WorldWideScience

Sample records for hydrocarbons nitrogen oxides

  1. 40 CFR 89.112 - Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission standards.

    Science.gov (United States)

    2010-07-01

    ....112 Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission... emissions of oxides of nitrogen, carbon monoxide, hydrocarbon, and nonmethane hydrocarbon are measured using... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Oxides of nitrogen, carbon monoxide...

  2. Interaction of oxides of nitrogen and aromatic hydrocarbons under simulated atmospheric conditions

    International Nuclear Information System (INIS)

    Obrien, R.J.; Green, P.J.; Doty, R.A.; Vanderzanden, J.W.; Easton, R.R.; Irwin, R.P.

    1979-01-01

    The reactions of nitrogen oxides with aromatic hydrocarbons under simulated atmospheric conditions are investigated. Gaseous reaction products formed when toluene is irradiated under simulated atmospheric conditions in the presence of nitrogen oxides were analyzed by gas chromatography. Reaction products detected include acetylene, water, acetaldehyde, acetone, toluene, benzaldehyde, ortho-, meta- and para-cresol, benzyl nitrate and meta- and para-nitrotoluene. Reaction mechanisms yielding the various products are illustrated. The assumption that all the nitrogen oxides observed to be lost from the reaction products can be accounted for by nitric acid formation in the absence of ozone formation is verified by a model in which the hydroxyl radical is assumed to be the only means of removing toluene. Under conditions in which ozone is formed, nitrogen oxide loss is accounted for by ozone formation in addition to nitric acid formation

  3. Nitrogen oxidative activation in the radiolysis process of dioxide hydrocarbon composition, oxygen-nitrogen over 3-d transition metals

    International Nuclear Information System (INIS)

    Rustamov, V.R.; Garibov, A.A.; Kerimov, V.K.; Aliyev, S.M.; Nasirova, Kh.Y.

    2004-01-01

    The radiochemical process of nitrogen fixation in carbon dioxide, oxygen-nitrogen composition in 3-d metal (iron, nickel) was studied. Bifunctional character of surface's role in the generation of radiolysis products was postulated: a) Chemisorption's of molecular ions (N 2 + , CO 2 + , O 2 + ) on the surface of metal and their dissociative neutralization. b) Coordination of nitrogen and carbon oxide being generated in nitrosyl and carbonyl-nitrosyl complex of iron and nickel. Total yield of the products is over the rang 6,4†7,5, to explain radiolysis' what contribution of only neutral products is impossible. Evidently in the generation of final products, defined contribution brings in molecular ions N 2 + (N + ) and CO 2 + . Interaction character of these ions with nickel proposes the formation of the relation between unpaired electrons N 2 + and CO 2 + with unfilled d-sub level of this metals with the nickel nitride generation [N i -N=N + ] and binding energy in ion diazotate decreases to twice. The yield of nitrogen dioxide on radiolysis of the air gave G NO2 =0,8±0,2 molecule/100eV which is proper to the date in the literature. Kinetic curve appears rapidly in the saturation. Air radiolysis over iron gave the following results: G NO 2 = 2,75 ± 0,25, G N 2 O = 9,0 ± 1,0 molecule/100eV. Thus total yield of radiolysis products is Σ G = 10,5 ± 12,0 molecule/100eV. (author)

  4. Nitrogen oxidative activation in the radiolysis process of dioxide hydrocarbon composition, oxygen-nitrogen over 3-D transition metals

    International Nuclear Information System (INIS)

    Rustamov, V.R.; Garibov, A.A.; Kerimov, V.K.; Aliyev, S.M.; Nasirova, Kh.Y.

    2004-01-01

    Full text: The radiochemical process of nitrogen fixation in carbon dioxide, oxygen-nitrogen composition in 3-d metal (iron, nickel) was studied. Bifunctional character of surface's role in the generation of radiolysis products was postulated: a) Chemisorption's of molecular ions (N 2 + , CO 2 + , O 2 + ) on the surface of metal and their dissociative neutralization. b) Coordination of nitrogen and carbon oxide being generated in nitrosyl and carbonyl-nitrosyl complex of iron and nickel. Total yield of the products is over the rang 6,4†7,5, to explain radiolysis' what contribution of only neutral products is impossible. Evidently in the generation of final products, defined contribution brings in molecular ions N 2 + (N + ) and CO 2 + . Interaction character of these ions with nickel proposes the formation of the relation between unpaired electrons N 2 + and CO 2 + with unfilled d-sub level of this metals with the nickel nitride generation [N i -N=N + ] and binding energy in ion diazotate decreases to twice. The yield of nitrogen dioxide on radiolysis of the air gave G NO2 =0,8±0,2 molecule/100eV which is proper to the date in the literature. Kinetic curve appears rapidly in the saturation. Air radiolysis over iron gave the following results: G NO 2 = 2,75 ± 0,25, G N 2 O = 9,0 ± 1,0 molecule/100eV. Thus total yield of radiolysis products is Σ G = 10,5 ± 12,0 molecule/100eV

  5. Effect of hydrocarbons and nitrogen oxides on ozone formation in smog chambers exposed to solar irradiance of Mexico City

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval F, J; Marroquin de la R, O; Jaimes L, J. L; Zuniga L, V. A; Gonzalez O, E; Guzman Lopez-Figueroa, F [Instituto Mexicano del Petroleo, Mexico, D.F. (Mexico)

    2001-01-01

    Outdoor smog chambers experiments were performed on air to determine the answer of maximum ozone levels, to changes in the initial hydrocarbons, HC, and nitrogen oxide NO{sub x}. These captive-air experiments under natural irradiation were carried out. Typically, eight chambers were filled with Mexico city air in the morning. In some of those chambers, the initial HC and/or Nox concentrations were varied by {+-}25% to {+-}50% by adding various combinations of a mixture of HC, clean air, or NO{sub x} (perturbed chambers). The O{sub 3} and NO{sub x} concentration in each chamber was monitored throughout the day to determine O{sub 3} (max). The initial HC and NO{sub x} concentration effects were determined by comparing the maximum ozone concentrations measured in the perturbed and unperturbed chambers. Ozone isopleths were constructed from the empirical model obtained of measurements of the eight chambers and plotted in a graph whose axe were the initial HC and NO{sub x} values. For the average initial conditions that were measured in Mexico City, it was found that the most efficient strategy to reduce the maximum concentration of O{sub 3} is the one that reduces NO{sub x}. [Spanish] Se realizaron experimentos de camaras de esmog con el aire de la ciudad de Mexico para determinar las respuestas de los niveles maximos de ozono a los cambios en las concentraciones iniciales de hidrocarburos, HC y oxido de nitrogeno, NO{sub x}. Por lo general, se llenaron 8 bolsas con aire matutino de la Ciudad de Mexico. En algunas camaras, las concentraciones iniciales fueron cambiadas de 25% a 50%, anadiendo varias concentraciones de una mezcla de HC, aire limpio y/o NO{sub x}. La concentracion de O{sub 3} y NO{sub x}, en cada camara, fueron monitoreadas a lo largo del dia para determinar el maximo de O{sub 3}. El efecto de los HC y el NO{sub x} fue determinado por comparacion del maximo de ozono formado en las camaras, que fueron perturbadas por adicion o reduccion de HC y/o Nox

  6. Hybrid process for nitrogen oxides reduction

    Energy Technology Data Exchange (ETDEWEB)

    Epperly, W.R.; Sprague, B.N.

    1991-09-10

    This patent describes a process for reducing the nitrogen oxide concentration in the effluent from the combustion of a carbonaceous fuel. It comprises introducing into the effluent a first treatment agent comprising a nitrogenous composition selected from the group consisting of urea, ammonia, hexamethylenetetramine, ammonium salts of organic acids, 5- or 6-membered heterocyclic hydrocarbons having at least one cyclic nitrogen, hydroxy amino hydrocarbons, NH{sub 4}-lignosulfonate, fur-furylamine, tetrahydrofurylamine, hexamethylenediamine, barbituric acid, guanidine, guanidine carbonate, biguanidine, guanylurea sulfate, melamine, dicyandiamide, biuret, 1.1{prime}-azobisformamide, methylol urea, methylol urea-urea condensation product, dimethylol urea, methyl urea, dimethyl urea, calcium cyanamide, and mixtures thereof under conditions effective to reduce the nitrogen oxides concentration and ensure the presence of ammonia in the effluent; introducing into the effluent a second treatment agent comprising an oxygenated hydrocarbon at an effluent temperature of about 500{degrees} F. to about 1600{degrees} F. under conditions effective to oxidize nitric oxide in the effluent to nitrogen dioxide and ensure the presence of ammonia at a weight ratio of ammonia to nitrogen dioxide of about 1:5 to about 5:1; and contacting the effluent with an aqueous scrubbing solution having a pH of 12 or lower under conditions effective to cause nitrogen dioxide to be absorbed therein.

  7. Performance of a Throttle Cycle Refrigerator with Nitrogen-Hydrocarbon and Argon-Hydrocarbon Mixtures

    Science.gov (United States)

    Venkatarathnam, G.; Senthil Kumar, P.; Srinivasa Murthy, S.

    2004-06-01

    Throttle cycle refrigerators are a class of vapor compression refrigerators that can provide refrigeration at cryogenic temperatures and operate with refrigerant mixtures. The performance of our prototype refrigerators with nitrogen-hydrocarbon, nitrogen-hydrocarbon-helium and argon-hydrocarbon refrigerant mixtures is presented in this paper.

  8. Catalytic/non-catalytic combination process for nitrogen oxides reduction

    International Nuclear Information System (INIS)

    Luftglass, B.K.; Sun, W.H.; Hofmann, J.E.

    1992-01-01

    This patent describes a process for the reduction of nitrogen oxides in the effluent from the combustion of a carbonaceous fuel. It comprises introducing a nitrogenous treatment agent comprising urea, one or more of the hydrolysis products of urea, ammonia, compounds which produce ammonia as a by-product, ammonium salts of organic acids, 5- or 6-membered heterocyclic hydrocarbons having at least one cyclic nitrogen, hydroxy amino hydrocarbons, or mixtures thereof into the effluent at an effluent temperature between about 1200 degrees F and about 2100 degrees F; and contacting the treated effluent under conditions effective to reduce the nitrogen oxides in the effluent with a catalyst effective for the reduction of nitrogen oxides in the presence of ammonia

  9. Atmospheric oxidation of selected hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Benter, T.; Olariu, R.I.

    2002-02-01

    This work presents investigations on the gas-phase chemistry of phenol and the cresol isomers performed in a 1080 l quartz glass reactor in Wuppertal and in a large-volume outdoor photoreactor EUPHORE in Valencia, Spain. The studies aimed at clarifying the oxidation mechanisms of the reactions of these compounds with OH and NO{sub 3} radicals. Product investigations on the oxidation of phenol and the cresol isomers initiated by OH radicals were performed in the 1080 l quartz glass reactor with analyses by in situ FT-IR absorption spectroscopy. The primary focus of the investigations was on the determination of product yields. This work represents the first determination and quantification of 1,2-dihydroxybenzenes in the OH oxidation of phenolic compounds. Possible reaction pathways leading to the observed products have been elucidated. (orig.)

  10. Structural behaviour of nitrogen in oxide ceramics

    International Nuclear Information System (INIS)

    Ghauri, K.M.

    1997-01-01

    The solubility of nitrogen in molten oxides has significant consideration for two quite different types of engineering materials. The implication of a knowledge of the role of nitrogen in these oxides for refining high nitrogen steels in obvious but similar nitrogen-bearing oxide melts are of critical importance in the densification of silicon nitride ceramics. Present paper discusses structural behaviour and phase equilibria qualitatively in the light of knowledge available on slag structure through infrared and x-ray diffraction. Nitrogen solubility in glasses and related sialon based ceramics may be of paramount importance to understand the role of nitrogen in these materials as these oxides are similar in composition, structure and characteristics to sintering glasses in nitrogen ceramics. It is quite logical to infer that the same oxide model can be applied in order to massively produce nitrogen alloyed steels which are actively competing to be the materials of the next century. (author)

  11. Catalyst for Decomposition of Nitrogen Oxides

    Science.gov (United States)

    Schryer, David R. (Inventor); Jordan, Jeffrey D. (Inventor); Akyurtlu, Ates (Inventor); Akyurtlu, Jale (Inventor)

    2015-01-01

    This invention relates generally to a platinized tin oxide-based catalyst. It relates particularly to an improved platinized tin oxide-based catalyst able to decompose nitric oxide to nitrogen and oxygen without the necessity of a reducing gas.

  12. Laboratory Studies of Hydrocarbon Oxidation Mechanisms

    Science.gov (United States)

    Orlando, J. J.; Tyndall, G. S.; Wallington, T. J.; Burkholder, J. B.; Bertman, S. B.; Chen, W.

    2001-12-01

    The oxidation of hydrocarbon species (alkanes, alkenes, halogenated species, and oxygenates of both natural and anthropogenic origin) in the troposphere leads to the generation of numerous potentially harmful secondary pollutants, such as ozone, organic nitrates and acids, and aerosols. These oxidations proceed via the formation of alkoxy radicals, whose complex chemistry controls the ultimate product distributions obtained. Studies of hydrocarbon oxidation mechanisms are ongoing at NCAR and Ford, using environmental chamber / FTIR absorption systems. The focus of these studies is often on the product distributions obtained at low temperature; these studies not only provide data of direct relevance to the free/upper troposphere, but also allow for a more fundamental understanding of the alkoxy radical chemistry (eg., from the determination of the Arrhenius parameters for unimolecular processes, and the quantification of the extent of the involvement of chemical activation in the alkoxy radical chemistry). In this paper, data will be presented on some or all of the following topics: kinetics/mechanisms for the reactions of OH with the unsaturated species MPAN, acrolein, and crotonaldehyde; the mechanism for the oxidation of ethyl chloride and ethyl bromide; and the mechanism for the reaction of OH with acetone and acetaldehyde at low temperature. The relevance of the data to various aspects of tropospheric chemistry will be discussed.

  13. The Oxides of Nitrogen in Air Pollution.

    Science.gov (United States)

    California State Air Resources Board, Sacramento.

    Research on the health effects of oxides of nitrogen and on the role of oxides of nitrogen in producing photochemical smog effects is presented in this report. Prepared by the California State Department of Public Health at the request of the State Legislature, it gives a comprehensive review of available information, as well as the need for air…

  14. Reactive nitrogen oxides and ozone above a taiga woodland

    Science.gov (United States)

    Bakwin, Peter S.; Jacob, Daniel J.; Wofsy, Steven C.; Munger, J. William; Daube, Bruce C.; Bradshaw, John D.; Sandholm, Scott T.; Talbot, Robert W.; Singh, Hanwant B.; Gregory, Gerald L.

    1994-01-01

    Measurements of reactive nitrogen oxides (NO(x) and NO(y)) and ozone (O3) were made in the planetary boundary layer (PBL) above a taiga woodland in northern Quebec, Canada, during June-August, 1990, as part of NASA Artic Boundary Layer Expedition (ABLE) 3B. Levels of nitrogen oxides and O3 were strongly modulated by the synoptic scale meteorology that brought air from various source regions to the site. Industrial pollution from the Great Lakes region of the U.S. and Canada appears to be a major source for periodic elevation of NO(x), and NO(y) and O3. We find that NO/NO2 ratios at this site at midday were approximately 50% those expected from a simple photochemical steady state between NO(x) and O3, in contrast to our earlier results from the ABLE 3A tundra site. The difference between the taiga and tundra sites is likely due to much larger emissions of biogenic hydrocarbons (particularly isoprene) from the taiga vegetation. Hydrocarbon photooxidation leads to relatively rapid production of peroxy radicals, which convert NO to NO2, at the taiga site. Ratios of NO(x) to NO(y) were typically 2-3 times higher in the PBL during ABLE 3B than during ABLE 3A. This is probably the result of high PAN levels and suppressed formation of HNO3 from NO2 due to high levels of biogenic hydrocarbons at the ABLE 3B site.

  15. Composite catalyst for carbon monoxide and hydrocarbon oxidation

    Science.gov (United States)

    Liu, Wei; Flytzani-Stephanopoulos, Maria

    1996-01-01

    A method and composition for the complete oxidation of carbon monoxide and/or hydrocarbon compounds. The method involves reacting the carbon monoxide and/or hydrocarbons with an oxidizing agent in the presence of a metal oxide composite catalyst. The catalyst is prepared by combining fluorite-type oxygen ion conductors with active transition metals. The fluorite oxide, selected from the group consisting of cerium oxide, zirconium oxide, thorium oxide, hafnium oxide, and uranium oxide, and may be doped by alkaline earth and rare earth oxides. The transition metals, selected from the group consisting of molybdnum, copper, cobalt, maganese, nickel, and silver, are used as additives. The atomic ratio of transition metal to fluorite oxide is less than one.

  16. A PROCESS FOR THE CATALYTIC OXIDATION OF HYDROCARBONS

    DEFF Research Database (Denmark)

    1999-01-01

    A process for producing an alcohol from a gaseous hydrocarbon, e.g. a lower alkane such as methane, via oxidative reaction of the hydrocarbon in a concentrated sulfuric acid medium in the presence of a catalyst employs an added catalyst comprising a substance selected from iodine, iodine compounds...

  17. The nitrogen oxides and the atmospheric pollution

    International Nuclear Information System (INIS)

    1990-01-01

    The objective of this document is to bring information on the acid atmospheric pollution, on the researches and studies in progress, on the european directives and the national regulations, on the processus and burners with low emission of nitrogen oxides and on the rule that the gas, fuel without sulphur, generating little nitrogen oxides, plays in the fight against atmospheric pollution. 20 refs., 8 figs., 12 tabs

  18. Conversion of hydrocarbons in solid oxide fuel cells

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Kammer Hansen, K.

    2003-01-01

    Recently, a number of papers about direct oxidation of methane and hydrocarbon in solid oxide fuel cells (SOFC) at relatively low temperatures (about 700degreesC) have been published. Even though the conversion of almost dry CH4 at 1000degreesC on ceramic anodes was demonstrated more than 10 years...

  19. Reducing nitrogen oxides from power stations

    International Nuclear Information System (INIS)

    Scheller, W.

    1986-12-01

    The report contains 17 individual lectures of the seminar included in databanks. The lectures concern combustion and waste gas measures for reducing the sulfur dioxide and nitrogen oxide emission from coal-fired and gas-fired power stations. (PW) [de

  20. The microbial nitrogen cycling potential in marine sediments is impacted by polyaromatic hydrocarbon pollution

    Directory of Open Access Journals (Sweden)

    Nicole M Scott

    2014-03-01

    Full Text Available During petroleum hydrocarbon exposure the composition and functional dynamics of marine microbial communities are altered, favoring bacteria that can utilize this rich carbon source. Initial exposure of high levels of hydrocarbons in aerobic surface sediments can enrich growth of heterotrophic microorganisms having hydrocarbon degradation capacity. As a result, there can be a localized reduction in oxygen potential, if the sediments are aerobic, within the surface layer of marine sediments resulting in anaerobic zones. We hypothesized that increasing exposure to elevated hydrocarbon concentrations would positively correlate with an increase in denitrification processes and the net accumulation of dinitrogen. This hypothesis was tested by comparing the relative abundance of genes associated with nitrogen metabolism and nitrogen cycling identified in 6 metagenomes from sediments contaminated by polyaromatic hydrocarbons from the Deepwater Horizon oil spill in the Gulf of Mexico, and 3 metagenomes from sediments associated with natural oil seeps in the Santa Barbara Channel. An additional 8 metagenomes from uncontaminated sediments from the Gulf of Mexico were analyzed for comparison. We predicted relative changes in metabolite turnover as a function of the differential microbial gene abundances, which showed predicted accumulation of metabolites associated with denitrification processes, including anammox, in the contaminated samples compared to uncontaminated sediments, with the magnitude of this change being positively correlated to the hydrocarbon concentration and exposure duration. These data highlight the potential impact of hydrocarbon inputs on N cycling processes in marine sediments and provide information relevant for system scale models of nitrogen metabolism in affected ecosystems.

  1. Non-oxidative conversion of methane into higher hydrocarbons over ...

    Indian Academy of Sciences (India)

    SOURABH MISHRA

    2017-09-27

    Sep 27, 2017 ... (Syn-gas, CO+H2) formation via steam reforming, dry reforming or partial oxidation of methane ... Micromeritics ASAP 2010 apparatus at liquid nitrogen tem- perature. Nitrogen (N2) was the adsorbate ... some runs were carried out in triplicate and mass balance for all the runs was measured. Runs with a ...

  2. Chemical kinetic models for combustion of hydrocarbons and formation of nitric oxide

    Science.gov (United States)

    Jachimowski, C. J.; Wilson, C. H.

    1980-01-01

    The formation of nitrogen oxides NOx during combustion of methane, propane, and a jet fuel, JP-4, was investigated in a jet stirred combustor. The results of the experiments were interpreted using reaction models in which the nitric oxide (NO) forming reactions were coupled to the appropriate hydrocarbon combustion reaction mechanisms. Comparison between the experimental data and the model predictions reveals that the CH + N2 reaction process has a significant effect on NO formation especially in stoichiometric and fuel rich mixtures. Reaction models were assembled that predicted nitric oxide levels that were in reasonable agreement with the jet stirred combustor data and with data obtained from a high pressure (5.9 atm (0.6 MPa)), prevaporized, premixed, flame tube type combustor. The results also suggested that the behavior of hydrocarbon mixtures, like JP-4, may not be significantly different from that of pure hydrocarbons. Application of the propane combustion and nitric oxide formation model to the analysis of NOx emission data reported for various aircraft gas turbines showed the contribution of the various nitric oxide forming processes to the total NOx formed.

  3. Hydrous pyrolysis/oxidation process for in situ destruction of chlorinated hydrocarbon and fuel hydrocarbon contaminants in water and soil

    Science.gov (United States)

    Knauss, Kevin G.; Copenhaver, Sally C.; Aines, Roger D.

    2000-01-01

    In situ hydrous pyrolysis/oxidation process is useful for in situ degradation of hydrocarbon water and soil contaminants. Fuel hydrocarbons, chlorinated hydrocarbons, polycyclic aromatic hydrocarbons, petroleum distillates and other organic contaminants present in the soil and water are degraded by the process involving hydrous pyrolysis/oxidation into non-toxic products of the degradation. The process uses heat which is distributed through soils and water, optionally combined with oxygen and/or hydrocarbon degradation catalysts, and is particularly useful for remediation of solvent, fuel or other industrially contaminated sites.

  4. 40 CFR 60.55a - Standard for nitrogen oxides.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for nitrogen oxides. 60.55a... § 60.55a Standard for nitrogen oxides. On and after the date on which the initial compliance test is... gases that contain nitrogen oxides in excess of 180 parts per million by volume, corrected to 7 percent...

  5. 40 CFR 60.332 - Standard for nitrogen oxides.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for nitrogen oxides. 60.332... Turbines § 60.332 Standard for nitrogen oxides. (a) On and after the date on which the performance test... stationary gas turbine, any gases which contain nitrogen oxides in excess of: EC16NO91.020 where: STD...

  6. Health risk evaluation of nitrogen oxides

    Energy Technology Data Exchange (ETDEWEB)

    Berglund, M; Ewetz, L; Gustafsson, L; Moldeus, P; Pershagen, G; Victorin, K [Karolinska Inst., Stockholm (Sweden). Inst. of Environmental Medicine

    1996-12-31

    At the request of the Swedish Environmental Protection Agency a criteria document on nitrogen oxides has been prepared, and is intended to serve as a basis for revised air quality standards in Sweden. The criteria document is based on a thorough literature survey, and the health risk assessment is summarized in this presentation. The present standard for nitrogen dioxide (NO{sub 2}) is 110 {mu}g/m{sup 3} as 1-hour mean (98th percentile); 75 {mu}g/m{sup 3} as 24- hour mean (98th percentile); and 50 {mu}g/m{sup 3} as 6-month mean (arithmetic eman during winter half-year). (author)

  7. Health risk evaluation of nitrogen oxides

    Energy Technology Data Exchange (ETDEWEB)

    Berglund, M.; Ewetz, L.; Gustafsson, L.; Moldeus, P.; Pershagen, G.; Victorin, K. [Karolinska Inst., Stockholm (Sweden). Inst. of Environmental Medicine

    1995-12-31

    At the request of the Swedish Environmental Protection Agency a criteria document on nitrogen oxides has been prepared, and is intended to serve as a basis for revised air quality standards in Sweden. The criteria document is based on a thorough literature survey, and the health risk assessment is summarized in this presentation. The present standard for nitrogen dioxide (NO{sub 2}) is 110 {mu}g/m{sup 3} as 1-hour mean (98th percentile); 75 {mu}g/m{sup 3} as 24- hour mean (98th percentile); and 50 {mu}g/m{sup 3} as 6-month mean (arithmetic eman during winter half-year). (author)

  8. Bio-inspired Iron Catalysts for Hydrocarbon Oxidations

    Energy Technology Data Exchange (ETDEWEB)

    Que, Jr., Lawrence [Univ. of Minnesota, Minneapolis, MN (United States)

    2016-03-22

    Stereoselective oxidation of C–H and C=C bonds are catalyzed by nonheme iron enzymes. Inspired by these bioinorganic systems, our group has been exploring the use of nonheme iron complexes as catalysts for the oxidation of hydrocarbons using H2O2 as an environmentally friendly and atom-efficient oxidant in order to gain mechanistic insights into these novel transformations. In particular, we have focused on clarifying the nature of the high-valent iron oxidants likely to be involved in these transformations.

  9. A system for removing both oxygen and nitrogen from a rare gas-hydrocarbon mixture

    International Nuclear Information System (INIS)

    Dijkman, W.H.

    1989-01-01

    A study has been made how to remove nitrogen from a mixture of a rare gas and a hydrocarbon in addition to the removal of oxygen, H 2 O and gaseous oxides. The purpose was to find a simple method for the purification of drift-chamber gases in a recirculation system. Such a method would reduce the operating costs of the large detectors presently constructed for LEP. A promising technique has been developed. First results of a chemical reactor using the novel technique are presented. The N 2 content of Ar/air mixtures containing up to 28% air could be reduced to a level of 20 ppm at a flow rate of 0.11 m 3 /h (200 ppm at 1.0 m 3 /h); and the O 2 content to 30 and 300 ppm respectively. Water and gaseous oxides concentrations were always below 5 ppm. Some of the practical problems still to be solved are discussed and suggestions are given for further development and applications. The method can in principle be of more general use. (orig.)

  10. Gamma irradiation of hydrocarbon-liquid nitrogen systems and the synthesis of ammonia

    International Nuclear Information System (INIS)

    Fleming, H.L.

    1982-01-01

    The 60 Co-gamma radiolysis of hydrocarbons (HC)-liquid N 2 mixtures at 77 0 K and 1.8 atm of pressure was investigated. Batch irradiation studies of methane, ethane, and ethylene and semibatch studies of methane were made in the presence and absence of transition metal oxide catalysts. In noncatalyzed systems, the effects of varying the radiation dose, total dose, solute feed rate and concentration and liquid N 2 volume were investigated. NH 3 was found to be the major N-containing product in the alkane solute system. N 2 and HC radical addition was found to be the predominate initial reaction for nitrogeneous product formation. Results of scavenger studies indicate that excited N 2 played a lesser role in precursor formation. All product yields were found to be dependent upon the H-containing species availability in the liquid N 2 solution. Production rates were limited by HC solubility. The use of the transition metal oxide supported catalyst greatly increased product formation in all systems. Product yields were found to be dependent upon the available catalyst surface area, metal loading, and reduction techniques for each metal examined. As evidenced by the radiation lag time studies, the stability of the N 2 precursors on the catalyst surface was believed to be a significant factor in reaction enhancement. Energy transfer from the catalyst to the absorbates was examined and could not be ruled out

  11. Inhibition of apparent photosynthesis by nitrogen oxides

    Energy Technology Data Exchange (ETDEWEB)

    Hill, A C; Bennett, J H

    1970-01-01

    The nitrogen oxides (NO/sub 2/ and NO) inhibited apparent photosynthesis of oats and alfalfa at concentrations below those required to cause visible injury. There appeared to be a threshold concentration of about 0.6 ppm for each pollutant. An additive effect in depressing apparent photosynthesis occurred when the plants were exposed to a mixture of NO and NO/sub 2/. Although NO produced a more rapid effect on the plants, lower concentrations of NO/sub 2/ were required to cause a given inhibition after 2 hour of exposure. Inhibition by nitric oxide was more closely related to its partial pressure than was inhibition by NO/sub 2/.

  12. Performance of an auto refrigerant cascade refrigerator operating in gas refrigerant supply (GRS) mode with nitrogen-hydrocarbon and argon-hydrocarbon refrigerants

    Science.gov (United States)

    Gurudath Nayak, H.; Venkatarathnam, G.

    2009-07-01

    There is a worldwide interest in the development of auto refrigerant cascade (ARC) refrigerators operating with refrigerant mixtures. Both flammable and non-flammable refrigerant mixtures can be used in these systems. The performance of an ARC system with optimum nitrogen-hydrocarbon and argon-hydrocarbon mixtures between 90 and 160 K is presented in this paper.

  13. Hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    1927-02-22

    Coal tar, mineral oils, bitumens, coal extraction products, hydrogenation products of coal, oil schists can be atomized and heated with steam to decompose pyrogenetically and form gases rich in olefins which may be heated with or without pressure and with or without catalysts to produce liquid hydrocarbons of low boiling point, some of which may be aromatic. The apparatus should be lined with copper, silica, or ferrosilicon to prevent contact of the bases with iron which causes deposition of soot. Catalysts used may be metal oxides, silica, graphite, active charcoal, mica, pumice, porcelain, barium carbonate, copper, silver, gold, chromium, boron, or their compounds. At temperatures from 300 to 400/sup 0/C, olefins are produced. At higher temperatures, naphthenes and benzene hydrocarbons are produced.

  14. NOxTOy: A miniaturised new instrument for reactive nitrogen oxides in the atmosphere

    International Nuclear Information System (INIS)

    Dommen, J.; Prevot, A.S.H.; Neininger, B.; Clark, N.

    2000-01-01

    Emission of nitrogen oxides (NO, NO 2 ) and hydrocarbons into the atmosphere lead, under sunlight, to the formation of ozone and other photo oxidants. To better understand the ozone forming processes, the production and concentration of the nitrogen containing reaction products like nitric acid (HNO 3 ) or peroxyacetylnitrate (PAN) have to be determined. In a joint project with other research institutions and a private enterprise a miniaturised instrument was developed under a KTI contract. It is possible to measure several nitrogen oxides, NO 2 , NO x , NO y , PAN, HNO 3 and O x simultaneously. The dimensions and the power consumption of the instrument are suited for the operation in a motor glider and in a van. First measurements have been successfully performed and are presented. (authors)

  15. Novel metalloporphyrin catalysts for the oxidation of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Showalter, M.C.; Nenoff, T.M.; Shelnutt, J.A.

    1996-11-01

    Work was done for developing biomimetic oxidation catalysts. Two classes of metalloporphyrin catalysts were studied. The first class of catalysts studied were a novel series of highly substituted metalloporphyrins, the fluorinated iron dodecaphenylporphyrins. These homogeneous metalloporphyrin catalysts were screened for activity as catalysts in the oxidation of hydrocarbons by dioxygen. Results are discussed with respect to catalyst structural features. The second type of catalysts studied were heterogeneous catalysts consisting of metalloporphyrins applied to inorganic supports. Preliminary catalytic testing results with these materials are presented.

  16. Nitrogen oxides storage catalysts containing cobalt

    Science.gov (United States)

    Lauterbach, Jochen; Snively, Christopher M.; Vijay, Rohit; Hendershot, Reed; Feist, Ben

    2010-10-12

    Nitrogen oxides (NO.sub.x) storage catalysts comprising cobalt and barium with a lean NO.sub.x storage ratio of 1.3 or greater. The NO.sub.x storage catalysts can be used to reduce NO.sub.x emissions from diesel or gas combustion engines by contacting the catalysts with the exhaust gas from the engines. The NO.sub.x storage catalysts can be one of the active components of a catalytic converter, which is used to treat exhaust gas from such engines.

  17. 40 CFR 91.318 - Oxides of nitrogen analyzer calibration.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Oxides of nitrogen analyzer calibration. 91.318 Section 91.318 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Provisions § 91.318 Oxides of nitrogen analyzer calibration. (a) Calibrate the chemiluminescent oxides of...

  18. Non-oxidative conversion of methane into higher hydrocarbons over ...

    Indian Academy of Sciences (India)

    SOURABH MISHRA

    2017-09-27

    Sep 27, 2017 ... ... in the Design and Development of Catalysts and their Applications ... of methane (natural gas) into transportable chemicals ... molybdenum (Mo) catalyst under non-oxidative condi- ... Micromeritics ASAP 2010 apparatus at liquid nitrogen tem- ... fixed-bed tubular reactor (500 mm length & 15 mm ID) at.

  19. New investigations in the USA into formation of nitrogen oxides

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R.

    1983-06-01

    This paper discusses laboratory investigations in the USA on air pollution by nitrogen oxides during coal combustion. Laboratory combustors used for combustion of black coal, anthracite and brown coal are described. Measuring systems and measuring instruments used for flue gas analyses and determining nitrogen oxide, hydrocyanic acid and ammonia content in flue gas are evaluated. Effects of excess air on nitrogen oxide formation are analyzed. Analyses show that excess air influences relation between nitrogen oxides, hydrocyanic acid and ammonia. Recommendations on the optimum excess air rate are made. In the case of all coal typs, with the exception of anthracite, the optimum excess air rate is 0.7 which guarantees the highest transformation rate of nitrogen in fuel into molecular nitrogen. Effects of excess air on oxidation of hydrocyanic acid and ammonia are described. The analyses consider effects of excess air on chemical reactions during coal combustion under laboratory conditions. (4 refs.) (In Russian)

  20. Oxidation kinetics of polycyclic aromatic hydrocarbons by permanganate.

    Science.gov (United States)

    Forsey, Steven P; Thomson, Neil R; Barker, James F

    2010-04-01

    The reactivity of permanganate towards polycyclic aromatics hydrocarbons (PAHs) is well known but little kinetic information is available. This study investigated the oxidation kinetics of a selected group of coal tar creosote compounds and alkylbenzenes in water using permanganate, and the correlation between compound reactivity and physical/chemical properties. The oxidation of naphthalene, phenanthrene, chrysene, 1-methylnaphthalene, 2-methylnaphthalene, acenaphthene, fluorene, carbazole isopropylbenzene, ethylbenzene and methylbenzene closely followed pseudo first-order reaction kinetics. The oxidation of pyrene was initially very rapid and did not follow pseudo first-order kinetics at early times. Fluoranthene was only partially oxidized and the oxidation of anthracene was too fast to be captured. Biphenyl, dibenzofuran, benzene and tert-butylbenzene were non-reactive under the study conditions. The oxidation rate was shown to increase with increasing number of polycyclic rings because less energy is required to overcome the aromatic character of a polycyclic ring than is required for benzene. Thus the rate of oxidation increased in the series naphthalenepermanganate. 2010 Elsevier Ltd. All rights reserved.

  1. Oxidation kinetics of polycyclic aromatic hydrocarbons by permanganate

    Energy Technology Data Exchange (ETDEWEB)

    Forsey, S.P.; Thomson, N.R.; Barker, J.F. [University of Waterloo, Waterloo, ON (Canada). Dept. of Civil & Environmental Engineering

    2010-04-15

    The reactivity of permanganate towards polycyclic aromatics hydrocarbons (PAHs) is well known but little kinetic information is available. This study investigated the oxidation kinetics of a selected group of coal tar creosote compounds and alkylbenzenes in water using permanganate, and the correlation between compound reactivity and physical/chemical properties. The oxidation of naphthalene, phenanthrene, chrysene, 1-methylnaphthalene, 2-methylnaphthalene, acenaphthene, fluorene, carbazole isopropylbenzene, ethylbenzene and methylbenzene closely followed pseudo first-order reaction kinetics. The oxidation of pyrene was initially very rapid and did not follow pseudo first-order kinetics at early times. Fluoranthene was only partially oxidized and the oxidation of anthracene was too fast to be captured. Biphenyl, dibenzofuran, benzene and tert-butylbenzene were non-reactive under the study conditions. The oxidation rate was shown to increase with increasing number of polycyclic rings because less energy is required to overcome the aromatic character of a polycyclic ring than is required for benzene. Thus the rate of oxidation increased in the series naphthalene < phenanthrene < pyrene. The rate of side chain reactivity is controlled by the C-H bond strength. For the alkyl substituted benzenes an excellent correlation was observed between the reaction rate coefficients and bond dissociation energies, but for the substituted PAHs the relationship was poor. A trend was found between the reaction rate coefficients and the calculated heats of complexation indicating that significant ring oxidation occurred in addition to side chain oxidation. Clar's aromatic sextet theory was used to predict the relative stability of arenes towards ring oxidation by permanganate.

  2. Catalyst for reduction of nitrogen oxides

    Science.gov (United States)

    Ott, Kevin C.

    2010-04-06

    A Selective Catalytic Reduction (SCR) catalyst was prepared by slurry coating ZSM-5 zeolite onto a cordierite monolith, then subliming an iron salt onto the zeolite, calcining the monolith, and then dipping the monolith either into an aqueous solution of manganese nitrate and cerium nitrate and then calcining, or by similar treatment with separate solutions of manganese nitrate and cerium nitrate. The supported catalyst containing iron, manganese, and cerium showed 80 percent conversion at 113 degrees Celsius of a feed gas containing nitrogen oxides having 4 parts NO to one part NO.sub.2, about one equivalent ammonia, and excess oxygen; conversion improved to 94 percent at 147 degrees Celsius. N.sub.2O was not detected (detection limit: 0.6 percent N.sub.2O).

  3. 40 CFR 60.72 - Standard for nitrogen oxides.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for nitrogen oxides. 60.72 Section 60.72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Plants § 60.72 Standard for nitrogen oxides. (a) On and after the date on which the performance test...

  4. 40 CFR 90.318 - Oxides of nitrogen analyzer calibration.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Oxides of nitrogen analyzer calibration. 90.318 Section 90.318 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Emission Test Equipment Provisions § 90.318 Oxides of nitrogen analyzer calibration. (a) Calibrate the...

  5. 40 CFR 52.278 - Oxides of nitrogen control.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Oxides of nitrogen control. 52.278 Section 52.278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.278 Oxides of nitrogen control...

  6. 40 CFR 89.321 - Oxides of nitrogen analyzer calibration.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Oxides of nitrogen analyzer calibration. 89.321 Section 89.321 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Test Equipment Provisions § 89.321 Oxides of nitrogen analyzer calibration. (a) The chemiluminescent...

  7. Absorption and oxidation of nitrogen oxide in ionic liquids

    DEFF Research Database (Denmark)

    Kunov-Kruse, Andreas Jonas; Thomassen, Peter Langelund; Riisager, Anders

    2016-01-01

    A new strategy for capturing nitrogen oxide, NO, from the gas phase is presented. Dilute NO gas is removed from the gas phase by ionic liquids under ambient conditions. The nitrate anion of the ionic liquid catalyzes the oxidation of NO to nitric acid by atmospheric oxygen in the presence of water....... The nitric acid is absorbed in the ionic liquid up to approximately one mole HNO3 per mole of the ionic liquid due to the formation of hydrogen bonds. The nitric acid can be desorbed by heating, thereby regenerating the ionic liquid with excellent reproducibility. Here, time-resolved in-situ spectroscopic...... investigations of the reaction and products are presented. The procedure reveals a new vision for removing the pollutant NO by absorption into a non-volatile liquid and converting it into a useful bulk chemical, that is, HNO3....

  8. THE ROLE OF NITROGEN IN TITAN’S UPPER ATMOSPHERIC HYDROCARBON CHEMISTRY OVER THE SOLAR CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Luspay-Kuti, A.; Mandt, K. E.; Greathouse, T. K. [Department of Space Research, Southwest Research Institute, San Antonio, TX 78228 (United States); Westlake, J. H. [Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723 (United States); Plessis, S., E-mail: aluspaykuti@swri.edu [Fund Kis, F-92160 Antony (France)

    2016-06-01

    Titan’s thermospheric photochemistry is primarily driven by solar radiation. Similarly to other planetary atmospheres, such as Mars’, Titan’s atmospheric structure is also directly affected by variations in the solar extreme-UV/UV output in response to the 11-year-long solar cycle. Here, we investigate the influence of nitrogen on the vertical production, loss, and abundance profiles of hydrocarbons as a function of the solar cycle. Our results show that changes in the atmospheric nitrogen atomic density (primarily in its ground state N({sup 4}S)) as a result of photon flux variations have important implications for the production of several minor hydrocarbons. The solar minimum enhancement of CH{sub 3}, C{sub 2}H{sub 6}, and C{sub 3}H{sub 8}, despite the lower CH{sub 4} photodissociation rates compared with solar maximum conditions, is explained by the role of N({sup 4}S). N({sup 4}S) indirectly controls the altitude of termolecular versus bimolecular chemical regimes through its relationship with CH{sub 3}. When in higher abundance during solar maximum at lower altitudes, N({sup 4}S) increases the importance of bimolecular CH{sub 3} + N({sup 4}S) reactions producing HCN and H{sub 2}CN. The subsequent remarkable CH{sub 3} loss and decrease in the CH{sub 3} abundance at lower altitudes during solar maximum affects the overall hydrocarbon chemistry.

  9. Catalytic oxidative desulfurization of liquid hydrocarbon fuels using air

    Science.gov (United States)

    Sundararaman, Ramanathan

    Conventional approaches to oxidative desulfurization of liquid hydrocarbons involve use of high-purity, expensive water soluble peroxide for oxidation of sulfur compounds followed by post-treatment for removal of oxidized sulfones by extraction. Both are associated with higher cost due to handling, storage of oxidants and yield loss with extraction and water separation, making the whole process more expensive. This thesis explores an oxidative desulfurization process using air as an oxidant followed by catalytic decomposition of sulfones thereby eliminating the aforementioned issues. Oxidation of sulfur compounds was realized by a two step process in which peroxides were first generated in-situ by catalytic air oxidation, followed by catalytic oxidation of S compounds using the peroxides generated in-situ completing the two step approach. By this technique it was feasible to oxidize over 90% of sulfur compounds present in real jet (520 ppmw S) and diesel (41 ppmw S) fuels. Screening of bulk and supported CuO based catalysts for peroxide generation using model aromatic compound representing diesel fuel showed that bulk CuO catalyst was more effective in producing peroxides with high yield and selectivity. Testing of three real diesel fuels obtained from different sources for air oxidation over bulk CuO catalyst showed different level of effectiveness for generating peroxides in-situ which was consistent with air oxidation of representative model aromatic compounds. Peroxides generated in-situ was then used as an oxidant to oxidize sulfur compounds present in the fuel over MoO3/SiO2 catalyst. 81% selectivity of peroxides for oxidation of sulfur compounds was observed on MoO3/SiO2 catalyst at 40 °C and under similar conditions MoO3/Al2O3 gave only 41% selectivity. This difference in selectivity might be related to the difference in the nature of active sites of MoO3 on SiO2 and Al2O 3 supports as suggested by H2-TPR and XRD analyses. Testing of supported and bulk Mg

  10. Method to reduce the nitrogen oxide content of gaseous wastes

    Energy Technology Data Exchange (ETDEWEB)

    Klopp, G.; Sueto, J.; Szasz, K.; Szebenyi, I.; Winkler, G.; Machacs, M.; Palmai, G.

    1980-11-13

    The proposed process is suited for the denitrification of waste gases from nitric acid plants. It proceeds without an additional energy source with an integrated adsorption unit which guaranties the complete recirculation of the produced nitrogen oxides and allows the regeneration of the adsorbents by the use of the energy from the oxidation of nitrous oxide to nitric oxide. The desorption is carried out by the intermediate passage of the hot gases from the oxidizer through the adsorber.

  11. How exogenous nitric oxide regulates nitrogen assimilation in wheat seedlings under different nitrogen sources and levels.

    Science.gov (United States)

    Balotf, Sadegh; Islam, Shahidul; Kavoosi, Gholamreza; Kholdebarin, Bahman; Juhasz, Angela; Ma, Wujun

    2018-01-01

    Nitrogen (N) is one of the most important nutrients for plants and nitric oxide (NO) as a signaling plant growth regulator involved in nitrogen assimilation. Understanding the influence of exogenous NO on nitrogen metabolism at the gene expression and enzyme activity levels under different sources of nitrogen is vitally important for increasing nitrogen use efficiency (NUE). This study investigated the expression of key genes and enzymes in relation to nitrogen assimilation in two Australian wheat cultivars, a popular high NUE cv. Spitfire and a normal NUE cv. Westonia, under different combinations of nitrogen and sodium nitroprusside (SNP) as the NO donor. Application of NO increased the gene expressions and activities of nitrogen assimilation pathway enzymes in both cultivars at low levels of nitrogen. At high nitrogen supplies, the expressions and activities of N assimilation genes increased in response to exogenous NO only in cv. Spitfire but not in cv. Westonia. Exogenous NO caused an increase in leaf NO content at low N supplies in both cultivars, while under high nitrogen treatments, cv. Spitfire showed an increase under ammonium nitrate (NH4NO3) treatment but cv. Westonia was not affected. N assimilation gene expression and enzyme activity showed a clear relationship between exogenous NO, N concentration and N forms in primary plant nitrogen assimilation. Results reveal the possible role of NO and different nitrogen sources on nitrogen assimilation in Triticum aestivum plants.

  12. Analysis of alternative pathways for reducing nitrogen oxide emissions

    Science.gov (United States)

    Strategies for reducing tropospheric ozone typically include modifying combustion processes to reduce the formation of nitrogen oxides (NOx) and applying control devices that remove NOx from the exhaust gases of power plants, industrial sources and vehicles. For portions of the ...

  13. 40 CFR 52.65 - Control Strategy: Nitrogen oxides.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Control Strategy: Nitrogen oxides. 52.65 Section 52.65 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Alabama § 52.65 Control Strategy: Nitrogen...

  14. Theory and practice of nitrogen oxide absorption

    International Nuclear Information System (INIS)

    Counce, R.M.

    1985-01-01

    Nitrogen oxide (NO/sub x/) absorbers vary in purpose from bulk nitric acid production to abatement of trace NO/sub x/ concentrations from gas streams. Absorbers are typically of plate or packed tower design although some plate/packed combination towers potentially offer some useful advantages. Mathematical models for the design of NO/sub x/ absorbers vary from mechanistically based models for absorption into water and dilute HNO 3 to empirically based models for absorption into concentrated HNO 3 solutions. The NO/sub x/ content in effluent gas from modern high pressure nitric acid production towers can be reduced to well under 200 ppm. The basis for the design of low pressure NO/sub x/ absorbers for NO/sub x/ recovery or abatement has been established to a sufficient extent to be a reasonably predictive tool although published operating experience is minimal and experimental verification may be necessary for many cases. The availability of high efficiency packing potentially offers significant NO/sub x/ removal in minimal sized packed absorbers. An important issue in the design of NO/sub x/ abatement systems is the disposition of the effluent scrubber liquid. A partial recycle of this liquid to the absorber normally requires additional processes for regeneration of the scrub solution; if there is an in plant use for this effluent stream, then a substantial simplification of the system may be realized. Low pressure NO/sub x/ absorbers for the primary purpose of gaseous NO/sub x/ recovery and abatement are discussed

  15. Development of compressor equipment for technologies of hydrocarbons extraction using nitrogen

    Directory of Open Access Journals (Sweden)

    G. V. Kirik

    2016-12-01

    Full Text Available This article provides an overview of the results of research and development work aimed at the development and implementation of technologies compressor using nitrogen to extract hydrocarbons. Nitrogen as the most affordable gas, is used as a neutral environment while performing a variety of works: gas injection into wells to stabilize the reservoir pressure in the development of oil and gas fields, gas condensate production, as well as the performance of repair work and testing of pipelines. A significant role is played by the use of nitrogen for extinguishing fires in coal mines. The implementation of these technologies requires the design and development of domestic production of the compressor equipment. The article gives some examples of developments of compressor stations based on screw and piston compressors, which meet modern requirements of efficiency, reliability, ergonomics and ecology, equipped with systems of control and regulation on the basis of controllers. The description and characteristics of the compressor equipment, and some results of the implementation compressors and technologies using nitrogen as a neutral environment.

  16. Nitrogen fixation in arctic marine sediments: effect of oil and hydrocarbon fractions

    Energy Technology Data Exchange (ETDEWEB)

    Knowles, R; Wishart, C

    1977-06-01

    Nitrogen fixation (acetylene reduction) was measured in grab and core samples of sediments from the Beaufort Sea and Eskimo Lakes, Northwest Territories, Canada. Very low rates (about 25 mg N/m/sup 2/.year) were detected in untreated sediments. Activity was markedly stimulated by the addition of glucose, sucrose, lactose, mannitol and malate but much less so by acetate; negligible activity was supported by N-acetylglucosamine. There was no consistent effect of the presence or absence of oxygen. Nitrogen fixation potentials in glucose-supplemented sediment samples showed large variation between stations, between samples from the same station and between depths within single cores down to 18 cm. Weathered Normal Wells crude oil, hexane, decane, dodecane and hexadecane had no effect, stimulatory or inhibitory, on nitrogen fixation or carbon dioxide evolution. 1,2,4-trimethylbenzene caused complete inhibition of nitrogen fixation but only partial inhibition of CO/sub 2/ evolution. There was no evidence of utilization of any of the hydrocarbons tested during periods of over 30 days under the experimental conditions employed.

  17. Cordierite-supported metal oxide for non-methane hydrocarbon oxidation in cooking oil fumes.

    Science.gov (United States)

    Huang, Yonghai; Yi, Honghong; Tang, Xiaolong; Zhao, Shunzheng; Gao, Fengyu; Wang, Jiangen; Yang, Zhongyu

    2018-05-21

    Cooking emission is an important reason for the air quality deterioration in the metropolitan area in China. Transition metal oxide and different loading of manganese oxide supported on cordierite were prepared by incipient wetness impregnation method and were used for non-methane hydrocarbon (NMHC) oxidation in cooking oil fumes (COFs). The effects of different calcination temperature and different Mn content were also studied. The SEM photographs and CO 2 temperature-programmed desorption revealed 5 wt% Mn/cordierite had the best pore structure and the largest number of the weak and moderate basic sites so it showed the best performance for NMHC oxidation. XRD analysis exhibited 5 wt% Mn/cordierite had the best dispersion of active phase and the active phase was MnO 2 when the calcination temperature was 400℃ which were good for the catalytic oxidation of NMHC.

  18. Experimental study of nitrogen oxide absorption by a liquid nitrogen tetroxide flow

    International Nuclear Information System (INIS)

    Verzhinskaya, A.B.; Saskovets, V.V.; Borovik, T.F.

    1984-01-01

    The system of N 2 O 4 based coolant regeneration needs productive and efficient absorbers, providing effective production of nitrogen oxide, decreasing upon NPP operation at the expense of radiation-thermal decomposition. The experimental istallation flowsheet for studying the nitrogen oxide absorbtion by liquid nitrogen tetroxide is given. The experiments have been carried out in removable test sections, looked like helical tubes with internal steam-and-liquid mixture flow and external water cooling. Six test sections with variable geometry factors have been manufactured. The plotted results of the experiments are given as dependences of extraction level and mass transfer volumetric coefficients on the geometry factor, pressure and Froude number

  19. Zeolite ZSM5 catalysts for abatement of nitrogen oxide

    Energy Technology Data Exchange (ETDEWEB)

    Ganemi, Bager

    1999-07-01

    Airborne pollutants from the combustion of fossil fuels are a global problem. Emission of nitrogen oxides (NO{sub x}) is increasing with the worldwide increase in the use of energy. Atmospheric and photochemical reactions link nitrogen oxides to hydrocarbons and tropospheric ozone. The emission of NO{sub x} has to be tackled urgently in order to limit the harmful effects of anthropogenic activity on the environment. The subject of this thesis is catalytic nitrogen oxide abatement through direct decomposition and reduction by methane over ion-exchanged zeolite ZSM5. The work covers catalytic conversion and surface intermediates, including correlations with the level of exchanged Cu{sup 2+} cations and Ni{sup 2+} or Pd{sup 2+} co-cations. Special attention is given to the aluminium content of the support and changes in structural parameters. It was found that NO{sub x} conversion over cation-exchanged ZSM5 is strongly influenced by the ion-exchange procedure and by the above material parameters. Characterization of Cu-ZSM5 reveals that approximately two molecules of water per Cu{sup 2+} ion desorb at temperatures between 150 and 350 Deg C, in addition to the conventional dehydration at lower temperatures. The desorbed water comes from the decomposition of Cu(OH){sub 2}. Decomposition of hydroxylated copper ions results in the formation Of Cu{sup 2+}-O-Cu{sup 2+} dimers, which are suggested to be the active sites for catalytic decomposition of NO. Acid sites are important for the dispersion of copper ions on the catalyst surface. Acid sites are also important for the interaction between copper species and the zeolite. Increased acidity leads to a stronger interaction between the exchanged cation and the framework, i.e. the exchanged cations become more resistant to mobility. The stronger bond between the exchanged cations and lattice oxygen also prevents dealumination of the catalyst and decreases the thermal expansion at higher temperatures. The temperature of

  20. Heterogeneous OH oxidation of motor oil particles causes selective depletion of branched and less cyclic hydrocarbons.

    Science.gov (United States)

    Isaacman, Gabriel; Chan, Arthur W H; Nah, Theodora; Worton, David R; Ruehl, Chris R; Wilson, Kevin R; Goldstein, Allen H

    2012-10-02

    Motor oil serves as a useful model system for atmospheric oxidation of hydrocarbon mixtures typical of anthropogenic atmospheric particulate matter, but its complexity often prevents comprehensive chemical speciation. In this work we fully characterize this formerly "unresolved complex mixture" at the molecular level using recently developed soft ionization gas chromatography techniques. Nucleated motor oil particles are oxidized in a flow tube reactor to investigate the relative reaction rates of observed hydrocarbon classes: alkanes, cycloalkanes, bicycloalkanes, tricycloalkanes, and steranes. Oxidation of hydrocarbons in a complex aerosol is found to be efficient, with approximately three-quarters (0.72 ± 0.06) of OH collisions yielding a reaction. Reaction rates of individual hydrocarbons are structurally dependent: compared to normal alkanes, reaction rates increased by 20-50% with branching, while rates decreased ∼20% per nonaromatic ring present. These differences in rates are expected to alter particle composition as a function of oxidation, with depletion of branched and enrichment of cyclic hydrocarbons. Due to this expected shift toward ring-opening reactions heterogeneous oxidation of the unreacted hydrocarbon mixture is less likely to proceed through fragmentation pathways in more oxidized particles. Based on the observed oxidation-induced changes in composition, isomer-resolved analysis has potential utility for determining the photochemical age of atmospheric particulate matter with respect to heterogeneous oxidation.

  1. Sensitivity of nitrogen dioxide concentrations to oxides of nitrogen controls in the United Kingdom

    International Nuclear Information System (INIS)

    Dixon, J.

    2001-01-01

    There is a possibility of further controls on emissions to the atmosphere of nitrogen dioxides to meet air quality objectives in the UK. Data in the National Air Quality Archive were used to calculate the likely sensitivity of hourly concentrations of nitrogen dioxide in ambient urban air to changes in the total oxides of nitrogen. Since the role of atmospheric chemical reactions is to make the responses non-linearly dependent on the emissions control, we seek to establish the magnitude and sign of the effects that this non-linearity might cause. We develop a quantitative approach to analysing the non-linearity in the data. Polynomial fits have been developed for the empirical ratio NO 2 :NO x (the 'yield'). They describe nitrogen dioxide concentrations using total oxides of nitrogen. The new functions have the important feature of increased yield in winter episodes. Simpler functions tend to omit this feature of the yields at the highest hourly concentrations. Based on this study, the hourly nitrogen dioxide objective in the UK may require emissions control of no more than about 50% on total oxides of nitrogen at the most polluted sites: other sites require less or even no control. (Author)

  2. Hydrogen or Soot?: Partial Oxidation of High-boiling Hydrocarbon Wastes

    Czech Academy of Sciences Publication Activity Database

    Lederer, J.; Hanika, Jiří; Nečesaný, F.; Poslední, W.; Tukač, V.; Veselý, Václav

    2015-01-01

    Roč. 29, č. 1 (2015), s. 5-11 ISSN 0352-9568 Institutional support: RVO:67985858 Keywords : partial oxidation * waste * hydrocarbon Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 0.675, year: 2015

  3. Titanocene-Mediated Dinitrile Coupling: A Divergent Route to Nitrogen-Containing Polycyclic Aromatic Hydrocarbons.

    Science.gov (United States)

    Kiel, Gavin R; Samkian, Adrian E; Nicolay, Amélie; Witzke, Ryan J; Tilley, T Don

    2018-02-21

    A general synthetic strategy for the construction of large, nitrogen-containing polycyclic aromatic hydrocarbons (PAHs) is reported. The strategy involves two key steps: (1) a titanocene-mediated reductive cyclization of an oligo(dinitrile) precursor to form a PAH appended with di(aza)titanacyclopentadiene functionality; (2) a divergent titanocene transfer reaction, which allows final-step installation of one or more o-quinone, diazole, or pyrazine units into the PAH framework. The new methodology enables rational, late-stage control of HOMO and LUMO energy levels and thus photophysical and electrochemical properties, as revealed by UV/vis and fluorescence spectroscopy, cyclic voltammetry, and DFT calculations. More generally, this contribution presents the first productive use of di(aza)metallacyclopentadiene intermediates in organic synthesis, including the first formal [2 + 2 + 2] reaction to form a pyrazine ring.

  4. Study on ionizing radiation effects in diesel and crude oil: organic compounds, hydrocarbon, sulfur and nitrogen

    International Nuclear Information System (INIS)

    Andrade, Luana dos Santos

    2014-01-01

    Petroleum is the most important energy and pollution source in the world, nowadays. New technologies in petrochemical industry aim to minimize energy spending at the process and to reduce pollution products. Sulfur and nitrogen compounds generate environmental problems; the most relevant is air pollution that affects the population health directly. The nuclear technology has been used in environmental protection through pollutants removal by free radicals produced at action of the radiation in water molecule. The objective of this study is to evaluate the radiation effects on oil and diesel, mainly in the hydrocarbons, organic sulfur, and nitrogen compounds. It was studied a molecule model of sulfur, named benzothiophene, diesel and crude oil samples. The samples were irradiated using a Co-60 source, Gammacell type. The total sulfur concentration in the samples was determined by X-ray fluorescence spectrometry, and organic compounds were analyzed by gas chromatography coupled to mass spectrometry (GC-MS). The study of molecular model showed that 95% was degraded at 20 kGy dose rate. Irradiation at 15 kGy of absorbed dose showed some cracking in petrol hydrocarbons, however with higher doses it was observed polymerization and low efficiency of cracking. It was observed that the sulfur compounds from diesel and petroleum was efficiently reduced. The applied doses of 15 kGy and 30 kGy were the most efficient on desulfurization of petroleum, and for diesel the highest variation was observed with 30 kGy and 50 kGy of absorbed dose. The distillation and chromatographic separation using an open column with palladium chloride as stationary phase showed a preferential separation of organic sulfur compounds in petroleum. (author)

  5. Selective fluorescence quenching of nitrogen-containing polycyclic aromatic hydrocarbons by aliphatic amines

    International Nuclear Information System (INIS)

    Li Xiaoping; McGuffin, Victoria L.

    2004-01-01

    In this investigation, primary, secondary, and tertiary amines are evaluated for their efficiency and selectivity as fluorescence quenchers for polycyclic aromatic hydrocarbons (PAHs) and nitrogen-containing polycyclic aromatic hydrocarbons (N-PAHs). In general, the quenching efficiency tends to increase from primary to tertiary amine due to a greater number of alkyl groups that increase the electron-donating ability. However, the selectivity decreases from primary to tertiary amine. The effect of low concentrations of water is also examined. Because water can form hydrogen bonds with amines, the nonbonding electron pair is not available for interaction with the fluorophore, thus the quenching constant is decreased. These aliphatic amines are then applied to PAHs and N-PAHs and some interesting trends are observed. Whereas amino-PAHs remain virtually unquenched by different amines, aza-PAHs are all quenched well. The selectivity between aza-PAHs and amino-PAHs is as high as several hundred. This trend provides an easy and effective method to discriminate between these classes of N-PAHs. Moreover, the alternant aza-PAHs are quenched more than their corresponding alternant PAHs

  6. WHO environmental health criteria for oxides of nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    A report in preparation by the World Health Organization (WHO), Geneva, on the Environmental Health Criteria for Oxides of Nitrogen is summarized. This report will be published under the joint sponsorship of the United Nations Environment Program (UNEP) and WHO. Chemistry and analytical methods, sources of oxides of nitrogen, environmental levels and exposures, effects on experimental animals, effects on man, and evaluation of health risks are discussed. Further research on the reaction of sensitive biological systems to nitrogen dioxide and oxidants, on the biological effects of nitric acid and nitrates, on the possibility of delayed effects, on epidemiological studies of occupational and community groups, and on asthmatic subjects and persons with cardiopulmonary disease was recommended.

  7. Kinetics of irreversible thermal decomposition of dissociating nitrogen dioxide with nitrogen oxide or oxygen additions

    International Nuclear Information System (INIS)

    Gvozdev, A.A.

    1987-01-01

    The effect of NO or O 2 admixtures on kinetics of the irreversible thermal decomposition of nitrogen dioxide at temperatures 460-520 deg C and pressures 4-7 MPa has been studied. It follows from experimental data that the rate of N 2 O 4 formation reduces with the increase of partial pressure of oxygen or decrease of partial pressure of nitrogen oxide. The same regularity is seen for the rate of nitrogen formation. The rate constants of N 2 O formation in dissociating nitrogen tetroxide with oxygen or nitrogen oxide additions agree satisfactorily with previously published results, obtained in stoichiometric mixtures. The appreciable discrepancy at 520 deg C is bind with considerable degree of nitrogen oxide transformation which constitutes approximately 14%. It is determined that the kinetics of formation of the products of irreversible N 2 O and N 2 decomposition in stoichiometric and non-stoichiometric 2NO 2 ↔ 2NO+O 2 mixtures is described by identical 3NO → N 2 O+NO 2 and N 2 O+NO → N 2 +NO 2 reactions

  8. Volatile organic compounds and oxides of nitrogen. Further emission reductions

    Energy Technology Data Exchange (ETDEWEB)

    Froste, H [comp.

    1997-12-31

    This report presents the current status in relation to achievement of the Swedish Environmental target set by Parliament to reduce emission of volatile organic compounds by 50 per cent between 1988 and 2000. It also instructed the Agency to formulate proposed measures to achieve a 50 per cent reduction of emission of nitrogen oxides between 1985 and 2005. The report presents an overall account of emission trends for volatile organic compounds (from all sectors) and nitrogen oxides (from the industry sector) and steps proposed to achieve further emission reductions. 43 refs

  9. Volatile organic compounds and oxides of nitrogen. Further emission reductions

    Energy Technology Data Exchange (ETDEWEB)

    Froste, H. [comp.

    1996-12-31

    This report presents the current status in relation to achievement of the Swedish Environmental target set by Parliament to reduce emission of volatile organic compounds by 50 per cent between 1988 and 2000. It also instructed the Agency to formulate proposed measures to achieve a 50 per cent reduction of emission of nitrogen oxides between 1985 and 2005. The report presents an overall account of emission trends for volatile organic compounds (from all sectors) and nitrogen oxides (from the industry sector) and steps proposed to achieve further emission reductions. 43 refs

  10. Simultaneous removal of nitrogen oxides and sulfur oxides from combustion gases

    Science.gov (United States)

    Clay, David T.; Lynn, Scott

    1976-10-19

    A process for the simultaneous removal of sulfur oxides and nitrogen oxides from power plant stack gases comprising contacting the stack gases with a supported iron oxide catalyst/absorbent in the presence of sufficient reducing agent selected from the group consisting of carbon monoxide, hydrogen, and mixtures thereof, to provide a net reducing atmosphere in the SO.sub.x /NO.sub.x removal zone. The sulfur oxides are removed by absorption substantially as iron sulfide, and nitrogen oxides are removed by catalytic reduction to nitrogen and ammonia. The spent iron oxide catalyst/absorbent is regenerated by oxidation and is recycled to the contacting zone. Sulfur dioxide is also produced during regeneration and can be utilized in the production of sulfuric acid and/or sulfur.

  11. Nitrogen Oxide Emission, Economic Growth and Urbanization in China: a Spatial Econometric Analysis

    Science.gov (United States)

    Zhou, Zhimin; Zhou, Yanli; Ge, Xiangyu

    2018-01-01

    This research studies the nexus of nitrogen oxide emissions and economic development/urbanization. Under the environmental Kuznets curve (EKC) hypothesis, we apply the analysis technique of spatial panel data in the STIRPAT framework, and thus obtain the estimated impacts of income/urbanization on nitrogen oxide emission systematically. The empirical findings suggest that spatial dependence on nitrogen oxide emission distribution exist at provincial level, and the inverse N-shape EKC describes both income-nitrogen oxide and urbanization-nitrogen oxide nexuses. In addition, some well-directed policy advices are made to reduce the nitrogen oxide emission in future.

  12. Nitrogen removal from wastewater by a catalytic oxidation method.

    Science.gov (United States)

    Huang, T L; Macinnes, J M; Cliffe, K R

    2001-06-01

    The ammonia-containing waste produced in industries is usually characterized by high concentration and high temperature, and is not treatable by biological methods directly. In this study, a hydrophobic Pt/SDB catalyst was first used in a trickle-bed reactor to remove ammonia from wastewater. In the reactor, both stripping and catalytic oxidation occur simultaneously. It was found that higher temperature and higher oxygen partial pressure enhanced the ammonia removal. A reaction pathway, which involves oxidizing ammonia to nitric oxide, which then further reacts with ammonia to produce nitrogen and water, was confirmed. Small amounts of by-products, nitrites and nitrates were also detected in the resultant reaction solution. These compounds came from the absorption of nitrogen oxides. Both the minimum NO2- selectivity and maximum ammonia removal were achieved when the resultant pH of treated water was near 7.5 for a feed of unbuffered ammonia solution.

  13. Electrode Design for Low Temperature Direct-Hydrocarbon Solid Oxide Fuel Cells

    Science.gov (United States)

    Chen, Fanglin (Inventor); Zhao, Fei (Inventor); Liu, Qiang (Inventor)

    2015-01-01

    In certain embodiments of the present disclosure, a solid oxide fuel cell is described. The solid oxide fuel cell includes a hierarchically porous cathode support having an impregnated cobaltite cathode deposited thereon, an electrolyte, and an anode support. The anode support includes hydrocarbon oxidation catalyst deposited thereon, wherein the cathode support, electrolyte, and anode support are joined together and wherein the solid oxide fuel cell operates a temperature of 600.degree. C. or less.

  14. Electrode design for low temperature direct-hydrocarbon solid oxide fuel cells

    Science.gov (United States)

    Chen, Fanglin; Zhao, Fei; Liu, Qiang

    2015-10-06

    In certain embodiments of the present disclosure, a solid oxide fuel cell is described. The solid oxide fuel cell includes a hierarchically porous cathode support having an impregnated cobaltite cathode deposited thereon, an electrolyte, and an anode support. The anode support includes hydrocarbon oxidation catalyst deposited thereon, wherein the cathode support, electrolyte, and anode support are joined together and wherein the solid oxide fuel cell operates a temperature of 600.degree. C. or less.

  15. Preparation and use of nitrogen (2) oxide of special purity for production of oxygen and nitrogen isotopes

    International Nuclear Information System (INIS)

    Polevoj, A.S.

    1989-01-01

    Problems related with production of oxygen and nitrogen isotopes by means of low-temperature rectification of nitrogen (2) oxide are analyzed. Special attention, in particular, is payed to the techniques of synthesis and high purification of initial NO, utilization of waste flows formed during isotope separation. Ways to affect the initial isotope composition of nitrogen oxide and the rate of its homogeneous-isotope exchange, which provide for possibility of simultaneous production of oxygen and nitrogen isotopes by means of NO rectification, are considered. Description of a new technique for high purification of nitrogen oxide, prepared at decomposition of nitric acid by sulfurous anhydride, suggested by the author is presented

  16. Nitrogen Oxide Fluxes and Nitrogen Cycling during Postagricultural Succession and Forest Fertilization in the Humid Tropics.

    Science.gov (United States)

    Heather Erickson; Michael Keller; Eric Davidson

    2001-01-01

    The effects of changes in tropical land use on soil emissions of nitrous oxide (N2O) and nitric oxide (NO) are not well understood. We examined emissions of N2O and NO and their relationships to land use and forest composition, litterfall, soil nitrogen (N) pools and turnover, soil moisture, and patterns of carbon (C) cycling in a lower montane, subtropical wet region...

  17. Dynamics of ozone and nitrogen oxides at Summit, Greenland

    NARCIS (Netherlands)

    Dam, Van Brie; Helmig, Detlev; Toro, Claudia; Doskey, Paul; Kramer, Louisa; Murray, Keenan; Ganzeveld, Laurens; Seok, Brian

    2015-01-01

    A multi-year investigation of ozone (O3) and nitrogen oxides (NOx) in snowpack interstitial air down to a depth of 2.8 m was conducted at Summit, Greenland, to elucidate mechanisms controlling the production and destruction of these important trace gases within the snow.

  18. Emissions of nitrogen oxides and particulates of diesel vehicles

    NARCIS (Netherlands)

    Kadijk, G.; Ligterink, N.E.; Mensch, P. van; Spreen, J.S.; Vermeulen, R.J.; Vonk, W.A.

    2015-01-01

    In real-world conditions, modern Euro VI heavy-duty vehicles produce an average of ten times less nitrogen oxide (NOx)emissions than previous generations of Euro IV and Euro V heavy-duty vehicles. However, Euro 6 passenger cars and light commercial vehicles present an entirely different picture

  19. Experimental study of nitrogen oxide absorption by a liquid nitrogen tetroxide flow

    Energy Technology Data Exchange (ETDEWEB)

    Verzhinskaya, A B; Saskovets, V V; Borovik, T F

    1984-01-01

    The system of N/sub 2/O/sub 4/ based coolant regeneration needs productive and efficient absorbers, providing effective production of nitrogen oxide, decreasing upon NPP operation at the expense of radiation-thermal decomposition. The experimental istallation flowsheet for studying the nitrogen oxide absorbtion by liquid nitrogen tetroxide is given. The experiments have been carried out in removable test sections, looked like helical tubes with internal steam-and-liquid mixture flow and external water cooling. Six test sections with variable geometry factors have been manufactured. The plotted results of the experiments are given as dependences of extraction level and mass transfer volumetric coefficients on the geometry factor, pressure and Froude number.

  20. Multi-metallic oxides as catalysts for light alcohols and hydrocarbons from synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Miguel [Instituto Mexicano del Petroleo, Mexico, D.F. (Mexico); Diaz, L; Galindo, H de J; Dominguez, J. M; Salmon, Manuel [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)

    1999-08-01

    A series of Cu-Co-Cr oxides doped with alkaline metals (M), were prepared by the coprecipitation method with metal nitrates (Cu{sup I}I, CO{sup I}I, CR{sup I}II) and (M{sub 2})CO{sub 3} in aqueous solution. The calcined products were used as catalysts for the Fisher-Tropsch synthesis in a stainless-steel fixed bed microreactor. The material was characterized by x-ray diffraction, and the specific surface area, pore size and nitrogen adsorption-desorption properties were also determined. The alkaline metals favored the methanol synthesis and prevent the dehydration reactions whereas the hydrocarbon formation is independent to these metals. [Spanish] Una serie de oxidos Cu-Co-Cr soportados con metales alcalinos (M), fueron preparados por el metodo con nitratos metalicos (Cu{sup I}I, CO{sup I}I, CR{sup I}II) y (M{sub 2})CO{sub 3} en soluciones acuosas. Los productos calcinados fueron usados como catalizadores para la sintesis de Fisher-tropsch en la superficie fija de un microreactor de acero inoxidable. El material fue caracterizado por difraccion de rayos X y el area de superficie especifica, el tamano de poro y propiedades de absorcion-desorcion de nitrogeno fueron determinadas. Los metales alcalinos favorecieron la sintesis de metanol y previnieron las reacciones de deshidratacion, mientras que la formacion de hidrocarburos es independiente de estos metales.

  1. Cobalt/N-Hydroxyphthalimide(NHPI)-Catalyzed Aerobic Oxidation of Hydrocarbons with Ionic Liquid Additive

    DEFF Research Database (Denmark)

    Mahmood, Sajid; Xu, Bao Hua; Ren, Tian Lu

    2018-01-01

    A highly efficient and solvent-free system of cobalt/NHPI-catalyzed aerobic oxidation of hydrocarbons was developed using imidazolium-based ionic liquid (IL) as an additive. These amphipathic ILs were found self-assemble at the interface between the organic hydrocarbons and the aqueous phase...... the optimum reactivity. Besides, the interfacial boundary between aqueous and organic phase composed by C2-alkylated imidazolium ILs, such as [bdmim]SbF6 and [C12dmim]SbF6, not only has ternary aggregates (hydrocarbons/IL/H2O) of higher stability but renders O2 a faster diffusion rate and higher concentration......, thereby offering a high reactivity of the protocol towards hydrocarbon oxidation....

  2. 40 CFR Appendix S to Part 50 - Interpretation of the Primary National Ambient Air Quality Standards for Oxides of Nitrogen...

    Science.gov (United States)

    2010-07-01

    ... Ambient Air Quality Standards for Oxides of Nitrogen (Nitrogen Dioxide) S Appendix S to Part 50 Protection... National Ambient Air Quality Standards for Oxides of Nitrogen (Nitrogen Dioxide) 1. General (a) This... national ambient air quality standards for oxides of nitrogen as measured by nitrogen dioxide (“NO2 NAAQS...

  3. Method of removing oxides of sulfur and oxides of nitrogen from exhaust gases

    Science.gov (United States)

    Walker, Richard J.

    1986-01-01

    A continuous method is presented for removing both oxides of sulfur and oxides of nitrogen from combustion or exhaust gases with the regeneration of the absorbent. Exhaust gas is cleaned of particulates and HCl by a water scrub prior to contact with a liquid absorbent that includes an aqueous solution of bisulfite and sulfite ions along with a metal chelate, such as, an iron or zinc aminopolycarboxylic acid. Following contact with the combustion gases the spent absorbent is subjected to electrodialysis to transfer bisulfite ions into a sulfuric acid solution while splitting water with hydroxide and hydrogen ion migration to equalize electrical charge. The electrodialysis stack includes alternate layers of anion selective and bipolar membranes. Oxides of nitrogen are removed from the liquid absorbent by air stripping at an elevated temperature and the regenerated liquid absorbent is returned to contact with exhaust gases for removal of sulfur oxides and nitrogen oxides.

  4. Band gap engineering of indium zinc oxide by nitrogen incorporation

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, J.J., E-mail: jjosila@hotmail.com [Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calzada Solidaridad esq. Paseo la Bufa, Fracc. Progreso, C.P. 98060 Zacatecas (Mexico); Doctorado Institucional de Ingeniería y Ciencia de Materiales, Universidad Autónoma de San Luis Potosí, Av. Salvador Nava, Zona Universitaria, C.P. 78270 San Luis Potosí (Mexico); Aguilar-Frutis, M.A.; Alarcón, G. [Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada del Instituto Politécnico Nacional, Unidad Legaría, Calz. Legaría No. 694, Col. Irrigación, C.P. 11500 México D.F. (Mexico); Falcony, C. [Departamento de Física, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional campus Zacatenco, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P. 07360 México D.F. (Mexico); and others

    2014-09-15

    Highlights: • IZON thin films were deposited by RF reactive sputtering at room temperature. • The effects of nitrogen on physical properties of IZO were analyzed. • Optical properties of IZON were studied by SE and UV–vis spectroscopy. • Adachi and classical parameters were quantitative and qualitatively congruent. • Nitrogen induces a gradual narrowing band gap from 3.5 to 2.5 eV on IZON films. - Abstract: The effects of nitrogen incorporation in indium zinc oxide films, as grown by RF reactive magnetron sputtering, on the structural, electrical and optical properties were studied. It was determined that the variation of the N{sub 2}/Ar ratio, in the reactive gas flux, was directly proportional to the nitrogen percentage measured in the sample, and the incorporated nitrogen, which substituted oxygen in the films induces changes in the band gap of the films. This phenomenon was observed by measurement of absorption and transmission spectroscopy in conjunction with spectral ellipsometry. To fit the ellipsometry spectra, the classical and Adachi dispersion models were used. The obtained optical parameters presented notable changes related to the increment of the nitrogen in the film. The band gap narrowed from 3.5 to 2.5 eV as the N{sub 2}/Ar ratio was increased. The lowest resistivity obtained for these films was 3.8 × 10{sup −4} Ω cm with a carrier concentration of 5.1 × 10{sup 20} cm{sup −3}.

  5. Band gap engineering of indium zinc oxide by nitrogen incorporation

    International Nuclear Information System (INIS)

    Ortega, J.J.; Aguilar-Frutis, M.A.; Alarcón, G.; Falcony, C.

    2014-01-01

    Highlights: • IZON thin films were deposited by RF reactive sputtering at room temperature. • The effects of nitrogen on physical properties of IZO were analyzed. • Optical properties of IZON were studied by SE and UV–vis spectroscopy. • Adachi and classical parameters were quantitative and qualitatively congruent. • Nitrogen induces a gradual narrowing band gap from 3.5 to 2.5 eV on IZON films. - Abstract: The effects of nitrogen incorporation in indium zinc oxide films, as grown by RF reactive magnetron sputtering, on the structural, electrical and optical properties were studied. It was determined that the variation of the N 2 /Ar ratio, in the reactive gas flux, was directly proportional to the nitrogen percentage measured in the sample, and the incorporated nitrogen, which substituted oxygen in the films induces changes in the band gap of the films. This phenomenon was observed by measurement of absorption and transmission spectroscopy in conjunction with spectral ellipsometry. To fit the ellipsometry spectra, the classical and Adachi dispersion models were used. The obtained optical parameters presented notable changes related to the increment of the nitrogen in the film. The band gap narrowed from 3.5 to 2.5 eV as the N 2 /Ar ratio was increased. The lowest resistivity obtained for these films was 3.8 × 10 −4 Ω cm with a carrier concentration of 5.1 × 10 20 cm −3

  6. Integrated Science Assessment (ISA) for Oxides of Nitrogen ...

    Science.gov (United States)

    This draft ISA document represents a concise synthesis and evaluation of the most policy-relevant science and will ultimately provide the scientific bases for EPA’s decision on retaining or revising the current secondary standards for NO2, SO2, PM 2.5 and PM 10 since the prior release of the assessment. The intent of the ISA, according to the CAA, is to “accurately reflect the latest scientific knowledge expected from the presence of [a] pollutant in ambient air” (U.S. Code, 1970a, 1970b). It includes scientific research from atmospheric sciences, exposure and deposition, biogeochemistry, hydrology, soil science, marine science, plant physiology, animal physiology, and ecology conducted at multiple scales (e.g., population, community, ecosystem, landscape levels). Key information and judgments formerly found in the Air Quality Criteria Documents (AQCDs) for oxides of nitrogen, oxides of nitrogen and particulate matter for ecological effects are included; Appendixes provide additional details supporting the ISA. Together, the ISA and Appendixes serve to update and revise the last oxides of nitrogen and oxides of sulfur ISA which was published in 2008 and the ecological portion of the last particulate matter ISA, which was published in 2009.

  7. Flow boiling heat transfer coefficients at cryogenic temperatures for multi-component refrigerant mixtures of nitrogen-hydrocarbons

    Science.gov (United States)

    Ardhapurkar, P. M.; Sridharan, Arunkumar; Atrey, M. D.

    2014-01-01

    The recuperative heat exchanger governs the overall performance of the mixed refrigerant Joule-Thomson cryocooler. In these heat exchangers, the non-azeotropic refrigerant mixture of nitrogen-hydrocarbons undergoes boiling and condensation simultaneously at cryogenic temperature. Hence, the design of such heat exchanger is crucial. However, due to lack of empirical correlations to predict two-phase heat transfer coefficients of multi-component mixtures at low temperature, the design of such heat exchanger is difficult.

  8. Impact of nitrogen-polycyclic aromatic hydrocarbons on phenanthrene and benzo[a]pyrene mineralisation in soil.

    Science.gov (United States)

    Anyanwu, Ihuoma N; Ikpikpini, Ojerime C; Semple, Kirk T

    2018-01-01

    When aromatic hydrocarbons are present in contaminated soils, they often occur in mixtures. The impact of four different (3-ring) nitrogen-containing polycyclic aromatic hydrocarbons (N-PAHs) on 12/14 C-phenanthrene and 12/14 C-benzo[a]pyrene (B[a]P) mineralisation in soil was investigated over a 90 d incubation period. The results revealed that both 12/14 C-phenanthrene and 12/14 C-benzo[a]pyrene showed no significant mineralisation in soils amended with 10mgkg -1 and 100mgkg -1 N-PAHs (p>0.05). However, increases in lag-phases and decreases in the rates and extents of mineralisation were observed, over time. Among the N-PAHs, benzo[h]quinoline impacted 14 C-phenanthrene mineralisation with extended and diauxic lag phases. Furthermore, 12/14 C-B[a]P and 14 C-benzo[a]pyrene-nitrogen-containing polycyclic aromatic hydrocarbons ( 14 C-B[a]P-N-PAHs) amended soils showed extensive lag phases (> 21 d); with some 14 C-B[a]P-N-PAH mineralisation recording polycyclic aromatic hydrocarbons (PAHs) and the impact was most likely the result of limited success in achieving absolute biodegradation of some PAHs in soil. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Oxides of nitrogen and the clouds of Venus

    International Nuclear Information System (INIS)

    Watson, A.J.; Donahue, T.M.; Stedman, D.H.; Knollenberg, R.G.; Ragent, B.; Blamont, J.

    1979-01-01

    Nitric Oxide may be produced in the atmosphere of Venus by lightning storms in the clouds. Here we suggest that the odd nitrogen thus formed may play an important part in the chemistry of the clouds. Specifically, we estimate production rates for NO 2 in the limiting case of high NO concentrations. If the NO density is high we suggest that NO 2 may catalyse the production of sulfuric acid aerosol from sulfur dioxide and water vapor, and may also form nitrogen--sulfur compounds such as nitrosyl sulfuric acid, NOHSO 4 . The ''large particles'' seen by the Pioneer Venus sounder probe may contain considerable quantities of NOHSO 4 . If this is the case odd nitrogen must be present in the atmosphere in at least a parts-per-million mixing ratio

  10. Assessment of nitrogen oxide emission for designing boilers fired with coal dust

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R.; Gusev, L.N.; Babii, V.I.

    1983-09-01

    A method for forecasting emission of nitrogen oxides from steam boilers fired with coal is described. The method produces accurate results when nitrogen oxide emission from furnaces with straight-flow burners and turbulent-type burners fired with coal dusts is forecast. Oxides formed by decomposition of chemical compounds in coal (so-called 'fuel' nitrogen oxides) and nitrogen oxides formed by oxidation of molecular nitrogen by atomic oxygen (so-called 'thermal' nitrogen oxides) are evaluated. Zones in which the two types of nitrogen oxide are formed in flames are characterized. Factors which influence formation of nitrogen oxides in a furnace are evaluated: excess air, flue gas recirculation, design of a furnace and burners, movement of air and coal dust mixture in a furnace, temperature, methods for coal dust preparation, coal dust properties. Equations for forecasting emission of nitrogen oxides from furnaces are derived. Nomograms for easy calculation of emission are also given. Examples of using the method for forecasting emission of nitrogen oxides from furnaces fired with coal from the Kuzbass, the Donbass and Ehkibastuz are discussed. Comparisons of emission of nitrogen oxides calculated on the basis of the method and emission determined experimentally show that forecasting accuracy is high and errors do not exceed 10%. 5 references.

  11. Quantifying the Global Marine Biogenic Nitrogen Oxides Emissions

    Science.gov (United States)

    Su, H.; Wang, S.; Lin, J.; Hao, N.; Poeschl, U.; Cheng, Y.

    2017-12-01

    Nitrogen oxides (NOx) are among the most important molecules in atmospheric chemistry and nitrogen cycle. The NOx over the ocean areas are traditionally believed to originate from the continental outflows or the inter-continental shipping emissions. By comparing the satellite observations (OMI) and global chemical transport model simulation (GEOS-Chem), we suggest that the underestimated modeled atmospheric NO2 columns over biogenic active ocean areas can be possibly attributed to the biogenic source. Nitrification and denitrification in the ocean water produces nitrites which can be further reduced to NO through microbiological processes. We further report global distributions of marine biogenic NO emissions. The new added emissions improve the agreement between satellite observations and model simulations over large areas. Our model simulations manifest that the marine biogenic NO emissions increase the atmospheric oxidative capacity and aerosol formation rate, providing a closer link between atmospheric chemistry and ocean microbiology.

  12. Magnetic graphene oxide as adsorbent for the determination of polycyclic aromatic hydrocarbon metabolites in human urine.

    Science.gov (United States)

    Zhu, Linli; Xu, Hui

    2014-09-01

    Detection of monohydroxy polycyclic aromatic hydrocarbons metabolites in urine is an advisable and valid method to assess human environmental exposure to polycyclic aromatic hydrocarbons. In this work, novel Fe3O4/graphene oxide composites were prepared and their application in the magnetic solid-phase extraction of monohydroxy polycyclic aromatic hydrocarbons in urine was investigated by coupling with liquid chromatography and mass spectrometry. In the hybrid material, superparamagnetic Fe3O4 nanoparticles provide fast separation to simplify the analytical process and graphene oxide provides a large functional surface for the adsorption. The prepared magnetic nanocomposites were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and vibrating sample magnetometry. The experimental conditions were optimized systematically. Under the optimal conditions, the recoveries of these compounds were in the range of 98.3-125.2%, the relative standard deviations ranged between 6.8 and 15.5%, and the limits of detection were in the range of 0.01-0.15 ng/mL. The simple, quick, and affordable method was successfully used in the analysis of human urinary monohydroxy polycyclic aromatic hydrocarbons in two different cities. The results indicated that the monohydroxy polycyclic aromatic hydrocarbons level in human urine can provide useful information for environmental exposure to polycyclic aromatic hydrocarbons. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. The adsorption of nitrogen oxides on crystalline ice

    Directory of Open Access Journals (Sweden)

    T. Bartels

    2002-01-01

    Full Text Available The partitioning of nitrogen oxides between ice and air is of importance to the ozone budget in the upper troposphere. In the present study, adsorption of nitrogen oxides on ice was investigated at atmospheric pressure using a chromatographic technique with radioactively labelled nitrogen oxides at low concentrations. The measured retentions solely depended on molecular adsorption and were not influenced by dimerisation, formation of encapsulated hydrates on the ice surface, dissociation of the acids, nor by migration into a quasi-liquid layer or grain boundaries. Based on the chromatographic retention and the model of thermo-chromatography, the standard adsorption enthalpy of -20 kJ mol-1 for NO, -22kJ mol-1 for NO2, -30kJ mol-1 for peroxyacetyl nitrate, -32kJ mol-1 for HON} and -44 kJ mol-1 for HNO3 was calculated. To perform those calculations within the model of thermo-chromatography, the standard adsorption entropy was calculated based on statistical thermodynamics. In this work, two different choices of standard states were applied, and consequently different values of the standard adsorption entropy, of either between -39 kJ mol-1 and -45kJ mol-1, or -164 kJ mol-1 and -169 kJ mol-1 for each nitrogen oxide were derived. The standard adsorption enthalpy was identical for both standard adsorption entropies and thus shown to be independent of the choice of standard state. A brief outlook on environmental implications of our findings indicates that adsorption on ice might be an important removal process of HNO3. In addition, it might be of some importance for HONO and peroxyacetyl nitrate and irrelevant for NO and NO2.

  14. Nitrogen-doped reduced graphene oxide electrodes for electrochemical supercapacitors.

    Science.gov (United States)

    Nolan, Hugo; Mendoza-Sanchez, Beatriz; Ashok Kumar, Nanjundan; McEvoy, Niall; O'Brien, Sean; Nicolosi, Valeria; Duesberg, Georg S

    2014-02-14

    Herein we use Nitrogen-doped reduced Graphene Oxide (N-rGO) as the active material in supercapacitor electrodes. Building on a previous work detailing the synthesis of this material, electrodes were fabricated via spray-deposition of aqueous dispersions and the electrochemical charge storage mechanism was investigated. Results indicate that the functionalised graphene displays improved performance compared to non-functionalised graphene. The simplicity of fabrication suggests ease of up-scaling of such electrodes for commercial applications.

  15. Influence of Process Parameters on Nitrogen Oxide Formation in

    DEFF Research Database (Denmark)

    Lans, Robert Pieter Van Der; Glarborg, Peter; Dam-Johansen, Kim

    1997-01-01

    This paper describes the influence of burner operating conditions, burner geometry and fuel parameters on the formation of nitrogen oxide during combustion of pulverized coal. Main attention has been paid to combustion test facilities with self-sustaining flames, while extensions have been made...... to full scale boilers and furnace modeling. Since coal combustion and flame aerodynamics have been reviewed earlier, these phenomena are only treated briefly....

  16. Emissions of nitrogen oxides and particulates of diesel vehicles

    OpenAIRE

    Kadijk, G.; Ligterink, N.E.; Mensch, P. van; Spreen, J.S.; Vermeulen, R.J.; Vonk, W.A.

    2015-01-01

    In real-world conditions, modern Euro VI heavy-duty vehicles produce an average of ten times less nitrogen oxide (NOx)emissions than previous generations of Euro IV and Euro V heavy-duty vehicles. However, Euro 6 passenger cars and light commercial vehicles present an entirely different picture since, despite a continual tightening of European emissions limits, the real-world NOx emissions of new diesel passenger cars and light commercial vehicles have remained virtually unchanged over the la...

  17. Analysis of Oxidative Stress in Chronic Exposure to Petroleum Hydrocarbons in Karnataka, India

    Directory of Open Access Journals (Sweden)

    Suttur Malini

    2017-03-01

    Full Text Available Background:Several studies have reported the toxicological implications of inhalation of petroleum hydrocarbon fumes in animal models. But, there is certainly little or no documentation of the exposure to petroleum hydrocarbon fuel on oxidative stress levels in humans, unlike the pulmonary physiology. The present study was carried out to evaluate the effects of constituents of the hydrocarbon fuels on oxidative stress levels of the petrol fillers and tanker drivers. Methods: The study involved 165 males divided into three groups were the petrol fillers, tanker drivers and the controls. Case control data set was established wherein the control subjects are not exposed to hydrocarbon fuels with similar age. Serum samples of the subjects were collected and subjected for various biochemical assays. The enzymatic antioxidants such as superoxide dismutase, malondialdehyde a byproduct of lipid peroxidation and total antioxidant capacity of the individuals along with non-enzymatic antioxidant Vitamin A was estimated. Results: The results showed a no significant differences for age, body mass index, superoxide dismutase and levels of Malondialdehyde and total antioxidant capacity. But on the other hand, there is significant changes observed for total antioxidant capacity and vitamin A when exposed group is compared with control subject. Conclusion: It is evidential from the present study that prolonged exposure to petroleum hydrocarbon fumes leads to an increase in their oxidative stress in turn resulting broad spectrum of diseases. Hence, there is a raised need for public awareness about the health hazards in order to enable petrol attendants.

  18. Effect of exhaust gas recirculation on diesel engine nitrogen oxide reduction operating with jojoba methyl ester

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, H.E. [Mechanical Power Department, Faculty of Engineering, Mattaria, Helwan University, 9 k Eltaaweniat, Nasr Road, P.O. Box 11718, Cairo (Egypt)

    2009-10-15

    Jojoba methyl ester (JME) has been used as a renewable fuel in numerous studies evaluating its potential use in diesel engines. These studies showed that this fuel is good gas oil substitute but an increase in the nitrogenous oxides emissions was observed at all operating conditions. The aim of this study mainly was to quantify the efficiency of exhaust gas recirculation (EGR) when using JME fuel in a fully instrumented, two-cylinder, naturally aspirated, four-stroke direct injection diesel engine. The tests were carried out in three sections. Firstly, the measured performance and exhaust emissions of the diesel engine operating with diesel fuel and JME at various speeds under full load are determined and compared. Secondly, tests were performed at constant speed with two loads to investigate the EGR effect on engine performance and exhaust emissions including nitrogenous oxides (NO{sub x}), carbon monoxide (CO), unburned hydrocarbons (HC) and exhaust gas temperatures. Thirdly, the effect of cooled EGR with high ratio at full load on engine performance and emissions was examined. The results showed that EGR is an effective technique for reducing NO{sub x} emissions with JME fuel especially in light-duty diesel engines. With the application of the EGR method, the CO and HC concentration in the engine-out emissions increased. For all operating conditions, a better trade-off between HC, CO and NO{sub x} emissions can be attained within a limited EGR rate of 5-15% with very little economy penalty. (author)

  19. Upgrading of syngas hydrotreated fractionated oxidized bio-oil to transportation grade hydrocarbons

    International Nuclear Information System (INIS)

    Luo, Yan; Hassan, El Barbary; Guda, Vamshi; Wijayapala, Rangana; Steele, Philip H.

    2016-01-01

    Highlights: • Hydrotreating of fractionated oxidized bio-oil with syngas was feasible. • Hydrocarbon properties were similar with all syngas H_2/CO molar ratios except viscosity. • Syngas with H_2/CO molar ratio of (4:6) produced the highest hydrocarbon yield. • The produced hydrocarbons were in the range of gasoline, jet fuel and diesel boiling points. - Abstract: Fast pyrolysis bio-oils have the potential to replace a part of transportation fuels obtained from fossil. Bio-oil can be successfully upgraded into stable hydrocarbons (gasoline, jet fuel and diesel) through a two-stage hydrodeoxygenation process. Consumption large amount of expensive hydrogen during this process is the major hurdle for commercialization of this technology. Applying syngas in the hydrotreating step can significantly reduce the cost of the whole process and make it competitive. In this study, four different models of syngas with different H_2 concentrations (H_2/CO molar ratios = 2:8, 4:6, 6:4 and 8:2) were used for the 1st-stage hydrotreating step of oxidized fractionated bio-oil (OFB). The 2nd-stage hydrocracking step was performed on the produced organic liquid products (OLPs) by using pure H_2 gas. The effect of syngas H_2 concentrations on the yields and properties of OLPs and the 2nd-stage hydrocarbons (HCs) was investigated. Physical and chemical properties of the 2nd-stage hydrocarbons were similar regardless syngas H_2 content, with the exception of the viscosity. Syngas with H_2/CO molar ratio of 4:6 gave significantly highest HCs yield (24.8 wt.%) based on the OFB. Simulated distillation analysis proved that all 2nd-stage hydrocarbons were mixture from a wide range boiling point fuels. These results also indicated that the successful 1st-stage syngas hydrotreating step was having the potential to produce different hydrocarbons.

  20. Nitrogen-doped graphene: effect of graphite oxide precursors and nitrogen content on the electrochemical sensing properties.

    Science.gov (United States)

    Megawati, Monica; Chua, Chun Kiang; Sofer, Zdenek; Klímová, Kateřina; Pumera, Martin

    2017-06-21

    Graphene, produced via chemical methods, has been widely applied for electrochemical sensing due to its structural and electrochemical properties as well as its ease of production in large quantity. While nitrogen-doped graphenes are widely studied materials, the literature showing an effect of graphene oxide preparation methods on nitrogen quantity and chemical states as well as on defects and, in turn, on electrochemical sensing is non-existent. In this study, the properties of nitrogen-doped graphene materials, prepared via hydrothermal synthesis using graphite oxide produced by various classical methods using permanganate or chlorate oxidants Staudenmaier, Hummers, Hofmann and Brodie oxidation methods, were studied; the resulting nitrogen-doped graphene oxides were labeled as ST-GO, HU-GO, HO-GO and BR-GO, respectively. The electrochemical oxidation of biomolecules, such as ascorbic acid, uric acid, dopamine, nicotinamide adenine nucleotide and DNA free bases, was carried out using cyclic voltammetry and differential pulse voltammetry techniques. The nitrogen content in doped graphene oxides increased in the order ST-GO graphene followed this trend, as shown in the cyclic voltammograms. This is a very important finding that provides insight into the electrocatalytic effect of N-doped graphene. The nitrogen-doped graphene materials exhibited improved sensitivity over bare glassy carbon for ascorbic acid, uric acid and dopamine detection. These studies will enhance our understanding of the effects of graphite oxide precursors on the electrochemical sensing properties of nitrogen-doped graphene materials.

  1. Adsorption of polycyclic aromatic hydrocarbons on graphene oxides and reduced graphene oxides.

    Science.gov (United States)

    Sun, Yubing; Yang, Shubin; Zhao, Guixia; Wang, Qi; Wang, Xiangke

    2013-11-01

    Graphene has attracted increasing attention in multidisciplinary studies because of its unique physical and chemical properties. Herein, the adsorption of polycyclic aromatic hydrocarbons (PAHs), such as naphthalene (NAP), anthracene (ANT), and pyrene (PYR), on reduced graphene oxides (rGOs) and graphene oxides (GOs) as a function of pH, humic acid (HA), and temperature were elucidated by means of a batch technique. For comparison, nonpolar and nonporous graphite were also employed in this study. The increasing of pH from 2 to 11 did not influence the adsorption of PAHs on rGOs, whereas the suppressed adsorption of NAP on rGOs was observed both in the presence of HA and under high-temperature conditions. Adsorption isotherms of PAHs on rGOs were in accordance with the Polanyi-Dubinin-Ashtahhov (PDA) model, providing evidence that pore filling and flat surface adsorption were involved. The saturated adsorbed capacities (in mmol g(-1)) of rGOs for PAHs calculated from the PDA model significantly decreased in the order of NAP>PYR>ANT, which was comparable to the results of theoretical calculations. The pore-filling mechanism dominates the adsorption of NAP on rGOs, but the adsorption mechanisms of ANT and PYR on rGOs are flat surface adsorption. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Microwave Catalytic Oxidation of Hydrocarbons in Aqueous Solutions

    National Research Council Canada - National Science Library

    Cha, Chang

    2003-01-01

    .... A sufficient amount of experimental work has been completed evaluating the performance of the microwave catalytic oxidation process and determining the effect of different operating parameters...

  3. Gas phase reactions of nitrogen oxides with olefins

    Energy Technology Data Exchange (ETDEWEB)

    Altshuller, A P; Cohen, I

    1961-01-01

    The nature of the condensation products formed in the gas phase reactions of nitrogen dioxide and nitric oxide with pentene-1, 2-methylbutene-2, and 2-methylbutadiene-1,3 was investigated. The reactants were combined at partial pressures in the range of 0.1 to 2.5 mm with the total pressure at one atmosphere. The products were determined by infrared and ultraviolet spectroscopy and colorimetry. The condensates included primary and secondary nitro compounds and alkyl nitrates. Strong hydroxyl and single bond carbon to oxygen stretching vibrations indicate the presence of either nitroalcohols or simple aliphatic alcohols formed through oxidation reactions. Carbonyl stretching frequencies observable in some of the reactions support the conclusion that a portion of the reactants disappear by oxidation rather than by nitration processes. The available results do not indicate the presence of appreciable amounts of tert.-nitro compounds, conjugated nitro-olefins, or gem-dinitro-alkanes. The reactivities of the olefins with the nitrogen oxides are in the decreasing order: 2-methyl-butadiene-1,3, 2-methylbutene-2, pentene-1. 20 references.

  4. Partial Oxidation of High-Boiling Hydrocarbon Mixtures in the Pilot Unit

    Czech Academy of Sciences Publication Activity Database

    Hanika, Jiří; Lederer, J.; Nečesaný, F.; Poslední, W.; Tukač, V.; Veselý, Václav

    2014-01-01

    Roč. 68, č. 12 (2014), s. 1701-1706 ISSN 0366-6352 Institutional support: RVO:67985858 Keywords : partial oxidation * high-boiling hydrocarbons * pilot plant Subject RIV: CI - Industrial Chemistry , Chemical Engineering Impact factor: 1.468, year: 2014

  5. Solution mining and heating by oxidation for treating hydrocarbon containing formations

    Science.gov (United States)

    Vinegar, Harold J.; Stegemeier, George Leo

    2009-06-23

    A method for treating an oil shale formation comprising nahcolite includes providing a first fluid to a portion of the formation. A second fluid is produced from the portion. The second fluid includes at least some nahcolite dissolved in the first fluid. A controlled amount of oxidant is provided to the portion of the formation. Hydrocarbon fluids are produced from the formation.

  6. Tuning functionality of photocatalytic materials: an infrared study on hydrocarbon oxidation

    NARCIS (Netherlands)

    Amrollahi Buky, Rezvaneh

    2016-01-01

    The focus of the research described in this thesis was on the engineering and design of effective photocatalysts able to catalyze the oxidative conversion of hydrocarbons. The prepared catalysts were synthesized by using different procedures involving sol gel precursors, and impregnation or

  7. 78 FR 47253 - Approval and Promulgation of Air Quality Implementation Plans; Maine; Oxides of Nitrogen...

    Science.gov (United States)

    2013-08-05

    ... Promulgation of Air Quality Implementation Plans; Maine; Oxides of Nitrogen Exemption and Ozone Transport... is proposing to approve Maine's October 13, 2012, request for an exemption from the nitrogen oxides... from Stephen D. Page, Director, OAQPS, dated January 14, 2005, entitled ``Guidance on Limiting Nitrogen...

  8. Environmental consequences from emission of nitrogen oxides and ammonia

    International Nuclear Information System (INIS)

    Iverfeldt, Aa.; Pleijel, H.; Klemedtsson, L.; Loevblad, G.; Omstedt, G.

    1995-02-01

    The aim of this study have been to compare environmental problems pertaining to nitrogen containing pollutants from power generation from biomass fuels. Local effects of NO x and NH 3 in air are normally small. Emission of NO x add plant toxic ozone, which is not the case at emission of NH 3 and N 2 O. The problem is slightly greater when siting in southern Sweden. The total emission of ammonium and nitrates are of major importance for acidification and nitrogen saturation. The largest contribution to the greenhouse effect comes from direct emission of nitrous oxide. The emission of N 2 O does not influence the siting aspects of the power plant, because of the global implications of this substance. 21 refs, 9 figs, 14 tabs

  9. Nature of hydrocarbon activation in oxidative ammonolysis of propane to acrylonitrile over a gallium-antimony oxide catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Osipova, Z.G.; Sokolovskii, V.D.

    1979-03-01

    The nature of hydrocarbon activation in oxidative ammonolysis of propane to acrylonitrile over a gallium-antimony oxide catalyst GaSbNiPOx (1:3:1.5:1 atomic ratios of the elements) was studied by comparing the rate of this reaction at 550/sup 0/C and 5Vertical Bar3< by vol propane/6Vertical Bar3< ammonia/18.6Vertical Bar3< oxygen/70.4Vertical Bar3< helium reactant mixture with that of isobutane ammoxidation to methacrylonitrile under the same conditions, at low (Vertical Bar3; 20Vertical Bar3<) conversions that prevent secondary oxidation of the products. Both the over-all hydrocarbon conversion rate and that of nitrile formation were higher for propane, suggesting that the reactions proceed via the respective carbanions (probably primary carbanions), rather than carbocations or uncharged radicals.

  10. LOW TEMPERATURE FORMATION OF NITROGEN-SUBSTITUTED POLYCYCLIC AROMATIC HYDROCARBONS (PANHs)—BARRIERLESS ROUTES TO DIHYDRO(iso)QUINOLINES

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Dorian S. N.; Yang, Tao; Dangi, Beni B.; Kaiser, Ralf I. [Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Bera, Partha P.; Lee, Timothy J., E-mail: ralfk@hawaii.edu, E-mail: Timothy.J.Lee@nasa.gov [Space Science and Astrobiology Division, NASA Ames Research Center, Moffett Field, Mountain View, CA 94035 (United States)

    2015-12-20

    Meteorites contain bio-relevant molecules such as vitamins and nucleobases, which consist of aromatic structures with embedded nitrogen atoms. Questions remain over the chemical mechanisms responsible for the formation of nitrogen-substituted polycyclic aromatic hydrocarbons (PANHs) in extraterrestrial environments. By exploiting single collision conditions, we show that a radical mediated bimolecular collision between pyridyl radicals and 1,3-butadiene in the gas phase forms nitrogen-substituted polycyclic aromatic hydrocarbons (PANHs) 1,4-dihydroquinoline and to a minor amount 1,4-dihydroisoquinoline. The reaction proceeds through the formation of a van der Waals complex, which circumnavigates the entrance barrier implying it can operate at very low kinetic energy and therefore at low temperatures of 10 K as present in cold molecular clouds such as TMC-1. The discovery of facile de facto barrierless exoergic reaction mechanisms leading to PANH formation could play an important role in providing a population of aromatic structures upon which further photo-processing of ice condensates could occur to form nucleobases.

  11. Oxidation of sulfur and nitrogen oxides by pulse corona discharge

    International Nuclear Information System (INIS)

    Amirov, R.H.; Desiaterik, Yu.N.; Filimonova, E.A.; Zhelezniak, M.B.; Chae, J.O.

    1996-01-01

    The NO x and SO 2 removal efficiency of the corona reactor has been measured both with and without ammonia addition to the gas stream. Experimental conditions are described. The dependence of NO and SO 2 removal efficiency from flow rate and initial pollutant concentrations were measured. One test with fixed amount of the inputted energy per the unit of SO 2 but with different initial concentration have been made. It is found that increasing of the initial concentration from 200 ppm to 700 ppm can enlarge the removal efficiency by factor 2.5. Some tests were carried out with both pollutant gases SO 2 and NO simultaneously. An efficiency on the SO 2 removal of 96% and on the NO removal 70% in pulse corona have been achieved with ammonia addition when SO 2 initial concentration was 480 ppm and the NO initial concentration was 230 ppm. A numerical model for NO and SO 2 oxidation in homogeneous gas flow has been developed. The flow contains cold (T = 300-400 K) background components N 2 , CO 2 , H 2 O, O 2 and impurities SO 2 , NO x , CO. A source of chemically active species is an electrical streamer discharge of corona type. (authors)

  12. Effects of ultra-low sulphur diesel fuel and diesel oxidation catalysts on nitrogen dioxide emissions

    International Nuclear Information System (INIS)

    Stachulak, J.S.; Zarling, D.

    2010-01-01

    Diesel oxidation catalysts (DOCs) are used on diesel equipment in underground mines to reduce exhaust emissions of carbon monoxide (CO), hydrocarbons (C) and odour that are associated with gaseous HCs. New catalysts have also been formulated to minimize sulphate production, but little is know about their effects on nitrogen dioxide (NO 2 ) emissions. DOCs are known to oxidize nitric oxide (NO) to NO 2 , which is more toxic than NO at low levels. Vale Inco uses ultra-low sulphur diesel (ULSD) fuel for its underground diesel equipment. Although ULSD is a cleaner burning fuel, its impact on the emissions performance of DOCs is not fully known. Technical material gathered during a literature review suggested that ULSD fuel may increase NO 2 production if DOCs are used, but that the increase would be small. This paper presented the results of a laboratory evaluation of DOCs with varying amounts of time-in service in Vale Inco mines. The 4 Vale Inco DOCs were found to produce excess NO 2 during some test conditions. In both steady-state and transient testing, there were no obvious trends in NO 2 increases with increasing DOC age. Two possibilities for these observations are that the DOCs may have been well within their useful life or their initial compositions differed. Future studies will make use of improved instrumentation, notably NO 2 analyzers, to definitely determine the influence of DOCs on NO 2 formation. 13 refs., 1 tab., 8 figs.

  13. Process for the reduction of nitrogen oxides in an effluent

    Energy Technology Data Exchange (ETDEWEB)

    Epperly, W.R.; Sullivan, J.C.; Sprague, B.N.

    1989-07-04

    This patent describes a process for the reduction of the concentration of nitrogen oxides in the effluent from the combustion of a carbonaceous fuel. The process comprises introducing a treatment agent which comprises a composition selected from the group consisting of NH/sub 4/-lignosulfonate, calcium lignosulfonate, 2-furoic acid, 1,3 dioxolane, tetrahydrofuran, furfurylamine, furfurylalcohol, gluconic acid, citric acid, n-butyl acetate, 1,3 butylene glycol, methylal, tetrahydrofuryl alcohol, furan, fish oil, coumalic acid, furfuryl acetate, tetrahydrofuran 2,3,4,5-tetracarboxylic acid, tetrahydrofurylamine, furylacrylic acid, tetrahydropyran, 2,5-furandimethanol, mannitol, hexamethylenediamine, barbituric acid, acetic anhydride, oxalic acid, mucic acid and d-galactose.

  14. The Lightning Nitrogen Oxides Model (LNOM): Status and Recent Applications

    Science.gov (United States)

    Koshak, William; Khan, Maudood; Peterson, Harold

    2011-01-01

    Improvements to the NASA Marshall Space Flight Center Lightning Nitrogen Oxides Model (LNOM) are discussed. Recent results from an August 2006 run of the Community Multiscale Air Quality (CMAQ) modeling system that employs LNOM lightning NOx (= NO + NO2) estimates are provided. The LNOM analyzes Lightning Mapping Array (LMA) data to estimate the raw (i.e., unmixed and otherwise environmentally unmodified) vertical profile of lightning NOx. The latest LNOM estimates of (a) lightning channel length distributions, (b) lightning 1-m segment altitude distributions, and (c) the vertical profile of NOx are presented. The impact of including LNOM-estimates of lightning NOx on CMAQ output is discussed.

  15. Nitrogen oxide emissions from a kraft recovery furnace

    International Nuclear Information System (INIS)

    Prouty, A.L.; Stuart, R.C.; Caron, A.L.

    1993-01-01

    Nitrogen Oxide (NOx) emissions from a rebuilt kraft recovery furnace slightly exceeded the specified limit of 1.1 lb/ton (0.55 kg/metric ton) of black-liquor solids. Mill trials were undertaken to determine whether NOx emissions could be minimized by modifying furnace operation. NOx emissions increased when secondary air was shifted to tertiary ports. NOx emissions fell when the amounts of primary and total air were decreased, but this increased emissions of other pollutants. After demonstrating that best operation of the furnace could not meet the permit with an emissions limit that matched the furnace's performance at best operation

  16. New levy on nitrogen oxide emissions: First 'refundable' pollution charge

    International Nuclear Information System (INIS)

    Andersson, Sus; Hanneberg, P.

    1991-01-01

    A new law imposing a charge on nitrogen oxide emissions from combustion installations will soon be coming into force in Sweden. The money generated by the charge will not stay in the exchequer, however, but will be repaid to the plants concerned in proportion to the amount of useful energy they produce. This will be the first environment levy in Sweden to be based on measurements of actual emissions. Emissions of sulphur and carbon dioxide are already taxed. These taxes, unlike other environmental charges, not only have an incentive function, but are also a source of income for the state

  17. Nitrogen metabolism and kinetics of ammonia-oxidizing archaea.

    Science.gov (United States)

    Martens-Habbena, Willm; Stahl, David A

    2011-01-01

    The discovery of ammonia-oxidizing mesophilic and thermophilic Group I archaea changed the century-old paradigm that aerobic ammonia oxidation is solely mediated by two small clades of Beta- and Gammaproteobacteria. Group I archaea are extremely diverse and ubiquitous in marine and terrestrial environments, accounting for 20-30% of the microbial plankton in the global oceans. Recent studies indicated that many of these organisms carry putative ammonia monooxygenase genes and are more abundant than ammonia-oxidizing bacteria in most natural environments suggesting a potentially significant role in the nitrogen cycle. The isolation of Nitrosopumilus maritimus strain SCM1 provided the first direct evidence that Group I archaea indeed gain energy from ammonia oxidation. To characterize the physiology of this archaeal nitrifier, we developed a respirometry setup particularly suited for activity measurements in dilute microbial cultures with extremely low oxygen uptake rates. Here, we describe the setup and review the kinetic experiments conducted with N. maritimus and other nitrifying microorganisms. These experiments demonstrated that N. maritimus is adapted to grow on ammonia concentrations found in oligotrophic open ocean environments, far below the survival threshold of ammonia-oxidizing bacteria. The described setup and experimental procedures should facilitate physiological studies on other nitrifying archaea and oligotrophic microorganisms in general. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Method for combined removal of mercury and nitrogen oxides from off-gas streams

    Science.gov (United States)

    Mendelsohn, Marshall H [Downers Grove, IL; Livengood, C David [Lockport, IL

    2006-10-10

    A method for removing elemental Hg and nitric oxide simultaneously from a gas stream is provided whereby the gas stream is reacted with gaseous chlorinated compound to convert the elemental mercury to soluble mercury compounds and the nitric oxide to nitrogen dioxide. The method works to remove either mercury or nitrogen oxide in the absence or presence of each other.

  19. Effects of liming and nitrogen fertilizer application on soil acidity and gaseous nitrogen oxide emissions in grassland systems

    NARCIS (Netherlands)

    Oenema, O.; Sapek, A.

    2000-01-01

    This book contains 10 articles on the EU research project COGANOG (Controlling Gaseous Nitrogen Oxide Emissions from Grassland Farming Systems in Europe). The papers present the results of studies on the effects of liming and N fertilizer application

  20. Hydrate dissociation conditions for gas mixtures containing carbon dioxide, hydrogen, hydrogen sulfide, nitrogen, and hydrocarbons using SAFT

    International Nuclear Information System (INIS)

    Li Xiaosen; Wu Huijie; Li Yigui; Feng Ziping; Tang Liangguang; Fan Shuanshi

    2007-01-01

    A new method, a molecular thermodynamic model based on statistical mechanics, is employed to predict the hydrate dissociation conditions for binary gas mixtures with carbon dioxide, hydrogen, hydrogen sulfide, nitrogen, and hydrocarbons in the presence of aqueous solutions. The statistical associating fluid theory (SAFT) equation of state is employed to characterize the vapor and liquid phases and the statistical model of van der Waals and Platteeuw for the hydrate phase. The predictions of the proposed model were found to be in satisfactory to excellent agreement with the experimental data

  1. Formation of reactive nitrogen oxides from urban grime photochemistry

    Science.gov (United States)

    Baergen, Alyson M.; Donaldson, D. James

    2016-05-01

    Impervious surfaces are ubiquitous in urban environments and constitute a substrate onto which atmospheric constituents can deposit and undergo photochemical and oxidative processing, giving rise to "urban grime" films. HNO3 and N2O5 are important sinks for NOx in the lower atmosphere and may be deposited onto these films, forming nitrate through surface hydrolysis. Although such deposition has been considered as a net loss of NOx from the atmosphere, there is increasing evidence that surface-associated nitrate undergoes further reaction. Here, we examine the gas phase products of the photochemistry of real, field-collected urban grime using incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS). Gas phase nitrogen oxides are emitted upon illumination of grime samples and their production increases with ambient relative humidity (RH) up to 35 % after which the production becomes independent of RH. These results are discussed in the context of water uptake onto and evaporation from grime films.

  2. Nitrogen oxides from combustion of nitrogen-containing polymers in waste-derived fuels

    International Nuclear Information System (INIS)

    Zevenhoven, R.; Kilpinen, P.; Hupa, M.; Elomaa, M.

    2000-01-01

    Usually, waste-derived fuels present nitrogen-containing fractions, which produce nitrogen oxides (NO) during combustion. This study was mainly concerned with poly amides (PA) (nylon), poly urethanes (PU), urea formaldehyde (UF) glue, sewage sludge and refuse-derived fuels (RDF). For control purposes, the authors chose a Polish sub-bituminous coal and a Finnish pine wood sample. An almost inverse trend between fuel nitrogen content and NO emissions was revealed through analysis of NO emissions at 850 Celsius, 1 bar, 7 per cent O 2 in N 2 . It was not possible to derive a clear correlation to the amount of ash generated by the samples. PU foam decomposed through a two-step process, as suggested by thermochromatography, and PA6-containing samples yielded epsilon-caprolactam as a major decomposition product. Important decomposition products from PU, PA6, PA6/PE, sewage sludge and UF glue samples were greenhouse gases as demonstrated by pyrolysis-gas chromatography/mass spectroscopy. The work was carried out at Abo Akademi University and University of Helsinki, Finland. 5 refs., 2 tabs., 3 figs

  3. Suppression of nitrogen oxides emission by carbonaceous reductants

    International Nuclear Information System (INIS)

    Tomita, A.

    2001-01-01

    The present status of NO x emission from power stations and automobiles is first summarized, and the controlling regulations in respective areas are reviewed. In spite of much progress, we have to further reduce the NO x emission in all the areas. In order to develop more effective technology, the fundamental understanding of the relevant reactions is essential. The heterogeneous reactions, like NO x and N 2 O formation from coal char, NO x and N 2 O reduction with carbon, and NO x reduction with hydrocarbon gases over heterogeneous catalysts are not well understood yet. This paper briefly summarizes our recent studies on the heterogeneous reactions of NO x formation and destruction. The importance of surface nitrogen species is emphasized in all the reaction systems. The presence of such surface species plays a very important role, not only in NO x destruction on carbon surfaces, but also in the NO x release during coal char combustion. Finally, future research areas are identified, where we need to understand what actually happens under high-temperature reaction conditions

  4. Metal-Doped Nitrogenated Carbon as an Efficient Catalyst for Direct CO2 Electroreduction to CO and Hydrocarbons.

    Science.gov (United States)

    Varela, Ana Sofia; Ranjbar Sahraie, Nastaran; Steinberg, Julian; Ju, Wen; Oh, Hyung-Suk; Strasser, Peter

    2015-09-07

    This study explores the kinetics, mechanism, and active sites of the CO2 electroreduction reaction (CO2RR) to syngas and hydrocarbons on a class of functionalized solid carbon-based catalysts. Commercial carbon blacks were functionalized with nitrogen and Fe and/or Mn ions using pyrolysis and acid leaching. The resulting solid powder catalysts were found to be active and highly CO selective electrocatalysts in the electroreduction of CO2 to CO/H2 mixtures outperforming a low-area polycrystalline gold benchmark. Unspecific with respect to the nature of the metal, CO production is believed to occur on nitrogen functionalities in competition with hydrogen evolution. Evidence is provided that sufficiently strong interaction between CO and the metal enables the protonation of CO and the formation of hydrocarbons. Our results highlight a promising new class of low-cost, abundant electrocatalysts for synthetic fuel production from CO2 . © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Low temperature oxidation of hydrocarbons using an electrochemical reactor

    DEFF Research Database (Denmark)

    Ippolito, Davide

    conversion was a complex function of multiple variables: the microstructure of the backbone, the polarization resistance of the electrodes, both at OCV and under polarization, the electrical and morphological properties of the infiltrated material and the specific reaction conditions like the propene......This study investigated the use of a ceramic porous electrochemical reactor for the deep oxidation of propene. Two electrode composites, La0.85Sr0.15MnO3±d/Ce0.9Gd0.1O1.95 (LSM/CGO) and La0.85Sr0.15FeMnO3/Ce0.9Gd0.1O1.95 (LSF/CGO), were produced in a 5 single cells stacked configuration and used...... prolonged polarization was able to partially counteract the instability of the infiltrated Ce0.9Gd0.1O1.95. This project demonstrated the possibility to enhance the oxidation of propene by polarization in a porous ceramic reactor. The infiltration of different active materials helped to increase...

  6. Process for the removal of sulfur oxides and nitrogen oxides from flue gas

    International Nuclear Information System (INIS)

    Elshout, R.V.

    1992-01-01

    This patent describes a continuous process for removing sulfur oxide and nitrogen oxide contaminants from the flue gas generated by industrial power plants and boiler systems burning sulfur containing fossil fuels and for converting these contaminants, respectively, into recovered elemental liquid sulfur and nitrogen ammonia and mixtures thereof. It comprises removing at least a portion of the flue gas generated by a power plant or boiler system upstream of the stack thereof; passing the cooled and scrubbed flue gas through an adsorption system; combining a first portion of the reducing gas stream leaving the adsorbers of the adsorption system during regeneration thereof and containing sulfur oxide and nitrogen oxide contaminants with a hydrogen sulfide rich gas stream at a temperature of about 400 degrees F to about 600 degrees F and passing the combined gas streams through a Claus reactor-condenser system over a catalyst in the reactor section thereof which is suitable for promoting the equilibrium reaction between the hydrogen sulfide and the sulfur dioxide of the combined streams to form elemental sulfur

  7. Prediction of vapour-liquid and vapour-liquid-liquid equilibria of nitrogen-hydrocarbon mixtures used in J-T refrigerators

    Science.gov (United States)

    Narayanan, Vineed; Venkatarathnam, G.

    2018-03-01

    Nitrogen-hydrocarbon mixtures are widely used as refrigerants in J-T refrigerators operating with mixtures, as well as in natural gas liquefiers. The Peng-Robinson equation of state has traditionally been used to simulate the above cryogenic process. Multi parameter Helmholtz energy equations are now preferred for determining the properties of natural gas. They have, however, been used only to predict vapour-liquid equilibria, and not vapour-liquid-liquid equilibria that can occur in mixtures used in cryogenic mixed refrigerant processes. In this paper the vapour-liquid equilibrium of binary mixtures of nitrogen-methane, nitrogen-ethane, nitrogen-propane, nitrogen-isobutane and three component mixtures of nitrogen-methane-ethane and nitrogen-methane-propane have been studied with the Peng-Robinson and the Helmholtz energy equations of state of NIST REFPROP and compared with experimental data available in the literature.

  8. Production of reduction gases: partial oxidation of hydrocarbons and coal

    Energy Technology Data Exchange (ETDEWEB)

    Tippmer, K

    1976-04-01

    After some general remarks on reduction gas and quality demands, the Texaco process of partial oxidation with scrubbing is dealt with. A comparison of current iron-sponge techniques shows that a heat demand below 3 M kcal/t Fe should be envisaged, which means that heavy fuel oil or coal should be used. The special features of oxygen generation, coal processing, demands made on fuel oil, gasoline, and natural gas, gas generation, soot recovery, hydrogen sulphide-carbon dioxide scrubbing, system Benfield HP process, recycle-carbon dioxide scrubbing, auxiliary steam system, gas preheating, recycle gas cooling and compression, process data and heat balances for natural gas (one-heat system) and heating fuel oil or naphtha (two-heat system) are given.

  9. Nitrate and Nitrogen Oxides: Sources, Health Effects and Their Remediation.

    Science.gov (United States)

    Hakeem, Khalid Rehman; Sabir, Muhammad; Ozturk, Munir; Akhtar, Mohd Sayeed; Ibrahim, Faridah Hanum

    Increased use of nitrogenous (N) fertilizers in agriculture has significantly altered the global N-cycle because they release nitrogenous gases of environmental concerns. The emission of nitrous oxide (N 2 O) contributes to the global greenhouse gas accumulation and the stratospheric ozone depletion. In addition, it causes nitrate leaching problem deteriorating ground water quality. The nitrate toxicity has been reported in a number of studies showing the health hazards like methemoglobinemia in infants and is a potent cause of cancer. Despite these evident negative environmental as well as health impacts, consumption of N fertilizer cannot be reduced in view of the food security for the teeming growing world population. Various agronomic and genetic modifications have been practiced to tackle this problem. Some agronomic techniques adopted include split application of N, use of slow-release fertilizers, nitrification inhibitors and encouraging the use of organic manure over chemical fertilizers. As a matter of fact, the use of chemical means to remediate nitrate from the environment is very difficult and costly. Particularly, removal of nitrate from water is difficult task because it is chemically non-reactive in dilute aqueous solutions. Hence, the use of biological means for nitrate remediation offers a promising strategy to minimize the ill effects of nitrates and nitrites. One of the important goals to reduce N-fertilizer application can be effectively achieved by choosing N-efficient genotypes. This will ensure the optimum uptake of applied N in a balanced manner and exploring the molecular mechanisms for their uptake as well as metabolism in assimilatory pathways. The objectives of this paper are to evaluate the interrelations which exist in the terrestrial ecosystems between the plant type and characteristics of nutrient uptake and analyze the global consumption and demand for fertilizer nitrogen in relation to cereal production, evaluate the various

  10. Catalytic decomposition of nitrogen dioxide over various metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Shimokawabe, M; Ohi, A; Takezawa, N [Dept. of Chemical Process Engineering, Hokkaido Univ., Sapporo (Japan)

    1992-06-30

    The catalytic decomposition of nitrogen oxide (NO2) was investigated over 18 metal oxides (Al2O3, SiO2, ZrO2, SnO2, TiO2, V2O5, Cr2O3, MnO2, Fe2O3, Co3O4, NiO, CuO, ZnO, MgO, CaO, La2O3, CeO2, and Nd2O3). The relationship between the specific rates of metal oxides (Me{sub x}O{sub y}) (Me{sub x}O{sub y-1} + 1/2O{sub 2} {yields} Me{sub x}O{sub y}) shows a V-shaped curve with a minimum at -{Delta}H around 700 kJ/mol. This suggests that the mechanism dealt with in this article switches at -{Delta}H = 700 kJ/mol. 1 fig., 1 tab., 20 refs.

  11. Oxidative decomposition of aromatic hydrocarbons by electron beam irradiation

    Science.gov (United States)

    Han, Do-Hung; Stuchinskaya, Tatiana; Won, Yang-Soo; Park, Wan-Sik; Lim, Jae-Kyong

    2003-05-01

    Decomposition of aromatic volatile organic compounds (VOCs) under electron beam irradiation was studied in order to examine the kinetics of the process, to characterize the reaction product distribution and to develop a process of waste gas control technology. Toluene, ethylbenzene, o-, m-, p-xylenes and chlorobenzene were used as target materials. The experiments were carried out at doses ranging from 0.5 to 10 kGy, using a flow reactor utilized under electron beam irradiation. Maximum degrees of decomposition carried out at 10 kGy in air environment were 55-65% for “non-chlorinated” aromatic VOC and 85% for chlorobenzene. It was found that a combination of aromatic pollutants with chlorobenzene would considerably increase the degradation value up to nearly 50% compared to the same compounds in the absence of chlorine groups. Based on our experimental observation, the degradation mechanism of the aromatic compounds combined with chloro-compound suggests that a chlorine radical, formed from EB irradiation, induces a chain reaction, resulting in an accelerating oxidative destruction of aromatic VOCs.

  12. Influence of nitrogen on magnetic properties of indium oxide

    Science.gov (United States)

    Ashok, Vishal Dev; De, S. K.

    2013-07-01

    Magnetic properties of indium oxide (In2O3) prepared by the decomposition of indium nitrate/indium hydroxide in the presence of ammonium chloride (NH4Cl) has been investigated. Structural and optical characterizations confirm that nitrogen is incorporated into In2O3. Magnetization has been convoluted to individual diamagnetic paramagnetic and ferromagnetic contributions with varying concentration of NH4Cl. Spin wave with diverging thermal exponent dominates in both field cool and zero field cool magnetizations. Uniaxial anisotropy plays an important role in magnetization as a function of magnetic field at higher concentration of NH4Cl. Avrami analysis indicates the absence of pinning effect in the magnetization process. Ferromagnetism has been interpreted in terms of local moments induced by anion dopant and strong hybridization with host cation.

  13. Influence of nitrogen on magnetic properties of indium oxide

    International Nuclear Information System (INIS)

    Ashok, Vishal Dev; De, S K

    2013-01-01

    Magnetic properties of indium oxide (In 2 O 3 ) prepared by the decomposition of indium nitrate/indium hydroxide in the presence of ammonium chloride (NH 4 Cl) has been investigated. Structural and optical characterizations confirm that nitrogen is incorporated into In 2 O 3 . Magnetization has been convoluted to individual diamagnetic paramagnetic and ferromagnetic contributions with varying concentration of NH 4 Cl. Spin wave with diverging thermal exponent dominates in both field cool and zero field cool magnetizations. Uniaxial anisotropy plays an important role in magnetization as a function of magnetic field at higher concentration of NH 4 Cl. Avrami analysis indicates the absence of pinning effect in the magnetization process. Ferromagnetism has been interpreted in terms of local moments induced by anion dopant and strong hybridization with host cation. (paper)

  14. Catalyst and method for reduction of nitrogen oxides

    Science.gov (United States)

    Ott, Kevin C [Los Alamos, NM

    2008-05-27

    A Selective Catalytic Reduction (SCR) catalyst was prepared by slurry coating ZSM-5 zeolite onto a cordierite monolith, then subliming an iron salt onto the zeolite, calcining the monolith, and then dipping the monolith either into an aqueous solution of manganese nitrate and cerium nitrate and then calcining, or by similar treatment with separate solutions of manganese nitrate and cerium nitrate. The supported catalyst containing iron, manganese, and cerium showed 80 percent conversion at 113 degrees Celsius of a feed gas containing nitrogen oxides having 4 parts NO to one part NO.sub.2, about one equivalent ammonia, and excess oxygen; conversion improved to 94 percent at 147 degrees Celsius. N.sub.2O was not detected (detection limit: 0.6 percent N.sub.2O).

  15. Nitrous oxide flux from landfill leachate-sawdust nitrogenous compost

    International Nuclear Information System (INIS)

    Hui, C.H.; So, M.K.; Lee, C.M.; Chan, G.Y.S.

    2003-01-01

    Composted nitrogenous waste has the potential to produce excessive amounts of nitrous oxide (N 2 O), a potent greenhouse gas that also contributes to stratospheric ozone depletion. In this laboratory study, sawdust was irrigated with varying amounts of landfill leachate with high NH 4 + -N content (3950 mg l -1 ). Physicochemical properties, including the amount of N 2 O produced, were monitored during the composting process over 28 days. A rapid decline in NH 4 + -N in the first 4 days and increasing NO 3 - -N for 11 days was followed by lower but stabilized levels of available-N, even with repeated leachate irrigation. Less than 0.03% of the leachate-applied N was lost as N 2 O. Higher leachate applications as much as tripled N 2 O production, but this represented a lesser proportion overall of the total nitrogen. Addition of glucose to the composting process had no significant effect on N 2 O production. The derived sawdust-leachate compost supported healthy growth of Sesbania rostrata. It is concluded that compost can be produced from sawdust irrigated with landfill leachate without substantial emission of N 2 O, although excessive flux of N 2 O remains about high application rates over longer time periods. (Author)

  16. Microbiological Diversity Demonstrates the Potential which Collaboratively Metabolize Nitrogen Oxides ( NOx) under Smog Environmental Stress

    Science.gov (United States)

    Chen, X. Z.; Zhao, X. H.; Chen, X. P.

    2018-03-01

    Recently, smoggy weather has become a daily in large part of China because of rapidly economic growth and accelerative urbanization. Stressed on the smoggy situation and economic growth, the green and environment-friendly technology is necessary to reduce or eliminate the smog and promote the sustainable development of economy. Previous studies had confirmed that nitrogen oxides ( NOx ) is one of crucial factors which forms smog. Microorganisms have the advantages of quickly growth and reproduction and metabolic diversity which can collaboratively Metabolize various NOx. This study will design a kind of bacteria & algae cultivation system which can metabolize collaboratively nitrogen oxides in air and intervene in the local nitrogen cycle. Furthermore, the nitrogen oxides can be transformed into nitrogen gas or assembled in protein in microorganism cell by regulating the microorganism types and quantities and metabolic pathways in the system. Finally, the smog will be alleviated or eliminated because of reduction of nitrogen oxides emission. This study will produce the green developmental methodology.

  17. Simultaneous Production of Reduced Nitrogen Compounds and Hydrocarbons Using Amorphous Iron Silicate Smokes as a Catalyst

    Science.gov (United States)

    Nuth, Joseph A., III; Hill, Hugh G. M.

    2001-01-01

    Amorphous iron silicates efficiently catalyze formation of hydrocarbons and ammonia under conditions similar to that found in the solar nebula. Preliminary data and rates will be discussed, and much further experimentation is required. Additional information is contained in the original extended abstract.

  18. 40 CFR 52.136 - Control strategy for ozone: Oxides of nitrogen.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Control strategy for ozone: Oxides of nitrogen. 52.136 Section 52.136 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... for ozone: Oxides of nitrogen. EPA is approving an exemption request submitted by the State of Arizona...

  19. 40 CFR 60.4320 - What emission limits must I meet for nitrogen oxides (NOX)?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What emission limits must I meet for nitrogen oxides (NOX)? 60.4320 Section 60.4320 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... nitrogen oxides (NOX)? (a) You must meet the emission limits for NOX specified in Table 1 to this subpart...

  20. 40 CFR 86.523-78 - Oxides of nitrogen analyzer calibration.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Oxides of nitrogen analyzer calibration. 86.523-78 Section 86.523-78 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Emission Regulations for 1978 and Later New Motorcycles; Test Procedures § 86.523-78 Oxides of nitrogen...

  1. Mixed conducting materials for partial oxidation of hydrocarbons

    Directory of Open Access Journals (Sweden)

    Frade, J. R.

    2004-06-01

    Full Text Available Thermodynamic calculations with additional conditions for the conservation of carbon and hydrogen were used to predict the gas composition obtained by partial oxidation of methane as a function of oxygen partial pressure and temperature; this was used to assess the stability and oxygen permeability requirements of mixed conducting membrane materials proposed for this purpose. A re-examination of known mixed conductors shows that most materials with highest permeability still fail to fulfil the requirements of stability under reducing conditions. Other materials possess sufficient stability but their oxygen permeability is insufficient. Different approaches were thus used to attempt to overcome those limitations, including changes in composition in the A and B site positions of ABO3 perovskites, and tests of materials with different structure types. Promising results were obtained mainly for some materials with perovskite or related K2NiF4-type structures. Limited stability of the most promising materials shows that one should rely mainly on kinetic limitations in the permeate side to protect the mixed conductor from severe reducing conditions.

    Se han usado cálculos termodinámicos con condiciones adicionales para la conservación del carbono e hidrógeno para predecir la composición del gas obtenido mediante la oxidación parcial del metano en función de la presión parcial de oxígeno y de la temperatura; esto se ha usado para asegurar los requerimientos de estabilidad y permeabilidad al oxígeno de los materiales conductores mixtos empleados como membrana para este propósito. Un nuevo exámen de los conductores mixtos conocidos muestra que la mayoría de los materiales con la mayor permeabilidad todavía fallan en el cumplimiento de los requerimientos de estabilidad bajo condiciones reductoras. Otros materiales poseen suficiente estabilidad, pero su permeabilidad al oxígeno es insuficiente. Por ello se han empleado diferentes

  2. Legislative measures for suppressing emission of nitrogen oxides from thermal power stations

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R.

    1987-11-01

    Reviews measures taken by some countries to control emission of nitrogen oxides from thermal power stations run on solid fuels, mazout and gas. Refers to maximum permissible concentrations of nitrogen oxides in USA (100 mg/m/sup 3/), Canada (460 mg/m/sup 3/), Japan (41-62 mg/m/sup 3/) and several European countries. Discusses legislative measures in FRG (Federal Regulations BImSchG), particularly Instruction No. 13 BImSchV concerning large boilers run on solid fuels or mazout (continuous monitoring of nitrogen oxide emission into atmosphere, equipping old boilers with means of reducing nitrogen oxide emission, reduction of acid rain). Gives maximum permissible concentrations of nitrogen oxides for new boilers agreed by various countries. 5 refs.

  3. The global lightning-induced nitrogen oxides source

    Directory of Open Access Journals (Sweden)

    U. Schumann

    2007-07-01

    Full Text Available The knowledge of the lightning-induced nitrogen oxides (LNOx source is important for understanding and predicting the nitrogen oxides and ozone distributions in the troposphere and their trends, the oxidising capacity of the atmosphere, and the lifetime of trace gases destroyed by reactions with OH. This knowledge is further required for the assessment of other important NOx sources, in particular from aviation emissions, the stratosphere, and from surface sources, and for understanding the possible feedback between climate changes and lightning. This paper reviews more than 3 decades of research. The review includes laboratory studies as well as surface, airborne and satellite-based observations of lightning and of NOx and related species in the atmosphere. Relevant data available from measurements in regions with strong LNOx influence are identified, including recent observations at midlatitudes and over tropical continents where most lightning occurs. Various methods to model LNOx at cloud scales or globally are described. Previous estimates are re-evaluated using the global annual mean flash frequency of 44±5 s−1 reported from OTD satellite data. From the review, mainly of airborne measurements near thunderstorms and cloud-resolving models, we conclude that a "typical" thunderstorm flash produces 15 (2–40×1025 NO molecules per flash, equivalent to 250 mol NOx or 3.5 kg of N mass per flash with uncertainty factor from 0.13 to 2.7. Mainly as a result of global model studies for various LNOx parameterisations tested with related observations, the best estimate of the annual global LNOx nitrogen mass source and its uncertainty range is (5±3 Tg a−1 in this study. In spite of a smaller global flash rate, the best estimate is essentially the same as in some earlier reviews, implying larger flash-specific NO

  4. Continuous determination of nitric oxide and nitrogen dioxide in the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Yanagisawa, S; Yamate, N; Mitsuzawa, S; Mori, M

    1966-10-01

    Continuous determinations of nitric oxide and nitrogen dioxide in that atmospheric air by the use of a modified Saltzman reagent is described. Measurement was made intermittently, once every 30 min., by an automatic continuous analyzer equipped with a single-path colorimeter. The response of the analyzer was obtained as an average of the concentration of nitrogen oxides over a period of 25 min. Two bubblers were used for absorbing nitrogen oxides into the modified Saltzman reagent, whose transmittance was measured for the determination. One bubbler was designed to absorb nitrogen dioxide, and the other, nitric oxide plus nitrogen dioxide after the oxidation of the nitric oxide by permanganate. The oxidizing efficiency of the permanganate was 96-100%. The acetic acid in the Saltzman reagent was replaced with n-propyl alcohol in the modified Saltzman reagent; the spontaneous coloration and corrosive quality of the reagent was decreased by this substitution. The concentration of nitric oxide was obtained from the difference between the two responses of the analyzer, while the concentration of nitrogen dioxide could be read directly from the indication of the recorder. The transmittance ratio method was applied to the measurements, accurate determinations were possible, even at high blank values. Therefore, the reagent was used repeatedly by cycling it on the basis of measuring the difference in the coloration of the reagent before and after the absorption of nitrogen oxides. The analyzer could be used for a long period without changing the reagent.

  5. Development of gas chromatography-flame ionization detection system with a single column and liquid nitrogen-free for measuring atmospheric C2-C12 hydrocarbons.

    Science.gov (United States)

    Liu, Chengtang; Mu, Yujing; Zhang, Chenglong; Zhang, Zhibo; Zhang, Yuanyuan; Liu, Junfeng; Sheng, Jiujiang; Quan, Jiannong

    2016-01-04

    A liquid nitrogen-free GC-FID system equipped with a single column has been developed for measuring atmospheric C2-C12 hydrocarbons. The system is consisted of a cooling unit, a sampling unit and a separation unit. The cooling unit is used to meet the temperature needs of the sampling unit and the separation unit. The sampling unit includes a dehydration tube and an enrichment tube. No breakthrough of the hydrocarbons was detected when the temperature of the enrichment tube was kept at -90 °C and sampling volume was 400 mL. The separation unit is a small round oven attached on the cooling column. A single capillary column (OV-1, 30 m × 0.32 mm I.D.) was used to separate the hydrocarbons. An optimal program temperature (-60 ∼ 170 °C) of the oven was achieved to efficiently separate C2-C12 hydrocarbons. There were good linear correlations (R(2)=0.993-0.999) between the signals of the hydrocarbons and the enrichment amount of hydrocarbons, and the relative standard deviation (RSD) was less than 5%, and the method detection limits (MDLs) for the hydrocarbons were in the range of 0.02-0.10 ppbv for sampling volume of 400 mL. Field measurements were also conducted and more than 50 hydrocarbons from C2 to C12 were detected in Beijing city. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Mechanistic studies on the OH-initiated atmospheric oxidation of selected aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Nehr, Sascha

    2012-07-01

    Benzene, toluene, the xylenes, and the trimethylbenzenes are among the most abundant aromatic trace constituents of the atmosphere mainly originating from anthropogenic sources. The OH-initiated atmospheric photo-oxidation of aromatic hydrocarbons is the predominant removal process resulting in the formation of O{sub 3} and secondary organic aerosol. Therefore, aromatics are important trace constituents regarding air pollution in urban environments. Our understanding of aromatic photo-oxidation processes is far from being complete. This work presents novel approaches for the investigation of OH-initiated atmospheric degradation mechanisms of aromatic hydrocarbons. Firstly, pulsed kinetic studies were performed to investigate the prompt HO{sub 2} formation from OH+ aromatic hydrocarbon reactions under ambient conditions. For these studies, the existing OH reactivity instrument, based on the flash photolysis/laser-induced fluorescence (FP/LIF) technique, was extended to the detection of HO{sub 2} radicals. The experimental design allows for the determination of HO{sub 2} formation yields and kinetics. Results of the pulsed kinetic experiments complement previous product studies and help to reduce uncertainties regarding the primary oxidation steps. Secondly, experiments with aromatic hydrocarbons were performed under atmospheric conditions in the outdoor atmosphere simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction chamber) located at Forschungszentrum Juelich. The experiments were aimed at the evaluation of up-to-date aromatic degradation schemes of the Master Chemical Mechanism (MCMv3.2). The unique combination of analytical instruments operated at SAPHIR allows for a detailed investigation of HO{sub x} and NO{sub x} budgets and for the determination of primary phenolic oxidation product yields. MCMv3.2 deficiencies were identified and most likely originate from shortcomings in the mechanistic representation of ring

  7. Conversion of sulfur and nitrogen oxides in air under exposure to microsecond electron beams

    International Nuclear Information System (INIS)

    Denisov, G.V.; Kuznetsov, D.L.; Novoselov, Yu.N.; Tkachenko, R.M.

    2002-01-01

    Flue gases of power plants realizing sulfur and nitrogen oxides into the atmosphere represent one of the environmental pollution sources. Paper presents the results of experimental investigations of conversion of sulfur and nitrogen oxides in the ionized gas mixture simulating composition of off-gases of thermal power stations. Pulse beam of microsecond duration electrons was used as a source of ionization. Mutual influence of both types of oxides on process of their conversion is shown. One studied possible kinetic mechanisms to remove sulfur and nitrogen oxides from gaseous mixture [ru

  8. Oxidation of Zircaloy-4 in steam-nitrogen mixtures at 600–1200 °C

    Energy Technology Data Exchange (ETDEWEB)

    Steinbrueck, Martin, E-mail: martin.steinbrueck@kit.edu; Oliveira da Silva, Fabio; Grosse, Mirco

    2017-07-15

    High-temperature oxidation of zirconium alloys in steam-nitrogen atmospheres may be relevant during various nuclear accident scenarios. Therefore, isothermal oxidation tests with Zircaloy-4 in steam-nitrogen mixtures have been performed at 600, 800, 1000, and 1200 °C using thermogravimetry. The gas compositions were varied between 0 and 100 vol% nitrogen including 0.1 and 90 vol%. The strong effect of nitrogen on the oxidation kinetics of zirconium alloys was confirmed in these tests in mixed steam-nitrogen atmospheres. Even very low concentrations of nitrogen (starting from less than 1 vol%) strongly increase reaction kinetics. Nitrogen reduces transition time from protective to non-protective oxide scale (breakaway). The formation of zirconium nitride, ZrN, and its re-oxidation is the main reason for the highly porous oxide scales after transition. The results of this study have shown the safety relevant role of nitrogen during severe accidents and, more generally, suggest the need of using well controlled gas atmospheres for experiments on oxidation of zirconium alloys.

  9. Oxidation of Zircaloy-4 in steam-nitrogen mixtures at 600-1200 °C

    Science.gov (United States)

    Steinbrueck, Martin; da Silva, Fabio Oliveira; Grosse, Mirco

    2017-07-01

    High-temperature oxidation of zirconium alloys in steam-nitrogen atmospheres may be relevant during various nuclear accident scenarios. Therefore, isothermal oxidation tests with Zircaloy-4 in steam-nitrogen mixtures have been performed at 600, 800, 1000, and 1200 °C using thermogravimetry. The gas compositions were varied between 0 and 100 vol% nitrogen including 0.1 and 90 vol%. The strong effect of nitrogen on the oxidation kinetics of zirconium alloys was confirmed in these tests in mixed steam-nitrogen atmospheres. Even very low concentrations of nitrogen (starting from less than 1 vol%) strongly increase reaction kinetics. Nitrogen reduces transition time from protective to non-protective oxide scale (breakaway). The formation of zirconium nitride, ZrN, and its re-oxidation is the main reason for the highly porous oxide scales after transition. The results of this study have shown the safety relevant role of nitrogen during severe accidents and, more generally, suggest the need of using well controlled gas atmospheres for experiments on oxidation of zirconium alloys.

  10. Four-Wire Impedance Spectroscopy on Planar Zeolite/Chromium Oxide Based Hydrocarbon Gas Sensors

    Directory of Open Access Journals (Sweden)

    Ralf Moos

    2007-11-01

    Full Text Available Impedometric zeolite hydrocarbon sensors with a chromium oxide intermediatelayer show a very promising behavior with respect to sensitivity and selectivity. Theunderlying physico-chemical mechanism is under investigation at the moment. In order toverify that the effect occurs at the electrode and that zeolite bulk properties remain almostunaffected by hydrocarbons, a special planar setup was designed, which is very close to realsensor devices. It allows for conducting four-wire impedance spectroscopy as well as two-wire impedance spectroscopy. Using this setup, it could be clearly demonstrated that thesensing effect can be ascribed to an electrode impedance. Furthermore, by combining two-and four-wire impedance measurements at only one single frequency, the interference of thevolume impedance can be suppressed and an easy signal evaluation is possible, withouttaking impedance data at different frequencies.

  11. Effect of nitrogen precursors on the electrochemical performance of nitrogen-doped reduced graphene oxide towards oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Soo, Li Ting, E-mail: nicolesoo90@gmail.com [Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Bangi UKM, Selangor (Malaysia); Loh, Kee Shyuan, E-mail: ksloh@ukm.edu.my [Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Bangi UKM, Selangor (Malaysia); Mohamad, Abu Bakar, E-mail: drab@ukm.edu.my [Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Bangi UKM, Selangor (Malaysia); Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi UKM, Selangor (Malaysia); Daud, Wan Ramli Wan, E-mail: wramli@ukm.edu.my [Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Bangi UKM, Selangor (Malaysia); Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi UKM, Selangor (Malaysia); Wong, Wai Yin, E-mail: waiyin.wwy@gmail.com [Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Bangi UKM, Selangor (Malaysia); School of Engineering, Taylor' s University' s Lakeside Campus, No. 1, Jalan Taylor' s, 46500 Subang Jaya, Selangor (Malaysia)

    2016-08-25

    A series of nitrogen-doped reduced graphene oxides (NGs) with different ratios are synthesized by thermal annealing of graphene oxide with melamine or urea. The total nitrogen content in NG is high, with values of up to 5.88 at.%. The NG samples prepared by melamine exhibited thin transparent graphene sheets structure, with consist of higher nitrogen doping level and quaternary N content compared to those NG samples prepared from urea. Electrochemical characterizations show that NG is a promising metal-free electrocatalyst for an oxygen reduction reaction (ORR). Incorporation of nitrogen atoms into graphene basal plane can enhances its electrocatalytic activity toward ORR in alkaline media. The onset potential and mean number of electron transfers on NG 1 are −0.10 V and 3.80 respectively, which is higher than that of reduced graphene oxide (−0.15 V, 3.52). This study suggests that quaternary-N of the NG samples is the active site which determines the ORR activity Moreover, the NG samples with the transparent layer of graphene-like structure have better ORR performances than that of bulk graphite-like NG samples. - Highlights: • Synthesis of nitrogen-doped graphene (NG) via thermal annealing. • The effects of the nitrogen precursors on the synthesized NG are discussed. • Electrochemical performances of the NG are correlated to N doping and EASA. • Graphitic-N is proposed to be the active site for ORR.

  12. Effect of nitrogen precursors on the electrochemical performance of nitrogen-doped reduced graphene oxide towards oxygen reduction reaction

    International Nuclear Information System (INIS)

    Soo, Li Ting; Loh, Kee Shyuan; Mohamad, Abu Bakar; Daud, Wan Ramli Wan; Wong, Wai Yin

    2016-01-01

    A series of nitrogen-doped reduced graphene oxides (NGs) with different ratios are synthesized by thermal annealing of graphene oxide with melamine or urea. The total nitrogen content in NG is high, with values of up to 5.88 at.%. The NG samples prepared by melamine exhibited thin transparent graphene sheets structure, with consist of higher nitrogen doping level and quaternary N content compared to those NG samples prepared from urea. Electrochemical characterizations show that NG is a promising metal-free electrocatalyst for an oxygen reduction reaction (ORR). Incorporation of nitrogen atoms into graphene basal plane can enhances its electrocatalytic activity toward ORR in alkaline media. The onset potential and mean number of electron transfers on NG 1 are −0.10 V and 3.80 respectively, which is higher than that of reduced graphene oxide (−0.15 V, 3.52). This study suggests that quaternary-N of the NG samples is the active site which determines the ORR activity Moreover, the NG samples with the transparent layer of graphene-like structure have better ORR performances than that of bulk graphite-like NG samples. - Highlights: • Synthesis of nitrogen-doped graphene (NG) via thermal annealing. • The effects of the nitrogen precursors on the synthesized NG are discussed. • Electrochemical performances of the NG are correlated to N doping and EASA. • Graphitic-N is proposed to be the active site for ORR.

  13. The defect chemistry of nitrogen in oxides: A review of experimental and theoretical studies

    International Nuclear Information System (INIS)

    Polfus, Jonathan M.; Norby, Truls; Haugsrud, Reidar

    2013-01-01

    Incorporation of nitrogen into oxides has in recent years received increased attention as a variable for tuning their functional properties. A vast number of reports have been devoted to improving the photocatalytic properties of TiO 2 , p-type charge carrier concentration in ZnO and the ionic transport properties of ZrO 2 by nitrogen doping. In comparison, the fundamentals of the nitrogen related defect chemistry for a wider range of oxides have been less focused upon. In the present contribution, we review experimental and computational investigations of the nitrogen related defect chemistry of insulating and semiconducting oxides. The interaction between nitrogen and protons is important and emphasized. Specifically, the stability of nitrogen defects such as N O / , NH O × and (NH 2 ) O • is evaluated under various conditions and their atomistic and electronic structure is presented. A final discussion is devoted to the role of nitrogen with respect to transport properties and photocatalytic activity of oxides. - Graphical abstract: Experimental and theoretical investigations of the nitrogen related defect chemistry of a range of wide band gap oxides is reviewed. The interaction between nitrogen dopants and protons is emphasized and described through the atomistic and electronic structure as well as defect chemical processes involving NH and NH 2 defects. Consequently, the physical properties of oxides containing such species are discussed with respect to e.g., diffusion and photocatalytic properties. Highlights: ► Experimental and theoretical investigations of the nitrogen and hydrogen related defect chemistry of wide band gap oxides is reviewed. ► The interaction between nitrogen dopants and protons is important and emphasized. ► Diffusion and photocatalytic properties of N-doped oxides are discussed.

  14. Studies on capillary tube expansion device used in J-T refrigerators operating with nitrogen-hydrocarbon mixtures

    Science.gov (United States)

    Harish Kruthiventi, S. S.; Venkatarathnam, G.

    2017-10-01

    Capillary tube expansion devices are used extensively in small closed cycle J-T refrigerators operating with refrigerant mixtures due to its low cost and the absence of any moving parts. It is possible for J-T refrigerators operating with mixtures that the velocity of refrigerant mixture at capillary tube outlet reaches a value where it equals the speed of sound at certain conditions. The variation of the speed of sound of nitrogen-hydrocarbon mixtures used in J-T refrigerators has been studied in two phase (vapour-liquid) and three-phase (Vapour-liquid-liquid) region as a function of temperature and pressure in this work. Also the conditions under which choking occurs in practical J-T refrigerators is investigated.

  15. Application of persulfate to remediate petroleum hydrocarbon-contaminated soil: feasibility and comparison with common oxidants.

    Science.gov (United States)

    Yen, Chia-Hsien; Chen, Ku-Fan; Kao, Chih-Ming; Liang, Shu-Hao; Chen, Ting-Yu

    2011-02-28

    In this study, batch experiments were conducted to evaluate the feasibility of petroleum-hydrocarbon contaminated soil remediation using persulfate oxidation. Various controlling factors including different persulfate and ferrous ion concentrations, different oxidants (persulfate, hydrogen peroxide, and permanganate), and different contaminants (diesel and fuel oil) were considered. Results show that persulfate oxidation is capable of treating diesel and fuel oil contaminated soil. Higher persulfate and ferrous ion concentrations resulted in higher diesel degrading rates within the applied persulfate/ferrous ion molar ratios. A two-stage diesel degradation was observed in the batch experiments. In addition, treatment of diesel-contaminated soil using in situ metal mineral activation under ambient temperature (e.g., 25°C) may be a feasible option for site remediation. Results also reveal that persulfate anions could persist in the system for more than five months. Thus, sequential injections of ferrous ion to generate sulfate free radicals might be a feasible way to enhance contaminant oxidation. Diesel oxidation efficiency and rates by the three oxidants followed the sequence of hydrogen peroxide>permanganate>persulfate in the limited timeframes. Results of this study indicate that the application of persulfate oxidation is a feasible method to treat soil contaminated by diesel and fuel oil. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Kinetics of oxidation of the alloy-MR-47VP with nitrogen dioxide

    International Nuclear Information System (INIS)

    Vasil'eva, A.G.; Rakova, N.N.; Vladimirskaya, I.N.; Kabanova, O.V.; Miklyaev, A.D.

    1978-01-01

    The kinetic dependences of oxidation of MR-47VP grade molybdenum-rhenium alloy with nitrogen dioxide have been examined within the temperature range of 350 to 550 deg C. It has been shown that the processes take place in the transition region. The specific oxidation rate of the alloy with the nitrogen dioxide is but small, and it is comparable as to its value with the specific rate of its oxidation in oxygen under identical conditions

  17. Treatment of petroleum-hydrocarbon contaminated soils using hydrogen peroxide oxidation catalyzed by waste basic oxygen furnace slag

    International Nuclear Information System (INIS)

    Tsai, T.T.; Kao, C.M.

    2009-01-01

    The contamination of subsurface soils with petroleum hydrocarbons is a widespread environmental problem. The objective of this study was to evaluate the potential of applying waste basic oxygen furnace slag (BOF slag) as the catalyst to enhance the Fenton-like oxidation to remediate fuel oil or diesel contaminated soils. The studied controlling factors that affect the removal efficiency of petroleum hydrocarbons included concentrations of H 2 O 2 , BOF slag dosages, types of petroleum hydrocarbons (e.g., fuel oil and diesel), and types of iron mineral. Experimental results indicate that oxidation of petroleum hydrocarbon via the Fenton-like process can be enhanced with the addition of BOF slag. Results from the X-ray powder diffraction analysis reveal that the major iron type of BOF slag/sandy loam system was iron mineral (e.g., α-Fe 2 O 3 and α-FeOOH). Approximately 76% and 96% of fuel oil and diesel removal were observed (initial total petroleum hydrocarbon (TPH) concentration = 10,000 mg kg -1 ), respectively, with the addition of 15% of H 2 O 2 and 100 g kg -1 of BOF slag after 40 h of reaction. Because BOF slag contains extractable irons such as amorphous iron and soluble iron, it can act as an iron sink to supply iron continuously for Fenton-like oxidation. Results demonstrate that Fenton-like oxidation catalyzed by BOF slag is a potential method to be able to remediate petroleum-hydrocarbon contaminated soils efficiently and effectively.

  18. Numerical modelling of emissions of nitrogen oxides in solid fuel combustion.

    Science.gov (United States)

    Bešenić, Tibor; Mikulčić, Hrvoje; Vujanović, Milan; Duić, Neven

    2018-06-01

    Among the combustion products, nitrogen oxides are one of the main contributors to a negative impact on the environment, participating in harmful processes such as tropospheric ozone and acid rains production. The main source of emissions of nitrogen oxides is the human combustion of fossil fuels. Their formation models are investigated and implemented with the goal of obtaining a tool for studying the nitrogen-containing pollutant production. In this work, numerical simulation of solid fuel combustion was carried out on a three-dimensional model of a drop tube furnace by using the commercial software FIRE. It was used for simulating turbulent fluid flow and temperature field, concentrations of the reactants and products, as well as the fluid-particles interaction by numerically solving the integro-differential equations describing these processes. Chemical reactions mechanisms for the formation of nitrogen oxides were implemented by the user functions. To achieve reasonable calculation times for running the simulations, as well as efficient coupling with the turbulent mixing process, the nitrogen scheme is limited to sufficiently few homogeneous reactions and species. Turbulent fluctuations that affect the reaction rates of nitrogen oxides' concentration are modelled by probability density function approach. Results of the implemented model for nitrogen oxides' formation from coal and biomass are compared to the experimental data. Temperature, burnout and nitrogen oxides' concentration profiles are compared, showing satisfactory agreement. The new model allows the simulation of pollutant formation in the real-world applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Synthesis of extended polycyclic aromatic hydrocarbons by oxidative tandem spirocyclization and 1,2-aryl migration

    Science.gov (United States)

    Zhang, Xuan; Xu, Zhanqiang; Si, Weili; Oniwa, Kazuaki; Bao, Ming; Yamamoto, Yoshinori; Jin, Tienan

    2017-04-01

    The extended polycyclic aromatic hydrocarbons (PAHs) have received significant interdisciplinary attention due to their semiconducting applications in diverse organic electronics as well as intriguing structural interests of well-defined graphene segments. Herein, a highly efficient oxidative spirocyclization and 1,2-aryl migration tandem synthetic method for the construction of extended polyaromatic hydrocarbons (PAHs) has been developed. The CuCl-catalyst/PhCO3 tBu or DDQ oxidation system in the presence of trifluoroacetic acid enables the selective single-electron oxidation to take place preferentially at the more electron-rich alkene moiety of o-biphenylyl-substituted methylenefluorenes, giving rise to the subsequent tandem process. A variety of structurally diverse extended PAHs including functionalized dibenzo[g,p]chrysenes, benzo[f]naphtho[1,2-s]picene, hexabenzo[a,c,fg,j,l,op]tetracene, tetrabenzo[a,c,f,m]phenanthro[9,10-k]tetraphene, tetrabenzo[a,c,f,k]phenanthro[9,10-m]tetraphene, tetrabenzo[a,c,f,o]phenanthro[9,10-m]picene and S-type helicene have been readily synthesized.

  20. Low temperature removal of surface oxides and hydrocarbons from Ge(100) using atomic hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Walker, M., E-mail: m.walker@warwick.ac.uk; Tedder, M.S.; Palmer, J.D.; Mudd, J.J.; McConville, C.F.

    2016-08-30

    Highlights: • Preparation of a clean, well-ordered Ge(100) surface with atomic hydrogen. • Surface oxide layers removed by AHC at room temperature, but not hydrocarbons. • Increasing surface temperature during AHC dramatically improves efficiency. • AHC with the surface heated to 250 °C led to a near complete removal of contaminants. • (2 × 1) LEED pattern from IBA and AHC indicates asymmetric dimer reconstruction. - Abstract: Germanium is a group IV semiconductor with many current and potential applications in the modern semiconductor industry. Key to expanding the use of Ge is a reliable method for the removal of surface contamination, including oxides which are naturally formed during the exposure of Ge thin films to atmospheric conditions. A process for achieving this task at lower temperatures would be highly advantageous, where the underlying device architecture will not diffuse through the Ge film while also avoiding electronic damage induced by ion irradiation. Atomic hydrogen cleaning (AHC) offers a low-temperature, damage-free alternative to the common ion bombardment and annealing (IBA) technique which is widely employed. In this work, we demonstrate with X-ray photoelectron spectroscopy (XPS) that the AHC method is effective in removing surface oxides and hydrocarbons, yielding an almost completely clean surface when the AHC is conducted at a temperature of 250 °C. We compare the post-AHC cleanliness and (2 × 1) low energy electron diffraction (LEED) pattern to that obtained via IBA, where the sample is annealed at 600 °C. We also demonstrate that the combination of a sample temperature of 250 °C and atomic H dosing is required to clean the surface. Lower temperatures prove less effective in removal of the oxide layer and hydrocarbons, whilst annealing in ultra-high vacuum conditions only removes weakly bound hydrocarbons. Finally, we examine the subsequent H-termination of an IBA-cleaned sample using XPS, LEED and ultraviolet

  1. Nitrogen oxides in the troposphere – What have we learned from satellite measurements?

    Directory of Open Access Journals (Sweden)

    Richter A.

    2009-02-01

    Full Text Available Nitrogen oxides are key species in the troposphere where they are linked to ozone formation and acid rain. The sources of nitrogen oxides are anthropogenic to large extend, mainly through combustion of fossil fuels. Satellite observations of NO2 provide global measurements of nitrogen oxides since summer 1995, and these data have been applied for many studies on the emission sources and strengths, the chemistry and the transport of NOx. In this paper, an overview will be given on satellite measurements of NO2 , some examples of typical applications and an outlook on future prospects.

  2. Water Injection on Commercial Aircraft to Reduce Airport Nitrogen Oxides

    Science.gov (United States)

    Daggett, David L.; Hendricks, Robert C.; Fucke, Lars; Eames, David J. H.

    2010-01-01

    The potential nitrogen oxide (NO(x) reductions, cost savings, and performance enhancements identified in these initial studies of waterinjection technology strongly suggest that it be further pursued. The potential for engine maintenance cost savings from this system should make it very attractive to airline operators and assure its implementation. Further system tradeoff studies and engine tests are needed to answer the optimal system design question. Namely, would a low-risk combustor injection system with 70- to 90-percent NO(x) reduction be preferable, or would a low-pressure compressor (LPC) misting system with only 50-percent NO(x) reduction but larger turbine inlet temperature reductions be preferable? The low-pressure compressor injection design and operability issues identified in the report need to be addressed because they might prevent implementation of the LPC type of water-misting system. If water-injection technology challenges are overcome, any of the systems studied would offer dramatic engine NO(x) reductions at the airport. Coupling this technology with future emissions-reduction technologies, such as fuel-cell auxiliary power units will allow the aviation sector to address the serious challenges of environmental stewardship, and NO(x) emissions will no longer be an issue at airports.

  3. Community Composition of Nitrous Oxide-Related Genes in Salt Marsh Sediments Exposed to Nitrogen Enrichment.

    Science.gov (United States)

    Angell, John H; Peng, Xuefeng; Ji, Qixing; Craick, Ian; Jayakumar, Amal; Kearns, Patrick J; Ward, Bess B; Bowen, Jennifer L

    2018-01-01

    Salt marshes provide many key ecosystem services that have tremendous ecological and economic value. One critical service is the removal of fixed nitrogen from coastal waters, which limits the negative effects of eutrophication resulting from increased nutrient supply. Nutrient enrichment of salt marsh sediments results in higher rates of nitrogen cycling and, commonly, a concurrent increase in the flux of nitrous oxide, an important greenhouse gas. Little is known, however, regarding controls on the microbial communities that contribute to nitrous oxide fluxes in marsh sediments. To address this disconnect, we generated profiles of microbial communities and communities of micro-organisms containing specific nitrogen cycling genes that encode several enzymes ( amoA, norB, nosZ) related to nitrous oxide flux from salt marsh sediments. We hypothesized that communities of microbes responsible for nitrogen transformations will be structured by nitrogen availability. Taxa that respond positively to high nitrogen inputs may be responsible for the elevated rates of nitrogen cycling processes measured in fertilized sediments. Our data show that, with the exception of ammonia-oxidizing archaea, the community composition of organisms involved in the production and consumption of nitrous oxide was altered under nutrient enrichment. These results suggest that previously measured rates of nitrous oxide production and consumption are likely the result of changes in community structure, not simply changes in microbial activity.

  4. Electrochemical removal of NOx and hydrocarbons

    DEFF Research Database (Denmark)

    Friedberg, Anja Zarah

    on the electrodes during polarisation, probably because of strong adsorption of the hydrocarbon relative to NO. On LSF/CGO electrode the impregnation of ionic conducting material increased the oxidation of NO to NO2 which is an important step before nitrogen formation. The propene inhibited this reaction because....... This could only be done if the electrode was impregnated with BaO. The nitrate formation did not seem to be inhibited by the presence of the hydrocarbon. However, the oxidation of propene was inhibited by the BaO because the active sites for oxidations were partially covered by the BaO nanoparticles...

  5. Raman and photoelectron spectroscopic investigation of high-purity niobium materials: Oxides, hydrides, and hydrocarbons

    Science.gov (United States)

    Singh, Nageshwar; Deo, M. N.; Nand, Mangla; Jha, S. N.; Roy, S. B.

    2016-09-01

    We present investigations of the presence of oxides, hydrides, and hydrocarbons in high-purity (residual resistivity ratio, ˜300) niobium (Nb) materials used in fabrication of superconducting radio frequency (SRF) cavities for particle accelerators. Raman spectroscopy of Nb materials (as-received from the vendor as well as after surface chemical- and thermal processing) revealed numerous peaks, which evidently show the presence of oxides (550 cm-1), hydrides (1277 and 1385 cm-1: ˜80 K temperature), and groups of hydrocarbons (1096, 2330, 2710, 2830, 2868, and 3080 cm-1). The present work provides direct spectroscopic evidence of hydrides in the electropolished Nb materials typically used in SRF cavities. Raman spectroscopy thus can provide vital information about the near-surface chemical species in niobium materials and will help in identifying the cause for the performance degradation of SRF cavities. Furthermore, photoelectron spectroscopy was performed on the Nb samples to complement the Raman spectroscopy study. This study reveals the presence of C and O in the Nb samples. Core level spectra of Nb (doublet 3d5/2 and 3d3/2) show peaks near 206.6 and 209.4 eV, which can be attributed to the Nb5+ oxidation state. The core level spectra of C 1 s of the samples are dominated by graphitic carbon (binding energy, 284.6 eV), while the spectra of O 1 s are asymmetrically peaked near binding energy of ˜529 eV, and that indicates the presence of metal-oxide Nb2O5. The valence-band spectra of the Nb samples are dominated by a broad peak similar to O 2p states, but after sputtering (for 10 min) a peak appears at ˜1 eV, which is a feature of the elemental Nb atom.

  6. 40 CFR 52.326 - Area-wide nitrogen oxides (NOX) exemptions.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Area-wide nitrogen oxides (NOX) exemptions. 52.326 Section 52.326 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Colorado § 52.326 Area-wide nitrogen...

  7. Nitrogen and Oxygen Isotope Effects of Ammonia Oxidation by Thermophilic Thaumarchaeota from a Geothermal Water Stream.

    Science.gov (United States)

    Nishizawa, Manabu; Sakai, Sanae; Konno, Uta; Nakahara, Nozomi; Takaki, Yoshihiro; Saito, Yumi; Imachi, Hiroyuki; Tasumi, Eiji; Makabe, Akiko; Koba, Keisuke; Takai, Ken

    2016-08-01

    Ammonia oxidation regulates the balance of reduced and oxidized nitrogen pools in nature. Although ammonia-oxidizing archaea have been recently recognized to often outnumber ammonia-oxidizing bacteria in various environments, the contribution of ammonia-oxidizing archaea is still uncertain due to difficulties in the in situ quantification of ammonia oxidation activity. Nitrogen and oxygen isotope ratios of nitrite (δ(15)NNO2- and δ(18)ONO2-, respectively) are geochemical tracers for evaluating the sources and the in situ rate of nitrite turnover determined from the activities of nitrification and denitrification; however, the isotope ratios of nitrite from archaeal ammonia oxidation have been characterized only for a few marine species. We first report the isotope effects of ammonia oxidation at 70°C by thermophilic Thaumarchaeota populations composed almost entirely of "Candidatus Nitrosocaldus." The nitrogen isotope effect of ammonia oxidation varied with ambient pH (25‰ to 32‰) and strongly suggests the oxidation of ammonia, not ammonium. The δ(18)O value of nitrite produced from ammonia oxidation varied with the δ(18)O value of water in the medium but was lower than the isotopic equilibrium value in water. Because experiments have shown that the half-life of abiotic oxygen isotope exchange between nitrite and water is longer than 33 h at 70°C and pH ≥6.6, the rate of ammonia oxidation by thermophilic Thaumarchaeota could be estimated using δ(18)ONO2- in geothermal environments, where the biological nitrite turnover is likely faster than 33 h. This study extended the range of application of nitrite isotopes as a geochemical clock of the ammonia oxidation activity to high-temperature environments. Because ammonia oxidation is generally the rate-limiting step in nitrification that regulates the balance of reduced and oxidized nitrogen pools in nature, it is important to understand the biological and environmental factors underlying the regulation of

  8. Method of preparing and utilizing a catalyst system for an oxidation process on a gaseous hydrocarbon stream

    Science.gov (United States)

    Berry, David A; Shekhawat, Dushyant; Smith, Mark; Haynes, Daniel

    2013-07-16

    The disclosure relates to a method of utilizing a catalyst system for an oxidation process on a gaseous hydrocarbon stream with a mitigation of carbon accumulation. The system is comprised of a catalytically active phase deposited onto an oxygen conducting phase, with or without supplemental support. The catalytically active phase has a specified crystal structure where at least one catalytically active metal is a cation within the crystal structure and coordinated with oxygen atoms within the crystal structure. The catalyst system employs an optimum coverage ratio for a given set of oxidation conditions, based on a specified hydrocarbon conversion and a carbon deposition limit. Specific embodiments of the catalyst system are disclosed.

  9. Liver changes under the influence of chronic experimental intoxication with nitrogen oxides

    Energy Technology Data Exchange (ETDEWEB)

    Kosmider, S; Misiewicz, A

    1973-01-01

    Male guinea pigs were divided into three groups: a control group; a group of animals breathing air containing 1 ppM nitrogen oxides during 6 months, 8 hr/day; and third group exposed to products of reactions between nitrogen oxide and gaseous ammonia. The animals lived through the 6 mo with no increase in mortality. The body weight of the animals exposed to nitrogen oxides increased during the 6 mo by 62 g on the average, while in the control group the body weight increased by 395 g on the average. In homogenates of the livers of the animals exposed to nitrogen oxides, the activities of aldolase, lactic dehydrogenase, acid, and alkaline phosphatase increased, and the activities of cholinesterase, ceruloplasmin, and aminotransferases (aspartic and alanine) decreased. Neutralization of NO/sub x/ by gaseous ammonia restored the disorders in enzyme activities in the liver of the animals exposed to nitrogen oxides to their normal values. The study was statistically analyzed. The livers of the animals exposed to nitrogen oxides contained small foci of necrosis, and hemorrhages could be observed. In some animals, fatty degeneration of the liver could be observed. The changes in the liver can also be associated with inhibited protein synthesis, enhanced catabolic processes, and hypovitaminosis.

  10. Optimization of operating conditions in oxidation of dibenzothiophene in the light hydrocarbon model

    Directory of Open Access Journals (Sweden)

    Akbari Azam

    2014-01-01

    Full Text Available In this research, the effects of process variables on the efficiency and mechanism of dibenzothiophene oxidation in formicacid/H2O2 system for deep desulfurization of a light hydrocarbon model were systematically studied by statistical modelling and optimization using response surface methodology and implementing the central composite design. A quadratic regression model was developed to predict the yield of sulfur oxidation as the model response. The model indicated that temperature was the most significant effective factor and suggested an important interaction between temperature and H2O2/sulfur ratio; at temperatures above 56°C, more excess oxidant was necessary because of instability of active peroxo intermediates and loss of H2O2 due to thermal decomposition. In contrast, the water hindrance effect of H2O2 aqueous solution in desulfurization progress was more significant at temperatures bellow 56°C. In the optimization process, minimizing H2O2/sulfur ratio and catalyst consumption for maximum yield of desulfurization was economically considerable. The optimal condition was obtained at temperature of 57 °C, H2O2/sulfur ratio of 2.5 mol/mol and catalyst dosage of 0.82 mL in 50 mL solution of DBT in n-hexane leading to a maximum oxidation yield of 95% after 1 hour reaction. Good agreement between predicted and experimental results (less than 4% error was found.

  11. Degradation of phenolics, nitrogen-heterocyclics and polynuclear aromatic hydrocarbons in a rotating biological contactor.

    Science.gov (United States)

    Jeswani, Hansa; Mukherji, Suparna

    2012-05-01

    The degradation of phenolics, heterocyclics and polynuclear aromatic hydrocarbons (PAHs) in a synthetic biomass gasifier wastewater with average COD of 1388 mg/L was studied in a three stage rotating biological contactor (RBC) using the pyrene degrader, Exiguobacterium aurantiacum and activated sludge consortia (1:3 v/v). As the organic loading rate (OLR) was varied from 3.3 to 14 g/m(2)/d, the COD removal ranged from 63.3% to 92.6%. Complete removal of all the constituents was observed at the lowest OLR of 3.3g/m(2)/d. At 24h hydraulic retention time (HRT) and OLR of 6.6g/m(2)/d complete removal of pyridine, quinoline and benzene and 85-96% removal of phenol, naphthalene, phenanthrene, fluoranthene and pyrene was observed. E. aurantiacum was found to be the dominant bacteria in the biofilm. Clark's model provided good fits to data for all the three stages of the RBC. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Degradation kinetics of chlorinated aliphatic hydrocarbons by methane oxidizers naturally-associated with wetland plant roots

    Science.gov (United States)

    Powell, C. L.; Goltz, M. N.; Agrawal, A.

    2014-12-01

    Chlorinated aliphatic hydrocarbons (CAHs) are common groundwater contaminants that can be removed from the environment by natural attenuation processes. CAH biodegradation can occur in wetland environments by reductive dechlorination as well as oxidation pathways. In particular, CAH oxidation may occur in vegetated wetlands, by microorganisms that are naturally associated with the roots of wetland plants. The main objective of this study was to evaluate the cometabolic degradation kinetics of the CAHs, cis-1,2-dichloroethene (cisDCE), trichloroethene (TCE), and 1,1,1-trichloroethane (1,1,1TCA), by methane-oxidizing bacteria associated with the roots of a typical wetland plant in soil-free system. Laboratory microcosms with washed live roots investigated aerobic, cometabolic degradation of CAHs by the root-associated methane-oxidizing bacteria at initial aqueous [CH4] ~ 1.9 mg L- 1, and initial aqueous [CAH] ~ 150 μg L- 1; cisDCE and TCE (in the presence of 1,1,1TCA) degraded significantly, with a removal efficiency of approximately 90% and 46%, respectively. 1,1,1TCA degradation was not observed in the presence of active methane oxidizers. The pseudo first-order degradation rate-constants of TCE and cisDCE were 0.12 ± 0.01 and 0.59 ± 0.07 d- 1, respectively, which are comparable to published values. However, their biomass-normalized degradation rate constants obtained in this study were significantly smaller than pure-culture studies, yet they were comparable to values reported for biofilm systems. The study suggests that CAH removal in wetland plant roots may be comparable to processes within biofilms. This has led us to speculate that the active biomass may be on the root surface as a biofilm. The cisDCE and TCE mass losses due to methane oxidizers in this study offer insight into the role of shallow, vegetated wetlands as an environmental sink for such xenobiotic compounds.

  13. Mechanisms of formation and destruction of nitrogen oxides during polyamide incineration in a fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Hahnel, F; Gadiou, R; Prado, G [Univ. de Haute Alsace, Mulhouse (France). Lab. de Gestion des Risques et Environnement

    1998-09-01

    In order to study the incineration of nitrogen-containing polymers, a fludized bed has been built. This paper reports the results for polyamide 6-6 incineration. The main nitrogen containing species have been identified, and the axial profiles of concentration of nitrogen oxides, HCN and NH3 have been measured. The main steps of decomposition of the polyamide were identified. We present an experimental investigation of the influence of operating parameters (temperature, excess air) on the formation and reduction of polymer combustion products. The yields of conversion of nitrogen to the different N-species have been calculated as a function of excess air in the fluidized bed. (orig.)

  14. Ultrasound-assisted oxidative desulfurization and denitrogenation of liquid hydrocarbon fuels: A critical review.

    Science.gov (United States)

    Ja'fari, Mahsa; Ebrahimi, Seyedeh Leila; Khosravi-Nikou, Mohammad Reza

    2018-01-01

    Nowadays, a continuously worldwide concern for development of process to produce ultra-low sulfur and nitrogen fuels have been emerged. Typical hydrodesulfurization and hydrodenitrogenation technology deals with important difficulties such as high pressure and temperature operating condition, failure to treat some recalcitrant compounds and limitations to meet the stringent environmental regulations. In contrary an advanced oxidation process that is ultrasound assisted oxidative desulfurization and denitrogenation satisfies latest environmental regulations in much milder conditions with more efficiency. The present work deals with a comprehensive review on findings and development in the ultrasound assisted oxidative desulfurization and denitrogenation (UAOD) during the last decades. The role of individual parameters namely temperature, residence time, ultrasound power and frequency, pH, initial concentration and types of sulfur and nitrogen compounds on the efficiency are described. What's more another treatment properties that is role of phase transfer agent (PTA) and solvents of extraction step, reaction kinetics, mechanism of the ultrasound, fuel properties and recovery in UAOD are reviewed. Finally, the required future works to mature this technology are suggested. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Development of a standard reference material containing 22 chlorinated hydrocarbon gases at 1 μmol/mol in nitrogen.

    Science.gov (United States)

    Li, Ning; Du, Jian; Yang, Jing; Fan, Qiang; Tian, Wen

    2017-11-01

    A gas standard mixture containing 22 chlorinated hydrocarbons in high purity nitrogen was prepared using a two-step weighing method and a gasifying apparatus developed in-house. The concentration of each component was determined using a gas chromatograph with flame ionization detection (GC/FID). Linear regression analysis of every component was performed using the gas standard mixture with concentrations ranging from 1 to 10 μmol/mol, showing the complete gasification of volatile organic compound (VOCs) species in a selected cylinder. Repeatability was also examined to ensure the reliability of the preparation method. In addition, no significant difference was observed between domestic treated and imported treated cylinders, which were conducive to reduction of the cost of raw materials. Moreover, the results of stability testing at different pressures and long-term stability tests indicated that the gas standard at 1 μmol/mol level with relative expanded uncertainties of 5% was stable above 2 MPa for a minimum of 12 months. Finally, a quantity comparison was conducted between the gas standard and a commercial gas standard from Scott Specialty Gases (now Air Liquide America Specialty Gases). The excellent agreement of every species suggested the favorable accuracy of our gas standard. Therefore, this reference material can be applied to routine observation of VOCs and for other purposes.

  16. Wet Oxidation of Fine Soil Contaminated with Petroleum Hydrocarbons: A Way towards a Remediation Cycle

    Directory of Open Access Journals (Sweden)

    Maria Cristina Collivignarelli

    2018-06-01

    Full Text Available The aim of this experimental study was to assess the feasibility of using a wet oxidation (WO process for treating fine soil with a high level of total petroleum hydrocarbons (TPHs. Two samples of soil were spiked with two different contaminants (motor oil, and motor oil + diesel. The samples were subjected to a WO bench plant test, where the effect of the main process parameters (i.e., temperature and reaction time on the removal of TPHs was investigated. Results show that the WO process is effective for the decontamination of hydrocarbons, and a strong reduction (>85% can be obtained with the typical working conditions of a full-scale plant (temperature = 250 °C, reaction time = 30 min. The solid residue resulting from the WO process was characterized in order to evaluate the recovery options. In terms of chemical characterization, the contents of the pollutants comply with the Italian regulations for commercial and industrial site use. Moreover, the results of the leaching test suggested that these residues could be reused for ceramic and brick manufacturing processes.

  17. Gradual combustion - method for nitrogen oxide suppression during brown coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.P.; Verzakov, V.N.; Lobov, T.V.

    1990-10-01

    Discusses combustion of brown coal in BKZ-500-140-1 boilers and factors that influence emission of nitrogen oxides. Temperature distribution in the furnace was evaluated. Effects of burner position, burner number and burner type as well as air excess ratio on chemical reactions during brown coal combustion, formation of nitrogen oxides and their emission were comparatively evaluated. Analyses showed that by optimum arrangement of burners and selecting the optimum air excess ratio a part of nitrogen oxides formed during the initial phase of combustion was reduced to molecular nitrogen in the second phase. On the basis of evaluations the following recommendations for furnace design are made: use of straight-flow burners characterized by a reduced mixing ratio with secondary air, parallel arrangement of burners which guarantees mixing of the combustion products from the burners with stable and unstable combustion (products of incomplete coal combustion), reducing the air excess ratio to below 1.0. 5 refs.

  18. Formation of polycyclic aromatic hydrocarbons and soot in fuel-rich oxidation of methane in a laminar flow reactor

    DEFF Research Database (Denmark)

    Skjøth-Rasmussen, Martin Skov; Glarborg, Peter; Østberg, M.

    2004-01-01

    Conversion of methane to higher hydrocarbons, polycyclic aromatic hydrocarbons (PAHs), and soot was investigated under fuel-rich conditions in a laminar flow reactor. The effects of stoichiometry, dilution, and water vapor addition were studied at temperatures between 1073 and 1823 K. A chemical...... kinetic mechanism was established for methane oxidation, with emphasis on formation of higher hydrocarbons and PAH. A submodel for soot formation was adopted from the work of Frenklach and co-workers without changes. Modeling predictions showed good agreement with experimental results. Reactants, stable...... decrease with increasing addition of water vapor. The effect is described qualitatively by the reaction mechanism. The enhanced oxidation of acetylene is attributed to higher levels of hydroxyl radicals, formed from the reaction between the water vapor and hydrogen atoms....

  19. Fractal and variability analysis of simulations in ozone level due to oxides of nitrogen and sulphur

    Science.gov (United States)

    Bhardwaj, Rashmi; Pruthi, Dimple

    2017-10-01

    Air pollution refers to the release of pollutants into the air. These pollutants are detrimental to human the planet as a whole. Apart from causing respiratory infections and pulmonary disorders, rising levels of Nitrogen Dioxide is worsening ozone pollution. Formation of Ground-level ozone involves nitrogen oxides and volatile gases in the sunlight. Volatile gases are emitted from vehicles primarily. Ozone is harmful gas and its exposure can trigger serious health effects as it damages lung tissues. In order to decrease the level of ozone, level of oxides leading to ozone formation has to be dealt with. This paper deals with the simulations in ozone due to oxides of nitrogen and sulphur. The data from Central Pollution Control Board shows positive correlation for ozone with oxides of sulphur and nitrogen for RK Puram, Delhi in India where high concentration of ozone has been found. The correlation between ozone and sulphur, nitrogen oxides is moderate during summer while weak during winters. Ozone with nitrogen and sulphur dioxide follow persistent behavior as Hurst exponent is between 0.5 and 1. The fractal dimension for Sulphur dioxide is 1.4957 indicating the Brownian motion. The behavior of ozone is unpredictable as index of predictability is close to zero.

  20. Effect of nitrogen doping on wetting and photoactive properties of laser processed zinc oxide-graphene oxide nanocomposite layers

    Energy Technology Data Exchange (ETDEWEB)

    György, E., E-mail: egyorgy@icmab.es [Consejo Superior de Investigaciones Cientificas, Instituto de Ciencia de Materiales de Barcelona (CSIC-ICMAB), Campus UAB, 08193 Bellaterra (Spain); National Institute for Lasers, Plasma and Radiation Physics, P. O. Box MG 36, 76900 Bucharest V (Romania); Pérez del Pino, A. [Consejo Superior de Investigaciones Cientificas, Instituto de Ciencia de Materiales de Barcelona (CSIC-ICMAB), Campus UAB, 08193 Bellaterra (Spain); Logofatu, C. [National Institute for Materials Physics, P. O. Box MG. 7, 77125 Bucharest (Romania); Duta, A.; Isac, L. [Transilvania University of Brasov, Research Centre for Renewable Energy Systems and Recycling, Eroilor 29, 500036, Brasov (Romania)

    2014-07-14

    Zinc oxide-graphene oxide nanocomposite layers were submitted to laser irradiation in air or controlled nitrogen atmosphere using a frequency quadrupled Nd:YAG (λ = 266 nm, τ{sub FWHM} ≅ 3 ns, ν = 10 Hz) laser source. The experiments were performed in air at atmospheric pressure or in nitrogen at a pressure of 2 × 10{sup 4} Pa. The effect of the irradiation conditions, incident laser fluence value, and number of subsequent laser pulses on the surface morphology of the composite material was systematically investigated. The obtained results reveal that nitrogen incorporation improves significantly the wetting and photoactive properties of the laser processed layers. The kinetics of water contact angle variation when the samples are submitted to laser irradiation in nitrogen are faster than that of the samples irradiated in air, the surfaces becoming super-hydrophilic under UV light irradiation.

  1. Low levels of nitryl chloride at ground level: nocturnal nitrogen oxides in the Lower Fraser Valley of British Columbia

    Science.gov (United States)

    Osthoff, Hans D.; Odame-Ankrah, Charles A.; Taha, Youssef M.; Tokarek, Travis W.; Schiller, Corinne L.; Haga, Donna; Jones, Keith; Vingarzan, Roxanne

    2018-05-01

    The nocturnal nitrogen oxides, which include the nitrate radical (NO3), dinitrogen pentoxide (N2O5), and its uptake product on chloride containing aerosol, nitryl chloride (ClNO2), can have profound impacts on the lifetime of NOx ( = NO + NO2), radical budgets, and next-day photochemical ozone (O3) production, yet their abundances and chemistry are only sparsely constrained by ambient air measurements. Here, we present a measurement data set collected at a routine monitoring site near the Abbotsford International Airport (YXX) located approximately 30 km from the Pacific Ocean in the Lower Fraser Valley (LFV) on the west coast of British Columbia. Measurements were made from 20 July to 4 August 2012 and included mixing ratios of ClNO2, N2O5, NO, NO2, total odd nitrogen (NOy), O3, photolysis frequencies, and size distribution and composition of non-refractory submicron aerosol (PM1). At night, O3 was rapidly and often completely removed by dry deposition and by titration with NO of anthropogenic origin and unsaturated biogenic hydrocarbons in a shallow nocturnal inversion surface layer. The low nocturnal O3 mixing ratios and presence of strong chemical sinks for NO3 limited the extent of nocturnal nitrogen oxide chemistry at ground level. Consequently, mixing ratios of N2O5 and ClNO2 were low ( formation of ClNO2 in the nocturnal residual layer aloft than at the surface and the breakup of the nocturnal boundary layer structure in the morning. When quantifiable, production of ClNO2 from N2O5 was efficient and likely occurred predominantly on unquantified supermicron-sized or refractory sea-salt-derived aerosol. After sunrise, production of Cl radicals from photolysis of ClNO2 was negligible compared to production of OH from the reaction of O(1D) + H2O except for a short period after sunrise.

  2. Treatment of petroleum-hydrocarbon contaminated soils using hydrogen peroxide oxidation catalyzed by waste basic oxygen furnace slag

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, T.T. [Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Kao, C.M., E-mail: jkao@mail.nsysu.edu.tw [Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China)

    2009-10-15

    The contamination of subsurface soils with petroleum hydrocarbons is a widespread environmental problem. The objective of this study was to evaluate the potential of applying waste basic oxygen furnace slag (BOF slag) as the catalyst to enhance the Fenton-like oxidation to remediate fuel oil or diesel contaminated soils. The studied controlling factors that affect the removal efficiency of petroleum hydrocarbons included concentrations of H{sub 2}O{sub 2}, BOF slag dosages, types of petroleum hydrocarbons (e.g., fuel oil and diesel), and types of iron mineral. Experimental results indicate that oxidation of petroleum hydrocarbon via the Fenton-like process can be enhanced with the addition of BOF slag. Results from the X-ray powder diffraction analysis reveal that the major iron type of BOF slag/sandy loam system was iron mineral (e.g., {alpha}-Fe{sub 2}O{sub 3} and {alpha}-FeOOH). Approximately 76% and 96% of fuel oil and diesel removal were observed (initial total petroleum hydrocarbon (TPH) concentration = 10,000 mg kg{sup -1}), respectively, with the addition of 15% of H{sub 2}O{sub 2} and 100 g kg{sup -1} of BOF slag after 40 h of reaction. Because BOF slag contains extractable irons such as amorphous iron and soluble iron, it can act as an iron sink to supply iron continuously for Fenton-like oxidation. Results demonstrate that Fenton-like oxidation catalyzed by BOF slag is a potential method to be able to remediate petroleum-hydrocarbon contaminated soils efficiently and effectively.

  3. Thermodynamic analysis of synthetic hydrocarbon fuel production in pressurized solid oxide electrolysis cells

    DEFF Research Database (Denmark)

    Sun, Xiufu; Chen, Ming; Jensen, Søren Højgaard

    2012-01-01

    A promising way to store wind and solar electricity is by electrolysis of H2O and CO2 using solid oxide electrolysis cells (SOECs) to produce synthetic hydrocarbon fuels that can be used in existing fuel infrastructure. Pressurized operation decreases the cell internal resistance and enables...... improved system efficiency, potentially lowering the fuel production cost significantly. In this paper, we present a thermodynamic analysis of synthetic methane and dimethyl ether (DME) production using pressurized SOECs, in order to determine feasible operating conditions for producing the desired......, and outlet gas composition. For methane production, low temperature and high pressure operation could improve the system efficiency, but might lead to a higher capital cost. For DME production, high pressure SOEC operation necessitates higher operating temperature in order to avoid carbon formation at higher...

  4. Model studies in hydrocarbon oxidation. Progress report, April 1--November 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Parkin, G.

    1993-12-31

    The research performed during the period 1 April--31 November 1993 has centered on an investigation of the chemistry of molecular terminal oxo complexes. In the long term, it is hoped that this research will provide results that are relevant to systems concerned with hydrocarbon oxidation. The authors have also carried studies of transition metal complexes that contain terminal sulfido, selenido and tellurido ligands, since a knowledge of the chemistry of the heavier congeners of this group will help provide a more complete understanding of the chemistry of transition metal oxo complexes. Furthermore, the chemistry of the metal sulfido derivatives will be directly related to hydrodesulfurization, an extremely important industrial process, for which transition metal-sulfido derivatives, e.g. MoS{sub 2}, are active catalysts.

  5. Photodegradation of polycyclic aromatic hydrocarbon pyrene by iron oxide in solid phase

    International Nuclear Information System (INIS)

    Wang, Y.; Liu, C.S.; Li, F.B.; Liu, C.P.; Liang, J.B.

    2009-01-01

    To better understand the photodegradation of polycyclic aromatic hydrocarbons (PAH) in solid phase in natural environment, laboratory experiments were conducted to study the influencing factors, kinetics and intermediate compound of pyrene photodegradation by iron oxides. The results showed that the pyrene photodegradation rate followed the order of α-FeOOH > α-Fe 2 O 3 > γ-Fe 2 O 3 > γ-FeOOH at the same reaction conditions. Lower dosage of α-FeOOH and higher light intensity increased the photodegradation rate of pyrene. Iron oxides and oxalic acid can set up a photo-Fenton-like system without additional H 2 O 2 in solid phase to enhance the photodegradation of pyrene under UV irradiation. All reaction followed the first-order reaction kinetics. The half-life (t 1/2 ) of pyrene in the system showed the higher efficiencies of using iron oxide as photocatalyst to degrade pyrene. Intermediate compound pyreno was found during photodegradation reactions by gas chromatography-mass spectrometry (GC-MS). The photodegradation efficiency for PAHs in this photo-Fenton-like system was also confirmed by using the contaminated soil samples. This work provides some useful information to understand the remediation of PAHs contaminated soils by photochemical techniques under practical condition

  6. Nitrogen management impacts nitrous oxide emissions under varying cotton irrigation systems in the American Desert Southwest

    Science.gov (United States)

    Irrigation of food and fiber crops worldwide continues to increase. Nitrogen (N) from fertilizers is a major source of the potent greenhouse gas nitrous oxide (N2O) in irrigated cropping systems. Nitrous oxide emissions data are scarce for crops in the arid Western US. The objective of these studies...

  7. Removal and recovery of nitrogen and sulfur oxides from gaseous mixtures containing them

    International Nuclear Information System (INIS)

    Cooper, H.B.H.

    1984-01-01

    A cyclic process for removing lower valence nitrogen oxides from gaseous mixtures includes treating the mixtures with an aqueous media including alkali metal carbonate and alkali metal bicarbonate and a preoxygen oxidant to form higher valence nitrogen oxides and to capture these oxides as alkali metal salts, expecially nitrites and nitrates, in a carbonate/bicarbonate-containing product aqueous media. Highly selective recovery of nitrates in high purity and yield may then follow, as by crystallization, with the carbonate and bicarbonate alkali metal salts strongly increasing the selectivity and yield of nitrates. The product nitrites are converted to nitrates by oxidation after lowering the product aqueous media pH to below about 9. A cyclic process for removing sulfur oxides from gas mixtures includes treating these mixtures includes treating these mixtures with aqueous media including alkali metal carbonate and alkali metal bicarbonate where the ratio of alkali metal to sulfur dioxide is not less than 2. The sulfur values may be recovered from the resulting carbonate/bicarbonate/-sulfite containing product aqueous media as alkali metal sulfate or sulfite salts which are removed by crystallization from the carbonate-containing product aqueous media. As with the nitrates, the carbonate/bicarbonate system strongly increases yield of sulfate or sulfite during crystallization. Where the gas mixtures include both sulfur dioxide and lower valence nitrogen oxides, the processes for removing lower valence nitrogen oxides and sulfur dioxide may be combined into a single removal/recovery system, or may be effected in sequence

  8. Analyzing nitrogen concentration using carrier illumination (CI) technology for DPN ultra-thin gate oxide

    International Nuclear Information System (INIS)

    Li, W.S.; Wu, Bill; Fan, Aki; Kuo, C.W.; Segovia, M.; Kek, H.A.

    2005-01-01

    Nitrogen concentration in the gate oxide plays a key role for 90 nm and below ULSI technology. Techniques like secondary ionization mass spectroscopy (SIMS) and X-ray photoelectron spectroscopy (XPS) are commonly used for understanding N concentration. This paper describes the application of the carrier illuminationTM (CI) technique to measure the nitrogen concentration in ultra-thin gate oxides. A set of ultra-thin gate oxide wafers with different DPN (decoupled plasma nitridation) treatment conditions were measured using the CI technique. The CI signal has excellent correlation with the N concentration as measured by XPS

  9. Functional genes to assess nitrogen cycling and aromatic hydrocarbon degradation: primers and processing matter

    Directory of Open Access Journals (Sweden)

    Christopher Ryan Penton

    2013-09-01

    Full Text Available Targeting sequencing to genes involved in key environmental processes, i.e. ecofunctional genes, provides an opportunity to sample nature’s gene guilds to greater depth and help link community structure to process-level outcomes. Vastly different approaches have been implemented for sequence processing and, ultimately, for taxonomic placement of these gene reads. The overall quality of next generation sequence analysis of functional genes is dependent on multiple steps and assumptions of unknown diversity. To illustrate current issues surrounding amplicon read processing we provide examples for three ecofunctional gene groups. A combination of in-silico, environmental and cultured strain sequences was used to test new primers targeting the dioxin and dibenzofuran degrading genes dxnA1, dbfA1, and carAa. The majority of obtained environmental sequences were classified into novel sequence clusters, illustrating the discovery value of the approach. For the nitrite reductase step in denitrification, the well-known nirK primers exhibited deficiencies in reference database coverage, illustrating the need to refine primer-binding sites and/or to design multiple primers, while nirS primers exhibited bias against five phyla. Amino acid-based OTU clustering of these two N-cycle genes from soil samples yielded only 114 unique nirK and 45 unique nirS genus-level groupings, likely a reflection of constricted primer coverage. Finally, supervised and non-supervised OTU analysis methods were compared using the nifH gene of nitrogen fixation, with generally similar outcomes, but the clustering (non-supervised method yielded higher diversity estimates and stronger site-based differences. High throughput amplicon sequencing can provide inexpensive and rapid access to nature’s related sequences by circumventing the culturing barrier, but each unique gene requires individual considerations in terms of primer design and sequence processing and classification.

  10. [Ammonia-oxidizing archaea and their important roles in nitrogen biogeochemical cycling: a review].

    Science.gov (United States)

    Liu, Jing-Jing; Wu, Wei-Xiang; Ding, Ying; Shi, De-Zhi; Chen, Ying-Xu

    2010-08-01

    As the first step of nitrification, ammonia oxidation is the key process in global nitrogen biogeochemical cycling. So far, the autotrophic ammonia-oxidizing bacteria (AOB) in the beta- and gamma-subgroups of proteobacteria have been considered as the most important contributors to ammonia oxidation, but the recent researches indicated that ammonia-oxidizing archaea (AOA) are widely distributed in various kinds of ecosystems and quantitatively predominant, playing important roles in the global nitrogen biogeochemical cycling. This paper reviewed the morphological, physiological, and ecological characteristics and the molecular phylogenies of AOA, and compared and analyzed the differences and similarities of the ammonia monooxygenase (AMO) and its encoding genes between AOA and AOB. In addition, the potential significant roles of AOA in nitrogen biogeochemical cycling in aquatic and terrestrial ecosystems were summarized, and the future research directions of AOA in applied ecology and environmental protection were put forward.

  11. Study of ionic movements during anodic oxidation of nitrogen-implanted aluminium

    International Nuclear Information System (INIS)

    Terwagne, G.; Lucas, S.; Bodart, F.; Sorensen, G.; Jensen, H.

    1990-01-01

    In recent years there has been a considerable interest in synthesizing aluminium nitrides by ion implantation in order to modify the tribological properties of aluminium. The growth of an oxide layer by anodic process on these synthesized aluminium nitrides gives an interesting oxide-on-semiconductor material with surprising dynamic and decorative properties. During the anodic oxidation, ionic movements are involved in the near-surface region of the aluminium material; these ionic movements have been studied by Rutherford backscattering spectrometry (RBS) and nuclear reaction analysis (NRA) on thin aluminium foils (7000 A) preimplanted with nitrogen and post-oxidized in an ammonium pentaborate solution. The growth of the oxide layer is reduced when the aluminium is preimplanted with nitrogen: the speed of oxidation depends on the implantation conditions (energy and fluence). Moreover, the aluminium nitride can be dissolved when all metallic aluminium staying between the surface and the AlN are consumed by the anodic process. (orig.)

  12. Anodic ammonia oxidation to nitrogen gas catalyzed by mixed biofilms in bioelectrochemical systems

    International Nuclear Information System (INIS)

    Zhan, Guoqiang; Zhang, Lixia; Tao, Yong; Wang, Yujian; Zhu, Xiaoyu; Li, Daping

    2014-01-01

    In this paper we report ammonia oxidation to nitrogen gas using microbes as biocatalyst on the anode, with polarized electrode (+600 mV vs. Ag/AgCl) as electron acceptor. In batch experiments, the maximal rate of ammonia-N oxidation by the mixed culture was ∼ 60 mg L −1 d −1 , and nitrogen gas was the main products in anode compartment. Cyclic voltammetry for testing the electroactivity of the anodic biofilms revealed that an oxidation peak appeared at +600 mV (vs. Ag/AgCl), whereas the electrode without biofilms didn’t appear oxidation peak, indicating that the bioanode had good electroactivities for ammonia oxidation. Microbial community analysis of 16S rRNA genes based on high throughput sequencing indicated that the combination of the dominant genera of Nitrosomonas, Comamonas and Paracocus could be important for the electron transfer from ammonia oxidation to anode

  13. Nitrous oxide production by lithotrophic ammonia-oxidizing bacteria and implications for engineered nitrogen-removal systems.

    Science.gov (United States)

    Chandran, Kartik; Stein, Lisa Y; Klotz, Martin G; van Loosdrecht, Mark C M

    2011-12-01

    Chemolithoautotrophic AOB (ammonia-oxidizing bacteria) form a crucial component in microbial nitrogen cycling in both natural and engineered systems. Under specific conditions, including transitions from anoxic to oxic conditions and/or excessive ammonia loading, and the presence of high nitrite (NO₂⁻) concentrations, these bacteria are also documented to produce nitric oxide (NO) and nitrous oxide (N₂O) gases. Essentially, ammonia oxidation in the presence of non-limiting substrate concentrations (ammonia and O₂) is associated with N₂O production. An exceptional scenario that leads to such conditions is the periodical switch between anoxic and oxic conditions, which is rather common in engineered nitrogen-removal systems. In particular, the recovery from, rather than imposition of, anoxic conditions has been demonstrated to result in N₂O production. However, applied engineering perspectives, so far, have largely ignored the contribution of nitrification to N₂O emissions in greenhouse gas inventories from wastewater-treatment plants. Recent field-scale measurements have revealed that nitrification-related N₂O emissions are generally far higher than emissions assigned to heterotrophic denitrification. In the present paper, the metabolic pathways, which could potentially contribute to NO and N₂O production by AOB have been conceptually reconstructed under conditions especially relevant to engineered nitrogen-removal systems. Taken together, the reconstructed pathways, field- and laboratory-scale results suggest that engineering designs that achieve low effluent aqueous nitrogen concentrations also minimize gaseous nitrogen emissions.

  14. Formation of Polycyclic Aromatic Hydrocarbons and Nitrogen Containing Polycyclic Aromatic Compounds in Titan's Atmosphere, the Interstellar Medium and Combustion

    Science.gov (United States)

    Landera, Alexander

    2013-12-01

    Several different mechanisms leading to the formation of (substituted) naphthalene and azanaphthalenes were examined using theoretical quantum chemical calculations. As a result, a series of novel synthetic routes to Polycyclic Aromatic Hydrocarbons (PAHs) and Nitrogen Containing Polycyclic Aromatic Compounds (N-PACs) have been proposed. On Earth, these aromatic compounds originate from incomplete combustion and are released into our environment, where they are known to be major pollutants, often with carcinogenic properties. In the atmosphere of a Saturn's moon Titan, these PAH and N-PACs are believed to play a critical role in organic haze formation, as well as acting as chemical precursors to biologically relevant molecules. The theoretical calculations were performed by employing the ab initio G3(MP2,CC)/B3LYP/6-311G** method to effectively probe the Potential Energy Surfaces (PES) relevant to the PAH and N-PAC formation. Following the construction of the PES, Rice-Ramsperger-Kassel-Markus (RRKM) theory was used to evaluate all unimolecular rate constants as a function of collision energy under single-collision conditions. Branching ratios were then evaluated by solving phenomenological rate expressions for the various product concentrations. The most viable pathways to PAH and N-PAC formation were found to be those where the initial attack by the ethynyl (C2H) or cyano (CN) radical toward a unsaturated hydrocarbon molecule led to the formation of an intermediate which could not effectively lose a hydrogen atom. It is not until ring cyclization has occurred, that hydrogen elimination leads to a closed shell product. By quenching the possibility of the initial hydrogen atom elimination, one of the most competitive processes preventing the PAH or N-PAC formation was avoided, and the PAH or N-PAC formation was allowed to proceed. It is concluded that these considerations should be taken into account when attempting to explore any other potential routes towards

  15. Conductivity study of nitrogen-doped calcium zinc oxide prepared by spray pyrolysis

    International Nuclear Information System (INIS)

    Hsu, Yu-Ting; Lan, Wen-How; Huang, Kai-Feng; Lin, Jia-Ching; Chang, Kuo-Jen

    2016-01-01

    In this study, the spray pyrolysis method was used to prepare unintentionally doped and nitrogen-doped calcium zinc oxide films by using zinc acetate, calcium nitrate precursor, and ammonium acetate precursor. Morphological and structural analyses were conducted using scanning electron microscopy and X-ray diffraction. The results indicated that film grain size decreased as the nitrogen doping was increased. Both calcium oxide and zinc oxide structures were identified in the unintentionally doped calcium zinc oxide. When nitrogen doping was introduced, the film mainly exhibited a zinc oxide structure with preferred (002) and (101) orientations. The concentration and mobility were investigated using a Hall measurement system. P-type films with a mobility and concentration of 10.6 cm"2 V"−"1 s"−"1 and 2.8×10"1"7 cm"−"3, respectively, were obtained. Moreover, according to a temperature-dependent conductivity analysis, an acceptor state with activation energy 0.266 eV dominated the p-type conduction for the unintentionally doped calcium zinc oxide. By contrast, a grain boundary with a barrier height of 0.274–0.292 eV dominated the hole conduction for the nitrogen-doped calcium zinc oxide films.

  16. Nitrogen

    Science.gov (United States)

    Apodaca, Lori E.

    2013-01-01

    The article presents an overview of the nitrogen chemical market as of July 2013, including the production of ammonia compounds. Industrial uses for ammonia include fertilizers, explosives, and plastics. Other topics include industrial capacity of U.S. ammonia producers CF Industries Holdings Inc., Koch Nitrogen Co., PCS Nitrogen, Inc., and Agrium Inc., the impact of natural gas prices on the nitrogen industry, and demand for corn crops for ethanol production.

  17. Relationship between chemical composition and oxidative potential of secondary organic aerosol from polycyclic aromatic hydrocarbons

    Science.gov (United States)

    Wang, Shunyao; Ye, Jianhuai; Soong, Ronald; Wu, Bing; Yu, Legeng; Simpson, André J.; Chan, Arthur W. H.

    2018-03-01

    Owing to the complex nature and dynamic behaviors of secondary organic aerosol (SOA), its ability to cause oxidative stress (known as oxidative potential, or OP) and adverse health outcomes remains poorly understood. In this work, we probed the linkages between the chemical composition of SOA and its OP, and investigated impacts from various SOA evolution pathways, including atmospheric oligomerization, heterogeneous oxidation, and mixing with metal. SOA formed from photooxidation of the two most common polycyclic aromatic hydrocarbons (naphthalene and phenanthrene) were studied as model systems. OP was evaluated using the dithiothreitol (DTT) assay. The oligomer-rich fraction separated by liquid chromatography dominates DTT activity in both SOA systems (52 ± 10 % for naphthalene SOA (NSOA), and 56 ± 5 % for phenanthrene SOA (PSOA)). Heterogeneous ozonolysis of NSOA was found to enhance its OP, which is consistent with the trend observed in selected individual oxidation products. DTT activities from redox-active organic compounds and metals were found to be not additive. When mixing with highly redox-active metal (Cu), OP of the mixture decreased significantly for 1,2-naphthoquinone (42 ± 7 %), 2,3-dihydroxynaphthalene (35 ± 1 %), NSOA (50 ± 6 %), and PSOA (43 ± 4 %). Evidence from proton nuclear magnetic resonance (1H NMR) spectroscopy illustrates that such OP reduction upon mixing can be ascribed to metal-organic binding interactions. Our results highlight the role of aerosol chemical composition under atmospheric aging processes in determining the OP of SOA, which is needed for more accurate and explicit prediction of the toxicological impacts from particulate matter.

  18. Dithiothreitol activity by particulate oxidizers of SOA produced from photooxidation of hydrocarbons under varied NOx levels

    Directory of Open Access Journals (Sweden)

    H. Jiang

    2017-08-01

    Full Text Available When hydrocarbons (HCs are atmospherically oxidized, they form particulate oxidizers, including quinones, organic hydroperoxides, and peroxyacyl nitrates (PANs. These particulate oxidizers can modify cellular materials (e.g., proteins and enzymes and adversely modulate cell functions. In this study, the contribution of particulate oxidizers in secondary organic aerosols (SOAs to the oxidative potential was investigated. SOAs were generated from the photooxidation of toluene, 1,3,5-trimethylbenzene, isoprene, and α-pinene under varied NOx levels. Oxidative potential was determined from the typical mass-normalized consumption rate (reaction time t =  30 min of dithiothreitol (DTTt, a surrogate for biological reducing agents. Under high-NOx conditions, the DTTt of toluene SOA was 2–5 times higher than that of the other types of SOA. Isoprene DTTt significantly decreased with increasing NOx (up to 69 % reduction by changing the HC ∕ NOx ratio from 30 to 5. The DTTt of 1,3,5-trimethylbenzene and α-pinene SOA was insensitive to NOx under the experimental conditions of this study. The significance of quinones to the oxidative potential of SOA was tested through the enhancement of DTT consumption in the presence of 2,4-dimethylimidazole, a co-catalyst for the redox cycling of quinones; however, no significant effect of 2,4-dimethylimidazole on modulation of DTT consumption was observed for all SOA, suggesting that a negligible amount of quinones was present in the SOA of this study. For toluene and isoprene, mass-normalized DTT consumption (DTTm was determined over an extended period of reaction time (t =  2 h to quantify their maximum capacity to consume DTT. The total quantities of PANs and organic hydroperoxides in toluene SOA and isoprene SOA were also measured using the Griess assay and the 4-nitrophenylboronic acid assay, respectively. Under the NOx conditions (HC ∕ NOx ratio: 5–36 ppbC ppb−1 applied in

  19. Dithiothreitol activity by particulate oxidizers of SOA produced from photooxidation of hydrocarbons under varied NOx levels

    Science.gov (United States)

    Jiang, Huanhuan; Jang, Myoseon; Yu, Zechen

    2017-08-01

    When hydrocarbons (HCs) are atmospherically oxidized, they form particulate oxidizers, including quinones, organic hydroperoxides, and peroxyacyl nitrates (PANs). These particulate oxidizers can modify cellular materials (e.g., proteins and enzymes) and adversely modulate cell functions. In this study, the contribution of particulate oxidizers in secondary organic aerosols (SOAs) to the oxidative potential was investigated. SOAs were generated from the photooxidation of toluene, 1,3,5-trimethylbenzene, isoprene, and α-pinene under varied NOx levels. Oxidative potential was determined from the typical mass-normalized consumption rate (reaction time t = 30 min) of dithiothreitol (DTTt), a surrogate for biological reducing agents. Under high-NOx conditions, the DTTt of toluene SOA was 2-5 times higher than that of the other types of SOA. Isoprene DTTt significantly decreased with increasing NOx (up to 69 % reduction by changing the HC / NOx ratio from 30 to 5). The DTTt of 1,3,5-trimethylbenzene and α-pinene SOA was insensitive to NOx under the experimental conditions of this study. The significance of quinones to the oxidative potential of SOA was tested through the enhancement of DTT consumption in the presence of 2,4-dimethylimidazole, a co-catalyst for the redox cycling of quinones; however, no significant effect of 2,4-dimethylimidazole on modulation of DTT consumption was observed for all SOA, suggesting that a negligible amount of quinones was present in the SOA of this study. For toluene and isoprene, mass-normalized DTT consumption (DTTm) was determined over an extended period of reaction time (t = 2 h) to quantify their maximum capacity to consume DTT. The total quantities of PANs and organic hydroperoxides in toluene SOA and isoprene SOA were also measured using the Griess assay and the 4-nitrophenylboronic acid assay, respectively. Under the NOx conditions (HC / NOx ratio: 5-36 ppbC ppb-1) applied in this study, the amount of organic hydroperoxides was

  20. Activated carbon as catalyst for microwave-assisted wet peroxide oxidation of aromatic hydrocarbons.

    Science.gov (United States)

    Garcia-Costa, Alicia L; Lopez-Perela, Lucia; Xu, Xiyan; Zazo, Juan A; Rodriguez, Juan J; Casas, Jose A

    2018-05-21

    This paper addresses the removal of four aromatic hydrocarbons typically found in petrochemical wastewater: benzene (B), toluene (T), o-xylene (X), and naphthalene (N), by microwave-assisted catalytic wet peroxide oxidation (MW-CWPO) using activated carbon (AC) as catalyst. Under the studied conditions, complete pollutant elimination (B, 1.28 mM; T, 1.09 mM; X, 0.94 mM; and N, 0.78 mM) was achieved, with more than 90% TOC removal after only 15-min reaction time, working at 120 °C, pH 0  = 3, AC at 1 g L -1 , and H 2 O 2 at the stoichiometric dose. Furthermore, in the case of toluene, naphthalene, and xylene, the hydroxylation and breakdown of the ring is very rapid and toxic intermediates were not detected. The process follows two steps: (i) pollutant adsorption onto AC followed by (ii) adsorbed compounds oxidation. Thus, MW-CWPO with AC as catalyst appears a promising way for a fast and effective process for B, T, X, and N removal in aqueous phase.

  1. Application of a Chemiluminescence Detector for the Measurement of Total Oxides of Nitrogen and Ammonia in the Atmosphere

    Science.gov (United States)

    Hodgeson, J. A.; Bell, J. P.; Rehme, K. A.; Krost, K. J.; Stevens, R. K.

    1971-01-01

    By means of the thermal conversion of nitrogen dioxide to the nitric oxide, the chemiluminescent nitric oxide monitor, based on the nitric oxide plus ozone reaction, may be used for monitoring nitrogen dioxide plus nitric oxide (NO(x)). Under conditions previously described, ammonia is also converted to nitric oxide and therefore interferes. A metal surface, gold wool or stainless steel, operated at two different temperatures has been used to convert only nitrogen dioxide or nitrogen dioxide plus ammonia. Quantitative conversion of nitrogen dioxide to nitric oxide has been obtained at temperatures as low as 200 C. Conversion of ammonia is effected at temperatures of 300 C or higher. By the addition of a converter the basic nitric oxide monitor may be used for measuring NO(x) or NO(x) plus ammonia. As an alternate mode, for a fixed high temperature, a specific scrubber is described for removing NH3 without affecting NO2 concentrations.

  2. Deposition of nitrogen oxides and ozone to Danish forest sites

    DEFF Research Database (Denmark)

    Pilegaard, K.; Jensen, N.O.; Hummelshøj, P.

    1995-01-01

    of the influence of meteorological factors. The viscous sub-layer resistance is derived by a new theory, taking the bluff roughness elements of the forest and the dimension of the needles/leaves as well as the LAI into account. The fluxes of nitrogen dioxide and ozone are related to the fluxes of water vapour...

  3. Synergetic effect of sulphur and nitrogen oxides on corrosion of ...

    African Journals Online (AJOL)

    The synergetic effect of nitrogen dioxide (NO2) and sulphur dioxide (SO2) on corrosion of galvanized iron roofing sheets has been investigated. The field studies were conducted in Ibeno and Ebocha (Niger Delta, Nigeria). Specimens of the roofing sheets were exposed for one year to outdoor environment to record the ...

  4. Simultaneous removal of nitrogen oxide/nitrogen dioxide/sulfur dioxide from gas streams by combined plasma scrubbing technology.

    Science.gov (United States)

    Chang, Moo Been; Lee, How Ming; Wu, Feeling; Lai, Chi Ren

    2004-08-01

    Oxides of nitrogen (NOx) [nitrogen oxide (NO) + nitrogen dioxide (NO2)] and sulfur dioxide (SO2) are removed individually in traditional air pollution control technologies. This study proposes a combined plasma scrubbing (CPS) system for simultaneous removal of SO2 and NOx. CPS consists of a dielectric barrier discharge (DBD) and wet scrubbing in series. DBD is used to generate nonthermal plasmas for converting NO to NO2. The water-soluble NO2 then can be removed by wet scrubbing accompanied with SO2 removal. In this work, CPS was tested with simulated exhausts in the laboratory and with diesel-generator exhausts in the field. Experimental results indicate that DBD is very efficient in converting NO to NO2. More than 90% removal of NO, NOx, and SO2 can be simultaneously achieved with CPS. Both sodium sulfide (Na2S) and sodium sulfite (Na2SO3) scrubbing solutions are good for NO2 and SO2 absorption. Energy efficiencies for NOx and SO2 removal are 17 and 18 g/kWh, respectively. The technical feasibility of CPS for simultaneous removal of NO, NO2, and SO2 from gas streams is successfully demonstrated in this study. However, production of carbon monoxide as a side-product (approximately 100 ppm) is found and should be considered.

  5. Aryl hydrocarbon receptor protects lung adenocarcinoma cells against cigarette sidestream smoke particulates-induced oxidative stress

    International Nuclear Information System (INIS)

    Cheng, Ya-Hsin; Huang, Su-Chin; Lin, Chun-Ju; Cheng, Li-Chuan; Li, Lih-Ann

    2012-01-01

    Environmental cigarette smoke has been suggested to promote lung adenocarcinoma progression through aryl hydrocarbon receptor (AhR)-signaled metabolism. However, whether AhR facilitates metabolic activation or detoxification in exposed adenocarcinoma cells remains ambiguous. To address this question, we have modified the expression level of AhR in two human lung adenocarcinoma cell lines and examined their response to an extract of cigarette sidestream smoke particulates (CSSP). We found that overexpression of AhR in the CL1-5 cell line reduced CSSP-induced ROS production and oxidative DNA damage, whereas knockdown of AhR expression increased ROS level in CSSP-exposed H1355 cells. Oxidative stress sensor Nrf2 and its target gene NQO1 were insensitive to AhR expression level and CSSP treatment in human lung adenocarcinoma cells. In contrast, induction of AhR expression concurrently increased mRNA expression of xenobiotic-metabolizing genes CYP1B1, UGT1A8, and UGT1A10 in a ligand-independent manner. It appeared that AhR accelerated xenobiotic clearing and diminished associated oxidative stress by coordinate regulation of a set of phase I and II metabolizing genes. However, the AhR-signaled protection could not shield cells from constant oxidative stress. Prolonged exposure to high concentrations of CSSP induced G0/G1 cell cycle arrest via the p53–p21–Rb1 signaling pathway. Despite no effect on DNA repair rate, AhR facilitated the recovery of cells from growth arrest when CSSP exposure ended. AhR-overexpressing lung adenocarcinoma cells exhibited an increased anchorage-dependent and independent proliferation when recovery from exposure. In summary, our data demonstrated that AhR protected lung adenocarcinoma cells against CSSP-induced oxidative stress and promoted post-exposure clonogenicity. -- Highlights: ► AhR expression level influences cigarette sidestream smoke-induced ROS production. ► AhR reduces oxidative stress by coordinate regulation of

  6. Aryl hydrocarbon receptor protects lung adenocarcinoma cells against cigarette sidestream smoke particulates-induced oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Ya-Hsin [Graduate Institute of Basic Medical Science, School of Medicine, China Medical University, Taichung 40402, Taiwan, ROC (China); Huang, Su-Chin; Lin, Chun-Ju; Cheng, Li-Chuan [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC (China); Li, Lih-Ann, E-mail: lihann@nhri.org.tw [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC (China)

    2012-03-15

    Environmental cigarette smoke has been suggested to promote lung adenocarcinoma progression through aryl hydrocarbon receptor (AhR)-signaled metabolism. However, whether AhR facilitates metabolic activation or detoxification in exposed adenocarcinoma cells remains ambiguous. To address this question, we have modified the expression level of AhR in two human lung adenocarcinoma cell lines and examined their response to an extract of cigarette sidestream smoke particulates (CSSP). We found that overexpression of AhR in the CL1-5 cell line reduced CSSP-induced ROS production and oxidative DNA damage, whereas knockdown of AhR expression increased ROS level in CSSP-exposed H1355 cells. Oxidative stress sensor Nrf2 and its target gene NQO1 were insensitive to AhR expression level and CSSP treatment in human lung adenocarcinoma cells. In contrast, induction of AhR expression concurrently increased mRNA expression of xenobiotic-metabolizing genes CYP1B1, UGT1A8, and UGT1A10 in a ligand-independent manner. It appeared that AhR accelerated xenobiotic clearing and diminished associated oxidative stress by coordinate regulation of a set of phase I and II metabolizing genes. However, the AhR-signaled protection could not shield cells from constant oxidative stress. Prolonged exposure to high concentrations of CSSP induced G0/G1 cell cycle arrest via the p53–p21–Rb1 signaling pathway. Despite no effect on DNA repair rate, AhR facilitated the recovery of cells from growth arrest when CSSP exposure ended. AhR-overexpressing lung adenocarcinoma cells exhibited an increased anchorage-dependent and independent proliferation when recovery from exposure. In summary, our data demonstrated that AhR protected lung adenocarcinoma cells against CSSP-induced oxidative stress and promoted post-exposure clonogenicity. -- Highlights: ► AhR expression level influences cigarette sidestream smoke-induced ROS production. ► AhR reduces oxidative stress by coordinate regulation of

  7. Reaction Mechanism for the Formation of Nitrogen Oxides (NO x ) During Coke Oxidation in Fluidized Catalytic Cracking Units

    KAUST Repository

    Chaparala, Sree Vidya

    2015-06-11

    Fluidized catalytic cracking (FCC) units in refineries process heavy feedstock obtained from crude oil distillation. While cracking feed, catalysts get deactivated due to coke deposition. During catalyst regeneration by burning coke in air, nitrogen oxides (NOx) are formed. The increase in nitrogen content in feed over time has resulted in increased NOx emissions. To predict NOx concentration in flue gas, a reliable model for FCC regenerators is needed that requires comprehensive understanding and accurate kinetics for NOx formation. Based on the nitrogen-containing functional groups on coke, model molecules are selected to study reactions between coke-bound nitrogen and O2 to form NO and NO2 using density functional theory. The reaction kinetics for the proposed pathways are evaluated using transition state theory. It is observed that the addition of O2 on coke is favored only when the free radical is present on the carbon atom instead of nitrogen atom. Thus, NOx formation during coke oxidation does not result from the direct attack by O2 on N atoms of coke, but from the transfer of an O atom to N from a neighboring site. The low activation energies required for NO formation indicate that it is more likely to form than NO2 during coke oxidation. The favorable pathways for NOx formation that can be used in FCC models are identified. Copyright © 2015 Taylor & Francis Group, LLC.

  8. Methanol electrocatalytic oxidation on Pt nanoparticles on nitrogen doped graphene prepared by the hydrothermal reaction of graphene oxide with urea

    International Nuclear Information System (INIS)

    Xu, Xiao; Zhou, Yingke; Yuan, Tao; Li, Yawei

    2013-01-01

    A facile hydrothermal reaction of graphene oxide with urea was used to produce nitrogen doped graphene, and Pt nanoparticles were deposited on the obtained nitrogen doped graphene by the NaBH 4 reduction route. The morphology and microstructure of the synthesized catalysts were characterized by transmission electron microscopy, X-ray powder diffraction and X-ray photoelectron spectroscopy, while the functional groups on the surface of the catalysts were investigated by the Fourier transform infrared spectroscopy and ultraviolet-visible absorption spectra. Cyclic voltammetry, chronoamperometry and electrochemical impedance techniques were carried out to evaluate the methanol electrocatalytic oxidation activity and durability of Pt catalysts supported on the nitrogen doped graphene. The results showed that nitrogen doping and reduction of GO were achieved simultaneously by the facile hydrothermal reaction, which had beneficial effects for the deposition process and electrocatalytic activity of Pt nanoparticles. The Pt catalysts supported on the nitrogen doped graphene substrate presented excellent activity and durability of methanol oxidation reaction, which might be promising for application in direct methanol fuel cells

  9. Effect of nitrogen doping of graphene oxide on hydrogen and hydroxyl adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Min, Byeong June; Jeong, Hae Kyung [Daegu University, Kyungsan (Korea, Republic of)

    2014-05-15

    We investigate how nitrogen-doping affects the hydrogen (H) and the hydroxyl (OH) adsorption on graphene oxide (GO) and on nitrogen-doped GO (NGO) via pseudopotential plane wave density functional calculations within the local spin density approximation. We find that the nitrogen doping brings about drastic changes in the hydrogen and the hydroxyl adsorption energetics, but its effects depend sensitively on the nitrogen configuration in NGO. The H and the OH adsorption energies are comparable only for pyrrolic NGO. In GO and quarternary NGO, the H adsorption energy is greater than the OH adsorption energy while the trend is reversed in pyridinic NGO. Also, the OH adsorption process is less affected by nitrogen-doping than the H adsorption is.

  10. Year 2020: Consequences of population growth and development on deposition of oxidized nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Galloway, J N [Environmental Sciences Dept., Univ. of Virginia, Charlottesville, VA (United States); Levy, H; Kasibhatla, P S [NOAA Geophysical Fluid Dynamics Lab., Princeton, NJ (United States)

    1994-01-01

    With a current world population of 5.3 billion, fossil fuel and biomass burning have already greatly increased the emission of fixed nitrogen to the global atmosphere. In 2020, with a projected population of 8.5 billion and an assumed 100% increase in per capita energy consumption relative to 1980 by the lesser developed countries, we predict an approximate 25% increase in total nitrogen deposition in the more developed country source regions such as North America. In addition, reactive nitrogen deposition will at least double in less developed regions, such as SE Asia and Latin America, and will increase by more than 50% over the oceans of the Northern Hemisphere. Although we also predict significant increases in the deposition of nitrogen from fossil-fuel sources over most of the Southern Hemisphere, particularly Africa, the tropical eastern Pacific, and the southern Atlantic and Indian Oceans, biomass burning and the natural sources of nitrogen oxides (lightning and biogenic soil emissions) are also important in these regions. This increased deposition has the potential to fertilize both terrestrial and marine ecosystems, resulting in the sequestering of carbon. Increases in nitrogen deposition have also been shown not only to acidify ecosystems but also to increase emissions of nitric oxide (NO), nitrous oxide (N[sub 2]O), carbonyl sulfide (COS), and carbon+sulfur (CS[sub 2]) to the atmosphere and decrease methane (CH[sub 4]) consumption in forest soils. We also find that the atmospheric levels of nitrogen oxides increase significantly throughout much of the Northern Hemisphere and populated regions of the Southern Hemisphere. This increase may lead to larger ozone concentrations with resulting increases in the oxidative capacity of the remote atmosphere and its ability to absorb IR radiation. 31 refs, 3 figs, 1 tab

  11. Year 2020: Consequences of population growth and development on deposition of oxidized nitrogen

    International Nuclear Information System (INIS)

    Galloway, J.N.; Levy, H.; Kasibhatla, P.S.

    1994-01-01

    With a current world population of 5.3 billion, fossil fuel and biomass burning have already greatly increased the emission of fixed nitrogen to the global atmosphere. In 2020, with a projected population of 8.5 billion and an assumed 100% increase in per capita energy consumption relative to 1980 by the lesser developed countries, we predict an approximate 25% increase in total nitrogen deposition in the more developed country source regions such as North America. In addition, reactive nitrogen deposition will at least double in less developed regions, such as SE Asia and Latin America, and will increase by more than 50% over the oceans of the Northern Hemisphere. Although we also predict significant increases in the deposition of nitrogen from fossil-fuel sources over most of the Southern Hemisphere, particularly Africa, the tropical eastern Pacific, and the southern Atlantic and Indian Oceans, biomass burning and the natural sources of nitrogen oxides (lightning and biogenic soil emissions) are also important in these regions. This increased deposition has the potential to fertilize both terrestrial and marine ecosystems, resulting in the sequestering of carbon. Increases in nitrogen deposition have also been shown not only to acidify ecosystems but also to increase emissions of nitric oxide (NO), nitrous oxide (N 2 O), carbonyl sulfide (COS), and carbon+sulfur (CS 2 ) to the atmosphere and decrease methane (CH 4 ) consumption in forest soils. We also find that the atmospheric levels of nitrogen oxides increase significantly throughout much of the Northern Hemisphere and populated regions of the Southern Hemisphere. This increase may lead to larger ozone concentrations with resulting increases in the oxidative capacity of the remote atmosphere and its ability to absorb IR radiation. 31 refs, 3 figs, 1 tab

  12. Hydrocarbon fuel processing of micro solid oxide fuel cell systems[Dissertation 17455

    Energy Technology Data Exchange (ETDEWEB)

    Stutz, M. J.

    2007-07-01

    The scope of this thesis is the numerical and experimental investigation of the fuel processing of a micro solid oxide fuel cell (SOFC) running on hydrocarbon fuel. The goal is to enhance the overall system efficiency by optimization of the reforming process in the steady state and the improvement of the start-up process. Micro SOFC are a potential alternative to the currently used batteries in portable devices. Liquid butane in a cartridge could be the energy source. This dissertation is focused on the fuel processing of the system, namely the reforming and post-combusting processes. The reformer converts the hydrocarbon fuel to a hydrogen rich gas that can be utilized by the SOFC. The post-combustor depletes the toxic and/or explosive gases before leaving the exhaust. Chapter One presents a short introduction to the field of hydrocarbon fuel processing in micro solid oxide fuel cell systems, the next three chapters deal with computational modeling of the transport phenomena inside a micro-reformer, which leads to a better understanding of the chemistry and the physics therein, hence progress in the design and operation parameters. The experimental part (i.e. Chapter Five) of this thesis focuses on the feasibility of a novel hybrid start-up method of a fuel cell system that employs existing components as an additional heat source. In Chapter Two the effect of wall heat conduction on the syngas (hydrogen and carbon monoxide) production of a micro-reformer, representing micro-fabricated channels or monoliths, is investigated. Methane is used as a model hydrocarbon fuel since its heterogeneous reaction path on rhodium is known and validated. The simulations demonstrate that the axial wall conduction strongly influences the performance of the micro-reformer and should not be neglected without a careful a priori investigation of its impact. Methane conversion and hydrogen yield are strongly dependent of the wall inner surface temperature, which is influenced by the

  13. Problem of formation of nitrogen oxides during coal combustion in power plant steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R.; Kuvaev, Yu.V.

    1992-07-01

    Analyzes a study of physical and chemical processes of nitrogen oxide formation during coal combustion conducted at Stanford University (USA). Experimental installation, pulverized coal feeding as well as measuring techniques and equipment are described. Experiments were conducted with 55 micron particles of semibituminous coal. An equation for the percentage of coal carbon converted to gaseous products is given. Active formation of NO from nitrogen content in the fuel was observed when oxygen content was under 4%. Conversion of the fuel nitrogen to NO[sub x] in the 1,350-1,850 K temperature range did not depend on gas temperature but rather on oxygen content. 2 refs.

  14. Anaerobic ammonium oxidation and its contribution to nitrogen removal in China’s coastal wetlands

    Science.gov (United States)

    Hou, Lijun; Zheng, Yanling; Liu, Min; Li, Xiaofei; Lin, Xianbiao; Yin, Guoyu; Gao, Juan; Deng, Fengyu; Chen, Fei; Jiang, Xiaofen

    2015-01-01

    Over the past several decades, human activities have caused substantial enrichment of reactive nitrogen in China’s coastal wetlands. Although anaerobic ammonium oxidation (anammox), the process of oxidizing ammonium into dinitrogen gas through the reduction of nitrite, is identified as an important process for removing reactive nitrogen, little is known about the dynamics of anammox and its contribution to nitrogen removal in nitrogen-enriched environments. Here, we examine potential rates of anammox and associate them with bacterial diversity and abundance across the coastal wetlands of China using molecular and isotope tracing techniques. High anammox bacterial diversity was detected in China’s coastal wetlands and included Candidatus Scalindua, Kuenenia, Brocadia, and Jettenia. Potential anammox rates were more closely associated with the abundance of anammox bacteria than to their diversity. Among all measured environmental variables, temperature was a key environmental factor, causing a latitudinal distribution of the anammox bacterial community composition, biodiversity and activity along the coastal wetlands of China. Based on nitrogen isotope tracing experiments, anammox was estimated to account for approximately 3.8–10.7% of the total reactive nitrogen removal in the study area. Combined with denitrification, anammox can remove 20.7% of the total external terrigenous inorganic nitrogen annually transported into China’s coastal wetland ecosystems. PMID:26494435

  15. One - Step synthesis of nitrogen doped reduced graphene oxide with NiCo nanoparticles for ethanol oxidation in alkaline media.

    Science.gov (United States)

    Kakaei, Karim; Marzang, Kamaran

    2016-01-15

    Development of anode catalysts and catalyst supporting carbonaceous material containing non-precious metal have attracted tremendous attention in the field of direct ethanol fuel cells (DEFCs). Herein, we report the synthesis and electrochemical properties of nitrogen-doped reduced graphene oxide (NRGO) supported Co, Ni and NiCo nanocomposites. The metal NRGO nanocomposites, in which metal nanoparticles are embedded in the highly porous nitrogen-doped graphene matrix, have been synthesized by simply and one-pot method at a mild temperature using GO, urea choline chloride and urea as reducing and doping agent. The fabricated NiCo/NRGO exhibit remarkable electrocatalytic activity (with Tafel slope of 159.1mVdec(-1)) and high stability for the ethanol oxidation reaction (EOR). The superior performance of the alloy based NRGO is attributed to high surface area, well uniform distribution of high-density nitrogen, metal active sites and synergistic effect. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Production of hydrocarbons of value

    Energy Technology Data Exchange (ETDEWEB)

    1931-06-16

    A process is described for the production of hydrocarbons of great value by treating with heat and pressure carbonaceous materials such as coals, tars, mineral oils, and products of distillation and transformation of these materials, also for the refining with heat and pressure of mixed liquid hydrocarbons by means of hydrogen gas, preferably in the presence of catalysts, consisting in using as the hydrogenating gas that obtained by gasification of combustible solids after partial or complete cleaning at atmospheric or elevated pressures, by means of solid adsorbents, chemical agents or catalysts, or mixtures of these agents, the hydrocarbons being characterized by strong unsaturation, and the presence of oxygen, sulfur compounds, and oxides of nitrogen.

  17. Development of a mechanistically based computer simulation of nitrogen oxide absorption in packed towers

    International Nuclear Information System (INIS)

    Counce, R.M.

    1981-01-01

    A computer simulation for nitrogen oxide (NO/sub x/) scrubbing in packed towers was developed for use in process design and process control. This simulation implements a mechanistically based mathematical model, which was formulated from (1) an exhaustive literature review; (2) previous NO/sub x/ scrubbing experience with sieve-plate towers; and (3) comparisons of sequential sets of experiments. Nitrogen oxide scrubbing is characterized by simultaneous absorption and desorption phenomena: the model development is based on experiments designed to feature these two phenomena. The model was then successfully tested in experiments designed to put it in jeopardy

  18. Behaviour of electroinsulating polyethylene and polyvinil-chloride-based materials in the contact with nitrogen oxides

    International Nuclear Information System (INIS)

    Korolev, V.M.; Koroleva, G.N.; Il'yukhina, Ya.A.

    1987-01-01

    The compatibility of electric cable sheaths on polyethylene and polyvinylchloride base with nitrogen tetroxide has been studied. It is shown, that the cables with polyethylene sheaths are compatible with N 2 O 4 and can be used in the conditions of the contact with it within 5 hours. Polyvinylchloride is incompatible with nitrogen oxide and polyvinylchloride based cables can be used only with oxides concentraton don't exceeding 0,5 g/l. Under the effect of high concentrations before dismounting or conducting works after accidents, these cables need special treatment for eliminating impact sensitivity acquired in the conditions of contamination

  19. Ultrafine particles and nitrogen oxides generated by gas and electric cooking

    OpenAIRE

    Dennekamp, M; Howarth, S; Dick, C; Cherrie, J; Donaldson, K; Seaton, A

    2001-01-01

    OBJECTIVES—To measure the concentrations of particles less than 100 nm diameter and of oxides of nitrogen generated by cooking with gas and electricity, to comment on possible hazards to health in poorly ventilated kitchens.
METHODS—Experiments with gas and electric rings, grills, and ovens were used to compare different cooking procedures. Nitrogen oxides (NOx) were measured by a chemiluminescent ML9841A NOx analyser. A TSI 3934 scanning mobility particle sizer was used to measure average nu...

  20. Yellowing of coated papers under the action of heat, daylight radiation, and nitrogen oxide gas

    International Nuclear Information System (INIS)

    Mailly, V.; Le Nest, J.F.; Tosio, J.M.S.; Silvy, J.

    1997-01-01

    In the area of coated papers, a high degree of whiteness is often required to carry a quality image. Coated papers however are sensitive to the environment where they are stored and have tendency to yellow. The aim of this work was to study the influence of(i) daylight radiation and (ii) nitrogen oxide gas (NO2 ) on the yellowing of coated papers. In a previous study (l), we had established the presence of NO2 in the environment of some coating machines because of the transformation of ammonium hydroxide (NH4 OH, a component of some coating colors) into nitrogen oxide through the burners of hot air supplier-systems

  1. Numerical modeling of nitrogen oxide emission and experimental verification

    Directory of Open Access Journals (Sweden)

    Szecowka Lech

    2003-12-01

    Full Text Available The results of nitrogen reduction in combustion process with application of primary method are presented in paper. The reduction of NOx emission, by the recirculation of combustion gasses, staging of fuel and of air was investigated, and than the reduction of NOx emission by simultaneous usage of the mentioned above primary method with pulsatory disturbances.The investigations contain numerical modeling of NOx reduction and experimental verification of obtained numerical calculation results.

  2. Evaluation on nitrogen oxides and nanoparticle removal and nitrogen monoxide generation using a wet-type nonthermal plasma reactor

    Science.gov (United States)

    Takehana, Kotaro; Kuroki, Tomoyuki; Okubo, Masaaki

    2018-05-01

    Nitrogen oxides (NOx) emitted from power plants and combustion sources cause air pollution problems. Selective catalytic reduction technology is remarkably useful for NOx removal. However, there are several drawbacks such as preparation of reducing agents, usage of harmful heavy metals, and higher cost. On the other hand, trace NO is a vasodilator agent and employed in inhalation therapies for treating pulmonary hypertension in humans. Considering these factors, in the present study, a wet-type nonthermal plasma reactor, which can control NOx and nanoparticle emissions and generate NO, is investigated. The fundamental characteristics of the reactor are investigated. First, the experiment of nanoparticle removal is carried out. Collection efficiencies of over 99% are achieved for nanoparticles at 50 and 100 ml min‑1 of liquid flow rates. Second, experiments of NOx removal under air atmosphere and NOx generation under nitrogen atmosphere are carried out. NOx-removal efficiencies of over 95% under the air plasma are achieved in 50–200 ml min‑1 liquid flow rates. Moreover, under nitrogen plasma, NOx is generated, of which the major portion is NO. For example, NO concentration is 25 ppm, while NOx concentration is 31 ppm at 50 ml min‑1 liquid flow rate. Finally, experiments of NO generation under the nitrogen atmosphere with or without flowing water are carried out. When water flows on the inner surface of the reactor, approximately 14 ppm of NO is generated. Therefore, NO generation requires flowing water. It is considered that the reaction of N and OH, which is similar to the extended Zeldovich mechanism, could occur to induce NO formation. From these results, it is verified that the wet-type plasma reactor is useful for NOx removal and NO generation under nitrogen atmosphere with flowing water.

  3. Preliminary assessment of air quality for sulphur dioxide, nitrogen dioxide, nitrogen oxides, particulate matter, and lead in the Netherlands under European legislation

    NARCIS (Netherlands)

    Breugel PB van; Buijsman E; LLO

    2001-01-01

    The current air quality in the Netherlands for sulphur dioxide, nitrogen dioxide, nitrogen oxides, particulate matter and lead has been assessed in the context of limit values, margins of tolerance and the assessment thresholds used in the first daughter directive for air quality of the European

  4. Use of water containing acetone–butanol–ethanol for NOx-PM (nitrogen oxide-particulate matter) trade-off in the diesel engine fueled with biodiesel

    International Nuclear Information System (INIS)

    Chang, Yu-Cheng; Lee, Wen-Jhy; Wu, Tser Son; Wu, Chang-Yu; Chen, Shui-Jen

    2014-01-01

    Fuel blends that contain biodiesel are known to produce greater NO x (nitrogen oxide) emissions in diesel engine exhaust than regular diesel, and this is one of the key barriers to the wider adoption of biodiesel as an alternative fuel. In this study, a water-containing ABE (acetone–butanol–ethanol) solution, which simulates products that are produced from biomass fermentation without dehydration processing, was tested as a biodiesel-diesel blend additive to lower NO x emissions from diesel engines. The energy efficiency and the PM (particulate matter) and PAHs (polycyclic aromatic hydrocarbons) emissions were investigated and compared under various operating conditions. Although biodiesel had greater NO x emissions, the blends that contained 25% of the water-containing ABE solution had significantly lower NO x (4.30–30.7%), PM (10.9–63.1%), and PAH (polycyclic aromatic hydrocarbon) emissions (26.7–67.6%) than the biodiesel–diesel blends and regular diesel, respectively. In addition, the energy efficiency of this new blend was 0.372–7.88% higher with respect to both the biodiesel–diesel blends and regular diesel. Because dehydration and surfactant addition are not necessary, the application of ABE–biodiesel–diesel blends can simplify fuel production processes, reduce energy consumption, and lower pollutant emissions, meaning that the ABE–biodiesel–diesel blend is a promising green fuel. - Highlights: • Water-containing ABE (acetone–butanol–ethanol)–biodiesel–diesel was tested in a diesel engine. • The addition of ABE to biodiesel–diesel blends can enhance the energy efficiency. • The addition of ABE can solve the problem of NO x -PM (nitrogen oxide-particulate matter) trade-off when using biodiesel. • PAHs (polycyclic aromatic hydrocarbons) can be further reduced by adding ABE in biodiesel–diesel blends. • Fuel production was simplified due to the acceptance of water in ABE

  5. Technologies for the Reduction of Nitrogen Oxides Emissions

    Directory of Open Access Journals (Sweden)

    Paulica Arsenie

    2015-06-01

    Full Text Available When it comes to gas turbines, their main problem concerning pollutant emissions is represented by nitric oxides. Among other emissions, sulphur oxides being much reduced due to the use of liquid distilled and gas fuels with a low content of sulphur. Using water or steam injection became the favourite method during the '80s and especially the '90s since "dry" methods and catalytic reduction were both at the beginning of the development phase. Catalytic convertors have been used since the '80s and they are still used although the costs of renewing the catalyst are very high. In the last twenty years a gradual decrease has been registered on the limits of nitric oxides from 75 ppm to 25 ppm, and now the target is oriented towards the 9 ppm level. The evolution of burning technologies of combustion makes it possible to control the level of production of nitric oxides even from the source without being necessary to use "humid" methods. This, of course, opened the market for gas turbines because they can function even in areas with limited quality water reserves, such as maritime platforms and in the desert. In this paper, we are going to show that, although water injection is still used, "dry" control technologies of burning became favourite methods for the majority of users on the industrial power generators market. The great dependency between the creation of nitric oxides and the temperature reveals the effect of direct water or steam injection on reducing nitric oxides. Recent research showed that a reduction up to 85% of nitric oxides may be obtained by using the water or steam injection all together with the improvement of aerodynamic character of the burning room.

  6. Nitrogen inversion barriers affect the N-oxidation of tertiary alkylamines by cytochromes P450

    DEFF Research Database (Denmark)

    Rydberg, Patrik; Jørgensen, Martin S.; Jacobsen, T.A.

    2013-01-01

    Calculations: Cytochrome P450 enzymes facilitate a number of chemically different reactions. For example, amines can be either N-dealkylated or N-oxidized, but it is complex to rationalize which of these competing reactions occurs. It is shown that the barrier for inversion of the alkylamine...... nitrogen atom seems to be of vital importance for the amount of N-oxidized product formed relative to dealkylation and hydroxylation products....

  7. Nitrogen isotope exchange between nitric oxide and nitric acid

    International Nuclear Information System (INIS)

    Axente, D.; Abrudean, M.; Baldea, A.

    1996-01-01

    The rate of nitrogen isotope exchange between NO and HNO 3 has been measured as a function of nitric acid concentration of 1.5-4M x 1 -1 . The exchange rate law is shown to be R=k[HNO 3 ] 2 [N 2 O 3 ] and the measured activation energy is E=67.78 kJ x M -1 (16.2 kcal x M -1 ). It is concluded that N 2 O 3 participates in 15 N/ 14 N exchange between NO and HNO 3 at nitric acid concentrations higher than 1.5M x 1 -1 . (author). 7 refs., 3 figs., 4 tabs

  8. Adsorption of polycyclic aromatic hydrocarbons by graphene and graphene oxide nanosheets.

    Science.gov (United States)

    Wang, Jun; Chen, Zaiming; Chen, Baoliang

    2014-05-06

    The adsorption of naphthalene, phenanthrene, and pyrene onto graphene (GNS) and graphene oxide (GO) nanosheets was investigated to probe the potential adsorptive sites and molecular mechanisms. The microstructure and morphology of GNS and GO were characterized by elemental analysis, XPS, FTIR, Raman, SEM, and TEM. Graphene displayed high affinity to the polycyclic aromatic hydrocarbons (PAHs), whereas GO adsorption was significantly reduced after oxygen-containing groups were attached to GNS surfaces. An unexpected peak was found in the curve of adsorption coefficients (Kd) with the PAH equilibrium concentrations. The hydrophobic properties and molecular sizes of the PAHs affected the adsorption of G and GO. The high affinities of the PAHs to GNS are dominated by π-π interactions to the flat surface and the sieving effect of the powerful groove regions formed by wrinkles on GNS surfaces. In contrast, the adsorptive sites of GO changed to the carboxyl groups attaching to the edges of GO because the groove regions disappeared and the polar nanosheet surfaces limited the π-π interactions. The TEM and SEM images initially revealed that after loading with PAH, the conformation and aggregation of GNS and GO nanosheets dramatically changed, which explained the observations that the potential adsorption sites of GNS and GO were unusually altered during the adsorption process.

  9. Supercapacitors based on nitrogen-doped reduced graphene oxide and borocarbonitrides

    Science.gov (United States)

    Gopalakrishnan, K.; Moses, Kota; Govindaraj, A.; Rao, C. N. R.

    2013-12-01

    Nitrogen-doped reduced graphene oxide (RGO) samples with different nitrogen content, prepared by two different methods, as well as nitrogen-doped few-layer graphene have been investigated as supercapacitor electrodes. Two electrode measurements have been carried out both in aqueous (6M KOH) and in ionic liquid media. Nitrogen-doped reduced graphene oxides exhibit satisfactory specific capacitance, the values reaching 126F/g at a scan rate of 10mV/s in aqueous medium. Besides providing supercapacitor characteristics, the study has shown the nitrogen content and surface area to be important factors. High surface-area borocarbonitrides, BxCyNz, prepared by the urea route appear to be excellent supercapacitor electrode materials. Thus, BC4.5N exhibits a specific capacitance of 169F/g at a scan rate of 10mV/s in aqueous medium. In an ionic liquid medium, nitrogen-doped RGO and BC4.5N exhibit specific capacitance values of 258F/g and 240F/g at a scan rate of 5mV/s. The ionic liquid enables a larger operating voltage range of 0.0-2.5V compared to 0.0-1V in aqueous medium.

  10. Onset of the aerobic nitrogen cycle during the Great Oxidation Event.

    Science.gov (United States)

    Zerkle, Aubrey L; Poulton, Simon W; Newton, Robert J; Mettam, Colin; Claire, Mark W; Bekker, Andrey; Junium, Christopher K

    2017-02-23

    The rise of oxygen on the early Earth (about 2.4 billion years ago) caused a reorganization of marine nutrient cycles, including that of nitrogen, which is important for controlling global primary productivity. However, current geochemical records lack the temporal resolution to address the nature and timing of the biogeochemical response to oxygenation directly. Here we couple records of ocean redox chemistry with nitrogen isotope ( 15 N/ 14 N) values from approximately 2.31-billion-year-old shales of the Rooihoogte and Timeball Hill formations in South Africa, deposited during the early stages of the first rise in atmospheric oxygen on the Earth (the Great Oxidation Event). Our data fill a gap of about 400 million years in the temporal 15 N/ 14 N record and provide evidence for the emergence of a pervasive aerobic marine nitrogen cycle. The interpretation of our nitrogen isotope data in the context of iron speciation and carbon isotope data suggests biogeochemical cycling across a dynamic redox boundary, with primary productivity fuelled by chemoautotrophic production and a nitrogen cycle dominated by nitrogen loss processes using newly available marine oxidants. This chemostratigraphic trend constrains the onset of widespread nitrate availability associated with ocean oxygenation. The rise of marine nitrate could have allowed for the rapid diversification and proliferation of nitrate-using cyanobacteria and, potentially, eukaryotic phytoplankton.

  11. Effect of primary air content on formation of nitrogen oxides during combustion of Ehkibastuz coal

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R.; Imankulov, Eh.R.

    1986-01-01

    Investigations are discussed carried out in a pilot plant at the Kaz. Power Engineering Scientific Research Institute into the effect of the amount of primary air in coal-dust flame on the final concentration of nitrogen oxides in flue gases. The tests were carried out in a 7500 mm high, 1600 mm dia vertical cylindrical combustion chamber having type P-57 burner, and air dispersed fuel plus additional air supplies located at the top. Amounts of coal dust fed by a drum feeder along the air pipe varied from 100-600 kg/h. The required air was supplied by 5000 m/sup 3//h Type TK-700/5 blowers at 0.04 MPa. Ehkibastuz coal samples contained: 1.3% moisture; 48.1% ash; 38.02% carbon; 2.56% hydrogen; 0.73% sulfur; 0.60% nitrogen; heat of combustion was 14.3 MJ/kg. Results obtained indicate that variations in the amount of primary air in swirl flow burners affect formation of fuel nitrogen; there is an optimum volume at which minimum quantities of nitrogen oxides are formed. Either an increase or decrease in the primary air results in a rise in nitrogen oxide concentration. 3 references.

  12. 40 CFR 60.33b - Emission guidelines for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Science.gov (United States)

    2010-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 60.33b Section 60.33b Protection of Environment... Constructed on or Before September 20, 1994 § 60.33b Emission guidelines for municipal waste combustor metals, acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste combustor metals...

  13. 40 CFR 62.14103 - Emission limits for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Science.gov (United States)

    2010-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 62.14103 Section 62.14103 Protection of... combustor metals, acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste combustor metals are specified in paragraphs (a)(1) through (a)(3) of this section. (1) The owner or...

  14. Use of zinc and copper (I) salts to reduce sulfur and nitrogen impurities during the pyrolysis of plastic and rubber waste to hydrocarbons

    Science.gov (United States)

    Wingfield, Jr., Robert C.; Braslaw, Jacob; Gealer, Roy L.

    1984-01-01

    An improvement in a process for the pyrolytic conversion of rubber and plastic waste to hydrocarbon products which results in reduced levels of nitrogen and sulfur impurities in these products. The improvement comprises pyrolyzing the waste in the presence of at least about 1 weight percent of salts, based on the weight of the waste, preferably chloride or carbonate salts, of zinc or copper (I). This invention was made under contract with or subcontract thereunder of the Department of Energy Contract #DE-AC02-78-ER10049.

  15. CORONA-INDUCED PHOTOXIDATION OF ALCOHOLS AND HYDROCARBONS OVER TIO2 IN THE ABSENCE OF A UV LIGHT SOURCE - A NOVEL AND ENVIRONMENTALLY FRIENDLY METHOD FOR OXIDATION

    Science.gov (United States)

    Corona-induced photooxidation is a novel oxidation methodology for the efficient oxidation of alcohols and hydrocarbons utilizing the advantage of both the high oxidizing power of ozone formed in the reactor as well as the photooxidation capability of the UV light generated durin...

  16. Effects of methyl group on aromatic hydrocarbons on the nanostructures and oxidative reactivity of combustion-generated soot

    KAUST Repository

    Guerrero Peñ a, Gerardo D.J.; Alrefaai, Mhd Maher; Yang, Seung Yeon; Raj, Abhijeet; Brito, Joaquin L.; Stephen, Samuel; Anjana, Tharalekshmy; Pillai, Vinu; Al Shoaibi, Ahmed; Chung, Suk-Ho

    2016-01-01

    The substituted and unsubstituted aromatic hydrocarbons, present in transportation fuels such as gasoline and diesel, are thought to be responsible for most of the soot particles produced during their combustion. However, the effects of the substituted alkyl groups on the aromatic hydrocarbons on their sooting tendencies, and on the physical and chemical properties of soot produced from them are not well understood. In this work, the effect of the presence of methyl groups on aromatic hydrocarbons on their sooting propensity, and on the oxidative reactivity, morphology, and chemical composition of soot generated from them in diffusion flames is studied using benzene, toluene, and m-xylene as fuels. Several experimental techniques including high resolution transmission electron microscopy and X-ray diffraction are used to identify the morphological changes in soot, whereas the elemental and thermo-gravimetric analyses, electron energy loss spectroscopy, and Fourier transform infrared spectroscopy are used to study the changes in its chemical properties and reactivity. The activation energies for soot oxidation are calculated at different conversion levels, and a trend in the reactivity of soots from benzene, toluene and m-xylene is reported. It is observed that the sizes of primary particles and graphene-like sheets, and the concentrations of aliphatics and oxygenated groups in soot particles decreased with the addition of methyl group(s) on the aromatic ring. The physicochemical changes in soot are found to support the oxidative reactivity trends. © 2016 The Combustion Institute

  17. Effects of methyl group on aromatic hydrocarbons on the nanostructures and oxidative reactivity of combustion-generated soot

    KAUST Repository

    Guerrero Peña, Gerardo D.J.

    2016-07-23

    The substituted and unsubstituted aromatic hydrocarbons, present in transportation fuels such as gasoline and diesel, are thought to be responsible for most of the soot particles produced during their combustion. However, the effects of the substituted alkyl groups on the aromatic hydrocarbons on their sooting tendencies, and on the physical and chemical properties of soot produced from them are not well understood. In this work, the effect of the presence of methyl groups on aromatic hydrocarbons on their sooting propensity, and on the oxidative reactivity, morphology, and chemical composition of soot generated from them in diffusion flames is studied using benzene, toluene, and m-xylene as fuels. Several experimental techniques including high resolution transmission electron microscopy and X-ray diffraction are used to identify the morphological changes in soot, whereas the elemental and thermo-gravimetric analyses, electron energy loss spectroscopy, and Fourier transform infrared spectroscopy are used to study the changes in its chemical properties and reactivity. The activation energies for soot oxidation are calculated at different conversion levels, and a trend in the reactivity of soots from benzene, toluene and m-xylene is reported. It is observed that the sizes of primary particles and graphene-like sheets, and the concentrations of aliphatics and oxygenated groups in soot particles decreased with the addition of methyl group(s) on the aromatic ring. The physicochemical changes in soot are found to support the oxidative reactivity trends. © 2016 The Combustion Institute

  18. Nitrous oxide emissions from a peatbog after 13 years of experimental nitrogen deposition

    Directory of Open Access Journals (Sweden)

    S. R. Leeson

    2017-12-01

    Full Text Available Nitrogen deposition was experimentally increased on a Scottish peatbog over a period of 13 years (2002–2015. Nitrogen was applied in three forms, NH3 gas, NH4Cl solution, and NaNO3 solution, at rates ranging from 8 (ambient to 64 kg N ha−1 yr−1, and higher near the NH3 fumigation source. An automated system was used to apply the nitrogen, such that the deposition was realistic in terms of rates and high frequency of deposition events. We measured the response of nitrous oxide (N2O flux to the increased nitrogen input. Prior expectations, based on the IPCC default emission factor, were that 1 % of the added nitrogen would be emitted as N2O. In the plots treated with NH4+ and NO3− solution, no response was seen, and there was a tendency for N2O fluxes to be reduced by additional nitrogen, though this was not significant. Areas subjected to high NH3 emitted more N2O than expected, up to 8.5 % of the added nitrogen. Differences in the response are related to the impact of the nitrogen treatments on the vegetation. In the NH4+ and NO3− treatments, all the additional nitrogen is effectively immobilised in the vegetation and top 10 cm of peat. In the NH3 treatment, much of the vegetation was killed off by high doses of NH3, and the nitrogen was presumably more available to denitrifying bacteria. The design of the wet and dry experimental treatments meant that they differed in statistical power, and we are less likely to detect an effect of the NH4+ and NO3− treatments, though they avoid issues of pseudo-replication.

  19. Effect of operational cycle time length on nitrogen removal in an alternating oxidation ditch system.

    Science.gov (United States)

    Mantziaras, I D; Stamou, A; Katsiri, A

    2011-06-01

    This paper refers to nitrogen removal optimization of an alternating oxidation ditch system through the use of a mathematical model and pilot testing. The pilot system where measurements have been made has a total volume of 120 m(3) and consists of two ditches operating in four phases during one cycle and performs carbon oxidation, nitrification, denitrification and settling. The mathematical model consists of one-dimensional mass balance (convection-dispersion) equations based on the IAWPRC ASM 1 model. After the calibration and verification of the model, simulation system performance was made. Optimization is achieved by testing operational cycles and phases with different time lengths. The limits of EU directive 91/271 for nitrogen removal have been used for comparison. The findings show that operational cycles with smaller time lengths can achieve higher nitrogen removals and that an "equilibrium" between phase time percentages in the whole cycle, for a given inflow, must be achieved.

  20. Nitrous oxide fluxes and nitrogen cycling along a pasturechronosequence in Central Amazonia, Brazil

    Science.gov (United States)

    B. Wick; E. Veldkamp; W. Z. de Mello; M. Keller; P. Crill

    2005-01-01

    We studied nitrous oxide (N2O) fluxes and soil nitrogen (N) cycling following forest conversion to pasture in the central Amazon near Santarém, Pará, Brazil. Two undisturbed forest sites and 27 pasture sites of 0.5 to 60 years were sampled once each during wet and dry seasons. In addition to soil-atmosphere fluxes of N...

  1. Influence of carbon dioxide content in the biogas to nitrogen oxides emissions

    Directory of Open Access Journals (Sweden)

    Živković Marija A.

    2010-01-01

    Full Text Available Fuels derived from biomass are an alternative solution for the fossil fuel shortage. Usually this kind of fuels is called low calorific value fuels, due to the large proportion of inert components in their composition. The most common is carbon dioxide, and its proportion in biogas can be different, from 10 up to 40%, or even more. The presence of inert component in the composition of biogas causes the problems that are related with flame blow off limits. One of the possibilities for efficient combustion of biogas is the combustion in swirling flow including a pilot burner, aimed to expand the borders of stable combustion. This paper presents an analysis of the influence of the carbon dioxide content to the nitrogen oxides emissions. Laboratory biogas was used with different content of CO2 (10, 20, 30 and 40%. Investigation was carried out for different nominal powers, coefficients of excess air and carbon dioxide content. With increasing content of carbon dioxide, emission of nitrogen oxides was reduced, and this trend was the same throughout the whole range of excess air, carried out through measurements. Still, the influence of carbon dioxide content is significantly less than the influence of excess air. The coefficient of excess air greatly affects the production of radicals which are essential for the formation of nitrogen oxides, O, OH and CH. Also, the results show that the nominal power has no impact on the emission of nitrogen oxides.

  2. Removal of nitrogen compounds from Brazilian petroleum samples by oxidation followed by liquid-liquid extraction

    Energy Technology Data Exchange (ETDEWEB)

    Conceicao, L.; Pergher, S.B.C. [Universidade Regional Integrada do Alto Uruguai e das Misses (URI), Erechim, RS (Brazil). Dept. de Quimica], E-mail: pergher@uricer.edu.br; Oliveira, J.V. [Universidade Regional Integrada do Alto Uruguai e das Misses (URI), Erechim, RS (Brazil). Dept. de Engenharia dos Alimentos; Souza, W.F. [Petroleo Brasileiro S.A. (CENPES/PETROBRAS), Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    2009-10-15

    This work reports liquid-liquid extraction of nitrogen compounds from oxidized and non-oxidized Brazilian petroleum samples. The experiments were accomplished in a laboratory-scale liquid-liquid apparatus in the temperature range of 303 K-323 K, using methanol, n-methyl-2-pyrrolidone (NMP) and N,Ndimethylformamide (DMF), and their mixtures as extraction solvents, employing solvent to sample volume ratios of 1:2, 1:1 and 2:1, exploring up to three separation stages. Results show that an increase in temperature, solvent to oil ratio, and number of equilibrium stages greatly improves the nitrogen removal from the oxidized sample (from 2600 to 200 ppm). The employed oxidation scheme is thus demonstrated to be an essential and efficient step of sample preparation for the selective liquid-liquid removal of nitrogen compounds. It is shown that the use of mixtures of DMF and NMP as well their use as co-solvents with methanol did not prove to be useful for selective nitrogen extraction since great oil losses were observed in the final process. (author)

  3. 40 CFR 86.318-79 - Oxides of nitrogen analyzer specifications.

    Science.gov (United States)

    2010-07-01

    ... be at least 90 percent. (4) The quench interference must be less than 3.0 percent as measured in § 86.327. (b) Option. The oxides of nitrogen may be measured with an NDIR analyzer system that meets the following specifications: (1) The system shall include an NO2 to NO converter, a water trap, and an NDIR...

  4. Corn nitrogen management influences nitrous oxide emissions in drained and undrained soils

    Science.gov (United States)

    Tile-drainage and nitrogen (N) fertilization are important for corn (Zea mays L.) production. To date, no studies have evaluated nitrous oxide (N2O) emissions of single vs. split-N fertilizer application under different soil drainage conditions. The objective of this study was to quantify season-lon...

  5. Express analysis of nitrogen oxides in combustion products of energy fuels

    Energy Technology Data Exchange (ETDEWEB)

    Avdeeva, A A; Tishina, T A; Kormilitsyn, V I

    1981-07-01

    This paper discusses accuracy of 3 gas analyzers used in the USSR for determination of nitrogen oxide content in smoke emitted to the atmosphere by coal-fired fossil-fuel power plants. UG-2 colorimeter measures content of nitric oxide and nitrogen dioxide with accuracy of about 25% (nominal accuracy amounts to 10%). Its range of measurement does not exceed 0.2 g/m/sup 3/. Duration of measurement is from 5 to 7 min. GKh-4 colorimeter with range from 0 to 0.16 g/m/sup 3/ of nitrogen dioxide and nitric oxide is characterized by accuracy of 25%. Presence of sulfur dioxide increases measurement error up to 50%. GKh-4 supplies satisfactory results when nitrogen oxide content ranges from 0.001 to 0.0013%. Design of a new colorimeter, Ehvdiometr-1, developed by EhNIN is evaluated. The maximum error of the instrument does not exceed 5%. It is not influenced by the presence of hydrogen, carbon monoxide or methane when their content is below 10%, or by carbon dioxide when its content is below 20%, or by sulfur dioxide when its content is below 1%. Duration of measurements amounts to about 10 min. Under operational conditions in power plants the accuracy of the Ehvdiometr-1 is 5 times higher than that of the GKh-4 colorimeter. 5 refs.

  6. Nitrous oxide emissions from a golf course fairway and rough following application of different nitrogen fertilizers

    Science.gov (United States)

    Nitrous oxide (N2O) is a potent greenhouse gas that destroys stratospheric ozone. There is limited research of golf course N2O emission and the effects of frequent fertilization and irrigation. Three enhanced efficiency nitrogen fertilizers (EENFs) were applied to a Colorado golf course fairway and ...

  7. EVALUATION OF TIRE-DERIVED FUEL FOR USE IN NITROGEN OXIDE REDUCTION BY REBURNING

    Science.gov (United States)

    Tire-derived fuel (TDF) was tested in a small-scale (44 kW or 150,000 Btu/hr) combustor to determine its feasibility as a fuel for use in reburning for control of nitrogen oxide (NO). TDF was gravity-fed into upward flowing combustion gases from a primary natural gas flame doped ...

  8. Nitrogen loss from grassland on peat soils through nitrous oxide production.

    NARCIS (Netherlands)

    Koops, J.G.; Beusichem, van M.L.; Oenema, O.

    1997-01-01

    Nitrous oxide (N2O) in soils is produced through nitrification and denitrification. The N2O produced is considered as a nitrogen (N) loss because it will most likely escape from the soil to the atmosphere as N2O or N2. Aim of the study was to quantify N2O production in grassland on peat soils in

  9. Production of nitrogen oxides in air pulse-periodic discharge with apokamp

    Science.gov (United States)

    Panarin, Victor A.; Skakun, Victor S.; Sosnin, Eduard A.; Tarasenko, Victor F.

    2018-05-01

    The decomposition products of pulse-periodic discharge atmospheric pressure plasma in apokamp, diffuse and corona modes were determined by optical and chemical methods. It is shown that apokamp discharge formation starts at a critical value of dissipation power in a discharge channel. Simultaneously, due to the thermochemical reactions, plasma starts to efficiently produce nitrogen oxides.

  10. Experimental study of reduce of nitrogen oxides emission in the Environment at the Ekibastuz coal combustion

    International Nuclear Information System (INIS)

    Korabejnikova, V.K.

    2004-01-01

    For revealing conditions decrease in emissions of nitrogen oxide in an environment at three-stage burning of coal dust Ekibastuz coal with use two-line burners (on were the experimental research of test on fiery the stand as a result of which acknowledgement of theoretical results is received. (author)

  11. Ammonia oxidizer populations vary with nitrogen cycling across a tropical montane mean annual temperature gradient

    Science.gov (United States)

    S. Pierre; I. Hewson; J. P. Sparks; C. M. Litton; C. Giardina; P. M. Groffman; T. J. Fahey

    2017-01-01

    Functional gene approaches have been used to better understand the roles of microbes in driving forest soil nitrogen (N) cycling rates and bioavailability. Ammonia oxidation is a rate limiting step in nitrification, and is a key area for understanding environmental constraints on N availability in forests. We studied how increasing temperature affects the role of...

  12. Studies on nitrogen oxides (NOx and N2O) in pressurized fluidized bed combustion

    International Nuclear Information System (INIS)

    Lu Yong

    1998-01-01

    This thesis describes the experimental studies of nitrogen oxide (NO, NO 2 , N 2 O) emissions in pressurized fluidized bed combustion (PFBC). In the first part of the thesis the background and the objectives of this study are introduced. The second part summarizes the fundamental knowledge about the formation and destruction of nitrogen oxides in coal combustion, particularly in the conditions of PFBC. The instrumentation of test facilities, measurement and data analysis is described in the third part. Then the most important experimental results follow in the next parts. The forth part describes the results from a PFBC test rig and an empirical modelling for predicting the emissions of NO x and N 2 O. Finally, the fundamental work on coal combustion and fuel nitrogen conversion in a PFBC batch reactor is presented. These studies clearly confirm the potential of PFBC technology in the control nitrogen of oxide emissions. The research in the test rig was concentrated on determining the effects of process parameters on the emissions of nitrogen oxides with different fuels. Another objective was to examine the reduction of nitrogen oxides with the control methods in PFBC conditions, including ammonia injection and air staging combustion for reducing NO, and high temperature operations for reducing N 2 0. The results indicate that pressurized operation suppresses the conversion of fuel-N to nitrogen oxides and favors with employing the reduction methods for further nitrogen oxide reduction, for instance the temperature window of NO reduction with ammonia injection has been found to be widened to even lower temperature range. Maximum reductions of 80-85 % with ammonia injection and 75-80 % with air staging combustion were achieved in the conditions examined. Considerably low emissions of N 2 O ( 2 O control, and thermal decomposition proved to be the laming pathway of N 2 O destruction in PFBC. In the examined pressure range, increasing pressure causes a decrease of NO

  13. Nitrous oxide emissions affected by biochar and nitrogen stabilizers

    Science.gov (United States)

    Both biochar and N fertilizer stabilizers (N transformation inhibitors) are potential strategies to reduce nitrous oxide (N2O) emissions from fertilization, but the mechanisms and/or N transformation processes affecting the N dynamics are not fully understood. This research investigated N2O emission...

  14. Measurement and modeling of ozone and nitrogen oxides produced by laser breakdown in oxygen-nitrogen atmospheres.

    Science.gov (United States)

    Gornushkin, Igor B; Stevenson, Chris L; Galbács, Gábor; Smith, Ben W; Winefordner, James D

    2003-11-01

    The production of ozone nad nitrogen oxides was studied during multiple laser breakdown in oxygen-nitrogen mixtures at atmospheric pressure. About 2000 laser shots at 10(10) W cm-2 were delivered into a sealed reaction chamber. The chamber with a long capillary was designed to measure absorption of O3, NO, and NO2 as a function of the number of laser shots. The light source for absorption measurements was the continuum radiation emitted by the plasma during the first 0.2 microsecond of its evolution. A kinetic model was developed that encompassed the principal chemical reactions between the major atmospheric components and the products of laser breakdown. In the model, the laser plasma was treated as a source of nitric oxide and atomic oxygen, whose rates of production were calculated using measured absorption by NO, NO2, and O3. The calculated concentration profiles for NO, NO2, and O3 were in good agreement with measured profiles over a time scale of 0-200 s. The steady-state concentration of ozone was measured in a flow cell in air. For a single breakdown in air, the estimated steady-state yield of ozone was 2 x 10(12) molecules, which agreed with the model prediction. This study can be of importance for general understanding of laser plasma chemistry and for elucidating the nature of spectral interferences and matrix effects that may take place in applied spectrochemical analysis.

  15. Decorating Mg/Fe oxide nanotubes with nitrogen-doped carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Cao Yong, E-mail: caoyangel@126.com [Institute of Environment and Municipal Engineering, North China Institute of Water Conservancy and Hydroelectric Power, Zhengzhou 450011 (China); Jiao Qingze, E-mail: jiaoqz@bit.edu.cn [School of Chemical Engineering and the Environment, Beijing Institute of Technology, Beijing 100081 (China); Zhao Yun [School of Chemical Engineering and the Environment, Beijing Institute of Technology, Beijing 100081 (China); Dong Yingchao [Materials and Surface Science Institute (MSSI), University of Limerick, Limerick (Ireland)

    2011-09-22

    Graphical abstract: Highlights: > Mg/Fe oxide nanotubes arrayed parallel to each other were prepared by an AAO template method. > The Mg/Fe oxide nanotubes decorated with CN{sub x} were realized by CVD of ethylenediamine on the outer surface of oxide nanotubes. > The magnetic properties of Mg/Fe oxide nanotubes were highly improved after being decorated. - Abstract: Mg/Fe oxide nanotubes decorated with nitrogen-doped carbon nanotubes (CN{sub x}) were fabricated by catalytic chemical vapor deposition of ethylenediamine on the outer surface of oxide nanotubes. Mg/Fe oxide nanotubes were prepared using a 3:1 molar precursor solution of Mg(NO{sub 3}){sub 2} and Fe(NO{sub 3}){sub 3} and anodic aluminum oxide as the substrate. The obtained samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and vibrating sample magnetometer (VSM). The XRD pattern shows that the oxide nanotubes are made up of MgO and Fe{sub 2}O{sub 3}. TEM and SEM observations indicate the oxide nanotubes are arrayed roughly parallel to each other, and the outer surface of oxide nanotubes are decorated with CN{sub x}. XPS results show the nitrogen-doped level in CN{sub x} is about 7.3 at.%. Magnetic measurements with VSM demonstrate the saturated magnetization, remanence and coercivity of oxide nanotubes are obvious improved after being decorated with CN{sub x}.

  16. Identification and characterization of epoxide hydrolase activity of polycyclic aromatic hydrocarbon-degrading bacteria for biocatalytic resolution of racemic styrene oxide and styrene oxide derivatives.

    Science.gov (United States)

    Woo, Jung-Hee; Kwon, Tae-Hyung; Kim, Jun-Tae; Kim, Choong-Gon; Lee, Eun Yeol

    2013-04-01

    A novel epoxide hydrolase (EHase) from polycyclic aromatic hydrocarbon (PAH)-degrading bacteria was identified and characterized. EHase activity was identified in four strains of PAH-degrading bacteria isolated from commercial gasoline and oil-contaminated sediment based on their growth on styrene oxide and its derivatives, such as 2,3- and 4-chlorostyrene oxides, as a sole carbon source. Gordonia sp. H37 exhibited high enantioselective hydrolysis activity for 4-chlorostyrene oxide with an enantiomeric ratio of 27. Gordonia sp. H37 preferentially hydrolyzed the (R)-enantiomer of styrene oxide derivatives resulting in the preparation of a (S)-enantiomer with enantiomeric excess greater than 99.9 %. The enantioselective EHase activity was identified and characterized in various PAH-degrading bacteria, and whole cell Gordonia sp. H37 was employed as a biocatalyst for preparing enantiopure (S)-styrene oxide derivatives.

  17. Mechanisms of realization of THz-waves of nitrogen oxide occurrence physiological effects

    Directory of Open Access Journals (Sweden)

    Vyacheslav F. Kirichuk

    2013-11-01

    Full Text Available In this review, there is generalized material of many experimental researches in interaction of THz-waves molecular emission and absorption spectrum (MEAS of nitrogen oxide occurrence with bioobjects. Thrombocytes and experimental animals were used as bioobjects. The experiments let indicate changes caused by THz-waves: at the cellular, tissular, system, organismic levels. There are all data of changes in physiological mechanisms of reglations at all levels: autocrine, paracrine, endocrine and nervous. There is a complex overview of experimental material firstly performed in the article. There had been shown that the effect of THz-waves of the given occurrence is realized by the changed activity of nitroxidergic system. It had been proved that THz-waves of nitrogen oxide occurrence can stimulate nitrogen oxide producing in organs and tissues in condition of its low concentration. Possible mechanisms of antiaggregative effect of the given waves had been described. There had been shown the possibility of regulating of vascular tone and system hemodynamics with the help of the studying these frequencies. The represented data of lipid peroxidation and enzymatic and nonenzymatic components of organism system under the influence of THz-waves of nitrogen oxide occurrence in stress conditions. Besides, there were shown changes of stress-regulating system activity and in concentration of important mediators - catecholamines and glucocorticosteroids. These data let characterize mechanism of realization of THz-waves basic effects. The research had shown the possibility of THz-waves of nitrogen oxide occurrence usage as a method of natural physiological noninvasive regulation of significant organism functions.

  18. A series of inorganic solid nitrogen sources for the synthesis of metal nitride clusterfullerenes: the dependence of production yield on the oxidation state of nitrogen and counter ion.

    Science.gov (United States)

    Liu, Fupin; Guan, Jian; Wei, Tao; Wang, Song; Jiao, Mingzhi; Yang, Shangfeng

    2013-04-01

    A series of nitrogen-containing inorganic solid compounds with variable oxidation states of nitrogen and counter ions have been successfully applied as new inorganic solid nitrogen sources toward the synthesis of Sc-based metal nitride clusterfullerenes (Sc-NCFs), including ammonium salts [(NH4)xH(3-x)PO4 (x = 0-2), (NH4)2SO4, (NH4)2CO3, NH4X (X = F, Cl), NH4SCN], thiocyanate (KSCN), nitrates (Cu(NO3)2, NaNO3), and nitrite (NaNO2). Among them, ammonium phosphates ((NH4)xH(3-x)PO4, x = 1-3) and ammonium thiocyanate (NH4SCN) are revealed to behave as better nitrogen sources than others, and the highest yield of Sc-NCFs is achieved when NH4SCN was used as a nitrogen source. The optimum molar ratio of Sc2O3:(NH4)3PO4·3H2O:C and Sc2O3:NH4SCN:C has been determined to be 1:2:15 and 1:3:15, respectively. The thermal decomposition products of these 12 inorganic compounds have been discussed in order to understand their different performances toward the synthesis of Sc-NCFs, and accordingly the dependence of the production yield of Sc-NCFs on the oxidation state of nitrogen and counter ion is interpreted. The yield of Sc3N@C80 (I(h) + D(5h)) per gram Sc2O3 by using the N2-based group of nitrogen sources (thiocyanate, nitrates, and nitrite) is overall much lower than those by using gaseous N2 and NH4SCN, indicating the strong dependence of the yield of Sc-NCFs on the oxidation state of nitrogen, which is attributed to the "in-situ" redox reaction taking place for the N2-based group of nitrogen sources during discharging. For NH3-based group of nitrogen sources (ammonium salts) which exhibits a (-3) oxidation states of nitrogen, their performance as nitrogen sources is found to be sensitively dependent on the anion, and this is understood by considering their difference on the thermal stability and/or decomposition rate. Contrarily, for the N2-based group of nitrogen sources, the formation of Sc-NCFs is independent to both the oxidation state of nitrogen (+3 or +5) and the

  19. Identification of Novel Methane-, Ethane-, and Propane-Oxidizing Bacteria at Marine Hydrocarbon Seeps by Stable Isotope Probing ▿ †

    Science.gov (United States)

    Redmond, Molly C.; Valentine, David L.; Sessions, Alex L.

    2010-01-01

    Marine hydrocarbon seeps supply oil and gas to microorganisms in sediments and overlying water. We used stable isotope probing (SIP) to identify aerobic bacteria oxidizing gaseous hydrocarbons in surface sediment from the Coal Oil Point seep field located offshore of Santa Barbara, California. After incubating sediment with 13C-labeled methane, ethane, or propane, we confirmed the incorporation of 13C into fatty acids and DNA. Terminal restriction fragment length polymorphism (T-RFLP) analysis and sequencing of the 16S rRNA and particulate methane monooxygenase (pmoA) genes in 13C-DNA revealed groups of microbes not previously thought to contribute to methane, ethane, or propane oxidation. First, 13C methane was primarily assimilated by Gammaproteobacteria species from the family Methylococcaceae, Gammaproteobacteria related to Methylophaga, and Betaproteobacteria from the family Methylophilaceae. Species of the latter two genera have not been previously shown to oxidize methane and may have been cross-feeding on methanol, but species of both genera were heavily labeled after just 3 days. pmoA sequences were affiliated with species of Methylococcaceae, but most were not closely related to cultured methanotrophs. Second, 13C ethane was consumed by members of a novel group of Methylococcaceae. Growth with ethane as the major carbon source has not previously been observed in members of the Methylococcaceae; a highly divergent pmoA-like gene detected in the 13C-labeled DNA may encode an ethane monooxygenase. Third, 13C propane was consumed by members of a group of unclassified Gammaproteobacteria species not previously linked to propane oxidation. This study identifies several bacterial lineages as participants in the oxidation of gaseous hydrocarbons in marine seeps and supports the idea of an alternate function for some pmoA-like genes. PMID:20675448

  20. Identification of novel methane-, ethane-, and propane-oxidizing bacteria at marine hydrocarbon seeps by stable isotope probing.

    Science.gov (United States)

    Redmond, Molly C; Valentine, David L; Sessions, Alex L

    2010-10-01

    Marine hydrocarbon seeps supply oil and gas to microorganisms in sediments and overlying water. We used stable isotope probing (SIP) to identify aerobic bacteria oxidizing gaseous hydrocarbons in surface sediment from the Coal Oil Point seep field located offshore of Santa Barbara, California. After incubating sediment with (13)C-labeled methane, ethane, or propane, we confirmed the incorporation of (13)C into fatty acids and DNA. Terminal restriction fragment length polymorphism (T-RFLP) analysis and sequencing of the 16S rRNA and particulate methane monooxygenase (pmoA) genes in (13)C-DNA revealed groups of microbes not previously thought to contribute to methane, ethane, or propane oxidation. First, (13)C methane was primarily assimilated by Gammaproteobacteria species from the family Methylococcaceae, Gammaproteobacteria related to Methylophaga, and Betaproteobacteria from the family Methylophilaceae. Species of the latter two genera have not been previously shown to oxidize methane and may have been cross-feeding on methanol, but species of both genera were heavily labeled after just 3 days. pmoA sequences were affiliated with species of Methylococcaceae, but most were not closely related to cultured methanotrophs. Second, (13)C ethane was consumed by members of a novel group of Methylococcaceae. Growth with ethane as the major carbon source has not previously been observed in members of the Methylococcaceae; a highly divergent pmoA-like gene detected in the (13)C-labeled DNA may encode an ethane monooxygenase. Third, (13)C propane was consumed by members of a group of unclassified Gammaproteobacteria species not previously linked to propane oxidation. This study identifies several bacterial lineages as participants in the oxidation of gaseous hydrocarbons in marine seeps and supports the idea of an alternate function for some pmoA-like genes.

  1. Use of nitrogen to remove solvent from through oven transfer adsorption desorption interface during analysis of polycyclic aromatic hydrocarbons by large volume injection in gas chromatography.

    Science.gov (United States)

    Áragón, Alvaro; Toledano, Rosa M; Cortés, José M; Vázquez, Ana M; Villén, Jesús

    2014-04-25

    The through oven transfer adsorption desorption (TOTAD) interface allows large volume injection (LVI) in gas chromatography and the on-line coupling of liquid chromatography and gas chromatography (LC-GC), enabling the LC step to be carried out in normal as well as in reversed phase. However, large amounts of helium, which is both expensive and scarce, are necessary for solvent elimination. We describe how slight modification of the interface and the operating mode allows nitrogen to be used during the solvent elimination steps. In order to evaluate the performance of the new system, volumes ranging from 20 to 100μL of methanolic solutions of four polycyclic aromatic hydrocarbons (PAHs) were sampled. No significant differences were found in the repeatability and sensitivity of the analyses of standard PAH solutions when using nitrogen or helium. The performance using the proposed modification was similar and equally satisfactory when using nitrogen or helium for solvent elimination in the TOTAD interface. In conclusion, the use of nitrogen will make analyses less expensive. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Nitrogen implantation of steels: A treatment which can initiate sustained oxidative wear

    International Nuclear Information System (INIS)

    Hale, E.B.; Reinbold, R.; Missouri Univ., Rolla; Kohser, R.A.

    1987-01-01

    Falex wear tests on mild (SAE 3135) steel samples treated by either nitrogen implantation (2.5x10 17 N 2 + cm -2 at 180 keV) or low temperature (about 315 0 C) oxidation are reported. The results show that both treatments lead to about an order-of-magnitude reduction in the long-term wear rate of the steel. In addition to the wear rate measurements, the wear member asymmetry behavior, scanning electron microscopy studies, Auger spectra and sputter profiles all indicate that the wear modes induced by both treatments are the same and are oxidative wear. These results confirm the previously proposed initiator-sustainer wear model in which implanted nitrogen simply acts as an initiator of favorable oxidative wear but is not directly involved in maintaining the sustained wear resistance. Possible mechanisms for both the initiation process and the sustained wear process are reviewed and discussed. (orig.)

  3. Formation of nitrogen compounds from nitrogen-containing rings during oxidative regeneration of spent hydroprocessing catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.; Nielsen, M.; Jurasek, P. [CANMET, Ottawa, ON (Canada). Energy Research Laboratories

    1995-05-01

    Commercial CoMo and NiMo catalysts in an oxidic and sulfided form and a {gamma}-alumina were deposited with pyrrole, pyridine, and quinoline. The deposited catalysts and two spent hydroprocessing catalysts were pyrolyzed and oxidized under conditions typical of regeneration of hydroprocessing catalysts. The formation of NH{sub 3} and HCN, as well as selected cases of N{sub 2}O and NO, was monitored during the experiments. NH{sub 3} and HCN were formed during pyrolysis of pyrrole-deposited catalysts whereas only NH{sub 3} was formed during that of pyridine-and quinoline-deposited catalysts. For all deposited catalysts, both NH{sub 3} and HCN were formed during temperature programmed oxidation in 2% O{sub 2}. For spent catalysts, a small amount of N{sub 2}O was formed in 2 and 4% O{sub 2}. For pyrrole-deposited catalysts, large yields of N{sub 2}O were formed in 4% O{sub 2}. Under the same conditions, N{sub 2}O yields for pyridine- and quinoline-deposited catalysts were very small. 13 refs., 12 figs., 6 tabs.

  4. Estimation of performance of a J-T refrigerators operating with nitrogen-hydrocarbon mixtures and a coiled tubes-in-tube heat exchanger

    Science.gov (United States)

    Satya Meher, R.; Venkatarathnam, G.

    2018-06-01

    The exergy efficiency of Joule-Thomson (J-T) refrigerators operating with mixtures (MRC systems) strongly depends on the choice of refrigerant mixture and the performance of the heat exchanger used. Helically coiled, multiple tubes-in-tube heat exchangers with an effectiveness of over 96% are widely used in these types of systems. All the current studies focus only on the different heat transfer correlations and the uncertainty in predicting performance of the heat exchanger alone. The main focus of this work is to estimate the uncertainty in cooling capacity when the homogenous model is used by comparing the theoretical and experimental studies. The comparisons have been extended to some two-phase models present in the literature as well. Experiments have been carried out on a J-T refrigerator at a fixed heat load of 10 W with different nitrogen-hydrocarbon mixtures in the evaporator temperature range of 100-120 K. Different heat transfer models have been used to predict the temperature profiles as well as the cooling capacity of the refrigerator. The results show that the homogenous two-phase flow model is probably the most suitable model for rating the cooling capacity of a J-T refrigerator operating with nitrogen-hydrocarbon mixtures.

  5. Low levels of nitryl chloride at ground level: nocturnal nitrogen oxides in the Lower Fraser Valley of British Columbia

    Directory of Open Access Journals (Sweden)

    H. D. Osthoff

    2018-05-01

    Full Text Available The nocturnal nitrogen oxides, which include the nitrate radical (NO3, dinitrogen pentoxide (N2O5, and its uptake product on chloride containing aerosol, nitryl chloride (ClNO2, can have profound impacts on the lifetime of NOx ( =  NO + NO2, radical budgets, and next-day photochemical ozone (O3 production, yet their abundances and chemistry are only sparsely constrained by ambient air measurements.Here, we present a measurement data set collected at a routine monitoring site near the Abbotsford International Airport (YXX located approximately 30 km from the Pacific Ocean in the Lower Fraser Valley (LFV on the west coast of British Columbia. Measurements were made from 20 July to 4 August 2012 and included mixing ratios of ClNO2, N2O5, NO, NO2, total odd nitrogen (NOy, O3, photolysis frequencies, and size distribution and composition of non-refractory submicron aerosol (PM1.At night, O3 was rapidly and often completely removed by dry deposition and by titration with NO of anthropogenic origin and unsaturated biogenic hydrocarbons in a shallow nocturnal inversion surface layer. The low nocturnal O3 mixing ratios and presence of strong chemical sinks for NO3 limited the extent of nocturnal nitrogen oxide chemistry at ground level. Consequently, mixing ratios of N2O5 and ClNO2 were low ( <  30 and  <  100 parts-per-trillion by volume (pptv and median nocturnal peak values of 7.8 and 7.9 pptv, respectively. Mixing ratios of ClNO2 frequently peaked 1–2 h after sunrise rationalized by more efficient formation of ClNO2 in the nocturnal residual layer aloft than at the surface and the breakup of the nocturnal boundary layer structure in the morning. When quantifiable, production of ClNO2 from N2O5 was efficient and likely occurred predominantly on unquantified supermicron-sized or refractory sea-salt-derived aerosol. After sunrise, production of Cl radicals from photolysis of ClNO2 was negligible compared to production of OH

  6. [Bacterial anaerobic ammonia oxidation (Anammox) in the marine nitrogen cycle--a review].

    Science.gov (United States)

    Hong, Yiguo; Li, Meng; Gu, Jidong

    2009-03-01

    Anaerobic ammonium oxidation (Anammox) is a microbial oxidation process of ammonium, with nitrite as the electron acceptor and dinitrogen gas as the main product, and is performed by a clade of deeply branched Planctomycetes, which possess an intracytoplasmic membrane-bounded organelle, the anammoxosome, for the Anammox process. The wide distribution of Anammox bacteria in different natural environments has been greatly modified the traditional view of biogeochemical cycling of nitrogen, in which microbial denitrifier is considered as the only organism to respire nitrate and nitrite to produce nitric and nitrous oxides, and eventually nitrogen gas. More evidences indicate that Anammox is responsible for the production of more than 50% of oceanic N2 and plays an important role in global nitrogen cycling. Moreover, due to the close relationship between nitrogen and carbon cycling, it is anticipated that Anammox process might also affect the concentration of CO2 in the atmosphere, and influence the global climate change. In addition, the simultaneous transformation of nitrite and ammonium in wastewater treatment by Anammox would allow a 90% reduction in operational costs and provide a much more effective biotechnological process for wastewater treatment.

  7. Metatranscriptomic and metagenomic description of the bacterial nitrogen metabolism in waste water wet oxidation effluents

    Directory of Open Access Journals (Sweden)

    Julien Crovadore

    2017-10-01

    Full Text Available Anaerobic digestion is a common method for reducing the amount of sludge solids in used waters and enabling biogas production. The wet oxidation process (WOX improves anaerobic digestion by converting carbon into methane through oxidation of organic compounds. WOX produces effluents rich in ammonia, which must be removed to maintain the activity of methanogens. Ammonia removal from WOX could be biologically operated by aerobic granules. To this end, granulation experiments were conducted in 2 bioreactors containing an activated sludge (AS. For the first time, the dynamics of the microbial community structure and the expression levels of 7 enzymes of the nitrogen metabolism in such active microbial communities were followed in regard to time by metagenomics and metatranscriptomics. It was shown that bacterial communities adapt to the wet oxidation effluent by increasing the expression level of the nitrogen metabolism, suggesting that these biological activities could be a less costly alternative for the elimination of ammonia, resulting in a reduction of the use of chemicals and energy consumption in sewage plants. This study reached a strong sequencing depth (from 4.4 to 7.6 Gb and enlightened a yet unknown diversity of the microorganisms involved in the nitrogen pathway. Moreover, this approach revealed the abundance and expression levels of specialised enzymes involved in nitrification, denitrification, ammonification, dissimilatory nitrate reduction to ammonium (DNRA and nitrogen fixation processes in AS. Keywords: Applied sciences, Biological sciences, Environmental science, Genetics, Microbiology

  8. Anthropogenic emissions of oxidized sulfur and nitrogen into the atmosphere of the former Soviet Union in 1985 and 1990

    Energy Technology Data Exchange (ETDEWEB)

    Ryaboshapko, A.G.; Brukhanov, P.A.; Gromov, S.A.; Proshina, Yu.V; Afinogenova, O.G. [Institute of Global Climate and Ecology, Moscow (Russian Federation)

    1996-09-01

    Anthropogenic emissions of oxidized sulfur and nitrogen over the former Soviet Union for 1985 and 1990 were calculated on the basis of a combination of `bottom-up` and `top-down` approaches. Sulfur dioxide emissions from combustion of hard coal, brown coal, oil products, natural gas, shale oil, peat, wood as well as from metallurgy, sulfuric acid production, and cement production were estimated. Nitrogen oxides emissions were considered separately for large power plants, small power plants, industrial boilers, residential combustion units, and for transport. The sulfur and nitrogen emissions were spatially distributed over the former Soviet Union with 1 x 1 degree resolution. Data on 721 point sources of sulfur dioxide emissions and on the 242 largest power stations as nitrogen oxides sources were used. The area sources of both sulfur dioxide and nitrogen oxides were distributed according to the population density separately for about 150 administrative units of the former Soviet Union. 63 refs., 19 tabs.

  9. Formation of chemical compounds from irradiated mixtures of aromatic hydrocarbons and nitrogen oxides

    NARCIS (Netherlands)

    Besemer, A.C.

    1982-01-01

    The paper describes the analysis of products of the photochemical degradation of toluene and toluene-14C in smog chamber experiments. Compounds identified included methylglyoxal, possibly the recently postulated butenedial and other carbonyl compounds. The main product of photochemical degradation

  10. Formation of chemical compounds from irradiated mixtures of aromatic hydrocarbons and nitrogen oxides

    International Nuclear Information System (INIS)

    Besemer, A.C.

    1982-01-01

    The analysis of products of the photochemical degradation of toluene and toluene- 14 C in smog chamber experiments is described. Compounds identified included methylglyoxal, possibly the recently postulated butenedial and other carbonyl compounds. The main product of photochemical degradation of methylglyoxal appeared to be acetaldehyde. (author)

  11. Direct deposition of aluminum oxide gate dielectric on graphene channel using nitrogen plasma treatment

    International Nuclear Information System (INIS)

    Lim, Taekyung; Kim, Dongchool; Ju, Sanghyun

    2013-01-01

    Deposition of high-quality dielectric on a graphene channel is an essential technology to overcome structural constraints for the development of nano-electronic devices. In this study, we investigated a method for directly depositing aluminum oxide (Al 2 O 3 ) on a graphene channel through nitrogen plasma treatment. The deposited Al 2 O 3 thin film on graphene demonstrated excellent dielectric properties with negligible charge trapping and de-trapping in the gate insulator. A top-gate-structural graphene transistor was fabricated using Al 2 O 3 as the gate dielectric with nitrogen plasma treatment on graphene channel region, and exhibited p-type transistor characteristics

  12. Separation of isotopes of nitrogen and oxygen by low temperature distillation of nitrogen oxide

    Energy Technology Data Exchange (ETDEWEB)

    Isomura, Shohei; Tonooka, Yasuhiko; Kaetsu, Hayato

    1987-02-01

    In general, the distillation parameters, such as the number of theoretical plate (NTP) and the height equivalent to a theoretical plate (HETP), can be obtained from the operation at the steady state. However, it is time-consuming to achieve the steady state especially in the case of isotope separation. In this paper, with the purpose of simultaneous separation of isotopes of nitrogen and oxygen by NO distillation, we tried to determine the distillation parameters by an analytical method through the transient-state operation. It was confirmed that the results from the analysis were in good agreement with those observed for the operation at the steady state. Enrichment of the isotopes was carried out using a distillation column with a height of 1 m and inside diameter of 12 mm. The dependence of HETP on liquid flow rate was measured by the proposed method. The obtained HETP values were from 2 to 4 cm. The operation time of about 5 h was found to be long enough to determine the distillation parameters.

  13. Separation of isotopes of nitrogen and oxygen by low temperature distillation of nitrogen oxide

    International Nuclear Information System (INIS)

    Isomura, Shohei; Tonooka, Yasuhiko; Kaetsu, Hayato

    1987-01-01

    In general, the distillation parameters, such as the number of theoretical plate (NTP) and the height equivalent to a theoretical plate (HETP), can be obtained from the operation at the steady state. However, it is time-consuming to achieve the steady state especially in the case of isotope separation. In this paper, with the purpose of simultaneous separation of isotopes of nitrogen and oxygen by NO distillation, we tried to determine the distillation parameters by an analytical method through the transient-state operation. It was confirmed that the results from the analysis were in good agreement with those observed for the operation at the steady state. Enrichment of the isotopes was carried out using a distillation column with a height of 1 m and inside diameter of 12 mm. The dependence of HETP on liquid flow rate was measured by the proposed method. The obtained HETP values were from 2 to 4 cm. The operation time of about 5 h was found to be long enough to determine the distillation parameters. (author)

  14. Principles of water oxidation and O2-based hydrocarbon transformation by multinuclear catalytic sites

    Energy Technology Data Exchange (ETDEWEB)

    Musaev, Djamaladdin G [Chemistry, Emory University; Hill, Craig L [Chemistry, Emory University; Morokuma, Keiji [Chemistry, Emory University

    2014-10-28

    developed Reactive Force Field (ReaxFF) to study interaction of the targeted POMs with water, proton and hydroxide ions in the liquid phase. We tested our ReaxFF parameters on the Lindqvist POMs, M6O19n-, where M = Nb and Ta. These parameters are made available as part of the ReaxFF code. In addition, we have developed parameters for Sc, Ti, Fe, Co and Ni in combination with H, C, N, O, as well as the same metal (M-M) for the spin-polarized self-consistent-charge density-functional tight-binding (DFTB) method. Test calculations showed that the DFTB method with the present parameters in most cases reproduces structural properties very well. These parameters are made available as part of the DFTB code. Thus, this DOE BES funded research project has clarified several key areas impacting (a) water oxidation and O2-based hydrocarbon transformation, (b) stabilization of key structures and catalytic intermediates in such processes, (c) immobilization of molecular catalysts on metal oxide surfaces, and (d) application of optimal computational methods to study reaction dynamics in large systems.

  15. A case study of the relative effects of power plant nitrogen oxides and sulfur dioxide emission reductions on atmospheric nitrogen deposition.

    Science.gov (United States)

    Vijayaraghavan, Krish; Seigneur, Christian; Bronson, Rochelle; Chen, Shu-Yun; Karamchandani, Prakash; Walters, Justin T; Jansen, John J; Brandmeyer, Jo Ellen; Knipping, Eladio M

    2010-03-01

    The contrasting effects of point source nitrogen oxides (NOx) and sulfur dioxide (SO2) air emission reductions on regional atmospheric nitrogen deposition are analyzed for the case study of a coal-fired power plant in the southeastern United States. The effect of potential emission reductions at the plant on nitrogen deposition to Escambia Bay and its watershed on the Florida-Alabama border is simulated using the three-dimensional Eulerian Community Multiscale Air Quality (CMAQ) model. A method to quantify the relative and individual effects of NOx versus SO2 controls on nitrogen deposition using air quality modeling results obtained from the simultaneous application of NOx and SO2 emission controls is presented and discussed using the results from CMAQ simulations conducted with NOx-only and SO2-only emission reductions; the method applies only to cases in which ambient inorganic nitrate is present mostly in the gas phase; that is, in the form of gaseous nitric acid (HNO3). In such instances, the individual effects of NOx and SO2 controls on nitrogen deposition can be approximated by the effects of combined NOx + SO2 controls on the deposition of NOy, (the sum of oxidized nitrogen species) and reduced nitrogen species (NHx), respectively. The benefit of controls at the plant in terms of the decrease in nitrogen deposition to Escambia Bay and watershed is less than 6% of the overall benefit due to regional Clean Air Interstate Rule (CAIR) controls.

  16. Nitrogen Doped Graphene Supported Pt Nanoflowers as Electrocatalysts for Oxidation of Formaldehyde.

    Science.gov (United States)

    Xie, Aijuan; Zhou, Wenting; Luo, Shiping; Chen, Yu; Zhou, Xiaoqing; Chao, Yao

    2017-02-01

    A facile Pt nanoflowers/nitrogen-doped graphene (PtNFs/NG) electrocatalyst was prepared via depositing Pt nanoflowers (PtNFs) onto the nitrogen-doped graphene (NG) matrix with urea as the nitrogen source and PtNFs/NG modified glassy carbon electrode (GCE) was prepared by electro-chemical method. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Raman spectroscope, X-ray photoelectron spectroscopy (XPS) and Scanning electron microscope (SEM) were used to characterize the resulting composites. Also oxidation of formaldehyde on the resulting PtNFs/NG modified electrode was investigated. The influence of deposition time, electrodeposition potential and formaldehyde concentration on electrooxidation of formaldehyde was detected, the experimental results indicate the high performance of PtNFs/NG catalyst for formaldehyde oxidation is at electrodeposition time of 300 s with the applied potential of −0.3 V. Electrochemical process, electrocatalytic stability and chronoamperometry were also inspected, it was indicated that formalde-hyde oxidation reaction on the PtNFs/NG electrode is diffusion-controlled and PtNFs/NG exhibits a high catalytic activity, stability as well as excellent poisoning-tolerance towards formaldehyde oxidation, which is attributed to the synergistic effect of PtNFs and NG. It turns out that PtNFs/NG can be used in direct liquid-feed fuel cells as a promising alternative catalyst.

  17. Catalytic upgrading nitrogen-riched wood syngas to liquid hydrocarbon mixture over Fe-Pd/ZSM-5 catalyst

    Science.gov (United States)

    Qiangu Yan; Fei Yu; Zhiyong Cai; Jilei Zhang

    2012-01-01

    Biomass like wood chips, switchgrass and other plant residues are first converted to syngas through gasification process using air, oxygen or steam. A downdraft gasifier is performed for syngas production in Mississippi State. The syngas from the gasifier contains up to 49% (vol) N2. High-level nitrogen-containing (nitrogen can be up to 60%)...

  18. Remediation of total petroleum hydrocarbons using combined in-vessel composting ‎and oxidation by activated persulfate

    Directory of Open Access Journals (Sweden)

    A.R. Asgari

    2017-12-01

    Full Text Available This study was investigated the efficiency of activated persulfate and ‎in-vessel composting for removal of total petroleum hydrocarbons. ‎Remediation by activated persulfate with ferrous sulfate as pre-treatment was done at batch system. In the chemical oxidation, various variables including persulfate concentrations (10-3000 mg/g as waste, pH (3-7, ferrous sulfate (0.5-4 mg/g as wasteand temperature (20-60°C were studied. In the biological system, premature compost was added as an amendment. The filter cake to compost ratio were 1:0 (as control and 1:5 to 15 (as dry basis. C: N: P ratio and moisture content were 100:5:1 and 45-60%, respectively. The results showed that acidic pH (pH=3 had high efficiency for the removal of total petroleum hydrocarbons by activated persulfate. Temperature had the significant effect during the persulfate oxidation. When ferrous sulfate was used as an activator for degradation at acidic condition and 60°C, removal efficiency increased to 47.32%. The results of biological process showed that the minimum total petroleum hydrocarbons removal in all reactors was 62 percent. The maximum and minimum removal efficiency was obtained at 1:5 (69.46% and 1:10 (62.42% mixing ratios, respectively. Kinetic study showed that second order kinetic model (R2>0.81 shows the best agreement with the experimental data and the rate of TPH degradation at low mixing ratio (1:3 was faster than high mixing ratio (1:15. Therefore, according to the results, in-vessel composting after pre-treatment by activated persulfate is suggested as an efficient process for degradation of total petroleum hydrocarbons.

  19. Synthesis of Nitrogen-Doped Mesoporous Carbon for the Catalytic Oxidation of Ethylbenzene

    Science.gov (United States)

    Wang, Ruicong; Yu, Yifeng; Zhang, Yue; Lv, Haijun; Chen, Aibing

    2017-06-01

    Nitrogen-doped ordered mesoporous carbon (NOMC) was fabricated via a simple hard-template method by functionalized ionic liquids as carbon and nitrogen source, SBA-15 as a hard-template. The obtained NOMC materials have a high nitrogen content of 5.55 %, a high surface area of 446.2 m2 g-1, and an excellent performance in catalysing oxidation of ethylbenzene. The conversion rate of ethylbenzene can be up to 84.5% and the yield of acetophenone can be up to 69.9%, the results indicated that the NOMC materials have a faster catalytic rate and a higher production of acetophenone than catalyst-free and CMK-3, due to their uniform pore size, high surface area and rich active sites in the carbon pore walls.

  20. Control of nitrogen oxides at thermal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R.; Hall, R.E.

    1991-01-01

    Reviews reports presented at the International symposium on reduction of NO{sub x} emissions from stationary pollutant sources, held in San Francisco (USA) in March 1989. Topics concentrated on the latest trends in power engineering in the USA and Europe. Reports were dedicated to test results of pilot plant equipment employing the increasingly popular LNB, OFA, Reburn, SNCR, and SCR technologies. The following conclusions are drawn on the basis of the symposium proceedings: The nitric oxide problem may be considered exaggerated in regard to thermal power plants because of errors made during flue gas composition analysis. The combination of new combustion chambers and staged air input with simultaneous redesigning of equipment is most widely employed in the USA (achieving a 50% NO{sub x} reduction with minimum effect on power plant operation and maintenance costs). Economic sense demands that primary methods of NO{sub x} removal be used prior to SCR implementation. The SCR technology reducing NO{sub x} emission by 60-80% with ammonia to less than 5 ppm is the most popular flue gas denitrification method. 15 refs.

  1. Loss of nitrogen (study with 15N) as gaseous oxides under submerged conditions of paddy

    International Nuclear Information System (INIS)

    Mandal, S.R.; Datta, N.P.

    1987-01-01

    The experiment in a specially designed, air-tight pot with rice and different water soluble grades of nitrophosphate, ammonium nitrate (plus super phosphate) tagged with six atom per cent excess 15 N clearly revealed that the loss of nitrogen as oxides during the growth period of rice under submerged condition was very small (1.48 to 2.57 mg/pot). The 15 N content in the lost oxides was also very small and a small traction of total nitrogen applied represented the loss in this channel (0.0062 to 0.0163 per cent). The loss was influenced by NH 4 :NO 3 ratio in the fertilizer and increased with the increasing quantity of nitrate present in the fertilizers. (author)

  2. Catalytic pleat filter bags for combined particulate separation and nitrogen oxides removal from flue gas streams

    International Nuclear Information System (INIS)

    Park, Young Ok; Choi, Ho Kyung

    2010-01-01

    The development of a high temperature catalytically active pleated filter bag with hybrid filter equipment for the combined removal of particles and nitrogen oxides from flue gas streams is presented. A special catalyst load in stainless steel mesh cartridge with a high temperature pleated filter bag followed by optimized catalytic activation was developed to reach the required nitrogen oxides levels and to maintain the higher collection efficiencies. The catalytic properties of the developed high temperature filter bags with hybrid filter equipment were studied and demonstrated in a pilot scale test rig and a demonstration plant using commercial scale of high temperature catalytic pleated filter bags. The performance of the catalytic pleated filter bags were tested under different operating conditions, such as filtration velocity and operating temperature. Moreover, the cleaning efficiency and residual pressure drop of the catalyst loaded cartridges in pleated filter bags were tested. As result of theses studies, the optimum operating conditions for the catalytic pleated filter bags are determined. (author)

  3. Prediction of traffic-related nitrogen oxides concentrations using Structural Time-Series models

    Science.gov (United States)

    Lawson, Anneka Ruth; Ghosh, Bidisha; Broderick, Brian

    2011-09-01

    Ambient air quality monitoring, modeling and compliance to the standards set by European Union (EU) directives and World Health Organization (WHO) guidelines are required to ensure the protection of human and environmental health. Congested urban areas are most susceptible to traffic-related air pollution which is the most problematic source of air pollution in Ireland. Long-term continuous real-time monitoring of ambient air quality at such urban centers is essential but often not realistic due to financial and operational constraints. Hence, the development of a resource-conservative ambient air quality monitoring technique is essential to ensure compliance with the threshold values set by the standards. As an intelligent and advanced statistical methodology, a Structural Time Series (STS) based approach has been introduced in this paper to develop a parsimonious and computationally simple air quality model. In STS methodology, the different components of a time-series dataset such as the trend, seasonal, cyclical and calendar variations can be modeled separately. To test the effectiveness of the proposed modeling strategy, average hourly concentrations of nitrogen dioxide and nitrogen oxides from a congested urban arterial in Dublin city center were modeled using STS methodology. The prediction error estimates from the developed air quality model indicate that the STS model can be a useful tool in predicting nitrogen dioxide and nitrogen oxides concentrations in urban areas and will be particularly useful in situations where the information on external variables such as meteorology or traffic volume is not available.

  4. Tropospheric profiles of nitrogen oxides, ozone, and other related trace species measured over the Atlantic near the west coast of Europe

    Energy Technology Data Exchange (ETDEWEB)

    Rohrer, F; Bruening, D; Grobler, E S; Koppmann, R; Kraus, A B; Schrimpf, W; Weber, M; Ehhalt, D H [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Atmosphaerische Chemie

    1998-12-31

    In June and December 1994, the concentrations of the nitrogen oxides NO, NO{sub 2} and NO{sub y} were measured together with ozone, photolysis frequency of NO{sub 2}, methane, CO, CO{sub 2}, PAN, and light hydrocarbons near the west coast of Europe above the Atlantic Ocean. Two vertical profiles for each season were obtained in the altitude range 1.5 to 12 km at four locations: near Prestwick (56 deg N, 9 deg W), Brest (49 deg N, 6 deg W), Faro (37 deg N, 12 deg W) and Tenerife (30 deg N, 18 deg W). The measured vertical profiles of NO are compared to the results of a low resolution 3-D chemical tracer model. (author)

  5. Tropospheric profiles of nitrogen oxides, ozone, and other related trace species measured over the Atlantic near the west coast of Europe

    Energy Technology Data Exchange (ETDEWEB)

    Rohrer, F.; Bruening, D.; Grobler, E.S.; Koppmann, R.; Kraus, A.B.; Schrimpf, W.; Weber, M.; Ehhalt, D.H. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Atmosphaerische Chemie

    1997-12-31

    In June and December 1994, the concentrations of the nitrogen oxides NO, NO{sub 2} and NO{sub y} were measured together with ozone, photolysis frequency of NO{sub 2}, methane, CO, CO{sub 2}, PAN, and light hydrocarbons near the west coast of Europe above the Atlantic Ocean. Two vertical profiles for each season were obtained in the altitude range 1.5 to 12 km at four locations: near Prestwick (56 deg N, 9 deg W), Brest (49 deg N, 6 deg W), Faro (37 deg N, 12 deg W) and Tenerife (30 deg N, 18 deg W). The measured vertical profiles of NO are compared to the results of a low resolution 3-D chemical tracer model. (author)

  6. Formation of Nitrogen Oxides in an Apokamp-Type Plasma Source

    Science.gov (United States)

    Sosnin, É. A.; Goltsova, P. A.; Panarin, V. A.; Skakun, V. S.; Tarasenko, V. F.; Didenko, M. V.

    2017-08-01

    Using optical and chemical processes, the composition of the products of decay of the atmospheric-pressure non-equilibrium plasma is determined in a pulsed, high-voltage discharge in the modes of apokampic and corona discharges. It is shown that the products of decay primarily contain nitrogen oxides NO x, and in the mode of the corona discharge - ozone. Potential applications of this source of plasma are discussed with respect to plasma processing of the seeds of agricultural crops.

  7. Nitrogen oxide suppression by using a new design of pulverized-coal burners

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R.; Cameron, S.D.; Grekhov, L.L. [All-Russian Thermal Engineering Institute, Moscow (Russian Federation)

    1996-07-01

    The results of testing a low-NO{sub x} swirl burner are presented. This burner was developed by Babcock Energy Ltd., for reducing nitrogen oxide emissions when burning Ekibastuz and Kuznetsk low-caking coals in power boilers. The tests conducted at a large plant of the BEL Technological Center showed that the new burner reduces NO{sub x} emissions by approximately two times. 6 refs., 6 figs., 1 tab.

  8. The Technology of Nitrogen Oxide Emissions Reduction at Pulverized Coal Burning

    Directory of Open Access Journals (Sweden)

    Dunaevska, N.I.

    2016-11-01

    Full Text Available To assess the effectiveness of the influence of thermochemical preparation of anthracite on the formation of nitrogen oxides the three-dimensional numerical model of the TPP-210A boiler`s furnace for standard and modified burners was created. The calculation results are shown the decrease of NOx concentration across the height of the furnace and reduce of the unburnt coal for the modified burners in comparison with standard ones.

  9. Solid State Electrochemical Sensors for Nitrogen Oxide (NOx) Detection in Lean Exhaust Gases

    OpenAIRE

    Rheaume, Jonathan Michael

    2010-01-01

    Solid state electrochemical sensors that measure nitrogen oxides (NOx) in lean exhaust have been investigated in order to help meet future on-board diagnostic (OBD) regulations for diesel vehicles. This impedancemetric detection technology consists of a planar, single cell sensor design with various sensing electrode materials and yttria-stabilized zirconia (YSZ) as the electrolyte. No reference to ambient air is required. An impedance analysis method yields a signal that is proportional to t...

  10. Influence of tropical leaf litter on nitrogen mineralization and community structure of ammonia-oxidizing bacteria

    OpenAIRE

    Diallo, M. D.; Guisse, A.; Sall, S. N.; Dick, R. P.; Assigbetsé, Komi; Dieng, A. L.; Chotte, Jean-Luc

    2015-01-01

    Description of the subject. The present study concerns the relationships among leaf litter decomposition, substrate quality, ammonia-oxidizing bacteria (AOB) community composition and nitrogen (N) availability. Decomposition of organic matter affects the biogeochemical cycling of carbon (C) and N. Since the composition of the soil microbial community can alter the physiological capacity of the community, it is timely to study the litter quality effect on N dynamic in ecosystems. Objectives. T...

  11. Determination of nitrogen in PuO2-UO2 mixed oxide with fusion-TCD method

    International Nuclear Information System (INIS)

    Hiyama, Toshiaki; Takahashi, Toshio; Ohuchi, Yoshiro; Suzuki, Takeshi; Kaya, Akira

    1983-01-01

    Nitrogen in plutonium and uranium mixed oxide has been determined by several different methods. In the classical Dumas method, nitrogen is measured volumetrically. Other procedures are modifications of the Kjeldahl method in which nitrogen is converted to ammonia. All these methods are accompanied with the same problems in which the analysis takes usually 2 or 3 days with waste solutions generated. So far, the authors have tried to determine nitrogen in PuO 2 -UO 2 mixed oxide with an improved dry process, in which an impulse furnace is used to heat the sample in a graphite crucible under a helium atmosphere. Nitrogen released from the sample were separated from other gases (i.e., a large amount of carbon monoxide, very small amount of hydrogen etc.) by a combination of original two moleculer sieve columns and pre-cut system. Separated nitrogen was then detected on the basis of thermal conductivities. (author)

  12. Nitrogen source effects on the denitrifying anaerobic methane oxidation culture and anaerobic ammonium oxidation bacteria enrichment process.

    Science.gov (United States)

    Fu, Liang; Ding, Jing; Lu, Yong-Ze; Ding, Zhao-Wei; Zeng, Raymond J

    2017-05-01

    The co-culture system of denitrifying anaerobic methane oxidation (DAMO) and anaerobic ammonium oxidation (Anammox) has a potential application in wastewater treatment plant. This study explored the effects of permutation and combination of nitrate, nitrite, and ammonium on the culture enrichment from freshwater sediments. The co-existence of NO 3 - , NO 2 - , and NH 4 + shortened the enrichment time from 75 to 30 days and achieved a total nitrogen removal rate of 106.5 mg/L/day on day 132. Even though ammonium addition led to Anammox bacteria increase and a higher nitrogen removal rate, DAMO bacteria still dominated in different reactors with the highest proportion of 64.7% and the maximum abundance was 3.07 ± 0.25 × 10 8 copies/L (increased by five orders of magnitude) in the nitrite reactor. DAMO bacteria showed greater diversity in the nitrate reactor, and one was similar to M. oxyfera; DAMO bacteria in the nitrite reactor were relatively unified and similar to M. sinica. Interestingly, no DAMO archaea were found in the nitrate reactor. This study will improve the understanding of the impact of nitrogen source on DAMO and Anammox co-culture enrichment.

  13. A Generalizable Top-Down Nanostructuring Method of Bulk Oxides: Sequential Oxygen-Nitrogen Exchange Reaction.

    Science.gov (United States)

    Lee, Lanlee; Kang, Byungwuk; Han, Suyoung; Kim, Hee-Eun; Lee, Moo Dong; Bang, Jin Ho

    2018-05-27

    A thermal reaction route that induces grain fracture instead of grain growth is devised and developed as a top-down approach to prepare nanostructured oxides from bulk solids. This novel synthesis approach, referred to as the sequential oxygen-nitrogen exchange (SONE) reaction, exploits the reversible anion exchange between oxygen and nitrogen in oxides that is driven by a simple two-step thermal treatment in ammonia and air. Internal stress developed by significant structural rearrangement via the formation of (oxy)nitride and the creation of oxygen vacancies and their subsequent combination into nanopores transforms bulk solid oxides into nanostructured oxides. The SONE reaction can be applicable to most transition metal oxides, and when utilized in a lithium-ion battery, the produced nanostructured materials are superior to their bulk counterparts and even comparable to those produced by conventional bottom-up approaches. Given its simplicity and scalability, this synthesis method could open a new avenue to the development of high-performance nanostructured electrode materials that can meet the industrial demand of cost-effectiveness for mass production. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Les oxydes d'azote dans l'environnement Nitrogen Oxides in the Environment

    Directory of Open Access Journals (Sweden)

    Oppeneau J. C.

    2006-11-01

    Full Text Available Le présent article expose les concentrations en oxydes d'azote rencontrées dans l'environnement et fait la part des origines naturelles et anthropogéniques. II présente une des manifestations les plus connues des interactions entre les oxydes d'azote, les molécules organiques, la vapeur d'eau et le rayonnement solaire le brouillard photochimique. Un certain nombre de données sur les effets d'oxydes d'azote sur l'homme et le milieu sont cités et il est mentionné que de nombreuses recherches sont à effectuer pour préciser les connaissances actuelles. Enfin, les réglementations présentes et futures sont décrites. This article describes concentrations of nitrogen oxides found in the environment and explains their natural and anthropogenic origins. It describes one of the best known examples of interactions between nitrogen oxides, organic molecules, water vaporand solorradiation, i. e. photochemical smog. Various data are brought outconcerning the effects of nitrogen oxides on man and the environment, and mention is mode of the many research projects being carried out ta specify current knowledge. Present and future regulations are also described.

  15. Reduction of Nitrogen Oxides Emissions from a Coal-Fired Boiler Unit

    Science.gov (United States)

    Zhuikov, Andrey V.; Feoktistov, Dmitry V.; Koshurnikova, Natalya N.; Zlenko, Lyudmila V.

    2016-02-01

    During combustion of fossil fuels a large amount of harmful substances are discharged into the atmospheres of cities by industrial heating boiler houses. The most harmful substances among them are nitrogen oxides. The paper presents one of the most effective technological solutions for suppressing nitrogen oxides; it is arrangement of circulation process with additional mounting of the nozzle directed into the bottom of the ash hopper. When brown high-moisture coals are burnt in the medium power boilers, generally fuel nitrogen oxides are produced. It is possible to reduce their production by two ways: lowering the temperature in the core of the torch or decreasing the excess-air factor in the boiler furnace. Proposed solution includes the arrangement of burning process with additional nozzle installed in the lower part of the ash hopper. Air supply from these nozzles creates vortex involving large unburned fuel particles in multiple circulations. Thereby time of their staying in the combustion zone is prolonging. The findings describe the results of the proposed solution; and recommendations for the use of this technological method are given for other boilers.

  16. Development of Green Pavement for Reducing Oxides of Nitrogen (NOx in the Ambient Air

    Directory of Open Access Journals (Sweden)

    Kania Dewi

    2016-05-01

    Full Text Available The transportation sector is the biggest contributor to air pollution in Indonesia, especially in metropolitan cities. Gases such as oxides of nitrogen (NOx are produced during the combustion of fossil fuels in the internal combustion of vehicle engines. Oxides of nitrogen such as nitric oxide (NO and nitrogen dioxide (NO2 are important air pollutants, because they cause significant harm to human health and play an important role in being precursors of other dangerous pollutants such as photochemical smog. One of the simple ways to reduce NOx concentrations is utilizing a catalytic process involving UV light and semiconductor particles such as TiO2. Illuminated TiO2 UV light is capable of producing an electron (e- and hole (h- pair, which initiates a chemical reaction that alters the NOx to become NO3- or NO2-. A field scale paving block reactor coated with TiO2 placed by the roadside was exposed to UV light using various exposure times. The results showed that the sample with a composition of 200 g/m2 TiO2 was capable of adsorbing NOx gas at an average rate of 0.0046 mg/m2/minute. Additional costs due to TiO2 coating for every square meter of paving are IDR 13,180.

  17. Influence of nitrogen oxides NO and NO2 on singlet delta oxygen production in pulsed discharge

    International Nuclear Information System (INIS)

    Ionin, A A; Klimachev, Yu M; Kozlov, A Yu; Kotkov, A A; Rulev, O A; Seleznev, L V; Sinitsyn, D V; Vagin, N P; Yuryshev, N N; Kochetov, I V; Napartovich, A P

    2009-01-01

    The influence of nitrogen oxides NO and NO 2 on the specific input energy (SIE) and the time behaviour of singlet delta oxygen (SDO) luminescence excited by a pulsed e-beam sustained discharge in oxygen were experimentally and theoretically studied. NO and NO 2 addition into oxygen results in a small increase and decrease in the SIE, respectively, the latter being connected with a large energy of electron affinity to NO 2 . The addition of 0.1-0.3% nitrogen oxides was experimentally and theoretically demonstrated to result in a notable enhancement of the SDO lifetime, which is related to a decrease in the atomic oxygen concentration in afterglow. It was experimentally demonstrated that to get a high SDO concentration at the gas pressure 30-60 Torr for a time interval of less than ∼0.5 s one needs to add not less than 0.2% nitrogen oxides into oxygen. The temperature dependence of the relaxation constant for SDO quenching by unexcited oxygen was estimated by using experimental data on the time behaviour of SDO luminescence.

  18. Reduction of Nitrogen Oxides Emissions from a Coal-Fired Boiler Unit

    Directory of Open Access Journals (Sweden)

    Zhuikov Andrey V.

    2016-01-01

    Full Text Available During combustion of fossil fuels a large amount of harmful substances are discharged into the atmospheres of cities by industrial heating boiler houses. The most harmful substances among them are nitrogen oxides. The paper presents one of the most effective technological solutions for suppressing nitrogen oxides; it is arrangement of circulation process with additional mounting of the nozzle directed into the bottom of the ash hopper. When brown high-moisture coals are burnt in the medium power boilers, generally fuel nitrogen oxides are produced. It is possible to reduce their production by two ways: lowering the temperature in the core of the torch or decreasing the excess-air factor in the boiler furnace. Proposed solution includes the arrangement of burning process with additional nozzle installed in the lower part of the ash hopper. Air supply from these nozzles creates vortex involving large unburned fuel particles in multiple circulations. Thereby time of their staying in the combustion zone is prolonging. The findings describe the results of the proposed solution; and recommendations for the use of this technological method are given for other boilers.

  19. Oxidized Nitrogen Balance over 15 Months at Rural and Urban New York State Locations

    Science.gov (United States)

    Schwab, J. J.; Ninneman, M.; Marto, J.; Edgerton, E. S.; Blanchard, C. L.; Shaw, S. L.

    2017-12-01

    Continuous measurements of oxidized nitrogen species (NO, NO2, and HNO3), families of species (NOy, alkyl nitrates [or ANs], and peroxyacetyl nitrates [or PANs]), and particle nitrate (pNO3) were carried out for a fifteen-month period from August 2016 through October 2017 at two locations in New York State. The two sites were a rural research station at Pinnacle State Park in Addison, NY and an urban research station at Queens College in New York City. Four different chemiluminescence analyzers with various converters and denuders were employed to make these measurements. Instrumentation used for the study will be described, as well as some of the challenges created by combining data from these independent analyzers to address the oxidized nitrogen budget at the two sites. The Pinnacle State Park site often experiences quite clean air with low ppb levels of total NOy and a greater fraction of oxidized nitrogen products (NOz species). This contrasts with the urban Queens College location, which experiences stronger NOx sources. Seasonal differences in the NOx/NOy and NOz/NOy ratios, and the makeup of the NOz species, are also significant and will be explored in the presentation.

  20. Nitrogen

    Science.gov (United States)

    Apodaca, L.E.

    2010-01-01

    Ammonia was produced by 13 companies at 23 plants in 16 states during 2009. Sixty percent of all U.S. ammonia production capacity was centered in Louisiana. Oklahoma and Texas because of those states' large reserves of natural gas, the dominant domestic feedstock. In 2009, U.S. producers operated at about 83 percent of their rated capacity (excluding plants that were idle for the entire year). Five companies — Koch Nitrogen Co.; Terra Industries Inc.; CF Industries Inc.; PCS Nitrogen Inc. and Agrium Inc., in descending order — accounted for 80 percent of the total U.S. ammonia production capacity. U.S. production was estimated to be 7.7 Mt (8.5 million st) of nitrogen (N) content in 2009 compared with 7.85 Mt (8.65 million st) of N content in 2008. Apparent consumption was estimated to have decreased to 12.1 Mt (13.3 million st) of N, a 10-percent decrease from 2008. The United States was the world's fourth-ranked ammonia producer and consumer following China, India and Russia. Urea, ammonium nitrate, ammonium phosphates, nitric acid and ammonium sulfate were the major derivatives of ammonia in the United States, in descending order of importance.

  1. 40 CFR 50.11 - National primary and secondary ambient air quality standards for oxides of nitrogen (with...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 2 2010-07-01 2010-07-01 false National primary and secondary ambient air quality standards for oxides of nitrogen (with nitrogen dioxide as the indicator). 50.11 Section 50.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS NATIONAL...

  2. Evaluation of the Removal of Hydrocarbons from Soil Media Using Persulfate Oxidation in the Presence of Mineral Siderite

    Directory of Open Access Journals (Sweden)

    Farzad Mohammadi

    2016-09-01

    Full Text Available Introduction and purpose: Soil contamination by petroleum is mostly resulted from oil exploration, refining processes, leaking of oil products from storage tanks, leaking from pipelines due to pipe friction and decay, refinery wastewater discharge and agricultural irrigation with such materials. Sodium persulfate (Na2S2O8, which is a chemical oxidant, could be activated in the presence of ferrous (Fe2+ and, leading to the treatment of a wide range of soil contaminants. Therefore, this study aimed to evaluate the removal of hydrocarbons from soil media using persulfate oxidation in the presence of mineral siderite. Methods: Initially, oil-contaminated soil was prepared in the form of two separate samples, including silt-clay and sandy-loam soils, which were orderly spiked with 5000 mg fuel oil per kilogram of dry soil. Following that, the effects of various factors, such as different concentrations of persulfate (100-500 mmol/L and siderite (0.1-0.5 g/L, pH (3-9 and temperature (20-60◦C and the removal of petroleum hydrocarbon were assessed.Results: In this study, the optimum condition for degeneration of total petroleum hydrocarbon in silt-clay soils was reported, as follows: temperature: 60◦C, pH: 3, and persulfate/siderite molar ratio of 400 mmol/L to 4.0 g/L. Meanwhile, the optimum condition for the removal of hydrocarbon from sandy-loam soils was pH: 3, temperature: 60◦C and persulfate/siderite molar ratio of 300 mmol/L to 3.0 g/L.Conclusion: According to the results of this study, the optimal amount of persulfate and siderite could be used to remove hydrocarbons from contaminated soils.

  3. Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation RID B-8834-2011

    DEFF Research Database (Denmark)

    Kuypers, MMM; Lavik, G.; Woebken, D.

    2005-01-01

    ) and is commonly attributed to denitrification (reduction of nitrate to N-2 by heterotrophic bacteria). Here, we show that instead, the anammox process (the anaerobic oxidation of ammonium by nitrite to yield N-2) is mainly responsible for nitrogen loss in the OMZ waters of one of the most productive regions......In many oceanic regions, growth of phytoplankton is nitrogen-limited because fixation of N-2 cannot make up for the removal of fixed inorganic nitrogen (NH4+, NO2-, and NO3-) by anaerobic microbial processes. Globally, 30-50% of the total nitrogen loss occurs in oxygen-minimum zones (OMZs...... that anammox bacteria are responsible for massive losses of fixed nitrogen. We have identified and directly linked anammox bacteria to the removal of fixed inorganic nitrogen in the OMZ waters of an open-ocean setting. We hypothesize that anammox could also be responsible for substantial nitrogen loss from...

  4. Observations of the diurnal and seasonal trends in nitrogen oxides in the western Sierra Nevada

    Directory of Open Access Journals (Sweden)

    J. G. Murphy

    2006-01-01

    Full Text Available Observations of speciated nitrogen oxides, namely NO2, total peroxy nitrates (ΣPNs, total alkyl nitrates (ΣANs, and HNO3 by thermal dissociation laser induced fluorescence (TD-LIF, and supporting chemical and meteorological measurements at Big Hill (1860 m, a high elevation site in California's Sierra Nevada Mountains, are described. From May through October, terrain-driven winds in the region routinely bring air from Sacramento, 100 km southwest of the site, upslope over oak and pine forests to Big Hill during the day, while at night, the site often samples clean, dry air characteristic of the free troposphere. Winter differs mainly in that the meteorology does not favour the buildup of Sacramento's pollution over the Sierra Nevada range, and the urban-influenced air that is seen has been less affected by biogenic VOC emissions, resulting in longer lifetime for NO2 and a predominance of the inorganic forms of nitrogen oxides. Summertime observations at Big Hill can be compared with those from Granite Bay, a Sacramento suburb, and from the University of California's Blodgett Forest Research Station to examine the evolution of nitrogen oxides and ozone within the urban plume. Nitrogen oxide radicals (NO and NO2, which dominate total nitrogen oxides (NOy at Granite Bay, are rapidly converted into HNO3, ΣPNs, and ΣANs, such that these compounds contribute 29, 30, and 21% respectively to the NOy budget in the plume at Big Hill. Nevertheless, the decreasing concentrations of NO2 as the plume is advected to Big Hill lead to decreases in the production rate of HNO3 and ozone. The data also demonstrate the role that temperature plays in sequestering NO2 into peroxy nitrates, effectively decreasing the rate of ozone production. The important contribution of ΣANs to NOy in the region suggests that they should be considered with regards to export of NOy from the boundary layer. Nocturnal observations of airmasses characteristic of the

  5. The characteristics of surface oxidation and corrosion resistance of nitrogen implanted zircaloy-4

    International Nuclear Information System (INIS)

    Tang, G.; Choi, B.H.; Kim, W.; Jung, K.S.; Kwon, H.S.; Lee, S.J.; Lee, J.H.; Song, T.Y.; Shon, D.H.; Han, J.G.

    1997-01-01

    This work is concerned with the development and application of ion implantation techniques for improving the corrosion resistance of zircaloy-4. The corrosion resistance in nitrogen implanted zircaloy-4 under a 120 keV nitrogen ion beam at an ion dose of 3 x 10 17 cm -2 depends on the implantation temperature. The characteristics of surface oxidation and corrosion resistance were analyzed with the change of implantation temperature. It is shown that as implantation temperature rises from 100 to 724 C, the colour of specimen surface changes from its original colour to light yellow at 100 C, golden at 175 C, pink at 300 C, blue at 440 C and dark blue at 550 C. As the implantation temperature goes above 640 C, the colour of surface changes to light black, and the surface becomes a little rough. The corrosion resistance of zircaloy-4 implanted with nitrogen is sensitive to the implantation temperature. The pitting potential of specimens increases from 176 to 900 mV (SCE) as the implantation temperature increases from 100 to 300 C, and decreases from 900 to 90 mV(SCE) as the implantation temperature increases from 300 to 640 C. The microstructure, the distribution of oxygen, nitrogen and carbon elements, the oxide grain size and the feature of the precipitation in the implanted surface were investigated by optical microscope, TEM, EDS, XRD and AES. The experimental results reveal that the ZrO 2 is distributed mainly on the outer surface. The ZrN is distributed under the ZrO 2 layer. The characteristics of the distribution of ZrO 2 and ZrN in the nitrogen-implanted zircaloy-4 is influenced by the implantation temperature of the sample, and in turn the corrosion resistance is influenced. (orig.)

  6. High electrocatalytic performance of nitrogen-doped carbon nanofiber-supported nickel oxide nanocomposite for methanol oxidation in alkaline medium

    Energy Technology Data Exchange (ETDEWEB)

    Al-Enizi, Abdullah M. [Department of Chemistry, King Saud University, PO Box: 2455, Riyadh 11451 (Saudi Arabia); Elzatahry, Ahmed A., E-mail: aelzatahry@ksu.edu.sa [Materials Science and Technology Program, College of Arts and Science, Qatar University, Doha 2713 (Qatar); Advanced Technology and New Materials Research Institute, City of Scientific Research and Technology Applications, New Borg El-Arab City, Alexandria 21934 (Egypt); Abdullah, Aboubakr M., E-mail: bakr@qu.edu.qa [Center for Advanced Materials, Qatar University, Doha 2713 (Qatar); Vinu, Ajayan [Future Industries Institute, University of South Australia, Building X-X2-09, Mawson Lakes Campus, Mawson Lakes 5095 SA (Australia); Iwai, Hideo [Materials Analysis Station, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047 (Japan); Al-Deyab, Salem S. [Petrochemical Research Chair, Department of Chemistry, King Saud University, PO Box: 2455, Riyadh 11451 (Saudi Arabia)

    2017-04-15

    Highlights: • A mixture of Polyvinylpyrrolidone (PVP), graphene and emeraldine base polyaniline (PANi) was electrospun and used as starting materials to prepare a nitrogen-doped carbon nanofiber (N-CNF). • Nickel oxide was loaded on the N-CNF to form a nanocomposite which was calcined later at different temperatures. • The effect of calcination temperature on the electrocatalytic behavior of the nanocomposite was studied which shows that the nanocomposite calcined at 500 °C was proved to be very high compared to the other calcination temperatures. • The stability of catalyst was excellent and its resistance to the adsorption of the intermediates generated from the methanol oxidation was very high. - Abstract: Nitrogen-Doped Carbon Nanofiber (N-CNF)–supported NiO composite was prepared by electrospinning a sol-gel mixture of graphene and polyaniline (PANi) with aqueous solutions of Polyvinylpyrrolidone (PVP) followed by a high-temperature annealing process. The electrospun was stabilized for 2 h at 280 °C, carbonized for 5 h at 1200 °C then loaded by 10% NiO. The electrocatalytic activities of the produced nanocomposite have been studied using cyclic voltammetry, and chronoamperometry. Also, N-CNF was characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), surface area (BET), X-ray photoelectron spectroscopy (XPS), transmission electron microscope (TEM), and scanning-electron microscopy (SEM). The obtained N-doped carbon nanofiber was found to have a nitrogen content of 2.6 atomic% with a diameter range of (140–160) nm, and a surface area (393.3 m{sup 2} g{sup −1}). In addition, it showed a high electrocatalytic behavior towards methanol oxidation reaction in alkaline medium and high stability and resistivity to the adsorption of intermediates.

  7. Modelling of nitrogen oxides distribution in the hearth of gas-fired industrial furnace

    Science.gov (United States)

    Zhubrin, S.; Glazov, V.; Guzhov, S.

    2017-11-01

    A model is proposed for calculating the formation and transportation of nitrogen oxides in the combustion chamber of an industrial furnace heated by gaseous fuels burning. The calculations use a three-dimensional stationary description of turbulent flow and mixing of fuel and oxidizer flows in the presence of heat transfer, mass transfer, and momentum between them transfer. Simulation of the spatial pattern of nitrogen oxides formation in the working space of the furnace is performed in the programming and computing suite SCAN. It is shown that the temperature non-uniformity over the hearth surface is not too pronounced due to the organization of the inclined flow inlet in the direction of the hearth, which is a desirable feature of the furnace operation. The highest concentration of combustion products is observed in the zone of maximum temperatures. In addition, the existence of two zones of the highest generation of oxides has been determined. The first zone is located approximately in the center of the hearth, and the second is located on the far external surface of the furnace. The possibility of using the developed model in the SCAN complex for carrying out parametric studies and engineering calculations, as well as for modification in the direction of adjusting and adapting the model to the regime-constructive features of specific energy technological devices, is noted.

  8. Silica Supported Platinum Catalysts for Total Oxidation of the Polyaromatic Hydrocarbon Naphthalene: An Investigation of Metal Loading and Calcination Temperature

    Directory of Open Access Journals (Sweden)

    David R. Sellick

    2015-04-01

    Full Text Available A range of catalysts comprising of platinum supported on silica, prepared by an impregnation method, have been studied for the total oxidation of naphthalene, which is a representative Polycyclic Aromatic Hydrocarbon. The influence of platinum loading and calcination temperature on oxidation activity was evaluated. Increasing the platinum loading up to 2.5 wt.% increased the catalyst activity, whilst a 5.0 wt.% catalyst was slightly less active. The catalyst containing the optimum 2.5 wt.% loading was most active after calcination in air at 550 °C. Characterisation by carbon monoxide chemisorption and X-ray photoelectron spectroscopy showed that low platinum dispersion to form large platinum particles, in combination with platinum in metallic and oxidised states was important for high catalyst activity. Catalyst performance improved after initial use in repeat cycles, whilst there was slight deactivation after prolonged time-on-stream.

  9. Purifying hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Demoulins, H D; Garner, F H

    1923-02-07

    Hydrocarbon distillates, including natural gases and vapors produced by cracking hydrocarbon oils, are desulfurized etc. by treating the vapor with an aqueous alkaline solution of an oxidizing agent. The hydrocarbons may be previously purified by sulfuric acid. In examples aqueous solutions of sodium or calcium hydrochlorite containing 1.5 to 5.0 grams per liter of available chlorine and sufficient alkali to give an excess of 0.1 percent in the spent reagent are preheated to the temperature of the vapor, and either sprayed or atomized into the vapors near the outlet of the dephlegmator or fractionating tower, or passed in countercurrent to the vapors through one or a series of scrubbers.

  10. Influence of implantation energy on the electrical properties of ultrathin gate oxides grown on nitrogen implanted Si substrates

    International Nuclear Information System (INIS)

    Kapetanakis, E.; Skarlatos, D.; Tsamis, C.; Normand, P.; Tsoukalas, D.

    2003-01-01

    Metal-oxide-semiconductor tunnel diodes with gate oxides, in the range of 2.5-3.5 nm, grown either on 25 or 3 keV nitrogen-implanted Si substrates at (0.3 or 1) x10 15 cm -2 dose, respectively, are investigated. The dependence of N 2 + ion implant energy on the electrical quality of the growing oxide layers is studied through capacitance, equivalent parallel conductance, and gate current measurements. Superior electrical characteristics in terms of interface state trap density, leakage current, and breakdown fields are found for oxides obtained through 3 keV nitrogen implants. These findings together with the full absence of any extended defect in the silicon substrate make the low-energy nitrogen implantation technique an attractive option for reproducible low-cost growth of nanometer-thick gate oxides

  11. chemical kinetic study of nitrogen oxides formation in methane flameless combustion

    International Nuclear Information System (INIS)

    Alvarado T, Pedro N; Cadavid S, Francisco; Mondragon, P Fanor; Ruiz, Wilson

    2009-01-01

    The present paper deals with the nitrogen oxides formation in a flameless combustion process characterized for using air highly diluted and preheated at high temperatures. The combustion model used in this study was the one dimensional counterflow methane air diffusion flame. The NOx production rate analysis showed that the thermal and prompt mechanisms are the most important for the formation and consumption of NO under dilution conditions for the oxidant in N 2 and combustion products. These mechanisms are related since the starting reaction for NO formation (N2 molecular dissociation) belongs to the prompt mechanism while the NO formation is reported mainly for the thermal mechanism reactions. On the other hand, the NO - NO 2 equilibrium showed that the reaction rates are comparable to that obtained by the thermal and prompt mechanisms, but its global contribution to NO formation are almost insignificant due to the oxidation reaction with radicals HO 2 .

  12. Bioinspired aerobic oxidation of secondary amines and nitrogen heterocycles with a bifunctional quinone catalyst.

    Science.gov (United States)

    Wendlandt, Alison E; Stahl, Shannon S

    2014-01-08

    Copper amine oxidases are a family of enzymes with quinone cofactors that oxidize primary amines to aldehydes. The native mechanism proceeds via an iminoquinone intermediate that promotes high selectivity for reactions with primary amines, thereby constraining the scope of potential biomimetic synthetic applications. Here we report a novel bioinspired quinone catalyst system consisting of 1,10-phenanthroline-5,6-dione/ZnI2 that bypasses these constraints via an abiological pathway involving a hemiaminal intermediate. Efficient aerobic dehydrogenation of non-native secondary amine substrates, including pharmaceutically relevant nitrogen heterocycles, is demonstrated. The ZnI2 cocatalyst activates the quinone toward amine oxidation and provides a source of iodide, which plays an important redox-mediator role to promote aerobic catalytic turnover. These findings provide a valuable foundation for broader development of aerobic oxidation reactions employing quinone-based catalysts.

  13. New method of reducing emission of nitrogen oxides at coal-dust burning thermal power plants in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R.

    1987-05-01

    New method of suppressing nitrogen oxide formation in the combustion process makes use of SGR- or PM-burners in the combustion chamber, augmented with auxiliary burners positioned higher in the chamber for secondary fuel with insufficient air and nozzles above the latter for tertiary air. A description of laboratory experiments on the reduction of nitrogen oxides using the above burner configuration as well as a description of the reaction process taking place during combustion are presented. Results of industrial testing of the three-stage combustion of high-nitrogen Australian black coal in a cylindrical combustion chamber developed by Hitachi-Zosen are presented.

  14. The importance of fuel properties in the formation of nitrogen oxides and in combustion

    International Nuclear Information System (INIS)

    Huotari, J.; Aho, M.; Haemaelaeinen, J.; Huotari, J.; Saastamoinen, J.; Rantanen, J.

    1995-01-01

    The goal of this work is to find new information about the effects of pressure, temperature and fuel properties (Fuel-O/Fuel-N) on the formation of nitrogen oxides through the most important intermediates (NH 3 and HCN). In addition, a single particle model for the simultaneous pyrolysis and char combustion will be improved to be used for calculating combustion under pressure. Experimental work is done with an electrically heated pressurized entrained flow reactor (PEFR) which is equipped with modern analytics (as FT-IR for the analysis of N 2 O, NO and NO 2 and FT-IR pyrometry for the measurement of particle temperatures). The experimental work is carried out in several stages: (a) Study of the formation of HCN and NH 3 during pressurized pyrolysis (b) Oxidation of HCN and NH 3 to nitrogen oxides in pressurized combustion (c) Reduction of NO by NH 3 under pressure (thermax denox) Task a is performed with fuels of various O/N ratio. Task b is performed with pure HCN and NH 3 and with more complicated gas mixtures including HCN and NH 3 . A large part of these results are utilized in kinetic modelling in Aabo Akademi University, Finland in project LIEKKI 2-201. Two kinds of modelling work is performed in VTT in this project (a) Simultaneous modelling of the composition of solid and gaseous phases in the pyrolysis and combustion of a small fuel particle (multiphase modelling) (b) Modelling of pyrolysis and combustion of a single fuel particle under pressurized conditions (single particle modelling). The results can be used in planning of pressurized combustors and in minimizing the emissions of nitrogen oxides. (author)

  15. Potential roles of anaerobic ammonium and methane oxidation in the nitrogen cycle of wetland ecosystems.

    Science.gov (United States)

    Zhu, Guibing; Jetten, Mike S M; Kuschk, Peter; Ettwig, Katharina F; Yin, Chengqing

    2010-04-01

    Anaerobic ammonium oxidation (anammox) and anaerobic methane oxidation (ANME coupled to denitrification) with nitrite as electron acceptor are two of the most recent discoveries in the microbial nitrogen cycle. Currently the anammox process has been relatively well investigated in a number of natural and man-made ecosystems, while ANME coupled to denitrification has only been observed in a limited number of freshwater ecosystems. The ubiquitous presence of anammox bacteria in marine ecosystems has changed our knowledge of the global nitrogen cycle. Up to 50% of N(2) production in marine sediments and oxygen-depleted zones may be attributed to anammox bacteria. However, there are only few indications of anammox in natural and constructed freshwater wetlands. In this paper, the potential role of anammox and denitrifying methanotrophic bacteria in natural and artificial wetlands is discussed in relation to global warming. The focus of the review is to explore and analyze if suitable environmental conditions exist for anammox and denitrifying methanotrophic bacteria in nitrogen-rich freshwater wetlands.

  16. Targeting of insect epicuticular lipids by the entomopathogenic fungus Beauveria bassiana: hydrocarbon oxidation within the context of a host-pathogen interaction

    Science.gov (United States)

    Pedrini, Nicolás; Ortiz-Urquiza, Almudena; Huarte-Bonnet, Carla; Zhang, Shizhu; Keyhani, Nemat O.

    2013-01-01

    Broad host range entomopathogenic fungi such as Beauveria bassiana attack insect hosts via attachment to cuticular substrata and the production of enzymes for the degradation and penetration of insect cuticle. The outermost epicuticular layer consists of a complex mixture of non-polar lipids including hydrocarbons, fatty acids, and wax esters. Long chain hydrocarbons are major components of the outer waxy layer of diverse insect species, where they serve to protect against desiccation and microbial parasites, and as recognition molecules or as a platform for semiochemicals. Insect pathogenic fungi have evolved mechanisms for overcoming this barrier, likely with sets of lipid degrading enzymes with overlapping substrate specificities. Alkanes and fatty acids are substrates for a specific subset of fungal cytochrome P450 monooxygenases involved in insect hydrocarbon degradation. These enzymes activate alkanes by terminal oxidation to alcohols, which are further oxidized by alcohol and aldehyde dehydrogenases, whose products can enter β-oxidation pathways. B. bassiana contains at least 83 genes coding for cytochrome P450s (CYP), a subset of which are involved in hydrocarbon oxidation, and several of which represent new CYP subfamilies/families. Expression data indicated differential induction by alkanes and insect lipids and four CYP proteins have been partially characterized after heterologous expression in yeast. Gene knockouts revealed a phenotype for only one (cyp52X1) out of six genes examined to date. CYP52X1 oxidizes long chain fatty acids and participates in the degradation of specific epicuticular lipid components needed for breaching the insect waxy layer. Examining the hydrocarbon oxidizing CYP repertoire of pathogens involved in insect epicuticle degradation can lead to the characterization of enzymes with novel substrate specificities. Pathogen targeting may also represent an important co-evolutionary process regarding insect cuticular hydrocarbon

  17. Zinc-oxide nanorod / copper-oxide thin-film heterojunction for a nitrogen-monoxide gas sensor

    International Nuclear Information System (INIS)

    Yoo, Hwansu; Kim, Hyojin; Kim, Dojin

    2014-01-01

    A novel p - n oxide heterojunction structure was fabricated by employing n-type zinc-oxide (ZnO) nanorods grown on an indium-tin-oxide-coated glass substrate by using the hydrothermal method and a p-type copper-oxide (CuO) thin film deposited onto the ZnO nanorod array by using the sputtering method. The crystallinities and microstructures of the heterojunction materials were examined by using X-ray diffraction and scanning electron microscopy. The observed current - voltage characteristics of the p - n oxide heterojunction showed a nonlinear diode-like rectifying behavior. The effects of an oxidizing or electron acceptor gas, such as nitrogen monoxide (NO), on the ZnO nanorod/CuO thin-film heterojunction were investigated to determine the potential applications of the fabricated material for use in gas sensors. The forward current of the p - n heterojunction was remarkably reduced when NO gas was introduced into dry air at temperatures from 100 to 250 .deg. C. The NO gas response of the oxide heterojunction reached a maximum value at an operating temperature of 180 .deg. C and linearly increased as the NO gas concentration was increased from 5 to 30 ppm. The sensitivity value was observed to be as high as 170% at 180 .deg. C when biased at 2 V in the presence of 20-ppm NO. The ZnO nanorod/CuO thin-film heterojunction also exhibited a stable and repeatable response to NO gas. The experimental results suggest that the ZnO nanorod/CuO thin-film heterojunction structure may be a novel candidate for gas sensors.

  18. Zinc-oxide nanorod / copper-oxide thin-film heterojunction for a nitrogen-monoxide gas sensor

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Hwansu; Kim, Hyojin; Kim, Dojin [Chungnam National University, Daejeon (Korea, Republic of)

    2014-11-15

    A novel p - n oxide heterojunction structure was fabricated by employing n-type zinc-oxide (ZnO) nanorods grown on an indium-tin-oxide-coated glass substrate by using the hydrothermal method and a p-type copper-oxide (CuO) thin film deposited onto the ZnO nanorod array by using the sputtering method. The crystallinities and microstructures of the heterojunction materials were examined by using X-ray diffraction and scanning electron microscopy. The observed current - voltage characteristics of the p - n oxide heterojunction showed a nonlinear diode-like rectifying behavior. The effects of an oxidizing or electron acceptor gas, such as nitrogen monoxide (NO), on the ZnO nanorod/CuO thin-film heterojunction were investigated to determine the potential applications of the fabricated material for use in gas sensors. The forward current of the p - n heterojunction was remarkably reduced when NO gas was introduced into dry air at temperatures from 100 to 250 .deg. C. The NO gas response of the oxide heterojunction reached a maximum value at an operating temperature of 180 .deg. C and linearly increased as the NO gas concentration was increased from 5 to 30 ppm. The sensitivity value was observed to be as high as 170% at 180 .deg. C when biased at 2 V in the presence of 20-ppm NO. The ZnO nanorod/CuO thin-film heterojunction also exhibited a stable and repeatable response to NO gas. The experimental results suggest that the ZnO nanorod/CuO thin-film heterojunction structure may be a novel candidate for gas sensors.

  19. [Relationship between Fe, Al oxides and stable organic carbon, nitrogen in the yellow-brown soils].

    Science.gov (United States)

    Heng, Li-Sha; Wang, Dai-Zhang; Jiang, Xin; Rao, Wei; Zhang, Wen-Hao; Guo, Chun-Yan; Li, Teng

    2010-11-01

    The stable organic carbon and nitrogen of the different particles were gained by oxidation of 6% NaOCl in the yellow-brown soils. The relationships between the contents of selective extractable Fe/Al and the stable organic carbon/nitrogen were investigated. It shown that amounts of dithionite-citrate-(Fe(d)) and oxalate-(Fe(o)) and pyrophosphate extractable (Fe(p)) were 6-60.8 g x kg(-1) and 0.13-4.8 g x kg(-1) and 0.03-0.47 g x kg(-1) in 2-250 microm particles, respectively; 43.1-170 g x kg(-1) and 5.9-14.0 g x kg(-1) and 0.28-0.78 g x kg(-1) in soils than in arid yellow-brown soils, and that of selective extractable Al are lower in the former than in the latter. Amounts of the stable organic carbon and nitrogen, higher in paddy yellow-brown soils than in arid yellow-brown soils, were 0.93-6.0 g x kg(-1) and 0.05-0.36 g x kg(-1) in 2-250 microm particles, respectively; 6.05-19.3 g x kg(-1) and 0.61-2.1 g x kg(-1) in stabilization index (SI(C) and SI(N)) of the organic carbon and nitrogen were 14.3-50.0 and 11.9-55.6 in 2-250 microm particles, respectively; 53.72-88.80 and 40.64-70.0 in soils than in paddy yellow-brown soils. The organic carbon and nitrogen are advantageously conserved in paddy yellow-brown soil. An extremely significant positive correlation of the stable organic carbon and nitrogen with selective extractable Fe/Al is observed. The most amounts between the stable organic carbon and nitrogen and selective extractable Fe/Al appear in clay particles, namely the clay particles could protect the soil organic carbon and nitrogen.

  20. Use of liquid chromatography for measuring atmospheric sulfur dioxide and nitrogen oxide

    Energy Technology Data Exchange (ETDEWEB)

    Benova, E

    1973-02-01

    A literature search to ascertain the applicability of liquid chromatography to the analysis of atmospheric sulfur dioxide and various oxides of nitrogen is reported. Simple or enriched samples can be analyzed. Plastic bags are recommended for preparation of simple samples; and a table of 18 plastic materials, their manufacturers, and pollutants to which they are inert is provided. Enriched samples can be prepared in chromatographic columns by adsorption methods. Tables are provided listing carriers, stationary phase materials, temperatures, carrier liquids (helium or nitrogen), column dimensions, and other data recommended for chromatographic tests of SO/sub 2/ and NOx. Because of its reactivity and tendency to polymerize, sulfur trioxide should be reduced to SO/sub 2/ prior to analysis.

  1. Experimental study of nitrogen oxides in the IRT-M reactor

    International Nuclear Information System (INIS)

    Brazovskij, I.I.; Doroshevich, V.N.; Gvozdev, A.A.; Nesterenko, V.B.; Trubnikov, V.P.

    1982-01-01

    A critical review of different approaches to the radiolysis study of nitrogen oxide under mixed radiation conditions of a nuclear reactor was presented. Loop reactor piant opereted following gas-liquid cycle. It was shown in the process of long experiment in the operating conditions that irreversible radiation-thermal decomposition of the coolant increases little with temperature and pressure and radioactivity of the coolant and thermophysical equipment was moderate. Numerous kinetic experiments were conducted on the ampoule plant wherein all coolant existed in the zone of ionizing radiation effect. Initial pressure in the ampoule plant was set in the range of 0.1-16 MPa, depending on conditions of the experiment, and temperature 200-500 deg C. Dosimetry of the ampoule was carried out by the radiolysis of nitrogen monoxide. The analysis of the radiolysis products was conducted utilizing gas chromatography method, coolant vapours were removed in the process of low-temperature condensation under - 70 deg C

  2. Fractional exhaled nitric oxide and multiple breath nitrogen washout in preschool healthy and asthmatic children

    DEFF Research Database (Denmark)

    Vilmann, Lea; Buchvald, Frederik; Green, Kent

    2017-01-01

    Introduction Objectively assessing pulmonary disease is challenging in preschool children with asthma. We evaluated the feasibility of measuring fractional exhaled nitrogen oxide (FeNO) and multiple breath nitrogen washout (N2MBW) in children. We compared their capacities for discriminating between...... children with asthma and healthy controls. Methods We measured FeNO and N2MBW-derived indices of lung clearance (LCI2.5) and conductive and acinar ventilation heterogeneity (Scond and Sacin) in 65 preschool children; 35 with physician-diagnosed asthma and 30 healthy. FeNO was measured with a portable.......023), but similar FeNO, LCI2.5 and Sacinvalues. Conclusion The feasibility of measuring FeNO was highly age-dependent and not applicable in children under age 4. N2MBW was feasible in the majority of preschool children. Scond, but not FeNO, could discriminate between children with asthma and healthy controls....

  3. Emission of nitrogen oxides from small biomass-fired grate boilers - a literature survey

    International Nuclear Information System (INIS)

    Olsson, Daniel

    1999-05-01

    A literature study has been carried out to find mechanisms for control of nitrogen oxide emissions from small-scale biomass fired combustion devices. The underlying nitrogen chemistry has been studied. Three paths of nitrogen oxide formation has been identified: 1. Thermal NO x , 2, Prompt NO x , and, 3. Fuel NO x . Out of these three mechanisms only fuel NO x is of interest, and the others are neglected at the temperature level concerned. The results from this study have been used to identify limitations and possibilities for NO x and CO abatement. A beacon has been to find efficient methods for NO x abatement at the same time as complete burn-out of the fuel is of greatest importance. The NO x abatement work of many of the Swedish manufacturers of small-scale combustion devices is described. This gives valuable insight in the practical possibilities and limitations in strive for low NOx emissions. From the literature and the contacts with manufacturers some factors of great importance for NO x emission control have been identified. These are: * The fuel (nitrogen content, shape, size, the height of the fuel layer and the tendency of the fuel to stick), * The stoichiometry in the volume above the fuel bed (should be 0.6 - 0.8), * The mixing of the gases above the fuel bed, * The mixing of tertiary air into the main gas flow, and * The thermal load of the combustion chamber (residence time). All the secondary measures studied but selective catalytic reduction have been rejected. Selective catalytic reduction could be a possible solution to the NO x emission problem if it is necessary to further lower the emissions from these small-scale biomass combustion devices despite the cost Project report from the program: Small scale combustion of biofuels. 22 refs, 30 figs, 4 tabs

  4. The Oxidative Metabolism of Fossil Hydrocarbons and Sulfide Minerals by the Lithobiontic Microbial Community Inhabiting Deep Subterrestrial Kupferschiefer Black Shale

    Directory of Open Access Journals (Sweden)

    Agnieszka Włodarczyk

    2018-05-01

    Full Text Available Black shales are one of the largest reservoirs of fossil organic carbon and inorganic reduced sulfur on Earth. It is assumed that microorganisms play an important role in the transformations of these sedimentary rocks and contribute to the return of organic carbon and inorganic sulfur to the global geochemical cycles. An outcrop of deep subterrestrial ~256-million-year-old Kupferschiefer black shale was studied to define the metabolic processes of the deep biosphere important in transformations of organic carbon and inorganic reduced sulfur compounds. This outcrop was created during mining activity 12 years ago and since then it has been exposed to the activity of oxygen and microorganisms. The microbial processes were described based on metagenome and metaproteome studies as well as on the geochemistry of the rock. The microorganisms inhabiting the subterrestrial black shale were dominated by bacterial genera such as Pseudomonas, Limnobacter, Yonghaparkia, Thiobacillus, Bradyrhizobium, and Sulfuricaulis. This study on black shale was the first to detect archaea and fungi, represented by Nitrososphaera and Aspergillus genera, respectively. The enzymatic oxidation of fossil aliphatic and aromatic hydrocarbons was mediated mostly by chemoorganotrophic bacteria, but also by archaea and fungi. The dissimilative enzymatic oxidation of primary reduced sulfur compounds was performed by chemolithotrophic bacteria. The geochemical consequences of microbial activity were the oxidation and dehydrogenation of kerogen, as well as oxidation of sulfide minerals.

  5. Sputtering yields and surface chemical modification of tin-doped indium oxide in hydrocarbon-based plasma etching

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hu; Karahashi, Kazuhiro; Hamaguchi, Satoshi, E-mail: hamaguch@ppl.eng.osaka-u.ac.jp [Center for Atomic and Molecular Technologies, Osaka University, Yamadaoka 2-1, Suita 565-0871 (Japan); Fukasawa, Masanaga; Nagahata, Kazunori; Tatsumi, Tetsuya [Device and Material R& D Group, RDS Platform, Sony Corporation, Kanagawa 243-0014 (Japan)

    2015-11-15

    Sputtering yields and surface chemical compositions of tin-doped indium oxide (or indium tin oxide, ITO) by CH{sup +}, CH{sub 3}{sup +}, and inert-gas ion (He{sup +}, Ne{sup +}, and Ar{sup +}) incidence have been obtained experimentally with the use of a mass-selected ion beam system and in-situ x-ray photoelectron spectroscopy. It has been found that etching of ITO is chemically enhanced by energetic incidence of hydrocarbon (CH{sub x}{sup +}) ions. At high incident energy incidence, it appears that carbon of incident ions predominantly reduce indium (In) of ITO and the ITO sputtering yields by CH{sup +} and CH{sub 3}{sup +} ions are found to be essentially equal. At lower incident energy (less than 500 eV or so), however, a hydrogen effect on ITO reduction is more pronounced and the ITO surface is more reduced by CH{sub 3}{sup +} ions than CH{sup +} ions. Although the surface is covered more with metallic In by low-energy incident CH{sub 3}{sup +} ions than CH{sup +} ions and metallic In is in general less resistant against physical sputtering than its oxide, the ITO sputtering yield by incident CH{sub 3}{sup +} ions is found to be lower than that by incident CH{sup +} ions in this energy range. A postulation to account for the relation between the observed sputtering yield and reduction of the ITO surface is also presented. The results presented here offer a better understanding of elementary surface reactions observed in reactive ion etching processes of ITO by hydrocarbon plasmas.

  6. Nitrogenous air pollutants: Chemical and biological implications

    International Nuclear Information System (INIS)

    Grosjean, D.

    1979-01-01

    Theoretical and experimental studies on the health effects and chemistry of gaseous and particulate nitrogenous air pollutants are presented. Specific topics include Fourier transform infrared studies of nitrogenous compounds, the mechanism of peroxynitric acid formation, N-nitroso compounds in the air, the chemical transformations of nitrogen oxides during the sampling of combustion products, the atmospheric chemistry of peroxy nitrates, and the effects of nitrogen dioxide on lung metabolism. Attention is also given to the interaction of nitrogen oxides and aromatic hydrocarbons under simulated atmospheric conditions, the characterization of particulate amines, the role of ammonia in atmospheric aerosol chemistry, the relationship between sulfates and nitrates and tropospheric measurements of nitric acid vapor and particulate nitrates

  7. Extreme nitrogen deposition can change methane oxidation rate in moist acidic tundra soil in Arctic regions

    Science.gov (United States)

    Lee, J.; Kim, J.; Kang, H.

    2017-12-01

    Recently, extreme nitrogen(N) deposition events are observed in Arctic regions where over 90% of the annual N deposition occurred in just a few days. Since Arctic ecosystems are typically N-limited, input of extremely high amount of N could substantially affect ecosystem processes. CH4 is a potent greenhouse gas that has 25 times greater global warming potential than CO2 over a 100-year time frame. Ammonium is known as an inhibitor of methane oxidation and nitrate also shows inhibitory effect on it in temperate ecosystems. However, effects of N addition on Arctic ecosystems are still elusive. We conducted a lab-scale incubation experiment with moist acidic tundra (MAT) soil from Council, Alaska to investigate the effect of extreme N deposition events on methane oxidation. Zero point five % methane was added to the head space to determine the potential methane oxidation rate of MAT soil. Three treatments (NH4NO3-AN, (NH4)2SO4-AS, KNO3-PN) were used to compare effects of ammonium, nitrate and salts. All treatments were added in 3 levels: 10μg N gd.w-1(10), 50μg N gd.w-1(50) and 100μg N gd.w-1(100). AN10 and AN50 increased methane oxidation rate 1.7, 6% respectively. However, AN100 shows -8.5% of inhibitory effect. In AS added samples, all 3 concentrations (AN10, AN50, AN100) stimulated methane oxidation rate with 4.7, 8.9, 4%, respectively. On the contrary, PN50 (-9%) and PN100 (-59.5%) exhibited a significant inhibitory effect. We also analyzed the microbial gene abundance and community structures of methane oxidizing bacteria using a DNA-based fingerprinting method (T-RFLP) Our study results suggest that NH4+ can stimulate methane oxidation in Arctic MAT soil, while NO3- can inhibit methane oxidation significantly.

  8. Effect of nitrogen addition on the structural, electrical, and optical properties of In-Sn-Zn oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Junjun, E-mail: jia@chem.aoyama.ac.jp [Graduate School of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo, Sagamihara, Kanagawa 252-5258 (Japan); Torigoshi, Yoshifumi; Suko, Ayaka; Nakamura, Shin-ichi [Graduate School of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo, Sagamihara, Kanagawa 252-5258 (Japan); Kawashima, Emi; Utsuno, Futoshi [Advanced Technology Research Laboratories, Idemitsu Kosan Co., Ltd., Sodegaura, Chiba 299-0293 (Japan); Shigesato, Yuzo, E-mail: yuzo@chem.aoyama.ac.jp [Graduate School of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo, Sagamihara, Kanagawa 252-5258 (Japan)

    2017-02-28

    Highlights: • Nitrogen addition induces the structure of ITZO film change from amorphous phase to a c-axis oriented InN polycrystalline phase. • Nitrogen addition suppressed the formation of oxygen-related vacancies in ITZO films. • A red-shift in the optical band edge for ITZO films was observed as the nitrogen flow ratio increased, which was due to the generation of InN crystallites. - Abstract: Indium-tin-zinc oxide (ITZO) films were deposited at various nitrogen flow ratios using magnetron sputtering. At a nitrogen flow ratio of 40%, the structure of ITZO film changed from amorphous, with a short-range-ordered In{sub 2}O{sub 3} phase, to a c-axis oriented InN polycrystalline phase, where InN starts to nucleate from an amorphous In{sub 2}O{sub 3} matrix. Whereas, nitrogen addition had no obvious effect on the structure of indium-gallium-zinc oxide (IGZO) films even at a nitrogen flow ratio of 100%. Nitrogen addition also suppressed the formation of oxygen-related vacancies in ITZO films when the nitrogen flow ratio was less than 20%, and higher nitrogen addition led to an increase in carrier density. Moreover, a red-shift in the optical band edge was observed as the nitrogen flow ratio increased, which could be attributed to the generation of InN crystallites. We anticipate that the present findings demonstrating nitrogen-addition induced structural changes can help to understand the environment-dependent instability in amorphous IGZO or ITZO based thin-film transistors (TFTs).

  9. Within-city contrasts in PM composition and sources and their relationship with nitrogen oxides.

    Science.gov (United States)

    Minguillón, M C; Rivas, I; Aguilera, I; Alastuey, A; Moreno, T; Amato, F; Sunyer, J; Querol, X

    2012-10-26

    The present work is part of the INMA (INfancia y Medio Ambiente -'Environment and Childhood') project, which aims at assessing the adverse effects of exposure to air pollution during pregnancy and early in life. The present study was performed in the city of Sabadell (Northeast Spain) at three sampling sites covering different traffic characteristics, during two times of the year. It assesses time and spatial variations of PM(2.5) concentrations, chemical components and source contributions, as well as gaseous pollutants. Furthermore, a cross-correlation analysis of PM components and source contributions with gaseous pollutants used as a proxy for exposure assessment is carried out. Our data show the influence of traffic emissions in the Sabadell area. The main PM sources identified by Positive Matrix Factorisation (PMF) were similar between the two seasons: mineral source (traffic-induced resuspension, demolition/construction and natural background), secondary sulphate (higher in summer), secondary nitrate (only during winter), industrial, and road traffic, which was the main contributor to PM(2.5) at two of the sites. The correlation of concentrations of nitrogen oxides was especially strong with those of elemental carbon (EC). The relatively weaker correlations with organic carbon (OC) in summer are attributed to the variable formation of secondary OC. Strong correlations between concentration of nitrogen oxides and PM(2.5) road traffic contributions obtained from source apportionment analysis were seen at all sites. Therefore, under the studied urban environment, nitrogen oxides can be used as a proxy for the exposure to road traffic contribution to PM(2.5); the use of NO(x) concentrations being preferred, with NO and NO(2) as second and third options, respectively.

  10. Furnace devices aerodynamics optimization for fuel combustion efficiency improvement and nitrogen oxide emission reduction

    Science.gov (United States)

    Volkov, E. P.; Prokhorov, V. B.; Arkhipov, A. M.; Chernov, S. L.; Kirichkov, V. S.; Kaverin, A. A.

    2017-11-01

    MPEI conducts researches on physical and mathematical models of furnace chambers for improvement of power-generation equipment fuel combustion efficiency and ecological safety. Results of these researches are general principles of furnace aerodynamics arrangement for straight-flow burners and various fuels. It has been shown, that staged combustion arrangement with early heating and igniting with torch distribution in all furnace volume allows to obtain low carbon in fly ash and nitrogen oxide emission and also to improve boiler operation reliability with expand load adjustment range. For solid fuel combustion efficiency improvement it is practical to use high-placed and strongly down-tilted straight-flow burners, which increases high-temperature zone residence time for fuel particles. In some cases, for this combustion scheme it is possible to avoid slag-tap removal (STR) combustion and to use Dry-bottom ash removal (DBAR) combustion with tolerable carbon in fly ash level. It is worth noting that boilers with STR have very high nitrogen oxide emission levels (1200-1800 mg/m3) and narrow load adjustment range, which is determined by liquid slag output stability, so most industrially-developed countries don’t use this technology. Final decision about overhaul of boiler unit is made with regard to physical and mathematical modeling results for furnace and zonal thermal calculations for furnace and boiler as a whole. Overhaul of boilers to provide staged combustion and straight-flow burners and nozzles allows ensuring regulatory nitrogen oxide emission levels and corresponding best available technology criteria, which is especially relevant due to changes in Russian environmental regulation.

  11. Study of the Chemistry of Coordination of Oxide-anions of Nitrogen with Species of Iron and Copper as Models of Enzymes of the Cycle of the Nitrogen

    International Nuclear Information System (INIS)

    Quesada Espinoza, F

    2001-01-01

    In the present work, a study is carried out about the reactivity of some nitrogen oxide-anions, like nitrite (NO 2 - ) and trioxide-dinitrate (N 2 O 3 2- ), besides nitric oxide (NO), with copper species, iron, and cobalt in their states of oxidation II, in presence of the binding spectator bispicen. The synthesis and characterization of the [Cu(bispicen)NO 2 ]BF 4 was obtained, which can help to consolidate some mechanisms, proposed for the action of the nitrite reductase. The Fe(bispicen)(NO 2 ) 2 was also characterized; this is the fourth compound that presents two nitrites coordinated to an iron (II) through nitrogen. It has the characteristic of possessing short connection distances, which gives it a special attractiveness, and it opens the possibility of studying a spin exchange [es

  12. Removal of nitrogen compounds from gasification gas by selective catalytic or non-catalytic oxidation; Typpiyhdisteiden poisto kaasutuskaasusta selektiivisellae katalyyttisellae ja ei-katalyyttisellae hapetuksella

    Energy Technology Data Exchange (ETDEWEB)

    Leppaelahti, J.; Koljonen, T. [VTT Energy, Espoo (Finland)

    1996-12-01

    In gasification reactive nitrogenous compounds are formed from fuel nitrogen, which may form nitrogen oxides in gas combustion. In fluidized bed gasification the most important nitrogenous compound is ammonia (NH{sub 3}). If ammonia could be decomposed to N{sub 2} already before combustion, the emissions if nitrogen oxides could be reduced significantly. One way of increasing the decomposition rate of NH{sub 3} could be the addition of suitable reactants to the gas, which would react with NH{sub 3} and produce N{sub 2}. The aim of this research is to create basic information, which can be used to develop a new method for removal of nitrogen compounds from gasification gas. The reactions of nitrogen compounds and added reactants are studied in reductive atmosphere in order to find conditions, in which nitrogen compounds can be oxidized selectively to N{sub 2}. The project consists of following subtasks: (1) Selective non-catalytic oxidation (SNCO): Reactions of nitrogen compounds and oxidizers in the gas phase, (2) Selective catalytic oxidation (SCO): Reactions of nitrogen compounds and oxidizers on catalytically active surfaces, (3) Kinetic modelling of experimental results in co-operation with the Combustion Chemistry Research Group of Aabo Akademi University. The most important finding has been that NH{sub 3} can be made to react selectively with the oxidizers even in the presence of large amounts of CO and H{sub 2}. Aluminium oxides were found to be the most effective materials promoting selectivity. (author)

  13. Keeping the heart in balance: the functional interactions of myoglobin with nitrogen oxides

    DEFF Research Database (Denmark)

    Flögel, Ulrich; Fago, Angela; Rassaf, Tienush

    2010-01-01

    in the heart. By a dynamic cycle, in which a decrease in tissue O2 tension drives the conversion of Mb from being a NO scavenger under normoxia to a NO producer during hypoxia, mitochondrial respiration is reversibly adapted to the intracellular O2 tension. Therefore, Mb may act as an important O2 sensor...... through which NO can regulate muscle energetics and function. As Mb is widespread throughout the fauna, the diverse oxygen-dependent interactions between Mb and nitrogen oxides may not only be of relevance for mammals but also for other vertebrates as evidenced by comparable phenotypes of ‘artificial...

  14. Nitrogen Doped Ordered Mesoporous Carbon as Support of PtRu Nanoparticles for Methanol Electro-Oxidation

    Directory of Open Access Journals (Sweden)

    David Sebastián

    2018-04-01

    Full Text Available The low oxidation kinetics of alcohols and the need for expensive platinum group metals are still some of the main drawbacks for the commercialization of energy efficient direct alcohol fuel cells. In this work, we investigate the influence of nitrogen doping of ordered mesoporous carbon (CMK as support on the electrochemical activity of PtRu nanoparticles. Nitrogen doping procedures involve the utilization of pyrrole as both nitrogen and carbon precursor by means of a templating method using mesoporous silica. This method allows obtaining carbon supports with up to 14 wt. % nitrogen, with an effective introduction of pyridinic, pyrrolic and quaternary nitrogen. PtRu nanoparticles were deposited by sodium formate reduction method. The presence of nitrogen mainly influences the Pt:Ru atomic ratio at the near surface, passing from 50:50 on the bare (un-doped CMK to 70:30 for the N-doped CMK catalyst. The electroactivity towards the methanol oxidation reaction (MOR was evaluated in acid and alkaline electrolytes. The presence of nitrogen in the support favors a faster oxidation of methanol due to the enrichment of Pt at the near surface together with an increase of the intrinsic activity of PtRu nanoparticles.

  15. Low-temperature conversion of ammonia to nitrogen in water with ozone over composite metal oxide catalyst.

    Science.gov (United States)

    Chen, Yunnen; Wu, Ye; Liu, Chen; Guo, Lin; Nie, Jinxia; Chen, Yu; Qiu, Tingsheng

    2018-04-01

    As one of the most important water pollutants, ammonia nitrogen emissions have increased year by year, which has attracted people's attention. Catalytic ozonation technology, which involves production of ·OH radical with strong oxidation ability, is widely used in the treatment of organic-containing wastewater. In this work, MgO-Co 3 O 4 composite metal oxide catalysts prepared with different fabrication conditions have been systematically evaluated and compared in the catalytic ozonation of ammonia (50mg/L) in water. In terms of high catalytic activity in ammonia decomposition and high selectivity for gaseous nitrogen, the catalyst with MgO-Co 3 O 4 molar ratio 8:2, calcined at 500°C for 3hr, was the best one among the catalysts we tested, with an ammonia nitrogen removal rate of 85.2% and gaseous nitrogen selectivity of 44.8%. In addition, the reaction mechanism of ozonation oxidative decomposition of ammonia nitrogen in water with the metal oxide catalysts was discussed. Moreover, the effect of coexisting anions on the degradation of ammonia was studied, finding that SO 4 2- and HCO 3 - could inhibit the catalytic activity while CO 3 2- and Br - could promote it. The presence of coexisting cations had very little effect on the catalytic ozonation of ammonia nitrogen. After five successive reuses, the catalyst remained stable in the catalytic ozonation of ammonia. Copyright © 2017. Published by Elsevier B.V.

  16. Indoor-outdoor nitric oxide and nitrogen dioxide concentrations at three sites in Riyadh, Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, D.R. (D.R. Rowe Engineering Services, Inc., Bowling Green, KY (United States)); Al-Dhowalia, K.H.; Mansour, M.E. (King Saud Univ., Riyadh (Saudi Arabia))

    1991-08-01

    The objective of this study was to evaluate the nitric oxide and nitrogen oxide concentrations indoors and outdoors at three sites in Riyadh, Saudi Arabia. Results show that the outdoor and indoor concentrations for NO were at least 270 and 16 times the reported average worldwide NO concentrations, respectively. The NO(sub 2) concentrations were about 14 times reported outdoor worldwide levels; however, NO(sub 2) concentrations indoors were generally below those reported in the literature. The data presented, in combination with information presented in previous articles, will provide a valuable background database for use in dispersion models to determine the effect of the Kuwaiti oil well fires on the air quality of Riyadh.

  17. High-Resolution Electron Energy Loss Studies of Oxygen, Hydrogen, Nitrogen, Nitric Oxide, and Nitrous Oxide Adsorption on Germanium Surfaces.

    Science.gov (United States)

    Entringer, Anthony G.

    The first high resolution electron energy loss spectroscopy (HREELS) studies of the oxidation and nitridation of germanium surfaces are reported. Both single crystal Ge(111) and disordered surfaces were studied. Surfaces were exposed to H, O_2, NO, N _2O, and N, after cleaning in ultra-high vacuum. The Ge surfaces were found to be non-reactive to molecular hydrogen (H_2) at room temperature. Exposure to atomic hydrogen (H) resulted hydrogen adsorption as demonstrated by the presence of Ge-H vibrational modes. The HREEL spectrum of the native oxide of Ge characteristic of nu -GeO_2 was obtained by heating the oxide to 200^circC. Three peaks were observed at 33, 62, and 106 meV for molecular oxygen (O_2) adsorbed on clean Ge(111) at room temperature. These peaks are indicative of dissociative bonding and a dominant Ge-O-Ge bridge structure. Subsequent hydrogen exposure resulted in a shift of the Ge-H stretch from its isolated value of 247 meV to 267 meV, indicative of a dominant +3 oxidation state. A high density of dangling bonds and defects and deeper oxygen penetration at the amorphous Ge surface result in a dilute bridge structure with a predominant +1 oxidation state for similar exposures. Molecules of N_2O decompose at the surfaces to desorbed N_2 molecules and chemisorbed oxygen atoms. In contrast, both oxygen and nitrogen are detected at the surfaces following exposure to NO molecules. Both NO and N_2O appear to dissociate and bond at the top surface layer. Molecular nitrogen (N_2) does not react with the Ge surfaces, however, a precursor Ge nitride is observed at room temperature following exposure to nitrogen atoms and ions. Removal of oxygen by heating of the NO-exposed surface to 550^circC enabled the identification of the Ge-N vibrational modes. These modes show a structure similar to that of germanium nitride. This spectrum is also identical to that of the N-exposed surface heated to 550^circC. Surface phonon modes of the narrow-gap semiconducting

  18. Reducing emission of nitrogen oxides during combustion of black coal from the Kuzbass

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R.; Lobov, G.V.; Gedike, I.A.

    1983-02-01

    Black coal from the Kuzbass used as fuel by the ZapSibTEhTs fossil-fuel power plant is rich in nitrogen: nitrogen content ranges from 2.8% to 3.5%. Under these conditions conventional methods of combustion cause air pollution exceeding permissible levels. A method for combustion of coal dust in stages has been successfully tested at the plant: some of the burners located in the top zone of the furnace (the BKZ-210-140F boiler) are used for air supply. From 16% to 18% of air supplied to the furnace is directed to the upper burners. Use of this system (called tertiary air supply as opposed to the secondary air system) reduced nitrogen oxide emission by 1.5 times (from 0.87 to 0.57 g/m/sup 3/). Position of nozzles used for tertiary air supply in relation to the burners used for supply of coal dust in the tangential shaped furnace is shown in a scheme. The optimum position of tertiary air supply system in relation to burners taking into account corrosion hazards as well as the hazards of reducing combustion efficiency is discussed. Recommendation on furnace design and burner position which prevent efficiency decrease and corrosion hazards are made.

  19. Response of microalgae from mud-flats to petroleum hydrocarbons ...

    African Journals Online (AJOL)

    SERVER

    2008-03-04

    Mar 4, 2008 ... hydrocarbons in the presence of nitrogenous fertilizer ... the hydrocarbon, there was delayed nutrient uptake. ... waters, but the use of inorganic of organic nitrogen in ... ment, fish kills as oxygen is depleted, offensive odour.

  20. Integrated process using non-stoichiometric sulfides or oxides of potassium for making less active metals and hydrocarbons

    International Nuclear Information System (INIS)

    Swanson, R.

    1984-01-01

    Disclosed is a combinative integrated chemical process using inorganic reactants and yielding, if desired, organic products. The process involves first the production of elemental potassium by the thermal or thermal-reduced pressure decomposition of potassium oxide or potassium sulfide and distillation of the potassium. This elemental potassium is then used to reduce ores or ore concentrates of copper, zinc, lead, magnesium, cadmium, iron, arsenic, antimony or silver to yield one or more of these less active metals in elemental form. Process potassium can also be used to produce hydrogen by reaction with water or potassium hydroxide. This hydrogen is reacted with potassium to produce potassium hydride. Heating the latter with carbon produces potassium acetylide which forms acetylene when treated with water. Acetylene is hydrogenated to ethene or ethane with process hydrogen. Using Wurtz-Fittig reaction conditions, the ethane can be upgraded to a mixture of hydrocarbons boiling in the fuel range

  1. Oxidative potential of secondary organic aerosols produced from photooxidation of different hydrocarbons using outdoor chamber under ambient sunlight

    Science.gov (United States)

    Jiang, Huanhuan; Jang, Myoseon; Sabo-Attwood, Tara; Robinson, Sarah E.

    2016-04-01

    The oxidative potential of various secondary organic aerosols (SOA) was measured using dithiothreitol (DTT) assay to understand how organic aerosols react with cellular materials. SOA was produced via the photooxidation of four different hydrocarbons (toluene, 1,3,5-trimethylbenzene, isoprene and α-pinene) in the presence of NOx using a large outdoor photochemical smog chamber. The DTT consumption rate was normalized by the aerosol mass, which is expressed as DTTmass. Toluene SOA and isoprene SOA yielded higher DTTmass than 1,3,5-trimethylbenzene SOA or α-pinene SOA. In order to discover the correlation between the molecular structure and oxidative potential, the DTT responses of selected model compounds were also measured. Among them, conjugated aldehydes, quinones, and H2O2 showed considerable DTT response. To investigate the correlation between DTT response and cell responses in vitro, the expression of biological markers, i.e. IL-6, IL-8, and HMOX-1 were studied using small airway epithelial cells. Higher cellular expression of IL-8 was observed with toluene SOA exposure compared to 1,3,5-trimethylbenzene SOA exposure, which aligned with the results from DTT assay. Our study also suggests that within the urban atmosphere, the contribution of toluene SOA and isoprene SOA to the oxidative potential of ambient SOA will be more significant than that of α-pinene SOA.

  2. The effect of prolonged flooding of an oil deposit on the special composition and the activity of hydrocarbon-oxidizing microflora

    Energy Technology Data Exchange (ETDEWEB)

    Berdichevskaya, M V

    1982-07-01

    The special composition of hydrocarbon-oxidizing bacteria was studied in terrigenous and carbonate oil-bearing strata from several deposits of the Permian Cis-Ural region. We isolated 43 strains and assigned them to the following genera: Mycobacterium, Micrococcus, Brevibacterium, Corynebacterium, Flavobacterium, Achromobacter and Pseudomonas. The special composition of the hydrocarbon-oxidizing microflora was shown to depend on the flooding of an oil stratum, as a result of which the ecological environment in a deposit changed. Gram-positive coryneform bacteria were found in stratal salinized waters and in diluted stratal waters. Gram-negative hydrocarbon-oxidizing bacteria were isolated from pumped-in river waters and from stratal waters diluted by 70-100% as the result of flooding. The metabolic activity of Corynebacterium fascians (2 strains), Mycobacterium rubrum (1 strain), Pseudomonas mira (1 strain) and Flavobacterium perigrinum (1 strain) was assayed in stratal waters with different concentrations of salts. The coryneform hydrocarbon-oxidizing bacteria were shown to be very halotolerant as the result of adaptation; that is why the incidence of these microorganisms is very great in highly mineralized stratal water of oil deposits.

  3. Escherichia coli as a potential hydrocarbon conversion microorganism. Oxidation of aliphatic and aromatic compounds by recombinant E. coli in two-liquid phase (aqueous-organic) systems

    NARCIS (Netherlands)

    Favre-Bulle, Olivier

    1992-01-01

    The increased interest in the study of hydrocarbon utilizing microorganisms in recent years has been stimulated by the possibility of using their monooxygenases in the selective oxidation of aliphatic and aromatic compounds. As an example, long chain (>C16) n-alkanes are converted to dicarboxylic

  4. CYP63A2, a catalytically versatile fungal P450 monooxygenase capable of oxidizing higher-molecular-weight polycyclic aromatic hydrocarbons, alkylphenols, and alkanes

    Science.gov (United States)

    Cytochrome P450 monooxygenases (P450s) are known to oxidize hydrocarbons albeit with limited substrate specificity across classes of these compounds. Here we report a P450 monooxygenase (CYP63A2) from the model ligninolytic white rot fungus Phanerochaete chrysosporium that was fo...

  5. High-temperature interaction of low niobium oxides with carbon and nitrogen

    International Nuclear Information System (INIS)

    Lyubimov, V.D.; Alyamovskij, S.I.; Askarova, L.Kh.

    1980-01-01

    Presented are the results of investigation on the process of high-temperature interaction (1200-1300 deg C) of NbO 2 and NbO with carbon (in the helium medium) and nitrogen. The reaction between NbO 2 and carbon is successfully realized at 1300 deg C and involves two stages, viz. reduction of oxide by the mechanism of direct reduction and subsequent insertion of metalloid into the oxygen vacancies formed. As a result, on the base of the initial oxide a cubic phase is formed, its final composition at 1300 deg C corresponding to the formula NbCsub(0.74)Osub(0.28). Neither NbO monoxide, nor metal is detected in the reaction products under these conditions. Interaction of NbO 2 with carbon and nitrogen proceeds in the similar way. In this case, the oxygen vacancies formed are occupied by the atoms of the two metalloids the end-product of the reaction at 1300 deg C being oxycarbonitride NbCsub(0.30)Nsub(0.66)Osub(0.66). Intermediate products of the reaction between NbO and metalloids involve oxycarbide, oxynitride, or oxycarbonitride and dioxide of niobium, while the end products contain only a cubic phase [ru

  6. Adsorption/oxidation of hydrogen sulfide on nitrogen-containing activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Adib, F.; Bagreev, A.; Bandosz, T.J.

    2000-02-22

    Wood-based activated carbon was modified by impregnation with urea and heat treatment at 450 and 950 C. The chemical and physical properties of materials were determined using acid/base titration, FTIR, thermal analysis, IGC, and sorption of nitrogen. The surface features were compared to those of a commercial urea-modified carbon. Then, the H{sub 2}S breakthrough capacity tests were carried out, and the sorption capacity was evaluated. The results showed that urea-modified sorbents have a capacity similar to that of the received material; however, the conversion of hydrogen sulfide to a water-soluble species is significantly higher. It happens due to a high dispersion of basic nitrogen compounds in the small pores of carbons, where oxidation of hydrogen sulfide ions to sulfur radicals followed by the creation of sulfur oxides and sulfuric acid occurs. It is proposed that the process proceeds gradually, from small pores to larger, and that the degree of microporosity is an important factor.

  7. Nitrogen loss from anaerobic ammonium oxidation coupled to Iron(III) reduction in a riparian zone.

    Science.gov (United States)

    Ding, Bangjing; Li, Zhengkui; Qin, Yunbin

    2017-12-01

    Anaerobic ammonium oxidation coupled to iron(III) reduction (termed Feammox) is a recently discovered pathway of nitrogen cycling. However, little is known about the pathways of N transformation via Feammox process in riparian zones. In this study, evidence for Feammox in riparian zones with or without vegetation cover was demonstrated using isotope tracing technique and high-throughput sequencing technology. The results showed that Feammox could occur in riparian zones, and demonstrated that N 2 directly from Feammox was dominant Feammox pathway. The Feammox rates in vegetated soil samples was 0.32-0.37 mg N kg -1 d -1 , which is higher than that in un-vegetated soil samples (0.20 mg N kg -1 d -1 ). Moreover, the growth of vegetation led to a 4.99-6.41% increase in the abundance of iron reducing bacteria (Anaeromyxobacter, Pseudomonas and Geobacter) and iron reducing bacteria play an essential role in Feammox process. An estimated loss of 23.7-43.9 kg N ha -1 year -1 was associated with Feammox in the examined riparian zone. Overall, the co-occurrence of ammonium oxidation and iron reduction suggest that Feammox can play an essential role in the pathway of nitrogen removal in riparian zones. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Alumina- and titania-based monolithic catalysts for low temperature selective catalytic reduction of nitrogen oxides

    International Nuclear Information System (INIS)

    Blanco, J.; Avila, P.; Suarez, S.; Martin, J.A.; Knapp, C.

    2000-01-01

    The selective catalytic reduction of NO+NO 2 (NO x ) at low temperature (180-230C) with ammonia has been investigated with copper-nickel and vanadium oxides supported on titania and alumina monoliths. The influence of the operating temperature, as well as NH 3 /NO x and NO/NO 2 inlet ratios has been studied. High NO x conversions were obtained at operating conditions similar to those used in industrial scale units with all the catalysts. Reaction temperature, ammonia and nitrogen dioxide inlet concentration increased the N 2 O formation with the copper-nickel catalysts, while no increase was observed with the vanadium catalysts. The vanadium-titania catalyst exhibited the highest DeNO x activity, with no detectable ammonia slip and a low N 2 O formation when NH 3 /NO x inlet ratio was kept below 0.8. TPR results of this catalyst with NO/NH 3 /O 2 , NO 2 /NH 3 /O 2 and NO/NO 2 /NH 3 /O 2 feed mixtures indicated that the presence of NO 2 as the only nitrogen oxide increases the quantity of adsorbed species, which seem to be responsible for N 2 O formation. When NO was also present, N 2 O formation was not observed

  9. Staged combustion - main method for suppressing nitrogen oxides in pulverized-coal fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R. (Vsesoyuznyi Teplotekhnicheskii Institut (USSR))

    1989-08-01

    Describes principles behind staged combustion, which is based on organizing furnace operations so that only part of the air from the fuel is taken into the furnace. The remaining air, which is needed for combustion, is fed as a tertiary blast jet into the intermediate flame zone. Following inflammation and combustion of the volatile matter, the oxygen concentration in the flame drops sharply causing a retardation of the oxidation reactions forming NO and an intensification of the reactions causing the nitrogen-containing radicals NH{sub i} and CN to be converted into N{sub 2}. When the reducing agents CO, H{sub 2} and CH{sub 4} are present in certain flame zones, even the nitrogen oxide is reduced to N{sub 2}. The NO concentrations in the flame are reduced until the jet of tertiary air is introduced. Discusses with reference to practice in the USA and Western Europe how to achieve maximum effect of this method for different types of boiler and presents the results of observations of the introduction of staged combustion to the BKZ-210-140 boiler burning Kuznetsk gassy coal. 5 refs.

  10. A Continuous Flow System for the Measurement of Ambient Nitrogen Oxides [NO + NO] Using Rhodamine B Hydrazide as a Chemosensor

    Directory of Open Access Journals (Sweden)

    Pandurangappa Malingappa

    2014-01-01

    Full Text Available A new chemosensor has been used to monitor atmospheric nitrogen oxides [NO + NO 2 ] at parts per billion (ppb level. It is based on the catalytic reaction of nitrogen oxides with rhodamine B hydrazide (RBH to produce a colored compound through the hydrolysis of the amide bond of the molecule. A simple colorimeter has been used to monitor atmospheric nitrogen dioxide at ppb level. The air samples were purged through a sampling cuvette containing RBH solution using peristaltic pump. The proposed method has been successfully applied to monitor the ambient nitrogen dioxide levels at traffic junction points within the city limits and the results obtained are compared with the standard Griess-Ilosvay method.

  11. Decadal changes in summertime reactive oxidized nitrogen and surface ozone over the Southeast United States

    Science.gov (United States)

    Li, Jingyi; Mao, Jingqiu; Fiore, Arlene M.; Cohen, Ronald C.; Crounse, John D.; Teng, Alex P.; Wennberg, Paul O.; Lee, Ben H.; Lopez-Hilfiker, Felipe D.; Thornton, Joel A.; Peischl, Jeff; Pollack, Ilana B.; Ryerson, Thomas B.; Veres, Patrick; Roberts, James M.; Neuman, J. Andrew; Nowak, John B.; Wolfe, Glenn M.; Hanisco, Thomas F.; Fried, Alan; Singh, Hanwant B.; Dibb, Jack; Paulot, Fabien; Horowitz, Larry W.

    2018-02-01

    Widespread efforts to abate ozone (O3) smog have significantly reduced emissions of nitrogen oxides (NOx) over the past 2 decades in the Southeast US, a place heavily influenced by both anthropogenic and biogenic emissions. How reactive nitrogen speciation responds to the reduction in NOx emissions in this region remains to be elucidated. Here we exploit aircraft measurements from ICARTT (July-August 2004), SENEX (June-July 2013), and SEAC4RS (August-September 2013) and long-term ground measurement networks alongside a global chemistry-climate model to examine decadal changes in summertime reactive oxidized nitrogen (RON) and ozone over the Southeast US. We show that our model can reproduce the mean vertical profiles of major RON species and the total (NOy) in both 2004 and 2013. Among the major RON species, nitric acid (HNO3) is dominant (˜ 42-45 %), followed by NOx (31 %), total peroxy nitrates (ΣPNs; 14 %), and total alkyl nitrates (ΣANs; 9-12 %) on a regional scale. We find that most RON species, including NOx, ΣPNs, and HNO3, decline proportionally with decreasing NOx emissions in this region, leading to a similar decline in NOy. This linear response might be in part due to the nearly constant summertime supply of biogenic VOC emissions in this region. Our model captures the observed relative change in RON and surface ozone from 2004 to 2013. Model sensitivity tests indicate that further reductions of NOx emissions will lead to a continued decline in surface ozone and less frequent high-ozone events.

  12. Decadal changes in summertime reactive oxidized nitrogen and surface ozone over the Southeast United States

    Directory of Open Access Journals (Sweden)

    J. Li

    2018-02-01

    Full Text Available Widespread efforts to abate ozone (O3 smog have significantly reduced emissions of nitrogen oxides (NOx over the past 2 decades in the Southeast US, a place heavily influenced by both anthropogenic and biogenic emissions. How reactive nitrogen speciation responds to the reduction in NOx emissions in this region remains to be elucidated. Here we exploit aircraft measurements from ICARTT (July–August 2004, SENEX (June–July 2013, and SEAC4RS (August–September 2013 and long-term ground measurement networks alongside a global chemistry–climate model to examine decadal changes in summertime reactive oxidized nitrogen (RON and ozone over the Southeast US. We show that our model can reproduce the mean vertical profiles of major RON species and the total (NOy in both 2004 and 2013. Among the major RON species, nitric acid (HNO3 is dominant (∼ 42–45 %, followed by NOx (31 %, total peroxy nitrates (ΣPNs; 14 %, and total alkyl nitrates (ΣANs; 9–12 % on a regional scale. We find that most RON species, including NOx, ΣPNs, and HNO3, decline proportionally with decreasing NOx emissions in this region, leading to a similar decline in NOy. This linear response might be in part due to the nearly constant summertime supply of biogenic VOC emissions in this region. Our model captures the observed relative change in RON and surface ozone from 2004 to 2013. Model sensitivity tests indicate that further reductions of NOx emissions will lead to a continued decline in surface ozone and less frequent high-ozone events.

  13. Multi-layered zinc oxide-graphene composite thin films for selective nitrogen dioxide sensing

    Science.gov (United States)

    Ghosh, A.; Bhowmick, T.; Majumder, S. B.

    2018-02-01

    In the present work, selective nitrogen dioxide (NO2) sensing characteristics of multi-layered graphene-zinc oxide (G-ZnO) thin films have been demonstrated at 150 °C. The response% of 5 ppm NO2 was measured to be 894% with response and recovery times estimated to be 150 s and 315 s, respectively. In these composite films, the interaction between graphene and zinc oxide is established through X-ray photoelectron spectroscopy in conjunction with the analyses of photoluminescence spectra. Superior NO2 sensing of these films is due to simultaneous chemiadsorption of molecular oxygen and NO2 gases onto graphene and ZnO surfaces, resulting in an appreciable increase in the depletion layer width and thereby the sensor resistance. The sensor responses for other reducing gases (viz., CO, H2, and i-C4H10) are postulated to be due to their catalytic oxidation on the sensor surface, resulting in a decrease in the sensor resistance upon gas exposure. At lower operating temperature, due to the molecular nature of the chemiadsorbed oxygen, poor catalytic oxidation leads to a far lower sensor response for reducing gases as compared to NO2. For mixed NO2 and reducing gas sensing, we have reported that fast Fourier transformation of the resistance transients of all these gases in conjunction with principal component analyses forms a reasonably distinct cluster and, therefore, could easily be differentiated.

  14. Inhibition of methane oxidation in slurry surface crust by inorganic nitrogen

    DEFF Research Database (Denmark)

    Duan, Yun-Feng; Elsgaard, Lars; Petersen, Søren O

    2013-01-01

    Livestock slurry is an important source of methane (CH4). Depending on dry matter content, a floating crust may form where methane-oxidizing bacteria (MOB) and CH4 oxidation activity have been found, suggesting that surface crusts may reduce CH4 emissions from slurry. However, it is not known how...... MOB in this environment interact with inorganic nitrogen (N). We studied inhibitory effects of ammonium (NH4+), nitrate (NO3–) and nitrite (NO2–) on potential CH4 oxidation in a cattle slurry surface crust. Methane oxidation was assayed at salt concentrations up to 500 mM at 100 and 10,000 ppmv...... headspace CH4. First-order rate constants were used to evaluate the strength of inhibition. Nitrite was the most potent inhibitor, reducing methanotrophic activity by up to 70% at only 1 mM NO2–. MOB were least sensitive to NO3–, tolerating up to 30 mM NO3– at 100 ppmv CH4 and 50 mM NO3– at 10,000 ppmv CH4...

  15. Selective catalytic oxidation of hydrocarbons as a challenge to the chemical engineer

    Energy Technology Data Exchange (ETDEWEB)

    Emig, G [Erlangen-Nuernberg Univ., Erlangen (Germany, F.R.). Inst. fuer Technische Chemie 1

    1977-11-01

    In the conversion of the most important chemical raw materials, natural oil and natural gas, to intermediate or end products, selective catalytic oxidation plays an increasing role. This method makes it possible in many cases to use more economical, single-step processes instead of the older multi-step processes. Using the typical example of propylene oxidation or ammonoxidation, the problems encountered by chemical engineers in the development of a heterogeneous-catalytic method of oxidation are demonstrated. The importance of systematic catalyst development is stressed. General aspects of the development of novel processes or the improvement of existing catalytic processes are discussed.

  16. Visible light assisted nitrogen dioxide sensing using tungsten oxide - Graphene oxide nanocomposite sensors

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Xin [College of Mechanical Engineering, Yangzhou University, Yangzhou 225127 (China); College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 (China); You, Jiajun; Wang, Jie [College of Mechanical Engineering, Yangzhou University, Yangzhou 225127 (China); Zhang, Chao, E-mail: zhangc@yzu.edu.cn [College of Mechanical Engineering, Yangzhou University, Yangzhou 225127 (China)

    2017-04-15

    Tungsten oxide (WO{sub 3}) coatings were deposited by solution precursor plasma spray (SPPS) on alumina substrates. In order to enhance the NO{sub 2} sensing properties of the pure WO{sub 3} coatings at room temperature, illuminating with visible light and formation of p-n heterojunction were used. The SPPS WO{sub 3} coatings were modified by immersing them into a synthesized graphene oxide (GO) suspension to obtain the WO{sub 3}-GO composites. Raman and FTIR results demonstrated that p-n heterojunctions were successfully formed in the WO{sub 3}-GO composites. The UV–Vis spectra showed that the WO{sub 3}-GO composites had a longer visible light absorption range compared with the WO{sub 3} coatings. The sensors based on the WO{sub 3}-GO coatings exhibited ultra-high responses to NO{sub 2} at room temperature performed under visible light illumination. - Highlights: • Highly porous nanostructured WO{sub 3} coatings were deposited by SPPS process. • The WO{sub 3}-GO nanocomposites with p-n heterojunctions were successfully prepared. • The WO{sub 3}-GO nanocomposites exhibited ultra-high responses to 0.9 ppm NO{sub 2}. • The enhanced performance was ascribed to the fine structure and heterojunction.

  17. Achieving Lower Nitrogen Balance and Higher Nitrogen Recovery Efficiency Reduces Nitrous Oxide Emissions in North America's Maize Cropping Systems

    Directory of Open Access Journals (Sweden)

    Rex A. Omonode

    2017-06-01

    Full Text Available Few studies have assessed the common, yet unproven, hypothesis that an increase of plant nitrogen (N uptake and/or recovery efficiency (NRE will reduce nitrous oxide (N2O emission during crop production. Understanding the relationships between N2O emissions and crop N uptake and use efficiency parameters can help inform crop N management recommendations for both efficiency and environmental goals. Analyses were conducted to determine which of several commonly used crop N uptake-derived parameters related most strongly to growing season N2O emissions under varying N management practices in North American maize systems. Nitrogen uptake-derived variables included total aboveground N uptake (TNU, grain N uptake (GNU, N recovery efficiency (NRE, net N balance (NNB in relation to GNU [NNB(GNU] and TNU [NNB(TNU], and surplus N (SN. The relationship between N2O and N application rate was sigmoidal with relatively small emissions for N rates <130 kg ha−1, and a sharp increase for N rates from 130 to 220 kg ha−1; on average, N2O increased linearly by about 5 g N per kg of N applied for rates up to 220 kg ha−1. Fairly strong and significant negative relationships existed between N2O and NRE when management focused on N application rate (r2 = 0.52 or rate and timing combinations (r2 = 0.65. For every percentage point increase, N2O decreased by 13 g N ha−1 in response to N rates, and by 20 g N ha−1 for NRE changes in response to rate-by-timing treatments. However, more consistent positive relationships (R2 = 0.73–0.77 existed between N2O and NNB(TNU, NNB(GNU, and SN, regardless of rate and timing of N application; on average N2O emission increased by about 5, 7, and 8 g N, respectively, per kg increase of NNB(GNU, NNB(TNU, and SN. Neither N source nor placement influenced the relationship between N2O and NRE. Overall, our analysis indicated that a careful selection of appropriate N rate applied at the right time can both increase NRE and reduce N

  18. Co-oxidation of carcinogenic polycyclic aromatic hydrocarbons with some biologically active compounds (BAC)

    Energy Technology Data Exchange (ETDEWEB)

    Gubergrits, M.Y.

    1978-09-01

    Oxidation of benzo(a)pyrene (BP) initiated by UV or gamma irradiation was promoted by benz(a)anthracene and 7,12-dimethylbenz(a)anthracene (DMBA) and inhibited by pyrene, dibenz(a,c)anthracene, and asymmetric benz(a)antharacene. The effects of these BAC commonly occurring together with BP in industrial wastes, increased with their concentrations. Phenol and 3-methylcholanthrene strongly promoted BP oxidation when present at low concentrations and inhibited it at high concentrations. Consistent promoting effect was also observed in BP co-oxidation with adipic acid, ..cap alpha..-naphthoflavon, and vitamin E, whereas succinic, azelaic, ferulic, gallic, and chlorogenic acids, rutin, and vitamin C acted as inhibitors. Most saturated dicarboxylic acids studied did not affect BP oxidation at 1:1 acid-BP molar ratio. The kinetics of 7,12-DMBA photooxidation inhibition by some metabolic intermediates, e.g., DMBA endo-peroxide, were also studied.

  19. Heterogeneous inhibition of the liquid phase oxidation of hydrocarbons by molybdenum compounds

    Energy Technology Data Exchange (ETDEWEB)

    Tavadyan, L.A.; Karapetyan, A.P.; Madatovyan, V.M.

    1988-05-01

    The heterogeneous action of molybdenum compounds: MoB, MoSe/sub 2/, MoSi/sub 2/, Mo/sub 2/C, MoO/sub 3/, Mo on the oxidation of n-decane, ethylbenzene, and nonene-1 has been investigated. A parameter representing the inhibiting effect of the heterogeneous catalyst was calculated theoretically. It was found that NoB, MoSe/sub 2/, and MoSi/sub 2/ inhibited the oxidation of n-decane at 408 K while the remaining heterogeneous contacts catalyzed it. A critical phenomenon was detected in the inhibition by MoSi/sub 2/. All the molybdenum compounds investigated inhibited the oxidation of ethylbenzene at 393 K owing to the formation of phenol by catalytic decomposition of the hydroperoxide. The liquid phase oxidation autoinhibited by phenol is described theoretically.

  20. Tryptophan Oxidative Metabolism Catalyzed by : A Thermophile Isolated from Kuwait Soil Contaminated with Petroleum Hydrocarbons

    Directory of Open Access Journals (Sweden)

    Jassim M. Al-Hassan

    2011-01-01

    Full Text Available Tryptophan metabolism has been extensively studied in humans as well as in soil. Its metabolism takes place mainly through kynurenine pathway yielding hydroxylated, deaminated and many other products of physiological significance. However, tryptophan metabolism has not been studied in an isolated thermophilic bacterium. Geobacillus stearothermophilus is a local thermophile isolated from Kuwait desert soil contaminated with petroleum hydrocarbons. The bacterium grows well at 65 °C in 0.05 M phosphate buffer (pH 7, when supplied with organic compounds as a carbon source and has a good potential for transformation of steroids and related molecules. In the present study, we used tryptophan ethyl ester as a carbon source for the bacterium to study the catabolism of the amino acid at pH 5 and pH 7. In this endeavor, we have resolved twenty one transformation products of tryptophan by GC/LC and have identified them through their mass spectral fragmentation.

  1. Study of the Radical Chain Mechanism of Hydrocarbon Oxidation for In Situ Combustion Process

    Directory of Open Access Journals (Sweden)

    Alexandra Ushakova

    2017-01-01

    Full Text Available Despite the abundance of in situ combustion models of oil oxidation, many of the effects are still beyond consideration. For example, until now, initial stages of oxidation were not considered from a position of radical chain process. This is a serious difficulty for the simulation of oil recovery process that involves air injection. To investigate the initial stages of oxidation, the paper considers the sequence of chemical reactions, including intermediate short-living compounds and radicals. We have attempted to correlate the main stages of the reaction with areas of heat release observed in the experiments. The system of differential equations based on the equations of oxidation reactions was solved. Time dependence of peroxides formation and start of heat release is analytically derived for the initial stages. We have considered the inhibition of initial oxidation stages by aromatic oil compounds and have studied the induction time in dependence on temperature. Chain ignition criteria for paraffins and crude oil in presence of core samples were obtained. The calculation results are compared with the stages of oxidation that arise by high-pressure differential scanning calorimetry. According to experimental observations we have determined which reactions are important for the process and which can be omitted or combined into one as insignificant.

  2. Oxidation Properties of Nitrogen-Doped Silicon Films Deposited from Si2H6 and NH3

    Science.gov (United States)

    Scheid, Emmanuel; Boyer, Pierre; Samitier, Josep; Hassani, Ahmed

    1994-03-01

    Si2H6/NH3 gas mixture was employed to obtain, by low-pressure chemical vapor deposition (LPCVD) at low temperature, nitrogen-doped silicon (NIDOS) films with various N/Si ratios. Thermal oxide was grown in dry oxygen at 900°C and 1100°C on NIDOS films. The result indicates that the nitrogen content of NIDOS films, assessed by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR), greatly influences their oxidation rate.

  3. Nitrogen gas plasma treatment of bacterial spores induces oxidative stress that damages the genomic DNA.

    Science.gov (United States)

    Sakudo, Akikazu; Toyokawa, Yoichi; Nakamura, Tetsuji; Yagyu, Yoshihito; Imanishi, Yuichiro

    2017-01-01

    Gas plasma, produced by a short high‑voltage pulse generated from a static induction thyristor power supply [1.5 kilo pulse/sec (kpps)], was demonstrated to inactivate Geobacillus stearothermophilus spores (decimal reduction time at 15 min, 2.48 min). Quantitative polymerase chain reaction and enzyme‑linked immunosorbent assays further indicated that nitrogen gas plasma treatment for 15 min decreased the level of intact genomic DNA and increased the level of 8-hydroxy-2'-deoxyguanosine, a major product of DNA oxidation. Three potential inactivation factors were generated during operation of the gas plasma instrument: Heat, longwave ultraviolet-A and oxidative stress (production of hydrogen peroxide, nitrite and nitrate). Treatment of the spores with hydrogen peroxide (3x2‑4%) effectively inactivated the bacteria, whereas heat treatment (100˚C), exposure to UV-A (75‑142 mJ/cm2) and 4.92 mM peroxynitrite (•ONOO‑), which is decomposed into nitrite and nitrate, did not. The results of the present study suggest the gas plasma treatment inactivates bacterial spores primarily by generating hydrogen peroxide, which contributes to the oxidation of the host genomic DNA.

  4. Adsorption/oxidation of sulfur-containing gases on nitrogen-doped activated carbon

    Directory of Open Access Journals (Sweden)

    Liu Qiang

    2016-01-01

    Full Text Available Coconut shell-based activated carbon (CAC was used for the removal of methyl mercaptan (MM. CAC was modified by urea impregnation and calcined at 450°C and 950°C. The desulfurization activity was determined in a fixed bed reactor under room temperature. The results showed that the methyl mercaptan adsorption/oxidation capacity of modified carbon caicined at 950°C is more than 3 times the capacity of original samples. On the other hand, the modified carbon caicined at 950°C also has a high capacity for the simultaneous adsorption/oxidation of methyl mercaptan and hydrogen sulfide.The introduce of basic nitrogen groups siginificantly increases the desulfurization since it can facilitate the electron transfer process between sulfur and oxygen. The structure and chemical properties are characterized using Boehm titration, N2 adsorption-desorption method, thermal analysis and elemental analysis. The results showed that the major oxidation products were dimethyl disulfide and methanesulfonic acid which adsorbed in the activated carbon.

  5. Selective catalytic oxidation of hydrocarbons as a challenge to the chemical engineer

    Energy Technology Data Exchange (ETDEWEB)

    Emig, G [Erlangen-Nuernberg Univ., Erlangen (Germany, F.R.). Lehrstuhl fuer Technische Chemie 1

    1978-08-01

    Selective catalytic oxidation is beginning to play a more and more significant role in the process of converting the most important chemical raw materials, crude oil and natural gas, into intermediate and end products. In many cases, this technique makes it possible to replace old processes consisting of many steps by more economical single-step reactions. The typical example of oxidation or ammoxidation of propylene demonstrates the problems which must be solved by the chemical engineer during the development of a heterogeneous catalytic oxidation process. The particular importance of a systematic development of a catalyst is emphasized. General aspects relating to the design of new catalytic processes, or the improvement of existing ones are also discussed.

  6. Effect of nitrogen ion implantation on the structural and optical properties of indium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sethi, Riti; Aziz, Anver; Siddiqui, Azher M., E-mail: amsiddiqui@jmi.ac.in [Department of Physics, Jamia Millia Islamia, New Delhi-110025 (India); Kumar, Pravin [Inter University Accelerator Center, Aruna Asaf Ali Marg, New Delhi-110067 (India); Khan, Sameen Ahmed [Department of Mathematics and Sciences, College of Arts and Applied Sciences (CAAS) Dhofar University, Salalah, Sultanate of Oman (Oman)

    2016-06-10

    : We report here synthesis and subsequent nitrogen ion implantation of indium oxide (In{sub 2}O{sub 3}) thin films. The films were implanted with 25 keV N{sup +} beam for different ion doses between 3E15 to 1E16 ions/cm{sup 2}. The resulting changes in structural and optical properties were investigated using XRD, SEM-EDAX and UV-Vis Spectrometry. XRD studies reveal decrease in crystallite size from 20.06 to 12.42 nm with increase in ion dose. SEM micrographs show an increase in the grain size from 0.8 to 1.35 µm with increase in ion dose because of the agglomeration of the grains. Also, from EDAX data on pristine and N-implanted thin films the presence of indium and oxygen without any traces of impurity elements could be seen. However, at lower ion doses such as 3E15 and 5E15 ions/cm{sup 2}, no evidence of the presence of nitrogen ion was seen. However, for the ion dose of 1E16 ions/cm{sup 2}, evidence of presence of nitrogen can be seen in the EDAX data. Band gap calculations reveal a decrease in band gap from 3.54 to 3.38 eV with increasing ion dose. However, the band gap was found to again show an increase to 3.58 eV at the highest ion dose owing to quantum confinement effect.

  7. Application of microwave energy in the control of DPM, oxides of nitrogen and VOC emissions

    Science.gov (United States)

    Pallavkar, Sameer M.

    The emissions of DPM (diesel particulate matter), NOx (oxides of nitrogen), and toxic VOCs (volatile organic compounds) from diesel engine exhaust gases and other sources such as chemical process industry and manufacturing industry have been a great environmental and health concern. Most control technologies for these emissions require elevated temperatures. The use of microwave energy as a source of heat energy, however, has not been fully explored. In this study, the microwave energy was used as the energy source in three separate emission control processes, namely, the regeneration of diesel particulate filter (DPF) for DPM control, the NOx reduction using a platinum catalyst, and the VOC destruction involving a ceramic based material. The study has demonstrated that microwave heating is an effective method in providing heat for the studied processes. The control efficiencies associated with the microwave-assisted processes have been observed to be high and acceptable. Further research, however, is required for the commercial use of these technologies.

  8. Charges on emissions of nitrogen oxides from forest industry boilers. Technical and economic effects

    International Nuclear Information System (INIS)

    Liebscher, P.

    1998-09-01

    The charges on nitrogen oxide emission have been introduced in order to create an incentive for the industry to reduce emissions. A high cost in unproductive investment for monitoring systems, SNCR and gas recirculation systems was paid. However, the economic burden for the industry was less than initially feared, since the NO x emissions were moderate for most of the boilers, and since the potential for reducing NO x by rather simple means could be exploited. Also, the NO x charges have created an objective for industry to optimize their boilers in a way that raises efficiency and availability, which is of greater value to the environment than the reduction of the already low NO x emissions from these boilers

  9. Selective catalytic reduction of nitrogen oxides from industrial gases by hydrogen or methane

    International Nuclear Information System (INIS)

    Engelmann Pirez, M.

    2004-12-01

    This work deals with the selective catalytic reduction of nitrogen oxides (NO x ), contained in the effluents of industrial plants, by hydrogen or methane. The aim is to replace ammonia, used as reducing agent, in the conventional process. The use of others reducing agents such as hydrogen or methane is interesting for different reasons: practical, economical and ecological. The catalyst has to convert selectively NO into N 2 , in presence of an excess of oxygen, steam and sulfur dioxide. The developed catalyst is constituted by a support such as perovskites, particularly LaCoO 3 , on which are dispersed noble metals (palladium, platinum). The interaction between the noble metal and the support, generated during the activation of the catalyst, allows to minimize the water and sulfur dioxide inhibitor phenomena on the catalytic performances, particularly in the reduction of NO by hydrogen. (O.M.)

  10. Combined method for reducing emission of sulfur dioxide and nitrogen oxides from thermal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R.; Grachev, S.P.

    1991-11-01

    Discusses the method developed by the Fossil Energy Research Corp. in the USA for combined desulfurization and denitrification of flue gases from coal-fired power plants. The method combines two methods tested on a commercial scale: the dry additive method for suppression of sulfur dioxide and the selective noncatalytic reduction of nitrogen oxides using urea (the NOXOUT process). The following aspects of joint flue gas desulfurization and denitrification are analyzed: flowsheets of the system, chemical reactions and reaction products, laboratory tests of the method and its efficiency, temperature effects on desulfurization and denitrification of flue gases, effects of reagent consumption rates, operating cost, efficiency of the combined method compared to other conventional methods of separate flue gas desulfurization and denitrification, economic aspects of flue gas denitrification and desulfurization. 4 refs.

  11. High-Surface-Area Nitrogen-Doped Reduced Graphene Oxide for Electric Double-Layer Capacitors.

    Science.gov (United States)

    Youn, Hee-Chang; Bak, Seong-Min; Kim, Myeong-Seong; Jaye, Cherno; Fischer, Daniel A; Lee, Chang-Wook; Yang, Xiao-Qing; Roh, Kwang Chul; Kim, Kwang-Bum

    2015-06-08

    A two-step method consisting of solid-state microwave irradiation and heat treatment under NH3 gas was used to prepare nitrogen-doped reduced graphene oxide (N-RGO) with a high specific surface area (1007 m(2)  g(-1) ), high electrical conductivity (1532 S m(-1) ), and low oxygen content (1.5 wt %) for electrical double-layer capacitor applications. The specific capacitance of N-RGO was 291 F g(-1) at a current density of 1 A g(-1) , and a capacitance of 261 F g(-1) was retained at 50 A g(-1) , which indicated a very good rate capability. N-RGO also showed excellent cycling stability and preserved 96 % of the initial specific capacitance after 100 000 cycles. Near-edge X-ray absorption fine-structure spectroscopy results provided evidenced for the recovery of π conjugation in the carbon networks with the removal of oxygenated groups and revealed chemical bonding of the nitrogen atoms in N-RGO. The good electrochemical performance of N-RGO is attributed to its high surface area, high electrical conductivity, and low oxygen content. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Nitrogen grain-boundary passivation of In-doped ZnO transparent conducting oxide

    Science.gov (United States)

    Ali, D.; Butt, M. Z.; Coughlan, C.; Caffrey, D.; Shvets, I. V.; Fleischer, K.

    2018-04-01

    We have investigated the properties and conduction limitations of spray pyrolysis grown, low-cost transparent conducting oxide ZnO thin films doped with indium. We analyze the optical, electrical, and crystallographic properties as functions of In content with a specific focus on postgrowth heat treatment of these thin films at 320 ∘C in an inert, nitrogen atmosphere, which improves the films electrical properties considerably. The effect was found to be dominated by nitrogen-induced grain-boundary passivation, identified by a combined study using i n situ resistance measurement upon annealing, x-ray photoelectron spectroscopy, photoluminescence, and x-ray diffraction studies. We also highlight the chemical mechanism of morphologic and crystallographic changes found in films with high indium content. By optimizing growth conditions according to these findings, ZnO:In with a resistivity as low as 2 ×10 -3Ω cm , high optical quality (T ≈90 % ), and sheet resistance of 32 Ω /□ has been obtained without any need for postgrowth treatments.

  13. Satellite-based emission constraint for nitrogen oxides: Capability and uncertainty

    Science.gov (United States)

    Lin, J.; McElroy, M. B.; Boersma, F.; Nielsen, C.; Zhao, Y.; Lei, Y.; Liu, Y.; Zhang, Q.; Liu, Z.; Liu, H.; Mao, J.; Zhuang, G.; Roozendael, M.; Martin, R.; Wang, P.; Spurr, R. J.; Sneep, M.; Stammes, P.; Clemer, K.; Irie, H.

    2013-12-01

    Vertical column densities (VCDs) of tropospheric nitrogen dioxide (NO2) retrieved from satellite remote sensing have been employed widely to constrain emissions of nitrogen oxides (NOx). A major strength of satellite-based emission constraint is analysis of emission trends and variability, while a crucial limitation is errors both in satellite NO2 data and in model simulations relating NOx emissions to NO2 columns. Through a series of studies, we have explored these aspects over China. We separate anthropogenic from natural sources of NOx by exploiting their different seasonality. We infer trends of NOx emissions in recent years and effects of a variety of socioeconomic events at different spatiotemporal scales including the general economic growth, global financial crisis, Chinese New Year, and Beijing Olympics. We further investigate the impact of growing NOx emissions on particulate matter (PM) pollution in China. As part of recent developments, we identify and correct errors in both satellite NO2 retrieval and model simulation that ultimately affect NOx emission constraint. We improve the treatments of aerosol optical effects, clouds and surface reflectance in the NO2 retrieval process, using as reference ground-based MAX-DOAS measurements to evaluate the improved retrieval results. We analyze the sensitivity of simulated NO2 to errors in the model representation of major meteorological and chemical processes with a subsequent correction of model bias. Future studies will implement these improvements to re-constrain NOx emissions.

  14. Nitrogen loading and nitrous oxide emissions from a river with multiple hydroelectric reservoirs.

    Science.gov (United States)

    Chen, Jinsong; Cao, Wenzhi; Cao, Di; Huang, Zheng; Liang, Ying

    2015-05-01

    River networks receive a large fraction of the anthropogenic nitrogen applied to river catchments. The different impacts of the stream nitrogen (N) loading on nitrous oxide (N2O) emissions from various of aquatic ecosystems are still unknown. In this study, direct measurements of water-air interface N2O exchange in different water bodies were conducted. Results showed that the water-air interface N2O exchange from tributaries, hydropower station reservoirs, a main stream, and its estuary were 10.14 ± 13.51, 15.64 ± 10.72, 27.59 ± 20.99, and 15.98 ± 12.26 µg N2O-N m(-2) h(-1), respectively, indicating the strong impacts of human activities on N2O emission rates. The water NO2 (-)-N values predicted the dissolved N2O concentrations better than did the NO3 (-)-N and NH4 (+)-N values, indicating strong denitrification and nitrification processes. The dissolved inorganic N explained 36 % of the variations in the N2O emissions for the whole river network.

  15. Sulfur and nitrogen co-doped carbon dots sensors for nitric oxide fluorescence quantification

    Energy Technology Data Exchange (ETDEWEB)

    Simões, Eliana F.C. [Centro de Investigação em Química da Universidade do Porto (CIQ-UP), Faculdade de Farmácia da Universidade de Coimbra, Pólo das Ciências da Saúde, 3000-548 Coimbra (Portugal); Centro de Investigação em Química da Universidade do Porto (CIQ-UP), Departamento de Geociências, Ambiente e Ordenamento do Território, Faculdade de Ciências da Universidade do Porto, R. Campo Alegre 687, 4169-007 Porto (Portugal); Leitão, João M.M., E-mail: jleitao@ff.uc.pt [Centro de Investigação em Química da Universidade do Porto (CIQ-UP), Faculdade de Farmácia da Universidade de Coimbra, Pólo das Ciências da Saúde, 3000-548 Coimbra (Portugal); Esteves da Silva, Joaquim C.G. [Centro de Investigação em Química da Universidade do Porto (CIQ-UP), Departamento de Geociências, Ambiente e Ordenamento do Território, Faculdade de Ciências da Universidade do Porto, R. Campo Alegre 687, 4169-007 Porto (Portugal)

    2017-04-01

    Microwave synthetized sulfur and nitrogen co-doped carbon dots responded selectively to nitric oxide (NO) at pH 7. Citric acid, urea and sodium thiosulfate in the proportion of 1:1:3 were used respectively as carbon, nitrogen and sulfur sources in the carbon dots microwave synthesis. For this synthesis, the three compounds were diluted in 15 mL of water and exposed for 5 min to a microwave radiation of 700 W. It is observed that the main factor contributing to the increased sensitivity and selectivity response to NO at pH 7 is the sodium thiosulfate used as sulfur source. A linear response range from 1 to 25 μM with a sensitivity of 16 μM{sup −1} and a detection limit of 0.3 μM were obtained. The NO quantification capability was assessed in standard and in fortified serum solutions. - Highlights: • S,N co-doped CDs were microwave synthetized from citric acid, urea and sodium thiosulfate. • The NO fluorescence sensing was evaluated at pH 7. • The selective and sensitive detection of NO at pH 7 was achieved. • Good NO quantification results in serum samples were obtained.

  16. Atmospheric cycles of nitrogen oxides and ammonia. [source strengths and destruction rates

    Science.gov (United States)

    Bottger, A.; Ehhalt, D. H.; Gravenhorst, G.

    1981-01-01

    The atmospheric cycles of nitrogenous trace compounds for the Northern and Southern Hemispheres are discussed. Source strengths and destruction rates for the nitrogen oxides: NO, NO2 and HNO3 -(NOX) and ammonia (NH3) are given as a function of latitude over continents and oceans. The global amounts of NOX-N and NH3-N produced annually in the period 1950 to 1975 (34 + 5 x one trillion g NOx-N/yr and 29 + or - 6 x one trillion g NH3-N/yr) are much less than previously assumed. Globally, natural and anthropogenic emissions are of similar magnitude. The NOx emission from anthropogenic sources is 1.5 times that from natural processes in the Northern Hemisphere, whereas in the Southern Hemisphere, it is a factor of 3 or 4 less. More than 80% of atmospheric ammonia seems to be derived from excrements of domestic animals, mostly by bulk deposition: 24 + or - 9 x one trillion g NO3 -N/yr and 21 + or - 9 x one trillion g NH4+-N/yr. Another fraction may be removed by absorption on vegetation and soils.

  17. Electrochemical oxidation of nitrogen-heterocyclic compounds at boron-doped diamond electrode.

    Science.gov (United States)

    Xing, Xuan; Zhu, Xiuping; Li, Hongna; Jiang, Yi; Ni, Jinren

    2012-01-01

    Nitrogen-heterocyclic compounds (NHCs) are toxic and bio-refractory contaminants widely spread in environment. This study investigated electrochemical degradation of NHCs at boron-doped diamond (BDD) anode with particular attention to the effect of different number and position of nitrogen atoms in molecular structure. Five classical NHCs with similar structures including indole (ID), quinoline (QL), isoquinoline (IQL), benzotriazole (BT) and benzimidazole (BM) were selected as the target compounds. Results of bulk electrolysis showed that degradation of all NHCs was fit to a pseudo first-order equation. The five compounds were degraded with the following sequence: ID>QL>IQL>BT>BM in terms of their rates of oxidation. Quantum chemical calculation was combined with experimental results to describe the degradation character of NHCs at BDD anode. A linear relationship between degradation rate and delocalization energy was observed, which demonstrated that electronic charge was redistributed through the conjugation system and accumulated at the active sites under the attack of hydroxyl radicals produced at BDD anode. Moreover, atom charge was calculated by semi empirical PM3 method and active sites of NHCs were identified respectively. Analysis of intermediates by GC-MS showed agreement with calculation results. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Sulfur and nitrogen co-doped carbon dots sensors for nitric oxide fluorescence quantification

    International Nuclear Information System (INIS)

    Simões, Eliana F.C.; Leitão, João M.M.; Esteves da Silva, Joaquim C.G.

    2017-01-01

    Microwave synthetized sulfur and nitrogen co-doped carbon dots responded selectively to nitric oxide (NO) at pH 7. Citric acid, urea and sodium thiosulfate in the proportion of 1:1:3 were used respectively as carbon, nitrogen and sulfur sources in the carbon dots microwave synthesis. For this synthesis, the three compounds were diluted in 15 mL of water and exposed for 5 min to a microwave radiation of 700 W. It is observed that the main factor contributing to the increased sensitivity and selectivity response to NO at pH 7 is the sodium thiosulfate used as sulfur source. A linear response range from 1 to 25 μM with a sensitivity of 16 μM"−"1 and a detection limit of 0.3 μM were obtained. The NO quantification capability was assessed in standard and in fortified serum solutions. - Highlights: • S,N co-doped CDs were microwave synthetized from citric acid, urea and sodium thiosulfate. • The NO fluorescence sensing was evaluated at pH 7. • The selective and sensitive detection of NO at pH 7 was achieved. • Good NO quantification results in serum samples were obtained.

  19. Amorphous Oxide Thin Film Transistors with Nitrogen-Doped Hetero-Structure Channel Layers

    Directory of Open Access Journals (Sweden)

    Haiting Xie

    2017-10-01

    Full Text Available The nitrogen-doped amorphous oxide semiconductor (AOS thinfilm transistors (TFTs with double-stacked channel layers (DSCL were prepared and characterized. The DSCL structure was composed of nitrogen-doped amorphous InGaZnO and InZnO films (a-IGZO:N/a-IZO:N or a-IZO:N/a-IGZO:N and gave the corresponding TFT devices large field-effect mobility due to the presence of double conduction channels. The a-IZO:N/a-IGZO:N TFTs, in particular, showed even better electrical performance (µFE = 15.0 cm2・V−1・s−1, SS = 0.5 V/dec, VTH = 1.5 V, ION/IOFF = 1.1 × 108 and stability (VTH shift of 1.5, −0.5 and −2.5 V for positive bias-stress, negative bias-stress, and thermal stress tests, respectively than the a-IGZO:N/a-IZO:N TFTs. Based on the X-ray photoemission spectroscopy measurements and energy band analysis, we assumed that the optimized interface trap states, the less ambient gas adsorption, and the better suppression of oxygen vacancies in the a-IZO:N/a-IGZO:N hetero-structures might explain the better behavior of the corresponding TFTs.

  20. Smoking modify the effects of polycyclic aromatic hydrocarbons exposure on oxidative damage to DNA in coke oven workers.

    Science.gov (United States)

    Yang, Jin; Zhang, Hongjie; Zhang, Huitao; Wang, Wubin; Liu, Yanli; Fan, Yanfeng

    2017-07-01

    Coke oven emissions containing polycyclic aromatic hydrocarbons (PAHs) are predominant toxic constituents of particulate air pollution that have been linked to increased risk of lung cancer. Numerous epidemiological studies have suggested that oxidative DNA damage may play a pivotal role in the carcinogenic mechanism of lung cancer. Little is known about the effect of interaction between PAHs exposure and lifestyle on DNA oxidative damage. The study population is composed by coke oven workers (365) and water treatment workers (144), and their urinary levels of four PAH metabolites and 8-hydroxydeoxyguanosine (8-OHdG) were determined. Airborne samples of exposed sites (4) and control sites (3) were collected, and eight carcinogenic PAHs were detected by high-performance liquid chromatography. The median values of the sum of eight carcinogenic PAHs and BaP in exposed sites were significantly higher than control sites (P < 0.01). The study found that the urinary PAH metabolites were significantly elevated in coke oven workers (P < 0.01). Multivariate logistic regression analysis revealed that the risk of high levels of urinary 8-OHdG will increase with increasing age, cigarette consumption, and levels of urinary 1-hydroxypyrene, and P for trend were all <0.05. Smoking can significantly modify the effects of urinary 1-hydroxypyrene on high concentrations urinary 8-OHdG, during co-exposure to both light or heavy smoking and high 1-hydroxypyrene levels (OR 4.28, 95% CI 1.32-13.86 and OR 5.05, 95% CI 1.63-15.67, respectively). Our findings quantitatively demonstrate that workers exposed to coke oven fumes and smoking will cause more serious DNA oxidative damage.

  1. Photocatalytic oxidation of polycyclic aromatic hydrocarbons: Intermediates identification and toxicity testing

    International Nuclear Information System (INIS)

    Woo, O.T.; Chung, W.K.; Wong, K.H.; Chow, Alex T.; Wong, P.K.

    2009-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are hydrophobic pollutants and their low water solubility limits their degradation in aqueous solution. The presence of water-miscible solvent such as acetone can increase the water solubility of PAHs, however acetone will also affect the degradation of PAH. In this study the effects of acetone on the photocatalytic degradation efficiency and pathways of 5 selected PAHs, namely naphthalene (2 rings), acenaphthylene (3 rings), phenanthrene (3 rings), anthracene (3 rings) and benzo[a]anthracene (4 rings) were investigated. The Microtox toxicity test was used to determine whether the PCO system can completely detoxify the parental PAHs and its intermediates. The addition of 16% acetone can greatly alter the degradation pathway of naphthalene and anthracene. Based on intermediates identified from degradation of the 5 PAHs, the location of parental PAHs attacked by reactive free radicals can be correlated with the localization energies of different positions of the compound. For toxicity analysis, irradiation by UV light was found to induce acute toxicity by generating intermediates/degradation products from PAHs and possibly acetone. Lastly, all PAHs (10 mg l -1 ) can be completely detoxified by titanium dioxide (100 mg l -1 ) within 24 h under UVA irradiation (3.9 mW cm -2 ).

  2. Final Technical Report: Tandem and Bimetallic Catalysts for Oxidative Dehydrogenation of Light Hydrocarbon with Renewable Feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Omar, Mahdi [Purdue Univ., West Lafayette, IN (United States)

    2017-01-06

    An estimated 490 million metric tons of lignocellulosic biomass is available annually from U.S. agriculture and forestry. With continuing concerns over greenhouse gas emission, the development of efficient catalytic processes for conversion of biomass derived compounds is an important area of research. Since carbohydrates and polyols are rich in oxygen, approximately one oxygen atom per carbon, removal of hydroxyl groups via deoxygenation is needed. The necessary hydrogen required for hydrodeoxygenation (HDO) would either come from reforming biomass itself or from steam reforming of natural gas. Both processes contribute to global CO2 emission. The hope is that eventually renewable sources such as wind and solar for hydrogen production will become more viable and economic in the future. In the meantime, unconventional natural gas production in North America has boomed. As a result, light hydrocarbons present an opportunity when coupled with biomass derived oxygenates to generate valuable products from both streams without co-production of carbon dioxide. This concept is the focus of our current funding period. The objective of the project requires coupling two different types of catalysis, HDO and dehydrogenation. Our hypothesis was formulated around our success in establishing oxorhenium catalysts for polyol HDO reactions and known literature precedence for the use of iridium hydrides in alkane dehydrogenation. To examine our hypothesis we set out to investigate the reaction chemistry of binuclear complexes of oxorhenium and iridium hydride.

  3. Application in industry and energy production of active carbon/cobalt catalyst for nitrogen oxide neutralization

    International Nuclear Information System (INIS)

    Mekhandzhiev, D.; Nikolov, R.; Lyutskanov, L.; Dushanov, D.; Lakov, L.

    1997-01-01

    A new material for neutralization of nitrogen oxides is presented. Two or three metals containing catalysts with a good activity and selectivity towards NO x have been obtained. Preparation of carbon catalysts by deposition of the active phase precursor on the initial carbon material prior to activation is considered as the most promising method. An active carbon-based catalyst (AC/Co) has been synthesized Apricot shells preliminary impregnated with a water-alcohol solution of Co nitrate have been used as initial carbon material. after drying they have been subjected to one-phase steam pyrolysis using a fix-bed reactor. The catalyst thus obtained has a specific surface area (BET) of 53 m 2 g -1 , a favorable mesopore volume/total volume ratio (about 0.85) determined by nitrogen adsorption, a suitable mesopore distribution, about 70% of the mesopores being characterized by r p larger than 25 A and a high dispersion of the Co oxide phase. In addition the catalyst possesses the necessary mechanical resistance. The catalyst has exhibited a high activity with respect to NO x reduction with CO at low temperatures (at 150-250 o C which are the temperatures of industrial flue gases, nO conversion up to 60-95% occurs) and a high selectivity. No presence of H 2 O has been established over the whole temperature range (100-300 o C). An additional advantage of the catalyst is the fact that the amount of CO above 150 o C is lower than the stoichiometric which indicates parallel participation in the process of both the active phase and the support (active carbon) It is also important that the presented catalyst has a low price due to the use of waste products from agriculture and the elimination of special thermal treatment of the supported Co nitrate. There are possibilities of using of other organic wastes from agriculture as well as wastes obtained during flotation of coal. (author)

  4. Study of the chemistry of sulfur- and nitrogen oxides at fluidized bed combustion. Final report

    International Nuclear Information System (INIS)

    Lindqvist, O.

    1995-01-01

    Research has been carried out concerning chemistry of nitrogen and sulfur oxides, with relevance to fluidized bed combustion. Studies of the heterogeneous decomposition reactions of NO and N 2 O molecules have also been carried out. The effect of O 2 on the heterogeneous reactions has been investigated and the results indicate that NO can deteriorate only in the reducing zones of a FBC. The formation of NO and N 2 O as well as the question of what parameters affect this formation have been studied in a series of combustion experiments. In addition, it has also been demonstrated that the volatiles and the char are about equally important for the NO and N 2 O formation. Quantum chemical calculations have been used to study the surface processes of the nitrogen oxides. Investigations of the desulfurization reactions at high percentages of CO 2 with special regard to the PFBC technique have been made. In addition, the same reaction has been studied with e.g. spectroscopic methods at normal CO 2 percentages, but with varying amounts of O 2 and CO. CaSO 3 has been demonstrated to be an intermediary and CaS as being one of the products. An important part of the project activities is the analytical work which primarily supports the full scale experiments on the 12 MW th CTH FBC boiler. As a link between the CTH boiler and our analytical laboratory, a chemical engineer also has been employed. In this activity is also included the development of sampling and analytical methods, e.g. NH 3 and HCN sampling in the combustor. Time has also been allocated to measuring corrosive alkali metals (Na and K) in flue gases from a PFBC plant. 29 refs, 4 figs, 1 tab

  5. 40 CFR Appendix B to Part 76 - Procedures and Methods for Estimating Costs of Nitrogen Oxides Controls Applied to Group 1, Boilers

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Procedures and Methods for Estimating Costs of Nitrogen Oxides Controls Applied to Group 1, Boilers B Appendix B to Part 76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) ACID RAIN NITROGEN OXIDES...

  6. Dissimilatory metabolism of nitrogen oxides in bacteria: comparative reconstruction of transcriptional networks.

    Directory of Open Access Journals (Sweden)

    2005-10-01

    Full Text Available Bacterial response to nitric oxide (NO is of major importance since NO is an obligatory intermediate of the nitrogen cycle. Transcriptional regulation of the dissimilatory nitric oxides metabolism in bacteria is diverse and involves FNR-like transcription factors HcpR, DNR, and NnrR; two-component systems NarXL and NarQP; NO-responsive activator NorR; and nitrite-sensitive repressor NsrR. Using comparative genomics approaches, we predict DNA-binding motifs for these transcriptional factors and describe corresponding regulons in available bacterial genomes. Within the FNR family of regulators, we observed a correlation of two specificity-determining amino acids and contacting bases in corresponding DNA recognition motif. Highly conserved regulon HcpR for the hybrid cluster protein and some other redox enzymes is present in diverse anaerobic bacteria, including Clostridia, Thermotogales, and delta-proteobacteria. NnrR and DNR control denitrification in alpha- and beta-proteobacteria, respectively. Sigma-54-dependent NorR regulon found in some gamma- and beta-proteobacteria contains various enzymes involved in the NO detoxification. Repressor NsrR, which was previously known to control only nitrite reductase operon in Nitrosomonas spp., appears to be the master regulator of the nitric oxides' metabolism, not only in most gamma- and beta-proteobacteria (including well-studied species such as Escherichia coli, but also in Gram-positive Bacillus and Streptomyces species. Positional analysis and comparison of regulatory regions of NO detoxification genes allows us to propose the candidate NsrR-binding motif. The most conserved member of the predicted NsrR regulon is the NO-detoxifying flavohemoglobin Hmp. In enterobacteria, the regulon also includes two nitrite-responsive loci, nipAB (hcp-hcr and nipC (dnrN, thus confirming the identity of the effector, i.e. nitrite. The proposed NsrR regulons in Neisseria and some other species are extended to include

  7. Dissimilatory Metabolism of Nitrogen Oxides in Bacteria:Comparative Reconstruction of Transcriptional Networks

    Energy Technology Data Exchange (ETDEWEB)

    Rodionov, Dmitry A.; Dubchak, Inna L.; Arkin, Adam P.; Alm, EricJ.; Gelfand, Mikhail S.

    2005-09-01

    Bacterial response to nitric oxide (NO) is of major importance since NO is an obligatory intermediate of the nitrogen cycle. Transcriptional regulation of the dissimilatory nitric oxides metabolism in bacteria is diverse and involves FNR-like transcription factors HcpR, DNR and NnrR, two-component systems NarXL and NarQP, NO-responsive activator NorR, and nitrite sensitive repressor NsrR. Using comparative genomics approaches we predict DNA-binding signals for these transcriptional factors and describe corresponding regulons in available bacterial genomes. Within the FNR family of regulators, we observed a correlation of two specificity-determining amino acids and contacting bases in corresponding DNA signal. Highly conserved regulon HcpR for the hybrid cluster protein and some other redox enzymes is present in diverse anaerobic bacteria including Clostridia, Thermotogales and delta-proteobacteria. NnrR and DNR control denitrification in alpha- and beta-proteobacteria, respectively. Sigma-54-dependent NorR regulon found in some gamma- and beta-proteobacteria contains various enzymes involved in the NO detoxification. Repressor NsrR, which was previously known to control only nitrite reductase operon in Nitrosomonas spp., appears to be the master regulator of the nitric oxides metabolism not only in most gamma- and beta-proteobacteria (including well-studied species like Escherichia coli), but also in Gram-positive Bacillus and Streptomyces species. Positional analysis and comparison of regulatory regions of NO detoxification genes allows us to propose the candidate NsrR-binding signal. The most conserved member of the predicted NsrR regulon is the NO-detoxifying flavohemoglobin Hmp. In enterobacteria, the regulon includes also two nitrite-responsive loci, nipAB (hcp-hcr) and nipC(dnrN), thus confirming the identity of the effector, i.e., nitrite. The proposed NsrR regulons in Neisseria and some other species are extended to include denitrification genes. As the

  8. Genome-Scale, Constraint-Based Modeling of Nitrogen Oxide Fluxes during Coculture of Nitrosomonas europaea and Nitrobacter winogradskyi

    Science.gov (United States)

    Giguere, Andrew T.; Murthy, Ganti S.; Bottomley, Peter J.; Sayavedra-Soto, Luis A.

    2018-01-01

    ABSTRACT Nitrification, the aerobic oxidation of ammonia to nitrate via nitrite, emits nitrogen (N) oxide gases (NO, NO2, and N2O), which are potentially hazardous compounds that contribute to global warming. To better understand the dynamics of nitrification-derived N oxide production, we conducted culturing experiments and used an integrative genome-scale, constraint-based approach to model N oxide gas sources and sinks during complete nitrification in an aerobic coculture of two model nitrifying bacteria, the ammonia-oxidizing bacterium Nitrosomonas europaea and the nitrite-oxidizing bacterium Nitrobacter winogradskyi. The model includes biotic genome-scale metabolic models (iFC578 and iFC579) for each nitrifier and abiotic N oxide reactions. Modeling suggested both biotic and abiotic reactions are important sources and sinks of N oxides, particularly under microaerobic conditions predicted to occur in coculture. In particular, integrative modeling suggested that previous models might have underestimated gross NO production during nitrification due to not taking into account its rapid oxidation in both aqueous and gas phases. The integrative model may be found at https://github.com/chaplenf/microBiome-v2.1. IMPORTANCE Modern agriculture is sustained by application of inorganic nitrogen (N) fertilizer in the form of ammonium (NH4+). Up to 60% of NH4+-based fertilizer can be lost through leaching of nitrifier-derived nitrate (NO3−), and through the emission of N oxide gases (i.e., nitric oxide [NO], N dioxide [NO2], and nitrous oxide [N2O] gases), the latter being a potent greenhouse gas. Our approach to modeling of nitrification suggests that both biotic and abiotic mechanisms function as important sources and sinks of N oxides during microaerobic conditions and that previous models might have underestimated gross NO production during nitrification. PMID:29577088

  9. Genome-Scale, Constraint-Based Modeling of Nitrogen Oxide Fluxes during Coculture of Nitrosomonas europaea and Nitrobacter winogradskyi.

    Science.gov (United States)

    Mellbye, Brett L; Giguere, Andrew T; Murthy, Ganti S; Bottomley, Peter J; Sayavedra-Soto, Luis A; Chaplen, Frank W R

    2018-01-01

    Nitrification, the aerobic oxidation of ammonia to nitrate via nitrite, emits nitrogen (N) oxide gases (NO, NO 2 , and N 2 O), which are potentially hazardous compounds that contribute to global warming. To better understand the dynamics of nitrification-derived N oxide production, we conducted culturing experiments and used an integrative genome-scale, constraint-based approach to model N oxide gas sources and sinks during complete nitrification in an aerobic coculture of two model nitrifying bacteria, the ammonia-oxidizing bacterium Nitrosomonas europaea and the nitrite-oxidizing bacterium Nitrobacter winogradskyi . The model includes biotic genome-scale metabolic models (iFC578 and iFC579) for each nitrifier and abiotic N oxide reactions. Modeling suggested both biotic and abiotic reactions are important sources and sinks of N oxides, particularly under microaerobic conditions predicted to occur in coculture. In particular, integrative modeling suggested that previous models might have underestimated gross NO production during nitrification due to not taking into account its rapid oxidation in both aqueous and gas phases. The integrative model may be found at https://github.com/chaplenf/microBiome-v2.1. IMPORTANCE Modern agriculture is sustained by application of inorganic nitrogen (N) fertilizer in the form of ammonium (NH 4 + ). Up to 60% of NH 4 + -based fertilizer can be lost through leaching of nitrifier-derived nitrate (NO 3 - ), and through the emission of N oxide gases (i.e., nitric oxide [NO], N dioxide [NO 2 ], and nitrous oxide [N 2 O] gases), the latter being a potent greenhouse gas. Our approach to modeling of nitrification suggests that both biotic and abiotic mechanisms function as important sources and sinks of N oxides during microaerobic conditions and that previous models might have underestimated gross NO production during nitrification.

  10. Cracking hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Forwood, G F; Lane, M; Taplay, J G

    1921-10-07

    In cracking and hydrogenating hydrocarbon oils by passing their vapors together with steam over heated carbon derived from shale, wood, peat or other vegetable or animal matter, the gases from the condenser are freed from sulfuretted hydrogen, and preferably also from carbon dioxide, and passed together with oil vapors and steam through the retort. Carbon dioxide may be removed by passage through slaked lime, and sulfuretted hydrogen by means of hydrated oxide of iron. Vapors from high-boiling oils and those from low-boiling oils are passed alternately through the retort, so that carbon deposited from the high-boiling oils is used up during treatment of low-boiling oils.

  11. Methane oxidation in soil profiles of Dutch and Finnish coniferous forests with different soil texture and atmospheric nitrogen deposition

    NARCIS (Netherlands)

    Saari, A.; Martikainen, P.J.; Ferm, A.; Ruuskanen, J.; Boer, W. de; Troelstra, S.R.; Laanbroek, H.J.

    1997-01-01

    We studied methane oxidation capacity in soil profiles of Dutch and Finnish coniferous forests. The Finnish sites (n = 9) had nitrogen depositions from 3 to 36 kg N ha⁻¹ a⁻¹. The deposition of N on the Dutch sites (n = 13) was higher ranging from 50 to 92 kg N ha⁻¹ a⁻¹. The Dutch sites had also

  12. Methane oxidation in soil profiles of Dutch and Finnish coniferous forests with different soil texture and atmospheric nitrogen deposition

    NARCIS (Netherlands)

    Saari, A.; Martikainen, P.J.; Ferm, A.; Ruuskanen, J.; De Boer, W.; Troelstra, S.R.; Laanbroek, H.J.

    1997-01-01

    We studied methane oxidation capacity in soil profiles of Dutch and Finnish coniferous forests. The Finnish sites (n = 9) had nitrogen depositions from 3 to 36 kg N ha(-1) a(-1). The deposition of N on the Dutch sites (n = 13) was higher ranging from 50 to 92 kg N ha(-1) a(-1). The Dutch sites had

  13. Modeling Electron Competition among Nitrogen Oxides Reduction and N2O Accumulation in Hydrogenotrophic Denitrification

    DEFF Research Database (Denmark)

    Liu, Yiwen; Ngo, Huu Hao; Guo, Wenshan

    2018-01-01

    Hydrogenotrophic denitrification is a novel and sustainable process for nitrogen removal, which utilizes hydrogen as electron donor and carbon dioxide as carbon source. Recent studies have shown that nitrous oxide (N2O), a highly undesirable intermediate and potent greenhouse gas, can accumulate...

  14. A DFT analysis of the adsorption of nitrogen oxides on Fe-doped graphene, and the electric field induced desorption

    Science.gov (United States)

    Cortés-Arriagada, Diego; Villegas-Escobar, Nery

    2017-10-01

    Density functional theory calculations were carried out to study the adsorption and sensing properties of Fe-doped graphene nanosheets (FeG) toward nitrogen oxides (NO, NO2, and N2O). The results indicated the adsorption of nitrogen oxides is significantly increased onto FeG compared to pristine graphene, reaching adsorption energies of 1.1-2.2 eV, even with a high stability at room temperature. As a result of the larger charge transfer and strong chemical binding, the bandgap of the adsorbent-adsorbate systems is increased in up to 0.5 eV with respect to the free FeG, indicating that FeG is highly sensitive to nitrogen oxides. It was also evidenced the adsorption and sensing properties remain even in the presence of O2 currents for N2O, where a co-adsorption mechanism was analyzed. Besides, NO2 is capable to induce the largest magnetization of FeG. Finally, positive electric fields of at least 0.04 a.u. decrease the stability of the adsorbent-adsorbate interactions, inducing the desorption process. Therefore, FeG emerges as a promising low-dimensional material with excellent adsorption and sensing properties to be applied in solid state sensors of nitrogen oxides, where electric fields can be used as a strategy for the FeG reactivation in repetitive sensing applications.

  15. 77 FR 7149 - Notice of Workshop and Call for Information on Integrated Science Assessment for Oxides of Nitrogen

    Science.gov (United States)

    2012-02-10

    ... existing air quality criteria to reflect advances in scientific knowledge on the effects of the pollutant... part of the review of the primary National Ambient Air Quality Standards (NAAQS) for oxides of nitrogen... assist the EPA in developing and refining the scientific information base for the review of the NO 2...

  16. Effects of contrasting catch crops on nitrogen availability and nitrous oxide emissions in an organic cropping system

    DEFF Research Database (Denmark)

    Li, Xiaoxi; Petersen, Søren O; Sørensen, Peter

    2015-01-01

    Legume-based catch crops (LBCCs) may act as an important source of nitrogen (N) in organic crop rotations because of biological N fixation. However, the potential risk of high nitrous oxide (N2O) emissions needs to be taken into account when including LBCCs in crop rotations. Here, we report...

  17. 40 CFR Table 1 to Subpart Kkkk of... - Nitrogen Oxide Emission Limits for New Stationary Combustion Turbines

    Science.gov (United States)

    2010-07-01

    ... Stationary Combustion Turbines 1 Table 1 to Subpart KKKK of Part 60 Protection of Environment ENVIRONMENTAL... Standards of Performance for Stationary Combustion Turbines Pt. 60, Subpt. KKKK, Table 1 Table 1 to Subpart KKKK of Part 60—Nitrogen Oxide Emission Limits for New Stationary Combustion Turbines Combustion...

  18. Liquid Phase Plasma Synthesis of Iron Oxide Nanoparticles on Nitrogen-Doped Activated Carbon Resulting in Nanocomposite for Supercapacitor Applications.

    Science.gov (United States)

    Lee, Heon; Lee, Won-June; Park, Young-Kwon; Ki, Seo Jin; Kim, Byung-Joo; Jung, Sang-Chul

    2018-03-25

    Iron oxide nanoparticles supported on nitrogen-doped activated carbon powder were synthesized using an innovative plasma-in-liquid method, called the liquid phase plasma (LPP) method. Nitrogen-doped carbon (NC) was prepared by a primary LPP reaction using an ammonium chloride reactant solution, and an iron oxide/NC composite (IONCC) was prepared by a secondary LPP reaction using an iron chloride reactant solution. The nitrogen component at 3.77 at. % formed uniformly over the activated carbon (AC) surface after a 1 h LPP reaction. Iron oxide nanoparticles, 40~100 nm in size, were impregnated homogeneously over the NC surface after the LPP reaction, and were identified as Fe₃O₄ by X-ray photoelectron spectroscopy and X-ray diffraction. NC and IONCCs exhibited pseudo-capacitive characteristics, and their specific capacitance and cycling stability were superior to those of bare AC. The nitrogen content on the NC surface increased the compatibility and charge transfer rate, and the composites containing iron oxide exhibited a lower equivalent series resistance.

  19. Investigations of Nitrogen Oxide Plasmas: Fundamental Chemistry and Surface Reactivity and Monitoring Student Perceptions in a General Chemistry Recitation

    Science.gov (United States)

    Blechle, Joshua M.

    2016-01-01

    Part I of this dissertation focuses on investigations of nitrogen oxide plasma systems. With increasing concerns over the environmental presence of NxOy species, there is growing interest in utilizing plasma-assisted conversion techniques. Advances, however, have been limited because of the lack of knowledge regarding the fundamental chemistry of…

  20. A predictive tool for selective oxidation of hydrocarbons: optical basicity of catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Moriceau, P.; Lebouteiller, A.; Bordes, E.; Courtine, P. [Universite de Technologie de Compiegne, 60 (France). Dept. de Genie Chimique

    1998-12-31

    Whatever the composition of the catalyst (promoted, supported, multicomponent, etc.) is, it is possible to calculate its electron donor capacity {Lambda}. However, one important question remains: How are the surface and the bulk values of {Lambda} related? Most oxidation catalysts exhibit either a layered structure as V{sub 2}O{sub 5}, and approximately {Lambda}{sub th}{proportional_to}{Lambda}{sub surf}, or a molecular structure as polyoxometallates, and no correction seems to be needed. Work is in progress on that point. Of great importance is also the actual oxidation and coordination states of cations at the stedy state: {Lambda}s have been calculated from the composition determined by XANES and XPS. Finally, the model is able to discriminate between `paraffins` and olefins as reactants. These calibration curves should help to find new catalysts. (orig.)

  1. Determination of polycyclic aromatic hydrocarbons and their oxy-, nitro-, and hydroxy-oxidation products

    International Nuclear Information System (INIS)

    Cochran, R.E.; Dongari, N.; Jeong, H.; Beránek, J.; Haddadi, S.; Shipp, J.; Kubátová, A.

    2012-01-01

    Highlights: ► We describe a method for determining PAHs and their oxidation products. ► Solid-phase extraction was used to fractionate PAHs and their oxidation products. ► Gas chromatography–mass spectrometry methods were optimized. ► The developed method was applied to two particulate matter (PM) samples. - Abstract: A sensitive method has been developed for the trace analysis of PAHs and their oxidation products (i.e., nitro-, oxy-, and hydroxy-PAHs) in air particulate matter (PM). Following PM extraction, PAHs, nitro-, oxy-, and hydroxy-PAHs were fractionated using solid phase extraction (SPE) based on their polarities. Gas chromatography–mass spectrometry (GC–MS) conditions were optimized, addressing injection (i.e., splitless time), negative-ion chemical ionization (NICI) parameters, i.e., source temperature and methane flow rate, and MS scanning conditions. Each class of PAH oxidation products was then analyzed using the sample preparation and appropriate ionization conditions (e.g., nitro-PAHs exhibited the greatest sensitivity when analyzed with NICI–MS while hydroxy-PAHs required chemical derivatization prior to GC–MS analysis). The analyses were performed in selected-ion-total-ion (SITI) mode, combining the increased sensitivity of selected-ion monitoring (SIM) with the identification advantages of total-ion current (TIC). The instrumental LODs determined were 6–34 pg for PAHs, 5–36 pg for oxy-PAHs, and 1–21 pg for derivatized hydroxy-PAHs using electron ionization (GC-EI-MS). NICI–MS was found to be a useful tool for confirming the tentative identification of oxy-PAHs. For nitro-PAHs, LODs were 1–10 pg using negative-ion chemical ionization (GC-NICI-MS). The developed method was successfully applied to two types of real-world PM samples, diesel exhaust standard reference material (SRM 2975) and wood smoke PM.

  2. Oxidation rates of carbon and nitrogen in char residues from solid fuels

    Energy Technology Data Exchange (ETDEWEB)

    Karlstroem, O.

    2013-06-01

    Computational fluid dynamics (CFD) modeling is an important tool in designing new combustion systems. By using CFD modeling, entire combustion systems can be modeled and the emissions and the performance can be predicted. CFD modeling can also be used to develop new and better combustion systems from an economical and environmental point of view. In CFD modeling of solid fuel combustion, the combustible fuel is generally treated as single fuel particles. One of the limitations with the CFD modeling concerns the sub-models describing the combustion of single fuel particles. Available models in the scientific literature are in many cases not suitable as submodels for CFD modeling since they depend on a large number of input parameters and are computationally heavy. In this thesis CFD-applicable models are developed for the combustion of single fuel particles. The single particle models can be used to improve the combustion performance in various combustion devices or develop completely new technologies. The investigated fields are oxidation of carbon (C) and nitrogen (N) in char residues from solid fuels. Modeled char-C oxidation rates are compared to experimental oxidation rates for a large number of pulverized solid fuel chars under relevant combustion conditions. The experiments have been performed in an isothermal plug flow reactor operating at 1123-1673 K and 3-15 vol.% O{sub 2}. In the single particle model, the char oxidation is based on apparent kinetics and depends on three fuel specific parameters: apparent pre-exponential factor, apparent activation energy, and apparent reaction order. The single particle model can be incorporated as a sub-model into a CFD code. The results show that the modeled char oxidation rates are in good agreement with experimental char oxidation rates up to around 70% of burnout. Moreover, the results show that the activation energy and the reaction order can be assumed to be constant for a large number of bituminous coal chars

  3. Reduction of nitrogen oxides from simulated exhaust gas by using plasma-catalytic process

    International Nuclear Information System (INIS)

    Mok, Young Sun; Koh, Dong Jun; Shin, Dong Nam; Kim, Kyong Tae

    2004-01-01

    Removal of nitrogen oxides (NO x ) using a nonthermal plasma reactor (dielectric-packed bed reactor) combined with monolith V 2 O 5 /TiO 2 catalyst was investigated. The effect of initial NO x concentration, feed gas flow rate (space velocity), humidity, and reaction temperature on the removal of NO x was examined. The plasma reactor used can be energized by either ac or pulse voltage. An attempt was made to utilize the electrical ignition system of an internal combustion engine as a high-voltage pulse generator for the plasma reactor. When the plasma reactor was energized by the electrical ignition system, NO was readily oxidized to NO 2 . Performance was as good as with ac energization. Increasing the fraction of NO 2 in NO x , which is the main role of the plasma reactor, largely enhanced the NO x removal efficiency. In the plasma-catalytic reactor, the increases in initial NO x concentration, space velocity (feed gas flow rate) and humidity lowered the NO x removal efficiency. However, the reaction temperature in the range up to 473 K did not significantly affect the NO x removal efficiency in the presence of plasma discharge

  4. Effect of Nitrogen Oxides on Elemental Mercury Removal by Nanosized Mineral Sulfide.

    Science.gov (United States)

    Li, Hailong; Zhu, Lei; Wang, Jun; Li, Liqing; Lee, Po-Heng; Feng, Yong; Shih, Kaimin

    2017-08-01

    Because of its large surface area, nanosized zinc sulfide (Nano-ZnS) has been demonstrated in a previous study to be efficient for removal of elemental mercury (Hg 0 ) from coal combustion flue gas. The excellent mercury adsorption performance of Nano-ZnS was found to be insusceptible to water vapor, sulfur dioxide, and hydrogen chloride. However, nitrogen oxides (NO X ) apparently inhibited mercury removal by Nano-ZnS; this finding was unlike those of many studies on the promotional effect of NO X on Hg 0 removal by other sorbents. The negative effect of NO X on Hg 0 adsorption over Nano-ZnS was systematically investigated in this study. Two mechanisms were identified as primarily responsible for the inhibitive effect of NO X on Hg 0 adsorption over Nano-ZnS: (1) active sulfur sites on Nano-ZnS were oxidized to inactive sulfate by NO X ; and (2) the chemisorbed mercury, i.e., HgS, was reduced to Hg 0 by NO X . This new insight into the role of NO X in Hg 0 adsorption over Nano-ZnS can help to optimize operating conditions, maximize Hg 0 adsorption, and facilitate the application of Nano-ZnS as a superior alternative to activated carbon for Hg 0 removal using existing particulate matter control devices in power plants.

  5. Tracking nitrogen oxides, nitrous acid, and nitric acid from biomass burning

    Science.gov (United States)

    Chai, J.; Miller, D. J.; Scheuer, E. M.; Dibb, J. E.; Hastings, M. G.

    2017-12-01

    Biomass burning emissions are an important source of atmospheric nitrogen oxides (NOx = NO + NO2) and nitrous acid (HONO), which play important roles in atmosphere oxidation capacity (hydroxyl radical and ozone formation) and have severe impacts on air quality and climate in the presence of sunlight and volatile organic compounds. However, tracking NOx and HONO and their chemistry in the atmosphere based on concentration alone is challenging. Isotopic analysis provides a potential tracking tool. In this study, we measured the nitrogen isotopic composition (δ15N) of NOx (NO + NO2) and HONO, and soluble HONO and HNO3 during the Fire Influence on Regional and Global Environments Experiment (FIREX) laboratory experiments at the Missoula Fire Laboratory. Our newly developed and validated annular denuder system (ADS) enabled us to effectively trap HONO prior to a NOx collection system in series for isotopic analysis. In total we investigated 25 "stack" fires of various biomass materials where the emissions were measured within a few seconds of production by the fire. HONO concentration was measured in parallel using mist chamber/ion chromatography (MC/IC). The recovered mean HONO concentrations from ADS during the burn of each fire agree well with that measured via MC/IC. δ15N-NOx ranged from -4.3 ‰ to + 7.0 ‰ with a median of 0.7 ‰. Combined with a similar, recent study by our group [Fibiger et al., ES&T, 2017] the δ15N-NOx follows a linear relationship with δ15N-biomass (δ15N-NOx =0.94 x δ15N-biomass +1.98; R2=0.72). δ15N-HONO ranged from -5.3 to +8.3 ‰ with a median of 1.4 ‰. While both HONO and NOx are sourced from N in the biomass fuel, the secondary formation of HONO likely induces fractionation of the N that leads to the difference between δ15N-NOx and δ15N-HONO. We found a correlation of δ15N-HONO= 0.86 x δ15N-NOx + 0.52 (R2=0.55), which can potentially be used to track the chemistry of HONO formation following fire emissions. The methods

  6. Prediction of the production of nitrogen oxide (NOx) in turbojet engines

    Science.gov (United States)

    Tsague, Louis; Tsogo, Joseph; Tatietse, Thomas Tamo

    Gaseous nitrogen oxides (NO+NO2=NOx) are known as atmospheric trace constituent. These gases remain a big concern despite the advances in low NOx emission technology because they play a critical role in regulating the oxidization capacity of the atmosphere according to Crutzen [1995. My life with O 3, NO x and other YZO x S; Nobel Lecture; Chemistry 1995; pp 195; December 8, 1995] . Aircraft emissions of nitrogen oxides ( NOx) are regulated by the International Civil Aviation Organization. The prediction of NOx emission in turbojet engines by combining combustion operational data produced information showing correlation between the analytical and empirical results. There is close similarity between the calculated emission index and experimental data. The correlation shows improved accuracy when the 2124 experimental data from 11 gas turbine engines are evaluated than a previous semi empirical correlation approach proposed by Pearce et al. [1993. The prediction of thermal NOx in gas turbine exhausts. Eleventh International Symposium on Air Breathing Engines, Tokyo, 1993, pp. 6-9]. The new method we propose predict the production of NOx with far more improved accuracy than previous methods. Since a turbojet engine works in an atmosphere where temperature, pressure and humidity change frequently, a correction factor is developed with standard atmospheric laws and some correlations taken from scientific literature [Swartwelder, M., 2000. Aerospace engineering 410 Term Project performance analysis, November 17, 2000, pp. 2-5; Reed, J.A. Java Gas Turbine Simulator Documentation. pp. 4-5]. The new correction factor is validated with experimental observations from 19 turbojet engines cruising at altitudes of 9 and 13 km given in the ICAO repertory [Middleton, D., 1992. Appendix K (FAA/SETA). Section 1: Boeing Method Two Indices, 1992, pp. 2-3]. This correction factor will enable the prediction of cruise NOx emissions of turbojet engines at cruising speeds. The ICAO

  7. Radical Intermediates in the Catalytic Oxidation of Hydrocarbons by Bacterial and Human Cytochrome P450 Enzymes†

    OpenAIRE

    Jiang, Yongying; He, Xiang; Ortiz de Montellano, Paul R.

    2006-01-01

    Cytochromes P450cam and P450BM3 oxidize α- and β-thujone into multiple products, including 7-hydroxy-α-(or β-)thujone, 7,8-dehydro-α-(or β-)thujone, 4-hydroxy-α-(or β-)thujone, 2-hydroxy α-(or β-)thujone, 5-hydroxy-5-isopropyl-2-methyl-2-cyclohexen-1-one, 4,10-dehydrothujone, and carvacrol. Quantitative analysis of the 4-hydroxylated isomers and the ring opened product indicates that the hydroxylation proceeds via a radical mechanism with a radical recombination rate ranging from 0.7 ± 0.3 × ...

  8. Modeling Nitrous Oxide Production during Biological Nitrogen Removal via Nitrification and Denitrification: Extensions to the General ASM Models

    DEFF Research Database (Denmark)

    Ni, Bing-Jie; Ruscalleda, Maël; Pellicer i Nàcher, Carles

    2011-01-01

    on N2O production from four different mixed culture nitrification and denitrification reactor study reports. Modeling results confirm that hydroxylamine oxidation by ammonium oxidizers (AOB) occurs 10 times slower when NO2– participates as final electron acceptor compared to the oxic pathway. Among......Nitrous oxide (N2O) can be formed during biological nitrogen (N) removal processes. In this work, a mathematical model is developed that describes N2O production and consumption during activated sludge nitrification and denitrification. The well-known ASM process models are extended to capture N2O...

  9. Metalloporphyrins immobilized in Fe3O4@SiO2 mesoporous submicrospheres: Reusable biomimetic catalysts for hydrocarbon oxidation.

    Science.gov (United States)

    Barbosa, Isaltino A; de Sousa Filho, Paulo C; da Silva, Douglas L; Zanardi, Fabrício B; Zanatta, Lucas D; de Oliveira, Adilson J A; Serra, Osvaldo A; Iamamoto, Yassuko

    2016-05-01

    We successfully immobilized metalloporphyrins (MeP) in mesoporous silica coating magnetite spheres. In this sense, we prepared two different classes of core@shell supports, which comprise aligned (Fe3O4-AM-MeP, MeP=FeP or MnP) and non-aligned (Fe3O4-NM-MeP, MeP=FeP or MnP) mesoporous magnetic structures. X-ray diffractometry and energy dispersive X-ray spectroscopy confirmed the mesoporous nature of the silica shell of the materials. Magnetization measurements, scanning and transmission electron microscopies (SEM/TEM), electrophoretic mobility (ζ-potential), and infrared spectroscopy (FTIR) also confirm the composition and structure of the materials. The catalysts maintained their catalytic activity during nine reaction cycles toward hydrocarbon oxidation processes without detectable catalyst leaching. The catalysis results revealed a biomimetic pattern of cytochrome P450-type enzymes, thus confirming that the prepared materials are can effectively mimic the activity of such groups. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Graphene oxide bound silica for solid-phase extraction of 14 polycyclic aromatic hydrocarbons in mainstream cigarette smoke.

    Science.gov (United States)

    Shi, Rui; Yan, Lihong; Xu, Tongguang; Liu, Dongye; Zhu, Yongfa; Zhou, Jun

    2015-01-02

    Polycyclic aromatic hydrocarbons (PAHs) were considered as a source of carcinogenicity in mainstream cigarette smoke (MSS). Accurate quantification of these components was necessary for assessing public health risk. In our study, a solid-phase extraction (SPE) method using graphene oxide (GO) bound silica as adsorbent for purification of 14 PAHs in MSS was developed. During SPE process, large matrices interferences of MSS were adsorbed on SPE column. The result of FTIR spectra demonstrated that these matrices interferences were adsorbed on GO mainly through OH and CO groups. The concentrations of PAHs in MSS extract were determined by gas chromatography-mass spectrometry (GC-MS). The limit of detection (LOD) and limit of quantification (LOQ) of the developed method for 14 PAHs ranged from 0.05 to 0.36 ng/cig and 0.17 to 1.19 ng/cig, respectively. The accuracy of the measurement of 14 PAHs was from 73 to 116%. The relative standard deviations of intra- and inter-day analysis were less than 7.8% and 13.9%, respectively. Moreover, the developed method was successfully applied for analysis of real cigarette containing 1R5F reference cigarette and 12 top-selling commercial cigarettes in China. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Environmental exposure to polycyclic aromatic hydrocarbons, kitchen ventilation, fractional exhaled nitric oxide, and risk of diabetes among Chinese females.

    Science.gov (United States)

    Hou, J; Sun, H; Zhou, Y; Zhang, Y; Yin, W; Xu, T; Cheng, J; Chen, W; Yuan, J

    2018-05-01

    Diabetes is related to exposure to polycyclic aromatic hydrocarbons (PAHs), inflammation in the body, and housing characters. However, associations of urinary monohydroxy-PAHs (OH-PAHs) or fractional exhaled nitric oxide (FeNO) with diabetes risk in relation to housing characters are unclear. In this study, 2645 individuals were drawn from the baseline survey of the Wuhan-Zhuhai Cohort Study. Associations of diabetes with urinary OH-PAHs or FeNO among cooking participants were estimated using logistic regression models. Among women with self-cooking meals, urinary OH-PAH levels were positively associated with diabetes risk (P kitchen exhaust fans/hoods had a 52% decrease in the risk of diabetes (OR: 0.48, 95% CI: 0.27, 0.84), compared with those with nonuse of kitchen exhaust fans/hoods. The results indicated that the cooking women had an elevated risk of diabetes, which may be partly explained by an increase in the PAH body burden and higher inflammatory responses. Use of kitchen exhaust fan/hood can be associated with a lower risk of diabetes. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Oxidation of urea-derived nitrogen by thaumarchaeota-dominated marine nitrifying communities.

    Science.gov (United States)

    Tolar, Bradley B; Wallsgrove, Natalie J; Popp, Brian N; Hollibaugh, James T

    2017-12-01

    Urea nitrogen has been proposed to contribute significantly to nitrification by marine thaumarchaeotes. These inferences are based on distributions of thaumarchaeote urease genes rather than activity measurements. We found that ammonia oxidation rates were always higher than oxidation rates of urea-derived N in samples from coastal Georgia, USA (means ± SEM: 382 ± 35 versus 73 ± 24 nmol L -1  d -1 , Mann-Whitney U-test p  0.05). Urea-derived N was relatively more important in samples from Antarctic continental shelf waters, though the difference was not statistically significant (19.4 ± 4.8 versus 12.0 ± 2.7 nmol L -1  d -1 , p > 0.05). We found only weak correlations between oxidation rates of urea-derived N and the abundance or transcription of putative Thaumarchaeota ureC genes. Dependence on urea-derived N does not appear to be directly related to pH or ammonium concentrations. Competition experiments and release of 15 NH 3 suggest that urea is hydrolyzed to ammonia intracellularly, then a portion is lost to the dissolved pool. The contribution of urea-derived N to nitrification appears to be minor in temperate coastal waters, but may represent a significant portion of the nitrification flux in Antarctic coastal waters. © 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Ozone production, nitrogen oxides, and radical budgets in Mexico City: observations from Pico de Tres Padres

    Science.gov (United States)

    Wood, E. C.; Herndon, S. C.; Onasch, T. B.; Kroll, J. H.; Canagaratna, M. R.; Kolb, C. E.; Worsnop, D. R.; Neuman, J. A.; Seila, R.; Zavala, M.; Knighton, W. B.

    2008-08-01

    Observations at a mountain-top site within the Mexico City basin are used to characterize ozone production and destruction, the nitrogen oxide budget, and the radical budget during the MILAGRO campaign. An ozone production rate of ~50 ppbv/h was observed in a stagnant air mass during the afternoon of 12 March 2006, which is among the highest observed anywhere in the world. Approximately half of the ozone destruction was due to the oxidation of NO2. During this time period ozone production was VOC-limited, deduced by a comparison of the radical production rates and the formation rate of NOx oxidation products (NOz) For [NOx]/[NOy] values between 0.2 and 0.8, gas-phase HNO3 typically accounted for less than 10% of NOz and accumulation-mode particulate nitrate (NO3-(PM)) accounted for 20% 70% of NOz, consistent with high ambient NH3 concentrations. The fraction of NOz accounted for by the sum of HNO3(g) and NO3-(PM) decreased with photochemical processing. This decrease is apparent even when dry deposition of HNO3 is accounted for, and indicates that HNO3 formation decreased relative to other NOx "sink" processes during the first 12 h of photochemistry and/or a significant fraction of the nitrate was associated with the coarse aerosol size mode. The ozone production efficiency of NOx on 11 and 12 March 2006 was approximately 7 on a time scale of one day. A new metric for ozone production efficiency that relates the dilution-adjusted ozone mixing ratio to cumulative OH exposure is proposed.

  14. Oxidative stress protection by newly synthesized nitrogen compounds with pharmacological potential.

    Science.gov (United States)

    Silva, João P; Areias, Filipe M; Proença, Fernanda M; Coutinho, Olga P

    2006-02-09

    In this study we used new nitrogen compounds obtained by organic synthesis whose structure predicted an antioxidant potential and then an eventual development as molecules of pharmacological interest in diseases involving oxidative stress. The compounds, identified as FMA4, FMA5, FMA7 and FMA8 differ in the presence of hydroxyl groups located in the C-3 and/or C-4 position of a phenolic unit, which is possibly responsible for their free radicals' buffering capacity. Data from the DPPH discoloration method confirm the high antiradical efficiency of the compounds. The results obtained with cellular models (L929 and PC12) show that they are not toxic and really protect from membrane lipid peroxidation induced by the ascorbate-iron oxidant pair. The level of protection correlates with the drug's lipophilic profile and is sometimes superior to trolox and equivalent to that observed for alpha-tocopherol. The compounds FMA4 and FMA7 present also a high protection from cell death evaluated in the presence of a staurosporine apoptotic stimulus. That protection results in a significant reduction of caspase-3 activity induced by staurosporine which by its turn seems to result from a protection observed in the membrane receptor pathway (caspase-8) together with a protection observed in the mitochondrial pathway (caspase-9). Taken together the results obtained with the new compounds, with linear chains, open up perspectives for their use as therapeutical agents, namely as antioxidants and protectors of apoptotic pathways. On the other hand the slight pro-oxidant profile obtained with the cyclic structures suggests a different therapeutic potential that is under current investigation.

  15. Study on the use of oxidant scrubbers for elimination of interferences due to nitrogen dioxide in analysis of atmospheric dimethylsulfide

    Directory of Open Access Journals (Sweden)

    Rodrigues Beatriz A.

    2000-01-01

    Full Text Available In this work, oxidant scrubbers were evaluated for their ability to prevent sampling losses of dimethylsulfide caused by reactions with nitrogen dioxide. Various compounds and mixtures were used in the preparation of the oxidant scrubbers. An automatic flow analysis device was used to compare scrubbing efficiency for nitrogen dioxide. Among the scrubbers tested, the best were shown to be the one made with filter paper or glass wool coated with iron (II sulfate, sulfuric acid and pyrogallic acid, and the one made from with paper coated with triethanolamine. The results obtained under laboratory conditions, using dimethylsulfide standard gas, and in field experiments confirmed that these scrubbers are suitable for the prevention of oxidation during sampling.

  16. Outcompeting nitrite-oxidizing bacteria in single-stage nitrogen removal in sewage treatment plants: a model-based study.

    Science.gov (United States)

    Pérez, Julio; Lotti, Tommaso; Kleerebezem, Robbert; Picioreanu, Cristian; van Loosdrecht, Mark C M

    2014-12-01

    This model-based study investigated the mechanisms and operational window for efficient repression of nitrite oxidizing bacteria (NOB) in an autotrophic nitrogen removal process. The operation of a continuous single-stage granular sludge process was simulated for nitrogen removal from pretreated sewage at 10 °C. The effects of the residual ammonium concentration were explicitly analyzed with the model. Competition for oxygen between ammonia-oxidizing bacteria (AOB) and NOB was found to be essential for NOB repression even when the suppression of nitrite oxidation is assisted by nitrite reduction by anammox (AMX). The nitrite half-saturation coefficient of NOB and AMX proved non-sensitive for the model output. The maximum specific growth rate of AMX bacteria proved a sensitive process parameter, because higher rates would provide a competitive advantage for AMX. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Extending the benchmark simulation model no2 with processes for nitrous oxide production and side-stream nitrogen removal

    DEFF Research Database (Denmark)

    Boiocchi, Riccardo; Sin, Gürkan; Gernaey, Krist V.

    2015-01-01

    In this work the Benchmark Simulation Model No.2 is extended with processes for nitrous oxide production and for side-stream partial nitritation/Anammox (PN/A) treatment. For these extensions the Activated Sludge Model for Greenhouse gases No.1 was used to describe the main waterline, whereas...... the Complete Autotrophic Nitrogen Removal (CANR) model was used to describe the side-stream (PN/A) treatment. Comprehensive simulations were performed to assess the extended model. Steady-state simulation results revealed the following: (i) the implementation of a continuous CANR side-stream reactor has...... increased the total nitrogen removal by 10%; (ii) reduced the aeration demand by 16% compared to the base case, and (iii) the activity of ammonia-oxidizing bacteria is most influencing nitrous oxide emissions. The extended model provides a simulation platform to generate, test and compare novel control...

  18. Measuring Trace Hydrocarbons in Silanes

    Science.gov (United States)

    Lesser, L. A.

    1984-01-01

    Technique rapid and uses standard analytical equipment. Silane gas containing traces of hydrocarbons injected into carrier gas of moist nitrogen having about 0.2 percent water vapor. Carrier, water and silane pass through short column packed with powdered sodium hydroxide which combines moisture and silane to form nonvolatile sodium silicate. Carrier gas free of silane but containing nonreactive hydrocarbons, pass to silica-gel column where chromatographic separation takes place. Hydrocarbons measured by FID.

  19. Oxidation of Hydrocarbons on the Surface of Tin Dioxide Chemical Sensors

    Directory of Open Access Journals (Sweden)

    Izabela Polowczyk

    2011-04-01

    Full Text Available The paper presents the results of our investigation on the effect of the molecular structure of organic vapors on the characteristics of resistive chemical gas sensors. The sensors were based on tin dioxide and prepared by means of thick film technology. The electrical and catalytic examinations showed that the abstraction of two hydrogen atoms from the organic molecule and formation of a water in result of reaction with a chemisorbed oxygen ion, determine the rate of oxidation reactions, and thus the sensor performance. The rate of the process depends on the order of carbon atoms and Lewis acidity of the molecule. Therefore, any modification of the surface centers of a sensor material, modifies not only the sensor sensitivity, but also its selectivity.

  20. The Effect of Fuel Quality on Carbon Dioxide and Nitrogen Oxide Emissions, While Burning Biomass and RDF

    Science.gov (United States)

    Kalnacs, J.; Bendere, R.; Murasovs, A.; Arina, D.; Antipovs, A.; Kalnacs, A.; Sprince, L.

    2018-02-01

    The article analyses the variations in carbon dioxide emission factor depending on parameters characterising biomass and RDF (refuse-derived fuel). The influence of moisture, ash content, heat of combustion, carbon and nitrogen content on the amount of emission factors has been reviewed, by determining their average values. The options for the improvement of the fuel to result in reduced emissions of carbon dioxide and nitrogen oxide have been analysed. Systematic measurements of biomass parameters have been performed, by determining their average values, seasonal limits of variations in these parameters and their mutual relations. Typical average values of RDF parameters and limits of variations have been determined.

  1. Some problems of biological effects under the combined action of nitrogen oxides, their metabolites and radiation

    International Nuclear Information System (INIS)

    Malenchenko, A.F.

    1985-01-01

    The progress of power engineering envisages the intensive construction of nuclear-energy plants, where an organic or nuclear fuel is used. Nowadays the concept of nuclear-energy plant with the coolant based on dissociating N 2 O 4 is being developed. A great deal of radioactive and chemical products escapes into surroundings as the result of the power plants being in service. Their action on organisms is performed simultaneously, that could have an essential effect on the quantitative and qualitative regularities of response. The estimation of the combined effect of nitrogen oxides, sodium nitrite and nitrate and radiation has been carried out on the base of the investigation into methemoglobin formation, genetic effects and the pathomorphological changes in lungs. The formation of methemoglobin has been studied on rats in 1, 3, 7 and 15 days after the single total irradiation of 300 and 700 R doses at the gamma-installation (UGU-420) using a radioactive 60 Co. Methemoglobin was determined in the interval of 15-180 min after NaNO 2 administration in the dosage of 7.0 mg per 100 g body weight. The irradiation essentially affects the process of methemoglobin formation and its reduction. The methemoglobin content in the blood of radiation exposed animals exceeds the value, that could be expected to obtain by summing up its concentration under the separate effects of nitrite and irradiation. The genetic effects of sodium nitrite and nitrate and X-radiation have been studied on the Drosophila. The one-day flies were exposed to the radiation dose of 1500 R in the medium with the sodium nitrite or nitrate contents of 0.1 or 1.0 g/l, respectively. The combined action estimated through the frequency of the dominant lethal mutation, recessive coupled with a lethal mutation sex, viability and fecundity definitely differs from the expected summing values of the separate effect indices of radiation and toxic factors. The morpho- and functional changes in the rat lungs (the

  2. Atmospheric nitrogen deposition influences denitrification and nitrous oxide production in lakes.

    Science.gov (United States)

    McCrackin, Michelle L; Elser, James J

    2010-02-01

    Microbially mediated denitrification is an important process that may ameliorate the effects of nitrogen (N) loading by permanently removing excess N inputs. In this study, we measured the rate of denitrification and nitrous oxide (N2O) production during denitrification in sediments from 32 Norwegian lakes at the high and low ends of a gradient of atmospheric N deposition. Denitrification and N2O production rates averaged 41.7 and 1.1 micromol N x m(-2) x h(-1), respectively, for high-deposition lakes. There was no detectable denitrification or N2O production in low-deposition lakes. Epilimnetic nitrate concentration was strongly correlated with denitrification rate (r2 = 0.67). We also measured the denitrification rate in response to experimental additions of organic carbon, nitrate, and phosphorus. Experimental nitrate additions stimulated denitrification in sediments of all lakes, regardless of N deposition level. In fact, the rate of denitrification in nitrate-amended treatments was the same magnitude for lakes in both deposition areas. These findings suggest that lake sediments possess considerable capacity to remove nitrate and that this capacity has not been saturated under conditions of chronic N loading. Further, nitrous oxide was nearly 3% of the total gaseous product during denitrification in high-deposition lakes, a fraction that is comparable to polluted marine sediments. Our findings suggest that, while lakes play an important role in N removal in the landscape, they may be a source of N2O emissions, especially in areas subject to elevated N inputs.

  3. Nitrogen source effects on nitrous oxide emissions from irrigated no-till corn.

    Science.gov (United States)

    Halvorson, Ardell D; Del Grosso, Stephen J; Francesco, Alluvione

    2010-01-01

    Nitrogen fertilization is essential for optimizing crop yields; however, it may potentially increase nitrous oxide (N2O) emissions. The study objective was to assess the ability of commercially available enhanced-efficiency N fertilizers to reduce N2O emissions following their application in comparison with conventional dry granular urea and liquid urea-ammonium nitrate (UAN) fertilizers in an irrigated no-till (NT) corn (Zea mays L.) production system. Four enhanced-efficiency fertilizers were evaluated: two polymer-coated urea products (ESN and Duration III) and two fertilizers containing nitrification and urease inhibitors (SuperU and UAN+AgrotainPlus). Nitrous oxide fluxes were measured during two growing seasons using static, vented chambers and a gas chromatograph analyzer. Enhanced-efficiency fertilizers significantly reduced growing-season N2O-N emissions in comparison with urea, including UAN. SuperU and UAN+AgrotainPlus had significantly lower N2O-N emissions than UAN. Compared with urea, SuperU reduced N2O-N emissions 48%, ESN 34%, Duration III 31%, UAN 27%, and UAN+AgrotainPlus 53% averaged over 2 yr. Compared with UAN, UAN+AgrotainPlus reduced N2O emissions 35% and SuperU 29% averaged over 2 yr. The N2O-N loss as a percentage of N applied was 0.3% for urea, with all other N sources having significantly lower losses. Grain production was not reduced by the use of alternative N sources. This work shows that enhanced-efficiency N fertilizers can potentially reduce N2O-N emissions without affecting yields from irrigated NT corn systems in the semiarid central Great Plains.

  4. Nitrogen source and placement effects on soil nitrous oxide emissions from no-till corn.

    Science.gov (United States)

    Halvorson, Ardell D; Del Grosso, Stephen J

    2012-01-01

    A nitrogen (N) source comparison study was conducted to further evaluate the effects of inorganic N source and placement on growing-season and non-crop period soil nitrous oxide (NO). Commercially available controlled-release N fertilizers were evaluated for their potential to reduce NO emissions from a clay loam soil compared with conventionally used granular urea and urea-ammonium nitrate (UAN) fertilizers in an irrigated no-till (NT) corn ( L.) production system. Controlled-release N fertilizers evaluated were: a polymer-coated urea (ESN), stabilized urea (SuperU), and UAN+AgrotainPlus (SuperU and AgrotainPlus contain nitrification and urease inhibitors). Each N source was surface band applied (202 kg N ha) near the corn row at emergence and watered into the soil the next day. Subsurface banded ESN (ESNssb) and check (no N applied) treatments were included. Nitrous oxide fluxes were measured during two growing seasons and after harvest using static, vented chambers. All N sources had significantly lower growing-season NO emissions than granular urea (0.7% of applied N), with UAN+AgrotainPlus (0.2% of applied N) and ESN (0.3% of applied N) having lower emissions than UAN (0.4% of applied N). Similar trends were observed when expressing NO emissions on a grain yield and N uptake basis. Corn grain yields were not different among N sources but were greater than the check. Selection of N fertilizer source can be a mitigation practice for reducing NO emissions in NT, irrigated corn in semiarid areas. In our study, UAN+AgrotainPlus consistently had the lowest level of NO emissions with no yield loss. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  5. Nitrogen source effects on soil nitrous oxide emissions from strip-till corn.

    Science.gov (United States)

    Halvorson, Ardell D; Del Grosso, Stephen J; Jantalia, Claudia Pozzi

    2011-01-01

    Nitrogen (N) application to crops generally results in increased nitrous oxide (NO) emissions. Commercially available, enhanced-efficiency N fertilizers were evaluated for their potential to reduce NO emissions from a clay loam soil compared with conventionally used granular urea and urea-ammonium nitrate (UAN) fertilizers in an irrigated strip-till (ST) corn ( L.) production system. Enhanced-efficiency N fertilizers evaluated were a controlled-release, polymer-coated urea (ESN), stabilized urea, and UAN products containing nitrification and urease inhibitors (SuperU and UAN+AgrotainPlus), and UAN containing a slow-release N source (Nfusion). Each N source was surface-band applied (202 kg N ha) at corn emergence and watered into the soil the next day. A subsurface-band ESN treatment was included. Nitrous oxide fluxes were measured during two growing seasons using static, vented chambers and a gas chromatograph analyzer. All N sources had significantly lower growing season NO emissions than granular urea, with UAN+AgrotainPlus and UAN+Nfusion having lower emissions than UAN. Similar trends were observed when expressing NO emissions on a grain yield and N uptake basis. Loss of NO-N per kilogram of N applied was <0.8% for all N sources. Corn grain yields were not different among N sources but greater than treatments with no N applied. Selection of N fertilizer source can be a mitigation practice for reducing NO emissions in strip-till, irrigated corn in semiarid areas. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  6. Electrochemical oxidation of dihydronicotinamide adenine dinucleotide at nitrogen-doped carbon nanotube electrodes.

    Science.gov (United States)

    Goran, Jacob M; Favela, Carlos A; Stevenson, Keith J

    2013-10-01

    Nitrogen-doped carbon nanotubes (N-CNTs) substantially lower the overpotential necessary for dihydronicotinamide adenine dinucleotide (NADH) oxidation compared to nondoped CNTs or traditional carbon electrodes such as glassy carbon (GC). We observe a 370 mV shift in the peak potential (Ep) from GC to CNTs and another 170 mV shift from CNTs to 7.4 atom % N-CNTs in a sodium phosphate buffer solution (pH 7.0) with 2.0 mM NADH (scan rate 10 mV/s). The sensitivity of 7.4 atom % N-CNTs to NADH was measured at 0.30 ± 0.04 A M(-1) cm(-2), with a limit of detection at 1.1 ± 0.3 μM and a linear range of 70 ± 10 μM poised at a low potential of -0.32 V (vs Hg/Hg2SO4). NADH fouling, known to occur to the electrode surface during NADH oxidation, was investigated by measuring both the change in Ep and the resulting loss of electrode sensitivity. NADH degradation, known to occur in phosphate buffer, was characterized by absorbance at 340 nm and correlated with the loss of NADH electroactivity. N-CNTs are further demonstrated to be an effective platform for dehydrogenase-based biosensing by allowing glucose dehydrogenase to spontaneously adsorb onto the N-CNT surface and measuring the resulting electrode's sensitivity to glucose. The glucose biosensor had a sensitivity of 0.032 ± 0.003 A M(-1) cm(-2), a limit of detection at 6 ± 1 μM, and a linear range of 440 ± 50 μM.

  7. Ozone and nitrogen oxides in surface air in Russia: TROICA experiments.

    Science.gov (United States)

    Pankratova, N.; Elansky, N.; Belikov, I.; Shumskiy, R.

    2009-04-01

    The results of measurements of surface ozone and nitrogen oxides concentrations over the continental regions of Russia are discussed. The measurements were done during 10 TROICA experiments (Transcontinental Observations Into the Chemistry of the Atmosphere). The TROICA experiment started in 1995. By the present moment ten expeditions along the Trans-Siberian railroad from Moscow to Vladivostok (around 9300 km) are carried out. We separate data sets into unpolluted and polluted areas to study temporal and spatial features. Moreover we analyzed cities (more then 100 cities). About 50% of all data corresponds to unpolluted conditions. The data collected are used in an analysis of the physical and chemical processes occurring over continental Russia. In this work the estimations of seasonal and daily ozone and NOx distribution were made. The seasonal distribution of ozone for TROICA experiments concentration considerably differs from ozone distribution at Mace Head (Ireland) and Hohenpeissenberg (Germany) stations and well agrees with the ozone distribution at Zotino (Russia, East Siberia). The same concerns also a daily variability. The ozone concentration gradient is presented. Ozone concentration gradually increases in the eastward direction. Its result of the air transport from polluted regions of Europe and ozone depletions, oxidations of CH4 in Siberia, forest fires in Siberia and around Baikal Lake, regional transport of burning products from Northern China. Significant factor of ozone increasing is stratospheric-tropospheric exchange. It appears in TROICA-3 experiment. During several hours ozone concentration was more then 60 ppbv. The areas of photochemical ozone generation in polluted air are also detected. We estimate anthropogenic and natural factors, which are responsible for sharp ozone concentration increasing. Acknowledgments. The work was supported by International Science and Technology Center (ISTC) under contract No. 2770 and by Russian Basic

  8. Dynamics of nitrogen oxides and ozone above and within a mixed hardwood forest in northern Michigan

    Directory of Open Access Journals (Sweden)

    B. Seok

    2013-08-01

    Full Text Available The dynamic behavior of nitrogen oxides (NOx = NO + NO2 and ozone (O3 above and within the canopy at the University of Michigan Biological Station AmeriFlux (UMBS Flux site was investigated by continuous multi-height vertical gradient measurements during the summer and the fall of 2008. A daily maximum in nitric oxide (NO mixing ratios was consistently observed during the morning hours between 06:00 and 09:00 EST above the canopy. Daily NO maxima ranged between 0.1 and 2 ppbv (with a median of 0.3 ppbv, which were 2 to 20 times above the atmospheric background. The sources and causes of the morning NO maximum were evaluated using NOx and O3 measurements and synoptic and micrometeorological data. Numerical simulations with a multi-layer canopy-exchange model were done to further support this analysis. The observations indicated that the morning NO maximum was caused by the photolysis of NO2 from non-local air masses, which were transported into the canopy from aloft during the morning breakup of the nocturnal boundary layer. The analysis of simulated process tendencies indicated that the downward turbulent transport of NOx into the canopy compensates for the removal of NOx through chemistry and dry deposition. The sensitivity of NOx and O3 concentrations to soil and foliage NOx emissions was also assessed with the model. Uncertainties associated with the emissions of NOx from the soil or from leaf-surface nitrate photolysis did not explain the observed diurnal behavior in NOx (and O3 and, in particular, the morning peak in NOx mixing ratios. However, a ~30% increase in early morning NOx and NO peak mixing ratios was simulated when a foliage exchange NO2 compensation point was considered. This increase suggests the potential importance of leaf-level, bidirectional exchange of NO2 in understanding the observed temporal variability in NOx at UMBS.

  9. Marginal abatement cost curve for nitrogen oxides incorporating controls, renewable electricity, energy efficiency, and fuel switching.

    Science.gov (United States)

    Loughlin, Daniel H; Macpherson, Alexander J; Kaufman, Katherine R; Keaveny, Brian N

    2017-10-01

    A marginal abatement cost curve (MACC) traces out the relationship between the quantity of pollution abated and the marginal cost of abating each additional unit. In the context of air quality management, MACCs are typically developed by sorting control technologies by their relative cost-effectiveness. Other potentially important abatement measures such as renewable electricity, energy efficiency, and fuel switching (RE/EE/FS) are often not incorporated into MACCs, as it is difficult to quantify their costs and abatement potential. In this paper, a U.S. energy system model is used to develop a MACC for nitrogen oxides (NO x ) that incorporates both traditional controls and these additional measures. The MACC is decomposed by sector, and the relative cost-effectiveness of RE/EE/FS and traditional controls are compared. RE/EE/FS are shown to have the potential to increase emission reductions beyond what is possible when applying traditional controls alone. Furthermore, a portion of RE/EE/FS appear to be cost-competitive with traditional controls. Renewable electricity, energy efficiency, and fuel switching can be cost-competitive with traditional air pollutant controls for abating air pollutant emissions. The application of renewable electricity, energy efficiency, and fuel switching is also shown to have the potential to increase emission reductions beyond what is possible when applying traditional controls alone.

  10. Environmental and economic evaluation of selective non-catalytic reduction of nitrogen oxides

    Science.gov (United States)

    Parchevskii, V. M.; Shchederkina, T. E.; Proshina, A. O.

    2017-11-01

    There are two groups of atmosphere protecting measures: technology (primary) and treatment (secondary). When burning high-calorie low-volatile brands of coals in the furnaces with liquid slag removal to achieve emission standards required joint use of these two methods, for example, staged combustion and selective non-catalytic reduction recovery (SNCR). For the economically intelligent combination of these two methods it is necessary to have information not only about the environmental performance of each method, but also the operating costs per unit of reduced emission. The authors of this report are made an environmental-economic analysis of SNCR on boiler Π-50P Kashirskaya power station. The obtained results about the dependence of costs from the load of the boiler and the mass emissions of nitrogen oxides then approximates into empirical formulas, is named as environmental and economic characteristics, which is suitable for downloading into controllers and other control devices for subsequent implementation of optimal control of emissions to ensure compliance with environmental regulations at the lowest cost at any load of the boiler.

  11. Effects of nitrogen fertilization and grazing on the emission of nitrous oxide from grassland

    Energy Technology Data Exchange (ETDEWEB)

    Velthof, G.L.; Oenema, O. [Nutrient Management Institute NMI, Wageningen Agricultural University, Wageningen (Netherlands)

    1995-12-31

    Nitrous oxide (N2O) is one of the trace gases that possibly contribute to the depletion of stratospheric ozone and to global warming. Soils are a major source of N2O. Thus far, the contribution of agricultural soils and practises in The Netherlands to the total N2O burden of the atmosphere is largely unknown, because in-situ field measurements are scarce. In the research project reported here, effects of nitrogen (N) fertilization, grazing animals and soil type on N2O emission from grassland in The Netherlands were investigated. The aim of these investigations was to provide insight into the major factors that contribute to N2O emission from managed grassland and to provide quantitative N2O emission rates, obtained from field measurements. The research programme was split in three parts. First, a monitoring study, in which fluxes of N2O were measured weekly at four contrasting grassland sites with three different management practices each, during a period of two years. Secondly, field and greenhouse studies, in which the temporal and spatial variability of N2O fluxes, the effects of type and level of N fertilizer application and the effect of groundwater level on N2O emissions from grassland were assessed in detail. Thirdly, model calculations in which the possibilities were assessed of the use of improved nutrient management as tool to reduce N2O losses from dairy farming systems in The Netherlands, using a whole-farm approach. figs., tabs., refs.

  12. Effects of nitrogen fertilization and grazing on the emission of nitrous oxide from grassland

    Energy Technology Data Exchange (ETDEWEB)

    Velthof, G.L.; Brader, A.B.; Oenema, O. [NMI, Dept. of Soil Science and Plant Nutrition, Wageningen Agricultural Univ. (Netherlands)

    1995-11-01

    In the Netherlands, managed grasslands are potentially a large source of nitrous oxide (N{sub 2}O), because of the large nitrogen (N) input and the relatively high ground water levels. To provide insight into the major factors that contribute to N{sub 2}O emission from grassland and to provide quantitative N{sub 2}O emission rates, a monitoring study was carried out on four sites, during March 1992 to March 1994. Fluxes of N{sub 2}O increased after N fertilizer application and grazing, especially during wet conditions. Fluxes were higher from peat soils than from sand and clay soils. Fluxes were low during the winter periods. Total N{sub 2}O losses were 2 to 4.5 times higher on grassland fertilized with 160-460 kg N ha{sup -1} yr{sup -1} than on unfertilized grassland. Losses from grazed grasslands were 1.5 to 3.5 times higher than losses from mown grassland. This study shows that management practice of grassland and soil type are major factors controlling N{sub 2}O emission from grasslands. 2 figs., 3 refs.

  13. Management of industrial sulfur dioxide and nitrogen oxides emissions in Alberta - description of the existing system

    International Nuclear Information System (INIS)

    Macdonald, W.S.; Bietz, B.F.

    1999-01-01

    In addition to being key primary air contaminants, sulfur dioxide and nitrogen oxides are also major contributors to acidic deposition. The current management system for controlling industrial sources of SO(2) and NO(x) emissions in Alberta was developed in the late 1960s/early 1970s. The focus is on control of point source emissions through the use of appropriate technology. The approach taken for managing SO(2) and NO(x) emissions is similar to the approach taken to other industrial air and wastewater pollutants in Alberta. It is a command and control regulatory system. There are three main industry categories in Alberta which emit SO(2): sour gas processing, oil sand plants and thermal power plants. For NO(x) emissions, the two main categories with emissions: are natural gas production and thermal power plants. The two main goals of the existing industrial air quality management systems are to ensire that: (1) emissions from industrial facilities are minimized through the use of best available demonstrated technology, and (2) ambient levels of air contaminants in the vicinity of industrial facilities do not exceed Alberta guidelines. The four main policies which support these two goals of the existing management system are described. There are a number of key components of the existing management system including: ambient guideline levels, source emission standards, plume dispersion modelling, ambient air and source emission monitoring, environmental reporting, emission inventories, and approvals. 32 refs., 13 figs

  14. Technological methods of reducing the emissions of nitrogen oxides during the combustion of solid fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R.

    1981-01-01

    For protecting the atmosphere from emissions of toxic NO /SUB x/ during combustion of fuel in boilers the amount of NO /SUB x/ can be reduced in the process of combustion, or the flue gases (FG) from the boiler can be cleaned. The latter method is bound up with the necessity for treatment of a large quantity of FG with a comparatively low concentration in them of nitrogen oxides, chemically stable and poorly soluble in water. The problem is complicated by the presence in the FG of SO /SUB x/, O/sub 2/, and solid particles. The method of purifying the FG is complicated and requires large capital investment and operating expenses. By laboratory studies in the All-Union Institute of Heat Engineering im. F.E. Dzerzhinskiy (VTI) it was established that thermal NO /SUB x/ is formed at a combustion temperature greater than or equal to 1550 /sup 0/C and that the 0/sub 2/ concentration and considerably less the temperature strongly affect NO /SUB x/ formation. On the basis of laboratory studies and industrial tests in the VTI, methods of reducing NO /SUB x/ emissions by large-scale boilers are recommended.

  15. Spatial and Temporal Trends in Global Emissions of Nitrogen Oxides from 1960 to 2014.

    Science.gov (United States)

    Huang, Tianbo; Zhu, Xi; Zhong, Qirui; Yun, Xiao; Meng, Wenjun; Li, Bengang; Ma, Jianmin; Zeng, Eddy Y; Tao, Shu

    2017-07-18

    The quantification of nitrogen oxide (NO x ) emissions is critical for air quality modeling. Based on updated fuel consumption and emission factor databases, a global emission inventory was compiled with high spatial (0.1° × 0.1°), temporal (monthly), and source (87 sources) resolutions for the period 1960 to 2014. The monthly emission data have been uploaded online ( http://inventory.pku.edu.cn ), along with a number of other air pollutant and greenhouse gas data for free download. Differences in source profiles, not global total quantities, between our results and those reported previously were found. There were significant differences in total and per capita emissions and emission intensities among countries, especially between the developing and developed countries. Globally, the total annual NO x emissions finally stopped increasing in 2013 after continuously increasing over several decades, largely due to strict control measures taken in China in recent years. Nevertheless, the peak year of NO x emissions was later than for many other major air pollutants. Per capita emissions, either among countries or over years, follow typical inverted U-shaped environmental Kuznets curves, indicating that the emissions increased during the early stage of development and were restrained when socioeconomic development reached certain points. Although the trends are similar among countries, the turning points of developing countries appeared sooner than those of developed countries in terms of development status, confirming late-move advantages.

  16. Nitrogen oxides emissions from thermal power plants in china: current status and future predictions.

    Science.gov (United States)

    Tian, Hezhong; Liu, Kaiyun; Hao, Jiming; Wang, Yan; Gao, Jiajia; Qiu, Peipei; Zhu, Chuanyong

    2013-10-01

    Increasing emissions of nitrogen oxides (NOx) over the Chinese mainland have been of great concern due to their adverse impacts on regional air quality and public health. To explore and obtain the temporal and spatial characteristics of NOx emissions from thermal power plants in China, a unit-based method is developed. The method assesses NOx emissions based on detailed information on unit capacity, boiler and burner patterns, feed fuel types, emission control technologies, and geographical locations. The national total NOx emissions in 2010 are estimated at 7801.6 kt, of which 5495.8 kt is released from coal-fired power plant units of considerable size between 300 and 1000 MW. The top provincial emitter is Shandong where plants are densely concentrated. The average NOx-intensity is estimated at 2.28 g/kWh, markedly higher than that of developed countries, mainly owing to the inadequate application of high-efficiency denitrification devices such as selective catalytic reduction (SCR). Future NOx emissions are predicted by applying scenario analysis, indicating that a reduction of about 40% by the year 2020 can be achieved compared with emissions in 2010. These results suggest that NOx emissions from Chinese thermal power plants could be substantially mitigated within 10 years if reasonable control measures were implemented effectively.

  17. Annual and seasonal spatial models for nitrogen oxides in Tehran, Iran

    Science.gov (United States)

    Amini, Heresh; Taghavi-Shahri, Seyed-Mahmood; Henderson, Sarah B.; Hosseini, Vahid; Hassankhany, Hossein; Naderi, Maryam; Ahadi, Solmaz; Schindler, Christian; Künzli, Nino; Yunesian, Masud

    2016-09-01

    Very few land use regression (LUR) models have been developed for megacities in low- and middle-income countries, but such models are needed to facilitate epidemiologic research on air pollution. We developed annual and seasonal LUR models for ambient oxides of nitrogen (NO, NO2, and NOX) in the Middle Eastern city of Tehran, Iran, using 2010 data from 23 fixed monitoring stations. A novel systematic algorithm was developed for spatial modeling. The R2 values for the LUR models ranged from 0.69 to 0.78 for NO, 0.64 to 0.75 for NO2, and 0.61 to 0.79 for NOx. The most predictive variables were: distance to the traffic access control zone; distance to primary schools; green space; official areas; bridges; and slope. The annual average concentrations of all pollutants were high, approaching those reported for megacities in Asia. At 1000 randomly-selected locations the correlations between cooler and warmer season estimates were 0.64 for NO, 0.58 for NOX, and 0.30 for NO2. Seasonal differences in spatial patterns of pollution are likely driven by differences in source contributions and meteorology. These models provide a basis for understanding long-term exposures and chronic health effects of air pollution in Tehran, where such research has been limited.

  18. Emissions of nitric oxide from 79 plant species in response to simulated nitrogen deposition

    International Nuclear Information System (INIS)

    Chen Juan; Wu Feihua; Liu Tingwu; Chen Lei; Xiao Qiang; Dong Xuejun; He Junxian; Pei Zhenming; Zheng Hailei

    2012-01-01

    To assess the potential contribution of nitric oxide (NO) emission from the plants grown under the increasing nitrogen (N) deposition to atmospheric NO budget, the effects of simulated N deposition on NO emission and various leaf traits (e.g., specific leaf area, leaf N concentration, net photosynthetic rate, etc.) were investigated in 79 plant species classified by 13 plant functional groups. Simulated N deposition induced the significant increase of NO emission from most functional groups, especially from conifer, gymnosperm and C 3 herb. Moreover, the change rate of NO emission was significantly correlated with the change rate of various leaf traits. We conclude that the plants grown under atmospheric N deposition, especially in conifer, gymnosperm and C 3 herb, should be taken into account as an important biological source of NO and potentially contribute to atmospheric NO budget. - Highlights: ► Simulated N deposition induces the significant increase of NO emission from plants. ► The increased NO emission is closely related to leaf N level and net photosynthesis. ► Abundant nitrite accumulation is a reason of NO emission induced by excess N input. ► The plants grown under N deposition potentially contribute to atmospheric NO budget. - Simulated N deposition induced a significant increase of NO emission from 79 plants.

  19. Modeling of nitrogen oxides (NO(x)) concentrations resulting from ships at berth.

    Science.gov (United States)

    Abdul-Wahab, Sabah A; Elkamel, Ali; Al Balushi, Abdullah S; Al-Damkhi, Ali M; Siddiqui, Rafiq A

    2008-12-01

    Oxides of nitrogen (NO(x)) emissions from ships (marine vessels) contribute to poor air quality that negatively impacts public health and communities in coastal areas and far inland. These emissions often excessively harm human health, environment, wildlife habituates, and quality of life of communities and indigenous of people who live near ports. This study was conducted to assess the impact of NO(x) emissions origination from ships at berth on a nearby community. It was undertaken at Said Bin Sultan Naval base in Wullayat Al-Mussana (Sultanate of Oman) during the year 2005. The Industrial Source Complex Short Term (ISCST) model was adopted to determine the dispersion of NO(x) into port and beyond into surrounding urban areas. The hourly and monthly contours (isopleths) of NO(x) concentrations in and around the port were plotted. The results were analyzed to determine the affected area and the level of NO(x) concentrations. The highest concentration points in the studied area were also identified. The isopleths of NO(x) indicated that most shipping emissions of NO(x) occur at the port can be transported over land. The output results can help to derive advice of recommendations ships operators and environmentalists to take the correct decision to prevent workers and surrounded environment from pollution.

  20. System and method for selective catalytic reduction of nitrogen oxides in combustion exhaust gases

    Science.gov (United States)

    Sobolevskiy, Anatoly; Rossin, Joseph A

    2014-04-08

    A multi-stage selective catalytic reduction (SCR) unit (32) provides efficient reduction of NOx and other pollutants from about 50-550.degree. C. in a power plant (19). Hydrogen (24) and ammonia (29) are variably supplied to the SCR unit depending on temperature. An upstream portion (34) of the SCR unit catalyzes NOx+NH.sub.3 reactions above about 200.degree. C. A downstream portion (36) catalyzes NOx+H.sub.2 reactions below about 260.degree. C., and catalyzes oxidation of NH.sub.3, CO, and VOCs with oxygen in the exhaust above about 200.degree. C., efficiently removing NOx and other pollutants over a range of conditions with low slippage of NH.sub.3. An ammonia synthesis unit (28) may be connected to the SCR unit to provide NH.sub.3 as needed, avoiding transport and storage of ammonia or urea at the site. A carbonaceous gasification plant (18) on site may supply hydrogen and nitrogen to the ammonia synthesis unit, and hydrogen to the SCR unit.

  1. Aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Roder, M.

    1985-01-01

    Papers dealing with radiolysis of aromatic hydrocarbons of different composition (from benzene to terphenyls and hydrocarbons with condensed rings) as well as their mixtures (with alkanes, alkenes, other aromatic hydrocarbons) are reviewed. High radiation stability of aromatic hydrocarbons in condensed phases associated with peculiarities of molecular structure of compounds is underlined. Mechanisms of radiolytic processes, vaues of product yields are considered

  2. TiO2 on magnesium silicate monolith: effects of different preparation techniques on the photocatalytic oxidation of chlorinated hydrocarbons

    International Nuclear Information System (INIS)

    Cardona, Ana I.; Candal, Roberto; Sanchez, Benigno; Avila, Pedro; Rebollar, Moises

    2004-01-01

    In this article, the comparative results of the photocatalytic oxidation of trichloroethylene (TCE) alone and a mixture of chlorinated hydrocarbons (trichloroethylene, perchloroethylene and chloroform) in gas phase, obtained with three different monolithic catalysts in a flat reactor frontally illuminated with a Xenon lamp are presented. The three catalysts incorporate titanium dioxide (TiO 2 ) as active phase on a magnesium silicate support, by means of different procedures: (i) incorporation of commercial TiO 2 powder into the silicate matrix ('massic monolith'); (ii) sol-gel coating of the silicate support; (iii) impregnation with a commercial TiO 2 aqueous suspension of the same silicate support. In the first case, the massic monolith was made from a 50:50 w/w mixture of magnesium silicate and 'Titafrance G5' TiO 2 powder. In the second case, a magnesium silicate monolith was coated with several layers of an aqueous TiO 2 sol prepared from hydrolysis and condensation of titanium tetra-isopropoxide (Ti(OC 3 H 7 ) 4 ) in excess of acidified water (acid catalysis). The third catalyst was prepared by impregnating the same silicate support with several layers of 'Titafrance G5' TiO 2 powder water suspension. All the catalysts were thermal treated under comparable conditions in order to fix the TiO 2 active phase to the silicate support. Although the performance of the massic monolith was better than the sol-gel monolith, the latter is of great interest because this technique allows the chemical composition of the active films to be easily modified

  3. Reaction Mechanism for the Formation of Nitrogen Oxides (NO x ) During Coke Oxidation in Fluidized Catalytic Cracking Units

    KAUST Repository

    Chaparala, Sree Vidya; Raj, Abhijeet; Chung, Suk-Ho

    2015-01-01

    and accurate kinetics for NOx formation. Based on the nitrogen-containing functional groups on coke, model molecules are selected to study reactions between coke-bound nitrogen and O2 to form NO and NO2 using density functional theory. The reaction kinetics

  4. System and method for controlling ammonia levels in a selective catalytic reduction catalyst using a nitrogen oxide sensor

    Science.gov (United States)

    None

    2017-07-25

    A system according to the principles of the present disclosure includes an air/fuel ratio determination module and an emission level determination module. The air/fuel ratio determination module determines an air/fuel ratio based on input from an air/fuel ratio sensor positioned downstream from a three-way catalyst that is positioned upstream from a selective catalytic reduction (SCR) catalyst. The emission level determination module selects one of a predetermined value and an input based on the air/fuel ratio. The input is received from a nitrogen oxide sensor positioned downstream from the three-way catalyst. The emission level determination module determines an ammonia level based on the one of the predetermined value and the input received from the nitrogen oxide sensor.

  5. Three-dimensional Nitrogen-Doped Reduced Graphene Oxide/Carbon Nanotube Composite Catalysts for Vanadium Flow Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Shaofang [School of Mechanical and Materials Engineering, Washington State University, WA, 99164 USA.; Zhu, Chengzhou [School of Mechanical and Materials Engineering, Washington State University, WA, 99164 USA.; Song, Junhua [School of Mechanical and Materials Engineering, Washington State University, WA, 99164 USA.; Engelhard, Mark H. [Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354 USA.; Du, Dan [School of Mechanical and Materials Engineering, Washington State University, WA, 99164 USA.; Lin, Yuehe [School of Mechanical and Materials Engineering, Washington State University, WA, 99164 USA.; Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354 USA.

    2017-02-22

    The development of vanadium redox flow battery is limited by the sluggish kinetics of the reaction, especially the cathodic VO2+/VO2+ redox couples. Therefore, it is vital to develop new electrocatalyst with enhanced activity to improve the battery performance. Herein, we first synthesized the hydrogel precursor by a facile hydrothermal method. After the following carbonization, nitrogen-doped reduced graphene oxide/carbon nanotube composite was obtained. By virtue of the large surface area and good conductivey, which are ensured by the unique hybrid structure, as well as the proper nitrogen doping, the as-prepared composite presents enhanced catalytic performance toward the VO2+/VO2+ redox reaction. We also demonstrated the composite with carbon nanotube loading of 2 mg/mL exhibits the highest activity and remarkable stability in aqueous solution due to the strong synergy between reduced graphene oxide and carbon nanotubes, indicating that this composite might show promising applications in vanadium redox flow battery.

  6. A case study of ozone production, nitrogen oxides, and the radical budget in Mexico City

    Directory of Open Access Journals (Sweden)

    E. C. Wood

    2009-04-01

    Full Text Available Observations at a mountain-top site within the Mexico City basin are used to characterize ozone production and destruction, nitrogen oxide speciation and chemistry, and the radical budget, with an emphasis on a stagnant air mass observed on one afternoon. The observations compare well with the results of recent photochemical models. An ozone production rate of ~50 ppbv/h was observed in a stagnant air mass during the afternoon of 12 March 2006, which is among the highest observed anywhere in the world. Approximately half of the ozone destruction was due to the oxidation of NO2. During this time period ozone production was VOC-limited, deduced by a comparison of the radical production rates and the formation rate of NOx oxidation products (NOz. For [NOx]/[NOy] values between 0.2 and 0.8, gas-phase HNO3 typically accounted for less than 10% of NOz and accumulation-mode particulate nitrate (NO3(PM1 accounted for 20%–70% of NOz, consistent with high ambient NH3 concentrations. The fraction of NOz accounted for by the sum of HNO3(g and NO3(PM1 decreased with photochemical processing. This decrease is apparent even when dry deposition of HNO3 is accounted for, and indicates that HNO3 formation decreased relative to other NOx "sink" processes during the first 12 h of photochemistry and/or a significant fraction of the nitrate was associated with the coarse aerosol size mode. The ozone production efficiency of NOx on 11 and 12 March 2006 was approximately 7 on a time scale of one day. A new metric for ozone production efficiency that relates the dilution-adjusted ozone mixing ratio to cumulative OH exposure is proposed.

  7. Influence of tropical leaf litter on nitrogen mineralization and community structure of ammonia-oxidizing bacteria

    Directory of Open Access Journals (Sweden)

    Diallo, MD.

    2015-01-01

    Full Text Available Description of the subject. The present study concerns the relationships among leaf litter decomposition, substrate quality, ammonia-oxidizing bacteria (AOB community composition and nitrogen (N availability. Decomposition of organic matter affects the biogeochemical cycling of carbon (C and N. Since the composition of the soil microbial community can alter the physiological capacity of the community, it is timely to study the litter quality effect on N dynamic in ecosystems. Objectives. The aim of this study was to determine the influence of leaf litter decomposition on N mineralization. The specific objectives of this study were to evaluate the influence of the litter biochemistry of five plants species (Faidherbia albida A.Chev., Azadirachta indica A.Juss., Casuarina equisetifolia L., Andropogon gayanus Kunth and Eragrostis tremula Hochst. ex Steud. on N mineralization in a tropical ferrous soil (Lixisol, nitrification, and genetic diversity of ammonia-oxidizing bacteria. Denaturing gradient gel electrophoresis (DGGE of amplified fragments of genes coding for 16S rRNA was used to study the development of bacterial communities during decomposition of leaf litter in soils. Method. Community structure of AOB was determined at two time periods: day 0 and day 140. Ten strains were tested and each of these strains produced a single band. Thus, DGGE DNA band patterns were used to estimate bacterial diversity. Plant secondary compounds such as polyphenols are purported to influence nutrient cycling by affecting organic matter degradation, mineralization rates, N availability and humus formation. In a laboratory study, we investigated the influence of six phenolic acids (ferulic, gallic, vanillic, syringic, p-coumaric and p-HBA acids commonly found in the plant residues on N mineralization and NH4+ and NO3- production in soils. Results. The results showed that litter type did affect soil nitrification. Faidherbia albida litter was associated with

  8. Heterogeneous oxidation of SO2 in the radiation chemical purification of exhaust gases of thermoelectric power plants from oxides of nitrogen and sulfur

    International Nuclear Information System (INIS)

    Gerasimova, T.S.; Gerasimov, G.Ya.; Tokmacheva, I.P.

    1992-01-01

    Questions associated with numerical modeling of the heterogeneous oxidation of SO 2 in exhaust gases of thermoelectric power plants, induced by irradiation of the gas with a flux of fast electrons, are discussed. In constructing a mathematical model of the process it is considered that a phase equilibrium exists between the gas and the aerosol drops formed in the gas under the radiation influence, and the rate of the process is determined by the rate of liquid-phase oxidation of SO 2 by nitrogen dioxide in dissolved form. 7 refs., 4 figs

  9. Studies on nitrogen oxides (NO{sub x} and N{sub 2}O) in pressurized fluidized bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Lu Yong

    1998-09-01

    This thesis describes the experimental studies of nitrogen oxide (NO, NO{sub 2}, N{sub 2}O) emissions in pressurized fluidized bed combustion (PFBC). In the first part of the thesis the background and the objectives of this study are introduced. The second part summarizes the fundamental knowledge about the formation and destruction of nitrogen oxides in coal combustion, particularly in the conditions of PFBC. The instrumentation of test facilities, measurement and data analysis is described in the third part. Then the most important experimental results follow in the next parts. The forth part describes the results from a PFBC test rig and an empirical modelling for predicting the emissions of NO{sub x} and N{sub 2}O. Finally, the fundamental work on coal combustion and fuel nitrogen conversion in a PFBC batch reactor is presented. These studies clearly confirm the potential of PFBC technology in the control nitrogen of oxide emissions. The research in the test rig was concentrated on determining the effects of process parameters on the emissions of nitrogen oxides with different fuels. Another objective was to examine the reduction of nitrogen oxides with the control methods in PFBC conditions, including ammonia injection and air staging combustion for reducing NO, and high temperature operations for reducing N{sub 2}0. The results indicate that pressurized operation suppresses the conversion of fuel-N to nitrogen oxides and favors with employing the reduction methods for further nitrogen oxide reduction, for instance the temperature window of NO reduction with ammonia injection has been found to be widened to even lower temperature range. Maximum reductions of 80-85 % with ammonia injection and 75-80 % with air staging combustion were achieved in the conditions examined. Considerably low emissions of N{sub 2}O (<7 ppm) were obtained in the tests of N{sub 2}O control, and thermal decomposition proved to be the laming pathway of N{sub 2}O destruction in PFBC. In

  10. Diffusion of oxygen in nitrogen in the pores of graphite. Preliminary results on the effect of oxidation on diffusivity

    Energy Technology Data Exchange (ETDEWEB)

    Hewitt, G. F.; Sharratt, E. W.

    1962-10-15

    Preliminary results are reported from an experimental study of the effect of burnoff on the diffusivity of oxygen in nitrogen within the pores of graphite. It is found that the ratio of effective diffusivity to ''free gas'' diffusivity changes about four-fold in the range 0-9% total oxidation. The viscous permeability, B0, increases in almost the same proportion over the same range.

  11. Thaumarchaeal ammonium oxidation and evidence for a nitrogen cycle in a subsurface radioactive thermal spring in the Austrian Central Alps

    Directory of Open Access Journals (Sweden)

    Friedrich Wolfgang Gerbl

    2014-05-01

    Full Text Available Previous studies had suggested the presence of ammonium oxidizing Thaumarchaeota as well as nitrite oxidizing Bacteria in the subsurface spring called Franz Josef Quelle (FJQ, a slightly radioactive thermal mineral spring with a temperature of 43.6 - 47oC near the alpine village of Bad Gastein, Austria. The microbiological consortium of the FJQ was investigated for its utilization of nitrogen compounds and the putative presence of a subsurface nitrogen cycle. Microcosm experiments made with samples from the spring water, containing planktonic microorganisms, or from biofilms, were used in this study. Three slightly different media, enriched with vitamins and trace elements, and two incubation temperatures (30 and 40oC, respectively were employed. Under aerobic conditions, high rates of conversion of ammonium to nitrite, as well as nitrite to nitrate were measured. Under oxygen-limited conditions nitrate was converted to gaseous compounds. Stable isotope probing with 15NH4Cl or (15NH42SO4 as sole energy sources revealed incorporation of 15N into community DNA. Genomic DNA as well as RNA were extracted from all microcosms. The following genes or fragments of genes were successfully amplified, cloned and sequenced by standard PCR from DNA extracts: Ammonia monooxygenase subunit A (amoA, nitrite oxidoreductase subunits A and B (nxrA and nxrB, nitrate reductase (narG, nitrite reductase (nirS, nitric oxide reductases (cnorB and qnorB, nitrous oxide reductase (nosZ. Reverse transcription of extracted total RNA and real-time PCR suggested the expression of each of those genes. Nitrogen fixation (as probed with nifH and nifD was not detected. However, a geological origin of NH4+ in the water of the FJQ cannot be excluded, considering the silicate, granite and gneiss containing environment. The data suggested the operation of a nitrogen cycle in the subsurface environment of the FJQ.

  12. Thaumarchaeal ammonium oxidation and evidence for a nitrogen cycle in a subsurface radioactive thermal spring in the Austrian Central Alps.

    Science.gov (United States)

    Gerbl, Friedrich W; Weidler, Gerhard W; Wanek, Wolfgang; Erhardt, Angelika; Stan-Lotter, Helga

    2014-01-01

    Previous studies had suggested the presence of ammonium oxidizing Thaumarchaeota as well as nitrite oxidizing Bacteria in the subsurface spring called Franz Josef Quelle (FJQ), a slightly radioactive thermal mineral spring with a temperature of 43.6-47°C near the alpine village of Bad Gastein, Austria. The microbiological consortium of the FJQ was investigated for its utilization of nitrogen compounds and the putative presence of a subsurface nitrogen cycle. Microcosm experiments made with samples from the spring water, containing planktonic microorganisms, or from biofilms, were used in this study. Three slightly different media, enriched with vitamins and trace elements, and two incubation temperatures (30 and 40°C, respectively) were employed. Under aerobic conditions, high rates of conversion of ammonium to nitrite, as well as nitrite to nitrate were measured. Under oxygen-limited conditions nitrate was converted to gaseous compounds. Stable isotope probing with (15)NH4Cl or ((15)NH4)2SO4as sole energy sources revealed incorporation of (15)N into community DNA. Genomic DNA as well as RNA were extracted from all microcosms. The following genes or fragments of genes were successfully amplified, cloned and sequenced by standard PCR from DNA extracts: Ammonia monooxygenase subunit A (amoA), nitrite oxidoreductase subunits A and B (nxrA and nxrB), nitrate reductase (narG), nitrite reductase (nirS), nitric oxide reductases (cnorB and qnorB), nitrous oxide reductase (nosZ). Reverse transcription of extracted total RNA and real-time PCR suggested the expression of each of those genes. Nitrogen fixation (as probed with nifH and nifD) was not detected. However, a geological origin of NH(+) 4 in the water of the FJQ cannot be excluded, considering the silicate, granite and gneiss containing environment. The data suggested the operation of a nitrogen cycle in the subsurface environment of the FJQ.

  13. Insights into high-temperature nitrogen cycling from studies of the thermophilic ammonia-oxidizing archaeon Nitrosocaldus yellowstonii. (Invited)

    Science.gov (United States)

    de la Torre, J. R.

    2010-12-01

    Our understanding of the nitrogen cycle has advanced significantly in recent years with the discovery of new metabolic processes and the recognition that key processes such as aerobic ammonia oxidation are more broadly distributed among extant organisms and habitat ranges. Nitrification, the oxidation of ammonia to nitrite and nitrate, is a key component of the nitrogen cycle and, until recently, was thought to be mediated exclusively by the ammonia-oxidizing bacteria (AOB). The discovery that mesophilic marine archaea, some of the most abundant microorganisms on the planet, are capable of oxidizing ammonia to nitrite fundamentally changed our perception of the global nitrogen cycle. Ammonia-oxidizing archaea (AOA) are now thought to be significant drivers of nitrification in many marine and terrestrial environments. Most studies, however, have focused on the contribution of AOA to nitrogen cycling in mesophilic environments. Our recent discovery of a thermophilic AOA, Nitrosocaldus yellowstonii, has expanded the role and habitat range of AOA to include high temperature environments. Numerous studies have shown that AOA are widely distributed in geothermal habitats with a wide range of temperature and pH. The availability of multiple AOA genome sequences, combined with metagenomic studies from mesophilic and thermophilic environments gives us a better understanding of the physiology, ecology and evolution of these organisms. Recent studies have proposed that the AOA represent the most deeply branching lineage within the Archaea, the Thaumarchaeota. Furthermore, genomic comparisons between AOA and AOB reveal significant differences in the proposed pathways for ammonia oxidation. These genetic differences likely explain fundamental physiological differences such as the resistance of N. yellowstonii and other AOA to the classical nitrification inhibitors allylthiourea and acetylene. Physiological studies suggest that the marine AOA are adapted to oligotrophic

  14. Development of anaerobic ammonium oxidation (anammox) for biological nitrogen removal in domestic wastewater treatment (Case study: Surabaya City, Indonesia)

    Science.gov (United States)

    Wijaya, I. Made Wahyu; Soedjono, Eddy Setiadi; Fitriani, Nurina

    2017-11-01

    Domestic wastewater effluent is the main contributor to diverse water pollution problems. The contaminants contained in the wastewater lead the low quality of water. The presence of ammonium and nitrate along with phosphorus are potentially cause eutrophication and endanger aquatic life. Excess nutrients, mostly N and P is the main cause of eutrophication which is result in oxygen depletion, biodiversity reduction, fish kills, odor and increased toxicity. Most of the domestic wastewater in Surabaya City still contains nitrogen that exceeded the threshold. The range of ammonium and orthophosphate concentration in the domestic wastewater is between 6.29 mg/L - 38.91 mg/L and 0.44 mg/L - 1.86 mg/L, respectively. An advance biological nitrogen removal process called anammox is a sustainable and cost effective alternative to the basic method of nitrogen removal, such as nitrification and denitrification. Many research have been conducted through anammox and resulted promisingly way to remove nitrogen. In this process, ammonium will be oxidized with nitrite as an electron acceptor to produce nitrogen gas and low nitrate in anoxic condition. Anammox requires less oxygen demand, no needs external carbon source, and low operational cost. Based on its advantages, anammox is possible to apply in domestic wastewater treatment in Surabaya with many further studies.

  15. [Effects of nitrogen application rate on nitrate reductase activity, nitric oxide content and gas exchange in winter wheat leaves].

    Science.gov (United States)

    Shangguan, Zhou-Ping

    2007-07-01

    In this paper, the effects of different nitrogen application rates on the nitrate reductase (NR) activity, nitric oxide (NO) content and gas exchange parameters in winter wheat (Triticum aestivum L.) leaves from tillering stage to heading stage and on grain yield were studied. The results showed that the photosynthetic rate (P(n)), transpiration rate (T(r)) and instantaneous water use efficiency (IWUE) of leaves as well as the grain yield were increased with increasing nitrogen application rate first but decreased then, with the values of all these parameters reached the highest in treatment N180. The NR activity increased with increasing nitrogen application rate, and there was a significant linear correlation between NR activity and NO content at tillering and jointing stages (R2 > or = 0.68, n = 15). NO content had a quadratic positive correlation with stomatal conductance (G(s)) (R2 > or = 0.43, n = 15). The lower NO content produced by lower NR activity under lower nitrogen application rate promoted the stoma opened, while the higher NO content produced by higher NR activity under higher nitrogen application rate induced the stoma closed. Although the leaf NO content had a quadratic positive correlation with stomatal conductance (R2 > or = 0.36, n = 15), no remarkable correlation was observed between NR activity and NO content at heading stage, suggesting that nitrogen fertilization could not affect leaf NO content through promoting NR activity, and further more, regulate the stomatal action. Under appropriate nitrogen application the leaf NR activity and NO content were lower, G(s), T(r) and IWUE were higher, and thus, the crop had a better drought-resistant ability, higher P(n), and higher grain yield.

  16. Hydrogen production with short contact time. Catalytic partial oxidation of hydrocarbons and oxygenated compounds: Recent advances in pilot- and bench-scale testing and process design

    Energy Technology Data Exchange (ETDEWEB)

    Guarinoni, A.; Ponzo, R.; Basini, L. [ENI Refining and Marketing Div., San Donato Milanese (Italy)

    2010-12-30

    ENI R and D has been active for fifteen years in the development of Short Contact Time - Catalytic Partial Oxidation (SCT-CPO) technologies for producing Hydrogen/Synthesis Gas. From the beginning the experimental work addressed either at defining the fundamental principles or the technical and economical potential of the technology. Good experimental responses, technical solutions' simplicity and flexibility, favourable techno-economical evaluations promoted the progressive widening of the field of the investigations. From Natural Gas (NG) the range of ''processable'' Hydrocarbons extended to Liquefied Petroleum Gas (LPG) and Gasoils, including those characterised by high levels of unsaturated and sulphurated molecules and, lately, to other compounds with biological origin. The extensive work led to the definition of different technological solutions, grouped as follows: Technology 1: Air Blown SCT-CPO of Gaseous Hydrocarbons and/or Light Compounds with biological origin Technology 2: Enriched Air/Oxygen Blown SCT-CPO of Gaseous Hydrocarbons and/or Light Compounds with biological origin Technology 3: Enriched Air/Oxygen Blown SCT-CPO of Liquid Hydrocarbons and/or Compounds with biological origin Recently, the licence rights on a non-exclusive basis for the commercialisation of SCT-CPO based processes for H{sub 2}/Synthesis gas production from light hydrocarbons with production capacity lower than 5,000 Nm{sup 3}/h of H{sub 2} or 7,500 Nm3/h of syngas have been assigned to two external companies. In parallel, development of medium- and large-scale plant solutions is progressing within the ENI group framework. These last activities are addressed to the utilisation of SCT-CPO for matching the variable Hydrogen demand in several contexts of oil refining operation. This paper will report on the current status of SCT-CPO with a focus on experimental results obtained, either at pilot- and bench- scale level. (orig.)

  17. Analyzer for measurement of nitrogen oxide concentration by ozone content reduction in gas using solid state chemiluminescent sensor

    Science.gov (United States)

    Chelibanov, V. P.; Ishanin, G. G.; Isaev, L. N.

    2014-05-01

    Role of nitrogen oxide in ambient air is described and analyzed. New method of nitrogen oxide concentration measurement in gas phase is suggested based on ozone concentration measurement with titration by nitrogen oxide. Research of chemiluminescent sensor composition is carried out on experimental stand. The sensor produced on the base of solid state non-activated chemiluminescent composition is applied as ozone sensor. Composition is put on the surface of polymer matrix with developed surface. Sensor compositions includes gallic acid with addition of rodamine-6G. Model of interaction process between sensor composition and ozone has been developed, main products appeared during reaction are identified. The product determining the speed of luminescense appearance is found. This product belongs to quinone class. Then new structure of chemiluminescent composition was suggested, with absence of activation period and with high stability of operation. Experimental model of gas analyzer was constructed and operation algorithm was developed. It was demonstrated that developed NO measuring instrument would be applied for monitoring purposes of ambient air. This work was partially financially supported by Government of Russian Federation, Grant 074-U01

  18. Factors controlling regional differences in forest soil emission of nitrogen oxides (NO and N2O

    Directory of Open Access Journals (Sweden)

    K. Pilegaard

    2006-01-01

    Full Text Available Soil emissions of NO and N2O were measured continuously at high frequency for more than one year at 15 European forest sites as part of the EU-funded project NOFRETETE. The locations represent different forest types (coniferous/deciduous and different nitrogen loads. Geographically they range from Finland in the north to Italy in the south and from Hungary in the east to Scotland in the west. The highest NO emissions were observed from coniferous forests, whereas the lowest NO emissions were observed from deciduous forests. The NO emissions from coniferous forests were highly correlated with N-deposition. The site with the highest average annual emission (82 μg NO-N m−2 h−1 was a spruce forest in South-Germany (Höglwald receiving an annual N-deposition of 2.9 g m−2. NO emissions close to the detection limit were observed from a pine forest in Finland where the N-deposition was 0.2 g N m−2 a−1. No significant correlation between N2O emission and N-deposition was found. The highest average annual N2O emission (20 μg N2O-N m−2 h−1 was found in an oak forest in the Mátra mountains (Hungary receiving an annual N-deposition of 1.6 g m−2. N2O emission was significantly negatively correlated with the C/N ratio. The difference in N-oxide emissions from soils of coniferous and deciduous forests may partly be explained by differences in N-deposition rates and partly by differences in characteristics of the litter layer and soil. NO was mainly derived from nitrification whereas N2O was mainly derived from denitrification. In general, soil moisture is lower at coniferous sites (at least during spring time and the litter layer of coniferous forests is thick and well aerated favouring nitrification and thus release of NO. Conversely, the higher rates of denitrification in deciduous forests due to a compact and moist litter layer lead to N2O production and NO consumption in the soil. The two factors soil moisture and soil temperature are

  19. Atmospheric emission of nitrogen oxide from kraft recovery boilers in Sweden

    International Nuclear Information System (INIS)

    Kjoerk, Anders; Herstad Swaerd, Solvie

    2000-05-01

    Recovery boiler NO x emissions are low compared with those from power boilers. However tighter environmental requirements to decrease the acidic emissions implies that all sources have to be addressed. There are an ongoing evaluation and development of NO x control technologies in the pulp industry. Basically air staging, selective catalytic reduction, SCR, and selective noncatalytic reduction, SNCR, have been discussed. Other NO x control options may be available as a result of ongoing research and development. As a background in the work to reduce the acid rain it has been considered necessary to have a good picture of the NO x emission from recovery boilers, and the Thermal Engineering Research Institute in Sweden have therefore sponsored this study. The intention is to give a good general view and try to explain the reasons for the large differences between boilers. Data from the 30 kraft recovery boilers which were in operation in Sweden during 1999 have been collected. Both NO x levels and specific conditions which could have an influence on the level have been included. The evaluation show a clear correlation between the nitrogen content in the liquor and the NO x level. It seams also that a long retention time in the furnace give an opportunity to reduce the amount of nitrogen oxide. For most boilers in Sweden the NO x levels are reported in mg/MJ and comparison could be done between different types of boilers. However for recovery boilers there could be a large uncertainty in the calculation which gives the amount (mg) of NO x , the definition of the heat input to be used (MJ) is either not clear. As a base for the study the measured concentration in ppm is used instead. The reported values are in the range of 30 - 100 ppm, however the majority of the boilers operate in a more narrow range 60-80 ppm. Air staging and other combustion methods could not reasonably reduce the NO x emission with more than 20% in the next decade. If the goal is higher other

  20. Organic Nitrogen-Driven Stimulation of Arbuscular Mycorrhizal Fungal Hyphae Correlates with Abundance of Ammonia Oxidizers

    Science.gov (United States)

    Bukovská, Petra; Gryndler, Milan; Gryndlerová, Hana; Püschel, David; Jansa, Jan

    2016-01-01

    Large fraction of mineral nutrients in natural soil environments is recycled from complex and heterogeneously distributed organic sources. These sources are explored by both roots and associated mycorrhizal fungi. However, the mechanisms behind the responses of arbuscular mycorrhizal (AM) hyphal networks to soil organic patches of different qualities remain little understood. Therefore, we conducted a multiple-choice experiment examining hyphal responses to different soil patches within the root-free zone by two AM fungal species (Rhizophagus irregularis and Claroideoglomus claroideum) associated with Medicago truncatula, a legume forming nitrogen-fixing root nodules. Hyphal colonization of the patches was assessed microscopically and by quantitative real-time PCR (qPCR) using AM taxon-specific markers, and the prokaryotic and fungal communities in the patches (pooled per organic amendment treatment) were profiled by 454-amplicon sequencing. Specific qPCR markers were then designed and used to quantify the abundance of prokaryotic taxa showing the strongest correlation with the pattern of AM hyphal proliferation in the organic patches as per the 454-sequencing. The hyphal density of both AM fungi increased due to nitrogen (N)-containing organic amendments (i.e., chitin, DNA, albumin, and clover biomass), while no responses as compared to the non-amended soil patch were recorded for cellulose, phytate, or inorganic phosphate amendments. Abundances of several prokaryotes, including Nitrosospira sp. (an ammonium oxidizer) and an unknown prokaryote with affiliation to Acanthamoeba endosymbiont, which were frequently recorded in the 454-sequencing profiles, correlated positively with the hyphal responses of R. irregularis to the soil amendments. Strong correlation between abundance of these two prokaryotes and the hyphal responses to organic soil amendments by both AM fungi was then confirmed by qPCR analyses using all individual replicate patch samples. Further

  1. Process for refining hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Risenfeld, E H

    1924-11-26

    A process is disclosed for the refining of hydrocarbons or other mixtures through treatment in vapor form with metal catalysts, characterized by such metals being used as catalysts, which are obtained by reduction of the oxide of minerals containing the iron group, and by the vapors of the hydrocarbons, in the presence of the water vapor, being led over these catalysts at temperatures from 200 to 300/sup 0/C.

  2. Improved creep and oxidation behavior of a martensitic 9Cr steel by the controlled addition of boron and nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Mayr, Peter [Massachusetts Institute of Technology, Cambridge, MA (United States). Dept. of Materials Science; Graz Univ. of Technology (Austria). Inst. of Material Science and Welding; Holzer, Ivan; Mendez-Martin, Francisca [Graz Univ. of Technology (Austria). Inst. of Material Science and Welding; Albu, Mihaela; Mitsche, Stefan [Graz Univ. of Technology (Austria). Inst. for Electron Microscopy; Gonzalez, Vanessa; Agueero, Alina [Instituto Nacional de Tecnica Aeroespacial, Torrejon de Ardoz (Spain)

    2010-07-01

    This manuscript gives an overview on recent developments of a martensitic steel grade based on 9Cr3W3CoVNb with controlled additions of boron and nitrogen. Alloy design by thermodynamic equilibrium calculations and calculation of boron-nitrogen solubility is discussed. Out of this alloy design process, two melts of a 9Cr3W3CoVNbBN steel were produced. The investigation focused on microstructural evolution during high temperature exposure, creep properties and oxidation resistance in steam at 650 C. Microstructural characterization of ''as-received'' and creep exposed material was carried out using conventional optical as well as advanced electron microscopic methods. Creep data at 650 was obtained at various stress levels. Longest-running specimens have reached more than 20,000 hours of testing time. In parallel, long-term oxidation resistance has been studied at 650 C in steam atmosphere up to 5,000 hours. Preliminary results of the extensive testing program on a 9Cr3W3CoVNbBN steel show significant improvement in respect to creep strength and oxidation resistance compared to the state-of-the-art 9 wt. % Cr martensitic steel grades. Up to current testing times, the creep strength is significantly beyond the +20% scatterband of standard grade P92 material. Despite the chromium content of 9 wt % the material exhibits excellent oxidation resistance. Steam exposed plain base material shows comparable oxidation behavior to coated material, and the corrosion rate of the boron-nitrogen controlled steel is much lower compared to standard 9 wt % Cr steel grades, P91 and P92. (orig.)

  3. Fluxes of methane and nitrogen oxides in various boreal mire ecosystems. Effects of land-use activities and environmental changes

    International Nuclear Information System (INIS)

    Martikainen, P.J.; Nykaenen, H.; Regina, K.; Alm, J.; Silvola, J.

    1996-01-01

    Atmospheric impact of peatlands is a sum of their gas fluxes. In contrast to carbon dioxide, peatlands are net sources for methane (CH 4 ). Methane is an end product in the anaerobic decomposition processes and it has greater capacity to absorb infrared radiation than carbon dioxide. Most of the data on the CH 4 release from northern peatlands is from North America. The total amount of methane released from wetlands is calculated to be 110 Tg yr -1 of which 34 percent (38 Tg yr -1 ) is estimated to be emitted from the northern peatlands. Peat with high content of nitrogen is a potential source for gaseous nitrogen oxides, i.e. nitrous oxide (N 2 O) and nitric oxide (NO). However, the importance of peatlands in producing these trace gases is poorly known. Nitrous oxide and nitric oxide are important components in the atmospheric chemistry and N 2 O also is an effective greenhouse gas. Land-use activities and environmental changes can affect the atmospheric impacts of peatlands by modifying their biogeochemistry. This article presents a short summary of the studies whose objectives were: (1) to measure fluxes of CH 4 and N 2 O on wide range of natural mires in Finland, (2) to study the short- and long-term changes in fluxes of CH 4 , N 2 O and NO on boreal peatlands after lowering their water table. Peatlands used for agriculture, forestry and peat mining were included in the studies. The results from mires drained for forestry may reflect the possible changes in the trace gas fluxes if water table will drop in the northern peatlands as a result of drier climate, (3) to study the effects of nitrogen load on the fluxes of CH 4 , N 2 O and NO, (4) to identify the microbiological processes important for the fluxes of N 2 O, NO and CH 4 , and to study the environmental factors regulating these microbial processes

  4. Deep catalytic oxidation of heavy hydrocarbons on Pt/Al{sub 2}O{sub 3} catalysts; Oxydation catalytique totale des hydrocarbures lourds sur Pt/Al{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, F.

    1998-12-09

    Deep oxidation by air on Pt supported on alumina of a large number of heavy hydrocarbons representative of those found in a real Diesel car exhaust has been studied. Light-off temperatures between 140 and 320 deg. C on 1%Pt/alumina (80% metal dispersion) have been found. Results show that not only the physical state around the conversion area but also the chemical nature of the hydrocarbon plays an important role. Heavy hydrocarbons deep oxidation behaviour has been classified as a function of their chemical category (alkane, alkene, aromatics etc..). Oxidation of binary mixtures of hydrocarbons has shown strong inhibition effects on n-alkane or CO oxidation by polycyclic compounds like 1-methyl-naphthalene. In some cases, by-product compounds in the gas effluent (other than CO{sub 2} and H{sub 2}O) have been identified by mass-spectrometry leading to oxidation mechanism proposals for different hydrocarbons. Catalyst nature (metal dispersion, content) influence has also been studied. It is shown that turn-over activity is favoured by the increase of the metal bulk size. Acidity influence of the carrier has shown only very little influence on n-alkane or di-aromatic compound oxidation. (author)

  5. Role of Oxides of Nitrogen in Tobacco-Specific Nitrosamine Formation in Flue-Cured Tobacco

    Directory of Open Access Journals (Sweden)

    Nestor TB

    2014-12-01

    Full Text Available Tobacco is known to contain a class of nitrosamines known as tobacco-specific nitrosamines or TSNA. Nitrosation of naturally occurring tobacco alkaloids is commonly accepted as the mechanism of TSNA formation in tobacco. Because green and freshly harvested tobaccos are virtually free of TSNA, formation and accumulation of TSNA are generally considered to occur during the curing process. Most recent hypotheses have focused on microbial reduction of nitrate to nitrite and other oxides of nitrogen (NOcompounds that react with tobacco alkaloids to form TSNA during curing. This natural microbial process remains the prevalent hypothesis for TSNA formation in burley and other air-cured tobaccos. However, a different mechanism for the formation of TSNA in flue-cured tobacco, independent of microbial activity, is documented in this paper. It is common practice to flue-cure Virginia or blonde tobacco in bulk barns that incorporate forced air ventilation and temperature control. For the last thirty-five years, many modern bulk barns in North America generally have used liquid propane gas (LPG with direct-fired burners that exhaust combustion gases directly into the barn where the tobacco is exposed to those gases. Our studies indicate that LPG combustion by-products in the exhaust stream, namely NO, react with naturally occurring tobacco alkaloids to form TSNA. Heat exchange curing methods preclude exposure of the tobacco to combustion gases and by-products, thereby eliminating this significant source of TSNA formation, without degrading leaf quality or smoking character. Research findings from 1998 and 1999 are presented to demonstrate the role of NOgases in TSNA formation and the significance of direct-fired curing as a primary source of TSNA formation in flue-cured tobacco. Also, data from an extensive barn conversion program in 2000, which resulted in a 94% average reduction in TSNA levels in cured flue-cured leaf, are presented.

  6. Estimating nitrogen oxides emissions at city scale in China with a nightlight remote sensing model.

    Science.gov (United States)

    Jiang, Jianhui; Zhang, Jianying; Zhang, Yangwei; Zhang, Chunlong; Tian, Guangming

    2016-02-15

    Increasing nitrogen oxides (NOx) emissions over the fast developing regions have been of great concern due to their critical associations with the aggravated haze and climate change. However, little geographically specific data exists for estimating spatio-temporal trends of NOx emissions. In order to quantify the spatial and temporal variations of NOx emissions, a spatially explicit approach based on the continuous satellite observations of artificial nighttime stable lights (NSLs) from the Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS) was developed to estimate NOx emissions from the largest emission source of fossil fuel combustion. The NSL based model was established with three types of data including satellite data of nighttime stable lights, geographical data of administrative boundaries, and provincial energy consumptions in China, where a significant growth of NOx emission has experienced during three policy stages corresponding to the 9th-11th)Five-Year Plan (FYP, 1995-2010). The estimated national NOx emissions increased by 8.2% per year during the study period, and the total annual NOx emissions in China estimated by the NSL-based model were approximately 4.1%-13.8% higher than the previous estimates. The spatio-temporal variations of NOx emissions at city scale were then evaluated by the Moran's I indices. The global Moran's I indices for measuring spatial agglomerations of China's NOx emission increased by 50.7% during 1995-2010. Although the inland cities have shown larger contribution to the emission growth than the more developed coastal cities since 2005, the High-High clusters of NOx emission located in Beijing-Tianjin-Hebei regions, the Yangtze River Delta, and the Pearl River Delta should still be the major focus of NOx mitigation. Our results indicate that the readily available DMSP/OLS nighttime stable lights based model could be an easily accessible and effective tool for achieving strategic decision making

  7. A review of nitrous oxide mitigation by farm nitrogen management in temperate grassland-based agriculture.

    Science.gov (United States)

    Li, Dejun; Watson, Catherine J; Yan, Ming Jia; Lalor, Stan; Rafique, Rashid; Hyde, Bernard; Lanigan, Gary; Richards, Karl G; Holden, Nicholas M; Humphreys, James

    2013-10-15

    Nitrous oxide (N2O) emission from grassland-based agriculture is an important source of atmospheric N2O. It is hence crucial to explore various solutions including farm nitrogen (N) management to mitigate N2O emissions without sacrificing farm profitability and food supply. This paper reviews major N management practices to lower N2O emission from grassland-based agriculture. Restricted grazing by reducing grazing time is an effective way to decrease N2O emissions from excreta patches. Balancing the protein-to-energy ratios in the diets of ruminants can also decrease N2O emissions from excreta patches. Among the managements of synthetic fertilizer N application, only adjusting fertilizer N rate and slow-released fertilizers are proven to be effective in lowering N2O emissions. Use of bedding materials may increase N2O emissions from animal houses. Manure storage as slurry, manipulating slurry pH to values lower than 6 and storage as solid manure under anaerobic conditions help to reduce N2O emissions during manure storage stage. For manure land application, N2O emissions can be mitigated by reducing manure N inputs to levels that satisfy grass needs. Use of nitrification inhibitors can substantially lower N2O emissions associated with applications of fertilizers and manures and from urine patches. N2O emissions from legume based grasslands are generally lower than fertilizer-based systems. In conclusion, effective measures should be taken at each step during N flow or combined options should be used in order to mitigate N2O emission at the farm level. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Characterizing agricultural soil nitrous acid (HONO) and nitric oxide (NO) emissions with their nitrogen isotopic composition

    Science.gov (United States)

    Chai, J.; Miller, D. J.; Guo, F.; Dell, C. J.; Karsten, H.; Hastings, M. G.

    2017-12-01

    Nitrous acid (HONO) is a major source of atmospheric hydroxyl radical (OH), which greatly impacts air quality and climate. Fertilized soils may be important sources of HONO in addition to nitric oxide (NO). However, soil HONO emissions are especially challenging to quantify due to huge spatial and temporal variation as well as unknown HONO chemistry. With no in-situ measurements available, soil HONO emissions are highly uncertain. Isotopic analysis of HONO may provide a tool for tracking these sources. We characterize in situ soil HONO and NO fluxes and their nitrogen isotopic composition (δ15N) across manure management and meteorological conditions during a sustainable dairy cropping study in State College, Pennsylvania. HONO and NO were simultaneously collected at hourly resolution from a custom-coated dynamic soil flux chamber ( 3 LPM) using annular denuder system (ADS) coupled with an alkaline-permanganate NOx collection system for offline isotopic analysis of δ15N with ±0.6 ‰ (HONO) and ±1.5 ‰ (NO) precision. The ADS method was tested using laboratory generated HONO flowing through the chamber to verify near 100% collection (with no isotopic fractionation) and suitability for soil HONO collection. Corn-soybean rotation plots (rain-fed) were sampled following dairy manure application with no-till shallow-disk injection (112 kg N ha-1) and broadcast with tillage incorporation (129 kg N ha-1) during spring 2017. Soil HONO fluxes (n=10) ranged from 0.1-0.6 ng N-HONO m-2 s-1, 4-28% of total HONO+NO mass fluxes. HONO and NO fluxes were correlated, with both declining during the measurement period. The soil δ15N-HONO flux weighted mean ±1σ of -15 ± 6‰ was less negative than δ15N of simultaneously collected NO (-29 ± 8‰). This can potentially be explained by fractionations associated with microbial conversion of nitrite, abiotic production of HONO from soil nitrite, and uptake and release with changing soil moisture. Our results have implications for

  9. On the formation of nitrogen oxides during the combustion of partially pre-vaporized droplets

    Energy Technology Data Exchange (ETDEWEB)

    Moesl, Klaus Georg

    2012-12-12

    This study contributes to the topic of nitrogen oxide (NO{sub x}) formation at the level of single droplet and droplet array combustion. The influence of the degree of droplet vaporization and the influence of ambient conditions on NO{sub x} emissions are studied in detail by experiments as well as by numerical simulations. Consequently, this study illustrates correlations and dependencies of the most relevant parameters with respect to the formation of NO{sub x}. It merges the fields of droplet pre-vaporization, ignition, combustion, and exhaust gas formation, including a sophisticated approach to NO{sub x} determination. Even though the study was conducted in order to help understand the fundamental process of burning idealized droplets, the processes in spray combustion have also been taken into consideration within its scope. The portability of results obtained from those idealized droplet burning regimes is evaluated for real applications. Thus, this study may also help to derive design recommendations for liquid-fueled combustion devices. While the experimental part focuses on droplet array combustion, the numerical part highlights spherically symmetric single droplet combustion. By performing experiments in a microgravity environment, quasi-spherical conditions were facilitated for droplet burning, and comparability was provided for the experimental and numerical results. A novelty of the numerical part is the investigation of mechanisms of NO{sub x} formation under technically relevant conditions. This includes partial pre-vaporization of the droplets as well as droplet combustion in a hot exhaust gas environment, such as an aero-engine. The results show that the trade-off between ambient temperature and available oxygen determines the NO{sub x} formation of droplets burning in hot exhaust gas. If the ambient temperature is high and there is still sufficient oxygen for full oxidation of the fuel provided by the droplet, the maximum of NOx formation is

  10. Nitrous oxide fluxes and nitrogen cycling along a pasture chronosequence in Central Amazonia, Brazil

    Directory of Open Access Journals (Sweden)

    B. Wick

    2005-01-01

    Full Text Available We studied nitrous oxide (N2O fluxes and soil nitrogen (N cycling following forest conversion to pasture in the central Amazon near Santarém, Pará, Brazil. Two undisturbed forest sites and 27 pasture sites of 0.5 to 60 years were sampled once each during wet and dry seasons. In addition to soil-atmosphere fluxes of N2O we measured 27 soil chemical, soil microbiological and soil physical variables. Soil N2O fluxes were higher in the wet season than in the dry season. Fluxes of N2O from forest soils always exceeded fluxes from pasture soils and showed no consistent trend with pasture age. At our forest sites, nitrate was the dominant form of inorganic N both during wet and dry season. At our pasture sites nitrate generally dominated the inorganic N pools during the wet season and ammonium dominated during the dry season. Net mineralization and nitrification rates displayed large variations. During the dry season net immobilization of N was observed in some pastures. Compared to forest sites, young pasture sites (≤2 years had low microbial biomass N and protease activities. Protease activity and microbial biomass N peaked in pastures of intermediate age (4 to 8 years followed by consistently lower values in older pasture (10 to 60 years. The C/N ratio of litter was low at the forest sites (~25 and rapidly increased with pasture age reaching values of 60-70 at pastures of 15 years and older. Nitrous oxide emissions at our sites were controlled by C and N availability and soil aeration. Fluxes of N2O were negatively correlated to leaf litter C/N ratio, NH4+-N and the ratio of NO3--N to the sum of NO3--N + NH4+-N (indicators of N availability, and methane fluxes and bulk density (indicators of soil aeration status during the wet season. During the dry season fluxes of N2O were positively correlated to microbial biomass N, β-glucosidase activity, total inorganic N stocks and NH4+-N. In our study region, pastures of all age emitted less N2O than

  11. Stimulation of biological N2-fixation to accelerate the microbial remediation of soil contaminated by petroleum hydrocarbons

    International Nuclear Information System (INIS)

    Tereshenko, N.N.; Lushnikov, S.V.

    2005-01-01

    All remediation projects are comprised at least in accelerating the processes of the self-cleaning and self-restoration of biocenose which is led to increasing the functional activity of hydrocarbon-oxidizing microflora (HOM). Some of experts are carefully relate to introducing the commercial cultures of active hydrocarbon-consuming microbes into soils. They are afraid of unpredictable behavior of the cultures in soils. That why the stimulation of metabolic activity of indigenous soil microflora seems to be most preferable. In fact, contamination of soil with low nitrogen capacity by oil spills leads to significant deficient of nitrogen for HOM. Nitrogen content limits the soil self-restoration. Inorganic nitrogen fertilizers are supplied to recover the balance. The study of the microbial destruction of petroleum-hydrocarbons in association with biochemical transformation of nitrogen was carried out in lab and field experiments during 2000-2004. Study showed the activity of HOM correlates with rate of microbial fixing atmospheric nitrogen. Activity of biological N 2 -fixation significantly depends on supplying fertilizers (dose, date and kind). General practice of remediation of hydrocarbon-contaminated soils applies high initial doses of nitrogen-fertilizers (0.5-1 t per ha). Such practice leads to inhibition of N 2 -fixation processes, decreasing rate of oil destruction and loosing nitrogen due to activation of microbial denitrification. In opposition to that, the fractioned and advanced supplying mineral nitrogen fertilizers with aluminosilicate is the cost-effective approach to remediation of hydrocarbon-contaminated soils. Field experiments showed that the approach allows to increase efficiency of treatment up to 70-75% and to decrease operational expenses 2-3 times at least. (authors)

  12. Direct hydrocarbon fuel cells

    Science.gov (United States)

    Barnett, Scott A.; Lai, Tammy; Liu, Jiang

    2010-05-04

    The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

  13. Lanthanide ions (III) as sensitizers of melatonin oxidation in reaction mixtures providing reactive species of oxygen and nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Kaczmarek, Małgorzata, E-mail: mkaczmar@amu.edu.pl

    2015-06-15

    Chemiluminescence (CL) of the reactive systems providing strong oxidants (reactive species of oxygen and nitrogen) containing lanthanide ions (III) and melatonin, was studied. Kinetic curves of emission decay and spectral distributions of chemiluminescence were obtained. Analysis of differences in the intensity of chemiluminescence and CL spectra proved that excitation of Tb(III) and Dy(III) ions takes place with the energy transfer from the products of melatonin oxidation: N{sup 1}-acetyl-N{sup 2}-formyl-5-methoxykynuramine (AFMK) and N{sup 1}-acetyl-5-methoxykynuramine (AMK) to the lanthanide ions. In the system Fe(II)/Fe(III)–H{sub 2}O{sub 2}–Mel–Tb(III) a linear correlation was established between the integrated CL intensity and melatonin concent. - Highlights: • Chemiluminescence (CL) of melatonin (Mel) oxidation by reactive species of oxygen and nitrogen. • Tb(III) and Dy(III) ions as sensitizers of a melatonin oxidation process. • New CL method for determination of melatonin in pharmaceutical preparations based on CL of Fe(II)/Fe(III)–H{sub 2}O{sub 2}–Mel–Tb(III) system.

  14. The multichannel n-propyl + O2 reaction surface: Definitive theory on a model hydrocarbon oxidation mechanism

    Science.gov (United States)

    Bartlett, Marcus A.; Liang, Tao; Pu, Liang; Schaefer, Henry F.; Allen, Wesley D.

    2018-03-01

    of hydrocarbon oxidation.

  15. Hydrogen cyanide formation in selective catalytic reduction of nitrogen oxides over Cu/ZSM-5

    Energy Technology Data Exchange (ETDEWEB)

    Radtke, F; Koeppel, R; Baiker, A [Department of Chemical Engineering and Industrial Chemistry, Swiss Federal Institute of Technology, Zurich, (Switzerland)

    1994-01-06

    Hydrogen cyanide is formed over Cu/ZSM-5 during the selective catalytic reduction of NO[sub x] by either propylene or ethylene in the temperature range 450-600 K. Under the reaction conditions used (reactant feed: 973 ppm NO, 907 ppm propene or 1448 ppm ethylene, 2% oxygen, W/F=0.1 g s cm[sup -3]), the concentration of hydrogen cyanide reaches 20, respectively, 30 ppm, depending on whether ethylene or propene are used as hydrocarbons. In addition, significant N[sub 2]O formation is observed at temperatures lower than 700 K, independent of the hydrocarbon used

  16. Experimental study on heat transfer with condensation of vapors of pure nitrogen tetroxide with nitrogen oxide additions on a bundle of horizontal tubes

    International Nuclear Information System (INIS)

    Batishcheva, T.M.; Derov, B.T.; Kolykhan, L.I.; Pulyaev, V.F.

    1977-01-01

    The results of an experimental investigation of heat transfer during condensation of pure N 2 O 4 vapours and with NO admixtures on the outside surface of a bundle of horizontal tubes are considered. The tests with pure N 2 O 4 have been performed at pressures between 0.3-1.0 MPa in the range of thermal loads 22-121 kW/m 2 , temperature heads of 5-33 grades with complete condensation and evaporation. The content of admixtures boiling at high temperatures do not exceed 0.8%. A concentration of noncondensing nitrogen oxide in a gas phase have changed in the range of 3-27%. It is shown, that a concentration of noncondensible NO doesn't result in a considerable decrease of the heat transfer intensity as well as in the case of condensation of vapour-liquid mixtures. The generalized criterion relations are presented

  17. Enhanced detection of nitrogen dioxide via combined heating and pulsed UV operation of indium oxide nano-octahedra.

    Science.gov (United States)

    Gonzalez, Oriol; Roso, Sergio; Vilanova, Xavier; Llobet, Eduard

    2016-01-01

    We report on the use of combined heating and pulsed UV light activation of indium oxide gas sensors for enhancing their performance in the detection of nitrogen dioxide in air. Indium oxide nano-octahedra were synthesized at high temperature (900 °C) via vapour-phase transport and screen-printed onto alumina transducers that comprised interdigitated electrodes and a heating resistor. Compared to the standard, constant temperature operation of the sensor, mild heating (e.g., 100 °C) together with pulsed UV light irradiation employing a commercially available, 325 nm UV diode (square, 1 min period, 15 mA drive current signal), results in an up to 80-fold enhancement in sensitivity to nitrogen dioxide. Furthermore, this combined operation method allows for making savings in power consumption that range from 35% to over 80%. These results are achieved by exploiting the dynamics of sensor response under pulsed UV light, which convey important information for the quantitative analysis of nitrogen dioxide.

  18. Enhanced detection of nitrogen dioxide via combined heating and pulsed UV operation of indium oxide nano-octahedra

    Directory of Open Access Journals (Sweden)

    Oriol Gonzalez

    2016-10-01

    Full Text Available We report on the use of combined heating and pulsed UV light activation of indium oxide gas sensors for enhancing their performance in the detection of nitrogen dioxide in air. Indium oxide nano-octahedra were synthesized at high temperature (900 °C via vapour-phase transport and screen-printed onto alumina transducers that comprised interdigitated electrodes and a heating resistor. Compared to the standard, constant temperature operation of the sensor, mild heating (e.g., 100 °C together with pulsed UV light irradiation employing a commercially available, 325 nm UV diode (square, 1 min period, 15 mA drive current signal, results in an up to 80-fold enhancement in sensitivity to nitrogen dioxide. Furthermore, this combined operation method allows for making savings in power consumption that range from 35% to over 80%. These results are achieved by exploiting the dynamics of sensor response under pulsed UV light, which convey important information for the quantitative analysis of nitrogen dioxide.

  19. Facile fabrication of palladium-ionic liquids-nitrogen-doped graphene nanocomposites as enhanced electro-catalyst for ethanol oxidation

    Science.gov (United States)

    Li, Shuwen; Yang, Honglei; Ren, Ren; Ma, Jianxin; Jin, Jun; Ma, Jiantai

    2015-10-01

    The palladium-ionic liquids-nitrogen-doped graphene nanocomposites are facile fabricated as enhanced electro-catalyst for ethanol oxidation. First, the ionic liquids functionalized nitrogen-doping graphene nanosheets (PDIL-NGS) with few layers is synthesized through a facile and effective one-pot hydrothermal method with graphene oxide as raw material, urea as reducing-doping agents and ionic liquids (ILs) derived from 3,4,9,10-perylene tetracarboxylic acid as functional molecules. The results of systematic characterization reveal that the PDIL molecules not only can functionalize NGS by π-π stacking with no affecting the nitrogen doping but also prevent the agglomeration of NGS. More importantly, the processing performance and the property of electron transfer are remarkably enhanced duo to introducing a large number of ILs groups. Then, the enhanced electrocatalytic Pd nanoparticles are successfully anchored on PDIL-NGS by a facile and surfactant-free synthetic technique. As an anode catalyst, the novel catalyst exhibits better kinetics, more superior electrocatalytic performance, higher tolerance and electrochemical stability than the other catalysts toward ethanol electrooxidation, owing to the role of PDIL molecules. Therefore, the new catalyst is believed to have the potential use for direct alcohol fuel cells in the future and the functionalized NGS is promising useful materials applied in other fields.

  20. Deposition and surface characterization of nanoparticles of zinc oxide using dense plasma focus device in nitrogen atmosphere

    International Nuclear Information System (INIS)

    Malhotra, Yashi; Srivastava, M P; Roy, Savita

    2010-01-01

    Nanoparticles of zinc oxide from zinc oxide pellets in the nitrogen plasma atmosphere are deposited on n and p type silicon substrates using Dense Plasma Focus device. The hot and dense nitrogen plasma formed during the focus phase ionizes the ZnO pellet, which then move upward in a fountain like shape and gets deposited on substrates which are placed above the top of the anode. Structural and surface properties of the deposited ZnO are investigated using X-ray diffraction and Atomic force microscope (AFM). X-ray spectra shows the diffraction plane (002) of ZnO nanoparticles deposited on Si with few shots in nitrogen atmosphere. AFM investigations revealed that there are nanoparticles of size between 15-80 nm on n-Si and p-Si substrates. The deposition on n-type Si is better than the p-type Si can be seen from AFM images, this may be due to different orientation of silicon.

  1. Zinc oxide nanoparticles affect carbon and nitrogen mineralization of Phoenix dactylifera leaf litter in a sandy soil.

    Science.gov (United States)

    Rashid, Muhammad Imtiaz; Shahzad, Tanvir; Shahid, Muhammad; Ismail, Iqbal M I; Shah, Ghulam Mustafa; Almeelbi, Talal

    2017-02-15

    We investigated the impact of zinc oxide nanoparticles (ZnO NPs; 1000mgkg -1 soil) on soil microbes and their associated soil functions such as date palm (Phoenix dactylifera) leaf litter (5gkg -1 soil) carbon and nitrogen mineralization in mesocosms containing sandy soil. Nanoparticles application in litter-amended soil significantly decreased the cultivable heterotrophic bacterial and fungal colony forming units (cfu) compared to only litter-amended soil. The decrease in cfu could be related to lower microbial biomass carbon in nanoparticles-litter amended soil. Likewise, ZnO NPs also reduced CO 2 emission by 10% in aforementioned treatment but this was higher than control (soil only). Labile Zn was only detected in the microbial biomass of nanoparticles-litter applied soil indicating that microorganisms consumed this element from freely available nutrients in the soil. In this treatment, dissolved organic carbon and mineral nitrogen were 25 and 34% lower respectively compared to litter-amended soil. Such toxic effects of nanoparticles on litter decomposition resulted in 130 and 122% lower carbon and nitrogen mineralization efficiency respectively. Hence, our results entail that ZnO NPs are toxic to soil microbes and affect their function i.e., carbon and nitrogen mineralization of applied litter thus confirming their toxicity to microbial associated soil functions. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Characteristics of surface ozone and nitrogen oxides at urban, suburban and rural sites in Ningbo, China

    Science.gov (United States)

    Tong, Lei; Zhang, Huiling; Yu, Jie; He, Mengmeng; Xu, Nengbin; Zhang, Jingjing; Qian, Feizhong; Feng, Jiayong; Xiao, Hang

    2017-05-01

    Surface ozone (O3) is a harmful air pollutant that has attracted growing concern in China. In this study, the mixing ratios of O3 and nitrogen oxides (NOx) at three different sites (urban, suburban and rural) of Ningbo were continuously measured to investigate the spatiotemporal characteristics of O3 and its relationships with environmental variables. The diurnal O3 variations were characterized by afternoon maxima (38.7-53.1 ppb on annual average) and early morning minima (11.7-26.2 ppb) at all the three sites. Two seasonal peaks of O3 were observed in spring (April or May) and autumn (October) with minima being observed in winter (December). NOx levels showed generally opposite variations to that of O3 with diurnal and seasonal maxima occurring in morning/evening rush-hours and in winter, respectively. As to the inter-annual variations of air pollutants, generally decreasing and increasing trends were observed in NO and O3 levels, respectively, from 2012 to 2015 at both urban and suburban sites. O3 levels were positively correlated with temperature but negatively correlated with relative humidity and NOx levels. Significant differences in O3 levels were observed for different wind speeds and wind directions (p variation, higher levels of O3 were observed at the suburban and rural sites where less O3 was depleted by NO titration. In contrast, the urban site exhibited lower O3 but higher NOx levels due to the influence of traffic emissions. Larger amplitudes of diurnal and monthly O3 variations were observed at the suburban site than those at the urban and rural sites. In general, the O3 levels at the non-urban sites were more affected by the background transport, while both the local and regional contributions played roles in urban O3 variations. The annual average O3 mixing ratios (22.7-37.7 ppb) in Ningbo were generally similar to those of other regions around the world. However, the recommended air quality standards for O3 were often exceeded during warm

  3. Retention of sulfur and nitrogen oxides from the exhaust gases by radiolysis, a modern method of environmental protection

    International Nuclear Information System (INIS)

    Macarie, Rodica; Zissulescu, Ecaterina; Martin, Diana; Radoiu, Marilena

    2000-01-01

    Industry, especially the power industry, is a great generator of gaseous pollutants (SO x , NO x , CO 2 , CO). The oxides are responsible for the 'acid rains' which have a great negative impact on the environment, human beings and animals, while CO 2 emissions contribute to the increase of the greenhouse effect. Retention of the sulfur and nitrogen oxides from the exhaust gases can be carried out either by conventional methods (using chemical adsorbents) or by non-conventional ones (radiolysis). Recently, non-conventional methods have bee given priority, including exhaust gas irradiation with an accelerated electron beam as a more efficient alternative to the gas desulfurization. In order to increase the efficiency of the accelerated electron beam injected into the exhaust gas, the effect of microwave utilization has been investigated. The company S.C. ICPET S.A.-Bucuresti, in cooperation with INFLPR-Bucuresti, investigated the retention by radiolysis of the sulfur and nitrogen oxides from a synthetic mixture of exhaust gases in an installation developed in the laboratory by means of accelerated electron beams, microwaves and by the accelerated electron beams and microwave combined. The paper presents the results obtained in the laboratory experiments and the advantages of radiolysis in comparison with the chemical conventional methods, namely: simultaneous removal of SO 2 and NO x , solid by-products that can be used as fertilizers in agriculture, simple technologies that do not imply catalysts or adsorbents, no waste waters. (authors)

  4. Nitrogen-doped 3D reduced graphene oxide/polyaniline composite as active material for supercapacitor electrodes

    Science.gov (United States)

    Liu, Zhisen; Li, Dehao; Li, Zesheng; Liu, Zhenghui; Zhang, Zhiyuan

    2017-11-01

    A facile strategy for the fabrication of a nitrogen-doped 3D reduced graphene oxide (N-3D-rGO) macroporous structure is proposed in this paper. The proposed strategy used polystyrene microspheres as the templates and melamine as the nitrogen source. Using β-MnO2 as the oxidant, the as-prepared N-3D-rGO was then composited with polyaniline (PANI) nanowires (denoted as N-3D-rGO/PANI-B). The structure, morphology, and electrochemical properties of the composites were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, Brunauer-Emmett-Teller analysis, scanning electron microscopy, transmission electron microscopy, cyclic voltammetry, charge-discharge test, and electrochemical impedance spectroscopy. Results revealed that the N-3D-rGO/PANI-B composite has a better specific capacity than the composites prepared with 3D-rGO as the support material and peroxydisulfate as the oxidant. These results suggested that N-3D-rGO/PANI-B has potential applications in supercapacitors.

  5. Experiments on Nitrogen Oxide Production of Droplet Arrays Burning under Microgravity Conditions

    Science.gov (United States)

    Moesl, Klaus; Sattelmayer, Thomas; Kikuchi, Masao; Yamamoto, Shin; Yoda, Shinichi

    The optimization of the combustion process is top priority in current aero-engine and aircraft development, particularly from the perspectives of high efficiency, minimized fuel consumption, and a sustainable exhaust gas production. Aero-engines are exclusively liquid-fueled with a strong correlation between the combustion temperature and the emissions of nitric oxide (NOX ). Due to safety concerns, the progress in NOX reduction has been much slower than in stationary gas turbines. In the past, the mixing intensity in the primary zone of aero-engine combustors was improved and air staging implemented. An important question for future aero-engine combustors, consequently, is how partial vaporization influences the NOX emissions of spray flames? In order to address this question, the combustion of partially vaporized, linear droplet arrays was studied experimentally under microgravity conditions. The influence of fuel pre-vaporization on the NOX emissions was assessed in a wide range. The experiments were performed in a drop tower and a sounding rocket campaign. The microgravity environment provided ideal experiment conditions without the disturbing ef-fect of natural convection. This allowed the study of the interacting phenomena of multi-phase flow, thermodynamics, and chemical kinetics. This way the understanding of the physical and chemical processes related to droplet and spray combustion could be improved. The Bremen drop tower (ZARM) was utilized for the precursor campaign in July 2008, which was com-prised of 30 drops. The sounding rocket experiments, which totaled a microgravity duration of 6 minutes, were finally performed on the flight of TEXUS-46 in November 2009. On both campaigns the "Japanese Combustion Module" (JCM) was used. It is a cooperative experi-ment on droplet array combustion between the Japan Aerospace Exploration Agency (JAXA) and ESA's (European Space Agency) research team, working on the combustion properties of partially premixed sprays

  6. Adsorption of Polycyclic aromatic hydrocarbons (fluoranthene and anthracenemethanol) by functional graphene oxide and removal by pH and temperature-sensitive coagulation.

    Science.gov (United States)

    Zhang, Caili; Wu, Lin; Cai, Dongqing; Zhang, Caiyun; Wang, Ning; Zhang, Jing; Wu, Zhengyan

    2013-06-12

    A new kind of functional graphene oxide with fine stability in water was fabricated by mixing graphene oxide (GO) and brilliant blue (BB) with a certain weight ratio. The adsorption performance of this mixture of BB and GO (BBGO) to polycyclic aromatic hydrocarbons (anthracenemethanol (AC) and fluoranthene (FL)) was investigated, and the results indicated BBGO possessed adsorption capacity of 1.676 mmol/g and removal efficiency of 72.7% as to AC and adsorption capacity of 2.212 mmol/g and removal efficiency of 93.2% as to FL. After adsorption, pH and temperature-sensitive coagulation (PTC) method was used to remove the AC/BBGO or FL/BBGO complex and proved to be an effective approach to flocculate the AC/BBGO or FL/BBGO complex into large flocs, which tended to be removed from the aqueous solution.

  7. Attenuation of acute nitrogen mustard-induced lung injury, inflammation and fibrogenesis by a nitric oxide synthase inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Malaviya, Rama; Venosa, Alessandro [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Hall, LeRoy [Drug Safety Sciences, Johnson and Johnson, Raritan, NJ 08869 (United States); Gow, Andrew J. [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Sinko, Patrick J. [Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854 (United States); Laskin, Debra L., E-mail: laskin@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States)

    2012-12-15

    Nitrogen mustard (NM) is a toxic vesicant known to cause damage to the respiratory tract. Injury is associated with increased expression of inducible nitric oxide synthase (iNOS). In these studies we analyzed the effects of transient inhibition of iNOS using aminoguanidine (AG) on NM-induced pulmonary toxicity. Rats were treated intratracheally with 0.125 mg/kg NM or control. Bronchoalveolar lavage fluid (BAL) and lung tissue were collected 1 d–28 d later and lung injury, oxidative stress and fibrosis assessed. NM exposure resulted in progressive histopathological changes in the lung including multifocal lesions, perivascular and peribronchial edema, inflammatory cell accumulation, alveolar fibrin deposition, bronchiolization of alveolar septal walls, and fibrosis. This was correlated with trichrome staining and expression of proliferating cell nuclear antigen (PCNA). Expression of heme oxygenase (HO)-1 and manganese superoxide dismutase (Mn-SOD) was also increased in the lung following NM exposure, along with levels of protein and inflammatory cells in BAL, consistent with oxidative stress and alveolar-epithelial injury. Both classically activated proinflammatory (iNOS{sup +} and cyclooxygenase-2{sup +}) and alternatively activated profibrotic (YM-1{sup +} and galectin-3{sup +}) macrophages appeared in the lung following NM administration; this was evident within 1 d, and persisted for 28 d. AG administration (50 mg/kg, 2 ×/day, 1 d–3 d) abrogated NM-induced injury, oxidative stress and inflammation at 1 d and 3 d post exposure, with no effects at 7 d or 28 d. These findings indicate that nitric oxide generated via iNOS contributes to acute NM-induced lung toxicity, however, transient inhibition of iNOS is not sufficient to protect against pulmonary fibrosis. -- Highlights: ► Nitrogen mustard (NM) induces acute lung injury and fibrosis. ► Pulmonary toxicity is associated with increased expression of iNOS. ► Transient inhibition of iNOS attenuates acute

  8. Graphene oxide bonded fused-silica fiber for solid-phase microextraction-gas chromatography of polycyclic aromatic hydrocarbons in water.

    Science.gov (United States)

    Xu, Lili; Feng, Juanjuan; Li, Jubai; Liu, Xia; Jiang, Shengxiang

    2012-01-01

    A novel chemically bonded graphene oxide/fused-silica fiber was prepared and applied in solid-phase microextraction of six polycyclic aromatic hydrocarbons from water samples coupled with gas chromatography. It exhibited high extraction efficiency and excellent stability. Effects of extraction time, extraction temperature, ionic strength, stirring rate and desorption conditions were investigated and optimized in our work. Detection limits to the six polycyclic aromatic hydrocarbons were less than 0.08 μg/L, and their calibration curves were all linear (R(2)≥0.9954) in the range from 0.05 to 200 μg/L. Single fiber repeatability and fiber-to-fiber reproducibility were less than 6.13 and 15.87%, respectively. This novel fiber was then utilized to analyze two real water samples from the Yellow River and local waterworks, and the recoveries of samples spiked at 1 and 10 μg/L ranged from 84.48 to 118.24%. Compared with other coating materials, this graphene oxide-coated fiber showed many advantages: wide linear range, low detection limit, and good stability in acid, alkali, organic solutions and at high temperature. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Analysis of Chemical Reaction Kinetics Behavior of Nitrogen Oxide During Air-staged Combustion in Pulverized Boiler

    Directory of Open Access Journals (Sweden)

    Jun-Xia Zhang

    2016-03-01

    Full Text Available Because the air-staged combustion technology is one of the key technologies with low investment running costs and high emission reduction efficiency for the pulverized boiler, it is important to reveal the chemical reaction kinetics mechanism for developing various technologies of nitrogen oxide reduction emissions. At the present work, a three-dimensional mesh model of the large-scale four corner tangentially fired boiler furnace is established with the GAMBIT pre-processing of the FLUENT software. The partial turbulent premixed and diffusion flame was simulated for the air-staged combustion processing. Parameters distributions for the air-staged and no the air-staged were obtained, including in-furnace flow field, temperature field and nitrogen oxide concentration field. The results show that the air-staged has more regular velocity field, higher velocity of flue gas, higher turbulence intensity and more uniform temperature of flue gas. In addition, a lower negative pressure zone and lower O2 concentration zone is formed in the main combustion zone, which is conducive to the NO of fuel type reduced to N2, enhanced the effect of NOx reduction. Copyright © 2016 BCREC GROUP. All rights reserved Received: 5th November 2015; Revised: 14th January 2016; Accepted: 16th January 2016  How to Cite: Zhang, J.X., Zhang, J.F. (2016. Analysis of Chemical Reaction Kinetics Behavior of Nitrogen Oxide During Air-staged Combustion in Pulverized Boiler. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (1: 100-108. (doi:10.9767/bcrec.11.1.431.100-108 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.11.1.431.100-108

  10. Simulation of Working Processes in the Water-Tube Boiler Furnace with the Purpose of Reducing Emissions of Nitrogen Oxides

    Directory of Open Access Journals (Sweden)

    Redko A.A.

    2017-04-01

    Full Text Available A significant number of domestic and industrial boilers are in operation in Ukraine. Nitrogen oxides are the most dangerous among all combustion products that pollute the atmosphere, therefore, one should take some measures for decreasing the formation of nitrogen oxides during combustion. The studies were carried out at the boilers of low power (100 kW with a tubular radiator and an open end. The studies in the furnaces of industrial steam boilers having a tubular radiator with a closed end have not been done. The numerical study results of the gaseous fuel combustion processes in the furnace of a DE-10/14 steam water-tube boiler are presented. The fuel-air mixture is formed by premixing the 15% part of the air with a primary burner twist factor n=2.4 and a secondary burner twist factor n=1.6, and an air excess factor αв=10. As a result of the studies, the temperature and velocity distributions of gases in the combustion chamber, the density of heat flows on the screen tubular surfaces, and the concentrations of the combustion components were determined. Flue gas recirculation in the volume of 80-100% is provided, and the reversible movement of combustion products towards the combustion front provides a reduction in the concentration of nitrogen oxides up to 123-125 mg/m3 at the furnace outlet. Disadvantages are the following: the formation of stagnant zones near the end of the secondary radiator. The optimum diameter of the tubular radiator equals to two burners diameters and tubular radiator is located at a distance of one meter from the burner cutoff.

  11. Relationship between nitrogen cycling and nitrous oxide emission in grass-clover pasture

    OpenAIRE

    Ambus, P.

    2005-01-01

    The paper reports on a work assessing the relationship between gross N transformations in grass-clover soils and emissions of nitrous oxide. By this manner, the source strength of the biogenic processes responsible for nitrous oxide production is evaluated.

  12. Flare Temperature and Nitrogen Oxide Emission Reduction and Heat Transfer in the TGMP-314I Steam Boiler Firebox

    Energy Technology Data Exchange (ETDEWEB)

    Makarov, A. N., E-mail: tgtu-kafedra-ese@mail.ru [Tver’ State Technical University (Russian Federation)

    2016-07-15

    Asolution is given to the problem of heat transfer in the firebox of a steam boiler, taking account of the radiation from all quadrillions of atoms constituting the flare. An innovative firebox for a steam boiler is proposed: the lower part of the firebox is a rectangular parallelepiped and the upper part a four-sided pyramid. The calculations show that in the proposed firebox the nonuniformity of the heat-flux distribution is diminished along the height and perimeter of the walls and nitrogen oxide emissions are reduced.

  13. Current emission trends for nitrogen oxides, sulfur dioxide, and volatile organic compounds by month and state: Methodology and results

    International Nuclear Information System (INIS)

    Kohout, E.J.; Miller, D.J.; Nieves, L.A.; Rothman, D.S.; Saricks, C.L.; Stodolsky, F.; Hanson, D.A.

    1990-08-01

    This report presents estimates of monthly sulfur dioxide (SO 2 ), nitrogen oxides (NO x ), and nonmethane voltatile organic compound (VOC) emissions by sector, region, and state in the contiguous United States for the years 1975 through 1988. This work has been funded as part of the National Acid Precipitation Assessment Program's Emissions and Controls Task Group by the US Department of Energy (DOE) Office of Fossil Energy (FE). The DOE project officer is Edward C. Trexler, DOE/FE Office of Planning and Environment

  14. Contribution to the combustion and emission of nitrogen oxides of Kosovo and Kolubara coals in fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Radovanovic, M.; Savic, R.

    1996-12-31

    In this paper, the results of combustion of different sizes of domestic lignites Kosovo and Kolubara are presented. Investigation has been carried on a laboratory experimental facility for combustion in fluidized bed, power 1 kW. Specified amount of fuel is put into fluidized bed and temperature and concentration of combustion products (O{sub 2}, CO{sub 2}, CO, NO, NO{sub s} and SO{sub 2}) are recorded and produced. The emission of nitrogen oxides is specially treated in this paper. Also, the ignition delay of volatile matter, combustion of volatiles and total time of combustion are found. 25 refs., 9 figs., 4 tabs.

  15. High Pressure Preignition Chemistry of Hydrocarbons and Hydrocarbon Mixtures

    National Research Council Canada - National Science Library

    Cernansky, N.P

    1998-01-01

    .... The research program entailed mechanistic studies examining the oxidation chemistry of single-component hydrocarbons and ignition studies examining the overall ignition of pure single component fuels and fuel blends...

  16. Method for removing heavy metal and nitrogen oxides from flue gas, device for removing heavy metal and nitrogen oxides from flue gas

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hann-Sheng; Livengood, Charles David

    1997-12-01

    A method for the simultaneous removal of oxides and heavy metals from a fluid is provided comprising combining the fluid with compounds containing alkali and sulfur to create a mixture; spray drying the mixture to create a vapor phase and a solid phase; and isolating the vapor phase from the solid phase. A device is also provided comprising a means for spray-drying flue gas with alkali-sulfide containing liquor at a temperature sufficient to cause the flue gas to react with the compounds so as to create a gaseous fraction and a solid fraction and a means for directing the gaseous fraction to a fabric filter.

  17. A fungal P450 (CYP5136A3 capable of oxidizing polycyclic aromatic hydrocarbons and endocrine disrupting alkylphenols: role of Trp(129 and Leu(324.

    Directory of Open Access Journals (Sweden)

    Khajamohiddin Syed

    Full Text Available The model white rot fungus Phanerochaete chrysosporium, which is known for its versatile pollutant-biodegradation ability, possesses an extraordinarily large repertoire of P450 monooxygenases in its genome. However, the majority of these P450s have hitherto unknown function. Our initial studies using a genome-wide gene induction strategy revealed multiple P450s responsive to individual classes of xenobiotics. Here we report functional characterization of a cytochrome P450 monooxygenase, CYP5136A3 that showed common responsiveness and catalytic versatility towards endocrine-disrupting alkylphenols (APs and mutagenic/carcinogenic polycyclic aromatic hydrocarbons (PAHs. Using recombinant CYP5136A3, we demonstrated its oxidation activity towards APs with varying alkyl side-chain length (C3-C9, in addition to PAHs (3-4 ring size. AP oxidation involves hydroxylation at the terminal carbon of the alkyl side-chain (ω-oxidation. Structure-activity analysis based on a 3D model indicated a potential role of Trp(129 and Leu(324 in the oxidation mechanism of CYP5136A3. Replacing Trp(129 with Leu (W129L and Phe (W129F significantly diminished oxidation of both PAHs and APs. The W129L mutation caused greater reduction in phenanthrene oxidation (80% as compared to W129F which caused greater reduction in pyrene oxidation (88%. Almost complete loss of oxidation of C3-C8 APs (83-90% was observed for the W129L mutation as compared to W129F (28-41%. However, the two mutations showed a comparable loss (60-67% in C9-AP oxidation. Replacement of Leu(324 with Gly (L324G caused 42% and 54% decrease in oxidation activity towards phenanthrene and pyrene, respectively. This mutation also caused loss of activity towards C3-C8 APs (20-58%, and complete loss of activity toward nonylphenol (C9-AP. Collectively, the results suggest that Trp(129 and Leu(324 are critical in substrate recognition and/or regio-selective oxidation of PAHs and APs. To our knowledge, this is the first

  18. Comparing Mass Balance and Adjoint-Based 4D-VAR Methods for Inverse Modeling of Nitrogen Dioxide Columns for Nitrogen Oxide Emissions

    Science.gov (United States)

    Cooper, M.; Martin, R.; Henze, D. K.

    2016-12-01

    Nitrogen oxide (NOx ≡ NO + NO2) emission inventories can be improved through top-down constraints provided by inverse modeling of observed nitrogen dioxide (NO2) columns. Here we compare two methods of inverse modeling for emissions of NOx from synthetic NO2 columns generated from known emissions using the GEOS-Chem chemical transport model and its adjoint. We treat the adjoint-based 4D-VAR approach for estimating top-down emissions as a benchmark against which to evaluate variations on the mass balance method. We find that the standard mass balance algorithm can be improved by using an iterative process and using finite difference to calculate the local sensitivity of a change in NO2 columns to a change in emissions, resulting in a factor of two reduction in inversion error. In a simplified case study to recover local emission perturbations, horizontal smearing effects due to NOx transport were better resolved by the adjoint-based approach than by mass balance. For more complex emission changes that reflect real world scenarios, the iterative finite difference mass balance and adjoint methods produce similar top-down inventories when inverting hourly synthetic observations, both reducing the a priori error by factors of 3-4. Inversions of data sets that simulate satellite observations from low Earth and geostationary orbits also indicate that both the mass balance and adjoint inversions produce similar results, reducing a priori error by a factor of 3. As the iterative finite difference mass balance method provides similar accuracy as the adjoint-based 4D-VAR method, it offers the ability to efficiently estimate top-down emissions using models that do not have an adjoint.

  19. An MCM modeling study of nitryl chloride (ClNO2) impacts on oxidation, ozone production and nitrogen oxide partitioning in polluted continental outflow

    Science.gov (United States)

    Riedel, T. P.; Wolfe, G. M.; Danas, K. T.; Gilman, J. B.; Kuster, W. C.; Bon, D. M.; Vlasenko, A.; Li, S.-M.; Williams, E. J.; Lerner, B. M.; Veres, P. R.; Roberts, J. M.; Holloway, J. S.; Lefer, B.; Brown, S. S.; Thornton, J. A.

    2014-04-01

    Nitryl chloride (ClNO2) is produced at night by reactions of dinitrogen pentoxide (N2O5) on chloride containing surfaces. ClNO2 is photolyzed during the morning hours after sunrise to liberate highly reactive chlorine atoms (Cl·). This chemistry takes place primarily in polluted environments where the concentrations of N2O5 precursors (nitrogen oxide radicals and ozone) are high, though it likely occurs in remote regions at lower intensities. Recent field measurements have illustrated the potential importance of ClNO2 as a daytime Cl· source and a nighttime NOx reservoir. However, the fate of the Cl· and the overall impact of ClNO2 on regional photochemistry remain poorly constrained by measurements and models. To this end, we have incorporated ClNO2 production, photolysis, and subsequent Cl· reactions into an existing master chemical mechanism (MCM version 3.2) box model framework using observational constraints from the CalNex 2010 field study. Cl· reactions with a set of alkenes and alcohols, and the simplified multiphase chemistry of N2O5, ClNO2, HOCl, ClONO2, and Cl2, none of which are currently part of the MCM, have been added to the mechanism. The presence of ClNO2 produces significant changes to oxidants, ozone, and nitrogen oxide partitioning, relative to model runs excluding ClNO2 formation. From a nighttime maximum of 1.5 ppbv ClNO2, the daytime maximum Cl· concentration reaches 1 × 105 atoms cm-3 at 07:00 model time, reacting mostly with a large suite of volatile organic compounds (VOC) to produce 2.2 times more organic peroxy radicals in the morning than in the absence of ClNO2. In the presence of several ppbv of nitrogen oxide radicals (NOx = NO + NO2), these perturbations lead to similar enhancements in hydrogen oxide radicals (HOx = OH + HO2). Neglecting contributions from HONO, the total integrated daytime radical source is 17% larger when including ClNO2, which leads to a similar enhancement in integrated ozone production of 15%. Detectable

  20. Nitrogen-Based Diazeniumdiolates: Versatile Nitric Oxide-Releasing Compounds for Biomedical Research and Potential Clinical Applications

    Science.gov (United States)

    Saavedra, Joseph E.; Keefer, Larry K.

    2002-12-01

    Nitric oxide-generating ions of the nitrogen-diazeniumdiolate class with the general structure R1R2N-[N(O)NO]1 have been prepared by exposing primary, secondary, and polyamines to nitric oxide (NO). The resulting complexes regenerate bioactive NO at physiological pH with half-lives ranging from 2 seconds to 20 hours. An important goal in our research is to deliver NO to a specific organ or cell type where it is needed without affecting other NO-sensitive parts of the anatomy. By taking advantage of the remarkable chemical versatility of diazeniumdiolates, we have developed general strategies to prepare either tissue-selective NO donor drugs or materials containing NO delivery agents that can be physically placed near the target sites. Inhibition of blood coagulation, induction of penile erection, relief of pulmonary hypertension, and reversal of cerebral vasospasm are a few examples of their potential clinical applications. See Featured Molecules.