are treated by either acid or alkaline reagents. Uranium can be dissolved by acid or alkaline solutions. There are two oxidation states in which the hexavalent form, the oxide of which is UO{sub 3}, and the tetravalent form, the oxide of which is UO{sub 2}. However, depleted uranium(DU) has also been used as a catalyst in specialized chemical reaction such as ammoxidation. The preferred catalyst for propylene oxidation with ammonia was a uranium oxide-antimony oxide composition. The active phase of catalyst was known as USbO{sub 5} and USb{sub 3}O{sub 10}. There is pentavalent form. Waste catalyst containing DU was generated and stored in chemical industry. In this work, we removed DU from catalyst by acid dissolution