WorldWideScience

Sample records for hydroclimate predictability connections

  1. Insight into the Pacific Sea Surface Temperature- North American Hydroclimate Connection from an Eastern Tropical North Pacific Coral Record

    Science.gov (United States)

    Sanchez, S. C.; Charles, C. D.; Carriquiry, J. D.

    2015-12-01

    The last few years of record-breaking climate anomalies across North America--a resilient atmospheric ridge and extreme drought over the West Coast, and severe winters across the Midwest and East Coast regions--have been linked to anomalous Pacific sea surface temperatures (Seager et al. 2014, Wang et al. 2014, Hartmann 2015). The synoptic associations prompt important questions on the relation between these unusual phenomena and extreme expressions of known Pacific decadal modes, such as the North Pacific Gyre Oscillation (NPGO). These questions motivate our pursuit to document multiple realizations of decadal variability in the Pacific-North American region through periods of varied radiative forcing. Here we introduce a 178 year, seasonally resolved Porites coral record from Clarion Island (18N, 115W), the westernmost island of the Revillagigedo Archipelago, a region both highly influenced by NPGO SST and SSS variability and critical for NPGO tropical-extratropical communication via the Seasonal Footprinting Mechanism (Vimont et al. 2003). When coupled with tree ring records from the western United States (Griffin and Anchukaitis 2014, MacDonald and Case 2005) and coral records from the central tropical Pacific (Cobb et al. 2001), the δ18O signal from the Clarion coral offers an extended framework of coherent continental hydroclimate and oceanic variability across the Pacific basin beyond the instrumental record. Over the last 200 years, we find clear commonality in the timing, magnitude and spatial expression of variability (illustrated through the NADA Atlas, Cook et al. 2004) amongst the proxy records. The strong relationship between Northeastern Pacific Clarion and the Central Pacific Palmyra record with the North American hydroclimate records can be viewed within the mechanistic framework of the NPGO; this framework is then explored over the last millennium across intervals of varied radiative forcing.

  2. River chemistry as a monitor of Yosemite Park mountain hydroclimates

    Science.gov (United States)

    Peterson, David; Smith, Richard; Hager, Stephen; Hicke, Jeffrey A.; Dettinger, Michael; Huber, King

    2005-01-01

    High-frequency, high-altitude measurements of water chemistry provide insights into processes relating to the hydrology, climate, and geochemistry of mountain catchments. When such observations are combined with stream stage, temperature, snow, weather, and other surface hydroclimate measurements, they are particularly useful in allowing connections between climate, river discharge, river chemistry, and ecosystems to be discerned.

  3. Investigation into Methods for Predicting Connection Temperatures

    Directory of Open Access Journals (Sweden)

    K. Anderson

    2009-01-01

    Full Text Available The mechanical response of connections in fire is largely based on material strength degradation and the interactions between the various components of the connection. In order to predict connection performance in fire, temperature profiles must initially be established in order to evaluate the material strength degradation over time. This paper examines two current methods for predicting connection temperatures: The percentage method, where connection temperatures are calculated as a percentage of the adjacent beam lower-flange, mid-span temperatures; and the lumped capacitance method, based on the lumped mass of the connection. Results from the percentage method do not correlate well with experimental results, whereas the lumped capacitance method shows much better agreement with average connection temperatures. A 3D finite element heat transfer model was also created in Abaqus, and showed good correlation with experimental results. 

  4. Connecting Representations: Using Predict, Check, Explain

    Science.gov (United States)

    Roy, George J.; Fueyo, Vivian; Vahey, Philip; Knudsen, Jennifer; Rafanan, Ken; Lara-Meloy, Teresa

    2016-01-01

    Although educators agree that making connections with the real world, as advocated by "Principles to Actions: Ensuring Mathematical Success for All" (NCTM 2014), is important, making such connections while addressing important mathematics is elusive. The authors have found that math content coupled with the instructional strategy of…

  5. Social network models predict movement and connectivity in ecological landscapes

    Science.gov (United States)

    Fletcher, Robert J.; Acevedo, M.A.; Reichert, Brian E.; Pias, Kyle E.; Kitchens, Wiley M.

    2011-01-01

    Network analysis is on the rise across scientific disciplines because of its ability to reveal complex, and often emergent, patterns and dynamics. Nonetheless, a growing concern in network analysis is the use of limited data for constructing networks. This concern is strikingly relevant to ecology and conservation biology, where network analysis is used to infer connectivity across landscapes. In this context, movement among patches is the crucial parameter for interpreting connectivity but because of the difficulty of collecting reliable movement data, most network analysis proceeds with only indirect information on movement across landscapes rather than using observed movement to construct networks. Statistical models developed for social networks provide promising alternatives for landscape network construction because they can leverage limited movement information to predict linkages. Using two mark-recapture datasets on individual movement and connectivity across landscapes, we test whether commonly used network constructions for interpreting connectivity can predict actual linkages and network structure, and we contrast these approaches to social network models. We find that currently applied network constructions for assessing connectivity consistently, and substantially, overpredict actual connectivity, resulting in considerable overestimation of metapopulation lifetime. Furthermore, social network models provide accurate predictions of network structure, and can do so with remarkably limited data on movement. Social network models offer a flexible and powerful way for not only understanding the factors influencing connectivity but also for providing more reliable estimates of connectivity and metapopulation persistence in the face of limited data.

  6. Global connectivity of prefrontal cortex predicts cognitive control and intelligence

    Science.gov (United States)

    Cole, Michael W.; Yarkoni, Tal; Repovs, Grega; Anticevic, Alan; Braver, Todd S.

    2012-01-01

    Control of thought and behavior is fundamental to human intelligence. Evidence suggests a fronto-parietal brain network implements such cognitive control across diverse contexts. We identify a mechanism – global connectivity – by which components of this network might coordinate control of other networks. A lateral prefrontal cortex (LPFC) region’s activity was found to predict performance in a high control demand working memory task, and also to exhibit high global connectivity. Critically, global connectivity in this LPFC region, involving connections both within and outside the fronto-parietal network, showed a highly selective relationship with individual differences in fluid intelligence. These findings suggest LPFC is a global hub with a brain-wide influence that facilitates the ability to implement control processes central to human intelligence. PMID:22745498

  7. Intrinsic functional connectivity predicts individual differences in distractibility.

    Science.gov (United States)

    Poole, Victoria N; Robinson, Meghan E; Singleton, Omar; DeGutis, Joseph; Milberg, William P; McGlinchey, Regina E; Salat, David H; Esterman, Michael

    2016-06-01

    Distractor suppression, the ability to filter and ignore task-irrelevant information, is critical for efficient task performance. While successful distractor suppression relies on a balance of activity in neural networks responsible for attention maintenance (dorsal attention network; DAN), reorientation (ventral attention network; VAN), and internal thought (default mode network, DMN), the degree to which intrinsic connectivity within and between these networks contributes to individual differences in distractor suppression ability is not well-characterized. For the purposes of understanding these interactions, the current study collected resting-state fMRI data from 32 Veterans and, several months later (7±5 months apart), performance on the additional singleton paradigm, a measure of distractor suppression. Using multivariate support vector regression models composed of resting state connectivity between regions of the DAN, VAN, and DMN, and a leave-one-subject-out cross-validation procedure, we were able to predict an individual's task performance, yielding a significant correlation between the actual and predicted distractor suppression (r=0.48, p=0.0053). Network-level analyses revealed that greater within-network DMN connectivity was predictive of better distractor suppression, while greater connectivity between the DMN and attention networks was predictive of poorer distractor suppression. The strongest connection hubs were determined to be the right frontal eye field and temporoparietal junction of the DAN and VAN, respectively, and medial (ventromedial prefrontal and posterior cingulate cortices) and bilateral prefrontal regions of the DMN. These results are amongst a small but growing number of studies demonstrating that resting state connectivity is related to stable individual differences in cognitive ability, and suggest that greater integrity and independence of the DMN is related to better attentional ability.

  8. Brain Connectivity Predicts Placebo Response across Chronic Pain Clinical Trials

    Science.gov (United States)

    Tétreault, Pascal; Mansour, Ali; Vachon-Presseau, Etienne; Schnitzer, Thomas J.; Apkarian, A. Vania

    2016-01-01

    Placebo response in the clinical trial setting is poorly understood and alleged to be driven by statistical confounds, and its biological underpinnings are questioned. Here we identified and validated that clinical placebo response is predictable from resting-state functional magnetic-resonance-imaging (fMRI) brain connectivity. This also led to discovering a brain region predicting active drug response and demonstrating the adverse effect of active drug interfering with placebo analgesia. Chronic knee osteoarthritis (OA) pain patients (n = 56) underwent pretreatment brain scans in two clinical trials. Study 1 (n = 17) was a 2-wk single-blinded placebo pill trial. Study 2 (n = 39) was a 3-mo double-blinded randomized trial comparing placebo pill to duloxetine. Study 3, which was conducted in additional knee OA pain patients (n = 42), was observational. fMRI-derived brain connectivity maps in study 1 were contrasted between placebo responders and nonresponders and compared to healthy controls (n = 20). Study 2 validated the primary biomarker and identified a brain region predicting drug response. In both studies, approximately half of the participants exhibited analgesia with placebo treatment. In study 1, right midfrontal gyrus connectivity best identified placebo responders. In study 2, the same measure identified placebo responders (95% correct) and predicted the magnitude of placebo’s effectiveness. By subtracting away linearly modeled placebo analgesia from duloxetine response, we uncovered in 6/19 participants a tendency of duloxetine enhancing predicted placebo response, while in another 6/19, we uncovered a tendency for duloxetine to diminish it. Moreover, the approach led to discovering that right parahippocampus gyrus connectivity predicts drug analgesia after correcting for modeled placebo-related analgesia. Our evidence is consistent with clinical placebo response having biological underpinnings and shows that the method can also reveal that active

  9. An IoT Based Predictive Connected Car Maintenance Approach

    Directory of Open Access Journals (Sweden)

    Rohit Dhall

    2017-03-01

    Full Text Available Internet of Things (IoT is fast emerging and becoming an almost basic necessity in general life. The concepts of using technology in our daily life is not new, but with the advancements in technology, the impact of technology in daily activities of a person can be seen in almost all the aspects of life. Today, all aspects of our daily life, be it health of a person, his location, movement, etc. can be monitored and analyzed using information captured from various connected devices. This paper discusses one such use case, which can be implemented by the automobile industry, using technological advancements in the areas of IoT and Analytics. ‘Connected Car’ is a terminology, often associated with cars and other passenger vehicles, which are capable of internet connectivity and sharing of various kinds of data with backend applications. The data being shared can be about the location and speed of the car, status of various parts/lubricants of the car, and if the car needs urgent service or not. Once data are transmitted to the backend services, various workflows can be created to take necessary actions, e.g. scheduling a service with the car service provider, or if large numbers of care are in the same location, then the traffic management system can take necessary action. ’Connected cars’ can also communicate with each other, and can send alerts to each other in certain scenarios like possible crash etc. This paper talks about how the concept of ‘connected cars’ can be used to perform ‘predictive car maintenance’. It also discusses how certain technology components, i.e., Eclipse Mosquito and Eclipse Paho can be used to implement a predictive connected car use case.

  10. Predicting the Dynamics of Network Connectivity in the Neocortex.

    Science.gov (United States)

    Loewenstein, Yonatan; Yanover, Uri; Rumpel, Simon

    2015-09-09

    Dynamic remodeling of connectivity is a fundamental feature of neocortical circuits. Unraveling the principles underlying these dynamics is essential for the understanding of how neuronal circuits give rise to computations. Moreover, as complete descriptions of the wiring diagram in cortical tissues are becoming available, deciphering the dynamic elements in these diagrams is crucial for relating them to cortical function. Here, we used chronic in vivo two-photon imaging to longitudinally follow a few thousand dendritic spines in the mouse auditory cortex to study the determinants of these spines' lifetimes. We applied nonlinear regression to quantify the independent contribution of spine age and several morphological parameters to the prediction of the future survival of a spine. We show that spine age, size, and geometry are parameters that can provide independent contributions to the prediction of the longevity of a synaptic connection. In addition, we use this framework to emulate a serial sectioning electron microscopy experiment and demonstrate how incorporation of morphological information of dendritic spines from a single time-point allows estimation of future connectivity states. The distinction between predictable and nonpredictable connectivity changes may be used in the future to identify the specific adaptations of neuronal circuits to environmental changes. The full dataset is publicly available for further analysis. Significance statement: The neural architecture in the neocortex exhibits constant remodeling. The functional consequences of these modifications are poorly understood, in particular because the determinants of these changes are largely unknown. Here, we aimed to identify those modifications that are predictable from current network state. To that goal, we repeatedly imaged thousands of dendritic spines in the auditory cortex of mice to assess the morphology and lifetimes of synaptic connections. We developed models based on morphological

  11. Heat capacity prediction of complex molecules by mass connectivity index

    Directory of Open Access Journals (Sweden)

    Koutchoukali O.

    2013-07-01

    Full Text Available Heat capacity prediction and estimation methods of solid organic compounds in terms of temperature are limited, particularly concerning complex molecules with functional groups such as active principles and intermediaries used in pharmaceutical field. Recently a correlation between heat capacity at constant pressure (Cp, temperature and a new concept named mass connectivity index (MCI, for ionic liquids, was published [1-3]. In this predictive method, heat capacity can be calculated at different temperatures, if standard heat capacity at 298.15 K is known. The effect of molecular structure on heat capacity is accounted for in this model by the mass connectivity index, a molecular descriptor, which differentiates between compounds. The Valderrama generalized correlation admits, in addition, two universal coefficients, which are obtained from experimental data regression. In the present work, a similar approach is used to predict solid state heat capacity of organics and pharmaceutical products. In order to find model parameters, a database was grouped comprising (104 different compounds and a set of more than 5,791 experimental values of solid state Cps obtained from literature. These collected data were used in multiple linear regression to find model parameters. It was found that the values of predicted heat capacities of compounds non-included in the database were good; they are quite close to the ones presented in the literature. Moreover, this method is simple to use, since only molecular structure of the component and its solid state heat capacity at 298.15 K should be known.

  12. Connectivity network measures predict volumetric atrophy in mild cognitive impairment.

    Science.gov (United States)

    Nir, Talia M; Jahanshad, Neda; Toga, Arthur W; Bernstein, Matt A; Jack, Clifford R; Weiner, Michael W; Thompson, Paul M

    2015-01-01

    Alzheimer's disease (AD) is characterized by cortical atrophy and disrupted anatomic connectivity, and leads to abnormal interactions between neural systems. Diffusion-weighted imaging (DWI) and graph theory can be used to evaluate major brain networks and detect signs of a breakdown in network connectivity. In a longitudinal study using both DWI and standard magnetic resonance imaging (MRI), we assessed baseline white-matter connectivity patterns in 30 subjects with mild cognitive impairment (MCI, mean age 71.8 ± 7.5 years, 18 males and 12 females) from the Alzheimer's Disease Neuroimaging Initiative. Using both standard MRI-based cortical parcellations and whole-brain tractography, we computed baseline connectivity maps from which we calculated global "small-world" architecture measures, including mean clustering coefficient and characteristic path length. We evaluated whether these baseline network measures predicted future volumetric brain atrophy in MCI subjects, who are at risk for developing AD, as determined by 3-dimensional Jacobian "expansion factor maps" between baseline and 6-month follow-up anatomic scans. This study suggests that DWI-based network measures may be a novel predictor of AD progression.

  13. Prediction of Alzheimer's disease using individual structural connectivity networks

    Science.gov (United States)

    Shao, Junming; Myers, Nicholas; Yang, Qinli; Feng, Jing; Plant, Claudia; Böhm, Christian; Förstl, Hans; Kurz, Alexander; Zimmer, Claus; Meng, Chun; Riedl, Valentin; Wohlschläger, Afra; Sorg, Christian

    2012-01-01

    Alzheimer's disease (AD) progressively degrades the brain's gray and white matter. Changes in white matter reflect changes in the brain's structural connectivity pattern. Here, we established individual structural connectivity networks (ISCNs) to distinguish predementia and dementia AD from healthy aging in individual scans. Diffusion tractography was used to construct ISCNs with a fully automated procedure for 21 healthy control subjects (HC), 23 patients with mild cognitive impairment and conversion to AD dementia within 3 years (AD-MCI), and 17 patients with mild AD dementia. Three typical pattern classifiers were used for AD prediction. Patients with AD and AD-MCI were separated from HC with accuracies greater than 95% and 90%, respectively, irrespective of prediction approach and specific fiber properties. Most informative connections involved medial prefrontal, posterior parietal, and insular cortex. Patients with mild AD were separated from those with AD-MCI with an accuracy of approximately 85%. Our finding provides evidence that ISCNs are sensitive to the impact of earliest stages of AD. ISCNs may be useful as a white matter-based imaging biomarker to distinguish healthy aging from AD. PMID:22405045

  14. Neighborhood Integration and Connectivity Predict Cognitive Performance and Decline

    Directory of Open Access Journals (Sweden)

    Amber Watts PhD

    2015-08-01

    Full Text Available Objective: Neighborhood characteristics may be important for promoting walking, but little research has focused on older adults, especially those with cognitive impairment. We evaluated the role of neighborhood characteristics on cognitive function and decline over a 2-year period adjusting for measures of walking. Method: In a study of 64 older adults with and without mild Alzheimer’s disease (AD, we evaluated neighborhood integration and connectivity using geographical information systems data and space syntax analysis. In multiple regression analyses, we used these characteristics to predict 2-year declines in factor analytically derived cognitive scores (attention, verbal memory, mental status adjusting for age, sex, education, and self-reported walking. Results: Neighborhood integration and connectivity predicted cognitive performance at baseline, and changes in cognitive performance over 2 years. The relationships between neighborhood characteristics and cognitive performance were not fully explained by self-reported walking. Discussion: Clearer definitions of specific neighborhood characteristics associated with walkability are needed to better understand the mechanisms by which neighborhoods may impact cognitive outcomes. These results have implications for measuring neighborhood characteristics, design and maintenance of living spaces, and interventions to increase walking among older adults. We offer suggestions for future research measuring neighborhood characteristics and cognitive function.

  15. Neighborhood Integration and Connectivity Predict Cognitive Performance and Decline

    Directory of Open Access Journals (Sweden)

    Amber Watts PhD

    2015-08-01

    Full Text Available Objective: Neighborhood characteristics may be important for promoting walking, but little research has focused on older adults, especially those with cognitive impairment. We evaluated the role of neighborhood characteristics on cognitive function and decline over a 2-year period adjusting for measures of walking. Method: In a study of 64 older adults with and without mild Alzheimer’s disease (AD, we evaluated neighborhood integration and connectivity using geographical information systems data and space syntax analysis. In multiple regression analyses, we used these characteristics to predict 2-year declines in factor analytically derived cognitive scores (attention, verbal memory, mental status adjusting for age, sex, education, and self-reported walking. Results : Neighborhood integration and connectivity predicted cognitive performance at baseline, and changes in cognitive performance over 2 years. The relationships between neighborhood characteristics and cognitive performance were not fully explained by self-reported walking. Discussion : Clearer definitions of specific neighborhood characteristics associated with walkability are needed to better understand the mechanisms by which neighborhoods may impact cognitive outcomes. These results have implications for measuring neighborhood characteristics, design and maintenance of living spaces, and interventions to increase walking among older adults. We offer suggestions for future research measuring neighborhood characteristics and cognitive function.

  16. Tensor-Based Link Prediction in Intermittently Connected Wireless Networks

    CERN Document Server

    Zayani, Mohamed-Haykel; Slama, Ines; Zeghlache, Djamal

    2011-01-01

    Through several studies, it has been highlighted that mobility patterns in mobile networks are driven by human behaviors. This effect has been particularly observed in intermittently connected networks like DTN (Delay Tolerant Networks). Given that common social intentions generate similar human behavior, it is relevant to exploit this knowledge in the network protocols design, e.g. to identify the closeness degree between two nodes. In this paper, we propose a temporal link prediction technique for DTN which quantifies the behavior similarity between each pair of nodes and makes use of it to predict future links. Our prediction method keeps track of the spatio-temporal aspects of nodes behaviors organized as a third-order tensor that aims to records the evolution of the network topology. After collapsing the tensor information, we compute the degree of similarity for each pair of nodes using the Katz measure. This metric gives us an indication on the link occurrence between two nodes relying on their closene...

  17. Using connectome-based predictive modeling to predict individual behavior from brain connectivity.

    Science.gov (United States)

    Shen, Xilin; Finn, Emily S; Scheinost, Dustin; Rosenberg, Monica D; Chun, Marvin M; Papademetris, Xenophon; Constable, R Todd

    2017-03-01

    Neuroimaging is a fast-developing research area in which anatomical and functional images of human brains are collected using techniques such as functional magnetic resonance imaging (fMRI), diffusion tensor imaging (DTI), and electroencephalography (EEG). Technical advances and large-scale data sets have allowed for the development of models capable of predicting individual differences in traits and behavior using brain connectivity measures derived from neuroimaging data. Here, we present connectome-based predictive modeling (CPM), a data-driven protocol for developing predictive models of brain-behavior relationships from connectivity data using cross-validation. This protocol includes the following steps: (i) feature selection, (ii) feature summarization, (iii) model building, and (iv) assessment of prediction significance. We also include suggestions for visualizing the most predictive features (i.e., brain connections). The final result should be a generalizable model that takes brain connectivity data as input and generates predictions of behavioral measures in novel subjects, accounting for a considerable amount of the variance in these measures. It has been demonstrated that the CPM protocol performs as well as or better than many of the existing approaches in brain-behavior prediction. As CPM focuses on linear modeling and a purely data-driven approach, neuroscientists with limited or no experience in machine learning or optimization will find it easy to implement these protocols. Depending on the volume of data to be processed, the protocol can take 10-100 min for model building, 1-48 h for permutation testing, and 10-20 min for visualization of results.

  18. Link prediction boosted psychiatry disorder classification for functional connectivity network

    Science.gov (United States)

    Li, Weiwei; Mei, Xue; Wang, Hao; Zhou, Yu; Huang, Jiashuang

    2017-02-01

    Functional connectivity network (FCN) is an effective tool in psychiatry disorders classification, and represents cross-correlation of the regional blood oxygenation level dependent signal. However, FCN is often incomplete for suffering from missing and spurious edges. To accurate classify psychiatry disorders and health control with the incomplete FCN, we first `repair' the FCN with link prediction, and then exact the clustering coefficients as features to build a weak classifier for every FCN. Finally, we apply a boosting algorithm to combine these weak classifiers for improving classification accuracy. Our method tested by three datasets of psychiatry disorder, including Alzheimer's Disease, Schizophrenia and Attention Deficit Hyperactivity Disorder. The experimental results show our method not only significantly improves the classification accuracy, but also efficiently reconstructs the incomplete FCN.

  19. Functional connectivity during rested wakefulness predicts vulnerability to sleep deprivation.

    Science.gov (United States)

    Yeo, B T Thomas; Tandi, Jesisca; Chee, Michael W L

    2015-05-01

    Significant inter-individual differences in vigilance decline following sleep deprivation exist. We characterized functional connectivity in 68 healthy young adult participants in rested wakefulness and following a night of total sleep deprivation. After whole brain signal regression, functionally connected cortical networks during the well-rested state exhibited reduced correlation following sleep deprivation, suggesting that highly integrated brain regions become less integrated during sleep deprivation. In contrast, anti-correlations in the well-rested state became less so following sleep deprivation, suggesting that highly segregated networks become less segregated during sleep deprivation. Subjects more resilient to vigilance decline following sleep deprivation showed stronger anti-correlations among several networks. The weaker anti-correlations overlapped with connectivity alterations following sleep deprivation. Resilient individuals thus evidence clearer separation of highly segregated cortical networks in the well-rested state. In contrast to corticocortical connectivity, subcortical-cortical connectivity was comparable across resilient and vulnerable groups despite prominent state-related changes in both groups. Because sleep deprivation results in a significant elevation of whole brain signal amplitude, the aforesaid signal changes and group contrasts may be masked in analyses omitting their regression, suggesting possible value in regressing whole brain signal in certain experimental contexts.

  20. Structural and Functional Brain Connectivity of People with Obesity and Prediction of Body Mass Index Using Connectivity.

    Directory of Open Access Journals (Sweden)

    Bo-yong Park

    Full Text Available Obesity is a medical condition affecting billions of people. Various neuroimaging methods including magnetic resonance imaging (MRI have been used to obtain information about obesity. We adopted a multi-modal approach combining diffusion tensor imaging (DTI and resting state functional MRI (rs-fMRI to incorporate complementary information and thus better investigate the brains of non-healthy weight subjects. The objective of this study was to explore multi-modal neuroimaging and use it to predict a practical clinical score, body mass index (BMI. Connectivity analysis was applied to DTI and rs-fMRI. Significant regions and associated imaging features were identified based on group-wise differences between healthy weight and non-healthy weight subjects. Six DTI-driven connections and 10 rs-fMRI-driven connectivities were identified. DTI-driven connections better reflected group-wise differences than did rs-fMRI-driven connectivity. We predicted BMI values using multi-modal imaging features in a partial least-square regression framework (percent error 15.0%. Our study identified brain regions and imaging features that can adequately explain BMI. We identified potentially good imaging biomarker candidates for obesity-related diseases.

  1. The Prediction of Biological Activity Using Molecular Connectivity Indices.

    Science.gov (United States)

    1986-04-23

    correlations of their toxicity to a variety or organisms, including rats and guppies , with connectivity indices. The best result was from the correlation...of the LC5 0 concentration of chlorophenols using guppies : log LC5 0 3.257 - 0.6719 lxv L S&. (r 0.982, n = 10). The general conclusion reached was...toxicity toward axenic cultures of the freshwater ciliate Tetrahymena pyriformis. A better correlation with xv * - - -. . -. - -, .*’,-.’ . S. -17- was

  2. Altered salience network connectivity predicts macronutrient intake after sleep deprivation.

    Science.gov (United States)

    Fang, Zhuo; Spaeth, Andrea M; Ma, Ning; Zhu, Senhua; Hu, Siyuan; Goel, Namni; Detre, John A; Dinges, David F; Rao, Hengyi

    2015-02-03

    Although insufficient sleep is a well-recognized risk factor for overeating and weight gain, the neural mechanisms underlying increased caloric (particularly fat) intake after sleep deprivation remain unclear. Here we used resting-state functional magnetic resonance imaging and examined brain connectivity changes associated with macronutrient intake after one night of total sleep deprivation (TSD). Compared to the day following baseline sleep, healthy adults consumed a greater percentage of calories from fat and a lower percentage of calories from carbohydrates during the day following TSD. Subjects also exhibited increased brain connectivity in the salience network from the dorsal anterior cingulate cortex (dACC) to bilateral putamen and bilateral anterior insula (aINS) after TSD. Moreover, dACC-putamen and dACC-aINS connectivity correlated with increased fat and decreased carbohydrate intake during the day following TSD, but not during the day following baseline sleep. These findings provide a potential neural mechanism by which sleep loss leads to increased fat intake.

  3. Mathematical Physics of Complex Coevolutionary Systems: Theoretical Advances and Applications to Multiscale Hydroclimate Dynamics

    Science.gov (United States)

    Perdigão, Rui A. P.

    2016-04-01

    The fundamental stochastic-dynamic coevolution laws governing complex coevolutionary systems are introduced in a mathematical physics framework formally unifying nonlinear stochastic physics with fundamental deterministic interaction laws among spatiotemporally distributed processes. The methodological developments are then used to shed light onto fundamental interactions underlying complex spatiotemporal behaviour and emergence in multiscale hydroclimate dynamics. For this purpose, a mathematical physics framework is presented predicting evolving distributions of hydrologic quantities under nonlinearly coevolving geophysical processes. The functional formulation is grounded on first principles regulating the dynamics of each system constituent and their interactions, therefore its applicability is general and data-independent, not requiring local calibrations. Moreover, it enables the dynamical estimation of hydroclimatic variations in space and time from knowledge at different spatiotemporal conditions, along with the associated uncertainties. This paves the way for a robust physically based prediction of hydroclimatic changes in unsupervised areas (e.g. ungauged basins). Validation is achieved by producing, with the mathematical physics framework, a comprehensive spatiotemporal legacy consistent with the observed distributions along with their statistic-dynamic relations. The similarity between simulated and observed distributions is further assessed with novel robust nonlinear information-theoretic diagnostics. The present study brings to light emerging signatures of structural change in hydroclimate dynamics arising from nonlinear synergies across multiple spatiotemporal scales, and contributes to a better dynamical understanding and prediction of spatiotemporal regimes, transitions, structural changes and extremes in complex coevolutionary systems. This study further sheds light onto a diversity of emerging properties from harmonic to hyper-chaotic in general

  4. A critical flaw size approach for predicting the strength of bolted glass connections

    DEFF Research Database (Denmark)

    Watson, James; Nielsen, Jens Henrik; Overend, Mauro

    2013-01-01

    The use of bolted connections in glass installations is common place in contemporary architecture. However, it is difficult to predict the load bearing capacity of these connections accurately due to the several factors that influence the strength of glass in the region of the bolt hole, namely: ...

  5. Point-to-point connectivity prediction in porous media using percolation theory

    Science.gov (United States)

    Tavagh-Mohammadi, Behnam; Masihi, Mohsen; Ganjeh-Ghazvini, Mostafa

    2016-10-01

    The connectivity between two points in porous media is important for evaluating hydrocarbon recovery in underground reservoirs or toxic migration in waste disposal. For example, the connectivity between a producer and an injector in a hydrocarbon reservoir impact the fluid dispersion throughout the system. The conventional approach, flow simulation, is computationally very expensive and time consuming. Alternative method employs percolation theory. Classical percolation approach investigates the connectivity between two lines (representing the wells) in 2D cross sectional models whereas we look for the connectivity between two points (representing the wells) in 2D aerial models. In this study, site percolation is used to determine the fraction of permeable regions connected between two cells at various occupancy probabilities and system sizes. The master curves of mean connectivity and its uncertainty are then generated by finite size scaling. The results help to predict well-to-well connectivity without need to any further simulation.

  6. Contention aware mobility prediction routing for intermittently connected mobile networks

    KAUST Repository

    Elwhishi, Ahmed

    2013-04-26

    This paper introduces a novel multi-copy routing protocol, called predict and forward (PF), for delay tolerant networks, which aims to explore the possibility of using mobile nodes as message carriers for end-to-end delivery of the messages. With PF, the message forwarding decision is made by manipulating the probability distribution of future inter-contact and contact durations based on the network status, including wireless link condition and nodal buffer availability. In particular, PF is based on the observations that the node mobility behavior is semi-deterministic and could be predicted once there is sufficient mobility history information. We implemented the proposed protocol and compared it with a number of existing encounter-based routing approaches in terms of delivery delay, delivery ratio, and the number of transmissions required for message delivery. The simulation results show that PF outperforms all the counterpart multi-copy encounter-based routing protocols considered in the study.

  7. Existential and psychological problems connected with Threat Predicting Process

    Directory of Open Access Journals (Sweden)

    Mamcarz Piotr

    2014-01-01

    Full Text Available The aim of the article is to present a very important phenomenon affecting human integrity and homeostasis that is Threat Prediction Process. This process can be defined as “experiencing apprehension concerning results of potential/ actual dangers,” (Mamcarz, 2015 oscillating in terminological area of anxiety, fear, stress, restlessness. Moreover, it highlights a cognitive process distinctive for listed phenomenon’s. The process accompanied with technological and organization changes increases number of health problems affecting many populations. Hard work conditions; changing life style; or many social and political threats have influence on people’s quality of life that are even greater and more dangerous than physical and psychological factors, which, in turn, have much more consequences for human normal functioning. The present article is based on chosen case studies of a qualitative analysis of threat prediction process

  8. The International Summer School on Land Cover Change and Hydroclimate of the La Plata Basin

    Science.gov (United States)

    Berbery, Ernesto Hugo; Herdies, Dirceu L.; Alcaraz-Segura, Domingo; de Goncalves, Luis G. G.; Lettenmaier, Dennis P.; Toll, David

    2011-01-01

    The La Plata Basin (LPB) in southern South America has been subject to land cover and land use changes (LCLUCs) since colonial times and with an accelerated rate in the last decades and over extensive areas. The work of Ameghino even suggested that there were relations between those land use changes and the frequency of droughts and floods in the region. Despite this early knowledge, not much is known of the potential impacts of LCLUC on the hydroclimate of the La Plata basin. Besides, over the last century much of the La Plata Basin has had a reported increase in precipitation and heavy rains, and these changes along with an increase in population growth - have resulted in more adverse effects from flooding. To draw attention to these issues, during two weeks in November 2009 the International Summer School on Land Cover Change and Hydroclimate of the La Plata Basin was organized at the grounds of the Itaip Hydropower Plant in Brazil. The school was the result of the combination of interests between the La Plata Basin Regional Hydroclimate Project, the Inter-American Institute for Global Change Research (IAI), and the International Hydroinformatics Center (IHC) in Itaip . LPB is an umbrella project endorsed by the Global Energy and Water Cycle Experiment (GEWEX) and the Climate Prediction and Variability (CLIVAR), both of the World Climate Research Programme (WCRP). LPB has made a priority to train young scientists and promote interdisciplinary collaborations in areas related to Climate, Hydrology, Ecology and Agriculture. The IAI, with a similar agenda, was a natural partner to develop this Summer School, which in turn benefited from Itaipu s interest in relating with the scientific community of neighboring countries. The choice of location (Itaip Technological Park) was made so that participants could relate research usually done at academic institutions to applications and operations at one of the largest hydropower plants in the world. The school was attended

  9. Resting-State Connectivity Predicts Levodopa-Induced Dyskinesias in Parkinson's Disease

    DEFF Research Database (Denmark)

    Herz, Damian M.; Haagensen, Brian N.; Nielsen, Silas H.;

    2016-01-01

    dyskinesias emerged. Levodopa-induced modulation of cortico-striatal resting-state connectivity was assessed between the putamen and the following 3 cortical regions of interest: supplementary motor area, primary sensorimotor cortex, and right inferior frontal gyrus. These functional connectivity measures......-state connectivity between the putamen and primary sensorimotor cortex in the most affected hemisphere predicted whether patients would develop dyskinesias with a specificity of 100% and a sensitivity of 91% (P putamen...... predicted interindividual differences in dyskinesia severity (R2 = 0.627, P = .004). Resting-state connectivity between the right inferior frontal gyrus and putamen neither predicted dyskinesia status nor dyskinesia severity. Conclusions: The results corroborate the notion that altered dopaminergic...

  10. Fluid Flow Prediction with Development System Interwell Connectivity Influence

    Science.gov (United States)

    Bolshakov, M.; Deeva, T.; Pustovskikh, A.

    2016-03-01

    In this paper interwell connectivity has been studied. First of all, literature review of existing methods was made which is divided into three groups: Statistically-Based Methods, Material (fluid) Propagation-Based Methods and Potential (pressure) Change Propagation-Based Method. The disadvantages of the first and second groups are as follows: methods do not involve fluid flow through porous media, ignore any changes of well conditions (BHP, skin factor, etc.). The last group considers changes of well conditions and fluid flow through porous media. In this work Capacitance method (CM) has been chosen for research. This method is based on material balance and uses weight coefficients lambdas to assess well influence. In the next step synthetic model was created for examining CM. This model consists of an injection well and a production well. CM gave good results, it means that flow rates which were calculated by analytical method (CM) show matching with flow rate in model. Further new synthetic model was created which includes six production and one injection wells. This model represents seven-spot pattern. To obtain lambdas weight coefficients, the delta function was entered using by minimization algorithm. Also synthetic model which has three injectors and thirteen producer wells was created. This model simulates seven-spot pattern production system. Finally Capacitance method (CM) has been adjusted on real data of oil Field Ω. In this case CM does not give enough satisfying results in terms of field data liquid rate. In conclusion, recommendations to simplify CM calculations were given. Field Ω is assumed to have one injection and one production wells. In this case, satisfying results for production rates and cumulative production were obtained.

  11. The anatomical distance of functional connections predicts brain network topology in health and schizophrenia.

    Science.gov (United States)

    Alexander-Bloch, Aaron F; Vértes, Petra E; Stidd, Reva; Lalonde, François; Clasen, Liv; Rapoport, Judith; Giedd, Jay; Bullmore, Edward T; Gogtay, Nitin

    2013-01-01

    The human brain is a topologically complex network embedded in anatomical space. Here, we systematically explored relationships between functional connectivity, complex network topology, and anatomical (Euclidean) distance between connected brain regions, in the resting-state functional magnetic resonance imaging brain networks of 20 healthy volunteers and 19 patients with childhood-onset schizophrenia (COS). Normal between-subject differences in average distance of connected edges in brain graphs were strongly associated with variation in topological properties of functional networks. In addition, a club or subset of connector hubs was identified, in lateral temporal, parietal, dorsal prefrontal, and medial prefrontal/cingulate cortical regions. In COS, there was reduced strength of functional connectivity over short distances especially, and therefore, global mean connection distance of thresholded graphs was significantly greater than normal. As predicted from relationships between spatial and topological properties of normal networks, this disorder-related proportional increase in connection distance was associated with reduced clustering and modularity and increased global efficiency of COS networks. Between-group differences in connection distance were localized specifically to connector hubs of multimodal association cortex. In relation to the neurodevelopmental pathogenesis of schizophrenia, we argue that the data are consistent with the interpretation that spatial and topological disturbances of functional network organization could arise from excessive "pruning" of short-distance functional connections in schizophrenia.

  12. A network of amygdala connections predict individual differences in trait anxiety.

    Science.gov (United States)

    Greening, Steven G; Mitchell, Derek G V

    2015-12-01

    In this study we demonstrate that the pattern of an amygdala-centric network contributes to individual differences in trait anxiety. Individual differences in trait anxiety were predicted using maximum likelihood estimates of amygdala structural connectivity to multiple brain targets derived from diffusion-tensor imaging (DTI) and probabilistic tractography on 72 participants. The prediction was performed using a stratified sixfold cross validation procedure using a regularized least square regression model. The analysis revealed a reliable network of regions predicting individual differences in trait anxiety. Higher trait anxiety was associated with stronger connections between the amygdala and dorsal anterior cingulate cortex, an area implicated in the generation of emotional reactions, and inferior temporal gyrus and paracentral lobule, areas associated with perceptual and sensory processing. In contrast, higher trait anxiety was associated with weaker connections between amygdala and regions implicated in extinction learning such as medial orbitofrontal cortex, and memory encoding and environmental context recognition, including posterior cingulate cortex and parahippocampal gyrus. Thus, trait anxiety is not only associated with reduced amygdala connectivity with prefrontal areas associated with emotion modulation, but also enhanced connectivity with sensory areas. This work provides novel anatomical insight into potential mechanisms behind information processing biases observed in disorders of emotion.

  13. Organization of intrinsic functional brain connectivity predicts decisions to reciprocate social behavior.

    Science.gov (United States)

    Cáceda, Ricardo; James, G Andrew; Gutman, David A; Kilts, Clinton D

    2015-10-01

    Reciprocation of trust exchanges is central to the development of interpersonal relationships and societal well-being. Understanding how humans make pro-social and self-centered decisions in dyadic interactions and how to predict these choices has been an area of great interest in social neuroscience. A functional magnetic resonance imaging (fMRI) based technology with potential clinical application is the study of resting state brain connectivity. We tested if resting state connectivity may predict choice behavior in a social context. Twenty-nine healthy adults underwent resting state fMRI before performing the Trust Game, a two person monetary exchange game. We assessed the ability of patterns of resting-state functional brain organization, demographic characteristics and a measure of moral development, the Defining Issues Test (DIT-2), to predict individuals' decisions to reciprocate money during the Trust Game. Subjects reciprocated in 74.9% of the trials. Independent component analysis identified canonical resting-state networks. Increased functional connectivity between the salience (bilateral insula/anterior cingulate) and central executive (dorsolateral prefrontal cortex/ posterior parietal cortex) networks significantly predicted the choice to reciprocate pro-social behavior (R(2) = 0.20, p = 0.015). Stepwise linear regression analysis showed that functional connectivity between these two networks (p = 0.002), age (p = 0.007) and DIT-2 personal interest schema score (p = 0.032) significantly predicted reciprocity behavior (R(2) = 0.498, p = 0.001). Intrinsic functional connectivity between neural networks in conjunction with other individual characteristics may be a valuable tool for predicting performance during social interactions. Future replication and temporal extension of these findings may bolster the understanding of decision making in clinical, financial and marketing settings. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Protein complex prediction based on k-connected subgraphs in protein interaction network

    Directory of Open Access Journals (Sweden)

    Habibi Mahnaz

    2010-09-01

    Full Text Available Abstract Background Protein complexes play an important role in cellular mechanisms. Recently, several methods have been presented to predict protein complexes in a protein interaction network. In these methods, a protein complex is predicted as a dense subgraph of protein interactions. However, interactions data are incomplete and a protein complex does not have to be a complete or dense subgraph. Results We propose a more appropriate protein complex prediction method, CFA, that is based on connectivity number on subgraphs. We evaluate CFA using several protein interaction networks on reference protein complexes in two benchmark data sets (MIPS and Aloy, containing 1142 and 61 known complexes respectively. We compare CFA to some existing protein complex prediction methods (CMC, MCL, PCP and RNSC in terms of recall and precision. We show that CFA predicts more complexes correctly at a competitive level of precision. Conclusions Many real complexes with different connectivity level in protein interaction network can be predicted based on connectivity number. Our CFA program and results are freely available from http://www.bioinf.cs.ipm.ir/softwares/cfa/CFA.rar.

  15. A Quantitative Structure Property Relationship for Prediction of Flash Point of Alkanes Using Molecular Connectivity Indices

    Institute of Scientific and Technical Information of China (English)

    Morteza Atabati; Reza Emamalizadeh

    2013-01-01

    Many structure-property/activity studies use graph theoretical indices,which are based on the topological properties of a molecule viewed as a graph.Since topological indices can be derived directly from the molecular structure without any experimental effort,they provide a simple and straightforward method for property prediction.In this work the flash point of alkanes was modeled by a set of molecular connectivity indices (x),modified molecular connectivity indices (mx(1)h) and valance molecular connectivity indices (mxv),with mxv calculated using the hydrogen perturbation.A stepwise Multiple Linear Regression (MLR) method was used to select the best indices.The predicted flash points are in good agreement with the experimental data,with the average absolute deviation 4.3 K.

  16. Dorsal Striatal-Midbrain Connectivity in Humans Predicts How Reinforcements Are Used to Guide Decisions

    Science.gov (United States)

    Kahnt, Thorsten; Park, Soyoung Q.; Cohen, Michael X.; Beck, Anne; Heinz, Andreas; Wrase, Jana

    2009-01-01

    It has been suggested that the target areas of dopaminergic midbrain neurons, the dorsal (DS) and ventral striatum (VS), are differently involved in reinforcement learning especially as actor and critic. Whereas the critic learns to predict rewards, the actor maintains action values to guide future decisions. The different midbrain connections to…

  17. HydroClimATe: hydrologic and climatic analysis toolkit

    Science.gov (United States)

    Dickinson, Jesse E.; Hanson, Randall T.; Predmore, Steven K.

    2014-01-01

    The potential consequences of climate variability and climate change have been identified as major issues for the sustainability and availability of the worldwide water resources. Unlike global climate change, climate variability represents deviations from the long-term state of the climate over periods of a few years to several decades. Currently, rich hydrologic time-series data are available, but the combination of data preparation and statistical methods developed by the U.S. Geological Survey as part of the Groundwater Resources Program is relatively unavailable to hydrologists and engineers who could benefit from estimates of climate variability and its effects on periodic recharge and water-resource availability. This report documents HydroClimATe, a computer program for assessing the relations between variable climatic and hydrologic time-series data. HydroClimATe was developed for a Windows operating system. The software includes statistical tools for (1) time-series preprocessing, (2) spectral analysis, (3) spatial and temporal analysis, (4) correlation analysis, and (5) projections. The time-series preprocessing tools include spline fitting, standardization using a normal or gamma distribution, and transformation by a cumulative departure. The spectral analysis tools include discrete Fourier transform, maximum entropy method, and singular spectrum analysis. The spatial and temporal analysis tool is empirical orthogonal function analysis. The correlation analysis tools are linear regression and lag correlation. The projection tools include autoregressive time-series modeling and generation of many realizations. These tools are demonstrated in four examples that use stream-flow discharge data, groundwater-level records, gridded time series of precipitation data, and the Multivariate ENSO Index.

  18. Hydroclimate variability in the Nile River Basin during the past 28,000 years

    Science.gov (United States)

    Castañeda, Isla S.; Schouten, Stefan; Pätzold, Jürgen; Lucassen, Friedrich; Kasemann, Simone; Kuhlmann, Holger; Schefuß, Enno

    2016-03-01

    It has long been known that extreme changes in North African hydroclimate occurred during the late Pleistocene yet many discrepancies exist between sites regarding the timing, duration and abruptness of events such as Heinrich Stadial (HS) 1 and the African Humid Period (AHP). The hydroclimate history of the Nile River is of particular interest due to its lengthy human occupation history yet there are presently few continuous archives from the Nile River corridor, and pre-Holocene studies are rare. Here we present new organic and inorganic geochemical records of Nile Basin hydroclimate from an eastern Mediterranean (EM) Sea sediment core spanning the past 28 ka BP. Our multi-proxy records reflect the fluctuating inputs of Blue Nile versus White Nile material to the EM Sea in response to gradual changes in local insolation and also capture abrupt hydroclimate events driven by remote climate forcings, such as HS1. We find strong evidence for extreme aridity within the Nile Basin evolving in two distinct phases during HS1, from 17.5 to 16 ka BP and from 16 to 14.5 ka BP, whereas peak wet conditions during the AHP are observed from 9 to 7 ka BP. We find that zonal movements of the Congo Air Boundary (CAB), and associated shifts in the dominant moisture source (Atlantic versus Indian Ocean moisture) to the Nile Basin, likely contributed to abrupt hydroclimate variability in northern East Africa during HS1 and the AHP as well as to non-linear behavior of hydroclimate proxies. We note that different proxies show variable gradual and abrupt responses to individual hydroclimate events, and thus might have different inherent sensitivities, which may be a factor contributing to the controversy surrounding the abruptness of past events such as the AHP. During the Late Pleistocene the Nile Basin experienced extreme hydroclimate fluctuations, which presumably impacted Paleolithic cultures residing along the Nile corridor.

  19. Resting-brain functional connectivity predicted by analytic measures of network communication

    Science.gov (United States)

    Goñi, Joaquín; van den Heuvel, Martijn P.; Avena-Koenigsberger, Andrea; Velez de Mendizabal, Nieves; Betzel, Richard F.; Griffa, Alessandra; Hagmann, Patric; Corominas-Murtra, Bernat; Thiran, Jean-Philippe; Sporns, Olaf

    2014-01-01

    The complex relationship between structural and functional connectivity, as measured by noninvasive imaging of the human brain, poses many unresolved challenges and open questions. Here, we apply analytic measures of network communication to the structural connectivity of the human brain and explore the capacity of these measures to predict resting-state functional connectivity across three independently acquired datasets. We focus on the layout of shortest paths across the network and on two communication measures—search information and path transitivity—which account for how these paths are embedded in the rest of the network. Search information is an existing measure of information needed to access or trace shortest paths; we introduce path transitivity to measure the density of local detours along the shortest path. We find that both search information and path transitivity predict the strength of functional connectivity among both connected and unconnected node pairs. They do so at levels that match or significantly exceed path length measures, Euclidean distance, as well as computational models of neural dynamics. This capacity suggests that dynamic couplings due to interactions among neural elements in brain networks are substantially influenced by the broader network context adjacent to the shortest communication pathways. PMID:24379387

  20. Hydroclimate variations in central and monsoonal Asia over the past 700 years.

    Science.gov (United States)

    Fang, Keyan; Chen, Fahu; Sen, Asok K; Davi, Nicole; Huang, Wei; Li, Jinbao; Seppä, Heikki

    2014-01-01

    Hydroclimate variations since 1300 in central and monsoonal Asia and their interplay on interannual and interdecadal timescales are investigated using the tree-ring based Palmer Drought Severity Index (PDSI) reconstructions. Both the interannual and interdecadal variations in both regions are closely to the Pacific Decadal Oscillation (PDO). On interannual timescale, the most robust correlations are observed between PDO and hydroclimate in central Asia. Interannual hydroclimate variations in central Asia are more significant during the warm periods with high solar irradiance, which is likely due to the enhanced variability of the eastern tropical Pacific Ocean, the high-frequency component of PDO, during the warm periods. We observe that the periods with significant interdecadal hydroclimate changes in central Asia often correspond to periods without significant interdecadal variability in monsoonal Asia, particularly before the 19th century. The PDO-hydroclimate relationships appear to be bridged by the atmospheric circulation between central North Pacific Ocean and Tibetan Plateau, a key area of PDO. While, in some periods the atmospheric circulation between central North Pacific Ocean and monsoonal Asia may lead to significant interdecadal hydroclimate variations in monsoonal Asia.

  1. Exploring Linkages Between Gulf of Mexico Sea Surface Conditions and North American Hydroclimate during the Holocene

    Science.gov (United States)

    Richey, J. N.; Thirumalai, K.; Quinn, T. M.; Poore, R. Z.

    2015-12-01

    The Gulf of Mexico is part of the Atlantic Warm Pool, a feature that drives oceanic moisture flux to the surrounding continent. It is connected to the North Atlantic Ocean via the loop current, which transports salt and heat from the Caribbean and Gulf of Mexico poleward via the Gulf Stream. As such, variations in Gulf of Mexico sea surface temperature (SST) and salinity (SSS) are linked to changes in North Atlantic Ocean circulation and North American hydroclimate. Although SST and SSS variability in the Gulf of Mexico are well understood on inter-annual and glacial-interglacial timescales, little is known about centennial scale variability in these sea surface parameters through the Holocene. We present here the first continuous multi-decadal resolution time series of SST and SSS spanning the entire Holocene from the Gulf of Mexico. This proxy reconstruction is based on paired measurements of Mg/Ca and δ18O in the planktic foraminifer, Globigerinoides ruber (white variety) in the Garrison Basin. Using these data, in combination with additional Gulf of Mexico SST and SSS records from the late Holocene, we explore linkages between North American precipitation patterns and ocean circulation on centennial timescales.

  2. Functional connectivity estimated from intracranial EEG predicts surgical outcome in intractable temporal lobe epilepsy.

    Directory of Open Access Journals (Sweden)

    Arun R Antony

    Full Text Available This project aimed to determine if a correlation-based measure of functional connectivity can identify epileptogenic zones from intracranial EEG signals, as well as to investigate the prognostic significance of such a measure on seizure outcome following temporal lobe lobectomy. To this end, we retrospectively analyzed 23 adult patients with intractable temporal lobe epilepsy (TLE who underwent an invasive stereo-EEG (SEEG evaluation between January 2009 year and January 2012. A follow-up of at least one year was required. The primary outcome measure was complete seizure-freedom at last follow-up. Functional connectivity between two areas in the temporal lobe that were sampled by two SEEG electrode contacts was defined as Pearson's correlation coefficient of interictal activity between those areas. SEEG signals were filtered between 5 and 50 Hz prior to computing this correlation. The mean and standard deviation of the off diagonal elements in the connectivity matrix were also calculated. Analysis of the mean and standard deviation of the functional connections for each patient reveals that 90% of the patients who had weak and homogenous connections were seizure free one year after temporal lobectomy, whereas 85% of the patients who had stronger and more heterogeneous connections within the temporal lobe had recurrence of seizures. This suggests that temporal lobectomy is ineffective in preventing seizure recurrence for patients in whom the temporal lobe is characterized by weakly connected, homogenous networks. This pilot study shows promising potential of a simple measure of functional brain connectivity to identify epileptogenicity and predict the outcome of epilepsy surgery.

  3. Individual differences in crossmodal brain activity predict arcuate fasciculus connectivity in developing readers.

    Science.gov (United States)

    Gullick, Margaret M; Booth, James R

    2014-07-01

    Crossmodal integration of auditory and visual information, such as phonemes and graphemes, is a critical skill for fluent reading. Previous work has demonstrated that white matter connectivity along the arcuate fasciculus (AF) is predicted by reading skill and that crossmodal processing particularly activates the posterior STS (pSTS). However, the relationship between this crossmodal activation and white matter integrity has not been previously reported. We investigated the interrelationship of crossmodal integration, both in terms of behavioral performance and pSTS activity, with AF tract coherence using a rhyme judgment task in a group of 47 children with a range of reading abilities. We demonstrate that both response accuracy and pSTS activity for crossmodal (auditory-visual) rhyme judgments was predictive of fractional anisotropy along the left AF. Unimodal (auditory-only or visual-only) pSTS activity was not significantly related to AF connectivity. Furthermore, activity in other reading-related ROIs did not show the same AV-only AF coherence relationship, and AV pSTS activity was not related to connectivity along other language-related tracts. This study is the first to directly show that crossmodal brain activity is specifically related to connectivity in the AF, supporting its role in phoneme-grapheme integration ability. More generally, this study helps to define an interdependent neural network for reading-related integration.

  4. Predicting depression based on dynamic regional connectivity: a windowed Granger causality analysis of MEG recordings.

    Science.gov (United States)

    Lu, Qing; Bi, Kun; Liu, Chu; Luo, Guoping; Tang, Hao; Yao, Zhijian

    2013-10-16

    Abnormal inter-regional causalities can be mapped for the objective diagnosis of various diseases. These inter-regional connectivities are usually calculated over an entire scan and used to characterize the stationary strength of the connections. However, the connectivity within networks may undergo substantial changes during a scan. In this study, we developed an objective depression recognition approach using the dynamic regional interactions that occur in response to sad facial stimuli. The whole time-period magnetoencephalography (MEG) signals from the visual cortex, amygdala, anterior cingulate cortex (ACC) and inferior frontal gyrus (IFG) were separated into sequential time intervals. The Granger causality mapping method was used to identify the pairwise interaction pattern within each time interval. Feature selection was then undertaken within a minimum redundancy-maximum relevance (mRMR) framework. Typical classifiers were utilized to predict those patients who had depression. The overall performances of these classifiers were similar, and the highest classification accuracy rate was 87.5%. The best discriminative performance was obtained when the number of features was within a robust range. The discriminative network pattern obtained through support vector machine (SVM) analyses displayed abnormal causal connectivities that involved the amygdala during the early and late stages. These early and late connections in the amygdala appear to reveal a negative bias to coarse expression information processing and abnormal negative modulation in patients with depression, which may critically affect depression discrimination.

  5. Associative Encoding and Retrieval Are Predicted by Functional Connectivity in Distinct Hippocampal Area CA1 Pathways

    Science.gov (United States)

    Duncan, Katherine; Tompary, Alexa

    2014-01-01

    Determining how the hippocampus supports the unique demands of memory encoding and retrieval is fundamental for understanding the biological basis of episodic memory. One possibility proposed by theoretical models is that the distinct computational demands of encoding and retrieval are accommodated by shifts in the functional interaction between the hippocampal CA1 subregion and its input structures. However, empirical tests of this hypothesis are lacking. To test this in humans, we used high-resolution fMRI to measure functional connectivity between hippocampal area CA1 and regions of the medial temporal lobe and midbrain during extended blocks of associative encoding and retrieval tasks. We found evidence for a double dissociation between the pathways supporting successful encoding and retrieval. Specifically, during the associative encoding task, but not the retrieval task, functional connectivity only between area CA1 and the ventral tegmental area predicted associative long-term memory. In contrast, connectivity between area CA1 and DG/CA3 was greater, on average, during the retrieval task compared with the encoding task, and, importantly, the strength of this connectivity significantly correlated with retrieval success. Together, these findings serve as an important first step toward understanding how the demands of fundamental memory processes may be met by changes in the relative strength of connectivity within hippocampal pathways. PMID:25143600

  6. Disulfide Connectivity Prediction Based on Modelled Protein 3D Structural Information and Random Forest Regression.

    Science.gov (United States)

    Yu, Dong-Jun; Li, Yang; Hu, Jun; Yang, Xibei; Yang, Jing-Yu; Shen, Hong-Bin

    2015-01-01

    Disulfide connectivity is an important protein structural characteristic. Accurately predicting disulfide connectivity solely from protein sequence helps to improve the intrinsic understanding of protein structure and function, especially in the post-genome era where large volume of sequenced proteins without being functional annotated is quickly accumulated. In this study, a new feature extracted from the predicted protein 3D structural information is proposed and integrated with traditional features to form discriminative features. Based on the extracted features, a random forest regression model is performed to predict protein disulfide connectivity. We compare the proposed method with popular existing predictors by performing both cross-validation and independent validation tests on benchmark datasets. The experimental results demonstrate the superiority of the proposed method over existing predictors. We believe the superiority of the proposed method benefits from both the good discriminative capability of the newly developed features and the powerful modelling capability of the random forest. The web server implementation, called TargetDisulfide, and the benchmark datasets are freely available at: http://csbio.njust.edu.cn/bioinf/TargetDisulfide for academic use.

  7. Connectivity-based predictions of hand motor outcome for patients at the subacute stage after stroke

    Directory of Open Access Journals (Sweden)

    Julia eLindow

    2016-03-01

    Full Text Available Background. Connectivity-based predictions of hand motor outcome have been proposed to be useful in stroke patients. We intended to assess the prognostic value of different imaging methods on short-term (3 months and long-term (6 months motor outcome after stroke. Methods. We measured resting state functional connectivity (rsFC, diffusion weighted imaging (DWI and grip strength in 19 stroke patients within the first days (5-9 days after stroke. Outcome measurements for short-term (3 months and long-term (6 months motor function was assessed by the Motricity Index (MI of the upper limb and the Box and Block test (BB. Patients were predominantly mildly affected since signed consent was necessary at inclusion. We performed a multiple stepwise regression analysis to compare the predictive value of rsFC, DWI and clinical measurements. Results. Patients showed relevant improvement in both motor outcome tests. As expected grip strength at inclusion was a predictor for short- and long-term motor outcome as assessed by MI. Diffusion-based tract volume (DTV of the tracts between ipsilesional primary motor cortex and contralesional anterior cerebellar hemisphere showed a strong trend (p=0.05 for a predictive power for long-term motor outcome as measured by MI. DTV of the interhemispheric tracts between both primary motor cortices was predictive for both short - and long-term motor outcome in BB. rsFC was not associated with motor outcome. Conclusions. Grip strength is a good predictor of hand motor outcome concerning strength-related measurements (MI for mildly affected subacute patients. Therefore additional connectivity measurements seem to be redundant in this group. Using more complex movement recruiting bilateral motor areas as an outcome parameter, DTV and in particular interhemispheric pathways might enhance predictive value of hand motor outcome.

  8. Ecological strategies predict associations between aquatic and genetic connectivity for dryland amphibians.

    Science.gov (United States)

    Mims, Meryl C; Phillipsen, Ivan C; Lytle, David A; Kirk, Emily E Hartfield; Olden, Julian D

    2015-05-01

    The study of how population genetic structure is shaped by attributes of the environment is a central scientific pursuit in ecology and conservation. But limited resources may prohibit landscape genetics studies for many threatened species, particularly given the pace of current environmental change. Understanding the extent to which species' ecological strategies--their life histories, biology, and behavior-predict patterns and drivers of population connectivity is a critical step in evaluating the potential of multi-taxa inference in landscape genetics. We present results of a landscape genetic study of three dryland amphibians: the canyon treefrog (Hyla arenicolor), red-spotted toad (Anaxyrus punctatus), and Mexican spadefoot (Spea multiplicata). These species characterize a range of ecological strategies, driven primarily by different water dependencies, enabling amphibian survival in arid and semiarid environments. We examined a suite of hypothesized relationships between genetic connectivity and landscape connectivity across species. We found a positive relationship between population differentiation and water dependency, e.g., longer larval development periods and site fidelity for reliable water sources. We also found that aquatic connectivity is important for all species, particularly when considered with topography (slope). The effect of spatial scale varied by species, with canyon treefrogs and Mexican spadefoots characterized by relatively consistent results at different scales in contrast to the stark differences in results for red-spotted toads at different scales. Using ecological information to predict relationships between genetic and landscape connectivity is a promising approach for multi-taxa inference and may help inform conservation efforts where single-species genetic studies are not possible.

  9. Abrupt response of chemical weathering to Late Quaternary hydroclimate changes in northeast Africa

    Science.gov (United States)

    Bastian, Luc; Revel, Marie; Bayon, Germain; Dufour, Aurélie; Vigier, Nathalie

    2017-01-01

    Chemical weathering of silicate rocks on continents acts as a major sink for atmospheric carbon dioxide and has played an important role in the evolution of the Earth’s climate. However, the magnitude and the nature of the links between weathering and climate are still under debate. In particular, the timescale over which chemical weathering may respond to climate change is yet to be constrained at the continental scale. Here we reconstruct the relationships between rainfall and chemical weathering in northeast Africa for the last 32,000 years. Using lithium isotopes and other geochemical proxies in the clay-size fraction of a marine sediment core from the Eastern Mediterranean Sea, we show that chemical weathering in the Nile Basin fluctuated in parallel with the monsoon-related climatic evolution of northeast Africa. We also evidence strongly reduced mineral alteration during centennial-scale regional drought episodes. Our findings indicate that silicate weathering may respond as quickly as physical erosion to abrupt hydroclimate reorganization on continents. Consequently, we anticipate that the forthcoming hydrological disturbances predicted for northeast Africa may have a major impact on chemical weathering patterns and soil resources in this region. PMID:28290474

  10. Abrupt response of chemical weathering to Late Quaternary hydroclimate changes in northeast Africa

    Science.gov (United States)

    Bastian, Luc; Revel, Marie; Bayon, Germain; Dufour, Aurélie; Vigier, Nathalie

    2017-03-01

    Chemical weathering of silicate rocks on continents acts as a major sink for atmospheric carbon dioxide and has played an important role in the evolution of the Earth’s climate. However, the magnitude and the nature of the links between weathering and climate are still under debate. In particular, the timescale over which chemical weathering may respond to climate change is yet to be constrained at the continental scale. Here we reconstruct the relationships between rainfall and chemical weathering in northeast Africa for the last 32,000 years. Using lithium isotopes and other geochemical proxies in the clay-size fraction of a marine sediment core from the Eastern Mediterranean Sea, we show that chemical weathering in the Nile Basin fluctuated in parallel with the monsoon-related climatic evolution of northeast Africa. We also evidence strongly reduced mineral alteration during centennial-scale regional drought episodes. Our findings indicate that silicate weathering may respond as quickly as physical erosion to abrupt hydroclimate reorganization on continents. Consequently, we anticipate that the forthcoming hydrological disturbances predicted for northeast Africa may have a major impact on chemical weathering patterns and soil resources in this region.

  11. Preschool anxiety disorders predict different patterns of amygdala-prefrontal connectivity at school-age.

    Directory of Open Access Journals (Sweden)

    Kimberly L H Carpenter

    Full Text Available In this prospective, longitudinal study of young children, we examined whether a history of preschool generalized anxiety, separation anxiety, and/or social phobia is associated with amygdala-prefrontal dysregulation at school-age. As an exploratory analysis, we investigated whether distinct anxiety disorders differ in the patterns of this amygdala-prefrontal dysregulation.Participants were children taking part in a 5-year study of early childhood brain development and anxiety disorders. Preschool symptoms of generalized anxiety, separation anxiety, and social phobia were assessed with the Preschool Age Psychiatric Assessment (PAPA in the first wave of the study when the children were between 2 and 5 years old. The PAPA was repeated at age 6. We conducted functional MRIs when the children were 5.5 to 9.5 year old to assess neural responses to viewing of angry and fearful faces.A history of preschool social phobia predicted less school-age functional connectivity between the amygdala and the ventral prefrontal cortices to angry faces. Preschool generalized anxiety predicted less functional connectivity between the amygdala and dorsal prefrontal cortices in response to fearful faces. Finally, a history of preschool separation anxiety predicted less school-age functional connectivity between the amygdala and the ventral prefrontal cortices to angry faces and greater school-age functional connectivity between the amygdala and dorsal prefrontal cortices to angry faces.Our results suggest that there are enduring neurobiological effects associated with a history of preschool anxiety, which occur over-and-above the effect of subsequent emotional symptoms. Our results also provide preliminary evidence for the neurobiological differentiation of specific preschool anxiety disorders.

  12. Study on model current predictive control method of PV grid- connected inverters systems with voltage sag

    Science.gov (United States)

    Jin, N.; Yang, F.; Shang, S. Y.; Tao, T.; Liu, J. S.

    2016-08-01

    According to the limitations of the LVRT technology of traditional photovoltaic inverter existed, this paper proposes a low voltage ride through (LVRT) control method based on model current predictive control (MCPC). This method can effectively improve the photovoltaic inverter output characteristics and response speed. The MCPC method of photovoltaic grid-connected inverter designed, the sum of the absolute value of the predictive current and the given current error is adopted as the cost function with the model predictive control method. According to the MCPC, the optimal space voltage vector is selected. Photovoltaic inverter has achieved automatically switches of priority active or reactive power control of two control modes according to the different operating states, which effectively improve the inverter capability of LVRT. The simulation and experimental results proves that the proposed method is correct and effective.

  13. Predicting the connectivity of primate cortical networks from topological and spatial node properties

    Directory of Open Access Journals (Sweden)

    Kaiser Marcus

    2007-03-01

    Full Text Available Abstract Background The organization of the connectivity between mammalian cortical areas has become a major subject of study, because of its important role in scaffolding the macroscopic aspects of animal behavior and intelligence. In this study we present a computational reconstruction approach to the problem of network organization, by considering the topological and spatial features of each area in the primate cerebral cortex as subsidy for the reconstruction of the global cortical network connectivity. Starting with all areas being disconnected, pairs of areas with similar sets of features are linked together, in an attempt to recover the original network structure. Results Inferring primate cortical connectivity from the properties of the nodes, remarkably good reconstructions of the global network organization could be obtained, with the topological features allowing slightly superior accuracy to the spatial ones. Analogous reconstruction attempts for the C. elegans neuronal network resulted in substantially poorer recovery, indicating that cortical area interconnections are relatively stronger related to the considered topological and spatial properties than neuronal projections in the nematode. Conclusion The close relationship between area-based features and global connectivity may hint on developmental rules and constraints for cortical networks. Particularly, differences between the predictions from topological and spatial properties, together with the poorer recovery resulting from spatial properties, indicate that the organization of cortical networks is not entirely determined by spatial constraints.

  14. Frontostriatal anatomical connections predict age- and difficulty-related differences in reinforcement learning.

    Science.gov (United States)

    van de Vijver, Irene; Ridderinkhof, K Richard; Harsay, Helga; Reneman, Liesbeth; Cavanagh, James F; Buitenweg, Jessika I V; Cohen, Michael X

    2016-10-01

    Reinforcement learning (RL) is supported by a network of striatal and frontal cortical structures that are connected through white-matter fiber bundles. With age, the integrity of these white-matter connections declines. The role of structural frontostriatal connectivity in individual and age-related differences in RL is unclear, although local white-matter density and diffusivity have been linked to individual differences in RL. Here we show that frontostriatal tract counts in young human adults (aged 18-28), as assessed noninvasively with diffusion-weighted magnetic resonance imaging and probabilistic tractography, positively predicted individual differences in RL when learning was difficult (70% valid feedback). In older adults (aged 63-87), in contrast, learning under both easy (90% valid feedback) and difficult conditions was predicted by tract counts in the same frontostriatal network. Furthermore, network-level analyses showed a double dissociation between the task-relevant networks in young and older adults, suggesting that older adults relied on different frontostriatal networks than young adults to obtain the same task performance. These results highlight the importance of successful information integration across striatal and frontal regions during RL, especially with variable outcomes.

  15. Nonlinear characteristics of hydroclimate variability in the mid-latitude Asia over the past seven centuries

    Science.gov (United States)

    Zhou, Feifei; Fang, Keyan; Li, Yingjun; Chen, Qiuyan; Chen, Dan

    2016-10-01

    Hydroclimate variations in the mid-latitude Asia have received considerable attention due to its significance for the regional ecosystem and livelihood, while its nonlinear characteristics over the past centuries are not fully understood yet. Hydroclimate patterns for the mid-latitude Asia are classified into eastern and western modes based on a network of the reconstructed Palmer drought severity index (PDSI) of 197 grids spanning since 1300. The hydroclimate variations of western mode are more complex than that of eastern mode based on the Higuchi's fractal dimension (HFD) analysis, which may be related to the complex atmospheric circulation patterns that dominate them. The relationships of the hydroclimate variations between western and eastern modes at different time scales extracted by ensemble empirical mode decomposition method (EEMD) are detected. The anti-phase relationship of the hydroclimatic variations between western and eastern modes at the interdecadal variations occurs during the periods with the enhanced El Nino Southern Oscillation (ENSO) variance. Similarly, the multidecadal hydroclimate variations are anti-phase when the Pacific Decadal Oscillation (PDO) is in its warm phases. The inverse relationship between western and eastern modes is stable for the centennial scale.

  16. Structural integrity of frontostriatal connections predicts longitudinal changes in self-esteem.

    Science.gov (United States)

    Chavez, Robert S; Heatherton, Todd F

    2017-06-01

    Diverse neurological and psychiatric conditions are marked by a diminished sense of positive self-regard, and reductions in self-esteem are associated with risk for these disorders. Recent evidence has shown that the connectivity of frontostriatal circuitry reflects individual differences in self-esteem. However, it remains an open question as to whether the integrity of these connections can predict self-esteem changes over larger timescales. Using diffusion magnetic resonance imaging and probabilistic tractography, we demonstrate that the integrity of white matter pathways linking the medial prefrontal cortex to the ventral striatum predicts changes in self-esteem 8 months after initial scanning in a sample of 30 young adults. Individuals with greater integrity of this pathway during the scanning session at Time 1 showed increased levels of self-esteem at follow-up, whereas individuals with lower integrity showed stifled or decreased levels of self-esteem. These results provide evidence that frontostriatal white matter integrity predicts the trajectory of self-esteem development in early adulthood, which may contribute to blunted levels of positive self-regard seen in multiple psychiatric conditions, including depression and anxiety.

  17. Individual differences in the dominance of interhemispheric connections predict cognitive ability beyond sex and brain size.

    Science.gov (United States)

    Martínez, Kenia; Janssen, Joost; Pineda-Pardo, José Ángel; Carmona, Susanna; Román, Francisco Javier; Alemán-Gómez, Yasser; Garcia-Garcia, David; Escorial, Sergio; Quiroga, María Ángeles; Santarnecchi, Emiliano; Navas-Sánchez, Francisco Javier; Desco, Manuel; Arango, Celso; Colom, Roberto

    2017-07-15

    Global structural brain connectivity has been reported to be sex-dependent with women having increased interhemispheric connectivity (InterHc) and men having greater intrahemispheric connectivity (IntraHc). However, (a) smaller brains show greater InterHc, (b) larger brains show greater IntraHc, and (c) women have, on average, smaller brains than men. Therefore, sex differences in brain size may modulate sex differences in global brain connectivity. At the behavioural level, sex-dependent differences in connectivity are thought to contribute to men-women differences in spatial and verbal abilities. But this has never been tested at the individual level. The current study assessed whether individual differences in global structural connectome measures (InterHc, IntraHc and the ratio of InterHc relative to IntraHc) predict spatial and verbal ability while accounting for the effect of sex and brain size. The sample included forty men and forty women, who did neither differ in age nor in verbal and spatial latent components defined by a broad battery of tests and tasks. High-resolution T1-weighted and diffusion-weighted images were obtained for computing brain size and reconstructing the structural connectome. Results showed that men had higher IntraHc than women, while women had an increased ratio InterHc/IntraHc. However, these sex differences were modulated by brain size. Increased InterHc relative to IntraHc predicted higher spatial and verbal ability irrespective of sex and brain size. The positive correlations between the ratio InterHc/IntraHc and the spatial and verbal abilities were confirmed in 1000 random samples generated by bootstrapping. Therefore, sex differences in global structural connectome connectivity were modulated by brain size and did not underlie sex differences in verbal and spatial abilities. Rather, the level of dominance of InterHc over IntraHc may be associated with individual differences in verbal and spatial abilities in both men and

  18. WRF model forecasts and their use for hydroclimate monitoring over southern South America

    Science.gov (United States)

    Muller, Omar; Lovino, Miguel; Berbery, E. Hugo

    2017-04-01

    Weather forecasting and monitoring systems based on regional models are becoming increasingly relevant for decision support in agriculture and water management. This work evaluates the predictive and monitoring capabilities of a system based on WRF model simulations at 15 km grid spacing over a domain that encompasses La Plata Basin (LPB) in southern South America, where agriculture and water resources are essential. The model's skill up to a lead-time of 7 days is evaluated with daily precipitation and 2m temperature in-situ observations. Results show high prediction performance with 7 days lead-time throughout the domain and particularly over LPB, where about 70% of rain and no-rain days are correctly predicted. The scores tend to be better over humid climates than over arid-to-semiarid climates. Compared to the arid-semiarid climate, the humid climate has a higher probability of detection and less false alarms. The ranges of the skill scores are similar to those found over the United States, suggesting that proper choice of parameterizations lead to no loss of performance of the model. Daily mean, minimum and maximum forecast temperatures are highly correlated with observations up to 7 day lead time. The best performance is for daily mean temperature, followed by minimum temperature and a slightly weaker performance for maximum temperature over arid regions. The usefulness of WRF products for hydroclimate monitoring was tested for an unprecedented drought in southern Brazil and for a slightly above normal precipitation season in northeastern Argentina. In both cases the model products reproduce the observed precipitation conditions with consistent impacts on soil moisture, evapotranspiration and runoff. This evaluation validates the model's usefulness to fore-cast weather up to one week and to monitor climate conditions in real time. The scores suggest that the forecast lead-time can be extended into week two, while bias correction methods can reduce part of the

  19. The Influence of Indian Ocean Atmospheric Circulation on Warm Pool Hydroclimate During the Holocene Epoch

    Science.gov (United States)

    Tierney, J.E.; Oppo, D. W.; LeGrande, A. N.; Huang, Y.; Rosenthal, Y.; Linsley, B. K.

    2012-01-01

    Existing paleoclimate data suggest a complex evolution of hydroclimate within the Indo-Pacific Warm Pool (IPWP) during the Holocene epoch. Here we introduce a new leaf wax isotope record from Sulawesi, Indonesia and compare proxy water isotope data with ocean-atmosphere general circulation model (OAGCM) simulations to identify mechanisms influencing Holocene IPWP hydroclimate. Modeling simulations suggest that orbital forcing causes heterogenous changes in precipitation across the IPWP on a seasonal basis that may account for the differences in time-evolution of the proxy data at respective sites. Both the proxies and simulations suggest that precipitation variability during the September-November (SON) season is important for hydroclimate in Borneo. The preeminence of the SON season suggests that a seasonally lagged relationship between the Indian monsoon and Indian Ocean Walker circulation influences IPWP hydroclimatic variability during the Holocene.

  20. Intrinsic Functional Connectivity Patterns Predict Consciousness Level and Recovery Outcome in Acquired Brain Injury

    Science.gov (United States)

    Wu, Xuehai; Zou, Qihong; Hu, Jin; Tang, Weijun; Mao, Ying; Gao, Liang; Zhu, Jianhong; Jin, Yi; Wu, Xin; Lu, Lu; Zhang, Yaojun; Zhang, Yao; Dai, Zhengjia; Gao, Jia-Hong; Weng, Xuchu; Northoff, Georg; Giacino, Joseph T.; He, Yong

    2015-01-01

    For accurate diagnosis and prognostic prediction of acquired brain injury (ABI), it is crucial to understand the neurobiological mechanisms underlying loss of consciousness. However, there is no consensus on which regions and networks act as biomarkers for consciousness level and recovery outcome in ABI. Using resting-state fMRI, we assessed intrinsic functional connectivity strength (FCS) of whole-brain networks in a large sample of 99 ABI patients with varying degrees of consciousness loss (including fully preserved consciousness state, minimally conscious state, unresponsive wakefulness syndrome/vegetative state, and coma) and 34 healthy control subjects. Consciousness level was evaluated using the Glasgow Coma Scale and Coma Recovery Scale-Revised on the day of fMRI scanning; recovery outcome was assessed using the Glasgow Outcome Scale 3 months after the fMRI scanning. One-way ANOVA of FCS, Spearman correlation analyses between FCS and the consciousness level and recovery outcome, and FCS-based multivariate pattern analysis were performed. We found decreased FCS with loss of consciousness primarily distributed in the posterior cingulate cortex/precuneus (PCC/PCU), medial prefrontal cortex, and lateral parietal cortex. The FCS values of these regions were significantly correlated with consciousness level and recovery outcome. Multivariate support vector machine discrimination analysis revealed that the FCS patterns predicted whether patients with unresponsive wakefulness syndrome/vegetative state and coma would regain consciousness with an accuracy of 81.25%, and the most discriminative region was the PCC/PCU. These findings suggest that intrinsic functional connectivity patterns of the human posteromedial cortex could serve as a potential indicator for consciousness level and recovery outcome in individuals with ABI. SIGNIFICANCE STATEMENT Varying degrees of consciousness loss and recovery are commonly observed in acquired brain injury patients, yet the

  1. Predictive model for the heat capacity of ionic liquids using the mass connectivity index

    Energy Technology Data Exchange (ETDEWEB)

    Valderrama, Jose O., E-mail: jvalderr@userena.cl [Univ. of La Serena, Fac. of Engineering, Dept. of Mech. Eng., Casilla 554, La Serena (Chile); Center for Technological Information (CIT), Casilla 724, La Serena (Chile); Martinez, Gwendolyn [Center for Technological Information (CIT), Casilla 724, La Serena (Chile); Univ. Nacional Pedro Ruiz Gallo, Fac. of Chemical Engineering, Lambayeque (Peru); Rojas, Roberto E. [Univ. of La Serena, Fac. of Sciences, Dept. of Chemistry, Casilla 554, La Serena (Chile)

    2011-01-20

    A simple and accurate model to predict the heat capacity of ionic liquids is presented. The proposed model considers variables readily available for ionic liquids and that have important effect on heat capacity, according to the literature information. Additionally a recently defined structural parameter known as mass connectivity index is incorporated into the model. A set of 602 heat capacity data for 146 ionic liquids have been used in the study. The results were compared with experimental data and with values reported by other available estimation methods. Results show that the new simple correlation gives low deviations and can be used with confidence in thermodynamic and engineering calculations.

  2. Model Predictive Current Control for High-Power Grid-Connected Converters with Output LCL Filter

    DEFF Research Database (Denmark)

    Delpino, Hernan Anres Miranda; Teodorescu, Remus; Rodriguez, Pedro

    2009-01-01

    A model predictive control strategy for a highpower, grid connected 3-level neutral clamped point converter is presented. Power losses constraints set a limit on commutation losses so reduced switching frequency is required, thus producing low frequency current harmonics. To reduce these harmonics...... an LCL filter is used. The proposed control strategy allows control of the active and reactive power fed into the grid, reduce the switching frequency within acceptable operational margins and keep balance of the DC-link capacitor voltages while avoiding excitation of the filter resonance frequencies....

  3. Disruptions of network connectivity predict impairment in multiple behavioral domains after stroke.

    Science.gov (United States)

    Siegel, Joshua Sarfaty; Ramsey, Lenny E; Snyder, Abraham Z; Metcalf, Nicholas V; Chacko, Ravi V; Weinberger, Kilian; Baldassarre, Antonello; Hacker, Carl D; Shulman, Gordon L; Corbetta, Maurizio

    2016-07-26

    Deficits following stroke are classically attributed to focal damage, but recent evidence suggests a key role of distributed brain network disruption. We measured resting functional connectivity (FC), lesion topography, and behavior in multiple domains (attention, visual memory, verbal memory, language, motor, and visual) in a cohort of 132 stroke patients, and used machine-learning models to predict neurological impairment in individual subjects. We found that visual memory and verbal memory were better predicted by FC, whereas visual and motor impairments were better predicted by lesion topography. Attention and language deficits were well predicted by both. Next, we identified a general pattern of physiological network dysfunction consisting of decrease of interhemispheric integration and intrahemispheric segregation, which strongly related to behavioral impairment in multiple domains. Network-specific patterns of dysfunction predicted specific behavioral deficits, and loss of interhemispheric communication across a set of regions was associated with impairment across multiple behavioral domains. These results link key organizational features of brain networks to brain-behavior relationships in stroke.

  4. Hemispherically asymmetric volcanic forcing of tropical hydroclimate during the last millennium

    Science.gov (United States)

    Colose, Christopher M.; LeGrande, Allegra N.; Vuille, Mathias

    2016-08-01

    Volcanic aerosols exert the most important natural radiative forcing of the last millennium. State-of-the-art paleoclimate simulations of this interval are typically forced with diverse spatial patterns of volcanic forcing, leading to different responses in tropical hydroclimate. Recently, theoretical considerations relating the intertropical convergence zone (ITCZ) position to the demands of global energy balance have emerged in the literature, allowing for a connection to be made between the paleoclimate simulations and recent developments in the understanding of ITCZ dynamics. These energetic considerations aid in explaining the well-known historical, paleoclimatic, and modeling evidence that the ITCZ migrates away from the hemisphere that is energetically deficient in response to asymmetric forcing.Here we use two separate general circulation model (GCM) suites of experiments for the last millennium to relate the ITCZ position to asymmetries in prescribed volcanic sulfate aerosols in the stratosphere and related asymmetric radiative forcing. We discuss the ITCZ shift in the context of atmospheric energetics and discuss the ramifications of transient ITCZ migrations for other sensitive indicators of changes in the tropical hydrologic cycle, including global streamflow. For the first time, we also offer insight into the large-scale fingerprint of water isotopologues in precipitation (δ18Op) in response to asymmetries in radiative forcing. The ITCZ shifts away from the hemisphere with greater volcanic forcing. Since the isotopic composition of precipitation in the ITCZ is relatively depleted compared to areas outside this zone, this meridional precipitation migration results in a large-scale enrichment (depletion) in the isotopic composition of tropical precipitation in regions the ITCZ moves away from (toward). Our results highlight the need for careful consideration of the spatial structure of volcanic forcing for interpreting volcanic signals in proxy records

  5. Interhemispheric Resting-State Functional Connectivity Predicts Severity of Idiopathic Normal Pressure Hydrocephalus.

    Science.gov (United States)

    Ogata, Yousuke; Ozaki, Akihiko; Ota, Miho; Oka, Yurie; Nishida, Namiko; Tabu, Hayato; Sato, Noriko; Hanakawa, Takashi

    2017-01-01

    Idiopathic normal pressure hydrocephalus (iNPH) is characterized by a clinical triad (gait disturbance, dementia, and urinary incontinence), and by radiological findings of enlarged ventricles reflecting disturbance of central spinal fluid circulation. A diagnosis of iNPH is sometimes challenging, and the pathophysiological mechanisms underlying the clinical symptoms of iNPH remain largely unknown. Here, we used an emerging MRI technique, resting-state functional connectivity MRI (rsfcMRI), to develop a subsidiary diagnostic technique and to explore the underlying pathophysiological mechanisms of iNPH. rsfcMRI data were obtained from 11 patients with iNPH and 11 age-matched healthy volunteers, yielding rsfcMRI-derived functional connectivity (FC) from both groups. A linear support vector machine classifier was trained to distinguish the patterns of FCs of the patients with iNPH from those of the healthy volunteers. After dimensional reduction, the support vector machine successfully classified the two groups with an accuracy of 80%. Moreover, we found that rsfcMRI-derived FC carried information to predict the severity of the triad in iNPH. FCs relevant to the classification of severity were mainly based on interhemispheric connectivity, suggesting that disruption of the corpus callosum fibers due to ventricular enlargement may explain the triad of iNPH. The present results support the usefulness of rsfcMRI as a tool to understand pathophysiology of iNPH, and also to help with its clinical diagnosis.

  6. Interhemispheric Resting-State Functional Connectivity Predicts Severity of Idiopathic Normal Pressure Hydrocephalus

    Directory of Open Access Journals (Sweden)

    Yousuke Ogata

    2017-09-01

    Full Text Available Idiopathic normal pressure hydrocephalus (iNPH is characterized by a clinical triad (gait disturbance, dementia, and urinary incontinence, and by radiological findings of enlarged ventricles reflecting disturbance of central spinal fluid circulation. A diagnosis of iNPH is sometimes challenging, and the pathophysiological mechanisms underlying the clinical symptoms of iNPH remain largely unknown. Here, we used an emerging MRI technique, resting-state functional connectivity MRI (rsfcMRI, to develop a subsidiary diagnostic technique and to explore the underlying pathophysiological mechanisms of iNPH. rsfcMRI data were obtained from 11 patients with iNPH and 11 age-matched healthy volunteers, yielding rsfcMRI-derived functional connectivity (FC from both groups. A linear support vector machine classifier was trained to distinguish the patterns of FCs of the patients with iNPH from those of the healthy volunteers. After dimensional reduction, the support vector machine successfully classified the two groups with an accuracy of 80%. Moreover, we found that rsfcMRI-derived FC carried information to predict the severity of the triad in iNPH. FCs relevant to the classification of severity were mainly based on interhemispheric connectivity, suggesting that disruption of the corpus callosum fibers due to ventricular enlargement may explain the triad of iNPH. The present results support the usefulness of rsfcMRI as a tool to understand pathophysiology of iNPH, and also to help with its clinical diagnosis.

  7. Striatum-medial prefrontal cortex connectivity predicts developmental changes in reinforcement learning.

    Science.gov (United States)

    van den Bos, Wouter; Cohen, Michael X; Kahnt, Thorsten; Crone, Eveline A

    2012-06-01

    During development, children improve in learning from feedback to adapt their behavior. However, it is still unclear which neural mechanisms might underlie these developmental changes. In the current study, we used a reinforcement learning model to investigate neurodevelopmental changes in the representation and processing of learning signals. Sixty-seven healthy volunteers between ages 8 and 22 (children: 8-11 years, adolescents: 13-16 years, and adults: 18-22 years) performed a probabilistic learning task while in a magnetic resonance imaging scanner. The behavioral data demonstrated age differences in learning parameters with a stronger impact of negative feedback on expected value in children. Imaging data revealed that the neural representation of prediction errors was similar across age groups, but functional connectivity between the ventral striatum and the medial prefrontal cortex changed as a function of age. Furthermore, the connectivity strength predicted the tendency to alter expectations after receiving negative feedback. These findings suggest that the underlying mechanisms of developmental changes in learning are not related to differences in the neural representation of learning signals per se but rather in how learning signals are used to guide behavior and expectations.

  8. On the relevance of sophisticated structural annotations for disulfide connectivity pattern prediction.

    Directory of Open Access Journals (Sweden)

    Julien Becker

    Full Text Available Disulfide bridges strongly constrain the native structure of many proteins and predicting their formation is therefore a key sub-problem of protein structure and function inference. Most recently proposed approaches for this prediction problem adopt the following pipeline: first they enrich the primary sequence with structural annotations, second they apply a binary classifier to each candidate pair of cysteines to predict disulfide bonding probabilities and finally, they use a maximum weight graph matching algorithm to derive the predicted disulfide connectivity pattern of a protein. In this paper, we adopt this three step pipeline and propose an extensive study of the relevance of various structural annotations and feature encodings. In particular, we consider five kinds of structural annotations, among which three are novel in the context of disulfide bridge prediction. So as to be usable by machine learning algorithms, these annotations must be encoded into features. For this purpose, we propose four different feature encodings based on local windows and on different kinds of histograms. The combination of structural annotations with these possible encodings leads to a large number of possible feature functions. In order to identify a minimal subset of relevant feature functions among those, we propose an efficient and interpretable feature function selection scheme, designed so as to avoid any form of overfitting. We apply this scheme on top of three supervised learning algorithms: k-nearest neighbors, support vector machines and extremely randomized trees. Our results indicate that the use of only the PSSM (position-specific scoring matrix together with the CSP (cysteine separation profile are sufficient to construct a high performance disulfide pattern predictor and that extremely randomized trees reach a disulfide pattern prediction accuracy of [Formula: see text] on the benchmark dataset SPX[Formula: see text], which corresponds to

  9. Resting-state striato-frontal functional connectivity is sensitive to DAT1 genotype and predicts executive function.

    Science.gov (United States)

    Gordon, Evan M; Devaney, Joseph M; Bean, Stephanie; Vaidya, Chandan J

    2015-02-01

    Individual differences in striatal dopamine (DA) signaling have been associated both with individual differences in executive function in healthy individuals and with risk for psychiatric disorders defined by executive dysfunction. We used resting-state functional connectivity in 50 healthy adults to examine whether a polymorphism of the dopamine transporter gene (DAT1), which regulates striatal DA function, affects striatal functional connectivity in healthy adults, and whether that connectivity predicts executive function. We found that 9/10 heterozygotes, who are believed to have higher striatal DA signaling, demonstrated stronger connectivity between dorsal caudate (DC) and insular, dorsal anterior cingulate, and dorsolateral prefrontal regions, as well as between ventral striatum and ventrolateral prefrontal cortex, than 10/10 homozygotes. Across subjects, stronger DC-seeded connectivity predicted superior N-back working memory performance, while stronger ventral striatum-seeded connectivity predicted reduced impulsivity in everyday life. Further, mediation analysis suggested that connectivity strength mediated relationships between DAT1 genotype and behavior. These findings suggest that resting-state striato-frontal connectivity may be an endophenotype for executive function in healthy individuals. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Adaptation of Sediment Connectivity Index for Swedish catchments and application for flood prediction of roads

    Science.gov (United States)

    Cantone, Carolina; Kalantari, Zahra; Cavalli, Marco; Crema, Stefano

    2016-04-01

    Climate changes are predicted to increase precipitation intensities and occurrence of extreme rainfall events in the near future. Scandinavia has been identified as one of the most sensitive regions in Europe to such changes; therefore, an increase in the risk for flooding, landslides and soil erosion is to be expected also in Sweden. An increase in the occurrence of extreme weather events will impose greater strain on the built environment and major transport infrastructures such as roads and railways. This research aimed to identify the risk of flooding at the road-stream intersections, crucial locations where water and debris can accumulate and cause failures of the existing drainage facilities. Two regions in southwest of Sweden affected by an extreme rainfall event in August 2014, were used for calibrating and testing a statistical flood prediction model. A set of Physical Catchment Descriptors (PCDs) including road and catchment characteristics was identified for the modelling. Moreover, a GIS-based topographic Index of Sediment Connectivity (IC) was used as PCD. The novelty of this study relies on the adaptation of IC for describing sediment connectivity in lowland areas taking into account contribution of soil type, land use and different patterns of precipitation during the event. A weighting factor for IC was calculated by estimating runoff calculated with SCS Curve Number method, assuming a constant value of precipitation for a given time period, corresponding to the critical event. The Digital Elevation Model of the study site was reconditioned at the drainage facilities locations to consider the real flow path in the analysis. These modifications led to highlight the role of rainfall patterns and surface runoff for modelling sediment delivery in lowland areas. Moreover, it was observed that integrating IC into the statistic prediction model increased its accuracy and performance. After the calibration procedure in one of the study areas, the model was

  11. Predicting cortical ROIs via joint modeling of anatomical and connectional profiles.

    Science.gov (United States)

    Zhang, Tuo; Zhu, Dajiang; Jiang, Xi; Ge, Bao; Hu, Xintao; Han, Junwei; Guo, Lei; Liu, Tianming

    2013-08-01

    Localization of cortical regions of interests (ROIs) in structural neuroimaging data such as diffusion tensor imaging (DTI) and T1-weighted MRI images has significant importance in basic and clinical neurosciences. However, this problem is considerably challenging due to the lack of quantitative mapping between brain structure and function, which relies on the availability of multimodal training data including benchmark task-based functional MRI (fMRI) images and effective machine learning algorithms. This paper presents a novel joint modeling approach that learns predictive models of ROIs from concurrent task-based fMRI, DTI, and T1-weighted MRI datasets. In particular, the effective generalized multiple kernel learning (GMKL) algorithm and ROI coordinate principal component analysis (PCA) model are employed to infer the intrinsic relationships between anatomical T1-weighted MRI/connectional DTI features and task-based fMRI-derived functional ROIs. Then, these predictive models of cortical ROIs are evaluated by cross-validation studies, independent datasets, and reproducibility studies. Experimental results are promising. We envision that these predictive models can be potentially applied in many scenarios that have only DTI and/or T1-weighted MRI data, but without task-based fMRI data. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Hydroclimate variability in NE Brazil over the last 2K

    Science.gov (United States)

    Giselle, Utida; Ioanna, Bouloubassi; Francisco, Cruz; Enno, Schefuβ; Abdel, Sifeddine; Vincent, Klein; Johan, Etourneau; Renata, Zocatelli; André, Zular; Hai, Cheng; Laurence, Edwards R.

    2016-04-01

    ITCZ movements during the last millennium that compare well with available records of fluctuations in northern ITCZ extension (Cariaco Basin). Comparisons to proxy records from tropical South America regions affected by the SASM and the South America Convergence Zone (SACZ) allow evaluating the SAMS/SACZ-ITCZ linkages. Furthermore, the data are discussed in terms of the role of the Atlantic and Pacific modes of variability in modulating regional hydroclimate.

  13. Latest Pleistocene to Holocene hydroclimates from Lake Elsinore, California

    Science.gov (United States)

    Kirby, Matthew E.; Feakins, Sarah J.; Bonuso, Nicole; Fantozzi, Joanna M.; Hiner, Christine A.

    2013-09-01

    The hydroclimate of the southwestern United States (US) region changed abruptly during the latest Pleistocene as the continental ice sheets over North America retreated from their most southerly extent. To investigate the nature of this change, we present a new record from Lake Elsinore, located 36 km inland from the Pacific Ocean in Southern California and evaluate it in the context of records across the coastal and interior southwest United States, including northwest Mexico. The sediment core recovered from Lake Elsinore provides a continuous sequence with multi-decadal resolution spanning 19-9 ka BP. Sedimentological and geochemical analyses reveal hydrologic variability. In particular, sand and carbonate components indicate abrupt changes at the Oldest Dryas (OD), Bølling-Allerød (BA), and Younger Dryas (YD) transitions, consistent with the timing in Greenland. Hydrogen isotope analyses of the C28n-alkanoic acids from plant leaf waxes (δDwax) reveal a long term trend toward less negative values across 19-9 ka BP. δDwax values during the OD suggest a North Pacific moisture source for precipitation, consistent with the dipping westerlies hypothesis. We find no isotopic evidence for the North American Monsoon reaching as far west as Lake Elsinore; therefore, we infer that wet/dry changes in the coastal southwest were expressed through winter-season precipitation, consistent with modern climatology. Comparing Lake Elsinore to other southwest records (notably Cave of Bells and Fort Stanton) we find coincident timing of the major transitions (OD to BA, BA to YD) and hydrologic responses during the OD and BA. The hydrologic response, however, varied during the YD consistent with a dipole between the coastal and interior southwest. The coherent pattern of hydrologic responses across the interior southwest US and northwest Mexico during the OD (wet), the BA (drier), and YD (wet) follows changes in the Atlantic Meridional Overturning Circulation, presumably via its

  14. Glacial termination hydroclimate in the Indo-Pacific Warm Pool

    Science.gov (United States)

    Yuan, S.; Wang, X.; Chiang, H. W.; Bijaksana, S.; Jiang, X.; Imran, A. M.; Wicaksono, S. A.

    2014-12-01

    Hydroclimatic change in the Indo-Pacific Warm Pool (IPWP), the largest center of atmospheric deep convection on Earth, can have a profound influence on the global moisture and energy budgets. Although it has been extensively studied, the history of IPWP hydroclimate remains elusive, partially due to the scarcity of well-resolved hydroclimiate records from the region. Here we report a U/Th dated, high-resolution, calcite d18O record on IPWP hydroclimatic change, spanning the last glacial termination (termination-I or T-I) and the interval of time from the Marine Isotope Stage (MIS) 12 to MIS11 (termination-V or T-V). The record was obtained using speleothems collected from Southwest Sulawesi (S5o1', E119o44'), Indonesia. During T-I, the Sulawesi speleothem δ18O shows a few millennial-scale events, possibly a drier climate during the Younger Dryas (YD) and Heinrich Stadial 1 (HS1), but a relatively wet climate during the last glacial maximum (LGM) and the Bolling-Allerod (B-A). The pattern resembles those registered in the speleothem records from eastern China and Borneo. However, the Sulawesi d18O varies from ~ -5.8‰ to ~ -7.3‰ during the last termination, which is much smaller than the magnitudes shown in China and Borneo cave samples (~ 4‰). On the other hand, the Sulawesi cave record is anti-correlated with the Flores speleothem record in terms of their millennial-scale events. Yet, the two Indonesian records share a similar, small d18O variation (~1.5‰). Such observations therefore suggest that the Intertropical Convergence Zone (ITCZ) probably became narrower when responding to the northern high-latitude climatic forcing during the T-I, and it centered zonally between the two Indonesian locations. Interestingly, Sulawesi speleothem d18O has a larger magnitude of shift during T-V, from ~ -5.7‰ in MIS12 to ~ -8.7‰ at the peak of MIS11. Given that Sulawesi cave d18O is not sensitive to sea level change and orbital forcing, we suspect that a much lower

  15. Predicting healthy older adult's brain age based on structural connectivity networks using artificial neural networks.

    Science.gov (United States)

    Lin, Lan; Jin, Cong; Fu, Zhenrong; Zhang, Baiwen; Bin, Guangyu; Wu, Shuicai

    2016-03-01

    Brain ageing is followed by changes of the connectivity of white matter (WM) and changes of the grey matter (GM) concentration. Neurodegenerative disease is more vulnerable to an accelerated brain ageing, which is associated with prospective cognitive decline and disease severity. Accurate detection of accelerated ageing based on brain network analysis has a great potential for early interventions designed to hinder atypical brain changes. To capture the brain ageing, we proposed a novel computational approach for modeling the 112 normal older subjects (aged 50-79 years) brain age by connectivity analyses of networks of the brain. Our proposed method applied principal component analysis (PCA) to reduce the redundancy in network topological parameters. Back propagation artificial neural network (BPANN) improved by hybrid genetic algorithm (GA) and Levenberg-Marquardt (LM) algorithm is established to model the relation among principal components (PCs) and brain age. The predicted brain age is strongly correlated with chronological age (r=0.8). The model has mean absolute error (MAE) of 4.29 years. Therefore, we believe the method can provide a possible way to quantitatively describe the typical and atypical network organization of human brain and serve as a biomarker for presymptomatic detection of neurodegenerative diseases in the future.

  16. Partially observed bipartite network analysis to identify predictive connections in transcriptional regulatory networks

    Directory of Open Access Journals (Sweden)

    Woolf Peter J

    2011-05-01

    Full Text Available Abstract Background Messenger RNA expression is regulated by a complex interplay of different regulatory proteins. Unfortunately, directly measuring the individual activity of these regulatory proteins is difficult, leaving us with only the resulting gene expression pattern as a marker for the underlying regulatory network or regulator-gene associations. Furthermore, traditional methods to predict these regulator-gene associations do not define the relative importance of each association, leading to a large number of connections in the global regulatory network that, although true, are not useful. Results Here we present a Bayesian method that identifies which known transcriptional relationships in a regulatory network are consistent with a given body of static gene expression data by eliminating the non-relevant ones. The Partially Observed Bipartite Network (POBN approach developed here is tested using E. coli expression data and a transcriptional regulatory network derived from RegulonDB. When the regulatory network for E. coli was integrated with 266 E. coli gene chip observations, POBN identified 93 out of 570 connections that were either inconsistent or not adequately supported by the expression data. Conclusion POBN provides a systematic way to integrate known transcriptional networks with observed gene expression data to better identify which transcriptional pathways are likely responsible for the observed gene expression pattern.

  17. Intrinsic functional connectivity between amygdala and hippocampus during rest predicts enhanced memory under stress.

    Science.gov (United States)

    de Voogd, Lycia D; Klumpers, Floris; Fernández, Guillén; Hermans, Erno J

    2017-01-01

    Declarative memories of stressful events are less prone to forgetting than mundane events. Animal research has demonstrated that such stress effects on consolidation of hippocampal-dependent memories require the amygdala. In humans, it has been shown that during learning, increased amygdala-hippocampal interactions are related to more efficient memory encoding. Animal models predict that following learning, amygdala-hippocampal interactions are instrumental to strengthening the consolidation of such declarative memories. Whether this is the case in humans is unknown and remains to be empirically verified. To test this, we analyzed data from a sample of 120 healthy male participants who performed an incidental encoding task and subsequently underwent resting-state functional MRI in a stressful and a neutral context. Stress was assessed by measures of salivary cortisol, blood pressure, heart rate, and subjective ratings. Memory was tested afterwards outside of the scanner. Our data show that memory was stronger in the stress context compared to the neutral context and that stress-induced cortisol responses were associated with this memory enhancement. Interestingly, amygdala-hippocampal connectivity during post-encoding awake rest regardless of context (stress or neutral) was associated with the enhanced memory performance under stress. Thus, our findings are in line with a role for intrinsic functional connectivity during rest between the amygdala and the hippocampus in the state effects of stress on strengthening memory. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Inadvertent interchange of electrocardiogram limb lead connections: analysis of predicted consequences part II: double interconnection errors.

    Science.gov (United States)

    Rowlands, Derek J

    2012-01-01

    Limb lead connection errors are known to be very common in clinical practice. The consequences of all possible single limb lead interconnection errors were analyzed in an earlier publication (J Electrocardiology 2008;41:84-90). With a single limb lead interconnection error, 6 combinations of limb lead connections are possible. Two of these combinations give rise to records in which the limb lead morphology is uninterpretable. Such records show a "flat line" in lead II or III. Three of the errors give rise to records that are fully interpretable once the specific interconnection error has been identified (although one of the errors cannot reliably be recognized in the absence of a previous record for comparison). One of the errors produces no change in the electrocardiogram recording. In all cases, the precordial leads are interpretable, although there are very minor changes in the voltages. This communication predicts the changes in limb lead appearances consequent upon all possible double limb lead interchanges and illustrates these with records electively taken with such double interconnection errors. There are only 3 possible double limb lead interconnection errors. In 2 of the possible combinations, interpretation of the limb leads is impossible, and each of these errors gives rise to a flat line in lead I. In the third combination, the record is fully interpretable once the abnormality has been identified. In all 3 types, the precordial leads are interpretable, although there are very minor changes in the voltages.

  19. Life Prediction Model for Grid-Connected Li-ion Battery Energy Storage System: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kandler A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Saxon, Aron R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Keyser, Matthew A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lundstrom, Blake R [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-25

    Life Prediction Model for Grid-Connected Li-ion Battery Energy Storage System: Preprint Lithium-ion (Li-ion) batteries are being deployed on the electrical grid for a variety of purposes, such as to smooth fluctuations in solar renewable power generation. The lifetime of these batteries will vary depending on their thermal environment and how they are charged and discharged. To optimal utilization of a battery over its lifetime requires characterization of its performance degradation under different storage and cycling conditions. Aging tests were conducted on commercial graphite/nickel-manganese-cobalt (NMC) Li-ion cells. A general lifetime prognostic model framework is applied to model changes in capacity and resistance as the battery degrades. Across 9 aging test conditions from 0oC to 55oC, the model predicts capacity fade with 1.4 percent RMS error and resistance growth with 15 percent RMS error. The model, recast in state variable form with 8 states representing separate fade mechanisms, is used to extrapolate lifetime for example applications of the energy storage system integrated with renewable photovoltaic (PV) power generation.

  20. Using Diffusion Tractography to Predict Cortical Connection Strength and Distance: A Quantitative Comparison with Tracers in the Monkey

    Science.gov (United States)

    Donahue, Chad J.; Sotiropoulos, Stamatios N.; Jbabdi, Saad; Hernandez-Fernandez, Moises; Behrens, Timothy E.; Dyrby, Tim B.; Coalson, Timothy; Kennedy, Henry; Knoblauch, Kenneth; Glasser, Matthew F.

    2016-01-01

    cortical distances, we show that tractography-based estimates of connection strength have useful predictive power beyond just interareal separation. By freely sharing these methods and datasets, we provide a valuable resource for future studies in cortical connectomics. PMID:27335406

  1. Connectivity Reveals Sources of Predictive Coding Signals in Early Visual Cortex During Processing of Visual Optic Flow.

    Science.gov (United States)

    Schindler, Andreas; Bartels, Andreas

    2016-05-24

    Superimposed on the visual feed-forward pathway, feedback connections convey higher level information to cortical areas lower in the hierarchy. A prominent framework for these connections is the theory of predictive coding where high-level areas send stimulus interpretations to lower level areas that compare them with sensory input. Along these lines, a growing body of neuroimaging studies shows that predictable stimuli lead to reduced blood oxygen level-dependent (BOLD) responses compared with matched nonpredictable counterparts, especially in early visual cortex (EVC) including areas V1-V3. The sources of these modulatory feedback signals are largely unknown. Here, we re-examined the robust finding of relative BOLD suppression in EVC evident during processing of coherent compared with random motion. Using functional connectivity analysis, we show an optic flow-dependent increase of functional connectivity between BOLD suppressed EVC and a network of visual motion areas including MST, V3A, V6, the cingulate sulcus visual area (CSv), and precuneus (Pc). Connectivity decreased between EVC and 2 areas known to encode heading direction: entorhinal cortex (EC) and retrosplenial cortex (RSC). Our results provide first evidence that BOLD suppression in EVC for predictable stimuli is indeed mediated by specific high-level areas, in accord with the theory of predictive coding.

  2. A comparative study of the Indian summer monsoon hydroclimate and its variations in three reanalyses

    Energy Technology Data Exchange (ETDEWEB)

    Misra, Vasubandhu [Florida State University, Department of Earth, Ocean and Atmospheric Science, Tallahassee, FL (United States); Florida State University, Center for Ocean-Atmospheric Prediction Studies, Tallahassee, FL (United States); Pantina, P. [Science Systems and Application, Inc., Lanham, MD (United States); NASA/GSFC, Cloud and Radiation Laboratory, Greenbelt, MD (United States); Chan, S.C. [Newcastle University, School of Civil Engineering and Geosciences, Newcastle upon Tyne (United Kingdom); Met Office Hadley Center, Exeter (United Kingdom); DiNapoli, S. [Florida State University, Center for Ocean-Atmospheric Prediction Studies, Tallahassee, FL (United States)

    2012-09-15

    This study examines the Indian summer monsoon hydroclimate in the National Centers for Environmental Prediction (NCEP)-Department of Energy (DOE) Reanalysis (R2), the Climate Forecast System Reanalysis (CFSR), and the Modern Era Retrospective-Analysis for Research and Applications (MERRA). The three reanalyses show significant differences in the climatology of evaporation, low-level winds, and precipitable water fields over India. For example, the continental evaporation is significantly less in CFSR compared to R2 and MERRA. Likewise the mean boreal summer 925 hPa westerly winds in the northern Indian Ocean are stronger in R2. Similarly the continental precipitable water in R2 is much less while it is higher and comparable in MERRA and CFSR. Despite these climatological differences between the reanalyses, the climatological evaporative sources for rain events over central India show some qualitative similarities. Major differences however appear when interannual variations of the Indian summer monsoon are analyzed. The anomalous oceanic sources of moisture from the adjacent Bay of Bengal and Arabian Sea play a significant role in determining the wet or dry year of the Indian monsoon in CFSR. However in R2 the local evaporative sources from the continental region play a more significant role. We also find that the interannual variability of the evaporative sources in the break spells of the intraseasonal variations of the Indian monsoon is stronger than in the wet spells. We therefore claim that instead of rainfall, evaporative sources may be a more appropriate metric to observe the relationship between the seasonal monsoon strength and intraseasonal activity. These findings are consistent across the reanalyses and provide a basis to improve the predictability of intraseasonal variability of the Indian monsoon. This study also has a bearing on improving weather prediction for tropical cyclones in that we suggest targeting enhanced observations in the Bay of Bengal

  3. Bulbar microcircuit model predicts connectivity and roles of interneurons in odor coding.

    Directory of Open Access Journals (Sweden)

    Aditya Gilra

    Full Text Available Stimulus encoding by primary sensory brain areas provides a data-rich context for understanding their circuit mechanisms. The vertebrate olfactory bulb is an input area having unusual two-layer dendro-dendritic connections whose roles in odor coding are unclear. To clarify these roles, we built a detailed compartmental model of the rat olfactory bulb that synthesizes a much wider range of experimental observations on bulbar physiology and response dynamics than has hitherto been modeled. We predict that superficial-layer inhibitory interneurons (periglomerular cells linearize the input-output transformation of the principal neurons (mitral cells, unlike previous models of contrast enhancement. The linearization is required to replicate observed linear summation of mitral odor responses. Further, in our model, action-potentials back-propagate along lateral dendrites of mitral cells and activate deep-layer inhibitory interneurons (granule cells. Using this, we propose sparse, long-range inhibition between mitral cells, mediated by granule cells, to explain how the respiratory phases of odor responses of sister mitral cells can be sometimes decorrelated as observed, despite receiving similar receptor input. We also rule out some alternative mechanisms. In our mechanism, we predict that a few distant mitral cells receiving input from different receptors, inhibit sister mitral cells differentially, by activating disjoint subsets of granule cells. This differential inhibition is strong enough to decorrelate their firing rate phases, and not merely modulate their spike timing. Thus our well-constrained model suggests novel computational roles for the two most numerous classes of interneurons in the bulb.

  4. Bulbar microcircuit model predicts connectivity and roles of interneurons in odor coding.

    Science.gov (United States)

    Gilra, Aditya; Bhalla, Upinder S

    2015-01-01

    Stimulus encoding by primary sensory brain areas provides a data-rich context for understanding their circuit mechanisms. The vertebrate olfactory bulb is an input area having unusual two-layer dendro-dendritic connections whose roles in odor coding are unclear. To clarify these roles, we built a detailed compartmental model of the rat olfactory bulb that synthesizes a much wider range of experimental observations on bulbar physiology and response dynamics than has hitherto been modeled. We predict that superficial-layer inhibitory interneurons (periglomerular cells) linearize the input-output transformation of the principal neurons (mitral cells), unlike previous models of contrast enhancement. The linearization is required to replicate observed linear summation of mitral odor responses. Further, in our model, action-potentials back-propagate along lateral dendrites of mitral cells and activate deep-layer inhibitory interneurons (granule cells). Using this, we propose sparse, long-range inhibition between mitral cells, mediated by granule cells, to explain how the respiratory phases of odor responses of sister mitral cells can be sometimes decorrelated as observed, despite receiving similar receptor input. We also rule out some alternative mechanisms. In our mechanism, we predict that a few distant mitral cells receiving input from different receptors, inhibit sister mitral cells differentially, by activating disjoint subsets of granule cells. This differential inhibition is strong enough to decorrelate their firing rate phases, and not merely modulate their spike timing. Thus our well-constrained model suggests novel computational roles for the two most numerous classes of interneurons in the bulb.

  5. Amygdala functional connectivity with medial prefrontal cortex at rest predicts the positivity effect in older adults' memory.

    Science.gov (United States)

    Sakaki, Michiko; Nga, Lin; Mather, Mara

    2013-08-01

    As people get older, they tend to remember more positive than negative information. This age-by-valence interaction has been called "positivity effect." The current study addressed the hypotheses that baseline functional connectivity at rest is predictive of older adults' brain activity when learning emotional information and their positivity effect in memory. Using fMRI, we examined the relationship among resting-state functional connectivity, subsequent brain activity when learning emotional faces, and individual differences in the positivity effect (the relative tendency to remember faces expressing positive vs. negative emotions). Consistent with our hypothesis, older adults with a stronger positivity effect had increased functional coupling between amygdala and medial PFC (MPFC) during rest. In contrast, younger adults did not show the association between resting connectivity and memory positivity. A similar age-by-memory positivity interaction was also found when learning emotional faces. That is, memory positivity in older adults was associated with (a) enhanced MPFC activity when learning emotional faces and (b) increased negative functional coupling between amygdala and MPFC when learning negative faces. In contrast, memory positivity in younger adults was related to neither enhanced MPFC activity to emotional faces, nor MPFC-amygdala connectivity to negative faces. Furthermore, stronger MPFC-amygdala connectivity during rest was predictive of subsequent greater MPFC activity when learning emotional faces. Thus, emotion-memory interaction in older adults depends not only on the task-related brain activity but also on the baseline functional connectivity.

  6. Relative Importance of Nesting Habitat and Measures of Connectivity in Predicting the Occurrence of a Forest Songbird in Fragmented Landscapes

    Directory of Open Access Journals (Sweden)

    Stephanie Melles

    2012-12-01

    Full Text Available Theoretical and empirical studies suggest that well-connected networks of forest habitat facilitate animal movement and contribute to species' persistence and thereby the maintenance of biodiversity. Many structural and functional connectivity metrics have been proposed, e.g., distance to nearest neighboring patch or graph-based measures, but the relative importance of these measures in contrast to nesting habitat at fine spatial scales is not well established. With graph-based measures of connectivity, Euclidean distances between forest patches can be directly related to the preferred gap crossing distances of a bird (functional connectivity. We determined the relative predictive power of nesting habitat, forest cover, and structural or functional connectivity measures in describing the breeding distribution of Hooded Warblers (Setophaga citrina over two successive breeding seasons in a region highly fragmented by agriculture in southern Ontario. Logistic regression models of nesting occurrence patterns were compared using Akaike's information criterion and relative effect sizes were compared using odds ratios. Our results provide support for the expectation that nest-site characteristics are indeed related to the breeding distribution of S. citrina. However, models based on nesting habitat alone were 4.7 times less likely than a model including functional connectivity as a predictor for the breeding distribution of S. citrina. Models of nest occurrence in relation to surrounding forest cover had lower model likelihoods than models that included graph-based functional connectivity, but these measures were highly confounded. Graph-based measures of connectivity explained more variation in nest occurrence than structural measures of forest connectivity, in both 2004 and 2005. These results suggest that S. citrina selected nesting areas that were functionally connected at their preferred gap crossing distances, but nesting habitat was a critically

  7. European and Mediterranean hydroclimate responses to tropical volcanic forcing over the last millennium

    Science.gov (United States)

    Rao, M. P.; Cook, B. I.; Cook, E. R.; D'Arrigo, R. D.; Krusic, P. J.; Anchukaitis, K. J.; LeGrande, A. N.; Buckley, B. M.; Davi, N. K.; Leland, C.; Griffin, K. L.

    2017-05-01

    Volcanic eruptions have global climate impacts, but their effect on the hydrologic cycle is poorly understood. We use a modified version of superposed epoch analysis, an eruption year list collated from multiple data sets, and seasonal paleoclimate reconstructions (soil moisture, precipitation, geopotential heights, and temperature) to investigate volcanic forcing of spring and summer hydroclimate over Europe and the Mediterranean over the last millennium. In the western Mediterranean, wet conditions occur in the eruption year and the following 3 years. Conversely, northwestern Europe and the British Isles experience dry conditions in response to volcanic eruptions, with the largest moisture deficits in posteruption years 2 and 3. The precipitation response occurs primarily in late spring and early summer (April-July), a pattern that strongly resembles the negative phase of the East Atlantic Pattern. Modulated by this mode of climate variability, eruptions force significant, widespread, and heterogeneous hydroclimate responses across Europe and the Mediterranean.

  8. Regional hydroclimate response to freshwater fluxes from the Fennoscandian Ice Sheet during the Last Termination

    Science.gov (United States)

    Muschitiello, F.; Dokken, T. M.; Pausata, F. S. R.; Smittenberg, R.; Wohlfarth, B.

    2015-12-01

    Resolving the effects of freshwater forcing during the last glacial-interglacial transition, the Last Termination, is critical to our comprehension of rapid climate change. In particular, the role of Fennoscandian Ice Sheet (FIS) and freshwater from the eastern seaboard of the North Atlantic has been entirely disregarded in the context of the abrupt regional hydroclimate shifts that characterized this period. Here we infer freshwater input variations from the FIS to the Nordic Seas based on two accurately dated hydroclimate reconstructions from lake sediment records from Southern Sweden and one SST reconstruction from the Nordic Seas. The records indicate a number of abrupt freshwater discharges into the Nordic Seas at the start of the Bølling interstadial and during the Allerød interstadial. We observe that these intervals of enhanced FIS freshwater outflow correspond to different modalities of hydroclimate regime shifts in Greenland. Using a set of climate model simulations, we show that the dominant Greenland hydroclimate state can be influenced by the degree of FIS freshwater recirculation in the Nordic Seas, which redirects the excess of sea ice partitioned into the Barents Sea towards the eastern Greenland Current. The tradeoff between buildup and recirculation of sea ice in the Nordic Seas generate large-scale sea-level pressure anomalies that may explain the sign and magnitude of the isotopic and temperature changes inferred from Greenland and North European reconstructions. We conclude that air-sea interactions in the North Atlantic are more sensitive to Fennoscandian freshwater forcing than previously thought. These results could help to solve the problematic relationship between origin, timing and magnitude of freshwater perturbations and abrupt deglacial changes in North Atlantic Ocean circulation in numerical simulations.

  9. Regional functional connectivity predicts distinct cognitive impairments in Alzheimer’s disease spectrum

    Directory of Open Access Journals (Sweden)

    Kamalini G. Ranasinghe

    2014-01-01

    Full Text Available Understanding neural network dysfunction in neurodegenerative disease is imperative to effectively develop network-modulating therapies. In Alzheimer’s disease (AD, cognitive decline associates with deficits in resting-state functional connectivity of diffuse brain networks. The goal of the current study was to test whether specific cognitive impairments in AD spectrum correlate with reduced functional connectivity of distinct brain regions. We recorded resting-state functional connectivity of alpha-band activity in 27 patients with AD spectrum − 22 patients with probable AD (5 logopenic variant primary progressive aphasia, 7 posterior cortical atrophy, and 10 early-onset amnestic/dysexecutive AD and 5 patients with mild cognitive impairment due to AD. We used magnetoencephalographic imaging (MEGI to perform an unbiased search for regions where patterns of functional connectivity correlated with disease severity and cognitive performance. Functional connectivity measured the strength of coherence between a given region and the rest of the brain. Decreased neural connectivity of multiple brain regions including the right posterior perisylvian region and left middle frontal cortex correlated with a higher degree of disease severity. Deficits in executive control and episodic memory correlated with reduced functional connectivity of the left frontal cortex, whereas visuospatial impairments correlated with reduced functional connectivity of the left inferior parietal cortex. Our findings indicate that reductions in region-specific alpha-band resting-state functional connectivity are strongly correlated with, and might contribute to, specific cognitive deficits in AD spectrum. In the future, MEGI functional connectivity could be an important biomarker to map and follow defective networks in the early stages of AD.

  10. Resting-State Cortico-Thalamic-Striatal Connectivity Predicts Response to Dorsomedial Prefrontal rTMS in Major Depressive Disorder

    Science.gov (United States)

    Salomons, Tim V; Dunlop, Katharine; Kennedy, Sidney H; Flint, Alastair; Geraci, Joseph; Giacobbe, Peter; Downar, Jonathan

    2014-01-01

    Despite its high toll on society, there has been little recent improvement in treatment efficacy for major depressive disorder (MDD). The identification of biological markers of successful treatment response may allow for more personalized and effective treatment. Here we investigate whether resting-state functional connectivity predicted response to treatment with repetitive transcranial magnetic stimulation (rTMS) to dorsomedial prefrontal cortex (dmPFC). Twenty-five individuals with treatment-refractory MDD underwent a 4-week course of dmPFC-rTMS. Before and after treatment, subjects received resting-state functional MRI scans and assessments of depressive symptoms using the Hamilton Depresssion Rating Scale (HAMD17). We found that higher baseline cortico-cortical connectivity (dmPFC-subgenual cingulate and subgenual cingulate to dorsolateral PFC) and lower cortico-thalamic, cortico-striatal, and cortico-limbic connectivity were associated with better treatment outcomes. We also investigated how changes in connectivity over the course of treatment related to improvements in HAMD17 scores. We found that successful treatment was associated with increased dmPFC-thalamic connectivity and decreased subgenual cingulate cortex-caudate connectivity, Our findings provide insight into which individuals might respond to rTMS treatment and the mechanisms through which these treatments work. PMID:24150516

  11. Resting state functional connectivity within the cingulate cortex jointly predicts agreeableness and stressor-evoked cardiovascular reactivity.

    Science.gov (United States)

    Ryan, John P; Sheu, Lei K; Gianaros, Peter J

    2011-03-01

    Exaggerated cardiovascular reactivity to stress is a risk factor for cardiovascular disease. Further, individual differences in stressor-evoked cardiovascular reactivity covary with the functionality of corticolimbic brain systems, particularly areas of the cingulate cortex. What remains unclear, however, is how individual differences in personality traits interact with cingulate functionality in the prediction of stressor-evoked cardiovascular reactivity. Accordingly, we tested the associations between (i) a particular personality trait, Agreeableness, which is associated with emotional reactions to conflict, (ii) resting state functional connectivity within the cingulate cortex, and (iii) stressor-evoked blood pressure (BP) reactivity. Participants (N=39, 19 men, aged 20-37 years) completed a resting functional connectivity MRI protocol, followed by two standardized stressor tasks that engaged conflict processing and evoked BP reactivity. Agreeableness covaried positively with BP reactivity across individuals. Moreover, connectivity analyses demonstrated that a more positive functional connectivity between the posterior cingulate (BA31) and the perigenual anterior cingulate (BA32) covaried positively with Agreeableness and with BP reactivity. Finally, statistical mediation analyses demonstrated that BA31-BA32 connectivity mediated the covariation between Agreeableness and BP reactivity. Functional connectivity within the cingulate appears to link Agreeableness and a risk factor for cardiovascular disease, stressor-evoked BP reactivity.

  12. Cingulate cortex functional connectivity predicts future relapse in alcohol dependent individuals

    Directory of Open Access Journals (Sweden)

    Yasmin Zakiniaeiz

    2017-01-01

    Full Text Available Alcohol dependence is a chronic relapsing illness. Alcohol and stress cues have consistently been shown to increase craving and relapse risk in recovering alcohol dependent (AUD patients. However, differences in functional connectivity in response to these cues have not been studied using data-driven approaches. Here, voxel-wise connectivity is used in a whole-brain investigation of functional connectivity differences associated with alcohol and stress cues and to examine whether these differences are related to subsequent relapse. In Study 1, 45, 4- to 8-week abstinent, recovering AUD patients underwent functional magnetic resonance imaging during individualized imagery of alcohol, stress, and neutral cues. Relapse measures were collected prospectively for 90 days post-discharge from inpatient treatment. AUD patients showed blunted anterior (ACC, mid (MCC and posterior cingulate cortex (PCC, voxel-wise connectivity responses to stress compared to neutral cues and blunted PCC response to alcohol compared to neutral cues. Using Cox proportional hazard regression, weaker connectivity in ACC and MCC during neutral exposure was associated with longer time to relapse (better recovery outcome. Similarly, greater connectivity in PCC during alcohol-cue compared to stress cue was associated with longer time to relapse. In Study 2, a sub-group of 30 AUD patients were demographically-matched to 30 healthy control (HC participants for group comparisons. AUD compared to HC participants showed reduced cingulate connectivity during alcohol and stress cues. Using novel data-driven approaches, the cingulate cortex emerged as a key region in the disruption of functional connectivity during alcohol and stress-cue processing in AUD patients and as a marker of subsequent alcohol relapse.

  13. Electroconvulsive therapy-induced brain functional connectivity predicts therapeutic efficacy in patients with schizophrenia: a multivariate pattern recognition study.

    Science.gov (United States)

    Li, Peng; Jing, Ri-Xing; Zhao, Rong-Jiang; Ding, Zeng-Bo; Shi, Le; Sun, Hong-Qiang; Lin, Xiao; Fan, Teng-Teng; Dong, Wen-Tian; Fan, Yong; Lu, Lin

    2017-05-11

    Previous studies suggested that electroconvulsive therapy can influence regional metabolism and dopamine signaling, thereby alleviating symptoms of schizophrenia. It remains unclear what patients may benefit more from the treatment. The present study sought to identify biomarkers that predict the electroconvulsive therapy response in individual patients. Thirty-four schizophrenia patients and 34 controls were included in this study. Patients were scanned prior to treatment and after 6 weeks of treatment with antipsychotics only (n = 16) or a combination of antipsychotics and electroconvulsive therapy (n = 13). Subject-specific intrinsic connectivity networks were computed for each subject using a group information-guided independent component analysis technique. Classifiers were built to distinguish patients from controls and quantify brain states based on intrinsic connectivity networks. A general linear model was built on the classification scores of first scan (referred to as baseline classification scores) to predict treatment response. Classifiers built on the default mode network, the temporal lobe network, the language network, the corticostriatal network, the frontal-parietal network, and the cerebellum achieved a cross-validated classification accuracy of 83.82%, with specificity of 91.18% and sensitivity of 76.47%. After the electroconvulsive therapy, psychosis symptoms of the patients were relieved and classification scores of the patients were decreased. Moreover, the baseline classification scores were predictive for the treatment outcome. Schizophrenia patients exhibited functional deviations in multiple intrinsic connectivity networks which were able to distinguish patients from healthy controls at an individual level. Patients with lower classification scores prior to treatment had better treatment outcome, indicating that the baseline classification scores before treatment is a good predictor for treatment outcome. CONNECTIVITY NETWORKS

  14. Prediction of moment-rotation characteristic of top- and seat-angle bolted connection incorporating prying action

    Science.gov (United States)

    Ahmed, Ali

    2017-02-01

    Finite element (FE) analyses were performed to explore the prying influence on moment-rotation behaviour and to locate yielding zones of top- and seat-angle connections in author's past research studies. The results of those FE analyses with experimental failure strategies of the connections were used to develop failure mechanisms of top- and seat-angle connections in the present study. Then a formulation was developed based on three simple failure mechanisms considering bending and shear deformations, effects of prying action on the top angle and stiffness of the tension bolts to estimate rationally the ultimate moment M u of the connection, which is a vital parameter of the proposed four-parameter power model. Applicability of the proposed formulation is assessed by comparing moment-rotation (M-θ r ) curves and ultimate moment capacities with those measured by experiments and estimated by FE analyses and three-parameter power model. This study shows that proposed formulation and Kishi-Chen's method both achieved close approximation driving M-θ r curves of all given connections except a few cases of Kishi-Chen model, and M u estimated by the proposed formulation is more rational than that predicted by Kishi-Chen's method.

  15. Healthy brain connectivity predicts atrophy progression in non-fluent variant of primary progressive aphasia.

    Science.gov (United States)

    Mandelli, Maria Luisa; Vilaplana, Eduard; Brown, Jesse A; Hubbard, H Isabel; Binney, Richard J; Attygalle, Suneth; Santos-Santos, Miguel A; Miller, Zachary A; Pakvasa, Mikhail; Henry, Maya L; Rosen, Howard J; Henry, Roland G; Rabinovici, Gil D; Miller, Bruce L; Seeley, William W; Gorno-Tempini, Maria Luisa

    2016-10-01

    Neurodegeneration has been hypothesized to follow predetermined large-scale networks through the trans-synaptic spread of toxic proteins from a syndrome-specific epicentre. To date, no longitudinal neuroimaging study has tested this hypothesis in vivo in frontotemporal dementia spectrum disorders. The aim of this study was to demonstrate that longitudinal progression of atrophy in non-fluent/agrammatic variant primary progressive aphasia spreads over time from a syndrome-specific epicentre to additional regions, based on their connectivity to the epicentre in healthy control subjects. The syndrome-specific epicentre of the non-fluent/agrammatic variant of primary progressive aphasia was derived in a group of 10 mildly affected patients (clinical dementia rating equal to 0) using voxel-based morphometry. From this region, the inferior frontal gyrus (pars opercularis), we derived functional and structural connectivity maps in healthy controls (n = 30) using functional magnetic resonance imaging at rest and diffusion-weighted imaging tractography. Graph theory analysis was applied to derive functional network features. Atrophy progression was calculated using voxel-based morphometry longitudinal analysis on 34 non-fluent/agrammatic patients. Correlation analyses were performed to compare volume changes in patients with connectivity measures of the healthy functional and structural speech/language network. The default mode network was used as a control network. From the epicentre, the healthy functional connectivity network included the left supplementary motor area and the prefrontal, inferior parietal and temporal regions, which were connected through the aslant, superior longitudinal and arcuate fasciculi. Longitudinal grey and white matter changes were found in the left language-related regions and in the right inferior frontal gyrus. Functional connectivity strength in the healthy speech/language network, but not in the default network, correlated with

  16. Intrinsic default mode network connectivity predicts spontaneous verbal descriptions of autobiographical memories during social processing

    Directory of Open Access Journals (Sweden)

    Xiao-Fei eYang

    2013-01-01

    Full Text Available Neural systems activated in a coordinated way during rest, known as the default mode network (DMN, also support autobiographical memory (AM retrieval and social processing/mentalizing. However, little is known about how individual variability in reliance on personal memories during social processing relates to individual differences in DMN functioning during rest (intrinsic functional connectivity. Here we examined 18 participants’ spontaneous descriptions of autobiographical memories during a two-hour, private, open-ended interview in which they reacted to a series of true stories about real people’s social situations and responded to the prompt, how does this person’s story make you feel? We classified these descriptions as either containing factual information (semantic AMs or more elaborate descriptions of emotionally meaningful events (episodic AMs. We also collected resting state fMRI scans from the participants and related individual differences in frequency of described AMs to participants’ intrinsic functional connectivity within regions of the DMN. We found that producing more descriptions of either memory type correlated with stronger intrinsic connectivity in the parahippocampal and middle temporal gyri. Additionally, episodic AM descriptions correlated with connectivity in the bilateral hippocampi and medial prefrontal cortex, and semantic memory descriptions correlated with connectivity in right inferior lateral parietal cortex. These findings suggest that in individuals who naturally invoke more memories during social processing, brain regions involved in memory retrieval and self/social processing are more strongly coupled to the DMN during rest.

  17. Developing a Climate Service: Using Hydroclimate Monitoring and Forecasting to Aid Decision Making in Africa and Latin America

    Science.gov (United States)

    Wood, E. F.; Sheffield, J.; Fisher, C. K.; Chaney, N.; Wanders, N.

    2015-12-01

    Hydrological and water scarcity predictions have the potential to provide vital information for a variety of needs including water resources management, agricultural and urban water supply, and flood mitigation. In particular, seasonal forecasts of drought risk can enable farmers to make adaptive choices on crop varieties, labor usage, and technology investments. Forecast skill is generally derived from teleconnections with ocean variability specifically sea surface temperature (SST) anomalies and, equally important persistence in the state of the land in terms of soil moisture, snowpack, or streamflow conditions. Short term precipitation forecasts are critical in flood prediction by extending flood prediction lead times beyond the basin travel time, and thus allows for extended warnings. The Global Framework for Climate Services (GFCS) is a UN-wide initiative in which WMO Members and inter- and non- governmental, regional, national and local stakeholders work in partnership to develop targeted climate services. Thus, GFCS offers the potential for hydroclimatologists to develop products (hydroclimatic forecasts) and information services (i.e. product dissemination) to users with the expectation that GFCS will increase the resilience of the society to weather and climate events and to reduce operational costs for economic sectors and regions dependent on water. This presentation will discuss the development of a nascent climate service system focused on hydroclimatic monitoring and forecasting, and initially developed by the authors for Africa and Latin America. Central to this system is the use of satellite remote sensing and hydroclimate forecasts (from days to seasons) in the development of weather and climate information useful for water management in sectors such as flood protection (precipitation and streamflow forecasting) and agriculture (drought and crop forecasting). The elements of this system will be discussed, including the challenges of monitoring and

  18. Amygdala perfusion is predicted by its functional connectivity with the ventromedial prefrontal cortex and negative affect.

    Directory of Open Access Journals (Sweden)

    Garth Coombs

    Full Text Available BACKGROUND: Previous studies have shown that the activity of the amygdala is elevated in people experiencing clinical and subclinical levels of anxiety and depression (negative affect. It has been proposed that a reduction in inhibitory input to the amygdala from the prefrontal cortex and resultant over-activity of the amygdala underlies this association. Prior studies have found relationships between negative affect and 1 amygdala over-activity and 2 reduced amygdala-prefrontal connectivity. However, it is not known whether elevated amygdala activity is associated with decreased amygdala-prefrontal connectivity during negative affect states. METHODS: Here we used resting-state arterial spin labeling (ASL and blood oxygenation level dependent (BOLD functional magnetic resonance imaging (fMRI in combination to test this model, measuring the activity (regional cerebral blood flow, rCBF and functional connectivity (correlated fluctuations in the BOLD signal of one subregion of the amygdala with strong connections with the prefrontal cortex, the basolateral nucleus (BLA, and subsyndromal anxiety levels in 38 healthy subjects. RESULTS: BLA rCBF was strongly correlated with anxiety levels. Moreover, both BLA rCBF and anxiety were inversely correlated with the strength of the functional coupling of the BLA with the caudal ventromedial prefrontal cortex. Lastly, BLA perfusion was found to be a mediator of the relationship between BLA-prefrontal connectivity and anxiety. CONCLUSIONS: These results show that both perfusion of the BLA and a measure of its functional coupling with the prefrontal cortex directly index anxiety levels in healthy subjects, and that low BLA-prefrontal connectivity may lead to increased BLA activity and resulting anxiety. Thus, these data provide key evidence for an often-cited circuitry model of negative affect, using a novel, multi-modal imaging approach.

  19. Effective amygdala-prefrontal connectivity predicts individual differences in successful emotion regulation.

    Science.gov (United States)

    Morawetz, Carmen; Bode, Stefan; Baudewig, Juergen; Heekeren, Hauke R

    2016-12-20

    The ability to voluntarily regulate our emotional response to threatening and highly arousing stimuli by using cognitive reappraisal strategies is essential for our mental and physical well-being. This might be achieved by prefrontal brain regions (e.g., inferior frontal gyrus, IFG) down-regulating activity in the amygdala. It is unknown, to which degree effective connectivity within the emotion-regulation network is linked to individual differences in reappraisal skills. Using psychophysiological interaction (PPI) analyses of functional magnetic resonance imaging data, we examined changes in inter-regional connectivity between the amygdala and IFG with other brain regions during reappraisal of emotional responses and used emotion regulation success as an explicit regressor. During down-regulation of emotion, reappraisal success correlated with effective connectivity between IFG with dorsolateral, dorsomedial and ventromedial prefrontal cortex (PFC). During up-regulation of emotion, effective coupling between IFG with anterior cingulate cortex, dorsomedial and ventromedial PFC as well as the amygdala correlated with reappraisal success. Activity in the amygdala covaried with activity in lateral and medial prefrontal regions during the up-regulation of emotion and correlated with reappraisal success. These results suggest that successful reappraisal is linked to changes in effective connectivity between two systems, prefrontal cognitive control regions and regions crucially involved in emotional evaluation.

  20. Functional connectivity classification of autism identifies highly predictive brain features but falls short of biomarker standards

    Directory of Open Access Journals (Sweden)

    Mark Plitt

    2015-01-01

    Conclusions: While individuals can be classified as having ASD with statistically significant accuracy from their rs-fMRI scans alone, this method falls short of biomarker standards. Classification methods provided further evidence that ASD functional connectivity is characterized by dysfunction of large-scale functional networks, particularly those involved in social information processing.

  1. Strength of Structural and Functional Frontostriatal Connectivity Predicts Self-Control in the Healthy Elderly

    Science.gov (United States)

    Hänggi, Jürgen; Lohrey, Corinna; Drobetz, Reinhard; Baetschmann, Hansruedi; Forstmeier, Simon; Maercker, Andreas; Jäncke, Lutz

    2016-01-01

    Self-regulation refers to the successful use of executive functions and initiation of top-down processes to control one's thoughts, behavior, and emotions, and it is crucial to perform self-control. Self-control is needed to overcome impulses and can be assessed by delay of gratification (DoG) and delay discounting (DD) paradigms. In children/adolescents, good DoG/DD ability depends on the maturity of frontostriatal connectivity, and its decline in strength with advancing age might adversely affect self-control because prefrontal brain regions are more prone to normal age-related atrophy than other regions. Here, we aimed at highlighting the relationship between frontostriatal connectivity strength and DoG performance in advanced age. We recruited 40 healthy elderly individuals (mean age 74.0 ± 7.7 years) and assessed the DoG ability using the German version of the DoG test for adults in addition to the delay discounting (DD) paradigm. Based on diffusion-weighted and resting-state functional magnetic resonance imaging data, respectively, the structural and functional whole-brain connectome were reconstructed based on 90 different brain regions of interest in addition to a 12-node frontostriatal DoG-specific network and the resulting connectivity matrices were subjected to network-based statistics. The 90-nodes whole-brain connectome analyses revealed subnetworks significantly associated with DoG and DD with a preponderance of frontostriatal nodes involved suggesting a high specificity of the findings. Structural and functional connectivity strengths between the putamen, caudate nucleus, and nucleus accumbens on the one hand and orbitofrontal, dorsal, and ventral lateral prefrontal cortices on the other hand showed strong positive correlations with DoG and negative correlations with DD corrected for age, sex, intracranial volume, and head motion parameters. These associations cannot be explained by differences in impulsivity and executive functioning. This pattern

  2. Denali Ice Core Record of North Pacific Hydroclimate, Temperature and Atmospheric Circulation over the Past Millennium

    Science.gov (United States)

    Osterberg, E. C.; Wake, C. P.; Kreutz, K. J.; Winski, D.; Ferris, D. G.; Introne, D.; Campbell, S.; Birkel, S. D.

    2015-12-01

    While tree ring and lake sediment core studies have revealed a great deal about North Pacific (e.g. Alaska) surface temperature variability over the past millennium, we do not have an equivalent understanding of North Pacific hydroclimate variability or temperatures at high elevations. A millennial-length precipitation proxy record is needed to place late 20th century Alaskan precipitation increases into longer context, and to evaluate hydroclimate changes during the Little Ice Age and Medieval Climate Anomaly. High-elevation summer temperature records would be valuable for understanding the sensitivity of Alaskan glaciers to past warm and cool periods. Here we present an overview of the new Denali Ice Core record collected from the summit plateau (4000 m a.s.l.) of Mt. Hunter (63° N, 151° W) in Denali National Park, Alaska. Two parallel ice cores were collected to bedrock (208 m in length) in May-June 2013, sampled using the Dartmouth continuous melter system, and analyzed for major ions, trace elements, particle concentration and size distribution, and stable isotope ratios at Dartmouth and the Universities of Maine and New Hampshire. The cores are dated using robust annual oscillations in dust elements, methanesulfonate, ammonium, and stable isotopes, and validated using major volcanic eruptions recorded as sulfate, chloride and heavy metal spikes, and the 1963 nuclear weapons testing 137Cs spike. Preliminary analyses indicate a significant increase in both summer temperature and annual accumulation over the 20th century, and significant relationships with major ocean-atmospheric modes including the Pacific Decadal Oscillation. We compare the new Denali record to the Eclipse Icefield and Mt. Logan ice core records and develop composite records of North Pacific hydroclimate and atmospheric circulation variability over the past millennium.

  3. 400 Years of summer hydroclimate from stable isotopes in Iberian trees

    Science.gov (United States)

    Andreu-Hayles, Laia; Ummenhofer, Caroline C.; Barriendos, Mariano; Schleser, Gerhard H.; Helle, Gerhard; Leuenberger, Markus; Gutiérrez, Emilia; Cook, Edward R.

    2016-11-01

    Tree rings are natural archives that annually record distinct types of past climate variability depending on the parameters measured. Here, we use ring-width and stable isotopes in cellulose of trees from the northwestern Iberian Peninsula (IP) to understand regional summer hydroclimate over the last 400 years and the associated atmospheric patterns. Correlations between tree rings and climate data demonstrate that isotope signatures in the targeted Iberian pine forests are very sensitive to water availability during the summer period, and are mainly controlled by stomatal conductance. Non-linear methods based on extreme events analysis allow for capturing distinct seasonal climatic variability recorded by tree-ring parameters and asymmetric signals of the associated atmospheric features. Moreover, years with extreme high (low) values in the tree-ring records were characterised by coherent large-scale atmospheric circulation patterns with reduced (enhanced) moisture transport onto the northwestern IP. These analyses of extremes revealed that high/low proxy values do not necessarily correspond to mirror images in the atmospheric anomaly patterns, suggesting different drivers of these patterns and the corresponding signature recorded in the proxies. Regional hydroclimate features across the broader IP and western Europe during extreme wet/dry summers detected by the northwestern IP trees compare favourably to independent multicentury sea level pressure and drought reconstructions for Europe. Historical records also validate our findings that attribute non-linear moisture signals recorded by extreme tree-ring values to distinct large-scale atmospheric patterns and allow for 400-year reconstructions of the frequency of occurrence of extreme conditions in late spring and summer hydroclimate.

  4. Toward a 530,000-year Hydroclimate History for the Southern Half of the Australasian Monsoon

    Science.gov (United States)

    Gagan, M. K.; Scroxton, N. G.; Kimbrough, A. K.; Krause, C.; Hantoro, W. S.; Ayliffe, L. K.; Dunbar, G. B.; Cheng, H.; Edwards, R. L.; Hellstrom, J. C.; Shen, C. C.; Scott-Gagan, H.; Suwargadi, B. W.; Rifai, H.

    2015-12-01

    Speleothem 18O/16O records have revealed key aspects of past hydroclimates in the northern Australasian monsoon domain on orbital to millennial scales, but much less is known about the southern half of the monsoon system. We aim to develop a hydroclimate history for the southern Australasian monsoon based on speleothems from southwest Sulawesi and Flores, Indonesia (latitudes 5-9oS), which extend back to ~530 kyr BP and 90 kyr BP, respectively. To date, the 18O/16O record for Sulawesi covers glacial terminations TIV (~340 kyr BP), TIII (~245 kyr BP) and TI (~18 kyr BP). The details of each termination are different, however two important hydroclimate patterns are emerging. First, the 18O/16O record shows sharp weakening of the monsoon immediately before each termination. This surprisingly robust pattern marks a southern extension of the northern 'weak monsoon interval', and reinforces the idea that southward monsoon displacement is a fundamental feature of terminations. Second, monsoon intensification around Sulawesi lags the rise in atmospheric CO2 and Antarctic temperature by several thousand years, but parallels the 18O/16O decrease in atmospheric O2. Our finding extends that of Wang et al. (2008) and Cheng et al. (2009) who noted the influence of the low-latitude hydrological cycle on the 18O/16O of tropical transpiration, and its potential for correlating ice core and paleomonsoon records. Further south, the 90-kyr 18O/16O record for Flores shows clear precession-scale antiphasing with China, and southerly positioning of the summer monsoon rainfall belt during Heinrich stadials. Heinrich stadials 5, 4, 2 and 1 occur during wetter intervals in Flores that accompanied relatively high southern summer insolation. Intriguingly, these events are associated with abrupt atmospheric CH4 signals that may be due to increased Southern Hemisphere CH4 production related to intensification of monsoon rainfall over southern tropical land areas (Rhodes et al., 2014).

  5. Protein complex prediction based on k-connected subgraphs in protein interaction network

    OpenAIRE

    Habibi Mahnaz; Eslahchi Changiz; Wong Limsoon

    2010-01-01

    Abstract Background Protein complexes play an important role in cellular mechanisms. Recently, several methods have been presented to predict protein complexes in a protein interaction network. In these methods, a protein complex is predicted as a dense subgraph of protein interactions. However, interactions data are incomplete and a protein complex does not have to be a complete or dense subgraph. Results We propose a more appropriate protein complex prediction method, CFA, that is based on ...

  6. STRESS-STRAIN FINITE ELEMENT ANALYSIS AND FATIGUE LIFE PREDICTION FOR BOLTED CONNECTIONS

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A cyclic plasticity model is used into finite element (FE) method to obtain the details of elastic-plastic stress-strain in the bolts under cyclic axial loading. Two criteria in multiaxial fatigue are employed to predict fatigue lives of bolts. The predicted fatigue lives are in favorable agreement with the experimental results for machined bolts.

  7. Longitudinal Changes in Functional Brain Connectivity Predicts Conversion to Alzheimer's Disease.

    Science.gov (United States)

    Serra, Laura; Cercignani, Mara; Mastropasqua, Chiara; Torso, Mario; Spanò, Barbara; Makovac, Elena; Viola, Vanda; Giulietti, Giovanni; Marra, Camillo; Caltagirone, Carlo; Bozzali, Marco

    2016-01-01

    This longitudinal study investigates the modifications in structure and function occurring to typical Alzheimer's disease (AD) brains over a 2-year follow-up, from pre-dementia stages of disease, with the aim of identifying biomarkers of prognostic value. Thirty-one patients with amnestic mild cognitive impairment were recruited and followed-up with clinical, neuropsychological, and MRI assessments. Patients were retrospectively classified as AD Converters or Non-Converters, and the data compared between groups. Cross-sectional MRI data at baseline, assessing volume and functional connectivity abnormalities, confirmed previous findings, showing a more severe pattern of regional grey matter atrophy and default-mode network disconnection in Converters than in Non-Converters. Longitudinally, Converters showed more grey matter atrophy in the frontotemporal areas, accompanied by increased connectivity in the precuneus. Discriminant analysis revealed that functional connectivity of the precuneus within the default mode network at baseline is the parameter able to correctly classify patients in Converters and Non-Converters with high sensitivity, specificity, and accuracy.

  8. Relating anatomical and social connectivity: white matter microstructure predicts emotional empathy.

    Science.gov (United States)

    Parkinson, Carolyn; Wheatley, Thalia

    2014-03-01

    Understanding cues to the internal states of others involves a widely distributed network of brain regions. Although white matter (WM) connections are likely crucial for communication between these regions, the role of anatomical connectivity in empathic processing remains unexplored. The present study tested for a relationship between anatomical connectivity and empathy by assessing the WM microstructural correlates of affective empathy, which promotes interpersonal understanding through emotional reactions, and cognitive empathy, which does so via perspective taking. Associations between fractional anisotropy (FA) and the emotional (empathic concern, EC) and cognitive (perspective taking, PT) dimensions of empathy as assessed by the Interpersonal Reactivity Index were examined. EC was positively associated with FA in tracts providing communicative pathways within the limbic system, between perception and action-related regions, and between perception and affect-related regions, independently of individual differences in age, gender, and other dimensions of interpersonal reactivity. These findings provide a neuroanatomical basis for the rapid, privileged processing of emotional sensory information and the automatic elicitation of responses to the affective displays of others.

  9. Individual differences in structural and functional connectivity predict speed of emotion discrimination.

    Science.gov (United States)

    Marstaller, Lars; Burianová, Hana; Reutens, David C

    2016-12-01

    In social interactions, individuals who are slower at differentiating between facial expressions signalling direct and indirect threat might be at a serious disadvantage. However, the neurobiological underpinnings of individual differences in face processing are not yet fully understood. The aim of this study was to use multimodal neuroimaging to investigate how the speed of emotion recognition is related to the structural and functional connectivity underlying the differentiation of direct and indirect threat displays. Our results demonstrate that individuals, who are faster at discriminating angry faces, engaged areas of the extended emotional system more strongly than individuals with slower reaction times, showed higher white matter integrity in the inferior longitudinal fasciculus (ILF), as well as stronger functional connectivity with the right amygdala. In contrast, individuals, who were faster at discriminating fearful faces, engaged visual-attentional regions outside of the face processing network more strongly than individuals with slower reaction times, showed higher white matter integrity in the ILF, as well as reduced functional connectivity with the right amygdala. Our findings suggest that the high survival value of rapid and appropriate responses to threat has defined but separate neurobiological correlates for angry and fearful facial expressions.

  10. Frequency of Maternal Touch Predicts Resting Activity and Connectivity of the Developing Social Brain.

    Science.gov (United States)

    Brauer, Jens; Xiao, Yaqiong; Poulain, Tanja; Friederici, Angela D; Schirmer, Annett

    2016-08-01

    Previous behavioral research points to a positive relationship between maternal touch and early social development. Here, we explored the brain correlates of this relationship. The frequency of maternal touch was recorded for 43 five-year-old children during a 10 min standardized play session. Additionally, all children completed a resting-state functional magnetic resonance imaging session. Investigating the default mode network revealed a positive relation between the frequency of maternal touch and activity in the right posterior superior temporal sulcus (pSTS) extending into the temporo-parietal junction. Using this effect as a seed in a functional connectivity analysis identified a network including extended bilateral regions along the temporal lobe, bilateral frontal cortex, and left insula. Compared with children with low maternal touch, children with high maternal touch showed additional connectivity with the right dorso-medial prefrontal cortex. Together these results support the notion that childhood tactile experiences shape the developing "social brain" with a particular emphasis on a network involved in mentalizing.

  11. Resting-state functional connectivity patterns predict Chinese word reading competency.

    Directory of Open Access Journals (Sweden)

    Xiaosha Wang

    Full Text Available Resting-state functional connectivity (RSFC offers a novel approach to reveal the temporal synchronization of functionally related brain regions. Recent studies have identified several RSFCs whose strength was associated with reading competence in alphabetic languages. In the present study, we examined the role of intrinsic functional relations for reading a non-alphabetic language--Chinese--by correlating RSFC maps of nine Chinese reading-related seed regions and reaction time in the single-character reading task. We found that Chinese reading efficiency was positively correlated with the connection between left inferior occipital gyrus and left superior parietal lobule, between right posterior fusiform gyrus and right superior parietal lobule, and between left inferior temporal gyrus and left inferior parietal lobule. These results could not be attributed to inter-individual differences arising from the peripheral processes of the reading task such as visual input detection and articulation. The observed RSFC-reading correlation relationships are discussed in the framework of Chinese character reading, including visuospatial analyses and semantic/phonological processes.

  12. Medial prefrontal-hippocampal connectivity during emotional memory encoding predicts individual differences in the loss of associative memory specificity.

    Science.gov (United States)

    Berkers, Ruud M W J; Klumpers, Floris; Fernández, Guillén

    2016-10-01

    Emotionally charged items are often remembered better, whereas a paradoxical loss of specificity is found for associative emotional information (specific memory). The balance between specific and generalized emotional memories appears to show large individual differences, potentially related to differences in (the risk for) affective disorders that are characterized by 'overgeneralized' emotional memories. Here, we investigate the neural underpinnings of individual differences in emotional associative memory. A large group of healthy male participants were scanned while encoding associations of face-photographs and written occupational identities that were of either neutral ('driver') or negative ('murderer') valence. Subsequently, memory was tested by prompting participants to retrieve the occupational identities corresponding to each face. Whereas in both valence categories a similar amount of faces was labeled correctly with 'neutral' and 'negative' identities, (gist memory), specific associations were found to be less accurately remembered when the occupational identity was negative compared to neutral (specific memory). This pattern of results suggests reduced memory specificity for associations containing a negatively valenced component. The encoding of these negative associations was paired with a selective increase in medial prefrontal cortex activity and medial prefrontal-hippocampal connectivity. Individual differences in valence-specific neural connectivity were predictive of valence-specific reduction of memory specificity. The relationship between loss of emotional memory specificity and medial prefrontal-hippocampal connectivity is in line with the hypothesized role of a medial prefrontal-hippocampal circuit in regulating memory specificity, and warrants further investigations in individuals displaying 'overgeneralized' emotional memories.

  13. Deafferentation-Induced Plasticity of Visual Callosal Connections: Predicting Critical Periods and Analyzing Cortical Abnormalities Using Diffusion Tensor Imaging

    Directory of Open Access Journals (Sweden)

    Jaime F. Olavarria

    2012-01-01

    Full Text Available Callosal connections form elaborate patterns that bear close association with striate and extrastriate visual areas. Although it is known that retinal input is required for normal callosal development, there is little information regarding the period during which the retina is critically needed and whether this period correlates with the same developmental stage across species. Here we review the timing of this critical period, identified in rodents and ferrets by the effects that timed enucleations have on mature callosal connections, and compare it to other developmental milestones in these species. Subsequently, we compare these events to diffusion tensor imaging (DTI measurements of water diffusion anisotropy within developing cerebral cortex. We observed that the relationship between the timing of the critical period and the DTI-characterized developmental trajectory is strikingly similar in rodents and ferrets, which opens the possibility of using cortical DTI trajectories for predicting the critical period in species, such as humans, in which this period likely occurs prenatally. Last, we discuss the potential of utilizing DTI to distinguish normal from abnormal cerebral cortical development, both within the context of aberrant connectivity induced by early retinal deafferentation, and more generally as a potential tool for detecting abnormalities associated with neurodevelopmental disorders.

  14. Palatal Augmentation Technique: A Predictable Method to Increase the Palatal Connective Tissue at Donor Sites- A Consecutive Case Series.

    Science.gov (United States)

    Carnio, João; Koutouzis, Theofilos

    2015-01-01

    The palatal masticatory mucosa between the canine and first molar is the main source of connective tissue graft (CTG) for use in periodontal plastic surgery. The purpose of this study was to evaluate the palatal augmentation technique (PAT) to increase the palatal connective tissue donor area using a collagen sponge inserted between the palatal flap and bone. The 26 patients enrolled in this study were referred for root coverage and ridge augmentation procedures. All patients lacked adequate donor palatal tissue thickness. The PAT uses a full-thickness flap and insertion of a sterile lyophilized bovine collagen sponge between the flap and bone. The palatal thickness was clinically assessed before and after collagen sponge insertion. A manual probe was inserted in the mucosal surface perpendicular to the long axis of each tooth approximately 6 mm from the gingival margin. Probing depth (PD) and recession (REC) were also recorded. Treatment with PAT resulted in a statistically significant increase in the palatal thickness. The overall mean increase was from 2.03 mm before surgery to 3.57 mm after surgery, with no major alterations in PD and REC. Healing proceeded uneventfully and occurred by primary intention. PAT appeared to be a predictable procedure to create connective tissue donor graft in deficient areas and had uneventful postoperative healing.

  15. Prediction of rat behavior outcomes in memory tasks using functional connections among neurons.

    Science.gov (United States)

    Lu, Hu; Yang, Shengtao; Lin, Longnian; Li, Baoming; Wei, Hui

    2013-01-01

    Analyzing the neuronal organizational structures and studying the changes in the behavior of the organism is key to understanding cognitive functions of the brain. Although some studies have indicated that spatiotemporal firing patterns of neuronal populations have a certain relationship with the behavioral responses, the issues of whether there are any relationships between the functional networks comprised of these cortical neurons and behavioral tasks and whether it is possible to take advantage of these networks to predict correct and incorrect outcomes of single trials of animals are still unresolved. This paper presents a new method of analyzing the structures of whole-recorded neuronal functional networks (WNFNs) and local neuronal circuit groups (LNCGs). The activity of these neurons was recorded in several rats. The rats performed two different behavioral tasks, the Y-maze task and the U-maze task. Using the results of the assessment of the WNFNs and LNCGs, this paper describes a realization procedure for predicting the behavioral outcomes of single trials. The methodology consists of four main parts: construction of WNFNs from recorded neuronal spike trains, partitioning the WNFNs into the optimal LNCGs using social community analysis, unsupervised clustering of all trials from each dataset into two different clusters, and predicting the behavioral outcomes of single trials. The results show that WNFNs and LNCGs correlate with the behavior of the animal. The U-maze datasets show higher accuracy for unsupervised clustering results than those from the Y-maze task, and these datasets can be used to predict behavioral responses effectively. The results of the present study suggest that a methodology proposed in this paper is suitable for analysis of the characteristics of neuronal functional networks and the prediction of rat behavior. These types of structures in cortical ensemble activity may be critical to information representation during the execution of

  16. Prediction of rat behavior outcomes in memory tasks using functional connections among neurons.

    Directory of Open Access Journals (Sweden)

    Hu Lu

    Full Text Available BACKGROUND: Analyzing the neuronal organizational structures and studying the changes in the behavior of the organism is key to understanding cognitive functions of the brain. Although some studies have indicated that spatiotemporal firing patterns of neuronal populations have a certain relationship with the behavioral responses, the issues of whether there are any relationships between the functional networks comprised of these cortical neurons and behavioral tasks and whether it is possible to take advantage of these networks to predict correct and incorrect outcomes of single trials of animals are still unresolved. METHODOLOGY/PRINCIPAL FINDINGS: This paper presents a new method of analyzing the structures of whole-recorded neuronal functional networks (WNFNs and local neuronal circuit groups (LNCGs. The activity of these neurons was recorded in several rats. The rats performed two different behavioral tasks, the Y-maze task and the U-maze task. Using the results of the assessment of the WNFNs and LNCGs, this paper describes a realization procedure for predicting the behavioral outcomes of single trials. The methodology consists of four main parts: construction of WNFNs from recorded neuronal spike trains, partitioning the WNFNs into the optimal LNCGs using social community analysis, unsupervised clustering of all trials from each dataset into two different clusters, and predicting the behavioral outcomes of single trials. The results show that WNFNs and LNCGs correlate with the behavior of the animal. The U-maze datasets show higher accuracy for unsupervised clustering results than those from the Y-maze task, and these datasets can be used to predict behavioral responses effectively. CONCLUSIONS/SIGNIFICANCE: The results of the present study suggest that a methodology proposed in this paper is suitable for analysis of the characteristics of neuronal functional networks and the prediction of rat behavior. These types of structures in cortical

  17. Functional Connectivity Between Superior Parietal Lobule and Primary Visual Cortex "at Rest" Predicts Visual Search Efficiency.

    Science.gov (United States)

    Bueichekú, Elisenda; Ventura-Campos, Noelia; Palomar-García, María-Ángeles; Miró-Padilla, Anna; Parcet, María-Antonia; Ávila, César

    2015-10-01

    Spatiotemporal activity that emerges spontaneously "at rest" has been proposed to reflect individual a priori biases in cognitive processing. This research focused on testing neurocognitive models of visual attention by studying the functional connectivity (FC) of the superior parietal lobule (SPL), given its central role in establishing priority maps during visual search tasks. Twenty-three human participants completed a functional magnetic resonance imaging session that featured a resting-state scan, followed by a visual search task based on the alphanumeric category effect. As expected, the behavioral results showed longer reaction times and more errors for the within-category (i.e., searching a target letter among letters) than the between-category search (i.e., searching a target letter among numbers). The within-category condition was related to greater activation of the superior and inferior parietal lobules, occipital cortex, inferior frontal cortex, dorsal anterior cingulate cortex, and the superior colliculus than the between-category search. The resting-state FC analysis of the SPL revealed a broad network that included connections with the inferotemporal cortex, dorsolateral prefrontal cortex, and dorsal frontal areas like the supplementary motor area and frontal eye field. Noteworthy, the regression analysis revealed that the more efficient participants in the visual search showed stronger FC between the SPL and areas of primary visual cortex (V1) related to the search task. We shed some light on how the SPL establishes a priority map of the environment during visual attention tasks and how FC is a valuable tool for assessing individual differences while performing cognitive tasks.

  18. Childhood Poverty Predicts Adult Amygdala and Frontal Activity and Connectivity in Response to Emotional Faces.

    Science.gov (United States)

    Javanbakht, Arash; King, Anthony P; Evans, Gary W; Swain, James E; Angstadt, Michael; Phan, K Luan; Liberzon, Israel

    2015-01-01

    Childhood poverty negatively impacts physical and mental health in adulthood. Altered brain development in response to social and environmental factors associated with poverty likely contributes to this effect, engendering maladaptive patterns of social attribution and/or elevated physiological stress. In this fMRI study, we examined the association between childhood poverty and neural processing of social signals (i.e., emotional faces) in adulthood. Fifty-two subjects from a longitudinal prospective study recruited as children, participated in a brain imaging study at 23-25 years of age using the Emotional Faces Assessment Task. Childhood poverty, independent of concurrent adult income, was associated with higher amygdala and medial prefrontal cortical (mPFC) responses to threat vs. happy faces. Also, childhood poverty was associated with decreased functional connectivity between left amygdala and mPFC. This study is unique, because it prospectively links childhood poverty to emotional processing during adulthood, suggesting a candidate neural mechanism for negative social-emotional bias. Adults who grew up poor appear to be more sensitive to social threat cues and less sensitive to positive social cues.

  19. Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke.

    Science.gov (United States)

    Carter, Alex R; Astafiev, Serguei V; Lang, Catherine E; Connor, Lisa T; Rengachary, Jennifer; Strube, Michael J; Pope, Daniel L W; Shulman, Gordon L; Corbetta, Maurizio

    2010-03-01

    Focal brain lesions can have important remote effects on the function of distant brain regions. The resulting network dysfunction may contribute significantly to behavioral deficits observed after stroke. This study investigates the behavioral significance of changes in the coherence of spontaneous activity in distributed networks after stroke by measuring resting state functional connectivity (FC) using functional magnetic resonance imaging. In acute stroke patients, we measured FC in a dorsal attention network and an arm somatomotor network, and determined the correlation of FC with performance obtained in a separate session on tests of attention and motor function. In particular, we compared the behavioral correlation with intrahemispheric FC to the behavioral correlation with interhemispheric FC. In the attention network, disruption of interhemispheric FC was significantly correlated with abnormal detection of visual stimuli (Pearson r with field effect = -0.624, p = 0.002). In the somatomotor network, disruption of interhemispheric FC was significantly correlated with upper extremity impairment (Pearson r with contralesional Action Research Arm Test = 0.527, p = 0.036). In contrast, intrahemispheric FC within the normal or damaged hemispheres was not correlated with performance in either network. Quantitative lesion analysis demonstrated that our results could not be explained by structural damage alone. These results suggest that lesions cause state changes in the spontaneous functional architecture of the brain, and constrain behavioral output. Clinically, these results validate using FC for assessing the health of brain networks, with implications for prognosis and recovery from stroke, and underscore the importance of interhemispheric interactions.

  20. Childhood Poverty Predicts Adult Amygdala and Frontal Activity and Connectivity in Response to Emotional Faces

    Directory of Open Access Journals (Sweden)

    Arash eJavanbakht

    2015-06-01

    Full Text Available Childhood poverty negatively impacts physical and mental health in adulthood. Altered brain development in response to social and environmental factors associated with poverty likely contributes to this effect, engendering maladaptive patterns of social attribution and/or elevated physiological stress. In this fMRI study, we examined the association between childhood poverty and neural processing of social signals (i.e., emotional faces in adulthood. 52 subjects from a longitudinal prospective study recruited as children, participated in a brain imaging study at 23-25 years of age using the Emotional Faces Assessment Task (EFAT. Childhood poverty, independent of concurrent adult income, was associated with higher amygdala and mPFC responses to threat vs. happy faces. Also, childhood poverty was associated with decreased functional connectivity between left amygdala and mPFC. This study is unique because it prospectively links childhood poverty to emotional processing during adulthood, suggesting a candidate neural mechanism for negative social-emotional bias. Adults who grew up poor appear to be more sensitive to social threat cues and less sensitive to positive social cues.

  1. Childhood Poverty Predicts Adult Amygdala and Frontal Activity and Connectivity in Response to Emotional Faces

    Science.gov (United States)

    Javanbakht, Arash; King, Anthony P.; Evans, Gary W.; Swain, James E.; Angstadt, Michael; Phan, K. Luan; Liberzon, Israel

    2015-01-01

    Childhood poverty negatively impacts physical and mental health in adulthood. Altered brain development in response to social and environmental factors associated with poverty likely contributes to this effect, engendering maladaptive patterns of social attribution and/or elevated physiological stress. In this fMRI study, we examined the association between childhood poverty and neural processing of social signals (i.e., emotional faces) in adulthood. Fifty-two subjects from a longitudinal prospective study recruited as children, participated in a brain imaging study at 23–25 years of age using the Emotional Faces Assessment Task. Childhood poverty, independent of concurrent adult income, was associated with higher amygdala and medial prefrontal cortical (mPFC) responses to threat vs. happy faces. Also, childhood poverty was associated with decreased functional connectivity between left amygdala and mPFC. This study is unique, because it prospectively links childhood poverty to emotional processing during adulthood, suggesting a candidate neural mechanism for negative social-emotional bias. Adults who grew up poor appear to be more sensitive to social threat cues and less sensitive to positive social cues. PMID:26124712

  2. Neuroimaging Biomarkers Predict Brain Structural Connectivity Change in a Mouse Model of Vascular Cognitive Impairment

    Science.gov (United States)

    Boehm-Sturm, Philipp; Füchtemeier, Martina; Foddis, Marco; Mueller, Susanne; Trueman, Rebecca C.; Zille, Marietta; Rinnenthal, Jan Leo; Kypraios, Theodore; Shaw, Laurence; Dirnagl, Ulrich

    2017-01-01

    Background and Purpose— Chronic hypoperfusion in the mouse brain has been suggested to mimic aspects of vascular cognitive impairment, such as white matter damage. Although this model has attracted attention, our group has struggled to generate a reliable cognitive and pathological phenotype. This study aimed to identify neuroimaging biomarkers of brain pathology in aged, more severely hypoperfused mice. Methods— We used magnetic resonance imaging to characterize brain degeneration in mice hypoperfused by refining the surgical procedure to use the smallest reported diameter microcoils (160 μm). Results— Acute cerebral blood flow decreases were observed in the hypoperfused group that recovered over 1 month and coincided with arterial remodeling. Increasing hypoperfusion resulted in a reduction in spatial learning abilities in the water maze that has not been previously reported. We were unable to observe severe white matter damage with histology, but a novel approach to analyze diffusion tensor imaging data, graph theory, revealed substantial reorganization of the hypoperfused brain network. A logistic regression model from the data revealed that 3 network parameters were particularly efficient at predicting group membership (global and local efficiency and degrees), and clustering coefficient was correlated with performance in the water maze. Conclusions— Overall, these findings suggest that, despite the autoregulatory abilities of the mouse brain to compensate for a sudden decrease in blood flow, there is evidence of change in the brain networks that can be used as neuroimaging biomarkers to predict outcome. PMID:28070001

  3. Towards a Predictive Theory of Malaria: Connections to Spatio-temporal Variability of Climate and Hydrology

    Science.gov (United States)

    Endo, N.; Eltahir, E. A. B.

    2015-12-01

    Malaria transmission is closely linked to climatology, hydrology, environment, and the biology of local vectors. These factors interact with each other and non-linearly influence malaria transmission dynamics, making prediction and prevention challenging. Our work attempts to find a universality in the multi-dimensional system of malaria transmission and to develop a theory to predict emergence of malaria given a limited set of environmental and biological inputs.A credible malaria transmission dynamics model, HYDREMATS (Bomblies et al., 2008), was used under hypothetical settings to investigate the role of spatial and temporal distribution of vector breeding pools. HYDREMATS is a mechanistic model and capable of simulating the basic reproduction rate (Ro) without bold assumptions even under dynamic conditions. The spatial distribution of pools is mainly governed by hydrological factors; the impact of pool persistence and rainy season length on malaria transmission were investigated. Also analyzed was the impact of the temporal distribution of pools relative to human houses. We developed non-dimensional variables combining the hydrological and biological parameters. Simulated values of Ro from HYDREMATS are presented in a newly-introduced non-dimensional plane, which leads to a some-what universal theory describing the condition for sustainable malaria transmission. The findings were tested against observations both from the West Africa and the Ethiopian Highland, representing diverse hydroclimatological conditions. Predicated Ro values from the theory over the two regions are in good agreement with the observed malaria transmission data.

  4. Neuroimaging Biomarkers Predict Brain Structural Connectivity Change in a Mouse Model of Vascular Cognitive Impairment.

    Science.gov (United States)

    Boehm-Sturm, Philipp; Füchtemeier, Martina; Foddis, Marco; Mueller, Susanne; Trueman, Rebecca C; Zille, Marietta; Rinnenthal, Jan Leo; Kypraios, Theodore; Shaw, Laurence; Dirnagl, Ulrich; Farr, Tracy D

    2017-02-01

    Chronic hypoperfusion in the mouse brain has been suggested to mimic aspects of vascular cognitive impairment, such as white matter damage. Although this model has attracted attention, our group has struggled to generate a reliable cognitive and pathological phenotype. This study aimed to identify neuroimaging biomarkers of brain pathology in aged, more severely hypoperfused mice. We used magnetic resonance imaging to characterize brain degeneration in mice hypoperfused by refining the surgical procedure to use the smallest reported diameter microcoils (160 μm). Acute cerebral blood flow decreases were observed in the hypoperfused group that recovered over 1 month and coincided with arterial remodeling. Increasing hypoperfusion resulted in a reduction in spatial learning abilities in the water maze that has not been previously reported. We were unable to observe severe white matter damage with histology, but a novel approach to analyze diffusion tensor imaging data, graph theory, revealed substantial reorganization of the hypoperfused brain network. A logistic regression model from the data revealed that 3 network parameters were particularly efficient at predicting group membership (global and local efficiency and degrees), and clustering coefficient was correlated with performance in the water maze. Overall, these findings suggest that, despite the autoregulatory abilities of the mouse brain to compensate for a sudden decrease in blood flow, there is evidence of change in the brain networks that can be used as neuroimaging biomarkers to predict outcome. © 2017 The Authors.

  5. Posterior cingulate cross-hemispheric functional connectivity predicts the level of consciousness in traumatic brain injury.

    Science.gov (United States)

    Zhang, Haosu; Dai, Rui; Qin, Pengmin; Tang, Weijun; Hu, Jin; Weng, Xuchu; Wu, Xing; Mao, Ying; Wu, Xuehai; Northoff, Georg

    2017-03-24

    Previous studies have demonstrated that altered states of consciousness are related to changes in resting state activity in the default-mode network (DMN). Anatomically, the DMN can be divided into anterior and posterior regions. The anterior DMN includes the perigenual anterior cingulate cortex and other medial prefrontal cortical regions, whereas the posterior DMN includes regions such as the posterior cingulate cortex (PCC) and the temporal parietal junction (TPJ). Although differential roles have been attributed to the anterior and posterior DMN regions, their exact contributions to consciousness levels remain unclear. To investigate the specific role of the posterior DMN in consciousness levels, we investigated 20 healthy controls (7 females, mean age = 33.6 years old) and 20 traumatic brain injury (TBI) patients (5 females, mean age = 43 years old) whose brain lesions were mainly restricted to the bilateral frontal cortex but retained a well-preserved posterior DMN (e.g., the PCC and the TPJ) and who exhibited varying levels of consciousness. We investigated the intra- and cross-functional connectivity strengths (FCSs) between the right/left PCC and the right/left TPJ and their correlation with consciousness levels. Significant reductions in both the intra- and cross-hemispheric FCSs were observed in patients compared with controls. A significant correlation with consciousness levels was observed only for the cross-hemispheric PCC-TPJ FCS but not for the intra-hemispheric PCC-TPJ FCS. Taken together, our results show that the cross-hemispheric posterior DMN is related to consciousness levels in a specific group of patients without posterior structural lesions. We therefore propose that the PCC may be central in maintaining consciousness through its cross-hemispheric FC with the TPJ.

  6. Cognitive decline and reorganization of functional connectivity in healthy aging: the pivotal role of the salience network in the prediction of age and cognitive performances

    Directory of Open Access Journals (Sweden)

    Valentina La Corte

    2016-08-01

    Full Text Available Normal aging is related to a decline in specific cognitive processes, in particular in executive functions and memory. In recent years a growing number of studies have focused on changes in brain functional connectivity related to cognitive aging. A common finding is the decreased connectivity within multiple resting state networks, including the default mode network and the salience network. In this study, we measured resting state activity using fMRI and explored whether cognitive decline is related to altered functional connectivity. To this end we used a machine learning approach to classify young and old participants from functional connectivity data. The originality of the approach consists in the prediction of the performance and age of the subjects based on functional connectivity. Our findings showed that the connectivity profile between specific networks predicts both the age of the subjects and their cognitive abilities. In particular, we report that the connectivity profiles between the salience and visual networks, and the salience and the anterior part of the default mode network, were the features that best predicted the age. Moreover, independently of the age of the subject, connectivity between the salience network and various specific networks (i.e., visual, frontal predicted episodic memory skills either based on a standard assessment or on an autobiographical memory task, and short-term binding.Finally, the connectivity between the salience and the frontal networks predicted inhibition and updating performance, but this link was no longer significant after removing the effect of age. Our findings confirm the crucial role of episodic memory and executive functions in cognitive aging and suggest a pivotal role of the salience network in neural reorganization in aging.

  7. EHRs Connect Research and Practice: Where Predictive Modeling, Artificial Intelligence, and Clinical Decision Support Intersect

    CERN Document Server

    Bennett, Casey; Selove, Rebecca

    2012-01-01

    Objectives: Electronic health records (EHRs) are only a first step in capturing and utilizing health-related data - the challenge is turning that data into useful information. Furthermore, EHRs are increasingly likely to include data relating to patient outcomes, functionality such as clinical decision support, and genetic information as well, and, as such, can be seen as repositories of increasingly valuable information about patients' health conditions and responses to treatment over time. Methods: We describe a case study of 423 patients treated by Centerstone within Tennessee and Indiana in which we utilized electronic health record data to generate predictive algorithms of individual patient treatment response. Multiple models were constructed using predictor variables derived from clinical, financial and geographic data. Results: For the 423 patients, 101 deteriorated, 223 improved and in 99 there was no change in clinical condition. Based on modeling of various clinical indicators at baseline, the high...

  8. Western Pacific hydroclimate linked to global climate variability over the past two millennia

    Science.gov (United States)

    Griffiths, Michael L.; Kimbrough, Alena K.; Gagan, Michael K.; Drysdale, Russell N.; Cole, Julia E.; Johnson, Kathleen R.; Zhao, Jian-Xin; Cook, Benjamin I.; Hellstrom, John C.; Hantoro, Wahyoe S.

    2016-06-01

    Interdecadal modes of tropical Pacific ocean-atmosphere circulation have a strong influence on global temperature, yet the extent to which these phenomena influence global climate on multicentury timescales is still poorly known. Here we present a 2,000-year, multiproxy reconstruction of western Pacific hydroclimate from two speleothem records for southeastern Indonesia. The composite record shows pronounced shifts in monsoon rainfall that are antiphased with precipitation records for East Asia and the central-eastern equatorial Pacific. These meridional and zonal patterns are best explained by a poleward expansion of the Australasian Intertropical Convergence Zone and weakening of the Pacific Walker circulation (PWC) between ~1000 and 1500 CE Conversely, an equatorward contraction of the Intertropical Convergence Zone and strengthened PWC occurred between ~1500 and 1900 CE. Our findings, together with climate model simulations, highlight the likelihood that century-scale variations in tropical Pacific climate modes can significantly modulate radiatively forced shifts in global temperature.

  9. Epigenetic variation in the serotonin transporter gene predicts resting state functional connectivity strength within the salience-network.

    Science.gov (United States)

    Muehlhan, Markus; Kirschbaum, Clemens; Wittchen, Hans-Ulrich; Alexander, Nina

    2015-11-01

    Genetic variation in the serotonin transporter gene (SLC6A4) has been associated with psychopathology and aberrant brain functioning in a plethora of clinical and imaging studies. In contrast, the neurobiological correlates of epigenetic signatures in SLC6A4, such as DNA methylation profiles, have only recently been explored in human brain imaging research. The present study is the first to apply a resting state functional magnetic resonance imaging approach to identify changes in brain networks related to SLC6A4 promoter methylation (N=74 healthy individuals). The amygdalae were defined as seed regions given that resting state functional connectivity in this brain area is under serotonergic control and relates to a broad range of psychiatric phenotypes. We further used bisulfite pyrosequencing to analyze quantitative methylation at 83 CpG sites within a promoter-associated CpG island of SLC6A4 from blood-derived DNA samples. The major finding of this study indicates a positive relation of SLC6A4 promoter methylation and amygdaloid resting state functional coupling with key nodes of the salience network (SN) including the anterior insulae and the dorsal anterior cingulate cortices. Increased intra-network connectivity in the SN is thought to facilitate the detection and subsequent processing of potentially negative stimuli and reflects a core feature of psychopathology. As such, epigenetic changes within the SLC6A4 gene predict connectivity patterns in clinically and behaviorally relevant brain networks which may in turn convey increased disease susceptibility. © 2015 Wiley Periodicals, Inc.

  10. Centennial and millennial-scale hydroclimate changes in northwestern Patagonia since 16,000 yr BP

    Science.gov (United States)

    Moreno, Patricio I.; Videla, Javiera

    2016-10-01

    We examine hydroclimate changes at centennial/millennial timescales since 16,000 yr BP in northwestern Patagonia based on the pollen and charcoal record from Lago El Salto, a small closed-basin lake located in the Chilean Lake District (41°38‧48.02″S, 73° 5‧48.42″W). We observe cold/wet conditions between 14,500-16,000 yr BP, followed by further cooling with increased precipitation until 13,000 yr BP, enhanced precipitation seasonality and/or variability between 11,600-13,000 yr BP, and an extended warm-and-dry interval between 7600 and 11,300 yr BP with peak paleofire activity. Colder-and-wetter than present conditions and muted paleofire activity prevail between 5300 and 7600 yr BP, followed by alternating cold/wet and centennial-scale warm/dry phases starting at 5300 yr BP with three conspicuous megadroughts since 2500 yr BP. The most recent megadrought occurred during the Medieval Climate Anomaly. We identify a cold reversal that spans the Antarctic Cold Reversal (ACR) and the Younger Dryas (YD) chrons with stronger-than-present westerly influence during the former and enhanced variability during the latter. These results extend the northern limit of strong cooling and increase in precipitation during the ACR and the southern limit of influence of strong hydrologic variations during the YD in terrestrial environments, suggesting an overlap in the spheres of influence of processes originating from southern and northern polar latitudes. An extended warm southern westerly wind (SWW)-minimum interval is evident between 7600 and 11,300 yr BP, followed by a rapid shift to cool-moist conditions between 5300 and 7600 yr BP brought by a mid-Holocene SWW maximum. Since then we observe centennial-scale hydroclimate variability, which has driven biodiversity and fire-regime shifts of evergreen temperate rainforests.

  11. Life Prediction Model for Grid-Connected Li-ion Battery Energy Storage System

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kandler A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Saxon, Aron R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Keyser, Matthew A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lundstrom, Blake R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cao, Ziwei [SunPower Corporation; Roc, Albert [SunPower Corporation

    2017-09-06

    Lithium-ion (Li-ion) batteries are being deployed on the electrical grid for a variety of purposes, such as to smooth fluctuations in solar renewable power generation. The lifetime of these batteries will vary depending on their thermal environment and how they are charged and discharged. To optimal utilization of a battery over its lifetime requires characterization of its performance degradation under different storage and cycling conditions. Aging tests were conducted on commercial graphite/nickel-manganese-cobalt (NMC) Li-ion cells. A general lifetime prognostic model framework is applied to model changes in capacity and resistance as the battery degrades. Across 9 aging test conditions from 0oC to 55oC, the model predicts capacity fade with 1.4% RMS error and resistance growth with 15% RMS error. The model, recast in state variable form with 8 states representing separate fade mechanisms, is used to extrapolate lifetime for example applications of the energy storage system integrated with renewable photovoltaic (PV) power generation.

  12. Prediction of Leakage Rates Through Sealing Connections with Nonmetallic Gaskets%非金属平垫片密封连接的泄漏率预测

    Institute of Scientific and Technical Information of China (English)

    顾伯勤; 陈晔; 朱大胜

    2007-01-01

    In this work,a model of gas leakage through nonmetallic gaskets was developed in order to predict leakage rate of gasket sealing connections. The model was verified by the leakage experiments on two types of gaskets: compressed non-asbestos fiber gasket and flexible graphite gasket reinforced with tanged metal sheet. The coefficients in the leakage rate formula were obtained by regression of experimental data for each type of gasket.The model was also validated against the experimental leakage data by other researchers and shown to produce accurate predications. Furthermore,the model was applied to a bolted flanged connection in service in order to assess the tightness of the connection.

  13. Late Pleistocene and Holocene Hydroclimate Variability in the Tropical Andes from Alpine Lake Sediments, Cordillera de Mérida, Venezuela

    Science.gov (United States)

    Larsen, D. J.; Abbott, M. B.; Polissar, P. J.

    2014-12-01

    The tropics play a major role in the global hydrologic cycle and changes to tropical rainfall patterns have critical implications for water resources and ecosystem dynamics over large geographic scales. In tropical South America, late Pleistocene and Holocene precipitation variability has been documented in geologic records and associated with numerous external and internal variables, including changes in summer insolation, South American summer monsoon strength, Pacific Ocean sea surface temperatures, continental moisture recycling, and other climate processes. However, there are few records from the northern hemisphere tropical Americas, a key region for understanding interhemispheric linkages and the drivers of tropical hydroclimate variability. Here, we present a ~13 ka record of coupled hydroclimate and environmental changes from Laguna Brava, a small (~0.07 km2), hydrologically closed lake basin situated at 2400 m asl in the Cordillera de Mérida, Venezuela. Sediment cores collected from varying water depths and proximity to shore are placed in a chronologic framework using radiocarbon ages from terrestrial macrofossils, and analyzed for a suite of physical, bulk geochemical, and stable isotopic parameters. Compound specific hydrogen isotope (D/H) measurements of terrestrial plant waxes (long-chain n-alkanes) show a sharp increase in the late Pleistocene, followed by a long-term trend toward more negative values that suggest a ~20‰ decrease in the D/H ratios of South American tropical precipitation during the Holocene. This pattern is consistent in sign and magnitude to other South American precipitation reconstructions from both hemispheres, indicating interhemispheric similarities in tropical hydroclimate variability. Superimposed on this continent-scale trend are changes in moisture balance and environmental conditions in the Venezuelan Andes. We reconstruct these parameters at Laguna Brava at multidecadal and centennial resolution and evaluate this

  14. Investigating late Holocene variations in hydroclimate and the stable isotope composition of precipitation using southern South American peatlands: a hypothesis

    OpenAIRE

    T. J. Daley; Mauquoy, D.; F.M. Chambers

    2012-01-01

    Ombrotrophic raised peatlands provide an ideal archive for integrating late Holocene records of variations in hydroclimate and the estimated stable isotope composition of precipitation with recent instrumental measurements. Modern measurements of mean monthly surface air temperature, precipitation and δD and δ18O values in precipitation from the late twentieth and early twenty-first centuries provide a short but invaluable record w...

  15. Investigating late Holocene variations in hydroclimate and the stable isotope composition of precipitation using southern South American peatlands: an hypothesis

    OpenAIRE

    T. J. Daley; Mauquoy, D.; F.M. Chambers; Street-Perrott, F. A.; Hughes, P.D.M.; Loader, N.J.; Roland, T. P.; Bellen, S.; Garcia-Meneses, P.; S Lewin

    2012-01-01

    Ombrotrophic raised peatlands provide an ideal archive for integrating late Holocene records of variations in hydroclimate and the estimated stable isotope composition of precipitation with recent instrumental measurements. Modern measurements of mean monthly surface air temperature, precipitation, and δD and δ18O-values in precipitation from the late twentieth and early twenty-first centuries provide a short but invaluable record with which to inves...

  16. Optimal Parameter Selection for Support Vector Machine Based on Artificial Bee Colony Algorithm: A Case Study of Grid-Connected PV System Power Prediction

    Directory of Open Access Journals (Sweden)

    Xiang-ming Gao

    2017-01-01

    Full Text Available Predicting the output power of photovoltaic system with nonstationarity and randomness, an output power prediction model for grid-connected PV systems is proposed based on empirical mode decomposition (EMD and support vector machine (SVM optimized with an artificial bee colony (ABC algorithm. First, according to the weather forecast data sets on the prediction date, the time series data of output power on a similar day with 15-minute intervals are built. Second, the time series data of the output power are decomposed into a series of components, including some intrinsic mode components IMFn and a trend component Res, at different scales using EMD. The corresponding SVM prediction model is established for each IMF component and trend component, and the SVM model parameters are optimized with the artificial bee colony algorithm. Finally, the prediction results of each model are reconstructed, and the predicted values of the output power of the grid-connected PV system can be obtained. The prediction model is tested with actual data, and the results show that the power prediction model based on the EMD and ABC-SVM has a faster calculation speed and higher prediction accuracy than do the single SVM prediction model and the EMD-SVM prediction model without optimization.

  17. Genome-Enabled Modeling of Biogeochemical Processes Predicts Metabolic Dependencies that Connect the Relative Fitness of Microbial Functional Guilds

    Science.gov (United States)

    Brodie, E.; King, E.; Molins, S.; Karaoz, U.; Steefel, C. I.; Banfield, J. F.; Beller, H. R.; Anantharaman, K.; Ligocki, T. J.; Trebotich, D.

    2015-12-01

    Pore-scale processes mediated by microorganisms underlie a range of critical ecosystem services, regulating carbon stability, nutrient flux, and the purification of water. Advances in cultivation-independent approaches now provide us with the ability to reconstruct thousands of genomes from microbial populations from which functional roles may be assigned. With this capability to reveal microbial metabolic potential, the next step is to put these microbes back where they belong to interact with their natural environment, i.e. the pore scale. At this scale, microorganisms communicate, cooperate and compete across their fitness landscapes with communities emerging that feedback on the physical and chemical properties of their environment, ultimately altering the fitness landscape and selecting for new microbial communities with new properties and so on. We have developed a trait-based model of microbial activity that simulates coupled functional guilds that are parameterized with unique combinations of traits that govern fitness under dynamic conditions. Using a reactive transport framework, we simulate the thermodynamics of coupled electron donor-acceptor reactions to predict energy available for cellular maintenance, respiration, biomass development, and enzyme production. From metagenomics, we directly estimate some trait values related to growth and identify the linkage of key traits associated with respiration and fermentation, macromolecule depolymerizing enzymes, and other key functions such as nitrogen fixation. Our simulations were carried out to explore abiotic controls on community emergence such as seasonally fluctuating water table regimes across floodplain organic matter hotspots. Simulations and metagenomic/metatranscriptomic observations highlighted the many dependencies connecting the relative fitness of functional guilds and the importance of chemolithoautotrophic lifestyles. Using an X-Ray microCT-derived soil microaggregate physical model combined

  18. Calibration of speleothem δ18O records against hydroclimate instrumental records in Central Brazil

    Science.gov (United States)

    Moquet, J. S.; Cruz, F. W.; Novello, V. F.; Stríkis, N. M.; Deininger, M.; Karmann, I.; Santos, R. Ventura; Millo, C.; Apaestegui, J.; Guyot, J.-L.; Siffedine, A.; Vuille, M.; Cheng, H.; Edwards, R. L.; Santini, W.

    2016-04-01

    δ18O in speleothems is a powerful proxy for reconstruction of precipitation patterns in tropical and sub-tropical regions. The aim of this study is to calibrate the δ18O record of speleothems against historical precipitation and river discharge data in central Brazil, a region directly influenced by the Southern Atlantic Convergence Zone (SACZ), a major feature of the South American Monsoon System (SAMS). The present work is based on a sub-annual resolution speleothem record covering the last 141 years (the period between the years 1870 and 2011) from a cave in central Brazil. The comparison of this record with instrumental hydroclimate records since 1921 allows defining a strong relationship between precipitation variability and stable oxygen isotope ratios from speleothems. The results from a monitoring program of climatic parameters and isotopic composition of rainfall and cave seepage waters performed in the same cave, show that the rain δ18O variability is dominated by the amount effect in this region, while δ18O drip water remains almost constant over the monitored period (1.5 years). The δ18O of modern calcite, on the other hand, shows clear seasonal variations, with more negative values observed during the rainy season, which implies that other factors also influence the isotopic composition of carbonate. However, the relationship between δ18O of carbonate deposits and rainwater is supported by the results from the comparison between speleothem δ18O records and historical hydroclimate records. A significant correlation between speleothem δ18O and monsoon rainfall variability is observed on sub-decadal time scales, especially for the monsoon period (DJFM and NDJFM), once the rainfall record have been smoothed with a 7-9 years running mean. This study confirms that speleothem δ18O is directly associated with monsoon rainfall variability in central Brazil. The relationship between speleothem δ18O records and hydroclimatic historical records allows

  19. The paleoclimate context and future trajectory of extreme summer hydroclimate in eastern Australia

    Science.gov (United States)

    Cook, Benjamin I.; Palmer, Jonathan G.; Cook, Edward R.; Turney, Chris S. M.; Allen, Kathryn; Fenwick, Pavla; O'Donnell, Alison; Lough, Janice M.; Grierson, Pauline F.; Ho, Michelle; Baker, Patrick J.

    2016-11-01

    Eastern Australia recently experienced an intense drought (Millennium Drought, 2003-2009) and record-breaking rainfall and flooding (austral summer 2010-2011). There is some limited evidence for a climate change contribution to these events, but such analyses are hampered by the paucity of information on long-term natural variability. Analyzing a new reconstruction of summer (December-January-February) Palmer Drought Severity Index (the Australia-New Zealand Drought Atlas; ANZDA, 1500-2012 Common Era), we find moisture deficits during the Millennium Drought fall within the range of the last 500 years of natural hydroclimate variability. This variability includes periods of multidecadal drought in the 1500s more persistent than any event in the historical record. However, the severity of the Millennium Drought, which was caused by autumn (March-April-May) precipitation declines, may be underestimated in the ANZDA because the reconstruction is biased toward summer and antecedent spring (September-October-November) precipitation. The pluvial in 2011, however, which was characterized by extreme summer rainfall faithfully captured by the ANZDA, is likely the wettest year in the reconstruction for Coastal Queensland. Climate projections (Representative Concentration Pathways (RCP) 8.5 scenario) suggest that eastern Australia will experience long-term drying during the 21st century. While the contribution of anthropogenic forcing to recent extremes remains an open question, these projections indicate an amplified risk of multiyear drought anomalies matching or exceeding the intensity of the Millennium Drought.

  20. European Hydroclimate Response to Volcanic Eruptions over the Past Nine Centuries

    Science.gov (United States)

    Gao, Yujuan; Gao, Chaochao

    2017-04-01

    The climatic aftermath of the 1815 Tambora eruption in Europe suggests large volcanic eruptions can introduce environmental and societal consequences in this region. Here, we analyze the European summer hydrological response to 31 tropical and 44 Northern Hemisphere mid-to-high latitude eruptions over the past nine centuries, using a newly published reconstruction of global volcanism and a proxy record of droughts (Old World Drought Atlas) coupled with a superposed epoch analysis. Our results show a significant wetting response (at the 95% confidence level) for year 0 and year 1 after tropical eruptions. Spatially, wetting occurs in northeast and southern Europe, while a drying response develops in central and northwest Europe. Both the wetting and drying responses increase with the eruption magnitude. Large high latitude eruptions tend to cause a drying response. Correcting for the effects of El Nino does not noticeably change the response patterns. Our results verify previous modeling studies from a longer term proxy perspective, and indicate that future stratospheric aerosol perturbations are likely to further separate modern and 20th central hydroclimate conditions in Europe during the boreal summers. Complex regional variability exists, and regions such as the Balkan Peninsula may experience intensified wetting. The results may therefore illuminate potential effects of stratospheric geoengineering in Europe.

  1. Hydroclimate changes across the Amazon lowlands over the past 45,000 years

    Science.gov (United States)

    Wang, Xianfeng; Edwards, R. Lawrence; Auler, Augusto S.; Cheng, Hai; Kong, Xinggong; Wang, Yongjin; Cruz, Francisco W.; Dorale, Jeffrey A.; Chiang, Hong-Wei

    2017-01-01

    Reconstructing the history of tropical hydroclimates has been difficult, particularly for the Amazon basin—one of Earth’s major centres of deep atmospheric convection. For example, whether the Amazon basin was substantially drier or remained wet during glacial times has been controversial, largely because most study sites have been located on the periphery of the basin, and because interpretations can be complicated by sediment preservation, uncertainties in chronology, and topographical setting. Here we show that rainfall in the basin responds closely to changes in glacial boundary conditions in terms of temperature and atmospheric concentrations of carbon dioxide. Our results are based on a decadally resolved, uranium/thorium-dated, oxygen isotopic record for much of the past 45,000 years, obtained using speleothems from Paraíso Cave in eastern Amazonia; we interpret the record as being broadly related to precipitation. Relative to modern levels, precipitation in the region was about 58% during the Last Glacial Maximum (around 21,000 years ago) and 142% during the mid-Holocene epoch (about 6,000 years ago). We find that, as compared with cave records from the western edge of the lowlands, the Amazon was widely drier during the last glacial period, with much less recycling of water and probably reduced plant transpiration, although the rainforest persisted throughout this time.

  2. Using Diffusion Tractography to Predict Cortical Connection Strength and Distance: A Quantitative Comparison with Tracers in the Monkey

    DEFF Research Database (Denmark)

    Donahue, Chad J.; Sotiropoulos, Stamatios N.; Jbabdi, Saad

    2016-01-01

    Tractography based on diffusion MRI offers the promise of characterizing many aspects of long-distance connectivity in the brain, but requires quantitative validation to assess its strengths and limitations. Here, we evaluate tractography's ability to estimate the presence and strength of connect......Tractography based on diffusion MRI offers the promise of characterizing many aspects of long-distance connectivity in the brain, but requires quantitative validation to assess its strengths and limitations. Here, we evaluate tractography's ability to estimate the presence and strength...... of comprehensive maps of neural connections in the brain ("connectomes"). Here, we describe methods to assess quantitatively tractography's performance in detecting interareal cortical connections and estimating connection strength by comparing it against published results using neuroanatomical tracers. We found...

  3. Prediction of Future Overt Pulmonary Hypertension by 6-Min Walk Stress Echocardiography in Patients With Connective Tissue Disease.

    Science.gov (United States)

    Kusunose, Kenya; Yamada, Hirotsugu; Hotchi, Junko; Bando, Mika; Nishio, Susumu; Hirata, Yukina; Ise, Takayuki; Yamaguchi, Koji; Yagi, Shusuke; Soeki, Takeshi; Wakatsuki, Tetsuzo; Kishi, Jun; Sata, Masataka

    2015-07-28

    Early detection of pulmonary hypertension (PH) in connective tissue disease (CTD) is crucial to ensuring that patients receive timely treatment for this progressive disease. Exercise stress tests have been used to screen patients in an attempt to identify early-stage PH. Recent studies have described abnormal mean pulmonary artery pressure (mPAP)-cardiac output (Q) responses as having the potential to assess the disease state. This study hypothesized that pulmonary circulation pressure-flow relationships obtained by 6-min walk (6MW) stress echocardiography would better delineate differential progression of PH and predict development of PH during follow-up. We prospectively performed 6MW stress echocardiographic studies in 78 CTD patients (age 58 ± 12 years; 9% male) at baseline and follow-up. All patients underwent yearly echocardiographic follow-up studies for up to 5 years. During a median period of 32 months (range: 15 to 62 months), 16 patients reached the clinical endpoint of development of PH and none died during follow-up. PH was confirmed by right heart catheterization in all 16 patients (mPAP ≥25 mm Hg and pulmonary capillary wedge pressure ≤15 mm Hg). In a Cox proportional-hazards survival model, 6MW distance (hazard ratio [HR]: 0.99; p = 0.010), early diastolic tricuspid annulus motion velocity (HR: 0.79; p = 0.025), and ΔmPAP/ΔQ by 6MW stress (HR: 1.10; p = 0.005) were associated with development of PH. In sequential Cox models, a model on the basis of 6MW distance (chi-square, 6.6) was improved by ΔmPAP/ΔQ (chi-square: 14.4; p = 0.019). Using a receiver-operating characteristic curve, we found that the best cutoff value of ΔmPAP/ΔQ for predicting development of pulmonary hypertension was >3.3 mm Hg/l/min. The 6MW stress echocardiography noninvasively provides an incremental prognostic value of PH development in CTD. This is a single-center prospective cohort study. Larger multicenter studies are warranted to confirm this result

  4. An assessment of the changing nature of the winter hydroclimate in eastern North America and its impacts on risk management

    Science.gov (United States)

    Moore, Kent

    2016-04-01

    The winter hydroclimate of eastern North America is characterized by a complex and spatially varying combination of snow and rain. Much of this complexity stems from the presence of Great Lakes that are a source of heat and moisture during the winter months. Lake effect snowfall can result in heavy snowfall in highly localized regions downstream of the lakes. In addition the average mean winter temperature in the region is close to freezing and so there is enhanced sensitivity as to the phase of the precipitation. The region has warmed by 1-2.5 oC during the winter over the past 30 years and so there is concern that the character of the winter hydroclimate may be changing. Here we use reanalysis fields as well as the results of AMIP model runs, with horizontal resolutions ranging from 100 km to 16 km, to investigate the changes that have occurred in the winter hydroclimate of the region. It is shown that a horizontal resolution below ~40 km is needed to resolve the observed spatial gradients in snowfall and rainfall in the region. Over the past 30 years, the mean and 95th percentile snowfall rates in the southern part of the region have decreased by as much as 20% with an increase of a similar magnitude in both these parameters in its northwest. There has also been an increase in the mean and 95th percentile rainfall rates across much the region that exceeds 100% in the vicinity of Lake Superior, the largest and most northern of the Great Lakes. These changes are attributed to the warming that the region has experienced and are expected to continue into the future. They have and will continue to impact a number of societal functions including winter road maintenance as well as influencing the management of property risks such as flooding.

  5. Continuous 1.3-million-year record of East African hydroclimate, and implications for patterns of evolution and biodiversity

    Science.gov (United States)

    Lyons, Robert P.; Scholz, Christopher A.; Cohen, Andrew S.; King, John W.; Brown, Erik T.; Ivory, Sarah J.; Johnson, Thomas C.; Deino, Alan L.; Reinthal, Peter N.; McGlue, Michael M.; Blome, Margaret W.

    2015-12-01

    The transport of moisture in the tropics is a critical process for the global energy budget and on geologic timescales, has markedly influenced continental landscapes, migratory pathways, and biological evolution. Here we present a continuous, first-of-its-kind 1.3-My record of continental hydroclimate and lake-level variability derived from drill core data from Lake Malawi, East Africa (9-15° S). Over the Quaternary, we observe dramatic shifts in effective moisture, resulting in large-scale changes in one of the world's largest lakes and most diverse freshwater ecosystems. Results show evidence for 24 lake level drops of more than 200 m during the Late Quaternary, including 15 lowstands when water levels were more than 400 m lower than modern. A dramatic shift is observed at the Mid-Pleistocene Transition (MPT), consistent with far-field climate forcing, which separates vastly different hydroclimate regimes before and after ∼800,000 years ago. Before 800 ka, lake levels were lower, indicating a climate drier than today, and water levels changed frequently. Following the MPT high-amplitude lake level variations dominate the record. From 800 to 100 ka, a deep, often overfilled lake occupied the basin, indicating a wetter climate, but these highstands were interrupted by prolonged intervals of extreme drought. Periods of high lake level are observed during times of high eccentricity. The extreme hydroclimate variability exerted a profound influence on the Lake Malawi endemic cichlid fish species flock; the geographically extensive habitat reconfiguration provided novel ecological opportunities, enabling new populations to differentiate rapidly to distinct species.

  6. Impact of rising greenhouse gases on mid-latitude storm tracks and associated hydroclimate variability and change

    Energy Technology Data Exchange (ETDEWEB)

    Seager, Richard [Columbia Univ., New York, NY (United States)

    2014-09-20

    Project Summary This project aimed to advance physical understanding of how and why the mid-latitude jet streams and storm tracks shift in intensity and latitude in response to changes in radiative forcing with an especial focus on rising greenhouse gases. The motivation, and much of the work, stemmed from the importance that these mean and transient atmospheric circulation systems have for hydroclimate. In particular drying and expansion of the subtropical dry zones has been related to a poleward shift of the mid-latitude jets and storm tracks. The work involved integrated assessment of observation and model projections as well as targeted model simulations.

  7. Impact of rising greenhouse gases on mid-latitude storm tracks and associated hydroclimate variability and change

    Energy Technology Data Exchange (ETDEWEB)

    Seager, Richard

    2014-12-08

    Project Summary This project aimed to advance physical understanding of how and why the mid-latitude jet streams and storm tracks shift in intensity and latitude in response to changes in radiative forcing with an especial focus on rising greenhouse gases. The motivation, and much of the work, stemmed from the importance that these mean and transient atmospheric circulation systems have for hydroclimate. In particular drying and expansion of the subtropical dry zones has been related to a poleward shift of the mid-latitude jets and storm tracks. The work involved integrated assessment of observation and model projections as well as targeted model simulations.

  8. Connected Traveler

    Energy Technology Data Exchange (ETDEWEB)

    2016-06-01

    The Connected Traveler framework seeks to boost the energy efficiency of personal travel and the overall transportation system by maximizing the accuracy of predicted traveler behavior in response to real-time feedback and incentives. It is anticipated that this approach will establish a feedback loop that 'learns' traveler preferences and customizes incentives to meet or exceed energy efficiency targets by empowering individual travelers with information needed to make energy-efficient choices and reducing the complexity required to validate transportation system energy savings. This handout provides an overview of NREL's Connected Traveler project, including graphics, milestones, and contact information.

  9. Rocky Mountain hydroclimate: Holocene variability and the role of insolation, ENSO, and the North American Monsoon

    Science.gov (United States)

    Anderson, Lesleigh

    2012-01-01

    Over the period of instrumental records, precipitation maximum in the headwaters of the Colorado Rocky Mountains has been dominated by winter snow, with a substantial degree of interannual variability linked to Pacific ocean–atmosphere dynamics. High-elevation snowpack is an important water storage that is carefully observed in order to meet increasing water demands in the greater semi-arid region. The purpose here is to consider Rocky Mountain water trends during the Holocene when known changes in earth's energy balance were caused by precession-driven insolation variability. Changes in solar insolation are thought to have influenced the variability and intensity of the El Niño Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and North American Monsoon and the seasonal precipitation balance between rain and snow at upper elevations. Holocene records are presented from two high elevation lakes located in northwest Colorado that document decade-to-century scale precipitation seasonality for the past ~ 7000 years. Comparisons with sub-tropical records of ENSO indicate that the snowfall-dominated precipitation maxima developed ~ 3000 and 4000 years ago, coincident with evidence for enhanced ENSO/PDO dynamics. During the early-to-mid Holocene the records suggest a more monsoon affected precipitation regime with reduced snowpack, more rainfall, and net moisture deficits that were more severe than recent droughts. The Holocene perspective of precipitation indicates a far broader range of variability than that of the past century and highlights the non-linear character of hydroclimate in the U.S. west.

  10. Effect of local hydroclimate on phytoplankton groups in the Charente estuary

    Science.gov (United States)

    Guesdon, Stéphane; Stachowski-Haberkorn, Sabine; Lambert, Christophe; Beker, Beatriz; Brach-Papa, Christophe; Auger, Dominique; Béchemin, Christian

    2016-11-01

    This study aimed to describe seasonal variations of phytoplankton abundances in relation to the physical and chemical (nutrients and metals) environment under the influence of freshwater input in the Charente river estuary (Marennes-Oléron bay, France) over three years, from 2011 to 2014. Phytoplankton abundances were determined using microscopy and flow cytometry. Considering high frequency temperature and salinity data, breakpoints in each series led to the identification of two local hydroclimatic periods: the first (2011 and early 2012) being warmer and higher in salinity than the second (from spring 2012 to the beginning of 2014). A multiblock PLS analysis highlighted the significant contribution of the physical environment (temperature, salinity and Photosynthetically Active Radiation (PAR)) on phytoplankton abundances. Two partial triadic analyses (PTA) were run in order to visualize seasonal variations of i) phytoplankton groups and ii) nutrients and trace elements, irrespective of spatial gradient: picoeukaryote occurrence showed a difference between year 2011 and the years 2012 and 2013 (as did cadmium, nickel and silica levels). However, both PTA revealed greater differences between year 2013 and the years 2011 and 2012, as shown by occurrences of cryptophytes, dinoflagellates and nanoeukaryotes, as well as copper and phosphate levels. These results showed a shift between the hydroclimate breakpoint and some phytoplankton responses, suggesting that their development and succession might depend on conditions early in the year. Finally, a STATICO analysis was performed on the paired PTA in order to examine the relations of phytoplankton with nutrients and metals more closely. Most phytoplankton groups were represented on the first axis, together with cadmium on the one hand, and nitrates, silica and nickel on the other. This analysis revealed the separation of phytoplankton groups on the second axis that represented phosphates and copper. Hydroclimatic

  11. Hydroclimate temporal variability in a coastal Mediterranean watershed: the Tafna basin, North-West Algeria

    Science.gov (United States)

    Boulariah, Ouafik; Longobardi, Antonia; Meddi, Mohamed

    2017-04-01

    One of the major challenges scientists, practitioners and stakeholders are nowadays involved in, is to provide the worldwide population with reliable water supplies, protecting, at the same time, the freshwater ecosystems quality and quantity. Climate and land use changes undermine the balance between water demand and water availability, causing alteration of rivers flow regime. Knowledge of hydro-climate variables temporal and spatial variability is clearly helpful to plan drought and flood hazard mitigation strategies but also to adapt them to future environmental scenarios. The present study relates to the coastal semi-arid Tafna catchment, located in the North-West of Algeria, within the Mediterranean basin. The aim is the investigation of streamflow and rainfall indices temporal variability in six sub-basins of the large catchment Tafna, attempting to relate streamflow and rainfall changes. Rainfall and streamflow time series have been preliminary tested for data quality and homogeneity, through the coupled application of two-tailed t test, Pettitt test and Cumsum tests (significance level of 0.1, 0.05 and 0.01). Subsequently maximum annual daily rainfall and streamflow and average daily annual rainfall and streamflow time series have been derived and tested for temporal variability, through the application of the Mann Kendall and Sen's test. Overall maximum annual daily streamflow time series exhibit a negative trend which is however significant for only 30% of the station. Maximum annual daily rainfall also e exhibit a negative trend which is intend significant for the 80% of the stations. In the case of average daily annual streamflow and rainfall, the tendency for decrease in time is unclear and, in both cases, appear significant for 60% of stations.

  12. Predicting planning performance from structural connectivity between left and right mid-dorsolateral prefrontal cortex: moderating effects of age during postadolescence and midadulthood.

    Science.gov (United States)

    Kaller, Christoph P; Reisert, Marco; Katzev, Michael; Umarova, Roza; Mader, Irina; Hennig, Jürgen; Weiller, Cornelius; Köstering, Lena

    2015-04-01

    Complex cognitive abilities such as planning are known to critically rely on activity of bilateral mid-dorsolateral prefrontal cortex (mid-dlPFC). However, the functional relevance of the structural connectivity between left and right mid-dlPFC is yet unknown. Here, we applied global tractography to derive streamline counts as estimates of the structural connectivity between mid-dlPFC homologs and related it to planning performance in the Tower of London task across early to midadulthood, assuming a moderating effect of age. Multiple regression analyses with interaction effects revealed that streamline counts between left and right mid-dlPFC were negatively associated with planning performance specifically in early postadolescence. From the fourth life decade on, there was a trend for a reversed, positive association. These differential findings were corroborated by converging results from fractional anisotropy and white-matter density estimates in the genu of the corpus callosum where fibers connecting mid-dlPFC homologs traversed. Moreover, the results for streamline counts were regionally specific, marking the strength of mid-dlPFC connectivity as critical in predicting interindividual differences in planning performance across different stages of adulthood. Taken together, present findings provide first evidence for nonadditive effects of age on the relation between complex cognitive abilities and the structural connectivity of mid-dlPFC homologs. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Glutamate concentration in the medial prefrontal cortex predicts resting-state cortical-subcortical functional connectivity in humans.

    Directory of Open Access Journals (Sweden)

    Niall W Duncan

    Full Text Available Communication between cortical and subcortical regions is integral to a wide range of psychological processes and has been implicated in a number of psychiatric conditions. Studies in animals have provided insight into the biochemical and connectivity processes underlying such communication. However, to date no experiments that link these factors in humans in vivo have been carried out. To investigate the role of glutamate in individual differences in communication between the cortex--specifically the medial prefrontal cortex (mPFC--and subcortical regions in humans, a combination of resting-state fMRI, DTI and MRS was performed. The subcortical target regions were the nucleus accumbens (NAc, dorsomedial thalamus (DMT, and periaqueductal grey (PAG. It was found that functional connectivity between the mPFC and each of the NAc and DMT was positively correlated with mPFC glutamate concentrations, whilst functional connectivity between the mPFC and PAG was negatively correlated with glutamate concentration. The correlations involving mPFC glutamate and FC between the mPFC and each of the DMT and PAG were mirrored by correlations with structural connectivity, providing evidence that the glutamatergic relationship may, in part, be due to direct connectivity. These results are in agreement with existing results from animal studies and may have relevance for MDD and schizophrenia.

  14. All roads lead to Iran: Predicting landscape connectivity of the last stronghold for the critically endangered Asiatic cheetah

    Science.gov (United States)

    E. M. Moqanaki; Samuel Cushman

    2016-01-01

    Effective conservation solutions for small and isolated wildlife populations depend on identifying and preserving critical biological corridors and dispersal routes. With a worldwide population of ≤70 individuals, the critically endangered Asiatic cheetah Acinonyx jubatus venaticus persists in several fragmented nuclei in Iran. Connectivity between nuclei is...

  15. Stress-Induced Activation of the HPA Axis Predicts Connectivity between Subgenual Cingulate and Salience Network during Rest in Adolescents

    Science.gov (United States)

    Thomason, Moriah E.; Hamilton, J. Paul; Gotlib, Ian H.

    2011-01-01

    Background: Responses to stress vary greatly in young adolescents, and little is known about neural correlates of the stress response in youth. The purpose of this study was to examine whether variability in cortisol responsivity following a social stress test in young adolescents is associated with altered neural functional connectivity (FC) of…

  16. Does the Use of Connective Words in Written Assessments Predict High School Students' Reading and Writing Achievement?

    Science.gov (United States)

    Duggleby, Sandra J.; Tang, Wei; Kuo-Newhouse, Amy

    2016-01-01

    This study examined the relationship between ninth-grade students' use of connectives (temporal, causal, adversative, and additive) in functional writing and performance on standards-based/criterion-referenced measures of reading and writing. Specifically, structural equation modeling (SEM) techniques were used to examine the relationship between…

  17. Applying the Global Energy and Water Cycle Experiment (GEWEX) Hydroclimatology Panel's (GHP's) Regional Hydroclimate Projects (RHPs) framework to improve understanding of Hydrology of the Third Pole Environment (TPE).

    Science.gov (United States)

    van Oevelen, P.; Benedict, S.

    2012-04-01

    Better in-situ and remote sensing observations from TPE and analysis of these phenomena, and improving our ability to model and predict them will contribute to increasing information needed by society and decision makers for future planning. We believe TPE could benefit from becoming an element of the The Regional Hydroclimate Projects (RHPs) that are part of the GEWEX Hydroclimatology Panel (GHP). These Projects are a source of hydrologic science and modeling within GEWEX. GHP, through its network of Regional Projects, provides flux site data sets for different regions, seasons and variables, that can be used to evaluate remote sensing products with energy, water and carbon budget components. In turn, the scope of the contribution made by the RHPs through the application of in-situ and remote sensing data includes advances in seasonal forecasting, the detection and attribution of change and the development and analysis of climate projections. Challenges also remain for GHP in defining a cooperative framework in which to deal with monsoons and to help coordinate the multitude of national and region. By entraining TPE in this framework and in the cross cutting work underway in the High Elevations and water and energy budget study components of GHP there would be a mutual benefit to be gained. The TPE would provide the regional level science and implementation that yields results/tools that would contribute to GEWEX Imperatives and Grand Challenges, while GHP would provide the forum for fostering cross-collaboration between TPE and the existing RHPs in terms of expertise, instrumentation development, modeling exercises, observational data exchange etc. Additionally TPE would benefit from visibility at the programmatic level with the World Climate Research Program (WCRP) and its international sponsors, its presence on the web, newsletters, mailing lists, etc. We will report on how the existing TPE science and data scheme can be incorporated in an international

  18. Hydroclimate of the Spring Mountains and Sheep Range, Clark County, Nevada

    Science.gov (United States)

    Moreo, Michael T.; Senay, Gabriel B.; Flint, Alan L.; Damar, Nancy A.; Laczniak, Randell J.; Hurja, James

    2014-01-01

    Precipitation, potential evapotranspiration, and actual evapotranspiration often are used to characterize the hydroclimate of a region. Quantification of these parameters in mountainous terrains is difficult because limited access often hampers the collection of representative ground data. To fulfill a need to characterize ecological zones in the Spring Mountains and Sheep Range of southern Nevada, spatially and temporally explicit estimates of these hydroclimatic parameters are determined from remote-sensing and model-based methodologies. Parameter-elevation Regressions on Independent Slopes Model (PRISM) precipitation estimates for this area ranges from about 100 millimeters (mm) in the low elevations of the study area (700 meters [m]) to more than 700 mm in the high elevations of the Spring Mountains (> 2,800 m). The PRISM model underestimates precipitation by 7–15 percent based on a comparison with four high‑elevation precipitation gages having more than 20 years of record. Precipitation at 3,000-m elevation is 50 percent greater in the Spring Mountains than in the Sheep Range. The lesser amount of precipitation in the Sheep Range is attributed to partial moisture depletion by the Spring Mountains of eastward-moving, cool-season (October–April) storms. Cool-season storms account for 66–76 percent of annual precipitation. Potential evapotranspiration estimates by the Basin Characterization Model range from about 700 mm in the high elevations of the Spring Mountains to 1,600 mm in the low elevations of the study area. The model realistically simulates lower potential evapotranspiration on northeast-to-northwest facing slopes compared to adjacent southeast-to-southwest facing slopes. Actual evapotranspiration, estimated using a Moderate Resolution Imaging Spectroradiometer based water-balance model, ranges from about 100 to 600 mm. The magnitude and spatial variation of simulated, actual evapotranspiration was validated by comparison to PRISM precipitation

  19. Differentiated effective connectivity patterns of the executive control network in progressive MCI: a potential biomarker for predicting AD.

    Science.gov (United States)

    Cai, Suping; Peng, Yanlin; Chong, Tao; Zhang, Yun; von Deneen, Karen M; Huang, Liyu; Aibl Research Group

    2017-03-09

    Mild cognitive impairment (MCI) is often a transitional state between normal aging and Alzheimer's disease (AD). When observed longitudinally, some MCI patients convert to AD, while a considerable portion either remain MCI or revert to a normal functioning state. This divergence has provided some enlightenment on a potential biomarker be represented in the resting state brain activities of MCI patients with different post-hoc labels. Recent studies have shown impaired executive functions, other than typically explicated memory impairment with AD/MCI patients. This observation raises the question that whether or not the executive control network (ECN) was impaired, as which pivotally supports the central executive functions. Given the fact that effective connectivity is a sufficient index in detecting resting brain abnormalities in AD/MCI, the current study specifically asks a question whether the effective connectivity patterns are differentiated in MCI patients with different post-hoc labels. We divided the MCI subjects into three groups depending on their progressive state obtained longitudinally: 1) 15 MCI-R subjects: MCI reverted to the normal functioning state and stabilized to the normal state in 24 months; 2) 35 MCI-S subjects: MCI patients maintained this disease in a stable state for 24 months; 3) 22 MCI-P subjects: MCI progressed to AD and stabilized to AD in 24 months, and 4) 39 age-matched normal control subjects (NC). We conducted a Granger causality analysis after identifying the core nodes of ECN in all of the subjects using Independent Component Analysis. Our findings revealed that different MCI groups presented different effective connectivity patterns within the ECN compared to the NC group. Specifically, (1) dorsolateral prefrontal cortex (dLPFC) and medial prefrontal cortex (mPFC) were the core nodes in the ECN network that exhibited different connecting patterns; (2) an effective connection circuit "R.dLPFC right caudate Left thalamus

  20. Reduced resting state functional connectivity of the somatosensory cortex predicts psychopathological symptoms in women with bulimia nervosa

    Directory of Open Access Journals (Sweden)

    Luca eLavagnino

    2014-08-01

    Full Text Available BackgroundAlterations in the resting state functional connectivity (rs-FC of several brain networks have been demonstrated in eating disorders. However, very few studies are currently available on brain network dysfunctions in bulimia nervosa (BN. The somatosensory network is central in processing body-related stimuli and it may be altered in BN. The present study therefore aimed to investigate rs-FC in the somatosensory network in bulimic women. MethodsSixteen medication-free women with BN (age=23±5 years and 18 matched controls (age=23±3 years underwent a functional magnetic resonance resting state scan and assessment of eating disorder symptoms. Within-network and seed-based functional connectivity analyses were conducted to assess rs-FC within the somatosensory network and to other areas of the brain. ResultsBN patients showed a decreased resting state functional connectivity both within the somatosensory network (t=9.0, df=1, P=0.005 and with posterior cingulate cortex (PCC and two visual areas (the right middle occipital gyrus and the right cuneus(P=0.05 corrected for multiple comparison. The region in the right middle occipital gyrus is implicated in body processing and is known as extrastriate body area, or EBA. The rs-FC of the left paracentral lobule with the EBA correlated with psychopathology measures like bulimia (r=-0.4; P=0.02 and interoceptive awareness (r=-0.4; P=0.01. Analyses were conducted using age, BMI (body mass index and depressive symptoms as covariates. ConclusionsOur findings show a specific alteration of the rs-FC of the somatosensory cortex in BN patients, which correlates with eating disorder symptoms. The connectivity between the somatosensory cortex and the EBA might be related to dysfunctions in body image processing. The results should be considered preliminary due to the small sample size.

  1. Habitat composition and connectivity predicts bat presence and activity at foraging sites in a large UK conurbation.

    Directory of Open Access Journals (Sweden)

    James D Hale

    Full Text Available BACKGROUND: Urbanization is characterized by high levels of sealed land-cover, and small, geometrically complex, fragmented land-use patches. The extent and density of urbanized land-use is increasing, with implications for habitat quality, connectivity and city ecology. Little is known about densification thresholds for urban ecosystem function, and the response of mammals, nocturnal and cryptic taxa are poorly studied in this respect. Bats (Chiroptera are sensitive to changing urban form at a species, guild and community level, so are ideal model organisms for analyses of this nature. METHODOLOGY/PRINCIPAL FINDINGS: We surveyed bats around urban ponds in the West Midlands conurbation, United Kingdom (UK. Sites were stratified between five urban land classes, representing a gradient of built land-cover at the 1 km(2 scale. Models for bat presence and activity were developed using land-cover and land-use data from multiple radii around each pond. Structural connectivity of tree networks was used as an indicator of the functional connectivity between habitats. All species were sensitive to measures of urban density. Some were also sensitive to landscape composition and structural connectivity at different spatial scales. These results represent new findings for an urban area. The activity of Pipistrellus pipistrellus (Schreber 1774 exhibited a non-linear relationship with the area of built land-cover, being much reduced beyond the threshold of ∼60% built surface. The presence of tree networks appears to mitigate the negative effects of urbanization for this species. CONCLUSIONS/SIGNIFICANCE: Our results suggest that increasing urban density negatively impacts the study species. This has implications for infill development policy, built density targets and the compact city debate. Bats were also sensitive to the composition and structure of the urban form at a range of spatial scales, with implications for land-use planning and management

  2. Estimation of vocal dysperiodicities in disordered connected speech by means of distant-sample bidirectional linear predictive analysis.

    Science.gov (United States)

    Bettens, Frédéric; Grenez, Francis; Schoentgen, Jean

    2005-01-01

    The article presents an analysis of vocal dysperiodicities in connected speech produced by dysphonic speakers. The processing is based on a comparison of the present speech fragment with future and past fragments. The size of the dysperiodicity estimate is zero for periodic speech signals. A feeble increase of the vocal dysperiodicity is guaranteed to produce a feeble increase of the estimate. No spurious noise boosting occurs owing to cycle insertion and omission errors, or phonetic segment boundary artifacts. Additional objectives of the study have been investigating whether deviations from periodicity are larger or more commonplace in connected speech than in sustained vowels, and whether sentences that comprise frequent voice onsets and offsets are noisier than sentences that comprise few. The corpora contain sustained vowels as well as grammatically- and phonetically matched sentences. An acoustic marker that correlates with the perceived degree of hoarseness summarizes the size of the dysperiodicities. The marker values for sustained vowels have been highly correlated with those for connected speech, and the marker values for sentences that comprise few voiced/unvoiced transients have been highly correlated with the marker values for sentences that comprise many.

  3. Accurate and computationally efficient prediction of thermochemical properties of biomolecules using the generalized connectivity-based hierarchy.

    Science.gov (United States)

    Sengupta, Arkajyoti; Ramabhadran, Raghunath O; Raghavachari, Krishnan

    2014-08-14

    In this study we have used the connectivity-based hierarchy (CBH) method to derive accurate heats of formation of a range of biomolecules, 18 amino acids and 10 barbituric acid/uracil derivatives. The hierarchy is based on the connectivity of the different atoms in a large molecule. It results in error-cancellation reaction schemes that are automated, general, and can be readily used for a broad range of organic molecules and biomolecules. Herein, we first locate stable conformational and tautomeric forms of these biomolecules using an accurate level of theory (viz. CCSD(T)/6-311++G(3df,2p)). Subsequently, the heats of formation of the amino acids are evaluated using the CBH-1 and CBH-2 schemes and routinely employed density functionals or wave function-based methods. The calculated heats of formation obtained herein using modest levels of theory and are in very good agreement with those obtained using more expensive W1-F12 and W2-F12 methods on amino acids and G3 results on barbituric acid derivatives. Overall, the present study (a) highlights the small effect of including multiple conformers in determining the heats of formation of biomolecules and (b) in concurrence with previous CBH studies, proves that use of the more effective error-cancelling isoatomic scheme (CBH-2) results in more accurate heats of formation with modestly sized basis sets along with common density functionals or wave function-based methods.

  4. Holocene glacier variability and Neoglacial hydroclimate at Ålfotbreen, western Norway

    Science.gov (United States)

    Gjerde, Marthe; Bakke, Jostein; Vasskog, Kristian; Nesje, Atle; Hormes, Anne

    2016-02-01

    Glaciers and small ice caps respond rapidly to climate perturbations (mainly winter precipitation, and summer temperature), and the mass-balance of glaciers located in western Norway is governed mainly by winter precipitation (Pw). Records of past Pw can offer important insight into long-term changes in atmospheric circulation, but few proxies are able to accurately capture winter climate variations in Scandinavia. Reconstructions of equilibrium-line-altitude (ELA) variations from glaciers that are sensitive to changes in Pw therefore provide a unique opportunity to quantify past winter climate in this region. Here we present a new, Holocene glacier activity reconstruction for the maritime ice cap Ålfotbreen in western Norway, based on investigations of distal glacier-fed lake sediments and modern mass balance measurements (1963-2010). Several lake sediment cores have been subject to a suite of laboratory analyses, including measurements of physical parameters such as dry bulk density (DBD) and loss-on-ignition (LOI), geochemistry (XRF), surface magnetic susceptibility (MS), and grain size distribution, to identify glacial sedimentation in the lake. Both radiocarbon (AMS 14C) and 210Pb dating were applied to establish age-depth relationships in the sediment cores. A novel approach was used to calibrate the sedimentary record against a simple ELA model, which allowed reconstruction of continuous ELA changes for Ålfotbreen during the Neoglacial (when Ålfotbreen was present, i.e. the last ∼1400 years). Furthermore, the resulting ELA variations were combined with an independent summer temperature record to calculate Neoglacial Pw using the 'Liestøl equation'. The resulting Pw record is of higher resolution than previous reconstructions from glaciers in Norway and shows the potential of glacier records to provide high-resolution data reflecting past variations in hydroclimate. Complete deglaciation of the Ålfotbreen occurred ∼9700 cal yr BP, and the ice cap was

  5. Resting State Functional Connectivity within the Cingulate Cortex Jointly Predicts Agreeableness and Stressor-Evoked Cardiovascular Reactivity

    OpenAIRE

    Ryan, John P.; Sheu, Lei K.; Peter J Gianaros

    2010-01-01

    Exaggerated cardiovascular reactivity to stress confers risk for cardiovascular disease. Further, individual differences in stressor-evoked cardiovascular reactivity covary with the functionality of cortical and limbic brain areas, particularly within the cingulate cortex. What remains unclear, however, is how individual differences in personality traits interact with cingulate functionality in the prediction of stressor-evoked cardiovascular reactivity. Accordingly, we tested the association...

  6. A developmental approach to predicting neuronal connectivity from small biological datasets: a gradient-based neuron growth model.

    Science.gov (United States)

    Borisyuk, Roman; Al Azad, Abul Kalam; Conte, Deborah; Roberts, Alan; Soffe, Stephen R

    2014-01-01

    Relating structure and function of neuronal circuits is a challenging problem. It requires demonstrating how dynamical patterns of spiking activity lead to functions like cognitive behaviour and identifying the neurons and connections that lead to appropriate activity of a circuit. We apply a "developmental approach" to define the connectome of a simple nervous system, where connections between neurons are not prescribed but appear as a result of neuron growth. A gradient based mathematical model of two-dimensional axon growth from rows of undifferentiated neurons is derived for the different types of neurons in the brainstem and spinal cord of young tadpoles of the frog Xenopus. Model parameters define a two-dimensional CNS growth environment with three gradient cues and the specific responsiveness of the axons of each neuron type to these cues. The model is described by a nonlinear system of three difference equations; it includes a random variable, and takes specific neuron characteristics into account. Anatomical measurements are first used to position cell bodies in rows and define axon origins. Then a generalization procedure allows information on the axons of individual neurons from small anatomical datasets to be used to generate larger artificial datasets. To specify parameters in the axon growth model we use a stochastic optimization procedure, derive a cost function and find the optimal parameters for each type of neuron. Our biologically realistic model of axon growth starts from axon outgrowth from the cell body and generates multiple axons for each different neuron type with statistical properties matching those of real axons. We illustrate how the axon growth model works for neurons with axons which grow to the same and the opposite side of the CNS. We then show how, by adding a simple specification for dendrite morphology, our model "developmental approach" allows us to generate biologically-realistic connectomes.

  7. A developmental approach to predicting neuronal connectivity from small biological datasets: a gradient-based neuron growth model.

    Directory of Open Access Journals (Sweden)

    Roman Borisyuk

    Full Text Available Relating structure and function of neuronal circuits is a challenging problem. It requires demonstrating how dynamical patterns of spiking activity lead to functions like cognitive behaviour and identifying the neurons and connections that lead to appropriate activity of a circuit. We apply a "developmental approach" to define the connectome of a simple nervous system, where connections between neurons are not prescribed but appear as a result of neuron growth. A gradient based mathematical model of two-dimensional axon growth from rows of undifferentiated neurons is derived for the different types of neurons in the brainstem and spinal cord of young tadpoles of the frog Xenopus. Model parameters define a two-dimensional CNS growth environment with three gradient cues and the specific responsiveness of the axons of each neuron type to these cues. The model is described by a nonlinear system of three difference equations; it includes a random variable, and takes specific neuron characteristics into account. Anatomical measurements are first used to position cell bodies in rows and define axon origins. Then a generalization procedure allows information on the axons of individual neurons from small anatomical datasets to be used to generate larger artificial datasets. To specify parameters in the axon growth model we use a stochastic optimization procedure, derive a cost function and find the optimal parameters for each type of neuron. Our biologically realistic model of axon growth starts from axon outgrowth from the cell body and generates multiple axons for each different neuron type with statistical properties matching those of real axons. We illustrate how the axon growth model works for neurons with axons which grow to the same and the opposite side of the CNS. We then show how, by adding a simple specification for dendrite morphology, our model "developmental approach" allows us to generate biologically-realistic connectomes.

  8. Language development, literacy skills, and predictive connections to reading in Finnish children with and without familial risk for dyslexia.

    Science.gov (United States)

    Torppa, Minna; Lyytinen, Paula; Erskine, Jane; Eklund, Kenneth; Lyytinen, Heikki

    2010-01-01

    Discriminative language markers and predictive links between early language and literacy skills were investigated retrospectively in the Jyväskylä Longitudinal Study of Dyslexia in which children at familial risk for dyslexia have been followed from birth. Three groups were formed on the basis of 198 children's reading and spelling status. One group of children with reading disability (RD; n = 46) and two groups of typical readers from nondyslexic control (TRC; n = 84) and dyslexic families (TRD; n = 68) were examined from age 1.5 years to school age. The RD group was outperformed by typical readers on numerous language and literacy measures (expressive and receptive language, morphology, phonological sensitivity, RAN, and letter knowledge) from 2 years of age onward. The strongest predictive links emerged from receptive and expressive language to reading via measures of letter naming, rapid naming, morphology, and phonological awareness.

  9. Predictive Analytical Model for Isolator Shock-Train Location in a Mach 2.2 Direct-Connect Supersonic Combustion Tunnel

    Science.gov (United States)

    Lingren, Joe; Vanstone, Leon; Hashemi, Kelley; Gogineni, Sivaram; Donbar, Jeffrey; Akella, Maruthi; Clemens, Noel

    2016-11-01

    This study develops an analytical model for predicting the leading shock of a shock-train in the constant area isolator section in a Mach 2.2 direct-connect scramjet simulation tunnel. The effective geometry of the isolator is assumed to be a weakly converging duct owing to boundary-layer growth. For some given pressure rise across the isolator, quasi-1D equations relating to isentropic or normal shock flows can be used to predict the normal shock location in the isolator. The surface pressure distribution through the isolator was measured during experiments and both the actual and predicted locations can be calculated. Three methods of finding the shock-train location are examined, one based on the measured pressure rise, one using a non-physics-based control model, and one using the physics-based analytical model. It is shown that the analytical model performs better than the non-physics-based model in all cases. The analytic model is less accurate than the pressure threshold method but requires significantly less information to compute. In contrast to other methods for predicting shock-train location, this method is relatively accurate and requires as little as a single pressure measurement. This makes this method potentially useful for unstart control applications.

  10. Cross-scale interactions, legacies, and spatial connectivity: integrating time and space to predict post-disturbance response across scales

    Science.gov (United States)

    Peters, D. P.; Duniway, M.; Browning, D. M.; Yao, J.; Pillsbury, F. C.; Anderson, J.; Havstad, K.

    2011-12-01

    Emergent properties and cross-scale interactions are important in driving landscape-scale dynamics during a disturbance event, such as wildfire. We used these concepts related to changing pattern-process relationships across scales to explain ecological responses following disturbance that resulted in a state change in the Chihuahuan Desert. Our objective was to provide a mechanistic understanding for a large-scale perennial grass recruitment event that was unprecedented over the 100-year history of the Jornada ARS-LTER research site in southern New Mexico. This recruitment event occurred following a sequence of wet years (2004-2008) in an area that experienced gradual shrub invasion (1915-1984) and rapid coppice dune formation (1985-2000) followed by the current stable shrubland state. Long-term observations show that this grass pulse resulted in a significant increase in primary production that could not be explained by historic patterns in rainfall amount alone. In addition, a previous wet sequence of years (1983-1988) did not result in a similar broad-scale recruitment of grasses. We used multiple, long-term datasets and a model of soil water dynamics to test three scale-dependent hypotheses to explain this larger-than-expected production of grasses in the second wet period compared to the first: (1) differences in rainfall seasonality and event size affected a sequence of plant-scale processes, (2) variation in animal abundance affected plant-to-patch scale processes, and (3) differences in soil stability affected patch-scale erosional-depositional processes and spatial connectivity among patches. Our results show that complex interactions between plant- and patch-scale processes and water availability can generate unexpected landscape-scale dynamics following disturbance. A sequence of events influenced by historic legacies and current conditions interact with vegetation-soil feedbacks at plant to patch scales to generate emergent behavior at the landscape

  11. Prediction of the main cortical areas and connections involved in the tactile function of the visual cortex by network analysis.

    Science.gov (United States)

    Négyessy, László; Nepusz, Tamás; Kocsis, László; Bazsó, Fülöp

    2006-04-01

    We explored the cortical pathways from the primary somatosensory cortex to the primary visual cortex (V1) by analysing connectional data in the macaque monkey using graph-theoretical tools. Cluster analysis revealed the close relationship of the dorsal visual stream and the sensorimotor cortex. It was shown that prefrontal area 46 and parietal areas VIP and 7a occupy a central position between the different clusters in the visuo-tactile network. Among these structures all the shortest paths from primary somatosensory cortex (3a, 1 and 2) to V1 pass through VIP and then reach V1 via MT, V3 and PO. Comparison of the input and output fields suggested a larger specificity for the 3a/1-VIP-MT/V3-V1 pathways among the alternative routes. A reinforcement learning algorithm was used to evaluate the importance of the aforementioned pathways. The results suggest a higher role for V3 in relaying more direct sensorimotor information to V1. Analysing cliques, which identify areas with the strongest coupling in the network, supported the role of VIP, MT and V3 in visuo-tactile integration. These findings indicate that areas 3a, 1, VIP, MT and V3 play a major role in shaping the tactile information reaching V1 in both sighted and blind subjects. Our observations greatly support the findings of the experimental studies and provide a deeper insight into the network architecture underlying visuo-tactile integration in the primate cerebral cortex.

  12. Predicting connectivity of green turtles at Palmyra Atoll, central Pacific: a focus on mtDNA and dispersal modelling.

    Science.gov (United States)

    Naro-Maciel, Eugenia; Gaughran, Stephen J; Putman, Nathan F; Amato, George; Arengo, Felicity; Dutton, Peter H; McFadden, Katherine W; Vintinner, Erin C; Sterling, Eleanor J

    2014-04-06

    Population connectivity and spatial distribution are fundamentally related to ecology, evolution and behaviour. Here, we combined powerful genetic analysis with simulations of particle dispersal in a high-resolution ocean circulation model to investigate the distribution of green turtles foraging at the remote Palmyra Atoll National Wildlife Refuge, central Pacific. We analysed mitochondrial sequences from turtles (n = 349) collected there over 5 years (2008-2012). Genetic analysis assigned natal origins almost exclusively (approx. 97%) to the West Central and South Central Pacific combined Regional Management Units. Further, our modelling results indicated that turtles could potentially drift from rookeries to Palmyra Atoll via surface currents along a near-Equatorial swathe traversing the Pacific. Comparing findings from genetics and modelling highlighted the complex impacts of ocean currents and behaviour on natal origins. Although the Palmyra feeding ground was highly differentiated genetically from others in the Indo-Pacific, there was no significant differentiation among years, sexes or stage-classes at the Refuge. Understanding the distribution of this foraging population advances knowledge of green turtles and contributes to effective conservation planning for this threatened species.

  13. Predicting connectivity of green turtles at Palmyra Atoll, central Pacific: a focus on mtDNA and dispersal modelling

    Science.gov (United States)

    Naro-Maciel, Eugenia; Gaughran, Stephen J.; Putman, Nathan F.; Amato, George; Arengo, Felicity; Dutton, Peter H.; McFadden, Katherine W.; Vintinner, Erin C.; Sterling, Eleanor J.

    2014-01-01

    Population connectivity and spatial distribution are fundamentally related to ecology, evolution and behaviour. Here, we combined powerful genetic analysis with simulations of particle dispersal in a high-resolution ocean circulation model to investigate the distribution of green turtles foraging at the remote Palmyra Atoll National Wildlife Refuge, central Pacific. We analysed mitochondrial sequences from turtles (n = 349) collected there over 5 years (2008–2012). Genetic analysis assigned natal origins almost exclusively (approx. 97%) to the West Central and South Central Pacific combined Regional Management Units. Further, our modelling results indicated that turtles could potentially drift from rookeries to Palmyra Atoll via surface currents along a near-Equatorial swathe traversing the Pacific. Comparing findings from genetics and modelling highlighted the complex impacts of ocean currents and behaviour on natal origins. Although the Palmyra feeding ground was highly differentiated genetically from others in the Indo-Pacific, there was no significant differentiation among years, sexes or stage-classes at the Refuge. Understanding the distribution of this foraging population advances knowledge of green turtles and contributes to effective conservation planning for this threatened species.

  14. Stem thrust prediction model for Westinghouse wedge gate valves with linkage type stem-to-disk connection

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.K.; Sharma, V.; Kalsi, M.S. [Kalsi Engineering, Inc., Sugar Land, TX (United States)] [and others

    1996-12-01

    The Electric Power Research Institute (EPRI) conducted a comprehensive research program with the objective of providing nuclear utilities with analytical methods to predict motor operated valve (MOV) performance under design basis conditions. This paper describes the stem thrust calculation model developed for evaluating the performance of one such valve, the Westinghouse flexible wedge gate valve. These procedures account for the unique functional characteristics of this valve design. In addition, model results are compared to available flow loop and in situ test data as a basis for evaluating the performance of the valve model.

  15. Predictive Control Applied to a Solar Desalination Plant Connected to a Greenhouse with Daily Variation of Irrigation Water Demand

    Directory of Open Access Journals (Sweden)

    Lidia Roca

    2016-03-01

    Full Text Available The water deficit in the Mediterranean area is a known matter severely affecting agriculture. One way to avoid the aquifers’ exploitation is to supply water to crops by using thermal desalination processes. Moreover, in order to guarantee long-term sustainability, the required thermal energy for the desalination process can be provided by solar energy. This paper shows simulations for a case study in which a solar multi-effect distillation plant produces water for irrigation purposes. Detailed models of the involved systems are the base of a predictive controller to operate the desalination plant and fulfil the water demanded by the crops.

  16. Existence of a natural instability not predicted by theory and connected to a wall deformation in a laminar boundary layer

    Science.gov (United States)

    Gougat, P.; Martin, F.

    1981-01-01

    Natural instability related to negative wall deformation was studied. It was shown that natural instabilities which propagate in a laminar boundary layer of a flat plate are in agreement with stability theory. It is found that if a wall has a deformation, a second frequency does exist, which is not predicted and is twice the first frequency. This second instable frequency only appears if there is a negative velocity gradient. The phenomenon is located very closely to the wall and drops off rapidly when moved away from it.

  17. Examining the utility of coral Ba/Ca as a proxy for river discharge and hydroclimate variability at Coiba Island, Gulf of Chirquí, Panamá.

    Science.gov (United States)

    Brenner, Logan D; Linsley, Braddock K; Dunbar, Robert B

    2017-05-15

    Panamá's extreme hydroclimate seasonality is driven by Intertropical Convergence Zone rainfall and resulting runoff. River discharge (Q) carries terrestrially-derived barium to coastal waters that can be recorded in coral. We present a Ba/Ca record (1996-1917) generated from a Porites coral colony in the Gulf of Chiriquí near Coiba Island (Panamá) to understand regional hydroclimate. Here coral Ba/Ca is correlated to instrumental Q (R=0.67, pcoral Ba/Ca (LaVigne et al., 2016). Additionally, the Coiba coral Ba/Ca records at least 5 El Niño events and identified 22 of the 37 wet seasons with below average precipitation. These data corroborate the Q proxy and provide insight into the use of coral Ba/Ca as an El Niño and drought indicator. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. North African dust deposition and hydroclimate over the last 60 ka: A combined view from the east and west of the continent

    Science.gov (United States)

    Kinsley, C. W.; McGee, D.; Bradtmiller, L. I.; Tierney, J. E.; Winckler, G.; Stuut, J. B. W.; deMenocal, P. B.

    2014-12-01

    Past changes in atmospheric circulation and hydroclimate over North Africa can be explored by reconstructing eolian dust accumulation in both East and West African margin sediments. Recent high-resolution reconstructions of dust deposition from West Africa (1) indicate dramatic changes in North African dust emissions over the last 20 ka, with comparable results to those found in the terrigenous accumulation rates at nearby ODP Hole 658C (2). A high-resolution record of aridity from East Africa using δDwax indicates dramatic changes in hydroclimate over the past 40 ka (3). The records show similar trends with arid conditions/high dust emissions seen during the Last Glacial Maximum, the Younger Dryas and Heinrich Event 1 (H1), and the wettest conditions of the past 40,000 years with accompanying low dust emissions during the African Humid Period. This study has two goals: 1) Extend the dust flux and terrigeneous accumulation records from West Africa back to 35 ka and 60 ka respectively, to provide quantitative estimates of the magnitude of eolian deposition changes associated with previous Heinrich Stadials (H2 to H6) and summer insolation minima/maxima; 2) Construct a high-resolution record of eolian dust accumulation rates off the East African margin over the past 20 ka using the same sample material as (3) allowing quantitative estimates of the magnitude of dust flux changes associated with abrupt changes in hydroclimate and provide a direct comparison of dust flux and δDwax. The combination of these study areas from both sides of the African continent, and comparison of the dust and leaf wax proxies promises to provide a more complete picture of hydroclimate changes accompanying orbital- and millennial-scale climate changes in North Africa over the last 60,000 years. 1. EPSL 371-372, 163-176. 2. Paleoceanography 21, PA4203. 3. Science 342, 843-846.

  19. Highly correlating distance/connectivity-based topological indices 5. Accurate prediction of liquid density of organic molecules using PCR and PC-ANN.

    Science.gov (United States)

    Shamsipur, Mojtaba; Ghavami, Raouf; Sharghi, Hashem; Hemmateenejad, Bahram

    2008-11-01

    The primary goal of a quantitative structure-property relationship (QSPR) is to identify a set of structurally based numerical descriptors that can be mathematically linked to a property of interest. Recently, we proposed some new topological indices (Sh indices) based on the distance sum and connectivity of a molecular graph that derived directly from two-dimensional molecular topology for use in QSAR/QSPR studies. In this study, the ability of these indices to predict the liquid densities (rho) of a large and diverse set of organic liquid compounds (521 compounds) has been examined. Ten different Sh indices were calculated for each molecule. Both linear and non-linear modeling methods were implemented using principal component regression (PCR) and principal component-artificial neural network (PC-ANN) with back-propagation learning algorithm, respectively. Correlation ranking procedure was used to rank the principal components and entered them into the models. PCR analysis of the data showed that the proposed Sh indices could explain about 91.82% of variations in the density data, while the variations explained by the ANN modeling were more than 97.93%. The predictive ability of the models was evaluated using external test set molecules and root mean square errors of prediction of 0.0308 g ml(-1) and 0.0248 g ml(-1) were obtained for liquid densities of external compounds by linear and non-linear models, respectively.

  20. Regional hydroclimate changes in Southern Europe during the inception and termination of the penultimate glacial (MIS 6)

    Science.gov (United States)

    Wilson, Graham; Frogley, Michael; Jones, Tim; Leng, Melanie; Hughes, Philip

    2017-04-01

    Glacial and interglacial transitions offer valuable insights into the Earth system response to both abrupt and gradual change and differ in timing and magnitude in response to varying orbital configurations and internal system dynamics. Here we focus on the inception and termination of the relatively underexplored penultimate glacial (MIS 6) in order to assess lacustrine responses to climate changes under differing boundary conditions. We apply a combined diatom and stable isotope approach to investigate changes in regional hydroclimate as recorded in the sediments of Lake Ioannina (NW Greece). Diatom and isotope-inferred changes in lake conditions coincided with the MIS 7/6 transition. The δ18O record suggests higher precipitation / evaporation (P/E) ratios between c. 178 and 164 ka, associated with peak insolation during MIS 6e, with episodes of planktonic diatom expansion likely reflecting the interstadials of the 6e complex. Furthermore, the close correspondence between planktonic diatom frequencies, arboreal pollen and regional sea-surface temperatures together provide strong evidence for millennial-scale oscillations in regional precipitation at times during the early-mid MIS 6. Although the isotope data suggest overall cooler and drier conditions during the mid-late MIS 6, consistent with approaching glacial maxima, variability in P/E and oscillations in planktonic and facultative planktonic diatom frequencies nevertheless show that marked changes in lake conditions persisted into late MIS 6. The diatom data suggest a complex penultimate deglaciation driven primarily by multiple oscillations in lake level. There is diachroneity in lake and terrestrial ecosystem response to warming at the onset of the last interglacial, with an abrupt increase in lake level occurring c. 2.7 ka prior to sustained forest expansion with peak precipitation. This is likely a result of direct input of snow melt and glacial meltwater transfer to the subterranean karst system in

  1. Connected Traveler

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Alex

    2015-11-01

    The Connected Traveler project is a multi-disciplinary undertaking that seeks to validate potential for transformative transportation system energy savings by incentivizing efficient traveler behavior. This poster outlines various aspects of the Connected Traveler project, including market opportunity, understanding traveler behavior and decision-making, automation and connectivity, and a projected timeline for Connected Traveler's key milestones.

  2. Natural variability versus human impact: Hydroclimate variability and the role of agriculture in changing dust emissions from Australia.

    Science.gov (United States)

    Marx, Samuel; Kamber, Balz; McGowan, Hamish; Hooper, James; Zawadzki, Atun

    2016-04-01

    Broad-scale dust emissions play an important role in Earth systems, for example influencing oceanic productivity via phytoplankton fertilisation. Existing palaeo dust records show that dust emissions vary significantly in time, implying its impact is similarly variable. There remains, however, a paucity of records which quantify variability in dust emissions. This study presents continuous, Holocene-aged, records of dust emissions from Australia, an important global dust source. Records demonstrate that rates of dust export have varied by 8-30 times over the mid to late Holocene. This variability is largely attributed to hydroclimate variability and its associated feedbacks within dust source areas. Significantly, however, a major disruption of dust emission rates is recorded in the past 200 years when dust emissions increased by between 2-10 times rates of natural variability in dust export. This change is concomitant with the arrival of Europeans in Australia and is primarily attributed to the development of agriculture which resulted in unprecedented environmental change in Australia's arid interior. This result broadly accords with the few other existing empirical dust records which both pre-date and post-date the onset of agriculture in various arid and semi-arid regions. Collectively, these records imply the impact of dust in Earth systems has changed as a result of agricultural development.

  3. On eccentric connectivity index

    CERN Document Server

    Zhou, Bo

    2010-01-01

    The eccentric connectivity index, proposed by Sharma, Goswami and Madan, has been employed successfully for the development of numerous mathematical models for the prediction of biological activities of diverse nature. We now report mathematical properties of the eccentric connectivity index. We establish various lower and upper bounds for the eccentric connectivity index in terms of other graph invariants including the number of vertices, the number of edges, the degree distance and the first Zagreb index. We determine the n-vertex trees of diameter with the minimum eccentric connectivity index, and the n-vertex trees of pendent vertices, with the maximum eccentric connectivity index. We also determine the n-vertex trees with respectively the minimum, second-minimum and third-minimum, and the maximum, second-maximum and third-maximum eccentric connectivity indices for

  4. Connecting Grammaticalisation

    DEFF Research Database (Denmark)

    Nørgård-Sørensen, Jens; Heltoft, Lars; Schøsler, Lene

    morphological, topological and constructional paradigms often connect to form complex paradigms. The book introduces the concept of connecting grammaticalisation to describe the formation, restructuring and dismantling of such complex paradigms. Drawing primarily on data from Germanic, Romance and Slavic...

  5. Investigating late Holocene variations in hydroclimate and the stable isotope composition of precipitation using southern South American peatlands: a hypothesis

    Science.gov (United States)

    Daley, T. J.; Mauquoy, D.; Chambers, F. M.

    2012-02-01

    Ombrotrophic raised peatlands provide an ideal archive for integrating late Holocene records of variations in hydroclimate and the estimated stable isotope composition of precipitation with recent instrumental measurements. Modern measurements of mean monthly surface air temperature, precipitation and δD and δ18O values in precipitation from the late twentieth and early twenty-first centuries provide a short but invaluable record with which to investigate modern relationships between these variables, thereby enabling improved interpretation of the peatland palaeodata. Data from two stations in the Global Network for Isotopes in Precipitation (GNIP) from Tierra del Fuego (Punta Arenas, Chile and Ushuaia, Argentina) were analysed for the period 1982 to 2008. In both locations, δD and δ18O values have decreased in response to quite different trends in local surface air temperature and total precipitation amount. At Ushuaia, the fall in δ18O values is associated with an increase in the mean annual amount of precipitation. At Punta Arenas, the fall in δ18O values is weakly associated with decrease in the precipitation amount and an increase in local temperatures. The pattern in both records is consistent with an increase in the zonal intensity of the southern westerly wind belt. These regional differences, observed in response to a known driver, should be detectable in peatland sites close to the GNIP stations. There is currently insufficient availability of suitably temporally resolved data to test for these regional differences over the last 3000 yr. Existing peatland palaeoclimate data from two sites near Ushuaia, however, provide evidence for changes in the late Holocene that are consistent with the pattern observed in modern observations. Furthermore, the records suggest synchroneity in millennial-scale oscillations between the Northern and Southern Hemispheres.

  6. Investigating late Holocene variations in hydroclimate and the stable isotope composition of precipitation using southern South American peatlands: a hypothesis

    Directory of Open Access Journals (Sweden)

    T. J. Daley

    2012-02-01

    Full Text Available Ombrotrophic raised peatlands provide an ideal archive for integrating late Holocene records of variations in hydroclimate and the estimated stable isotope composition of precipitation with recent instrumental measurements. Modern measurements of mean monthly surface air temperature, precipitation and δD and δ18O values in precipitation from the late twentieth and early twenty-first centuries provide a short but invaluable record with which to investigate modern relationships between these variables, thereby enabling improved interpretation of the peatland palaeodata. Data from two stations in the Global Network for Isotopes in Precipitation (GNIP from Tierra del Fuego (Punta Arenas, Chile and Ushuaia, Argentina were analysed for the period 1982 to 2008. In both locations, δD and δ18O values have decreased in response to quite different trends in local surface air temperature and total precipitation amount. At Ushuaia, the fall in δ18O values is associated with an increase in the mean annual amount of precipitation. At Punta Arenas, the fall in δ18O values is weakly associated with decrease in the precipitation amount and an increase in local temperatures. The pattern in both records is consistent with an increase in the zonal intensity of the southern westerly wind belt. These regional differences, observed in response to a known driver, should be detectable in peatland sites close to the GNIP stations. There is currently insufficient availability of suitably temporally resolved data to test for these regional differences over the last 3000 yr. Existing peatland palaeoclimate data from two sites near Ushuaia, however, provide evidence for changes in the late Holocene that are consistent with the pattern observed in modern observations. Furthermore, the records suggest synchroneity in millennial-scale oscillations between the Northern and Southern Hemispheres.

  7. Congenital ureteropelvic junction obstruction: physiopathology, decoupling of tout court pelvic dilatation-obstruction semantic connection, biomarkers to predict renal damage evolution.

    Science.gov (United States)

    Alberti, C

    2012-02-01

    The widespread use of fetal ultrasonography results in a frequent antenatally observation of hydronephrosis, ureteropelvic junction obstruction (UPJO) accounting for the greatest fraction of congenital obstructive nephropathy. UPJO may be considered, in most cases, as a functional obstructive condition, depending on defective fetal smooth muscle/nerve development at this level, with lack of peristaltic wave propagation--aperistaltic segment--and, therefore, poor urine ejection from the renal pelvis into the ureter. The UPJO-related physiopathologic events are, at first, the compliant dilatation of renal pelvis that, acting as hydraulic buffer, protects the renal parenchyma from the rising intrapelvic pressure-related potential damages, and, subsequently, beyond such phase of dynamic balance, the tubular cell stretch-stress induced by increased intratubular pressure and following parenchymal inflammatory lesions: inflammatory infiltrates, fibroblast proliferation, activation of myofibroblasts, tubulo-interstitial fibrosis. Reactive oxygen species (ROS), nitric oxide (NO), several chemo- and cytokines, growth factors, prostaglandins and eicosanoids, angiotensin-II are the main pathogenetic mediators of the obstructive nephropathy. Apoptosis of tubular cells is the major cause of the tubular atrophy, together with epithelial-mesenchymal transdifferentiation. Some criticisms on tout court semantic renal pelvis dilatation-obstruction connection have been raised considering that the renal pelvis expansion isn't, in any case, linked to an ostructive condition, as it may be verified by diuretic (furosemide) renogram together with scintiscan-based evaluation of differential renal function. In this regard, rather than repetitive invasive nuclear procedures that expose the children to ionizing radiations, an intriguing noninvasive strategy, based on the evaluation of urinary biomarkers and urinary proteome, can define the UPJO-related possible progress of parenchymal lesions

  8. Late appearance and exacerbation of primary Raynaud's phenomenon attacks can predict future development of connective tissue disease: a retrospective chart review of 3,035 patients.

    Science.gov (United States)

    Pavlov-Dolijanovic, Slavica; Damjanov, Nemanja S; Vujasinovic Stupar, Nada Z; Radunovic, Goran L; Stojanovic, Roksanda M; Babic, Dragan

    2013-04-01

    To assess the prognostic value of the age at onset of Raynaud's (RP) and of a history of exacerbation of RP attacks for the development of connective tissue disease (CTD) in patients initially found to have primary Raynaud's. 3,035 patients with primary RP (2,702 women and 333 men) were followed for an average of 4.8 years (range from 1 to 10 years). At baseline and every 6 months, they were screened for signs and symptoms of CTD. At 4.8 years of follow-up, 54.7 % patients remained as primary RP, 8.1 % had developed suspected secondary RP, and 37.2 % had developed a definite CTD. Primary RP patients had an earlier onset of RP (mean age of 32.2 years) than those with suspected (mean age 36.5 years, P = .007) or definite secondary RP associated with CTD (mean age of 39.8 years, P = .004). RP beginning before the age of forty was not significantly associated with the development of CTD. Conversely, the appearance of RP after the age of 40 was significantly associated with the development of CTD (P = .00001). Worsening of RP attacks predicted the development of CTD, especially systemic sclerosis (relative risk [RR] of 1.42), scleroderma overlap syndrome (RR of 1.18), and mixed CTD (RR of 1.18). Patients whose onset of RP occurred past 40 years of age and those with worsening RP attacks were at risk for the future development of CTD.

  9. Modeling Source Water TOC Using Hydroclimate Variables and Local Polynomial Regression.

    Science.gov (United States)

    Samson, Carleigh C; Rajagopalan, Balaji; Summers, R Scott

    2016-04-19

    To control disinfection byproduct (DBP) formation in drinking water, an understanding of the source water total organic carbon (TOC) concentration variability can be critical. Previously, TOC concentrations in water treatment plant source waters have been modeled using streamflow data. However, the lack of streamflow data or unimpaired flow scenarios makes it difficult to model TOC. In addition, TOC variability under climate change further exacerbates the problem. Here we proposed a modeling approach based on local polynomial regression that uses climate, e.g. temperature, and land surface, e.g., soil moisture, variables as predictors of TOC concentration, obviating the need for streamflow. The local polynomial approach has the ability to capture non-Gaussian and nonlinear features that might be present in the relationships. The utility of the methodology is demonstrated using source water quality and climate data in three case study locations with surface source waters including river and reservoir sources. The models show good predictive skill in general at these locations, with lower skills at locations with the most anthropogenic influences in their streams. Source water TOC predictive models can provide water treatment utilities important information for making treatment decisions for DBP regulation compliance under future climate scenarios.

  10. Hydroclimate variability and its statistical links to the large-scale climate indices for the Upper Chao Phraya River Basin, Thailand

    Science.gov (United States)

    Singhrattna, N.; Babel, M. S.; Perret, S. R.

    2009-10-01

    The local hydroclimates get impacts from the large-scale atmospheric variables via atmospheric circulation. The developing of their relationships could enhance the understanding of hydroclimate variability. This study focuses on the Upper Chao Phraya River Basin in Thailand in which rainfall is influenced by the Indian Ocean and tropical Pacific Ocean atmospheric circulation. The Southwest monsoon from the Indian Ocean to Thailand is strengthened by the temperature gradient between land and ocean. Thus, the anomalous sea surface temperature (SST) is systematically correlated with the monthly rainfall and identified as the best predictor based on the significant relationships revealed by cross-correlation analysis. It is found that rainfall, especially during the monsoon season in the different zones of study basin, corresponds to the different SST indices. This suggests that the region over the ocean which develops the temperature gradient plays a role in strengthening the monsoon. The enhanced gradient with the SST over the South China Sea is related to rainfall in High Rainfall Zone (HRZ); however, the anomalous SST over the Indian Ocean and the equatorial Pacific Ocean are associated with rainfall in Normal and Low Rainfall Zone (NRZ and LRZ) in the study area. Moreover, the identified predictors are related to the rainfall with lead periods of 1-4 months for the pre-monsoon rainfall and 6-12 months for the monsoon and dry season rainfall. The study results are very useful in developing rainfall forecasting models and consequently in the management of water resources and extreme events.

  11. Increased tree-ring network density reveals more precise estimations of sub-regional hydroclimate variability and climate dynamics in the Midwest, USA

    Science.gov (United States)

    Maxwell, Justin T.; Harley, Grant L.

    2016-10-01

    Understanding the historic variability in the hydroclimate provides important information on possible extreme dry or wet periods that in turn inform water management plans. Tree rings have long provided historical context of hydroclimate variability of the U.S. However, the tree-ring network used to create these countrywide gridded reconstructions is sparse in certain locations, such as the Midwest. Here, we increase (n = 20) the spatial resolution of the tree-ring network in southern Indiana and compare a summer (June-August) Palmer Drought Severity Index (PDSI) reconstruction to existing gridded reconstructions of PDSI for this region. We find both droughts and pluvials that were previously unknown that rival the most intense PDSI values during the instrumental period. Additionally, historical drought occurred in Indiana that eclipsed instrumental conditions with regard to severity and duration. During the period 1962-2004 CE, we find that teleconnections of drought conditions through the Atlantic Meridional Overturning Circulation have a strong influence (r = -0.60, p tree growth in this region for the late spring-early summer season. These findings highlight the importance of continuing to increase the spatial resolution of the tree-ring network used to infer past climate dynamics to capture the sub-regional spatial variability. Increasing the spatial resolution of the tree-ring network for a given region can better identify sub-regional variability, improve the accuracy of regional tree-ring PDSI reconstructions, and provide better information for climatic teleconnections.

  12. Using similarity of soil texture and hydroclimate to enhance soil moisture estimation

    Science.gov (United States)

    Coopersmith, E. J.; Minsker, B. S.; Sivapalan, M.

    2014-08-01

    Estimating soil moisture typically involves calibrating models to sparse networks of in situ sensors, which introduces considerable error in locations where sensors are not available. We address this issue by calibrating parameters of a parsimonious soil moisture model, which requires only antecedent precipitation information, at gauged locations and then extrapolating these values to ungauged locations via a hydroclimatic classification system. Fifteen sites within the Soil Climate Analysis Network (SCAN) containing multiyear time series data for precipitation and soil moisture are used to calibrate the model. By calibrating at 1 of these 15 sites and validating at another, we observe that the best results are obtained where calibration and validation occur within the same hydroclimatic class. Additionally, soil texture data are tested for their importance in improving predictions between calibration and validation sites. Results have the largest errors when calibration-validation pairs differ hydroclimatically and edaphically, improve when one of these two characteristics are aligned, and are strongest when the calibration and validation sites are hydroclimatically and edaphically similar. These findings indicate considerable promise for improving soil moisture estimation in ungauged locations by considering these similarities.

  13. Spatio-temporal trends in the hydroclimate of Turkey for the last decades based on two reanalysis datasets

    Science.gov (United States)

    Gokmen, Mustafa

    2016-09-01

    We present a regional assessment of the spatiotemporal trends in several hydro-climate variables from 1979 to 2010 in Turkey, one of the countries of the eastern Mediterranean vulnerable to climate change, using the two reanalysis products of the ECMWF: ERA-Interim and ERA-Interim/Land. The trend analysis revealed that an average warming of 1.26 °C [0.8-1.8] occurred in Turkey from 1979 to 2010, with high confidence intervals (95-99 %, mostly). Geographically, the largest warming (up to 1.8 °C) occurred in the western coastal areas next to the Aegean Sea and in the southeastern regions. The air temperature trends were generally confirmed by the in situ data from about 100 weather stations around the country, though in situ data indicated slightly higher trends ranging from 1 to 2.5°. With respect to the regional trends in hydrological variables, ERA-Interim and ERA-Interim/Land revealed quite different pictures: the ERA-Interim dataset indicated that there have been significant decreasing trends of precipitation, snow water equivalent (SWE) and runoff in some parts of inner/southeastern Anatolia (a total decrease of up to 250 mm in the upstream of the Euphrates, Kizilirmak and Seyhan basins), while ERA-Interim/Land showed no or minor trends in the same areas. Based on the extensive comparisons with precipitation and SWE gauge data, we can suggest that the hydrological trends shown by the ERA-Interim/Land dataset, which is said to be a model improvement, are relatively closer to the observations. From the hydrological trends revealed by the ERA-Interim/Land dataset, we can conclude that, despite the strong warming trends over Turkey from 1979 to 2010, there have been no widespread and strong hydrological trends for the same period throughout the country. In this regard, we can suggest that the impacts of global warming on the water cycle are not straightforward, especially at the regional scale, and future climate simulations indicating considerable

  14. Paleomonsoonal Precipitation and Hydroclimate Variability from Glacial to Interglacial Climates in the Southwest: The Stoneman Lake, Arizona Record

    Science.gov (United States)

    Garcia, D.; Fawcett, P. J.; Anderson, R. S.; Sharp, Z. D.

    2015-12-01

    Oxygen isotope values from diatom silica have been used to determine past hydrological conditions in a variety of settings including differentiating summer monsoonal paleoprecipitation from winter frontal paleoprecipitation in the American southwest. Lacustrine cores from the Valles Caldera, New Mexico, show a distinct change in silica oxygen isotope values from glacial to interglacial as a switch from a purely winter frontal precipitation during the glacial to a mix of winter frontal and summer monsoonal precipitation during the interglacial. A relatively large (ca. 20‰) and rapid increase in δ18O following the glacial termination implies an abrupt onset of the North American monsoon. We plan to elaborate on this research to see if this is true elsewhere in the southwest. Two lacustrine sediment cores (70 m deep and 30 m deep respectively) were recovered from Stoneman Lake, northern Arizona in October of 2014. With these cores we plan to determine regional hydroclimate variability between the Pleistocene-Holocene glacial transition ca. 14 ka. Oxygen isotope analysis from diatom silica will allow us to determine past sources of precipitation to the basin (Gulf of Mexico vs North Pacific), and paleoprecipitation variability. In conjunction with other proxies, we can determine if the onset of paleomonsoonal precipitation in central Arizona occurs immediately after the glacial termination as in NM, or if there is some component of monsoonal precipitation during the late glacial period. Diatom sampling was performed at approximately every 50 cm. To purify the diatoms, the samples are chemically and physically separated. The step wise fluorination and laser ablation technique are then applied to remove water & hydroxyl groups and to extract O2 & SiF4 respectively.If results from the Stoneman Lake core are similar to that of the Valles Caldera core, we should expect to see a nearly 20‰ increase in δ18Olake water. This would suggest a: 1) collapse of the summer

  15. Investigating late Holocene variations in hydroclimate and the stable isotope composition of precipitation using southern South American peatlands: an hypothesis

    Directory of Open Access Journals (Sweden)

    T. J. Daley

    2012-09-01

    Full Text Available Ombrotrophic raised peatlands provide an ideal archive for integrating late Holocene records of variations in hydroclimate and the estimated stable isotope composition of precipitation with recent instrumental measurements. Modern measurements of mean monthly surface air temperature, precipitation, and δD and δ18O-values in precipitation from the late twentieth and early twenty-first centuries provide a short but invaluable record with which to investigate modern relationships between these variables, thereby enabling improved interpretation of the peatland palaeodata. Stable isotope data from two stations in the Global Network for Isotopes in Precipitation (GNIP from southern South America (Punta Arenas, Chile and Ushuaia, Argentina were analysed for the period 1982 to 2008 and compared with longer-term meteorological data from the same locations (1890 to present and 1931 to present, respectively. δD and δ18O-values in precipitation have exhibited quite different trends in response to local surface air temperature and precipitation amount. At Punta Arenas, there has been a marked increase in the seasonal difference between summer and winter δ18O-values. A decline in the deuterium excess of summer precipitation at this station was associated with a general increase in relative humidity at 1000 mb over the surface of the Southeast Pacific Ocean, believed to be the major vapour source for the local precipitation. At Ushuaia, a fall in δ18O-values was associated with an increase in the mean annual amount of precipitation. Both records are consistent with a southward retraction and increase in zonal wind speed of the austral westerly wind belt. These regional differences, observed in response to a known driver, should be detectable in peatland sites close to the GNIP stations. Currently, insufficient data with suitable temporal resolution are available to test for these regional differences over the

  16. Investigating late Holocene variations in hydroclimate and the stable isotope composition of precipitation using southern South American peatlands: an hypothesis

    Science.gov (United States)

    Daley, T. J.; Mauquoy, D.; Chambers, F. M.; Street-Perrott, F. A.; Hughes, P. D. M.; Loader, N. J.; Roland, T. P.; van Bellen, S.; Garcia-Meneses, P.; Lewin, S.

    2012-09-01

    Ombrotrophic raised peatlands provide an ideal archive for integrating late Holocene records of variations in hydroclimate and the estimated stable isotope composition of precipitation with recent instrumental measurements. Modern measurements of mean monthly surface air temperature, precipitation, and δD and δ18O-values in precipitation from the late twentieth and early twenty-first centuries provide a short but invaluable record with which to investigate modern relationships between these variables, thereby enabling improved interpretation of the peatland palaeodata. Stable isotope data from two stations in the Global Network for Isotopes in Precipitation (GNIP) from southern South America (Punta Arenas, Chile and Ushuaia, Argentina) were analysed for the period 1982 to 2008 and compared with longer-term meteorological data from the same locations (1890 to present and 1931 to present, respectively). δD and δ18O-values in precipitation have exhibited quite different trends in response to local surface air temperature and precipitation amount. At Punta Arenas, there has been a marked increase in the seasonal difference between summer and winter δ18O-values. A decline in the deuterium excess of summer precipitation at this station was associated with a general increase in relative humidity at 1000 mb over the surface of the Southeast Pacific Ocean, believed to be the major vapour source for the local precipitation. At Ushuaia, a fall in δ18O-values was associated with an increase in the mean annual amount of precipitation. Both records are consistent with a southward retraction and increase in zonal wind speed of the austral westerly wind belt. These regional differences, observed in response to a known driver, should be detectable in peatland sites close to the GNIP stations. Currently, insufficient data with suitable temporal resolution are available to test for these regional differences over the last 3000 yr. Existing peatland palaeoclimate data from two

  17. Oxygen isotope values of tree ring α-cellulose as a proxy of hydroclimate variability in arid regions

    Science.gov (United States)

    Dodd, J. P.; Freimuth, E. J.; Olson, E. J.; Diefendorf, A. F.

    2015-12-01

    One of the main goals of tree ring isotope studies is to reconstruct climate-driven variations in the source water and antecedent precipitation; however, evaporation in the soil and leaves can significantly modify the isotope values of the source water. This is particularly the case in arid environments where evaporative effects are perhaps the most significant unknown variable when attempting to reconstruct regional-scale hydroclimate variations from tree ring isotope proxies. To quantify the effects of extreme aridity on α-cellulose δ18O values, we measured the oxygen isotope values of groundwater, xylem water, leaf water, and tree ring α-cellulose in an endemic species of drought-resistant trees (Prosopis tamarugo) from different microenvironments throughout the Atacama Desert of Northern Chile. Average annual precipitation is <5 mm/yr, and groundwater is the primary water source for P. tamarugo trees in the region. Groundwater δ18O values at the sample locations range from -6.7 to -9.7‰, and xylem water δ18O values record a systematic increase (ave. Δ18Ox-gw =+1.3‰; 2σ =1.0‰). Leaf waters are significantly affected by evaporative enrichment with a range of δ18O values from 7 to 23‰. This range most likely reflects a number of physiological and environmental conditions including tree size, canopy development, and sample time (i.e. morning vs. evening). However, despite the large variation in leaf water δ18O values, the average difference between the α-cellulose and groundwater is very consistent (Δ18Oc-gw = +39.7‰; 2σ =1.3‰). P. tamarugo samples were collected in austral spring, when tree growth was at its maximum; therefore, any seasonal variations in plant physiology not captured with this dataset will have a limited impact on cellulose production. These data demonstrate that despite the variable evaporative enrichment of 18O in the leaf water, the α-cellulose δ18O values provide a remarkably consistent record of variations in

  18. Climate change impact on hydroclimate regimes and extremes over Andean basins in the central-southern Chile

    Science.gov (United States)

    Bozkurt, Deniz; Rojas, Maisa; Valdivieso, Jonás; Falvey, Mark

    2015-04-01

    We have assessed the impact of projected increases in temperature and decreased precipitation on variability and potential changes in hydroclimate regimes and extremes over Andean basins in the central-southern Chile (~30-40S). The altitude of the southern Andes in the study area has an average altitude of 5000 m in the north that decreases to 3000 m at the southern edge. Climatically the region has a Mediterranean-like climate with mainly winter precipitation that gradually increases southwards, from around 300 mm/yr to 1000 mm/yr. The region is home to most of the population in Chile (~10 mil. inhabitants), it has fertile and productive agriculture land, as well as hydro-electrical power plants. During the 20th Century the region has experienced a decreasing precipitation trend imbedded in important interannual and decadal scale variability. We have used gridded observed daily precipitation and temperatures to drive and validate the VIC macro-scale model over the region of interest at 0.25 x 0.25 degree resolution. Historical (1960-2005) and projected (RCP8.5, 2006-2099) daily precipitation and temperatures from 28 CMIP5 models are adjusted via a transfer function based on the gridded observed daily precipitation and temperature data. Adjusted time series are then used to drive the VIC model in order to present climate change projections. The hydrological model simulations foresee that drying is robust in the models and total annual runoff will decrease in the future (40-45% by the end of the century). Center timing of runoff tends to shift to earlier days (3-5 weeks by the end of the century). In some areas over the Andes winter runoff is projected to increase due to upward movement of zero isotherm. Moreover, reductions in the amount of snowpack and accelerated snowmelt lead to more pronounced increase in winter evapotranspiration over the same areas. The simulated 12-months Standardized Runoff Index (SRI) clearly shows severe persistent hydrological droughts

  19. Prediction

    CERN Document Server

    Sornette, Didier

    2010-01-01

    This chapter first presents a rather personal view of some different aspects of predictability, going in crescendo from simple linear systems to high-dimensional nonlinear systems with stochastic forcing, which exhibit emergent properties such as phase transitions and regime shifts. Then, a detailed correspondence between the phenomenology of earthquakes, financial crashes and epileptic seizures is offered. The presented statistical evidence provides the substance of a general phase diagram for understanding the many facets of the spatio-temporal organization of these systems. A key insight is to organize the evidence and mechanisms in terms of two summarizing measures: (i) amplitude of disorder or heterogeneity in the system and (ii) level of coupling or interaction strength among the system's components. On the basis of the recently identified remarkable correspondence between earthquakes and seizures, we present detailed information on a class of stochastic point processes that has been found to be particu...

  20. About Connections

    Directory of Open Access Journals (Sweden)

    Kathleen S Rockland

    2015-05-01

    Full Text Available Despite the attention attracted by connectomics, one can lose sight of the very real questions concerning What are connections? In the neuroimaging community, structural connectivity is ground truth and underlying constraint on functional or effective connectivity. It is referenced to underlying anatomy; but, as increasingly remarked, there is a large gap between the wealth of human brain mapping and the relatively scant data on actual anatomical connectivity. Moreover, connections have typically been discussed as pairwise, point x projecting to point y (or: to points y and z, or more recently, in graph theoretical terms, as nodes or regions and the interconnecting edges. This is a convenient shorthand, but tends not to capture the richness and nuance of basic anatomical properties as identified in the classic tradition of tracer studies. The present short review accordingly revisits connectional weights, heterogeneity, reciprocity, topography, and hierarchical organization, drawing on concrete examples. The emphasis is on presynaptic long-distance connections, motivated by the intention to probe current assumptions and promote discussions about further progress and synthesis.

  1. Gendered Connections

    DEFF Research Database (Denmark)

    Jensen, Steffen Bo

    2009-01-01

    This article explores the gendered nature of urban politics in Cape Town by focusing on a group of female, township politicians. Employing the Deleuzian concept of `wild connectivity', it argues that these politically entrepreneurial women were able to negotiate a highly volatile urban landscape...... space also drew on quite traditional notions of female respectability. Furthermore, the article argues, the form of wild connectivity to an extent was a function of the political transition, which destabilized formal structures of gendered authority. It remains a question whether this form...... of connectivity might endure, as Capetonian politics assumes a post-apartheid structure....

  2. HR Connect

    Data.gov (United States)

    US Agency for International Development — HR Connect is the USAID HR personnel system which allows HR professionals to process HR actions related to employee's personal and position information. This system...

  3. Hydroclimate variability and its statistical links to the large-scale climate indices for the Upper Chao Phraya River Basin, Thailand

    Directory of Open Access Journals (Sweden)

    N. Singhrattna

    2009-10-01

    Full Text Available The local hydroclimates get impacts from the large-scale atmospheric variables via atmospheric circulation. The developing of their relationships could enhance the understanding of hydroclimate variability. This study focuses on the Upper Chao Phraya River Basin in Thailand in which rainfall is influenced by the Indian Ocean and tropical Pacific Ocean atmospheric circulation. The Southwest monsoon from the Indian Ocean to Thailand is strengthened by the temperature gradient between land and ocean. Thus, the anomalous sea surface temperature (SST is systematically correlated with the monthly rainfall and identified as the best predictor based on the significant relationships revealed by cross-correlation analysis. It is found that rainfall, especially during the monsoon season in the different zones of study basin, corresponds to the different SST indices. This suggests that the region over the ocean which develops the temperature gradient plays a role in strengthening the monsoon. The enhanced gradient with the SST over the South China Sea is related to rainfall in High Rainfall Zone (HRZ; however, the anomalous SST over the Indian Ocean and the equatorial Pacific Ocean are associated with rainfall in Normal and Low Rainfall Zone (NRZ and LRZ in the study area. Moreover, the identified predictors are related to the rainfall with lead periods of 1–4 months for the pre-monsoon rainfall and 6–12 months for the monsoon and dry season rainfall. The study results are very useful in developing rainfall forecasting models and consequently in the management of water resources and extreme events.

  4. 模型预测控制三相并网变换器的研究%Research on model predictive control of three-phase grid-connected converter

    Institute of Scientific and Technical Information of China (English)

    韩金刚; 杨腾飞; 史宇; 汤天浩

    2014-01-01

    在新能源发电领域,三相电压源型并网变换器的应用越来越广泛。为了提高并网性能,国内外的学者们提出了各种新型的并网控制策略。模型预测控制策略利用系统的离散时间模型来预测所有可能的电压矢量下系统下一个采样时刻的输出值,通过评估函数选择出最优的电压矢量。以传统的三相电压源型变换器为控制对象,提出了一种基于模型预测控制的三相电压源型并网变换器的控制方法。采用DSP28335作为控制器,设计了三相电压源型并网变换器的实验平台,分析讨论了并网电流的稳态与动态性能以及进行无功功率补偿时并网电流的稳态性能。实验结果验证了模型预测控制在三相并网变换领域的优越性。%In recent years, three-phase grid-connected converters are becoming more and more popular in the field of renewable energy. In order to improve the grid performance of renewable energy generation systems, a variety of new grid-connected control strategies have been proposed. Model predictive control method uses a discrete-time model of the system to predict the future value of the load current for all possible voltage vectors generated by the converter. The voltage vector which minimizes a cost function is selected and used at the next sampling instant. This paper presents a model predictive current control algorithm for power converters based on a three-phase grid-connected voltage source converter. A TMS320F28335 floating-point DSP is used for the experimental platform. The steady-state and dynamic performance of the grid-connected current is investigated with the compensation in the reactive power. Simulation and experimental results validate the superiority in three-phase grid-connected area of the proposed model predictive control method.

  5. Order-theoretical connectivity

    Directory of Open Access Journals (Sweden)

    T. A. Richmond

    1990-01-01

    Full Text Available Order-theoretically connected posets are introduced and applied to create the notion of T-connectivity in ordered topological spaces. As special cases T-connectivity contains classical connectivity, order-connectivity, and link-connectivity.

  6. Getting Connected

    Science.gov (United States)

    Larkin, Patrick

    2011-01-01

    That the world outside schools is changing faster than ever is old news. Unfortunately, that the world "inside" schools is changing at a glacial pace is even older news. As school leaders, principals have an important choice to make as they move into the second decade of the 21st century. School leaders have a moral obligation to connect and…

  7. Connecting dots

    DEFF Research Database (Denmark)

    Murakami, Kyoko; Jacobs, Rachel L.

    2017-01-01

    of connecting the dots of recalled moments of individual family members lives and is geared towards building a family’s shared future for posterity. Lastly, we consider a wider implication of family reminiscence in terms of human development. http://www.infoagepub.com/products/Memory-Practices-and-Learning...

  8. Learning Connections

    Science.gov (United States)

    Royer, Regina D.; Richards, Patricia O.

    2005-01-01

    In this edition of Learning Connections, the authors show how technology can enhance study of weather patterns, reading comprehension, real-world training, critical thinking, health education, and art criticism. The following sections are included: (1) Social Studies; (2) Language Arts; (3) Computer Science and ICT; (4) Art; and (5) Health.…

  9. The mediating role of internet connection, virtual friends, and mood in predicting loneliness among students with and without learning disabilities in different educational environments.

    Science.gov (United States)

    Sharabi, Adi; Margalit, Malka

    2011-01-01

    This study evaluated a multidimensional model of loneliness as related to risk and protective factors among adolescents with learning disabilities (LD). The authors aimed to identify factors that mediated loneliness among 716 adolescents in Grades 10 through 12 who were studying in high schools or in Youth Education Centers for at-risk populations. There were 334 students with LD, divided into subgroups according to disability severity (three levels of testing accommodations), and 382 students without LD. Five instruments measured participants' socioemotional characteristics: loneliness, Internet communication, mood, and social and academic achievement-oriented motivation. Using structural equation modeling, the results confirmed the loneliness model and revealed that the use of the Internet to support interpersonal communication with friends predicted less intense loneliness, whereas virtual friendships with individuals whom students knew only online predicted greater loneliness. Positive and negative mood and motivation also predicted students' loneliness. In addition, the severity of LD predicted stronger loneliness feelings.

  10. Past and predicted future effects of housing growth on open space conservation opportunity areas and habitat connectivity around National Wildlife Refuges

    Science.gov (United States)

    Hamilton, Christopher M.; Baumann, Matthias; Pidgeon, Anna M.; Helmers, David P.; Thogmartin, Wayne E.; Heglund, Patricia J.; Radeloff, Volker C.

    2016-01-01

    ContextHousing growth can alter suitability of matrix habitats around protected areas, strongly affecting movements of organisms and, consequently, threatening connectivity of protected area networks.ObjectivesOur goal was to quantify distribution and growth of housing around the U.S. Fish and Wildlife Service National Wildlife Refuge System. This is important information for conservation planning, particularly given promotion of habitat connectivity as a climate change adaptation measure.MethodsWe quantified housing growth from 1940 to 2000 and projected future growth to 2030 within three distances from refuges, identifying very low housing density open space, “opportunity areas” (contiguous areas with habitat corridors within these opportunity areas in 2000.ResultsOur results indicated that the number and area of open space opportunity areas generally decreased with increasing distance from refuges and with the passage of time. Furthermore, total area in habitat corridors was much lower than in opportunity areas. In addition, the number of corridors sometimes exceeded number of opportunity areas as a result of habitat fragmentation, indicating corridors are likely vulnerable to land use change. Finally, regional differences were strong and indicated some refuges may have experienced so much housing growth already that they are effectively too isolated to adapt to climate change, while others may require extensive habitat restoration work.ConclusionsWildlife refuges are increasingly isolated by residential housing development, potentially constraining the movement of wildlife and, therefore, their ability to adapt to a changing climate.

  11. 改进模糊自回归模型在预测网络接通率中的应用%Improved fuzzy auto-regressive model for connection rate prediction

    Institute of Scientific and Technical Information of China (English)

    申晨; 孙永雄; 黄丽平; 刘李蓬; 李树秋

    2013-01-01

    针对通信网络中性能指标预测的需要,提出了基于改进的模糊自回归模型的接通率预测方法,研究了拟合度门限自适应的模糊自回归模型.将中值滤波应用于模糊自回归模型的数据预处理中,在此基础上,针对部分应用拟合度门限不明确的特点,将拟合度门限计算式加入预测模型中,实现模型拟合度门限的自适应.仿真实验表明:基于Fuzzy AR模型的预测方法可以用于对接通率的预测,预测结果拟合度较高.%Specific to the need of performance prediction in communication networks, a connection rate prediction method based on fuzzy Auto-Regressive (AR) model was proposed and improved, and the fuzzy AR model based on adaptive fitting degree threshold was studied. The median filtering method was applied to pre-process the data of fuzzy AR model. On this basis, for the uncertain thresholds of some applications, the fitting degree threshold formula was added to the prediction model to make it adaptive. The simulation results show that the predistion method based on fuzzy AR model can be used to predict the connection rate with a higher fitting degree.q

  12. Connectivity between Right Inferior Frontal Gyrus and Supplementary Motor Area Predicts After-Effects of Right Frontal Cathodal tDCS on Picture Naming Speed

    DEFF Research Database (Denmark)

    Rosso, Charlotte; Valabregue, R.; Arbizy, C.

    2014-01-01

    Background: Cathodal transcranial direct current stimulation (tDCS) of the right frontal cortex improves language abilities in post-stroke aphasic patients. Yet little is known about the effects of right frontal cathodal tDCS on normal language function. Objective/hypothesis: To explore...... the cathodal tDCS effects of the right-hemispheric homologue of Broca’s area on picture naming in healthy individuals. We hypothesized that cathodal tDCS improves Picture naming and that this effect is determined by the anatomical and functional connectivity of the targeted region. Methods: Cathodal and sham t......DCS were applied to the right inferior frontal gyrus in 24 healthy subjects before a picture-naming task. All participants were studied with magnetic resonance imaging at pre-interventional baseline. Probabilistic tractography and dynamic causal modeling of functional brain activity during a word...

  13. Centennial-scale links between Atlantic Ocean dynamics and hydroclimate over the last 4400 years: Insights from the northern Gulf of Mexico

    Science.gov (United States)

    Thirumalai, K.; Quinn, T. M.; Okumura, Y.; Richey, J. N.; Partin, J. W.; Poore, R. Z.

    2015-12-01

    Surface circulation in the Atlantic Ocean is an important mediator of global climate and yet its variability is poorly constrained on centennial timescales. Changes in the Atlantic meridional overturning circulation (AMOC) have been implicated in late Holocene climate variability in the Western Hemisphere, although the relationship between AMOC variability and hydroclimate is uncertain due to the lack of sufficiently highly resolved proxy records. Here we present a replicated reconstruction of sea-surface temperature (SST) and salinity (SSS) from the Garrison Basin in the northern Gulf of Mexico (NGOM) spanning the last 4,400 years to better constrain past sea-surface conditions. We generated time series of paired Mg/Ca (SST proxy) and δ18O (SST and SSS proxy) variations in planktic foraminifer Globigerinoides ruber (white variety) from three multi-cores collected in 2010. Using a Monte Carlo-based technique we produce a stacked record from the three multi-cores and constrain analytical, calibration, chronological, and sampling uncertainties. We apply this technique to existing paired Mg/Ca- δ18O studies in the Gulf of Mexico and Atlantic Ocean to facilitate comparison between time-uncertain proxy reconstructions. The Garrison Basin stack exhibits large centennial-scale variability (σSST~0.6°C; δ18Osw~0.17‰) and indicates a substantially cool (0.9±0.5°C) and fresh (0.26±0.1‰) Little Ice Age (LIA; 1450-1850 A.D.), corroborating extant records from the Gulf of Mexico. Focusing on the last millennium, we analyze a suite of oceanic and terrestrial proxy records to demonstrate a centennial-scale link between salt advection in the Atlantic Ocean, a diagnostic parameter of ocean circulation, and hydroclimate in the adjacent continents. The ensuing multiproxy relationships seem to be consistent with spatial field correlations of limited salinity and rainfall instrumental/reanalysis data, which suggest that NGOM salinity varies with large-scale Atlantic Ocean

  14. The Michelson Interferometer for Global High-Resolution Thermospheric Imaging (MIGHTI): Design and Performance Prediction of the Wind and Temperature Instrument on the Ionospheric Connection Explorer (ICON)

    Science.gov (United States)

    Marr, K. D.; Englert, C. R.; Harlander, J.; Brown, C. M.; Stephan, A. W.; Makela, J. J.; Harding, B. J.; Stevens, M. H.; Immel, T. J.

    2014-12-01

    The Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) is one of four instruments on the NASA Ionospheric Connection Explorer (ICON). MIGHTI will measure the global distribution of horizontal, neutral winds and temperatures over an altitude range that is not readily accessible to in-situ probes (90-300km). Thermospheric winds will be obtained from Doppler shift measurements of the atomic oxygen green (λ=557.7nm) and red (λ=630.0nm) emission lines. Lower thermospheric temperatures will be determined from the spectral shape of the molecular oxygen atmospheric emission band around λ=762nm. Two identical MIGHTI interferometers, oriented on the spacecraft to view a common atmospheric volume, obtain orthogonal line of sight wind information. Both instruments use the Doppler Asymmetric Spatial Heterodyne (DASH) approach with low order Echelle gratings optimized for the red, green, and near infrared wavelengths detected by MIGHTI. We will present the MIGHTI instrument design, including the driving instrument parameters and performance estimates. In particular, we will show the MIGHTI interferometer design and first laboratory test results using a prototype interferometer.

  15. Irving-Williams Order in the Framework of Connectivity Index 3χv Enables Simultaneous Prediction of Stability Constants of Bivalent Transition Metal Complexes

    Directory of Open Access Journals (Sweden)

    Ante Miličević

    2011-01-01

    Full Text Available Logarithms of stability constants, log K1 and log β2, of the first transition series metal mono- and bis-complexes with any of four aliphatic amino acids (glycine, alanine, valine and leucine decrease monotonously with third order valence connectivity index, 3χv, from Cu2+ to Mn2+. While stability of the complexes with the same metal is linearly dependent on 3χv, stability constants of Mn2+, Fe2+, Co2+, and Ni2+complexes with the same ligand show a quadratic dependence on 3χv. As Cu2+ complexes deviate significantly from quadratic functions, models for the simultaneous estimation of the stability constants, yielding r = 0.999 (S.E. = 0.05 and r = 0.998 (S.E. = 0.11, for log K1 and log β2, respectively, were developed only for Mn2+, Fe2+, Co2+, and Ni2+ complexes with amino acids.

  16. Prediction of bending moment resistance of screw connected joints in plywood members using regression models and compare with that commercial medium density fiberboard (MDF and particleboard

    Directory of Open Access Journals (Sweden)

    Sadegh Maleki

    2014-11-01

    Full Text Available The study aimed at predicting bending moment resistance plywood of screw (coarse and fine threads joints using regression models. Thickness of the member was 19mm and compared with medium density fiberboard (MDF and particleboard with 18mm thicknesses. Two types of screws including coarse and fine thread drywall screw with nominal diameters of 6, 8 and 10mm and 3.5, 4 and 5 cm length respectively and sheet metal screw with diameters of 8 and 10 and length of 4 cm were used. The results of the study have shown that bending moment resistance of screw was increased by increasing of screws diameter and penetrating depth. Screw Length was found to have a larger influence on bending moment resistance than screw diameter. Bending moment resistance with coarse thread drywall screws was higher than those of fine thread drywall screws. The highest bending moment resistance (71.76 N.m was observed in joints made with coarse screw which were 5 mm in diameter and 28 mm in depth of penetration. The lowest bending moment resistance (12.08 N.m was observed in joints having fine screw with 3.5 mm diameter and 9 mm penetrations. Furthermore, bending moment resistance in plywood was higher than those of medium density fiberboard (MDF and particleboard. Finally, it has been found that the ultimate bending moment resistance of plywood joint can be predicted following formula Wc = 0.189×D0.726×P0.577 for coarse thread drywall screws and Wf = 0.086×D0.942×P0.704 for fine ones according to diameter and penetrating depth. The analysis of variance of the experimental and predicted data showed that the developed models provide a fair approximation of actual experimental measurements.

  17. Scleroderma pattern of nailfold capillary changes as predictive value for the development of a connective tissue disease: a follow-up study of 3,029 patients with primary Raynaud's phenomenon.

    Science.gov (United States)

    Pavlov-Dolijanovic, Slavica; Damjanov, Nemanja S; Stojanovic, Roksanda M; Vujasinovic Stupar, Nada Z; Stanisavljevic, Dejana M

    2012-10-01

    To assess the prognostic value of scleroderma pattern of nailfold capillary changes for the development of connective tissue diseases (CTD) in subjects with primary Raynaud's phenomenon (RP). The study included 3,029 consecutive patients with primary RP who had been followed at 6-month intervals during the mean of 4.8 years. The pathological features of nailfold capillaroscopy were recorded in all patients who had neither clinical nor serological signs of a CTD. In patients who developed CTD, capillary changes obtained 6 months prior to diagnosis were analyzed. A possible relationship between capillary changes and the presence of associated CTD was assessed. At the end of follow-up, 1,660 (54,8%) patients have still the primary RP, 246 (8,1%) had suspected secondary RP, and 1,123 (37,1%) patients developed CTD (363 undifferentiated CTD, 263 systemic sclerosis, 143 systemic lupus erythematosus, 106 rheumatoid arthritis, 102 Sjögren's syndrome, 61 overlap syndrome, 30 vasculitides, 24 mixed CTD, 19 polymyositis, 7 dermatomyositis, and 5 primary antiphospholipid syndrome). Scleroderma pattern were significantly associated with the development of systemic sclerosis [P = .00001, sensitivity 94%, specificity 92%, positive predictive value 52%, negative predictive value 99%, and odds ratio 163 (95% CI, 97,9-271,5)], as well as dermatomyositis (P = .0004), overlap syndrome with signs of systemic sclerosis (P = .0001), and mixed connective tissue disease (P = .007). Capillary microscopy is effective method for differentiation between primary and secondary RP and useful tool for the prediction of scleroderma spectrum disorders in RP patients.

  18. The IACOB project. IV. New predictions for high-degree non-radial mode instability domains in massive stars and their connection with macroturbulent broadening

    Science.gov (United States)

    Godart, M.; Simón-Díaz, S.; Herrero, A.; Dupret, M. A.; Grötsch-Noels, A.; Salmon, S. J. A. J.; Ventura, P.

    2017-01-01

    Context. Asteroseismology is a powerful tool to access the internal structure of stars. Apart from the important impact of theoretical developments, progress in this field has been commonly associated with the analysis of time-resolved observations. Recently, the so-called macroturbulent broadening has been proposed as a complementary and less expensive way - in terms of observational time - to investigate pulsations in massive stars. Aims: We assess to what extent this ubiquitous non-rotational broadening component which shapes the line profiles of O stars and B supergiants is a spectroscopic signature of pulsation modes driven by a heat mechanism. Methods: We compute stellar main-sequence and post-main-sequence models from 3 to 70 M⊙ with the ATON stellar evolution code, and determine the instability domains for heat-driven modes for degrees ℓ = 1-20 using the adiabatic and non-adiabatic codes LOSC and MAD. We use the observational material compiled in the framework of the IACOB project to investigate possible correlations between the single snapshot line-broadening properties of a sample of ≈260 O and B-type stars and their location inside or outside the various predicted instability domains. Results: We present an homogeneous prediction for the non-radial instability domains of massive stars for degree ℓ up to 20. We provide a global picture of what to expect from an observational point of view in terms of the frequency range of excited modes, and we investigate the behavior of the instabilities with respect to stellar evolution and the degree of the mode. Furthermore, our pulsational stability analysis, once compared to the empirical results, indicates that stellar oscillations originated by a heat mechanism cannot explain alone the occurrence of the large non-rotational line-broadening component commonly detected in the O star and B supergiant domain. Based on observations made with the Nordic Optical Telescope, operated by NOTSA, and the Mercator

  19. Hartee Fock Symmetry Breaking Effects in La2CuO4: Hints for connecting the Mott and Slater Pictures and Pseudogap Prediction

    Directory of Open Access Journals (Sweden)

    Alejandro Cabo Montes de Oca

    2010-03-01

    Full Text Available This work expands the results and derivations presented in a recent letter. It is argued that symmetry breaking Hartree-Fock (HF solutions of a simple model of the Cu-O planes in La2CuO4, are able to describe the insulator and antiferromagnetic characters of this material. Then, this classical primer of a Mott insulator is alternatively obtained here as an exact Slater insulator within the simplest of the first principles schemes. Moreover, pseudogap HF states are also predicted. The maximal energy gap of 100 meV over the Fermi surface of this wavefunction, reasonably well matches the ARPES upper pseudogap measurements for La2CuO4 in the zero doping limit. These surprising results followed after eliminating spin and crystal symmetry constraints usually imposed on the HF orbitals. The discussion helps to clarify the role of the antiferromagnetism and pseudogaps in the physics of the HTSC materials and indicates a promising way to start conciliating the Mott and Slater pictures for the description of the transition metal oxides.

  20. Connectivity of communication networks

    CERN Document Server

    Mao, Guoqiang

    2017-01-01

    This book introduces a number of recent developments on connectivity of communication networks, ranging from connectivity of large static networks and connectivity of highly dynamic networks to connectivity of small to medium sized networks. This book also introduces some applications of connectivity studies in network optimization, in network localization, and in estimating distances between nodes. The book starts with an overview of the fundamental concepts, models, tools, and methodologies used for connectivity studies. The rest of the chapters are divided into four parts: connectivity of large static networks, connectivity of highly dynamic networks, connectivity of small to medium sized networks, and applications of connectivity studies.

  1. Past and future impact of North Atlantic teleconnection patterns on the hydroclimate of the Caspian catchment area in CESM1.2.2 and observations

    Science.gov (United States)

    Nandini, Sri

    2017-04-01

    The Caspian Sea level has undergone dramatic variations of more than 3 m during the past century with important implications for the life of coastal people, economy and the ecosystem. The origin of these variations as well as future changes in the Caspian water budget are still a matter of debate. In this study, we examine the influence of the major seasonal North Atlantic teleconnection patterns, the North Atlantic Oscillation (NAO), the East Atlantic pattern (EA), the Scandinavian pattern (SCA), and the North Sea Caspian Pattern (NCP), on Caspian hydroclimate variability from 1850-2000 CE. Numerical experiments at different atmospheric grid resolutions (2° and 1°) are carried out with the coupled Community Earth System Model (CESM1.2.2). We test model skills under different resolutions through validation against observational data by various statistical methods (Empirical Orthogonal Functions, Taylor diagrams, linear regressions and Spearman rank correlation). Results reveal the strongest simulated signal in winter (DJF) with high explained variances for 1° CESM1.2.2 NAO (39%) and EA (15.7%), similar to observational data. The model is unable to reproduce the SCA pattern in the third EOF, which is found in the observations. The modelled NAO has a strong influence on winter temperature and rainfall over the Caspian catchment area. A strong winter NCP induces above-average 2-meter temperatures over north Caspian region and lower-than-normal precipitation over the eastern Caspian sea. Our study suggests that the 1° version of CESM1.2.2 (with CAM5 atmosphere physics) shows adequate performance with respect to teleconnection maps during the historical period. Lastly, 1° model climate projections (2005-2100 CE) are performed with different Representative Concentration Pathways (RCP 4.5 and RCP 8.5) to examine potential changes in the teleconnection patterns and their influence on the Caspian region.

  2. A 430 year record of hydroclimate variability for NE-Germany based on stable carbon and oxygen isotopes from pine and oak tree rings

    Science.gov (United States)

    Helle, Gerhard; Baschek, Heiko; Heinrich, Ingo; Navabzadeh, Nadia; Riedel, Frank; Wilmking, Martin; Heußner, Karl-Uwe

    2016-04-01

    European lowlands experience many direct and indirect influences of global warming, particularly related to the hydrological cycle which lately faces increasing flood and drought events. Although important for humans and the ecosystems in which they live, little is known about the long-term spatiotemporal hydrological changes in various European regions. Here we present the first 430-year stable carbon and oxygen chronologies from tree ring cellulose in lowland oak and pine trees (P. sylvestris, Q. petraea) for the region of NE-Germany and provide annually resolved high quality hydroclimatic reconstructions. When compared to ring width data isotope data can be used with only minor adjustments to their means (besides correction of short juvenile trends) and sample depths of 4-5 trees are normally enough for a significant expressed population signal being representative for a site. For this study more than 20 individual tree ring sub-samples for isotopic analyses were obtained from well replicated tree ring chronologies built using living trees as well as historical timber originating from four different lowland sites (50-90m asl.). By a calibration and verification approach we have evaluated the response to instrumental climate and trends of atmospheric partial pressure of CO2 (13C, only) data. While ring widths shows strong correlation to winter temperature, highly significant correlations with summer (JJA) hydroclimate conditions were found for both tree ring 13C and 18O. Strongest relationships were found with summer water vapour pressure deficit (13C and 18O) and Tmax (JJA). Although significant, relationships between 13C and climate data were found considerably weaker than climate/18O relations. On the other hand, the 13C record reveals high similarity with solar irradiance, whereas 18O does not. Based on this profound calibration the presentation will show and discuss annually resolved hydroclimatic variability of the region from our multi-centennial isotope

  3. Connection Strings Property on ADO Connection Object

    Institute of Scientific and Technical Information of China (English)

    Girigi Deogratias; Wu Min; Cao Weihua

    2002-01-01

    The connection string property on ADO connection object contains the information used to establish a connection to the data source. The syntax, the keyword of that information must be in specific format. Depending on the type of data you are connecting to, you need either specify an OLEDB provider or use on ODBC driver. The biggest problem, the industries face is the proliferation of data access interfaces, and the complexity of creating,maintaining and programming against them, and the network problem when communicating over the Intranet or the Internet. This paper first provides an in-depth look of the standard arguments supported by ADO connection string; then gives the easier way for understanding the meaning, the utility and the syntax of the connection strings property on ADO connection object, and finally proposes solution to work around the problems due to the connection strings errors.

  4. Minimum cost connection networks

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Tvede, Mich

    In the present paper we consider the allocation of cost in connection networks. Agents have connection demands in form of pairs of locations they want to be connected. Connections between locations are costly to build. The problem is to allocate costs of networks satisfying all connection demands...

  5. Attribute-space connectivity and connected filters

    NARCIS (Netherlands)

    Wilkinson, Michael H.F.

    2007-01-01

    In this paper connected operators from mathematical morphology are extended to a wider class of operators, which are based on connectivities in higher dimensional spaces, similar to scale spaces, which will be called attribute-spaces. Though some properties of connected filters are lost, granulometr

  6. Undifferentiated Connective Tissue Disease

    Science.gov (United States)

    ... Home Conditions Undifferentiated Connective Tissue Disease (UCTD) Undifferentiated Connective Tissue Disease (UCTD) Make an Appointment Find a Doctor ... L. Goldstein, MD, MMSc (February 01, 2016) Undifferentiated connective tissue disease (UCTD) is a systemic autoimmune disease. This ...

  7. Connective Tissue Disorders

    Science.gov (United States)

    Connective tissue is the material inside your body that supports many of its parts. It is the "cellular ... their work. Cartilage and fat are examples of connective tissue. There are over 200 disorders that impact connective ...

  8. DATA DELIVERY PREDICTABILITY IN INTERMITTENTLY CONNECTED MANETS

    Directory of Open Access Journals (Sweden)

    D.Jyothi Preshiya

    2014-01-01

    Full Text Available Network that functions without any infrastructure is said to be Mobile Ad Hoc networks (MANETs. Each node present in this network chooses any route and moves autonomously. At the same time rely on upon each other to send its messages to target nodes. Most of the routing protocols for MANETs tend to be designed with the presumption in which not less than one particular route is available between the source and destination. Furthermore it is assumed that, all nodes are involved in packet forwarding process. But this assumption does not hold good for all real time situations for the reason that of the high mobility and less density of the nodes present in the network and short coverage range of every node. Possibilities arise in the network so that a node could not forward the data to any of the nodes and so it necessitates packets to be stored up in the nodes buffer until it encounters an appropriate node. For deciding the apt receiver node, status of the network and contact statistics of the nodes are required in order to boost up the packet delivery ratio and to trim down the delivery delay and the total number of transmissions. We proposed E-B-M method which takes the best forwarding decision based on the past encounter history and the behavior of the nodes.

  9. Minimum cost connection networks

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Tvede, Mich

    . We use three axioms to characterize allocation rules that truthfully implement cost minimizing networks satisfying all connection demands in a game where: (1) a central planner announces an allocation rule and a cost estimation rule; (2) every agent reports her own connection demand as well as all...... connection costs; and, (3) the central planner selects a cost minimizing network satisfying reported connection demands based on estimated connection costs and allocates true connection costs of the selected network....

  10. Predictive Control Algorithm of PV Grid-connected Inverter Based on MLD Model%光伏并网逆变器MLD建模及预测控制算法

    Institute of Scientific and Technical Information of China (English)

    路璐; 龚仁喜; 韦潜

    2015-01-01

    光伏并网逆变器传统的开关函数模型在并网过程中的动态响应速度慢,影响了逆变器溃入电网的电能质量。为了解决这一问题,提高光伏并网逆变器的供电质量,分析光伏并网逆变器的混杂特性,通过对逆变器的开关动态引入逻辑变量,建立MLD模型,提出一种基于该模型的预测控制算法。仿真结果表明,基于MLD模型的预测控制算法改善了光伏并网系统的动态性能,达到并网要求条件的时间更短,验证了所提方法的可行。%The slow respond of the inverter PV grid system based on traditional switching function model affects the power quality feed into the grid. To solve this problem and improve the power quality of the inverter, after analyzing the PV grid-connected in-verter confounding characteristics, by introducing logical variables for the inverter switching dynamics, the MLD model of the sys-tem was built. A predictive control strategy was proposed based on this kind of model. The comparison of simulation results show that the predictive control algorithm on the MLD model can improve the dynamic performance of the system, reduce the time of the system meeting the requirement of the grid, verify the feasibility of the proposed method.

  11. In silico prediction of cytochrome P450 2D6 and 3A4 inhibition using Gaussian kernel weighted k-nearest neighbor and extended connectivity fingerprints, including structural fragment analysis of inhibitors versus noninhibitors.

    Science.gov (United States)

    Jensen, Berith F; Vind, Christian; Padkjaer, Søren B; Brockhoff, Per B; Refsgaard, Hanne H F

    2007-02-08

    Inhibition of cytochrome P450 (CYP) enzymes is unwanted because of the risk of severe side effects due to drug-drug interactions. We present two in silico Gaussian kernel weighted k-nearest neighbor models based on extended connectivity fingerprints that classify CYP2D6 and CYP3A4 inhibition. Data used for modeling consisted of diverse sets of 1153 and 1382 drug candidates tested for CYP2D6 and CYP3A4 inhibition in human liver microsomes. For CYP2D6, 82% of the classified test set compounds were predicted to the correct class. For CYP3A4, 88% of the classified compounds were correctly classified. CYP2D6 and CYP3A4 inhibition were additionally classified for an external test set on 14 drugs, and multidimensional scaling plots showed that the drugs in the external test set were in the periphery of the training sets. Furthermore, fragment analyses were performed and structural fragments frequent in CYP2D6 and CYP3A4 inhibitors and noninhibitors are presented.

  12. Structural connectivity of the developing human amygdala.

    Directory of Open Access Journals (Sweden)

    Zeynep M Saygin

    Full Text Available A large corpus of research suggests that there are changes in the manner and degree to which the amygdala supports cognitive and emotional function across development. One possible basis for these developmental differences could be the maturation of amygdalar connections with the rest of the brain. Recent functional connectivity studies support this conclusion, but the structural connectivity of the developing amygdala and its different nuclei remains largely unstudied. We examined age related changes in the DWI connectivity fingerprints of the amygdala to the rest of the brain in 166 individuals of ages 5-30. We also developed a model to predict age based on individual-subject amygdala connectivity, and identified the connections that were most predictive of age. Finally, we segmented the amygdala into its four main nucleus groups, and examined the developmental changes in connectivity for each nucleus. We observed that with age, amygdalar connectivity becomes increasingly sparse and localized. Age related changes were largely localized to the subregions of the amygdala that are implicated in social inference and contextual memory (the basal and lateral nuclei. The central nucleus' connectivity also showed differences with age but these differences affected fewer target regions than the basal and lateral nuclei. The medial nucleus did not exhibit any age related changes. These findings demonstrate increasing specificity in the connectivity patterns of amygdalar nuclei across age.

  13. Structural Connectivity of the Developing Human Amygdala

    Science.gov (United States)

    Saygin, Zeynep M.; Osher, David E.; Koldewyn, Kami; Martin, Rebecca E.; Finn, Amy; Saxe, Rebecca; Gabrieli, John D.E.; Sheridan, Margaret

    2015-01-01

    A large corpus of research suggests that there are changes in the manner and degree to which the amygdala supports cognitive and emotional function across development. One possible basis for these developmental differences could be the maturation of amygdalar connections with the rest of the brain. Recent functional connectivity studies support this conclusion, but the structural connectivity of the developing amygdala and its different nuclei remains largely unstudied. We examined age related changes in the DWI connectivity fingerprints of the amygdala to the rest of the brain in 166 individuals of ages 5-30. We also developed a model to predict age based on individual-subject amygdala connectivity, and identified the connections that were most predictive of age. Finally, we segmented the amygdala into its four main nucleus groups, and examined the developmental changes in connectivity for each nucleus. We observed that with age, amygdalar connectivity becomes increasingly sparse and localized. Age related changes were largely localized to the subregions of the amygdala that are implicated in social inference and contextual memory (the basal and lateral nuclei). The central nucleus’ connectivity also showed differences with age but these differences affected fewer target regions than the basal and lateral nuclei. The medial nucleus did not exhibit any age related changes. These findings demonstrate increasing specificity in the connectivity patterns of amygdalar nuclei across age. PMID:25875758

  14. Lake oxygen isotopes as recorders of North American Rocky Mountain hydroclimate: Holocene patterns and variability at multi-decadal to millennial time scales

    Science.gov (United States)

    Anderson, Lesleigh; Max Berkelhammer,; Barron, John A.; Steinman, Byron A.; Finney, Bruce P.; Abbott, Mark B.

    2016-01-01

    Lake sediment oxygen isotope records (calcium carbonate-δ18O) in the western North American Cordillera developed during the past decade provide substantial evidence of Pacific ocean–atmosphere forcing of hydroclimatic variability during the Holocene. Here we present an overview of 18 lake sediment δ18O records along with a new compilation of lake water δ18O and δ2H that are used to characterize lake sediment sensitivity to precipitation-δ18O in contrast to fractionation by evaporation. Of the 18 records, 14 have substantial sensitivity to evaporation. Two records reflect precipitation-δ18O since the middle Holocene, Jellybean and Bison Lakes, and are geographically positioned in the northern and southern regions of the study area. Their comparative analysis indicates a sequence of time-varying north–south precipitation-δ18O patterns that is evidence for a highly non-stationary influence by Pacific ocean–atmosphere processes on the hydroclimate of western North America. These observations are discussed within the context of previous research on North Pacific precipitation-δ18O based on empirical and modeling methods. The Jellybean and Bison Lake records indicate that a prominent precipitation-δ18O dipole (enriched-north and depleted-south) was sustained between ~ 3.5 and 1.5 ka, which contrasts with earlier Holocene patterns, and appears to indicate the onset of a dominant tropical control on North Pacific ocean–atmosphere dynamics. This remains the state of the system today. Higher frequency reversals of the north–south precipitation-δ18O dipole between ~ 2.5 and 1.5 ka, and during the Medieval Climate Anomaly and the Little Ice Age, also suggest more varieties of Pacific ocean–atmosphere modes than a single Pacific Decadal Oscillation (PDO) type analogue. Results indicate that further investigation of precipitation-δ18O patterns on short (observational) and long (Holocene) time scales is needed to improve our understanding of the

  15. Simulating the impacts of chronic ozone exposure on plant conductance and photosynthesis, and on the regional hydroclimate using WRF/Chem

    Science.gov (United States)

    Li, Jialun; Mahalov, Alex; Hyde, Peter

    2016-11-01

    The Noah-Multiparameterization land surface model in the Weather Research and Forecasting (WRF) with Chemistry (WRF/Chem) is modified to include the effects of chronic ozone exposure (COE) on plant conductance and photosynthesis (PCP) found from field experiments. Based on the modified WRF/Chem, the effects of COE on regional hydroclimate have been investigated over the continental United States. Our results indicate that the model with/without modification in its current configuration can reproduce the rainfall and temperature patterns of the observations and reanalysis data, although it underestimates rainfall in the central Great Plains and overestimates it in the eastern coast states. The experimental tests on the effects of COE include setting different thresholds of ambient ozone concentrations ([O3]) and using different linear regressions to quantify PCP against the COE. Compared with the WRF/Chem control run (i.e., without considering the effects of COE), the modified model at different experiment setups improves the simulated estimates of rainfall and temperatures in Texas and regions to the immediate north. The simulations in June, July and August of 2007-2012 show that surface [O3] decrease latent heat fluxes (LH) by 10-27 W m-2, increase surface air temperatures (T 2) by 0.6 °C-2.0 °C, decrease rainfall by 0.9-1.4 mm d-1, and decrease runoff by 0.1-0.17 mm d-1 in Texas and surrounding areas, all of which highly depends on the precise experiment setup, especially the [O3] threshold. The mechanism producing these results is that COE decreases the LH and increases sensible heat fluxes, which in turn increases the Bowen ratios and air temperatures. This lowering of the LH also results in the decrease of convective potential and finally decreases convective rainfall. Employing this modified WRF/Chem model in any high [O3] region can improve the understanding of the interactions of vegetation, meteorology, chemistry/emissions, and crop productivity.

  16. Lake oxygen isotopes as recorders of North American Rocky Mountain hydroclimate: Holocene patterns and variability at multi-decadal to millennial time scales

    Science.gov (United States)

    Anderson, Lesleigh; Berkelhammer, Max; Barron, John A.; Steinman, Byron A.; Finney, Bruce P.; Abbott, Mark B.

    2016-02-01

    Lake sediment oxygen isotope records (calcium carbonate-δ18O) in the western North American Cordillera developed during the past decade provide substantial evidence of Pacific ocean-atmosphere forcing of hydroclimatic variability during the Holocene. Here we present an overview of 18 lake sediment δ18O records along with a new compilation of lake water δ18O and δ2H that are used to characterize lake sediment sensitivity to precipitation-δ18O in contrast to fractionation by evaporation. Of the 18 records, 14 have substantial sensitivity to evaporation. Two records reflect precipitation-δ18O since the middle Holocene, Jellybean and Bison Lakes, and are geographically positioned in the northern and southern regions of the study area. Their comparative analysis indicates a sequence of time-varying north-south precipitation-δ18O patterns that is evidence for a highly non-stationary influence by Pacific ocean-atmosphere processes on the hydroclimate of western North America. These observations are discussed within the context of previous research on North Pacific precipitation-δ18O based on empirical and modeling methods. The Jellybean and Bison Lake records indicate that a prominent precipitation-δ18O dipole (enriched-north and depleted-south) was sustained between ~ 3.5 and 1.5 ka, which contrasts with earlier Holocene patterns, and appears to indicate the onset of a dominant tropical control on North Pacific ocean-atmosphere dynamics. This remains the state of the system today. Higher frequency reversals of the north-south precipitation-δ18O dipole between ~ 2.5 and 1.5 ka, and during the Medieval Climate Anomaly and the Little Ice Age, also suggest more varieties of Pacific ocean-atmosphere modes than a single Pacific Decadal Oscillation (PDO) type analogue. Results indicate that further investigation of precipitation-δ18O patterns on short (observational) and long (Holocene) time scales is needed to improve our understanding of the processes that drive

  17. An exploration of the concept of connect.

    Science.gov (United States)

    Lane, Susan H; Serafica, Reimund

    2014-01-01

    The purpose is to explore the concept of connect in multiple disciplines for further development of knowledge and theories in nursing and to establish a clear understanding of this construct. Connect has meanings rooted in the discipline of business, technology, and transportation which influence how the term is defined in nursing. Several definitions have been established that demonstrate the concepts of connect in other disciplines. A concept exploration design was used for the identification and explication of the term connect to describe, explain, and predict this interprofessional phenomenon. The databases CINAHL, MEDLINE, PRO-Quest, and EBSCO were searched for articles through title and abstract screening using connect, connectedness, and connectivity. Three specific components were identified in the exploration: (a) respect, (b) trust, and (c) mutuality. Current literature validated the need for an empirical concept analysis. This concept exploration provides the first step in understanding the context and meaning of connect in nursing profession. By determining if connections exist and quantifying the level of connections, a level of congruency between the nurse and the patient can be established to determine the best plan of care and goals. An empirical measure of connect will benefit nursing and other disciplines. © 2013 Wiley Periodicals, Inc.

  18. Asymptotically hyperbolic connections

    CERN Document Server

    Fine, Joel; Krasnov, Kirill; Scarinci, Carlos

    2015-01-01

    General Relativity in 4 dimensions can be equivalently described as a dynamical theory of SO(3)-connections rather than metrics. We introduce the notion of asymptotically hyperbolic connections, and work out an analog of the Fefferman-Graham expansion in the language of connections. As in the metric setup, one can solve the arising "evolution" equations order by order in the expansion in powers of the radial coordinate. The solution in the connection setting is arguably simpler, and very straightforward algebraic manipulations allow one to see how the obstruction appears at third order in the expansion. Another interesting feature of the connection formulation is that the "counter terms" required in the computation of the renormalised volume all combine into the Chern-Simons functional of the restriction of the connection to the boundary. As the Chern-Simons invariant is only defined modulo large gauge transformations, the requirement that the path integral over asymptotically hyperbolic connections is well-d...

  19. Eccentric connectivity index

    CERN Document Server

    Ilić, Aleksandar

    2011-01-01

    The eccentric connectivity index $\\xi^c$ is a novel distance--based molecular structure descriptor that was recently used for mathematical modeling of biological activities of diverse nature. It is defined as $\\xi^c (G) = \\sum_{v \\in V (G)} deg (v) \\cdot \\epsilon (v)$\\,, where $deg (v)$ and $\\epsilon (v)$ denote the vertex degree and eccentricity of $v$\\,, respectively. We survey some mathematical properties of this index and furthermore support the use of eccentric connectivity index as topological structure descriptor. We present the extremal trees and unicyclic graphs with maximum and minimum eccentric connectivity index subject to the certain graph constraints. Sharp lower and asymptotic upper bound for all graphs are given and various connections with other important graph invariants are established. In addition, we present explicit formulae for the values of eccentric connectivity index for several families of composite graphs and designed a linear algorithm for calculating the eccentric connectivity in...

  20. Institutions for Asian Connectivity

    OpenAIRE

    Bhattacharyay, Biswa

    2010-01-01

    To make Asia more economically sustainable and resilient against external shocks, regional economies need to be rebalanced toward regional demand- and trade-driven growth through increased regional connectivity. The effectiveness of connectivity depends on the quality of hard and soft infrastructure. Of particular importance in terms of soft infrastructure which makes hard infrastructure work are the facilitating institutions that support connectivity through appropriate policies, reforms, sy...

  1. Handbook of networking & connectivity

    CERN Document Server

    McClain, Gary R

    1994-01-01

    Handbook of Networking & Connectivity focuses on connectivity standards in use, including hardware and software options. The book serves as a guide for solving specific problems that arise in designing and maintaining organizational networks.The selection first tackles open systems interconnection, guide to digital communications, and implementing TCP/IP in an SNA environment. Discussions focus on elimination of the SNA backbone, routing SNA over internets, connectionless versus connection-oriented networks, internet concepts, application program interfaces, basic principles of layering, proto

  2. Modeled Population Connectivity across the Hawaiian Archipelago.

    Science.gov (United States)

    Wren, Johanna L K; Kobayashi, Donald R; Jia, Yanli; Toonen, Robert J

    2016-01-01

    We present the first comprehensive estimate of connectivity of passive pelagic particles released from coral reef habitat throughout the Hawaiian Archipelago. Potential connectivity is calculated using a Lagrangian particle transport model coupled offline with currents generated by an oceanographic circulation model, MITgcm. The connectivity matrices show a surprising degree of self-recruitment and directional dispersal towards the northwest, from the Main Hawaiian Islands (MHI) to the northwestern Hawaiian Islands (NWHI). We identify three predicted connectivity breaks in the archipelago, that is, areas in the mid and northern part of the archipelago that have limited connections with surrounding islands and reefs. Predicted regions of limited connectivity generally match observed patterns of genetic structure reported for coral reef species in the uninhabited NWHI, but multiple genetic breaks observed in the inhabited MHI are not explained by passive dispersal. The better congruence in our modeling results based on physical transport of passive particles in the low-lying atolls of the uninhabited NWHI, but not in the anthropogenically impacted high islands of the MHI begs the question: what ultimately controls connectivity in this system?

  3. Inverse Degree and Connectivity

    Institute of Scientific and Technical Information of China (English)

    MA Xiao-ling; TIAN Ying-zhi

    2013-01-01

    Let G be a connected graph with vertex set V(G),order n =丨V(G)丨,minimum degree δ(G) and connectivity κ(G).The graph G is called maximally connected if κ(G) =δ(G).Define the inverse degree of G with no isolated vertices as R(G) =Σv∈V(G)1/d(v),where d(v) denotes the degree of the vertex v.We show that G is maximally connected if R(G) < 1 + 2/δ + n-2δ+1/(n-1)(n-3).

  4. Minimum cost connection networks

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Tvede, Mich

    2015-01-01

    demands. We use a few axioms to characterize allocation rules that truthfully implement cost minimizing networks satisfying all connection demands in a game where: (1) a central planner announces an allocation rule and a cost estimation rule; (2) every agent reports her own connection demand as well...... as all connection costs; (3) the central planner selects a cost minimizing network satisfying reported connection demands based on the estimated costs; and, (4) the planner allocates the true costs of the selected network. It turns out that an allocation rule satisfies the axioms if and only if relative...

  5. Asymptotically hyperbolic connections

    Science.gov (United States)

    Fine, Joel; Herfray, Yannick; Krasnov, Kirill; Scarinci, Carlos

    2016-09-01

    General relativity in four-dimensions can be equivalently described as a dynamical theory of {SO}(3)˜ {SU}(2)-connections rather than metrics. We introduce the notion of asymptotically hyperbolic connections, and work out an analogue of the Fefferman-Graham expansion in the language of connections. As in the metric setup, one can solve the arising ‘evolution’ equations order by order in the expansion in powers of the radial coordinate. The solution in the connection setting is arguably simpler, and very straightforward algebraic manipulations allow one to see how the unconstrained by Einstein equations ‘stress-energy tensor’ appears at third order in the expansion. Another interesting feature of the connection formulation is that the ‘counter terms’ required in the computation of the renormalised volume all combine into the Chern-Simons functional of the restriction of the connection to the boundary. As the Chern-Simons invariant is only defined modulo large gauge transformations, the requirement that the path integral over asymptotically hyperbolic connections is well-defined requires the cosmological constant to be quantised. Finally, in the connection setting one can deform the 4D Einstein condition in an interesting way, and we show that asymptotically hyperbolic connection expansion is universal and valid for any of the deformed theories.

  6. The Connected Traveler

    Energy Technology Data Exchange (ETDEWEB)

    Young, Stanley

    2017-04-24

    The Connected Traveler project is a multi-disciplinary undertaking that seeks to validate potential for transformative transportation system energy savings by incentivizing energy efficient travel behavior.

  7. 78 FR 55684 - ConnectED Workshop

    Science.gov (United States)

    2013-09-11

    ... content into the curriculum; and as classroom management software tools move everything from homework... consider promising strategies for achieving the President's goal of connecting virtually all K-12 students... policies and consider the most promising strategies for equipping K-12 schools for digital learning....

  8. Predicting melting point of imidazolium-based ionic liquids using modified group-contribution by mass connectivity index%质量连接性指数改进的基团贡献法预测咪唑类离子液体的熔点

    Institute of Scientific and Technical Information of China (English)

    熊焰; 丁靖; 虞大红; 彭昌军; 刘洪来

    2011-01-01

    Researches on ionic liquids (Ils) are attractive due to Ils' unique characteristics, while an important drawback in the application of Ils is the scarcity of their thermodynamic data. The number of potential Ils is so enormous, some say as many as 1012 to 1018, that it is impossible to determine all these data by experimental methods. Many attempts, including group-contribution and connectivity index have had some success to develop methods to estimate the physical properties of unknown Ils in order to facilitate the design of new modifications and reduce the need for experimental work. A new concept named mass connectivity index to encode bond contributions and to allow quantifying the extent of branching in a molecule, especially in Ils, was proposed in 2010. The preliminary study showed that there was a close but complicated relationship between mass connectivity index and the melting point of Ils, implying that it was hard to predict the melting point only by mass connectivity index without the available information supplied by the other models. In this paper, a new group-contribution model combined with mass connectivity index was proposed for the prediction of the melting point of imidazolium-based ionic liquids, which adopted successful group-contribution parameters and distinguished structure characteristics of Ils by mass connectivity index considering the influence of structure on melting points. It was the first attempt to introduce the concept of mass connectivity index to group-contribution method to estimate melting point. In the model, 23 basic group contribution parameters of Ils and 3 structure characteristic factors were defined except for mass connectivity index and all the constants needed were determined by regression analysis of 62 typical data points obtained from available experimental data in the literatures. The melting points of other 59 Ils not used for determining the parameters of the equation were predicted by the new method and all

  9. Connecting Arithmetic to Algebra

    Science.gov (United States)

    Darley, Joy W.; Leapard, Barbara B.

    2010-01-01

    Algebraic thinking is a top priority in mathematics classrooms today. Because elementary school teachers lay the groundwork to develop students' capacity to think algebraically, it is crucial for teachers to have a conceptual understanding of the connections between arithmetic and algebra and be confident in communicating these connections. Many…

  10. Making Connections with Estimation.

    Science.gov (United States)

    Lobato, Joanne E.

    1993-01-01

    Describes four methods to structure estimation activities that enable students to make connections between their understanding of numbers and extensions of those concepts to estimating. Presents activities that connect estimation with other curricular areas, other mathematical topics, and real-world applications. (MDH)

  11. Tokens of Connection

    Science.gov (United States)

    Crowley, Theresa

    2016-01-01

    When teachers make the effort to build a solid relationship with each student, built on trust, they often engender a life-long connection, one that's life-changing for the student. But how can teachers grow such long-lasting relationships with all students, especially disenfranchised learners and those who make it hard to connect? Crowley, a…

  12. Generalized connectivity of graphs

    CERN Document Server

    Li, Xueliang

    2016-01-01

    Noteworthy results, proof techniques, open problems and conjectures in generalized (edge-) connectivity are discussed in this book. Both theoretical and practical analyses for generalized (edge-) connectivity of graphs are provided. Topics covered in this book include: generalized (edge-) connectivity of graph classes, algorithms, computational complexity, sharp bounds, Nordhaus-Gaddum-type results, maximum generalized local connectivity, extremal problems, random graphs, multigraphs, relations with the Steiner tree packing problem and generalizations of connectivity. This book enables graduate students to understand and master a segment of graph theory and combinatorial optimization. Researchers in graph theory, combinatorics, combinatorial optimization, probability, computer science, discrete algorithms, complexity analysis, network design, and the information transferring models will find this book useful in their studies.

  13. Handbook of Brain Connectivity

    CERN Document Server

    Jirsa, Viktor K

    2007-01-01

    Our contemporary understanding of brain function is deeply rooted in the ideas of the nonlinear dynamics of distributed networks. Cognition and motor coordination seem to arise from the interactions of local neuronal networks, which themselves are connected in large scales across the entire brain. The spatial architectures between various scales inevitably influence the dynamics of the brain and thereby its function. But how can we integrate brain connectivity amongst these structural and functional domains? Our Handbook provides an account of the current knowledge on the measurement, analysis and theory of the anatomical and functional connectivity of the brain. All contributors are leading experts in various fields concerning structural and functional brain connectivity. In the first part of the Handbook, the chapters focus on an introduction and discussion of the principles underlying connected neural systems. The second part introduces the currently available non-invasive technologies for measuring struct...

  14. Quantifying bicycle network connectivity.

    Science.gov (United States)

    Lowry, Michael; Loh, Tracy Hadden

    2017-02-01

    The intent of this study was to compare bicycle network connectivity for different types of bicyclists and different neighborhoods. Connectivity was defined as the ability to reach important destinations, such as grocery stores, banks, and elementary schools, via pathways or roads with low vehicle volumes and low speed limits. The analysis was conducted for 28 neighborhoods in Seattle, Washington under existing conditions and for a proposed bicycle master plan, which when complete will provide over 700 new bicycle facilities, including protected bike lanes, neighborhood greenways, and multi-use trails. The results showed different levels of connectivity across neighborhoods and for different types of bicyclists. Certain projects were shown to improve connectivity differently for confident and non-confident bicyclists. The analysis showed a positive correlation between connectivity and observed utilitarian bicycle trips. To improve connectivity for the majority of bicyclists, planners and policy-makers should provide bicycle facilities that allow immediate, low-stress access to the street network, such as neighborhood greenways. The analysis also suggests that policies and programs that build confidence for bicycling could greatly increase connectivity.

  15. Singularities of invariant connections

    Energy Technology Data Exchange (ETDEWEB)

    Amores, A.M. (Universidad Complutense, Madrid (Spain)); Gutierrez, M. (Universidad Politecnica, Madrid (Spain))

    1992-12-01

    A reductive homogeneous space M = P/G is considered, endowed with an invariant connection, i.e., such that all left translations of M induced by members of P preserve it. The authors study the set of singularities of such connections giving sufficient conditions for it to be empty, or, in other cases, familities of b-incomplete curves converging to singularities. A full description of the b-completion of a connection with M = R[sup m] (or a quotient of it) is given with information on its topology. 5 refs.

  16. Covariant Magnetic Connection Hypersurfaces

    CERN Document Server

    Pegoraro, F

    2016-01-01

    In the single fluid, nonrelativistic, ideal-Magnetohydrodynamic (MHD) plasma description magnetic field lines play a fundamental role by defining dynamically preserved "magnetic connections" between plasma elements. Here we show how the concept of magnetic connection needs to be generalized in the case of a relativistic MHD description where we require covariance under arbitrary Lorentz transformations. This is performed by defining 2-D {\\it magnetic connection hypersurfaces} in the 4-D Minkowski space. This generalization accounts for the loss of simultaneity between spatially separated events in different frames and is expected to provide a powerful insight into the 4-D geometry of electromagnetic fields when ${\\bf E} \\cdot {\\bf B} = 0$.

  17. Application of Partially Connected Neural Network

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper focuses mainly on application of Partially Connected Backpropagation Neural Network (PCBP) instead of typical Fully Connected Neural Network (FCBP). The initial neural network is fully connected, after training with sample data using cross-entropy as error function, a clustering method is employed to cluster weights between inputs to hidden layer and from hidden to output layer, and connections that are relatively unnecessary are deleted, thus the initial network becomes a PCBP network.Then PCBP can be used in prediction or data mining by training PCBP with data that comes from database. At the end of this paper, several experiments are conducted to illustrate the effects of PCBP using Iris data set.

  18. Connective Tissue Naevus

    Directory of Open Access Journals (Sweden)

    Bhat Ramesh M

    1999-01-01

    Full Text Available A young adult female patient of connective tissue naevus presented with papules and indurated plaques on both les and left arm. Histopathology showed increased amount of collagen in the dermis. Osteopoikilosis was absent.

  19. Strengthening connections: functional connectivity and brain plasticity

    OpenAIRE

    2014-01-01

    The ascendancy of functional neuroimaging has facilitated the addition of network-based approaches to the neuropsychologist’s toolbox for evaluating the sequelae of brain insult. In particular, intrinsic functional connectivity (iFC) mapping of resting state fMRI (R-fMRI) data constitutes an ideal approach to measuring macro-scale networks in the human brain. Beyond the value of iFC mapping for charting how the functional topography of the brain is altered by insult and injury, iFC analyses c...

  20. Connective Tissue Disorder

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    2008349 A clinical analysis of 32 patients with diffuse alveolar hemorrhage in diffuse connective tissue diseases. CHEN Guangxing(陈光星), et al. Dept Rheumatol, PUMC & CAMS Beijing 100730. Chin J Intern Med 2008;47(5):362-365.Objective To provide clues to diagnosis and treatment for diffuse alveolar hemorrhage(DAH)in patients with diffuse connective tissue diseases(CTD).Method To analyze restropectively the data of clinical features,

  1. Reliability of power connections

    Institute of Scientific and Technical Information of China (English)

    BRAUNOVIC Milenko

    2007-01-01

    Despite the use of various preventive maintenance measures, there are still a number of problem areas that can adversely affect system reliability. Also, economical constraints have pushed the designs of power connections closer to the limits allowed by the existing standards. The major parameters influencing the reliability and life of Al-Al and Al-Cu connections are identified. The effectiveness of various palliative measures is determined and the misconceptions about their effectiveness are dealt in detail.

  2. NEACP Onboard Connectivity Study

    Science.gov (United States)

    1990-03-30

    Methodology Framework .............................. 6-3 6.2.2 Sources of ME Cost Savings with NOCH ............... 6-5 6.2.3 Additional Benefits of 1OCU...processing system (MPS) installation connects all record and data communications equipment to a common MIL -STD-1553B bus and automates many of the manual...Local Area Network Concepts A NOCH developed around a generic bus would provide connectivity throughout the aircraft, thereby reducing or eliminating

  3. Connections between Frontier Markets

    Directory of Open Access Journals (Sweden)

    Eliza-Olivia Lungu

    2013-06-01

    Full Text Available The global financial system presents a high degree of connectivity and the network theory provides the natural framework for visualizing the structure of it connections. I analyse the financial links established between the frontier markets and how these links evolve over a 10 years period (2001 - 2011. I identify patterns in the network looking both at the node specific statistics (degree, strength and clustering coefficient and at the aggregated network statistics (network density and network asymmetry index.

  4. Supervised hub-detection for brain connectivity

    Science.gov (United States)

    Kasenburg, Niklas; Liptrot, Matthew; Reislev, Nina Linde; Garde, Ellen; Nielsen, Mads; Feragen, Aasa

    2016-03-01

    A structural brain network consists of physical connections between brain regions. Brain network analysis aims to find features associated with a parameter of interest through supervised prediction models such as regression. Unsupervised preprocessing steps like clustering are often applied, but can smooth discriminative signals in the population, degrading predictive performance. We present a novel hub-detection optimized for supervised learning that both clusters network nodes based on population level variation in connectivity and also takes the learning problem into account. The found hubs are a low-dimensional representation of the network and are chosen based on predictive performance as features for a linear regression. We apply our method to the problem of finding age-related changes in structural connectivity. We compare our supervised hub-detection (SHD) to an unsupervised hub-detection and a linear regression using the original network connections as features. The results show that the SHD is able to retain regression performance, while still finding hubs that represent the underlying variation in the population. Although here we applied the SHD to brain networks, it can be applied to any network regression problem. Further development of the presented algorithm will be the extension to other predictive models such as classification or non-linear regression.

  5. Directional connectivity in hydrology and ecology

    Science.gov (United States)

    Larsen, Laurel G.; Choi, Jungyill; Nungesser, Martha K.; Harvey, Judson W.

    2012-01-01

    Quantifying hydrologic and ecological connectivity has contributed to understanding transport and dispersal processes and assessing ecosystem degradation or restoration potential. However, there has been little synthesis across disciplines. The growing field of ecohydrology and recent recognition that loss of hydrologic connectivity is leading to a global decline in biodiversity underscore the need for a unified connectivity concept. One outstanding need is a way to quantify directional connectivity that is consistent, robust to variations in sampling, and transferable across scales or environmental settings. Understanding connectivity in a particular direction (e.g., streamwise, along or across gradient, between sources and sinks, along cardinal directions) provides critical information for predicting contaminant transport, planning conservation corridor design, and understanding how landscapes or hydroscapes respond to directional forces like wind or water flow. Here we synthesize progress on quantifying connectivity and develop a new strategy for evaluating directional connectivity that benefits from use of graph theory in ecology and percolation theory in hydrology. The directional connectivity index (DCI) is a graph-theory based, multiscale metric that is generalizable to a range of different structural and functional connectivity applications. It exhibits minimal sensitivity to image rotation or resolution within a given range and responds intuitively to progressive, unidirectional change. Further, it is linearly related to the integral connectivity scale length—a metric common in hydrology that correlates well with actual fluxes—but is less computationally challenging and more readily comparable across different landscapes. Connectivity-orientation curves (i.e., directional connectivity computed over a range of headings) provide a quantitative, information-dense representation of environmental structure that can be used for comparison or detection of

  6. Directional connectivity in hydrology and ecology.

    Science.gov (United States)

    Larsen, Laurel G; Choi, Jungyill; Nungesser, Martha K; Harvey, Judson W

    2012-12-01

    Quantifying hydrologic and ecological connectivity has contributed to understanding transport and dispersal processes and assessing ecosystem degradation or restoration potential. However, there has been little synthesis across disciplines. The growing field of ecohydrology and recent recognition that loss of hydrologic connectivity is leading to a global decline in biodiversity underscore the need for a unified connectivity concept. One outstanding need is a way to quantify directional connectivity that is consistent, robust to variations in sampling, and transferable across scales or environmental settings. Understanding connectivity in a particular direction (e.g., streamwise, along or across gradient, between sources and sinks, along cardinal directions) provides critical information for predicting contaminant transport, planning conservation corridor design, and understanding how landscapes or hydroscapes respond to directional forces like wind or water flow. Here we synthesize progress on quantifying connectivity and develop a new strategy for evaluating directional connectivity that benefits from use of graph theory in ecology and percolation theory in hydrology. The directional connectivity index (DCI) is a graph-theory based, multiscale metric that is generalizable to a range of different structural and functional connectivity applications. It exhibits minimal sensitivity to image rotation or resolution within a given range and responds intuitively to progressive, unidirectional change. Further, it is linearly related to the integral connectivity scale length--a metric common in hydrology that correlates well with actual fluxes--but is less computationally challenging and more readily comparable across different landscapes. Connectivity-orientation curves (i.e., directional connectivity computed over a range of headings) provide a quantitative, information-dense representation of environmental structure that can be used for comparison or detection of

  7. [Connective tissue and inflammation].

    Science.gov (United States)

    Jakab, Lajos

    2014-03-23

    The author summarizes the structure of the connective tissues, the increasing motion of the constituents, which determine the role in establishing the structure and function of that. The structure and function of the connective tissue are related to each other in the resting as well as inflammatory states. It is emphasized that cellular events in the connective tissue are part of the defence of the organism, the localisation of the damage and, if possible, the maintenance of restitutio ad integrum. The organism responds to damage with inflammation, the non specific immune response, as well as specific, adaptive immunity. These processes are located in the connective tissue. Sterile and pathogenic inflammation are relatively similar processes, but inevitable differences are present, too. Sialic acids and glycoproteins containing sialic acids have important roles, and the role of Siglecs is also highlighted. Also, similarities and differences in damages caused by pathogens and sterile agents are briefly summarized. In addition, the roles of adhesion molecules linked to each other, and the whole event of inflammatory processes are presented. When considering practical consequences it is stressed that the structure (building up) of the organism and the defending function of inflammation both have fundamental importance. Inflammation has a crucial role in maintaining the integrity and the unimpaired somato-psychological state of the organism. Thus, inflammation serves as a tool of organism identical with the natural immune response, inseparably connected with the specific, adaptive immune response. The main events of the inflammatory processes take place in the connective tissue.

  8. Heritable Disorders of Connective Tissue

    Science.gov (United States)

    ... Connective Tissue Find a Clinical Trial Journal Articles Connective Tissue August 2016 Questions and Answers about Heritable Disorders of Connective Tissue This publication contains general information about heritable (genetic) ...

  9. Algebraic connectivity and graph robustness.

    Energy Technology Data Exchange (ETDEWEB)

    Feddema, John Todd; Byrne, Raymond Harry; Abdallah, Chaouki T. (University of New Mexico)

    2009-07-01

    Recent papers have used Fiedler's definition of algebraic connectivity to show that network robustness, as measured by node-connectivity and edge-connectivity, can be increased by increasing the algebraic connectivity of the network. By the definition of algebraic connectivity, the second smallest eigenvalue of the graph Laplacian is a lower bound on the node-connectivity. In this paper we show that for circular random lattice graphs and mesh graphs algebraic connectivity is a conservative lower bound, and that increases in algebraic connectivity actually correspond to a decrease in node-connectivity. This means that the networks are actually less robust with respect to node-connectivity as the algebraic connectivity increases. However, an increase in algebraic connectivity seems to correlate well with a decrease in the characteristic path length of these networks - which would result in quicker communication through the network. Applications of these results are then discussed for perimeter security.

  10. Linear connections on matrix geometries

    CERN Document Server

    Madore, J; Mourad, J; Madore, John; Masson, Thierry; Mourad, Jihad

    1994-01-01

    A general definition of a linear connection in noncommutative geometry has been recently proposed. Two examples are given of linear connections in noncommutative geometries which are based on matrix algebras. They both possess a unique metric connection.

  11. Connectable solar air collectors

    Energy Technology Data Exchange (ETDEWEB)

    Oestergaard Jensen, S.; Bosanac, M.

    2002-02-01

    The project has proved that it is possible to manufacture solar air collector panels, which in an easy way can be connected into large collector arrays with integrated ducting without loss of efficiency. The developed connectable solar air collectors are based on the use of matrix absorbers in the form of perforated metal sheets. Three interconnected solar air collectors of the above type - each with an transparent area of approx. 3 m{sup 2} - was tested and compared with parallel tests on two single solar air collectors also with a transparent area of approx. 3 m{sup 2} One of the single solar air collectors has an identical absorber as the connectable solar air collectors while the absorber of the other single solar air collector was a fibre cloth. The efficiency of the three solar air collectors proved to be almost identical in the investigated range of mass flow rates and temperature differences. The solar air collectors further proved to be very efficient - as efficient as the second most efficient solar air collectors tested in the IEA task 19 project Solar Air Systems. Some problems remain although to be solved: the pressure drop across especially the connectable solar air collectors is too high - mainly across the inlets of the solar air collectors. It should, however, be possible to considerably reduce the pressure losses with a more aerodynamic design of the inlet and outlet of the solar air collectors; The connectable solar air collectors are easy connectable but the air tightness of the connections in the present form is not good enough. As leakage leads to lower efficiencies focus should be put on making the connections more air tight without loosing the easiness in connecting the solar air collectors. As a spin off of the project a simple and easy way to determine the efficiency of solar, air collectors for pre-heating of fresh air has been validated. The simple method of determining the efficiency has with success been compared with an advance method

  12. The CONNECT project

    DEFF Research Database (Denmark)

    Assaf, Yaniv; Alexander, Daniel C; Jones, Derek K

    2013-01-01

    diameter and axonal density). This unique insight into both tissue microstructure and connectivity has enormous potential value in understanding the structure and organization of the brain as well as providing unique insights to abnormalities that underpin disease states. The CONNECT (Consortium......In recent years, diffusion MRI has become an extremely important tool for studying the morphology of living brain tissue, as it provides unique insights into both its macrostructure and microstructure. Recent applications of diffusion MRI aimed to characterize the structural connectome using...... tractography to infer connectivity between brain regions. In parallel to the development of tractography, additional diffusion MRI based frameworks (CHARMED, AxCaliber, ActiveAx) were developed enabling the extraction of a multitude of micro-structural parameters (axon diameter distribution, mean axonal...

  13. Skeletal muscle connective tissue

    DEFF Research Database (Denmark)

    Brüggemann, Dagmar Adeline

      The connective tissue content of skeletal muscle is believed to be the major factor responsible for defining the eating quality of different meat cuts, although attempts to correlate quantifications based on traditional histological methods have not as yet been able to prove this relation....... Collagen, being the major protein in connective tissue, has been extensively investigated with regard to its relation to meat tenderness, but the results have been rather conflicting. Meat from older animals is tougher than that from younger animals, and changes in the properties of the collagen due...... that collagen plays a significant role in determining the tenderness of meat. What are we missing? Therefore, fundamental aspects of connective tissue research have been the centre of attention throughout this thesis. A holistic view has been applied, glancing at this complex tissue which has many facets...

  14. Connectivity and superconductivity

    CERN Document Server

    Rubinstein, Jacob

    2000-01-01

    The motto of connectivity and superconductivity is that the solutions of the Ginzburg--Landau equations are qualitatively influenced by the topology of the boundaries, as in multiply-connected samples. Special attention is paid to the "zero set", the set of the positions (also known as "quantum vortices") where the order parameter vanishes. The effects considered here usually become important in the regime where the coherence length is of the order of the dimensions of the sample. It takes the intuition of physicists and the awareness of mathematicians to find these new effects. In connectivity and superconductivity, theoretical and experimental physicists are brought together with pure and applied mathematicians to review these surprising results. This volume is intended to serve as a reference book for graduate students and researchers in physics or mathematics interested in superconductivity, or in the Schrödinger equation as a limiting case of the Ginzburg--Landau equations.

  15. Best connected rectangular arrangements

    Directory of Open Access Journals (Sweden)

    Krishnendra Shekhawat

    2016-03-01

    Full Text Available It can be found quite often in the literature that many well-known architects have employed either the golden rectangle or the Fibonacci rectangle in their works. On contrary, it is rare to find any specific reason for using them so often. Recently, Shekhawat (2015 proved that the golden rectangle and the Fibonacci rectangle are one of the best connected rectangular arrangements and this may be one of the reasons for their high presence in architectural designs. In this work we present an algorithm that generates n-4 best connected rectangular arrangements so that the proposed solutions can be further used by architects for their designs.

  16. Sensing coral reef connectivity pathways from space

    KAUST Repository

    Raitsos, Dionysios E.

    2017-08-18

    Coral reefs rely on inter-habitat connectivity to maintain gene flow, biodiversity and ecosystem resilience. Coral reef communities of the Red Sea exhibit remarkable genetic homogeneity across most of the Arabian Peninsula coastline, with a genetic break towards the southern part of the basin. While previous studies have attributed these patterns to environmental heterogeneity, we hypothesize that they may also emerge as a result of dynamic circulation flow; yet, such linkages remain undemonstrated. Here, we integrate satellite-derived biophysical observations, particle dispersion model simulations, genetic population data and ship-borne in situ profiles to assess reef connectivity in the Red Sea. We simulated long-term (>20 yrs.) connectivity patterns driven by remotely-sensed sea surface height and evaluated results against estimates of genetic distance among populations of anemonefish, Amphiprion bicinctus, along the eastern Red Sea coastline. Predicted connectivity was remarkably consistent with genetic population data, demonstrating that circulation features (eddies, surface currents) formulate physical pathways for gene flow. The southern basin has lower physical connectivity than elsewhere, agreeing with known genetic structure of coral reef organisms. The central Red Sea provides key source regions, meriting conservation priority. Our analysis demonstrates a cost-effective tool to estimate biophysical connectivity remotely, supporting coastal management in data-limited regions.

  17. Did the Decline in Social Connections Depress Americans' Happiness?

    Science.gov (United States)

    Bartolini, Stefano; Bilancini, Ennio; Pugno, Maurizio

    2013-01-01

    During the last 30 years US citizens experienced, on average, a decline in reported happiness, social connections, and confidence in institutions. We show that a remarkable portion of the decrease in happiness is predicted by the decline in social connections and confidence in institutions. We carry out our investigation in three steps. First, we…

  18. Did the Decline in Social Connections Depress Americans' Happiness?

    Science.gov (United States)

    Bartolini, Stefano; Bilancini, Ennio; Pugno, Maurizio

    2013-01-01

    During the last 30 years US citizens experienced, on average, a decline in reported happiness, social connections, and confidence in institutions. We show that a remarkable portion of the decrease in happiness is predicted by the decline in social connections and confidence in institutions. We carry out our investigation in three steps. First, we…

  19. Sensitivity of resource selection and connectivity models to landscape definition

    Science.gov (United States)

    Katherine A. Zeller; Kevin McGarigal; Samuel A. Cushman; Paul Beier; T. Winston Vickers; Walter M. Boyce

    2017-01-01

    Context: The definition of the geospatial landscape is the underlying basis for species-habitat models, yet sensitivity of habitat use inference, predicted probability surfaces, and connectivity models to landscape definition has received little attention. Objectives: We evaluated the sensitivity of resource selection and connectivity models to four landscape...

  20. Supervised hub-detection for brain connectivity

    DEFF Research Database (Denmark)

    Kasenburg, Niklas; Liptrot, Matthew George; Reislev, Nina Linde

    2016-01-01

    A structural brain network consists of physical connections between brain regions. Brain network analysis aims to find features associated with a parameter of interest through supervised prediction models such as regression. Unsupervised preprocessing steps like clustering are often applied......-detection and a linear regression using the original network connections as features. The results show that the SHD is able to retain regression performance, while still finding hubs that represent the underlying variation in the population. Although here we applied the SHD to brain networks, it can be applied to any...

  1. Natural connections given by general linear and classical connections

    OpenAIRE

    Janyška, Josef

    2004-01-01

    We assume a vector bundle $p: E\\to M$ with a general linear connection $K$ and a classical linear connection $\\Lam$ on $M$. We prove that all classical linear connections on the total space $E$ naturally given by $(\\Lam, K)$ form a 15-parameter family. Further we prove that all connections on $J^1 E$ naturally given by $(\\Lam, K)$ form a 14-parameter family. Both families of connections are described geometrically.

  2. The connected brain

    NARCIS (Netherlands)

    van den Heuvel, M.P.

    2009-01-01

    The connected brain Martijn van den Heuvel, 2009 Our brain is a network. It is a network of different brain regions that are all functionally and structurally linked to each other. In the past decades, neuroimaging studies have provided a lot of information about the specific functions of each separ

  3. Preschool Connected Speech Inventory.

    Science.gov (United States)

    DiJohnson, Albert; And Others

    This speech inventory developed for a study of aurally handicapped preschool children (see TM 001 129) provides information on intonation patterns in connected speech. The inventory consists of a list of phrases and simple sentences accompanied by pictorial clues. The test is individually administered by a teacher-examiner who presents the spoken…

  4. 18.CONNECTIVE TISSUE DISORDER

    Institute of Scientific and Technical Information of China (English)

    1993-01-01

    930734 Measurement of serum soluble interleukin—2 receptor in connective tissue diseases.CAI Houronget al.Dept Intern Med,Affili Gulou Hosp,Med School,Nanjing Univ,Nanjing,210008,ShanghaiJ Immunol 1993;13(4):216—218December 1993 Vol 10 No 4

  5. Clip, connect, clone

    DEFF Research Database (Denmark)

    Fujima, Jun; Lunzer, Aran; Hornbæk, Kasper

    2010-01-01

    using three mechanisms: clipping of input and result elements from existing applications to form cells on a spreadsheet; connecting these cells using formulas, thus enabling result transfer between applications; and cloning cells so that multiple requests can be handled side by side. We demonstrate...

  6. Revisiting city connectivity

    NARCIS (Netherlands)

    Mans, U.

    2014-01-01

    This article introduces a new perspective on city connectivity in order to analyze non-hub cities and their position in the world economy. The author revisits the different approaches discussed in the Global Commodity Chains (GCC), Global Production Networks (GPN) and World City Network (WCN) discou

  7. Wireless Connectivity and Capacity

    CERN Document Server

    Halldorsson, Magnus M

    2011-01-01

    Given $n$ wireless transceivers located in a plane, a fundamental problem in wireless communications is to construct a strongly connected digraph on them such that the constituent links can be scheduled in fewest possible time slots, assuming the SINR model of interference. In this paper, we provide an algorithm that connects an arbitrary point set in $O(\\log n)$ slots, improving on the previous best bound of $O(\\log^2 n)$ due to Moscibroda. This is complemented with a super-constant lower bound on our approach to connectivity. An important feature is that the algorithms allow for bi-directional (half-duplex) communication. One implication of this result is an improved bound of $\\Omega(1/\\log n)$ on the worst-case capacity of wireless networks, matching the best bound known for the extensively studied average-case. We explore the utility of oblivious power assignments, and show that essentially all such assignments result in a worst case bound of $\\Omega(n)$ slots for connectivity. This rules out a recent cla...

  8. Connecting with Your Audience.

    Science.gov (United States)

    Mamchur, Carolyn

    1989-01-01

    A workshop model on presentation skills for teachers in the classroom is presented. The goals and techniques would apply to many teaching situations in the college classroom, as well as lectures and symposium presentations. Making a personal connection, focusing on audience, and empowering the audience are discussed. (MLW)

  9. Connecting Competing Memories

    NARCIS (Netherlands)

    Laarse, van der R.; Saloul, I.A.M.

    Research Expert Meeting: Connecting Competing Memories of War in Contemporary Europe5 March 2014NIAS hosts, 6 - 7 March, the expert meeting of the Consortium for 'The Cultural Heritage of War in Contemporary Europe'. The aim is to draft main themes and discuss financial and research structures regar

  10. Technology and Internet Connections.

    Science.gov (United States)

    Allen, Denise; Lindroth, Linda

    1996-01-01

    Suggests that teachers can use computer software and Internet connections to enhance curriculum and capitalize student's natural interest in sports and sports figures. Provides a list of activities that students can do in relation to the Olympic games and gives information on how technology can assist in such activities. Appropriate Internet…

  11. The Anansi Connection.

    Science.gov (United States)

    Carger, Chris Liska

    1998-01-01

    Describes a teacher educator's efforts to connect children's literature, sponsored by a partnership between Northern Illinois University and Chicago Public Schools. In one project, student teachers used award-winning picture books to inspire African-American eighth graders to create pastels on black paper. In another, regional folk tales inspired…

  12. Preschool Connected Speech Inventory.

    Science.gov (United States)

    DiJohnson, Albert; And Others

    This speech inventory developed for a study of aurally handicapped preschool children (see TM 001 129) provides information on intonation patterns in connected speech. The inventory consists of a list of phrases and simple sentences accompanied by pictorial clues. The test is individually administered by a teacher-examiner who presents the spoken…

  13. Strengthening connections: functional connectivity and brain plasticity.

    Science.gov (United States)

    Kelly, Clare; Castellanos, F Xavier

    2014-03-01

    The ascendancy of functional neuroimaging has facilitated the addition of network-based approaches to the neuropsychologist's toolbox for evaluating the sequelae of brain insult. In particular, intrinsic functional connectivity (iFC) mapping of resting state fMRI (R-fMRI) data constitutes an ideal approach to measuring macro-scale networks in the human brain. Beyond the value of iFC mapping for charting how the functional topography of the brain is altered by insult and injury, iFC analyses can provide insights into experience-dependent plasticity at the macro level of large-scale functional networks. Such insights are foundational to the design of training and remediation interventions that will best facilitate recovery of function. In this review, we consider what is currently known about the origin and function of iFC in the brain, and how this knowledge is informative in neuropsychological settings. We then summarize studies that have examined experience-driven plasticity of iFC in healthy control participants, and frame these findings in terms of a schema that may aid in the interpretation of results and the generation of hypotheses for rehabilitative studies. Finally, we outline some caveats to the R-fMRI approach, as well as some current developments that are likely to bolster the utility of the iFC paradigm for neuropsychology.

  14. On contravariant product conjugate connections

    Directory of Open Access Journals (Sweden)

    A. M. Blaga

    2012-02-01

    Full Text Available Invariance properties for the covariant and contravariant connections on a Riemannian manifold with respect to an almost product structure are stated. Restricting to a distribution of the contravariant connections is also discussed. The particular case of the conjugate connection is investigated and properties of the extended structural and virtual tensors for the contravariant connections are given.

  15. An improved molecular connectivity index

    Institute of Scientific and Technical Information of China (English)

    李新华; 俞庆森; 朱龙观

    2000-01-01

    Through modification of the delta values of the molecular connectivity indexes, and connecting the quantum chemistry with topology method effectively, the molecular connectivity indexes are converted into quantum-topology indexes. The modified indexes not only keep all information obtained from the original molecular connectivity method but also have their own virtue in application, and at the same time make up some disadvantages of the quantum and molecular connectivity methods.

  16. Better models are more effectively connected models

    Science.gov (United States)

    Nunes, João Pedro; Bielders, Charles; Darboux, Frederic; Fiener, Peter; Finger, David; Turnbull-Lloyd, Laura; Wainwright, John

    2016-04-01

    The concept of hydrologic and geomorphologic connectivity describes the processes and pathways which link sources (e.g. rainfall, snow and ice melt, springs, eroded areas and barren lands) to accumulation areas (e.g. foot slopes, streams, aquifers, reservoirs), and the spatial variations thereof. There are many examples of hydrological and sediment connectivity on a watershed scale; in consequence, a process-based understanding of connectivity is crucial to help managers understand their systems and adopt adequate measures for flood prevention, pollution mitigation and soil protection, among others. Modelling is often used as a tool to understand and predict fluxes within a catchment by complementing observations with model results. Catchment models should therefore be able to reproduce the linkages, and thus the connectivity of water and sediment fluxes within the systems under simulation. In modelling, a high level of spatial and temporal detail is desirable to ensure taking into account a maximum number of components, which then enables connectivity to emerge from the simulated structures and functions. However, computational constraints and, in many cases, lack of data prevent the representation of all relevant processes and spatial/temporal variability in most models. In most cases, therefore, the level of detail selected for modelling is too coarse to represent the system in a way in which connectivity can emerge; a problem which can be circumvented by representing fine-scale structures and processes within coarser scale models using a variety of approaches. This poster focuses on the results of ongoing discussions on modelling connectivity held during several workshops within COST Action Connecteur. It assesses the current state of the art of incorporating the concept of connectivity in hydrological and sediment models, as well as the attitudes of modellers towards this issue. The discussion will focus on the different approaches through which connectivity

  17. Connecting Science with Society

    DEFF Research Database (Denmark)

    awareness of the important questions of our society reflected in scientific research and of the answers produced by these research activities. The CRIS2010 conference, entitled “Bringing Science to Society”, therefore seeks to highlight the role of Current Research Information Systems for communicating......CRIS2010, the 10th conference in the bi-annual series organized by euroCRIS, focuses on the connecting role of Current Research Information Systems (CRIS). Aalborg, Denmark where CRIS2010 is held, is located near the intersection of the Northern Sea and Kattegat, a place were not only the waters...... of two seas are exchanged, but also goods and culture. In a similar way, Current Research Information Systems are at the intersection between (publicly funded) research and society. They do not only connect actors, activities and results within the research domain but also play a crucial role in raising...

  18. Connecting to Everyday Practices

    DEFF Research Database (Denmark)

    Iversen, Ole Sejer; Smith, Rachel Charlotte

    2012-01-01

    construction and reproduction of cultural heritage creating novel connections between self and others and between past, present and future. We present experiences from a current research project, the Digital Natives exhibition, in which social media was designed as an integral part of the exhibition to connect...... issues of digital heritage with audiences’ everyday practices in a museum. We point to the fact the use of social media in museums not only challenge us to rethink the design of technology for museum experiences. Social media also challenge us to rethink conceptions of museums and cultural heritage......We suggest that social media can contribute to reconnecting audiences’ everyday practices to issues of cultural heritage in museum institutions. Social media can support the creation of dialogical spaces in the museum, both playful and reflective, that allow audiences to engage in the ongoing...

  19. Weldless Flange Connections

    OpenAIRE

    Andersson, Mattias; Jonsson, Henrik; Löfqvist, Stefan; Maigne, Remi; Bravo, Unai

    2004-01-01

    This development project is a bachelor’s degree thesis work that will conclude the education program ”Development Technology” at Blekinge Institute of Technology. The development project has been done in cooperation with Faurecia Exhaust Systems AB in Torsås that constructs and manufactures manifolds, catalytic converters, mufflers and whole exhaust systems. The task with this project was to find a new solution concept for the connection of pipes into flanges in manifolds. The concept that Fa...

  20. Connecting textual segments

    DEFF Research Database (Denmark)

    Brügger, Niels

    2017-01-01

    In “Connecting textual segments: A brief history of the web hyperlink” Niels Brügger investigates the history of one of the most fundamental features of the web: the hyperlink. Based on the argument that the web hyperlink is best understood if it is seen as another step in a much longer and broader......-alone computers and in local and global digital networks....

  1. Connecting with Citizens

    DEFF Research Database (Denmark)

    Jørgensen, Poul Erik Flyvholm; Isaksson, Maria

    2017-01-01

    /2007. If Norway, like Denmark, significantly reduces its number of municipalities, the majority of municipalities will undergo significant change and experience loss of identity. Each new municipality will need to create meaningful new identities attractive to publics fearful of alienation inside a community...... they have no relationship to. The study examines how municipalities reach out to connect with their publics, and whether they employ emotional and engaging discourse. Our data consists of 20 Norwegian and 20 Danish municipal websites....

  2. 基于模型预测的光伏并网系统前级控制策略研究%Analysis and research on control strategy based on prediction of front-stage grid-connected PV model

    Institute of Scientific and Technical Information of China (English)

    孙宇闻; 陈谦

    2013-01-01

    Photovoltaic array is a kind of random nonlinear, multivariable objects. Stable and efficient optimal light energy capture (MPPT) is the key of photovoltaic grid-connected front stage control system .A novel curve fitting + PID control model method is proposed to track the maximum power point of PV system. Based on the mathematical model of PV system,this method tracks the maximum power point by regulating the output voltage on the output PV curve. The experimental results show that, the control model can improve the efficiency of photovoltaic power generation system effectively, solves the problem of low efficiency of traditional constant pressure method, and the stability problems of perturbation and observation method.%光伏发电阵列是一种随机的非线性、多变量对象,平稳且高效地进行最优光能捕获(MPPT)是光伏并网前级控制系统的关键.文中以光伏阵列仿真模型为基础,以模型输出的PV曲线作为调节光伏阵列工作电压的依据,提出了最大功率点曲线拟合+PID的控制模型.仿真实验表明,该控制模型能够有效提高光伏阵列的效率,较好的解决了传统恒压法效率低、扰动法稳定性不足等问题.

  3. Connective tissue ulcers.

    Science.gov (United States)

    Dabiri, Ganary; Falanga, Vincent

    2013-11-01

    Connective tissue disorders (CTD), which are often also termed collagen vascular diseases, include a number of related inflammatory conditions. Some of these diseases include rheumatoid arthritis, systemic lupus erythematosus, systemic sclerosis (scleroderma), localized scleroderma (morphea variants localized to the skin), Sjogren's syndrome, dermatomyositis, polymyositis, and mixed connective tissue disease. In addition to the systemic manifestations of these diseases, there are a number of cutaneous features that make these conditions recognizable on physical exam. Lower extremity ulcers and digital ulcers are an infrequent but disabling complication of long-standing connective tissue disease. The exact frequency with which these ulcers occur is not known, and the cause of the ulcerations is often multifactorial. Moreover, a challenging component of CTD ulcerations is that there are still no established guidelines for their diagnosis and treatment. The morbidity associated with these ulcerations and their underlying conditions is very substantial. Indeed, these less common but intractable ulcers represent a major medical and economic problem for patients, physicians and nurses, and even well organized multidisciplinary wound healing centers.

  4. Energy storage connection system

    Science.gov (United States)

    Benedict, Eric L.; Borland, Nicholas P.; Dale, Magdelena; Freeman, Belvin; Kite, Kim A.; Petter, Jeffrey K.; Taylor, Brendan F.

    2012-07-03

    A power system for connecting a variable voltage power source, such as a power controller, with a plurality of energy storage devices, at least two of which have a different initial voltage than the output voltage of the variable voltage power source. The power system includes a controller that increases the output voltage of the variable voltage power source. When such output voltage is substantially equal to the initial voltage of a first one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the first one of the energy storage devices. The controller then causes the output voltage of the variable voltage power source to continue increasing. When the output voltage is substantially equal to the initial voltage of a second one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the second one of the energy storage devices.

  5. Climate change and coral reef connectivity

    Science.gov (United States)

    Munday, P. L.; Leis, J. M.; Lough, J. M.; Paris, C. B.; Kingsford, M. J.; Berumen, M. L.; Lambrechts, J.

    2009-06-01

    This review assesses and predicts the impacts that rapid climate change will have on population connectivity in coral reef ecosystems, using fishes as a model group. Increased ocean temperatures are expected to accelerate larval development, potentially leading to reduced pelagic durations and earlier reef-seeking behaviour. Depending on the spatial arrangement of reefs, the expectation would be a reduction in dispersal distances and the spatial scale of connectivity. Small increase in temperature might enhance the number of larvae surviving the pelagic phase, but larger increases are likely to reduce reproductive output and increase larval mortality. Changes to ocean currents could alter the dynamics of larval supply and changes to planktonic productivity could affect how many larvae survive the pelagic stage and their condition at settlement; however, these patterns are likely to vary greatly from place-to-place and projections of how oceanographic features will change in the future lack sufficient certainty and resolution to make robust predictions. Connectivity could also be compromised by the increased fragmentation of reef habitat due to the effects of coral bleaching and ocean acidification. Changes to the spatial and temporal scales of connectivity have implications for the management of coral reef ecosystems, especially the design and placement of marine-protected areas. The size and spacing of protected areas may need to be strategically adjusted if reserve networks are to retain their efficacy in the future.

  6. Connectivity measures in EEG microstructural sleep elements

    Directory of Open Access Journals (Sweden)

    Dimitris eSakellariou

    2016-02-01

    Full Text Available During Non-Rapid Eye Movement sleep (NREM the brain is relatively disconnected from the environment, while connectedness between brain areas is also decreased. Evidence indicates that these dynamic connectivity changes are delivered by microstructural elements of sleep: short periods of environmental stimuli evaluation followed by sleep promoting procedures. The connectivity patterns of the latter, among other aspects of sleep microstructure, are still to be fully elucidated.We suggest here a methodology for the assessment and investigation of the connectivity patterns of EEG microstructural elements, such as sleep spindles. The methodology combines techniques in the preprocessing, estimation, error assessing and visualization of results levels in order to allow the detailed examination of the connectivity aspects (levels and directionality of information flow over frequency and time with notable resolution, while dealing with the volume conduction and EEG reference assessment. The high temporal and frequency resolution of the methodology will allow the association between the microelements and the dynamically forming networks that characterise them, and consequently possibly reveal aspects of the EEG microstructure. The proposed methodology is initially tested on artificially generated signals for proof of concept and subsequently applied to real EEG recordings via a custom built MATLAB-based tool developed for such studies. Preliminary results from 843 fast sleep spindles recorded in whole night sleep of 5 healthy volunteers indicate a prevailing pattern of interactions between centroparietal and frontal regions.We demonstrate hereby an opening to our knowledge attempt to estimate the scalp EEG connectivity that characterizes fast sleep spindles via an EEG-element connectivity methodology we propose. The application of the latter, via a computational tool we developed suggests it is able to investigate the connectivity patterns related to the

  7. Impact of casing rotation on premium connection service life in horizontal thermal wells

    Energy Technology Data Exchange (ETDEWEB)

    Xie, J.; Fan, C.; Tao, G.; Matthews, C.M. [C-FER Technologies (Canada)

    2011-07-01

    In the heavy oil industry, thermal recovery methods are often used to enhance oil recovery but thermal cycle loading can cause failure of casing connections. With thermal recovery methods, casing connections are submitted to bending cycles during casing installation and to thermal cycles thereafter and this results in fatigue damage to the connections. The aim of this paper is to review casing connection rotation bending fatigue assessments and relevant fatigue life prediction theorems. A methodology is presented herein for predicting connection fatigue damage under casing bending rotation loading conditions and is then applied to a design example. Results showed that the limited casing rotation occurring in the installation process had a small impact on the connection fatigue life and that the connections could withstand several under thermal cycles. This paper presented and applied a method to predict connection fatigue damage under casing bending rotation loading conditions.

  8. Naturally Connecting the World

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    @@ During China International Trade Fair for Home Textiles and Accessories held in Shanghai 2010(on Aug.25th the second day of the fair),Cotton Council International(CCI)hosted an exchange meeting targeted the COTTON USATM home textile licenses,taking"Naturally Connecting the World-Opportunities for Sourcing and Collaboration with Cotton-Made Home Textiles"as the theme of the meeting.CCI's representative institution in China invited the domestic famous home textile brands,enterprises and their customers to participate in the exchange which aims to introduce the current development trend of the global cotton textile industry through CCI,the powerful platform of communication.

  9. Transcultural Tectonic Connections

    DEFF Research Database (Denmark)

    Carter, Adrian

    2014-01-01

    This paper presents an understanding of Jørn Utzon, as one of the most profound exponents of a transcultural and tectonic approach to modern architecture in the late twentieth century. The paper will examine the sources of inspiration, intersections and connections in Utzon’s architecture; which...... ruins in Mexico. The Sydney Opera House’s signature sail-like roof shells derive from knowledge of boat building in his youth and ancient Chinese and Japanese temple roofs floating above a stone base. With the choice of ceramic tiles to accentuate the sculptural character of the shells, owing its...

  10. Practicing (Dis)connections

    DEFF Research Database (Denmark)

    day-to-day character of the work practices entailed, tracing their at once embedded, yet, distributed and disparate – (dis)connected – configurations. In the course of an MRI exam, from the screening of the patient to the scanning itself, and onto the subsequent processing and analysis of the images...... and redistribution of knowledge-practices in and through sociotechnical change, particularly in the light of the advent of film-less radiology, and how MRI comes to be particularly implicated in the transition/development in radiology toward practices entailing picture archive and communication systems (PACS...

  11. Integrating landscape changes into ecological connectivity: What-if flow connectivity

    Directory of Open Access Journals (Sweden)

    Alessandro Ferrarini

    2015-06-01

    Full Text Available There's an arising need for theoretical and methodological tools to predict how much and how landscape changes will impact animal movements. In fact, conservation planning in the face of landscape changes requires realistic predictions of impacts on biotic flows and species dispersals. The goal of What-if Flow Connectivity is to simulate what happens to biotic shifts over real landscapes if landscape changes happen. What-if FC calculates the spatial divergence of the biotic flow with respect to the inertial (i.e. where no landscape changes are considered flow due to landscape changes. So doing, What-if Flow Connectivity not only predicts the most likely biotic routes imposed by landscape changes to one species, but also estimates the impact of such changes in terms of spatial divergence and differential shift effort with respect to the inertial (no landscape changes scenario. What-if Flow Connectivity comes with the software Connectivity-Lab whose outputs are the vectors of the faunal (inertial and what-if movements plus the statistics of the movement (inertial and what-if efforts.

  12. LHCb connects its pipes

    CERN Multimedia

    2006-01-01

    Two weeks ago the first beryllium section of the LHCb beam vacuum chamber was installed. This three-day operation, after requiring lengthy preparation work, demanded patience and precision as the first of four sections of the beampipe was connected to the vertex locator (VeLo) vacuum vessel. The AT-VAC Group with the collaboration of PH/LBD, including Gloria Corti, Tatsuya Nakada, Patrice Mermet, Delios Ramos, Frans Mul, Bruno Versollato, Bernard Corajod, and Raymond Veness. (Not pictured: Adriana Rossi and Laurent Bouvet) This first installed section is composed of a nearly two-metre long conical tube of one-millimetre thick beryllium and of a thin spherical-shaped window, 800 millimeter diameter, made of an aluminum alloy, and has the appearance of a mushroom lying on its side. The window is connected to the conical part of the beampipe through an aluminum alloy bellow, which is needed to allow for mechanical alignment once the assembly is installed. Beryllium was chosen as the material for 12 m of the 19...

  13. Connectivity-oriented urban projects

    NARCIS (Netherlands)

    Philibert Petit, E.

    2006-01-01

    This thesis is about connections in the built environment, networked connections for the mobility of people at the smallest scale of the urban realm: the pedestrian scale. It deals with applications of the new science of networks as a tool for observation and assessment of connectivity in the urban

  14. Transnational Connections and Multiple Belongings

    DEFF Research Database (Denmark)

    Galal, Lise Paulsen; Sparre, Sara Cathrine Lei

    With the purpose of presenting DIMECCE key findings, we in this paper present different aspects, potentials and challenges related to the Middle Eastern Christians transnational connections and multiple belonging. We distinguish between individual transnational connections and practices, such as ......, such as family relations, churches as transnational – or global – institutions, and other organisations and associations established to support politically, socially or culturally connections and development in the country or region of origin.......With the purpose of presenting DIMECCE key findings, we in this paper present different aspects, potentials and challenges related to the Middle Eastern Christians transnational connections and multiple belonging. We distinguish between individual transnational connections and practices...

  15. Connecting the Production Multiple

    DEFF Research Database (Denmark)

    Lichen, Alex Yu; Mouritsen, Jan

    was implementing sales and operations planning (S&OP) process to foster integration on its demand chain. Although actors wanted to see what it is to produce, that is to say, the object Production, as a singular object that could be diffused across time and space, Production became more multiple because the S......&OP process itself is a fluid object, but there is still possibility to organise the messy Production. There are connections between the Production multiple and the managerial technology fluid. The fluid enacted the multiplicity of Production thus making it more difficult to be organised because there were...... in this sense attracts different absent local practices, which in turn make accounting fluid to account for the Production multiple. The accounting fluid brings together accounting inscriptions and particularity of locals. In the language of circulating references, reduction and amplification no longer go...

  16. Autoimmune connective tissue diseases.

    Science.gov (United States)

    Østensen, Monika; Cetin, Irene

    2015-07-01

    Rheumatic diseases (RDs) occur preferentially in women, often during the childbearing age. The interaction of pregnancy and the RD is varied, ranging from spontaneous improvement to aggravation of disease symptoms or life-threatening flares. Risks for the mother with RD and the child differ in regard to the presence of organ manifestations, organ damage, disease activity, presence of specific autoantibodies, and therapy. Pregnancy complications comprise hypertension, preeclampsia, premature delivery, and side effects of therapy. Adverse pregnancy outcomes include recurrent miscarriage, intrauterine growth restriction, and fetal demise, and they are frequently encountered in RD with organ manifestations and harmful autoantibodies. Because of the difference in the prevalence of RDs, knowledge on the gestational course of disease and pregnancy outcome is limited to the fairly common RDs such as rheumatoid arthritis, systemic lupus erythematosus, and antiphospholipid syndrome. Pregnancies in RD are connected with increased risks for mother and child and need interdisciplinary care and management.

  17. Connect the future

    Institute of Scientific and Technical Information of China (English)

    李柯翰

    2015-01-01

    <正>China has been developed so rapidly that it economic strength grows fast like a rocket.It leads China to become the World’s second-largest economy.Because the change of our life conditions,more and more people are wiling to go abroad,in order to feel the fresh air,civilized language,advanced science,and harmony atmosphere,all of these things like baptism which shocked people’s heart.The pursuit of better life quality requires more and more important elements such as beautiful landscape,clean lake,elegant buildings,rigorous law and kind people,since the beauty of landscape depends on it’s quality,the prosperity of a country rely on it’s power.I’ve been dreaming to become a messenger who can establish connect between different countries and various people.

  18. A Framework for Effective Use of Hydroclimate Models in Climate-Change Adaptation Planning for Managed Habitats with Limited Hydrologic Response Data

    Science.gov (United States)

    Esralew, Rachel A.; Flint, Lorraine; Thorne, James H.; Boynton, Ryan; Flint, Alan

    2016-07-01

    Climate-change adaptation planning for managed wetlands is challenging under uncertain futures when the impact of historic climate variability on wetland response is unquantified. We assessed vulnerability of Modoc National Wildlife Refuge (MNWR) through use of the Basin Characterization Model (BCM) landscape hydrology model, and six global climate models, representing projected wetter and drier conditions. We further developed a conceptual model that provides greater value for water managers by incorporating the BCM outputs into a conceptual framework that links modeled parameters to refuge management outcomes. This framework was used to identify landscape hydrology parameters that reflect refuge sensitivity to changes in (1) climatic water deficit (CWD) and recharge, and (2) the magnitude, timing, and frequency of water inputs. BCM outputs were developed for 1981-2100 to assess changes and forecast the probability of experiencing wet and dry water year types that have historically resulted in challenging conditions for refuge habitat management. We used a Yule's Q skill score to estimate the probability of modeled discharge that best represents historic water year types. CWD increased in all models across 72.3-100 % of the water supply basin by 2100. Earlier timing in discharge, greater cool season discharge, and lesser irrigation season water supply were predicted by most models. Under the worst-case scenario, moderately dry years increased from 10-20 to 40-60 % by 2100. MNWR could adapt by storing additional water during the cool season for later use and prioritizing irrigation of habitats during dry years.

  19. Precentral gyrus functional connectivity signatures of autism

    Directory of Open Access Journals (Sweden)

    Mary Beth eNebel

    2014-05-01

    Full Text Available Motor impairments are prevalent in children with autism spectrum disorders (ASD and are perhaps the earliest symptoms to develop. In addition, motor skills relate to the communicative/social deficits at the core of ASD diagnosis, and these behavioral deficits may reflect abnormal connectivity within brain networks underlying motor control and learning. Despite the fact that motor abnormalities in ASD are well-characterized, there remains a fundamental disconnect between the complexity of the clinical presentation of ASD and the underlying neurobiological mechanisms. In this study, we examined connectivity within and between functional subregions of a key component of the motor control network, the precentral gyrus, using resting state functional Magnetic Resonance Imaging data collected from a large, heterogeneous sample of individuals with ASD as well as neurotypical controls. We found that the strength of connectivity within and between distinct functional subregions of the precentral gyrus was related to ASD diagnosis and to the severity of ASD traits. In particular, connectivity involving the dorsomedial (lower limb/trunk subregion was abnormal in ASD individuals as predicted by models using a dichotomous variable coding for the presence of ASD, as well as models using symptom severity ratings. These findings provide further support for a link between motor and social/communicative abilities in ASD.

  20. The Connectivity Analysis of Intermittent Connected Wireless Network

    Institute of Scientific and Technical Information of China (English)

    Li Yun; Zhou Yahui; Liu Qilie; Wang Xiaoying

    2009-01-01

    The connectivity is a basic and important characteristic to the network, it expresses the situation of link connectivity directly, and provides important reference for the entire network plan. Using statistics and probability Theory, this article emphasizes the probability between any two nodes in the network which nodes are equally distributed and the connectivity of whole network. At last, this article has made verification through simulation and has made out a conclusion, the simulation result agrees with theoretical analysis.

  1. Integrated hydrometeorological predictions with the fully-coupled WRF-Hydro modeling system in western North America

    Science.gov (United States)

    Gochis, D. J.; Yu, W.

    2013-12-01

    Prediction of heavy rainfall and associated streamflow responses remain as critical hydrometeorological challenges and require improved understanding of the linkages between atmospheric and land surface processes. Streamflow prediction skill is intrinsically liked to quantitative precipitation forecast skill, which emphasizes the need to produce mesoscale predictions of rainfall of high fidelity. However, in many cases land surface parameters can also exert significant control on the runoff response to heavy rainfall and on the formation or localization of heavy rainfall as well. A new generation of integrated atmospheric-hydrologic modeling systems is emerging from different groups around the world to meet the challenge of integrated water cycle predictions. In this talk the community WRF-Hydro modeling system will be presented. After a brief reviewing the architectural features of the WRF-Hydro system short-term forecasting and regional hydroclimate prediction applications of the model from western North America will be presented. In these applications, analyses will present results from observation-validated prediction experiments where atmospheric and terrestrial hydrologic model components are run in both a fully coupled mode and separately without two-way interactions. Emphasis is placed on illustrating an assessment framework using an initial state perturbation methodology to quantify the role of land-atmosphere energy and moisture flux partitioning in controlling precipitation and runoff forecast skill. Issues related to experimental design of fully-coupled model prediction experiments will also be discussed as will issues related to computational performance.

  2. Modeling the galaxy/light-mass connection with cosmological simulations

    CERN Document Server

    Tasitsiomi, A

    2006-01-01

    I review some results on the galaxy/light-mass connection obtained by dissipationless simulations in combination with a simple, non-parametric model to connect halo circular velocity to the luminosity of the galaxy they would host. I focus on the galaxy-mass correlation and mass-to-light ratios obtained from galaxy up to cluster scales. The predictions of this simple scheme are shown to be in very good agreement with SDSS observations.

  3. Formal connections in deformation quantization

    DEFF Research Database (Denmark)

    Masulli, Paolo

    attention on symplectic manifolds equipped with a family of star products, indexed by a parameter space. In this situation we can define a connection in the trivial bundle over the parameter space with fibres the formal smooth functions on the manifold, which relates the star products in the family...... and is called a formal connection. We study the question of classifying such formal connections. To each star product we can associate a certain cohomology class called the characteristic class. It turns out that a formal connection exists if and only if all the star products in the family have the same...... characteristic class, and that formal connections form an affine space over the derivations of the star products. Moreover, if the parameter space for the family of star products is contractible, we obtain that any two flat formal connections are gauge equivalent via a self-equivalence of the family of star...

  4. (UnCommonly Connected

    Directory of Open Access Journals (Sweden)

    Emily M. Hodge

    2016-11-01

    Full Text Available As states continue to implement the Common Core State Standards (CCSS, state educational agencies (SEAs are providing professional development and curricular resources to help districts and teachers understand the standards. However, little is known about the resources SEAs endorse, the states and/or organizations sponsoring these resources, and how states and organizations are connected. This study investigates the secondary English/language arts resources provided by 51 SEAs (2,023 resources sponsored by 51 SEAs and 262 intermediary organizations. Social network analysis of states and sponsoring organizations revealed a core-periphery network in which certain states and organizations were frequently named as the sponsors of resources, while other organizations were named as resource sponsors by only one state. SEAs are providing a variety of types of resources, including professional development, curriculum guidelines, articles, and instructional aids. This study offers insight into the most influential actors providing CCSS resources at the state level, as well as how SEAs are supporting instructional capacity through the resources they provide for teachers.

  5. Mesoscale Connections Summer 2017

    Energy Technology Data Exchange (ETDEWEB)

    Kippen, Karen Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bourke, Mark Andrew M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-21

    Our challenge derives from the fact that in metals or explosives grains, interfaces and defects control engineering performance in ways that are neither amenable to continuum codes (which fail to rigorously describe the heterogeneities derived from microstructure) nor computationally tractable to first principles atomistic calculations. This is a region called the mesoscale, which stands at the frontier of our desire to translate fundamental science insights into confidence in aging system performance over the range of extreme conditions relevant in a nuclear weapon. For dynamic problems, the phenomena of interest can require extremely good temporal resolutions. A shock wave traveling at 1000 m/s (or 1 mm/μs) passes through a grain with a diameter of 1 micron in a nanosecond (10-9 sec). Thus, to observe the mesoscale phenomena—such as dislocations or phase transformations—as the shock passes, temporal resolution better than picoseconds (10-12 sec) may be needed. As we anticipate the science challenges over the next decade, experimental insights on material performance at the micron spatial scale with picosecond temporal resolution—at the mesoscale— are a clear challenge. This is a challenge fit for Los Alamos in partnership with our sister labs and academia. Mesoscale Connections will draw attention to our progress as we tackle the mesoscale challenge. We hope you like it and encourage suggestions of content you are interested in.

  6. The Chitin Connection

    Science.gov (United States)

    Goldman, David L.; Vicencio, Alfin G.

    2012-01-01

    ABSTRACT Chitin, a polymer of N-acetylglucosamine, is an essential component of the fungal cell wall. Chitosan, a deacetylated form of chitin, is also important in maintaining cell wall integrity and is essential for Cryptococcus neoformans virulence. In their article, Gilbert et al. [N. M. Gilbert, L. G. Baker, C. A. Specht, and J. K. Lodge, mBio 3(1):e00007-12, 2012] demonstrate that the enzyme responsible for chitosan synthesis, chitin deacetylase (CDA), is differentially attached to the cell membrane and wall. Bioactivity is localized to the cell membrane, where it is covalently linked via a glycosylphosphatidylinositol (GPI) anchor. Findings from this study significantly enhance our understanding of cryptococcal cell wall biology. Besides the role of chitin in supporting structural stability, chitin and host enzymes with chitinase activity have an important role in host defense and modifying the inflammatory response. Thus, chitin appears to provide a link between the fungus and host that involves both innate and adaptive immune responses. Recently, there has been increased attention to the role of chitinases in the pathogenesis of allergic inflammation, especially asthma. We review these findings and explore the possible connection between fungal infections, the induction of chitinases, and asthma. PMID:22448043

  7. Hitchin's connection in metaplectic quantization

    DEFF Research Database (Denmark)

    Andersen, Jørgen Ellegaard; Gammelgaard, Niels Leth; Lauridsen, Magnus Roed

    2012-01-01

    We give a differential geometric construction of a connection, which we call the Hitchin connection, in the bundle of quantum Hilbert spaces arising from metaplectically corrected geometric quantization of a prequantizable, symplectic manifold, endowed with a rigid family of Kähler structures, all...... manifold in question. Furthermore, when we are in a setting similar to the moduli space, we give an explicit formula and show that this connection agrees with previous constructions....

  8. Simplified seismic fatigue evaluation for rigid steel connections

    Institute of Scientific and Technical Information of China (English)

    Ayman A.Shama; John B. Mander; Stuart. S. Chen

    2003-01-01

    A simplified fatigue-life model is proposed for assessing the seismic inelastic rotational capacity of steel connections. First relations are developed for rigid steel connections under lateral loading. Next this is extended to account for the effects of the welded steel moment frame (WSMF) connections of the so-called pre-Northridge type. The seismic fatigue theory is validated against experimental results. The experiments were conducted under increasing ductility amplitudcs until the onset of fracture. Miner' rule was used to convert the test results to given an equivalent constant amplitude cyclic fatigue life. Satisfactory agreement is obtained when comparing the experimental observations with the theoretical predictions.

  9. Simplified seismic fatigue evaluation for rigid steel connections

    Science.gov (United States)

    Shama, Ayman A.; Mander, John B.; Chen, Stuart S.

    2003-12-01

    A simplified fatigue-life model is proposed for assessing the seismic inelastic rotational capacity of steel connections. First relations are developed for rigid steel connections under lateral loading. Next this is extended to account for the effects of the welded steel moment frame (WSMF) connections of the so-called pre-Northridge type. The seismic fatigue theory is validated against experimental results. The experiments were conducted under increasing ductility amplitudes until the onset of fracture. Miner’ rule was used to convert the test results to given an equivalent constant amplitude cyclic fatigue life. Satisfactory agreement is obtained when comparing the experimental observations with the theoretical predictions.

  10. Interstate Connections - CEHC [ds619

    Data.gov (United States)

    California Department of Resources — The California Department of Transportation (Caltrans) and California Department of Fish and Game (CDFG) commissioned the California Essential Habitat Connectivity...

  11. Privacy and the Connected Society

    DEFF Research Database (Denmark)

    Sørensen, Lene Tolstrup; Khajuria, Samant; Skouby, Knud Erik

    the society. Enabling the vision of the connected society, researchers point in the direction of security and privacy as areas to challenge the vision. By use of the Internet of Things reference model as well as the vision of the connected society, this paper identifies privacy of the individual with respect...... to three selected areas: Shopping, connected cars and online gaming. The paper concludes that privacy is a complexity within the connected society vision and that thee is a need for more privacy use cases to shed light on the challenge....

  12. Connectivity from a different perspective: comparing seed dispersal kernels in connected vs. unfragmented landscapes.

    Science.gov (United States)

    Herrmann, John D; Carlo, Tomas A; Brudvig, Lars A; Damschen, Ellen I; Haddad, Nick M; Levey, Douglas J; Orrock, John L; Tewksbury, Joshua J

    2016-05-01

    Habitat fragmentation can create significant impediments to dispersal. A technique to increase dispersal between otherwise isolated fragments is the use of corridors. Although previous studies have compared dispersal between connected fragments to dispersal between unconnected fragments, it remains unknown how dispersal between fragments connected by a corridor compares to dispersal in unfragmented landscapes. To assess the extent to which corridors can restore dispersal in fragmented landscapes to levels observed in unfragmented landscapes, we employed a stable-isotope marking technique to track seeds within four unfragmented landscapes and eight experimental landscapes with fragments connected by corridors. We studied two wind- and two bird-dispersed plant species, because previous community-based research showed that dispersal mode explains how connectivity effects vary among species. We constructed dispersal kernels for these species in unfragmented landscapes and connected fragments by marking seeds in the center of each landscape with 'IN and then recovering marked seeds in seed traps at distances up to 200 m. For the two wind-dispersed plants, seed dispersal kernels were similar in unfragmented landscapes and connected fragments. In contrast, dispersal kernels of bird-dispersed seeds were both affected by fragmentation and differed in the direction of the impact: Morella cerifera experienced more and Rhus copallina experienced less long-distance dispersal in unfragmented than in connected landscapes. These results show that corridors can facilitate dispersal probabilities comparable to those observed in unfragmented landscapes. Although dispersal mode may provide useful broad predictions, we acknowledge that similar species may respond uniquely due to factors such as seasonality and disperser behavior. Our results further indicate that prior work has likely underestimated dispersal distances of wind-dispersed plants and that factors altering long

  13. Dynamic brain connectivity is a better predictor of PTSD than static connectivity.

    Science.gov (United States)

    Jin, Changfeng; Jia, Hao; Lanka, Pradyumna; Rangaprakash, D; Li, Lingjiang; Liu, Tianming; Hu, Xiaoping; Deshpande, Gopikrishna

    2017-09-01

    Using resting-state functional magnetic resonance imaging, we test the hypothesis that subjects with post-traumatic stress disorder (PTSD) are characterized by reduced temporal variability of brain connectivity compared to matched healthy controls. Specifically, we test whether PTSD is characterized by elevated static connectivity, coupled with decreased temporal variability of those connections, with the latter providing greater sensitivity toward the pathology than the former. Static functional connectivity (FC; nondirectional zero-lag correlation) and static effective connectivity (EC; directional time-lagged relationships) were obtained over the entire brain using conventional models. Dynamic FC and dynamic EC were estimated by letting the conventional models to vary as a function of time. Statistical separation and discriminability of these metrics between the groups and their ability to accurately predict the diagnostic label of a novel subject were ascertained using separate support vector machine classifiers. Our findings support our hypothesis that PTSD subjects have stronger static connectivity, but reduced temporal variability of connectivity. Further, machine learning classification accuracy obtained with dynamic FC and dynamic EC was significantly higher than that obtained with static FC and static EC, respectively. Furthermore, results also indicate that the ease with which brain regions engage or disengage with other regions may be more sensitive to underlying pathology than the strength with which they are engaged. Future studies must examine whether this is true only in the case of PTSD or is a general organizing principle in the human brain. Hum Brain Mapp 38:4479-4496, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Carl Sagan's Cosmic Connection

    Science.gov (United States)

    Sagan, Carl; Agel, Jerome

    2000-08-01

    Foreword Freeman Dyson; Personal reflections Ann Druyan; Preface; Part I. Cosmic Perspective: 1. A transitional animal; 2. The Unicorn of Cetus; 3. A message from earth; 4. A message to earth; 5. Experiments in utopias; 6. Chauvinism; 7. Space exploration as a human enterprise I. The scientific interest; 8. Space exploration as a human enterprise II. The public interest; 9. Space exploration as a human enterprise III. The historical interest; Part II. The Solar System: 10. On teaching the first grade; 11. 'The ancient and legendary Gods of old'; 12. The Venus detective story; 13. Venus is hell; 14. Science and 'intelligence'; 15. The moons of Barsoom; 16. The mountains of Mars I. Observations from earth; 17. The mountains of Mars II. Observations from space; 18. The canals of Mars; 19. The lost pictures of Mars; 20. The Ice Age and the cauldron; 21. Beginnings and ends of the Earth; 22. Terraforming the plants; 23. The exploration and utlization of the solar system; Part III. Beyond the Solar System: 24. Some of my best friends are dolphins; 25. 'Hello, central casting? Send me twenty extraterrestrials'; 26. The cosmic connection; 27. Extraterrestrial life: an idea whose time has come; 28. Has the Earth been visited?; 29. A search strategy for detecting extraterrestrial intelligence; 30. If we succeed 31. Cables, drums, and seashells; 32. The night freight to the stars; 33. Astroengineering; 34. Twenty questions: a classification of cosmic civilisations; 35. Galactic cultural exchanges; 36. A passage to elsewhere; 37. Starfolk I. A Fable; 38. Starfolk II. A future; 39. Starfolk III. The cosmic Cheshire cats; Epilog David Morrison; Index.

  15. Financial Connections and Systemic Risk

    NARCIS (Netherlands)

    Allen, F.; Babus, A.; Carletti, E.

    2010-01-01

    We develop a model where institutions form connections through swaps of projects in order to diversify their individual risk. These connections lead to two different network structures. In a clustered network groups of financial institutions hold identical portfolios and default together. In an

  16. The Always-Connected Generation

    Science.gov (United States)

    Bull, Glen

    2010-01-01

    The Pew Internet and American Life project characterizes the millennials--the first generation to come of age in the new millennium--as the first "always-connected" generation. Significant aspects of culture are changing as a result. A changing world where all students are connected all the time has substantial educational implications. Despite…

  17. Financial Connections and Systemic Risk

    NARCIS (Netherlands)

    Allen, F.; Babus, A.; Carletti, E.

    2010-01-01

    We develop a model where institutions form connections through swaps of projects in order to diversify their individual risk. These connections lead to two different network structures. In a clustered network groups of financial institutions hold identical portfolios and default together. In an uncl

  18. [Muscles and connective tissue: histology].

    Science.gov (United States)

    Delage, J-P

    2012-10-01

    Here, we give some comments about the DVD movies "Muscle Attitudes" from Endovivo productions, the movies up lighting some loss in the attention given to studies on the connective tissue, and especially them into muscles. The main characteristics of the different components in the intra-muscular connective tissue (perimysium, endomysium, epimysium) are shown here with special references to their ordered architecture and special references to their spatial distributions. This connective tissue is abundant into the muscles and is in continuity with the muscles in vicinity, with their tendons and their sheath, sticking the whole on skin. This connective tissue has also very abundant connections on the muscles fibres. It is then assumed that the connective tissue sticks every organs or cells of the locomotion system. Considering the elastic properties of the collagen fibres which are the most abundant component of connective tissue, it is possible to up light a panel of connective tissue associated functions such as the transmission of muscle contractions or the regulation of protein and energetic muscles metabolism.

  19. Hierarchies of Predominantly Connected Communities

    CERN Document Server

    Hamann, Michael; Wagner, Dorothea

    2013-01-01

    We consider communities whose vertices are predominantly connected, i.e., the vertices in each community are stronger connected to other community members of the same community than to vertices outside the community. Flake et al. introduced a hierarchical clustering algorithm that finds such predominantly connected communities of different coarseness depending on an input parameter. We present a simple and efficient method for constructing a clustering hierarchy according to Flake et al. that supersedes the necessity of choosing feasible parameter values and guarantees the completeness of the resulting hierarchy, i.e., the hierarchy contains all clusterings that can be constructed by the original algorithm for any parameter value. However, predominantly connected communities are not organized in a single hierarchy. Thus, we develop a framework that, after precomputing at most $2(n-1)$ maximum flows, admits a linear time construction of a clustering $\\C(S)$ of predominantly connected communities that contains ...

  20. Pore Space Connectivity and the Transport Properties of Rocks

    Directory of Open Access Journals (Sweden)

    Bernabé Yves

    2016-07-01

    Full Text Available Pore connectivity is likely one of the most important factors affecting the permeability of reservoir rocks. Furthermore, connectivity effects are not restricted to materials approaching a percolation transition but can continuously and gradually occur in rocks undergoing geological processes such as mechanical and chemical diagenesis. In this study, we compiled sets of published measurements of porosity, permeability and formation factor, performed in samples of unconsolidated granular aggregates, in which connectivity does not change, and in two other materials, sintered glass beads and Fontainebleau sandstone, in which connectivity does change. We compared these data to the predictions of a Kozeny-Carman model of permeability, which does not account for variations in connectivity, and to those of Bernabé et al. (2010, 2011 model, which does [Bernabé Y., Li M., Maineult A. (2010 Permeability and pore connectivity: a new model based on network simulations, J. Geophys. Res. 115, B10203; Bernabé Y., Zamora M., Li M., Maineult A., Tang Y.B. (2011 Pore connectivity, permeability and electrical formation factor: a new model and comparison to experimental data, J. Geophys. Res. 116, B11204]. Both models agreed equally well with experimental data obtained in unconsolidated granular media. But, in the other materials, especially in the low porosity samples that had undergone the greatest amount of sintering or diagenesis, only Bernabé et al. model matched the experimental data satisfactorily. In comparison, predictions of the Kozeny-Carman model differed by orders of magnitude. The advantage of the Bernabé et al. model was its ability to account for a continuous, gradual reduction in pore connectivity during sintering or diagenesis. Although we can only speculate at this juncture about the mechanisms responsible for the connectivity reduction, we propose two possible mechanisms, likely to be active at different stages of sintering and diagenesis

  1. Behavior of Industrial Steel Rack Connections

    Science.gov (United States)

    Shah, S. N. R.; Ramli Sulong, N. H.; Khan, R.; Jumaat, M. Z.; Shariati, M.

    2016-03-01

    Beam-to-column connections (BCCs) used in steel pallet racks (SPRs) play a significant role to maintain the stability of rack structures in the down-aisle direction. The variety in the geometry of commercially available beam end connectors hampers the development of a generalized analytic design approach for SPR BCCs. The experimental prediction of flexibility in SPR BCCs is prohibitively expensive and difficult for all types of commercially available beam end connectors. A suitable solution to derive a particular uniform M-θ relationship for each connection type in terms of geometric parameters may be achieved through finite element (FE) modeling. This study first presents a comprehensive description of the experimental investigations that were performed and used as the calibration bases for the numerical study that constituted its main contribution. A three dimensioned (3D) non-linear finite element (FE) model was developed and calibrated against the experimental results. The FE model took into account material nonlinearities, geometrical properties and large displacements. Comparisons between numerical and experimental data for observed failure modes and M-θ relationship showed close agreement. The validated FE model was further extended to perform parametric analysis to identify the effects of various parameters which may affect the overall performance of the connection.

  2. Zinc oxide: Connecting theory and experiment

    Directory of Open Access Journals (Sweden)

    Dejan Zagorac

    2013-09-01

    Full Text Available Zinc oxide (ZnO is a material with a great variety of industrial applications including high heat capacity, thermal conductivity and temperature stability. Clearly, it would be of great importance to find new stable and/or metastable modifications of zinc oxide, and investigate the influence of pressure and/or temperature on these structures, and try to connect theoretical results to experimental observations. In order to reach this goal, we performed several research studies, using modern theoretical methods. We have predicted possible crystal structures for ZnO using simulated annealing (SA, followed by investigations of the barrier structure using the threshold algorithm (TA. Finally, we have performed calculations using the prescribed path algorithm (PP, where connections between experimental structures on the energy landscape, and in particular transition states, were investigated in detail. The results were in good agreement with previous theoretical and experimental observations, where available, and we have found several additional (metastable modifications at standard, elevated and negative pressures. Furthermore, we were able to gain new insight into synthesis conditions for the various ZnO modifications and to connect our results to the actual synthesis and transformation routes.

  3. Using a new conceptual framework to assess sediment connectivity

    Science.gov (United States)

    Masselink, Rens; Keesstra, Saskia; Temme, Arnaud; Giménez, Rafael; Casalí, Javier; Seeger, Manuel

    2015-04-01

    During recent years many conceptual frameworks for hydrological and sediment connectivity have been developed. Most of these studies however, did not take the measuring or inferring of connectivity into account in the development of their frameworks, which is why studies on measuring connectivity have stayed behind. In this paper a new framework is proposed which promotes measurements of connectivity. The basis of the framework are three subcomponents of connectivity: Geomorphological, Biological and Soil. These can be combined into a single connectivity metric and combined with measurements of sediment transport distances and/or yield. The new framework is applied and tested in three catchments in N-Spain, where a simple model for catchment sediment yield was developed and tested. Results for sediment yield predictions were relatively poor with R2 between 0.24-0.41, although for water discharge better results were obtained with R2 varying between 0.53-0.77. The next step is to apply the framework at smaller scales to include spatial variability of e.g. landforms and vegetation and achieve better results, not only for predicting yields but also for an assessment of sources and pathways.

  4. Framework for Connections on Facebook

    DEFF Research Database (Denmark)

    Sudzina, Frantisek

    There is a substantial amount of current information systems and marketing research focused on social networking sites, most frequently on Facebook. Often, these studies utilize available metadata on user on-line behavior, such as what links the users clicked on. In order to better understand...... behavior of Facebook users, it makes sense to investigate also whom the users connect to. It is possible to hypothesize that behavior of people, who connect only to relatives on Facebook, differs from behavior of people, who are connected only to their classmates. The paper offers a framework of Facebook...

  5. Practical lessons in remote connectivity.

    Science.gov (United States)

    Kouroubali, A.; Starren, J.; Barrows, R. C.; Clayton, P. D.

    1997-01-01

    Community Health Information Networks (CHINs) require the ability to provide computer network connections to many remote sites. During the implementation of the Washington Heights and Inwood Community Health Management Information System (WHICHIS) at the Columbia-Presbyterian Medical Center (CPMC), a number of remote connectivity issues have been encountered. Both technical and non-technical issues were significant during the installation. We developed a work-flow model for this process which may be helpful to any health care institution attempting to provide seamless remote connectivity. This model is presented and implementation lessons are discussed. PMID:9357643

  6. Nuclear level density predictions

    Directory of Open Access Journals (Sweden)

    Bucurescu Dorel

    2015-01-01

    Full Text Available Simple formulas depending only on nuclear masses were previously proposed for the parameters of the Back-Shifted Fermi Gas (BSFG model and of the Constant Temperature (CT model of the nuclear level density, respectively. They are now applied for the prediction of the level density parameters of all nuclei with available masses. Both masses from the new 2012 mass table and from different models are considered and the predictions are discussed in connection with nuclear regions most affected by shell corrections and nuclear structure effects and relevant for the nucleosynthesis.

  7. Micromechanical modeling of rate-dependent behavior of Connective tissues.

    Science.gov (United States)

    Fallah, A; Ahmadian, M T; Firozbakhsh, K; Aghdam, M M

    2017-03-07

    In this paper, a constitutive and micromechanical model for prediction of rate-dependent behavior of connective tissues (CTs) is presented. Connective tissues are considered as nonlinear viscoelastic material. The rate-dependent behavior of CTs is incorporated into model using the well-known quasi-linear viscoelasticity (QLV) theory. A planar wavy representative volume element (RVE) is considered based on the tissue microstructure histological evidences. The presented model parameters are identified based on the available experiments in the literature. The presented constitutive model introduced to ABAQUS by means of UMAT subroutine. Results show that, monotonic uniaxial test predictions of the presented model at different strain rates for rat tail tendon (RTT) and human patellar tendon (HPT) are in good agreement with experimental data. Results of incremental stress-relaxation test are also presented to investigate both instantaneous and viscoelastic behavior of connective tissues.

  8. THE EXISTENCE OF CONNECTING ORBITS

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In this paper,using the notion of an isolating block and Conley's attractor theory,an existence criterion of trajectories connecting a pair of invariant sets of ordinary differential equations is given.

  9. Mundtlig eksamen via Adobe Connect

    DEFF Research Database (Denmark)

    Kjær, Christopher

    2011-01-01

    I løbet af de sidste tre år har der på Syddansk Universitet (SDU) været afholdt mere end 20 mundtlige kandidatforsvar samt andre mundtlige eksaminationer via webkonferencesystemet Adobe Connect. Formålet med denne artikel er at videregive de praktiske erfaringer fra gennemførelsen af disse...... eksaminationer samt at opstille nogle hensigtsmæssige retningslinjer for dem, der ønsker at give sig i kast med mundtlig eksamination via Adobe Connect. Der indledes derfor med en generel præsentation af Adobe Connect samt de elementer ved systemet, som oftest anvendes i forbindelse med mundtlig eksamination...... mundtlige eksaminationer via Adobe Connect....

  10. Connecting and Networking for Schools

    Science.gov (United States)

    Resources for connecting and networking for schools through e-newsletters, finding school IAQ Champions and other EPA school programs such as Asthma, Energy Star, Clean School Bus USA, School Flag, etc.

  11. Connectivity threshold for Bluetooth graphs

    CERN Document Server

    Broutin, Nicolas; Fraiman, Nicolas; Lugosi, Gábor

    2011-01-01

    We study the connectivity properties of random Bluetooth graphs that model certain "ad hoc" wireless networks. The graphs are obtained as "irrigation subgraphs" of the well-known random geometric graph model. There are two parameters that control the model: the radius $r$ that determines the "visible neighbors" of each node and the number of edges $c$ that each node is allowed to send to these. The randomness comes from the underlying distribution of data points in space and from the choices of each vertex. We prove that no connectivity can take place with high probability for a range of parameters $r, c$ and completely characterize the connectivity threshold (in $c$) for values of $r$ close the critical value for connectivity in the underlying random geometric graph.

  12. Cybersecurity for Connected Diabetes Devices.

    Science.gov (United States)

    Klonoff, David C

    2015-04-16

    Diabetes devices are increasingly connected wirelessly to each other and to data-displaying reader devices. Threats to the accurate flow of information and commands may compromise the function of these devices and put their users at risk of health complications. Sound cybersecurity of connected diabetes devices is necessary to maintain confidentiality, integrity, and availability of the data and commands. Diabetes devices can be hacked by unauthorized agents and also by patients themselves to extract data that are not automatically provided by product software. Unauthorized access to connected diabetes devices has been simulated and could happen in reality. A cybersecurity standard designed specifically for connected diabetes devices will improve the safety of these products and increase confidence of users that the products will be secure. © 2015 Diabetes Technology Society.

  13. [Connective tissue diseases in adolescents].

    Science.gov (United States)

    Peitz, J; Tantcheva-Poór, I

    2016-04-01

    In this article we provide a brief review of systemic lupus erythematosus, juvenile dermatomyositis, systemic scleroderma, and mixed connective tissue disease in adolescents. As skin manifestations often belong to the presenting symptoms and may have a significant impact on the quality of life, dermatologists play an important role in the management of patients with connective tissue diseases. Early diagnosis and therapy onset are crucial for the patients' long-term outcome.

  14. Symmetries in Connection Preserving Deformations

    Directory of Open Access Journals (Sweden)

    Christopher M. Ormerod

    2011-05-01

    Full Text Available e wish to show that the root lattice of Bäcklund transformations of the q-analogue of the third and fourth Painlevé equations, which is of type (A_2+A_1^{(1}, may be expressed as a quotient of the lattice of connection preserving deformations. Furthermore, we will show various directions in the lattice of connection preserving deformations present equivalent evolution equations under suitable transformations. These transformations correspond to the Dynkin diagram automorphisms.

  15. Isolating highly connected induced subgraphs

    DEFF Research Database (Denmark)

    Penev, Irena; Thomasse, Stephan; Trotignon, Nicolas

    2016-01-01

    the existence of a highly connected subgraph. We give several variants of our result, and for each of these variants, we give asymptotics for the bounds. We also compute optimal values for the case when k = 2. Alon, Kleitman, Saks, Seymour, and Thomassen proved that in a graph of high chromatic number......, there exists an induced subgraph of high connectivity and high chromatic number. We give a new proof of this theorem with a better bound....

  16. Limited genetic connectivity of Pavona gigantea in the Mexican Pacific

    Science.gov (United States)

    Saavedra-Sotelo, N. C.; Calderon-Aguilera, L. E.; Reyes-Bonilla, H.; López-Pérez, R. A.; Medina-Rosas, P.; Rocha-Olivares, A.

    2011-09-01

    Coral reefs are the most complex and diverse of aquatic ecosystems. Their vulnerability and deterioration in the face of anthropogenic disturbance require the adoption of conservation and restoration efforts to maintain their resilience, for which connectivity is of paramount importance. Dispersal of meroplanktonic larval stages drives the levels of connectivity among coral populations and is influenced by the local current regime, the synchronization of spawning events, and the capacity of larvae to reach recruitment sites. This research aims to quantify the levels of connectivity among Pavona gigantea populations in the Mexican Pacific, using two mitochondrial genes and a nuclear gene. Mitochondrial genes were insufficiently variable to test geographical heterogeneity, whereas the more variable ( h ≥ 0.86) nuclear rDNA indicated significant geographic differentiation ( Φ ST = 0.159, P moderate and unidirectional gene flow from Huatulco Bays to La Paz Bay and Marietas Islands. We found partial agreement between the patterns of connectivity among localities and the general pattern of superficial oceanographic circulation of the region, particularly in reference with the expected influence of the northward flowing West Mexican Current. These results suggest a limited demographic connectivity among Pavona gigantea populations along the Mexican Pacific, mediated by passive larval transport, and highlight the difficulty of predicting connectivity patterns on the basis of highly variable oceanographic regimes and reproductive events. The limited connectivity is of consequence for the viability and vulnerability of local populations and should be considered in the management and conservation strategies in the region.

  17. Brain connectivity in neurodegenerative diseases--from phenotype to proteinopathy.

    Science.gov (United States)

    Pievani, Michela; Filippini, Nicola; van den Heuvel, Martijn P; Cappa, Stefano F; Frisoni, Giovanni B

    2014-11-01

    Functional and structural connectivity measures, as assessed by means of functional and diffusion MRI, are emerging as potential intermediate biomarkers for Alzheimer disease (AD) and other disorders. This Review aims to summarize current evidence that connectivity biomarkers are associated with upstream and downstream disease processes (molecular pathology and clinical symptoms, respectively) in the major neurodegenerative diseases. The vast majority of studies have addressed functional and structural connectivity correlates of clinical phenotypes, confirming the predictable correlation with topography and disease severity in AD and frontotemporal dementia. In neurodegenerative diseases with motor symptoms, structural--but, to date, not functional--connectivity has been consistently found to be associated with clinical phenotype and disease severity. In the latest studies, the focus has moved towards the investigation of connectivity correlates of molecular pathology. Studies in cognitively healthy individuals with brain amyloidosis or genetic risk factors for AD have shown functional connectivity abnormalities in preclinical disease stages that are reminiscent of abnormalities observed in symptomatic AD. This shift in approach is promising, and may aid identification of early disease markers, establish a paradigm for other neurodegenerative disorders, shed light on the molecular neurobiology of connectivity disruption and, ultimately, clarify the pathophysiology of neurodegenerative diseases.

  18. 用新型连接性指数与神经网络预测取代苯酚和取代苯甲酸生物降解性%Prediction of Biodegradability of Substituted Phenols and Benzoic Acids with Novel Molecular Connectivity Index and Artificial Neural Network

    Institute of Scientific and Technical Information of China (English)

    冯长君; 堵锡华; 沐来龙

    2009-01-01

    基于Kier和Hall的分子连接性指数及邻接矩阵,定义新型分子连接性指数~mK_t~v,并计算了30种取代苯酚和取代苯甲酸的分子连接性指数.经最佳变量子集回归建立了25种有机污染物生化需氧量(BOD)与~2K_p~v、~5K_p~v的定量结构-生物降解相关性(QSBR)模型,该模型判定系数R~2、逐一剔除法(LOO)的交互验证系数Q~2及Kubinyi函数(FIT)分别为0.818、0.776和3.410,该模型具有高度的稳定性及良好预测能力.据此模型可知,影响有机污染物BOD的主要因素是取代基的电子效应以及分子的柔韧性、折叠程度等空间因素.将这2个结构参数作为人工神经网络的输入层结点,采用2:5:1的网络结构,利用BP算法获得了一个令人满意的QSBR模型,其R~2和标准偏差s分别为0.967和3.688,表明BOD与~2K_p~v、~5K_p~v具有良好的非线性关系.由此可见,新建的连接性指数对有机物生化需氧量的表征是合理有效的,可望在物质构效关系研究中获得广泛应用.%On the basis of the revision of Kier and Hall's molecular connectivity index and conjugation matrix, a novel molecular connectivity index ~mK_t~v is defined and calculated for 30 substituted phenol and benzoic acid molecules in this paper. The quantitative structure-biodegradability relationship (QSBR) model between biochemical oxygen demand (BOD) and ~2K_p~v, ~5K_p~v for 25 organic pollutants among above molecules is developed by Leaps-and-Bounds regression (LBR), the traditional correlation coefficient R~2, the cross-validation correlation coefficient Q~2 of leave-one-out (LOO) and Kubinyi function (FIT) are 0.818, 0.776 and 3.410, respectively. The result demonstrates that the model is highly reliable and has good predictive ability from the point of statistics. The model shows that the dominant influencing factors of BOD are the electronic effects of substituents and the space factors of molecule: the flexibility and the puckered degree of

  19. Strongly 2-connected orientations of graphs

    DEFF Research Database (Denmark)

    Thomassen, Carsten

    2014-01-01

    We prove that a graph admits a strongly 2-connected orientation if and only if it is 4-edge-connected, and every vertex-deleted subgraph is 2-edge-connected. In particular, every 4-connected graph has such an orientation while no cubic 3-connected graph has such an orientation....

  20. Visualizing neuronal network connectivity with connectivity pattern tables

    Directory of Open Access Journals (Sweden)

    Eilen Nordlie

    2010-01-01

    Full Text Available Complex ideas are best conveyed through well-designed illustrations. Up to now, computational neuroscientists have mostly relied on box-and-arrow diagrams of even complex neuronal networks, often using ad hoc notations with conflicting use of symbols from paper to paper. This significantly impedes the communication of ideas in neuronal network modeling. We present here Connectivity Pattern Tables (CPTs as a clutter-free visualization of connectivity in large neuronal networks containing two-dimensional populations of neurons. CPTs can be generated automatically from the same script code used to create the actual network in the NEST simulator. Through aggregation, CPTs can be viewed at different levels, providing either full detail or summary information. We also provide the open source ConnPlotter tool as a means to create connectivity pattern tables.

  1. MedlinePlus Connect: Technical Information

    Science.gov (United States)

    ... You Are Here: Home → MedlinePlus Connect → Technical Information URL of this page: https://medlineplus.gov/connect/technical. ... on the How it Works page . Queries are URL-based. Connect uses the GET method not POST. ...

  2. Recovery of resting brain connectivity ensuing mild traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Rose Dawn Bharath

    2015-09-01

    Full Text Available Brains reveal amplified plasticity as they recover from an injury. We aimed to define time dependent plasticity changes in patients recovering from mild traumatic brain injury (mTBI. 25 subjects with mild head injury were longitudinally evaluated within 36 hours, 3 and 6 months using resting state functional connectivity (RSFC. Region of interest (ROI based connectivity differences over time within the patient group and in comparison with a healthy control group were analyzed at p<0.005. We found 33 distinct ROI pairs that revealed significant changes in their connectivity strength with time. Within three months, the majority of the ROI pairs had decreased connectivity in mTBI population, which increased and became comparable to healthy controls at 6 months. Initial imaging within 36 hours of injury revealed hyper connectivity predominantly involving the salience network and default mode network, which reduced at 3 months when lingual, inferior frontal and fronto-parietal networks revealed hyper connectivity. At six months all the evaluated networks revealed hyper connectivity and became comparable to the healthy controls. Our findings in a fairly homogenous group of patients with mTBI evaluated during the 6 month window of recovery defines time varying brain connectivity changes as the brain recovers from an injury. A majority of these changes were seen in the frontal and parietal lobes between 3-6 months after injury. Hyper connectivity of several networks supported normal recovery in the first six months and it remains to be seen in future studies whether this can predict an early and efficient recovery of brain function.

  3. Multisite functional connectivity MRI classification of autism: ABIDE results

    Directory of Open Access Journals (Sweden)

    Jared A Nielsen

    2013-09-01

    Full Text Available Background: Systematic differences in functional connectivity MRI metrics have been consistently observed in autism, with predominantly decreased cortico-cortical connectivity. Previous attempts at single subject classification in high-functioning autism using whole brain point-to-point functional connectivity have yielded about 80% accurate classification of autism vs. control subjects across a wide age range. We attempted to replicate the method and results using the Autism Brain Imaging Data Exchange including resting state fMRI data obtained from 964 subjects and 16 separate international sites.Methods: For each of 964 subjects, we obtained pairwise functional connectivity measurements from a lattice of 7266 regions of interest covering the gray matter (26.4 million "connections" after preprocessing that included motion and slice timing correction, coregistration to an anatomic image, normalization to standard space, and voxelwise removal by regression of motion parameters, soft tissue, CSF, and white matter signals. Connections were grouped into multiple bins, and a leave-one-out classifier was evaluated on connections comprising each set of bins. Age, age-squared, gender, handedness, and site were included as covariates for the classifier.Results: Classification accuracy significantly outperformed chance but was much lower for multisite prediction than for previous single site results. As high as 60% accuracy was obtained for whole brain classification, with the best accuracy from connections involving regions of the default mode network, parahippocampal and fusiform gyri, insula, Wernicke Area, and intraparietal sulcus. The classifier score was related to symptom severity, social function, daily living skills, and verbal IQ. Classification accuracy was significantly higher for sites with longer BOLD imaging times.Conclusions: Multisite functional connectivity classification of autism outperformed chance using a simple leave

  4. Brain Connectivity and Visual Attention

    Science.gov (United States)

    Parks, Emily L.

    2013-01-01

    Abstract Emerging hypotheses suggest that efficient cognitive functioning requires the integration of separate, but interconnected cortical networks in the brain. Although task-related measures of brain activity suggest that a frontoparietal network is associated with the control of attention, little is known regarding how components within this distributed network act together or with other networks to achieve various attentional functions. This review considers both functional and structural studies of brain connectivity, as complemented by behavioral and task-related neuroimaging data. These studies show converging results: The frontal and parietal cortical regions are active together, over time, and identifiable frontoparietal networks are active in relation to specific task demands. However, the spontaneous, low-frequency fluctuations of brain activity that occur in the resting state, without specific task demands, also exhibit patterns of connectivity that closely resemble the task-related, frontoparietal attention networks. Both task-related and resting-state networks exhibit consistent relations to behavioral measures of attention. Further, anatomical structure, particularly white matter pathways as defined by diffusion tensor imaging, places constraints on intrinsic functional connectivity. Lastly, connectivity analyses applied to investigate cognitive differences across individuals in both healthy and diseased states suggest that disconnection of attentional networks is linked to deficits in cognitive functioning, and in extreme cases, to disorders of attention. Thus, comprehensive theories of visual attention and their clinical translation depend on the continued integration of behavioral, task-related neuroimaging, and brain connectivity measures. PMID:23597177

  5. Continuously Connected With Mobile IP

    Science.gov (United States)

    2002-01-01

    Cisco Systems developed Cisco Mobile Networks, making IP devices mobile. With this innovation, a Cisco router and its connected IP devices can roam across network boundaries and connection types. Because a mobile user is able to keep the same IP address while roaming, a live IP connection can be maintained without interruption. Glenn Research Center jointly tested the technology with Cisco, and is working to use it on low-earth-orbiting research craft. With Cisco's Mobile Networks functionality now available in Cisco IOS Software release 12.2(4)T, the commercial advantages and benefits are numerous. The technology can be applied to public safety, military/homeland security, emergency management services, railroad and shipping systems, and the automotive industry. It will allow ambulances, police, firemen, and the U.S. Coast Guard to stay connected to their networks while on the move. In the wireless battlefield, the technology will provide rapid infrastructure deployment for U.S. national defense. Airline, train, and cruise passengers utilizing Cisco Mobile Networks can fly all around the world with a continuous Internet connection. Cisco IOS(R) Software is a registered trademark of Cisco Systems.

  6. Improved cyberinfrastructure for integrated hydrometeorological predictions within the fully-coupled WRF-Hydro modeling system

    Science.gov (United States)

    gochis, David; hooper, Rick; parodi, Antonio; Jha, Shantenu; Yu, Wei; Zaslavsky, Ilya; Ganapati, Dinesh

    2014-05-01

    The community WRF-Hydro system is currently being used in a variety of flood prediction and regional hydroclimate impacts assessment applications around the world. Despite its increasingly wide use certain cyberinfrastructure bottlenecks exist in the setup, execution and post-processing of WRF-Hydro model runs. These bottlenecks result in wasted time, labor, data transfer bandwidth and computational resource use. Appropriate development and use of cyberinfrastructure to setup and manage WRF-Hydro modeling applications will streamline the entire workflow of hydrologic model predictions. This talk will present recent advances in the development and use of new open-source cyberinfrastructure tools for the WRF-Hydro architecture. These tools include new web-accessible pre-processing applications, supercomputer job management applications and automated verification and visualization applications. The tools will be described successively and then demonstrated in a set of flash flood use cases for recent destructive flood events in the U.S. and in Europe. Throughout, an emphasis on the implementation and use of community data standards for data exchange is made.

  7. Review on Cold-Formed Steel Connections

    Science.gov (United States)

    Tan, Cher Siang; Mohammad, Shahrin; Md Tahir, Mahmood; Shek, Poi Ngian

    2014-01-01

    The concept of cold-formed light steel framing construction has been widespread after understanding its structural characteristics with massive research works over the years. Connection serves as one of the important elements for light steel framing in order to achieve its structural stability. Compared to hot-rolled steel sections, cold-formed steel connections perform dissimilarity due to the thin-walled behaviour. This paper aims to review current researches on cold-formed steel connections, particularly for screw connections, storage rack connections, welded connections, and bolted connections. The performance of these connections in the design of cold-formed steel structures is discussed. PMID:24688448

  8. Intermodal Passenger Connectivity Database - Raw Data

    Data.gov (United States)

    Department of Transportation — The Intermodal Passenger Connectivity Database (IPCD) is a nationwide data table of passenger transportation terminals, with data on the availability of connections...

  9. The solar-stellar connection

    Science.gov (United States)

    Giampapa, Mark S.

    2016-07-01

    A review of some principal results achieved in the area of stellar astrophysics with its origins in solar physics - the Solar-Stellar Connection - is presented from the perspective of an observational astronomer. The historical origins of the Solar-Stellar Connection are discussed followed by a review of key results from observations of stellar cycles analogous to the solar cycle in terms of parameters relevant to dynamo theory. A review of facets of angular momentum evolution and irradiance variations, each of which is determined by emergent, dynamo-generated magnetic fields, is given. Recent considerations of the impacts of stellar magnetic activity on the ambient radiative and energetic particle environment of the habitable zone of exoplanet systems are summarized. Some anticipated directions of the Solar-Stellar Connection in the new era of astronomy as defined by the advent of transformative facilities are presented.

  10. Pleura: In connective tissue diseases

    Directory of Open Access Journals (Sweden)

    Kaushik Saha

    2016-01-01

    Full Text Available Connective tissue diseases (CTDs (or collagen vascular diseases represent a heterogeneous group of immunologically mediated disorders that affects many organs of the body including pleura. Frequency, presentation, and prognosis of pleural involvement depend on the underlying CTD. Connective tissue disorders may be heritable such as Marfan syndrome, Ehlers-Danlos syndrome, and osteogenesis imperfecta; and autoimmune such as systemic lupus erythematosus (SLE, rheumatoid arthritis (RA, systemic sclerosis, mixed connective tissue disease (MCTD, Sjögren's syndrome (SS, dermatomyositis (DM, and polymyositis (PM. The subject of this review is to describe the variety of pleural disorders observed in the most frequent types of CTD: SLE, RA, scleroderma, SS, DM, PM, and MCTD.

  11. Finding significantly connected voxels based on histograms of connection strengths

    DEFF Research Database (Denmark)

    Kasenburg, Niklas; Pedersen, Morten Vester; Darkner, Sune

    2016-01-01

    -distribution and significance is determined using the false discovery rate (FDR). Segmentations are based on significantly connected voxels and their FDR. In this work we focus on the thalamus and the target regions were chosen by dividing the cortex into a prefrontal/temporal zone, motor zone, somatosensory zone and a parieto...

  12. Generalized connected domination in graphs

    Directory of Open Access Journals (Sweden)

    M. Kouider

    2006-01-01

    Full Text Available As a generalization of connected domination in a graph G we consider domination by sets having at most k components. The order γ c k (G of such a smallest set we relate to γ c (G, the order of a smallest connected dominating set. For a tree T we give bounds on γ c k (T in terms of minimum valency and diameter. For trees the inequality γ c k (T≤ n-k-1 is known to hold, we determine the class of trees, for which equality holds.

  13. How restructuring river connectivity changes freshwater fish biodiversity and biogeography

    Science.gov (United States)

    Lynch, Heather L.; Grant, Evan H. Campbell; Muneepeerakul, Rachata; Arunachalam, Muthukumarasamy; Rodriguez-Iturbe, Ignacio; Fagan, William F.

    2011-01-01

    Interbasin water transfer projects, in which river connectivity is restructured via man-made canals, are an increasingly popular solution to address the spatial mismatch between supply and demand of fresh water. However, the ecological consequences of such restructuring remain largely unexplored, and there are no general theoretical guidelines from which to derive these expectations. River systems provide excellent opportunities to explore how network connectivity shapes habitat occupancy, community dynamics, and biogeographic patterns. We apply a neutral model (which assumes competitive equivalence among species within a stochastic framework) to an empirically derived river network to explore how proposed changes in network connectivity may impact patterns of freshwater fish biodiversity. Without predicting the responses of individual extant species, we find the addition of canals connecting hydrologically isolated river basins facilitates the spread of common species and increases average local species richness without changing the total species richness of the system. These impacts are sensitive to the parameters controlling the spatial scale of fish dispersal, with increased dispersal affording more opportunities for biotic restructuring at the community and landscape scales. Connections between isolated basins have a much larger effect on local species richness than those connecting reaches within a river basin, even when those within-basin reaches are far apart. As a result, interbasin canal projects have the potential for long-term impacts to continental-scale riverine communities.

  14. Decreased functional brain connectivity in adolescents with internet addiction.

    Directory of Open Access Journals (Sweden)

    Soon-Beom Hong

    Full Text Available BACKGROUND: Internet addiction has become increasingly recognized as a mental disorder, though its neurobiological basis is unknown. This study used functional neuroimaging to investigate whole-brain functional connectivity in adolescents diagnosed with internet addiction. Based on neurobiological changes seen in other addiction related disorders, it was predicted that connectivity disruptions in adolescents with internet addiction would be most prominent in cortico-striatal circuitry. METHODS: Participants were 12 adolescents diagnosed with internet addiction and 11 healthy comparison subjects. Resting-state functional magnetic resonance images were acquired, and group differences in brain functional connectivity were analyzed using the network-based statistic. We also analyzed network topology, testing for between-group differences in key graph-based network measures. RESULTS: Adolescents with internet addiction showed reduced functional connectivity spanning a distributed network. The majority of impaired connections involved cortico-subcortical circuits (∼24% with prefrontal and ∼27% with parietal cortex. Bilateral putamen was the most extensively involved subcortical brain region. No between-group difference was observed in network topological measures, including the clustering coefficient, characteristic path length, or the small-worldness ratio. CONCLUSIONS: Internet addiction is associated with a widespread and significant decrease of functional connectivity in cortico-striatal circuits, in the absence of global changes in brain functional network topology.

  15. Dense neuron clustering explains connectivity statistics in cortical microcircuits.

    Directory of Open Access Journals (Sweden)

    Vladimir V Klinshov

    Full Text Available Local cortical circuits appear highly non-random, but the underlying connectivity rule remains elusive. Here, we analyze experimental data observed in layer 5 of rat neocortex and suggest a model for connectivity from which emerge essential observed non-random features of both wiring and weighting. These features include lognormal distributions of synaptic connection strength, anatomical clustering, and strong correlations between clustering and connection strength. Our model predicts that cortical microcircuits contain large groups of densely connected neurons which we call clusters. We show that such a cluster contains about one fifth of all excitatory neurons of a circuit which are very densely connected with stronger than average synapses. We demonstrate that such clustering plays an important role in the network dynamics, namely, it creates bistable neural spiking in small cortical circuits. Furthermore, introducing local clustering in large-scale networks leads to the emergence of various patterns of persistent local activity in an ongoing network activity. Thus, our results may bridge a gap between anatomical structure and persistent activity observed during working memory and other cognitive processes.

  16. Towards Text Simplification for Poor Readers with Intellectual Disability: When Do Connectives Enhance Text Cohesion?

    Science.gov (United States)

    Fajardo, Inmaculada; Tavares, Gema; Avila, Vicenta; Ferrer, Antonio

    2013-01-01

    Cohesive elements of texts such as connectives (e.g., "but," "in contrast") are expected to facilitate inferential comprehension in poor readers. Two experiments tested this prediction in poor readers with intellectual disability (ID) by: (a) comparing literal and inferential text comprehension of texts with and without connectives and/or high…

  17. Gene expression in the rodent brain is associated with its regional connectivity.

    Science.gov (United States)

    Wolf, Lior; Goldberg, Chen; Manor, Nathan; Sharan, Roded; Ruppin, Eytan

    2011-05-01

    The putative link between gene expression of brain regions and their neural connectivity patterns is a fundamental question in neuroscience. Here this question is addressed in the first large scale study of a prototypical mammalian rodent brain, using a combination of rat brain regional connectivity data with gene expression of the mouse brain. Remarkably, even though this study uses data from two different rodent species (due to the data limitations), we still find that the connectivity of the majority of brain regions is highly predictable from their gene expression levels-the outgoing (incoming) connectivity is successfully predicted for 73% (56%) of brain regions, with an overall fairly marked accuracy level of 0.79 (0.83). Many genes are found to play a part in predicting both the incoming and outgoing connectivity (241 out of the 500 top selected genes, p-valueregional connectivity in the rodent is significantly correlated with the annotation profile of genes previously found to determine neural connectivity in C. elegans (Pearson correlation of 0.24, p<1e-6 for the outgoing connections and 0.27, p<1e-5 for the incoming). Overall, the association between connectivity and gene expression in a specific extant rodent species' brain is likely to be even stronger than found here, given the limitations of current data.

  18. Fronto-limbic effective connectivity as possible predictor of antidepressant response to SSRI administration.

    Science.gov (United States)

    Vai, Benedetta; Bulgarelli, Chiara; Godlewska, Beata R; Cowen, Philip J; Benedetti, Francesco; Harmer, Catherine J

    2016-12-01

    The timely selection of the optimal treatment for depressed patients is critical to improve remission rates. The detection of pre-treatment variables able to predict differential treatment response may provide novel approaches for treatment selection. Selective serotonin reuptake inhibitors (SSRIs) modulate the fronto-limbic functional response and connectivity, an effect preceding the overt clinical antidepressant effects. Here we investigated whether the cortico-limbic connectivity associated with emotional bias measured before SSRI administration predicts the efficacy of antidepressant treatment in MDD patients. fMRI and Dynamic Causal Modeling (DCM) were combined to study if effective connectivity might differentiate healthy controls (HC) and patients affected by major depression who later responded (RMDD, n=21), or failed to respond (nRMDD, n=12), to 6 weeks of escitalopram administration. Sixteen DCMs exploring connectivity between anterior cingulate cortex (ACC), ventrolateral prefrontal cortex (VLPFC), Amygdala (Amy), and fusiform gyrus (FG) were constructed. Analyses revealed that nRMDD had reduced endogenous connectivity from Amy to VLPFC and to ACC, with an increased connectivity and modulation of the ACC to Amy connectivity when processing of fearful emotional stimuli compared to HC. RMDD and HC did not significantly differ among themselves. Pre-treatment effective connectivity in fronto-limbic circuitry could be an important factor affecting antidepressant response, and highlight the mechanisms which may be involved in recovery from depression. These results suggest that fronto-limbic connectivity might provide a neural biomarker to predict the clinical outcome to SSRIs administration in major depression.

  19. Monitoring and Analysis of Two Grid Connected PV Systems

    OpenAIRE

    2013-01-01

    International audience; In this paper, two grid connected photovoltaic systems are studied and monitored for fault detection ad predictive reliability. The first PV grid, is at CNRS-PROMES laboratory in Perpignan, built in 2001 with 3 PV arrays named "Shed","Brise soleil","Mur rideau") connected to the grid thanks to many inverter of different power (3 of 4KWC and 2 of 2.5KWC). The second one is at CNRS-LAAS in Toulouse with a power of 100kWc. It is composed of a facade of 36kWc PV array and ...

  20. Discovering relations between indirectly connected biomedical concepts.

    Science.gov (United States)

    Weissenborn, Dirk; Schroeder, Michael; Tsatsaronis, George

    2015-01-01

    The complexity and scale of the knowledge in the biomedical domain has motivated research work towards mining heterogeneous data from both structured and unstructured knowledge bases. Towards this direction, it is necessary to combine facts in order to formulate hypotheses or draw conclusions about the domain concepts. This work addresses this problem by using indirect knowledge connecting two concepts in a knowledge graph to discover hidden relations between them. The graph represents concepts as vertices and relations as edges, stemming from structured (ontologies) and unstructured (textual) data. In this graph, path patterns, i.e. sequences of relations, are mined using distant supervision that potentially characterize a biomedical relation. It is possible to identify characteristic path patterns of biomedical relations from this representation using machine learning. For experimental evaluation two frequent biomedical relations, namely "has target", and "may treat", are chosen. Results suggest that relation discovery using indirect knowledge is possible, with an AUC that can reach up to 0.8, a result which is a great improvement compared to the random classification, and which shows that good predictions can be prioritized by following the suggested approach. Analysis of the results indicates that the models can successfully learn expressive path patterns for the examined relations. Furthermore, this work demonstrates that the constructed graph allows for the easy integration of heterogeneous information and discovery of indirect connections between biomedical concepts.

  1. Resting state connectivity correlates with drug and placebo response in fibromyalgia patients

    Directory of Open Access Journals (Sweden)

    T. Schmidt-Wilcke

    2014-01-01

    This study indicates that ACC–IC connectivity might play a role in the mechanism of action of MLN, and perhaps more importantly fcMRI might be a useful tool to predict pharmacological treatment response.

  2. Connections between groundwater flow and transpiration partitioning

    Science.gov (United States)

    Maxwell, Reed M.; Condon, Laura E.

    2016-07-01

    Understanding freshwater fluxes at continental scales will help us better predict hydrologic response and manage our terrestrial water resources. The partitioning of evapotranspiration into bare soil evaporation and plant transpiration remains a key uncertainty in the terrestrial water balance. We used integrated hydrologic simulations that couple vegetation and land-energy processes with surface and subsurface hydrology to study transpiration partitioning at the continental scale. Both latent heat flux and partitioning are connected to water table depth, and including lateral groundwater flow in the model increases transpiration partitioning from 47 ± 13 to 62 ± 12%. This suggests that lateral groundwater flow, which is generally simplified or excluded in Earth system models, may provide a missing link for reconciling observations and global models of terrestrial water fluxes.

  3. Assessing catchment connectivity using hysteretic loops

    Science.gov (United States)

    Davis, Jason; Masselink, Rens; Goni, Mikel; Gimenez, Rafael; Casali, Javier; Seeger, Manuel; Keesstra, Saskia

    2017-04-01

    Storm events mobilize large proportions of sediments in catchment systems. Therefore understanding catchment sediment dynamics throughout the continuity of storms and how initial catchment states act as controls on the transport of sediment to catchment outlets is important for effective catchment management. Sediment connectivity is a concept which can explain the origin, pathways and sinks of sediments within catchments (Baartman et al., 2013; Parsons et al., 2015; Masselink et al., 2016a,b; Mekonnen et al., 2016). However, sediment connectivity alone does not provide a practicable mechanism by which the catchment's initial state - and thus the location of entrained sediment in the sediment transport cascade - can be characterized. Studying the dynamic relationship between water discharge (Q) and suspended sediment (SS) at the catchment outlet can provide a valuable research tool to infer the likely source areas and flow pathways contributing to sediment transport because the relationship can be characterized by predictable hysteresis patterns. Hysteresis is observed when the sediment concentration associated with a certain flow rate is different depending on the direction in which the analysis is performed - towards the increase or towards the diminution of the flow. However, the complexity of the phenomena and factors which determine the hysteresis make its interpretation ambiguous. Previous work has described various types of hysteretic loops as well as the cause for the shape of the loop, mainly pointing to the origin of the sediments. The data set for this study comes from four experimental watersheds in Navarre (Spain), owned and maintained by the Government of Navarre. These experimental watersheds have been monitored and studied since 1996 (La Tejería and Latxaga) and 2001 (Oskotz principal and Oskotz woodland). La Tejería and Latxaga watersheds are similar to each other regarding size (approximately 200 ha), geology (marls and sandstones), soils (fine

  4. Healthy aging by staying selectively connected: a mini-review.

    Science.gov (United States)

    Antonenko, Daria; Flöel, Agnes

    2014-01-01

    Cognitive neuroscience of the healthy aging human brain has thus far addressed age-related changes of local functional and structural properties of gray and white matter and their association with declining or preserved cognitive functions. In addition to these localized changes, recent neuroimaging research has attributed an important role to neural networks with a stronger focus on interacting rather than isolated brain regions. The analysis of functional connectivity encompasses task-dependent and -independent synchronous activity in the brain, and thus reflects the organization of the brain in distinct performance-relevant networks. Structural connectivity in white matter pathways, representing the integrity of anatomical connections, underlies the communication between the nodes of these functional networks. Both functional and structural connectivity within these networks have been demonstrated to change with aging, and to have different predictive values for cognitive abilities in older compared to young adults. Structural degeneration has been found in the entire cerebral white matter with greatest deterioration in frontal areas, affecting whole brain structural network efficiency. With regard to functional connectivity, both higher and lower functional coupling has been observed in the aging compared to the young brain. Here, high connectivity within the nodes of specific functional networks on the one hand, and low connectivity to regions outside this network on the other hand, were associated with preserved cognitive functions in aging in most cases. For example, in the language domain, connections between left-hemisphere language-related prefrontal, posterior temporal and parietal areas were described as beneficial, whereas connections between the left and right hemisphere were detrimental for language task performance. Of note, interactions between structural and functional network properties may change in the course of aging and differentially impact

  5. Critical Connections: Health and Academics

    Science.gov (United States)

    Michael, Shannon L.; Merlo, Caitlin L.; Basch, Charles E.; Wentzel, Kathryn R.; Wechsler, Howell

    2015-01-01

    Background: While it is a national priority to support the health and education of students, these sectors must better align, integrate, and collaborate to achieve this priority. This article summarizes the literature on the connection between health and academic achievement using the Whole School, Whole Community, and Whole Child (WSCC) framework…

  6. Connecting musicological tools with Europeana

    NARCIS (Netherlands)

    van Berchum, M.

    2015-01-01

    Within the Europeana Cloud project (see http://pro.europeana.eu/web/europeana- cloud) small research groups are engaged in the development of new research tools, connected to the content present in Europeana. In 2014 a group of musicologists working on early music subjects was invited to participate

  7. Connecting Slope, Steepness, and Angles

    Science.gov (United States)

    Nagle, Courtney R.; Moore-Russo, Deborah

    2013-01-01

    All teachers, especially high school teachers, face the challenge of ensuring that students have opportunities to relate and connect the various representations and notions of mathematics concepts developed over the course of the pre-K-12 mathematics curriculum. NCTM's (2000) Representation Standard emphasizes the importance of students being…

  8. Elementary Algebra Connections to Precalculus

    Science.gov (United States)

    Lopez-Boada, Roberto; Daire, Sandra Arguelles

    2013-01-01

    This article examines the attitudes of some precalculus students to solve trigonometric and logarithmic equations and systems using the concepts of elementary algebra. With the goal of enticing the students to search for and use connections among mathematical topics, they are asked to solve equations or systems specifically designed to allow…

  9. The Reading/Writing Connection.

    Science.gov (United States)

    Anderson, Nancy Comfort

    1998-01-01

    Discusses ways to motivate children to become readers and writers, characteristics of good children's literature, using patterned books as models, and prewriting activities; provides an annotated bibliography of 26 patterned books to encourage the reading/writing connection. A subset of updated folk and fairy tales is included. (LRW)

  10. Grouted Connections with Shear Keys

    DEFF Research Database (Denmark)

    Pedersen, Ronnie; Jørgensen, M. B.; Damkilde, Lars

    2012-01-01

    This paper presents a finite element model in the software package ABAQUS in which a reliable analysis of grouted pile-to-sleeve connections with shear keys is the particular purpose. The model is calibrated to experimental results and a consistent set of input parameters is estimated so...

  11. Indicators of malicious SSL connections

    NARCIS (Netherlands)

    Bortolameotti, R.; Peter, A.; Everts, M.H.; Bolzoni, D.

    2015-01-01

    Internet applications use SSL to provide data confidentiality to communicating entities. The use of encryption in SSL makes it impossible to distinguish between benign and malicious connections as the content cannot be inspected. Therefore, we propose and evaluate a set of indicators for malicious S

  12. Mundtlig eksamen via Adobe Connect

    DEFF Research Database (Denmark)

    Kjær, Christopher

    2011-01-01

    I løbet af de sidste tre år har der på Syddansk Universitet (SDU) været afholdt mere end 20 mundtlige kandidatforsvar samt andre mundtlige eksaminationer via webkonferencesystemet Adobe Connect. Formålet med denne artikel er at videregive de praktiske erfaringer fra gennemførelsen af disse...... eksaminationer samt at opstille nogle hensigtsmæssige retningslinjer for dem, der ønsker at give sig i kast med mundtlig eksamination via Adobe Connect. Der indledes derfor med en generel præsentation af Adobe Connect samt de elementer ved systemet, som oftest anvendes i forbindelse med mundtlig eksamination....... Heref ter præsenteres de typiske årsager til, at Adobe Connect anvendes til eksamination. I forlængelse heraf gennemgås nogle scenarier for afholdelse af mundtlig eksamination i systemet. Nogle af disse scenarier suppleres med beskrivelser af deltagernes oplevelser og erfaringer med gennemførelsen af...

  13. The Imagery-Creativity Connection.

    Science.gov (United States)

    Daniels-McGhee, Susan; Davis, Gary A.

    1994-01-01

    This paper reviews historical highlights of the imagery-creativity connection, including early and contemporary accounts, along with notable examples of imagery in the creative process. It also looks at cross-modal imagery (synesthesia), a model of image-based creativity and the creative process, and implications for strengthening creativity by…

  14. Connecting the Dots: Rediscovering Continuity

    Science.gov (United States)

    Camenga, Kristin A.; Yates, Rebekah B. Johnson

    2014-01-01

    The topic of continuity is typically not introduced until calculus and then reexamined in real analysis. Recognizing the connections between secondary school mathematics and the advanced mathematics studied at the college level allows teachers to better identify mathematical concepts in student ideas, motivate students by piquing their curiosity,…

  15. Indicators of malicious SSL connections

    NARCIS (Netherlands)

    Bortolameotti, R.; Peter, A.; Everts, M.H.; Bolzoni, D.

    2015-01-01

    Internet applications use SSL to provide data confidentiality to communicating entities. The use of encryption in SSL makes it impossible to distinguish between benign and malicious connections as the content cannot be inspected. Therefore, we propose and evaluate a set of indicators for malicious

  16. Indicators of malicious SSL connections

    NARCIS (Netherlands)

    Bortolameotti, R.; Peter, A.; Everts, M.H.; Bolzoni, D.

    2015-01-01

    Internet applications use SSL to provide data confidentiality to communicating entities. The use of encryption in SSL makes it impossible to distinguish between benign and malicious connections as the content cannot be inspected. Therefore, we propose and evaluate a set of indicators for malicious S

  17. Line bundles and flat connections

    Indian Academy of Sciences (India)

    INDRANIL BISWAS; GEORG SCHUMACHER

    2017-06-01

    We prove that there are cocompact lattices $\\Gamma$ in $\\rm SL(2,\\mathbb C)$ with the property that there are holomorphic line bundles $L$ on $\\rm SL(2,\\mathbb C)/ \\Gamma$ with $c_{1}(L) = 0$ such that $L$ does not admit any unitary flat connection.

  18. Elementary Algebra Connections to Precalculus

    Science.gov (United States)

    Lopez-Boada, Roberto; Daire, Sandra Arguelles

    2013-01-01

    This article examines the attitudes of some precalculus students to solve trigonometric and logarithmic equations and systems using the concepts of elementary algebra. With the goal of enticing the students to search for and use connections among mathematical topics, they are asked to solve equations or systems specifically designed to allow…

  19. Connecting the Dots: Rediscovering Continuity

    Science.gov (United States)

    Camenga, Kristin A.; Yates, Rebekah B. Johnson

    2014-01-01

    The topic of continuity is typically not introduced until calculus and then reexamined in real analysis. Recognizing the connections between secondary school mathematics and the advanced mathematics studied at the college level allows teachers to better identify mathematical concepts in student ideas, motivate students by piquing their curiosity,…

  20. On the Quality of Wireless Network Connectivity

    CERN Document Server

    Dasgupta, Soura

    2011-01-01

    Despite intensive research in the area of network connectivity, there is an important category of problems that remain unsolved: how to measure the quality of connectivity of a wireless multi-hop network which has a realistic number of nodes, not necessarily large enough to warrant the use of asymptotic analysis, and has unreliable connections, reflecting the inherent unreliable characteristics of wireless communications? The quality of connectivity measures how easily and reliably a packet sent by a node can reach another node. It complements the use of \\emph{capacity} to measure the quality of a network in saturated traffic scenarios and provides a native measure of the quality of (end-to-end) network connections. In this paper, we explore the use of probabilistic connectivity matrix as a possible tool to measure the quality of network connectivity. Some interesting properties of the probabilistic connectivity matrix and their connections to the quality of connectivity are demonstrated. We argue that the la...

  1. Introduction aux dynamiques cat\\'egoriques connectives

    CERN Document Server

    Dugowson, Stéphane

    2011-01-01

    This text is a continuation to my former article "On Connectivity Spaces". It takes into account that connectivity spaces gives rise to phenomena which are essentially dynamic. In a first stage, the representation of finite connectivity spaces by links (Brunn-Debrunner-Kanenobu's theorem) leads to the notion of connective representation. But examples of connective representations often come from dynamical systems. And this is even more obvious when we study the adjoint notion of connective foliation. To apply those notions to dynamics, we first need to consider dynamical systems in an unified way. This is done with a categorical point of view on temporalities and dynamics. It is then possible to define categorical connective dynamics, and to apply to them the various connective notions, specially the connectivity order of a connectivity space.

  2. Connected Worlds: Connecting the public with complex environmental systems

    Science.gov (United States)

    Uzzo, S. M.; Chen, R. S.; Downs, R. R.

    2016-12-01

    Among the most important concepts in environmental science learning is the structure and dynamics of coupled human and natural systems (CHANS). But the fundamental epistemology for understanding CHANS requires systems thinking, interdisciplinarity, and complexity. Although the Next Generation Science Standards mandate connecting ideas across disciplines and systems, traditional approaches to education do not provide more than superficial understanding of this concept. Informal science learning institutions have a key role in bridging gaps between the reductive nature of classroom learning and contemporary data-driven science. The New York Hall of Science, in partnership with Design I/O and Columbia University's Center for International Earth Science Information Network, has developed an approach to immerse visitors in complex human nature interactions and provide opportunities for those of all ages to elicit and notice environmental consequences of their actions. Connected Worlds is a nearly 1,000 m2 immersive, playful environment in which students learn about complexity and interconnectedness in ecosystems and how ecosystems might respond to human intervention. It engages students through direct interactions with fanciful flora and fauna within and among six biomes: desert, rainforest, grassland, mountain valley, reservoir, and wetlands, which are interconnected through stocks and flows of water. Through gestures and the manipulation of a dynamic water system, Connected Worlds enables students, teachers, and parents to experience how the ecosystems of planet Earth are connected and to observe relationships between the behavior of Earth's inhabitants and our shared world. It is also a cyberlearning platform to study how visitors notice and scaffold their understanding of complex environmental processes and the responses of these processes to human intervention, to help inform the improvement of education practices in complex environmental science.

  3. Theory of timber connections with slender dowel type fasteners

    DEFF Research Database (Denmark)

    Svensson, Staffan; Munch-Andersen, Jørgen

    2016-01-01

    A theory on the lateral load-carrying capacity of timber connections with slender fasteners is presented. The base of the theory is the coupled mechanical phenomena acting in the connection, while the wood and the slender fastener deform and yield prior to failure. The objective is to derive...... a sufficient description of actions and responses which have determining influence on the load-carrying capacity of timber connections with slender fasteners. Model assumptions are discussed and made, but simplifications are left out. Even so, simple mathematical equations describing the lateral capacity...... are derived from mechanical equilibrium of the deformed fastener. The herein proposed theory is verified against tests. The tests were designed to vary the influence of isolated mechanical phenomenon as much as possible. The theory shows a very high accuracy and precision when predicting the load-carrying...

  4. Root coverage using epithelial embossed connective tissue graft

    Directory of Open Access Journals (Sweden)

    T Ramakrishnan

    2011-01-01

    Full Text Available In periodontal practice, root coverage after marginal soft tissue recession requires daily clinical decisions. Numerous longitudinal human studies have been presented to support the efficacy and predictability of different mucogingival surgical techniques for root coverage. Over the years, root coverage procedure using the subepithelial connective tissue graft with variations has emerged as the favorite surgical technique. In the case presented in this report, subepithelial connective tissue graft with embossed epithelium was used to cover Miller′s class II gingival recession in the upper right canine. The design is such that embossed epithelium exactly fits the recession site and the connective tissue portion is tucked below the gingival margin of the recipient site. In this technique, coronal advancement of flap is not needed. Wider zone of attached gingiva at the recipient site was achieved by this technique.

  5. Predicting future of predictive analysis

    OpenAIRE

    Piyush, Duggal

    2014-01-01

    With enormous growth in analytical data and insight about advantage of managing future brings Predictive Analysis in picture. It really has potential to be called one of efficient and competitive technologies that give an edge to business operations. The possibility to predict future market conditions and to know customers’ needs and behavior in advance is the area of interest of every organization. Other areas of interest may be maintenance prediction where we tend to predict when and where ...

  6. Nested investigation of subsurface connectivity between hillslopes and streams

    Science.gov (United States)

    Beiter, Daniel; Blume, Theresa; Weiler, Markus

    2016-04-01

    The high spatial variability of the subsurface, and thereby the spatial variability of its hydrological characteristics, still pose a great challenge to in-depth understanding and prediction of subsurface flow and the mechanisms that dynamically connect hillslopes and streams. Even though physical processes in porous media are theoretically very well understood, predicting hillslopes' responses to a specific (precipitation) event can be very intricate, due to the structural heterogeneity of real hillslope-stream systems. In the here presented study (carried out as part of the Catchments As Organized Systems (CAOS) research unit) we assess the linkage between hillslopes and streams via subsurface flow paths. This linkage can also be called "Connectivity", which describes separate regions within a certain catchment as being in a linked state - or not - via water flux. We focus our experimental efforts on several hillslopes with differing geological and morphological properties and seek for indications of connectivity at the hillslope/stream reach scale. These hillslopes are instrumented with soil moisture sensors and observation wells measuring shallow groundwater levels, electric conductivity and temperature continuously. This gives us a first indication of subsurface storage fluctuations and hillslope responses. This setup is extended at selected sites by additional observation wells and electrical resistivity tomography (ERT) transects which are measured in time lapse mode. Hillslope scale forced flow through experiments, where subsurface water flux is induced from upslope, will give an indication for a potential maximum of connectivity in a more or less controlled, yet real, environment. First results of these experiments are reported alongside with response patterns to natural rainfall events. The aim is to identify hydrological and morphological controls on subsurface connectivity depending on the site's characteristics, the system's current state and the

  7. Photometric Redshift Estimation Using Spectral Connectivity Analysis

    CERN Document Server

    Freeman, P E; Lee, A B; Richards, J W; Schafer, C M

    2009-01-01

    The development of fast and accurate methods of photometric redshift estimation is a vital step towards being able to fully utilize the data of next-generation surveys within precision cosmology. In this paper we apply a specific approach to spectral connectivity analysis (SCA; Lee & Wasserman 2009) called diffusion map. SCA is a class of non-linear techniques for transforming observed data (e.g., photometric colours for each galaxy, where the data lie on a complex subset of p-dimensional space) to a simpler, more natural coordinate system wherein we apply regression to make redshift predictions. As SCA relies upon eigen-decomposition, our training set size is limited to ~ 10,000 galaxies; we use the Nystrom extension to quickly estimate diffusion coordinates for objects not in the training set. We apply our method to 350,738 SDSS main sample galaxies, 29,816 SDSS luminous red galaxies, and 5,223 galaxies from DEEP2 with CFHTLS ugriz photometry. For all three datasets, we achieve prediction accuracies on ...

  8. Correlating thalamocortical connectivity and activity

    Science.gov (United States)

    da Fontoura Costa, Luciano; Sporns, Olaf

    2006-07-01

    The segregated regions of the mammalian cerebral cortex and thalamus form an extensive and complex network, whose structure and function are still only incompletely understood. The present letter describes an application of the concepts of complex networks and random walks that allows the identification of nonrandom, highly structured features of thalamocortical connections and their potential effects on dynamic interactions between cortical areas in the cat brain. Utilizing large-scale anatomical data sets of this thalamocortical system, we investigate uniform random walks in such a network by considering the steady state eigenvector of the respective stochastic matrix. It is shown that thalamocortical connections are organized in such a way as to guarantee strong correlation between the outdegree and occupancy rate (a stochastic measure potentially related to activation) of each cortical area. Possible organizational principles underlying this effect are identified and discussed.

  9. Toeplitz operators on connected domains

    Institute of Scientific and Technical Information of China (English)

    CAO; Guangfu

    2006-01-01

    The proof of the index formula of the Toeplitz operator with a continuous symbol on the Hardy space for the unit circle in the complex plane depends on the Hopftheorem. However,the analogue result of the Hopf theorem does not hold on a general connected domain. Hence,the extension of the index formula of the Toeplitz operator on a general domain needs a method which is different from that for the case of the unit circle. In the present paper, the index formula of the Toeplitz operator with a continuous symbol on the finite complex connected domain in the complex plane is obtained, and the cohomology groups of Toeplitz algebras on general domains are discussed. In addition, the Toeplitz operators with symbols in QC are also discussed.

  10. Adipokines in connective tissue diseases.

    Science.gov (United States)

    Sawicka, Karolina; Krasowska, Dorota

    2016-01-01

    Adipokines, pleiotropic molecules produced by white adipose tissue (WAT) have attracted the attention of scientists since 1994. The role of adipokines in metabolic syndrome is known and fixed. Adipokines exerting a variety of metabolic activities have contributed to the ethiopathogenesis and the consequences of metabolic syndrome. Furthermore, adipokines are involved in the regulation of inflammatory processes and autoimmunity in the light of pathogenesis of connective tissue diseases. Given some evidence for the influence of adipokines in metabolic syndrome, there may be a link between CVDs and rheumatic diseases. This review provides an overview of the literature focusing on the role of adipokines in rheumatic diseases by putting special emphasis on the potential role of leptin, resistin, adiponectin, chemerin, visfatin and novel adipokines in connective tissue diseases.

  11. The brain-stomach connection.

    Science.gov (United States)

    Folgueira, C; Seoane, L M; Casanueva, F F

    2014-01-01

    The stomach-brain connection has been revealed to be one of the most promising targets in treating obesity. The stomach plays a key role in the homeostatic mechanism implicating stomach-brain communication regulated under neural and hormonal control. The present review explores specific topics related to gut-brain interactions focus on the stomach-brain connection through the different known systems implied in energy balance control as ghrelin, and nesfatin. Moreover, novel mechanisms for energy balance regulation involving gastric-brain communication are described including the role of the gastric intracellular mTOR/S6K1 pathway mediating the interaction among ghrelin, nesfatin and endocannabinoid gastric systems to modulate metabolism. © 2014 S. Karger AG, Basel.

  12. Evaluating Landscape Connectivity for Puma concolor and Panthera onca Among Atlantic Forest Protected Areas

    Science.gov (United States)

    Castilho, Camila S.; Hackbart, Vivian C. S.; Pivello, Vânia R.; dos Santos, Rozely F.

    2015-06-01

    Strictly Protected Areas and riparian forests in Brazil are rarely large enough or connected enough to maintain viable populations of carnivores and animal movement over time, but these characteristics are fundamental for species conservation as they prevent the extinction of isolated animal populations. Therefore, the need to maintain connectivity for these species in human-dominated Atlantic landscapes is critical. In this study, we evaluated the landscape connectivity for large carnivores (cougar and jaguar) among the Strictly Protected Areas in the Atlantic Forest, evaluated the efficiency of the Mosaics of Protected Areas linked to land uses in promoting landscape connectivity, identified the critical habitat connections, and predicted the landscape connectivity status under the implementation of legislation for protecting riparian forests. The method was based on expert opinion translated into land use and land cover maps. The results show that the Protected Areas are still connected by a narrow band of landscape that is permeable to both species and that the Mosaics of Protected Areas increase the amount of protected area but fail to increase the connectivity between the forested mountain ranges (Serra do Mar and Serra da Mantiqueira). Riparian forests greatly increase connectivity, more than tripling the cougars' priority areas. We note that the selection of Brazilian protected areas still fails to create connectivity among the legally protected forest remnants. We recommend the immediate protection of the priority areas identified that would increase the structural landscape connectivity for these large carnivores, especially paths in the SE/NW direction between the two mountain ranges.

  13. Effects of homeostatic constraints on associative memory storage and synaptic connectivity of cortical circuits

    Directory of Open Access Journals (Sweden)

    Julio eChapeton

    2015-06-01

    Full Text Available The impact of learning and long-term memory storage on synaptic connectivity is not completely understood. In this study, we examine the effects of associative learning on synaptic connectivity in adult cortical circuits by hypothesizing that these circuits function in a steady-state, in which the memory capacity of a circuit is maximal and learning must be accompanied by forgetting. Steady-state circuits should be characterized by unique connectivity features. To uncover such features we developed a biologically constrained, exactly solvable model of associative memory storage. The model is applicable to networks of multiple excitatory and inhibitory neuron classes and can account for homeostatic constraints on the number and the overall weight of functional connections received by each neuron. The results show that in spite of a large number of neuron classes, functional connections between potentially connected cells are realized with less than 50% probability if the presynaptic cell is excitatory and generally a much greater probability if it is inhibitory. We also find that constraining the overall weight of presynaptic connections leads to Gaussian connection weight distributions that are truncated at zero. In contrast, constraining the total number of functional presynaptic connections leads to non-Gaussian distributions, in which weak connections are absent. These theoretical predictions are compared with a large dataset of published experimental studies reporting amplitudes of unitary postsynaptic potentials and probabilities of connections between various classes of excitatory and inhibitory neurons in the cerebellum, neocortex, and hippocampus.

  14. Autoimmune Hepatitis and PSC Connection.

    Science.gov (United States)

    Vergani, Diego; Mieli-Vergani, Giorgina

    2008-02-01

    This article describes the connection between autoimmune hepatitis (AIH) and primary sclerosing cholangitis (PSC). The two conditions have chronicity, liver inflammation, and a positive autoimmune serology in common; they differ in terms of gender distribution and bile duct damage. There is evidence suggesting that AIH and PSC are immune-mediated diseases. PSC and AIH could lie within the spectrum of the same disease process. Future studies should determine how frequently AIH evolves to PSC.

  15. The Cosmology - Particle Physics Connection

    OpenAIRE

    Trodden, Mark(Center for Particle Cosmology, Department of Physics & Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104, United States)

    2006-01-01

    Modern cosmology poses deep and unavoidable questions for fundamental physics. In this plenary talk, delivered in slightly different forms at the {\\it Particles and Nuclei International Conference} (PANIC05) in Santa Fe, in October 2005, and at the {\\it CMB and Physics of the Early Universe International Conference}, on the island of Ischia, Italy, in April 2006, I discuss the broad connections between cosmology and particle physics, focusing on physics at the TeV scale, accessible at the nex...

  16. Connecting Remote Clusters with ATM

    Energy Technology Data Exchange (ETDEWEB)

    Hu, T.C.; Wyckoff, P.S.

    1998-10-01

    Sandia's entry into utilizing clusters of networked workstations is called Computational Plant or CPlant for short. The design of CPlant uses Ethernet to boot the individual nodes, Myrinet to communicate within a node cluster, and ATM to connect between remote clusters. This SAND document covers the work done to enable the use of ATM on the CPlant nodes in the Fall of 1997.

  17. Connected Me - Proof of Concept

    OpenAIRE

    Vajravelu, Dilip Kumar

    2013-01-01

    Connected Me is a Human Body Communication (HBC) system, which is used fortransferring data through human body. The working principle is based on theorycalled Body Coupled Communication (BCC), which uses electrostatic couplingfor transferring data between device and human body. Capacitance between bodyand electrode acts as an electrical interface between devices. BCC has become aprominent research area in the field of Personal Area Network (PAN), introducedby Zimmerman in 1995. Until now ther...

  18. A LISP-Ada connection

    Science.gov (United States)

    Jaworski, Allan; Lavallee, David; Zoch, David

    1987-01-01

    The prototype demonstrates the feasibility of using Ada for expert systems and the implementation of an expert-friendly interface which supports knowledge entry. In the Ford LISP-Ada Connection (FLAC) system LISP and Ada are used in ways which complement their respective capabilities. Future investigation will concentrate on the enhancement of the expert knowledge entry/debugging interface and on the issues associated with multitasking and real-time expert systems implementation in Ada.

  19. Compensatory striatal-cerebellar connectivity in mild-moderate Parkinson's disease.

    Science.gov (United States)

    Simioni, Alison C; Dagher, Alain; Fellows, Lesley K

    2016-01-01

    Dopamine depletion in the putamen is associated with altered motor network functional connectivity in people with Parkinson's disease (PD), but the functional significance of these changes remains unclear, attributed to either pathological or compensatory mechanisms in different studies. Here, we examined the effects of PD on dorsal caudal putamen functional connectivity, off and on dopamine replacement therapy (DRT), using resting state fMRI. Motor performance was assessed with the Purdue pegboard task. Twenty-one patients with mild-moderate Parkinson's disease were studied twice, once after an overnight DRT washout and once after the administration of a standard dose of levodopa (Sinemet), and compared to 20 demographically-matched healthy control participants. PD patients off DRT showed increased putamen functional connectivity with both the cerebellum (lobule V) and primary motor cortex (M1), relative to healthy controls. Greater putamen-cerebellar functional connectivity was significantly correlated with better motor performance, whereas greater putamen-M1 functional connectivity was predictive of poorer motor performance. The administration of levodopa improved motor performance in the PD group, as expected, and reduced putamen-cerebellar connectivity to levels comparable to the healthy control group. The strength of putamen-cerebellar functional connectivity continued to predict motor performance in the PD group while on levodopa. These findings argue that increased putamen-M1 functional connectivity reflects a pathological change, deleterious to motor performance. In contrast, increased putamen-cerebellar connectivity reflects a compensatory mechanism.

  20. Compensatory striatal–cerebellar connectivity in mild–moderate Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Alison C. Simioni

    2016-01-01

    Full Text Available Dopamine depletion in the putamen is associated with altered motor network functional connectivity in people with Parkinson's disease (PD, but the functional significance of these changes remains unclear, attributed to either pathological or compensatory mechanisms in different studies. Here, we examined the effects of PD on dorsal caudal putamen functional connectivity, off and on dopamine replacement therapy (DRT, using resting state fMRI. Motor performance was assessed with the Purdue pegboard task. Twenty-one patients with mild–moderate Parkinson's disease were studied twice, once after an overnight DRT washout and once after the administration of a standard dose of levodopa (Sinemet, and compared to 20 demographically-matched healthy control participants. PD patients off DRT showed increased putamen functional connectivity with both the cerebellum (lobule V and primary motor cortex (M1, relative to healthy controls. Greater putamen–cerebellar functional connectivity was significantly correlated with better motor performance, whereas greater putamen–M1 functional connectivity was predictive of poorer motor performance. The administration of levodopa improved motor performance in the PD group, as expected, and reduced putamen–cerebellar connectivity to levels comparable to the healthy control group. The strength of putamen–cerebellar functional connectivity continued to predict motor performance in the PD group while on levodopa. These findings argue that increased putamen–M1 functional connectivity reflects a pathological change, deleterious to motor performance. In contrast, increased putamen–cerebellar connectivity reflects a compensatory mechanism.

  1. Periodic Hydraulic Testing for Discerning Fracture Network Connections

    Science.gov (United States)

    Becker, M.; Le Borgne, T.; Bour, O.; Guihéneuf, N.; Cole, M.

    2015-12-01

    Discrete fracture network (DFN) models often predict highly variable hydraulic connections between injection and pumping wells used for enhanced oil recovery, geothermal energy extraction, and groundwater remediation. Such connections can be difficult to verify in fractured rock systems because standard pumping or pulse interference tests interrogate too large a volume to pinpoint specific connections. Three field examples are presented in which periodic hydraulic tests were used to obtain information about hydraulic connectivity in fractured bedrock. The first site, a sandstone in New York State, involves only a single fracture at a scale of about 10 m. The second site, a granite in Brittany, France, involves a fracture network at about the same scale. The third site, a granite/schist in the U.S. State of New Hampshire, involves a complex network at scale of 30-60 m. In each case periodic testing provided an enhanced view of hydraulic connectivity over previous constant rate tests. Periodic testing is particularly adept at measuring hydraulic diffusivity, which is a more effective parameter than permeability for identify the complexity of flow pathways between measurement locations. Periodic tests were also conducted at multiple frequencies which provides a range in the radius of hydraulic penetration away from the oscillating well. By varying the radius of penetration, we attempt to interrogate the structure of the fracture network. Periodic tests, therefore, may be uniquely suited for verifying and/or calibrating DFN models.

  2. Identification of neural connectivity signatures of autism using machine learning

    Directory of Open Access Journals (Sweden)

    Gopikrishna eDeshpande

    2013-10-01

    Full Text Available Alterations in neural connectivity have been suggested as a signature of the pathobiology of autism. Although disrupted correlation between cortical regions observed from functional MRI is considered to be an explanatory model for autism, the directional causal influence between brain regions is a vital link missing in these studies. The current study focuses on addressing this in an fMRI study of Theory-of-Mind in 15 high-functioning adolescents and adults with autism (ASD and 15 typically developing (TD controls. Participants viewed a series of comic strip vignettes in the MRI scanner and were asked to choose the most logical end to the story from three alternatives, separately for trials involving physical and intentional causality. Causal brain connectivity obtained from a multivariate autoregressive model, along with assessment scores, functional connectivity values, and fractional anisotropy obtained from DTI data for each participant, were submitted to a recursive cluster elimination based support vector machine classifier to determine the accuracy with which the classifier can predict a novel participant’s group membership (ASD or TD. We found a maximum classification accuracy of 95.9 % with 19 features which had the highest discriminative ability between the groups. All of the 19 features were effective connectivity paths, indicating that causal information may be critical in discriminating between ASD and TD groups. These effective connectivity paths were also found to be significantly greater in controls as compared to ASD participants and consisted predominantly of outputs from the fusiform face area and middle temporal gyrus indicating impaired connectivity in ASD participants, particularly in the social brain areas. These findings collectively point towards the fact that alterations in causal brain connectivity in individuals with ASD could serve as a potential non-invasive neuroimaging signature for autism

  3. Performance evaluations of demountable electrical connections

    Science.gov (United States)

    Niemann, R. C.; Cha, Y. S.; Hull, J. R.; Buckles, W. E.; Daugherty, M. A.

    Electrical conductors operating in cryogenic environments can require demountable connections along their lengths. The connections must have low resistance and high reliability and should allow ready assembly and disassembly. In this work, the performance of two types of connections has been evaluated. The first connection type is a clamped surface-to-surface joint. The second connection type is a screwed joint that incorporates male and female machine-thread components. The connections for copper conductors have been evaluated experimentally at 77 K. Experimental variables included thread surface treatment and assembly methods. The results of the evaluations are presented.

  4. Using graph approach for managing connectivity in integrative landscape modelling

    Science.gov (United States)

    Rabotin, Michael; Fabre, Jean-Christophe; Libres, Aline; Lagacherie, Philippe; Crevoisier, David; Moussa, Roger

    2013-04-01

    In cultivated landscapes, a lot of landscape elements such as field boundaries, ditches or banks strongly impact water flows, mass and energy fluxes. At the watershed scale, these impacts are strongly conditionned by the connectivity of these landscape elements. An accurate representation of these elements and of their complex spatial arrangements is therefore of great importance for modelling and predicting these impacts.We developped in the framework of the OpenFLUID platform (Software Environment for Modelling Fluxes in Landscapes) a digital landscape representation that takes into account the spatial variabilities and connectivities of diverse landscape elements through the application of the graph theory concepts. The proposed landscape representation consider spatial units connected together to represent the flux exchanges or any other information exchanges. Each spatial unit of the landscape is represented as a node of a graph and relations between units as graph connections. The connections are of two types - parent-child connection and up/downstream connection - which allows OpenFLUID to handle hierarchical graphs. Connections can also carry informations and graph evolution during simulation is possible (connections or elements modifications). This graph approach allows a better genericity on landscape representation, a management of complex connections and facilitate development of new landscape representation algorithms. Graph management is fully operational in OpenFLUID for developers or modelers ; and several graph tools are available such as graph traversal algorithms or graph displays. Graph representation can be managed i) manually by the user (for example in simple catchments) through XML-based files in easily editable and readable format or ii) by using methods of the OpenFLUID-landr library which is an OpenFLUID library relying on common open-source spatial libraries (ogr vector, geos topologic vector and gdal raster libraries). Open

  5. Gene expression in the rodent brain is associated with its regional connectivity.

    Directory of Open Access Journals (Sweden)

    Lior Wolf

    2011-05-01

    Full Text Available The putative link between gene expression of brain regions and their neural connectivity patterns is a fundamental question in neuroscience. Here this question is addressed in the first large scale study of a prototypical mammalian rodent brain, using a combination of rat brain regional connectivity data with gene expression of the mouse brain. Remarkably, even though this study uses data from two different rodent species (due to the data limitations, we still find that the connectivity of the majority of brain regions is highly predictable from their gene expression levels-the outgoing (incoming connectivity is successfully predicted for 73% (56% of brain regions, with an overall fairly marked accuracy level of 0.79 (0.83. Many genes are found to play a part in predicting both the incoming and outgoing connectivity (241 out of the 500 top selected genes, p-value<1e-5. Reassuringly, the genes previously known from the literature to be involved in axon guidance do carry significant information about regional brain connectivity. Surveying the genes known to be associated with the pathogenesis of several brain disorders, we find that those associated with schizophrenia, autism and attention deficit disorder are the most highly enriched in the connectivity-related genes identified here. Finally, we find that the profile of functional annotation groups that are associated with regional connectivity in the rodent is significantly correlated with the annotation profile of genes previously found to determine neural connectivity in C. elegans (Pearson correlation of 0.24, p<1e-6 for the outgoing connections and 0.27, p<1e-5 for the incoming. Overall, the association between connectivity and gene expression in a specific extant rodent species' brain is likely to be even stronger than found here, given the limitations of current data.

  6. Connectivity in Autism: A review of MRI connectivity studies

    Science.gov (United States)

    Rane, Pallavi; Cochran, David; Hodge, Steven M.; Haselgrove, Christian; Kennedy, David; Frazier, Jean A.

    2016-01-01

    Autism Spectrum Disorder (ASD) affects 1 in 50 children between the ages of 6–17 years as per a 2012 CDC survey of parents. The etiology of ASD is not precisely known. ASD is an umbrella term, which includes low (IQ70) individuals. A better understanding of the disorder, and how it manifests in an individual subject can lead to more effective intervention plans to fulfill the individual’s treatment needs. Magnetic resonance imaging (MRI) is a non-invasive investigational tool that can help study the ways in which the brain develops and/or deviates from the typical developmental trajectory. MRI offers insights into the structure, function, and metabolism of the brain. In this article, we review published studies on brain connectivity changes in ASD using either resting state functional MRI or diffusion tensor imaging. The general findings of decreases in white matter integrity and long-range neural coherence are prevalent in ASD literature. However, there is somewhat less of a consensus in the detailed localization of these findings. There are even fewer studies linking these connectivity alterations with the behavioral phenotype of the disorder. Nevertheless, with the help of data sharing and large-scale analytic efforts, the field is advancing towards several convergent themes. These include reduced functional coherence of long-range intra-hemispheric cortico-cortical default mode circuitry, impaired inter-hemispheric regulation, and an associated, perhaps compensatory, increase in local and short-range cortico-subcortical coherence. PMID:26146755

  7. Structural Brain Connectivity Constrains within-a-Day Variability of Direct Functional Connectivity

    Directory of Open Access Journals (Sweden)

    Bumhee Park

    2017-08-01

    Full Text Available The idea that structural white matter connectivity constrains functional connectivity (interactions among brain regions has widely been explored in studies of brain networks; studies have mostly focused on the “average” strength of functional connectivity. The question of how structural connectivity constrains the “variability” of functional connectivity remains unresolved. In this study, we investigated the variability of resting state functional connectivity that was acquired every 3 h within a single day from 12 participants (eight time sessions within a 24-h period, 165 scans per session. Three different types of functional connectivity (functional connectivity based on Pearson correlation, direct functional connectivity based on partial correlation, and the pseudo functional connectivity produced by their difference were estimated from resting state functional magnetic resonance imaging data along with structural connectivity defined using fiber tractography of diffusion tensor imaging. Those types of functional connectivity were evaluated with regard to properties of structural connectivity (fiber streamline counts and lengths and types of structural connectivity such as intra-/inter-hemispheric edges and topological edge types in the rich club organization. We observed that the structural connectivity constrained the variability of direct functional connectivity more than pseudo-functional connectivity and that the constraints depended strongly on structural connectivity types. The structural constraints were greater for intra-hemispheric and heterologous inter-hemispheric edges than homologous inter-hemispheric edges, and feeder and local edges than rich club edges in the rich club architecture. While each edge was highly variable, the multivariate patterns of edge involvement, especially the direct functional connectivity patterns among the rich club brain regions, showed low variability over time. This study suggests that

  8. Multiphasic modification of intrinsic functional connectivity of the rat brain during increasing levels of propofol.

    Science.gov (United States)

    Liu, Xiping; Pillay, Siveshigan; Li, Rupeng; Vizuete, Jeannette A; Pechman, Kimberly R; Schmainda, Kathleen M; Hudetz, Anthony G

    2013-12-01

    The dose-dependent effects of anesthetics on brain functional connectivity are incompletely understood. Resting-state functional magnetic resonance imaging (rsfMRI) is widely used to assess the functional connectivity in humans and animals. Propofol is an anesthetic agent with desirable characteristics for functional neuroimaging in animals but its dose-dependent effects on rsfMRI functional connectivity have not been determined. Here we tested the hypothesis that brain functional connectivity undergoes specific changes in distinct neural networks at anesthetic depths associated with loss of consciousness. We acquired spontaneous blood oxygen level-dependent (BOLD) signals simultaneously with electroencephalographic (EEG) signals from rats under steady-state, intravenously administered propofol at increasing doses from light sedation to deep anesthesia (20, 40, 60, 80, and 100 mg/kg/h IV). Power spectra and burst suppression ratio were calculated from the EEG to verify anesthetic depth. Functional connectivity was determined from the whole brain correlation of BOLD data in regions of interest followed by a segmentation of the correlation maps into anatomically defined regional connectivity. We found that propofol produced multiphasic, dose dependent changes in functional connectivity of various cortical and subcortical networks. Cluster analysis predicted segregation of connectivity into two cortical and two subcortical clusters. In one cortical cluster (somatosensory and parietal), the early reduction in connectivity was followed by transient reversal; in the other cluster (sensory, motor and cingulate/retrosplenial), this rebound was absent. The connectivity of the subcortical cluster (brainstem, hippocampal and caudate) was strongly reduced, whereas that of another (hypothalamus, medial thalamus and n. basalis) did not. Subcortical connectivity increased again in deep anesthesia associated with EEG burst suppression. Regional correlation analysis confirmed the

  9. New molecular connections in angiogenesis

    Institute of Scientific and Technical Information of China (English)

    Qiling Xu; David Wilkinson

    2010-01-01

    @@ In vertebrates, oxygen and nutrients are delivered to tissues by the circula-tion of blood through vessels, comprised of a branched network of endothelial tubes termed the vasculature. Crucial for the formation of blood vessels during development is the process of angiogenesis, in which new sprouts form from pre-existing vessels in a complex cascade of cellular events. This involves the activation of an endothelial cell in the vessel to become a highly exploratory 'tip' cell that migrates to invade the surrounding tissues, while remaining tightly connected to the fol-lowing cells that subsequently generate the tubular structures of a new vessel.

  10. Connectivity graphs of uncertainty regions

    CERN Document Server

    Chambers, Erin; Lenchner, Jonathan; Sember, Jeff; Srinivasan, Venkatesh; Stege, Ulrike; Stolpner, Svetlana; Weibel, Christophe; Whitesides, Sue

    2010-01-01

    We study a generalization of the well known bottleneck spanning tree problem called "Best Case Connectivity with Uncertainty": Given a family of geometric regions, choose one point per region, such that the length of the longest edge in a spanning tree of a disc intersection graph is minimized. We show that this problem is NP-hard even for very simple scenarios such as line segments and squares. We also give exact and approximation algorithms for the case of line segments and unit discs respectively.

  11. Galois Connections for Flow Algebras

    DEFF Research Database (Denmark)

    Filipiuk, Piotr; Terepeta, Michal Tomasz; Nielson, Hanne Riis

    2011-01-01

    We generalise Galois connections from complete lattices to flow algebras. Flow algebras are algebraic structures that are less restrictive than idempotent semirings in that they replace distributivity with monotonicity and dispense with the annihilation property; therefore they are closer...... to the approach taken by Monotone Frameworks and other classical analyses. We present a generic framework for static analysis based on flow algebras and program graphs. Program graphs are often used in Model Checking to model concurrent and distributed systems. The framework allows to induce new flow algebras...

  12. The Cosmology - Particle Physics Connection

    CERN Document Server

    Trodden, M

    2006-01-01

    Modern cosmology poses deep and unavoidable questions for fundamental physics. In this plenary talk, delivered in slightly different forms at the {\\it Particles and Nuclei International Conference} (PANIC05) in Santa Fe, in October 2005, and at the {\\it CMB and Physics of the Early Universe International Conference}, on the island of Ischia, Italy, in April 2006, I discuss the broad connections between cosmology and particle physics, focusing on physics at the TeV scale, accessible at the next and future generations of colliders

  13. Collective action, clientelism and connectivity

    DEFF Research Database (Denmark)

    Shami, Mahvish

    are in short supply, the few that exist are generally pessimistic. This paper argues, however, that clientelist relations are highly context-specific, which matters a great deal for their implications for collective action. Making use of a natural experiment in rural Punjab, Pakistan, the paper finds...... that the unequal relationship between landlords and peasants does not, in and by itself, block peasant collective action. Rather, it is the interaction between clientelism and isolation that allow patrons to block community based projects. Despite still relying on powerful landlords, peasants in connected villages...

  14. Mathematical connections a capstone course

    CERN Document Server

    Conway, John B

    2010-01-01

    This book illustrates connections between various courses taken by undergraduate mathematics majors. As such it can be used as a text for a capstone course. The chapters are essentially independent, and the instructor can choose the topics that will form the course and thus tailor the syllabus to suit the backgrounds and abilities of the students. At the end of such a course the graduating seniors should glimpse mathematics not as a series of independent courses but as something more like an integrated body of knowledge. The book has numerous exercises and examples so that the student has many

  15. Connecting cognition and consumer choice.

    Science.gov (United States)

    Bartels, Daniel M; Johnson, Eric J

    2015-02-01

    We describe what can be gained from connecting cognition and consumer choice by discussing two contexts ripe for interaction between the two fields. The first-context effects on choice-has already been addressed by cognitive science yielding insights about cognitive process but there is promise for more interaction. The second is learning and representation in choice where relevant theories in cognitive science could be informed by consumer choice, and in return, could pose and answer new questions. We conclude by discussing how these two fields of research stand to benefit from more interaction, citing examples of how interfaces of cognitive science with other fields have been illuminating for theories of cognition.

  16. Autoimmune connective tissue disease: scleroderma.

    Science.gov (United States)

    Wilson, Helen; Vincent, Rachel

    Scleroderma is an umbrella term for a spectrum of rare and complex autoimmune connective tissue diseases, the cause and pathogenesis of which is only partially defined. Scleroderma can be divided into two main subgroups--systemic and localized--but the hallmark of both is skin fibrosis. As yet no drug has been found to be effective in reversing the disease process, however early intervention has been shown to give maximum benefit. Due to the chronic nature of the condition a multidisciplinary approach is essential and the nurse's input from an early stage is vital in supporting the patient to manage both their medical treatment and their activities of daily living.

  17. Predictive medicine

    NARCIS (Netherlands)

    Boenink, Marianne; Have, ten Henk

    2015-01-01

    In the last part of the twentieth century, predictive medicine has gained currency as an important ideal in biomedical research and health care. Research in the genetic and molecular basis of disease suggested that the insights gained might be used to develop tests that predict the future health sta

  18. Understanding and Connections between Equations and Graphs.

    Science.gov (United States)

    Knuth, Eric J.

    2000-01-01

    Presents results from a study that examined students' understanding of connections between algebraic and graphical representations of functions. Discusses a possible reason for the inadequate and often absent connections that students made between them. (ASK)

  19. MOHCS: Towards Mining Overlapping Highly Connected Subgraphs

    CERN Document Server

    Lin, Xiahong; Chen, Kefei; Chiu, David K Y

    2008-01-01

    Many networks in real-life typically contain parts in which some nodes are more highly connected to each other than the other nodes of the network. The collection of such nodes are usually called clusters, communities, cohesive groups or modules. In graph terminology, it is called highly connected graph. In this paper, we first prove some properties related to highly connected graph. Based on these properties, we then redefine the highly connected subgraph which results in an algorithm that determines whether a given graph is highly connected in linear time. Then we present a computationally efficient algorithm, called MOHCS, for mining overlapping highly connected subgraphs. We have evaluated experimentally the performance of MOHCS using real and synthetic data sets from computer-generated graph and yeast protein network. Our results show that MOHCS is effective and reliable in finding overlapping highly connected subgraphs. Keywords-component; Highly connected subgraph, clustering algorithms, minimum cut, m...

  20. Linear connections on the quantum plane

    CERN Document Server

    Dubois-Violette, M; Masson, T; Mourad, J; Dubois-Violette, Michel; Madore, John; Masson, Thierry; Mourad, Jihad

    1994-01-01

    A general definition has been proposed recently of a linear connection and a metric in noncommutative geometry. It is shown that to within normalization there is a unique linear connection on the quantum plane and there is no metric.

  1. MedlinePlus Connect: Email List

    Science.gov (United States)

    ... https://medlineplus.gov/connect/emaillist.html MedlinePlus Connect: Email List To use the sharing features on this ... developments and exchange ideas with your colleagues. This email list will be useful for health IT developers ...

  2. Further evidence of alerted default network connectivity and association with theory of mind ability in schizophrenia.

    Science.gov (United States)

    Mothersill, Omar; Tangney, Noreen; Morris, Derek W; McCarthy, Hazel; Frodl, Thomas; Gill, Michael; Corvin, Aiden; Donohoe, Gary

    2017-06-01

    Resting-state functional magnetic resonance imaging (rs-fMRI) has repeatedly shown evidence of altered functional connectivity of large-scale networks in schizophrenia. The relationship between these connectivity changes and behaviour (e.g. symptoms, neuropsychological performance) remains unclear. Functional connectivity in 27 patients with schizophrenia or schizoaffective disorder, and 25 age and gender matched healthy controls was examined using rs-fMRI. Based on seed regions from previous studies, we examined functional connectivity of the default, cognitive control, affective and attention networks. Effects of symptom severity and theory of mind performance on functional connectivity were also examined. Patients showed increased connectivity between key nodes of the default network including the precuneus and medial prefrontal cortex compared to controls (ptheory of mind performance were both associated with altered connectivity of default regions within the patient group (pschizophrenia spectrum patients and reveals an association between altered default connectivity and positive symptom severity. As a novel find, this study also shows that default connectivity is correlated to and predictive of theory of mind performance. Extending these findings by examining the effects of emerging social cognition treatments on both default connectivity and theory of mind performance is now an important goal for research. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Aberrant intra-salience network dynamic functional connectivity impairs large-scale network interactions in schizophrenia.

    Science.gov (United States)

    Wang, Xiangpeng; Zhang, Wenwen; Sun, Yujing; Hu, Min; Chen, Antao

    2016-12-01

    Aberrant functional interactions between several large-scale networks, especially the central executive network (CEN), the default mode network (DMN) and the salience network (SN), have been postulated as core pathophysiologic features of schizophrenia; however, the attributing factors of which remain unclear. The study employed resting-state fMRI with 77 participants (42 patients and 35 controls). We performed dynamic functional connectivity (DFC) and functional connectivity (FC) analyses to explore the connectivity patterns of these networks. Furthermore, we performed a structural equation model (SEM) analysis to explore the possible role of the SN in modulating network interactions. The results were as follows: (1) The inter-network connectivity showed decreased connectivity strength and increased time-varying instability in schizophrenia; (2) The SN manifested schizophrenic intra-network dysfunctions in both the FC and DFC patterns; (3) The connectivity properties of the SN were effective in discriminating controls from patients; (4) In patients, the dynamic intra-SN connectivity negatively predicted the inter-network FC, and this effect was mediated by intra-SN connectivity strength. These findings suggest that schizophrenia show systematic deficits in temporal stability of large-scale network connectivity. Furthermore, aberrant network interactions in schizophrenia could be attributed to instable intra-SN connectivity and the dysfunction of the SN may be an intrinsic biomarker of the disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Embedded adhesive connection for laminated glass plates

    DEFF Research Database (Denmark)

    Hansen, Jens Zangenberg; Poulsen, S.H.; Bagger, A.

    2012-01-01

    The structural behavior of a new connection design, the embedded adhesive connection, used for laminated glass plates is investigated. The connection consists of an aluminum plate encapsulated in-between two adjacent triple layered laminated glass plates. Fastening between glass and aluminum...... usage in a design situation. The embedded connection shows promising potential as a future fastening system for load-carrying laminated glass plates....

  5. Affine connections on involutive G-structures

    OpenAIRE

    Merkulov, Sergey A.

    1995-01-01

    This paper is a review of the twistor theory of irreducible G-structures and affine connections. Long ago, Berger presented a very restricted list of possible irreducibly acting holonomies of torsion-free affine connections. His list was complete in the part of metric connections, while the situation with holonomies of non-metric torsion-free affine connections was and remains rather unclear. One of the results discussed in this review asserts that any torsion-free holomorphic affine connecti...

  6. Connectivity editing for quadrilateral meshes

    KAUST Repository

    Peng, Chihan

    2011-12-12

    We propose new connectivity editing operations for quadrilateral meshes with the unique ability to explicitly control the location, orientation, type, and number of the irregular vertices (valence not equal to four) in the mesh while preserving sharp edges. We provide theoretical analysis on what editing operations are possible and impossible and introduce three fundamental operations to move and re-orient a pair of irregular vertices. We argue that our editing operations are fundamental, because they only change the quad mesh in the smallest possible region and involve the fewest irregular vertices (i.e., two). The irregular vertex movement operations are supplemented by operations for the splitting, merging, canceling, and aligning of irregular vertices. We explain how the proposed highlevel operations are realized through graph-level editing operations such as quad collapses, edge flips, and edge splits. The utility of these mesh editing operations are demonstrated by improving the connectivity of quad meshes generated from state-of-art quadrangulation techniques. © 2011 ACM.

  7. Connectivity editing for quadrilateral meshes

    KAUST Repository

    Peng, Chihan

    2011-12-01

    We propose new connectivity editing operations for quadrilateral meshes with the unique ability to explicitly control the location, orientation, type, and number of the irregular vertices (valence not equal to four) in the mesh while preserving sharp edges. We provide theoretical analysis on what editing operations are possible and impossible and introduce three fundamental operations to move and re-orient a pair of irregular vertices. We argue that our editing operations are fundamental, because they only change the quad mesh in the smallest possible region and involve the fewest irregular vertices (i.e., two). The irregular vertex movement operations are supplemented by operations for the splitting, merging, canceling, and aligning of irregular vertices. We explain how the proposed high-level operations are realized through graph-level editing operations such as quad collapses, edge flips, and edge splits. The utility of these mesh editing operations are demonstrated by improving the connectivity of quad meshes generated from state-of-art quadrangulation techniques.

  8. Astrophysicists' conversational connections on Twitter.

    Science.gov (United States)

    Holmberg, Kim; Bowman, Timothy D; Haustein, Stefanie; Peters, Isabella

    2014-01-01

    Because Twitter and other social media are increasingly used for analyses based on altmetrics, this research sought to understand what contexts, affordance use, and social activities influence the tweeting behavior of astrophysicists. Thus, the presented study has been guided by three research questions that consider the influence of astrophysicists' activities (i.e., publishing and tweeting frequency) and of their tweet construction and affordance use (i.e. use of hashtags, language, and emotions) on the conversational connections they have on Twitter. We found that astrophysicists communicate with a variety of user types (e.g. colleagues, science communicators, other researchers, and educators) and that in the ego networks of the astrophysicists clear groups consisting of users with different professional roles can be distinguished. Interestingly, the analysis of noun phrases and hashtags showed that when the astrophysicists address the different groups of very different professional composition they use very similar terminology, but that they do not talk to each other (i.e. mentioning other user names in tweets). The results also showed that in those areas of the ego networks that tweeted more the sentiment of the tweets tended to be closer to neutral, connecting frequent tweeting with information sharing activities rather than conversations or expressing opinions.

  9. Astrophysicists' conversational connections on Twitter.

    Directory of Open Access Journals (Sweden)

    Kim Holmberg

    Full Text Available Because Twitter and other social media are increasingly used for analyses based on altmetrics, this research sought to understand what contexts, affordance use, and social activities influence the tweeting behavior of astrophysicists. Thus, the presented study has been guided by three research questions that consider the influence of astrophysicists' activities (i.e., publishing and tweeting frequency and of their tweet construction and affordance use (i.e. use of hashtags, language, and emotions on the conversational connections they have on Twitter. We found that astrophysicists communicate with a variety of user types (e.g. colleagues, science communicators, other researchers, and educators and that in the ego networks of the astrophysicists clear groups consisting of users with different professional roles can be distinguished. Interestingly, the analysis of noun phrases and hashtags showed that when the astrophysicists address the different groups of very different professional composition they use very similar terminology, but that they do not talk to each other (i.e. mentioning other user names in tweets. The results also showed that in those areas of the ego networks that tweeted more the sentiment of the tweets tended to be closer to neutral, connecting frequent tweeting with information sharing activities rather than conversations or expressing opinions.

  10. Book Review: Infrastructure for Asian Connectivity

    OpenAIRE

    Sandee, Henry

    2013-01-01

    This article reviews the book Infrastructure for Asian Connectivity edited by Bhattacharyay, Kawai and Nag (2012). This book is the second publication coordinated by the ADB and the ADB Institute focusing on infrastructure and connectivity in Asian countries. This book looks at regional (across border) infrastructure that is needed to facilitate growth and development through better connectivity and integration among countries.

  11. MedlinePlus Connect: Web Service

    Science.gov (United States)

    ... MedlinePlus Connect → Web Service URL of this page: https://medlineplus.gov/connect/service.html MedlinePlus Connect: Web ... the base URL for the Web service is: https://apps.nlm.nih.gov/medlineplus/services/mpconnect_service. ...

  12. MedlinePlus Connect: Web Application

    Science.gov (United States)

    ... MedlinePlus Connect → Web Application URL of this page: https://medlineplus.gov/connect/application.html MedlinePlus Connect: Web ... the base URL for the Web application is: https://apps.nlm.nih.gov/medlineplus/services/mpconnect.cfm ...

  13. Mathematical Modeling of Column-Base Connections under Monotonic Loading

    Directory of Open Access Journals (Sweden)

    Gholamreza Abdollahzadeh

    2014-12-01

    Full Text Available Some considerable damage to steel structures during the Hyogo-ken Nanbu Earthquake occurred. Among them, many exposed-type column bases failed in several consistent patterns, such as brittle base plate fracture, excessive bolt elongation, unexpected early bolt failure, and inferior construction work, etc. The lessons from these phenomena led to the need for improved understanding of column base behavior. Joint behavior must be modeled when analyzing semi-rigid frames, which is associated with a mathematical model of the moment–rotation curve. The most accurate model uses continuous nonlinear functions. This article presents three areas of steel joint research: (1 analysis methods of semi-rigid joints; (2 prediction methods for the mechanical behavior of joints; (3 mathematical representations of the moment–rotation curve. In the current study, a new exponential model to depict the moment–rotation relationship of column base connection is proposed. The proposed nonlinear model represents an approach to the prediction of M–θ curves, taking into account the possible failure modes and the deformation characteristics of the connection elements. The new model has three physical parameters, along with two curve-fitted factors. These physical parameters are generated from dimensional details of the connection, as well as the material properties. The M–θ curves obtained by the model are compared with published connection tests and 3D FEM research. The proposed mathematical model adequately comes close to characterizing M–θ behavior through the full range of loading/rotations. As a result, modeling of column base connections using the proposed mathematical model can give crucial beforehand information, and overcome the disadvantages of time consuming workmanship and cost of experimental studies.

  14. Parkinson's disease rigidity: relation to brain connectivity and motor performance

    Directory of Open Access Journals (Sweden)

    Nazanin eBaradaran

    2013-06-01

    Full Text Available Objective: 1 To determine the brain connectivity pattern associated with clinical rigidity scores in Parkinson's disease (PD and 2 to determine the relation between clinically-assessed rigidity and quantitative metrics of motor performance.Background: Rigidity, the resistance to passive movement, is exacerbated in PD by asking the subject to move the contralateral limb, implying that rigidity involves a distributed brain network. Rigidity mainly affects subjects when they attempt to move; yet the relation between clinical rigidity scores and quantitative aspects of motor performance are unknown.Methods: Ten clinically diagnosed PD patients (off medication and ten controls were recruited to perform an fMRI squeeze-bulb tracking task that included both visually guided and internally guided features. The direct functional connectivity between anatomically defined regions of interest was assessed with Dynamic Bayesian Networks (DBNs. Tracking performance was assessed by fitting Linear Dynamical System (LDS models to the motor performance, and was compared to the clinical rigidity scores. A cross-validated Least Absolute Shrinkage and Selection Operator (LASSO regression method was used to determine the brain connectivity network that best predicted clinical rigidity scores.Results: The damping ratio of the LDS models significantly correlated with clinical rigidity scores (p < 10-4. An fMRI connectivity network in subcortical and primary and premotor cortical regions accurately predicted clinical rigidity scores (p < 10-5. Conclusions: A widely distributed cortical/subcortical network is associated with rigidity observed in PD patients, which reinforces the importance of altered functional connectivity in the pathophysiology of PD. PD subjects with higher rigidity scores tend to have less overshoot in their tracking performance, and damping ratio may represent a robust, quantitative marker of the motoric effects of increasing rigidity.

  15. Link prediction via generalized coupled tensor factorisation

    DEFF Research Database (Denmark)

    Ermiş, Beyza; Evrim, Acar Ataman; Taylan Cemgil, A.

    2012-01-01

    This study deals with the missing link prediction problem: the problem of predicting the existence of missing connections between entities of interest. We address link prediction using coupled analysis of relational datasets represented as heterogeneous data, i.e., datasets in the form of matrices...... different loss functions. Numerical experiments demonstrate that joint analysis of data from multiple sources via coupled factorisation improves the link prediction performance and the selection of right loss function and tensor model is crucial for accurately predicting missing links....

  16. Neural connections foster social connections: a diffusion-weighted imaging study of social networks.

    Science.gov (United States)

    Hampton, William H; Unger, Ashley; Von Der Heide, Rebecca J; Olson, Ingrid R

    2016-05-01

    Although we know the transition from childhood to adulthood is marked by important social and neural development, little is known about how social network size might affect neurocognitive development or vice versa. Neuroimaging research has identified several brain regions, such as the amygdala, as key to this affiliative behavior. However, white matter connectivity among these regions, and its behavioral correlates, remain unclear. Here we tested two hypotheses: that an amygdalocentric structural white matter network governs social affiliative behavior and that this network changes during adolescence and young adulthood. We measured social network size behaviorally, and white matter microstructure using probabilistic diffusion tensor imaging in a sample of neurologically normal adolescents and young adults. Our results suggest amygdala white matter microstructure is key to understanding individual differences in social network size, with connectivity to other social brain regions such as the orbitofrontal cortex and anterior temporal lobe predicting much variation. In addition, participant age correlated with both network size and white matter variation in this network. These findings suggest the transition to adulthood may constitute a critical period for the optimization of structural brain networks underlying affiliative behavior.

  17. A Dyadic Perspective on Speech Accommodation and Social Connection: Both Partners' Rejection Sensitivity Matters.

    Science.gov (United States)

    Aguilar, Lauren; Downey, Geraldine; Krauss, Robert; Pardo, Jennifer; Lane, Sean; Bolger, Niall

    2016-04-01

    Findings from confederate paradigms predict that mimicry is an adaptive route to social connection for rejection-sensitive individuals (Lakin, Chartrand, & Arkin, 2008). However, dyadic perspectives predict that whether mimicry leads to perceived connection depends on the rejection sensitivity (RS) of both partners in an interaction. We investigated these predictions in 50 college women who completed a dyadic cooperative task in which members were matched or mismatched in being dispositionally high or low in RS. We used a psycholinguistics paradigm to assess, through independent listeners' judgments (N = 162), how much interacting individuals accommodate phonetic aspects of their speech toward each other. Results confirmed predictions from confederate paradigms in matched RS dyads. However, mismatched dyads showed an asymmetry in levels of accommodation and perceived connection: Those high in RS accommodated more than their low-RS partner but emerged feeling less connected. Mediational analyses indicated that low-RS individuals' nonaccommodation in mismatched dyads helped explain their high-RS partners' relatively low perceived connection to them. Establishing whether mimicry is an adaptive route to social connection requires analyzing mimicry as a dyadic process influenced by the needs of each dyad member. © 2014 Wiley Periodicals, Inc.

  18. Dual Authentication For Bluetooth Connection

    Directory of Open Access Journals (Sweden)

    Diallo Alhassane Saliou

    2014-07-01

    Full Text Available Recently, Bluetooth technology is widely used by organizations and individuals to provide wireless personal area network (WPAN. This is because the radio frequency (RF waves can easily penetrate obstacles and can propagate without direct line-of-sight (LoS. These two characteristics have led to replace wired communication by wireless systems. However, there are serious security challenges associated with wireless communication systems because they are easier to eavesdrop, disrupt and jam than the wired systems. Bluetooth technology started with a form of pairing called legacy pairing prior to any communication. However, due to the serious security issues found in the legacy pairing, a secure and simple pairing called SPP was announced with Bluetooth 2.1 and later since 2007. SPP has solved the main security issue which is the weaknesses of the PIN code in the legacy pairing, however it has been found with some vulnerabilities such as eavesdropping and man-in-the-middle (MITM attacks. Since the discovery of these vulnerabilities, some enhancements have been proposed to the Bluetooth Specification Interest Group (SIG which is the regulatory body of Bluetooth technology; nevertheless, some proposed enhancements are ineffective or are not yet implemented by Manufacturers. Therefore, an improvement of the security authentication in Bluetooth connection is highly required to overcome the existing drawbacks. This proposed protocol uses Hash-based Message Authentication Code (HMAC algorithm with Secure Hash Algorithm (SHA-256. The implementation of this proposal is based on the Arduino Integrated Development Environment (IDE as software and a Bluetooth (BT Shield connected to an Arduino Uno R3 boards as hardware. The result was verified on a Graphical User Interface (GUI built in Microsoft Visual Studio 2010 with C sharp as default environment. It has shown that the proposed scheme works perfectly with the used hardware and software. In addition, the

  19. Connecting multimodality in human communication.

    Science.gov (United States)

    Regenbogen, Christina; Habel, Ute; Kellermann, Thilo

    2013-01-01

    A successful reciprocal evaluation of social signals serves as a prerequisite for social coherence and empathy. In a previous fMRI study we studied naturalistic communication situations by presenting video clips to our participants and recording their behavioral responses regarding empathy and its components. In two conditions, all three channels transported congruent emotional or neutral information, respectively. Three conditions selectively presented two emotional channels and one neutral channel and were thus bimodally emotional. We reported channel-specific emotional contributions in modality-related areas, elicited by dynamic video clips with varying combinations of emotionality in facial expressions, prosody, and speech content. However, to better understand the underlying mechanisms accompanying a naturalistically displayed human social interaction in some key regions that presumably serve as specific processing hubs for facial expressions, prosody, and speech content, we pursued a reanalysis of the data. Here, we focused on two different descriptions of temporal characteristics within these three modality-related regions [right fusiform gyrus (FFG), left auditory cortex (AC), left angular gyrus (AG) and left dorsomedial prefrontal cortex (dmPFC)]. By means of a finite impulse response (FIR) analysis within each of the three regions we examined the post-stimulus time-courses as a description of the temporal characteristics of the BOLD response during the video clips. Second, effective connectivity between these areas and the left dmPFC was analyzed using dynamic causal modeling (DCM) in order to describe condition-related modulatory influences on the coupling between these regions. The FIR analysis showed initially diminished activation in bimodally emotional conditions but stronger activation than that observed in neutral videos toward the end of the stimuli, possibly by bottom-up processes in order to compensate for a lack of emotional information. The

  20. Behavior of concentrically loaded CFT braces connections

    Directory of Open Access Journals (Sweden)

    Maha M. Hassan

    2014-03-01

    Full Text Available Concrete filled tubes (CFTs composite columns have many economical and esthetic advantages, but the behavior of their connections is complicated. Through this study, it is aimed to investigate the performance and behavior of different connection configurations between concrete filled steel tube columns and bracing diagonals through an experimental program. The study included 12 connection subassemblies consisting of a fixed length steel tube and gusset plate connected to the tube end with different details tested under half cyclic loading. A notable effect was observed on the behavior of the connections due to its detailing changes with respect to capacity, failure mode, ductility, and stress distribution.

  1. Behavior of concentrically loaded CFT braces connections.

    Science.gov (United States)

    Hassan, Maha M; Ramadan, Hazem M; Abdel-Mooty, Mohammed N; Mourad, Sherif A

    2014-03-01

    Concrete filled tubes (CFTs) composite columns have many economical and esthetic advantages, but the behavior of their connections is complicated. Through this study, it is aimed to investigate the performance and behavior of different connection configurations between concrete filled steel tube columns and bracing diagonals through an experimental program. The study included 12 connection subassemblies consisting of a fixed length steel tube and gusset plate connected to the tube end with different details tested under half cyclic loading. A notable effect was observed on the behavior of the connections due to its detailing changes with respect to capacity, failure mode, ductility, and stress distribution.

  2. Generalized magnetofluid connections in pair plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Asenjo, Felipe A., E-mail: felipe.asenjo@uai.cl [Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago 7941169 (Chile); Comisso, Luca, E-mail: lcomisso@princeton.edu [Department of Astrophysical Sciences and Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08544 (United States); Dipartimento Energia, Politecnico di Torino, Torino 10129, Italy and Istituto dei Sistemi Complessi-CNR, Roma 00185 (Italy); Mahajan, Swadesh M., E-mail: mahajan@mail.utexas.edu [Institute for Fusion Studies, The University of Texas at Austin, Austin, Texas 78712 (United States)

    2015-12-15

    We extend the magnetic connection theorem of ideal magnetohydrodynamics to nonideal relativistic pair plasmas. Adopting a generalized Ohm's law, we prove the existence of generalized magnetofluid connections that are preserved by the plasma dynamics. We show that these connections are related to a general antisymmetric tensor that unifies the electromagnetic and fluid fields. The generalized magnetofluid connections set important constraints on the plasma dynamics by forbidding transitions between configurations with different magnetofluid connectivity. An approximated solution is explicitly shown where the corrections due to current inertial effects are found.

  3. Generalized magnetofluid connections in relativistic magnetohydrodynamics.

    Science.gov (United States)

    Asenjo, Felipe A; Comisso, Luca

    2015-03-20

    The concept of magnetic connections is extended to nonideal relativistic magnetohydrodynamical plasmas. Adopting a general set of equations for relativistic magnetohydrodynamics including thermal-inertial, thermal electromotive, Hall, and current-inertia effects, we derive a new covariant connection equation showing the existence of generalized magnetofluid connections that are preserved during the dissipationless plasma dynamics. These connections are intimately linked to a general antisymmetric tensor that unifies the electromagnetic and fluid fields, allowing the extension of the magnetic connection notion to a much broader concept.

  4. Predicting Macrosomia

    National Research Council Canada - National Science Library

    Pates, Jason A; McIntire, Donald D; Casey, Brian M; Leveno, Kenneth J

    2008-01-01

    Objective. The purpose of this study was to evaluate the prediction of fetal macrosomia based on ultrasound estimates of fetal weight and amniotic fluid volume combined with clinical risk factors. Methods...

  5. [Gastroenterologic aspects of connective tissue diseases].

    Science.gov (United States)

    Altomonte, L; Zoli, A; Alessi, F; Ghirlanda, G; Greco, A V; Magarò, M

    1985-07-14

    The connective tissue disorders are a protean group of acquired diseases which have in common widespread immunologic and inflammatory alterations of connective tissue. The acquired connective tissue diseases generally include the following clinical entities: rheumatoid arthritis, systemic lupus erythematosus, polymyositis, polyarteritis nodosa, scleroderma, mixed connective tissue disease, Sjögren's and Behcet's sindromes. These entities have certain features in common which include sinovitis, pleuritis, myocarditis, endocarditis, pericarditis, peritonitis, vasculitis, myositis, changes in skin, alteration of connective tissue and nephritis. Gastrointestinal and hepatic involvement in connective tissue disorders are not the most important features, nevertheless appear almost regularly. Anorexia, nausea, vomiting, abdominal pain, malabsorption may affect patients suffering by rheumatoid arthritis, systemic lupus erythematosus and other collagenophaties. In some cases mesenteric vasculitis may cause intestinal ischemia which may result in bowel infarction, mucosal ulceration, hemorrhage, perforation. After an extensive review of the existing literature the Authors make an accurate evaluation of gastrointestinal and hepatic alterations in connective tissue diseases.

  6. Radiotherapy in patients with connective tissue diseases.

    Science.gov (United States)

    Giaj-Levra, Niccolò; Sciascia, Savino; Fiorentino, Alba; Fersino, Sergio; Mazzola, Rosario; Ricchetti, Francesco; Roccatello, Dario; Alongi, Filippo

    2016-03-01

    The decision to offer radiotherapy in patients with connective tissue diseases continues to be challenging. Radiotherapy might trigger the onset of connective tissue diseases by increasing the expression of self-antigens, diminishing regulatory T-cell activity, and activating effectors of innate immunity (dendritic cells) through Toll-like receptor-dependent mechanisms, all of which could potentially lead to breaks of immune tolerance. This potential risk has raised some debate among radiation oncologists about whether patients with connective tissue diseases can tolerate radiation as well as people without connective tissue diseases. Because the number of patients with cancer and connective tissue diseases needing radiotherapy will probably increase due to improvements in medical treatment and longer life expectancy, the issue of interactions between radiotherapy and connective tissue diseases needs to be clearer. In this Review, we discuss available data and evidence for patients with connective tissue diseases treated with radiotherapy.

  7. Hematopoietic stem cell origin of connective tissues.

    Science.gov (United States)

    Ogawa, Makio; Larue, Amanda C; Watson, Patricia M; Watson, Dennis K

    2010-07-01

    Connective tissue consists of "connective tissue proper," which is further divided into loose and dense (fibrous) connective tissues and "specialized connective tissues." Specialized connective tissues consist of blood, adipose tissue, cartilage, and bone. In both loose and dense connective tissues, the principal cellular element is fibroblasts. It has been generally believed that all cellular elements of connective tissue, including fibroblasts, adipocytes, chondrocytes, and bone cells, are generated solely by mesenchymal stem cells. Recently, a number of studies, including those from our laboratory based on transplantation of single hematopoietic stem cells, strongly suggested a hematopoietic stem cell origin of these adult mesenchymal tissues. This review summarizes the experimental evidence for this new paradigm and discusses its translational implications.

  8. STRENGTH DESIGN OF PREMIUM THREADED CASING CONNECTION

    Institute of Scientific and Technical Information of China (English)

    Gao Lianxin; Jin Ye; Zhang Yi

    2004-01-01

    Using premium casing connections instead of API ones is one of the most effective technique to prevent casing failure.The factors contribute to the strength of premium casing connections are studied with FEA and full-scale test.The criterions are presented that ensure the connection's strength higher than the pipe.At the same time, the method is given to decrease the peak stress of the connection so as to improve its anticorruption property.At last, full-scale tests are done to test the strength of the connections designed with the method described, the results show that the connection's strength is higher than the pipe.This indicated that the method described is effective in designing premium casing connection.

  9. Proliferating Connections and Communicating Convergence

    Directory of Open Access Journals (Sweden)

    Aylish Wood

    2008-01-01

    Full Text Available In this paper I use the work of Niklas Luhmann to explore what pressure the concept of convergence exerts over how we communicate about the changing expressive practices of digital games following the emergence of digital technologies. My claim will be that in its current form, convergence privileges either the human users of technological platforms, or the combination of aesthetic conventions from different media what connects is either the user or the aesthetic code. While neither of these two positions would be likely to deny a reliance on the interplay between humans and technologies, such an interplay is taken for granted rather than explored. By using Luhmann’s version of systems theory, I argue that we can more effectively grasp the interplay of human and technological participants by understanding their combined roles in changing expressive practices.

  10. Galaxy Morphology - Halo Gas Connections

    CERN Document Server

    Kacprzak, G G; Steidel, C C; Kacprzak, Glenn G.; Churchill, Christopher W.; Steidel, Charles C.

    2005-01-01

    We studied a sample of 38 intermediate redshift MgII absorption-selected galaxies using (1) Keck/HIRES and VLT/UVES quasar spectra to measure the halo gas kinematics from MgII absorption profiles and (2) HST/WFPC-2 images to study the absorbing galaxy morphologies. We have searched for correlations between quantified gas absorption properties, and host galaxy impact parameters, inclinations, position angles, and quantified morphological parameters. We report a 3.2-sigma correlation between asymmetric perturbations in the host galaxy morphology and the MgII absorption equivalent width. We suggest that this correlation may indicate a connection between past merging and/or interaction events in MgII absorption-selected galaxies and the velocity dispersion and quantity of gas surrounding these galaxies.

  11. Sprays and Cartan projective connections

    Science.gov (United States)

    Saunders, D. J.

    2004-10-01

    Around 80 years ago, several authors (for instance H. Weyl, T.Y. Thomas, J. Douglas and J.H.C. Whitehead) studied the projective geometry of paths, using the methods of tensor calculus. The principal object of study was a spray, namely a homogeneous second-order differential equation, or more generally a projective equivalence class of sprays. At around the same time, E. Cartan studied the same topic from a different point of view, by imagining a projective space attached to a manifold, or, more generally, attached to a `manifold of elements'; the infinitesimal `glue' may be interpreted in modern language as a Cartan projective connection on a principal bundle. This paper describes the geometrical relationship between these two points of view.

  12. Method for hermetic electrical connections

    Science.gov (United States)

    Monroe, Saundra L.; Glass, S. Jill; Stone, Ronnie G.; Bond, Jamey T.; Susan, Donald F.

    2011-12-27

    A method of providing a hermetic, electrical connection between two electrical components by mating at least one metal pin in a glass-ceramic to metal seal connector to two electrical components, wherein the glass-ceramic to metal seal connector incorporates at least one metal pin encased (sealed) in a glass-ceramic material inside of a metal housing, with the glass-ceramic material made from 65-80% SiO.sub.2, 8-16% Li.sub.2O, 2-8% Al.sub.2O.sub.3, 1-5% P.sub.2O.sub.5, 1-8% K.sub.2O, 0.5-7% B.sub.2O.sub.3, and 0-5% ZnO. The connector retains hermeticity at temperatures as high as 700.degree. C. and pressures as high as 500 psi.

  13. Unity connecting module in SSPF

    Science.gov (United States)

    1998-01-01

    In the Space Station Processing Facility, the Unity connecting module, part of the International Space Station, is shown with Pressurized Mating Adapters 1 (left) and 2 (right) attached. Unity is scheduled to undergo testing of the common berthing mechanism to which other space station elements will dock. Unity is the primary payload on mission STS-88, targeted to launch Dec. 3, 1998. Other testing includes the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter. Unity is expected to be ready for installation into the payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27. The Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time.

  14. A Building Connecting Separated Communities

    DEFF Research Database (Denmark)

    Axel, Erik

    Producing something for general use involves the designers' anticipation of the use of the object. Personal as well as professional experience is involved in the design anticipations of the process. Using an object means exploring it as a concrete arrangement for our everyday conduct of life....... Living in a house means staying in a place, formed by experiences and anticipations of different ways of living, of social regulations of who can be where, and used for varied concrete purposes. Professionals in the construction business build houses for living, for working, for events etc....... in no systematic sequence. This, among other things, separates design and use, which is worth investigating in order to understand the problems involved in connecting the design of a house and analyzing the experience of a user. We undertook a preliminary investigation of how a dormitory for visiting students from...

  15. [Connective tissue and prolapse genesis].

    Science.gov (United States)

    Tremollieres, F

    2010-06-01

    The pathophysiology of pelvic floor disorders still remains not well understood. Increasing age as well as vaginal multiparity are the main commonly accepted factors. The hypothesis of a defect of connective tissues of the pelvic floor with aging due to collagen deficiency and/or elastic fiber degradation is often highlighted. The issue of a potential protective role of HRT is also discussed although the recent results from the WHI would suggest a negative impact of HRT on urinary incontinence, especially when HRT is initiated in elderly women, far from the menopause. Nevertheless, environmental factors cannot explain the full pathogenesis of pelvic organ prolapse (POP) and the contribution of genetic factors to the development of pelvic floor disorders is widely recognized. Support for a genetic influence on POP derives from reports suggesting that heritability is a strong contributing factor and a familial history of POP is considered as a classical risk factor. However, the characterization of the underlying molecular mechanisms remains limited, since POP may be considered the end result of a multifactorial process leading to destruction of vaginal wall connective tissue. Experimental studies in mice with null mutations in the genes encoding different putative factors involved in elastic fibers remodeling and homeostasis are crucial in the understanding of the pathogenesis of POP. Mice with null mutation in the gene encoding lysyl oxidase-like 1 (LOXL1) or fibulin-5, demonstrate signs of elastinopathy including the development of a POP in the postpartum. Likewise, homeobox genes such as HOXA11, which are essential in the embryonic development of the urogenital tract might also be involved in the pathogenesis of POP. The better understanding of the underlying determinants of pelvic floor disorders with a special focus on genetic factors may offer new therapeutic strategies, in addition to or replacement of surgical procedures.

  16. Phonatory aerodynamics in connected speech.

    Science.gov (United States)

    Gartner-Schmidt, Jackie L; Hirai, Ryoji; Dastolfo, Christina; Rosen, Clark A; Yu, Lan; Gillespie, Amanda I

    2015-12-01

    1) Present phonatory aerodynamic data for healthy controls (HCs) in connected speech; 2) contrast these findings between HCs and patients with nontreated unilateral vocal fold paralysis (UVFP); 3) present pre- and post-vocal fold augmentation outcomes for patients with UVFP; 4) contrast data from patients with post-operative laryngeal augmentation to HCs. Retrospective, single-blinded. For phase I, 20 HC participants were recruited. For phase II, 20 patients with UVFP were age- and gender-matched to the 20 HC participants used in phase I. For phase III, 20 patients with UVFP represented a pre- and posttreatment cohort. For phase IV, 20 of the HC participants from phase I and 20 of the postoperative UVFP patients from phase III were used for direct comparison. Aerodynamic measures captured from a sample of the Rainbow Passage included: number of breaths, mean phonatory airflow rate, total duration of passage, inspiratory airflow duration, and expiratory airflow duration. The VHI-10 was also obtained pre- and postoperative laryngeal augmentation. All phonatory aerodynamic measures were significantly increased in patients with preoperative UVFP than the HC group. Patients with laryngeal augmentation took significantly less breaths, had less mean phonatory airflow rate during voicing, and had shorter inspiratory airflow duration than the preoperative UVFP group. None of the postoperative measures returned to HC values. Significant improvement in the Voice Handicap Index-10 scores postlaryngeal augmentation was also found. Methodology described in this study improves upon existing aerodynamic voice assessment by capturing characteristics germane to UVFP patient complaints and measuring change before and after laryngeal augmentation in connected speech. 4. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  17. Parcellation of left parietal tool representations by functional connectivity

    Science.gov (United States)

    Garcea, Frank E.; Z. Mahon, Bradford

    2014-01-01

    Manipulating a tool according to its function requires the integration of visual, conceptual, and motor information, a process subserved in part by left parietal cortex. How these different types of information are integrated and how their integration is reflected in neural responses in the parietal lobule remains an open question. Here, participants viewed images of tools and animals during functional magnetic resonance imaging (fMRI). K-means clustering over time series data was used to parcellate left parietal cortex into subregions based on functional connectivity to a whole brain network of regions involved in tool processing. One cluster, in the inferior parietal cortex, expressed privileged functional connectivity to the left ventral premotor cortex. A second cluster, in the vicinity of the anterior intraparietal sulcus, expressed privileged functional connectivity with the left medial fusiform gyrus. A third cluster in the superior parietal lobe expressed privileged functional connectivity with dorsal occipital cortex. Control analyses using Monte Carlo style permutation tests demonstrated that the clustering solutions were outside the range of what would be observed based on chance ‘lumpiness’ in random data, or mere anatomical proximity. Finally, hierarchical clustering analyses were used to formally relate the resulting parcellation scheme of left parietal tool representations to previous work that has parcellated the left parietal lobule on purely anatomical grounds. These findings demonstrate significant heterogeneity in the functional organization of manipulable object representations in left parietal cortex, and outline a framework that generates novel predictions about the causes of some forms of upper limb apraxia. PMID:24892224

  18. Graph theoretical analysis of brain connectivity in phantom sound perception.

    Science.gov (United States)

    Mohan, Anusha; De Ridder, Dirk; Vanneste, Sven

    2016-02-02

    Tinnitus is a phantom sound commonly thought of to be produced by the brain related to auditory deafferentation. The current study applies concepts from graph theory to investigate the differences in lagged phase functional connectivity using the average resting state EEG of 311 tinnitus patients and 256 healthy controls. The primary finding of the study was a significant increase in connectivity in beta and gamma oscillations and a significant reduction in connectivity in the lower frequencies for the tinnitus group. There also seems to be parallel processing of long-distance information between delta, theta, alpha1 and gamma frequency bands that is significantly stronger in the tinnitus group. While the network reorganizes into a more regular topology in the low frequency carrier oscillations, development of a more random topology is witnessed in the high frequency oscillations. In summary, tinnitus can be regarded as a maladaptive 'disconnection' syndrome, which tries to both stabilize into a regular topology and broadcast the presence of a deafferentation-based bottom-up prediction error as a result of a top-down prediction.

  19. Trading Network Predicts Stock Price

    Science.gov (United States)

    Sun, Xiao-Qian; Shen, Hua-Wei; Cheng, Xue-Qi

    2014-01-01

    Stock price prediction is an important and challenging problem for studying financial markets. Existing studies are mainly based on the time series of stock price or the operation performance of listed company. In this paper, we propose to predict stock price based on investors' trading behavior. For each stock, we characterize the daily trading relationship among its investors using a trading network. We then classify the nodes of trading network into three roles according to their connectivity pattern. Strong Granger causality is found between stock price and trading relationship indices, i.e., the fraction of trading relationship among nodes with different roles. We further predict stock price by incorporating these trading relationship indices into a neural network based on time series of stock price. Experimental results on 51 stocks in two Chinese Stock Exchanges demonstrate the accuracy of stock price prediction is significantly improved by the inclusion of trading relationship indices.

  20. Trading network predicts stock price.

    Science.gov (United States)

    Sun, Xiao-Qian; Shen, Hua-Wei; Cheng, Xue-Qi

    2014-01-16

    Stock price prediction is an important and challenging problem for studying financial markets. Existing studies are mainly based on the time series of stock price or the operation performance of listed company. In this paper, we propose to predict stock price based on investors' trading behavior. For each stock, we characterize the daily trading relationship among its investors using a trading network. We then classify the nodes of trading network into three roles according to their connectivity pattern. Strong Granger causality is found between stock price and trading relationship indices, i.e., the fraction of trading relationship among nodes with different roles. We further predict stock price by incorporating these trading relationship indices into a neural network based on time series of stock price. Experimental results on 51 stocks in two Chinese Stock Exchanges demonstrate the accuracy of stock price prediction is significantly improved by the inclusion of trading relationship indices.

  1. Component-Based Model for Single-Plate Shear Connections with Pretension and Pinched Hysteresis.

    Science.gov (United States)

    Weigand, Jonathan M

    2017-02-01

    Component-based connection models provide a natural framework for modeling the complex behaviors of connections under extreme loads by capturing both the individual behaviors of the connection components, such as the bolt, shear plate, and beam web, and the complex interactions between those components. Component-based models also provide automatic coupling between the in-plane flexural and axial connection behaviors, a feature that is essential for modeling the behavior of connections under column removal. This paper presents a new component-based model for single-plate shear connections that includes the effects of pre-tension in the bolts and provides the capability to model standard and slotted holes. The component-based models are exercised under component-level deformations calculated from the connection demands via a practical rigid-body displacement model, so that the results of the presented modeling approach remains hand-calculable. Validation cases are presented for connections subjected to both seismic and column removal loading. These validation cases show that the component-based model is capable of predicting the response of single-plate shear connections for both seismic and column removal loads.

  2. Detecting barriers and facilities to species dispersal: Introducing sloping flow connectivity

    Directory of Open Access Journals (Sweden)

    Alessandro Ferrarini

    2014-09-01

    Full Text Available Connectivity in ecology deals with the problem of how biotic dispersals can happen, given actual landscape properties and species presence/absence over such landscape. Recently I have introduced a modelling approach (flow connectivity to ecological connectivity that is alternative to circuit theory, and is able to fix the weak point of the "from-to" connectivity approach. In addition, I've introduced "reverse flow connectivity" that couples evolutionary algorithms to partial differential equations in order to fix the problem of subjectivity in the attribution of friction values to landscape categories. I've also showed that flow connectivity can be used to predict biotic movements happened in the past (backward flow connectivity. To date, there has been little effort by conservation scientists towards detecting restoration opportunities by mapping barriers that strongly reduce movement potential. In this paper, I introduce a new kind of theoretical and modelling approach called "sloping flow connectivity". The goal of such proposal is to individuate and map barriers and facilities to species dispersals over the landscape. I define here a barrier as a landscape feature that impedes biotic movements, the removal of which would increase the potential for biotic shifts. Using sloping flow connectivity, it's possible to plan greenways and ecological networks in an effective manner, since it is able to enhance the real potential of each landscape elements to facilitate or obstruct both directional and overall species movements.

  3. Effect of Thermoelectric Modules' Topological Connection on Automotive Exhaust Heat Recovery System

    Science.gov (United States)

    Deng, Y. D.; Zheng, S. J.; Su, C. Q.; Yuan, X. H.; Yu, C. G.; Wang, Y. P.

    2016-03-01

    In automotive exhaust-based thermoelectric generators (AETEGs), a certain number of thermoelectric modules are connected in series and/or parallel to recover energy from exhaust gas, which provides a way to improve fuel efficiency of the vehicle. Because of the temperature distribution on the surfaces of heat exchanger, several types of modules are planned for use in an AETEG; however, property disparities among modules exist and wire resistance cannot be neglected in practical application, so experiments have been carried out to research effects of the two factors on the maximum output power of series and parallel connection. The performance of series and parallel connections have been characterized, and mathematic models have been built to analyze and predict the performance of each connection. Experiments and theoretical analysis reveal that parallel connection shows a better performance than series connection when large differences of Seebeck coefficient and resistivity exist. However, wire resistance will cause more significant power dissipation in parallel connection. The authors believe the research presented in this paper is the first to carry out an examination of the impact of module property disparity and wire resistance on the output power of an array of thermoelectric modules connected in series and parallel, which provides a reference for choosing module connection in AETEGs.

  4. Towards text simplification for poor readers with intellectual disability: when do connectives enhance text cohesion?

    Science.gov (United States)

    Fajardo, Inmaculada; Tavares, Gema; Ávila, Vicenta; Ferrer, Antonio

    2013-04-01

    Cohesive elements of texts such as connectives (e.g., but, in contrast) are expected to facilitate inferential comprehension in poor readers. Two experiments tested this prediction in poor readers with intellectual disability (ID) by: (a) comparing literal and inferential text comprehension of texts with and without connectives and/or high frequency content words (Experiment 1) and (b) exploring the effects of type and familiarity of connectives on two-clause text comprehension by means of a cloze task (Experiment 2). Neither the addition of high frequency content words nor connectives in general produced inferential comprehension improvements. However, although readers with ID were less likely to select the target connective in the cloze task than chronologically age-matched readers (mean age=21 years) in general, their performance was affected by the type of connective and its familiarity. Familiarity had a facilitative effect for additive and contrastive connectives, but interfered in the case of temporal and causal connectives. The average performance of a reading level-matched control group (typically developing children) was similar to the group of readers with ID although the pattern of interaction between familiarity and type of connectives varied between groups. The implications of these findings for the adaptation of texts in special education contexts are discussed.

  5. Local Natural Connectivity in Complex Networks

    Institute of Scientific and Technical Information of China (English)

    SHANG Yi-Lun

    2011-01-01

    @@ In network theory, a complex network represents a system whose evolving structure and dynamic behavior contribute to its robustness.The natural connectivity is recently proposed as a spectral measure to characterize the robustness of complex networks.We decompose the natural connectivity of a network as local natural connectivity of its connected components and quantify their contributions to the network robustness.In addition, we compare the natural connectivity of a network with that of an induced subgraph of it based on interlacing theorems.As an application, we derive an inequality for eigenvalues of ErdSs-Renyi random graphs.%In network theory, a complex network represents a system whose evolving structure and dynamic behavior contribute to its robustness. The natural connectivity is recently proposed as a spectral measure to characterize the robustness of complex networks. We decompose the natural connectivity of a network as local naturai connectivity of its connected components and quantify their contributions to the network robustness. In addition, we compare the naturai connectivity of a network with that of an induced subgraph of it based on interlacing theorems. As an application, we derive an inequality for eigenvalues of Erdos-Renyi random graphs.

  6. Boundary effects in welded steel moment connections

    Science.gov (United States)

    Lee, Kyoung-Hyeog

    Unprecedented widespread failure of welded moment connections in steel frames caused by the 1994 Northridge and the 1995 Kobe earthquakes have alarmed the engineering communities throughout the world. Welded moment connections in steel frames have been traditionally designed by using the classical beam theory which leads to assumptions that the flanges transfer moment while the web connection primarily resists the shear force. However, this study shows that the magnitude and direction of the principal stresses in the connection region are better approximated by using truss analogy rather than the classical beam theory. Accordingly, both the bending moment and the shear force are transferred across the connection near the beam flanges through diagonal strut action. Thus, the beam flange region of the traditionally designed connection is overloaded. This conclusion explains, to a large extent, the recently observed steel moment connection failures. In this study, detailed finite element analyses were carried out for a representative beam-to-column subassemblage with fully welded connection. The stress distribution in the beam web and flanges in the vicinity of the connection were closely studied. The factors responsible for stress redistribution and concentration were identified by using fundamental principles of mechanics. It was concluded that peak resultant stresses can exceed the values used in simple design calculations by large margins. Using the finite element analysis results and the truss analogy to establish a realistic load path in the connection, a practical and more rational analysis and design procedure was developed. The proposed design procedure and the new connection details were successfully validated through cyclic load testing of a nearly full size specimen. The truss model represented the force transmission around the beam-to-column moment connection region very well. Results of the finite element analyses and the laboratory testing showed

  7. Directed differential connectivity graph of interictal epileptiform discharges

    Science.gov (United States)

    Amini, Ladan; Jutten, Christian; Achard, Sophie; David, Olivier; Soltanian-Zadeh, Hamid; Hossein-Zadeh, Gh. Ali; Kahane, Philippe; Minotti, Lorella; Vercueil, Laurent

    2011-01-01

    In this paper, we study temporal couplings between interictal events of spatially remote regions in order to localize the leading epileptic regions from intracerebral electroencephalogram (iEEG). We aim to assess whether quantitative epileptic graph analysis during interictal period may be helpful to predict the seizure onset zone of ictal iEEG. Using wavelet transform, cross-correlation coefficient, and multiple hypothesis test, we propose a differential connectivity graph (DCG) to represent the connections that change significantly between epileptic and non-epileptic states as defined by the interictal events. Post-processings based on mutual information and multi-objective optimization are proposed to localize the leading epileptic regions through DCG. The suggested approach is applied on iEEG recordings of five patients suffering from focal epilepsy. Quantitative comparisons of the proposed epileptic regions within ictal onset zones detected by visual inspection and using electrically stimulated seizures, reveal good performance of the present method. PMID:21156385

  8. Connected digit speech recognition system for Malayalam language

    Indian Academy of Sciences (India)

    Cini Kurian; Kannan Balakrishnan

    2013-12-01

    A connected digit speech recognition is important in many applications such as automated banking system, catalogue-dialing, automatic data entry, automated banking system, etc. This paper presents an optimum speaker-independent connected digit recognizer for Malayalam language. The system employs Perceptual Linear Predictive (PLP) cepstral coefficient for speech parameterization and continuous density Hidden Markov Model (HMM) in the recognition process. Viterbi algorithm is used for decoding. The training data base has the utterance of 21 speakers from the age group of 20 to 40 years and the sound is recorded in the normal office environment where each speaker is asked to read 20 set of continuous digits. The system obtained an accuracy of 99.5 % with the unseen data.

  9. Magic ratios for connectivity-driven electrical conductance of graphene-like molecules.

    Science.gov (United States)

    Geng, Yan; Sangtarash, Sara; Huang, Cancan; Sadeghi, Hatef; Fu, Yongchun; Hong, Wenjing; Wandlowski, Thomas; Decurtins, Silvio; Lambert, Colin J; Liu, Shi-Xia

    2015-04-08

    Experiments using a mechanically controlled break junction and calculations based on density functional theory demonstrate a new magic ratio rule (MRR) that captures the contribution of connectivity to the electrical conductance of graphene-like aromatic molecules. When one electrode is connected to a site i and the other is connected to a site i' of a particular molecule, we assign the molecule a "magic integer" Mii'. Two molecules with the same aromatic core but different pairs of electrode connection sites (i,i' and j,j', respectively) possess different magic integers Mii' and Mjj'. On the basis of connectivity alone, we predict that when the coupling to electrodes is weak and the Fermi energy of the electrodes lies close to the center of the HOMO-LUMO gap, the ratio of their conductances is equal to (Mii'/Mjj')(2). The MRR is exact for a tight-binding representation of a molecule and a qualitative guide for real molecules.

  10. Landscape Connectivity as a Function of Scale and Organism Vagility in a Real Forested Landscape

    Directory of Open Access Journals (Sweden)

    Robert G. D'Eon

    2002-12-01

    Full Text Available Landscape connectivity is considered a vital element of landscape structure because of its importance to population survival. The difficulty surrounding the notion of landscape connectivity is that it must be assessed at the scale of the interaction between an organism and the landscape. We present a unique method for measuring connectivity between patches as a function of organism vagility. We used this approach to assess connectivity between harvest, old-growth, and recent wildfire patches in a real forested landscape in southeast British Columbia. By varying a distance criterion, habitat patches were considered connected and formed habitat clusters if they fell within this critical distance. The amount of area and distance to edge within clusters at each critical distance formed the basis of connectivity between patches. We then assessed landscape connectivity relative to old-growth associates within our study area based on species' dispersal abilities. Connectivity was greatest between harvest patches, followed by old-growth, and then wildfire patches. In old-growth patches, we found significant trends between increased connectivity and increased total habitat amount, and between decreased connectivity and increased old-growth harvesting. Highly vagile old-growth associates, such as carnivorous birds, perceive this landscape as connected and are able to access all patches. Smaller, less vagile species, such as woodpeckers, chickadees, and nuthatches, may be affected by a lack of landscape connectivity at the scale of their interaction with old-growth patches. Of particular concern is the northern flying squirrel (Glaucomys sabrinus, which we predict is limited in this landscape due to relatively weak dispersal abilities.

  11. Connectivity of channelized reservoirs: a modelling approach

    Energy Technology Data Exchange (ETDEWEB)

    Larue, David K. [ChevronTexaco, Bakersfield, CA (United States); Hovadik, Joseph [ChevronTexaco, San Ramon, CA (United States)

    2006-07-01

    Connectivity represents one of the fundamental properties of a reservoir that directly affects recovery. If a portion of the reservoir is not connected to a well, it cannot be drained. Geobody or sandbody connectivity is defined as the percentage of the reservoir that is connected, and reservoir connectivity is defined as the percentage of the reservoir that is connected to wells. Previous studies have mostly considered mathematical, physical and engineering aspects of connectivity. In the current study, the stratigraphy of connectivity is characterized using simple, 3D geostatistical models. Based on these modelling studies, stratigraphic connectivity is good, usually greater than 90%, if the net: gross ratio, or sand fraction, is greater than about 30%. At net: gross values less than 30%, there is a rapid diminishment of connectivity as a function of net: gross. This behaviour between net: gross and connectivity defines a characteristic 'S-curve', in which the connectivity is high for net: gross values above 30%, then diminishes rapidly and approaches 0. Well configuration factors that can influence reservoir connectivity are well density, well orientation (vertical or horizontal; horizontal parallel to channels or perpendicular) and length of completion zones. Reservoir connectivity as a function of net: gross can be improved by several factors: presence of overbank sandy facies, deposition of channels in a channel belt, deposition of channels with high width/thickness ratios, and deposition of channels during variable floodplain aggradation rates. Connectivity can be reduced substantially in two-dimensional reservoirs, in map view or in cross-section, by volume support effects and by stratigraphic heterogeneities. It is well known that in two dimensions, the cascade zone for the 'S-curve' of net: gross plotted against connectivity occurs at about 60% net: gross. Generalizing this knowledge, any time that a reservoir can be regarded as &apos

  12. Lifespan anxiety is reflected in human amygdala cortical connectivity.

    Science.gov (United States)

    He, Ye; Xu, Ting; Zhang, Wei; Zuo, Xi-Nian

    2016-03-01

    The amygdala plays a pivotal role in processing anxiety and connects to large-scale brain networks. However, intrinsic functional connectivity (iFC) between amygdala and these networks has rarely been examined in relation to anxiety, especially across the lifespan. We employed resting-state functional MRI data from 280 healthy adults (18-83.5 yrs) to elucidate the relationship between anxiety and amygdala iFC with common cortical networks including the visual network, somatomotor network, dorsal attention network, ventral attention network, limbic network, frontoparietal network, and default network. Global and network-specific iFC were separately computed as mean iFC of amygdala with the entire cerebral cortex and each cortical network. We detected negative correlation between global positive amygdala iFC and trait anxiety. Network-specific associations between amygdala iFC and anxiety were also detectable. Specifically, the higher iFC strength between the left amygdala and the limbic network predicted lower state anxiety. For the trait anxiety, left amygdala anxiety-connectivity correlation was observed in both somatomotor and dorsal attention networks, whereas the right amygdala anxiety-connectivity correlation was primarily distributed in the frontoparietal and ventral attention networks. Ventral attention network exhibited significant anxiety-gender interactions on its iFC with amygdala. Together with findings from additional vertex-wise analysis, these data clearly indicated that both low-level sensory networks and high-level associative networks could contribute to detectable predictions of anxiety behaviors by their iFC profiles with the amygdala. This set of systems neuroscience findings could lead to novel functional network models on neural correlates of human anxiety and provide targets for novel treatment strategies on anxiety disorders.

  13. Lifespan anxiety is reflected in human amygdala cortical connectivity

    Science.gov (United States)

    He, Ye; Xu, Ting; Zhang, Wei

    2016-01-01

    Abstract The amygdala plays a pivotal role in processing anxiety and connects to large‐scale brain networks. However, intrinsic functional connectivity (iFC) between amygdala and these networks has rarely been examined in relation to anxiety, especially across the lifespan. We employed resting‐state functional MRI data from 280 healthy adults (18–83.5 yrs) to elucidate the relationship between anxiety and amygdala iFC with common cortical networks including the visual network, somatomotor network, dorsal attention network, ventral attention network, limbic network, frontoparietal network, and default network. Global and network‐specific iFC were separately computed as mean iFC of amygdala with the entire cerebral cortex and each cortical network. We detected negative correlation between global positive amygdala iFC and trait anxiety. Network‐specific associations between amygdala iFC and anxiety were also detectable. Specifically, the higher iFC strength between the left amygdala and the limbic network predicted lower state anxiety. For the trait anxiety, left amygdala anxiety–connectivity correlation was observed in both somatomotor and dorsal attention networks, whereas the right amygdala anxiety–connectivity correlation was primarily distributed in the frontoparietal and ventral attention networks. Ventral attention network exhibited significant anxiety–gender interactions on its iFC with amygdala. Together with findings from additional vertex‐wise analysis, these data clearly indicated that both low‐level sensory networks and high‐level associative networks could contribute to detectable predictions of anxiety behaviors by their iFC profiles with the amygdala. This set of systems neuroscience findings could lead to novel functional network models on neural correlates of human anxiety and provide targets for novel treatment strategies on anxiety disorders. Hum Brain Mapp 37:1178–1193, 2016. © 2015 The Authors Human Brain Mapping

  14. Abnormal Asymmetry of Brain Connectivity in Schizophrenia

    OpenAIRE

    Ribolsi, Michele; Zafiris J Daskalakis; Siracusano, Alberto; Koch, Giacomo

    2014-01-01

    Recently, a growing body of data has revealed that beyond a dysfunction of connectivity among different brain areas in schizophrenia patients (SCZ), there is also an abnormal asymmetry of functional connectivity compared with healthy subjects. The loss of the cerebral torque and the abnormalities of gyrification, with an increased or more complex cortical folding in the right hemisphere may provide an anatomical basis for such aberrant connectivity in SCZ. Furthermore, diffusion tensor imagin...

  15. Evoked Effective Connectivity of the Human Neocortex

    OpenAIRE

    Entz, László; Tóth, Emília; Keller, Corey J.; Bickel, Stephan; Groppe, David M.; Fabó, Dániel; Kozák, Lajos R.; Eroőss, Loránd; Ulbert, István; Mehta, Ashesh D.

    2014-01-01

    The role of cortical connectivity in brain function and pathology is increasingly being recognized. While in vivo magnetic resonance imaging studies have provided important insights into anatomical and functional connectivity, these methodologies are limited in their ability to detect electrophysiological activity and the causal relationships that underlie effective connectivity. Here, we describe results of cortico-cortical evoked potential (CCEP) mapping using single pulse electrical stimul...

  16. Conformal transformation of tetrads and spin connection

    CERN Document Server

    Chakrabarty, Subhasish

    2016-01-01

    We investigate the conformal transformation of vierbein-Einstein-Palatini (VEP) action in terms of tetrads $e^I_\\mu$ and spin connection $A^{IJ}_\\mu$. The transformation of tetrads is obtained from that of the spacetime metric whereas that of the spin connection is not unique off-shell. When the connection can be completely expressed in terms of the tetrads, its transformation follows from that of the tetrads. We also construct the conformally invariant scalar field in the VEP formalism.

  17. Prediction Markets

    DEFF Research Database (Denmark)

    Horn, Christian Franz; Ivens, Bjørn Sven; Ohneberg, Michael

    2014-01-01

    In recent years, Prediction Markets gained growing interest as a forecasting tool among researchers as well as practitioners, which resulted in an increasing number of publications. In order to track the latest development of research, comprising the extent and focus of research, this article...

  18. Affine connections, midpoint formation, and point reflection

    DEFF Research Database (Denmark)

    Kock, Anders

    2011-01-01

    We describe some differential-geometric structures in combinatorial terms: namely affine connections and their torsion and curvature, and we show that torsion free affine connections may equivalently be presented in terms of some simpler combinatorial structure: midpoint formation, and point refl...... reflection (geodesic symmetry). The method employed is that of synthetic differential geometry, which is briefly explained.......We describe some differential-geometric structures in combinatorial terms: namely affine connections and their torsion and curvature, and we show that torsion free affine connections may equivalently be presented in terms of some simpler combinatorial structure: midpoint formation, and point...

  19. Neighborhood connected perfect domination in graphs

    Directory of Open Access Journals (Sweden)

    Kulandai Vel M.P.

    2012-12-01

    Full Text Available Let $G = (V, E$ be a connected graph. A set $S$ of vertices in $G$ is a perfect dominating set if every vertex $v$ in $V-S$ is adjacent to exactly one vertex in $S$. A perfect dominating set $S$ is said to be a neighborhood connected perfect dominating set (ncpd-set if the induced subgraph $$ is connected. The minimum cardinality of a ncpd-set of $G$ is called the neighborhood connected perfect domination number of $G$ and is denoted by $\\gamma_{ncp}(G$. In this paper we initiate a study of this parameter.

  20. Essential Connectivity Areas - CEHC, (Raster) [ds620

    Data.gov (United States)

    California Department of Resources — The California Department of Transportation (Caltrans) and California Department of Fish and Game (CDFG) commissioned the California Essential Habitat Connectivity...