WorldWideScience

Sample records for hydrocarbons cu ni

  1. Preparation of nanoporous Ni and Ni-Cu by dealloying of rolled Ni-Mn and Ni-Cu-Mn alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hakamada, Masataka, E-mail: masataka-hakamada@aist.go.j [Materials Research Institute for Sustainable Development, National Institute of Advanced Industrial Science and Technology (AIST), 2266-98 Anagahora, Shimosihidami, Moriyama, Nagoya 463-8560 (Japan); Mabuchi, Mamoru [Department of Energy Science and Technology, Graduate School of Energy Science, Kyoto University, Kyoto 606-8501 (Japan)

    2009-10-19

    Nanoporous Ni, Ni-Cu and Cu with ligament sizes of 10-20 nm were fabricated by dealloying rolled Ni-Mn, Cu-Ni-Mn and Cu-Mn alloys, respectively. Unlike conventional Raney nickel composed of brittle Ni-Al intermetallic compounds, the initial alloys had good workability. Ni and Cu atoms formed a homogeneous solid solution in the nanoporous architecture. The ligament sizes of nanoporous Ni and Ni-Cu were smaller than that of nanoporous Cu, reflecting the difference between the surface diffusivities of Ni and Cu.

  2. Effect of surface structure on the catalytic behavior of Ni:Cu/Al and Ni:Cu:K/Al catalysts for methane decomposition

    Institute of Scientific and Technical Information of China (English)

    S.Tajammul Hussain; Sheraz Gul; Muhammed Mazhar; Dalaver H.Anjum; Faical Larachi

    2008-01-01

    Methane decomposition using nickel, copper, and aluminum (Ni:Cu/Al) and nickel, copper, potassium, and alu-minum (Ni:Cu:K/Al) modified nano catalysts has been investigated for carbon fibers, hydrogen and hydrocarbon production. X-ray photoelectron spectroscopy (XPS), static secondary ion mass spectrometry (SSIMS), thermal gravimetric analysis (TGA),Fourier transform infrared (FT-IR), secondary electron microscopy/X-ray energy dispersive (SEM-EDX), and temperature pro-grammed desorption (TPD) were used to depict the chemistry of the catalytic results. These techniques revealed the changes in surface morphology and structure of Ni, Cu, Al, and K, and formation of bimetallic and trimetallic surface cationic sites with sifferent cationic species, which resulted in the production of graphitic form of pure carbon on Ni:Cu/Al catalyst. The addition of K has a marked effect on the product selectivity and reactivity of the catalyst system. K addition restricts the formation of carbon on the surface and increases the production of hydrogen and C2, C3 hydrocarbons during the catalytic reaction whereas no hydrocarbons are produced on the sample without K. This study completely maps the modified surface structure and its re-lationship with the catalytic behavior of both systems. The process provides a flexible route for the production of carbon fibers and hydrogen on Ni:Cu/Al catalyst and hydrogen along with hydrocarbons on Ni:Cu:K/Al catalyst. The produced carbon fibers are imaged using a transmission electron microscope (TEM) for diameter size and wall structure determination. Hydrogen produced is COx free, which can be used directly in the fuel cell system. The effect of the addition of Cu and its transformation and interaction with Ni and K is responsible for the production of CO/CO2 free hydrogen, thus producing an environmental friendly clean energy.

  3. Dissolution and Interfacial Reactions of (Cu,Ni)6Sn5 Intermetallic Compound in Molten Sn-Cu-Ni Solders

    Science.gov (United States)

    Wang, Chao-hong; Lai, Wei-han; Chen, Sinn-wen

    2014-01-01

    (Cu,Ni)6Sn5 is an important intermetallic compound (IMC) in lead-free Sn-Ag-Cu solder joints on Ni substrate. The formation, growth, and microstructural evolution of (Cu,Ni)6Sn5 are closely correlated with the concentrations of Cu and Ni in the solder. This study reports the interfacial behaviors of (Cu,Ni)6Sn5 IMC (Sn-31 at.%Cu-24 at.%Ni) with various Sn-Cu, Sn-Ni, and Sn-Cu-Ni solders at 250°C. The (Cu,Ni)6Sn5 substrate remained intact for Sn-0.7 wt.%Cu solder. When the Cu concentration was decreased to 0.3 wt.%, (Cu,Ni)6Sn5 significantly dissolved into the molten solder. Moreover, (Cu,Ni)6Sn5 dissolution and (Ni,Cu)3Sn4 formation occurred simultaneously for the Sn-0.1 wt.%Ni solder. In Sn-0.5 wt.%Cu-0.2 wt.%Ni solder, many tiny (Cu,Ni)6Sn5 particulates were formed and dispersed in the solder matrix, while in Sn-0.3 wt.%Cu-0.2 wt.%Ni a lot of (Ni,Cu)3Sn4 grains were produced. Based on the local equilibrium hypothesis, these results are further discussed based on the liquid-(Cu, Ni)6Sn5-(Ni,Cu)3Sn4 tie-triangle, and the liquid apex is suggested to be very close to Sn-0.4 wt.%Cu-0.2 wt.%Ni.

  4. Electrodeposited NiCu Alloy Catalysts for Glucose Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jieun; Park, Hansoo; Kim, Sookil [Chung-Ang Univ., Seoul (Korea, Republic of); Ahn, Sang Hyun; Jang, Jong Hyun [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    2014-07-15

    NiCu alloys have been suggested as potential candidates for catalysts in glucose oxidation. In this study, NiCu alloys with different compositions were prepared on a glassy carbon substrate by changing the electrodeposition potential to examine the effect of Ni/Cu ratios in alloys on catalytic activity toward glucose oxidation. Cyclic voltammetry and chronoamperometry showed that NiCu alloys had higher catalytic activity than pure Ni and Cu catalysts. Especially, Ni{sub 59}Cu{sub 41} had superior catalytic activity, which was about twice that of Ni at a given oxidation potential. X-ray analyses showed that the oxidation state of Ni in NiCu alloys was increased with the content of Cu by lattice expansion. Ni components in alloys with higher oxidation state were more effective in the oxidation of glucose.

  5. Combustion Synthesis of Ti-2B-Cu/Ni and 3Ti-2BN-Cu/Ni Bilayered Cermets

    Institute of Scientific and Technical Information of China (English)

    Weiping SHEN; Wenbin CAO; Changchun GE; E.H.Grigoryan; A.E.Sytschev; A.S.Rogachev

    2003-01-01

    The effects of Cu and Ni (x=0, 10, 20 and 40 wt pct) and compaction pressures (12, 24, 84 and 108 MPa)on combustion wave velocity and wave front shape for Ti-2B-Cu/Ni and 3Ti-2BN-Cu/Ni bilayered cermets were investigated by a video camera. Since the boiling point of Cu is lower, the wave velocities of specimens are slower.Due to the higher specific heat of Ni than that of Cu, the wave velocities of specimens was slowed down a lot with increasing the Ni diluent. The wave velocity differences of the specimens containing Ni are more than that of the bilayered specimens containing Cu. Wave velocities of the specimens containing Ni increased more than that of the specimens containing Cu when higher pressure was employed for green mixture. The more the wave velocity difference of the bilayer, the more curved the specimen.

  6. CO2 activation on bimetallic CuNi nanoparticles☆

    Institute of Scientific and Technical Information of China (English)

    Natalie Austin; Brandon Butina; Giannis Mpourmpakis⁎

    2016-01-01

    Density functional theory calculations have been performed to investigate the structural, electronic, and CO2 adsorption properties of 55-atom bimetallic CuNi nanoparticles (NPs) in core-shell and decorated architectures, as well as of their monometallic counterparts. Our results revealed that with respect to the monometallic Cu55 and Ni55 parents, the formation of decorated Cu12Ni43 and core-shell Cu42Ni13 are energetically favorable. We found that CO2 chemisorbs on monometallic Ni55, core-shell Cu13Ni42, and decorated Cu12Ni43 and Cu43Ni12, whereas, it physisorbs on monometallic Cu55 and core-shell Cu42Ni13. The presence of surface Ni on the NPs is key in strongly adsorbing and activating the CO2 molecule (linear to bent transition and elongation of C˭O bonds). This activation occurs through a charge transfer from the NPs to the CO2 molecule, where the local metal d-orbital density localization on surface Ni plays a pivotal role. This work identifies insightful structure-property relationships for CO2 activation and highlights the importance of keeping a balance between NP stability and CO2 adsorption behavior in designing catalytic bimetallic NPs that activate CO2.

  7. CO2 activation on bimetallic CuNi nanoparticles

    Directory of Open Access Journals (Sweden)

    Natalie Austin

    2016-10-01

    Full Text Available Density functional theory calculations have been performed to investigate the structural, electronic, and CO2 adsorption properties of 55-atom bimetallic CuNi nanoparticles (NPs in core-shell and decorated architectures, as well as of their monometallic counterparts. Our results revealed that with respect to the monometallic Cu55 and Ni55 parents, the formation of decorated Cu12Ni43 and core-shell Cu42Ni13 are energetically favorable. We found that CO2 chemisorbs on monometallic Ni55, core-shell Cu13Ni42, and decorated Cu12Ni43 and Cu43Ni12, whereas, it physisorbs on monometallic Cu55 and core-shell Cu42Ni13. The presence of surface Ni on the NPs is key in strongly adsorbing and activating the CO2 molecule (linear to bent transition and elongation of C˭O bonds. This activation occurs through a charge transfer from the NPs to the CO2 molecule, where the local metal d-orbital density localization on surface Ni plays a pivotal role. This work identifies insightful structure-property relationships for CO2 activation and highlights the importance of keeping a balance between NP stability and CO2 adsorption behavior in designing catalytic bimetallic NPs that activate CO2.

  8. Reactions in Electrodeposited Cu/Sn and Cu/Ni/Sn Nanoscale Multilayers for Interconnects

    Directory of Open Access Journals (Sweden)

    Pay Ying Chia

    2016-05-01

    Full Text Available Miniaturization of electronic devices has led to the development of 3D IC packages which require ultra-small-scale interconnections. Such small interconnects can be completely converted into Cu-Sn based intermetallic compounds (IMCs after reflow. In an effort to improve IMC based interconnects, an attempt is made to add Ni to Cu-Sn-based IMCs. Multilayer interconnects consisting of stacks of Cu/Sn/Cu/Sn/Cu or Cu/Ni/Sn/Ni/Sn/Cu/Ni/Sn/Ni/Cu with Ni = 35 nm, 70 nm, and 150 nm were electrodeposited sequentially using copper pyrophosphate, tin methanesulfonic, and nickel Watts baths, respectively. These multilayer interconnects were investigated under room temperature aging conditions and for solid-liquid reactions, where the samples were subjected to 250 °C reflow for 60 s and also 300 °C for 3600 s. The progress of the reaction in the multilayers was monitored by using X-ray Diffraction, Scanning Electron Microscope, and Energy dispersive X-ray Spectroscopy. FIB-milled samples were also prepared for investigation under room temperature aging conditions. Results show that by inserting a 70 nanometres thick Ni layer between copper and tin, premature reaction between Cu and Sn at room temperature can be avoided. During short reflow, the addition of Ni suppresses formation of Cu3Sn IMC. With increasing Ni thickness, Cu consumption is decreased and Ni starts acting as a barrier layer. On the other hand, during long reflow, two types of IMC were found in the Cu/Ni/Sn samples which are the (Cu,Ni6Sn5 and (Cu,Ni3Sn, respectively. Details of the reaction sequence and mechanisms are discussed.

  9. Synthesis and magnetic properties of multilayer Ni/Cu and NiFe/Cu nanowires

    Indian Academy of Sciences (India)

    R S Liu; S C Chang; I Baginskiy; S F Hu; C Y Huang

    2006-07-01

    Highly ordered composite nanowires with multilayer Ni/Cu and NiFe/Cu have been fabricated by pulsed electrodeposition into nanoporous alumina membrane. The diameter of wires can be easily varied by pore size of alumina, ranging from 30 to 100 nm. The applied potential and the duration of each potential square pulse determine the thickness of the metal layers. The nanowires have been characterized by transmission electron microscopy (TEM), magnetic force microscopy (MFM), and vibrating sample magnetometer (VSM) measurements. The MFM images indicate that every ferromagnetic layer separated by Cu layer was present as single isolated domain-like magnet. This technique has potential use in the measurement and application of magnetic nanodevices.

  10. Mixing behaviors in Cu/Ni and Ni/V multilayers induced by cold rolling

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z. [Department of Materials Science and Engineering, University of Wisconsin-Madison, 1509 University Avenue, Madison, WI 53706 (United States); Perepezko, J.H., E-mail: perepezk@engr.wisc.edu [Department of Materials Science and Engineering, University of Wisconsin-Madison, 1509 University Avenue, Madison, WI 53706 (United States); Larson, D.; Reinhard, D. [CAMECA Instruments Inc., 5500 Nobel Drive, Madison, WI 53711 (United States)

    2015-09-15

    Highlights: • The composition profiles of Cu/Ni and Ni/V multilayers were investigated. • A compositional oscillation was observed in the Cu/Ni composition profile. • The Ni/V composition profile varies smoothly and continuously between end members. • The effective diffusion coefficients were enhanced by about 30 order of magnitudes. • The effective temperature were estimated as 946 K for Cu/Ni and 936 K for Ni/V. - Abstract: Multilayers of Cu60/Ni40 and Ni70/V30 foil arrays were cold rolled in order to study the transformation reactions and mixing behaviors induced by deformation. Upon cold rolling, the layer thicknesses were refined to about 20 nm and solid solution phases were induced from pure end members (i.e. Cu, Ni and V) in both cases. The composition profiles for Cu/Ni and Ni/V multilayer samples at the deformation level where the solid solution phases coexist with end members were investigated by means of atom probe tomography and electron energy loss spectrum, respectively. An oscillation in the composition of Cu–Ni solid solution phase was observed, however the composition profile of Ni/V shows a smoothly varying curve between the end members. The effective diffusion coefficients were promoted by about 30 orders of magnitude for both Cu/Ni and Ni/V compared to room temperature diffusion. The effective temperature for Cu/Ni multilayers after 36 passes and Ni/V after 60 passes are estimated as 946 K and 936 K respectively.

  11. Influence of electronic structure on Compton scattering through comparing Cu-Ni alloys with Cu-Ni powder mixtures

    Institute of Scientific and Technical Information of China (English)

    Guang LUO; Xianquan HU; Guangyu XIAO; Chunyang KONG

    2012-01-01

    The application fields of Compton scattering have been further broadened through the studies of theories and experiments as well as the electronic structure of the scatters.The relationship between the contents of binary alloys (also binary powder mixtures) and the number of Compton scattered photons has been thoroughly examined.The linear expression of the relationship has been obtained approximately according to the Compton scattering theory.And the relationship has been validated well through the Compton scattering experiments with the scatters of Cu-Ni binary alloys or Cu-Ni binary powder mixtures.Furthermore,it is found that the slope of Cu-Ni powder mixture series is steeper than that of Cu-Ni alloy series,and through the pseudopotential plane wave theory of DFT the microscopic principles of Compton scattering of Cu-Ni alloy and Cu-Ni powder mixture series have been discussed and compared with each other.The results show that the electronic structure is the main reason for the difference of the linear slopes,and the line slope of Cu-Ni powder mixtures series is steeper than that of Cu-Ni alloy series.

  12. Characterization of Electrodeposited Nanoporous Ni and NiCu Films

    Science.gov (United States)

    Koboski, Kyla; Hampton, Jennifer

    2013-03-01

    Nanoporous thin films are interesting candidates to catalyze certain reactions because of their large surface areas. This project focuses on the deposition of Ni and NiCu thin films on a Au substrate and further explores the catalysis of the hydrogen evolution reaction (HER). Depositions are created using controlled potential electrolysis. Samples are then dealloyed using linear sweep voltammetry. Before and after the dealloying, all the samples are characterized using multiple techniques. Electrochemical capacitance measurements allow comparisons of sample roughness. HER measurements characterize the reactivity of the sample with respect to the specific catalytic reaction. The Tafel equation is fit to the data to obtain information about the kinetics of the HER of the samples. Other methods for characterizing the samples include scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The use of SEM allows images to be taken of the deposition to determine the change in the structure pre- and post- dealloy of the sample. EDS allows the elemental composition of the deposition to be determined before and after the dealloy stage. This material is based upon work supported by the National Science Foundation under RUI Grant DMR-1104725, MRI Grant CHE-1126462, MRI Grant CHE-0959282, and ARI grant PHY-0963317.

  13. Interfacial Reactions in the Ni/Sn- xZn/Cu Sandwich Couples

    Science.gov (United States)

    Yen, Yee-Wen; Lin, Chung-Yung; Lai, Mei-Ting; Chen, Wan-Ching

    2016-01-01

    The interfacial reactions in Ni/Sn- xZn/Cu sandwich couples which were reflowed at 270°C for 1 h and then aged at 160°C for 1-1000 h were investigated. When the 1000- μm-thick Sn-Zn alloy reacted with Ni and Cu in this couple, the results indicated that the (Ni, Cu)3Sn4, (Ni, Cu)5Zn21, and Ni5Zn21 phases were formed at Sn-1Zn/Ni, Sn-5Zn/Ni, and Sn-9Zn/Ni interfaces for 1 h reflowing, respectively. After 1000 h aging, each intermetallic compound (IMC) was converted to (Cu, Ni, Zn)6Sn5, (Ni, Cu, Sn)5Zn21/Ni5Zn21, and Ni5Zn21 (two layers) phases in the related couples. On the Cu side, the Cu6Sn5 phase in the Sn-1Zn/Cu interface and the Cu5Zn8 phase in the Sn-5Zn/Cu and Sn-9Zn/Cu interfaces were observed when the couple was reflowed at 270°C for 1 h. After 100 h aging, the (Cu, Ni, Zn)6Sn5, Cu5Zn8/(Cu, Zn)6Sn5, and Cu5Zn8 phases were formed at the Sn-1Zn/Cu, Sn-5Zn/Cu and Sn-9Zn/Cu interfaces. When the Sn-Zn alloy thickness was decreased to 500 μm, the (Cu, Ni, Zn)6Sn5 phase at the Sn-1Zn/Ni interface and the (Ni, Cu, Sn)5Zn21 phase at the Sn-5Zn/Ni and Sn-9Zn/Ni interfaces were observed after 1 h reflowing. When the couple was aged at 160°C for 1000 h, each IMC was converted to (Cu, Ni, Zn)6Sn5 and Cu5Zn8/(Cu, Ni, Sn)Zn/Ni5Zn21 phases at the Sn-1Zn/Ni and Sn-(5, 9)Zn/Ni interfaces. (Cu, Ni, Zn)6Sn5 and Cu5Zn8 were, respectively, formed at the Sn-1Zn/Cu and Sn-(5, 9)Zn/Cu interfaces for 1 h reflowing. After 100 h aging, the IMCs were converted to (Cu, Ni, Zn)6Sn5 and Cu5Zn8/(Cu, Zn)6Sn5 phases. This current study reveals that the IMC formation in Ni/(Sn- xZn)/Cu sandwich couples are very sensitive to the Zn concentration and thickness in Sn- xZn alloys.

  14. Controlled growth of Cu-Ni nanowires and nanospheres for enhanced microwave absorption properties

    Science.gov (United States)

    Wang, Xiaoxia; Dong, Lifeng; Zhang, Baoqin; Yu, Mingxun; Liu, Jingquan

    2016-03-01

    Copper is a good dielectric loss material but has low stability, whereas nickel is a good magnetic loss material and is corrosion resistant but with low conductivity, therefore Cu-Ni hybrid nanostructures have synergistic advantages as microwave absorption (MA) materials. Different Cu/Ni molar ratios of bimetallic nanowires (Cu13@Ni7, Cu5@Ni5 and Cu7@Ni13) and nanospheres (Cu13@Ni7, Cu5@Ni5 and Cu1@Ni3) have been successfully synthesized via facile reduction of hydrazine under similar reaction conditions, and the morphology can be easily tuned by varying the feed ratio or the complexing agent. Apart from the concentrations of Cu2+ and Ni2+, the reduction parameters are similar for all samples to confirm the effects of the Cu/Ni molar ratio and morphology on MA properties. Ni is incorporated into the Cu-Ni nanomaterials as a shell over the Cu core at low temperature, as proved by XRD, SEM, TEM and XPS. Through the complex relative permittivity and permeability, reflection loss was evaluated, which revealed that the MA capacity greatly depended on the Cu/Ni molar ratio and morphology. For Cu@Ni nanowires, as the molar ratio of Ni shell increased the MA properties decreased accordingly. However, for Cu@Ni nanospheres, the opposite trend was found, that is, as the molar ratio of the Ni shell increased the MA properties increased.

  15. 界面耦合作用对Cu(Ni)/Sn-Ag-Cu/Cu(Ni)BGA 焊点界面IMC形成与演化的影响%EFFECT OF THE CROSS-INTERACTION ON THE FORMATION AND EVOLUTION OF INTERMETALLIC COMPOUNDS IN Cu(Ni)/Sn-Ag-Cu/Cu(Ni) BGA STRUCTURE SOLDER JOINTS

    Institute of Scientific and Technical Information of China (English)

    李勋平; 周敏波; 夏建民; 马骁; 张新平

    2011-01-01

    研究了焊盘材料界面耦合作用对Cu(Ni)/Sn-3.0Ag-0.5Cu/Cu(Ni)BGA(Ball Grid Array)结构焊点焊后态和125℃等温时效过程中界面金属间化合物(IMC)的成分、形貌和生长动力学的影响.结果表明,凸点下金属层(UBM)Ni界面IMC的成分与钎料中Cu含量有关,钎料中Cu含量较高时界面IMC为(Cu,Ni)6Sn5,而Cu含量较低时,则生成(Cu,Ni)3Sn4;Cu-Ni耦合易导致Cu/Sn-3.0Ag-0.5Cu/Ni焊点中钎料/Ni界面IMC异常生长并产生剥离而进入钎料.125℃等温时效过程中,Sn-3.0Ag-0.5Cu/Cu界面IMC的生长速率常数随钎料中Cu含量增加而提高,Cu-Cu耦合降低一次回流侧IMC生长速率常数;Cu-Ni耦合和Ni-Ni耦合均导致焊点一次回流Ni侧界面IMC的生长速率常数增大,但Ni对界面IMC生长动力学的影响大于Cu;Ni有利于抑制Cu界面Cu3Sn生长,降低界面IMC生长速率,但Cu-Ni耦合对Cu界面Cu3Sn中Kirkendall空洞率无明显影响.%The formation and evolution of interfacial intermetallic compounds (IMCs) in Cu(Ni)/Sn-3.0Ag-0.5Cu/Cu(Ni) BGA (Ball Grid Array) structure solder joints both in the asreflowed state and undergoing isothermal aging at 125 C were investigated. The results show that there exists a significant cross-interaction effect of the solder pad/under bump metal (UBM) on the composition, morphology and growth kinetics of interfacial IMCs in solder joints. The reactions of solder/Ni UBM strongly depends on the Cu content of the solder, for a high Cu content, a continuous (Cu, Ni)6Sn5 layer forms at the interface, while for a low Cu content, a continuous (Ni, Cu)3Sn4 layer appears at the interface. The cross-interaction of Cu and Ni in Cu/Sn-3.0Ag-0.5Cu(SAC)/Ni solder joints has obvious influence on the composition and morphology of the interfacial IMC; and the IMC spalling phenomenon occurs at the interface of Ni side. During isothermal aging at 125 ℃, the growth rate constant of the interfacial IMC layer in SAC/Cu and Cu/SAC/Cu joints increases with

  16. within the Selebi Phikwe Ni-Cu mine area, Botswana

    African Journals Online (AJOL)

    are on going nickel-copper (Ni-Cu) mining and smelting activities. Through the administration of ..... Ekosse G. Heavy metals concentrations in the biophysical environment around ... Totolo O. Mineralogy of tailings dump around. Selebi Phikwe ...

  17. Stripe-to-bubble transition of magnetic domains at the spin reorientation of (Fe/Ni)/Cu/Ni/Cu(001)

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J.; Choi, J.; Won, C.; Wu, Y. Z.; Scholl, A.; Doran, A.; Hwang, Chanyong; Qiu, Z.

    2010-06-09

    Magnetic domain evolution at the spin reorientation transition (SRT) of (Fe/Ni)/Cu/Ni/Cu(001) is investigated using photoemission electron microscopy. While the (Fe/Ni) layer exhibits the SRT, the interlayer coupling of the perpendicularly magnetized Ni layer to the (Fe/Ni) layer serves as a virtual perpendicular magnetic field exerted on the (Fe/Ni) layer. We find that the perpendicular virtual magnetic field breaks the up-down symmetry of the (Fe/Ni) stripe domains to induce a net magnetization in the normal direction of the film. Moreover, as the virtual magnetic field increases to exceed a critical field, the stripe domain phase evolves into a bubble domain phase. Although the critical field depends on the Fe film thickness, we show that the area fraction of the minority domain exhibits a universal value that determines the stripe-to-bubble phase transition.

  18. Laser clad AlSiCuNi functionally graded coatings

    NARCIS (Netherlands)

    Pei, Yutao; de Hosson, J.T.M.; Brebbia, CA

    2001-01-01

    This paper presents an exploration of laser clad AlSiCuNi-alloy FGCs on cast Al-alloy substrates. SEM microstructure observations indicate that, besides Si primary particles, hard Al3Ni2 compounds also exhibits a continuous increase in both particle sizes and volume fractions from the bottom to the

  19. Laser clad AlSiCuNi functionally graded coatings

    NARCIS (Netherlands)

    Pei, Yutao; de Hosson, J.T.M.; Brebbia, CA

    2001-01-01

    This paper presents an exploration of laser clad AlSiCuNi-alloy FGCs on cast Al-alloy substrates. SEM microstructure observations indicate that, besides Si primary particles, hard Al3Ni2 compounds also exhibits a continuous increase in both particle sizes and volume fractions from the bottom to the

  20. Preparation of ~(64)Ni-Gd-Cu Target

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The three-layer-sandwich targets of 64Ni-Gd-Cu needed in the physics experiment were prepared. The middle layers are thin ferromagnetic Gd layers of about 1.7 mg/cm2, recoil stopper layers are thick crystallized and defect-free Cu layers of about 12

  1. Vibrations on Cu surfaces covered with Ni monolayer

    Science.gov (United States)

    Sklyadneva, I. Yu.; Rusina, G. G.; Chulkov, E. V.

    1999-08-01

    Vibrational modes on the Cu(100) and Cu(111) surfaces covered with a Ni monolayer have been calculated using the embedded-atom method. A detailed discussion of the dispersion relations and polarizations of adsorbate modes and surface phonons is presented. The dispersion of the Rayleigh phonon is in good agreement with the experimental EELS data. The changes in interatomic force constants are discussed.

  2. Third order elastic constants of bcc Cu-Al-Ni

    OpenAIRE

    Gonzàlez Comas, Alfons; Mañosa, Lluís

    1996-01-01

    We have measured the changes in the ultrasonic wave velocity, induced by the application of uniaxial stresses in a Cu-Al-Ni single crystal. From these measurements, the complete set of third-order elastic constants has been obtained. The comparison of results for Cu-Al-Ni with available data for other Cu-based alloys has shown that all these alloys exhibit similar anharmonic behavior. By using the measured elastic constants in a Landau expansion for elastic phase transitions, we have been abl...

  3. Modified Ni-Cu catalysts for ethanol steam reforming

    Science.gov (United States)

    Dan, M.; Mihet, M.; Almasan, V.; Borodi, G.; Katona, G.; Muresan, L.; Lazar, M. D.

    2013-11-01

    Three Ni-Cu catalysts, having different Cu content, supported on γ-alumina were synthesized by wet co-impregnation method, characterized and tested in the ethanol steam reforming (ESR) reaction. The catalysts were characterized for determination of: total surface area and porosity (N2 adsorption - desorption using BET and Dollimer Heal methods), Ni surface area (hydrogen chemisorption), crystallinity and Ni crystallites size (X-Ray Diffraction), type of catalytic active centers (Hydrogen Temperature Programmed Reduction). Total surface area and Ni crystallites size are not significantly influenced by the addition of Cu, while Ni surface area is drastically diminished by increasing of Cu concentration. Steam reforming experiments were performed at atmospheric pressure, temperature range 150-350°C, and ethanol - water molar ration of 1 at 30, using Ar as carrier gas. Ethanol conversion and hydrogen production increase by the addition of Cu. At 350°C there is a direct connection between hydrogen production and Cu concentration. Catalysts deactivation in 24h time on stream was studied by Transmission Electron Microscopy (TEM) and temperature-programmed reduction (TPR) on used catalysts. Coke deposition was observed at all studied temperatures; at 150°C amorphous carbon was evidenced, while at 350°C crystalline, filamentous carbon is formed.

  4. Magnetron sputtered Cu{sub 3}N/NiTiCu shape memory thin film heterostructures for MEMS applications

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Navjot; Choudhary, Nitin [Indian Institute of Technology Roorkee, Roorkee, Functional Nanomaterials Research Lab, Department of Physics and Centre of Nanotechnology (India); Goyal, Rajendra N. [Indian Institute of Technology, Roorkee, Department of Chemistry (India); Viladkar, S. [Indian Institute of Technology Roorkee, Roorkee, Functional Nanomaterials Research Lab, Department of Physics and Centre of Nanotechnology (India); Matai, I.; Gopinath, P. [Indian Institute of Technology, Roorkee, Centre for Nanotechnology (India); Chockalingam, S. [Indian Institute of Technology, Guwahati, Department of Biotechnology (India); Kaur, Davinder, E-mail: dkaurfph@iitr.ernet.in [Indian Institute of Technology Roorkee, Roorkee, Functional Nanomaterials Research Lab, Department of Physics and Centre of Nanotechnology (India)

    2013-03-15

    In the present study, for the first time, Cu{sub 3}N/NiTiCu/Si heterostructures were successfully grown using magnetron sputtering technique. Nanocrystalline copper nitride (Cu{sub 3}N with thickness {approx}200 nm) thin films and copper nanodots were subsequently deposited on the surface of 2-{mu}m-thick NiTiCu shape memory thin films in order to improve the surface corrosion and nickel release properties of NiTiCu thin films. Interestingly, the phase transformation from martensite phase to austenite phase has been observed in Cu{sub 3}N/NiTiCu heterostructures with corresponding change in texture and surface morphology of top Cu{sub 3}N films. Field emission scanning electron microscopy and atomic force microscope images of the heterostructures reveals the formation of 20-nm-sized copper nanodots on NiTiCu surface at higher deposition temperature (450 Degree-Sign C) of Cu{sub 3}N. Cu{sub 3}N passivated NiTiCu films possess low corrosion current density with higher corrosion potential and, therefore, better corrosion resistance as compared to pure NiTiCu films. The concentration of Ni released from the Cu{sub 3}N/NiTiCu samples was observed to be much less than that of pure NiTiCu film. It can be reduced to the factor of about one-ninth after the surface passivation resulting in smooth, homogeneous and highly corrosion resistant surface. The antibacterial and cytotoxicity of pure and Cu{sub 3}N coated NiTiCu thin films were investigated through green fluorescent protein expressing E. coli bacteria and human embryonic kidney cells. The results show the strong antibacterial property and non cytotoxicity of Cu{sub 3}N/NiTiCu heterostructure. This work is of immense technological importance due to variety of BioMEMS applications.

  5. Magnetic Properties of Grain Boundaries of Nanocrystalline Ni and of Ni Precipitates in Nanocrystalline NiCu Alloys

    Science.gov (United States)

    Wolf, H.; Guan, Z.; Li, X.; Wichert, Th.

    2001-11-01

    Perturbed γγ-angular correlation spectroscopy (PAC) was used to investigate nanocrystalline Ni and NiCu alloys, which are prepared by pulsed electrodeposition (PED). Using diffusion for doping nanocrystalline Ni with 111In four different ordered grain boundary structures are observed, which are characterized by unique electric field gradients. The incorporation of 111In on substitutional bulk sites of Ni is caused by moving grain boundaries below 1000 K and by volume diffusion above 1000 K. The nanocrystalline NiCu alloys prepared by PED are microscopically inhomogeneous as observed by PAC. In contrast, this inhomogeneity cannot be detected by X-ray diffraction. The influence of the temperature of the electrolyte, the current density during deposition, and the optional addition of saccharin to the electrolyte on the homogeneity of nanocrystalline NiCu alloys was investigated.

  6. Preparation and Properties of Amorphous NiFe/Cu/NiFe Thin Films

    Institute of Scientific and Technical Information of China (English)

    YE Yun; JIANG Ya-dong; HU Wen-cheng; ZENG Hong-juan

    2004-01-01

    The amorphous of Permalloy on the copper subtract was studied using composite electroplating method. A portion of hydrogen brings the counteraction on the surface of cathode leading nickel-iron alloys to be anomalous in the process of co-depositing. The results of X-ray diffraction (XRD) show that the Ni-Fe alloys layer is amorphous. The Giant Magneto -Impedance (GMI) effect of Ni-Fe alloys was obtained under the optimal conditions, dependence on the soft magnetic property of Ni-Fe amorphous thin film. As a result, the ratios△ Z/Z of NiFe/Cu/NiFe amorphous thin film are 30% at 40 kHz which is in low frequency. Furthermore, the GMI value of NiFe/Cu/NiFe amorphous thin film with a sandwich structure is higher than that of single-layer ferromagnetic films of the same thickness.

  7. Magnetic behaviour investigation on symmetric spin valves of Co/Cu/NiFe and NiFe/Cu/Co

    Institute of Scientific and Technical Information of China (English)

    李铁; 沈鸿烈

    2002-01-01

    In this paper, we have obtained and investigated the magnetic behaviours of the ferromagnetic layer in thesymmetric spin valves of Co/Cu/NiFe and NiFe/Cu/Co by measuring with a vibrating sample magnetometer andanalysing in terms of the multi-domain Ising models. It has been found that some magnetic layer can have quitedifferent magnetic behaviours in different structures of spin valves, depending on the properties of the under-layer. Inour investigation, we have found that the magnetic behaviour of a Co layer depends mainly on the magnetization of theunder-layer, whereas this is not the case for the NiFe layer.

  8. Supercoducting property of Zr-Cu-Al-Ni-Nb alloys

    Science.gov (United States)

    Okai, D.; Motoyama, G.; Kimura, H.; Inoue, A.

    The superconducting property of Zr55Cu(30-X)Al10Ni5NbX alloys prepared by arc melting and liquid quenching methods was investigated by magnetic susceptibility measurements. The crystalline alloys with X = 0∼25 at.% prepared by arc melting method exhibited superconductivity with maximum Tc,on of 10.1 K. The alloys (X = 10∼23 at.%) with crystalline particles embedded in an amorphous structure, which were fabricated by melt spinning method, showed superconductivity with Tc,on of less than 4.0 K. The superconducting property of the Zr-Cu-Al-Ni-Nb alloys was attributed to superconducting phases of Zr2Cu, Zr2Ni, Zr65Al10Nb25 and Zr-Nb contained in the Zr-Cu-Al-Ni-Nb alloys. The melt-spun Zr55Cu(30-X)Al10Ni5NbX (X = 10∼20 at.%) alloys exhibited glass transition at 718∼743 K and were found to be superconducting metallic glasses.

  9. First principles calculations on Ni impurities in Cu clusters

    Energy Technology Data Exchange (ETDEWEB)

    Ricardo-Chavez, J.L. [Laboratoire de Physique Quantique, UMR 5626 du CNRS, Universite Paul Sabatier, 31062 Toulouse (France)]. E-mail: ricardo@irsamc.ups-tlse.fr; Pastor, G.M. [Laboratoire de Physique Quantique, UMR 5626 du CNRS, Universite Paul Sabatier, 31062 Toulouse (France)

    2005-07-15

    Structural and magnetic properties of small NiCu{sub N-1} clusters are determined in the framework of Kohn-Sham density-functional theory (DFT). Besides some changes in bond length, the calculated structures for N=<5 atoms are similar to those of pure Cu{sub N}. For the optimal NiCu{sub N-1} geometry the Ni ion occupies the most-coordinated atomic position and the ground-state corresponds to a minimum-spin configuration (S{sub z}=0 or 12). Interesting correlations between cluster structure and magnetism are revealed by varying the total spin. The possible consequences of electron correlations and finite-temperature effects are briefly discussed.

  10. A dilute Cu(Ni) alloy for synthesis of large-area Bernal stacked bilayer graphene using atmospheric pressure chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Madito, M. J.; Bello, A.; Dangbegnon, J. K.; Momodu, D. Y.; Masikhwa, T. M.; Barzegar, F.; Manyala, N., E-mail: ncholu.manyala@up.ac.za [Department of Physics, Institute of Applied Materials, SARCHI Chair in Carbon Technology and Materials, University of Pretoria, Pretoria 0028 (South Africa); Oliphant, C. J.; Jordaan, W. A. [National Metrology Institute of South Africa, Private Bag X34, Lynwood Ridge, Pretoria 0040 (South Africa); Fabiane, M. [Department of Physics, Institute of Applied Materials, SARCHI Chair in Carbon Technology and Materials, University of Pretoria, Pretoria 0028 (South Africa); Department of Physics, National University of Lesotho, P.O. Roma 180 (Lesotho)

    2016-01-07

    A bilayer graphene film obtained on copper (Cu) foil is known to have a significant fraction of non-Bernal (AB) stacking and on copper/nickel (Cu/Ni) thin films is known to grow over a large-area with AB stacking. In this study, annealed Cu foils for graphene growth were doped with small concentrations of Ni to obtain dilute Cu(Ni) alloys in which the hydrocarbon decomposition rate of Cu will be enhanced by Ni during synthesis of large-area AB-stacked bilayer graphene using atmospheric pressure chemical vapour deposition. The Ni doped concentration and the Ni homogeneous distribution in Cu foil were confirmed with inductively coupled plasma optical emission spectrometry and proton-induced X-ray emission. An electron backscatter diffraction map showed that Cu foils have a single (001) surface orientation which leads to a uniform growth rate on Cu surface in early stages of graphene growth and also leads to a uniform Ni surface concentration distribution through segregation kinetics. The increase in Ni surface concentration in foils was investigated with time-of-flight secondary ion mass spectrometry. The quality of graphene, the number of graphene layers, and the layers stacking order in synthesized bilayer graphene films were confirmed by Raman and electron diffraction measurements. A four point probe station was used to measure the sheet resistance of graphene films. As compared to Cu foil, the prepared dilute Cu(Ni) alloy demonstrated the good capability of growing large-area AB-stacked bilayer graphene film by increasing Ni content in Cu surface layer.

  11. Synthesis of CuNi/C and CuNi/γ-Al2O3 Catalysts for the Reverse Water Gas Shift Reaction

    Directory of Open Access Journals (Sweden)

    Maxime Lortie

    2015-01-01

    Full Text Available A new polyol synthesis method is described in which CuNi nanoparticles of different Cu/Ni atomic ratios were supported on both carbon and gamma-alumina and compared with Pt catalysts using the reverse water gas shift, RWGS, reaction. All catalysts were highly selective for CO formation. The concentration of CH4 was less than the detection limit. Cu was the most abundant metal on the CuNi alloy surfaces, as determined by X-ray photoelectron spectroscopy, XPS, measurements. Only one CuNi alloy catalyst, Cu50Ni50/C, appeared to be as thermally stable as the Pt/C catalysts. After three temperature cycles, from 400 to 700°C, the CO yield at 700°C obtained using the Cu50Ni50/C catalyst was comparable to that obtained using a Pt/C catalyst.

  12. Crystal structure and magnetic properties of the off-stoichiometric compounds CeNi sub 3 Cu sub 3 and CeNi sub 4 Cu sub 2

    CERN Document Server

    Moze, O; Brück, E; Buschow, K H J

    1998-01-01

    The crystallographic properties of the compounds CeNi sub 3 Cu sub 3 and CeNi sub 4 Cu sub 2 have been investigated by time-of-flight neutron diffraction. A Rietveld profile refinement of the data shows that these compounds crystallize in the hexagonal TbCu sub 7 -type structure and that Ni atoms have a greater preference as compared with Cu atoms for occupying the 2e dumb-bell site. A site preference of Cu atoms for the 2c sites is observed. Magnetic measurements made on these compounds show that the trivalent character of the Ce atoms increases with Cu concentration. (author)

  13. Cu-Ni nanoparticle-decorated graphene based photodetector

    Science.gov (United States)

    Kumar, Anil; Husale, Sudhir; Srivastava, A. K.; Dutta, P. K.; Dhar, Ajay

    2014-06-01

    We report a simple and straight forward approach for the synthesis of Cu-Ni graphene hybrid nano-composites. These nano-composites have been characterized using AFM, XRD, FTIR spectroscopy and HRTEM. The characterization data clearly shows uniform decoration of Cu-Ni nanoparticles on graphene layers. A thin film of these nano-composites was found to exhibit unique electrical and photoresponse properties, which may be attributed to photothermoelectric and photovoltaic effects. The photocurrent measurements indicate superior light absorption and long lifetime of this device.We report a simple and straight forward approach for the synthesis of Cu-Ni graphene hybrid nano-composites. These nano-composites have been characterized using AFM, XRD, FTIR spectroscopy and HRTEM. The characterization data clearly shows uniform decoration of Cu-Ni nanoparticles on graphene layers. A thin film of these nano-composites was found to exhibit unique electrical and photoresponse properties, which may be attributed to photothermoelectric and photovoltaic effects. The photocurrent measurements indicate superior light absorption and long lifetime of this device. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr00916a

  14. Unusual strain relaxation in Cu thin films on Ni(001)

    DEFF Research Database (Denmark)

    Rasmussen, F.B.; Baker, J.; Nielsen, M.;

    1997-01-01

    Surface x-ray diffraction has been used to study the growth of thin Cu films on Ni(001). We give direct evidence for the formation of embedded wedges with internal {111} facets in the film, as recently suggested by Muller et al. [Phys. Rev. Lett. 76, 2358 (1996)]. The unusual strain distribution...

  15. Investigation on the Microstructure, Interfacial IMC Layer, and Mechanical Properties of Cu/Sn-0.7Cu- xNi/Cu Solder Joints

    Science.gov (United States)

    Yang, Li; Ge, Jinguo; Zhang, Yaocheng; Dai, Jun; Liu, Haixiang; Xiang, Jicen

    2016-07-01

    Sn-0.7Cu- xNi composite solder has been fabricated via mechanical mixing of different weight percentages of Ni particles with Sn-0.7Cu solder paste, and the effect of the Ni concentration on the microstructure, wettability, and tensile properties of Cu/Sn-0.7Cu- xNi/Cu solder joints investigated. The results show that refined dot-shaped particles of intermetallic compounds (IMCs) are uniformly dispersed in a primary β-Sn matrix in the Cu/Sn-0.7Cu-(0.05-0.1)Ni/Cu solder joints. The interfacial IMC layer thickness increased slightly when adding Ni content to 0.05 wt.%, then rapidly when further increasing the Ni concentration to 0.4 wt.%. Excellent wettability with bright appearance was obtained for the Sn-0.7Cu-0.05Ni solder due to diminished interfacial tension. The tensile properties improved after adding Ni content to 0.05 wt.% due to the presence of the refined dot-like IMC particles, in agreement with theoretical predictions based on the combination of dispersion and grain-refinement strengthening mechanisms. Refined microstructure and enhanced mechanical properties were obtained for the Cu/Sn-0.7Cu-0.05Ni/Cu solder joint.

  16. Effect of Cross-Interaction between Ni and Cu on Growth Kinetics of Intermetallic Compounds in Ni/Sn/Cu Diffusion Couples during Aging

    Science.gov (United States)

    Hong, K. K.; Ryu, J. B.; Park, C. Y.; Huh, J. Y.

    2008-01-01

    The solid-state, cross-interaction between the Ni layer on the component side and the Cu pad on the printed circuit board (PCB) side in ball grid array (BGA) solder joints was investigated by employing Ni(15 μm)/Sn(65 μm)/Cu ternary diffusion couples. The ternary diffusion couples were prepared by sequentially electroplating Sn and Ni on a Cu foil and were aged isothermally at 150, 180, and 200°C. The growth of the intermetallic compound (IMC) layer on the Ni side was coupled with that on the Cu side by the mass flux across the Sn layer that was caused by the difference in the Ni content between the (Cu1- x Ni x )6Sn5 layer on the Ni side and the (Cu1- y Ni y )6Sn5 layer on the Cu side. As the consequence of the coupling, the growth rate of the (Cu1- x Ni x )6 Sn5 layer on the Ni side was rapidly accelerated by decreasing Sn layer thickness and increasing aging temperature. Owing to the cross-interaction with the top Ni layer, the growth rate of the (Cu1- y Ni y )6Sn5 layer on the Cu side was accelerated at 150°C and 180°C but was retarded at 200°C, while the growth rate of the Cu3Sn layer was always retarded. The growth kinetic model proposed in an attempt to interpret the experimental results was able to reproduce qualitatively all of the important experimental observations pertaining to the growth of the IMC layers in the Ni/Sn/Cu diffusion couple.

  17. Rapid dechlorination of chlorophenols in aqueous solution by [Ni|Cu] microcell

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Lifeng, E-mail: yinlifeng@gmail.com [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875 (China); Dai, Yunrong, E-mail: daiyunrong@mail.bnu.edu.cn [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875 (China); Niu, Junfeng, E-mail: junfengn@bnu.edu.cn [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875 (China); Bao, Yueping, E-mail: baoyueping@mail.bnu.edu.cn [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875 (China); Shen, Zhenyao, E-mail: zyshen@bnu.edu.cn [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875 (China)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer Rapid dechlorination of chlorophenols in aqueous solution can be achieved by [Ni|Cu] mixture. Black-Right-Pointing-Pointer The decomposition rates of chlorophenols by [Ni|Cu] were decuple of that by [Fe|Ni], [Fe|Cu], [Zn|Cu], or [Sn|Cu]. Black-Right-Pointing-Pointer Ni{sup 0} acts as an indirect reductant and catalyst in dechlorination reaction. Black-Right-Pointing-Pointer The H* corridor mechanism from Ni to Cu is proposed based on hydrogen spillover. - Abstract: The [Ni|Cu] microcell was prepared by mixing the Ni{sup 0} and Cu{sup 0} particles. The composition and crystal form were characterized by X-ray diffraction (XRD) and scanning electron microscope. The results evidenced the zero-valence metals Ni and Cu were exposed on the surface of particles mixture. The [Ni|Cu] microcell was employed to decompose chlorophenols in aqueous solution by reductive dechlorination. The dechlorination rates of chlorophenols by [Ni|Cu] were >10 times faster than those by [Fe|Cu], [Zn|Cu], [Sn|Cu], and [Fe|Ni] mixtures under the same conditions. [Ni|Cu] is different from other zero valent metals (ZVMs) in that it performed the best at neutral pH. The main products of chlorophenol dechlorination were cyclohexanol and cyclohexanone. The reduction kinetics was between pseudo zero-order and first-order, depending on the pH, concentration, and temperature. These results, combined with electrochemical analysis, suggested that Ni{sup 0} acted as a reductant and catalyst in dechlorination reaction. The H* corridor mechanism from Ni{sup 0} to Cu{sup 0} was also proposed based on hydrogen spillover. The inhibition on the release of Ni{sup 2+} by adding natural organic matters and adjusting pH was investigated.

  18. Dealloying Behavior of NiCo and NiCoCu Thin Films

    Directory of Open Access Journals (Sweden)

    Benjamin E. Peecher

    2016-01-01

    Full Text Available Porous metals and alloys, such as those fabricated via electrochemical dealloying, are of interest for a variety of energy applications, ranging from their potential for enhanced catalytic behavior to their use as high surface area supports for pseudocapacitor materials. Here, the electrochemical dealloying process was explored for electrodeposited binary NiCo and ternary NiCoCu thin films. For each of the four different metal ratios, films were dealloyed using linear sweep voltammetry to various potentials in order to gain insight into the evolution of the film over the course of the linear sweep. Electrochemical capacitance, scanning electron microscopy, and energy dispersive X-ray spectroscopy were used to examine the structure and composition of each sample before and after linear sweep voltammetry was performed. For NiCo films, dealloying resulted in almost no change in composition but did result in an increased capacitance, with greater increases occurring at higher linear sweep potentials, indicating the removal of material from the films. Dealloying also resulted in the appearance of large pores on the surface of the high nickel percentage NiCo films, while low nickel percentage NiCo films had little observable change in morphology. For NiCoCu films, Cu was almost completely removed at linear sweep potentials greater than 0.5 V versus Ag/AgCl. The linear sweep removed large Cu-rich dendrites from the films, while also causing increases in measured capacitance.

  19. Rapid solidification of Cu-Fe-Ni alloys

    Energy Technology Data Exchange (ETDEWEB)

    Baricco, M.; Bosco, E.; Acconciaioco, G.; Rizzi, P.; Coisson, M

    2004-07-15

    Cu{sub 80-x}Ni{sub x}Fe{sub 20} (x=0, 5 and 20) alloys have been rapidly solidified by planar flow casting. X-ray diffraction (XRD) analysis of as-quenched ribbons shows bcc-Fe precipitates embedded in an fcc phase (x=0), two co-existing fcc solid solutions (x=5) and a complete solid solution of the parent elements (x=20). Thermal treatments in the temperature range between 400 and 600 deg. C give precipitation and spinodal decomposition reactions. These phase transformations have been evidenced from a variation of lattice constants, from a broadening of diffraction peaks and from TEM observations. The role of Ni content on competition between precipitation and decomposition reactions during rapid solidification and annealing is discussed in terms of thermodynamic arguments. Recent CALPHAD assessment of thermodynamic properties for Cu-Fe-Ni system has been used for an estimation of composition and volume fraction of equilibrium phases.

  20. Nickel-stabilized hexagonal (Cu, Ni){sub 6}Sn{sub 5} in Sn-Cu-Ni lead-free solder alloys

    Energy Technology Data Exchange (ETDEWEB)

    Nogita, Kazuhiro [Materials Engineering, University of Queensland, Brisbane, QLD 4072 (Australia)], E-mail: k.nogita@uq.edu.au; Nishimura, Tetsuro [Nihon Superior Co., Ltd., NS Building, Suita 564-0063 (Japan)

    2008-07-15

    Cu{sub 6}Sn{sub 5} is an important intermetallic compound (IMC) in lead-free solder alloys. Cu{sub 6}Sn{sub 5} exists in two crystal structures with an allotropic transformation from monoclinic {eta}'-Cu{sub 6}Sn{sub 5} at temperatures lower than 186 deg. C to hexagonal {eta}-Cu{sub 6}Sn{sub 5}. A detailed analysis by transmission electron microscopy (TEM) in Sn-0.7 wt.% Cu-0.06 wt.% Ni reveals that when the Ni content in (Cu, Ni){sub 6}Sn{sub 5} is {approx}9 at.% Ni, the hexagonal allotrope of (Cu, Ni){sub 6}Sn{sub 5} becomes stable at room temperature.

  1. Microstructural Evolution of Infrared Brazed CP-Ti Using Ti-Cu-Ni Brazes

    Institute of Scientific and Technical Information of China (English)

    C.T.Chang; T.Y.Yeh; R.K.Shiue; C.S.Chang

    2011-01-01

    Microstructural evolution of infrared vacuum brazed CP-Ti using two Ti-based braze alloys, Ti-15Cu-15Ni and Ti-15Cu-25Ni, has been investigated. The infrared braze d joint consisted of eutectic Ti2Cu/Ti2Ni intermetallic compounds and Ti-rich matrix. The eutectic Ti2Cu/Ti2Ni intermetallic compounds disappeared from the joint after being annealed at 900℃ for 1 h. In contrast, the depletion rate of both Cu and Ni from the braze alloy into CP-Ti substrate at 750℃ annealing was greatly decreased as compared with that annealed at 900℃. Blocky Ti2Cu/Ti2Ni phases were observed even if the specimen was annealed at 750℃ for 15 h. Because the Ni content of the Ti-15Cu-25Ni braze alloy is much higher than that of the Ti-15Cu-15Ni alloy, the amount of eutectic Ti2Cu/Ti2Ni phases in Ti-15Cu-25Ni brazed joint is more than that in Ti-15Ci-15Ni brazed joint. However, similar microstructural evolution can be obtained from the infrared brazed joint annealed at various temperatures and/or time for both filler metals.

  2. Correlation effects in Auger spectra of Ni and Cu nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Troyan, V.I.; Borisyuk, P.V.; Kashurnikov, V.A. [National Research Nuclear University (MEPhI), 31 Kashirskoye shosse, 115409, Moscow (Russian Federation); Krasavin, A.V., E-mail: avkrasavin@gmail.com [National Research Nuclear University (MEPhI), 31 Kashirskoye shosse, 115409, Moscow (Russian Federation); Borman, V.D.; Tronin, V.I. [National Research Nuclear University (MEPhI), 31 Kashirskoye shosse, 115409, Moscow (Russian Federation)

    2013-01-17

    Results of experimental research of exciton-like two-hole states in nanoclusters of narrow-band metals (Ni, Cu) on surface of high-oriented pyrolitic graphite by X-ray photoelectron and Auger electron spectroscopy are presented. It was found that the evolution of the electronic structure in Ni nanoclusters with the decreasing of their sizes can lead to appearance of long-living two-hole states in the valence band. One-particle and two-particle density of states are analyzed, and the Auger-electron spectra confirming the presence of the bound and localized states are obtained.

  3. Magnetic Properties and Structural Study of Ni-Co/Cu Multilayers Prepared by Electrodeposition Method

    Directory of Open Access Journals (Sweden)

    M. Jafari Fesharaki

    2015-07-01

    Full Text Available Ni-Co/Cu multilayers have been grown by electrodeposition method from a single electrolyte (based on Ni(SO4.6H2O, Co(SO4.7H2O, Cu(SO4 and H3BO3 using galvanostatic control on titanium sublayers. The X-ray diffraction (XRD patterns confirmed the multilayered structure with the nanometer thicknesses. Also, electron diffraction x-ray (EDX  analysis confirmed the purity of deposited samples. The morphology of the samples was estimated by scanning electron microscope (SEM. Magnetoresistance (MR measurements were carried out at room temperature for the Ni-Co/Cu multilayers by measuring the resistivity in a magnetic fields varying between ±6kOe as a function of the Ni-Co and Cu layer thicknesses; (1 dCu(nm 4 and 3 dNi-Cu(nm 5. The Maximum value of giant magnetoresistance (GMR was obtained when the Ni-Co and Cu thicknesses were 4.0nm and 4.0nm respectively. The hysteresis loop of the samples at room temperature was studied using an alternating gradient force magnetometer (AGFM. Finally, the temperature dependence of magnetization for Ni-Co/Cu multilayers; (dNi-Cu(4nm/dCu(2nm and dNi-Cu(3nm/dCu(3nm measured by Faraday balance and decreasing the magnetization with increasing the temperature discussed according to electron scattering due to spin fluctuation.

  4. Low temperature interdiffusion in Cu/Ni thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lefakis, H.; Cain, J.F. (IBM General Technology Division, Endicott, NY (USA)); Ho, P.S. (IBM Watson Research Center, Yorktown Heights, NY (USA))

    1983-03-18

    Interdiffusion in Cu/Ni thin films was studied by means of Auger electron spectroscopy in conjunction with Ar/sup +/ ion sputter profiling. The experimental conditions used aimed at simulating those of typical chip-packaging fabrication processes. The Cu/Ni couple (from 10 ..mu..m to 60 nm thick) was produced by sequential vapor deposition on fused-silica substrates at 360, 280 and 25/sup 0/C in 10/sup -6/ Torr vacuum. Diffusion anneals were performed between 280 and 405/sup 0/C for times up to 20 min. Such conditions define grain boundary diffusion in the regimes of B- and C-type kinetics. The data were analyzed according to the Whipple-Suzuoka model. Some deviations from the assumptions of this model, as occurred in the present study, are discussed but cannot fully account for the typical data scatter. The grain boundary diffusion coefficients were determined allowing calculation of respective permeation distances.

  5. Austempering kinetics of Cu-Ni alloyed austempered Ductile Iron

    Science.gov (United States)

    Cekic, Olivera Eric; Sidjanin, Leposava; Rajnovic, Dragan; Balos, Sebastian

    2014-11-01

    The aim of the paper was to investigate the effect of austempering parameters (time and temperature) on the microstructure and mechanical properties of ADI alloyed with 1.5% Cu and 1.6% Ni (in wt.%) in order to establish the optimal processing window. It was shown that the strength, elongation and impact energy strongly depend on the amounts of ausferritic ferrite and retained austenite. A processing window was established according to the results of the kinetics of the isothermal transformation. The results show that the processing window for ADI alloyed with Cu and Ni at 350 °C was relatively wide, while the processing window for the isothermal transformation at 400 °C becomes narrower and shifted to the left. The processing window of ADI austempered at 300 °C is also narrower, but shifted to the right towards the longer times compared to the processing window of ADI austempered at 350 °C.

  6. PREFERENTIAL SPUTTERING OF Cu76Ni15Sn9

    Institute of Scientific and Technical Information of China (English)

    王震遐; 王传珊; 等

    1995-01-01

    Using collection film technique combined with Auger electron spectroscopy is analysis,the preferential sputtering of the ternary alloy Cu76Ni15Sn9 bombarded with 27keV Ar+ at normal incidence is studied.After bombardment,the target surface is examined with SEM,and the surface composition of different topographical feature areas is measured with electron probe micro-analyser(EPMA),The experiment results show that Cu atoms are preferentially ejected compared with Ni atoms,and Sn atoms come third within the ejection angle range from 0°to 60°.The results are discussed from the viewpoint of sputtering from a very rough surface.

  7. Hydrogen evolution reaction measurements of dealloyed porous NiCu

    Science.gov (United States)

    Koboski, Kyla R.; Nelsen, Evan F.; Hampton, Jennifer R.

    2013-12-01

    Porous metals are of interest for their high surface area and potential for enhanced catalytic behavior. Electrodeposited NiCu thin films with a range of compositions were electrochemically dealloyed to selectively remove the Cu component. The film structure, composition, and reactivity of these samples were characterized both before and after the dealloying step using scanning electron microscopy, energy-dispersive spectroscopy, and electrochemical measurements. The catalytic behavior of the dealloyed porous Ni samples towards the hydrogen evolution reaction was measured and compared to that of the as-deposited samples. The dealloyed samples were generally more reactive than their as-deposited counterparts at low overpotentials, making the dealloying procedure a promising area of exploration for improved hydrogen evolution catalysts.

  8. The Strengthening of Cu-15Ni-8Sn Alloy

    Institute of Scientific and Technical Information of China (English)

    WANG Yan-hui; WANG Ming-pu; HONG Bin

    2004-01-01

    The microstructure, property and relation between them of Cu-15Ni-8Sn alloy are studied by means of TEM and the measurement of hardness. The results show that γ ' metastable phase strengthens alloy because of its ordering structure.The ordering structure includes two types of DO22 and L12 ordering. Their strengthening for the alloy is much stronger than that of spinodal decomposition.

  9. Synchrotron X-Ray Study on Structures of Ni80Fe20/Cu Superlattices

    Institute of Scientific and Technical Information of China (English)

    XU Ming; LUO Guang-Ming; CHAI Chun-Lin; YANG Tao; MAI Zhen-Hong; LAI Wu-Yan; WU Zhong-Hua; WANG De-Wu

    2001-01-01

    We have shown that, in contrast to the results in the literature, the Bragg peak intensity of Ni80Fe20/Cu superlattices is enhanced at the incident x-ray energy slightly higher than the absorption edge of the heavier element (Cu). The atomic density at Ni80Fe20/Cu interface was analysed by the diffraction anomalous fine structure technology with the incident angle of x-ray fixed at the first Bragg peak. Our results demonstrate the epitaxy growth of Ni80Fe20/Cu superlattices. Upon annealing, the epitaxity of Ni80Fe20/Cu multilayers becomes poor but the local crystallinity in each layer is improved.

  10. Perpendicular magnetic anisotropy and structural properties of NiCu/Cu multilayers

    Science.gov (United States)

    Ruotolo, A.; Bell, C.; Leung, C. W.; Blamire, M. G.

    2004-07-01

    Perpendicular magnetic anisotropy (PMA) was studied at low temperature (T=30 K) in dc-magnetron sputtered Ni60Cu40/Cu multilayers. PMA has been observed in many multilayer structures for ferromagnetic layer thicknesses less than a certain thickness t⊥. In general cases t⊥ is less than a few nanometers, making such structures unsuitable for low-cost fabrication techniques. Our results show a strong perpendicular easy direction of magnetization for NiCu layer thickness between 4.2 nm and 34 nm. The thickness t⊥ at which the multilayers change the preferential orientation from perpendicular to in-plane is estimated to be 55 nm. Structural studies show that the low magnetostatic energy density is likely to be the main reason for the large t⊥ value obtained in this system.

  11. Cu-Ni core-shell nanoparticles: structure, stability, electronic, and magnetic properties: a spin-polarized density functional study

    Science.gov (United States)

    Wang, Qiang; Wang, Xinyan; Liu, Jianlan; Yang, Yanhui

    2017-02-01

    Bimetallic core-shell nanoparticles (CSNPs) have attracted great interest not only because of their superior stability, selectivity, and catalytic activity but also due to their tunable properties achieved by changing the morphology, sequence, and sizes of both core and shell. In this study, the structure, stability, charge transfer, electronic, and magnetic properties of 13-atom and 55-atom Cu and Cu-Ni CSNPs were investigated using the density functional theory (DFT) calculations. The results show that Ni@Cu CSNPs with a Cu surface shell are more energetically favorable than Cu@Ni CSNPs with a Ni surface shell. Interestingly, three-shell Ni@Cu12@Ni42 is more stable than two-shell Cu13@Ni42, while two-shell Ni13@Cu42 is more stable than three-shell Cu@Ni12@Cu42. Analysis of Bader charge illustrates that the charge transfer increases from Cu core to Ni shell in Cu@Ni NPs, while it decreases from Ni core to Cu shell in Ni@Cu NPs. Furthermore, the charge transfer results that d-band states have larger shift toward the Fermi level for the Ni@Cu CSNPs with Cu surface shell, while the Cu@Ni CSNPs with Ni surface shell have similar d-band state curves and d-band centers with the monometallic Ni NPs. In addition, the Cu-Ni CSNPs possess higher magnetic moment when the Ni atoms aggregated at core region of CSNPs, while having lower magnetic moment when the Ni atoms segregate on surface region. The change of the Cu atom location in CSNPs has a weak effect on the total magnetic moment. Our findings provide useful insights for the design of bimetallic core-shell catalysts.

  12. Effect of the Cu and Ni content on the crystallization temperature and crystallization mechanism of La-Al-Cu(Ni) metallic glasses

    Science.gov (United States)

    Li, Peiyou

    2016-02-01

    The effect of the Cu and Ni content on the crystallization mechanism and the crystallization temperatures of La-Al-Cu(Ni) metallic glasses (MGs) was studied by differential scanning calorimetry (DSC). The experimental results have shown that the DSC curves obtained for the La-Al-Cu and La-Al-Ni MGs exhibit two and three crystallization temperatures, respectively. The crystallization temperatures of the La-Al-Cu and La-Al-Ni MGs result from the merging and splitting of thermal events related to the corresponding eutectic atomic pairs in the La72Cu28 and La81.6Al18.4 MGs, and La72Ni28 and La81.6Al18.4 MGs, respectively. In addition, Al- and Ni-containing clusters with weak or strong atomic interaction in the Al-Ni atomic pairs strongly affect the crystallization mechanism and thus the crystallization temperature of La-Al-Ni MGs. This study provides a novel understanding of the relation between the crystallization temperature and the underlying crystallization mechanisms in La-Al-Cu(Ni) MGs.

  13. Molecular Dynamics Study on Interfacial Energy and Atomic Structure of Ag/Ni and Cu/Ni Heterophase System

    Institute of Scientific and Technical Information of China (English)

    Haijiang LIU; Shaoqing WANG; An DU; Caibei ZHANG

    2004-01-01

    The results of molecular dynamics calculations on the interfacial energies and atomic structures of Ag/Ni and Cu/Ni interaces are presented. Calculation on Ag/Ni interfaces with low-index planes shows that those containing the (111) plane have the lowest energies, which is in agreement with the experiments. Comparing surface energy with interracial energy, it is found the order of the interfacial energies of Ag/Ni and Cu/Ni containing the planes fall in the same order as solid-vapor surface energies of Ag, Cu and Ni. In this MD simulation, the relaxed atomic structure and dislocation network of (110)Ag||(110)Ni interface are coincident to HREM observations.

  14. Electrocatalytic oxidation of methanol on Ni and NiCu alloy modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Danaee, I.; Jafarian, M.; Forouzandeh, F.; Mahjani, M.G. [Department of Chemistry, K.N. Toosi University of Technology, P.O. Box 15875-4416, Tehran (Iran); Gobal, F. [Department of Chemistry, Sharif University of Technology, P.O. Box 11365-9516, Tehran (Iran)

    2008-08-15

    Nickel and nickel-copper alloy modified glassy carbon electrodes (GC/Ni and GC/NiCu) prepared by galvanostatic deposition were examined for their redox process and electrocatalytic activities towards the oxidation of methanol in alkaline solutions. The methods of cyclic voltammetery (CV) and chronoamperometry (CA) were employed. The cyclic voltammogram of NiCu alloy demonstrates the formation of {beta}/{beta} crystallographic forms of the nickel oxyhydroxide under prolonged repetitive potential cycling in alkaline solution. In CV studies, in the presence of methanol NiCu alloy modified electrode shows a significantly higher response for methanol oxidation. The peak current of the oxidation of nickel hydroxide increase is followed by a decrease in the corresponding cathodic current in presence of methanol. The anodic peak currents show linear dependency with the square root of scan rate. This behavior is the characteristic of a diffusion controlled process. Under the CA regime the reaction followed a Cottrellian behavior and the diffusion coefficient of methanol was found to be 2 x 10{sup -6} cm{sup 2} s{sup -1} in agreement with the values obtained from CV measurements. (author)

  15. Short-Range Order in Liquid Al-Cu-Ni-Ce Alloy

    Institute of Scientific and Technical Information of China (English)

    孙民华; 边秀房

    2002-01-01

    The liquid and amorphous structures of Al85Ni10Ce5 and Al85Cu5Ni5Ce5 alloy were studied by X-ray diffraction. The position of the first peak shifts to bigger Q-values as the concentration of Cu increases. Gaussian decomposition of first peak in radical distribution function (RDF) was applied to Al-Ni(Cu)-Ce system. The bond lengths of Al-Al, Al-TM(Transition metal) and TM-TM increase with the substitution of Ni by Cu. Viscosity measurement shows that viscosity of Al-Ni-Ce alloy increases faster than that of Al-Ni-Cu-Ce alloy. The addition of Cu can decrease the interaction between atoms, so it is unfavorable to Al-based glass formability.

  16. Corrosion behavior of CuCrNiAl alloy in HCl solutions

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The corrosion behavior of a CuCrNiAl alloy in HCl solutions was studied by means of metallograph, XRD, SEM/EDX and TEM methods. The results show that in low concentration of HCl solutions, Cu of CuCrNiAl alloy is more easily subject to corrsion than Cr; the dechromisation of the CuCrNiAl alloy occurs at a certain concentration of HCl solutions, at the same time Al of CuCrNiAl alloy is subject to corrosion also. The dechromisation corrosion occurs initially at the interface between Cr phase and Cu phase, then it gradually extends Cr phase until Cr phase is dissolved completely. It is also revealed that the tendency of dechromisaion of the CuCrNiAl alloy increases with the increase in concentration and temperature of HCl solutions.

  17. Reaction pathways of furfural, furfuryl alcohol and 2-methylfuran on Cu(111) and NiCu bimetallic surfaces

    Science.gov (United States)

    Xiong, Ke; Wan, Weiming; Chen, Jingguang G.

    2016-10-01

    Hydrodeoxygenation (HDO) is an important reaction for converting biomass-derived furfural to value-added 2-methylfuran, which is a promising fuel additive. In this work, the HDO of furfural to produce 2-methylfuran occurred on the NiCu bimetallic surfaces prepared on either Ni(111) or Cu(111). The reaction pathways of furfural were investigated on Cu(111) and Ni/Cu(111) surfaces using density functional theory (DFT) calculations, temperature-programmed desorption (TPD) and high-resolution electron energy loss spectroscopy (HREELS) experiments. These studies provided mechanistic insights into the effects of bimetallic formation on enhancing the HDO activity. Specifically, furfural weakly adsorbed on Cu(111), while it strongly adsorbed on Ni/Cu(111) through an η2(C,O) configuration, which led to the HDO of furfural on Ni/Cu(111). The ability to dissociate H2 on Ni/Cu(111) is also an important factor for enhancing the HDO activity over Cu(111).

  18. Resistance behaviour and interdiffusion of layered CuNi-NiCr films

    Energy Technology Data Exchange (ETDEWEB)

    Brueckner, W. [Institut fuer Festkoerper- und Werkstofforschung Dresden e.V. (Germany); Schumann, J. [Institut fuer Festkoerper- und Werkstofforschung Dresden e.V. (Germany); Baunack, S. [Institut fuer Festkoerper- und Werkstofforschung Dresden e.V. (Germany); Pitschke, W. [Institut fuer Festkoerper- und Werkstofforschung Dresden e.V. (Germany); Knuth, T. [Microtech GmbH, Teltow (Germany)

    1995-03-15

    On the basis of sputtered NiCr/CuNi/NiCr triple layers and multilayers, investigations of the electrical resistance R and its temperature coefficient TCR, as well as of the concentration depth profiles and of the temperature dependence of the lattice parameter have been carried out to study the influences of the interfaces in the as-deposited state as well as annealed ones. Furthermore, the temperature dependence of the film stress has been considered. As to the resistance, the influence of the diffusion zone can be described by a parallel resistor R{sub i} having {Delta}TCR{sub i}. These quantities are dependent on both deposition and annealing and were determined for the two configurations on silicon wafers in the as-deposited state as well as in the 300 C annealed one. The AES investigations show distinct interdiffusion effects after annealing above 300 C. The Ni impoverishment observed in the CuNi results in a lattice parameter decrease. The film stress is only slightly influenced by interfacial effects. ((orig.))

  19. Promising Cu-Ni-Cr-Si alloy for first wall ITER applications

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, A. [Research and Development Inst. of Power Engineering, Moscow (Russian Federation); Abramov, V. [Research and Development Inst. of Power Engineering, Moscow (Russian Federation); Rodin, M. [Research and Development Inst. of Power Engineering, Moscow (Russian Federation)

    1996-10-01

    Precipitation-hardened Cu-Ni-Cr-Si alloy, a promising material for ITER applications, is considered. Available commercial products, chemical composition, physical and mechanical properties are presented. Embrittlement of Cu-Ni-Cr-Si alloy at 250-300 C is observed. Mechanical properties of Cu-Ni-Cr-Si alloy neutron irradiated to a dose of {proportional_to}0.2 dpa at 293 C are investigated. Embrittlement of Cu-Ni-Cr-Si alloy can be avoided by annealing. (orig.).

  20. Preparation and crystal structure characterization of CuNiGaSe3 and CuNiInSe3 quaternary compounds

    Indian Academy of Sciences (India)

    G E Delgado; A J Mora; P Grima-Gallardo; S Durán; M Muñoz; M Quintero

    2010-10-01

    Samples of the quaternary chalcogenide compounds, CuNiGaSe3 and CuNiInSe3, prepared by direct fusion and annealing method, were characterized by X-ray powder diffraction. In each case, the crystal structure was refined using the Rietveld method. Both compounds were found to crystallize in the tetragonal system, space group $\\bar{4}$2 (N°112), with unit cell parameter values = 5.6213(1) Å, = 11.0282(3) Å, = 348.48(1) Å3 and = 5.7857(2) Å, = 11.6287(5) Å, = 389.26(3) Å3 for CuNiGaSe3 and CuNiInSe3, respectively. These compounds have a normal adamantane structures and are isostructural with CuFeInSe3.

  1. Crystallization behavior of Zr62Al8Ni13Cu17 Metallic Glass

    Directory of Open Access Journals (Sweden)

    Jo Mi Sun

    2017-06-01

    Full Text Available The crystallization behavior has been studied in Zr62Al8Ni13Cu17 metallic glass alloy. The Zr62Al8Ni13Cu17 metallic glass crystallized through two steps. The fcc Zr2Ni phase transformed from the amorphous matrix during first crystallization and then the Zr2Ni and residual amorphous matrix transformed into a mixture of tetragonal Zr2Cu and hexagonal Zr6Al2Ni phases. Johnson-Mehl-Avrami analysis of isothermal transformation data suggested that the formation of crystalline phase is primary crystallization by diffusion-controlled growth.

  2. Electrical conductivity of Cu/(10NiO-NiFe2O4) cermet inert anode for aluminum electrolysis

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Cu/(10NiO-NiFe2O4) cermets containing mass fractions of Cu of 5%, 10%, 15% and 20% were prepared, and their electrical conductivities were measured at different temperatures. The effects of temperature and content of metal Cu on the electrical conductivity were investigated especially. The results indicate that the metallic phase Cu distributes evenly in 10NiO-NiFe2O4 ceramic matrix. The mechanism of electrical conductivity of Cu/(10NiO-NiFe2O4) cermets obeys the rule of electrical mechanism of semiconductor, the electrical conductivity for cermet containing 5% Cu increases from 2.70 to 20.41 S/cm with temperature increasing from 200 to 900 ℃. The change trend of electrical conductivity with temperature is similar with each other and it increases with increasing temperature and content of metal Cu. At 960 ℃, the electrical conductivity of cermet increases from 2.88 to 82.65 S/cm with the content of metal Cu increasing from 0 to 20%.

  3. PROPERTIES OF POLYMER SUPPORTED Ni-Cu BIMETALLIC CATALYSTS PREPARED BY SOLVATED METAL ATOM IMPREGNATION

    Institute of Scientific and Technical Information of China (English)

    WU Shihua; ZHU Changying; HUANG Wenqiang

    1996-01-01

    D-72 resin supported nickel-copper catalysts prepared by solvated metal atom impregnation (SMAI) were studied by magnetic measurements and X-ray photoelectron spectroscopy (XPS). The Ni particles on the catalysts are very highly dispersed and display superparamagnetic behaviour. Ni-Cu alloy clusters were found to be formed. The surface compositions are different from the bulk concentrations. In contrast with the surface enrichment in copper generally observed on conventional Ni-Cu catalysts, the surfaces of these catalysts are enriched in nickel. The nickel is in both zero and valent states, while copper is mainly in metallic state. Catalytic data show that the formation of Ni-Cu alloy clusters has a profound effect on the catalytic activities of the catalysts in the hydrogenation of furfural. The activity of the Ni:Cu ratio of one bimetallic catalysts is much higher than that of the Ni or Cu monometallic catalyst.

  4. Electrochemical impedance studies of methanol oxidation on GC/Ni and GC/NiCu electrode

    Energy Technology Data Exchange (ETDEWEB)

    Danaee, I.; Jafarian, M.; Forouzandeh, F.; Mahjani, M.G. [Department of Chemistry, K.N. Toosi University of Technology, PO Box 15875-4416, Tehran (Iran); Gobal, F. [Department of Chemistry, Sharif University of Technology, PO Box 11365-9516, Tehran (Iran)

    2009-01-15

    The electro-oxidation of methanol on nickel and nickel-copper alloy modified glassy carbon electrodes (GC/Ni and GC/NiCu) in a 1 M NaOH solution at different concentrations of methanol was studied by the method of ac-impedance spectroscopy. Two semicircles in the first quadrant of a Nyquist diagram were observed for electro-oxidation of methanol on GC/Ni corresponding to charge transfer resistance and adsorption of intermediates. Electro-oxidation of methanol on GC/NiCu shows negative resistance in impedance plots as signified by semi-circles terminating in the second quadrant. The impedance behavior shows different patterns at different applied anodic potential. The influence of the electrode potential on impedance pattern is studied and a mathematical model was put forward to quantitatively account for the impedance behavior of methanol oxidation. At potentials higher than 0.49 V vs. Ag/AgCl, a pseudoinductive behavior is observed but at higher than 0.58 V, impedance patterns terminate in the second quadrant. The conditions required for this behavior are delineated with the use of the impedance model. (author)

  5. Low temperature growth of graphene on Cu-Ni alloy nanofibers for stable, flexible electrodes

    Science.gov (United States)

    Liu, Zheng-Dong; Yin, Zong-You; Du, Ze-Hui; Yang, Yang; Zhu, Min-Min; Xie, Ling-Hai; Huang, Wei

    2014-04-01

    Here, we report a facile approach to grow graphene on Cu-Ni alloy NFs at a temperature as low as 450-500 °C, in which solid polystyrene (PS) carbon source and two-temperature-zone furnace were used to prepare graphene. The graphene coated Cu-Ni (designated as G-coated Cu-Ni) NFs were fully characterized by Raman spectra, XPS, FESEM and TEM. The G-coated Cu-Ni NFs exhibited excellent anti-oxidation, anti-corrosion and flexibility properties. The anti-corrosion of G-coated Cu-Ni NFs was examined through cyclic voltammetry measurements by using sea water as the electrolyte solution. Finally, using crossed arrays of G-coated Cu-Ni NF composite electrode thin films (sheet resistance is ~10 Ω sq-1) as the flexible electrode, an alternating current (AC) electroluminescent (EL) device with a configuration of G-coated Cu-Ni/active layer (ZnS : Cu phosphor)/dielectric layer (BaTiO3)/front electrode (CNT) has been fabricated. Under an AC voltage of 200 V and frequency of 1300 Hz, the ACEL device emitted blue light at 496 nm with a brightness of 103 cd m-2.Here, we report a facile approach to grow graphene on Cu-Ni alloy NFs at a temperature as low as 450-500 °C, in which solid polystyrene (PS) carbon source and two-temperature-zone furnace were used to prepare graphene. The graphene coated Cu-Ni (designated as G-coated Cu-Ni) NFs were fully characterized by Raman spectra, XPS, FESEM and TEM. The G-coated Cu-Ni NFs exhibited excellent anti-oxidation, anti-corrosion and flexibility properties. The anti-corrosion of G-coated Cu-Ni NFs was examined through cyclic voltammetry measurements by using sea water as the electrolyte solution. Finally, using crossed arrays of G-coated Cu-Ni NF composite electrode thin films (sheet resistance is ~10 Ω sq-1) as the flexible electrode, an alternating current (AC) electroluminescent (EL) device with a configuration of G-coated Cu-Ni/active layer (ZnS : Cu phosphor)/dielectric layer (BaTiO3)/front electrode (CNT) has been fabricated. Under

  6. Structure and magnetic properties of Ni/Cu/Fe/MgO(001) films.

    Science.gov (United States)

    Lauhoff, G; Vaz, C A F; Bland, J A C

    2009-04-15

    The structural and magnetic properties of thin Ni films grown on Cu/Fe/MgO(001) and Cu/MgO(001) buffer layers are investigated and compared to those grown on Cu/Si(001). The use of an Fe seed layer a few monolayers thick leads to the epitaxial growth of high surface quality Cu(001) buffer layers on MgO(001), while Cu growth on the bare MgO(001) substrate results in polycrystalline films. Magneto-optic Kerr effect magnetometry shows that Ni films grown on Cu/Fe/MgO(001) exhibit dominant perpendicular magnetic anisotropy up to ∼90 Å, which is similar to that of Ni films grown on Cu/Si(001). The polycrystalline Ni films also exhibit perpendicular magnetic remanence, but with a dominant in-plane magnetization component.

  7. Structure and magnetic properties of Ni/Cu/Fe/MgO(001) films

    Energy Technology Data Exchange (ETDEWEB)

    Lauhoff, G; Vaz, C A F; Bland, J A C [Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE (United Kingdom)], E-mail: georglauhoff@georglauhoff.com, E-mail: carlos.vaz@cantab.net

    2009-04-15

    The structural and magnetic properties of thin Ni films grown on Cu/Fe/MgO(001) and Cu/MgO(001) buffer layers are investigated and compared to those grown on Cu/Si(001). The use of an Fe seed layer a few monolayers thick leads to the epitaxial growth of high surface quality Cu(001) buffer layers on MgO(001), while Cu growth on the bare MgO(001) substrate results in polycrystalline films. Magneto-optic Kerr effect magnetometry shows that Ni films grown on Cu/Fe/MgO(001) exhibit dominant perpendicular magnetic anisotropy up to {approx}90 A, which is similar to that of Ni films grown on Cu/Si(001). The polycrystalline Ni films also exhibit perpendicular magnetic remanence, but with a dominant in-plane magnetization component.

  8. Investigations on Cu2+-substituted Ni-Zn ferrite nanoparticles

    Science.gov (United States)

    Amarjeet; Kumar, Vinod

    2016-11-01

    CuxNi(1-x)/2Zn(1-x)/2Fe2O4 (x = 0.1, 0.3 and 0.5) nanoparticles were prepared by chemical co-precipitation method. The developed nanoparticles were characterized for structural properties by powder X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) techniques. Peak position in the X-ray diffraction pattern confirmed the single spinel phase of the developed particles. Infrared (IR) spectroscopy in mid-IR range showed the presence of characteristic absorption bands corresponding to octahedral and tetrahedral bonds in the spinel structure of prepared samples. Thermo-gravimetric analysis (TGA) measurements showed a considerable weight loss in the developed samples above 700∘C. Frequency dependence of the electrical properties of the developed material pellets was studied in the frequency range of 1 kHz-5 MHz. Temperature dependence of the dielectric constant of Cu0.1Ni0.45Zn0.45Fe2O4 was studied at different temperatures, i.e. at 425, 450 and 475 K, in the frequency range of 1 kHz-5 MHz. It was found that the electrical conductivity decreases with increasing Cu2+ ion content while it increases with the increase in temperature.

  9. Sputtered Ni-Zn under bump metallurgy (UBM) for Sn-Ag-Cu solders

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Jin; Kim, Young Min [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Kim, Young-Ho, E-mail: kimyh@hanyang.ac.kr [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Ni-Zn UBM can effectively suppress the growth of IMCs and the consumption of UBM. Black-Right-Pointing-Pointer The growth of (Ni, Cu){sub 3}Sn{sub 4} was retarded at the SAC305/Ni-Zn interface after aging. Black-Right-Pointing-Pointer Only a single (Cu, Ni){sub 6}Sn{sub 5} formed at the SAC107/Ni-Zn interface after aging. Black-Right-Pointing-Pointer Segregated Zn atoms on IMC layers retarded the interdiffusion of Cu, Ni, and Sn. Black-Right-Pointing-Pointer Sputtered Ni-Zn UBM is promising for Pb-free solder flip chip applications. - Abstract: We developed a new sputtered under bump metallurgy (UBM) based on Ni-20wt% Zn thin films for Pb-free solders. This study focuses on the interfacial reactions between two Pb-free solders (Sn3.0Ag0.5Cu and Sn1.0Ag0.7Cu) and a Ni-Zn alloy UBM. By adding Zn to Ni UBM, Zn is incorporated into intermetallic compounds (IMCs) to form a quaternary Cu-Ni-Zn-Sn phase at the solder/Ni-Zn interface after reflow and subsequent isothermal aging. The Ni-Zn UBM sufficiently reduces the interfacial reaction and IMCs formation rates as well as UBM consumption rates compared to a Ni UBM. In particular, the formation of (Ni, Cu){sub 3}Sn{sub 4} IMC was significantly retarded by adding Zn into UBM.

  10. The Role of Saturated Hydrocarbon in Enrichment of Cu, Pb, Znin Kupferschiefer, Southwestern Poland

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In order to clarify the role of organic matter in the enrichment of base metal, 10 samples of the PermianKupferschiefer from southwestern Poland were analyzed by using microscopic and geochemical methods. The re-suts indicate that the solvent extracts have been depleted in the samples with high Cu, Pb, Zn contents. This de-pletion occurred preferably in saturated hydrocarbons. Saturated hydrocarbons served as hydrogen donor for ther-mochemical sulfate reduction (TSR). The GC traces of saturated hydrocarbon show that the depletion occurredmainly in long-chain n-alkanes.

  11. Kinetic study of the annealing reactions in Cu-Ni-Fe alloys; Estudio cinetico de las reacciones de recocido en aleaciones de Cu-Ni-Fe

    Energy Technology Data Exchange (ETDEWEB)

    Donoso, E.

    2014-07-01

    The thermal aging of a Cu-45Ni-4Fe, Cu-34Ni-11Fe and Cu-33Ni-22Fe alloys tempered from 1173 K have been studied from Differential Scanning Calorimetry (DSC) and microhardness measurements. The analysis of DSC curves, from room temperature to 950 K, shows the presence of one exothermic reaction associated to the formation of FeNi{sub 3} phase nucleating from a modulate structure, and one endothermic peak attributed to dissolution of this phase. Kinetic parameters were obtained using the usual Avrami-Erofeev equation, modified Kissinger method and integrated kinetic functions. Microhardness measurements confirmed the formation and dissolution of the FeNi{sub 3} phase. (Author)

  12. Pine bark as bio-adsorbent for Cd, Cu, Ni, Pb and Zn

    DEFF Research Database (Denmark)

    Cutillas-Barreiro, L.; Ansias-Manso, L.; Fernandez Calviño, David;

    2014-01-01

    % for Pb2+, 83-84% for Cu2+, 78-84% for Cd2+, 77-83% for Zn2+, and 70-75% for Ni2+, and it was faster for low concentrations, with Pb suffering the highest retention, followed by Cu, Cd, Ni and Zn. The fitting to the Freundlich and Langmuir models was satisfactory. Desorption increased in parallel...

  13. Selective recovery of Cu, Zn, and Ni from acid mine drainage.

    Science.gov (United States)

    Park, Sang-Min; Yoo, Jong-Chan; Ji, Sang-Woo; Yang, Jung-Seok; Baek, Kitae

    2013-12-01

    In Korea, the heavy metal pollution from about 1,000 abandoned mines has been a serious environmental issue. Especially, the surface waters, groundwaters, and soils around mines have been contaminated by heavy metals originating from acid mine drainage (AMD) and mine tailings. So far, AMD was considered as a waste stream to be treated to prevent environmental pollutions; however, the stream contains mainly Fe and Al and valuable metals such as Ni, Zn, and Cu. In this study, Visual MINTEQ simulation was carried out to investigate the speciation of heavy metals as functions of pH and neutralizing agents. Based on the simulation, selective pH values were determined to form hydroxide or carbonate precipitates of Cu, Zn, and Ni. Experiments based on the simulation results show that the recovery yield of Zn and Cu were 91 and 94 %, respectively, in a binary mixture of Cu and Zn, while 95 % of Cu and 94 % of Ni were recovered in a binary mixture of Cu and Ni. However, the recovery yield and purity of Zn and Ni were very low because of similar characteristics of Zn and Ni. Therefore, the mixture of Cu and Zn or Cu and Ni could be recovered by selective precipitation via pH adjustment; however, it is impossible to recover selectively Zn and Ni in the mixture of them.

  14. Microstructure, texture and magnetic properties of Ni-Cu-W substrates for coated conductors

    DEFF Research Database (Denmark)

    Wulff, Anders Christian; Mishin, Oleg; Andersen, Niels Hessel

    2013-01-01

    The microstructure, texture, hardness and magnetization have been investigated in a series of strongly cube-textured (Ni95W 5)100-xCux samples with x=0, 5, 10 and 15 at% Cu. It is found that the addition of 5 at% Cu to the Ni-5 at% W alloy results in a substantial decrease of the Curie temperatur...

  15. In situ observation of Cu-Ni alloy nanoparticle formation by X-ray diffraction, X-ray absorption spectroscopy, and transmission electron microscopy: Influence of Cu/Ni ratio

    DEFF Research Database (Denmark)

    Wu, Qiongxiao; Duchstein, Linus Daniel Leonhard; Chiarello, Gian Luca

    2014-01-01

    Silica-supported, bimetallic Cu-Ni nanomaterials were prepared with different ratios of Cu to Ni by incipient wetness impregnation without a specific calcination step before reduction. Different in situ characterization techniques, in particular transmission electron microscopy (TEM), X-ray diffr......Silica-supported, bimetallic Cu-Ni nanomaterials were prepared with different ratios of Cu to Ni by incipient wetness impregnation without a specific calcination step before reduction. Different in situ characterization techniques, in particular transmission electron microscopy (TEM), X...

  16. Effect of Partial Substitution of Ni by Cu in LaNiO3 Perovskite Catalyst for Dry Methane Reforming

    Institute of Scientific and Technical Information of China (English)

    G.R.MORADI; F.KHOSRAVIAN; M.RAHMANZADEH

    2012-01-01

    A series of ternary perovskite type oxides LaNi1-xCuxO3 (x =0.2,0.4,0.6,0.8,and 1.0) were synthesized via the sol-gel method in propionic acid.Partial substitution of Ni by Cu showed higher activities and selectivities towards syngas products.LaNi0.8Cu0.2O3 was the most active toward the CH4 and CO2 conversions,and was selective for syngas products.Temperature-programmed reduction results showed that the addition of Cu facilitates the reduction of Ni3+ to Ni0,which is the main reason for the higher performance of this catalyst.

  17. Interfacial reactions and compound formation of Sn-Ag-Cu solders by mechanical alloying on electroless Ni-P/Cu under bump metallization

    Science.gov (United States)

    Kao, Szu-Tsung; Duh, Jenq-Gong

    2005-08-01

    Electroless Ni-P under bump metallization (UBM) has been widely used in electronic interconnections due to the good diffusion barrier between Cu and solder. In this study, the mechanical alloying (MA) process was applied to produce the SnAgCu lead-free solder pastes. Solder joints after annealing at 240°C for 15 min were employed to investigate the evolution of interfacial reaction between electroless Ni-P/Cu UBM and SnAgCu solder with various Cu concentrations ranging from 0.2 to 1.0 wt.%. After detailed quantitative analysis with an electron probe microanalyzer, the effect of Cu content on the formation of intermetallic compounds (IMCs) at SnAgCu solder/electroless Ni-P interface was evaluated. When the Cu concentration in the solder was 0.2 wt.%, only one (Ni, Cu)3Sn4 layer was observed at the solder/electroless Ni-P interface. As the Cu content increased to 0.5 wt.%, (Cu, Ni)6Sn5 formed along with (Ni, Cu)3Sn4. However, only one (Cu, Ni)6Sn5 layer was revealed, if the Cu content was up to 1 wt.%. With the aid of microstructure evolution, quantitative analysis, and elemental distribution by x-ray color mapping, the presence of the Ni-Sn-P phase and P-rich layer was evidenced.

  18. An optimized interatomic potential for Cu-Ni alloys with the embedded-atom method.

    Science.gov (United States)

    Onat, Berk; Durukanoğlu, Sondan

    2014-01-22

    We have developed a semi-empirical and many-body type model potential using a modified charge density profile for Cu-Ni alloys based on the embedded-atom method (EAM) formalism with an improved optimization technique. The potential is determined by fitting to experimental and first-principles data for Cu, Ni and Cu-Ni binary compounds, such as lattice constants, cohesive energies, bulk modulus, elastic constants, diatomic bond lengths and bond energies. The generated potentials were tested by computing a variety of properties of pure elements and the alloy of Cu, Ni: the melting points, alloy mixing enthalpy, lattice specific heat, equilibrium lattice structures, vacancy formation and interstitial formation energies, and various diffusion barriers on the (100) and (111) surfaces of Cu and Ni.

  19. Giant Magnetoresistance Effect of [bcc-Fe(M)/Cu](M=Co,Ni)Multilayers

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    GMR effect of multilayers of bcc-Fe(M)(M=Co, Ni) alloy and Cu layers has been investigated. The maximum MR ratio is found at 1.1 nm Fe(Co) and 1.3~1.4 nm Cu layer thickness in [Fe(Co)/Cu], and at 1.6 nm Fe(Ni) and 1.4 nm Cu layer thickness in [Fe(Ni)/Cu]. Under the optimum annealing condition, the MR ratio increases up to 50% and 38% for Fe(Co) and Fe(Ni) systems, respectively. The origin of the increase of GMR is discussed, taking the progress of preferred orientation of Fe(Co)[100] or Fe(Ni)[100] by annealing into account.

  20. Effects of heat treatment on toughness of austempered ductile cast iron with Cu and Ni; Cu-Ni tenka osutenpa chutetsu no jinsei ni oyobosu netsushori no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Aoyama, M.; Takatsu, M.; Takagi, H

    1998-08-25

    The alloying of ductile cast iron with Cu and Ni is effective for the structural control in austemper heat treatment. Use of this type of cast iron is provided to produce cast iron materials with extremely high toughness and strength. In this study, the effects of austempering conditions and the addition of Cu and Ni on toughness of ductile cast iron are investigated. In austemper heat treatment, impact absorbed energy is increased by raising the austempering temperature. However, at high austempering temperatures exceeding 3.6 ks at 673K, the formation of fine pearlite proceeded, resulting in a marked decrease in the impact absorbed energy. Addition of Cu-Ni in the cast iron resulted in greater impact absorbed energy and tensile strength at any temperature during the austempering treatment. It depends on the suppression of precipitation beginning of fine pearlite and the stabilization of retained austenite. Furthermore, this cast iron alloy reduced the change in impact absorbed energy and tensile strength, induced during the austempering time. 15 refs., 12 figs., 1 tab.

  1. Studies of the development and characterization of the Cu-Ni-Pt and Cu-Ni-Sn alloys for electro-electronic uses; Estudos do desenvolvimento e caracterizacao das ligas Cu-Ni-Pt e Cu-Ni-Sn para fins eletro-eletronicos

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Luis Carlos Elias da

    2006-07-01

    The Cu and its alloys have different applications in the owed modern society the excellent electric properties, thermal conductivity, resistance to the corrosion and other properties. These applications can be in valves, pipes, pots for absorption of solar energy, radiators for automobiles, current driver, electronic driver, thermostats elements and structural parts of nuclear reactors, as, for example, reels for field toroidal for a reactor of nuclear coalition. The alloys used in nuclear reactors, we can highlight Cu-Be, Cu-Sn and Cu-Pt. Ni and Co frequently are added to the Cu alloys so that the solubility is moved for temperatures more elevated with relationship to the binary systems of Cu-Sn and Cu-Pt. The addition of Ni-Pt or Ni-Sn to the Cu in the same or inferior percentages to 1,5% plus thermomechanical treatments changes the properties of the copper. We studied the electric conductivity and hardness Vickers of the Cu-Ni-Pt and Cu-Ni-Sn and compared with the electrolytic Cu. In the proposed flowcharts, breaking of the obtaining of the ingot, we proceeded with thermo mechanical treatments. (author)

  2. First-Principles Study of Substitution of Cu and Au for Ni in Ni3Sn2

    Science.gov (United States)

    Tian, Yali; Wu, Ping; Lu, Zhengxiong

    2016-09-01

    The effects of substitution of Cu and Au for Ni on the mechanical, thermodynamic and electronic properties of two different Ni3Sn2 structures are investigated by first-principles calculations. Cu atom at Ni2 site and Au atom at Ni1 site of the η phase lead to the thermodynamic stable structure. For the λ phase, Au atom can only replace the Ni1 site. Substitution causes the decrease of the polycrystalline elastic modulus and the Debye temperature. The degree of anisotropy along Z axis decreases dramatically for η phase, but it increases along Y axis for λ phase after substitution. The Ni3Sn2-based intermetallics are all ductile; the η phase is more ductile than the λ phase. The electronic density of states manifest an energy gap appearing in η phase and the effective mass of the η phase is lower than λ phase.

  3. First-Principles Study of Substitution of Cu and Au for Ni in Ni3Sn2

    Science.gov (United States)

    Tian, Yali; Wu, Ping; Lu, Zhengxiong

    2017-01-01

    The effects of substitution of Cu and Au for Ni on the mechanical, thermodynamic and electronic properties of two different Ni3Sn2 structures are investigated by first-principles calculations. Cu atom at Ni2 site and Au atom at Ni1 site of the η phase lead to the thermodynamic stable structure. For the λ phase, Au atom can only replace the Ni1 site. Substitution causes the decrease of the polycrystalline elastic modulus and the Debye temperature. The degree of anisotropy along Z axis decreases dramatically for η phase, but it increases along Y axis for λ phase after substitution. The Ni3Sn2-based intermetallics are all ductile; the η phase is more ductile than the λ phase. The electronic density of states manifest an energy gap appearing in η phase and the effective mass of the η phase is lower than λ phase.

  4. Monoligated monovalent Ni: the 3d(Ni)9 manifold of states of NiCu and comparison to the 3d9 States of AlNi, NiH, NiCl, and NiF.

    Science.gov (United States)

    Rothschopf, Gretchen K; Morse, Michael D

    2005-12-22

    A dispersed fluorescence investigation of the low-lying electronic states of NiCu has allowed the observation of four out of the five states that derive from the 3d(Ni)9 3d(Cu)10 sigma2 manifold. Vibrational levels of the ground X2delta(5/2) state corresponding to v = 0-11 are observed and are fit to provide omega(e) = 275.93 +/- 1.06 cm(-1) and omega(e)x(e) = 1.44 +/- 0.11 cm(-1). The v = 0 levels of the higher lying states deriving from the 3d(Ni)9 3d(Cu)10 sigma2 manifold are located at 912, 1466, and 1734 cm(-1), and these states are assigned to omega values of 3/2, 1/2, and 3/2, respectively. The last of these assignments is based on selection rules and is unequivocal; the first two are based on a comparison to ab initio and ligand field calculations and could conceivably be in error. It is also possible that the v = 0 level of the state found at 912 cm(-1) is not observed, so that T0 for the lowest excited state actually lies near 658 cm(-1). These results are modeled using a matrix Hamiltonian based on the existence of a ground manifold of states deriving from the 3d9 configuration on nickel. This matrix Hamiltonian is also applied to the spectroscopically well-known molecules AlNi, NiH, NiCl, and NiF. The term energies of the 2sigma+, 2pi, and 2delta states of these molecules, which all derive from a 3d9 configuration on the nickel atom, display a clear and understandable trend as a function of the electronegativity of the ligands.

  5. Creep Behavior of Lead-Free Sn-Ag-Cu + Ni-Ge Solder Alloys

    Science.gov (United States)

    Hidaka, N.; Watanabe, H.; Yoshiba, M.

    2009-05-01

    We developed a new lead-free solder alloy, an Sn-Ag-Cu base to which a small amount of Ni and Ge is added, to improve the mechanical properties of solder alloys. We examined creep deformation in bulk and through-hole (TH) form for two lead-free solder alloys, Sn-3.5Ag-0.5Cu-Ni-Ge and Sn-3.0Ag-0.5Cu, at elevated temperatures, finding that the creep rupture life of the Sn-3.5Ag-0.5Cu-Ni-Ge solder alloy was over three times better than that of the Sn-3.0Ag-0.5Cu solder at 398 K. Adding Ni to the solder appears to make microstructural development finer and more uniform. The Ni added to the solder readily combined with Cu to form stable intermetallic compounds of (Cu, Ni)6Sn5 capable of improving the creep behavior of solder alloys. Moreover, microstructural characterization based on transmission electron microscopy analyses observing creep behavior in detail showed that such particles in the Sn-3.5Ag-0.5Cu-Ni-Ge solder alloy prevent dislocation and movement.

  6. Growth and characterization of Ni sub x Cu sub 1 sub - sub x alloy films, Ni sub x Cu sub 1 sub - sub x /Ni sub y Cu sub 1 sub - sub y multilayers, and nanowires

    CERN Document Server

    Kazeminezhad, I

    2001-01-01

    few nm and the full width of the wire. The actual length and diameter of the wires were measured to be approx 5 mu m and (80+-5)nm respectively. The chemical compositions of the nanowires were obtained by EDX analysis. sub 4 sub 8 and Ni sub 0 sub . sub 6 sub 2 CU sub 0 sub . sub 3 sub 8 films showed that they become much more strongly ferromagnetic at low temperatures. Evidence for blocked -superparamagnetic behaviour above a blocking temperature (T sub B) of the films was obtained from zero-field-cooled (ZFC) and field-cooled (FC) magnetic susceptibility measurements. Ni sub x Cu sub 1 sub - sub x /Ni sub y Cu sub 1 sub - sub y alloy/alloy multilayer films with short repeat distance were successfully fabricated using this method. Up to third order satellite peaks observed in HAXRD showed that the interface is sharp. Room temperature longitudinal magnetoresistance measurements showed that Ni sub x Cu sub 1 sub - sub x /Ni sub y Cu sub 1 sub - sub y multilayers with certain layer thicknesses and compositions ...

  7. Magneto-optical response of Cu/NiFe/Cu nanostructure under surface plasmon resonance

    Science.gov (United States)

    Mahmoodi, S.; Moradi, M.; Mohseni, S. M.

    2016-12-01

    In this paper, we present theoretical and experimental studies about the surface plasmon resonance effects on the magneto-optical activity of Cu/NiFe/Cu nanostructures as a function of layers thickness and light incident angle. Device fabrication was done by an oblique deposition technique with RF magnetron sputtering to carefully cover fine step thickness variation of all constituted layers. Angular dependent transverse Kerr response of samples was measured in the Kretschmann configuration at a fixed wavelength of 632 nm. At an optimum layer thickness and incident angle, significant amplification of the transverse Kerr effect was observed. Enhancement in the transverse Kerr effect can be realized by hybridization of surface plasmon excitation and cavity resonance in the plasmonic nanostructure. Experimental results were in qualitative agreement with modeling based on the 4×4 transfer matrix formalism.

  8. Thermodynamic stability of austenitic Ni-Mn-Cu cast iron

    Directory of Open Access Journals (Sweden)

    A. Janus

    2014-07-01

    Full Text Available The performed research was aimed at determining thermodynamic stability of structures of Ni-Mn-Cu cast iron castings. Examined were 35 alloys. The castings were tempered at 900 °C for 2 hours. Two cooling speeds were used: furnace-cooling and water-cooling. In the alloys with the nickel equivalent value less than 20,0 %, partial transition of austenite to martensite took place. The austenite decomposition ratio and the related growth of hardness was higher for smaller nickel equivalent value and was clearly larger in annealed castings than in hardened ones. Obtaining thermodynamically stable structure of castings requires larger than 20,0 % value of the nickel equivalent.

  9. Mechanism of intergranular corrosion of NiCu alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, W.; Zhang, J. [Univ. of Toronto, Dept. of Chemical Engineering and Applied Chemistry, Toronto, Ontario (Canada)

    2006-07-01

    The objective of this study is to simulate intergranular corrosion (or intergranular attack, IGA) of Monel 400 (70Ni-30Cu) tubes that occurs occasionally in practice. In general the hypothesized factors of IGA for Monel 400 tubing could be crevices, dissolved oxygen, low pH, reduced sulfur species, and precipitation of impurities at grain boundaries. Electrochemical techniques including cyclic polarization and long-term potentiostatic polarization were used to test two heats of Monel 400 tubing that had behaved differently in practice. To simulate the situation within a crevice or under a deposit, cupric ions were added to the base solution, which was either neutral or acidic in pH. The effect of thiourea as a representative reduced sulfur compound was investigated. The results show that in neutral solution IGA occurs with little sensitivity to metallurgy and does not require thiourea, but in acid solution it only occurs with thiourea addition, and particular grain boundary microstructures are more susceptible. (author)

  10. Electronic structure of benzene adsorbed on Ni and Cu surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Weinelt, M.; Nilsson, A.; Wassdahl, N. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    Benzene has for a long time served as a prototype adsorption system of large molecules. It adsorbs with the molecular plane parallel to the surface. The bonding of benzene to a transition metal is typically viewed to involve the {pi} system. Benzene adsorbs weakly on Cu and strongly on Ni. It is interesting to study how the adsorption strength is reflected in the electronic structure of the adsorbate-substrate complex. The authors have used X-ray Emission (XE) and X-ray Absorption (XA) spectroscopies to selectively study the electronic states localized on the adsorbed benzene molecule. Using XES the occupied states can be studies and with XAS the unoccupied states. The authors have used beamline 8.0 and the Swedish endstation equipped with a grazing incidence x-ray spectrometer and a partial yield absorption detector. The resolution in the XES and XAS were 0.5 eV and 0.05 eV, respectively.

  11. Formation and stability of small well-defined Cu- and Ni oxide particles

    Energy Technology Data Exchange (ETDEWEB)

    Thalinger, Ramona [Institute of Physical Chemistry, University of Innsbruck, A-6020 Innsbruck (Austria); Heggen, Marc; Stroppa, Daniel G. [Ernst Ruska Zentrum und Peter Grünberg Institut, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Stöger-Pollach, Michael [University Service Facility for Transmission Electron Microscopy (USTEM), Vienna University of Technology, A-1040 Vienna (Austria); Klötzer, Bernhard [Institute of Physical Chemistry, University of Innsbruck, A-6020 Innsbruck (Austria); Penner, Simon, E-mail: simon.penner@uibk.ac.at [Institute of Physical Chemistry, University of Innsbruck, A-6020 Innsbruck (Austria)

    2013-12-16

    Well-defined and -structured Cu/Cu{sub 2}O and Ni/NiO composite nanoparticles have been prepared by physical-vapor deposition on vacuum-cleaved NaCl(001) single crystal facets. Epitaxial growth has been observed due to the close crystallographic matching of the respective cubic crystal lattices. Distinct particle morphologies have only been obtained for the Ni/NiO particles, comprising truncated half-octahedral, rhombohedral- and pentagonal-shaped outlines. Oxidation of the particles in the temperature range 473–673 K in both cases led to the formation of well-defined CuO and NiO particles with distinct morphologies. Whereas CuO possibly adopts its thermodynamical equilibrium shape, NiO formation is accompanied by entering a Kirkendall-like state, that is, a hollow core–shell structure is obtained. The difference in the formation of the oxides is also reflected by their stability under reducing conditions. CuO transforms back to a polycrystalline mixture of Cu metal, Cu{sub 2}O and CuO after reduction in hydrogen at 673 K. In contrast, as expected from theoretical stability considerations, the formation of the hollow NiO structure is reversed upon annealing in hydrogen at 673 K and moreover results in the formation of a Ni-rich silicide structure Ni{sub 3}Si{sub 2}. The discussed systems present a convenient way to tackle and investigate various problems in nanotechnology or catalysis, including phase transformations, establishing structure/activity relationships or monitoring intermetallic particles, starting from well-defined and simple models. - Highlights: • Preparation of epitaxial Cu/Cu{sub 2}O and Ni/NiO composite nanoparticles on NaCl(001). • Distinct Ni/NiO particle morphologies. • Formation of well-shaped CuO and NiO particles upon oxidation. • Reversal of Kirkendall-NiO-state upon reduction/annealing in hydrogen.

  12. Structural, mechanical, thermo-physical and electronic properties of η‧-(CuNi)6Sn5 intermetallic compounds: First-principle calculations

    Science.gov (United States)

    Yang, Jian; Huang, Jihua; Fan, Dongyu; Chen, Shuhai; Zhao, Xingke

    2016-05-01

    First-principle calculations have been performed to investigate the structural, mechanical, thermo-physical and electronic properties of η‧-(CuNi)6Sn5 intermetallic compounds. The results indicated that, the doped Ni atom can not only enhance the stability of the η‧-Cu6Sn5, but also improve the mechanical and thermo-physical properties, which are more dependent on the Ni atom doping number than the doping position. In all the η‧-(CuNi)6Sn5, Cu3Ni3Sn5 (Cu1+Cu3 site) shows the best stability, the most excellent deformation resistance and the highest hardness. The Cu6Sn5, Cu3Ni3Sn5, Cu4Ni2Sn5, Cu1Ni5Sn5 and Ni6Sn5 are ductile while the Cu5Ni1Sn5 and Cu4Ni2Sn5 are brittle. The anisotropies of η‧-(CuNi)6Sn5 are all mainly due to the uneven distribution of Young's modulus at (001) planes, moreover, the anisotropy of Cu1Ni5Sn5 (Cu1+Cu2+Cu4 site) is the strongest while that of Ni6Sn5 is the weakest. The calculated Debye temperature and heat capacity showed that Cu4Ni2Sn5 (Cu2 site) possesses the best thermal conductivity (ΘD = 356.9 K) and Cu2Ni4Sn5 (Cu1+Cu2 site) possesses the largest heat capacity. From the electronic property analysis results, the Ni s and Ni p states can replace the Cu s and Cu p states to hybridize with Sn s states at -7.98 eV. Moreover, with the increasing number of the doped Ni atom, the hybridization between Cu d states at different positions is receded, while that between Ni d states is enhanced gradually.

  13. Electrochemical studies of copper, nickel and a Cu55/Ni45 alloy in aqueous sodium acetate

    Directory of Open Access Journals (Sweden)

    Gonçalves Reinaldo Simões

    2001-01-01

    Full Text Available This paper discusses the electrochemical behavior of copper, nickel and a copper/nickel alloy in aerated aqueous 0.10 and 1.0 mol L-1 sodium acetate. The data obtained from different electrochemical techniques were analyzed to determine the influence of Ni and Cu on the electrochemical processes of the alloy electrode. The shapes of the potentiodynamic I(E curves of the alloy were found to be quite similar to those of the Ni voltamograms. Although the anodic current densities of Ni and the alloy increased with greater concentrations of acetate, the opposite effect occurred in Cu. The impedance measurements taken at the open circuit potential revealed that the polarization resistance (R P of the electrodes decreased in the following order: Ni > Alloy > Cu. With increasing concentrations of acetate, the R P of the alloy and the Cu increased while that of the Ni electrode decreased.

  14. Synchrotron X—Ray Study on Structures of Ni80Fe20/Cu Superlattices

    Institute of Scientific and Technical Information of China (English)

    杨涛; 麦振洪; 赖武彦; 吴忠华; 王德武; XUMing; 罗光明; 柴春林

    2001-01-01

    We have shown that,in contrast to the results in the literature,the Bragg peak intensity of Ni80Fe20/Cu superlattices is enhanced at the incident x-ray energy slightly higher than the absorption edge of the heavier element(Cu).The atomic density at Ni80Fe20/Cu interface was analysed by the diffraction anomalous fine structure technology with the incident angle of x-ray fixed at the first Bragg peak.Our results demonstrate the epitaxy growth of Ni80Fe20/Cu superlattices.Upon annealing,the epitaxity of Ni80Fe20/Cu multilayers becomes poor but the local crystallinity in each layer is improved.

  15. Cu/W-Ni/Ni多中间层的钨/钢扩散连接%Tungsten/steel diffusion bonding using Cu/W-Ni/Ni multi-interlayer

    Institute of Scientific and Technical Information of China (English)

    杨宗辉; 沈以赴; 王志阳; 成家林

    2014-01-01

    采用铜箔/90W-10Ni(质量分数)混合粉末/镍箔多中间层,在加压5 MPa、连接温度1150°C、保温60 min的工艺条件下,对纯钨(W)和0Cr13Al铁素体不锈钢进行真空扩散连接。利用SEM、EDS、电子万能试验机及水淬热震实验等手段研究接头的微观组织、成分分布、断口特征、力学性能及抗热震性能。结果表明,连接接头由钨母材/Cu-Ni合金层/W-Ni复合材料层/镍层/钢母材五部分组成。接头中的W-Ni复合材料层由90W-10Ni混合粉末固相烧结而生成,其组织均匀、致密。W-Ni复合材料层与钨母材以瞬间液相扩散连接机制来实现良好结合。接头剪切强度达到256 MPa,断裂均发生在W-Ni复合材料层与镍层的结合区域,断口形貌呈现为韧性断裂。经过60次700°C至室温的水淬热震测试,接头无裂纹出现。%Diffusion bonding between tungsten and 0Cr13Al stainless steel using a Cu/90W-10Ni powder mixtures/Ni multi-interlayer was carried out in vacuum at 1150 °C with a pressure of 5 MPa for 60 min. The microstructures, composition distribution and fracture characteristics of the joint were studied by SEM and EDS. Joint properties were evaluated by shear experiments and thermal shock tests. The results showed that the joints comprised tungsten/Cu-Ni sub-layer/W-Ni composites sub-layer/Ni sub-layer/0Cr13Al stainless steel. The W-Ni composites sub-layer with a homogeneous and dense microstructure was formed by solid phase sintering of 90W-10Ni powder mixtures. Sound bonding between tungsten base material and W-Ni composites sub-layer was realized based on transient liquid phase (TLP) diffusion bonding mechanism. Joints fractured at bonding zone of W-Ni composites sub-layer and Ni sub-layer during shear testing, and the average strength was 256 MPa. Thermal shock tests showed that joints could withstood 60 thermal cycles quenching from 700 °C to room temperature.

  16. Multilevel programming in Cu/NiO y /NiO x /Pt unipolar resistive switching devices

    Science.gov (United States)

    Sarkar, P. K.; Bhattacharjee, S.; Barman, A.; Kanjilal, A.; Roy, A.

    2016-10-01

    The application of a NiO y /NiO x bilayer in resistive switching (RS) devices with x > y was studied for its ability to achieve reliable multilevel cell (MLC) characteristics. A sharp change in resistance brought about by sweeping the voltage, along with an improved on/off ratio (>103) and endurance (104) were achieved in the bilayer structure as compared to the single NiO x layer devices. Moreover, it was found that nonvolatile and stable resistance levels, especially the multiple low-resistance states of Cu/NiO y /NiO x /Pt memory devices, could be controlled by varying the compliance current. All the multilevel resistance states of the Cu/NiO y /NiO x /Pt bilayer devices were stable for up to 500 consecutive dc switching cycles, as compared to the Cu/NiO x /Pt single layer devices. The temperature-dependent variation of the high and low resistance states of both the bilayer and single layer devices was further investigated to elucidate the charge conduction mechanism. Finally, based on a detailed analysis of the experimental results, comparisons of the possible models for RS in bilayer and single layer memory devices have also been discussed.

  17. On the evolution of Cu-Ni-rich bridges of Alnico alloys with tempering

    Science.gov (United States)

    Fan, M.; Liu, Y.; Jha, Rajesh; Dulikravich, George S.; Schwartz, J.; Koch, C. C.

    2016-12-01

    Tempering is a critical step in Alnico alloy processing, yet the effects of tempering on microstructure have not been well studied. Here we report these effects, and in particular the effects on the Cu-Ni bridges. Energy-dispersive X-ray spectroscopy (EDS) maps and line scans show that tempering changes the elemental distribution in the Cu-Ni bridges, but not the morphology and distribution of Cu-bridges. The Cu concentration in the Cu-Ni bridges increases after tempering while other element concentrations decrease, especially Ni and Al. Furthermore, tempering sharpens the Cu bridge boundaries. These effects are primarily related to the large 2C44/(C11-C12) ratio for Cu, largest of all elements in Alnico. In addition, the Ni-Cu loops around the α1 phases become inconspicuous with tempering. The diffusion of Fe and Co to the α1 phase during tempering, which increases the difference of saturation magnetization between the α1 and α2 phases, is observed by EDS. In summary, α1, α2 and Cu-bridges are concentrated with their major elements during tempering which improves the magnetic properties. The formation of these features formed through elemental diffusion is discussed via energy theories.

  18. Cu-Sn-Ni-Si-Zn系銅合金の析出

    OpenAIRE

    二塚, 錬成; 千葉, 俊一; FUTATSUKA, Rensei; CHIBA, Shunichi

    2000-01-01

    It is generally known in the brass mill industry in Japan that CDA Copper Alloy C64740 (Cu-Sn-Ni-Si-Zn system copper alloy) is used for copper-leadframe material which satisfies high quality requirements corresponding with miniaturization of semiconductor devices.Many studies on precipitation of Cu-Ni-Si system copper alloy have been performed in the past seventy years since M.G. Corson invented it in 1927. However, the precipitation ofCu-SnNi-Si-Zn system copper alloy containing a small cont...

  19. Martensitic transformation in Cu-doped NiMnGa magnetic shape memory alloys

    Institute of Scientific and Technical Information of China (English)

    Li Pan-Pan; Wang Jing-Min; Jiang Cheng-Bao

    2011-01-01

    This paper studies the martensitic transformation in the Cu-doped NiMnGa alloys. The orthorhombic martensite transforms to L21 cubic austenite by Cu substituting for Ni in the Ni50-x:CuxMn31Ga19 (x=2-10) alloys, the martensitic transformation temperature decreases significantly with the rate of 40 K per Cu atom addition. The variation of the Fermi sphere radius (kF) is applied to evaluate the change of the martensitic transformation temperature. The increase of kF leads to the increase of the martensitic transformation temperature.

  20. Effect of rare earths on corrosion resistance of Cu-30Ni alloys in simulated seawater

    Institute of Scientific and Technical Information of China (English)

    毛向阳; 方峰; 蒋建清; 谈荣生

    2009-01-01

    Cu-30Ni-xRE(x=0-0.213 wt.%) alloy was prepared by adding rare earths(RE) in melted Cu-30Ni alloy using metal mould casting method.The effects of RE on corrosion resistance of the alloy in simulated seawater were investigated using optical microscope,scanning electronic microscope with energy-dispersive spectrometer and electrochemical measurement system.The results showed that the corrosion resistance of Cu-30Ni alloy was greatly improved by adding proper amount of RE,whereas excess addition of RE worsened ...

  1. Structural evolution in Ti-Cu-Ni metallic glasses during heating

    Energy Technology Data Exchange (ETDEWEB)

    Gargarella, P., E-mail: piter@ufscar.br [IFW Dresden, Institut für Komplexe Materialien, Helmholtzstraße 20, D-01069 Dresden (Germany); Departamento de Engenharia de Materiais, Universidade Federal de São Carlos, Rodovia Washington Luiz, Km 235, 13565-905 São Carlos, São Paulo (Brazil); Pauly, S.; Stoica, M.; Kühn, U. [IFW Dresden, Institut für Komplexe Materialien, Helmholtzstraße 20, D-01069 Dresden (Germany); Vaughan, G. [European Synchrotron Radiation Facilities, BP 220, 38043 Grenoble (France); Afonso, C. R. M. [Departamento de Engenharia de Materiais, Universidade Federal de São Carlos, Rodovia Washington Luiz, Km 235, 13565-905 São Carlos, São Paulo (Brazil); Eckert, J. [IFW Dresden, Institut für Komplexe Materialien, Helmholtzstraße 20, D-01069 Dresden (Germany); Institut für Werkstoffwissenschaft, Technische Universität Dresden, D-01062 Dresden (Germany)

    2015-01-01

    The structural evolution of Ti{sub 50}Cu{sub 43}Ni{sub 7} and Ti{sub 55}Cu{sub 35}Ni{sub 10} metallic glasses during heating was investigated by in-situ synchrotron X-ray diffraction. The width of the most intense diffraction maximum of the glassy phase decreases slightly during relaxation below the glass transition temperature. Significant structural changes only occur above the glass transition manifesting in a change in the respective peak positions. At even higher temperatures, nanocrystals of the shape memory B2-Ti(Cu,Ni) phase precipitate, and their small size hampers the occurrence of a martensitic transformation.

  2. Structural evolution in Ti-Cu-Ni metallic glasses during heating

    Science.gov (United States)

    Gargarella, P.; Pauly, S.; Stoica, M.; Vaughan, G.; M. Afonso, C. R.; Kühn, U.; Eckert, J.

    2015-01-01

    The structural evolution of Ti50Cu43Ni7 and Ti55Cu35Ni10 metallic glasses during heating was investigated by in-situ synchrotron X-ray diffraction. The width of the most intense diffraction maximum of the glassy phase decreases slightly during relaxation below the glass transition temperature. Significant structural changes only occur above the glass transition manifesting in a change in the respective peak positions. At even higher temperatures, nanocrystals of the shape memory B2-Ti(Cu,Ni) phase precipitate, and their small size hampers the occurrence of a martensitic transformation.

  3. Structural evolution in Ti-Cu-Ni metallic glasses during heating

    Directory of Open Access Journals (Sweden)

    P. Gargarella

    2015-01-01

    Full Text Available The structural evolution of Ti50Cu43Ni7 and Ti55Cu35Ni10 metallic glasses during heating was investigated by in-situ synchrotron X-ray diffraction. The width of the most intense diffraction maximum of the glassy phase decreases slightly during relaxation below the glass transition temperature. Significant structural changes only occur above the glass transition manifesting in a change in the respective peak positions. At even higher temperatures, nanocrystals of the shape memory B2-Ti(Cu,Ni phase precipitate, and their small size hampers the occurrence of a martensitic transformation.

  4. Influence of Ni Additions on the Viscosity of Liquid Al2Cu

    Science.gov (United States)

    Mudry, S.; Vus, V.; Yakymovych, A.

    2017-07-01

    The viscosity of the liquid Al-Cu-Ni alloys has been studied by means of an oscillating crucible method. The activation energy of viscous flow was estimated from temperature dependences of the viscosity. The analysis of concentration dependence of the viscosity across a section Al67Cu33-Ni reveals its negative deviation from the linear dependence. Such behaviour of the viscosity coefficient upon additions of Ni into the liquid Al67Cu33 alloy could be caused by change of the interaction parameters between different structural units in the investigated melts.

  5. XPS study of Cu-Ni bimetallic catalyst%Cu-Ni双金属催化剂的XPS研究

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    采用XPS方法研究了以不同方式引入Ni的Cu-Ni/Al2O3双金 属催化剂的表面结构及不同处理条件对催化剂表面结构的影响。发现催化剂表面存在表面铝 酸盐物种,且Ni的存在会促进表面铝酸盐物种的生成。催化剂经H2还原处理或经CO2加 氢反应后均要发生表面重构。Ni的存在会影响表面重构过程从而影响催化剂的活性和选择性 ,在所研究的含Ni催化剂上,CO2加氢反应经历了生成双齿表面吸附中间物的过程。%The surface structure of Cu-Ni bimetallic catalysts and its variation with diff erent treatment conditions were studied by XPS techique.The effect of the chemi cal state of Ni before the impregnation of Cu in catalyst preparation on the sur f ace structure and its variation were also investigated.It is found that Cu atom approaches the surface of Al2O3 when it is supported.Surface aluminates a re formed on the surface of the catalysts and the presence of Ni favorites the f ormation of surface aluminates.The surface content of Cu is increased when Ni e x isted in reduced form before the introduction of Cu,while the opposite is true w hen Ni existed in oxidized form before introduction of Cu.Surface reconstructio n is observed when the samples studied are reduced in H2 or treated under CO 2 hydrogenation condition.The hydrogenation of CO2 enriches the surface c ontenrt of Cu species comparing to reduction.After CO2 hydrogenation treat ment,Cu species is observed to migrate to the surface of the catalyst in the abs ence of Ni,while in the presence of Ni surface is remarkably decreased.Bidentat e CO2 adsorptive species with the two O of CO2 cooordinated to metal atom s is a possible intermediate in the hydrogenation of CO2 over Ni containing c atalyst studied.

  6. Review of Ni-Cu Based Front Side Metallization for c-Si Solar Cells

    Directory of Open Access Journals (Sweden)

    Mehul C. Raval

    2013-01-01

    Full Text Available Given the high percentage of metal cost in cell processing and concerns due to increasing Ag prices, alternative metallization schemes are being considered. Ni-Cu based front side metallization offers potential advantages of finer grid lines, lower series resistance, and reduced costs. A brief overview of various front side patterning techniques is presented. Subsequently, working principle of various plating techniques is discussed. For electroless plated Ni seed layer, fill factor values nearing 80% and efficiencies close to 17.5% have been demonstrated, while for Light Induced Plating deposited layers, an efficiency of 19.2% has been reported. Various methods for qualifying adhesion and long term stability of metal stack are discussed. Adhesion strengths in the range of 1–2.7 N/mm have been obtained for Ni-Cu contacts tabbed with conventional soldering process. Given the significance of metallization properties, different methods for characterization are outlined. The problem of background plating for Ni-Cu based metallization along with the various methods for characterization is summarized. An economic evaluation of front side metallization indicates process cost saving of more than 50% with Ni-Cu-Sn based layers. Recent successful commercialization and demonstration of Ni-Cu based metallization on industrial scale indicate a potential major role of Ni-Cu based contacts in near future.

  7. Repulsive interatomic potentials for noble gas bombardment of Cu and Ni targets

    Energy Technology Data Exchange (ETDEWEB)

    Karolewski, M.A. [Department of Chemistry, University of Brunei Darussalam, Jalan Tungku Link, Gadong BE 1410 (Brunei Darussalam)]. E-mail: mkarol@fos.ubd.edu.bn

    2006-01-15

    Interatomic potentials that are relevant for noble gas bombardment of Cu and Ni targets have been calculated in the energy region below 10 keV. Potentials are calculated for the diatomic species: NeCu, ArCu, KrCu, Cu{sub 2}, ArNi, Ni{sub 2} and NiCu. The calculations primarily employ density functional theory (with the B3LYP exchange-correlation functional). Potential curves derived from Hartree-Fock theory calculations are also discussed. Scalar relativistic effects have been included via the second-order Douglas-Kroll-Hess (DKH2) method. On the basis of a variational argument, it can be shown that the predicted potential curves represent an upper limit to the true potential curves. The potentials provide a basis for assessing corrections required to the ZBL and Moliere screened Coulombic potentials, which are typically found to be too repulsive below 1-2 keV. These corrections significantly improve the accuracy of the sputter yield predicted by molecular dynamics for Ni(1 0 0), whereas the sputter yield predicted for Cu(1 0 0) is negligibly affected. The validity of the pair potential approximation in the repulsive region of the potential is tested by direct calculation of the potentials arising from the interaction of either an Ar or Cu atom with a Cu{sub 3} cluster. The pairwise approximation represents the Ar-Cu{sub 3} potential energy function with an error <3 eV at all Ar-Cu{sub 3} separations. For Cu-Cu{sub 3}, the pairwise approximation underestimates the potential by ca. 10 eV when the interstitial atom is located near the centre of the cluster.

  8. Electroless deposition of NiCrB diffusion barrier layer film for ULSI-Cu metallization

    Science.gov (United States)

    Wang, Yuechun; Chen, Xiuhua; Ma, Wenhui; Shang, Yudong; Lei, Zhengtao; Xiang, Fuwei

    2017-02-01

    NiCrB films were deposited on Si substrates using electroless deposition as a diffusion barrier layer for Cu interconnections. Samples of the prepared NiCrB/SiO2/Si and NiCrB/Cu/NiCrB/SiO2/Si were annealed at temperatures ranging from 500 °C to 900 °C. The reaction mechanism of the electroless deposition of the NiCrB film, the failure temperature and the failure mechanism of the NiCrB diffusion barrier layer were investigated. The prepared samples were subjected to XRD, XPS, FPP and AFM to determine the phases, composition, sheet resistance and surface morphology of samples before and after annealing. The results of these analyses indicated that the failure temperature of the NiCrB barrier film was 900 °C and the failure mechanism led to crystallization and grain growth of the NiCrB barrier layer after high temperature annealing. It was found that this process caused Cu grains to reach Si substrate through the grain boundaries, and then the reaction between Cu and Si resulted in the formation of highly resistive Cu3Si.

  9. Creep and Mechanical Properties of Cu6Sn5 and (Cu,Ni)6Sn5 at Elevated Temperatures

    Science.gov (United States)

    Mu, Dekui; Huang, Han; McDonald, Stuart D.; Nogita, Kazuhiro

    2013-02-01

    Cu6Sn5 is the most common and important intermetallic compound (IMC) formed between Sn-based solders and Cu substrates during soldering. The Cu6Sn5 IMC exhibits significantly different thermomechanical properties from the solder alloys and the substrate. The progress of high-density three-dimensional (3D) electrical packaging technologies has led to increased operating temperatures, and interfacial Cu6Sn5 accounts for a larger volume fraction of the fine-pitch solder joints in these packages. Knowledge of creep and the mechanical behavior of Cu6Sn5 at elevated temperatures is therefore essential to understanding the deformation of a lead-free solder joint in service. In this work, the effects of temperature and Ni solubility on creep and mechanical properties of Cu6Sn5 were investigated using energy-dispersive x-ray spectroscopy and nanoindentation. The reduced modulus and hardness of Cu6Sn5 were found to decrease as temperature increased from 25°C to 150°C. The addition of Ni increased the reduced modulus and hardness of Cu6Sn5 and had different effects on the creep of Cu6Sn5 at room and elevated temperatures.

  10. Wettability of molten Zr55Cu30Al10Ni5 on alumina and zirconia

    Institute of Scientific and Technical Information of China (English)

    XU Qiangang; WU Baoling; ZHANG Haifeng; HU Zhuangqi

    2007-01-01

    The wetting behavior of molten Zr55Cu30Al10Ni5 on Al2O3 and ZrO2 was studied using the sessile drop method.The results show that the nonwetting-to-wetting transition for the Zr55Cu30Al10Ni5/ZrO2 wetting system takes place at 1193K. The wetting of molten Zr55Cu30Al10Ni5 on Al2O3 is a non-reactive wetting. Owing to the formation of diffusion band at the front of the wetting tip in the Zr55Cu30Al10Ni5/Al2O3 system, the wettability ofAl2O3 is better than that of ZrO2.

  11. Research of Kinetics of Electroless Ni-Cu-P Alloy Plating on Polyester Fabric

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhen-bing; CHEN Xiao-li

    2002-01-01

    All the variables that may affect the Ni- Cu-P alloy deposition rate on polyester fabric were studied, and the activation energy and the reaction orders were determined. The deposition rate equation was also derived.

  12. Geology, Mineral Deposit Model and Potential of the Suwar Cu-Ni Sulphide Prospect, Northwest Yemen

    Institute of Scientific and Technical Information of China (English)

    Abdulkarim M.; Al-Nagashi; Li Xujun

    2002-01-01

    The Suwar Cu-Ni sulphide prospect is very highly regarded for its potential to host a major nickel-copper sulphide deposit in Republic of Yemen, a mineral resource lacking country. The ore-hosting intrusion is a lopolith about 6km long and lkm wide and more than 300m deep. There are two types of Cu-Ni mineralizations in the prospect: primary massive chalcopyrite+ pyrrhotite+ pentlandite controlled by gravitational and structural traps while the secondary Cu-Ni mineralization is coarse grained and occur as veins, veinlets, fracture fill, blebs or associated with coarse, re-crystallized carbonate in shear zones and faults. The deposit type of the prospect is believed to be the one associated with the ultramafic component of a large, broadly differentiated noritic, gabbroid intrusive. It is suggested that the prospect and adjacent area possibly contain a similar world class Ni-Cu deposits as that in Jinchuan, China.

  13. (Cd, Cu, Ni and Pb) content in two fish species of Persian Gulf in ...

    African Journals Online (AJOL)

    GREGORY

    2010-09-13

    Sep 13, 2010 ... Heavy metal (HMs) pollution of aquatic environment has become a great concern in recent years. ... study, cadmium (Cd), copper (Cu), nickel (Ni) and lead (Pb) levels ... toxic effects on organs (Macfarlane and Burchettt 2000).

  14. Strong critical current density enhancement in NiCu/NbN superconducting nanostripes for optical detection

    Science.gov (United States)

    Marrocco, N.; Pepe, G. P.; Capretti, A.; Parlato, L.; Pagliarulo, V.; Peluso, G.; Barone, A.; Cristiano, R.; Ejrnaes, M.; Casaburi, A.; Kashiwazaki, N.; Taino, T.; Myoren, H.; Sobolewski, Roman

    2010-08-01

    We present measurements of ferromagnet/superconductor (NiCu/NbN) and plain superconducting (NbN) nanostripes with the linewidth ranging from 150 to 300 nm. The NiCu (3 nm)/NbN (8 nm) bilayers, as compared to NbN (8 nm), showed a up to six times increase in their critical current density, reaching at 4.2 K the values of 5.5 MA/cm2 for a 150 nm wide nanostripe meander and 12.1 MA/cm2 for a 300 nm one. We also observed six-time sensitivity enhancement when the 150 nm wide NiCu/NbN nanostripe was used as an optical detector. The strong critical current enhancement is explained by the vortex pinning strength and density increase in NiCu/NbN bilayers and confirmed by approximately tenfold increase in the vortex polarizability factor.

  15. Cu and Co exchanged ZSM-5 zeolites: activity towards no reduction and hydrocarbon oxidation

    Directory of Open Access Journals (Sweden)

    Martins Leandro

    2006-01-01

    Full Text Available |Cu x|[Si yAl]-MFI and |Co x|[Si yAl]-MFI catalysts were prepared by ion exchange from |Na|[Si yAl]-MFI zeolites (y = 12, 25 and 45. The activity of the catalysts was evaluated in the reduction of NO to N2 in an oxidative atmosphere using propane or methane as reducing agents. The Cu catalysts were only active with propane and they presented higher activity than the Co-based catalysts, the latter being active with both hydrocarbons. H2-TPR and DRS-UV/Vis data allowed correlation between the activity towards NO reduction and the presence of cationic charge-compensating species in the zeolite. It was also verified that the hydrocarbons are preferentially oxidised by O2, a reaction that occurs simultaneously with their oxidation with NO.

  16. Calculation and measurement of helium generation and solid transmutations in Cu-Zn-Ni alloys

    Energy Technology Data Exchange (ETDEWEB)

    Greenwood, L.R.; Oliver, B.M.; Garner, F.A. [Pacific Northwest National Lab., Richland, WA (United States); Muroga, T. [National Inst. of Fusion Science, Nagoya (Japan)

    1998-03-01

    A method was recently proposed by Garner and Greenwood that would allow the separation of the effects of solid and gaseous transmutation for Cu-Zn-Ni alloys. Pure copper produces zinc and nickel during neutron irradiation. {sup 63}Cu transmutes to {sup 64}Ni and {sup 64}Zn, in about a 2-to-1 ratio, and {sup 65}Cu transmutes to {sup 66}Zn. The {sup 64}Zn further transmutes to {sup 65}Zn which has been shown to have a high thermal neutron (n,{alpha}) cross-section. Since a three-step reaction sequence is required for natural copper, the amount of helium produced is much smaller than would be produced for the two-step, well-known {sup 58}Ni (n,{gamma}) {sup 59}Ni (n,{alpha}) reaction sequence. The addition of natural Zn and Ni to copper leads to greatly increased helium production in neutron spectra with a significant thermal component. Using a suitable Cu-Zn-Ni alloy matrix and comparative irradiation of thermal neutron-shielded and unshielded specimens, it should be possible to distinguish the separate influences of the solid and gaseous transmutants. Whereas helium generation rates have been previously measured for natural nickel and copper, they have not been measured for natural Zn or Cu-Ni-Zn alloys. The (N,{alpha}) cross section for {sup 65}Zn was inferred from helium measurements made with natural copper. By comparing helium production in Cu and Cu-Zn alloys, this cross section can be determined more accurately. In the current study, both the solid and helium transmutants were measured for Cu, Cu-5Ni, Cu-3.5Zn and Cu-5Ni-2Zn, irradiated in each of two positions in the HFIR JP-23 test. Highly accurate helium measurements were performed on these materials by isotope dilution mass spectrometry using a facility that was recently moved from Rockwell International to PNNL. It is shown that both the helium and solid transmutants for Cu-zn-Ni alloys can be calculated with reasonable certainty, allowing the development of a transmutation experiment as proposed by

  17. Time-resolved photoresponse of nanometer-thick Nb/NiCu bilayers

    Science.gov (United States)

    Parlato, L.; Pepe, G. P.; Latempa, R.; De Lisio, C.; Altucci, C.; D'Acunto, P.; Peluso, G.; Barone, A.; Taneda, T.; Sobolewski, R.

    2005-07-01

    We present femtosecond optical time-resolved pump-probe investigations of superconducting hybrids structures consisting of Nb/NiCu bilayers with various thickness. Measurements performed on pure Nb and NiCu films are also given. The photoresponse experiments provide the quasiparticle relaxation times in bilayers of different thickness ratios. The study of the photoresponse as a function of the temperature reveals the spatial evolution of the superconductor order parameter across the bilayers.

  18. Insight into CH4 dissociation on NiCu catalyst: A first-principles study

    Science.gov (United States)

    Liu, Hongyan; Zhang, Riguang; Yan, Ruixia; Li, Jingrui; Wang, Baojun; Xie, Kechang

    2012-08-01

    A density-functional theory method has been conducted to investigate the dissociation of CH4 on NiCu (1 1 1) surface. Two models: uniform surface slab model (Model A) and Cu-rich surface slab model (Model B) have been constructed to represent the NiCu (1 1 1) surface, in which the ratio of Ni/Cu is unit. The obtained results on the two models have been compared with those obtained on pure Ni (1 1 1) and Cu (1 1 1). It is found that the adsorption of CHx(x = 1-3) on Model B are weaker than on Model A. The rate-determining steps of CH4 dissociation on Model A and B both are the dissociation of CH, and the corresponding activation barriers are 1.37 and 1.63 eV, respectively. Obviously, it is approximately equal on Model A to that on pure Ni (1 1 1) [H. Liu, R. Zhang, R. Yan, B. Wang, K. Xie, Applied Surface Science 257 (2011) 8955], while it is lower by 0.58 eV on Model B compared to that on pure Cu (1 1 1). Therefore, the Cu-rich surface has better carbon-resistance ability than the uniform one. Those results well explain the experimental facts that NiCu/SiO2 has excellent catalytic performance and long-term stability [H.-W. Chen, C.-Y. Wang, C.-H. Yu, L.-T. Tseng, P.-H. Liao, Catalysis Today 97 (2004) 173], however, there is serious carbon deposition on NiCu/MgO-Al2O3 in CO2 reforming of methane [J. Zhang, H. Wang, A. K. Dalai, Journal of Catalysis 249 (2007) 300].

  19. NiCu-based superconducting devices: fabrication and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Ruotolo, A [Universita di Napoli Federico II, Dip. Scienze Fisiche, Facolta d' Ingegneria, P.le Tecchio 80, 80125 Naples (Italy); Pullini, D [Centro Ricerche FIAT, Strada Torino 50, 10043 Orbassano, Turin (Italy); Adamo, C [Universita di Salerno, Dip. Scienze Fisiche, Via S. Allende 1, 84081 Baronissi, Salerno (Italy); Pepe, G P [Universita di Napoli Federico II, Dip. Scienze Fisiche, Facolta d' Ingegneria, P.le Tecchio 80, 80125 Naples (Italy); Maritato, L [Universita di Salerno, Dip. Scienze Fisiche, Via S. Allende 1, 84081 Baronissi, Salerno (Italy); Innocenti, G [Centro Ricerche FIAT, Strada Torino 50, 10043 Orbassano, Turin (Italy); Perlo, P [Centro Ricerche FIAT, Strada Torino 50, 10043 Orbassano, Turin (Italy)

    2006-06-01

    The critical Josephson current (I{sub C}) in superconducting/ferromagnetic (S/F) multilayer-based junctions can be controlled by changing the relative directions of the magnetization in the F-layers. Recent experimental works show that an enhancement of I{sub C} is achieved in S/F weak links when the alternating F-layers are antiparallel aligned. We present preliminary experimental results concerning the dependence of I{sub C} on the relative orientation of the ferromagnetic layers in S/F{sub 1}/I/F{sub 2}/S tunnel junctions where the F-layers are obtained by changing the relative composition of NiCu alloys. The multilayers were grown by electron beam deposition, and processed by Focused Ion Beam lithography. The magnetic state of the devices was directly determined by measuring the current perpendicular to plane (CPP) magnetoresistance (MR) at high bias. I{sub C} was found to be larger when the F-layers are antiparallel aligned. The maximum change of I{sub C} corresponds to the maximum change of MR. The application of a magnetic field induces a transition in the shape of the currentvoltage curve that seems to suggest Coulomb blockade effect.

  20. NiCu-based superconducting devices: fabrication and characterization

    Science.gov (United States)

    Ruotolo, A.; Pullini, D.; Adamo, C.; Pepe, G. P.; Maritato, L.; Innocenti, G.; Perlo, P.

    2006-06-01

    The critical Josephson current (IC) in superconducting/ferromagnetic (S/F) multilayer-based junctions can be controlled by changing the relative directions of the magnetization in the F-layers. Recent experimental works [1, 2] show that an enhancement of IC is achieved in S/F weak links when the alternating F-layers are antiparallel aligned. We present preliminary experimental results concerning the dependence of IC on the relative orientation of the ferromagnetic layers in S/F1/I/F2/S tunnel junctions where the F-layers are obtained by changing the relative composition of NiCu alloys. The multilayers were grown by electron beam deposition, and processed by Focused Ion Beam lithography. The magnetic state of the devices was directly determined by measuring the current perpendicular to plane (CPP) magnetoresistance (MR) at high bias. IC was found to be larger when the F-layers are antiparallel aligned. The maximum change of IC corresponds to the maximum change of MR. The application of a magnetic field induces a transition in the shape of the currentvoltage curve that seems to suggest Coulomb blockade effect.

  1. Growth of Horizontal Nanopillars of CuO on NiO/ITO Surfaces

    Directory of Open Access Journals (Sweden)

    Siddharth Joshi

    2014-01-01

    Full Text Available We have demonstrated hydrothermal synthesis of rectangular pillar-like CuO nanostructures at low temperature (~60°C by selective growth on top of NiO porous structures film deposited using chemical bath deposition method at room temperature using indium tin oxide (ITO coated glass plate as a substrate. The growth of CuO not only filled the NiO porous structures but also formed the big nanopillars/nanowalls on top of NiO surface. These nanopillars could have significant use in nanoelectronics devices or can also be used as p-type conducting wires. The present study is limited to the surface morphology studies of the thin nanostructured layers of NiO/CuO composite materials. Structural, morphological, and absorption measurement of the CuO/NiO heterojunction were studied using state-of-the-art techniques like X-ray diffraction (XRD, transmission electron microscopy (SEM, atomic force microscopy (AFM, and UV spectroscopy. The CuO nanopillars/nanowalls have the structure in order of (5 ± 1.0 μm × (2.0 ± 0.3 μm; this will help to provide efficient charge transport in between the different semiconducting layers. The energy band gap of NiO and CuO was also calculated based on UV measurements and discussed.

  2. Giant magnetoresistance effect in Ni buffered Co/Cu/Co sandwich

    Institute of Scientific and Technical Information of China (English)

    LI; Tie(李铁)

    2002-01-01

    The effects of Ni buffer layer on the giant magnetoresistance structure of Co/Cu/Co sandwich are investigated systematically in this paper.It is found that Ni buffer layer can induce the crystallization of the lower Ni/Co layer and produce small coercivity,thus enlarging the difference in the magnetic behavior between the two magnetic layers in the sandwich.Moreover,the use of the Ni buffer layer can also improve the interface flatness in the sandwich.All these factors enhance the sensitivity of the Ni buffered sandwich.``

  3. Science Letters:Preparation of high-permeability NiCuZn ferrite

    Institute of Scientific and Technical Information of China (English)

    HU Jun; YAN Mi

    2005-01-01

    Appropriate addition of CuO/V2O5 and the reduction of the granularity of the raw materials particle decrease the sintering temperature ofNiZn ferrite from 1200 ℃ to 930 ℃. Furthermore, the magnetic properties of the NiZn ferrite prepared at low temperature of 930 ℃ is superior to that of the NiZn ferrite prepared by sintering at high temperature of 1200 ℃ because the microstructure of the NiZn ferrite sintered at 930 ℃ is more uniform and compact than that of the NiZn ferrite sintered at 1200 ℃.The high permeability of 1700 and relative loss coefficient tanδ//μi of 9.0×10-6 at 100 kHz was achieved in the (Ni0.17Zn0.63Cu0.20)Fe1.915O4 ferrite.

  4. Structural properties of produced CuO/NiO/glass thin layers Produced by chemical method

    Directory of Open Access Journals (Sweden)

    A. Ramezani

    2016-12-01

    Full Text Available Nickel Oxide and Copper oxide on Nickel Oxide thin layers were produced by chemical bath deposition method. There nano structures were investigated by SEM and EDAX analysis. By producing CuO/NiO/glass sandwich layers nano structure of NiO/glass layer changed and fraction of voids decreases. In sandwich layer physical property of outer layer was dominant

  5. Kinetic and thermodynamic aspects of crystallization in Cu-Ti-Ni and Cu-Ti-Al metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Myung, Wha-Nam (Department of Physics, Chonnam National University, Kwang ju 500-757 (Korea, Republic of)); Battezzati, Livio (Dipartimento di Chimica Inorganica, Chimica Fisica e Chimica dei Materiali, Universita di Torino, 10125 Torino (Italy)); Baricco, Marcello (Dipartimento di Chimica Inorganica, Chimica Fisica e Chimica dei Materiali, Universita di Torino, 10125 Torino (Italy)); Aoki, K. (Institute for Materials Research, Tohoku University, Sendai 980 (Japan)); Inoue, A. (Institute for Materials Research, Tohoku University, Sendai 980 (Japan)); Masumoto, T. (Institute for Materials Research, Tohoku University, Sendai 980 (Japan))

    1994-05-01

    Cu[sub 50]Ti[sub 40]Ni[sub 10] and Cu[sub 50]Ti[sub 40]Al[sub 10] alloys were amorphized by rapid solidification. Their crystallization kinetics was studied by differential scanning calorimetry (DSC) and X-ray diffraction. Examples were found for different mechanisms according to the alloy composition and temperature range of the experiments. Cu[sub 50]Ti[sub 40]Ni[sub 10] crystallizes to nanocrystalline (Cu,Ni)[sub 3]Ti[sub 2]. In the neighbourhood of T[sub g] the activation energy is 236 kJ mol[sup -1]. Substantial incubation times are found and the Avrami coefficient always exceeds 4, indicating an increasing nucleation rate. Cu[sub 50]Ti[sub 40]Al[sub 10] crystallizes predominantly to a phase isomorphous with [gamma]-CuTi with an activation energy of 328 kJ mol[sup -1]. The Avrami coefficient is around 3 and the incubation time is low. The process appears to be controlled by crystal growth on a steady state population of nuclei. A thermodynamic discussion of glass formation and crystallization is given with the help of data on the melting behaviour of the alloys obtained by high temperature DSC. ((orig.))

  6. Strain relaxation in thin films of Cu grown on Ni(001)

    DEFF Research Database (Denmark)

    Rasmussen, F.B.; Baker, J.; Nielsen, M.;

    1998-01-01

    Surface X-ray diffraction and kinematical model calculations are used to determine the strain relaxation of embedded wedges with internal (111) facets formed in thin Cu films when grown on Ni(001). We show the wedges to be inhomogenously strained with a large lateral relaxation near the Cu...

  7. An Investigation on Hall-Petch Relationship in Electrodeposited Nanocrystalline Cu-Ni-P Alloys

    Institute of Scientific and Technical Information of China (English)

    Haiqing Sun; Yinong Shi

    2009-01-01

    Nanocrystalline Cu-Ni-P alloys with average grain sizes of 7, 10 and 24 nm were synthesized by means of electrodeposition.The grain size dependences of tensile strength and hardness of the nanocrystalline Cu alloys were investigated.The breakdown of Hall-Perch relation was exhibited in both tensile strength and hardness.

  8. A Review of TiNiPdCu Alloy System for High Temperature Shape Memory Applications

    Science.gov (United States)

    Khan, M. Imran; Kim, Hee Young; Miyazaki, Shuichi

    2015-06-01

    High temperature shape memory alloys (HTSMAs) are important smart materials and possess a significant potential to improve many engineering systems. Many TiNi-based high temperature ternary alloy systems have been reported in literature including TiNiPd, TiNiPt, TiNiZr, TiNiAu, TiNiHf, etc. Some quaternary additions of certain elements in the above systems have been successful to further improve many important shape memory and mechanical properties. The success criteria for an HTSMA become strict in terms of its cyclic stability, maximum recoverable strain, creep resistance, and corrosion resistance at high temperatures. TiNiPdCu alloy system has been recently proposed as a promising HTSMA. Unique nanoscaled precipitates formed in TiNiPdCu-based HTSMAs are found to be stable at temperatures above 773 K, while keeping the benefits of ease of fabrication. It is expected that this alloy system possesses significant potential especially for the high temperature shape memory applications. Till now many research reports have been published on this alloy system. In the present work, a comprehensive review of the TiNiPdCu system is presented in terms of thermomechanical behavior, nanoscale precipitation mechanism, microstructural features, high temperature shape memory and mechanical properties, and the important parameters to control the high temperature performance of these alloys.

  9. Fabrication of electrodeposited Ni-Cu/Cu multilayered films and study of their nanostructures before and after annealing

    Directory of Open Access Journals (Sweden)

    I Kazeminezhad

    2008-07-01

    Full Text Available  In this work electrodeposited Ni-Cu/Cu metallic multilayered films with different thicknesses of Ni and Cu were prepared on (100 polycrystalline Cu substrates. The nanostructure of the multilayers was studied using XRD. The existence of satellite peaks in the XRD patterns showed that the multilayered films have superlattice structures. The difference between the intensity of ML(200 and ML(111 peaks showed that the multilayers have a strong texture of (100 as their substrate structures which confirms the epitaxial growth. The morphology of the films was studied by SEM. The SEM images showed that the surface of the films is rough. The samples were also analyzed using EDX and the results showed that the real content of Ni is less than its nominal content this refers to the current efficiency which is less than unity due to hydrogen evolution. In the second stage of the work some identical samples which have the highest order of satellite peaks were electrodeposited. The samples were annealed at different temperatures and times. Their structures were then studied by XRD. The XRD patterns of the annealed samples showed that if the temperature and time of annealing increase, the satellite peaks begin to disappear. It means by increasing these two parameters, the sharpness of the bilayer interface decreases and the multilayered structure tends to become alloy structure. The morphology of the samples was also studied by SEM. The SEM images showed that the surface of the annealed films becomes approximately uniform due to the diffusion of Ni and Cu atoms to Cu and Ni layers, respectively.

  10. Processing and property assessment of NiTi and NiTiCu shape memory actuator springs

    Energy Technology Data Exchange (ETDEWEB)

    Grossmann, C.; Frenzel, J.; Depka, T.; Oppenkowski, A.; Somsen, C.; Neuking, K.; Theisen, W.; Eggeler, G. [Institut fuer Werkstoffe, Ruhr-Universitaet Bochum (Germany); Sampath, V. [Institut fuer Werkstoffe, Ruhr-Universitaet Bochum (Germany); Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai (India)

    2008-08-15

    Among the multifarious engineering applications of NiTi shape memory alloys (SMAs), their use in actuator applications stands out. In actuator applications, where the one-way effect (1WE) of NiTi SMAs is exploited, SM components are often applied as helical coil springs. Ingots are generally used as starting materials for the production of springs. But before SM actuator springs can be manufactured, the processing of appropriate wires from NiTi ingots poses a challenge because cold and hot working of NiTi SMAs strongly affect microstructure, and it is well known that the functional properties of NiTi SMAs are strongly dependent on their microstructure. The objective of the present paper is therefore to produce binary Ni{sub 50}Ti{sub 50} and ternary Ni{sub 40}Ti{sub 50}Cu{sub 10} SMA actuator springs, starting from ingots produced by vacuum induction melting. From these ingots springs are produced using swaging, rolling, wire drawing and a shape-constraining procedure in combination with appropriate heat treatments. The evolution of microstructure during processing is characterized and the mechanical properties of the wires prior to spring-making are documented. The mechanical and functional characteristics of the wires are investigated in the stress-strain-temperature space. Finally, functional fatigue testing of actuator springs is briefly described and preliminary results for NiTi and NiTiCu actuator springs are reported. (Abstract Copyright [2008], Wiley Periodicals, Inc.) [German] NiTi-Formgedaechtnislegierungen (FGL) zeichnen sich durch eine hohe Attraktivitaet fuer verschiedene Aktorik-Anwendungen aus. Dabei werden FGL haeufig in Form von zylindrischen Federn verwendet, wobei der Einwegeffekt genutzt wird. Die Herstellung von solchen Aktor-Federn ist jedoch keinesfalls trivial. Sowohl die Herstellung von geeignetem Drahtmaterial als auch die Formgebungsbehandlung stellen in gewisser Weise eine Herausforderung dar. Die funktionellen Eigenschaften von Ni

  11. MicrOstructural Changes of Cu-Ni-Si AllOy during Aging

    Institute of Scientific and Technical Information of China (English)

    Qiming DONG; Dongmei ZHAO; Ping LIU; Buxi KANG; Jinliang HUANG

    2004-01-01

    Age hardening in Cu-3.2Ni-0.75Si (wt pct) and Cu-1.0Ni-0.25Si (wt pct) alloys from 723 to 823 K is studied. After an incubation period strengthening appears which is due to precipitates in the Cu-1.0Ni-0.25Si (wt pct) alloy. On other hand animmediate increase of the yield strength characterizes the aging of the alloy. This is followed by the regions of constant yield strength and further by a peak. The microstructure of the alloy was studied by, means of transmission electron microscope (TEM) and X-ray diffraction (XRD). Spinodal decomposition takes place followed by nucleation of the ordering coherent (Cu,Ni)3Si particles, further precipitation annealing coherent δ-Ni2Si nucleated within the (Cu,Ni)3Si particle. Any change of the yield strength can be described by an adequate change of the structure in the sample. The nature of the aging curves with a"plateau" is discussed. The formulas of Ashby and Labusch can be used to explain the precipitation.

  12. Thin-layer chromatographic specification and separation of Cu(1+), Cu(2+), Ni(2+), and Co(2+) cations.

    Science.gov (United States)

    Savasci, Sahin; Akçay, Mehmet; Ergül, Soner

    2010-07-01

    The M(PyDTC)(2) (M: Cu, Co, or Ni) and CuPyDTC complexes, prepared by reactions of ammonium pyrrolidinedithiocarbamate with metal nitrates, are examined for qualitative analysis, speciation, and mutual separation using thin-layer chromatography systems. These complexes and their mixtures are spotted to the activated and non-activated thin layers of silica gel 60GF(254) (Si-60GF(254)) with a 250-microm thickness. Toluene-dichloromethane mixtures (4:1, 1:1, 1:4 v/v) are used as mobile phases for running of the complexes. All of these chromatographic systems are successfully used for speciation of Cu(2+) and Cu(1+) cations. The best analytical separation for the qualitative analysis of corresponding metal cations and mutual separation of components in M(PyDTC)(2) and CuPyDTC complexes are obtained when using pure toluene-dichloromethane (1:1 v/v) on the activated layer. This study shows that it is possible to qualitatively analyze and satisfactorily separate a mixture of Cu(1+), Cu(2+), Ni(2+), and Co(2+) cations on cited chromatographic systems. These results may be also said for the adaptability or validity on column chromatography.

  13. Process and properties of electroless Ni-Cu-P-ZrO{sub 2} nanocomposite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Ranganatha, S. [Department of Studies in Chemistry, School of Chemical Sciences, Kuvempu University, Shankaraghatta 577451, Shimoga, Karnataka (India); Venkatesha, T.V., E-mail: drtvvenkatesha@yahoo.co.uk [Department of Studies in Chemistry, School of Chemical Sciences, Kuvempu University, Shankaraghatta 577451, Shimoga, Karnataka (India); Vathsala, K. [Nanotribology Laboratory, Mechanical engineering department, Indian Institute of Science, Bangalore (India)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer The Ni-P and Ni-P-Cu-ZrO{sub 2} coatings were produced by electroless technique. Black-Right-Pointing-Pointer The influence of copper and ZrO{sub 2} nanoparticles on Ni-P was studied. Black-Right-Pointing-Pointer Surface morphology, structure and electrochemical behavior were evaluated. Black-Right-Pointing-Pointer The Ni-Cu-P-ZrO{sub 2} and Ni-P-ZrO{sub 2} coatings are more resistant to corrosion than Ni-P. Black-Right-Pointing-Pointer Introduction of Cu and ZrO{sub 2} in the matrix aids to the enhancement of microhardness. -- Abstract: Electroless Ni-Cu-P-ZrO{sub 2} composite coating was successfully obtained on low carbon steel matrix by electroless plating technique. Coatings with different compositions were obtained by varying copper as ternary metal and nano sized zirconium oxide particles so as to obtain elevated corrosion resistant Ni-P coating. Microstructure, crystal structure and composition of deposits were analyzed by SEM, EDX and XRD techniques. The corrosion behavior of the deposits was studied by anodic polarization, Tafel plots and electrochemical impedance spectroscopy (EIS) in 3.5% sodium chloride solution. The ZrO{sub 2} incorporated Ni-P coating showed higher corrosion resistance than plain Ni-P. The introduction of copper metal into Ni-P-ZrO{sub 2} enhanced the protection ability against corrosion. The influence of copper metal and nanoparticles on microhardness of coatings was evaluated.

  14. Structure and phonon spectrum of a submonolayer Ni film on the surface of Cu(100)

    Science.gov (United States)

    Rusina, G. G.; Borisova, S. D.; Chulkov, E. V.

    2016-02-01

    The equilibrium atomic structure and the phonon spectra of a submonolayer (θ = 0.5 monolayer) Ni film deposited on the surface of Cu(100) are calculated using the potentials obtained by the embedded atom method. We consider atomic relaxation, the vibrational state density distribution on Ni and substrate atoms, and polarization of vibrational modes. Variation of the phonon spectrum upon segregation of Cu atoms on the film surface is considered. It is shown that mixing of vibrations of Ni adatoms with vibrations of substrate atoms occurs in the entire frequency range, leading to a frequency shift of the vibrational modes of the substrate and to the occurrence of new vibrational states atypical of a clean surface. The Cu(100)- c(2 × 2)-Ni structure is dynamically stabler when placed in the subsurface layer of the substrate.

  15. Creep behaviour of a casting titanium carbide reinforced AlSi12CuNiMg piston alloy at elevated temperatures; Hochtemperaturkriechverhalten der schmelzmetallurgisch hergestellten dispersionsverstaerkten Kolbenlegierung AlSi12CuNiMg

    Energy Technology Data Exchange (ETDEWEB)

    Michel, S.; Scholz, A. [Zentrum fuer Konstruktionswerkstoffe, TU Darmstadt (Germany); Tonn, B. [Institut fuer Metallurgie, TU Clausthal (Germany); Zak, H.

    2012-03-15

    This paper deals with the creep behaviour of the titanium carbide reinforced AlSi12CuNiMg piston alloy at 350 C and its comparison to the conventional AlSi12Cu4Ni2MgTiZr piston alloy. With only 0,02 vol-% TiC reinforcement the creep strength and creep rupture strength of the AlSi12CuNiMg piston alloy are significantly improved and reach the level of the expensive AlSi12Cu4Ni2MgTiZr alloy. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Magnetic and Structural Properties in Co/Cu/Co Sandwiches with Ni and Cr Buffer Layers

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The magnetic and structural properties in Co/Cu/Co sandwiches with Ni and Cr buffer layers were investigated. It was found that the coercivity in Ni layer buffered samples decreases with increasing Ni layer thickness, while that in Cr layer buffered ones increases with increasing Cr layer thickness, leading to a large difference in field sensitivity of their giant magnetoresistance (GMR) properties. X-ray diffraction and high resolution transmission electron microscope images exhibited that there is a strong fcc (111) texture in the samples with Ni buffer layer. But there are only randomly oriented polycrystalline grains in Cr buffered sandwiches. According to atomic force microscope topography, the surface roughness of Cr buffered sandwiches is smaller than that of Ni buffered ones. It is demonstrated that buffer layer influences both magnetic and structural properties in Co/Cu/Co sandwiches as well as their GMR characteristics.

  17. Ni- and Fe-catalyzed Carboxylation of Unsaturated Hydrocarbons with CO2.

    Science.gov (United States)

    Juliá-Hernández, Francisco; Gaydou, Morgane; Serrano, Eloisa; van Gemmeren, Manuel; Martin, Ruben

    2016-08-01

    The sustainable utilization of available feedstock materials for preparing valuable compounds holds great promise to revolutionize approaches in organic synthesis. In this regard, the implementation of abundant and inexpensive carbon dioxide (CO2) as a C1 building block has recently attracted considerable attention. Among the different alternatives in CO2 fixation, the preparation of carboxylic acids, relevant motifs in pharmaceuticals and agrochemicals, is particularly appealing, thus providing a rapid and unconventional entry to building blocks that are typically prepared via waste-producing protocols. While significant advances have been realized, the utilization of simple unsaturated hydrocarbons as coupling partners in carboxylation events is undoubtedly of utmost academic and industrial relevance, as two available feedstock materials can be combined in a catalytic fashion. This review article aims to describe the main achievements on the direct carboxylation of unsaturated hydrocarbons with CO2 by using cheap and available Ni or Fe catalytic species.

  18. Effect of Cu surface segregation on the exchange coupling field of NiFe/FeMn bilayers

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The NiFe/FeMn bilayers with different buffer layers (Ta or Ta/Cu) were prepared by magnetron sputtering.Results show that the exchange coupling field of NiFe/FeMn films with Ta buffer is higher than that of the films with Ta/ Cu buffer. We analysed the reasons by investigating the crystallographic texture, surface roughness and surface segregation of both films, respectively. We found that the decrease of the exchange coupling fields of NiFe/FeMn films with Ta/Cu buffer layers was mainly caused by the Cu surface segregation on NiFe surface.

  19. Colloidal synthesis of Cu-ZnO and Cu@CuNi-ZnO hybrid nanocrystals with controlled morphologies and multifunctional properties.

    Science.gov (United States)

    Zeng, Deqian; Gong, Pingyun; Chen, Yuanzhi; Zhang, Qinfu; Xie, Qingshui; Peng, Dong-Liang

    2016-06-02

    Metal-semiconductor hybrid nanocrystals have received extensive attention owing to their multiple functionalities which can find wide technological applications. The utilization of low-cost non-noble metals to construct novel metal-semiconductor hybrid nanocrystals is important and meaningful for their large-scale applications. In this study, a facile solution approach is developed for the synthesis of Cu-ZnO hybrid nanocrystals with well-controlled morphologies, including nanomultipods, core-shell nanoparticles, nanopyramids and core-shell nanowires. In the synthetic strategy, Cu nanocrystals formed in situ serve as seeds for the heterogeneous nucleation and growth of ZnO, and it eventually forms various Cu-ZnO hetero-nanostructures under different reaction conditions. These hybrid nanocrystals possess well-defined and stable heterostructure junctions. The ultraviolet-visible-near infrared spectra reveal morphology-dependent surface plasmon resonance absorption of Cu and the band gap absorption of ZnO. Furthermore, we construct a novel Cu@CuNi-ZnO ternary hetero-nanostructure by incorporating the magnetic metal Ni into the pre-synthesized colloidal Cu nanocrystals. Such hybrid nanocrystals possess a magnetic Cu-Ni intermediate layer between the ZnO shell and the Cu core, and exhibit ferromagnetic/superparamagnetic properties which expand their functionalities. Finally, enhanced photocatalytic activities are observed in the as-prepared non-noble metal-ZnO hybrid nanocrystals. This study not only provides an economical way to prepare high-quality morphology-controlled Cu-ZnO hybrid nanocrystals for potential applications in the fields of photocatalysis and photovoltaic devices, but also opens up new opportunities in designing ternary non-noble metal-semiconductor hybrid nanocrystals with multifunctionalities.

  20. Effects of ultrasonic field in pulse electrodeposition of NiFe film on Cu substrate

    Energy Technology Data Exchange (ETDEWEB)

    Balachandran, R. [Faculty of Engineering, Multimedia University, Cyberjaya Campus, 63100, Cyberjaya (Malaysia); Yow, H.K. [Faculty of Engineering, Multimedia University, Cyberjaya Campus, 63100, Cyberjaya (Malaysia)], E-mail: hkyow@mmu.edu.my; Ong, B.H. [Faculty of Engineering, Multimedia University, Cyberjaya Campus, 63100, Cyberjaya (Malaysia); Manickam, R. [Electronics Faculty, Tyndale Education Group Pte Ltd., 188942 (Singapore); Saaminathan, V. [School of Material Science and Engineering, Nanyang Technological University, 639798 (Singapore); Tan, K.B. [Department of Chemistry, Universiti Putra Malaysia, Serdang, 43400 (Malaysia)

    2009-07-29

    NiFe film was pulse electrodeposited on conductive Cu substrate under galvanostatic mode in the presence of an ultrasonic field. The NiFe film electrodeposited was subjected to structural and surface analyses by X-ray diffraction, energy dispersive X-ray spectroscopy, surface profiling and scanning electron microscopy, respectively. The results show that the ultrasonic field has significantly improved the surface roughness, reduced the spherical grain size in the range from 490-575 nm to 90-150 nm, and increased the Ni content from 76.08% to 79.74% in the NiFe film electrodeposited.

  1. Hydrogen production by ethanol steam reforming over Cu-Ni supported catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Vizcaino, A.J.; Carrero, A.; Calles, J.A. [Department of Chemical and Environmental Technology, Rey Juan Carlos University, Escuela Superior de Ciencias Experimentales y Tecnologia (ESCET), c/ Tulipan s/n, 28933 Mostoles (Spain)

    2007-07-15

    In the present work, Cu-Ni supported catalysts were tested in ethanol steam reforming reaction. Two commercial amorphous solids (SiO{sub 2} and {gamma}-Al{sub 2}O{sub 3}) and three synthesized materials (MCM-41, SBA-15 and ZSM-5 nanocrystalline) were used as support. A series of Cu-Ni/SiO{sub 2} catalysts with different Cu and Ni content were also prepared. It was found that aluminium containing supports favour ethanol dehydration to ethylene in the acid sites, which in turn, promotes the coke deactivation process. The highest hydrogen selectivity is achieved with the Cu-Ni/SBA-15 catalyst, due to a smaller metallic crystallite size. Nevertheless, the Cu-Ni/SiO{sub 2} catalyst showed the best catalytic performance, since a better equilibrium between high hydrogen selectivity and CO{sub 2}/CO{sub x} ratio is obtained. It was seen that nickel is the phase responsible for hydrogen production in a greater grade, although both CO production and coke deposition are decreased when copper is added to the catalyst. (author)

  2. Influence of structural parameters on magnetoresistive properties of CuFeNi melt spun ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Cazottes, S., E-mail: sophie.cazottes@etu.univ-rouen.fr [Groupe de Physique des Materiaux (GPM), Universite de Rouen, UMR CNRS 6634, Site Universitaire du Madrillet, Avenue de l' Universite, BP 12, 76801 Saint-Etienne du Rouvray Cedex (France); Danoix, F.; Fnidiki, A.; Lemarchand, D. [Groupe de Physique des Materiaux (GPM), Universite de Rouen, UMR CNRS 6634, Site Universitaire du Madrillet, Avenue de l' Universite, BP 12, 76801 Saint-Etienne du Rouvray Cedex (France); Baricco, M. [Dipartimento di Chimica IFM and NIS/INSTM, Universita' di Torino, Via P. Giuria 9, 10125 Torino (Italy)

    2009-04-15

    The microstructure of Cu{sub 80}Fe{sub 10}Ni{sub 10} (at%) granular ribbon was investigated by means of atom probe tomography (APT). A granular system is composed of magnetic precipitates embedded in a non-magnetic matrix. In this ribbon, the magnetic precipitates have a diameter smaller than 5 nm in the as-spun state, and their crystallographic structure is very similar to the one of the matrix, which makes it difficult to characterize them using conventional techniques. Those data are of great importance to understand the magnetic and the transport behaviour of these ribbons. Using atom probe tomography, a 3D reconstruction of the microstructure of the as-spun and annealed ribbons was achieved and a precise characterization of the compositions of the two phases and of the composition profile at interfaces was carried out. In the as-spun state the composition of the matrix is Cu{sub 89}Fe{sub 3}Ni{sub 8}, the one of the precipitates is Cu{sub 30}Fe{sub 40}Ni{sub 30}. Upon annealing, the precipitates get enriched in iron. After annealing at 600 {sup o}C for 24 h, the measured compositions are close to the one predicted by Thermocalc, with Cu{sub 94}Fe{sub 1}Ni{sub 5} for the matrix and Cu{sub 5}Fe{sub 64}Ni{sub 31} for the precipitates.

  3. Influence of structural parameters on magnetoresistive properties of CuFeNi melt spun ribbons.

    Science.gov (United States)

    Cazottes, S; Danoix, F; Fnidiki, A; Lemarchand, D; Baricco, M

    2009-04-01

    The microstructure of Cu(80)Fe(10)Ni(10) (at%) granular ribbon was investigated by means of atom probe tomography (APT). A granular system is composed of magnetic precipitates embedded in a non-magnetic matrix. In this ribbon, the magnetic precipitates have a diameter smaller than 5nm in the as-spun state, and their crystallographic structure is very similar to the one of the matrix, which makes it difficult to characterize them using conventional techniques. Those data are of great importance to understand the magnetic and the transport behaviour of these ribbons. Using atom probe tomography, a 3D reconstruction of the microstructure of the as-spun and annealed ribbons was achieved and a precise characterization of the compositions of the two phases and of the composition profile at interfaces was carried out. In the as-spun state the composition of the matrix is Cu(89)Fe(3)Ni(8), the one of the precipitates is Cu(30)Fe(40)Ni(30). Upon annealing, the precipitates get enriched in iron. After annealing at 600 degrees C for 24h, the measured compositions are close to the one predicted by Thermocalc, with Cu(94)Fe(1)Ni(5) for the matrix and Cu(5)Fe(64)Ni(31) for the precipitates.

  4. Construction of Hierarchical CuO/Cu2O@NiCo2S4 Nanowire Arrays on Copper Foam for High Performance Supercapacitor Electrodes

    Directory of Open Access Journals (Sweden)

    Luoxiao Zhou

    2017-09-01

    Full Text Available Hierarchical copper oxide @ ternary nickel cobalt sulfide (CuO/Cu2O@NiCo2S4 core-shell nanowire arrays on Cu foam have been successfully constructed by a facile two-step strategy. Vertically aligned CuO/Cu2O nanowire arrays are firstly grown on Cu foam by one-step thermal oxidation of Cu foam, followed by electrodeposition of NiCo2S4 nanosheets on the surface of CuO/Cu2O nanowires to form the CuO/Cu2O@NiCo2S4 core-shell nanostructures. Structural and morphological characterizations indicate that the average thickness of the NiCo2S4 nanosheets is ~20 nm and the diameter of CuO/Cu2O core is ~50 nm. Electrochemical properties of the hierarchical composites as integrated binder-free electrodes for supercapacitor were evaluated by various electrochemical methods. The hierarchical composite electrodes could achieve ultrahigh specific capacitance of 3.186 F cm−2 at 10 mA cm−2, good rate capability (82.06% capacitance retention at the current density from 2 to 50 mA cm−2 and excellent cycling stability, with capacitance retention of 96.73% after 2000 cycles at 10 mA cm−2. These results demonstrate the significance of optimized design and fabrication of electrode materials with more sufficient electrolyte-electrode interface, robust structural integrity and fast ion/electron transfer.

  5. Solution-Based Epitaxial Growth of Magnetically Responsive Cu@Ni Nanowires

    KAUST Repository

    Zhang, Shengmao

    2010-02-23

    An experiment was conducted to show the solution-based epitaxial growth of magnetically responsive Cu@Ni nanowires. The Ni-sheathed Cu nanowires were synthesized with a one-pot approach. 30 mL of high concentration NaOH, Cu(NO3)2. 3H2O, Cu(NO3)2. 3H2O and 0.07-0.30 mL of Ni(NO3)2. 6H 2O aqueous solutions were added into a plastic reactor with a capacity of 50.0 mL. A varying amount of ethylenediamine (EDA) and hydrazine were also added sequentially, followed by thorough mixing of all reagents. The dimension, morphology, and chemical composition of the products were examined with scanning electron microscopy with energy dispersive X-ray spectroscopy. The XPS analysis on the as formed Cu nanowires confirms that there is indeed no nickel inclusion in the nanowires prior to the formation of nickel overcoat, which rules out the possibility of Cu-Ni alloy formation.

  6. Magnetic behavior of NiCu nanowire arrays: Compositional, geometry and temperature dependence

    Energy Technology Data Exchange (ETDEWEB)

    Palmero, E. M., E-mail: epalmero@icmm.csic.es; Bran, C.; Real, R. P. del; Vázquez, M. [Institute of Materials Science of Madrid, CSIC, Madrid 28049 (Spain); Magén, C. [Advanced Microscopy Laboratory (LMA), Institute of Nanoscience of Aragón (INA)-ARAID and Department of Condensed Matter Physics, University of Zaragoza, Zaragoza 50018 (Spain)

    2014-07-21

    Arrays of Ni{sub 100−x}Cu{sub x} nanowires ranging in composition 0 ≤ x ≤ 75, diameter from 35 to 80 nm, and length from 150 nm to 28 μm have been fabricated by electrochemical co-deposition of Ni and Cu into self-ordered anodic aluminum oxide membranes. As determined by X-ray diffraction and Transmission Electron Microscopy, the crystalline structure shows fcc cubic symmetry with [111] preferred texture and preferential Ni or Cu lattice depending on the composition. Their magnetic properties such as coercivity and squareness have been determined as a function of composition and geometry in a Vibrating Sample Magnetometer in the temperature range from 10 to 290 K for applied magnetic fields parallel and perpendicular to the nanowires axis. Addition of Cu into the NiCu alloy up to 50% enhances both parallel coercivity and squareness. For the higher Cu content, these properties decrease and the magnetization easy axis becomes oriented perpendicular to the wires. In addition, coercivity and squareness increase by decreasing the diameter of nanowires which is ascribed to the increase of shape anisotropy. The temperature dependent measurements reflect a complex behavior of the magnetic anisotropy as a result of energy contributions with different evolution with temperature.

  7. Electromigration of Sn-3Ag-0.5Cu and Sn-3Ag-0.5Cu-0.5Ce-0.2Zn solder joints with Au/Ni(P)/Cu and Ag/Cu pads

    Energy Technology Data Exchange (ETDEWEB)

    Lin, H.-J., E-mail: HJLin@itri.org.t [Institute of Materials Science and Engineering, National Taiwan University, 1 Roosevelt St. Sec. 4, Taipei 106, Taiwan (China); Industrial Technology Research Institute, Mechanical and Systems Research Laboratories, Hsinchu 310, Taiwan (China); Lin, J.-S., E-mail: JohnnyLin@itri.org.t [Industrial Technology Research Institute, Mechanical and Systems Research Laboratories, Hsinchu 310, Taiwan (China); Department of Mechanical Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871 (Japan); Chuang, T.-H., E-mail: tunghan@ntu.edu.t [Institute of Materials Science and Engineering, National Taiwan University, 1 Roosevelt St. Sec. 4, Taipei 106, Taiwan (China)

    2009-11-13

    It has previously been established that adding 0.2 wt.% Zn into a Sn-3Ag-0.5Cu-0.5Ce alloy improves the mechanical properties and eliminates the problem of rapid whisker growth. However, no detailed studies have been conducted on electromigration behavior of Sn-3Ag-0.5Cu-0.5Ce-0.2Zn alloy. The electromigration damage in solder joints of Sn-3Ag-0.5Cu and Sn-3Ag-0.5Cu-0.5Ce-0.2Zn with Ag/Cu pads and Au/Ni(P)/Cu pads was studied after current stressing at room temperature with an average current density of 3.1 x 10{sup 4} A/cm{sup 2}. With additions of 0.5 wt.% Ce and 0.2 wt.% Zn, the electromigration processes of Sn-Ag-Cu solder joints were accelerated due to refinement of the solder matrix when joint temperature was around 80 deg. C. Since Ni is more resistant than Cu to diffusion driven by electron flow, solder joints of both alloys (Sn-3Ag-0.5Cu and Sn-3Ag-0.5Cu-0.5Ce-0.2Zn) with Au/Ni(P)/Cu pads possess longer current-stressing lifetimes than those with Ag/Cu pads.

  8. The influence of Ni additions on the relative stability of η and η′ Cu6Sn5

    KAUST Repository

    Schwingenschlögl, Udo

    2010-02-09

    We investigate how 5 at. % Ni influences the relative stability of η and η′ Cu6Sn5. Synchrotron x-ray diffraction shows that, while Cu6Sn5 exists as η′ at 25 and 150 °C and transforms to η on heating to 200 °C, Cu5.5Ni0.5Sn5 is best fit to η throughout 25–200 °C. Our first principles calculations predict that η′ is stable at T=0 K in both Cu6Sn5 and Cu5.5Ni0.5Sn5, but that the energy difference is substantially reduced from 1.21 to 0.90 eV per 22 atom cell by the Ni addition. This effect is attributed to Ni developing distinct bonding to both Cu and Sn in the η phase.

  9. Recrystallization Behavior of CoCrCuFeNi High-Entropy Alloy

    Science.gov (United States)

    Park, Nokeun; Watanabe, Ikuto; Terada, Daisuke; Yokoyama, Yoshihiko; Liaw, Peter K.; Tsuji, Nobuhiro

    2015-04-01

    We investigated the recrystallization behavior of a cold-rolled CoCrCuFeNi high-entropy alloy (HEA). Two different face-centered cubic phases having different chemical compositions and lattice constants in the as-cast specimen have different chemical compositions: One phase was the Cu-lean matrix and the other was the Cu-rich second phase. The second phase remained even after a heat treatment at 1373 K (1100 °C) and Cu enriched more in the Cu-rich second phase. The calculated mixing enthalpies of both Cu-lean and Cu-rich phases in the as-cast and heat-treated specimens explained that Cu partitioning during the heat treatment decreased the mixing enthalpy in both phases. In the specimens 90 pct cold rolled and annealed at 923 K, 973 K, and 1073 K (650 °C, 700 °C, and 800 °C), recrystallization proceeded with increasing the annealing temperature, and ultrafine recrystallized grains with grain sizes around 1 μm could be obtained. The microhardness tended to decrease with increasing the fraction recrystallized, but it was found that the microhardness values of partially recrystallized specimens were much higher than those expected by a simple rule of mixture between the initial and cold-rolled specimens. The reason for the higher hardness was discussed based on the ultrafine grain size, sluggish diffusion expected in HEAs, and two-phase structure in the CoCrCuFeNi alloy.

  10. Competitive removal of Cu-EDTA and Ni-EDTA via microwave-enhanced Fenton oxidation with hydroxide precipitation.

    Science.gov (United States)

    Lin, Qintie; Pan, Hanping; Yao, Kun; Pan, Yonggang; Long, Wei

    2015-01-01

    Ethylenediaminetetraacetic acid (EDTA) can form very stable complexes with heavy metal ions, greatly inhibiting conventional metal-removal technologies used in water treatment. Both the oxidation of EDTA and the reduction of metal ions in metal-EDTA systems via the microwave-enhanced Fenton reaction followed by hydroxide precipitation were investigated. The Cu(II)-Ni(II)-EDTA, Cu(II)-EDTA and Ni(II)-EDTA exhibited widely different decomplexation efficiencies under equivalent conditions. When the reaction reached equilibrium, the chemical oxygen demand was reduced by a microwave-enhanced Fenton reaction in different systems and the reduction order from high to low was Cu(II)-Ni(II)-EDTA ≈ Cu(II)-EDTA > Ni(II)-EDTA. The removal efficiencies of both Cu(2+) and Ni(2+) in Cu-Ni-EDTA wastewaters were much higher than those in a single heavy metal system. The degradation efficiency of EDTA in Cu-Ni-EDTA was lower than that in a single metal system. In the Cu-Ni-EDTA system, the microwave thermal degradation and the Fenton-like reaction created by Cu catalyzed H2O2 altered the EDTA degradation pathway and increased the pH of the wastewater system, conversely inhibiting residual EDTA degradation.

  11. Microstructures and Mechanical Properties of NiTiFeAlCu High-Entropy Alloys with Exceptional Nano-precipitates

    Science.gov (United States)

    Zhang, Yanqiu; Wang, Sibing; Jiang, Shuyong; Zhu, Xiaoming; Sun, Dong

    2016-10-01

    Three novel NiTiFeAlCu high-entropy alloys, which consist of nano-precipitates with face-centered cubic structure and matrix with body-centered cubic structure, were fabricated to investigate microstructures and mechanical properties. With the increase in Ni and Ti contents, the strength of NiTiFeAlCu alloy is enhanced, while the plasticity of NiTiFeAlCu alloy is lowered. Plenty of dislocations can be observed in the Ni32Ti32Fe12Al12Cu12 high-entropy alloy. The size of nano-precipitates decreases with the increase in Ni and Ti contents, while lattice distortion becomes more and more severe with the increase in Ni and Ti contents. The existence of nano-precipitates, dislocations and lattice distortion is responsible for the increase in the strength of NiTiFeAlCu alloy, but it has an adverse influence on the plasticity of NiTiFeAlCu alloy. Ni20Ti20Fe20Al20Cu20 alloy exhibits the substantial ability of plastic deformation and a characteristic of steady flow at 850 and 1000 °C. This phenomenon is attributed to a competition between the increase in the dislocation density induced by plastic strain and the decrease in the dislocation density due to the dynamic recrystallization.

  12. High-pressure x-ray diffraction of icosahedral Zr-Al-Ni-Cu-Ag quasicrystals

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Saksl, Karel; Rasmussen, Helge Kildahl

    2001-01-01

    The effect of pressure on the structural stability of icosahedral Zr-Al-Ni-Cu-Ag quasicrystals forming from a Zr65Al7.5Ni10Cu7.5Ag10 metallic glass with a supercooled liquid region of 44 K has been investigated by in situ high-pressure angle-dispersive x-ray powder diffraction at ambient...... temperature using synchrotron radiation. The icosahedral quasicrystal structure is retained up to the highest hydrostatic pressure used (approximately 28 GPa) and is reversible after decompression. The bulk modulus at zero pressure and its pressure derivative of the icosahedral Zr-Al-Ni-Cu-Ag quasicrystal...... are 99.10+/-1.26 GPa and 4.25+/-0.16, respectively. The compression behavior of different Bragg peaks is isotropic and the full width at half maximum of each peak remains almost unchanged during compression, indicating no anisotropic elasticity and no defects in the icosahedral Zr...

  13. The Role of Misfit Dislocations in Strength Enhancement of Cu/Ni Microlaminates

    Institute of Scientific and Technical Information of China (English)

    CHENG Dong; YAN Li; YAN Zhi-jun

    2004-01-01

    This paper simulated the nanoindentations of Cu/Ni thin films with 2D Molecular Dynamics Simulations (MDS) and examined the effects of the misfit dislocations on the mechanical properties of the microlaminates. The misfit dislocation network plays an important role in strength enhancement of Cu/Ni microlaminates because of its resistance to glide dislocations. But the strengthening also relies on the wavelength, which is defined as the thickness of adjacent two layers in microlaminates. When the wavelength is less than the critical value λc, the stress concentration caused by the movement of misfit dislocations will make Cu/Ni microlaminates weaken. Also, the critical wavelength should be more than the depth at which the dislocation nucleates in the homogeneous layer.

  14. Methane decomposition on Ni-Cu alloyed Raney-type catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, A.F.; Orfao, J.J.M.; Figueiredo, J.L. [Laboratorio de Catalise e Materiais, Laboratorio Associado LSRE/LCM, Departamento de Engenharia Quimica, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal)

    2009-06-15

    In the present work, we report on the performance of Ni-Cu alloyed Raney-type catalysts for the production of hydrogen by catalytic methane decomposition. The activity of the catalysts was assessed by comparing the experimental conversions with the calculated equilibrium conversions for each set of experimental conditions. The stability of the catalysts was assessed by comparing the maximum conversions with the conversions at the end of 5 h tests. Comparison with monometallic Ni Raney-type catalytic systems shows that Cu addition significantly improves catalyst stability. Excellent results were obtained when the Ni-Cu Raney-type system was thermally treated in situ at 600 C, as a result of incipient alloy formation. (author)

  15. Martensitic transformation of Ti50Ni30Cu20 alloy prepared by powder metallurgy

    Energy Technology Data Exchange (ETDEWEB)

    Valeanu, M., E-mail: valeanu@infim.ro [National Institute of Materials Physics, 077125 Bucharest (Romania); Lucaci, M. [National Institute for Electrical Engineering ICPE-CA, 030138 Bucharest (Romania); Crisan, A.D.; Sofronie, M. [National Institute of Materials Physics, 077125 Bucharest (Romania); Leonat, L. [National Institute for Electrical Engineering ICPE-CA, 030138 Bucharest (Romania); Kuncser, V. [National Institute of Materials Physics, 077125 Bucharest (Romania)

    2011-03-31

    Research highlights: > Martensitic transformation sequence in Ti50Ni30Cu20 prepared high - energy milling. > Two transformations (B2-B19, B2-B19') are evidenced after 10 hours of milling. > B2-B19 transformation is not more observed after 20 hours of milling. > A longer milling process promotes the formation of the secondary Ti{sub 2}(NiCu) phase. - Abstract: Phase transformation behavior of Ti50Ni30Cu20 shape memory alloys prepared by powder metallurgy is analyzed with respect to the duration of mechanical alloying. The processed blends were studied by differential scanning calorimetry and room temperature X-ray diffraction. The martensitic transformations evidenced by thermal scans are discussed in correlation with the relative phase content obtained from the refinement of the X-ray diffraction patterns.

  16. Ultrafast photoresponse of superconductor/ferromagnet Nb/NiCu heterostructures

    Science.gov (United States)

    Piero Pepe, Giovanni; Amanti, Maria; de Lisio, Corrado; Latempa, Rossella; Marrocco, Nicola; Parlato, Loredana; Peluso, Giuseppe; Barone, Antonio; Sobolewski, Roman; Taneda, Takahiro

    2006-09-01

    We report on femtosecond optical pump-probe studies of proximized ferromagnet/superconductor (F/S) hybrids, consisting of Ni0.5Cu0.5 layers deposited on top of Nb films. The weak ferromagnetic nature of the completely proximised Ni0.5Cu0.5 film makes possible to observe the dynamics of the nonequilibrium superconductivity through the near-surface optical reflectivity change measurements. The time-resolved photoresponse transient of the NiCu(21 nm)/Nb bilayer in the superconducting state shows strongly suppressed slow bolometric component. The fast relaxation time is also discussed accordingly to current theories on S/F heterostructures. The proposed S/F nanobilayers represent a new, artificially designed superconductor with the features (sub-picosecond photoresponse with suppressed bolometric component) very desirable for superconducting photodetectors and photon counters.

  17. Research on Processes and Adhesion of Electroless Plating Ni-Cu-P Coating

    Institute of Scientific and Technical Information of China (English)

    HUANG Yan-bin; LIU Bo; ZHANG Ping; LIU De-gang; XU Xiao-li

    2004-01-01

    In order to improve the corrosion and wear resistance of the coatings of electroless plating Ni-Cu-P and broaden its application, an optimizing mathematical theory test has been applied in this research. The processing parameters have been optimized and some Ni-Cu-P coatings have been obtained with smooth and glittering appearance. At the same time,the composite complexants can prevent copper from depositing first and obtain coatings with strong adhesion. The porosity of Ni-Cu-P coating (20 μm) ranked class 9. The changing color time of the coating is more than 800 seconds with HNO3 dropthan 0.5 g/L. The surface appearance of deposition is typical cystiform cells by SEM,which rank close and neatly.

  18. REE Characteristics of the Kalatongke Cu-Ni Deposit, Xinjiang, China

    Institute of Scientific and Technical Information of China (English)

    WANG Yuwang; WANG Jingbin; WANG Lijuan; WANG Yong; TU Caineng

    2004-01-01

    On the basis of the study on the REE geochemistry of the ore minerals and host rocks of the Kalatongke Cu-Ni deposit, Xinjiang, it is indicated that the major ore minerals, sulfides, were sourced from the host mafic-ultramafic magma.Characterized by low REE content of sulfide, such a Cu-Ni sulfide deposit occurring in the orogen is obviously different from that on the margin of the craton. Because the mafic-ultramafic rocks from the Cu-Ni sulfide deposit occurring in the orogen is water-rich and the REEs of some sulfides show a particular "multiple-bending" pattern, which suggests coexistence of multiple liquid phases (fluid and melt), the sulfide melt possibly contains a great deal of hydrothermal fluids and increasingly developed gases and liquid-rich ore-forming fluids after the main metallogenic epoch (magmatic segregation stage).

  19. Recrystallization Behavior of Re-aged Cu-Ni-Si Alloy

    Institute of Scientific and Technical Information of China (English)

    LEI Jing-guo; LIU Ping; ZHAO Dong-mei; JING Xiao-tian

    2004-01-01

    The interaction between precipitation and recrystallization and its effect on the properties of the re-aged Cu-Ni-Si alloy are discussed. The results indicate that the pre-aging process for Cu-Ni-Si alloy was responsible to the significant strengthening effect in re-aging process, and the re-aging strengthening effect with pre-aging at 450℃ for 8h was even more remarkable. Upon aging, a phenomenon of simultaneous in situ and discontinuous recrystallization was observed in the treatment of pre-aging and deformed Cu-Ni-Si alloy. On the formation and growth of recrystallization, the precipitated phases are coarsed or dissolved in the front of grain boundaries following a re-precipitation in the recrystallization area.

  20. Catalytic Synthesis of C16 Guerbet Alcohol by Using Supported CuO-NiO Catalyst%负载型CuO-NiO催化剂催化合成Guerbet十六醇性能

    Institute of Scientific and Technical Information of China (English)

    李云哲; 李运玲

    2015-01-01

    以正辛醇为原料,考察了催化剂载体种类、CuO-NiO负载量和n(CuO)∶n(NiO)摩尔比对Guerbet十六醇催化合成反应的影响,在此基础上,以优选的30% CuO-NiO/CaCO3(CuO-NiO负载量,即CuO与NiO所占质量百分数,为30%;n(CuO)∶n(NiO)=1∶2)为催化剂,进一步优化了反应条件(反应温度、反应时间和催化剂用量).结果表明,CuO-NiO/CaCO3-KOH催化体系能有效地催化正辛醇合成Guerbet十六醇,在CuO-NiO/CaCO3、KOH投料量分别为0.10%和3.O%(催化剂投料量为催化剂质量与正辛醇质量百分比)时,240℃下反应1h,Guerbet十六醇的收率和选择性分别为83.5%和87.3%.

  1. Influence of Ni-concentration on the magnetic structure in Tb(Cu,Ni)/sub 2/ system

    Energy Technology Data Exchange (ETDEWEB)

    Sima, V.; Smetana, Z. (Karlova Univ., Prague (Czechoslovakia). Fakulta Matematicko-Fyzikalni)

    1984-03-01

    A powder sample of orthorhombic Tb(Cusub(0.7)Nisub(0.3))/sub 2/ has been studied by neutron diffraction at T = 4.2 K and above the Curie temperature. It is found that this compound is ferromagnetically ordered at 4.2 K. The magnetic moment of Tb in this compound is (9.2 +- 0.2)..mu..sub(B), with components (2.2 +- 0.2, 0, 8.9 +- 0.1)..mu..sub(B). The influence of the Ni-concentration on the magnetic structure is discussed in the whole Tb(Cu, Ni)/sub 2/ system.

  2. Giant magnetic coercivity in CaCu{sub 5}-type SmNi{sub 3}TSi (T=Mn–Cu) solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Jinlei; Yan, Xu [Research Center for Solid State Physics and Materials, School of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou 215009 (China); Morozkin, A.V., E-mail: morozkin@tech.chem.msu.ru [Department of Chemistry, Moscow State University, Leninskie Gory, House 1, Building 3, GSP-2, Moscow 119992 (Russian Federation)

    2015-12-15

    The effects of transition metal substitution for Ni on the magnetic properties of the CaCu{sub 5}-type SmNi{sub 3}TSi (T=Mn, Fe, Co, Cu) solid solutions have been investigated. SmNi{sub 3}MnSi, SmNi{sub 3}FeSi, SmNi{sub 3}CoSi and SmNi{sub 3}CuSi show ferromagnetic ordering at 125 K, 190 K, 46 K and 12 K and field induced transitions at 65 K, 110 K, 30 K and 6 K, respectively. The magnetocaloric effects of SmNi{sub 3}TSi (T=Mn, Fe, Co, Cu) were calculated in terms of isothermal magnetic entropy change (ΔS{sub m}). The magnetic entropy ΔS{sub m} reaches value of −1.1 J/kg K at 130 K for SmNi{sub 3}MnSi, −0.4 J/kg K at 180 K for SmNi{sub 3}FeSi, −0.37 J/kg K at 45 K for SmNi{sub 3}CoSi and −0.5 J/kg K at 12 K for SmNi{sub 3}CuSi in field change of 0–50 kOe around the ferromagnetic ordering temperature. They show positive ΔS{sub m} of +2.4 J/kg K at 30 K for SmNi{sub 3}MnSi, −2.6 J/kg K at 65 K for SmNi{sub 3}FeSi, +0.73 J/kg K at 15 K for SmNi{sub 3}CoSi and −0.5 J/kg K at 6 K for SmNi{sub 3}CuSi in field change of 0–50 kOe around the metamagnetic-like transition temperature. Below the field induced transition temperature, SmNi{sub 3}TSi (T=Mn, Fe, Co, Cu) exhibits giant magnetic coercivity of 80 kOe at 20 K for SmNi{sub 3}MnSi, 87 kOe at 40 K for SmNi{sub 3}FeSi, 27 kOe at 20 K for SmNi{sub 3}CoSi and 54 kOe at 5 K for SmNi{sub 3}CuSi. - Graphical abstract: CaCu{sub 5}-type SmNi{sub 3}MnSi, SmNi{sub 3}FeSi, SmNi{sub 3}CoSi and SmNi{sub 3}CuSi show ferromagnetic ordering at 125 K, 190 K, 46 K and 12 K and field induced transitions at 65 K, 110 K, 30 K and 6 K, respectively. The magnetic entropy ΔS{sub m} reaches value of −1.1 J/kg K at 130 K for SmNi{sub 3}MnSi, −0.4 J/kg K at 180 K for SmNi{sub 3}FeSi, −0.37 J/kg K at 45 K for SmNi{sub 3}CoSi and −0.5 J/kg K at 12 K for SmNi{sub 3}CuSi in field change of 0–50 kOe around the ferromagnetic ordering temperature. They show positive ΔS{sub m} of +2.4 J/kg K at 30 K for SmNi{sub 3}MnSi, −2

  3. Preparation and characterization of epitaxial thin films and patterned nanostructures of Ni/Cu and Fe/Cu

    OpenAIRE

    Corredor, Edna C.

    2012-01-01

    El objetivo del trabajo realizado en esta tesis titulada: Preparation and magnetic characterization of epitaxial thin films and patterned nanostructures of Ni/Cu and Fe/Cu es establecer relaciones entre las propiedades magnéticas de sistemas nanoestructurados y sus dimensiones físicas o factores estructurales que aparecen al reducirse la dimensión espacial a dos, en el caso de películas delgadas, y a una en el caso de elementos patronados. Los sistemas objeto de estudio se caracterizan por se...

  4. Preparation and characterization of epitaxial thin films and patterned nanostructures of Ni/Cu and Fe/Cu

    OpenAIRE

    Corredor Vega, Edna Consuelo; Ciria Remacha, Miguel Ángel; Arnaudas Pontaque, José Ignacio

    2013-01-01

    El objetivo del trabajo realizado en esta tesis titulada: Preparation and magnetic characterization of epitaxial thin films and patterned nanostructures of Ni/Cu and Fe/Cu es establecer relaciones entre las propiedades magnéticas de sistemas nanoestructurados y sus dimensiones físicas o factores estructurales que aparecen al reducirse la dimensión espacial a dos, en el caso de películas delgadas, y a una en el caso de elementos patronados. Los sistemas objeto de estudio se caracterizan por se...

  5. Cofiring behavior of NiCuZn ferrite/PMN ferroelectrics di-layer composites

    Institute of Scientific and Technical Information of China (English)

    MIAO Chun-lin; ZHOU Ji; YUE Zhen-xing; LI Long-tu

    2005-01-01

    The cofiring compatibility between ferrite and relaxor ferroelectrics materials is the key issue in the production of multilayer chip LC filters. The cofiring behavior, interfacial microstructure and diffusion of di-layer composites of NiCuZn ferrite/PMN relaxor ferroelectrics are studied. In order to analyze the matching condition of thermodynamic properties between ferrite and relaxor ferroelectric ceramics, TMA is performed on PMN ferroelectrics and NiCuZn ferrite with certain percentage of Bi2 O3, respectively. EDS results demonstrate that serious element diffusions exist at the interface, which is in accordance with the phase analysis based on XRD patterns.

  6. HEAVY METALS (Ni, Cu, Zn AND Cd CONTENT IN SERUM OF RAT FED GREEN MUSSELS

    Directory of Open Access Journals (Sweden)

    Muhammad Yudhistira Azis

    2015-11-01

    Full Text Available Green mussel (Perna viridis can playing role as bio-indicator or biomonitoring agent for heavy-metalcontaminations in the sea. In this research, the concentrations of four elements Ni, Cu, Zn and Cd in P. viridis and in the serum of rat which orally feed by P. viridis were determined by Atomic Absorption Spectrometry (AAS following dry acid digestion. Parameter analysis was evaluated by determining confidence limit for the obtained results. The result showed that there was a sequence of heavy-metal content in green mussels sample and laboratory rats serum, such as Ni < Cd < Cu < Zn. Keywords: heavy metals, green mussels, laboratory rats serum, AAS

  7. Thermodynamical aspects of martensitic transformations in CuAlNi single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Gastien, R.; Corbellani, C.E.; Sade, M.; Lovey, F.C

    2004-04-15

    Entropy changes during {beta}{sub 1}{r_reversible}{beta}{sub 1}{sup '} and {beta}{sub 1}{r_reversible}{gamma}{sub 1}{sup '} transformations in Cu-14.3Al-4.1Ni (wt.%) and Cu-14.1Al-4.2Ni (wt.%) single crystals were obtained, in order to evaluate changes on the relative stability of the metastable phases involved. These values were determined by DSC measurements and isothermal tensile tests performed at different temperatures.

  8. Effective medium potentials for molecule-surface interactions: H2 on Cu and Ni surfaces

    DEFF Research Database (Denmark)

    Nørskov, Jens Kehlet

    1989-01-01

    that the functional form of the total energy expression is derived from density functional theory, that each of the terms entering can be given a precise physical interpretation, and that most of the parameters entering can be calculated, within the local density approximation. The method is explicitly derived for H2...... outside metal surfaces and the applicability is illustrated for H2 adsorbing on various Cu and Ni surfaces. Although very approximate, the calculated potentials seem to include a number of features observed experimentally: Ni is more active in dissociating H2 than Cu, and open surfaces are more active...

  9. Low temperature bonding of LD31 aluminum alloys by electric brush plating Ni and Cu coatings

    Institute of Scientific and Technical Information of China (English)

    Zhao Zhenqing; Wang Chunqing; Du Miao

    2005-01-01

    Soldering of LD31 aluminum alloys using Sn-Pb solder paste after electric brush plating Ni and Cu coatings was nvestigated. The technology of electric brush plating Ni and Cu was studied and plating solution was developed. The microstructure of the coatings, soldered joint and fracture face were analyzed using optic microscopy, SEM and EDX. The shear strength of soldered joint could reach as high as 26. 83 MPa. The results showed that reliable soldered joint could be obtained at 230℃, the adhesion of coatings and LD31 aluminum alloy substrate was high enough to bear the thermal process in the soldering.

  10. Microstructure and Corrosion Resistance of Electrodeposited Ni-Cu-Mo Alloy Coatings

    Science.gov (United States)

    Meng, Xinjing; Shi, Xi; Zhong, Qingdong; Shu, Mingyong; Xu, Guanquan

    2016-09-01

    This paper deals with the electrodeposition of Ni-Cu-Mo ternary alloy coatings on low-carbon steel substrate from an aqueous citrate sulfate bath. The structures and microstructure of coatings were characterized by scanning electron microscopy and x-ray diffractometry. The corrosion resistance of coatings was investigated by potentiodynamic polarization (Tafel) and electrochemical impedance spectroscopy techniques. The results show that the Ni-Cu-Mo coatings are mainly composed of fcc-Ni phase and a small amount of NiCu phase. Ni-Cu-Mo coatings exhibit a nodular surface morphology, and the roughness of electroplated coating increases with the increasing of Na2MoO4·2H2O in the bath. The corrosion performance of the coatings is significantly affected by the Mo content of the alloy coating and their surface morphology. The coating prepared in bath containing 40 g/L Na2MoO4·2H2O has the highest corrosion resistance in 3.5 wt.% NaCl solution, while that prepared in bath containing 60 g/L (or more) Na2MoO4·2H2O shows a lower corrosion resistance due to the presence of microcracks on the coating surface.

  11. Effects of (gsub(9/2))/sup 2/ admixtures in Cu isotopes and /sup 68/Ni

    Energy Technology Data Exchange (ETDEWEB)

    Delfini, M.G.; Glaudemans, P.W.M.

    1984-07-01

    Shell-model calculations in a proton-neutron formalism on /sup 63 -66/Cu and /sup 68/Ni are presented. The adopted model space includes excitation of two particles into the gsub(9/2) orbit and one hole in the fsub(7/2) orbit. It turns out that effects of the gsub(9/2) orbit are more important for these nuclei than those of a break-up of the /sup 56/Ni core.

  12. Magnetic behavior of NiCu nanowire arrays: Compositional, geometry and temperature dependence

    Science.gov (United States)

    Palmero, E. M.; Bran, C.; del Real, R. P.; Magén, C.; Vázquez, M.

    2014-07-01

    Arrays of Ni100-xCux nanowires ranging in composition 0 ≤ x ≤ 75, diameter from 35 to 80 nm, and length from 150 nm to 28 μm have been fabricated by electrochemical co-deposition of Ni and Cu into self-ordered anodic aluminum oxide membranes. As determined by X-ray diffraction and Transmission Electron Microscopy, the crystalline structure shows fcc cubic symmetry with [111] preferred texture and preferential Ni or Cu lattice depending on the composition. Their magnetic properties such as coercivity and squareness have been determined as a function of composition and geometry in a Vibrating Sample Magnetometer in the temperature range from 10 to 290 K for applied magnetic fields parallel and perpendicular to the nanowires axis. Addition of Cu into the NiCu alloy up to 50% enhances both parallel coercivity and squareness. For the higher Cu content, these properties decrease and the magnetization easy axis becomes oriented perpendicular to the wires. In addition, coercivity and squareness increase by decreasing the diameter of nanowires which is ascribed to the increase of shape anisotropy. The temperature dependent measurements reflect a complex behavior of the magnetic anisotropy as a result of energy contributions with different evolution with temperature.

  13. Low energy ion beam modification of Cu/Ni/Si(100) surface

    Indian Academy of Sciences (India)

    S K Parida; V R Rmedicherla; D K Mishra; S Choudhary; V Solanki; Shikha Varma

    2014-12-01

    Cu/Ni bilayer has been prepared by thermal evaporation of pure Cu and Ni metals onto Si(100) surface in high vacuum; it was sputtered using argon ion beam in ultra-high vacuum. The ion beam-induced surface and interface modification was investigated using X-ray photoelectron spectroscopy and atomic force microscopy techniques. The deposited sample exhibits the formation of CuO nano-structures of size 40 nm on Cu surface and after sputtering with argon ion beam at a fluence of 5 × 1015 ions/cm2, the surface exhibits a mound structure with an average size of about 100 nm. Interestingly, with sputtering at higher fluence of 2.4 × 1016 ions/cm2, the surface exhibits broad pits of sizes ranging from 100 to 300 nm with an average depth of 10 nm. Bottom surface of these pits contains Ni atoms. The Cu 23/2 peak exhibits a shift of 0.3 eV towards high binding energy and also a large asymmetry of 0.11 after sputtering at high fluence compared with pure copper. These changes are attributed to Cu–Ni interactions at the interface.

  14. Selective hydrogenation of furfural to cyclopentanone over Cu-Ni-Al hydrotalcite-based catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Hongyan; Zhou, Minghao; Zeng, Zuo; Xiao, Guomin; Xiao, Rui [Southeast University, Nanjing (China)

    2014-04-15

    A series of Cu-Ni-Al hydrotalcites derived oxides with a (Cu+Ni)/Al mole ratio of 3 with varied Cu/Ni mole ratio (from 0.017 to 0.5, with a Cu ratio of 0.0125 to 0.25) were prepared by co-precipitation method, then applied to the hydrogenation of furfural in aqueous. Their catalytic performance for liquid phase hydrogenation of furfural to prepare cyclopentanone was described in detail, considering reaction temperature, catalyst composition, reaction time and so on. The yield of cyclopentanone was influenced by the mole ratio of Cu-Ni-Al based heterogeneous catalyst and depended on the reaction conditions. The yield of cyclopentanone was up to 95.8% when the reaction was carried out under 413 K with H{sub 2} pressure of 40 bar for 8 h. The catalysts were characterized by X-ray powder diffraction (XRD), scanning electron microscope (SEM) and H{sub 2} temperature-programmed reduction (H{sub 2}-TPR)

  15. Homochiral Cu(II) and Ni(II) malates with tunable structural features

    Science.gov (United States)

    Zavakhina, Marina S.; Samsonenko, Denis G.; Virovets, Alexander V.; Dybtsev, Danil N.; Fedin, Vladimir P.

    2014-02-01

    Four new homochiral metal-organic frameworks (MOFs) based on S-malate anions and N-donor linkers of different length have been prepared under solvothermal conditions. [Cu(mal)(bpy)]·H2O (1), [Cu(mal)(bpe)]·2H2O (2), [Ni(mal)(bpy)]·1.3CH3OH (3) and [Ni(mal)(bpe)]·4H2O (4) (mal=S-malate, bpy=4,4‧-bipyridil, bpe=trans-1,2-bis(4-pyridyl)ethylene) were characterized by a number of analytical methods including powder X-ray diffraction, elemental, thermogravimetric analyses, IR spectroscopy. Compounds 1-3 were structurally characterized by X-ray crystallography. The absence of the chiral ligand racemization under synthetic conditions was unambiguously confirmed by polarimetry experiments. Compounds 1 and 2 contain metal-malate layered motives, connected by N-donor linkers and contribute to the family of isoreticular Cu(II) malates and tartrates [Cu(mal)L] and [Cu(tart)L], (tart=tartrate; L=ditopic rigid organic ligand). The Ni-based compounds 3 and 4 share 1D chiral {Ni(mal)} motives and possess novel type of the chiral framework, previously unknown for chiral carboxylates. The linear N-donor linkers connect these chiral chains, thus controlling the channel diameter and guest accessible volume of the homochiral structure, which exceeds 60 %.

  16. Fusion and characterization of an alloy Cu-Zn-Al-Ni of nuclear interest; Fusion y caracterizacion de una aleacion Cu-Zn-Al-Ni de interes nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Santana M, J.S

    2003-07-01

    The present work is the result of the study of a non ferrous quatenary alloy of Cu-Zn-Al-Ni (Foundry 3), it was chosen of a series of alloys to obtain so much information of its microstructural properties like mechanical, evaluating them and comparing them with the previously obtained ternary alloys of Cu-AI-Ni (Foundry 1) and Cu-Zn-AI (Foundry 2) identified as alloys of memory effect and superalloys. These were carried out starting from the foundry of their pure elements of Cu, Zn, Al, Ni. When physically having the ingot of each alloy, different techniques were used for their characterization. The used techniques were through the metallographic analysis, by scanning electron microscopy (SEM), X-ray dispersive energy spectroscopy (EDS), X-ray diffraction (XRD), mechanical essays and Rockwell hardness. The non ferrous quaternary alloy Cu-Zn-AI-Ni by means of the metallographic analysis didn't show significant differences in their three sections (superficial, longitudinal and transverse) since result an homogeneous alloy at the same that the both ternaries. The grain size of the quaternary alloy is the finest while the ternary alloy of Cu-AI-Ni is the one that obtained the biggest grain size. Through MEB together with the analysis by EDS and the mapping of the elements that constitute each alloy, show that the three foundries were alloyed, moreover the presence of aggregates was also observed in the Foundries 2 and 3. These results by means of the analysis of XRD corroborate that these alloys have more of two elements. Relating the microstructural properties with those mechanical show us that as minor was the grain size, better they were his mechanical properties, in this case that of the quaternary alloy. With regard to the test of Rockwell hardness the Foundry 1 were the softest with the temper treatment, while that the Foundries 2 and 3 were the hardest with this same treatment, being still harder the Foundry 2 but with very little difference, for what great

  17. 纯铜化学镀Ni-Cu-P工艺的研究%A Study of Electroless Ni-Cu-P Plating on Pure Copper

    Institute of Scientific and Technical Information of China (English)

    陈益兵; 赵芳霞; 张振忠; 孙晓东

    2013-01-01

    Aiming at the problems of corrosion and boundary conductivity to be improved when pure copper is in the process of application, the surface of pure copper was modified by electroless Ni-Cu-P plating. The effects of electroless Ni-Cu-P plating process on the properties of pure copper were investigated by means of XRD, SEM, contact resistance test, corrosion test, etc.The results show that the process can obtain a typical amorphous cellular structure, the contact resistance of modified pure copper is 15 % ~ 30 % of that before modification, and the self-corrosion current density is decreased by two orders of magnitude.%针对纯铜使用过程中表面腐蚀及导电性需进一步提高等问题,采用化学镀Ni-Cu-P对纯铜进行表面改性.采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、界面接触电阻测试、极化曲线等手段,研究了化学镀Ni-Cu-P工艺对纯铜性能的影响.结果表明:该工艺能得到典型的非晶胞状结构,改性后纯铜的接触电阻为改性前的15 %~30%,自腐蚀电流密度降低两个数量级.

  18. Crystal field and low energy excitations measured by high resolution RIXS at the L edge of Cu, Ni and Mn

    DEFF Research Database (Denmark)

    Ghiringhelli, G.; Piazzalunga, A.; Wang, X.;

    2009-01-01

    of the 3d transition metals with unprecedented energy resolution, of the order of 100 meV for Mn, Ni and Cu. We present here some preliminary spectra on CuO, malachite, NiO, , MnO and . The dd excitations are very well resolved allowing accurate experimental evaluation of 3d state energy splitting. The low...

  19. Structural behavior of Pd40Cu30Ni10P20 bulk metallic glass below and above the glass transition

    DEFF Research Database (Denmark)

    Mattern, N.; Hermann, H.; Roth, S.;

    2003-01-01

    The thermal behavior of the structure of Pd40Cu30Ni10P20 bulk metallic glass has been investigated in situ through the glass transition by means of high-temperature x-ray synchrotron diffraction. The dependence of the x-ray structure factor S(q) of the Pd40Cu30Ni10P20 glass on temperature follows...

  20. Paduan Ni-Cu-Mn Sebagai Logam Alternatif Kedokteran Gigi: Efek Perendaman dalam Larutan 0,1% Sodium Sulfida

    Directory of Open Access Journals (Sweden)

    Bambang Irawan

    2015-09-01

    Full Text Available In this study, the ternary base alloys of nickel-copper-manganese (Ni-Cu-Mn alloys are prepared and these ternary alloys systems, which were constituted from higher nickel and lower copper contents than copper-base alloy ones, were evaluated by a tarnish test. Tarnish tests conducted in a 0,1% sodium sulphide solution (pH=12 at 37◦C. All test specimens were case into square paddles of 15 mm x 20 mm x 2,5 mm using the lost-wax technique with a phosphate-bonded investment. The surface of the specimens were then prepared with abrasion papers down to a 600 grit finish. Tarnish attack was quantitatively evaluated by Fibre colorimetry. The results of tarnish test showed that ternary nickel-copper-manganese alloys, such as 40Ni-30Cu-30Mn and 50Ni-30Cu-20Mn, have superior tarnishment resistance than other alloys, e.g. 20Ni-40Cu-40Mn, 30Ni-30Cu-40Mn and 30Ni-40Cu-30Mn. It was also found that 40Ni-30Cu-30Mn and 50Ni-30Cu-20Mn alloys have lower values of colour change vector than the other alloys given above.

  1. Wetting Behavior and Interfacial Reactions in (Sn-9Zn)-2Cu/Ni Joints during Soldering and Isothermal Aging

    Institute of Scientific and Technical Information of China (English)

    Ning Zhao; Haitao Ma; Haiping Xie; Lai Wang

    2009-01-01

    The wetting property of (Sn-9Zn)-2Cu (wt pct) on Ni substrate and the evolution of interfacial microstructure in (Sn-9Zn)-2Cu/Ni joints during soldering as well as isothermal aging were studied.The wetting ability of eutectic Sn-9Zn solder on Ni substrate was markedly improved by adding 2 wt pct Cu into this solder alloy.Plate-like Cu5Zn8 intermetallic compounds (IMCs) were detected in (Sn-9Zn)-2Cu solder matrix.A continuous Ni5Zn21 IMC layer was formed at (Sn-9Zn)-2Cu/Ni interface after soldering.This IMC layer kept its type and integrality even after aging at 170℃ for up to 1000 h.At the early aging stage (before 500 h), the IMC layer grew fast and its thickness followed a linear relationship with the square root of aging time.Thereafter,however, the thickness increased very slowly with longer aging time.When the joints were aged for 1000 h,a new IMC phase, (Cu,Ni)5Zn8, was found in the matrix near the interface.The formation of (Cu,Ni)5Zn8phase can be attributed to the diffusion of Ni atoms into the solder matrix from the substrate.

  2. Electrodeposition mechanism and characterization of Ni-Cu alloy coatings from a eutectic-based ionic liquid

    Science.gov (United States)

    Wang, Shaohua; Guo, Xingwu; Yang, Haiyan; Dai, JiChun; Zhu, Rongyu; Gong, Jia; Peng, Liming; Ding, Wenjiang

    2014-01-01

    The electrodeposition mechanism, microstructures and corrosion resistances of Ni-Cu alloy coatings on Cu substrate were investigated in a choline chloride-urea (1:2 molar ratio) eutectic-based ionic liquid (1:2 ChCl-urea IL) containing nickel and copper chlorides. Cyclic voltammetry showed that the onset reduction potentials for Cu (∼-0.32 V) and for Ni (∼-0.47 V) were close to each other, indicating that Ni-Cu co-deposition could be easily achieved in the absence of complexing agent which was indispensable in aqueous plating electrolyte. Chronoamperometric investigations revealed that Ni-Cu deposits followed the three-dimensional instantaneous nucleation/growth mechanism, thus producing a solid solution. The compositions, microstructures and corrosion resistances of Ni-Cu alloy coatings were significantly dependent on the deposition current densities. Ni-Cu alloy coatings were α-Ni(Cu) solid solutions, and the coating containing ∼17.6 at.% Cu exhibited the best corrosion resistance because of its dense and crack-free structure.

  3. Structural and electrical properties of nanometric Ni-Cu ferrites synthesized by citrate precursor method

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, M.A., E-mail: moala47@hotmail.com [Materials Science Lab (1), Physics Department, Faculty of Science, Cairo University, Giza (Egypt); Mansour, S.F. [Physics Department, Faculty of Science, Zagazig University (Egypt); Afifi, M. [Materials Science Lab (1), Physics Department, Faculty of Science, Cairo University, Giza (Egypt)

    2012-01-15

    Nanometric nickel copper ferrites Ni{sub 1-x}Cu{sub x}Fe{sub 2}O{sub 4}, 0{<=}x{<=}0.45 were prepared by the citrate precursor method. X-ray diffraction measurements confirm the formation of single phase cubic spinel structure. The lattice parameter (a) is increased with increasing Cu{sup 2+} ion substitution. The crystallite size was calculated from XRD data and compared with that obtained from TEM micrographs. A significant increase in the density is observed with increasing Cu content. The IR absorption spectra were used for the detection and confirmation of the chemical bonds in spinel ferrites. The dielectric constant {epsilon}' and dielectric loss showed a decrease with increasing frequency for all samples. The decrease in the ac conductivity was ascribed to the increase in hopping length. - Highlights: > Ni-Cu ferrite was successfully prepared using citrate auto combustion method. > The lattice parameter and the density increased with increasing Cu{sup 2+} content. > We suggest the use of Ni ferrite with large Cu{sup 2+} content in electrical devices.

  4. Design and development of novel antibacterial Ti-Ni-Cu shape memory alloys for biomedical application.

    Science.gov (United States)

    Li, H F; Qiu, K J; Zhou, F Y; Li, L; Zheng, Y F

    2016-11-29

    In the case of medical implants, foreign materials are preferential sites for bacterial adhesion and microbial contamination, which can lead to the development of prosthetic infections. Commercially biomedical TiNi shape memory alloys are the most commonly used materials for permanent implants in contact with bone and dental, and the prevention of infections of TiNi biomedical shape memory alloys in clinical cases is therefore a crucial challenge for orthopaedic and dental surgeons. In the present study, copper has been chosen as the alloying element for design and development novel ternary biomedical Ti‒Ni‒Cu shape memory alloys with antibacterial properties. The effects of copper alloying element on the microstructure, mechanical properties, corrosion behaviors, cytocompatibility and antibacterial properties of biomedical Ti‒Ni‒Cu shape memory alloys have been systematically investigated. The results demonstrated that Ti‒Ni‒Cu alloys have good mechanical properties, and remain the excellent shape memory effects after adding copper alloying element. The corrosion behaviors of Ti‒Ni‒Cu alloys are better than the commercial biomedical Ti‒50.8Ni alloys. The Ti‒Ni‒Cu alloys exhibit excellent antibacterial properties while maintaining the good cytocompatibility, which would further guarantee the potential application of Ti‒Ni‒Cu alloys as future biomedical implants and devices without inducing bacterial infections.

  5. Design and development of novel antibacterial Ti-Ni-Cu shape memory alloys for biomedical application

    Science.gov (United States)

    Li, H. F.; Qiu, K. J.; Zhou, F. Y.; Li, L.; Zheng, Y. F.

    2016-11-01

    In the case of medical implants, foreign materials are preferential sites for bacterial adhesion and microbial contamination, which can lead to the development of prosthetic infections. Commercially biomedical TiNi shape memory alloys are the most commonly used materials for permanent implants in contact with bone and dental, and the prevention of infections of TiNi biomedical shape memory alloys in clinical cases is therefore a crucial challenge for orthopaedic and dental surgeons. In the present study, copper has been chosen as the alloying element for design and development novel ternary biomedical Ti‒Ni‒Cu shape memory alloys with antibacterial properties. The effects of copper alloying element on the microstructure, mechanical properties, corrosion behaviors, cytocompatibility and antibacterial properties of biomedical Ti‒Ni‒Cu shape memory alloys have been systematically investigated. The results demonstrated that Ti‒Ni‒Cu alloys have good mechanical properties, and remain the excellent shape memory effects after adding copper alloying element. The corrosion behaviors of Ti‒Ni‒Cu alloys are better than the commercial biomedical Ti‒50.8Ni alloys. The Ti‒Ni‒Cu alloys exhibit excellent antibacterial properties while maintaining the good cytocompatibility, which would further guarantee the potential application of Ti‒Ni‒Cu alloys as future biomedical implants and devices without inducing bacterial infections.

  6. Global optimization of bimetallic cluster structures. I. Size-mismatched Ag-Cu, Ag-Ni, and Au-Cu systems

    Science.gov (United States)

    Rapallo, Arnaldo; Rossi, Giulia; Ferrando, Riccardo; Fortunelli, Alessandro; Curley, Benjamin C.; Lloyd, Lesley D.; Tarbuck, Gary M.; Johnston, Roy L.

    2005-05-01

    A genetic algorithm approach is applied to the optimization of the potential energy of a wide range of binary metallic nanoclusters, Ag-Cu, Ag-Ni, Au-Cu, Ag-Pd, Ag-Au, and Pd-Pt, modeled by a semiempirical potential. The aim of this work is to single out the driving forces that make different structural motifs the most favorable at different sizes and chemical compositions. Paper I is devoted to the analysis of size-mismatched systems, namely, Ag-Cu, Ag-Ni, and Au-Cu clusters. In Ag-Cu and Ag-Ni clusters, the large size mismatch and the tendency of Ag to segregate at the surface of Cu and Ni lead to the location of core-shell polyicosahedral minimum structures. Particularly stable polyicosahedral clusters are located at size N =34 (at the composition with 27 Ag atoms) and N =38 (at the composition with 32 and 30 Ag atoms). In Ag-Ni clusters, Ag32Ni13 is also shown to be a good energetic configuration. For Au-Cu clusters, these core-shell polyicosahedra are less common, because size mismatch is not reinforced by a strong tendency to segregation of Au at the surface of Cu, and Au atoms are not well accommodated upon the strained polyicosahedral surface.

  7. On the Evolution of Quasicrystalline and Crystalline Phases in Rapidly Quenched Al-Co-Cu-Ni Alloy

    OpenAIRE

    Yadav, T. P.; Mukhopadhyay, N. K.; Tiwari, R. S.; O. N. Srivastava

    2006-01-01

    The occurrence of stable decagonal quasicrystalline phase in Al-Co-Ni and Al-Cu-Co alloys through conventional solidification is well established. Earlier, we have studied the effect of Cu substitution in place of Co in the Al70 Co15Ni15 alloy. Here we report the structural/micro-structural changes with substitution of Cu for Ni in rapidly solidified Al-Co-Ni alloys. The melt-spun ribbons have been characterized using X-ray diffractometry (XRD), Scanning and transmission electron microscopy (...

  8. Separation of no-carrier-added Cu-64 from a proton irradiated Ni-64 enriched nickel target

    DEFF Research Database (Denmark)

    Hou, Xiaolin; Jacobsen, U.; Jørgensen, J.C.

    2002-01-01

    are then absorbed on an anion exchange column. Co and Ni are removed from the column by eluting with 72% ethanol-0.3mol/l HCl. Finally, the Cu-64 is eluted with water. For separating Ni from Co isotopes and recovering the Ni-64 target, the eluate of 72% ethanol-0.3 mol/l HCl is evaporated to dryness, the residue...... a cyclotron. The decontamination of Co in Cu fraction is higher than 99% and recoveries of Cu-64 and Ni-64 are higher than 95%. (C) 2002 Elsevier Science Ltd. All rights reserved....

  9. Discovery of Cu-Ni-Zn-Sn-Fe intermetallic compounds and S-bearing alloys in the Zhaishang gold deposit, southern Gansu Province and its geological significance

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Examination of ores by optical microscope and EPMA from the Zhaishang gold deposit, southern Gansu Province, has revealed an abundance of rare minerals. These include native metals, Cu-Ni-Zn-Sn-Fe polymetallic compounds and S-bearing alloys of Ni, Fe, Zn, Cu and Sn, occurring as native nickel, Zn-Cu alloy, Ni-Zn-Cu alloy, Sn-Zn-Ni-Cu alloy, Zn-Cu-Ni alloy, Zn-Fe-Cu-Sn-Ni alloy, Fe-Ni-S alloy, Sn-Fe-Ni-S alloy, Fe-Zn-Cu-Ni-S alloy, Zn-Ni-Cu-Fe-S alloy and others. Compared with the Zn-Cu alloy minerals discovered previously, these Zn-Cu minerals fall in the α or α+β portion in Zn-Cu alloy phase diagram, and the α portion has higher Cu content. Cu-Ni-Zn-Sn-Fe intermetallic compounds and S-bearing alloy minerals have not been previously reported in the literature. These rare alloys formed in a strongly reducing environment with absent oxygen and low sulfur activities.

  10. Discovery of Cu-Ni-Zn-Sn-Fe intermetailic compounds and S-bearing alloys in the Zhaishang gold deposit,southern Gansu Province and its geological sisnificance

    Institute of Scientific and Technical Information of China (English)

    LIU JiaJun; MAO GuangJian; MA XingHua; LI LiXing; GUO YuQian; LIU GuangZhi

    2008-01-01

    Examination of ores by optical microscope and EPMA from the Zhaishang gold deposit, southern Gansu Province, has revealed an abundance of rare minerals. These include native metals, Cu-Ni-Zn-Sn-Fe polymetallic compounds and S-bearing alloys of Ni, Fe, Zn, Cu and Sn, occurring as native nickel, Zn-Cu alloy, Ni-Zn-Cu alloy, Sn-Zn-Ni-Cu alloy, Zn-Cu-Ni alloy, Zn-Fe-Cu-Sn-Ni alloy, Fe-Ni-S alloy, Sn-Fe-Ni-S alloy, Fe-Zn-Cu-Ni-S alloy, Zn-Ni-Cu-Fe-S alloy and others. Compared with the Zn-Cu alloy minerals discovered previously, these Zn-Cu minerals fall in the α or α+β portion in Zn-Cu alloy phase diagram, and the α portion has higher Cu content. Cu-Ni-Zn-Sn-Fe intermetallic compounds and S-bearing alloy minerals have not been previously reported in the literature. These rare alloys formed in a strongly reducing environment with absent oxygen and low sulfur activities.

  11. Low-Temperature Sintering and Electromagnetic Properties of NiCuZn/CaTiO3 Composites

    Science.gov (United States)

    Yang, Haibo; Yang, Yanyan; Lin, Ying; Zhu, Jianfeng; Wang, Fen

    2012-04-01

    Dense CaTiO3/Ni0.37Cu0.20Zn0.43Fe1.92O3.88 (CTO/NiCuZn) composites were prepared by the conventional solid-state reaction method and sintered at 950°C. The phase compositions and surface morphologies of the composites were investigated using x-ray diffraction and scanning electron microscopy, respectively. The dielectric and magnetic properties of the composites were also investigated. The results show that the CTO/NiCuZn composites possess high dielectric constants and permeabilities, which can be used in high-frequency communications for capacitor-inductor integrating devices such as electromagnetic interference filters and antennas. With increasing NiCuZn concentration, the permeabilities of the CTO/NiCuZn composites increase, while the dielectric constants and cutoff frequencies decrease.

  12. Mechanical properties of NiTi and CuNiTi wires used in orthodontic treatment. Part 2: Microscopic surface appraisal and metallurgical characteristics

    Directory of Open Access Journals (Sweden)

    Marco Abdo Gravina

    2014-01-01

    Full Text Available OBJECTIVE: This research aimed at comparing the qualitative chemical compositions and the surface morphology of fracture regions of eight types of Nickel (Ni Titanium (Ti conventional wires, superelastic and heat-activated (GAC, TP, Ormco, Masel, Morelli and Unitek, to the wires with addition of copper (CuNiTi 27oC and 35oC, Ormco after traction test. METHODS: The analyses were performed in a scanning electronic microscope (JEOL, model JSM-5800 LV with EDS system of microanalysis (energy dispersive spectroscopy. RESULTS : The results showed that NiTi wires presented Ni and Ti as the main elements of the alloy with minimum differences in their composition. The CuNiTi wires, however, presented Ni and Ti with a significant percentage of copper (Cu. As for surface morphology, the wires that presented the lowest wire-surface roughness were the superelastic ones by Masel and Morelli, while those that presented the greatest wire-surface roughness were the CuNiTi 27oC and 35oC ones by Ormco, due to presence of microcavity formed as a result of pulling out some particles, possibly of NiTi. 4 The fracture surfaces presented characteristics of ductile fracture, with presence of microcavities. The superelastic wires by GAC and the CuNiTi 27oC and the heat-activated ones by Unitek presented the smallest microcavities and the lowest wire-surface roughness with regard to fracture, while the CuNiTi 35oC wires presented inadequate wire-surface roughness in the fracture region. CONCLUSION: CuNiTi 35oC wires did not present better morphologic characteristics in comparison to the other wires with regard to surfaces and fracture region.

  13. The effect of intermetallic compound morphology on Cu diffusion in Sn-Ag and Sn-Pb solder bump on the Ni/Cu Under-bump metallization

    Science.gov (United States)

    Jang, Guh-Yaw; Duh, Jenq-Gong

    2005-01-01

    The eutectic Sn-Ag solder alloy is one of the candidates for the Pb-free solder, and Sn-Pb solder alloys are still widely used in today’s electronic packages. In this tudy, the interfacial reaction in the eutectic Sn-Ag and Sn-Pb solder joints was investigated with an assembly of a solder/Ni/Cu/Ti/Si3N4/Si multilayer structures. In the Sn-3.5Ag solder joints reflowed at 260°C, only the (Ni1-x,Cux)3Sn4 intermetallic compound (IMC) formed at the solder/Ni interface. For the Sn-37Pb solder reflowed at 225°C for one to ten cycles, only the (Ni1-x,Cux)3Sn4 IMC formed between the solder and the Ni/Cu under-bump metallization (UBM). Nevertheless, the (Cu1-y,Niy)6Sn5 IMC was observed in joints reflowed at 245°C after five cycles and at 265°C after three cycles. With the aid of microstructure evolution, quantitative analysis, and elemental distribution between the solder and Ni/Cu UBM, it was revealed that Cu content in the solder near the solder/IMC interface played an important role in the formation of the (Cu1-y,Niy)6Sn5 IMC. In addition, the diffusion behavior of Cu in eutectic Sn-Ag and Sn-Pb solders with the Ni/Cu UBM were probed and discussed. The atomic flux of Cu diffused through Ni was evaluated by detailed quantitative analysis in an electron probe microanalyzer (EPMA). During reflow, the atomic flux of Cu was on the order of 1016-1017 atoms/cm2sec in both the eutectic Sn-Ag and Sn-Pb systems.

  14. A Banding Structure in a Ni-Cu-Si Cast Alloy

    Institute of Scientific and Technical Information of China (English)

    Qi ZHENG; Yufeng ZHENG; Hongyu ZHANG; Xiaofeng SUN; Hengrong GUAN; Zhuangqi HU

    2008-01-01

    The solidified microstructure of a Ni-Cu-Si cast alloy has been investigated, and a kind of banding structure was observed. The results showed that, the banding structure was composed of coarser particles which were Ni3Si type of precipitates and similar to the fine particles precipitate uniformly distributed within matrix of Ni solid solution, in both crystal structure and composition. The formation of bandings was resulted from cast thermal stress and dislocation walls. It was found that the cracks propagated along these bandings in tensile test. The banding structure can be depressed by reducing the cast thermal stress, which can improve the Qtensile ductility.

  15. Relationship between microstructure, cytotoxicity and corrosion properties of a Cu-Al-Ni shape memory alloy.

    Science.gov (United States)

    Colić, Miodrag; Rudolf, Rebeka; Stamenković, Dragoslav; Anzel, Ivan; Vucević, Dragana; Jenko, Monika; Lazić, Vojkan; Lojen, Gorazd

    2010-01-01

    Cu-Al-Ni shape memory alloys (SMAs) have been investigated as materials for medical devices, but their biomedical application is still limited. The aim of this work was to compare the microstructure, corrosion and cytotoxicity in vitro of a Cu-Al-Ni SMA. Rapidly solidified (RS) thin ribbons, manufactured via melt spinning, were used for the tests. The control alloy was a permanent mould casting of the same composition, but without shape memory effect. The results show that RS ribbons are significantly more resistant to corrosion compared with the control alloy, as judged by the lesser release of Cu and Ni into the conditioning medium. These results correlate with the finding that RS ribbons were not cytotoxic to L929 mouse fibroblasts and rat thymocytes. In addition, the RS ribbon conditioning medium inhibited cellular proliferation and IL-2 production by activated rat splenocytes to a much lesser extent. The inhibitory effects were almost completely abolished by conditioning the RS ribbons in culture medium for 4 weeks. Microstructural analysis showed that RS ribbons are martensitic, with boron particles as a minor phase. In contrast, the control Cu-Al-Ni alloy had a complex multiphase microstructure. Examination of the alloy surfaces after conditioning by energy dispersive X-ray and Auger electron spectroscopy showed the formation of Cu and Al oxide layers and confirmed that the metals in RS ribbons are less susceptible to oxidation and corrosion compared with the control alloy. In conclusion, these results suggest that rapid solidification significantly improves the corrosion stability and biocompatibility in vitro of Cu-Al-Ni SMA ribbons.

  16. Photoconducting and photocapacitance properties of Al/p-CuNiO{sub 2}-on-p-Si isotype heterojunction photodiode

    Energy Technology Data Exchange (ETDEWEB)

    Elsayed, I.A. [Physics Department, College of Science and Humanitarian Studies, Salman bin Abdulaziz University (Saudi Arabia); Physics Department, Faculty of Science, Damietta University (Egypt); Çavaş, Mehmet [Department of Mechatronics, Faculty of Technology, Firat University, Elazig (Turkey); Gupta, R. [Department of Chemistry, Pittsburg State University, Pittsburg, KS 66762 (United States); Fahmy, T. [Physics Department, College of Science and Humanitarian Studies, Salman bin Abdulaziz University (Saudi Arabia); Polymer Research Group, Physics Department, Faculty of Science, Mansoura University (Egypt); Al-Ghamdi, Ahmed A. [Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Yakuphanoglu, F., E-mail: fyhan@hotmail.com [Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Physics Department, Faculty of Science, Firat University, Elazig (Turkey)

    2015-07-25

    Highlights: • The CuNiO{sub 2} thin film was prepared by sol gel method. • The diode has a high photosensitivity value of 1.02 × 10{sup 3} under 100 mW/cm{sup 2}. • Al/p-Si/CuNiO{sub 2}/Al can used in optoelectronic device applications. - Abstract: Thin film of CuNiO{sub 2} was prepared by sol gel method to fabricate a photodiode. The surface morphology of the CuNiO{sub 2} thin film was investigated by atomic force microscopy (AFM). AFM results indicated that CuNiO{sub 2} film was formed from the nanoparticles and the average size of the nanoparticles was about 115 nm. The optical band gap of CuNiO{sub 2} film was calculated using optical data and was found to be about 2.4 eV. A photodiode having a structure of Al/p-Si/CuNiO{sub 2}/Al was prepared. The electronic parameters such as ideality factor and barrier height of the diode were determined and were obtained to be 8.23 and 0.82 eV, respectively. The interface states properties of the Al/p-Si/CuNiO{sub 2}/Al diode was performed using capacitance–voltage and conductance–voltage characteristics. The series resistance of the Al/p-Si/CuNiO{sub 2}/Al photo diode was observed to be decreasing with increasing frequency. The diode exhibited a photoconducting behavior with a high photosensitivity value of 1.02 × 10{sup 3} under 100 mW/cm{sup 2}. The obtained results indicate that Al/p-Si/CuNiO{sub 2}/Al can used in optoelectronic device applications.

  17. Electrodeposition of high corrosion resistance Cu/Ni-P coating on AZ91D magnesium alloy

    Science.gov (United States)

    Zhang, Shan; Cao, Fahe; Chang, Linrong; Zheng, JunJun; Zhang, Zhao; Zhang, Jianqing; Cao, Chunan

    2011-08-01

    High corrosion resistance Cu/Ni-P coatings were electrodeposited on AZ91D magnesium alloy via suitable pretreatments, such as one-step acid pickling-activation, once zinc immersion and environment-friendly electroplated copper as the protective under-layer, which made Ni-P deposit on AZ91D Mg alloy in acid plating baths successfully. The pH value and current density for Ni-P electrodeposition were optimized to obtain high corrosion resistance. With increasing the phosphorous content of the Ni-P coatings, the deposits were found to gradually transform to amorphous structure and the corrosion resistance increased synchronously. The anticorrosion ability of AZ91D Mg alloy was greatly improved by the amorphous Ni-P deposits, which was investigated by potentiodynamic polarization curve and electrochemical impedance spectroscopy (EIS). The corrosion current density ( Icorr) of the coated Mg alloy substrate is about two orders of magnitude less than that of the uncoated.

  18. Effect of Cu substitution for Ni on microstructural evolution and hydrogen storage properties of the Mg{sub 77}Ni{sub 20−x}Cu{sub x}La{sub 3} (x = 0, 5, 10 at%) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Yujie; Zhang, Bao; Wu, Ying, E-mail: yingwu2000@hotmail.com

    2015-10-05

    Highlights: • The lattice parameters of Mg{sub 2}Ni phase increase with Cu substituting for Ni. • The Mg–Ni–Cu–La alloys keep high hydrogen storage capacities of about 4.2 wt%. • The hydride formation enthalpy of Mg{sub 2}(Ni + Cu)–H{sub 2} is greatly reduced. - Abstract: The effect of Cu-substitution on the microstructures and hydrogen storage thermodynamic properties of Mg{sub 77}Ni{sub 20−x}Cu{sub x}La{sub 3} (x = 0, 5, 10 at%) alloys prepared by vacuum induction melting has been studied. XRD result shows that the samples consist of Mg, Mg{sub 2}Ni and LaMg{sub 12} phases. With Cu substituting for Ni, the structures of all phases do not change except for a slight increase in lattice parameters of Mg{sub 2}Ni phase. The P–C-isotherms of the Mg-based alloys have two distinct hydrogen absorption/desorption plateaus, which correspond to the Mg–H{sub 2} system and the Mg{sub 2}(Ni + Cu)–H{sub 2} system, respectively. The hydrogen storage capacities of Mg{sub 77}Ni{sub 20−x}Cu{sub x}La{sub 3} (x = 0, 5, 10 at%) alloys are 4.18 wt%, 4.20 wt% and 4.51 wt%, respectively. In the hydrogenated samples, these alloys consist of MgH{sub 2}, monoclinic Mg{sub 2}NiH{sub 4}, orthorhombic Mg{sub 2}NiH{sub 4}, LaH{sub 3} as well as MgCu{sub 2}. The presence of MgCu{sub 2} indicates the reaction of Mg{sub 2}Cu with hydrogen. The hydride formation enthalpy of alloys were calculated by the van’t Hoff equation. With the addition of Cu, the thermodynamic property is greatly improved, and the formation enthalpy values decrease to −51.02, −33.71 from −56.05 kJ mol{sup −1} H{sub 2} for the Mg{sub 2}(Ni + Cu)–H{sub 2} plateaus of Mg{sub 77}Ni{sub 20−x}Cu{sub x}La{sub 3} (x = 0, 5, 10 at%) alloys, respectively.

  19. Miscibility of NiSi{sub 2}, FeSi{sub 2} and Cu{sub 3}Si

    Energy Technology Data Exchange (ETDEWEB)

    Langkau, Sabine [IMKM, Universitaet Leipzig, Scharnhorststr. 20, 04275 Leipzig (Germany)], E-mail: Langkau@rz.uni-leipzig.de; Heuer, Matthias [BerlinSolar GmbH, Magnusstrasse 11, 12489 Berlin (Germany); Hoebler, Hans-Joachim; Bente, Klaus; Kloess, Gert [IMKM, Universitaet Leipzig, Scharnhorststr. 20, 04275 Leipzig (Germany)

    2009-04-17

    Ternary and quaternary chemical composition ranges of the phases NiSi{sub 2}, FeSi{sub 2}, Cu{sub 3}Si, NiSi and FeSi were determined using electron-microprobe-measurements. The system NiSi{sub 2}-Cu{sub 3}Si was found to be eutectic and most probably quasi-binary. Furthermore lattice constants of NiSi{sub 2} and Ni{sub 0.62}Fe{sub 0.41}Si{sub 1.98} were determined by means of X-ray diffraction (XRD)

  20. Colloidal synthesis of Cu-ZnO and Cu@CuNi-ZnO hybrid nanocrystals with controlled morphologies and multifunctional properties

    Science.gov (United States)

    Zeng, Deqian; Gong, Pingyun; Chen, Yuanzhi; Zhang, Qinfu; Xie, Qingshui; Peng, Dong-Liang

    2016-06-01

    Metal-semiconductor hybrid nanocrystals have received extensive attention owing to their multiple functionalities which can find wide technological applications. The utilization of low-cost non-noble metals to construct novel metal-semiconductor hybrid nanocrystals is important and meaningful for their large-scale applications. In this study, a facile solution approach is developed for the synthesis of Cu-ZnO hybrid nanocrystals with well-controlled morphologies, including nanomultipods, core-shell nanoparticles, nanopyramids and core-shell nanowires. In the synthetic strategy, Cu nanocrystals formed in situ serve as seeds for the heterogeneous nucleation and growth of ZnO, and it eventually forms various Cu-ZnO hetero-nanostructures under different reaction conditions. These hybrid nanocrystals possess well-defined and stable heterostructure junctions. The ultraviolet-visible-near infrared spectra reveal morphology-dependent surface plasmon resonance absorption of Cu and the band gap absorption of ZnO. Furthermore, we construct a novel Cu@CuNi-ZnO ternary hetero-nanostructure by incorporating the magnetic metal Ni into the pre-synthesized colloidal Cu nanocrystals. Such hybrid nanocrystals possess a magnetic Cu-Ni intermediate layer between the ZnO shell and the Cu core, and exhibit ferromagnetic/superparamagnetic properties which expand their functionalities. Finally, enhanced photocatalytic activities are observed in the as-prepared non-noble metal-ZnO hybrid nanocrystals. This study not only provides an economical way to prepare high-quality morphology-controlled Cu-ZnO hybrid nanocrystals for potential applications in the fields of photocatalysis and photovoltaic devices, but also opens up new opportunities in designing ternary non-noble metal-semiconductor hybrid nanocrystals with multifunctionalities.Metal-semiconductor hybrid nanocrystals have received extensive attention owing to their multiple functionalities which can find wide technological applications

  1. Microstructure and Mechanical Properties of Dissimilar Welded Ti3Al/Ni-Based Superalloy Joint Using a Ni-Cu Filler Alloy

    Science.gov (United States)

    Chen, Bing-Qing; Xiong, Hua-Ping; Guo, Shao-Qing; Sun, Bing-Bing; Chen, Bo; Tang, Si-Yi

    2015-02-01

    Dissimilar welding of a Ti3Al-based alloy and a Ni-based superalloy (Inconel 718) was successfully carried out using gas tungsten arc welding technology in this study. With a Ni-Cu alloy as filler material, sound joints have been obtained. The microstructure evolution along the cross section of the dissimilar joint has been revealed based on the results of scanning electron microscopy and X-ray energy dispersive spectroscopy as well as X-ray diffractometer. It is found that the weld/Ti3Al interface is composed of Ti2AlNb matrix dissolved with Ni and Cu, Al(Cu, Ni)2Ti, (Cu, Ni)2Ti, (Nb, Ti) solid solution, and so on. The weld and In718/weld interface mainly consist of (Cu, Ni) solid solutions. The weld exhibits higher microhardness than the two base materials. The average room-temperature tensile strength of the joints reaches 242 MPa and up to 73.6 pct of the value can be maintained at 873 K (600 °C). The brittle intermetallic phase of Ti2AlNb matrix dissolved with Ni and Cu at the weld/Ti3Al interface is the weak link of the joint.

  2. Interfacial tension studies between Fe-Cu-Ni sulfide and halo-norilsk basalt slag system

    Institute of Scientific and Technical Information of China (English)

    SU Shangguo; Jim Mungall; WANG Jian; GENG Ke

    2005-01-01

    The interfacial tension of the matte/halo-Norilsk basalt slag systems of FeS-Cu2S-Ni3S2 and FeO-FeS were investigated using the sessile drop technique. The results indicate that interfacial tension decreases with increasing copper and nickel contents in the matte of FeS-Cu2S-Ni3S2 system while it increases with increasing oxygen content in the matte of FeO-FeS system. It is inferred from these results that two conditions are critical for the formation of giant Cu-Ni sulfide deposits. One is that mafic-ultramafic parent magma of sulfide deposits should be rich in copper and nickel where due to the low interfacial tension, it is difficult to form sulfide droplet in the early stage of magma evolution. In other words, sulfide liquid conglomeration occurs more difficultly. The other condition is that the magma emplacement should be shallow; and a lot of faults occur in the magma emplacement field. Since oxygen content is high in the environment, interfacial tension is high, which helps sulfide liquid conglomeration and consequently Cu-Ni sulfide deposits form.

  3. Comparative study on hydrogenation of propanal on Ni(111) and Cu(111) from density functional theory

    Science.gov (United States)

    An, Wei; Men, Yong; Wang, Jinguo

    2017-02-01

    Using propanal as a probe molecule, we have comparatively investigated hydrogenation of carbonyl (Cdbnd O) in short carbon-chain aldehyde on Ni(111) and Cu(111) by means of periodic density functional theory. Our focus is in particular on the differentiation of reaction route in sequential hydrogenation on Ni(111) and Cu(111) following Langmuir-Hinshelwood mechanism. Strong binding with alkoxy intermediates has great impact on altering reaction pathways on the two surfaces, where hydroxyl route via 1-hydroxyl propyl intermediate is dominant on Ni(111), but alkoxy route via propoxyl intermediate is more likely on Cu(111) due to a higher activiation barrier of initial hydrogenation in hydroxyl route. In comparison, hydrogenation of carbonyl on Ni(111) is kinetically much faster than that on Cu(111) as a result of much lower activation barrier in rate-determining step (i.e., 13.2 vs 26.8 kcal/mol) of most favorable reaction pathways. Furthermore, the discrepancy in calculated and experimental barriers can be well explained by using the concept of H-tunneling effect on bond forming with H atoms during sequential hydrogenation. The different features of electronic structure exhibited by the two metal surfaces provide insight into their catalytic behaviors.

  4. Interfacial reactions in the Sb-Sn/(Cu, Ni) systems: Wetting experiments

    Energy Technology Data Exchange (ETDEWEB)

    Novakovic, R., E-mail: r.novakovic@ge.ieni.cnr.it [National Research Council (CNR) - Institute for Energetics and Interphases (IENI), Via De Marini, 6-16149 Genoa (Italy); Lanata, T. [National Research Council (CNR) - Institute for Energetics and Interphases (IENI), Via De Marini, 6-16149 Genoa (Italy); Delsante, S.; Borzone, G. [DCCI-University of Genoa, Via Dodecaneso, 31 - 16146-Genoa (Italy)

    2012-12-14

    Interfacial reactions in the Sb-Sn/Cu and Sb-Sn/Ni systems have been investigated by means of wetting experiments. The wetting behaviour of two lead-free alloys, namely, Sb{sub 2.5}Sn{sub 97.5} and Sb{sub 14.5}Sn{sub 85.5} (at.%), in contact with Cu and Ni-substrates has been studied in view of possible applications as high-temperature solders in the electronics industry. The contact angle measurements on Cu and Ni plates were performed by using a sessile drop apparatus. The solder/substrate interface was characterised by the SEM-EDS analyses. -- Highlights: Black-Right-Pointing-Pointer Sb-Sn alloys are used as high temperature lead-free solders. Black-Right-Pointing-Pointer Sb-Sn alloys have good wetting properties on Cu and Ni substrates. Black-Right-Pointing-Pointer Interfacial reactions and products are important for joint properties. Black-Right-Pointing-Pointer Interfacial reactions/products data can be used to study the phase diagrams.

  5. Dendritic Ni(Cu)-polypyrrole hybrid films for a pseudo-capacitor

    Science.gov (United States)

    Choi, Bit Na; Chun, Woo Won; Qian, Aniu; Lee, So Jeong; Chung, Chan-Hwa

    2015-11-01

    Dendritic Ni(Cu)-polypyrrole hybrid films are fabricated for a pseudo-capacitor in a unique morphology using two simple methods: electro-deposition and electrochemical de-alloying. Three-dimensional structures of porous dendrites are prepared by electro-deposition within the hydrogen evolution reaction (HER) at a high cathodic potential; the high-surface-area structure provides sufficient redox reactions between the electrodes and the electrolyte. The dependence of the active-layer thickness on the super-capacitor performance is also investigated, and the 60 μm-thick Ni(Cu)PPy hybrid electrode presents the highest performance of 659.52 F g-1 at the scan rate of 5 mV s-1. In the thicker layers, the specific capacitance became smaller due to the diffusion limitation of the ions in an electrolyte. The polypyrrole-hybridization on the porous dendritic Ni(Cu) electrode provides superior specific capacitance and excellent cycling stability due to the improvement in electric conductivity by the addition of conducting polypyrrole in the matrices of the dendritic nano-porous Ni(Cu) layer and the synergistic effect of composite materials.

  6. Strontium Titanate Buffer Layers on Cu/33%Ni Substrates using a Novel Solution Chemistry

    DEFF Research Database (Denmark)

    Pallewatta, Pallewatta G A P; Yue, Zhao; Hui, Tian

    2013-01-01

    on textured Cu/33%Ni substrates using dip-coating in a precursor solution followed by drying and annealing under controlled oxygen partial pressures. The control of the ambient atmosphere during annealing is an important experimental issue in order to achieve thin films with high quality surface texture. We...

  7. Magnetic properties of the Ni-Cu-Zn system doped with magnesium oxide

    Science.gov (United States)

    Hemeda, O. M.; Tawfik, A.; Hemeda, D. M.; Elsheekh, A. M.

    2015-09-01

    A series of ferrite samples, Ni0.1Cu0.2MgxZn0.7-x Fe2O4, (x=0.00, 0.15, 0.25, 0.35, 0.45, 0.55 and 0.70) has been prepared by the standard ceramic technique, sintered at 1200 °C for 2 h, and their crystalline structures were investigated by using X-ray diffraction. The IR spectra and the ESR spectra analysis have been studied. DC electrical resistivity, thermoelectric power, charge carriers concentration and charge carrier mobility have been calculated at different temperatures. The value of dc electrical resistivity reach minimum at x=0.35 and above this value the electrical resistivity start to increase. It is noticed that thermoelectric power α for the "Ni-Cu-Zn" system exhibits a positive sign indicating the majority carriers are holes without excluding the presence of electrons. Saturation magnetization Ms for the "Ni-Cu-Zn" system was calculated from M-H loop. It is noted that Ms decreases with Mg content up to x=0.55 and rapidly decrease above x>0.55 for the "Ni-Cu-Zn" system.

  8. Dynamic Magma Conduit System Related to the Jinchuan Ni-Cu Sulfide Deposit, NW China

    Institute of Scientific and Technical Information of China (English)

    SONG Xie-yan; CHEN Lie-meng; TIAN Yu-long; XIAO Jia-fei

    2009-01-01

    @@ The Jinchuan Ni-Cu sulfide deposits, NW China, are hosted in small ultramafic intrusions that were emplaced into Paleoproterozoic metamorphic rocks. The ultramafic intrusions were previously thought to be the segments of a single elongate intrusion that was dismembered by late faults into eastern and western portions, each of which have distinct stratigraphic sequences.

  9. Fatigue of thin walled tubes in copper alloy CuNi10

    DEFF Research Database (Denmark)

    Lambertsen, Søren Heide; Damkilde, Lars; Jepsen, Michael S.

    2016-01-01

    The current work concerns the investigation of the fatigue resistance of CuNi10 tubes, which are frequently used in heat exchangers of large ship engines. The lifetime performances of the exchanger tubes are greatly affected by the environmental conditions, where especially the temperature fluctu...

  10. The response of macrophages to a Cu-Al-Ni shape memory alloy.

    Science.gov (United States)

    Colić, Miodrag; Tomić, Sergej; Rudolf, Rebeka; Anzel, Ivan; Lojen, Gorazd

    2010-09-01

    Cu-Al-Ni shape memory alloys (SMAs) have been investigated as materials for medical devices, but little is known about their biocompatibility. The aim of this work was to study the response of rat peritoneal macrophages (PMØ) to a Cu-Al-Ni SMA in vitro, by measuring the functional activity of mitochondria, necrosis, apoptosis, and production of proinflammatory cytokines. Rapidly solidified (RS) thin ribbons were used for the tests. The control alloy was a permanent mold casting of the same composition, but without the shape memory effect. Our results showed that the control alloy was severely cytotoxic, whereas RS ribbons induced neither necrosis nor apoptosis of PMØ. These findings correlated with the data that RS ribbons are significantly more resistant to corrosion compared to the control alloy, as judged by the lesser release of Cu and Ni in the conditioning medium. However, the ribbons generated intracellular reactive oxygen species and upregulated the production of IL-6 by PMØ. These effects were almost completely abolished by conditioning the RS ribbons for 5 weeks. In conclusion, RS significantly improves the corrosion stability and biocompatibility of Cu-Al-Ni SMA. The biocompatibility of this functional material could be additionally enhanced by conditioning the ribbons in cell culture medium.

  11. Texture development and anisotropic behaviour in a Ti-45Ni-5Cu (AT.%) shape memory alloy

    NARCIS (Netherlands)

    Zhao, Lie

    1997-01-01

    The objective of this work was to determine the relationship between texture development and anisotropy of shape memory properties. A commercial Ti-45Ni-5Cu (at.%) shape memory alloy was selected. Textures were developed by controlling rolling parameters, such as rolling temperature, intermediate an

  12. Conversion of furan derivatives for preparation of biofuels over Ni-Cu/C catalyst

    DEFF Research Database (Denmark)

    Fu, Zhaolin; Wang, Z.; Lin, Weigang

    2017-01-01

    Conversions of furfural and 5-hydroxymethylfurfural as model components in bio-oil were investigated over Ni-Cu/C catalyst with formic acid as hydrogen donor in isopropanol solvent to produce biofuels. The effects of reaction temperature, feed ratio, and reaction time were studied. A high yield...... biofuels from furan derivatives....

  13. Primary solidification phases of the Sn-rich Sn-Ag-Cu-Ni quaternary system

    Science.gov (United States)

    Chang, Cheng-An; Chen, Sinn-Wen; Chiu, Chen-Nan; Huang, Yu-Chih

    2005-08-01

    The eutectic and near-eutectic Sn-Ag-Cu solders are the most promising lead-free solders, and nickel is frequently used as the barrier layer material. Nickel dissolves into the molten Sn-Ag-Ni alloy during the soldering process, and the ternary solder becomes a Sn-Ag-Cu-Ni quaternary melt near the nickel substrate. Liquidus projection is the projection of the liquidus trough and it delineates the boundaries of various primary solidification phases. Information of liquidus projection is helpful for understanding the alloys’ solidification behavior. This study prepared the Sn-Ag-Cu-Ni alloys of various compositions at the Sn-rich corner. The alloys were melted at higher temperatures and solidified in air. The solidified alloys were metallographically examined to determine the phases formed, especially the primary solidification phases. No ternary or quaternary compounds were found. The knowledge of the primary solidification phases, phase formation sequences, and reaction temperatures determined in this study were put together with all of the available liquidus projections of the constituent ternary systems to determine the primary solidification phases of the quaternary Sn-Ag-Cu-Ni system at the Sn-rich corner.

  14. Multidimensional effects in dissociative chemisorption: H2 on Cu and Ni surfaces

    DEFF Research Database (Denmark)

    Engdahl, C.; Lundqvist, Bengt; Nielsen, U.

    1992-01-01

    It is shown that, in order to describe and understand the trends found experimentally for the variation of the H2 sticking probability with crystal face on Cu and Ni surfaces, the dynamics of all six molecular degrees of freedom must be included. The effective-medium theory is used to estimate...

  15. Aqueous phase reforming of glycerol over nanosize Cu-Ni catalysts.

    Science.gov (United States)

    Kim, Ji Yeon; Kim, Seong Hak; Moon, Dong Ju; Kim, Jong Ho; Park, Nam Cook; Kim, Young Chul

    2013-01-01

    In this work, hydrogen production from glycerol by aqueous phase reforming (APR) is studied by using nanosize Ni-Cu catalysts supported on LaAlO3 perovskite in order to investigate the effects of the copper loading amount and the reaction conditions. Nanosize copper-promoted nickel-based catalysts were prepared by the precipitation method. The structure of the nanosize catalysts is characterized by XRD analysis. The surface area, morphology, dispersion and reducibility of the nanosize catalysts is examined by BET, TEM and TPR, respectively. It was found that 15Ni-5Cu/LaAlO3 catalyst showed the highest glycerol conversion and hydrogen selectivity. The highest activity found in the 15Ni-5Cu/LaAlO3 was attributed to it having the proper copper loading amount. It also has the lowest metal crystal size and the highest surface area, which have an effect on the catalytic activity and hydrogen selectivity. The 15Ni-5Cu/LaAlO3 catalyst showed the best performance for hydrogen production at a reaction temperature of 250 degrees C, a reaction pressure of 20 bar and a feed rate of 5 ml/h.

  16. Positron annihilation process in Ni/sub c/Cu/sub 1-c/ alloys

    Energy Technology Data Exchange (ETDEWEB)

    Szotek, Z.; Gyorffy, B.L.; Stocks, G.M.; Temmerman, W.M.

    1982-01-01

    New, accurate, calculations of the electron momentum distribution function for the Cu/sub 60/Ni/sub 40/ random solid solution are presented and the role played by the positron wavefunction in determining the Angular Correlation of the Annihilation Radiation (ACAR) is discussed in quantitative terms.

  17. Multicomponent (Ce, Cu, Ni) oxides with cage and core-shell structures: tunable fabrication and enhanced CO oxidation activity

    Science.gov (United States)

    Liu, Wei; Tang, Ke; Lin, Ming; June, Lay Ting Ong; Bai, Shi-Qiang; Young, David James; Li, Xu; Yang, Yan-Zhao; Hor, T. S. Andy

    2016-05-01

    Solvothermal synthesis of Cu2O cubes from Cu(OAc)2 in ethanol provided templates for tunable formation of novel multicomponent composites: hollow CeO2-Cu2O (1), core-shell NiO@Cu2O (2) and hollow CeO2-NiO-Cu2O (3). Composites 1-3 catalyze the oxidation of CO at a lower temperature than the parent Cu2O cubes.Solvothermal synthesis of Cu2O cubes from Cu(OAc)2 in ethanol provided templates for tunable formation of novel multicomponent composites: hollow CeO2-Cu2O (1), core-shell NiO@Cu2O (2) and hollow CeO2-NiO-Cu2O (3). Composites 1-3 catalyze the oxidation of CO at a lower temperature than the parent Cu2O cubes. Electronic supplementary information (ESI) available: Experimental section: materials and characterization; synthesis of materials; catalytic test. Tables S1-S3 and Fig. S1-S8. See DOI: 10.1039/c6nr02383e

  18. Sn-Ag-xCu-Bi-Ni/Cu焊点界面IMC演变%Evolution of the Interfacial IMC in Sn-Ag-xCu-Bi-Ni/Cu Solder Joints

    Institute of Scientific and Technical Information of China (English)

    孙凤莲; 汪洋; 刘洋; 王国军

    2012-01-01

    为了研究低银无铅焊点界面金属间化合物(IMC)的形成与演变,以低银无铅焊点Sn-Ag-xCu-Bi-Ni/Cu为研究对象,研究了钎料中Cu质量分数对界面IMC厚度、形貌和成分的影响.实验结果表明,随着钎料中Cu质量分数的增加,回流焊后焊点IMC层厚度变薄,IMC晶粒尺寸增大,IMC晶粒形貌由颗粒状转变为棱柱状以及鹅卵石状,同时界面IMC成分发生由(Cu,Ni)6Sn5向Cu6Sns的转变.高温时效后,界面IMC层厚度增长.当钎料中Cu质量分数超过1%时,时效后生成较厚的Cu3Sn化合物层,对焊点可靠性不利.钎料中Cu质量分数应控制在1%以下.%In order to study the formation and evolution of the intermetallic compounds (IMC) in low-Ag lead-free solder joints, the effect of Cu content on the thickness, morphology, and constituent of the interfacial IMC in Sn-Ag-xCu-Bi-Ni/Cu solder joints was investigated. Experimental results indicated that the thickness of IMC layer decreased but the grain size of which increased as the concentration of Cu increased in the solder alloys. Meanwhile , the appearance of IMC grains transformed from tiny grains to prisms and cobbles, and the constituent of IMC transformed from (Cu,Ni)6Sn5to Cu6Sn5. The thickness of IMC layer increased during high temperature storage ( HTS) aging. Thick Cu3Sn layer formed during aging when the Cu content was higher than 1% in the solder. Due to reliability concern, the content of Cu in the solder should be controlled less than 1 %.

  19. Cu-NMR and magnetization in disordered nFL system UCu4Ni

    Science.gov (United States)

    Bernal, O. O.; Valdez, A.; Chiang, M.; Maclaughlin, D. E.; Stewart, G. R.; Kim, J. S.

    2012-02-01

    We present a study of the NMR spectra in a random powder of UCu4Ni as a function of frequency (40-70 MHz) and temperature (5-300 K). Two types of spectral lines for each of the two isotopes of naturally abundant Cu in the material are clearly evident in the spectra. Their behavior is followed for temperature and field variations and compared/contrasted with the more studied case of UCu4Pd, where only one type of Cu-NMR line has been observed clearly. Unlike in UCu4Pd, the appearance of two types of signal from Cu nuclei in the Ni compound is unambiguous evidence of site disorder in UCu4Ni. This alone is indication that the amount of site disorder in the Ni sample is larger than in the Pd system; however, the NMR line intensities reveal that the Ni ions do not seem to go completely randomly in the two available crystallographic sites of the underlying crystal structure as would be expected from ionic-size considerations alone. The NMR parameters for both types of spectral lines, together with complementary measurements of magnetic susceptibility performed on the same powder samples, will be discussed from the point of view of magnetic disorder and non-Fermi liquid behavior.

  20. Bioaccessibility of As, Cd, Cu, Ni, Pb, and Sb in toys and low-cost jewelry.

    Science.gov (United States)

    Guney, Mert; Zagury, Gerald J

    2014-01-21

    Children can be exposed to toxic elements in toys and jewelry following ingestion. As, Cd, Cu, Ni, Pb, and Sb bioavailability was assessed (n = 24) via the in vitro gastrointestinal protocol (IVG), the physiologically based extraction test (PBET), and the European Toy Safety Standard protocol (EN 71-3), and health risks were characterized. Cd, Cu, Ni, and Pb were mobilized from 19 metallic toys and jewelry (MJ) and one crayon set. Bioaccessible Cd, Ni, or Pb exceeded EU migratable concentration limits in four to six MJ, depending on the protocol. Using two-phase (gastric + intestinal) IVG or PBET might be preferable over EN 71-3 since they better represent gastrointestinal physiology. Bioaccessible and total metal concentrations were different and not always correlated, indicating that bioaccessibility measurement may provide more accurate risk characterization. More information on impacts of multiple factors affecting metals mobilization from toys and jewelry is needed before recommending specific tests. Hazard index (HI) for Cd, Ni, or Pb were >1 for all six MJ exceeding the EU limits. For infants (6-12 mo old), 10 MJ had HI > 1 for Cd, Cu, Ni, or Pb (up to 75 for Cd and 43 for Pb). Research on prolonged exposure to MJ and comprehensive risk characterization for toys and jewelry exposure is recommended.

  1. Formation and corrosion behavior of glassy Ni-Nb-Ti-Zr-Co(-Cu) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Pang, S.J. [Department of Materials Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100083 (China); Department of Physics and Materials Science, City University of Hong Kong (Hong Kong); Shek, C.H. [Department of Physics and Materials Science, City University of Hong Kong (Hong Kong); Asami, K. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Inoue, A. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Zhang, T. [Department of Materials Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100083 (China)]. E-mail: zhangtao@buaa.edu.cn

    2007-05-31

    Bulk glassy Ni{sub 55}Nb{sub 20}Ti{sub 10}Zr{sub 8}Co{sub 7} alloy with a critical diameter of 2 mm was synthesized by copper-mold casting and the glass transition temperature, crystallization temperature and supercooled liquid region are 858 K, 911 K and 52 K, respectively. High corrosion resistance in 1N HCl and H{sub 2}SO{sub 4} solutions was recognized for the glassy alloys Ni{sub 55}Nb{sub 20}Ti{sub 10}Zr{sub 8}Co{sub 7} together with Ni{sub 53}Nb{sub 20}Ti{sub 10}Zr{sub 8}Co{sub 6}Cu{sub 3} which possesses higher glass-forming ability. They are spontaneously passivated with low passive current densities of the order of 10{sup -2} A/m{sup 2} and their corrosion rate was less than 10{sup -3} mm/year in the solutions. A small amount addition of Cu (3 at.%) in the Ni-Nb-Ti-Zr-Co glassy alloy system has little effect on corrosion behavior and surface film composition. Niobium-rich passive films form on the glassy Ni-Nb-Ti-Zr-Co(-Cu) alloys, which could be responsible for the high corrosion resistance.

  2. Chemistry of Cu(acac){sub 2} on Ni(110) and Cu(110) surfaces: Implications for atomic layer deposition processes

    Energy Technology Data Exchange (ETDEWEB)

    Ma Qiang; Zaera, Francisco [Department of Chemistry, University of California, Riverside, California 92521 (United States)

    2013-01-15

    The thermal chemistry of copper(II)acetylacetonate, Cu(acac){sub 2}, on Ni(110) and Cu(110) single-crystal surfaces was probed under vacuum by using x-ray photoelectron spectroscopy (XPS) and temperature programmed desorption (TPD). Some data for acetylacetone (Hacac, CH{sub 3}COCH{sub 2}COCH{sub 3}) adsorbed on Ni(110) are also reported as reference. Chemical transformations were identified in several steps covering a temperature range from 150 K to at least 630 K. The desorption of Hacac and a 3-oxobutanal (CH{sub 3}COCH{sub 2}CHO) byproduct was observed first at 150 and 180 K on Ni(110) and at 160 and 185 K on Cu(110), respectively. Partial loss of the acetylacetonate (acac) ligands and a likely change in adsorption geometry are seen next, with the possible production of HCu(acac), which desorbs at 200 and 235 K from the nickel and copper surfaces, respectively. Molecular Cu(acac){sub 2} desorption is observed on both surfaces at approximately 300 K, probably from recombination of Cu(acac) and acac surface species. The remaining copper atoms on the surface lose their remaining acac ligands to the substrate and become reduced directly to metallic copper. At the same time, the organic ligands follow a series of subsequent surface reactions, probably involving several C-C bond-scissions, to produce other fragments, additional Hacac and HCu(acac) in the gas phase in the case of the copper surface, and acetone on nickel. A significant amount of acac must nevertheless survive on the surface to high temperatures, because Hacac peaks are seen in the TPD at about 515 and 590 K and the C 1s XPS split associated with acac is seen up to close to 500 K. In terms of atomic layer deposition processes, this suggests that cycles could be design to run at such temperatures as long as an effective hydrogenation agent is used as the second reactant to remove the surface acac as Hacac. Only a small fraction of carbon is left behind on Ni after heating to 800 K, whereas more carbon

  3. The crystallization of (NiCu)ZrTiAlSi glass/crystalline composite

    Energy Technology Data Exchange (ETDEWEB)

    Czeppe, T.; Sypien, A. [Institute of Metallurgy and Materials Science PAS, 25 Reymonta St, 30-059 Krakow (Poland); Ochin, P. [Centre d' Etudes de Chimie Metallurgique, UPR 2801, 15, Rue G. Urbain, 94407 Vitry-sur-Seine, Cedex (France); Anastassova, S. [University of Sofia, Faculty of Chemistry, 1, J. Bourchier Blvd., Sofia 1164 (Bulgaria)

    2007-06-15

    Alloys of composition (Ni{sub 1-x}Cu{sub x}){sub 60}Zr{sub 18}Ti{sub 13}A1{sub 5}Si{sub 4} were investigated in the form of ribbons and massive samples. The microstructure of the massive samples consists of dendritic crystals in the amorphous or nanocrystalline matrix. The amount of the amorphous phase is the lowest in the sample with the highest Cu content. The segregation in the liquid phase, leading to the local differences in density and the composition of the crystallizing dendrites in the samples crystallized in the copper mould was shown. The typical compositions of the multi-component crystals could be distinguished; one with the increased content of aluminum, the second with the high content of silicon and third, with the high content of (NiCu) and (ZrTi). The cubic phase Ni(Cu)Ti(Zr) with Cu and Zr dissolved could be identified. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  4. Effect of PTFE Addition on the Properties of Electroless Ni-Cu-P-PTFE Deposits%PTFE粒子对Ni-Cu-P-PTFE镀层性能的影响

    Institute of Scientific and Technical Information of China (English)

    程延海; 陈衡阳; 韩东太; 邹勇; 朱真才

    2014-01-01

    采用化学镀的方法,调整化学镀工艺参数,在低碳钢表面获得了PTFE含量不同的Ni-Cu-P-PTFE镀层,研究了PTFE粒子对Ni-Cu-P-PTFE镀层表面形貌、相、显微硬度、结合强度以及摩擦等性能的影响.结果表明,Ni-Cu-P-PTFE镀层的沉积速度随着PTFE浓度的增加而升高.进一步的实验结果表明,由于PTFE颗粒自身的疏松结构和软质特性,PTFE颗粒在镀层中的共沉积会引起Ni-Cu-P-PTFE镀层的显微硬度下降.同时Ni-Cu-P-PTFE镀层的结合强度会随着PTFE浓度的增加而减小.此外,PTFE的添加会使Ni-Cu-P-PTFE镀层的摩擦系数降低,这些结果与PTFE粒子在Ni-Cu-P-PTFE镀层中的含量成反比,而与镀液中PTFE粒子的浓度没有良好的对应关系.

  5. Cu-Ni-YSZ anodes for solid oxide fuel cell by mechanical alloying processing

    Energy Technology Data Exchange (ETDEWEB)

    Guisard Restivo, Thomaz A.; Mello-Castanho, Sonia R.H. [IPEN, Inst. of Energetic and Nuclear Research, Sao Paulo, SP (Brazil)

    2010-01-15

    The work shows some results concerning a new cermet material 40 vol.% [(Cu)-Ni]-YSZ processed by mechanical alloying followed by Sintering by Activated Surface method. The projected cermet microstructure for this application is expected to possess microstructural characteristics that lead to better electric and ionic percolating, higher electrocatalytic activity and fuel reforming. The powder samples prepared by mechanical alloying optimized conditions show a homogeneous mixture. Transmission and scanning electron microscope analysis have demonstrated the powder particles are nanosized after 2 h of milling, showing lamellar internal structure aggregates. Suitable sintered pellets are obtained from these powders, within the required porosity and microstructure. Sintering kinetics studies for pellets of Ni-YSZ and Ni-Cu-YSZ indicate 2-step sintering processes. Copper additive promotes sintering and refines the microstructure. (orig.)

  6. Glass forming ability of Zr-Al-Ni(Co,Cu) understood via cluster sharing model

    Institute of Scientific and Technical Information of China (English)

    Jixiang Chen; Yi Cheng

    2014-01-01

    Clusters are shared atoms in different ways with their neighboring clusters in the crystalline phases. Cluster formula [effective cluster]1(glue atom)x can be used to describe crystalline phases, and the effective cluster means the true cluster composition due to cluster overlapping in the phase structure. Degree of cluster sharing of Zr6Al2Ni (InMg2), Zr2Co (Al2Cu) and Zr2Cu (MoSi2) phases is investigated in this paper. Ni3Zr9, Co3Zr8 and Cu5Zr10 clusters are highlighted because they have the least degree of sharing and can best represent the local atomic short-range order features of the formed phases. It is pointed out that the least sharing clusters are correlated with metallic glass formation and are verified by experiments.

  7. Preparation and electrical properties of Ni-Cu-Zn system doped with the magnesium oxide

    Science.gov (United States)

    Hemeda, O. M.; Tawfik, A.; Hemeda, D. M.; Elsheekh, A. M.

    2014-06-01

    A sery of ferrite samples, Ni0.1Cu0.2MgxZn0.7-xFe2O4, (x = 0.00, 0.15, 0.25, 0.35, 0.45, 0.55 and 0.70) have been prepared by the standard ceramic techniques, sintered at 1200°C for 2 h, and their crystalline structures were investigated by using X-ray diffraction, which confirmed the formation of Ni0.1Cu0.2MgxZn0.7-xFe2O4 phase. The presence of Mg content increases the crystallinity of the given ferrite which is considered as catalyst for the accomplishment of the solid state reaction. The lattice parameter and crystallite size were calculated from XRD. The cationic distribution was estimated from the theoretical values of lattice parameters. The IR spectra analysis has been studied. The dielectric constant for the ferrite system Ni-Cu-Zn gradually increases with temperature up to nearly Curie temperature and then increase sharply beyond the Tc. The Curie temperature obtained from the ´ ǎrepsilon versus T is in agreement with the Curie temperature obtained from other measurements. Dielectric loss tangent (tan δ) has the same behavior as dielectric constant (´ ǎrepsilon). A minimum value of dielectric loss tangent (tan δ) for the system "Ni-Cu-Zn" was observed at x = 0.45. Magnetic permeability has been studied. The dependence of initial permeability on temperature exhibit a peak which is called Hopkinson peak (HP) in the vicinity of Curie temperature and confirmed the phase purity of ferrite sample. The increasing of porosity and decreasing of grain size play an important role in decreasing μi. It is clear that the value of Tc is found to increase by increasing the concentration of diamagnetic substitution Mg for "Ni-Cu-Zn" system.

  8. Study of NiCuZn ferrite powders and films prepared by sol-gel method

    Institute of Scientific and Technical Information of China (English)

    Gao Liang-Qiu; Yu Guo-Jian; Wang Ying; Wei Fu-Lin

    2011-01-01

    This paper reports that a series of NiCuZn ferrite powders and films are prepared by using sol-gel method. The effects of raw material composition and the calcinate temperature on magnetic properties of them are investigated. The NiCuZn ferrite powders are prepared by the self-propagating high-temperature synthesis method and subsequently heated at 700 ℃~1000 ℃. The results show that NiCuZn ferrite powders with single spinel phase can be formed after heat-treating at 750 ℃. Powders obtained from Nio.4Cuo.2Zno.4Fe1.9O4 gel have better magnetic properties than those from gels with other composition. After heat-treating at 900 ℃ for 3 h, coercivity Hc and saturation magnetization Ms are 9.7 Oe (1 Oe = 80 A/m) and 72.4 emu/g, respectively. Different from the powders, NiCuZn films produced on Si (100) from the Ni0.4Cu0.2Zn0.4Fe2O4 gel formed at room temperature possess high properties. When heat-treating condition is around 600 ℃ for 6 min, samples with low Hc and high Ms will be obtained. The minimal Hc is 16.7 Oe and Ms is about 300 emu/cm3. In comparison with the films prepared through long-time heat treating, the films prepared through short heat-treating time exhibits better soft magnetic properties.

  9. Effects of Ni{sub 3}Sn{sub 4} and (Cu,Ni){sub 6}Sn{sub 5} intermetallic layers on cross-interaction between Pd and Ni in solder joints

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Yong-Ho [Department of Materials Science and Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Division of Advanced Circuit Interconnect, Samsung Electro-Mechanics Co., Ltd., Suwon 443-743 (Korea, Republic of); Chung, Bo-Mook [Department of Materials Science and Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Department of Research and Development, KPM TECH, Ansan 425-090 (Korea, Republic of); Choi, Young-Sik [Division of Advanced Circuit Interconnect, Samsung Electro-Mechanics Co., Ltd., Suwon 443-743 (Korea, Republic of); Choi, Jaeho [Department of Advanced Metal and Materials Engineering, Gangneung-Wonju National University, Gangneung 210-702 (Korea, Republic of); Huh, Joo-Youl, E-mail: jyhuh@korea.ac.kr [Department of Materials Science and Engineering, Korea University, Seoul 136-713 (Korea, Republic of)

    2013-12-05

    Highlights: •Ni{sub 3}Sn{sub 4} acts as a source of Ni atoms, leading to a strong cross-interaction with Pd. •(Cu,Ni){sub 6}Sn{sub 5} is an effective Ni diffusion barrier, inhibiting Pd resettlement. •Dissolution kinetics of (Pd,Ni)Sn{sub 4} was interpreted based on the Sn–Ni–Pd isotherm. •Cu addition to solder alleviates the (Pd,Ni)Sn{sub 4}-related risk of reliability deterioration. -- Abstract: We examined the effects of layers of intermetallic compound (IMC) Ni{sub 3}Sn{sub 4} and (Cu,Ni){sub 6}Sn{sub 5} formed at the solder/Ni interface, on the cross-interactions between Pd and Ni during solid-state aging and reflow soldering. Two types of diffusion couples, Pd/Sn/Ni and Pd/Sn–Cu/Ni, were aged at 150 °C to study the solid-state interactions. In contrast to the Pd/Sn/Ni couples in which a Ni{sub 3}Sn{sub 4} layer formed at the Ni interface, the Pd/Sn–Cu/Ni couple where a (Cu,Ni){sub 6}Sn{sub 5} layer formed at the Ni interface exhibited no significant interaction between Pd and Ni. The (Cu,Ni){sub 6}Sn{sub 5} layer acted as an effective barrier against Ni diffusion and thus inhibited the resettlement of (Pd,Ni)Sn{sub 4} onto the Ni interface. For the interaction during reflow, Sn–3.5Ag and Sn–3.0Ag–0.5Cu solder balls were isothermally reflowed on an electroless Ni(P)/electroless Pd/immersion Au (ENEPIG) surface finish at 250 °C, and the dissolution kinetics of the (Pd,Ni)Sn{sub 4} particles converted from the 0.2-μm-thick Pd-finish layer were examined. The spalled (Pd,Ni)Sn{sub 4} particles very quickly dissolved into the molten solder when the IMC layer formed on the Ni substrate was (Cu,Ni){sub 6}Sn{sub 5} rather than Ni{sub 3}Sn{sub 4}. The dependence of the dissolution kinetics of the spalled (Pd,Ni)Sn{sub 4} particles on the IMC layers was rationalized on the basis of a Sn–Ni–Pd isotherm at 250 °C. The present study suggests that the formation of a dense (Cu,Ni){sub 6}Sn{sub 5} layer at the solder/Ni interface can effectively

  10. Dechlorination of chlorinated hydrocarbons by bimetallic Ni/Fe immobilized on polyethylene glycol-grafted microfiltration membranes under anoxic conditions.

    Science.gov (United States)

    Parshetti, Ganesh K; Doong, Ruey-an

    2012-01-01

    In this study, the dechlorination of chlorinated hydrocarbons including trichloroethylene (TCE), tetrachloroethylene (PCE) and carbon tetrachloride (CT) by bimetallic Ni/Fe nanoparticles immobilized on four different membranes was investigated under anoxic conditions. Effects of several parameters including the nature of membrane, initial concentration, pH value, and reaction temperature on the dechlorination efficiency were examined. The scanning electron microscopic images showed that the Ni/Fe nanoparticles were successfully immobilized inside the four membranes using polyethylene glycol as the cross-linker. The agglomeration of Ni/Fe were observed in poly(vinylidene fluoride), Millex GS and mixed cellulose ester membranes, while a relatively uniform distribution of Ni/Fe was found in nylon-66 membrane because of its hydrophilic nature. The immobilized Ni/Fe nanoparticles exhibited good reactivity towards the dechlorination of chlorinated hydrocarbons, and the pseudo-first-order rate constant for TCE dechlorination by Ni/Fe in nylon-66 were 3.7-11.7 times higher than those in other membranes. In addition, the dechlorination efficiency of chlorinated hydrocarbons followed the order TCE>PCE>CT. Ethane was the only end product for TCE and PCE dechlorination, while dichloromethane and methane were found to be the major products for CT dechlorination, clearly indicating the involvement of reactive hydrogen species in dechlorination. In addition, the initial rate constant for TCE dechlorination increased upon increasing initial TCE concentrations and the activation energy for TCE dechlorination by immobilized Ni/Fe was 34.9 kJ mol(-1), showing that the dechlorination of TCE by membrane-supported Ni/Fe nanoparticles is a surface-mediated reaction.

  11. Electrochemical CO2 reduction on Cu2O-derived copper nanoparticles: Controlling the catalytic selectivity of hydrocarbons

    NARCIS (Netherlands)

    Kas, Recep; Kortlever, R.; Milbrat, Alexander; Koper, M.T.M.; Mul, Guido; Baltrusaitis, Jonas

    2014-01-01

    The catalytic activity and hydrocarbon selectivity in electrochemical carbon dioxide (CO2) reduction on cuprous oxide (Cu2O) derived copper nanoparticles is discussed. Cuprous oxide films with [100], [110] and [111] orientation and variable thickness were electrodeposited by reduction of copper(II)

  12. Corrosion behavior of a CuCrNiAl alloy in the presence of NaCl deposit

    Institute of Scientific and Technical Information of China (English)

    XU Tao; CHANG Limin; LIU Jianhua

    2006-01-01

    The corrosion behavior of a CuCrNiAl alloy with NaCl deposit at 700 and 900℃ was studied by means of metalloscope, XRD, SEM/EDX, and thermogravimetric analysis. The results indicated that the corrosion of the CuCrNiAl alloy beneath the NaCl deposit is severe; the corrosion production is loose and easy to scale off; the Cr phase is easier to erode than the Cu phase, and the contents of Cu and Cr decrease when the content of Ni increases in the matrix of the alloy beneath the corrosion region. The effects of distortion on the corrosion of the CuCrNiAl alloy were discussed, and the acceleration mechanisms of NaCl on the corrosion were also discussed.

  13. Synthesis and properties of one-dimensional Ni(Ⅱ) and Ni(Ⅱ)Cu(Ⅱ) complexes linked by hydrogen bond

    Institute of Scientific and Technical Information of China (English)

    CUI; Jianzhong(崔建中); SHI; Wei(师唯); CHENG; Peng(程鹏); LIAO; Daizheng(廖代正); YAN; Shiping(阎世平); JIANG; Zonghui(姜宗慧); WANG; Genglin(王耕霖); YAO; Xinkan(姚心侃); WANG; Honggen(王宏根)

    2002-01-01

    Four dithiooxalato (Dto) bridged one-dimensional Ni(II) and Ni(II)Cu(II) complexes (Me6[14]dieneN4)Ni2(Dto)2) (1), (Me6[14]dieneN4)CuNi(Dto)2 (2), (Me6[14]aneN4)Ni2(Dto)2 (3), and (Me6[14]aneN4)CuNi(Dto)2 (4), were synthesized. These complexes have been characterized by elemental analysis, IR, UV and ESR spectra. The crystal structure of complex 3 was determined. It crystallizes in the monoclinic system, space group C2/c with a = 2.2425(4) nm, b = 1.0088(2) nm, c = 1.4665(3) nm, β = 125.32(3)° ; Z = 4; R = 0.076, Rw = 0.079. In the complex, Ni(1) coordinates four sulphur atoms of two Dto ligands in plane square environment. Ni(2) lies in the center of macrocyclic ligand. For Dto ligand, two sulphur atoms coordinate Ni(1), and O(1) coordinates Ni(2) and forms weak coordination bond. O(2) is linked to N(2) of macrocyclic ligand through hydrogen bond.

  14. Tren centered tris-macrocycles as polytopic ligands for Cu(II) and Ni(II).

    Science.gov (United States)

    Siegfried, Liselotte; McMahon, C Niamh; Kaden, Thomas A; Palivan, Cornelia; Gescheidt, Georg

    2004-07-21

    Two novel symmetric polytopic ligands L(1) and L(2) have been synthesized. They are composed of three 1,4,8,11-tetraazacyclotetradecane macrocycles which are connected to a central tren moiety via an ethylene and a trimethylene bridge, respectively. The complexation potential and the speciation diagrams of L(1) and L(2) towards Cu(2+) and Ni(2+) were determined by spectrophotometric and potentiometric titrations. Insight into the geometry of the Cu(2+) complexes is provided by UV-VIS and EPR spectroscopy. The simplified ligands L(3) and L(4) are utilized as references for an aminoethyl- and a tren-substituted tetraaza macrocycle to help assign the EPR spectra of the polytopic ligands L(1) and L(2). At a metal-to-ligand ratio of 3 : 1, the metal cations are preferentially bound to the tetraaza macrocycles of L(1) and L(2) in a square planar geometry. At high pH values, a nitrogen atom of the tren moiety in L(1) serves as an additional ligand in an axial position leading to a square pyramidal coordination around Cu(2+), whereas in L(2) no such geometry change is observed. At a metal-to-ligand ratio of 4 : 1, the additional metal cation resides in the central tren moiety of L(1) and L(2). However, in contrast to the typical trigonal bipyramidal geometry found in the [Cutren](2+) complex, the fourth Cu(2+) has a square pyramidal coordination caused by the interaction with the Cu(2+) cations in the macrocycles (as evidenced by EPR spectra). Since the sequence of metal complexation is such that the first three metal ions always bind to the three macrocycles of L(1) and L(2) and the fourth to the tren unit, it is possible to prepare heteronuclear complexes such as [Cu(3)NiL](8+) or [Ni(3)CuL](8+), which can be unambiguously identified by their spectral properties.

  15. Preparation, Characterization, and Millimeter Wave Attenuation of Carbon Fibers Coated with Ni-Cu-P and Ni-Co-P Alloys

    Science.gov (United States)

    Ye, Mingquan; Li, Zhitao; Wang, Chen; Han, Aijun

    2015-12-01

    Composite carbon fibers (CFs) coated with Ni-X-P (X = Cu, Co, none) alloys were prepared by electroless plating. The morphology, crystal structure, elemental composition, and millimeter wave (MMW) attenuation performance of the alloy-coated CFs were characterized by scanning electron microscopy, x-ray diffractometry, energy-dispersive spectrometry, and microwave attenuation. CFs were coated with a layer of alloy particles. The P content in the Ni-Cu-P or Ni-Co-P-coated alloy was lower than that in the Ni-P alloy, and coating alloy Ni-P was amorphous. Coating alloys exhibited crystal characteristics after Cu or Co introduction. MMW-attenuation performance of alloy-coated CFs showed that the 3 and 8 mm wave-attenuation effects of CF/Ni-Cu-P and CF/Ni-Co-P were better than those of CF/Ni-P and CFs. The 8 mm wave-attenuation values and their increases were larger than those of the 3 mm wave. The MMW-attenuation performance is attributable to the alloy bulk resistivity and P content. The 3 mm wave-attenuation effects of wavelength-coated CF samples were slightly larger than those of the half wavelength samples. An optimal weight gain value existed for the MMW-attenuation performance of alloy-coated CFs.

  16. A branching NiCuPt alloy counter electrode for high-efficiency dye-sensitized solar cell

    Science.gov (United States)

    Yang, Peizhi; Tang, Qunwei

    2016-01-01

    A rising objective for high-efficiency dye-sensitized solar cells (DSSCs) is to create extraordinary and cost-effective counter electrode (CE) electrocatalysts. We present here a branching NiCuPt alloy CE synthesized by electrodepositing Ni on ZnO microrod templates and subsequently growing branched Cu as well as suffering from a galvanic displacement for Pt uptake. The resultant NiCuPt alloy CE displays a promising electrocatalytic activity toward redox electrolyte having I-/I3- couples. An impressive power conversion efficiency of 9.66% is yielded for the liquid-junction DSSC platform.

  17. Giant Peltier Effect in a Submicron-Sized Cu-Ni/Au Junction with Nanometer-Scale Phase Separation

    Science.gov (United States)

    Sugihara, Atsushi; Kodzuka, Masaya; Yakushiji, Kay; Kubota, Hitoshi; Yuasa, Shinji; Yamamoto, Atsushi; Ando, Koji; Takanashi, Koki; Ohkubo, Tadakatsu; Hono, Kazuhiro; Fukushima, Akio

    2010-06-01

    We observed a giant Peltier effect in a submicron Cu-Ni/Au junction. The Peltier coefficient was evaluated to be 480 mV at room temperature from the balance between Joule heating and the Peltier cooling effect in the junction, which is 40 times that expected from the Seebeck coefficients of bulk Au and Cu-Ni alloy. This giant cooling effect lowered the inner temperature of the junction by 160 K. Microstructure analysis with a three-dimensional atom probe suggested that the giant Peltier effect possibly originated from nanometer-scale phase separation in the Cu-Ni layer.

  18. Fabrication and mechanical properties of AlCoNiCrFe high-entropy alloy particle reinforced Cu matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jian, E-mail: chenjian@xatu.edu.cn [School of Materials Science and Chemical Engineering, Xi' an Technological University, Xi' an, Shaanxi 710021 (China); Niu, Pengyun; Wei, Ting [School of Materials Science and Chemical Engineering, Xi' an Technological University, Xi' an, Shaanxi 710021 (China); Hao, Liang [College of Architecture and Civil Engineering, Xi' an University of Science and Technology, Xi' an 710054 (China); Liu, Yunzi [School of Materials Science and Chemical Engineering, Xi' an Technological University, Xi' an, Shaanxi 710021 (China); Wang, Xianhui, E-mail: xhwang693@xaut.edu.cn [School of Materials Science and Engineering, Xi' an University of Technology, Xi' an, Shaanxi 710048 (China); Peng, Yuli [School of Materials Science and Chemical Engineering, Xi' an Technological University, Xi' an, Shaanxi 710021 (China)

    2015-11-15

    The AlCoNiCrFe high-entropy alloy was prepared by mechanical alloying and the AlCoNiCrFe high-entropy alloy reinforced Cu matrix composites were subsequently fabricated by powder metallurgy. The phase constituents and morphology of the alloying powders were characterized by X-ray diffractometer and scanning electron microscope, the microstructures of the Cu base composites were characterized by scanning electron microscope and transmission electron microscope, and the compression tests were made as well. The results show that the AlCoNiCrFe high-entropy alloy can form after milling for 24 h. During sintering process, no grain growth occurs and no intermetallic phases present in the AlCoNiCrFe high-entropy alloy in the Cu base composite. Compression tests show that the AlCoNiCrFe high-entropy alloy has a better strengthening effect than metallic glasses and the yield strength of the Cu matrix composite reinforced with the AlCoNiCrFe high-entropy alloy is close to the value predicted by the Voigt model based on the equal strain assumption. - Graphical abstract: AlCoNiCrFe HEA has a better strengthening effect than metallic glasses for particulate reinforced metal matrix composites. The yield strength of the Cu base composite reinforced with the AlCoNiCrFe HEA is close to the upper bound calculated by Voigt model. - Highlights: • AlCoNiCrFe high-entropy alloy was prepared by mechanical alloying. • A novel Cu base composite reinforced with AlCoNiCrFe was fabricated. • No grain growth and no intermetallic phase present in AlCoNiCrFe during sintering. • AlCoNiCrFe has a better strengthening effect than metallic glassy in composites.

  19. Theoretical Scanning Tunnelling Microscopy Images of Metal (Fe, Co, Ni and Cu) Phthalocyanines

    Institute of Scientific and Technical Information of China (English)

    李群祥; 朱清时; 袁岚峰; 杨金龙; 侯建国

    2001-01-01

    The scanning tunnelling microscopy (STM) images of isolated iron phthalocyanine (FePc), cobalt phthalocyanine (CoPc), nickel phthalocyanine (NiPc) and copper phthalocyanine (CuPc) are simulated theoretically. All the simulated STM images show submolecular structures and reproduce well the features of the experimental images. The results show that there is a strong dependence of the STM images on the ion valence configuration of the metal ion. At the small tip bias voltages of less than 0.5 V, the central metal ions in NiPc and CuPc appear as holes in the molecular images, while they are the highlighted bumps in FePc and CoPc. The simulated images are interpreted by the fact that both FePc and CoPc systems have a significant dz2 character near the Fermi level while the NiPc and CuPc systems do not. Moreover, we predict that the central nickel ion for NiPc appears as a highlighted point when the tip bias voltage is larger than 0.7 V.

  20. A molecular dynamics study of Ni/Cu(0 0 1) interfaces

    CERN Document Server

    Jimenez-Saez, J C; Jimenez-Rodriguez, J J; Perez-Martin, A M C

    2002-01-01

    This work is focused mainly on the analysis of effects related to a lattice misfit at a metallic interface. The system studied is the Ni/Cu(0 0 1) which exhibits a misfit of 2.6%. For this structure, the adjustment between the lattice parameters of a Ni crystal layer over Cu(0 0 1) substrate is analysed. To avoid edge effects a large enough substrate is taken while the Ni crystal set on top has smaller dimensions than the substrate. We have studied structures of one, two, four and ten monolayers of Ni set on top of the Cu substrate. It is shown how the stabilisation of different interface structures on an atomic scale is achieved; especially, the type of processes that help to accomplish a gradual change in the atomic distances. The main conclusion is the anisotropy of the coupling provokes that a cubic becomes a tetragonal lattice. The rearrangement of atoms and the strain field induced by the coupling are studied in detail.

  1. Cu-Al-Ni Shape Memory Single Crystal Wires with High Transformation Temperature

    Science.gov (United States)

    Hautcoeur, Alain; Fouché, Florian; Sicre, Jacques

    2016-01-01

    CN-250X is a new material with higher performance than Nickel-Titanium Shape Memory Alloy (SMA). For space mechanisms, the main disadvantage of Nickel-Titanium Shape Memory Alloy is the limited transformation temperature. The new CN-250X Nimesis alloy is a Cu-Al-Ni single crystal wire available in large quantity because of a new industrial process. The triggering of actuators made with this Cu-Al-Ni single crystal wire can range from ambient temperature to 200 C in cycling and even to 250 C in one-shot mode. Another advantage of CN-250X is a better shape recovery (8 to 10%) than Ni-Ti (6 to 7%). Nimesis is the first company able to produce this type of material with its new special industrial process. A characterization study is presented in this work, including the two main solicitation modes for this material: tensile and torsion. Different tests measure the shape recovery of Cu-Al-Ni single crystals wires during heating from room temperature to a temperature higher than temperature of end of martensitic transformation.

  2. Joint effect of ferromagnetic and non-ferromagnetic cations for adjusting room temperature ferromagnetism of highly luminescent CuNiInS quaternary nanocrystals

    Science.gov (United States)

    Shen, Jin; Wang, Chunlei; Xu, Shuhong; Lv, Changgui; Zhang, Ruohu; Cui, Yiping

    2017-01-01

    In this work, highly luminescent quaternary CuNiInS nanocrystals (NCs) are put forward as a good prototype for investigating defect-induced room temperature ferromagnetism. A ferromagnetic Ni cation can preserve the strong luminescence of NCs without introducing intermediate energy levels in the center of the forbidden band. The strong luminescence of NCs is used as an indicator for monitoring the concentration of vacancy defects inside them, facilitating the investigation of the origin of room temperature ferromagnetism in CuNiInS NCs. Our results reveal that the patching of Cu vacancies ({{{{V}}}{{Cu}}}-) with Ni will result in bound magnetic polarons composed of both {{{{V}}}{{Cu}}}- and a substitution of Cu by Ni ({{{{Ni}}}{{Cu}}}+), giving rise to the room temperature ferromagnetism of CuNiInS NCs. Either the ferromagnetic Ni or the non-ferromagnetic Cu cation can tune the magnetism of CuNiInS NCs because of the change of bound magnetic polaron concentration at the altered concentration ratio of {{{{V}}}{{Cu}}}- and {{{{Ni}}}{{Cu}}}+.

  3. Modification of ZnO Thin Films by Ni, Cu, and Cd Doping*1

    Science.gov (United States)

    Jiménez-González, A. E.

    1997-02-01

    With the propose of investigating the effect of transition elements in ZnO thin films prepared by the Successive Ion Layer Adsorption and Reaction (SILAR) technique, the deposition solutions were chemically impurified with Ni, Cu, and Cd, as elements of the Ib, IIb, and VIIIa groups. X-ray fluorescence (XRF) analyses confirm that the impurification with Ni and Cu in fact took place but the impurification with Cd did not, while the XRD analyses show that foras preparedand Ni-impurified annealed films, the crystallites are almost oriented along thecaxis. The electrical properties of the ZnO films were also modified with the impurification. After annealing in air (450°C) the dark conductivity of the films was increased in the case of Ni and Cd impurification up to 1.80×10-3and 1.86×10-2[Ω cm]-1, respectively, but it decreased drastically in the case of Cu to 5.51×10-7[Ω cm]-1, as referred to the dark conductivity (1.86×10-4[Ω cm]-1) of the pure ZnO sample. The measured activation energy for the electrical conductivity of the modified ZnO thin films is 55 meV for the Ni modification, indicating the existence of donor levels. On the other hand, the Cu modification increases the activation energy up to 132 meV, which is higher than the activation energy for pure ZnO thin films (98 meV).

  4. Depletion and phase transformation of a submicron Ni(P) film in the early stage of soldering reaction between Sn-Ag-Cu and Au/Pd(P)/Ni(P)/Cu

    Science.gov (United States)

    Ho, Cheng-En; Hsieh, Wan-Zhen; Yang, Tsung-Hsun

    2015-01-01

    The early stage of soldering reaction between Sn-3Ag-0.5Cu solder and ultrathin-Ni(P)-type Au/Pd(P)/Ni(P)/Cu pad was investigated by field-emission scanning electron microscopy (FE-SEM) in conjunction with field-emission electron probe microanalysis (FEEPMA) and high-resolution transmission electron microscopy (HRTEM). FE-SEM, FE-EPMA, and HRTEM investigations showed that Ni2SnP and Ni3P were the predominant P-containing intermetallic compounds (IMCs) in the soldering reaction and that their growth behaviors strongly depended on the depletion of Ni(P). The growth of Ni3P dominated over that of Ni2SnP in the early stage of soldering, whereas the Ni3P gradually transformed into Ni2SnP after Ni(P) depletion. This Ni(P)-depletion-induced Ni2SnP growth behavior is different from the reaction mechanisms reported in the literature. Detailed analyses of the microstructural evolution of the IMC during Ni(P) depletion were conducted, and a two-stage reaction mechanism was proposed to rationalize the unique IMC growth behavior.

  5. Superconducting and ferromagnetic properties of NbN/NiCu and NbTiN/NiCu bilayer nanostructures for photon detection

    Science.gov (United States)

    Klimov, A.; Puźniak, R.; Aichner, B.; Lang, W.; Joon, E.; Stern, R.; Słysz, W.; Guziewicz, M.; Juchniewicz, M.; Borysiewicz, M. A.; Kruszka, R.; Wegrzecki, M.; Łaszcz, A.; Czerwinski, A.; Sobolewski, Roman

    2015-05-01

    Performance of superconducting single-photon detectors based on resistive hotspot formation in nanostripes upon optical photon absorption depends strongly on the critical current density JC of the fabricated nanostructure. Utilization of an ultrathin, weak-ferromagnet cap layer on the top of a superconducting film enhances of the structure's JC due to an extra flux pinning. We have fabricated a number of both NbN/NiCu and NbTiN/NiCu superconductor/ferromagnet (S/F) ultrathin bilayers and microbridges. NbN and NbTiN underlayers with thicknesses varying from 4 to 7 nm were grown using dc-magnetron sputtering on chemically cleaned sapphire single-crystal substrates. After rapid thermal annealing at high temperatures, the S films were coated with Ni0.54Cu0.46 overlayers with thicknesses of about 6 nm, using cosputtering. Compositions of the deposited films were confirmed by EDX spectroscopy analysis, while TEM studies demonstrated excellent epitaxial quality of our S layers with ~2-nm-thick F/S transition layer and atomically-sharp S/substrate interface. Magnetic properties of bilayers were studied using both the SQUID and Vibrating Sample Magnetometer techniques in low and high magnetic fields. Low-temperature tests confirmed that in all cases NiCu films were ferromagnetic with the Curie temperature of above 30 K. Below the bilayer critical temperature of approx. 12-13 K, the structures were fully proximitized with the strong superconducting signal. For superconducting transport properties characterization, we used bilayers patterned into 40-μm-long microbridges with the width varying from 0.4 μm to 2 μm. The same S/F nanostructures were also used to study their superconducting fluctuations. The temperature dependence of magnetoresistance demonstrated highly 2-dimensional character with an unusual negative region that extended almost to room temperature. In the S/F sample, the fluctuations were observed to be substantially below theoretical expectations.

  6. Generation of Useful Hydrocarbons and Hydrogen during Photocatalytic Decomposition of Acetic Acid on CuO/Rutile Photocatalysts

    Directory of Open Access Journals (Sweden)

    Sylwia Mozia

    2009-01-01

    Full Text Available The presented studies have focused on a photocatalytic generation of useful hydrocarbons, mainly methane and ethane, from acetic acid under N2 atmosphere. CuO-loaded rutile, as well as unmodified rutile and anatase-phase TiO2 photocatalysts were applied in the experiments. The efficiency of the catalysts towards methane generation changed in the following order: Cu-TiO2 (10% Cu > crude TiO2≈Cu-TiO2 (20% Cu > Cu-TiO2 (5% Cu > rutile. The amount of CH4 produced in the presence of the catalyst containing 10 wt% of Cu was higher for ca. 33% than in case of pure rutile. The concentration of ethane was 14–16 times lower than the amount of methane, regardless of the catalyst used. Low concentrations of hydrogen were also detected in the gaseous mixtures. After 5 hours of the process conducted with the catalyst containing 5–20 wt% of Cu the concentration of hydrogen amounted to 0.06–0.14 vol.%, respectively.

  7. Fractionation of Cd, Cu, Ni, Pb, and Zn in floodplain soils from Egypt, Germany and Greece

    Directory of Open Access Journals (Sweden)

    Shaheen S. M.

    2013-04-01

    Full Text Available Trace elements are potentially toxic to human life and the environment. Element toxicity depends on chemical associations in soils. Therefore, determining the chemical form of an element in soils is important to evaluate its mobility and bioavailability. Initial soil development in river floodplains influences soil properties, processes and therefore behavior of trace elements. In this study, three different floodplain soils sampled at three rivers (Nile/Egypt, Elbe/Germany and Penios/Greece were used to link soil development and properties to the geochemical fractions and mobility of some trace elements. Sequential extraction was used to fractionate five trace elements (Cd, Cu, Ni, Pb and Zn into five operationally defined groups: water soluble + exchangeable, carbonate, Fe-Mn oxide, organic, and residual. German soil showed the highest total concentration of the studied elements (except Ni. The Greek soil had the greatest amount of Ni. The residual fraction was the abundant pool for the studied elements examined in the Egyptian and Greek soils while the non-residual fraction was the dominant pool for all elements in the German soil. A significant amount (71- 94% of all elements was present in German soil in the potentially available fraction: non-residual fraction, while the amount of this fraction ranged between 9 and 39 % in Greek soil and between 9 and 34 % in Egyptian soil. These suggest that the potential availability of the studied trace elements was extremely high in German soil compared to the Egyptian and Greek soil. In the German soil, most of the non-residual Cd, Ni and Zn were bounded with the Fe-Mn oxide fraction, while Cu and Pb distributed in the organic fraction. While in the Egyptian and Greek soils Fe-Mn oxide fraction was the abundant pool for the studied elements except for Cd, in which the exchangeable and the carbonate fractions had the greatest amount of Cd. Assuming that mobility and bioavailability of these elements

  8. Magnetic properties of NiCuZn ferrites synthesized by oxalate precursor method

    Energy Technology Data Exchange (ETDEWEB)

    Ghodake, S.A. [Department of Physics, Applied Electronics, Solapur University, Kegaon, Solapur 413 255 (India); Ghodake, U.R. [Department of Physics, Applied Electronics, Solapur University, Kegaon, Solapur 413 255 (India); Sawant, S.R. [Department of Electronics, Shivaji University, Kolhapur 416 004 (India); Suryavanshi, S.S. [Department of Physics, Applied Electronics, Solapur University, Kegaon, Solapur 413 255 (India)]. E-mail: sssuryavanshi@rediffmail.com; Bakare, P.P. [Centre for Material Characterization, National Chemical Laboratory, Pune 411008 (India)

    2006-10-15

    Ni-Cu-Zn ferrites have been synthesized by employing co-precipitation technique using oxalate precursors. X-ray diffractograms did not show impurity phases, indicating single-phase formation of the ferrites. The diffractograms of oxalate complex decomposed at 650 deg. C show that ferritization is complete up to 650 deg. C. Lattice parameter a (A) was found to decrease with the addition of Ni{sup 2+} which is attributed to ionic sizes of Ni{sup 2+} (0.69A), which replaces Cu{sup 2+} (0.72A). From the thermogravimetric studies it is observed that the experimentally observed total mass loss (%), agrees with theoretically calculated mass loss (%) indicating maintenance of requisite stoichiometry. Initial permeability ({mu}{sub i} ) shows increase when Ni{sup 2+} is added up to x=0.15 while for (x>0.15), it decreases. The increase in initial permeability ({mu}{sub i}) is attributed to monotonic increase in Ms, and K{sub 1} on addition of Ni{sup 2+}. However, the microstructure and density (porosity) also influence {mu}{sub i} variations. The decrease in {mu}{sub i} is attributable to increase of K{sub 1.} The composition with density 91.14% exhibits large {mu}{sub i} which also tends to increase with temperature up to 60 deg. C. Thus its usable range extends up to 60 deg. C. This samples has T{sub c} near to 160 deg. C.

  9. Temperature dependence of core loss in cobalt substituted Ni-Zn-Cu ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, A., E-mail: ant50_lucas@yahoo.f [THALES R and T, Campus Polytechnique, 1 Avenue Augustin Fresnel, 91767 Palaiseau (France); SATIE, ENS de Cachan, 61 Avenue du President Wilson, 94235 Cachan (France); Lebourgeois, R. [THALES R and T, Campus Polytechnique, 1 Avenue Augustin Fresnel, 91767 Palaiseau (France); Mazaleyrat, F. [SATIE, ENS de Cachan, 61 Avenue du President Wilson, 94235 Cachan (France); Laboure, E. [SATIE, ENS de Cachan, 61 Avenue du President Wilson, 94235 Cachan (France); LGEP, SUPELEC, Plateau de Moulon, 11 rue Joliot-Curie, 91192 Gif Sur Yvette (France)

    2011-03-15

    The temperature dependence of core loss in cobalt substituted Ni-Zn-Cu ferrites was investigated. Co{sup 2+} ions are known to lead to a compensation of the magneto-crystalline anisotropy in Ni-Zn ferrites, at a temperature depending on the cobalt content and the Ni/Zn ratio. We observed similar behaviour in Ni-Zn-Cu and it was found that the core loss goes through a minimum around this magneto-crystalline anisotropy compensation. Moreover, the anisotropy induced by the cobalt allowed a strong decrease of core loss, a ferrite having a core loss of 350 mW/cm{sup 3} at 80 {sup o}C was then developed (measured at 1.5 MHz and 25 mT). This result represents an improvement of a factor 4 compared to the state of art Ni-Zn ferrites. - Research highlights: > Low temperature sintering ferrite. > Improvement of the core loss of high frequency ferrites. > Power ferrites working at high temperature.

  10. Wetting and Soldering Behavior of Eutectic Au-Ge Alloy on Cu and Ni Substrates

    Science.gov (United States)

    Leinenbach, C.; Valenza, F.; Giuranno, D.; Elsener, H. R.; Jin, S.; Novakovic, R.

    2011-07-01

    Au-Ge-based alloys are interesting as novel high-temperature lead-free solders because of their low melting point, good thermal and electrical conductivity, and high corrosion resistance. In the present work, the wetting and soldering behavior of the eutectic Au-28Ge (at.%) alloy on Cu and Ni substrates have been investigated. Good wetting on both substrates with final contact angles of 13° to 14° was observed. In addition, solder joints with bond shear strength of 30 MPa to 35 MPa could be produced under controlled conditions. Cu substrates exhibit pronounced dissolution into the Au-Ge filler metal. On Ni substrates, the NiGe intermetallic compound was formed at the filler/substrate interface, which prevents dissolution of Ni into the solder. Using thin filler metal foils (25 μm), complete consumption of Ge in the reaction at the Ni interface was observed, leading to the formation of an almost pure Au layer in the soldering zone.

  11. Chemical synthesis, structural, optical, magnetic characteristics and enhanced visible light active photocatalysis of Ni doped CuS nanoparticles

    Science.gov (United States)

    Subramanyam, K.; Sreelekha, N.; Amaranatha Reddy, D.; Murali, G.; Rahul Varma, K.; Vijayalakshmi, R. P.

    2017-03-01

    In this paper, we report systematic investigations on the effects of Ni doping on the structural, optical, magnetic and photocatalytic characteristics of CuS nanoparticles synthesized by simplistic wet chemical co-precipitation route via EDTA molecules as templates. XRD studies confirmed that accurate phase formation of synthesized nanoparticles and chemical composition were obtained by EDX. Magnetic measurements revealed that 3% Ni doped CuS nanoparticles show signs of good ferromagnetism at room temperature and transition of magnetic signs from ferromagnetic to paramagnetic nature by increasing the Ni dopant concentration in CuS host matrix. The photocatalytic degradation efficiency of the prepared pure and Ni doped CuS nanoparticles were evaluated as a function of simulated sunlight irradiation via RhB organic dye pollutant as a test molecule. Particularly, in the presence of 3% Ni doped CuS nanoparticles in pollutant solution 98.46% degradation efficiency was achieved within 60 min of sunlight irradiation; meanwhile bare CuS attained only 83.22%. Further, after five cycles 3% Ni doping CuS nanoparticles exhibit good photocatalytic stability with very negligible catalyst loss. We believe that the investigations in this study provides adaptable pathway for the synthesizing of various diluted magnetic semiconductor nanoparticles and their applications in spintronic devices as well as sunlight-driven photocatalysts intended for wastewater purification.

  12. Exponentially decaying magnetic coupling in sputtered thin film FeNi/Cu/FeCo trilayers

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Yajun, E-mail: yajun.wei@angstrom.uu.se; Akansel, Serkan; Thersleff, Thomas; Brucas, Rimantas; Lansaker, Pia; Leifer, Klaus; Svedlindh, Peter [Department of Engineering Sciences, Uppsala University, 75121 Uppsala (Sweden); Harward, Ian; Celinski, Zbigniew [Department of Physics, University of Colorado, Colorado Springs, Colorado 80918 (United States); Ranjbar, Mojtaba; Dumas, Randy K. [Department of Physics, University of Gothenburg, 41296 Gothenburg (Sweden); Jana, Somnath; Pogoryelov, Yevgen; Karis, Olof [Department of Physics and Astronomy, Uppsala University, 75120 Uppsala (Sweden); Åkerman, Johan [Department of Physics, University of Gothenburg, 41296 Gothenburg (Sweden); Department of Applied Physics and Microelectronics, Royal Institute of Technology, 10044 Kista (Sweden)

    2015-01-26

    Magnetic coupling in trilayer films of FeNi/Cu/FeCo deposited on Si/SiO{sub 2} substrates have been studied. While the thicknesses of the FeNi and FeCo layers were kept constant at 100 Å, the thickness of the Cu spacer was varied from 5 to 50 Å. Both hysteresis loop and ferromagnetic resonance results indicate that all films are ferromagnetically coupled. Micromagnetic simulations well reproduce the ferromagnetic resonance mode positions measured by experiments, enabling the extraction of the coupling constants. Films with a thin Cu spacer are found to be strongly coupled, with an effective coupling constant of 3 erg/cm{sup 2} for the sample with a 5 Å Cu spacer. The strong coupling strength is qualitatively understood within the framework of a combined effect of Ruderman-Kittel-Kasuya-Yosida and pinhole coupling, which is evidenced by transmission electron microscopy analysis. The magnetic coupling constant surprisingly decreases exponentially with increasing Cu spacer thickness, without showing an oscillatory thickness dependence. This is partially connected to the substantial interfacial roughness that washes away the oscillation. The results have implications on the design of multilayers for spintronic applications.

  13. Evolution of magnetic phases upon annealing in glass-coated Fe-Ni-Cu microwires

    Energy Technology Data Exchange (ETDEWEB)

    Wang, K.-Y.Kai-Ying; Frommen, Christoph; Schilling, Paul J.; Moelders, Nicholas; Tang, Jinke

    2001-05-01

    The effects of annealing on the magnetic properties of glass-coated Fe-Ni-Cu microwires have been studied. The FCC Ni-Fe particle size increases with the annealing temperature resulting in higher room temperature coercivity. When the annealing temperature is increased to 500 deg. C, a wasp-waisted hysteresis loop is observed which arises from the locking-in of the domain walls by the directional order of atoms due to diffusion under the influence of the local magnetic field. A magnetically hard glass-coated microwire with coercivity of 600 Oe is obtained after annealing at 700 deg. C for 1 h.

  14. Superelasticity of Cu-Ni-Al shape-memory fibers prepared by melt extraction technique

    Science.gov (United States)

    Li, Dong-yue; Zhang, Shu-ling; Liao, Wei-bing; Geng, Gui-hong; Zhang, Yong

    2016-08-01

    In the paper, a melt extraction method was used to fabricate Cu-4Ni-14Al (wt%) fiber materials with diameters between 50 and 200 μm. The fibers exhibited superelasticity and temperature-induced martensitic transformation. The microstructures and superelasticity behavior of the fibers were studied via scanning electron microscopy (SEM) and a dynamic mechanical analyzer (DMA), respectively. Appropriate heat treatment further improves the plasticity of Cu-based alloys. The serration behavior observed during the loading process is due to the multiple martensite phase transformation.

  15. Microstructure and Tribological Behaviour of CrCuFeNiTi High Entropy Alloys

    OpenAIRE

    Sobiyi Kehinde; Bodunrin Michael; Akinlabi Esther; Obadele Babatunde

    2016-01-01

    The microstructure, hardness and wear performance of CrCuFeTiNi high entropy alloy were evaluated. The alloy was produced by mixing constituent elements, consolidated and melted using vacuum arc furnace. The X-ray diffraction analysis confirmed that the alloy is composed of FCC and BCC simple phases. The microstructure contains three regions that were rich in Cu, Cr and Fe which resulted from segregation of constituent elements. The Vickers micro hardness of the alloy was determined as HV0.5 ...

  16. Copper isotope fractionation during sulfide-magma differentiation in the Tulaergen magmatic Ni-Cu deposit, NW China

    Science.gov (United States)

    Zhao, Yun; Xue, Chunji; Liu, Sheng-Ao; Symons, David T. A.; Zhao, Xiaobo; Yang, Yongqiang; Ke, Junjun

    2017-08-01

    Although it has been recently demonstrated that Cu isotope fractionation during mantle melting and basaltic magma differentiation is limited, the behavior of Cu isotopes during magmatic differentiation involving significant sulfide segregation remains unclear. Magmatic Ni-Cu deposits, which formed via sulfide segregation from basaltic or picritic magmas, are appropriate targets to address this issue. Here we report Cu isotope data for sulfides (chalcopyrite) from the Tulaergen Ni-Cu sulfide deposit in Xinjiang, NW China. Sulfides, including sparsely disseminated (hosted by hornblende gabbro), moderately disseminated (hosted by hornblende olivine websterite), densely disseminated (hosted by hornblende lherzolite) and massive sulfides (sandwiched between country rocks and mafic-ultramafic rocks), were collected from adits at 1050 m, 1100 m and 1150 m levels. The sparsely and moderately disseminated sulfides on 1150 m and 1050 m levels have a restricted range of δ65Cu values from - 0.38‰ to 0.15‰, whereas disseminated and massive sulfides on 1100 m level have δ65Cu values ranging widely from - 1.98‰ to - 0.04‰ and from - 1.08‰ to - 0.52‰, respectively. The δ65Cu values of disseminated sulfides are negatively correlated with whole-rock S and Cu concentrations, and sulfides formed at later stages have heavier δ65Cu values. These observations suggest significant Cu isotope fractionation during sulfide-magma differentiation above 600 °C. During the formation of the Tulaergen magmatic Ni-Cu deposit, sulfide segregation and crystallization of olivine and pyroxene caused the increase of Fe3 + contents in the residual magmas, which would move the redox reaction Cu+ + Fe3 + = Fe2 + + Cu2 + toward larger amounts of Cu2 + in the melt. The presence of Cu2 + in melt allowed redox transformation to happen during sulfide segregation. The residual magmas are enriched in heavy Cu isotopes due to the removal of 65Cu-depleted sulfides, and sulfides formed at later

  17. 涤纶织物化学镀Ni-Cu-P的反应动力学方程%On the kinetics equation of electroless Ni-Cu-P alloy plating on polyester fabric

    Institute of Scientific and Technical Information of China (English)

    陈震兵; 陈小立; 东华大学

    2001-01-01

    研究了涤纶织物化学镀Ni-Cu-P过程镀液中各组分、pH、温度对合金沉积速率的影响,确定了化学镀Ni-Cu-P沉积反应的活化能、反应级数、速率常数以及动力学方程式.

  18. Low temperature ductile shear failure of Zr41.2Ti13.8Ni10Cu12.5Be22.5 and Cu50Zr35Ti8Hf5Ni2 bulk amorphous alloys

    NARCIS (Netherlands)

    Tabachnikova, E; Bengus, V.Z.; Miskuf, J; Csach, K; Johnson, W; Molokanov, VV; Ocelik, Vaclav; Eckert, J; Schlorb, H; Schultz, L

    2000-01-01

    Fractographic study of ductile shear failure under uniaxial compression of rod-like samples of the Zr41.2Ti13.8Ni10Cu12.5Be22.5 and Cu50Zr35Ti8Hf5Ni2 bulk amorphous alloys at temperatures of 300 and 77 K is presented. Although the mechanisms of shear deformation and fracture appeared the same as in

  19. Technological Study of Electroless Ni-Cu-P Alloy Plating on Nd-Fe-B Magnet%Nd-Fe-B永磁体化学镀Ni-Cu-P工艺研究

    Institute of Scientific and Technical Information of China (English)

    于升学; 杨雪梅; 杨洪生

    2002-01-01

    本文研究了烧结型Nd-Fe-B永磁体化学镀Ni-Cu-P的工艺过程,Nd-Fe-B永磁体经除油、封孔、出光后直接化学镀Ni-Cu-P合金,可以获得与基体结合良好、耐蚀性高的镀层.

  20. Structure and magnetism of S = 1/2 kagome antiferromagnets NiCu3(OH)6Cl2 and CoCu3(OH)6Cl2.

    Science.gov (United States)

    Li, Yue-sheng; Zhang, Qing-ming

    2013-01-16

    We have successfully synthesized S = 1/2 kagome antiferromagnets MCu(3)(OH)(6)Cl(2) (M = Ni and Co) by a hydrothermal method with a rotating pressure vessel. Structural characterization shows that both compounds have similar crystal structure to ZnCu(3)(OH)(6)Cl(2) with R3m symmetry. As with ZnCu(3)(OH)(6)Cl(2), the compounds show no obvious hysteresis at 2 K. A spin-glass transition is found in both NiCu(3)(OH)(6)Cl(2) and CoCu(3)(OH)(6)Cl(2) at low temperatures (6.0 and 3.5 K respectively) by AC susceptibility measurements. This indicates no long-range magnetic order and a strong spin frustration. The substitution of Zn(2+) by magnetic ions Ni(2+) or Co(2+) effectively enhances the interlayer exchange coupling and changes the ground state of the kagome spin system.

  1. Structure and magnetism of S = 1/2 kagome antiferromagnets NiCu3(OH)6Cl2 and CoCu3(OH)6Cl2

    Science.gov (United States)

    Li, Yue-sheng; Zhang, Qing-ming

    2013-01-01

    We have successfully synthesized S = 1/2 kagome antiferromagnets MCu3(OH)6Cl2 (M = Ni and Co) by a hydrothermal method with a rotating pressure vessel. Structural characterization shows that both compounds have similar crystal structure to ZnCu3(OH)6Cl2 with R\\bar {3}m symmetry. As with ZnCu3(OH)6Cl2, the compounds show no obvious hysteresis at 2 K. A spin-glass transition is found in both NiCu3(OH)6Cl2 and CoCu3(OH)6Cl2 at low temperatures (6.0 and 3.5 K respectively) by AC susceptibility measurements. This indicates no long-range magnetic order and a strong spin frustration. The substitution of Zn2+ by magnetic ions Ni2+ or Co2+ effectively enhances the interlayer exchange coupling and changes the ground state of the kagome spin system.

  2. Magnetic structures of R(Cu, Ni)2 compounds (R = heavy rare earth) studied by neutron diffraction

    Science.gov (United States)

    Smetana, Z.; Šíma, V.

    1985-11-01

    Magnetics structures of powdered orthorhombic R(Cu, Ni)2 compounds (R = heavy rare earth) determined by neutron diffraction are described. The influence of magnetocrystalline anisotropy and exchange interactions on the type of magnetic ordering is discussed.

  3. An Investigation of TiO2 Addition on Microstructure Evolution of Sn-Cu-Ni Solder Paste Composite

    Directory of Open Access Journals (Sweden)

    Saud Norainiza

    2016-01-01

    Full Text Available In this research, varying fraction of titanium oxide (TiO2 reinforcement particles was successfully incorporated into Sn-Cu-Ni solder paste in an effort to study the influence of TiO2 addition on microstructure evolution of Sn-Cu-Ni solder paste composite. Sn-Cu-Ni solder paste composite was produced by mixing TiO2 particle with Sn-Cu-Ni solder paste. The microstructure analysis was carried out by Scanning Electron Microscopy-Energy dispersive X-ray (SEM-EDX. The addition TiO2 particle helps to refine the bulk solder microstructure and suppress the intermetallic compound (IMC formation at the interface as will be discussed further.

  4. Temperature effects on the generalized planar fault energies and twinnabilities of Al, Ni and Cu: First principles calculations

    KAUST Repository

    Liu, Lili

    2014-06-01

    Based on the quasiharmonic approach from first-principles phonon calculations, the volume versus temperature relations for Al, Ni and Cu are obtained. Using the equilibrium volumes at temperature T, the temperature dependences of generalized planar fault energies have also been calculated by first-principles calculations. It is found that the generalized planar fault energies reduce slightly with increasing temperature. Based on the calculated generalized planar fault energies, the twinnabilities of Al, Ni and Cu are discussed with the three typical criteria for crack tip twinning, grain boundary twinning and inherent twinning at different temperatures. The twinnabilities of Al, Ni and Cu also decrease slightly with increasing temperature. Ni and Cu have the inherent twinnabilities. But, Al does not exhibit inherent twinnability. These results are in agreement with the previous theoretical studies at 0 K and experimental observations at ambient temperature. © 2014 Elsevier B.V. All rights reserved.

  5. Effect of alloying elements on branching of primary austenite dendrites in Ni-Mn-Cu cast iron

    National Research Council Canada - National Science Library

    A. Janus

    2011-01-01

    Within the research, determined were direction and intensity of influence of individual alloying elements on branching degree of primary austenite dendrites in austenitic cast iron Ni-Mn-Cu. 30 cast shafts dia...

  6. Cavitation Erosion Behavior of as-Welded Cu12Mn8Al3Fe2Ni Alloy

    Institute of Scientific and Technical Information of China (English)

    Xiaoya LI; Yonggui YAN; Zhenming XU; Jianguo LI

    2004-01-01

    Cavitation erosion behavior of as-welded Cu12Mn8Al3Fe2Ni alloy in 3.5% NaCl aqueous solution was studied by magnetostrictive vibratory device for cavitation erosion. The results show that the cavitation erosion resistance of the as-welded Cu12Mn8Al3Fe2Ni alloy is much more superior to that of the as-cast one. The cumulative mass loss and the mass loss rate of the as-welded Cu12Mn8Al3Fe2Ni alloy are almost 1/4 that of the as-cast one. SEM analysis of eroded specimens reveals that the as-cast Cu12Mn8Al3Fe2Ni alloy is attacked more severely than the as-welded one. Microcracks causing cavitation damage initiate at the phase boundaries.

  7. Structure and Properties of Sol-Gel Derived CuNiMnZrO2 Catalysts for CO Hydrogenation

    Institute of Scientific and Technical Information of China (English)

    Zhongyi Ma; Cheng Yang; Run Xu; Wei Wei; Wenhuai Li; Yuhan Sun

    2003-01-01

    Two CuNiMnZrO2 catalysts (crystallized or non-crystallized) were prepared by co-hydrolyzing zirconium n-propoxide with Cu(NO3)2, Mn(NO3)2 and Ni(NO3)2 in an ethanol solution in the presence of diglycol. The physical and chemical properties of the catalysts were characterized using BET, XRD,TEM, XPS and CO-DRIFT techniques. It was found that the non-crystallized CuNiMnZrO2 catalyst demonstrated highly dispersed active phases and high activity for CO adsorption, which resulted in good performance for synthesis of higher alcohols in CO hydrogenation compared to crystallized CuNiMnZrO2.

  8. THERMAL CYCLING UNDER LOADING OF SINGLE CRYSTAL Cu-Al-Ni AFTER AGING

    Directory of Open Access Journals (Sweden)

    Ignacio Corro

    2016-06-01

    Full Text Available In this paper, a study of single crystal Cu-14.3Al-4.1Ni (%wt subjected to thermal cycling under loading is presented. Shape memory Cu-Al-Ni has low diffusion at temperatures above room temperature. Therefore, it is interesting to know your answer in working conditions and after being aged in this temperature range. Specimens were characterized before and after aging, using a device designed by the authors. Parameters such as critical temperatures and hysteresis width, the repeatability of the curves and the type of TM induced were analyzed. These parameters have changes then the aging or contribute to that may influence the design of applications.

  9. A study of the annealing and mechanical behaviour of electrodeposited Cu-Ni multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Pickup, C.J.

    1997-08-01

    The mechanical strength of electrodeposited Cu-Ni multilayers is known to vary with deposition wavelength. Since layered coatings are harder and more resistant to wear and abrasion than non-layered coatings, this technique is of industrial interest. Optimisation of the process requires a better understanding of the strengthening mechanisms and the microstructural changes which affect such mechanisms. The work presented in this thesis presents the characterisation a series of Cu-Ni multilayers, covering a wide range of thicknesses of the individual layers in the multilayer, using X-ray diffraction, cross-section TEM, hardness testing and tensile testing. Further, the effects of high temperature annealing on interdiffusion and on changes in internal stresses are documented. (au). 176 refs.

  10. Effect of technological factors on bacterial leaching of low-grade Ni-Cu sulfide ore

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The bioleaching of a low-grade Ni-Cu sulfide ore from Jinchuan Mine with Thiobacillus ferrooxidans (TF5) and Thiobaxillus thiooxxidlans (TT) was investigated. The effect of pH, the initial cell numbers of bacteria, the pulp den sity and the ratio of TF5 and TT on leaching was described, and the favorable bioleaching conditions for the ore were ex perimentally confirmed. The aeration leaching, agitation leaching with air bubbling, and column leaching were respective ly tested. The highest recovery was achieved in the aeration leaching. After leaching for 20 d with pulp density of 15 %, the extractions of Ni, Cu and Co were respectively 95.4 %, 48.6 % and 82.6 %.

  11. Wetting behavior of Zr55 Cu30 Al10 Ni5 melt on alumina

    Institute of Scientific and Technical Information of China (English)

    XU Qian-gang; ZHANG Hai-feng; HU Zhuang-qi

    2005-01-01

    The wetting behavior of molten Zr55 Cu30 Al10 Ni5 on Al2O3 was studied by the sessile drop method in high vacuum.The results show that wetting kinetic at 1 163 K is composed of three stages:incubation,quasi-steady decrease and trend constant.Precursor film forms surrounding the wetting tip when wetting temperature is above 1 163K.Formation of precursor film is related to the change of triple line configuration and results in good wettability.Chemical reaction dos not occur at the wetting interface.Al2O3 is an excellent reinforcement for Zr55 Cu30 Al10 Ni5 matrix composite in terms of wettability and reactivity.The kinetic relationship of spreading ratio with spreading time was also investigated.

  12. A simulation study of rapid solidification and crystal configuration of Cu70Ni30 alloy

    Institute of Scientific and Technical Information of China (English)

    ZHENG Caixing; LIU Rangsu; ZHOU Qunyi; TIAN Ze'an; WANG Xin; LI Qiang

    2005-01-01

    A molecular dynamics (MD) simulation study has been performed for the rapid solidification of Cu70Ni30 adopting the quantum Sutton-Chen many-body potentials. By analyzing the bond-types and the relation of atomic average energy versus temperature, it was demonstrated that as cooling rate being 2 × 1012 K/s, the Cu70Ni30 formed fcc crystal structures and freezing point was found. In addition, having analyzed the transformation of microstructures and the detail of crystal growth by using atomic trace and visual method, not only could the formation of binary disordered solid solution be showed, but also the solidification of liquid metals and the crystal growth processes could be further understood.

  13. Analysis of the applicability of Ni, Cu, Au, Pt, and Pd nanoclusters for data recording

    Science.gov (United States)

    Redel', L. V.; Gafner, S. L.; Gafner, Yu. Ya.; Zamulin, I. S.; Goloven'ko, Zh. V.

    2017-02-01

    The applicability of individual Ni, Cu, Au, Pt, and Pd nanoclusters as data bits in next generation memory devices constructed on the phase-change carrier principle is studied. To this end, based on the modified tight-binding potential (TB-SMA), structure formation from the melt of nanoparticles of these metals to 10 nm in diameter was simulated by the molecular dynamics method. The effect of various crystallization conditions on the formation of the internal structures of Ni, Cu, Au, Pt, and Pd nanoclusters is studied. The stability boundaries of various crystalline isomers are analyzed. The obtained systematic features are compared for nanoparticles of copper, nickel, gold, platinum, and palladium of identical sizes. It is concluded that platinum nanoclusters of diameter D > 8 nm are the best materials among studied metals for producing memory elements based on phase transitions.

  14. Preparation of Carbon Nanotubes from Methane on Ni/Cu/A1 Catalyst

    Institute of Scientific and Technical Information of China (English)

    Renzhong Wei; Fengyi Li; Yan Ju

    2005-01-01

    A series of Ni/Cu/Al catalyst samples were prepared by the co-precipitation method. Carbon nanotubes with large inner diameters are successfully synthesized from methane on Ni/Cu/Al catalyst by adding sodium carbonate. The effects of the copper content and amounts of sodium carbonate on the morphology and microstructures of carbon nanotubes were investigated by CO adsorption and TEM technique. The experimental results showed that copper can influence both the catalytic activity and catalyst life. Best result was obtained when the copper content was 15%. Addition of sodium carbonate favors the formation of carbon nanotubes with large inner diameters. The growth mechanism of carbon nanotubes with large inner diameter is discussed.

  15. Effect of Nickel Equivalent on Austenite Transition Ratio in Ni-Mn-Cu Cast Iron

    Directory of Open Access Journals (Sweden)

    Janus A.

    2013-06-01

    Full Text Available Determined was quantitative effect of nickel equivalent value on austenite decomposition degree during cooling-down castings of Ni-Mn- Cu cast iron. Chemical composition of the alloy was 1.8 to 5.0 % C, 1.3 to 3.0 % Si, 3.1 to 7.7 % Ni, 0.4 to 6.3 % Mn, 0.1 to 4.9 % Cu, 0.14 to 0.16 % P and 0.03 to 0.04 % S. Analysed were castings with representative wall thickness 10, 15 and 20 mm. Scope of the examination comprised chemical analysis (including WDS, microscopic observations (optical and scanning microscopy, image analyser, as well as Brinell hardness and HV microhardness measurements of structural components.

  16. Effect of Chemical Composition on Number of Eutectic Colonies in Ni-Mn-Cu Cast Iron

    Directory of Open Access Journals (Sweden)

    A. Janus

    2013-01-01

    Full Text Available Determined were direction and intensity of influence of alloying additions on the number of eutectic graphite colonies in austenitic cast iron Ni-Mn-Cu. Chemical composition of the cast iron was 1.7 to 3.3% C, 1.4 to 3.1% Si, 2.8 to 9.9% Ni, 0.4 to 7.7% Mn, 0 to 4.6% Cu,0.14 to 0.16% P and 0.03 to 0.04% S. Analysed were structures of mottled (20 castings and grey (20 castings cast iron. Obtained wereregression equations determining influence intensity of individual components on the number of graphite colonies per 1 cm2 (LK. It wasfound that, in spite of high total content of alloying elements in the examined cast iron, the element that mainly decides the LK value is carbon, like in a plain cast iron.

  17. Effect of Chemical Composition on Number of Eutectic Colonies in Ni-Mn-Cu Cast Iron

    Directory of Open Access Journals (Sweden)

    Janus A.

    2013-03-01

    Full Text Available Determined were direction and intensity of influence of alloying additions on the number of eutectic graphite colonies in austenitic cast iron Ni-Mn-Cu. Chemical composition of the cast iron was 1.7 to 3.3% C, 1.4 to 3.1% Si, 2.8 to 9.9% Ni, 0.4 to 7.7% Mn, 0 to 4.6% Cu, 0.14 to 0.16% P and 0.03 to 0.04% S. Analysed were structures of mottled (20 castings and grey (20 castings cast iron. Obtained were regression equations determining influence intensity of individual components on the number of graphite colonies per 1 cm2 (LK. It was found that, in spite of high total content of alloying elements in the examined cast iron, the element that mainly decides the LK value is carbon, like in a plain cast iron.

  18. Complexes of arabinogalactan of Pereskia aculeata and Co2+, Cu2+, Mn2+, and Ni2+.

    Science.gov (United States)

    Merce, A L; Landaluze, J S; Mangrich, A S; Szpoganicz, B; Sierakowski, M R

    2001-01-01

    The main interest in the biopolymer arabinogalactan is that it is edible. Complementing its high protein percentage, when complexed to essential metal ions, widens the use in food and pharmacology industries and technologies. The binding constants of Co2+, Cu2+, Mn2+ and Ni2+ with arabinogalactan, extracted from the leaves of Pereskia aculeata from Brazil were determined by potentiometric titrations and also the speciation according to pH values. The complexed species proposed by potentiometric titrations and the unique complexing ability of galacturonic acid groups towards Cu2+ and Ni2+ in the tridimensional web structure of arabinogalactan were confirmed by IR and EPR spectroscopies. The thermal stability of the complexed species also varied with the metal ion employed in the complexation when compared to the biopolymer alone. These complexes are new sources of additives for the food and pharmacology industries and carriers of essential metal ions to animal and vegetal biochemistry.

  19. Liquid and solid state interfacial reactions of Sn-Ag-Cu and Sn-In-Ag-Cu solders with Ni-P under bump metallization

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, Ahmed [Department of Electronic Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong (China); Chan, Y.C. [Department of Electronic Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong (China)]. E-mail: EEYCCHAN@cityu.edu.hk

    2006-05-10

    In this study, interfacial reactions of electroless Ni(P) metallization of the ball-grid-array (BGA) substrate with the Sn-4 Ag-0.5 Cu (SAC405), Sn-3 Ag-0.5 Cu (SAC305) and Sn-9 In-3.5 Ag-0.5 Cu (SIAC) (wt.%) solder alloy were investigated, focusing on identification of the intermetallic compound (IMC) phases, the IMC growth rates and the consumption rate of the metallization layer at various liquid and solid state heat treatment conditions, e.g. extended reflow and solid state aging. A fixed volume of BGA solder ball (760 {mu}m diameter) was used on a substrate metallization pad with a diameter of 650 {mu}m. The consumption of the electroless Ni(P) in SIAC solder was also lower than in the SAC solders. The presence of indium in the solder played a major role in inhibiting the consumption of Ni(P) in the soldering reaction. The stable IMCs initially formed at the interface of the Ni(P)/In-containing solder system was the (Cu, Ni){sub 6} (Sn, In){sub 5} phase. During further reflow, the (Cu, Ni){sub 3} (Sn, In){sub 4} IMC started forming because of the limited Cu content in the solder. Bulk of the SIAC solder also contained Cu{sub 6}(Sn, In){sub 5} and Ag-In-Sn precipitates embedded in the Sn-rich matrix. It was also found that more Ag-containing SAC405 solder shows higher Ni(P) consumption than SAC305 solder at the same heat treatment condition.

  20. Crystallization of Pd40CU30Ni10P20 bulk metallic glass with and without pressure

    DEFF Research Database (Denmark)

    Yang, B.; Jiang, Jianzhong; Zhuang, Yanxin;

    2007-01-01

    The glass-transition behavior of Pd40Cu30Ni10P20 bulk metallic glass was investigated by differential scanning calorimetry (DSC) and X-ray powder diffraction (XRD). The effect of pressure on the crystallization behavior of Pd40Cu30Ni10P20 bulk glass was studied by in situ high-pressure and high......-temperature X-ray powder diffraction using synchrotron radiation. Phase analyses show at least six crystalline phases in the crystallized sample, namely, monoclinic, tetragonal Cu3Pd-like, rhombohedral, fcc-Ni2Pd2P, fcc-(Ni, Pd) solid solution, and body-centered tetragonal (bct) Ni3P-like phases. The onset...... crystallization temperature increases with pressure having a slope of I I K/GPa in the range of 0 to 4 GPa. The results are attributed to the competing process between the thermodynamic potential barrier and the diffusion activation energy under pressure....

  1. Electrodeposition and characteristics of Ni{sub 80}Fe{sub 20}/Cu composite wires

    Energy Technology Data Exchange (ETDEWEB)

    Li, X.P. [Department of Mechanical Engineering, National University of Singapore, Singapore 119260 (Singapore) and Division of Bioengineering, National University of Singapore, Singapore 119260 (Singapore)]. E-mail: mpelixp@nus.edu.sg; Seet, H.L. [Department of Mechanical Engineering, National University of Singapore, Singapore 119260 (Singapore); Fan, J. [Department of Mechanical Engineering, National University of Singapore, Singapore 119260 (Singapore); Yi, J.B. [Department of Mechanical Engineering, National University of Singapore, Singapore 119260 (Singapore)

    2006-09-15

    Electrodeposited Ni{sub 80}Fe{sub 20}/Cu composite wire has significant advantages over amorphous wire as sensing element for weak magnetic field sensors, such as orthogonal fluxgate sensors, due to its non-ferromagnetic and conductive core structure. In this study, the key processing parameters are investigated, including electrodeposition current density, duty cycle, electrolyte solution, pH value, applied magnetic field, effect of seeded layers, and post annealing.

  2. The Effects of Aging Precipitation on the Recrystallization of CuNiSiCr Alloy

    Institute of Scientific and Technical Information of China (English)

    LEI Jingguo; HUANG Jinliang; LIU Ping; JING Xiaotian; ZHAO Dongmei; ZHI Xiao

    2005-01-01

    The interaction between precipitation and recrystallization and its effect on the properties of the Cu-Ni-Si-Cr alloy during aging were discussed.The results show that the deformation results in much more dispersed precipitation of the phases. The precipitations have accelerating or retarding effects on the recrystallization. On the formation and growth of recrystallization, the precipitated phases are coarsed or dissolved in front of grain boundaries following a re-precipitation in the recrystallization area.

  3. Microstructure, magnetic and elastic properties of electrodeposited Cu+Ni nanocomposites coatings

    OpenAIRE

    A. Chrobak; M. Kubisztal; J. Kubisztal; E. Chrobak; Haneczok, G.

    2011-01-01

    Purpose: The paper presents systematic studies of fabrication and properties of Cu+Ni nanocomposite coatings obtained by electrodeposition technique. Special attention is paid to establish the influence of fabrication conditions and microstructure of the coating material on its magnetic and elastic properties. Design/methodology/approach: The results were obtained by applying electrochemical impedance spectroscopy (EIS, PARSTAT 2273, roughness factor), magnetization versus temperature measure...

  4. Nanoindentation deformation of a bi-phase AlCrCuFeNi{sub 2} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yuan [School of Mechanical Engineering, Shanghai Dianji University, 200245 Shanghai (China); Zhao, Guangfeng [Materials Program, Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506 (United States); Wen, Xiyu [Center for Aluminum Technology, University of Kentucky, Lexington, KY 40511 (United States); Qiao, Junwei [Taiyuan University of Technology, Taiyuan, 030024 (China); Yang, Fuqian, E-mail: fyang0@engr.uky.edu [Materials Program, Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506 (United States)

    2014-09-01

    Highlights: • The AlCrCuFeNi{sub 2} HEA consisted of BCC solid solution and FCC solid solution. • The indentation hardness of the BCC crystals is larger than the FCC crystals. • The contact modulus of the FCC crystals is larger than the BCC crystals. - Abstract: High-entropy alloys (HEA) are multicomponent alloys with lattice structures, which have unique mechanical properties. Using X-ray diffraction, the structure of as cast AlCrCuFeNi{sub 2} HEA was characterized. The AlCrCuFeNi{sub 2} HEA consisted of body centered-cubic (BCC) solid solution and face centered-cubic (FCC) solid solution. Nanoindentation was used to characterize the indentation deformation of the FCC and BCC crystals in the AlCrCuFeNi{sub 2} HEA. Both the indentation hardness and the contact modulus of the FCC and BCC crystals decreased slightly with the increase in the indentation load and became constant for large indentation loads. For the indentation load larger than 500 μN, the contact modulus and the indentation hardness of the BCC crystals are 146 and 4.6 GPa, respectively, and the contact modulus and the indentation hardness of the FCC crystals are 207 and 2.8 GPa, respectively. The plastic energy dissipated in the nanoindentation increased with the indentation load and was proportional to the 1.77 and 1.88 power of the indentation load for the FCC and BCC crystals, respectively. The ratio of the dissipated plastic energy to the total energy in the indentations was a linear function of the ratio of the residual indentation depth to the corresponding maximum indentation depth. The slope of the energy ratio verse the indentation depth ratio for the BCC crystals is larger than that for the FCC crystals.

  5. Three-dimensional nanostructured Ni-Cu foams for borohydride oxidation

    Science.gov (United States)

    Santos, D. M. F.; Eugénio, S.; Cardoso, D. S. P.; Šljukić, B.; Montemor, M. F.

    2015-12-01

    Three-dimensional (3D) nanostructured nickel-copper (Ni-Cu) foams have been prepared by electrodeposition using a dynamic hydrogen template. These 3D materials were tested as electrodes for the borohydride oxidation reaction (BOR) in alkaline media for possible application as anodes of direct borohydride fuel cells. Their activity in BOR was studied using cyclic voltammetry, chronoamperometry, and chronopotentiometry and main reaction parameters and electrodes' stability were evaluated.

  6. Electronic Structures and Magnetic Properties of CoN, NiN and CuN

    Institute of Scientific and Technical Information of China (English)

    WANG Hong-Bo; XUE De-Sheng

    2004-01-01

    @@ Electronic structures and magnetic properties of CoN, NiN and CuN in zinc-blende, rocksalt, nickel arsenide,wurtzite and caesium chloride structures have been calculated by employing a first-principle full-potential linearized muffin-tin orbital method with the generalized gradient approximation. The results reveal that the zinc-blende structure is the ground state for the three mononitrides.

  7. Characteristics of flake graphite in Ni-Mn-Cu cast iron. Part 2

    National Research Council Canada - National Science Library

    A. Janus

    2010-01-01

    .... In this second part of the research, effect of chemical composition of hypereutectic cast iron containing 3.5÷5.1% C, 1.7÷2.8% Si, 3.5÷10.5 %Ni, 2.0÷8.0% Mn, 0.1÷3.5% Cu, 0.14÷0.17% P and 0.02÷0.04...

  8. Atomistic study of crack propagation and dislocation emission in Cu-Ni multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Clinedinst, J.; Farkas, D. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Materials Science and Engineering

    1997-09-01

    The authors present atomistic simulations of the crack tip configuration in multilayered Cu-Ni materials. The simulations were carried out using molecular statics and EAM potentials. The atomistic structure of the interface was studied first for a totally coherent structure. Cracks were simulated near a Griffith condition in different possible configurations of the crack plane and front with respect to the axis of the layers. Results show that interface effects predominantly control the mechanical behavior of the system studied.

  9. Magnetic configurations of Ni-Cu alloy nanowires obtained by the template method

    Energy Technology Data Exchange (ETDEWEB)

    Matei, Elena; Enculescu, Ionut, E-mail: encu@infim.ro [National Institute of Materials Physics (Romania); Toimil-Molares, Maria Eugenia [Gesellschaft fuer Schwerionenforschung (Germany); Leca, Aurel; Ghica, Corneliu; Kuncser, Victor, E-mail: kuncser@infim.ro [National Institute of Materials Physics (Romania)

    2013-08-15

    High aspect ratio nanowires of Ni-Cu alloys have been synthesized by potentiostatic electrochemical deposition in etched ion-track membranes. The nickel-to-copper ratio in the nanowires was controlled via the deposition potential and electrochemical bath composition. We present a detailed study of nanowire properties including morphology, composition, and magnetic behavior. We report the magnetic configurations measured as function of the nanowire composition and discuss domain formation, anisotropy aspects, and local easy axis distributions.

  10. Structure and energetics of high index Fe, Al, Cu and Ni surfaces using equivalent crystal theory

    Science.gov (United States)

    Rodriguez, Agustin M.; Bozzolo, Guillermo; Ferrante, John

    1993-01-01

    Equivalent crystal theory (ECT) is applied to the study of multilayer relaxations and surface energies of high-index faces of Fe, Al, Ni, and Cu. Changes in interplanar spacing as well as registry of planes close to the surface and the ensuing surface energies changes are discussed in reference to available experimental data and other theoretical calculations. Since ECT is a semiempirical method, the dependence of the results on the variation of the input used was investigated.

  11. Phase transformation behavior of a TiNiCu shape memory alloy electrolytically charged with hydrogen

    Institute of Scientific and Technical Information of China (English)

    WU Jihong; ZU Xiaotao; WANG Zhiguo; LIU Yanzhang

    2005-01-01

    The transformation behavior of a TiNiCu shape memory alloy electrolytically charged with hydrogen was investigated by means of different scanning calorimetry (DSC), optical microscope and X-ray diffraction (XRD). The results showed that inter- and inner-granular hydrides formed after charging with hydrogen, and the hydrides suppressed martensitic transformation. The electrolytically charged hydrogen can be easily released by heat treatment and the transformation occurred again, which was verified by the DSC and XRD experiments.

  12. Effects of Rare Earths on Properties of Ti-Zr-Cu-Ni Base Brazing Filler Alloys

    Institute of Scientific and Technical Information of China (English)

    Ma Tianjun; Kang Hui; Wu Yongqin; Qu Ping

    2004-01-01

    The effects of the addition of rare earths on the properties of Ti-Zr-Cu-Ni base brazing filler alloys and the mechanical microstructure and properties were studied for the brazed-joints in the vacuum brazing of TC4 by comparing synthetical properties of two kinds of filler metals.The results indicate that the filler metals added with rare earths have lower melting point, better wettability and higher mechanical properties in the brazing joints.

  13. Preparation of new hyper cross-linked chelating resin for adsorption of Cu2+ and Ni2+ from water

    Institute of Scientific and Technical Information of China (English)

    Cheng Cheng; Jin Nan Wang; Li Xu; Ai Min Li

    2012-01-01

    The new hyper cross-linked chelating resin NDWJN2 modified with carboxyl groups was prepared for removal of Cu2+ and Ni2+ from water.NDWJN2 was characterized using BET,SEM and FT-IR spectroscopy.Comparing with commercial resins D113 and IRC84,NDWJN2 could remove Cu2+ and Ni2+ from water more effectively.Langmuir model could fit adsorption isotherms well.

  14. Microstructure and solidification behavior of multicomponent CoCrCu{sub x}FeMoNi high-entropy alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wu, P.H. [School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003 (China); Liu, N., E-mail: lnlynn@126.com [School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003 (China); Yang, W. [School of Aeronautical Manufacturing Engineering, Nanchang Hangkong University, Nanchang, Jiangxi 330063 (China); Zhu, Z.X. [School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003 (China); Lu, Y.P. [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Wang, X.J. [School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003 (China)

    2015-08-26

    (Fe, Co, Ni) rich dendrites nucleate primarily in CoCrFeMoNi and CoCrCu{sub 0.1}FeMoNi alloys, followed by peritetic and eutectic reactions. The quasi-peritectic reaction occurs between the primary Mo-rich dendrites and liquids in the CoCrCu{sub 0.3}FeMoNi melts, and transfers to a eutectic coupled-growth at the edge of the quasi-peritectic structure. Subsequently, eutectic reaction happens in the remnant liquids. Liquid-phase separations have occurred in CoCrCu{sub x}FeMoNi alloys when x≥0.5. Meanwhile, some nanoscale precipitates are obtained in the Cu-rich region. Two crystal structures, FCC and BCC, are identified in CoCrCu{sub x}FeMoNi high entropy alloys. Amazingly, a pretty high plastic strain (51.6%) is achieved in CoCrCu{sub 0.1}FeMoNi alloy when the compressive strength reaches to 3012 Mpa. With the increase of Cu content, atomic size difference (ΔR) and electro-negativity difference (ΔX) decrease while valence electron concentration (VEC), mixing enthalpy (ΔH) and mixing entropy (ΔS) increase. Consequently, the valence electron concentration (VEC) values range for the formation of mixture of FCC and BCC structures can be enlarged to 6.87–8.35 based on the study of this paper. It is the positive enthalpies of mixing that causes the liquid-phase separation in CoCrCu{sub x}FeMoNi high entropy alloys.

  15. Electrical Resistance Measurement of Glass Transition and Crystallization Characteristics of Zr-Al-Cu-Ni Metallic Glasses

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In this paper, glass transition and thermal stability of the Zr-Al-Cu-Ni metallic glasses were investigated by using electrical resistance measurement (ERM), DSC and X-ray diffraction techniques. The experimental results show that the ERM is capable of detecting the glass transition of the amorphous alloys and can help to distinguish the crystallization products of the Zr-Al-Cu-Ni metallic glasses owing to the difference of the electrical resistivity between the precipitation phases.

  16. Electrochemical behavior of Cu-Zn-Al shape memory alloy after surface modification by electroless plated Ni-P

    Institute of Scientific and Technical Information of China (English)

    LIANG Chenghao; CHEN Bangyi; CHEN Wan; WANG Hua

    2004-01-01

    The electrochemical behavior of Cu-Zn-Al shape memory alloy (SMA) with and without electroless plated Ni-P was investigated by electrochemical methods in artificial Tyrode's solution. The results showed that Cu-Zn-Al SMA engendered dezincification corrosion in Tyrode's solution. The anodic active current densities as well as electrochemical dissolution sensitivity of the electroless plated Ni-P Cu-Zn-Al SMA increased with NaCl concentration rising, pH of solution decreasing and environmental temperature uprising. X-ray diffraction analysis indicated that after surface modification by electroless plated Ni-P, an amorphous plated film formed on the surface of Cu-Zn-Al SMA. This film can effectively isolate matrix metal from corrosion media and significantly improve the electrochemical property of Cu-Zn-Al SMA in artificial Tyrode's solution.

  17. Ab Initio Investigation on Structural, Elastic and Electronic Properties of η-Phase Cu4.5Ni1Au0.5Sn5 and Cu5Ni1Sn4.5In0.5 Intermetallic Compounds

    Science.gov (United States)

    Li, Xuezheng; Ma, Yong; Zhou, Wei; Wu, Ping

    2017-10-01

    The structural, elastic and electronic properties of quaternary intermetallic compounds η-Cu4.5Ni1Au0.5Sn5 and η-Cu5Ni1Sn4.5In0.5 are investigated by an ab initio method. The calculated heat of formation determines preferential occupancy sites for Ni, Au and In atoms which lead to thermodynamically stable compounds. Variation of lattice constants reveals that the change of atomic bonding has a directional discrepancy in η-Cu4.5Ni1Au0.5Sn5; the polycrystalline moduli obtained from single-crystal elastic stiffness show an increase after both Ni/Au and Ni/In additions. Also, the anisotropy of Young's modulus and shear modulus is significantly weakened in η-Cu4.5Ni1Au0.5Sn5. The density of states and maps of charge density distribution suggest that the atomic bonding in the quaternary intermetallic compounds is strengthened by the addition of Ni and Au but weakened by the addition of In.

  18. Estudio cinético de las reacciones de recocido en aleaciones de Cu-Ni-Fe

    Directory of Open Access Journals (Sweden)

    Donoso, Eduardo

    2014-09-01

    Full Text Available The thermal aging of a Cu-45Ni-4Fe, Cu-34Ni-11Fe and Cu-33Ni-22Fe alloys tempered from 1173 K have been studied from Differential Scanning Calorimetry (DSC and microhardness measurements. The analysis of DSC curves, from room temperature to 950 K, shows the presence of one exothermic reaction associated to the formation of FeNi3 phase nucleating from a modulate structure, and one endothermic peak attributed to dissolution of this phase. Kinetic parameters were obtained using the usual Avrami-Erofeev equation, modified Kissinger method and integrated kinetic functions. Microhardness measurements confirmed the formation and dissolution of the FeNi3 phase.Mediante Calorimetría Diferencial de Barrido (DSC y medidas de microdureza Vickers se ha estudiado el comportamiento durante el recocido de las aleaciones Cu-45Ni-4Fe, Cu-34Ni-11Fe y Cu-33Ni-22Fe templadas desde 1173 K. El análisis de las curvas DSC, desde temperatura ambiente hasta los 950 K, muestran la presencia de una reacción exotérmica asociada a la formación de la fase FeNi3 que nuclea a partir de una estructura modulada, y una reacción endotérmica que correspondería a la disolución de esta fase. Los parámetros cinéticos se calcularon a partir de la ecuación usual de Avrami-Erofeev, Kissinger modificado y funciones cinéticas integradas. Medidas de microdureza Vickers corroboraron la formación y disolución de fase FeNi3.

  19. Effect of Microstructure and Sulfide on Corrosion of Cu-Ni Alloys in Seawater

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The microstructure and the corrosion product films have been investigated on Cu-Ni alloys by TEM, SEM, AES and electrochemical technique as well as natural seawater exposure tests. Experimental results showed that the alloys had two kinds of microstructure, I.e. Recrystallization and incomplete recrystallization. In synthetic seawater containing 2×10-6 S2-, the stability of the alloy increased with the increase of deformation and annealing temperature, I.e., the degree of recrystallization. After exposure to natural seawater for different periods of time, the corrosion product films of the recrystallized alloy were rich in Ni and compact, and there were cracks in the outer layer which contained a small amount of S; the films of the alloy of incomplete recrystallization became thick, loose and porous, and obviously of layered structure. And the intergranular corrosion took place in the underlying substrate. Besides, a great amount of seawater substance existed in the outer layer and some sulfur was found within the grain boundaries that prefer to corrode. The accelerating effect of sulfides in corrosion of Cu-Ni alloys in seawater is attributed to the coexistence and absorption of sulfides and carbides promoting the preference of corrosion where they absorb, and the formation of dissolvable Cu2S results in keeping the surface of the alloys in the active state.

  20. Influence of Liquid Structure on Solid Transformation of CuAlNi Shape Memory Alloy

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Molten Cu-13Al and Cu-13Al-4Ni (mass fraction) alloys have been investigated using X-ray diffraction method.A distinct pre-peak has been found in the structure factors. The pre-peak increases its intensity with decreasing temperature and addition of Ni. The structural unit size corresponding to the pre-peak equals to magnitude of (111)planar distance ofβ phase. The appearance of a pre-peak is due to existence of clusters withβ-phase-like structure in melt. Quantity and size of clusters increase with decreasing temperature but their structural unit size remains constant. Cu-13Al-4Ni shape memory alloy ribbons can be fabricated by rapid solidification technique. Order degree of martensite and temperature of the reverse martensitic transformation increase with decreasing liquid quenching temperature. Β phase particles develop from incorporating and growing of the clusters during solidification, thus result in the correlation between liquid structure and solid transformation.

  1. Review of the Potential of the Ni/Cu Plating Technique for Crystalline Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Atteq ur Rehman

    2014-02-01

    Full Text Available Developing a better method for the metallization of silicon solar cells is integral part of realizing superior efficiency. Currently, contact realization using screen printing is the leading technology in the silicon based photovoltaic industry, as it is simple and fast. However, the problem with metallization of this kind is that it has a lower aspect ratio and higher contact resistance, which limits solar cell efficiency. The mounting cost of silver pastes and decreasing silicon wafer thicknesses encourages silicon solar cell manufacturers to develop fresh metallization techniques involving a lower quantity of silver usage and not relying pressing process of screen printing. In recent times nickel/copper (Ni/Cu based metal plating has emerged as a metallization method that may solve these issues. This paper offers a detailed review and understanding of a Ni/Cu based plating technique for silicon solar cells. The formation of a Ni seed layer by adopting various deposition techniques and a Cu conducting layer using a light induced plating (LIP process are appraised. Unlike screen-printed metallization, a step involving patterning is crucial for opening the masking layer. Consequently, experimental procedures involving patterning methods are also explicated. Lastly, the issues of adhesion, back ground plating, process complexity and reliability for industrial applications are also addressed.

  2. Devitrification process in rapidly solidified Al-Ni-Cu-Nd metallic glass

    Institute of Scientific and Technical Information of China (English)

    XIAO Yu-de(肖于德); LI Wen-xian(黎文献); D. Jacovkis; N. Clavaguera; M. T. Clavaguera-Mora; J. Rodriguez-Viejo

    2003-01-01

    In the present study, rapidly solidified ribbons of Al87 Ni7Cu3 Nd3 metallic glass was prepared by usingmelt spinning. Devitrification process of the totally amorphous ribbons was investigated by high temperature X-raydiffraction analysis, combining with differential scanning calorimetry, under continuous and isothermal heating re-gime. The X-ray diffraction intensity and full width at the half maximum (FWHM) were analyzed to investigate theincrease of crystallized amount and growth of α-Al crystal particles. The results show that under continuous heatingregime, the metallic glass devitrifies via two main stages: primary crystallization, resulting in two-phase mixture ofα-Al plus residual amorphous phase, and secondary crystallization, corresponding to rapid precipitation of some in-ter-metallic phases in the form of dispersion or eutectic mixture. Under isothermal heating regime, only Al crystalprecipitates from the Al-rich amorphous matrix at low temperature, and when heating at 280 ℃ only Al crystal pre-cipitates within a short time, and then Al8 Cu4 Nd forms, followed by Al3 Ni, in the residual amorphous phase. Whenheating at higher temperature or for longer time, Aln Nd3 forms, the amorphous phase disappears, and the ribbonsdevelop into polycrystalline morphologies with multiply phase mixture of a-Al, Al8 Cu4 Nd, Al3 Ni, and Al11 Nd3.

  3. Electrical conductivity and microstructure by Rietveld refinement of doped Cu-Ni powder alloys

    Energy Technology Data Exchange (ETDEWEB)

    Fambrini, A.S.; Monteiro, W.A.; Orrego, R.M.M.; Marques, I.M.; Carrio, Juan A.G., E-mail: jgcarrio@mackenzie.br, E-mail: iara_m_@hotmail.com [Universidade Presbiteriana Mackenzie (UPM/CCH), Sao Paulo, SP (Brazil). Centro de Ciencias e Humanidades. Dept. de Fisica

    2009-07-01

    This work presents a comparative study of microstructural and electrical properties of polycrystalline material from two different Cu-Ni alloys: Cu-Ni-Pt and Cu-Ni-Al. The first one of them was produced in electric furnace with voltaic arc and the other was produced by powder metallurgy. The microstructure of the samples was studied by optical microscopy, Vickers micro hardness and x rays powder diffraction. Their electrical conductivity was measured with a milliohmmeter Agilent (HP) 4338B. Refinements of the crystalline structure of the samples were performed by the Rietveld method, using the refinement program GSAS. The refinement results and Fourier differences calculations indicate that the copper matrix structure presents not significant distortions by the used amounts of the other metal atoms. In both cases a sequence of thermo mechanical treatments was developed with the intention of increasing the hardness maintaining the electrical conductivity of the alloys. The refinements also allowed a study of the dependence of the micro-structure and the thermo mechanical treatments of the samples. (author)

  4. Corrosion behavior of Cu-Ni-Ag-Al alloy anodes in aluminium electrolysis

    Institute of Scientific and Technical Information of China (English)

    徐君莉; 石忠宁; 邱竹贤

    2004-01-01

    The behavior of Cu-Ni-Ag-Al alloy used as anode for aluminum electrolysis was directly visualized in a two-compartment see-through cell during electrolysis, and its performances were tested at 850℃ in acidic electrolyte molten salts consisting of 39.3 % NaF-43.7 % AlF3-8 % NaCl-5 % CAF2-4 % Al2 O3 for 40 h in a laboratory cell. The results show that nascent oxygen oxidizes the anodic surface to form oxide film at the beginning of electrolysis. X-ray diffraction analysis of alloy surface show that the oxide film on the anodic surface consists of CuO, NiO, Al2O3,CuAl2 O4 and NiAl2 O4. However, SEM image shows the oxide film is porous, loose and easy to fall into electrolyte and to contaminate aluminum. The corrosion mechanism of metal anodes was analyzed.

  5. Effect of alloying elements on solidification of primary austenite in Ni-Mn-Cu cast iron

    Directory of Open Access Journals (Sweden)

    A. Janus

    2011-04-01

    Full Text Available Within the research, determined were direction and intensity of alloying elements influence on solidification way (directional orvolumetric of primary austenite dendrites in hypoeutectic austenitic cast iron Ni-Mn-Cu. 50 cast shafts dia. 20 mm were analysed.Chemical composition of the alloy was as follows: 1.7 to 3.3 % C, 1.4 to 3.1 % Si, 2.8 to 9.9 % Ni, 0.4 to 7.7 % Mn, 0 to 4.6 % Cu, 0.14 to0.16 % P and 0.03 to 0.04 % S. The discriminant analysis revealed that carbon influences solidification of primary austenite dendrites most intensively. It clearly increases the tendency to volumetric solidification. Influence of the other elements is much weaker. This means that the solidification way of primary austenite dendrites in hypoeutectic austenitic cast iron Ni-Mn-Cu does not differ from that in an unalloyed cast iron.

  6. Magnetic mineralogy of the Hongqiling Cu-Ni sulphide deposit:Implications for ore genesis

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Pyrrhotite is one of the common ore minerals in Cu-Ni sulphide deposits, but only monoclinic pyrrhotite is ferromagnetic at room temperature. X-ray and EPA analyses reveal that most pyrrhotite forming sideronitic texture in the Hongqiling Cu-Ni sulphide deposit is monoclinic, but that in the massive ore is a mixture of monoclinic and hexagonal pyrrhotites. Differential thermal and magneticthermogravimetric analyses of massive ore indicate a magnetic transition and heat absorption at 323℃, suggesting that this temperature is the thermomagnetic and phase transition point of pyrrhotite. For massive pyrrhotite ores heated at 400℃ for 30 h and then quenched by cool water, the monoclinic pyrrhotite (mpo) transforms completely into the hexagonal pyrrhotite (hpo). However, all the pyrrhotites resulting from slow cooling of the sample in air are mpo. These results indicate that transformation between hpo and mpo depends upon the cooling rate. Therefore, massive ores in this deposit might have been formed via rapid cooling of ore melts. On the other hand, it is significant to study the effect of the ratio of the magnetite in total ores on the genesis of magmatic Cu-Ni suphide deposits.

  7. Pure silica SBA-15 supported Cu-Ni catalysts for hydrogen production by ethanol steam reforming

    Energy Technology Data Exchange (ETDEWEB)

    Vizcayno, A.J.; Carrero, A.; Calles, J.A. [Department of Chemical and Environmental Technology, Rey Juan Carlos University, Escuela Superior de Ciencias Experimentales y Tecnologya (ESCET), c/ Tulipan s/n, 28933 Mostoles, (Spain)

    2006-07-01

    Cu-Ni/SBA-15 supported catalysts prepared by the incipient wetness impregnation method were tested in the ethanol steam reforming reaction for hydrogen production. The effect of reaction temperature and metal loading was studied in order to maximize the hydrogen selectivity and the CO{sub 2}/CO{sub x} molar ratio. The best catalytic performance was achieved at 600 C with a catalyst containing 2 and 7 wt% of copper and nickel, respectively. In addition, two catalysts were prepared by the method of direct insertion of Ni and Cu ions as precursors in the initial stage of the synthesis. XRD, TEM, N{sub 2} adsorption and ICP-AES results evidenced that SBA-15 materials with long range hexagonal ordering could be successfully synthesized in the presence of copper and nickel salts with the (Cu+Ni) contents around 4-6 wt%. However, lower hydrogen selectivity and together with ethanol and water conversions were observed with catalysts prepared by direct synthesis in comparison with those prepared by incipient wetness impregnation method. (authors)

  8. Ultrafast photoresponse of superconductor/ferromagnet Nb/NiCu heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Pepe, Giovanni P.; Amanti, Maria; De Lisio, Corrado; Latempa, Rossella; Marrocco, Nicola; Parlato, Loredana; Peluso, Giuseppe; Barone, Antonio [Coherentia CNR-INFM (Italy); Napoli ' ' Federico II' ' Univ. (Italy). Dipt. Scienze Fisiche; Sobolewski, Roman; Taneda, Takahiro [Department of Electrical and Computer Engineering and Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14627-0231 (United States)

    2006-09-15

    We report on femtosecond optical pump-probe studies of proximized ferromagnet/superconductor (F/S) hybrids, consisting of Ni{sub 0.5}Cu{sub 0.5} layers deposited on top of Nb films. The weak ferromagnetic nature of the completely proximised Ni{sub 0.5}Cu{sub 0.5} film makes possible to observe the dynamics of the nonequilibrium superconductivity through the near-surface optical reflectivity change measurements. The time-resolved photoresponse transient of the NiCu(21 nm)/Nb bilayer in the superconducting state shows strongly suppressed slow bolometric component. The fast relaxation time is also discussed accordingly to current theories on S/F heterostructures. The proposed S/F nanobilayers represent a new, artificially designed superconductor with the features (sub-picosecond photoresponse with suppressed bolometric component) very desirable for superconducting photodetectors and photon counters. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Microwave sintering versus conventional sintering of NiCuZn ferrites. Part I: Densification evolution

    Science.gov (United States)

    Zhu, Jianhua; Ouyang, Chenxin; Xiao, Shumin; Gao, Yongyi

    2016-06-01

    This work reports the recent study on the microwave sintering (MS) versus conventional sintering (CS) of NiCuZn ferrites, with particular interests in the densification evolution. NiCuZn ferrite powders were synthesized through the solid state reaction route. Densification behaviors of ferrite samples under the two types of thermal sources were monitored in real-time. Meanwhile, the influences of additives (1 wt% BSZ glass or 1 wt% Bi2O3) on the densifications were also investigated. Both constant heating rate (CHR) and master sintering curve (MSC) models were used to evaluate the sintering activation energy (Q). Results demonstrated that the microwave-enhanced diffusion mainly occurs at the intermediate sintering stage. The Q-value estimated by MSC method agreed well with that from CHR method. With the influence of microwave electromagnetic field, the activation energy of NiCuZn ferrites was decreased by roughly 100-150 kJ/mol. In addition, doping a small amount of additives could improve densification degree and reduce the minimal energy to activate diffusion mechanisms.

  10. Assessment of Ni, Cu, Zn and Pb levels in beach and dune sands from Havana resorts, Cuba.

    Science.gov (United States)

    Díaz Rizo, Oscar; Buzón González, Fran; Arado López, Juana O

    2015-11-15

    Concentrations of nickel (Ni), copper (Cu), zinc (Zn) and lead (Pb) in beach and dune sands from thirteen Havana (Cuba) resorts were estimated by X-ray fluorescence analysis. Determined mean metal contents (in mg·kg(-1)) in beach sand samples were 28±12 for Ni, 35±12 for Cu, 31±11 for Zn and 6.0±1.8 for Pb, while for dune sands were 30±15, 38±22, 37±15 and 6.8±2.9, respectively. Metal-to-iron normalization shows moderately severe and severe enrichment by Cu. The comparison with sediment quality guidelines shows that dune sands from various resorts must be considered as heavily polluted by Cu and Ni. Almost in every resort, the Ni and Cu contents exceed their corresponding TEL values and, in some resorts, the Ni PEL value. The comparison with a Havana topsoil study indicates the possible Ni and Cu natural origin. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Low-temperature sintering method for NiCuZn ferrite and effect of Mn addition on electromagnetic properties

    Institute of Scientific and Technical Information of China (English)

    JU Dong-ying; BIAN Pei

    2006-01-01

    Low temperature sintering NiCuZn ferrite was employed at most cases due to its co-firability with Ag (below 960 ℃). The NiCuZn ferrite sintered body with high-strength and high-frequency magnetic properties was fabricated. Firstly,NiCuZn ferrite powder was synthesized under CO2 atmosphere at 500 ℃ from the mixed doxalate synthesized by liquid phase precipitation method. Then a small amount of boric acid (H3BO3) was added to the powder,and the NiCuZn ferrite powder compact was prepared with Newton press and CIP methods. Finally,NiCuZn ferrite sintered body was fabricated by sintering at 900 ℃ under CO2 atmosphere. The minimum sintering temperature (800 ℃) was determined by the study of high temperature shrinkage. By this method,NiCuZn ferrite sintered body with 0.5% (mass fraction) boric acid was obtained,which has the bending strength of 340 MPa. The effect of various Mn addition on electromagnetic properties were studied.

  12. Duplex Oxide Formation during Transient Oxidation of Cu-5%Ni(001) Investigated by In situ UHV-TEM and XPS

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J.C.; Starr, D.; Kang, Y.; Luo, L.; Tong, X.; Zhou, G.

    2012-05-20

    The transient oxidation stage of a model metal alloy thin film was characterized with in situ ultra-high vacuum (UHV) transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and analytic high-resolution TEM. We observed the formations of nanosized NiO and Cu{sub 2}O islands when Cu-5a5%Ni(100) was exposed to oxygen partial pressure, pO{sub 2} = 1 x 10{sup -4} Torr and various temperatures in situ. At 350 C epitaxial Cu{sub 2}O islands formed initially and then NiO islands appeared on the surface of the Cu{sub 2}O island, whereas at 750 C NiO appeared first. XPS and TEM was used to reveal a sequential formation of NiO and then Cu{sub 2}O islands at 550 C. The temperature-dependant oxide selection may be due to an increase of the diffusivity of Ni in Cu with increasing temperature.

  13. Influence of preparation method on supported Cu-Ni alloys and their catalytic properties in high pressure CO hydrogenation

    DEFF Research Database (Denmark)

    Wu, Qiongxiao; Eriksen, Winnie L.; Duchstein, Linus Daniel Leonhard

    2014-01-01

    to impregnation, the coprecipitation and deposition-coprecipitation methods are more efficient for preparation of small and homogeneous Cu-Ni alloy nanoparticles. In order to examine the stability of Cu-Ni alloys in high pressure synthesis gas conversion, they have been tested for high pressure CO hydrogenation......Silica supported Cu-Ni (20 wt% Cu + Ni on silica, molar ratio of Cu/Ni = 2) alloys are prepared via impregnation, coprecipitation, and deposition- coprecipitation methods. The approach to co-precipitate the SiO2 from Na2SiO3 together with metal precursors is found to be an efficient way to prepare...... high surface area silica supported catalysts (BET surface area up to 322 m2 g-1, and metal area calculated from X-ray diffraction particle size up to 29 m2 g-1). The formation of bimetallic Cu-Ni alloy nanoparticles has been studied during reduction using in situ X-ray diffraction. Compared...

  14. Effects of Alloying Elements (Mo, Ni, and Cu on the Austemperability of GGG-60 Ductile Cast Iron

    Directory of Open Access Journals (Sweden)

    Erkan Konca

    2017-08-01

    Full Text Available The interest in austempered ductile irons (ADI is continuously increasing due to their various advantageous properties over conventional ductile irons and some steels. This study aimed to determine the roles of alloying elements Ni, Cu, and Mo, on the austemperability of GGG-60 ductile cast iron. Two different sets of GGG-60 (EN-GJS-600-3 samples, one set alloyed with Ni and Cu and the other set alloyed with Mo, Ni, and Cu, were subjected to austempering treatments at 290 °C, 320 °C, and 350 °C. A custom design heat treatment setup, consisting of two units with the top unit (furnace serving for austenitizing and the 200 L capacity bottom unit (stirred NaNO2-KNO3 salt bath serving for isothermal treatment, was used for the experiments. It was found that austempering treatment at 290 °C increased the hardness of the Ni-Cu alloyed GGG-60 sample by about 44% without causing a loss in its ductility. In the case of the Mo-Ni-Cu alloyed sample, the increase in hardness due to austempering reached to almost 80% at the same temperature while some ductility was lost. Here, the microstructural investigation and mechanical testing results of the austempered samples are presented and the role of alloying elements (Mo, Ni, and Cu on the austemperability of GGG-60 is discussed.

  15. DFT study of the formate formation on Ni(111) surface doped by transition metals [Ni(111)-M; M=Cu, Pd, Pt, Rh

    Science.gov (United States)

    Nugraha; Saputro, A. G.; Agusta, M. K.; Rusydi, F.; Maezono, R.; Dipojono, H. K.

    2016-08-01

    We report on a theoretical study of the formation of formate (HCOO) from the reaction of CO2 gas and a pre- adsorbed H atom (CO2 (g) + *H → *HCOO) on Ni(111) surface doped by transition-metals [Ni(111)-M; M= Cu, Pd, Pt, Rh] by means of density functional theory (DFT) calculations. This *HCOO formation reaction is one of the most important rate- limiting steps in the methanol synthesis process. We find that the presence of transition metal doping on the first-layer of Ni(111) surface could reduce the activation barrier of this reaction [up to ~38.4%, compared to clean Ni(111) surface].

  16. Hierarchical Structured Cu/Ni/TiO2 Nanocomposites as Electrodes for Lithium-Ion Batteries.

    Science.gov (United States)

    Yue, Yuan; Juarez-Robles, Daniel; Chen, Yan; Ma, Lian; Kuo, Winson C H; Mukherjee, Partha; Liang, Hong

    2017-08-30

    The electrochemical performance of anodes made of transition metal oxides (TMOs) in lithium-ion batteries (LIBs) often suffers from their chemical and mechanical instability. In this research, a novel electrode with a hierarchical current collector for TMO active materials is successfully fabricated. It consists of porous nickel as current collector on a copper substrate. The copper has vertically aligned microchannels. Anatase titanium dioxide (TiO2) nanoparticles of ∼100 nm are directly synthesized and cast on the porous Ni using a one-step process. Characterization indicates that this electrode exhibits excellent performance in terms of capacity, reliable rate, and long cyclic stability. The maximum insertion coefficient for the reaction product of LixTiO2 is ∼0.85, a desirable value as an anode of LIBs. Cross-sectional SEM and EDS analysis confirmed the uniform and stable distribution of nanosized TiO2 nanoparticles inside the Ni microchannels during cycling. This is due to the synergistic effect of nano-TiO2 and the hierarchical Cu/Ni current collector. The advantages of the Cu/Ni/TiO2 anode include enhanced activity of electrochemical reactions, shortened lithium ion diffusion pathways, ultrahigh specific surface area, effective accommodation of volume changes of TiO2 nanoparticles, and optimized routes for electrons transport.

  17. Mechanical Deformation Behavior of Sn-Ag-Cu Solders with Minor Addition of 0.05 wt.% Ni

    Science.gov (United States)

    Hammad, A. E.; El-Taher, A. M.

    2014-11-01

    The aim of the present work is to develop a comparative evaluation of the microstructural and mechanical deformation behavior of Sn-Ag-Cu (SAC) solders with the minor addition of 0.05 wt.% Ni. Test results showed that, by adding 0.05Ni element into SAC solders, generated mainly small rod-shaped (Cu,Ni)6Sn5 intermetallic compounds (IMCs) inside the β-Sn phase. Moreover, increasing the Ag content and adding Ni could result in the change of the shape and size of the IMC precipitate. Hence, a significant improvement is observed in the mechanical properties of SAC solders with increasing Ag content and Ni addition. On the other hand, the tensile results of Ni-doped SAC solders showed that both the yield stress and ultimate tensile strengths decrease with increasing temperature and with decreasing strain rate. This behavior was attributed to the competing effects of work hardening and dynamic recovery processes. The Sn-2.0Ag-0.5Cu-0.05Ni solder displayed the highest mechanical properties due to the formation of hard (Cu,Ni)6Sn5 IMCs. Based on the obtained stress exponents and activation energies, it is suggested that the dominant deformation mechanism in SAC (205)-, SAC (0505)- and SAC (0505)-0.05Ni solders is pipe diffusion, and lattice self-diffusion in SAC (205)-0.05Ni solder. In view of these results, the Sn-2.0Ag-0.5Cu-0.05Ni alloy is a more reliable solder alloy with improved properties compared with other solder alloys tested in the present work.

  18. Sulfur the archetypal catalyst poison? The sulfur-induced promotion of the bonding of unsaturated hydrocarbons on Cu(111).

    Science.gov (United States)

    Rousseau, G B D; Bovet, N; Kadodwala, M

    2006-11-02

    We have shown using a combination of temperature-programmed desorption and UV photoelectron spectroscopy that the presence of preadsorbed atomic sulfur promotes the bonding of cyclic unsaturated hydrocarbons (benzene and cyclohexene) to Cu(111). This promoting behavior of sulfur can be rationalized in terms of the ability of adsorbed sulfur to influence the balance between charge donation from the adsorbate to metal, and back-donation from the metal to adsorbate. The effects of sulfur on Cu(111) are dramatically different from those observed in previous studies on Pt(111), which found that it caused a downward shift in the desorption temperature of adsorbed benzene, through purely steric effects.

  19. Partition coefficients for Ni, Cu, Pd, Pt, Rh, and Ir between monosulfide solid solution and sulfide liquid and the formation of compositionally zoned Ni-Cu sulfide bodies by fractional crystallization of sulfide liquid

    DEFF Research Database (Denmark)

    Barnes, S.J.; Makovicky, E.; Makovicky, M.

    1996-01-01

    Many nickel–copper sulfide orebodies contain Cu- and Fe-rich portions. The Fe-rich ore is generally richer in Os, Ir, Ru, and Rh and poorer in Pt, Pd, and Au than the Cu-rich ore. In komatiite-hosted ores Ni tends to be concentrated in the Cu-rich ore, whereas in tholeiitic ores it tends to be co...

  20. Preparation and Magnetic Properties of Cu-Ni Core-shell Nanowires in Ion-track Templates

    Institute of Scientific and Technical Information of China (English)

    CHEN Yonghui; DUAN Jinglai; YAO Huijun; MO Dan; WANG Tieshan; SUN Youmei; LIU Jie

    2015-01-01

    Cu-Ni core-shell nanowires, with an inner Cu core diameter of about 60 nm and varying Ni shell thicknesses (10, 30, 50, 60, and 80 nm), were successfully fabricated in porous polycarbonate (PC) ion-track templates by a two-step etching and electrodeposition method. In our experiment, the thickness of Ni shell can be effectively tuned through the etching time of templates. The core-shell structure was conifrmed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The X-ray diffraction (XRD) pattern elucidates the co-existence of characteristic peaks for both Cu and Ni, indicating no other phases were formed during preparation. Magnetic hysteresis loops measured via vibrating sample magnetometry (VSM) revealed that Cu-Ni core-shell nanowires with thinner Ni shell exhibited obviously diamagnetic character and together with a weak ferromagnetic activity, whereas ferromagnetic behavior was primarily measured for the wires with thicker Ni shell. With increasing Ni shell thickness, the squareness and coercivity value became smaller due to the shape anisotropy and the formation of multi-domain structure.

  1. Microstructure, optical and FTIR studies of Ni, Cu co-doped ZnO nanoparticles by co-precipitation method

    Science.gov (United States)

    Ashokkumar, M.; Muthukumaran, S.

    2014-11-01

    Zn0.96-xCu0.04NixO (0 ⩽ x ⩽ 0.04) nanoparticles were synthesized by co-precipitation method. The X-ray diffraction pattern showed the crystalline nature of prepared nanoparticles with hexagonal wurtzite structure. The average crystal size is decreased from 27 to 22.7 nm when Ni concentration is increased from 0% to 2% due to the suppression of nucleation and subsequent growth of ZnO by Ni-doping. The increased crystal size from 22.7 to 25.8 nm (ΔD ∼ 3.1 nm) by Ni-doping from 2% to 4% is due to the creation of distortion centers and Zn/Ni interstitials. The cell parameters and volume of the lattice showed solubility limit at 2% of Ni doping. The energy dispersive X-ray spectra confirmed the presence of Cu and Ni in Zn-O. The optical absorption spectra showed that the absorption was increased up to Ni = 2% due to the creation of carrier concentration by Ni-doping and decreased beyond 2% due to the presence of more defects and interstitials in the Zn-Ni-Cu-O lattice. The observed red shift of energy gap from 3.65 eV (Ni = 0%) to 3.59 eV (Ni = 2%, ΔEg ≈ 0.06 eV) is explained by sp-d exchange interactions between the band electrons and the localized d-electrons of the Ni2+ ions. The blue shift of energy gap from 3.59 eV (Ni = 2%) to 3.67 eV (Ni = 4%, ΔEg ≈ 0.08 eV) is explained by Burstein-Moss effect. Presence of chemical bonding was confirmed by FTIR spectra.

  2. Surface planarization of Cu and CuNiSn Micro-bumps embedded in polymer for below 20μm pitch 3DIC applications

    OpenAIRE

    De Preter, Inge; Derakhshandeh, Jaber; Heylen, Nancy; Van Acker, Lut; June Rebibis, Kenneth; Miller, Andy; Beyer, Gerald; Beyne, Eric

    2016-01-01

    Planarization techniques such as Surface planer (better known as Fly-cut) and chemical-mechanical polishing (CMP) can be used to improve the bump roughness and bump height uniformity within the die and wafer which can be beneficial for solder based bump stacking and Cu-Cu direct bonding [1]. In this paper the influence of both planarization techniques on 20μm pitch Cu and CuNiSn bumps embedded in polymer are studied. The polymer protects the bumps from the shearing force of the planarization ...

  3. Magmatic Conduit Metallogenic System in Jinchuan Cu-Ni (PGE) Sulfide Deposit

    Science.gov (United States)

    Su, S.; Tang, Z.; Zhou, M.; Song, C.

    2014-12-01

    The Jinchuan Cu-Ni (PGE) sulfide deposit is located in the southwestern margin of North China Craton. Jinchuan ultramafic intrusion hosts the third largest magmatic Cu-Ni deposit in the world. There are mainly four orebodies, namely, orebody-58, orebody-24, orebody-1, and orebody-2, respectively from west to east in the deposit. The primary characteristics of Jinchuan Cu-Ni sulfide deposit are the following: (1) There is an obvious boundary between orebodys and country rocks, usually orebodys intruded into country rocks. (2) "sulfide melts" migrate and settle in the later stage of magma evolution. (3) Fluid Minerals Assemblages are found in the sulfide ores, there is Phl+Cc+Pn+Ccp+Po in orebody-2; Phl+Dol+AP+Pn+Ccp+Po in orebody-24; Q+Mag+AP+Pn+Ccp+Po in orebody-58. (4) Massive sulfides mainly occur in orebody-2, and its PGE content is very rare. Pt-Pd enrichment zones mainly occur in orebody-1; orebody-24 and orebody-58. Ir vs. Ru, Rh, Pt, Pd show positive relationship in orebody-2, but Ir vs. Ru, Rh show positive relationship, Ir vs. Pt, Pd exhibit negative relationship in orebody-1, orebody-24 and orebody-58. The modeling of Ir-Pd shows that the massive sulfide in orebody-2 maybe the origin of MSS. Pt-Pd enrichment zones in orebody-1 orebody-24 and orebody-58 are the relic liquid of monosulfide solid solution segregation; (5) Cu/Ni value is 1.24 in orebody-58, 1.56 in orebody-24, 1.83 in orebody-1, and 2.06 in orebody-2. These features imply that (1) "ore magma" or "melt-fluid bearing metal" formed in the staging chamber in depth; (2) "ore magma" might contain a lot of fluids; (3) "melt-fluid bearing metal" flow moves as a whole; (4) The moving direction of melt-fluid bearing metal flow is form west to east. The ores are enriched in Ni in the front, and enriched in Cu, Pt, Pd in the back of Jinchuan Magmatic Conduit Metallogenic System.

  4. A Study on the Effect of Ni Dopping on Bi-Pb-Sr-Ca-Cu-O System

    OpenAIRE

    ABUKAY, Mustafa TEPE and Doğan

    1998-01-01

    The effect of Ni doping on superconductivity properties of the Bi1.7Pb0.3Sr2Ca2(Cu1-xNix)3Oy system has been investigated by means of x-ray diffraction, ac electrical resistance, ac magnetic susceptibility and critical current measurements. The volume fraction of the 2223 phase decreases with increasing Ni concentration. The zero-resistance temperature and the critical current density are suppressed with Ni substitution.

  5. A Study on the Effect of Ni Dopping on Bi-Pb-Sr-Ca-Cu-O System

    OpenAIRE

    ABUKAY, Mustafa TEPE and Doğan

    2014-01-01

    The effect of Ni doping on superconductivity properties of the Bi1.7Pb0.3Sr2Ca2(Cu1-xNix)3Oy system has been investigated by means of x-ray diffraction, ac electrical resistance, ac magnetic susceptibility and critical current measurements. The volume fraction of the 2223 phase decreases with increasing Ni concentration. The zero-resistance temperature and the critical current density are suppressed with Ni substitution.

  6. Structure and Magnetic Properties of Cu3Ni2SbO6 and Cu3Co2SbO6 Delafossites with Honeycomb Lattices

    DEFF Research Database (Denmark)

    Roudebush, J. H.; Andersen, Niels Hessel; Ramlau, R.;

    2013-01-01

    The crystal structures of two Delafossites, Cu3Ni2SbO6 and Cu3Co2SbO6, are determined by high-resolution synchrotron powder X-ray diffraction. The Ni and Co are ordered with respect to Sb in the layer of edge sharing octahedra, forming magnetic layers with honeycomb geometry. High-resolution elec......The crystal structures of two Delafossites, Cu3Ni2SbO6 and Cu3Co2SbO6, are determined by high-resolution synchrotron powder X-ray diffraction. The Ni and Co are ordered with respect to Sb in the layer of edge sharing octahedra, forming magnetic layers with honeycomb geometry. High......-resolution electron microscopy confirms ordering, and selected-area electron diffraction patterns identify examples of the stacking polytypes. Low temperature synthetic treatments result in disordered stacking of the layers, but heating just below their melting points results in nearly fully ordered stacking variants...... by temperature and field dependent magnetization, as well as specific heat. The sharp magnetic transitions support the presence of well developed 2:1 ordering of the Co:Sb or Ni:Sb ions in the honeycomb layers. Neutron diffraction measurements at 4 K are used to determine the magnetic structures. For both the Ni...

  7. Magmatic Sulfide Ni-Cu Deposits in China

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Deep-seated magmatic liquation-injection deposits form a major type of magmatic sulfide deposit in China. The reserves of nickel and copper in this type of deposit may attain several hundred thousand tons (e.g.Hongqi 7 and Karatunggu) to nearly ten million tons (e.g.Jinchuan). Those deposits can be classified as large or superlarge deposits. The ore grade is relatively high, commonly with w(Ni)>1 %.The mineralized intrusions are small in size, generally only 0.0n km2 to 0.n km2, with the largest one not exceeding a few km2. Before intruding, the primary magmas have undergone liquation and partial crystallization at depth; as a result, the magmas have partitioned into barren magma, ore-bearing magma, ore-rich magma and ore magma, which then ascended and injected into the present locations once or multiple times, to form ore deposits. The above-mentioned mineralizing process is known as deep-seated magmatic liquation-injection mineralization. The volume of the barren magma is generally much larger than those of the ore-bearing magma, ore-rich magma and ore magma. In the ascending process, most of the barren magma intruded into different locations or outpoured onto the ground surface, forming intrusions or lava flows. The rest barren magma, ore-bearing magma, ore-rich magmaand ore magma may either multiple times inject into the same place in which rocks and ores are formed or separately inject into different spaces to form rocks and ores. Such deep-seated magmatic liquation-injection deposits have a much smaller volume, greater ore potential and higher ore grade than those of in-situ magmatic liquation deposits. Consequently, this mineralizing process leads to the formation of large deposits in small intrusions.

  8. 基于尺寸效应的Cu/CuNi薄膜热电偶灵敏度研究%Study on the sensitivity of Cu/CuNi thin-film thermocouple based on size effect

    Institute of Scientific and Technical Information of China (English)

    杨丽红; 赵源深

    2011-01-01

    采用磁控溅射法在镀有SiO2阻挡层的基底上制备了一系列的Cu/CuNi薄膜热电偶,其厚度分别为0.5,1.0,1.5和2.0 μm,测得四种Cu/CuNi薄膜热电偶的灵敏度,分别为46.47,45.23,44.32和43.98 μV/℃,通过实验和理论研究了薄膜热电偶灵敏度S与厚度δ之间的关系.结果表明:Cu/CuNi薄膜热电偶的灵敏度高于普通Cu/CuNi热电偶;在薄膜厚度大于临界厚度的情况下,薄膜热电偶的灵敏度S随着厚度的倒数l/δ增大而升高.%A series of Cu/CuNi thin film thermocouples with different thicknesses of 0.5, 1.0, 1.5 and 2.0 μm were prepared on the substrates with SiO2 linings by means of magnetron sputtering. After static calibration by experiments, the sensitivities of the prepared thermocouples were obtained respectively of 46.67, 45.23, 44.32 and 43.98 μV/°C. The relationship between sensitivity and thickness of Cu/CuNi thin-film thermocouple was studied by experiments and theory. The results show that the sensitivities of Cu/CuNi thin-film thermocouples are higher than that of ordinary thermocouples; when the thickness of the thin-film is greater than the critical value, the sensitivity (S) of thin-film thermocouple will increase with the increasing of the reciprocal of thickness (1/δ).

  9. Electroless Ni-Cu-P/nano-graphite composite coatings for bipolar plates of proton exchange membrane fuel cells

    Science.gov (United States)

    Lee, Cheng-Kuo

    2012-12-01

    This study evaluates the effects of an electroless Ni-Cu-P/nano-graphite composite coating on the surface characteristics of anodized 5083 aluminum alloy, including electrical resistivity, corrosion resistance of the alloy in a simulated solution of 0.5 M H2SO4 + 2 ppm NaF in polymer electrolyte membrane fuel cells (PEMFCs). The co-deposition and adhesion of the composite coatings on a 5083 substrate are enhanced by an anodizing process. The electroless Ni-Cu-P plating solution is prepared by adding different CuSO4·5H2O concentrations into the electroless Ni-P plating solution and adding nano-graphite (15-40 nm) particles to form the Ni-Cu-P/nano-graphite composite coatings. Experimental results indicate that the electroless Ni-Cu-P/nano-graphite composite coating enhances the hardness, conductivity, corrosion resistance of the 5083 substrate in the corrosive solution. The anodizing treatment enhances the electroless composite coatings by providing better uniformity, density, and adhesion compared to substrate without anodizing treatment. The electroless Ni-Cu-P/nano-graphite composite coating deposited on the optimal anodized 5083 substrate at a low CuSO4·5H2O concentration of 0.25 g l-1 with 20 g l-1 nano-graphite added have the best surface structure, highest hardness, electrical conductivity and corrosion resistance. Therefore, this novel electroless Ni-Cu-P/nano-graphite composite-coated 5083 aluminum alloy has potential applications in bipolar plates of PEM fuel cells.

  10. Vacuum Brazing TC4 Titanium Alloy to 304 Stainless Steel with Cu-Ti-Ni-Zr-V Amorphous Alloy Foil

    Science.gov (United States)

    Dong, Honggang; Yang, Zhonglin; Wang, Zengrui; Deng, Dewei; Dong, Chuang

    2014-10-01

    Dissimilar metal vacuum brazing between TC4 titanium alloy and 304 stainless steel was conducted with newly designed Cu-Ti-Ni-Zr-V amorphous alloy foils as filler metals. Solid joints were obtained due to excellent compatibility between the filler metal and stainless steel substrate. Partial dissolution of stainless steel substrate occurred during brazing. The shear strength of the joint brazed with Cu43.75Ti37.5Ni6.25Zr6.25V6.25 foil was 105 MPa and that with Cu37.5Ti25Ni12.5Zr12.5V12.5 was 116 MPa. All the joints fractured through the gray layer in the brazed seam, revealing brittle fracture features. Cr4Ti, Cu0.8FeTi, Fe8TiZr3 and Al2NiTi3C compounds were found in the fractured joint brazed with Cu43.75Ti37.5Ni6.25Zr6.25V6.25 foil, and Fe2Ti, TiCu, Fe8TiZr3 and NiTi0.8Zr0.3 compounds were detected in the joint brazed with Cu37.5Ti25Ni12.5Zr12.5V12.5 foil. The existence of Cr-Ti, Fe-Ti, Cu-Fe-Ti, and Fe-Ti-V intermetallic compounds in the brazed seam caused fracture of the resultant joints.

  11. Mechanical properties of NiTi and CuNiTi shape-memory wires used in orthodontic treatment. Part 1: stress-strain tests

    Directory of Open Access Journals (Sweden)

    Marco Abdo Gravina

    2013-08-01

    Full Text Available OBJECTIVE: This research aimed to compare, through traction tests, eight types of superelastic and heat-activated NiTi archwires, by six trade companies (GAC, TP, Ormco, Masel, Morelli and Unitek to those with addition of copper (CuNiTi 27ºC and 35ºC, Ormco. METHODS: The tests were performed in an EMIC mechanical testing machine, model DL10000, capacity of 10 tons, at the Military Institute of Engineering (IME. RESULTS: The results showed that, generally, heat-activated NiTi archwires presented slighter deactivation loadings in relation to superelastic. Among the archwires that presented deactivation loadings biologically more adequate are the heat-activated by GAC and by Unitek. Among the superelastic NiTi, the CuNiTi 27ºC by Ormco were the ones that presented slighter deactivation loadings, being statistically (ANOVA similar, to the ones presented by the heat-activated NiTi archwires by Unitek. When compared the CuNiTi 27ºC and 35ºC archwires, it was observed that the 27ºC presented deactivation forces of, nearly, ⅓ of the presented by the 35ºC. CONCLUSION: It was concluded that the CuNiTi 35ºC archwires presented deactivation loadings biologically less favorable in relation to the other heat-activated NiTi archwires, associated to lower percentage of deformation, on the constant baselines of deactivation, showing less adequate mechanical behavior, under traction, in relation to the other archwires.

  12. Oxidation of Cu-25Ni-25Ag alloy at 600℃ and 700℃ in air%Cu-25Ni-25Ag三元合金在600℃和700℃空气中的氧化

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    研究了Cu-25Ni-25Ag合金在600℃和700℃ 空气中的氧化。 合金由富Ag的α相与Cu-Ni固 溶体β相组成。 氧化速率大致服从抛物线规律, 除短时间的加速氧化外, 随着氧化 的进行氧 化速率逐渐减小。 尽管存在Ag和Ni, 但合金成膜速率与纯Cu的相近。 在不同温 度下 合金都形成了外层为CuO, 内层为Cu2O, NiO和Ag颗粒组成的复杂氧化膜。 同时, 氧化 膜最前沿的Cu-Ni固溶体颗粒仅表面部分氧化, 未氧化的内核被连续NiO所包围 。%The oxidation of Cu-25Ni-25Ag alloy at 600℃ and 700℃ in air was studied. The alloy contains a mixture of silver-rich α phase and copper-nickel solid solution β phase. The scaling rates of the alloy are substantially similar to that of pure copper, in spite of the presence of silver and NiO in the scales. Complex scales are formed with outermost layer of copper oxides and inner region of a mixture of Cu2O, NiO and a number of silver metal particles. The particles of β phase in the innermost scale region are oxidized only around their surface, leaving an unoxidized core surrounded by NiO.

  13. Fatigue Property Study of 05Cr17Ni4Cu4Nb Steel Weld Joints%05Cr17Ni4Cu4Nb钢焊接接头的疲劳性能

    Institute of Scientific and Technical Information of China (English)

    刘福广; 李振伟; 冯琳杰; 李太江; 王琦; 王彩侠; 李巍

    2013-01-01

    Fatigue property of 05Cr17Ni4Cu4Nb steel used for last stage rotor blade of steam turbine weld joints was studied by means of four-point-bending fatigue test and S-N curve was obtained, compared with parent material at the same time. Results showed that conditional fatigue limit of o5Cr17Ni4Cu4Nb steel weld joints can reach 90%of parent metal using optimized weld and post weld heat treatment process. SEM observation of fracture surface of fatigue specimen showed that the micro-defect at surface or near surface and microstructure heterogeneity are the main influence factors of 05Cr17Ni4Cu4Nb weld joints fatigue property.%采用四点弯曲疲劳试验方法,研究了05Cr17Ni4Cu4Nb汽轮机低压末级动叶片用钢焊接接头的疲劳性能,绘制了该钢焊接接头的S-N曲线,并与05Cr17Ni4Cu4Nb钢母材进行了对比。研究结果表明,采用优化的焊接、热处理工艺,05Cr17Ni4CuNb钢焊接接头的条件疲劳极限可以达到母材的90%以上。疲劳试样断口的扫描电子显微镜观察发现,焊缝表面或近表面的显微缺陷及接头的组织不均匀性是影响05Cr17Ni4Cu4Nb钢焊接接头接头疲劳性能的主要因素。

  14. Microstructural Evolution of Brazed CP-Ti Using the Clad Ti-20Zr-20Cu-20Ni Foil

    Science.gov (United States)

    Yeh, Tze-Yang; Shiue, Ren-Kae; Chang, Chenchung Steve

    2013-01-01

    Microstructural evolution of the clad Ti-20Zr-20Cu-20Ni foil brazed CP-Ti alloy has been investigated. For the specimen furnace brazed below 1143 K (870 °C), the joint is dominated by coarse eutectic and fine eutectoid structures. Increasing the brazing temperature above 1163 K (890 °C) results in disappearance of coarse eutectic structure, and the joint is mainly comprised of a fine eutectoid of (Ti,Zr)2Ni, Ti2Cu, Ti2Ni, and α-Ti.

  15. Magnetism of coherent Co and Ni thin films on Cu(111) and Au(111) substrates: An ab initio study

    Science.gov (United States)

    Zelený, Martin; Dlouhý, Ivo

    2017-02-01

    We present an ab initio study of structural and magnetic properties of coherent Co and Ni thin films on Cu(111) and Au(111) substrates with thicknesses of up to 6 monolayers. All studied films on Cu(111) substrates prefer structures close their ground state (hcp for Co and fcc for Ni), whereas only the hcp stacking sequence has been found for both films on Au(111) substrates. All studied films exhibit instability of the first monolayer with respect to decomposition into 2-monolayer- or 3-monolayer-high islands, which is in agreement with experimental findings. All studied films are also ferromagnetic, nevertheless the Ni/Cu(111) films reduce their magnetic moments in the layer adjacent to the substrate due to a stronger Cu-Ni interaction at the interface. The magnetic anisotropy of a Co film does not depend on the film thickness: all the studied Co/Au(111) films exhibit a perpendicular magnetic anisotropy, whereas all the Co/Cu(111) films prefer in-plane magnetization. On the other hand, both Ni films change their preference for in-plane orientation of their easy axis to out-of-plane orientation at a critical thickness of 2 monolayers, however, the magnetic anisotropy energies for films thicker than 1 monolayer are smaller than 1 meV/Ni atom. These behaviors of magnetic anisotropy do not depend on the structure of the studied films.

  16. Effect of Cu on the evolution of precipitation in an Fe-Cr-Ni-Al-Ti maraging steel

    Energy Technology Data Exchange (ETDEWEB)

    Schnitzer, Ronald, E-mail: ronald.schnitzer@unileoben.ac.at [Christian Doppler Laboratory for Early Stages of Precipitation, University of Leoben, Franz-Josef-Strasse 18, A-8700 Leoben (Austria); Schober, Michael [Department of Physical Metallurgy and Materials Testing, University of Leoben, Franz-Josef-Strasse 18, A-8700 Leoben (Austria); Zinner, Silvia [Boehler Edelstahl GmbH and Co KG, Mariazeller Strasse 25, A-8605 Kapfenberg (Austria); Leitner, Harald [Christian Doppler Laboratory for Early Stages of Precipitation, University of Leoben, Franz-Josef-Strasse 18, A-8700 Leoben (Austria)] [Department of Physical Metallurgy and Materials Testing, University of Leoben, Franz-Josef-Strasse 18, A-8700 Leoben (Austria)

    2010-06-15

    The evolution of precipitates in an Fe-Cr-Ni-Al-Ti stainless maraging steel alloyed with Cu was investigated during aging at 525 deg. C. Atom probe tomography was used to reveal the development of precipitates and to determine their chemical composition. Two types of precipitates were observed to form during the aging process. Based on their chemical composition these are assumed to be NiAl B2 and Ni{sub 3}(Ti,Al) ({eta}-phase). The two phases of precipitates were found to develop independently of each other and the addition of Cu was found to accelerate precipitation. However, the effect of Cu on the nucleation of these phases is different: on the one hand, in the case of NiAl, Cu is incorporated and thus reduces the activation energy by reducing the lattice misfit; on the other hand, Cu acts as a nucleation site for the precipitation of Ni{sub 3}(Ti,Al) by forming independent Cu clusters.

  17. Response of Pinus halepensis Mill. seedlings to biosolids enriched with Cu, Ni and Zn in three Mediterranean forest soils

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes, David [Fundacion CEAM, Universidad de Alicante, Ap 99, 03080 Alicante (Spain)]. E-mail: david.fuentes@ua.es; Disante, Karen B. [Dept. d' Ecologia, Universitat d' Alacant, Ap 99, 03080 Alicante (Spain)]. E-mail: kb.disante@ua.es; Valdecantos, Alejandro [Fundacion CEAM, Universidad de Alicante, Ap 99, 03080 Alicante (Spain) and Dept. Ecosistemas Agroforestales (EPS Gandia), Universidad Politecnica de Valencia. Ctra. Nazaret-Oliva s/n. 46730 Gandia, Valencia (Spain)]. E-mail: a.valdecantos@ua.es; Cortina, Jordi [Dept. d' Ecologia, Universitat d' Alacant, Ap 99, 03080 Alicante (Spain)]. E-mail: jordi@ua.es; Ramon Vallejo, V. [Fundacion CEAM, Universidad de Alicante, Ap 99, 03080 Alicante (Spain)]. E-mail: ramonv@ceam.es

    2007-01-15

    We investigated the response of Pinus halepensis seedlings to the application of biosolids enriched with Cu, Ni and Zn on three Mediterranean forest soils under semiarid conditions. One-year-old seedlings were planted in lysimeters on soils developed from marl, limestone and sandstone which were left unamended, amended with biosolids, or amended with biosolids enriched in Cu, Ni and Zn. Enriched biosolids increased plant heavy metal concentration, but always below phytotoxic levels. Seedlings receiving unenriched biosolids showed a weak reduction in Cu and Zn concentration in needles, negatively affecting physiological status during drought. This effect was alleviated by the application of enriched sludge. Sewage sludge with relatively high levels of Cu, Zn and Ni had minor effects on plant performance on our experimental conditions. Results suggest that micronutrient limitations in these soils may be alleviated by the application of biosolids with a higher Cu, Zn and Ni content than those established by current regulations. - Biosolid-borne Cu, Ni and Zn did not show negative effects on Pinus halepensis seedlings performance after application on three Mediterranean forest soils.

  18. Low-temperature steam-reforming of ethanol over ZnO-supported Ni and Cu catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Homs, Narcis; Llorca, Jordi; De la Piscina, Pilar Ramirez [Departament de Quimica Inorganica, Universitat de Barcelona, C/Marti i Franques 1-11, 08028 Barcelona (Spain)

    2006-08-15

    ZnO-supported Ni and Cu as well as bimetallic Co-Ni and Co-Cu catalysts containing ca. 0.7wt% sodium promoter and prepared by the co-precipitation method were tested in the ethanol steam-reforming reaction at low temperature (523-723K), using a bioethanol-like mixture diluted in Ar. Monometallic ZnO-supported Cu or Ni samples do not exhibit good catalytic performance in the steam-reforming of ethanol for hydrogen production. Copper catalyst mainly dehydrogenates ethanol to acetaldehyde, whereas nickel catalyst favours ethanol decomposition. However, the addition of Ni to ZnO-supported cobalt has a positive effect both on the production of hydrogen at low temperature (<573K), and on catalyst stability. Evidence for alloy formation as well as mixed oxides at the microstructural level was found in the bimetallic systems after running the ethanol steam-reforming reaction by HRTEM-EELS. (author)

  19. RELATIONSHIPS BETWEEN FRACTIONATIONS OF Pb, Cd, Cu, Zn AND Ni AND SOIL PROPERTIES IN URBAN SOILS OF CHANGCHUN, CHINA

    Institute of Scientific and Technical Information of China (English)

    GUO Ping; XIE Zhong-lei; LI Jun; KANG Chun-li; LIU Jian-hua

    2005-01-01

    An extensive soil investigation was conducted in different domains of Changchun to disclose the fractionations of Pb, Cu, Cd, Zn and Ni in urban soils. Meanwhile correlation analysis and multiple stepwise regressions were used to define relationships between soil properties and metal fractions and the chief factors influencingthe fractionation of heavy metals in the soils. The results showed that Pb, Ni and Cu were mainly associated with the residual and organic forms; most of Cd was concentrated in the residual and exchangeable fractions. Zn in residual and carbonate fraction was the highest. The activities of the heavy metals probably declined in the following order: Cd, Zn,Pb, CuandNi. The chemical fractions of heavy metals in different domains in Changchun City were of significantly spatial heterogeneity. Soil properties had different influences on the chemical fractions of heavy metals to some extent and the main factors influencing Cd, Zn, Pb, Cu and Ni fractionation and transformation were apparently different.

  20. Structural phase transformations and shape memory effect in ZrCu along with Ni and Hf additions

    Directory of Open Access Journals (Sweden)

    Kosorukova Tetiana

    2015-01-01

    Full Text Available Ni replacement of Cu in ZrCu high temperature shape memory alloy results in the increase of the temperatures of the martensitic transformation (MT [1]. Once the Ni content reaches 20 at.%, the temperatures of MT are becoming higher than the temperature of crystallization of the amorphous alloy with the same composition [2] and crystallization from the amorphous state in this case takes place through formation of B19` phase without any visible signs of the nanoscale phase separation. In this regard, little is known about the influence of Hf additions onto phase transformations in ZrCu. The present work is dedicated to the study of structure and phase formation upon alloying of ZrCu by Ni and Hf by means of structural and thermal analysis. Their influence onto shape memory behavior will be discussed.

  1. Optimization of Heat Treatment of CuNiSiCrRE Alloy%CuNiSiCrRE合金热处理工艺的优化

    Institute of Scientific and Technical Information of China (English)

    郭宇航; 支海军; 吕秀芬; 师学礼

    2011-01-01

    By means of Brinell hardness tester and eddy-current conductometer as well as SEM, the effects of solid solution temperature, aging and cold deforming before aging on microstructure and properties of the CuNiSiCrRE alloy were studied, then the optimum heat treatment was detennined The results show that the optimized heat treatment process was solution at 900 ℃ for 1. 5 h with cooling in water, 40% cold-working and aging at 480 ℃ for 2 h with cooling in air. The hardness was 229 HB, electrical conductivity was 45. 6%IACS, tensile strength reached 674 MPa, yield strength was 641 MPa, elongation was 16 % and softening temperature was 540 ℃. Tensile fracture was ductile fracture.%采用布氏硬度计、涡流导电仪和扫描电子显微镜等研究了固溶温度、时效及时效前冷变形量对CuNiSiCrRE合金显微组织和性能的影响,在此基础上确定了其最佳热处理工艺.结果表明:该合金的最佳热处理工艺为900℃×1.5h固溶水冷+40%的冷变形+480℃×2h时效空冷,其相应的硬度为229HB,电导率为45.6%lACS,抗拉强度为674MPa,屈服强度为641MPa,伸长率为16%,软化温度为540℃,拉伸断口为韧性断裂.

  2. Feasibility of constructed wetland planted with Leersia hexandra Swartz for removing Cr, Cu and Ni from electroplating wastewater.

    Science.gov (United States)

    You, Shao-Hong; Zhang, Xue-Hong; Liu, Jie; Zhu, Yi-Nian; Gu, Chen

    2014-01-01

    As a low-cost treatment technology for effluent, the constructed wetlands can be applied to remove the heavy metals from wastewater. Leersia hexandra Swartz is a metal-accumulating hygrophyte with great potential to remove heavy metal from water. In this study, two pilot-scale constructed wetlands planted with L. hexandra (CWL) were set up in greenhouse to treat electroplating wastewater containing Cr, Cu and Ni. The treatment performance of CWL under different hydraulic loading rates (HLR) and initial metal concentrations were also evaluated. The results showed that CWL significantly reduced the concentrations of Cr, Cu and Ni in wastewater by 84.4%, 97.1% and 94.3%, respectively. High HLR decreased the removal efficiencies of Cr, Cu and Ni; however, the heavy metal concentrations in effluent met Emission Standard of Pollutants for Electroplating in China (ESPE) at HLR less than 0.3 m3/m2 d. For the influent of 5 mg/L Cr, 10 mg/L Cu and 8 mg/L Ni, effluent concentrations were below maximum allowable concentrations in ESPE, indicating that the removal of Cr, Cu and Ni by CWL was feasible at considerably high influent metal concentrations. Mass balance showed that the primary sink for the retention of contaminants within the constructed wetland system was the sediment, which accounted for 59.5%, 83.5%, and 73.9% of the Cr, Cu and Ni, respectively. The data from the pilot wetlands support the view that CWL could be used to successfully remove Cr, Cu and Ni from electroplating wastewater.

  3. Microstructural Evolution of the Interface Between Pure Titanium and Low Melting Point Zr-Ti-Ni(Cu) Filler Metals

    Science.gov (United States)

    Lee, Dongmyoung; Sun, Juhyun; Kang, Donghan; Shin, Seungyoung; Hong, Juhwa

    2014-12-01

    Low melting point Zr-based filler metals with melting point depressants (MPDs) such as Cu and Ni elements are used for titanium brazing. However, the phase transition of the filler metals in the titanium joint needs to be explained, since the main element of Zr in the filler metals differs from that of the parent titanium alloys. In addition, since the MPDs easily form brittle intermetallics, that deteriorate joint properties, the phase evolution they cause needs to be studied. Zr-based filler metals having Cu content from 0 to 12 at. pct and Ni content from 12 to 24 at. pct with a melting temperature range of 1062 K to 1082 K (789 °C to 809 °C) were wetting-tested on a titanium plate to investigate the phase transformation and evolution at the interface between the titanium plate and the filler metals. In the interface, the alloys system with Zr, Zr2Ni, and (Ti,Zr)2Ni phases was easily changed to a Ti-based alloy system with Ti, Ti2Ni, and (Ti,Zr)2Ni phases, by the local melting of parent titanium. The dissolution depths of the parent metal were increased with increasing Ni content in the filler metals because Ni has a faster diffusion rate than Cu. Instead, slow diffusion of Cu into titanium substrate leads to the accumulation of Cu at the molten zone of the interface, which could form undesirable Ti x Cu y intermetallics. This study confirmed that Zr-based filler metals are compatible with the parent titanium metal with the minimum content of MPDs.

  4. Bulk metallic glass formation in the Pd-Ni-P and Pd-Cu-P alloy systems

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, R.B.; He, Y. [Los Alamos National Lab., NM (United States). Center for Materials Science

    1996-12-11

    Bulk metallic glasses were prepared in the Pd-Ni-P and Pd-Cu-P systems using a fluxing technique. The formation of bulk amorphous Pd-Cu-P alloys was reported here for the first time. For both alloy systems, bulk glass formation requires maintaining the phosphorus content near 20 at.%. In the Pd-Ni-P system, 10-mm diameter amorphous Pd{sub x}Ni{sub 80{minus}x}P{sub 20} rods can be formed for 25 {le} x {le} 60. In the Pd-Cu-P system, 7-mm diameter amorphous Pd{sub x}Cu{sub 80{minus}x}P{sub 20} rods can be produced for 40 {le} x {le} 60. From all the ternary alloys studied, Pd{sub 40}Ni{sub 40}P{sub 20} has the highest glass formability, and 25-mm diameter amorphous cylinders, 50 mm in length, can be easily fabricated. The glass stability of the Pd-Ni-P system is wider than that of the Pd-Cu-P system. For most bulk Pd-Ni-P glasses, {Delta}T > 90 K. The {Delta}T values of bulk amorphous Pd-Cu-P alloys are considerably smaller, ranging from 27 to 73 K. The elastic constants of bulk amorphous Pd-Ni-P and Pd-Cu-P alloys were determined using a resonant ultrasound spectroscopy technique. The Pd-Ni-P glasses are slightly stiffer than the Pd-Cu-P glasses. Within each alloy system, the Young`s modulus and the bulk modulus show little change with alloy composition. Of all the bulk glass forming systems so far investigated, the ternary Pd-Ni-P system has the best glass formability. This alloy was one of the first bulk glasses discovered, yet it still remains the best in terms of glass formability. Upon replacing part of Ni by Cu, the critical cooling rates are expected to be further reduced.

  5. Study of hyperfine interactions in intermetallic compounds Gd(Ni,Pd,Cu)In, Tb(Ni,Pd)In, Dy(Ni,Pd)In and Ho(Ni,Pd)In; Estudo de interacoes hiperfinas em compostos intermetalicos Gd(Ni,Pd,Cu)In, Tb(Ni,Pd)In, Dy(Ni,Pd)In e Ho(Ni,Pd)In

    Energy Technology Data Exchange (ETDEWEB)

    Lapolli, Andre Luis

    2006-07-01

    Systematic behavior of magnetic hyperfine field (B{sub hf}) in the intermetallic compounds Gd(Ni,Pd,Cu)In Tb(Ni,Pd)In, Dy(Ni,Pd)In and Ho(Ni,Pd)In was studied by Perturbed Gamma-Gamma Angular Correlation spectroscopy. The measurements of B{sub hf} were carried out at the rare earth atom and in sites using the nuclear probes {sup 140}Ce and {sup 11}'1Cd respectively. The variation of hyperfine field with temperature, in most cases, follows the Brillouin function predicted from the molecular field theory. The hyperfine field values at rare earth atom sites obtained from {sup 140}Ce probe as well as at in sites obtained from {sup 111}Cd probe for each series of compounds were extrapolated to zero Kelvin B{sub hf}(T=0) from these curves. These values were compared with the values of the literature for other compounds containing the same rare earth element and all of them show a linear relationship with the ordering temperature. This indicates that the main contribution to B{sub hf} comes from the conduction electron polarization (CEP) through Fermi contact interaction and the principal mechanism of magnetic interaction in these compounds can be described by the RKKY type interaction. The values of B{sub hf}(T=0) for each family of intermetallic compounds RNiIn and RPdIn when plotted as a function of 4f spin projection of rare earth element also shows a linear relationship. Exceptions are the results for the compounds RNiIn obtained with {sup 111}Cd probe where a small deviation from linearity is observed. The results of the measurements carried out with the {sup 111}Cd probe were also analyzed to obtain the hyperfine parameters of the quadrupole interaction as a function of temperature for RPdln and GdNiIn compounds. The results show that for the compound GdPdIn there might be some Gd-In disorder at high temperature. (author)

  6. NiO活性对高频低磁导率NiCuZn铁氧体Q值的影响%Effect of NiO Activity on the Q Value of High Frequency and Low Permeability NiCuZn Ferrite

    Institute of Scientific and Technical Information of China (English)

    王勤峰; 白本帅

    2008-01-01

    以不同工艺生产的NiO为原材料,制备了高频低磁导率NiCuZn铁氧体.用扫描电镜(SEM)分析原材料NiO的微观形态的差异,用X射线衍射(XRD)研究预烧后固相反应的进行状况,考察了不同NiO材料对低温烧结材料高频Q值的影响.研究发现,低温烧结条件下,高活性的NiO原材料能有效提高低磁导率NiCuZn铁氧体的高频Q值.

  7. Analysis of KLL Auger spectra excited by X-rays from Ni and Cu metal surfaces

    Science.gov (United States)

    Egri, S.; Kövér, L.; Cserny, I.; Novák, M.; Drube, W.

    2016-02-01

    Ni and Cu KLL Auger spectra excited by X-rays from polycrystalline metal foils were measured with good energy resolution and intensity earlier. Auger spectra of 3d transition metals contain satellite peaks due to the atomic excitation processes. Because of the complexity of the measured spectral shape a complete explanation of the spectra was not given in the previous works. A new analysis of the measured spectra is presented here, with improved description of effects of inelastic electron scattering of the electrons in the solid sample and using complex peak shapes to model the satellite structure that follows each diagram line. The energy loss part of measured spectra due to the bulk plasmon excitations, surface plasmon excitations and intrinsic loss processes was removed using the Partial Intensity Analysis method based on energy loss distributions obtained from experimental reflection electron energy loss spectra of the same Cu and Ni metal foils. Relative Auger-transition energies derived from measured spectra of copper are in good agreement with previous experimental works and the results of cluster molecular orbital multielectron (DV-ME) calculations. The intensity ratio I(3P2/3P0) shows better agreement with the result of relativistic calculations than in previous works. In the case of nickel the relative Auger-transition energies are in good agreement with the previous results. According to the new evaluation four satellite peaks were identified on the low energy side of each diagram line in the Auger spectra of Ni.

  8. Wear behavior of an austempered ductile iron containing Mo-Ni-Cu

    Energy Technology Data Exchange (ETDEWEB)

    Yazdani, S.; Rahimi, M.A. [Faculty of Materials Engineering, Sahand Univ. of Technology, Tabriz (Iran)

    2005-07-01

    The aim of the this investigation is to study the influence of Ni on tribiological behavior of an austempered ductile iron (ADI) containing Mo, Ni and Cu. Ductile irons with chemical composition Fe-3.56%C-2.67%Si -0.25%Mo-0.5%Cu and Ni contents of 0.8 and 1.5% were cast into standard Y-blocks. Wear test samples were machined off from the bottom section of blocks. Austenitizing heat treatment was carried out at 870 C temperature followed by austempering at 270, 320, and 370 C for 5-1140 minutes. The wear test was carried out by using block-on-ring test machine. Sliding dry wear behavior was studied under applied loads of 50, 100 and 150 N. The results show that wear resistance is independent of austempering temperature with an applied load of 50 N, but there is a strong dependence at higher austempering temperatures with applied loads of 100 and 150 N. Wear mechanism is described as being due to subsurface fatigue, with cracks nucleated at plastically, deformed graphite interfaces. The wear controlling mechanism is the crack growth when wear shows a dependence on applied load and austempering temperature. (orig.)

  9. Calculated Radioactivity Yields of Cu-64 from Proton-Bombarded Ni-64 Targets Using SRIM Codes

    Directory of Open Access Journals (Sweden)

    I. Kambali

    2014-12-01

    Full Text Available The End-Of-Bombardment (EOB Yields from 64Ni(p,n64Cu nuclear reaction have been calculated for optimizing irradiation parameters that correspond to future 64Cu radionuclide production using the BATAN’s 26.5-MeV cyclotron in Serpong. Enriched Ni target thickness, proton beam current and irradiation time which play significant role in the success of the Positron Emission Tomography (PET radionuclide were also discussed in this paper. For a 26.5-MeV proton beam, the optimum target thickness for 64Cu production was nearly 1.5 mm with yields up to 560 mCi/µA.hr at the end of the irradiation. The comparisons with some selected experimental data indicated that the much-lower-than-expected EOB yields were mainly due to incorrect target thickness prepared for the irradiation. Nevertheless, these calculations were in good agreement with the previous predicted data with a maximum difference of less than 10%. The discrepancies were mostly due to different cross-section data employed in the calculations.

  10. Vapour condensation of R22 retrofit substitutes R417A, R422A and R422D on CuNi turbo C tubes

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Seara, Jose; Uhia, Francisco J.; Diz, Ruben; Dopazo, J. Alberto [Area de Maquinas y Motores Termicos, E.T.S. de Ingenieros Industriales, University of Vigo, Campus Lagoas-Marcosende No 9, 36310 Vigo (Spain)

    2010-01-15

    Heat transfer coefficients (HTCs) for outer condensation of R22 and vapours of its retrofit substitutes R417A, R422A and R422D on 90/10 CuNi Turbo C tubes were experimentally measured. The tubes have 19.05 mm nominal outside diameter, 40 fins per inch (1575 fpm) on the outer surface and a smooth inner surface. The effective condensing length per tube was 1895 mm. Experimental data are reported at vapour saturation temperature of 40 C and wall subcoolings from around 1.5 to 8 C. A rapid increase of the HTCs for low wall subcoolings attributable to the presence of the hydrocarbon in the mixtures was found. For wall subcoolings greater than around 3 C, the condensation HTCs slightly increase with raising the wall subcooling and they are for vapours of R417A, R422A and R422D lower by 65-76%, 24-31% and 60-67% than the HTCs for R22, respectively. Comparisons of the condensation performance amongst the different refrigerants and experimental enhancement factors for the condensation of R22 on 90/10 CuNi Turbo C tubes are reported in the paper. (author)

  11. Structural characterization of two new quaternary chalcogenides: CuCo{sub 2}InTe{sub 4} and CuNi{sub 2}InTe{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, Gerzon E.; Grima-Gallardo, Pedro; Nieves, Luis, E-mail: gerzon@ula.ve [Universidad de Los Andes, Merida (Venezuela, Bolivarian Republic of); Cabrera, Humberto [Centro Multidisciplinario de Ciencias, Instituto Venezolano de Investigaciones Cientificas (IVIC), Merida (Venezuela, Bolivarian Republic of); Glenn, Jennifer R.; Aitken, Jennifer A. [Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA (United States)

    2016-11-15

    The crystal structure of the chalcogenide compounds CuCo{sub 2}InTe{sub 4} and CuNi{sub 2}InTe{sub 4} , two new members of the I-II{sub 2}-III-VI{sub 4} family, were characterized by Rietveld refinement using X-ray powder diffraction data. Both materials crystallize in the tetragonal space group I4-bar 2m (No. 121), Z = 2, with a stannite-type structure, with the binaries CoTe and NiTe as secondary phases. (author)

  12. Strengthening effect of Cu-rich phase precipitation in 18Cr9Ni3CuNbN austenitic heat-resisting steel

    Institute of Scientific and Technical Information of China (English)

    Chengyu CHI; Hongyao YU; Jianxin DONG; Xishan XIE; Zhengqiang CUI; Xiaofang CHEN; Fusheng LIN

    2011-01-01

    The Cu-containing austenitic heat-resistant steel 18Cr9Ni3CuNbN, which is being used as superheater and reheater tube material for modern ultra-super-critical (USC) power plants all over the world, has been investigated at 650 ℃ long time aging till 10 000 h. SEM, TEM and 3DAP (three dimensional atom probe) have been used to follow microstructural changes with mechanical property variations. Experimental results show that Cu-rich phase and MX precipitate in the grains as well as M23C6 precipitates at grain boundaries are the main precipitation strengthening phases in this steel. Among them Cu-rich phase is the most important strengthening phase. Homogeneous distribution of very fine nano-size Cu-rich phase has been formed at very early stage of 650℃ aging (less than 1 h). Cu atoms gradually concentrate to Cu-rich particles and the other elements (such as Fe, Cr, Ni etc) diffuse away from Curich particles to γ-matrix with the increasing of aging time at 650 ℃. The growth rate of Cu-rich phase at 650 ℃ long time aging is very slow and the average diameters of Cu-rich phase have been determined by TEM method. Cu-rich phase keeps in about 30 nm till 650℃ aging for 10 000 h. It shows that nano-size Cu-rich phase precipitation strengthening can be kept for long time aging at 650 ℃ because of its excellent stability at high temperatures. According to structure stability study and mechanical properties determination results the Cu-rich phase precipitation sequence and its strengthening mechanism model have been suggested and discussed.

  13. Preparation and compression properties of NiCu30 alloy foams%NiCu30泡沫合金的制备及压缩性能研究

    Institute of Scientific and Technical Information of China (English)

    刘汉强; 赵鹏; 沈伟; 浦玉萍

    2015-01-01

    采用分层电镀及热处理合金化制备工艺制备NiCu30泡沫合金,以孔密度为45ppi的NiCu30泡沫合金为研究对象,研究了表观密度对其力学性能的影响.结果表明:经扩散热处理,Ni和Cu穿过镀层界面相互扩散,形成(Ni,Cu)奥氏体固溶体结构;850℃热处理16h后,泡沫骨架内Ni和Cu元素分布趋于均匀化;相同条件下(45 ppi、0.647g/cm3),NiCu30泡沫合金的屈服强度σy*比泡沫Ni和泡沫Cu分别提高了1.8倍和1倍,固溶强化是σy*升高的主要原因;确定了NiCu30泡沫合金表观密度p*与屈服强度σy*之间的关系式,受电镀制备工艺影响,45ppi试样的拟合值α和m小于Gibson-Ashby公式范围最小值.

  14. Quantitative analysis of the proximity effect in Nb/ Co60 Fe40 , Nb/Ni , and Nb/ Cu40 Ni60 bilayers

    Science.gov (United States)

    Kim, Jinho; Kwon, Jun Hyung; Char, K.; Doh, Hyeonjin; Choi, Han-Yong

    2005-07-01

    We have studied the behavior of the superconducting critical temperature Tc in Nb/Co60Fe40 , Nb/Ni , and Nb/Cu40Ni60 bilayers as a function of the thickness of each ferromagnetic metal layer. The Tc ’s of three sets of bilayers exhibit nonmonotonic behavior as a function of each ferromagnetic metal thickness. Employing the quantitative analysis based on Usadel formalism of the effect of the exchange energy, we observed that the Tc behavior of Nb/Co60Fe40 bilayers is in good agreement with the theoretical values over the entire range of the data. On the other hand, the Tc ’s of Nb/Ni and Nb/Cu40Ni60 bilayers show a higher value in the small thickness regime than the theoretical prediction obtained from the calculation, which matches the dip position and the saturation value of Tc in the large thickness limit. This discrepancy is probably due to the weakened magnetic properties of Ni and Cu40Ni60 when they are thin. We discuss the values of our fitting parameters and their implication for the validity of the current Usadel formalism of the effect of the exchange energy.

  15. Effect of NiO/SiO2 on thermo-chemical conversion of waste cooking oil to hydrocarbons.

    Science.gov (United States)

    Sani, J; Sokoto, A M; Tambuwal, A D; Garba, N A

    2017-05-01

    Increase in organic waste generation, dwindling nature of global oil reserves coupled with environmental challenges caused by waste oil disposal and burning of fossil fuels necessitated the need for alternative energy resources. Waste cooking oil obtained from the frying fish outlet was analyzed for its physicochemical properties using ASTM D-975 methods. Acid and Iodine values of the oil were 30.43 ± 0.32 mgKOH/g and 57.08 ± 0.43 mgI2/100 g respectively. Thermo-chemical conversion of the oil using NiO/SiO2 at different reaction conditions (pressure, temperature, and catalyst concentration) at a residence time of 3 h yielded 33.63% hydrocarbons. Hydro-catalytic pyrolysis of waste cooking oil at 400 °C, H2 pressure of 15 bars, and catalyst to oil ratio of 0.25 g/100 cm(3) resulted in highest hydrocarbon yield (41.98%). The fuel properties of the product were: cetane number (71.16), high heating value (41.43 MJ/kg), kinematic viscosity (2.01 mm(2)/s), density (0.94 g/ml), saponification value (185.1 ± 3.96 mgKOH/g), and iodine value (20.57 ± 0.20 I2/100 g) respectively. These results show that the NiO/SiO2 could be a suitable catalyst for conversion of waste vegetable oil to hydrocarbons.

  16. Effect of NiO/SiO2 on thermo-chemical conversion of waste cooking oil to hydrocarbons

    Directory of Open Access Journals (Sweden)

    J. Sani

    2017-05-01

    Full Text Available Increase in organic waste generation, dwindling nature of global oil reserves coupled with environmental challenges caused by waste oil disposal and burning of fossil fuels necessitated the need for alternative energy resources. Waste cooking oil obtained from the frying fish outlet was analyzed for its physicochemical properties using ASTM D-975 methods. Acid and Iodine values of the oil were 30.43 ± 0.32 mgKOH/g and 57.08 ± 0.43 mgI2/100 g respectively. Thermo-chemical conversion of the oil using NiO/SiO2 at different reaction conditions (pressure, temperature, and catalyst concentration at a residence time of 3 h yielded 33.63% hydrocarbons. Hydro-catalytic pyrolysis of waste cooking oil at 400 °C, H2 pressure of 15 bars, and catalyst to oil ratio of 0.25 g/100 cm3 resulted in highest hydrocarbon yield (41.98%. The fuel properties of the product were: cetane number (71.16, high heating value (41.43 MJ/kg, kinematic viscosity (2.01 mm2/s, density (0.94 g/ml, saponification value (185.1 ± 3.96 mgKOH/g, and iodine value (20.57 ± 0.20 I2/100 g respectively. These results show that the NiO/SiO2 could be a suitable catalyst for conversion of waste vegetable oil to hydrocarbons.

  17. Corrosion mechanism of mechanically alloyed Mg50Ni50 and Mg45Cu5Ni50 alloys

    Institute of Scientific and Technical Information of China (English)

    张耀; 李寿权; 陈立新; 雷永泉; 王启东

    2002-01-01

    As the loss of active material Mg may affect electrode's discharge capacity and the cycling stability,a more refined mechanism study on cycling capacity degradation should be made.The present investigation is based on the supposition that the capacity degradation of the binary Mg50Ni50 alloy and ternary Mg45Cu5Ni50 alloy electrodes is solely due to the corrosion of Mg,the active hydrogen storage element.That means amount of capacity degradation is determined by the corrosion current time,which is also the time of operation.The corrosion current J corr dependence on cycling time was deduced.A mathematic relation between the cycling capacity retention CN / C 1 (%) and the duration of operation was also deduced.The data calculated from the equations deduced agree well with those of the experiment result.The loss of the active hydrogen-absorbing element Mg is proved to be the main cause for cycling capacity deterioration in the present investigation.

  18. The effect of irradiation on tensile properties and fracture toughness of CuCrZr and CuCrNiSi alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kalinin, G.M., E-mail: gmk@nikiet.ru [OJSC ' NIKIET' , P.O.B. 788, Moscow 101000 (Russian Federation); Artyugin, A.S.; Yvseev, M.V.; Shushlebin, V.V.; Sinelnikov, L.P. [OJSC ' IRM' , Zarechnyi, 624250 Sverdlovsk Region (Russian Federation); Strebkov, Yu.S. [OJSC ' NIKIET' , P.O.B. 788, Moscow 101000 (Russian Federation)

    2011-10-01

    This paper deals with the effect of irradiation on tensile properties and fracture toughness of CuCrZr and CuCrNiSi alloys, considered for use in some in-vessel components of ITER, where a combination of high strength and heat conduction is essential. The heat treatments were: -CuCrZr, quenching in water after annealing at 950 {sup o}S, cold worked 40-45%, and aged at 475-500 {sup o}S for 3 h. -CuCrNiSi, quenching in water after annealing at 980 {sup o}S and aged for 4 h at 460 {sup o}S. Specimens were irradiated in the IVV-2 reactor at {approx}200 {sup o}S and with irradiation damage of 0.15 and 0.27 dpa. Post-irradiation tests were carried out to assess the tensile properties and fracture toughness of the materials. The tests results show that CuCrNiSi has better strength and retains higher ductility after irradiation, but has somewhat lower crack resistance than CuCrZr.

  19. Superparamagnetic behavior of indium substituted NiCuZn nano ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Hashim, Mohd, E-mail: md.hashim09@gmail.com [Department of Physics, Aligarh Muslim University, Aligarh 202002 (India); Shirsath, Sagar E. [Spin Device Technology Centre, Faculty of Engineering, Shinshu University, Nagano 380-8553 (Japan); Meena, S.S. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Kotnala, R.K. [National Physical Laboratory (CSIR), Dr. K.S. Krishnan Road, New Delhi 110012 (India); Kumar, Shalendra [Department of Applied Physics, Aligarh Muslim University, Aligarh 202002 (India); School of Materials Science and Engineering, Changwon National University, Changwon, Gyeongnam 641-773 (Korea, Republic of); Ravinder, D. [Department of Physics, Osmania University, Hyderabad 500007, AP (India); Raghasudha, M. [Department of Chemistry, Jayaprakash Narayan College of Engineering, Mahabubnagar 509001, AP (India); Bhatt, Pramod [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Şentürk, Erdoğan [Department of Physics, Sakarya University, Esentepe 54187, Sakarya (Turkey); Alimuddin [Department of Physics, Aligarh Muslim University, Aligarh 202002 (India); Kumar, Ravi [Centre for Material Science Engineering, National Institute of Technology, Hamirpur 177005, HP (India)

    2015-05-01

    Nano structured indium substituted NiCuZn ferrites with chemical composition Ni{sub 0.5}Cu{sub 0.25}Zn{sub 0.25}Fe{sub 2−x}In{sub x}O{sub 4} (0.0≤x≤0.4) were prepared using citrate-gel method. The XRD analysis confirmed the formation of single phased cubic spinel structure with a crystallite size ranging from 25 to 34 nm. The morphology of the prepared samples was studied using transmission electron microscopy and the thermal growth of the samples was analyzed by thermo gravimetric analysis and differential thermal analysis. Magnetic properties such as the Curie temperature and the temperature dependence magnetization studies of the samples were carried out using vibrating sample magnetometer. From the temperature dependence of both the field cooled and Zero field cooled magnetization measurements in the temperature range 50–350 K under an applied field of 500 Oe, the blocking temperature (T{sub b}) was estimated to be 325 K. Above T{sub b} the material shows superparamagnetic behavior which makes the material desirable for biomedical applications. - Highlights: • Crystallite size of Ni{sub 0.5}Cu{sub 0.25}Zn{sub 0.25}Fe{sub 2−x}In{sub x}O{sub 4} ranges from 25 to 34 nm. • T{sub c} of the ferrites has decreased from 698 K to 653 K with increase in In content. • Ferrites with x=0.0, 0.2 and 0.4 show superparamagnetic nature with T{sub c} of 325 K. • Hence the materials are desirable for biomedical applications and show excellent application in hyperthermia cancer therapy.

  20. Effect of Mg substitution on electromagnetic properties of NiCuZn ferrite

    Science.gov (United States)

    Sujatha, Ch.; Venugopal Reddy, K.; Sowri Babu, K.; RamaChandra Reddy, A.; Buchi Suresh, M.; Rao, K. H.

    2013-08-01

    Mg substituted NiCuZn ferrites were prepared through sol-gel method using polyvinyl alcohol (PVA) as a chelating agent. The samples after annealing at 500 °C to remove PVA were sintered at 950 °C for 1 h. The structural and electromagnetic properties of the samples were investigated. All the samples showed single phase spinel structure with increased lattice constant as a function of Mg concentration. The morphology reveals polyhedral shaped grains with increased grain size as a function of Mg composition. Dielectric parameters showed low values at higher frequencies. The initial permeability increased with Mg substitution in place of Ni in accordance with the microstructure. The samples sintered at low temperature having low dielectric losses and improved permeability along with the high frequency stability of permeability find applications in multilayer chip inductors.

  1. Nanocrystallization of Al80Ni6Y8Co4Cu2 amorphous alloy

    Institute of Scientific and Technical Information of China (English)

    边赞; 孙玉峰; 何国; 陈国良

    2001-01-01

    Nanoscale α(Al) phase with a size of 15  nm was precipitated from Al80Ni6Y8Co4Cu2 amorphous ribbons after annealing. The microhardness increases with increasing the crystallization volume fraction of nanoscale α(Al) phase. The combination effect of alloy strengthening and dispersion strengthening is main reason for the increase of microhardness. The formation of intermetallic compound (Al3Ni) with a small volume fraction leads to the decrease of microhardness resulting from the depletion of the solute elements in the residual amorphous matrix and the weakening of alloy strengthening. With increasing the volume fraction of intermetallic compound, microhardness increases again due to dispersion strengthening of nanoscale intermetallic compound.

  2. Influence of an electric field on the spin-reorientation transition in Ni/Cu(100)

    Energy Technology Data Exchange (ETDEWEB)

    Gerhard, Lukas [Institut für Nanotechnologie, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen (Germany); Bonell, Frédéric; Suzuki, Yoshishige [CREST, Japan Science Technology, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Graduate School of Engineering Science, Osaka University, Osaka 560-8531 (Japan); Wulfhekel, Wulf [Institut für Nanotechnologie, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen (Germany); Physikalisches Institut, Karlsruhe Institute of Technology, 76131 Karlsruhe (Germany)

    2014-10-13

    Magnetoelectric coupling offers the possibility to change the magnetic state of a material by an applied electric field. Over the last few years, metallic systems have come up as simple prototypes for this interaction. While the previous studies focused on Fe and Co thin films or their alloys, here we demonstrate magnetoelectric coupling in a Ni thin film which is close to a spin-reorientation transition. Our magneto-optic Kerr effect measurements on 10 ML of Ni/Cu(100) show a considerable influence of the applied electric field on the magnetism. This rounds off the range of magnetic metals that exhibit magnetoelectric coupling, and it reveals the possibility of an electric field control of a spin-reorientation transition.

  3. Synthesis and characterization of bimetallic Cu-Ni/ZrO{sub 2} nanocatalysts: H{sub 2} production by oxidative steam reforming of methanol

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Hernandez, R.; Mondragon Galicia, G.; Mendoza Anaya, D.; Palacios, J. [Instituto Nacional de Investigaciones Nucleares; Carretera Mexico-Toluca S/N La Marquesa, Ocoyoacac, Estado de Mexico C.P. 52750 (Mexico); Angeles-Chavez, C. [Programa de Ingenieria Molecular, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas, No. 152, C.P. 07730, Mexico D.F. (Mexico); Arenas-Alatorre, J. [Instituto de Fisica-UNAM, Apartado Postal 20-364, C.P. 01000, Mexico D.F. (Mexico)

    2008-09-15

    Cu/ZrO{sub 2}, Ni/ZrO{sub 2} and bimetallic Cu-Ni/ZrO{sub 2} catalysts were prepared by deposition-precipitation method to produce hydrogen by oxidative steam reforming of methanol (OSRM) reaction in the range of 250-360 C. TPR analysis of the Cu-Ni/ZrO{sub 2} catalyst showed that the presence of Cu facilitates the reduction of the Ni at lower temperatures. In addition, this sample showed two reduction peaks, the former peak was attributed to the reduction of the adjacent Cu and Ni atoms which could be forming a bimetallic Cu-rich phase, and the second was assigned to the remaining Ni atoms forming bimetallic Ni-rich nanoparticles. Transmission Electron Microscopy revealed Cu or Ni nanoparticles on the monometallic samples, while bimetallic nanoparticles were identified on the Cu-Ni/ZrO{sub 2} catalyst. On the other hand, Cu-Ni/ZrO{sub 2} catalyst exhibited better catalytic activity than the monometallic samples. The difference between them was related to the Cu-Ni nanoparticles present on the former catalyst, as well as the bifunctional role of the bimetallic phase and the support that improve the catalytic activity. All the catalysts showed the same selectivity toward H{sub 2} at the maximum reaction temperature and it was {proportional_to}60%. The high selectivity toward CO is associated to the presence of the bimetallic Ni-rich nanoparticles, as evidenced by TEM-EDX analysis, since this behavior is similar to the one showed by the monometallic Ni-catalyst. (author)

  4. The effect of milling time on the synthesis of Cu54Mg22Ti18Ni6 alloy

    Science.gov (United States)

    Kursun, C.; Gogebakan, M.

    2016-03-01

    In the present work, nanocrystalline Cu54Mg22Ti18Ni6 alloy was produced by mechanical alloying from mixtures of pure crystalline Cu, Mg, Ti and Ni powders using a Fritsch planetary ball mill with a ball to powder ratio of 10:1. Morphological changes, microstructural evolution and thermal behaviour of the Cu-Mg-Ti-Ni powders at different stages of milling were characterised by X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray detection (SEM/EDX) and differential thermal analysis (DTA). This alloy resulted in formation of single phase solid solution with FCC structure α-Cu (Mg, Ti, Ni) after 80 h of milling. In the initial stage of milling different sized and shaped elemental powders became uniform during mechanical alloying. The homogeneity of the Cu54Mg22Ti18Ni6 alloy increased with increasing milling time. The EDX result also confirmed the compositional homogeneity of the powder alloy. The crystallite size of alloy was calculated below 10 nm from XRD data.

  5. Characteristics of the Energetic Micro-initiator Through Integrating Al/Ni Nano-multilayers with Cu Film Bridge

    Science.gov (United States)

    Zhang, Yuxin; Jiang, Hongchuan; Zhao, Xiaohui; Yan, Yichao; Zhang, Wanli; Li, Yanrong

    2017-01-01

    An energetic micro-initiator through integrating Al/Ni nano-multilayers with Cu film bridge was investigated in this study. The Cu film bridge was initially fabricated with wet etching, and Al/Ni nano-multilayers were alternately deposited on the surface of Cu film bridge by magnetron sputtering. The periodic layer structure of Al/Ni nano-multilayers was verified by scanning electron microscopy. The exothermic reaction in Al/Ni nano-multilayers can be initiated with onset reaction temperature as low as 503 K, and the total reaction heat is about 774.6 J/g. This energetic micro-initiator exhibited improved performances with lower threshold voltage, smaller initiation energy, and higher explosion temperature compared with Cu film bridge. An extra violent explosion phenomenon with longer duration time and larger quantities of ejected product particles was detected on this energetic micro-initiator by high-speed camera. Overall, the electric explosion performances of Cu film bridge can be improved evidently with the integration of Al/Ni nano-multilayers.

  6. Microstructure Investigation of Cu-Ni Base Al2O3 Nanocomposites: From Nanoparticles Synthesis to Consolidation

    Science.gov (United States)

    Ramos, M. I.; Suguihiro, N. M.; Brocchi, E. A.; Navarro, R.; Solorzano, I. G.

    2017-02-01

    Different compositions of Cu-Ni/Al2O3 nanocomposites were prepared by a chemical-based synthesis of co-formed oxides (CuO-NiO-Al2O3) nanoparticles followed by selective hydrogen reduction of the Cu and Ni oxides and finally by consolidation into pellets. The synthesized composites with both phases (metallic and oxide) containing nanoparticles in the 5 to 60 nm range have been systematically produced. Micro- and nanoscale characterization techniques were extensively employed in all stages of the process. X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses have shown a heterogeneous distribution of chemical elements resulting in the formation of Cu- and Ni-rich nanoparticles containing Al2O3 phase in a controlled low volume fraction, which later mostly dispersed between the metallic particle and, to a lesser extent, within metallic particles. After consolidation, under uniaxial pressure followed by sintering, the compacted nanocomposite observed in the transmission electron microscope (TEM) revealed that the Al2O3 have been more homogeneously distributed as such: the majority of it at the newly formed grain boundaries of the consolidated pellet and a small part of it within the metallic Cu-Ni matrix. Microhardness measurements demonstrate that dispersion of Al2O3 was successfully achieved as reinforcement phase, yielding up to 100 pct increase in hardness.

  7. Qualitative analysis of Cu2+, Co2+, and Ni2+ cations using thin-layer chromatography.

    Science.gov (United States)

    Ergül, Soner

    2004-03-01

    The M(DEDTC)2 (M = Cu, Co, or Ni) and M(PyDTC)2 (M = Cu or Co) complexes prepared by reactions of sodium diethyldithiocarbamate and ammonium pyrollidinedithiocarbamate with metal (II) nitrates are examined for qualitative analysis and separation using thin-layer chromatography systems. These complexes and their mixtures are spotted to the activated thin layers of silica gel 60GF254 (Si-60GF254) with a 250-microm thickness. Pure toluene and a toluene-cyclohexane mixture (3:1, v/v) are used as mobile phases for running of the complexes. These chromatographic systems are successfully used for qualitative analysis of corresponding metal cations and separation of components in both M(DEDTC)2 and M(PyDTC)2 complex mixtures.

  8. Microstructure and Tribological Behaviour of CrCuFeNiTi High Entropy Alloys

    Directory of Open Access Journals (Sweden)

    Sobiyi Kehinde

    2016-01-01

    Full Text Available The microstructure, hardness and wear performance of CrCuFeTiNi high entropy alloy were evaluated. The alloy was produced by mixing constituent elements, consolidated and melted using vacuum arc furnace. The X-ray diffraction analysis confirmed that the alloy is composed of FCC and BCC simple phases. The microstructure contains three regions that were rich in Cu, Cr and Fe which resulted from segregation of constituent elements. The Vickers micro hardness of the alloy was determined as HV0.5 = 510 ± 7 MPa. The wear performance of the alloy was also studied using WC balls under two load conditions. The volume loss was evaluated, accompanied by analysis of the wear tracks and debris using SEM images and EDS. The main wear mechanisms were ploughing, adhesion and oxidation-dominated wear.

  9. Experimental valence-band study of Ti(NiCu) alloys with different compositions and crystal structures

    Science.gov (United States)

    Senkovskiy, B. V.; Usachev, D. Yu.; Fedorov, A. V.; Shelyakov, A. V.; Adamchuk, V. K.

    2012-08-01

    The density of valence-band electronic states of Ti(NiCu) alloys with different crystal structures and elemental compositions has been studied by X-ray photoelectron spectroscopy. It has been established that the change in the crystal state initiated by a martensitic transformation or a transition from the amorphous state to the crystal state does not affect the valence-band electronic state density distribution of the Ti50Ni50 and Ti50Ni25Cu25 alloys. It has been shown that a change in the elemental composition leads to a noticeable redistribution of the electronic density in alloys of the Ti50Ni50 - x Cu x system ( x = 0, 10, 15, 25, 30, 38, 50 at. %). As the copper concentration in the Ti(NiCu) alloys increases, the contribution of the Ni d states in the vicinity of the Fermi level decreases, with the d band of nickel shifting toward higher binding energies, and that of copper, toward lower binding energies.

  10. Metabolismo del Mg, Cu, Zn, Cr, Mn, y Ni en la diabetes melitus

    OpenAIRE

    1995-01-01

    En los últimos años, a los elementos traza y al mg se las ha implicado en la patologenesis de las complicaciones crónicas de la diabetes mellitus (dm). Las alteraciones del estado mineral asociadas a la dm podrían estar influidas, entre otros factores, por el grado de control metabólico y la asociación, o no, de otras patologías metabólicas como la hipertensión arterial (hta), la dislipemia y la obesidad. A pesar de que el mg, cu, zn, cr, mn y ni son cationes de localización principalmente in...

  11. Microstructure and mechanical properties of CuNiMo austempered ductile iron

    OpenAIRE

    Erić Olivera; Jovanović Marina P.; Šiđanin Leposava P.; Rajnović Dragan M.

    2004-01-01

    Microstructure and mechanical properties of Cu, Ni and Mo alloyed cast ductile iron have been investigated after austempering. Samples were austenitised at 860oC for 1h and then austempered at 320oC and 400oC in the interval from 0,5 to 5h. The X-ray diffraction technique and the light microscopy were utilized to investigate the bainitic transformation, while tensile and impact tests were performed for characterization of mechanical properties. By austempering at 320oC in the range between 2 ...

  12. Some aspects of thermally induced martensite in Fe-30% Ni-5% Cu alloy

    Energy Technology Data Exchange (ETDEWEB)

    Guener, M. [Department of Physics, Faculty of Science and Arts, University of Kirikkale, 71450 Yahsihan, Kirikkale (Turkey)]. E-mail: martensite@email.com; Gueler, E. [Department of Physics, Faculty of Science and Arts, University of Hitit, 19030, Corum (Turkey); Yasar, E. [Department of Physics, Faculty of Science and Arts, University of Kirikkale, 71450 Yahsihan, Kirikkale (Turkey); Aktas, H. [Department of Physics, Faculty of Science and Arts, University of Kirikkale, 71450 Yahsihan, Kirikkale (Turkey)

    2007-05-31

    Kinetical, morphological, crystallographical and several thermal properties of thermally induced martensite in the austenite phase of Fe-30% Ni-5% Cu alloy were investigated. Scanning electron microscope (SEM), transmission electron microscope (TEM) and differential scanning calorimetry (DSC) techniques were used during study. Kinetics of the transformation was found to be as athermal type. SEM and TEM observations revealed {alpha}' (BCC) martensite formation in the austenite phase of alloy by thermal effect. These thermally induced {alpha}' martensites exhibited a thin plate-like morphology with twinnings.

  13. ELECTROOXIDATION OF METHANOL ON PT MODIFIED WITH ADATOMS (NI, CU, PB, CD

    Directory of Open Access Journals (Sweden)

    A.Khouchaf

    2015-05-01

    Full Text Available The electro oxidation of methanol has been studied in alkaline medium NaOH 0.1 M and acid medium H2SO4 0.5 M on a platinum electrode and a platinum modified by adatom adsorption (Ni, Cu, Pb, and Cd. The influence of different experimental variables (methanol concentration, and temperature is reported. Preliminary investigations by cyclic voltammetry showed that the catalytic activity of platinum is still too low to be considered as a practical catalyst. Underpotential deposition of lead, nickel, cadmium, or copper adatoms at platinum allowed increasing significantly the current densities.

  14. Directional Solidification Velocity of Undercooled Cu7oNi3o Alloy Melt

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The directional dendrite growth velocity in the Cu7oNi30 alloy melt undercooled by 90~185 K was measured by high speed cinematography, and compared with the calculated free dendrite growth velocity. It was found that at lower undercoolings the interaction between the adjacent directionally growing dendrites is weak, and there is not marked difference between the velocity of the directionally growing dendrite and that of free dendrite. But with undercooling increasing,the interaction is enhanced due to the decrease of the primary arm spacing, which makes the velocity difference enlarges quickly.

  15. Dark counts in superconducting single-photon NbN/NiCu detectors

    Science.gov (United States)

    Parlato, L.; Nasti, U.; Ejrnaes, M.; Cristiano, R.; Myoren, H.; Sobolewski, Roman; Pepe, G.

    2015-05-01

    Nanostripes of hybrid superconductor/ferromagnetic (S/F) NbN/NiCu bilayers and pure superconducting NbN nanostripes have been investigated in dark count experiments. Presence of a ferromagnetic layer influences the superconducting properties of the S/F bilayer, such as the critical current density and the transient photoresponse. The observed significant decrease of the dark-count rate is discussed in terms of vortex-related fluctuation models to shed more light in the intriguing question of the basic mechanism responsible for dark counts in superconducting nanostripe single photon detectors.

  16. Nb/NiCu bilayers in single and stacked superconductive tunnel junctions: preliminary results

    Science.gov (United States)

    Pepe, G. P.; Ruotolo, A.; Parlato, L.; Peluso, G.; Ausanio, G.; Carapella, G.; Latempa, R.

    2004-05-01

    We present preliminary experimental results concerning both single and stacked tunnel junctions in which one of the electrodes was formed by a superconductor/ferromagnet (S/F) bi-layer. In particular, in the stacked configuration a Nb/NiCu bi-layer was used as the intermediate electrode, and it was probed by tunneling on both sides. Tunnel junctions have been characterized in terms of current-voltage characteristics (IVC), and differential conductance. Preliminary steady-state injection-detection measurements performed in the stacked devices at T=4.2K are also presented and discussed.

  17. Nb/NiCu bilayers in single and stacked superconductive tunnel junctions: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Pepe, G.P. E-mail: ruotolo_antonio@tin.it; Ruotolo, A.; Parlato, L.; Peluso, G.; Ausanio, G.; Carapella, G.; Latempa, R

    2004-05-01

    We present preliminary experimental results concerning both single and stacked tunnel junctions in which one of the electrodes was formed by a superconductor/ferromagnet (S/F) bi-layer. In particular, in the stacked configuration a Nb/NiCu bi-layer was used as the intermediate electrode, and it was probed by tunneling on both sides. Tunnel junctions have been characterized in terms of current-voltage characteristics (IVC), and differential conductance. Preliminary steady-state injection-detection measurements performed in the stacked devices at T=4.2 K are also presented and discussed.

  18. Local radiofrequency-induced hyperthermia using CuNi nanoparticles with therapeutically suitable Curie temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, Anatoly A. [Institute of Biochemical Physics, Russian Academy of Sciences (RAS), Moscow 119991 (Russian Federation); Leontiev, Vladimir G. [Institute of Metallurgy, Russian Academy of Sciences (RAS), Moscow 119991 (Russian Federation); Brukvin, Vladimir A. [Institute of Metallurgy, Russian Academy of Sciences (RAS), Moscow 119991 (Russian Federation); Vorozhtsov, Georgy N. [NIOPIK Organic Intermediates and Dyes Institute, Moscow 103787 (Russian Federation); Kogan, Boris Ya. [NIOPIK Organic Intermediates and Dyes Institute, Moscow 103787 (Russian Federation); Shlyakhtin, Oleg A. [Institute of Chemical Physics, Russian Academy of Sciences (RAS), Kosygin St. 4, Moscow 119991 (Russian Federation); Yunin, Alexander M. [Institute of Biochemical Physics, Russian Academy of Sciences (RAS), Moscow 119991 (Russian Federation); Tsybin, Oleg I. [Institute of Metallurgy, Russian Academy of Sciences (RAS), Moscow 119991 (Russian Federation); Kuznetsov, Oleg A. [Institute of Biochemical Physics, Russian Academy of Sciences (RAS), Moscow 119991 (Russian Federation)]. E-mail: kuznetsov_oa@yahoo.com

    2007-04-15

    Copper-nickel (CuNi) alloy nanoparticles with Curie temperatures (T{sub c}) from 40 to 60{sup o}C were synthesized by several techniques. Varying the synthesis parameters and post-treatment, as well as separations by size and T{sub c}, allow producing mediator nanoparticles for magnetic fluid hyperthermia with parametric feedback temperature control with desired parameters. In vitro and in vivo animal experiments have demonstrated the feasibility of the temperature-controlled heating of the tissue, laden with the particles, by an external alternating magnetic field.

  19. An analysis of non-classical austenite-martensite interfaces in CuAlNi

    CERN Document Server

    Ball, J M; Seiner, H

    2011-01-01

    Ball and Carstensen theoretically investigated the possibility of the occurrence of non-classical austenite-martensite interfaces and studied the cubic-to-tetragonal case extensively. Here, we aim to present an analysis of such interfaces recently observed by Seiner et al. in CuAlNi single crystals, undergoing a cubic-to-orthorhombic transition. We show that they can be described by the non-linear elasticity model for martensitic transformations and we make some predictions regarding the volume fractions of the martensitic variants involved, as well as the habit plane normals.

  20. Methane to Liquid Hydrocarbons over Tungsten-ZSM-5 and Tungsten Loaded Cu/ZSM-5 Catalysts

    Institute of Scientific and Technical Information of China (English)

    Didi Dwi Anggoro; Nor Aishah Saidina Amin

    2006-01-01

    Metal containing ZSM-5 can produce higher hydrocarbons in methane oxidation. Many researchers have studied the applicability of HZSM-5 and modify ZSM-5 for methane conversion to liquid hydrocarbons, but their research results still lead to low conversion, low selectivity and low heat resistance.The modified HZSM-5, by loading with tungsten (W), could enhance its heat resistant performance, and the high reaction temperature (800 ℃) did not lead to a loss of the W component by sublimation. The loading of HZSM-5 with tungsten and copper (Cu) resulted in an increment in the methane conversion as well as CO2 and C5+ selectivities. In contrast, CO, C2-3 and H2O selectivities were reduced. The process of converting methane to liquid hydrocarbons (C5+) was dependent on the metal surface area and the acidity of the zeolite. High methane conversion and C5+ selectivity, and low H2O selectivity are obtained over W/3.0Cu/HZSM.

  1. Intermetallic compound formation in Sn-Co-Cu, Sn-Ag-Cu and eutectic Sn-Cu solder joints on electroless Ni(P) immersion Au surface finish after reflow soldering

    Energy Technology Data Exchange (ETDEWEB)

    Sun Peng [Key State Lab for New Displays and System Integration (Chinese Ministry of Education), SMIT Center, Shanghai University, 200072 Shanghai (China) and Department of Microtechnology and Nanoscience, SMIT Center, Chalmers University of Technology, 412-96 Goeteborg (Sweden)]. E-mail: peng.sun@mc2.chalmers.se; Andersson, Cristina [Department of Microtechnology and Nanoscience, SMIT Center, Chalmers University of Technology, 412-96 Goeteborg (Sweden); Wei Xicheng [Key State Lab for New Displays and System Integration (Chinese Ministry of Education), SMIT Center, Shanghai University, 200072 Shanghai (China); Cheng Zhaonian [Department of Microtechnology and Nanoscience, SMIT Center, Chalmers University of Technology, 412-96 Goeteborg (Sweden); Shangguan Dongkai [Flextronics International, San Jose, CA (United States); Liu Johan [Key State Lab for New Displays and System Integration (Chinese Ministry of Education), SMIT Center, Shanghai University, 200072 Shanghai (China); Department of Microtechnology and Nanoscience, SMIT Center, Chalmers University of Technology, 412-96 Goeteborg (Sweden)

    2006-11-25

    The interfacial reactions between Sn-0.4Co-0.7Cu eutectic alloy and immersion Au/electroless Ni(P)/Cu substrate were investigated after reflow soldering at 260 deg. C for 2 min. Common Sn-4.0Ag-0.5Cu and eutectic Sn-0.7Cu solders were used as reference. Two types of intermetallic compounds (IMC) were found in the solder matrix of the Sn-0.4Co-0.7Cu alloy, namely coarser CoSn{sub 2} and finer Cu{sub 6}Sn{sub 5} particles, while only one ternary (Cu, Ni){sub 6}Sn{sub 5} interfacial compound was detected between the solder alloy and the electroless nickel and immersion gold (ENIG) coated substrate. The same trend was also observed for the Sn-Ag-Cu and Sn-Cu solder joints. Compared with the CoSn{sub 2} particles found in the Sn-Co-Cu solder and the Ag{sub 3}Sn particles found in the Sn-Ag-Cu solder, the Cu{sub 6}Sn{sub 5} particles found in both solder systems exhibited finer structure and more uniform distribution. It was noted that the thickness of the interfacial IMCs for the Sn-Co-Cu, Sn-Ag-Cu and Sn-Cu alloys was 3.5 {mu}m, 4.3 {mu}m and 4.1 {mu}m, respectively, as a result of longer reflow time above the alloy's melting temperature since the Sn-Ag-Cu solder alloy has the lowest melting point.

  2. Performance of 500 m3 TankCell® at Kevitsa Cu-Ni-PGM concentrator

    Directory of Open Access Journals (Sweden)

    Mattsson Toni

    2016-01-01

    Full Text Available Outotec TankCell e500 flotation cell, with 500 m3 of efficient flotation volume, has been in operation since October 2014 at Kevitsa Cu-Ni-PGM concentrator as the first Cu rougher flotation cell. The 500 m3 flotation cell has proven to provide metallurgical superiority at very low specific power. On average the cell has recovered 71% of copper contained in the flotation feed. The cell has produced the concentrate with the Cu grade equal to 17% Cu. The typical specific power for the cell is around 0.4 kW/m3 (blower power not included. After the start-up of the cell the operating parameters have varied. The mixing speed have varied from 4.9 to 7.0 m/s and the superficial gas velocity from 0.3 to 1.5 cm/s. At various operating parameters the mixing, gas dispersion and metallurgical performance of the cell have been evaluated. In this paper a review of the hydrodynamic and metallurgical performance of the cell is presented. The paper focuses on the interactions of mixing intensity, bubble size and metallurgical performance in industrial application.

  3. Influence of tin additions on the precipitation processes in a Cu-Ni-Zn alloys; Influencia de la adicion de estano en el proceso de precipitacion en una aleacion de Cu-Ni-Zn

    Energy Technology Data Exchange (ETDEWEB)

    Donoso, E. C.; Dianez, M. J.; Criado, J. M.; Espinoza, R.; Mosquera, E.

    2016-05-01

    The influence of 1.1 wt% tin additions on the precipitation hardening of Cu-11 wt% Ni-20 wt% Zn alloy was studied by Differential Scanning Calorimetry (DSC), microhardeness measurements and High Resolution Transmission Electron Microscopy (HRTEM). The calorimetric curves, in the range of temperatures analyzed, show the presence of two exothermic reactions in the ternary alloy, associated to the short-range-order development assisted by migration of excess vacancies. On the other hand, one exothermic and one endothermic reaction are observed in the quaternary alloy, associated to the formation and dissolution of Cu{sub 2}NiZn precipitates, respectively. It has been show that an addition of 1.1% tin plays an important role in the formation of Cu{sub 2}NiZn precipitates, responsible for the precipitation hardening of the ternary alloy. (Author)

  4. Defect related microstructure, optical and photoluminescence behaviour of Ni, Cu co-doped ZnO nanoparticles by co-precipitation method

    Science.gov (United States)

    Anbuselvan, D.; Muthukumaran, S.

    2015-04-01

    In the present study Ni-doped ZnO and Ni, Cu-doped ZnO nanoparticles were successfully synthesized by co-precipitation method. Structural studies confirmed the dominant presence of hexagonal wurtzite ZnO phase at lower Cu concentration and CuO phase was observed at higher Cu (Cu = 5%) concentration. The existence of Cu2+ ions were dominant at Cu ⩽ 3% (responsible for lattice shrinkage) and the presence of Cu+ ions were dominant at Cu > 3% (responsible for lattice expansion). The change in UV-visible absorption and energy gap were discussed by secondary phase generation and charge carrier density. The low absorption loss and high transmittance at Cu = 3% doped samples is used as potential candidate for opto-electronic devices. The increase of green band intensity and decrease of UV band at higher Cu concentration confirmed the existence of more defect related states.

  5. Synthesis, Characterization and Hydrogen Evolution Performance of CuO-NiO/SnO2 Photocatalyst%CuO-NiO/SnO2光催化剂的制备、表征及产氢性能

    Institute of Scientific and Technical Information of China (English)

    郑先君; 黄娟; 魏丽芳; 魏明宝

    2012-01-01

    The SnO2 nanoparticles were prepared by sol-gel method. The CuO-NiO/SnO2 semiconductor materials were synthesized by impregnation process. The phase composition, morphologies and light absorption ability were further characterized by XRD, UV-Vis DRS.TEM and HRTEM. Using UV light as light source and ethanol as electron donor, the effects of CuO doping content, NiO doping content and ethanol concentration on hydrogen evolution performance have been systematically studied. The results showed that 5% CuO-7% NiO/SnO2 had best photocatalytic H2-production activity, about 2. 8 times higher than pure SnO2 under the same conditions. The optimum concentration of ethanol was about 1.2 mol/L.%采用溶胶-凝胶法制备纳米SnO2,通过浸渍法制备CuO-NiO/SnO2光催化材料,采用XRD、UV-Vis DRS、TEM及HRTEM对其结构、形貌及光吸收性能进行表征.在紫外灯照射下,以无水乙醇为电子给体,详细考察了CuO掺杂量、NiO掺杂量、乙醇浓度等对SnO2光催化产氢性能的影响.研究结果表明:5% CuO-7% NiO/SnO2的光催化产氢性能最佳,约是同条件下纯SnO2产氢性能的2.8倍;最优乙醇浓度约为1.2 mol/L.

  6. Structure and properties of FeCoNiCrCu0.5Alx high-entropy alloy%FeCoNiCrCu0.5Alx高熵合金的结构和性能

    Institute of Scientific and Technical Information of China (English)

    李宝玉; 彭坤; 胡爱平; 周灵平; 朱家俊; 李德意

    2013-01-01

    Effects of Al content and heat treatment on the structure,hardness and electrochemical properties of FeCoNiCrCu0.5Alx high-entropy alloys were investigated.The phase structure of as-cast alloys evolves from FCC phase to BCC phase with the increase of Al content.The stable phase of FeCoNiCrCu0.5Alx high-entropy alloys will transform from FCC phase to FCC+BCC duplex phases when x value increases from 0.5 to 1.5.The hardness of BCC phase is higher than that of FCC phase,and the corrosion resistance of BCC phase is better than FCC phase in chlorine ion and acid medium.High hardness and good corrosion resistance can be obtained in as-cast FeCoNiCrCu05Al1.0 alloy.%研究Al含量和热处理对FeCoNiCrCu0.5Alx多主元高熵合金的相结构、硬度和电化学性能的影响规律.随着Al含量的增加,铸态合金的相结构由FCC相向BCC相转变.当x从0.5增加到1.5时,FeCoNiCrCu0.5Alx高熵合金的稳定结构由FCC结构向FCC+BCC双相结构转变.BCC相的硬度高于FCC相的,在氯离子及酸性介质中BCC相的耐腐蚀性均优于FCC相的.FeCoNiCrCu0.5Al1.0铸态合金具有高硬度和良好的抗腐蚀性能.

  7. Soil pollution in the railway junction Niš (Serbia) and possibility of bioremediation of hydrocarbon-contaminated soil

    Science.gov (United States)

    Jovanovic, Larisa; Aleksic, Gorica; Radosavljevic, Milan; Onjia, Antonije

    2015-04-01

    Mineral oil leaking from vehicles or released during accidents is an important source of soil and ground water pollution. In the railway junction Niš (Serbia) total 90 soil samples polluted with mineral oil derivatives were investigated. Field work at the railway Niš sites included the opening of soil profiles and soil sampling. The aim of this work is the determination of petroleum hydrocarbons concentration in the soil samples and the investigation of the bioremediation technique for treatment heavily contaminated soil. For determination of petroleum hydrocarbons in the soil samples method of gas-chromatography was carried out. On the basis of measured concentrations of petroleum hydrocarbons in the soil it can be concluded that: Obtained concentrations of petroleum hydrocarbons in 60% of soil samples exceed the permissible values (5000 mg/kg). The heavily contaminated soils, according the Regulation on the program of systematic monitoring of soil quality indicators for assessing the risk of soil degradation and methodology for development of remediation programs, Annex 3 (Official Gazette of RS, No.88 / 2010), must be treated using some of remediation technologies. Between many types of phytoremediation of soil contaminated with mineral oils and their derivatives, the most suitable are phytovolatalisation and phytostimulation. During phytovolatalisation plants (poplar, willow, aspen, sorgum, and rye) absorb organic pollutants through the root, and then transported them to the leaves where the reduced pollutants are released into the atmosphere. In the case of phytostimulation plants (mulberry, apple, rye, Bermuda) secrete from the roots enzymes that stimulates the growth of bacteria in the soil. The increase in microbial activity in soil promotes the degradation of pollutants. Bioremediation is performed by composting the contaminated soil with addition of composting materials (straw, manure, sawdust, and shavings), moisture components, oligotrophs and

  8. Characterization and Activity of Cr,Cu and Ga Modified ZSM-5 for Direct Conversion of Methane to Liquid Hydrocarbons

    Institute of Scientific and Technical Information of China (English)

    Nor Aishah Saidina Amin; Didi Dwi Anggoro

    2003-01-01

    Direct conversion of methane using a metal-loaded ZSM-5 zeolite prepared via acidic ion exchange was investigated to elucidate the roles of metal and acidity in the formation of liquid hydrocarbons. ZSM-5 (SiO2/Al2O3=30) was loaded with different metals (Cr, Cu and Ga) according to the acidic ion-exchange method to produce metal-loaded ZSM-5 zeolite catalysts. XRD, NMR, FT-IR and N2 adsorption analyses indicated that Cr and Ga species managed to occupy the aluminum positions in the ZSM-5 framework. In addition, Cr species were deposited in the pores of the structure. However, Cu oxides were deposited on the surface and in the mesopores of the ZSM-5 zeolite. An acidity study using TPD-NH3, FT-IR, and IR-pyridine analyses revealed that the total number of acid sites and the strengths of the Bronsted and Lewis acid sites were significantly different after the acidic ion exchange treatment.Cu loaded HZSM-5 is a potential catalyst for direct conversion of methane to liquid hydrocarbons. The successful production of gasoline via the direct conversion of methane depends on the amount of aluminum in the zeolite framework and the strength of the Bronsted acid sites.

  9. Effect of hydrogen plasma on electroless-plating Ni-B films and its Cu diffusion barrier property.

    Science.gov (United States)

    Choi, Kyeong-Keun; Kee, Jong; Kwon, Da-Jung; Kim, Deok-Kee

    2014-12-01

    Electroless-plating Ni-B films have been evaluated for the application as the diffusion barrier and metal cap for copper integration. The effect of post plasma treatment in a hydrogen environment on the characteristics of Ni-B films such as chemical composition, surface roughness, crystallinity, and resistivity was investigated. By treating electroless-plating Ni-B films with H2 plasma, the resistance and the roughness of the films decreased. The leakage current of Ni-B bottom electrode/30-nm-thick Al2O3/Al top electrode structures improved after the H2 plasma treatment on the Ni-B films. 40 nm-thick electroless-plating Ni-B film was able to block Cu diffusion up to 350 degrees C.

  10. Effect of a Trace of Bi and Ni on the Microstructure and Wetting Properties of Sn-Zn-Cu Lead-Free Solder

    Institute of Scientific and Technical Information of China (English)

    Haitao MA; Haiping XIE; Lai WANG

    2007-01-01

    The microstructure and melting behavior of Sn-9Zn-2Cu (SZC) lead-free solder with 3 wt pct Bi and various amount of Ni additions were studied. The wetting properties and the interracial reaction of Sn-Zn-Cu with Cu substrate were also examined. The results indicated that the addition of 3 wt pct Bi could decrease the melting point of the solder and Ni would refine the microstructure and the rod-shape Cu5Zn8 phase changed into square-shape (Cu, Ni)5Zn8 phase. The addition of Bi, Ni greatly improved the wettability of SZC solder.In addition, the interfacial phase of the solders/Cu joint was typical planar Cu5Zn8 in SZC-3Bi-INi alloy.

  11. Effect of Co element on microstructure and mechanical properties of FeCoxNiCuAl alloys

    Institute of Scientific and Technical Information of China (English)

    Yanxin ZHUANG; Wenjie LIU; Pengfei XING; Fei WANG; Jicheng HE

    2012-01-01

    FeCoxNiCuAl (x values in molar ratio,x=0.2,0.5,1,1.5,2 and 3) alloys were prepared using a suck-casting method.The effect of Co element on phase constituents,microstructure and mechanical properties of the FeCoxNiCuAl alloys was investigated using X-ray diffraction,scanning electron microscopy,optical microscopy and compressive tests.It was found that the Co addition has a significant influence on the structure and properties of the FeCoxNiCuAl alloys.The alloys have typical dendrite microstructure,and are composed of a simple fcc structure and bcc structure.The addition of Co promotes the formation of fcc phase in the alloys,retards the compressive strength and hardness of the alloys,and enhances the plasticity of the alloys.

  12. Corrosion behaviour of amorphous Ti48Cu52, Ti50Cu50 and Ti60Ni40 alloys investigated by potentiodynamic polarization method

    Indian Academy of Sciences (India)

    A Dhawan; S Roychowdhury; P K De; S K Sharma

    2003-10-01

    Potentiodynamic polarization studies were carried out on virgin specimens of amorphous alloys Ti48Cu52, Ti50Cu50 and Ti60Ni40 in 0.5 M HNO3, 0.5 M H2SO4 and 0.5 M NaOH aqueous media at room temperature. The value of the corrosion current density (corr) was maximum for Ti48Cu52 alloy in all the three aqueous media as compared to the remaining two alloys. The value of corr for the alloy Ti48Cu52 was maximum (corr = 2.6 × 10-5 A/cm2) in 0.5 M H2SO4 and minimum (corr = 3.5 × 10-6 A/cm2) in 0.5 M NaOH aqueous solutions. In contrast, the alloy Ti60Ni40 exhibited the least corrosion current density in 0.5 M HNO3 (corr = 4.0 × 10-7 A/cm2) and in 0.5 M NaOH (corr = 5.5 × 10-7 A/cm2) aqueous media as compared to those for Ti–Cu alloys, while its value in 0.5 M H2SO4 was comparable to that for Ti50Cu50. It is suggested that the alloy Ti60Ni40 is more corrosion resistant than the alloys Ti48Cu52 and Ti50Cu50 in all the three aqueous media.

  13. Improvement of Joint Strength of SiCp/Al Metal Matrix Composite in Transient Liquid Phase Bonding Using Cu/Ni/Cu Film Interlayer

    Institute of Scientific and Technical Information of China (English)

    Rongfa CHEN; Dunwen ZUO; Min WANG

    2006-01-01

    The compact oxide on the surface of SiCp/Al metal matrix composite (SiCp/Al MMC) greatly depends on the property of the joint. Inlaid sputtering target was applied to etch the oxide completely on the bonding surface of SiCp/Al MMC by plasma erosion. Cu/Ni/Cu film of 5 μm in thickness was prepared by magnetron sputtering method on the clean bonding surface in the same vacuum chamber, which was acted as an interlayer in transient liquid phase (TLP) bonding process. Compared with the same thickness of single Cu foil and Ni foil interlayer,the shear strength of 200 MPa was obtained using Cu/Ni/Cu film interlayer during TLP bonding, which was 89.7% that of base metal. In addition, homogenization of the bonding region and no particle segregation in interfacial region were found by analysis of the joint microstructure. Scanning electron microscopy (SEM) was used to observe the micrograph of the joint interface. The result shows that a homogenous microstructure of joint was achieved, which is similar with that of based metal.

  14. Effect of CuSO4 Content in the Plating Bath on the Properties of Composites from Electroless Plating of Ni-Cu-P on Birch Veneer

    Directory of Open Access Journals (Sweden)

    Bin Hui

    2014-04-01

    Full Text Available A wood-based composite was prepared via simple electroless Ni-Cu-P plating on birch veneer for EMI shielding. The effects of CuSO4•5H2O concentration on the metal deposition, elemental composition, phase structure, surface morphology, wettability, surface resistivity, and shielding effectiveness of coatings were investigated. The coatings were characterized using X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, and scanning electron microscopy (SEM. When the CuSO4•5H2O concentration was increased from 0.6 g/L to 2.2 g/L, the metal deposition was decreased from 79.61 g/m2 to 66.44 g/m2. Elemental composition showed that the copper content in the coating increased significantly, whereas the nickel content was reduced significantly and the phosphorus content was slightly reduced. The crystallinity of coatings increased, and fine-grain structure was observed, with higher copper content. Ni-Cu-P deposition improved the hydrophobic properties when the maximum static contact angle increased from 77.5° to 116.5°. The lowest surface resistivity was 367.5 mΩ/cm2, and the EMI shielding effectiveness of Ni-Cu-P-coated veneers was higher than 60 dB in frequencies ranging from 9 kHz to 1.5 GHz.

  15. NdFeB磁性材料表面化学镀Ni-Cu-P实验研究%Electroless plating of Ni-Cu-P alloy on the surface of NdFeB permanent magnets

    Institute of Scientific and Technical Information of China (English)

    王憨鹰; 李增生; 李成荣; 陈焕铭

    2011-01-01

    In order to improve corrosion resistance of electroless plating Ni-Cu-P coating, plating bath and plating parameters of eletroless deposition of Ni-Cu-P alloy on the surface of NdFeB magnets was optimized by an orthogonal experiment. The optimal formula of electroless Ni-Cu-P plating bath was obtained as follows: 25 g/L of nickel sulfate, 0.4 g/L of copper sulfate, 35 g/L of sodium hypophosphite, 48 g/L of complexant, 50 g/L of buffering agent and pH value of 9. The effect of pH and CuSO4 ? 5H2O content in solution on plating rate and deposit composition was investigated. It is found that the plating rate and the copper and nickel contents of the deposit increase with increasing pH, while phosphorus content decreases; with increasing CuSO4?5H2O content in solution, the copper content of the deposit increases, while the phosphorus contents first increase and then decrease with a simultaneous decrease in the nickel content.%为提高Ni-Cu-P合金镀层的耐腐蚀性,采用正交试验法对NdFeB磁体表面化学镀Ni-Cu-P合金的镀液配方和施镀工艺进行优化,获得NdFeB磁体表面化学镀Ni-Cu-P合金的最佳成分配方为:硫酸镍25g/L,硫酸铜0.4 g/L,次亚磷酸钠35 g/L,络合剂48 g/L,缓冲剂50 g/L,pH值9.分析镀液pH值和镀液中CuS04·5H20浓度对沉积速度和镀层成分的影响.结果表明:随镀液pH值增加,沉积速度提高,镀层中Cu和Ni含量略升高,P含量逐渐降低;随镀液中CuS04·5H20浓度的增加,镀层中Cu含量升高,P含量先升高后降低,Ni含量降低.

  16. Valorization of biosorbent obtained from a forestry waste: Competitive adsorption, desorption and transport of Cd, Cu, Ni, Pb and Zn.

    Science.gov (United States)

    Cutillas-Barreiro, Laura; Paradelo, Remigio; Igrexas-Soto, Alba; Núñez-Delgado, Avelino; Fernández-Sanjurjo, María José; Álvarez-Rodriguez, Esperanza; Garrote, Gil; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel

    2016-09-01

    Bark from Pinus pinaster is one of the most abundant forestry wastes in Europe, and among the proposed technologies for its reutilization, the removal of heavy metals from wastewater has been gaining increasing attention. In this work, we have studied the performance of pine bark for heavy metal biosorption on competitive systems. Pb, Cu, Ni, Zn and Cd sorption and desorption at equilibrium were studied in batch experiments, whereas transport was studied in column experiments. Batch experiments were performed adding simultaneously different concentrations (0.08-3.15mM) of two or more metals in solution to pine bark samples. Column experiments were performed with 10mM solutions of two metals or a 5mM solution of the five metals. In general, the results under competitive conditions were different to those obtained in monoelemental experiments. The multi-metal batch experiments showed the adsorption sequence Pb≈Cu>Cd>Zn>Ni for lower metal doses, Pb>Cu>Cd>Zn>Ni for intermediate doses, and Pb>Cu>Cd≈Zn≈Ni for high metal doses. Desorption followed the sequence PbCdCdCd, Ni and Zn from adsorption sites on pine bark. The transport experiments produced comparable results to those obtained in the batch experiments, with pine bark retention capacity following the sequence Pb>Cu>Zn>Cd>Ni. The presence of a second metal affected the transport of all the elements studied except Pb, and confirmed the strong influence of Pb and Cu on the retention of the other metals. These results can help to appropriately design decontamination systems using this forestry waste.

  17. Effect of nickel content on the electrochemical behavior of Cu-Al-Ni alloys in chloride free neutral solutions

    Energy Technology Data Exchange (ETDEWEB)

    Badawy, W.A., E-mail: wbadawy50@hotmail.co [Chemistry Department, Faculty of Science, Cairo University, 12 613 Giza (Egypt); El-Rabiee, M.M.; Helal, N.H.; Nady, H. [Chemistry Department, Faculty of Science, Fayoum University, Fayoum (Egypt)

    2010-12-30

    The electrochemical behavior of Cu-Al-Ni alloys in chloride free neutral solutions was investigated. The effect of Ni content on the corrosion resistance of the alloys was examined and evaluated. Conventional electrochemical techniques and electrochemical impedance spectroscopy, EIS, have been used. Potentiodynamic measurements revealed that the increase in the Ni content decreases the stability of the Cu-Al-Ni alloys. The polarization measurements were confirmed by EIS experiments. The morphology of the alloy surface was investigated by scanning electron microscopy, SEM, and surface analysis was made by energy dispersive X-ray technique. The experimental impedance data were fitted to theoretical data according to a proposed equivalent circuit model representing the electrode/electrolyte interface. The results of these experiments are discussed in reference to the potential-pH (Pourbaix) diagrams of the alloying elements.

  18. Dielectric loss, conductivity relaxation process and magnetic properties of Mg substituted Ni-Cu ferrites

    Science.gov (United States)

    Singh, Navneet; Agarwal, Ashish; Sanghi, Sujata; Khasa, Satish

    2012-08-01

    The dielectric properties, dc and ac electrical resistivities of Mg substituted Ni-Cu ferrites with general formula Ni0.5Cu0.5-xMgxFe2O4 (0.0≤x≤0.5) have been investigated as a function of frequency, temperature and composition. ac resistivity of all the samples decreases with increase in the frequency exhibiting normal ferrimagnetic behavior. The frequency dependence of dielectric loss tangent showed a maximum in between 10 Hz and 1 kHz in all the ferrites. The conductivity relaxation of the charge carriers was examined using the electrical modulus formulism, and the results indicate the presence of the non-Debye type of relaxation in the prepared ferrites. Similar values of activation energies for dc conduction and for conductivity relaxation reveal that the mechanism of electrical conduction and dielectric polarization is the same in these ferrites. A single 'master curve' for normalized plots of all the modulus isotherms observed for a given composition indicates that the distribution of relaxation time is temperature independent. The saturation magnetization and coercivity as calculated from the hysteresis loop measurement show striking dependence on composition.

  19. Repeatable Shape Memory Effect and Mechanical Resonance of TiNiCu-Coated Magnetic Ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, O; Miyahara, Y; Kambe, S; Kutsuzawa, N [Yamagata University, Yonezawa, Yamagata 992-8510 (Japan); Ishida, A, E-mail: oishii@yz.yamagata-u.ac.jp [National Institute for Materials Science, Tsukuba, Ibaraki 305-0047 (Japan)

    2011-01-01

    This paper describes a new bimorph-type actuator composed of a shape-memory-alloy coated magnetic ribbon. A high magnetostrictive amorphous ribbon (Metglas 2605SC, 37 mmx6 mmx0.025 mm) coated with a 1.0 {mu}m thick sputter-deposited Ti{sub 48.5}Ni{sub 33.5}Cu{sub 18} film exhibited a repeatable shape memory effect in the temperature range from 10 deg. C to 70 deg. C; reverse martensitic transformation upon heating bent the ribbon and martensitic transformation upon cooling flattened it. Simultaneous application of AC and DC magnetic fields excited the longitudinal mechanical vibration which can be monitored wirelessly with a pickup coil. The resonance frequency was proportional to the displacement of the ribbon within an accuracy of 0.76%. Consequently, it is confirmed that a TiNiCu-coated magnetic ribbon actuator with high positioning resolution can be realized by monitoring its resonance frequency and feeding back it to the heating and/or cooling power control algorithms.

  20. Nano-analysis of grain boundary and triple junction transport in nanocrystalline Ni/Cu.

    Science.gov (United States)

    Reda Chellali, Mohammed; Balogh, Zoltan; Schmitz, Guido

    2013-09-01

    Nanocrystalline materials are distinguished by a high density of structural defects and grain boundaries. Due to the small grain size, a particular defect of the grain boundary topology, the so-called triple junction takes a dominant role for grain growth and atomic transport. We demonstrate by atom probe tomography that triple junctions in nanocrystalline Cu have 100-300 times higher diffusivity of Ni than standard high angle grain boundaries. Also, a previously unexpected systematic variation of the grain boundary width with temperature is detected. The impurity segregation layer at the grain boundaries grows from the 0.7 nm at 563 K to 2.5 nm at 643 K. This variation is clearly not controlled by simple bulk diffusion. Taking this effect into consideration, the activation energies for Ni diffusion in triple junctions and grain boundaries in Cu can be determined to be (83 ± 10) and (120 ± 15) kJ/mol, respectively. Thus, triple junctions are distinguished by considerably lower activation energy with respect to grain boundaries.

  1. Adsorption of Cu(II), Ni(II) and Zn(II) on modified jute fibres.

    Science.gov (United States)

    Shukla, S R; Pai, Roshan S

    2005-09-01

    The potential of a lignocellulosic fibre, jute, was assessed for adsorption of heavy metal ions like Cu(II), Ni(II) and Zn(II) from their aqueous solutions. The fibre was also used as adsorbent after chemically modifying it by two different techniques viz, loading of a dye with specific structure, C.I. Reactive Orange 13, and oxidising with hydrogen peroxide. Both the modified jute fibres gave higher metal ion adsorption. Thus, the dye loaded jute fibres showed metal ion uptake values of 8.4, 5.26 and 5.95 mg/g for Cu(II), Ni(II) and Zn(II), respectively, while the corresponding values for oxidised jute fibres were 7.73, 5.57 and 8.02 mg/g, as against 4.23, 3.37 and 3.55 mg/g for unmodified jute fibres. Adsorption isotherm models indicated best fit for Langmuir model for the modified jute fibres. The adsorption values decreased with lowering of pH. The desorption efficiency, regenerative and reuse capacity of these adsorbents were also assessed for three successive adsorption-desorption cycles. The adsorptive capacity was retained only when the caustic soda regeneration is carried out as an intermediate step after desorption. Possible mechanism has been given.

  2. Magnetic entropy changes in nanogranular Fe:Ni61Cu39

    Science.gov (United States)

    Michalski, S.; Skomski, R.; Mukherjee, T.; Li, X.-Zh.; Binek, Ch.; Sellmyer, D. J.

    2011-04-01

    Artificial environment-friendly Gd-free magnetic nanostructures for magnetic cooling are investigated by temperature-dependent magnetic measurements. We consider two-phase nanocomposites where nanoclusters (Fe) are embedded in a Ni61Cu39 matrix. Several composite films are produced by cluster deposition. The average Fe cluster size depends on the deposition conditions and can be tuned by varying the deposition conditions. The quasiequilibrium Curie temperature of the Fe particles is high, but slightly lower than that of bulk Fe due to finite-size effects. Our experiments have focused on ensembles of 7.7 nm Fe clusters in a matrix with a composition close to Ni61Cu39, which has a TC of 180 K. The materials are magnetically soft, with coercivities of order 16 Oe even at relatively low temperature of 100 K. The entropy changes are modest, -ΔS = 0.05 J/kg K in a field change of 1 T and 0.30 J/kg K in a field change of 7 T at a temperature of 180 K, which should improve if the cluster size is reduced.

  3. Equilibrium segregation patterns and alloying in Cu/Ni nanoparticles: Experiments versus modeling

    Science.gov (United States)

    Hennes, M.; Buchwald, J.; Ross, U.; Lotnyk, A.; Mayr, S. G.

    2015-06-01

    We analyze the segregation behavior of bimetallic nanoparticles (NPs) with moderate miscibility gap by applying a combined experimental/simulation approach to Cu/Ni as a model system. Using a hybrid molecular dynamics/Metropolis Monte Carlo algorithm (MD/MMC) based on the embedded atom method (EAM), we derive the equilibrium distribution of atomic species in the clusters for varying concentrations and particle structures. To cross-check the predictive power of our approach, we compare these results with modified EAM (MEAM) and density functional theory based ab initio calculations. This permits to identify possible shortcomings of the EAM when used to describe bimetallic NPs. Additionally, we isolate vibrational entropy contributions to the free energy of the NPs and special focus is put on the possibility of entropic stabilization of segregated versus solid solution NPs. Finally, we complement our simulations by experimental results, which are obtained by studying the behavior of plasma gas condensation synthesized Ni@Cu core-shell (CS) particles upon annealing.

  4. Characteristics of flake graphite in Ni-Mn-Cu cast iron. Part 2.

    Directory of Open Access Journals (Sweden)

    A. Janus

    2010-01-01

    Full Text Available The paper continues the article published by Archives of Foundry Engineering, vol. 9, issue 1/2009, pp. 185-290, that presented influence of chemical composition of hypo- and hypereutectic nickel-manganese-copper alloyed cast iron on properties of the contained flake graphite. In this second part of the research, effect of chemical composition of hypereutectic cast iron containing 3.5÷5.1% C, 1.7÷2.8% Si, 3.5÷10.5 %Ni, 2.0÷8.0% Mn, 0.1÷3.5% Cu, 0.14÷0.17% P and 0.02÷0.04% S on properties of flake graphite is determined. Evolution of graphite properties with changing eutecticity degree of the examined cast iron is presented. For selected castings, histograms of primary and eutectic graphite are presented, showing quantities of graphite precipitates in individual size ranges and their shape determined by the coefficient ξ defined as ratio of a precipitate area to square of its circumference. Moreover, presented are equations obtained by discriminant analysis to determine chemical composition of Ni-Mn-Cu cast iron which guarantee the most favourable distribution of A-type graphite from the point of view of castings properties.

  5. Microstructures and transformation characteristics of thin films of TiNiCu shape memory alloy

    Institute of Scientific and Technical Information of China (English)

    程秀兰; 徐东; 蔡炳初; 王莉; 陈鉴; 李刚; 徐实

    2002-01-01

    Both sputtering conditions and crystallizing temperatures have great influence on the microstructures and phase transformation characteristics for Ti51Ni44Cu5.By means of the resistance-temperature measurement,X-ray diffraction and atomic fore microscopic study,the results indicate that the transformation temperatures of the thin films increase and the "rock candy" martensitic relief is more easily obtained with promoting the sputtering Ar pressure,sputtering power,or crystallizing temperature.However,when sputtering Ar pressure,sputtering power,or crystallizing temperature are lower,a kind of "chrysanthemum" relief,which is related with Ti-rich GP zones,is much easier to be observed.The reason is that during crystallization process,both of the inherent compressive stresses introduced under the condition of higher sputtering pressure or higher crystallizing temperature are helpful to the transition from GP zones to Ti2(NiCu) precipitates and the increase of the transformation temperatures.The addition of copper to substitute for 5% nickel in mole fraction can reduce the transformation hysteresis width to about 10~15 ℃.

  6. Sliding Wear Behavior of TiC-Reinforced Cu-4 wt.% Ni Matrix Composites

    Science.gov (United States)

    Jha, Pushkar; Gautam, R. K.; Tyagi, Rajnesh; Kumar, Devendra

    2016-10-01

    The present investigation explores the effect of TiC content on the sliding wear properties of Cu-4 wt.% Ni matrix composites. Cu-4 wt.% Ni - x wt.% TiC ( x = 0, 2, 4 and 8 wt.%) metal matrix composites were developed by powder metallurgy route. Their friction and wear was studied under dry sliding at different loads of 5, 7.5 and 10 N and constant sliding speed of 2 m/s using a pin-on-disk machine. The metallographic observations showed an almost uniform distribution of TiC particles in the matrix. Hardness of the composites increased with increasing TiC content (up to 4 wt.%). Friction and wear results of TiC-reinforced composites show better wear resistance than unreinforced matrix alloy. However, the optimum wear resistance was observed for 4 wt.% TiC-reinforced composites. Worn surfaces of specimens indicated the abrasion as the primary mechanism of wear in all the materials investigated in the study. The observed behavior has been explained on the basis of (1) the hardness which results in a decrease in real area of contact in composites containing TiC particles and (2) the formation of a transfer layer of wear debris on the surface of the composites which protects underlying substrate by inhibiting metal-metal contact.

  7. X-ray studies of nanostructured Ti{sub 2}NiCu shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ari-Gur, P., E-mail: pnina.ari-gur@wmich.edu [Western Michigan University, Kalamazoo, MI (United States); Madiligama, A.S.B.; Watza, S.G. [Western Michigan University, Kalamazoo, MI (United States); Shelyakov, A. [National Research Nuclear University, Moscow Engineering Physics Institute, Kashirskoesh., 31, Moscow 115409 (Russian Federation); Kuchin, D.; Koledov, V. [Kotelnikov Institute of Radio Engineering and Electronics, RAS, Moscow 125009 (Russian Federation); Gao, W. [Department of Chemical and Materials Engineering, University of Auckland (New Zealand)

    2014-02-15

    Highlights: ► Factors affecting two-way shape memory effect of melt-spun Ti{sub 2}NiCu were studied. ► The melt-spinning process results in a mixed amorphous–crystalline structure. ► The austenite to martensite transformation takes place in one step. ► After most of the ribbon transforms to martensite, the TWSME performance is best. ► On the ribbons air-side both austenite and martensite are strongly textured. -- Abstract: Phase-mix, phase transformations and crystallographic texture of amorphous/nanostructure melt-spun ribbons of Ti{sub 2}NiCu were studied using X-ray diffraction and nano-indentation. Their peak two-way shape-memory effect occurs when most of the austenite (cubic, B2) phase has converted to martensite (orthorhombic, B19), but before grain growth takes place. The melt-spinning process imparts strong B2 {1 0 0} texture that is retained as B19 (1 0 0) and (0 1 1) after phase transition during subsequent annealing. Because the phase transformation and texture strongly depend on the annealing process, it should be possible to tailor them for further improving their performance.

  8. Proximity effect in planar superconducting tunnel junctions containing Nb/NiCu superconductor/ferromagnet bilayers

    Science.gov (United States)

    Pepe, G. P.; Latempa, R.; Parlato, L.; Ruotolo, A.; Ausanio, G.; Peluso, G.; Barone, A.; Golubov, A. A.; Fominov, Ya. V.; Kupriyanov, M. Yu.

    2006-02-01

    We present experimental results concerning both the fabrication and characterization of superconducting tunnel junctions containing superconductor/ferromagnet (S/F) bilayers made by niobium (S) and a weak ferromagnetic Ni0.50Cu0.50 alloy. Josephson junctions have been characterized down to T=1.4K in terms of current-voltage I - V characteristics and Josephson critical current versus magnetic field. By means of a numerical deconvolution of the I - V data the electronic density of states on both sides of the S/F bilayer has been evaluated at low temperatures. Results have been compared with theoretical predictions from a proximity model for S/F bilayers in the dirty limit in the framework of Usadel equations for the S and F layers, respectively. The main physical parameters characterizing the proximity effect in the Nb/NiCu bilayer, such as the coherence length and the exchange field energy of the F metal, and the S/F interface parameters have been also estimated.

  9. Two-phase equilibrium states in individual Cu-Ni nanoparticles: size, depletion and hysteresis effects.

    Science.gov (United States)

    Shirinyan, Aram S

    2015-01-01

    In isolated bimetallic nanoscale systems the limit amount of matter and surface-induced size effects can change the thermodynamics of first-order phase transformation. In this paper we present theoretical modification of Gibbs free energy concept describing first-order phase transformation of binary alloyed nanoparticles taking into account size effects as well as depletion and hysteresis effects. In such a way the hysteresis in a form of nonsymmetry for forth and back transforming paths takes place; compositional splitting and the loops-like splitted path on the size dependent temperature-composition phase diagram occur. Our calculations for individual Cu-Ni nanoparticle show that one must differentiate the solubility curves and the equilibrium loops (discussed here in term of solidification and melting loops). For the first time we have calculated and present here on the temperature-composition phase diagram the nanomelting loop at the size of 80 nm and the nanosolidification loop at the size of 25 nm for an individual Cu-Ni nanoparticle. So we observe the difference between the size-dependent phase diagram and solubility diagram, between two-phase equilibrium curves and solubility curves; also intersection of nanoliquidus and nanosolidus is available. These findings lead to the necessity to reconsider such basic concepts in materials science as phase diagram and solubility diagram.

  10. Reinforcement of bulk Y-Ba-Cu-O superconductors by using Fe-Mn-Si-Ni shape memory alloy rings

    Science.gov (United States)

    Seki, H.; Honma, Y.; Nomura, M.; Nakayama, C.; Koshizuka, N.; Maruyama, T.; Murakami, M.

    Bulk Y-Ba-Cu-O superconductors are brittle ceramics and their tensional strengths are very low. Therefore, reinforcement of the bulk superconductor is needed for practical applications. Pre-compression load has been shown to be effective in enforcing the bulk superconductors. Fe-Mn-Si alloys exhibit shape-memory effects and the size change due to the shape recovery is large. Therefore, the Fe-Mn-Si shape memory alloy rings will function as effective reinforcement material for the bulk superconductors. We prepared Y-Ba-Cu-O bulk superconductors with top-seeded melt-growth process and the Ni added Fe-Mn-Si (Fe-Mn-Si-Ni) alloy ring which exhibited better shape memory performances than Ni-free Fe-Mn-Si alloys. The ring was extended by inserting a steel rod and heated to 623K. The amount of shape recovery strain was about 2%. Based on these results, the TSMG-processed bulk YBa- Cu-O superconductor 39.0 mm in diameter was inserted into the Fe-Mn-Si-Ni ring whose inner diameter was 39.3 mm at room temperature. With heating to 623K, the Fe-Mn-Si-Ni ring shrank and firmly encapsulated the bulk Y-Ba-Cu-O superconductor. Cracking was not observed in the bulk superconductor. It was interesting to note that the trapped magnetic field of the Y-Ba-Cu-O superconductor at 77K was increased from 2,550 G to 3,795 G through Fe-Mn-Si-Ni ring reinforcement. These results clearly show that the reinforcement treatment with Fe-Mn-Si-Ni alloy ring or pre-compression load is effective in improving the field trapping ability in addition to thee improvement of the mechanical properties.

  11. Bio-active trace elements (cd, cu, fe, ni) in the oligotrophic south china sea

    Science.gov (United States)

    Wen, L.-S.; Jiann, K.-T.; Liu, K.-K.

    2003-04-01

    Bio-active trace elements (Cu, Ni, Cd, Fe) in seawater play a critical role in regulating oceanic phytoplankton growth and, hence, may influence global carbon cycle. However, their in-situ speciation and bio-reactivity are poorly understood. Dissolved copper and nickel are believed to be present in seawater predominantly as low molecular weight soluble organic complexes which are readily available to marine organism and immune from particle scavenging. Dissolved iron is believed to exist predominantly as high molecular weight colloidal species. Using ultraclean ultrafiltration and ion exchange/affinity chelating chemistry, we demonstrate that in the oligotrophic ocean waters, these four bio-active elements have distinctive characteristics of speciation and reactivity, even though they display similar nutrient-type distributions. For dissolved Cu, the concentration increased from 0.9 nM in the surface water to 3 nM at depths below 500 m; for dissolved Ni, 2˜9 nM; for dissolved Cd, 0.01˜0.9 nM; for dissolved Fe, 0.1˜0.6 nM. All four elements showed a subsurface minimum around 60 m deep, which corresponded to the subsurface Chl a maximum, indicating strong biological interactions with these elements. Detailed analysis revealed distinct size distribution and chemical reactivity for each element. For Cu, more than 50% in surface water was in smaller than 1kDa labile forms; the strongly complexed inert form increased from 28% at surface to 50% below 500 meter; the colloidal form Cu decreased from 12% at surface to a minimum of 6% at 60 meter, and then gradually increased to 16% in deeper water. For Ni, more than 80% was in smaller than 1kDa labile form, and very small fraction (˜5%) in colloidal from. For Cd, almost all dissolved fraction was in smaller than 1kDa labile form. As for Fe, its dynamic nature in water column caused by complicated bio-interactions was evident. This study indicated that, with preferential uptake of trace elements by different phytoplankton

  12. Theoretical study of heavy metal Cd, Cu, Hg, and Ni(II) adsorption on the kaolinite(0 0 1) surface

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jian, E-mail: zhaojian0209@aliyun.com [Institute of Applied Physics and Computational Mathematics, PO Box 8009, Beijing 100088 (China); State Key Laboratory of Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Beijing 100083 (China); He, Man-Chao [State Key Laboratory of Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Beijing 100083 (China)

    2014-10-30

    Highlights: • We investigated the adsorption of Cd, Cu, Hg, and Ni(II) on kaolinite(0 0 1) surface. • The adsorption capabilities of the kaolinite for HM atoms were Ni > Cu > Cd > Hg(II). • The adsorption energy increases with the coverage for Cd, Cu, and Hg(II) atoms. • The adsorption energy decreases with the coverage for Ni(II) atoms. - Abstract: Heavy metal pollution is currently of great concern because it has been recognized as a potential threat to air, water, and soil. Adsorption was one of the most popular methods for the removal of heavy metal. The adsorption of heavy metal Cd, Cu, Hg, and Ni(II) atoms on the hydroxylated (0 0 1) surface of kaolinite was investigated using density-functional theory within the generalized gradient approximation and a supercell approach. The coverage dependence of the adsorption structures and energetics were systematically studied for a wide range of coverage Θ [from 0.11 to 1.0 monolayers (ML)] and adsorption sites. The most stable among all possible adsorption sites for Cd(II) atom was the two-fold bridge site followed by the one-fold top site, and the top site was the most favorite adsorption site for Cu and Ni(II) atoms, while the three-fold hollow site was the most stable adsorption site for Hg(II) atom followed by the two-fold bridge site. The adsorption energy increases with the coverage for Cd, Cu, and Hg(II) atoms, thus indicating the higher stability of surface adsorption and a tendency to the formation of adsorbate islands (clusters) with increasing the coverage. However, the adsorption energy of Ni(II) atoms decreases when increasing the coverage. The adsorption capabilities of the kaolinite clay for the heavy metal atoms were in the order of Ni > Cu > Cd > Hg(II). The other properties of the Cd, Cu, Hg, and Ni(II)/kaolinite(0 0 1) system including the different charge distribution, the lattice relaxation, and the electronic density of states were also studied and discussed in detail.

  13. New system for manipulation of nanoobjects based on composite Ti2NiCu/Pt nanotweezers with shape memory effect

    Science.gov (United States)

    Zhikharev, A. M.; Irzhak, A. V.; Beresin, M. Y.; Lega, P. V.; Koledov, V. V.; Kasyanov, N. N.; Martynov, G. S.

    2016-08-01

    We report the new system for manipulation of nanoobjects based on composite Ti2NiCu/Pt nanotweezers with shape memory effect. The design consists of the bimetallic Ti2NiCu/Pt shape memory nanotweezers placed on a tip of electrochemically etched tungsten needle. The semiconductor diode placed on the tip of the needle plays both role of resistive element of the heater and temperature sensor for feedback control loop closing. The device is compatible with existing positioning systems like OmniProbe®, Kleindiek®, etc. and may find numerous practical applications in various tasks of nanotechnology connected with 3D manipulation.

  14. Statistical Assessment of the Impact of Elevated Contents of Cu and Ni on the Properties of Austempered Ductile Iron

    Directory of Open Access Journals (Sweden)

    Nawrocki P.

    2016-12-01

    Full Text Available The article presents a statistical analysis of data collected from the observation of the production of austempered ductile iron. The impact assessment of the chemical composition, i.e. high contents of Cu and Ni on the properties of ductile iron isothermal tempered is critical to find the right chemical composition of austempered ductile iron. Based on the analyses range of the percentage of Cu and Ni which were selected in the cast iron to obtain material with high strength properties.

  15. Synthesis, characterization and antibacterial activity of copper, nickel and bimetallic Cu-Ni nanoparticles for potential use in dental materials

    Institute of Scientific and Technical Information of China (English)

    Liliana Argueta-Figueroa; Raúl A. Morales-Luckie; Rogelio J. Scougall-Vilchis; Oscar F. Olea-Mejía

    2014-01-01

    The antibacterial effect is a desirable property in dental materials. Development of simple methods for the preparation of nanosized metal particles has attracted significant attention because of their future applications due to unusual size-dependent antibacterial properties. Copper (Cu), Nickel (Ni) and bimetallic Cu-Ni nanoparticles were prepared by a simple chemical method and their antibacterial activity was tested against the widely used standard human pathogens Staphylococcus aureus (gram-negative) and Escherichia coli (gram-positive). Additionally, these nanoparticles were tested against the dental pathogen Streptococcus mutans. Our results are promising for potential use in dental materials science.

  16. Near-Monodisperse Ni-Cu Bimetallic Nanocrystals of Variable Composition: Controlled Synthesis and Catalytic Activity for H2 Generation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yawen; Huang, Wenyu; Habas, Susan E.; Kuhn, John N.; Grass, Michael E.; Yamada, Yusuke; Yang, Peidong; Somorjai, Gabor A.

    2008-07-22

    Near-monodisperse Ni{sub 1-x}Cu{sub x} (x = 0.2-0.8) bimetallic nanocrystals were synthesized by a one-pot thermolysis approach in oleylamine/1-octadecene, using metal acetylacetonates as precursors. The nanocrystals form large-area 2D superlattices, and display a catalytic synergistic effect in the hydrolysis of NaBH{sub 4} to generate H{sub 2} at x = 0.5 in a strongly basic medium. The Ni{sub 0.5}Cu{sub 0.5} nanocrystals show the lowest activation energy, and also exhibit the highest H{sub 2} generation rate at 298 K.

  17. Preparation and photoluminescence properties of MMoO4 (M = Cu, Ni, Zn) nano-particles synthesized via electrolysis

    Science.gov (United States)

    Zhang, Wei; Yin, Jiajia; Min, Fanqi; Jia, Lili; Zhang, Daoming; Zhang, Quansheng; Xie, Jingying

    2017-01-01

    Metal molybdate (MMoO4, M = Cu, Ni, Zn) nano-particles were successfully synthesized by electrochemical method in a cation exchange membrane electrolytic cell with Na2MoO4 solution as anolyte, diluted hydrochloric acid (HCl) as catholyte, metal (Cu, Ni, Zn) as anode and stainless steel as cathode. The composition, morphology, structure, microstructure and photoluminescence property of the synthesized MMoO4 were investigated and characterized. The results show that the photoluminescence spectra of electrolytic synthesized MMoO4 have fine structures, which is markedly different from the existing research.

  18. Modification of carbon nanotubes by CuO-doped NiO nanocomposite for use as an anode material for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Mustansar Abbas, Syed, E-mail: qau_abbas@yahoo.com [Nanoscience and Catalysis Division, National Centre for Physics, Islamabad 45320 (Pakistan); Department of Chemistry, Quaid-e-Azam University, Islamabad (Pakistan); Tajammul Hussain, Syed [Nanoscience and Catalysis Division, National Centre for Physics, Islamabad 45320 (Pakistan); Ali, Saqib [Department of Chemistry, Quaid-e-Azam University, Islamabad (Pakistan); Ahmad, Nisar [Department of Chemistry, Hazara University, Mansehra (Pakistan); Ali, Nisar [Department of Physics, University of Punjab, Lahore (Pakistan); Abbas, Saghir [Department of Chemistry, Quaid-e-Azam University, Islamabad (Pakistan); Ali, Zulfiqar [Nanoscience and Catalysis Division, National Centre for Physics, Islamabad 45320 (Pakistan); College of Earth and Environmental Sciences, University of Punjab, Lahore (Pakistan)

    2013-06-15

    CuO-doped NiO (CuNiO) with porous hexagonal morphology is fabricated via a modified in-situ co-precipitation method and its nanocomposite is prepared with carbon nanotubes (CNTs). The electrochemical properties of CuNiO/CNT nanocomposite are investigated by cyclic voltammetry (CV), galvanostatic charge–discharge tests and electrochemical impedance spectroscopy (EIS). Since Cu can both act as conductor and a catalyst, the CuNiO/CNT nanocomposite exhibits higher initial coulombic efficiency (82.7% of the 2nd cycle) and better capacity retention (78.6% on 50th cycle) than bare CuNiO (78.9% of the 2nd cycle), CuO/CNT (76.8% of the 2nd cycle) and NiO/CNT (77.7% of the 2nd cycle) at the current density of 100 mA /g. This high capacity and good cycling ability is attributed to the partial substitution of Cu{sup +2} for Ni{sup +2}, resulting in an increase of holes concentration, and therefore improved p-type conductivity along with an intimate interaction with CNTs providing large surface area, excellent conduction, mechanical strength and chemical stability. - Graphical abstract: The porous CuNiO/CNT nanocomposite synthesized via a modified co-precipitation method in combination with subsequent calcination was applied in the negative electrode materials for lithium-ion batteries and exhibited high electrochemical performance. - Highlights: • CuO doped NiO/CNTs nano composite is achieved via a simple co-precipitation method. • Monodispersity, shape and sizes of sample particles is specifically controlled. • Good quality adhesion between CNTs and CuNiO is visible from TEM image. • High electrochemical performance is achieved. • Discharge capacity of 686 mA h/g after 50 cycles with coulombic efficiency (82.5%)

  19. Self-consistent electronic structure and segregation profiles of the Cu-Ni (001) random-alloy surface

    DEFF Research Database (Denmark)

    Ruban, Andrei; Abrikosov, I. A.; Kats, D. Ya.

    1994-01-01

    We have calculated the electronic structure and segregation profiles of the (001) surface of random Cu-Ni alloys with varying bulk concentrations by means of the coherent potential approximation and the linear muffin-tin-orbitals method. Exchange and correlation were included within the local-den...... to be oscillatory with a strong preference for Cu to segregate towards the surface of the alloy....

  20. Catalytic Gas-Phase Glycerol Processing over SiO2-, Cu-, Ni- and Fe- Supported Au Nanoparticles.

    Directory of Open Access Journals (Sweden)

    Maciej Kapkowski

    Full Text Available In this study, we investigated different metal pairings of Au nanoparticles (NPs as potential catalysts for glycerol dehydration for the first time. All of the systems preferred the formation of hydroxyacetone (HYNE. Although the bimetallics that were tested, i.e., Au NPs supported on Ni, Fe and Cu appeared to be more active than the Au/SiO2 system, only Cu supported Au NPs gave high conversion (ca. 63% and selectivity (ca. 70% to HYNE.

  1. Effect of Cu Content on Atomic Positions of Ti50Ni50−xCux Shape Memory Alloys Based on Density Functional Theory Calculations

    Directory of Open Access Journals (Sweden)

    Liangliang Gou

    2015-11-01

    Full Text Available The study of crystal structures in shape memory alloys is of fundamental importance for understanding the shape memory effect. In order to investigate the mechanism of how Cu content affects martensite crystal structures of TiNiCu alloys, the present research examines the atomic displacement of Ti50Ni50−xCux (x = 0, 5, 12.5, 15, 18.75, 20, 25 shape memory alloys using density functional theory (DFT. By the introduction of Cu atoms into TiNi martensite crystal to replace Ni, the displacements of Ti and Ni/Cu atoms along the x-axis are obvious, but they are minimal along the y- and z-axes. It is found that along the x-axis, the two Ti atoms in the unit cell move in opposite directions, and the same occurred with the two Ni/Cu atoms. With increasing Cu content, the distance between the two Ni/Cu atoms increases while the Ti atoms draw closer along the x-axis, leading to a rotation of the (100 plane, which is responsible for the decrease in the monoclinic angle. It is also found that the displacements of both Ti atoms and Ni/Cu atoms along the x-axis are progressive, which results in a gradual change of monoclinic angle and a transition to B19 martensite crystal structure.

  2. Combined XBIC/{mu}-XRF/{mu}-XAS/DLTS investigation of chemical character and electrical properties of Cu and Ni precipitates in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Trushin, M. [IHP/BTU Joint Lab., Cottbus (Germany); Vyvenko, O. [IHP/BTU Joint Lab., Cottbus (Germany); V. A. Fok Institute of Physics, St. Petersburg State University (Russian Federation); Seifert, W.; Kittler, M. [IHP Microelectronics, Frankfurt (Oder) (Germany); Zizak, I.; Erko, A. [BESSY, Berlin (Germany); Seibt, M.; Rudolf, C. [IV. Physikalisches Institut, Georg-August-Universitaet Goettingen (Germany)

    2009-08-15

    Combination of DLTS method and synchrotron-based analytical microprobe techniques was used to study the precipitation of Cu and Ni atoms at two kinds of structural defects in silicon lattice: dislocation network created by direct wafer bonding and oxygen-induced microdefects. Results of our measurements revealed the difference in the preferred precipitation places: Ni particles in form of NiSi{sub 2} were found only at the dislocation network, while Cu particles in form of Cu{sub 3}Si were found both at the dislocation network and at the oxygen-induced microdefects. DLTS measurements showed Ni acceptor levels in Ni contaminated sample and a broad band related to Cu precipitates in Cu contaminated one. In case of simultaneous Cu and Ni contamination NiSi{sub 2} and Cu{sub 3}Si precipitates were found definitely at the same places indicating therefore that the metals interact during precipitation. DLTS showed the superposition of spectra for only Ni and for only Cu contaminated samples. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Crystal structure and magnetic ordering transitions in CeNiIn{sub 4}, EuNiIn{sub 4} and EuCuIn{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Schnelle, Walter [Max-Planck-Institut fuer Chemische Physik Fester Stoffe, Dresden (Germany); Kremer, Reinhard K. [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany); Hoffmann, Rolf-Dieter; Rodewald, U.C.; Poettgen, Rainer [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie

    2014-10-15

    Polycrystalline CeNiIn{sub 4} was prepared by arc-melting of the elements and subsequent annealing at 970 K in vacuum. EuNiIn{sub 4} and EuCuIn{sub 4} were synthesized from the elements by reactions in sealed tantalum tubes. These indium-rich compounds crystallize with the YNiAl{sub 4}-type structure which was refined for EuCuIn{sub 4} from single-crystal X-ray diffraction data: Cmcm, a = 450.04(9), b = 1698.7(4), c = 740.2(2) pm, wR2 = 0.0606, 495 F{sup 2} values, 24 variables. The EuCuIn{sub 4} structure is built up from a complex three-dimensional [CuIn{sub 4}] polyanion (265-279 pm Cu-In and 296-331 pm In-In) in which the europium atoms occupy distorted hexagonal channels. The Eu-Eu distances within these channels (450 pm) are significantly shorter than the distances between Eu atoms in neighboring channels (552 pm). The magnetic properties and the specific heats of the europium compounds have been investigated. Both europium compounds show the magnetism of divalent Eu ions and antiferromagnetic ordering at low temperatures. EuCuIn{sub 4} is magnetically ordered via a surprisingly complex sequence of three transitions.

  4. Axially adjustable magnetic properties in arrays of multilayered Ni/Cu nanowires with variable segment sizes

    Science.gov (United States)

    Shirazi Tehrani, A.; Almasi Kashi, M.; Ramazani, A.; Montazer, A. H.

    2016-07-01

    Arrays of multilayered Ni/Cu nanowires (NWs) with variable segment sizes were fabricated into anodic aluminum oxide templates using a pulsed electrodeposition method in a single bath for designated potential pulse times. Increasing the pulse time between 0.125 and 2 s in the electrodeposition of Ni enabled the formation of segments with thicknesses ranging from 25 to 280 nm and 10-110 nm in 42 and 65 nm diameter NWs, respectively, leading to disk-shaped, rod-shaped and/or near wire-shaped geometries. Using hysteresis loop measurements at room temperature, the axial and perpendicular magnetic properties were investigated. Regardless of the segment geometry, the axial coercivity and squareness significantly increased with increasing Ni segment thickness, in agreement with a decrease in calculated demagnetizing factors along the NW length. On the contrary, the perpendicular magnetic properties were found to be independent of the pulse times, indicating a competition between the intrawire interactions and the shape demagnetizing field.

  5. Effect of grain size on high-temperature oxidation behavior of Cu-80Ni alloy

    Institute of Scientific and Technical Information of China (English)

    曹中秋; 牛焱; 曹丽杰; 吴维(山又)

    2003-01-01

    The thermogravimetric analysis of binary Cu-80Ni alloys prepared respectively by conventional casting(CA) and mechanical alloying(MA) techniques and presenting widely different grain sizes was performed at 800 ℃ in air in order to study the effect of grain size change on the oxidation behavior of a solid solution alloy. The results show that the kinetic curves for the oxidation of the two alloys are complex and deviate from the parabolic rate law and usually are not composed of a single stage. Mixed scales were produced on the CACu-80Ni alloy surface, which consists of a mixture of copper and nickel oxides. However, oxide scale for MACu-80Ni alloy is mainly composed of a thick compact and continuous inner layer of nickel oxide. The reduction in the alloy grain size speeds up the diffusion of the more reactive component nickel from the alloy to alloy/oxide scale interface and completes the transition from a mixed scale to continuous scale of nickel oxide.

  6. Influence of Al and Cu elements on the microstructure and properties of (FeCrNiCo)Al{sub x}Cu{sub y} high-entropy alloys

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Q.C., E-mail: fanqichao@126.com [Institute of Machinery Manufacturing Technology, Chinese Academy of Engineering Physics, Mianyang, Sichuan 621900 (China); Li, B.S. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Zhang, Y. [Institute of Machinery Manufacturing Technology, Chinese Academy of Engineering Physics, Mianyang, Sichuan 621900 (China)

    2014-11-25

    Highlights: • Relationship between entropy and enthalpy on phase formation was specified. • Phase changed from fcc to fcc plus bcc and then bcc phase. • Mechanical properties changed from plasticity to brittleness. • Young’s modulus, hardness and yield strength increased with Al element. - Abstract: (FeCrNiCo)Al{sub x}Cu{sub y} high-entropy alloys were designed using the strategy of equiatomic ratio, high entropy of mixing and different mixing enthalpies of atom-pairs. The effects of entropy and enthalpy on phase forming process of the alloys were clearly studied and the influences of Al and Cu elements on the microstructure and mechanical properties were investigated. As long as Al element level increased from 0.5 to 1, the microstructure of the alloy system changed from fcc structure to duplex fcc plus bcc structure and then a single bcc structure. Increase of Al element greatly enhanced the Young’s modulus, hardness and yield strength of these alloys. (FeCrNiCo)Al{sub 0.75}Cu{sub 0.5} alloy got the most excellent comprehensive mechanical properties; its fracture strength and plastic strain were as high as 2270 MPa, and 42.70%, respectively. Cu-rich phase formed in the alloys when Cu element was in high levels. Increase of Cu element greatly decreased fracture strength of the high-entropy alloys when Al element was in the high level of x = 1.

  7. SAE 1045 steel/WC-Co/Ni-Cu-Ni/SAE 1045 steel joints prepared by dynamic diffusion bonding: Microelectrochemical studies in 0.6 M NaCl solution

    Energy Technology Data Exchange (ETDEWEB)

    Andreatta, Francesco, E-mail: francesco.andreatta@uniud.i [Dipartimento di Scienze e Tecnologie Chimiche, Universita Degli Studi di Udine, Via del Cotonificio 108, 33100 Udine (Italy); Matesanz, Laura [Departamento de Ciencia de los Materiales e Ingenieria Metalurgica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid (Spain); Akita, Adriano H. [UNESP, Instituto de Quimica, CP 355, 14800-900 Araraquara, SP (Brazil); Paussa, Luca; Fedrizzi, Lorenzo [Dipartimento di Scienze e Tecnologie Chimiche, Universita Degli Studi di Udine, Via del Cotonificio 108, 33100 Udine (Italy); Fugivara, Cecilio S. [UNESP, Instituto de Quimica, CP 355, 14800-900 Araraquara, SP (Brazil); Gomez de Salazar, Jose M. [Departamento de Ciencia de los Materiales e Ingenieria Metalurgica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid (Spain); Benedetti, Assis V. [UNESP, Instituto de Quimica, CP 355, 14800-900 Araraquara, SP (Brazil)

    2009-12-30

    Corrosion of SAE 1045 steel/WC-Co/Ni-Cu-Ni/SAE 1045 steel interfaces was investigated in 0.6 M NaCl solution using an electrochemical microcell, which enables local electrochemical characterization at the micrometer scale. Two pieces of steel, one with a WC-Co coating covered with Ni (12 mum) and Cu (5 mum) layers, and the other with a Ni (15 mum) layer, were welded by dynamic diffusion bonding. A WC-Co coating was applied to the steel by the high velocity oxygen-fuel process, and Ni-Cu and Ni layers by electroplating. Polarization curves were recorded using an electrochemical microcell. Different regions of welded samples were investigated, including steel, cermet coating, and steel/cermet and steel/Ni-Cu-Ni/cermet interfaces. Optical and electronic microscopes were employed to study the corroded regions. Potentiodynamic polarization curves obtained using the microcell revealed that the base metal was more susceptible to corrosion than the cermet. In addition, cermet steel/cermet and steel/Ni-Cu-Ni/cermet joints exhibited different breakdown potentials. Steel was strongly corroded in the regions adjacent to the interfaces, while the cermet was less corroded. Iron oxides/hydroxides and chloride salts were the main corrosion products of steel. After removal of the superficial layer of corrosion products, iron oxides were mainly observed. Chloride ions were detected mainly on a copper-enriched layer placed between two Ni-enriched layers.

  8. Microscopy modifications in an aged Cu-Al-Ni-Mn alloy; Modificacoes microestruturais em uma liga Cu-Al-Ni-Mn submetida ao envelhecimento

    Energy Technology Data Exchange (ETDEWEB)

    Gama, J.L.L. [Instituto Federal de Alagoas (IFAL), Maceio, AL (Brazil); Ferreira, R.A.S., E-mail: jorgelauriano@gmail.co [Universidade Federal de Pernambuco (DEM/UFPE), Recife, PE (Brazil). Dept. de Engenharia Mecanica

    2010-07-01

    An Cu-12Al-4Ni-3Mn shape memory alloy have been manufactured using an induction furnace of 24 KVA. After melting, chemical analyse was performed by X-ray fluorescence (XRF). The phase transformation of this alloy was studied in the different sequences produced during thermomechanic treatments. After homogenization, the ingot was solution treated at 850 deg C. At 750 deg C samples were submitted to a reduction by rolling to about 30% in thickness, followed by water quenching. In sequence, the ingot was cold-rolled at different thicknesses. In deformed state, sample of this alloy was submitted to the thermal analyse-DTA for identification of the phase transformation domains. For each identified domain, ageing was carried out, at different times, to evaluate the presence of the different phases. Samples were characterized ray-X diffraction. The results showed that the microstructural evolutions are of a complex nature. At 425 deg C temperature both recrystallization and precipitation of different phases were simultaneously observed. (author)

  9. Thermodynamic Property Study of Nanostructured Mg-H, Mg-Ni-H, and Mg-Cu-H Systems by High Pressure DSC Method

    Directory of Open Access Journals (Sweden)

    Huaiyu Shao

    2013-01-01

    Full Text Available Mg, Ni, and Cu nanoparticles were synthesized by hydrogen plasma metal reaction method. Preparation of Mg2Ni and Mg2Cu alloys from these Mg, Ni, and Cu nanoparticles has been successfully achieved in convenient conditions. High pressure differential scanning calorimetry (DSC technique in hydrogen atmosphere was applied to study the synthesis and thermodynamic properties of the hydrogen absorption/desorption processes of nanostructured Mg-H, Mg-Ni-H, and Mg-Cu-H systems. Van’t Hoff equation of Mg-Ni-H system as well as formation enthalpy and entropy of Mg2NiH4 was obtained by high pressure DSC method. The results agree with the ones by pressure-composition isotherm (PCT methods in our previous work and the ones in literature.

  10. Masses of neutron-rich Ni and Cu isotopes and the shell closure at Z=28,N=40

    Energy Technology Data Exchange (ETDEWEB)

    Rahaman, S.; Hakala, J.; Elomaa, V.V.; Eronen, T.; Hager, U.; Jokinen, A.; Kankainen, A.; Moore, I.D.; Penttilae, H.; Rinta-Antila, S.; Rissanen, J.; Saastamoinen, A.; Weber, C.; Aeystoe, J. [University of Jyvaeskylae, Department of Physics, P.O. Box 35 (YFL) (Finland)

    2007-10-15

    The Penning trap mass spectrometer JYFLTRAP, coupled to the Ion Guide Isotope Separator On-Line (IGISOL) facility at Jyvaeskylae, was employed to measure the atomic masses of neutron-rich {sup 70-73}Ni and {sup 73,} {sup 75}Cu isotopes with a typical accuracy less than 5 keV. The mass of {sup 73}Ni was measured for the first time. Comparisons with the previous data are discussed. Two-neutron separation energies show a weak subshell closure at {sup 68} {sub 28}Ni{sub 40}. A well established proton shell gap is observed at Z=28. (orig.)

  11. Fuel supply of direct carbon fuel cells via thermal decomposition of hydrocarbons inside a porous Ni anode

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Hak Gyu; Li, Cheng Guo; Jalalabadi, Tahereh; Lee, Dong Geun [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of)

    2015-06-15

    This study offers a novel method for improving the physical contact between the anode and fuel in a direct carbon fuel cell (DCFC): a direct generation of carbon in a porous Ni anode through the thermal decomposition of gaseous hydrocarbons. Three kinds of alkane hydrocarbons with different carbon numbers (CH4, C2H6, and C3H8) are tested. From electron microscope observations of the carbon particles generated from each hydrocarbon, we confirm that more carbon spheres (CS), carbon nanotubes (CNT), and carbon nanofibers (CNF) were identified with increasing carbon number. Raman scattering results revealed that the carbon samples became less crystalline and more flexible with increasing carbon number. DCFC performance was measured at 700 degree Celsius with the anode fueled by the same mass of each carbon sample. One-dimensional carbon fuels of CNT and CNF more actively produced and had power densities 148 and 210 times higher than that of the CS, respectively. This difference is partly attributed to the findings that the less-crystalline CNT and CNF have much lower charge transfer resistances than the CS.

  12. Jet-Fuel Range Hydrocarbons from Biomass-Derived Sorbitol over Ni-HZSM-5/SBA-15 Catalyst

    Directory of Open Access Journals (Sweden)

    Yujing Weng

    2015-12-01

    Full Text Available Aromatics and cyclic-hydrocarbons are the significant components of jet fuel with high energy-density. However, conventional technologies for bio-fuel production cannot produce these products without further aromatization and isomerization. In this work, renewable liquid fuel with high content of aromatics and cyclic-hydrocarbons was obtained through aqueous catalytic conversion of biomass sorbitol over Ni-HZSM-5/SBA-15 catalyst. Texture characteristics of the catalyst were determined by physisorption of N2, which indicated its bimodal pore structures were microporous (HZSM-5, pore width: 0.56 nm and mesoporous (SBA-15, pore width: 8 nm. The surface acidity included weak and strong acid sites, predominantly Lewis type, and was further confirmed by the NH3-TPD and Py-IR analysis. The catalytic performances were tested in a fixed-bed reactor under the conditions of 593 K, WHSV of 0.75 h−1, GHSV of 2500 h−1 and 4.0 MPa of hydrogen pressure, whereby oil yield of 40.4 wt. % with aromatics and cyclic-hydrocarbons content of 80.0% was obtained.

  13. Research on Corrosion Behavior of Middle Temperature Acidic Electroless Ni-Cu-P Alloy Coating%中温酸性化学镀Ni-Cu-P合金镀层腐蚀行为研究

    Institute of Scientific and Technical Information of China (English)

    亢淑梅; 陈婷婷; 彭启超; 孙思航; 刘宇楠

    2016-01-01

    在中温酸性条件下用化学沉积方法制备了Ni-Cu-P合金镀层,采用扫描电镜、能谱分析仪及Autolab工作站研究了镀层的耐蚀性能,确定了化学镀Ni-Cu-P合金的最佳工艺.其最佳工艺为:25 g/L NiSO4·6H2O,0.05 g/L CuSO4·5H2O,40 g/L C6H5Na3O7·2H2O,25 g/L NaH2PO2·H2O、15 g/L CH3COONa,0.03 g/L KIO3,0.01 g/L C12H25 NaO4SO3,pH为(4.75±0.01),θ为(80±1)℃,沉积t为2h.研究结果显示,中温酸性化学镀Ni-Cu-P合金镀层的腐蚀电流密度明显低于化学镀镍-磷合金镀层以及基体材料的腐蚀电流密度,其耐蚀性得到显著提高.

  14. Selective leaching and surface properties of Ti{sub 50}Ni{sub 50−x}Cu{sub x} (x = 0–20 at.%) shape memory alloys for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Shih-Hang, E-mail: shchang@niu.edu.tw; Chiu, Wei-Chen

    2015-01-01

    Highlights: • TiNiCu alloys show higher leaching rates of Ni and Cu ions than those of TiNi alloys. • NiO and Cu{sub 2}O oxides caused a deterioration of the protection of passive TiO{sub 2} films. • Surface modifications are needed to avoid the toxicity risk caused by released ions. - Abstract: This study investigated the selective leaching and surface characteristics of Ti{sub 50}Ni{sub 50} and Ti{sub 50}Ni{sub 50−x}Cu{sub x} (x = 5, 10, and 20) shape memory alloys (SMAs) by employing inductively coupled plasma mass spectrometry, electrochemical tests, and X-ray photoelectron spectroscopy. The experimental results revealed that Ti{sub 50}Ni{sub 50−x}Cu{sub x} SMAs exhibited corrosion-resistance properties that were more favorable than those of Ti{sub 50}Ni{sub 50} SMAs, whereas the concentrations of the Ni and Cu ions selectively leached from Ti{sub 50}Ni{sub 50−x}Cu{sub x} SMAs were considerably higher than those of Ni and Cu ions selectively leached from Ti{sub 50}Ni{sub 50} SMAs. Ti{sub 50}Ni{sub 50−x}Cu{sub x} SMAs exhibited higher selective leaching rates of Ni and Cu ions than those of Ti{sub 50}Ni{sub 50} SMAs, because the NiO and Cu{sub 2}O oxides that formed on the surface caused a deterioration of the uniformity and protection of the passive TiO{sub 2} films. Although Ti{sub 50}Ni{sub 50−x}Cu{sub x} SMAs exhibited unique properties that are superior to those of TiNi binary SMAs in particular biomedical applications, appropriate surface modifications are necessary to avoid the risk of toxicity caused by the released Ni and Cu ions.

  15. CuSnNiCr真空钎焊金刚石界面微结构分析%Interfacial Microstructure of Diamond Vacuum Brazing with CuSnNiCr

    Institute of Scientific and Technical Information of China (English)

    卢金斌; 贺亚勋; 张旺玺; 穆云超; 丁文锋; 钟素娟; 马佳

    2016-01-01

    为降低钎焊金刚石的热损伤和制造成本,采用 CuSnNiCr 单质金属粉作为钎料,对金刚石磨粒进行了钎焊实验.采用SEM、EDS及 XRD 对金刚石焊后界面微结构、钎料组织进行了分析.结果表明:适合钎焊金刚石的活性成分为 Cu75 Sn15 Ni5 Cr5,该钎料能与金刚石实现化学冶金结合,熔点适中,润湿性较好.金刚石焊后形貌完整,表面基本光滑,表面生成了连续片状(Cr,Fe)7 C3.钎料凝固过程先结晶出α-Cu枝晶,经包晶转变和共析转变,形成了α-Cu 枝晶、Cu5.6 Sn和共析α-Cu,钎料的显微硬度大约为200~250HV0.2.%In order to reduce the heat damage of diamond and manufacturing cost, using CuSnNiCr metal powder as filler and the experiments of brazing diamond abrasive grain were carried out.SEM,EDS and XRD were used to analyze the microstructure of diamond and brazing filler.The results show that the active component of the brazing diamond is Cu75Sn15Ni5Cr5,the melting point of the brazing filler is suitable for brazing diamond,and it can realize the chemical metallurgical bond-ing with diamond.The morphology of diamond is complete,the surface is smooth,and the surface of the diamond is as (Cr,Fe)7 C3 .The brazing filler solidification process of crystallizedα-Cu dendrite, peritectic transformation and eutectoid transformation,the formation of dendrite,Cu5.6 Sn,α-Cu and eutectoidα-Cu,the microhardness of the brazing filler is about 200~250HV0.2.

  16. Teores de Fe, Mn, Zn, Cu, Ni E Co em solos de referência de Pernambuco Concentrations of Fe, Mn, Zn, Cu, Ni and Co in benchmark soils of Pernambuco, Brazil

    Directory of Open Access Journals (Sweden)

    Caroline Miranda Biondi

    2011-06-01

    Full Text Available Metais pesados formam um grupo de elementos com particularidades relevantes e de ocorrência natural no ambiente, como elementos acessórios na constituição de rochas. Esses elementos, apesar de associados à toxidez, exigem tratamento diferenciado em relação aos xenobióticos, uma vez que diversos metais possuem essencialidade (Fe, Mn, Cu, Zn e Ni e benefício (Co comprovados para as plantas. Nesse contexto, o objetivo deste trabalho foi determinar os teores naturais dos metais Fe, Mn, Zn, Ni, Cu e Co nos solos de referência de Pernambuco. Foram coletadas amostras de solo nas três regiões fisiográficas (Zona da Mata, Agreste e Sertão, dos dois primeiros horizontes dos 35 solos de referência do Estado de Pernambuco. A digestão das amostras baseou-se no método 3051A (USEPA, 1998, e a determinação foi efetuada em ICP-OES. Correlações significativas foram estabelecidas entre os metais e entre estes e a fração argila do solo, em ambos os horizontes, indicando a associação comum da maioria dos metais com solos mais argilosos. A maioria dos solos apresentou teores de Fe, Mn, Zn, Cu, Ni e Co menores que os de solos de outras regiões do País, com litologia mais máfica, o que corrobora o fato de que os teores desses elementos são mais diretamente relacionados aos minerais Fe-magnesianos. Os resultados indicam baixo potencial dos solos de Pernambuco em liberar Cu, Co e Ni para plantas, enquanto deficiências de Zn, Fe e Mn são menos prováveis. Os teores naturais de Fe, Mn, Zn, Cu, Ni e Co determinados podem ser utilizados como base para definição dos Valores de Referência de Qualidade para os solos de Pernambuco, de acordo com o preconizado pela legislação nacional.Heavy metals are a group of elements with specific features and natural occurrence in the environment, representing an accessory in the formation of rocks. These elements, although associated with toxicity, must be treated different from xenobiotics, since many

  17. 制备态Fe21Ni79/Cu/Fe21Ni79三明治薄膜的纵向巨磁阻抗效应%Longitudinal Giant Magneto-Impedance in As-deposited Fe21Ni79/Cu/Fe21Ni79 Sandwiched Films

    Institute of Scientific and Technical Information of China (English)

    商干兵; 周勇; 丁文; 余先育; 曹莹; 周志敏

    2006-01-01

    采用直流电镀结合正胶光刻工艺制备了Fe21Ni79/Cu/ Fe21Ni79三明治薄膜,并在0.1~40MHz范围内研究了它的纵向巨磁阻抗效应特性.实验结果表明,Fe21Ni79/Cu/ Fe21Ni79三明治薄膜有十分明显的纵向GMI效应,GMI先随外加磁场的增高而迅速增大,在Hext=0.96kA/m达到最大值后开始逐渐下降.在频率为1.2MHz,外加磁场为0.96kA/m时薄膜的纵向GMI最大值达到88.3%.

  18. Infrared Brazing of Ti50Ni50 Shape Memory Alloy and Inconel 600 Alloy with Two Ag-Cu-Ti Active Braze Alloys

    Science.gov (United States)

    Shiue, Ren-Kae; Wu, Shyi-Kaan; Yang, Sheng-Hao

    2017-02-01

    Infrared brazing of Ti50Ni50 SMA and Inconel 600 alloy using Cusil-ABA and Ticusil filler metals has been investigated. The joints were dominated by Ag-Cu eutectic with proeutectic Cu in the Cusil-ABA brazed joint and with proeutectic Ag in the Ticusil one. A continuous curved belt composed of a Ni3Ti layer and a (Cu x Ni1- x )2Ti layer formed in the brazed Ti50Ni50/Ticusil/Inconel 600 joint. On the Ti50Ni50 SMA side, an intermetallic layer of (Cu x Ni1- x )2Ti formed in all joints, with x values around 0.81 and 0.47. Layers of (Cu x Ni1- x )2Ti, Ni3Ti, and mixed Ni3Ti and Ni2Cr intermetallics were observed next to the Inconel 600 substrate in the brazed Ti50Ni50/Cusil-ABA/Inconel 600 joint. The maximum shear strengths of the joints using the Cusil-ABA filler metal and the Ticusil filler metal were 324 and 300 MPa, respectively. In the Cusil-ABA brazed joint, cracks with cleavage-dominated fracture propagated along the (Cu x Ni1- x )2Ti interfacial layer next to the Ti50Ni50 SMA substrate. In the Ticusil brazed joint, ductile dimple fracture occurred in the Ag-rich matrix near the Inconel 600 alloy substrate. The absence of a detrimental Ti-Fe-(Cu) layer on the Inconel 600 substrate side can effectively improve the shear strength of the joint.

  19. Effect of Age-Hardening Treatment on Microstructure and Sliding Wear-Resistance Performance of WC/Cu-Ni-Mn Composite Coatings

    Science.gov (United States)

    Liu, Jun; Yang, Shuai; Liu, Kai; Gui, Chibin; Xia, Weisheng

    2017-06-01

    The Cu-Ni-Mn alloy-based hardfacing coatings reinforced by WC particles (WC/Cu-Ni-Mn) were deposited on a steel substrate by a manual oxy-acetylene weld hardfacing method. A sound interfacial junction was formed between the WC particles and the Cu-Ni-Mn alloy metal matrix binder even after the age-hardening treatment. The friction and wear behavior of the hardfacing coatings was investigated. With the introduction of WC particles, the sliding wear resistance of the WC/Cu-Ni-Mn hardfacing coatings was sharply improved: more than 200 times better than that of the age-hardening-treated Cu-Ni-Mn alloy coating. The sliding wear resistances of the as-deposited and the age-hardening-treated WC/Cu-Ni-Mn hardfacing coatings were 1.83 and 2.26 times higher than that of the commercial Fe-Cr-C hardfacing coating, which is mainly ascribed to the higher volume fraction of carbide reinforcement. Owing to the precipitation of the NiMn secondary phase in the Cu-Ni-Mn metal matrix, the age-hardening-treated coating had better wear resistance than that of the as-deposited coating. The main sliding wear mechanisms of the age-hardening-treated coatings are adhesion and abrasion.

  20. Suppression of spin pumping between Ni{sub 80}Fe{sub 20} and Cu by a graphene interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Gannett, Will; Keller, Mark W., E-mail: mark.keller@nist.gov; Nembach, Hans T.; Silva, Thomas J.; Chiaramonti, Ann N. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States)

    2015-06-07

    We compare ferromagnetic resonance measurements of Permalloy Ni{sub 80}Fe{sub 20} (Py) films sputtered onto Cu(111) films with and without a graphene (Gr) interlayer grown by chemical vapor deposition before Py deposition. A two-angle sputtering method ensured that neither Gr nor Py was degraded by the sample preparation process. We find the expected damping enhancement from spin pumping for the Py/Cu case and no detectable enhancement for the Py/Gr/Cu case. Since damping is sensitive to effects other than spin pumping, we used magnetometry to verify that differences in Py magnetostatic properties are not responsible for the difference in damping. We attribute the suppression of spin pumping in Py/Gr/Cu to the large contact resistance of the Gr/Cu interface.

  1. Isothermal Extrusion Properties of Zr55Cu30Al10Ni5 Bulk Metallic Glass%Zr55Al10Ni5Cu30大块非晶合金等温挤压特性

    Institute of Scientific and Technical Information of China (English)

    马智慧; 董湘怀; 苏红娟; 王茹燕

    2012-01-01

    Isothermal extrusion process of Zr55Cu3oAl10Ni5 bulk metallic glass (BMG) has been performed at 703 K at various extrusion velocities.A simple stretched exponential function has been developed to describe the rheological properties of Zr55Cu30Al10Ni5 BMG and implemented into the finite element code to simulate the extrusion process.The simulated results are concordant with the experimental curve during the steady-state extrusion process.The extrusion at different velocities does not induce the perceptible crystallization.The supercooled liquid state (SCL) region △T of the extruded samples is reduced with the increase of the extrusion time.%在703K对Zr55Al10Ni5Cu30大块非晶合金进行不同挤压速度的等温挤压实验,Zr55Al10Ni5Cu30大块非晶合金的高温本构模型用一种简单的扩展指数模型来描述,并将该本构模型代入有限元软件模拟挤压过程:在挤压稳定阶段,模拟结果与实验结果非常吻合;在不同挤压速度下,Zr55Al10Ni5Cu30大块非晶合金未发生明显晶化,但挤压试样的过冷液相区间随挤压时间的增加而减小.

  2. Study on the Absorption to Heavy Metal ions Ni2+and Cu2+of Dracocephalum Rupestre%毛建对重金属Ni2+和Cu2+吸附的研究

    Institute of Scientific and Technical Information of China (English)

    李慧卿; 孙泽臣; 常丹; 宋琦; 张娟; 郝彦宇

    2016-01-01

    研究毛建茶多酚的提取以及毛建对重金属Ni2+和Cu2+的吸附能力。结果发现,70%甲醇作溶剂时提取率最大,微波提取优于水浴萃取。在茶饮条件下,毛建对重金属Ni2+和Cu2+都有吸附。毛建对Ni2+和Cu2+的吸附是一个吸热过程,高温有利于其吸附,它对两种金属离子的吸附都符合兰缪尔等温式,属于单层吸附,最大吸附量分别为50.25、57.47 mg/g。%The extraction methods of tea polyphenols from Dracocephalum rupestre and heavy metal adsorbtion capacity were investigated. The results showed that the extraction rate was maximum when 70%methanol was as solvent and microwave method was better than water bathing. Dracocephalum rupestre could adsorb heavy metals nickel and copper ions under the condition of simulating tea drinking condition. The adsorbtion to Ni 2+and Cu2+was endothermic and elevated temperature was advantaged. The adsorbtion isotherms of both ions were fitted to a Langmuir equation, which means the adsorption is monodermic. The maximum number of adsorbed metal ions was given:50.25 mg/g for Ni2+and 57.47 mg/g for Cu2+.

  3. Cu-Ni-Ti钎料连接Si3N4陶瓷的试验研究%Investigation on the Test of Bonding Si3N4 Ceramics Using Cu-Ni-Ti Fill Metal

    Institute of Scientific and Technical Information of China (English)

    吴斌; 邹家生; 陈铮; 赵其章; 眭润舟; 楼宏青

    2001-01-01

    采用成分不同的Cu-Ni-Ti钎料进行了Si3N4/Si3N4的连接。结果表明:钎料成分、钎焊工艺 参数对连接强度均有重要影响。采用(Cu85Ni15)80Ti20钎料在1 373K×10 min条件下,Si3N4/Si3N4连接 强度达到最大值289 MPa。通过对Si3N4/Si3N4连接界面的微观分析,发现Si向钎料层扩散,钎料中的 Cu在接头中央富集,而Ti、Ni向Si3N4富集。相对Ni而言,Ti的富集区更靠近Si3N4陶瓷。%Si3N4/Si3N4 is bonded by using Cu-Ni-Ti Fill metal with different composition . The effects of the braze metal composition, and the procedure variables such as the brazing temperature and the brazing time on joining strength are investigated. The results show that at the temperature of 1 373 K for 10 min utes, the brazing alloy composition corresponding to the highest strength value (289 MPa) is (Cu85Ni15)80 Ti20. The analysis of the distribution of elements in Si3Na/Si3N4 joint shows that Si diffuses towards braze layer while Ti and Ni towards Si3N4. In the center part of the joint is mainly Cu element and the intensive area of Ti is closer to Si3N4 ceramics.

  4. First principles calculation of stable structure and adhesive strength of plated Ni/Fe(100) or Cu/Fe(100) interfaces

    Institute of Scientific and Technical Information of China (English)

    Ryota NAKANISHI; Koji SUEOKA; Seiji SHIBA; Makoto HINO; Koji MURAKAMI; Ken MURAOKA

    2009-01-01

    A study the with first principles calculation of the interfaces of the Ni layer or Cu layer on the Fe(100) surface formed with metal plating was performed. Ni or Cu atoms were shown to adopt the corresponding position to the bcc structure of the Fe(100) substrate. Other calculations showed that the interfaces of Ni (5 atomic layers)/Fe(100) (5 layers) or Cu (5 atomic layers)/Fe(100) (5 layers) had square lattices. The orientation relationship of Ni/Fe(100) interface corresponds to fcc-Ni(100)//bcc-Fe(100), Ni[011]//Fe[010], and Similar results were obtained for Cu/Fe(100) interfaces. This structure was supported by TEM analysis of plated Ni layer on Fe(100) surfaces. The adhesion strength of the Ni/Fe(100) interface evaluated by first principles calculation was higher than that of the Cu/Fe(100) interface. The experimental results of Hull cell iron plated with Ni or Cu supported the results of the calculation. These results indicate that the first principles calculation, which deals with the ideal interface at the atomic scale, has the potential to evaluate the adhesion strength of metallic material interfaces.

  5. Geology and genesis of the Jinchuan Ni-Cu-(PGE) deposit, China

    Science.gov (United States)

    Tonnelier, Nicolas J.

    The Jinchuan intrusion in northwestern China hosts the third-largest Ni-Cu-(PGE) deposit in the world. It is distinguished from other deposits of this type by a very large amount of mineralization (at least 500 Mt at ˜1.2 wt% Ni) compared to the relatively small volume of the intrusion (6000 x 300m) and the predominance of net-textured ore over other textures. Most of the intrusion is composed of ultramafic rocks whose compositions include harzburgites, lherzolites, and plagioclase lherzolites. Rare wehrlites and gabbros along the margins of the intrusion represent the most evolved rock types and have been previously considered to be less olivine-rich equivalents of the lherzolite and to be representative of the parental magma composition. The intrusion contains three main Ore Bodies numbered 2, 1, and 24 from SE to NW. The Ni-Cu-(PGE) mineralization occurs as net-textured and disseminated sulfides, but the textures vary between the different ore bodies. The central part of Jinchuan (Ore Body 1) hosts ˜60% of the known mineralization and is described as concentrically zoned, with net-textured ore surrounded by patchy disseminated mineralization, barren peridotite, and marginal wehrlites with significantly lower olivine content. However, other features, such as olivine grain size, interstitial mineralogy and Ni/Cu ratio in the ore zone, appear to be asymmetric, consistent with previous interpretations that Jinchuan was emplaced as a sub-horizontal sill. The southeastern and northwestern parts are more asymmetrically zoned, with patchy net-textured and localized massive ore overlain by disseminated mineralization and barren lherzolite. The ores in Jinchuan generally contain moderate amounts of sulfide (rarely exceeding 30%) but are rich in Ni and Cu and depleted in PGE relative to these elements. Jinchuan rock types are very Mg and Fe-rich (reflecting their high olivine and orthopyroxene contents). They are enriched in LREE and their isotope and trace element

  6. Effects of substituting Ni with M (M=Cu, Al and Mn) on microstructures and electrochemical characteristics of La-Mg-Ni system (PuNi3-type) electrode alloys

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yanghuan; ZHAO Dongliang; DONG Xiaoping; REN Huiping; GUO Shihai; WANG Xinlin

    2006-01-01

    In order to improve the electrochemical cycle stability of La-Mg-Ni system (PuNi3-type) hydrogen storage alloy, Ni in the alloys was partially substituted by M (M=Cu, Al, Mn). A new La-Mg-Ni system electrode alloys La0.7Mg0.3Ni2.55-xCo0.45Mx (M=Cu, Al, Mn;x =0,0.1) were prepared by casting and rapid quenching. The effects of element substitution and rapid quenching on the microstructures and electrochemical performances of the alloys were investigated. The results by XRD, SEM and TEM show that the alloys havea multiphase structure, including the (La, Mg)Ni3 phase, the LaNi5 phase and the LaNi2 phase. The rapid quenching and element substitution have an imperceptible influence on the phase compositions of the alloys, but both change the phase abundance of the alloys. The rapid quenching significantly improves the composition homogeneity of the alloys and markedly decreases the grain size of the alloys. The Cu substitution promotes the formation of an amorphous phase in the as-quenched alloy, and a reversal result by the Al substitution. The electrochemical measurement indicates that the element substitution decreases the discharge capacity of the alloys, whereas it obviously improves the cycle stability of the alloys. The positive influence of element substitution on the cycle life of the alloys is in sequence Al>Cu>Mn, and negative influence on the discharge capacity is in sequence Al>Mn>Cu. The rapid quenching significantly enhances the cycle stability of the alloys, but it leads to a different extent decrease of thedischarge capacity of the alloys.

  7. Fabrication and characterization of non-enzymatic glucose sensor based on ternary NiO/CuO/polyaniline nanocomposite.

    Science.gov (United States)

    Ghanbari, Kh; Babaei, Z

    2016-04-01

    Novel nickel and copper oxide nanoparticle modified polyaniline (PANI) nanofibers (NiO/CuO/PANI) were fabricated and used as a non-enzymatic sensor for detecting glucose. PANI nanofibers were prepared through electrodeposition, whereas nickel and copper oxide nanoparticles were deposited on PANI nanofibers by electrodeposition and electrochemical oxidation in situ. The morphology and structure of NiO/CuO/PANI nanocomposites were characterized by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), Raman spectroscopy, and Fourier transform infrared (FT-IR). The as-prepared NiO/CuO/PANI electrode was employed for non-enzymatic glucose detection in alkaline electrolyte and showed better electrocatalytic activity compared with the PANI, CuO/PANI, and NiO/PANI electrodes. Consequently, an amperometric electrode of glucose was achieved under 0.6 V versus Ag/AgCl with a wide linear range from 20 to 2500 μM (R(2) = 0.9978) and a low detection limit of 2.0 μM (signal/noise [S/N] = 3). This electrode can effectively analyze glucose concentration in human serum samples, avoiding interference, and is a promising non-enzymatic glucose sensor due to its low overpotential, high sensitivity, good selectivity and stability, fast response, and low cost. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Removal of As, Cd, Cr, Cu, Ni and Zn from polluted water using an iron based sorbent

    DEFF Research Database (Denmark)

    Genc-Fuhrman, Hülya; Wu, P.; Zhou, Y.

    2008-01-01

    In this study fixed-bed sorption filters are filled with an iron based sorbent (ferrosorp plus, FP) and used to remove a range of heavy metals (i.e. As, Cd, Cr, Cu, Ni, and Zn) from polluted water. It is found that FP is very effective at simultaneous removal of the heavy metals, and the magnitud...

  9. Ground-state properties of ordered, partially ordered, and random Cu-Au and Ni-Pt alloys

    DEFF Research Database (Denmark)

    Ruban, Andrei; Abrikosov, I. A.; Skriver, Hans Lomholt

    1995-01-01

    We have studied the ground-state properties of ordered, partially ordered, and random Cu-Au and Ni-Pt alloys at the stoichiometric 1/4, 1/2, and 3/4 compositions in the framework of the multisublattice single-site (SS) coherent potential approximation (CPA). Charge-transfer effects in the random ...

  10. Removal of As, Cd, Cu, Ni, Pb, and Zn from a highly contaminated industrial soil using surfactant enhanced soil washing

    Science.gov (United States)

    Torres, Luis G.; Lopez, Rosario B.; Beltran, Margarita

    Surfactant enhanced soil washing (SESW) was applied to an industrial contaminated soil. A preliminary characterization of the soil regarding the alkaline-earth metals, Na, K, Ca and Mg took values of 2866, 2036, 2783 and 4149 mg/kg. The heavy metals As, Cd, Cu, Pb, Ni and Zn, had values of 4019, 14, 35582, 70, 2603, and 261 mg/kg, respectively. When using different surfactants, high removal of Cu, Ni and Zn were found, and medium removals for Pb, As and Cd. In the case of these three metals, tap water removed more than the surfactant solutions, except for the case of As. There were surfactants with average removals (this is, the removal for all the metals studied) of 67.1% (Tween 80), 64.9% (Surfacpol 14104) and 61.2% (Emulgin W600). There were exceptional removals using Texapon N-40 (83.2%, 82.8% and 86.6% for Cu, Ni and Zn), Tween 80 (85.9, 85.4 and 81.5 for Cd, Zn and Cu), Polafix CAPB (79%, 83.2% and 49.7% for Ni, Zn and As). The worst results were obtained with POLAFIX LO with a global removal of 45%, well below of the average removal with tap water (50.2%).All removal efficiencies are reported for a one step washing using 0.5% surfactant solutions, except for the case of mezquite gum, where a 0.1% solution was employed.

  11. FAILURE OF Zr50Ti16.5Cu15Ni18.5 AMORPHOUS METALLIC RIBBON

    NARCIS (Netherlands)

    Miskuf, J.; Csach, K.; Jurikova, A.; Ocelik, V.; Bengus, V.; Tabachnikova, E.

    2008-01-01

    The deformation and fracture behavior of Zr50Ti16.5Cu15Ni18.5 bulk amorphous metal in the form of a thin ribbon have been determined in tensile test at room temperature. The fracture is localized in a major shear band and the fracture angle between the tensile stress axis and the fracture plane is c

  12. Effect of alloying elements on branching of primary austenite dendrites in Ni-Mn-Cu cast iron

    Directory of Open Access Journals (Sweden)

    A. Janus

    2011-04-01

    Full Text Available Within the research, determined were direction and intensity of influence of individual alloying elements on branching degree of primary austenite dendrites in austenitic cast iron Ni-Mn-Cu. 30 cast shafts dia. 20 mm were analysed. Chemical composition of the alloywas as follows: 2.0 to 3.3 % C, 1.4 to 3.1 % Si, 2.8 to 9.5 % Ni, 0.4 to 7.7 % Mn, 0 to 4.6 % Cu, 0.14 to 0.16 % P and 0.03 to 0.04 % S.Analysis was performed separately for the dendrites solidifying in directional and volumetric way. The average distance "x" between the2nd order arms was accepted as the criterion of branching degree. It was found that influence of C, Si, Ni, Mn and Cu on the parameter "x"is statistically significant. Intensity of carbon influence is decidedly higher than that of other elements, and the influence is more intensive in the directionally solidifying dendrites. However, in the case of the alloyed cast iron Ni-Mn-Cu, combined influence of the alloying elements on solidification course of primary austenite can be significant.

  13. Removal of As, Cd, Cr, Cu, Ni and Zn from polluted water using an iron based sorbent

    DEFF Research Database (Denmark)

    Genc-Fuhrman, Hülya; Wu, P.; Zhou, Y.;

    2008-01-01

    In this study fixed-bed sorption filters are filled with an iron based sorbent (ferrosorp plus, FP) and used to remove a range of heavy metals (i.e. As, Cd, Cr, Cu, Ni, and Zn) from polluted water. It is found that FP is very effective at simultaneous removal of the heavy metals, and the magnitud...

  14. Precipitation of Cu and Ni in n- and p-type Czochralski-grown silicon characterized by photoluminescence imaging

    Science.gov (United States)

    Sun, Chang; Nguyen, Hieu T.; Rougieux, Fiacre E.; Macdonald, Daniel

    2017-02-01

    Photoluminescence (PL) images and micro-PL maps were taken on Cu- or Ni-doped monocrystalline silicon wafers, to investigate the distribution of the metal precipitates. Several n-type and p-type wafers were used in which Cu or Ni were introduced in the starting melt of the ingots and precipitated during the ingot cooling (as opposed to surface contamination). The micro-PL mapping allowed investigation of the metal precipitates with a higher spatial resolution. Markedly different precipitation patterns were observed in n- and p-type samples: in both Cu- and Ni-doped n-type samples, circular central regions and edge regions were observed. In these regions, particles were distributed randomly and homogeneously. In the p-type Cu-doped and Ni-doped samples, by contrast, the precipitates occurred in lines along orientations. The difference in the precipitation behaviour in n- and p-type samples is conjectured to be caused by different concentrations of self-interstitials and vacancies remaining in the crystal during the ingot cooling: there are more vacancies in the n-type ingots but more interstitials in the p-type ingots. The dopant effects on the intrinsic point defect concentrations in silicon crystals and possible precipitation mechanisms are discussed based on the findings in this work and the literature.

  15. Hydrogen production by ethanol steam reforming over Cu-Ni/SBA-15 supported catalysts prepared by direct synthesis and impregnation

    Energy Technology Data Exchange (ETDEWEB)

    Carrero, A.; Calles, J.A.; Vizcaino, A.J. [Department of Chemical and Environmental Technology, Rey Juan Carlos University, Escuela Superior de Ciencias Experimentales y Tecnologia (ESCET), c/Tulipan s/n, 28933 Mostoles (Spain)

    2007-07-31

    Cu-Ni/SBA-15 supported catalysts prepared by the incipient wetness impregnation method were tested in the ethanol steam reforming reaction for hydrogen production. The effect of reaction temperature and metal loading was studied in order to maximize the hydrogen selectivity and the CO{sub 2}/(CO + CO{sub 2}) molar ratio. The best catalytic performance was achieved at 600 C. Products distribution was the result of the combined effects of metal particles size, metal content and Ni/Cu ratio on the catalyst. In addition, two catalysts were prepared by the method of direct insertion of Ni and Cu in the initial stage of the SBA-15 synthesis. X-ray powder diffraction (XRD), transmission electron microscopy (TEM), N{sub 2}- adsorption and inductively coupled plasma atomic emission spectroscopy (ICP-AES) results evidenced that SBA-15 materials with long range hexagonal ordering were successfully synthesized in the presence of copper and nickel salts with the (Cu + Ni) contents around 4-6 wt.%. However, lower hydrogen selectivity as well as ethanol and water conversions were obtained with catalysts prepared by direct synthesis in comparison with those prepared by incipient wetness impregnation method. Particularly, the best catalytic results were achieved with a sample impregnated with 2 and 7 wt.% of copper and nickel, respectively. (author)

  16. Elastic properties of Pd40Cu30Ni10P20 bulk glass in supercooled liquid region

    DEFF Research Database (Denmark)

    Nishiyama, N.; Inoue, A.; Jiang, Jianzhong

    2001-01-01

    In situ ultrasonic measurements for the Pd40Cu30Ni10P20 bulk glass in three states: Glassy solid, supercooled liquid, and crystalline, have been performed. It is found that velocities of both longitudinal and transverse waves and elastic moduli (shear modulus, bulk modulus, Young's modulus, and L...

  17. Low temperature-fired Ni-Cu-Zn ferrite nanoparticles through auto-combustion method for multilayer chip inductor applications

    National Research Council Canada - National Science Library

    Batoo, Khalid Mujasam; Ansari, Mohammad Shahnawaze

    2012-01-01

    Ferrite nanoparticles of basic composition Ni0.7-x ZnxCu0.3Fe2O4 (0.0 ≤ x ≤ 0.2, x = 0.05) were synthesized through auto-combustion method and were characterized for structural properties using X-ray diffraction...

  18. Effect of surface oxidation layer on tensile strength of Cu-Ni alloy in friction stir welding

    Science.gov (United States)

    Yoon, Taejin; Park, Sangwon; Chung, Sungwook; Noh, Joongsuk; Kim, Kwangho; Kang, Chungyun

    2016-05-01

    Friction stir welding (FSW) of thick Cu-Ni plate was successfully completed. The fracture position after tensile testing was located at the weld nugget zone (WNZ), where surface oxidation occurred. The oxidation morphologies on the surface of the base metal were analyzed by SEM, EPMA and XRD, with the oxide layer being obtained by simple and useful way to analyze the oxide products, namely, collecting oxide powders after immersing of the oxidized specimen into HNO3 solution. The results highlighted that an oxide layer of 30 μm thickness consists of a mixture of two phases, Cu2O and NiO, on the surface of the base metal. After FSW, the thickness of the oxide layer on the surface was decreased to approximately 5 μm, and broken oxide particles, which is NiO, penetrated into the WNZ by the rotating tool. NiO was preferentially formed at the surface after FSW because it has a lower Gibbs free energy value at 950 °C, which is the peak temperature measured during FSW. Oxide layer of Cu-Ni plate was clearly only removed by mechanical method grinding with 1200-grit SiC paper. The removal of oxide layer results in improved mechanical strength.

  19. Effects of Ni-coated Carbon Nanotubes addition on the electromigration of Sn–Ag–Cu solder joints

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhongbao; Zhou, Wei; Wu, Ping, E-mail: pingwu@tju.edu.cn

    2013-12-25

    Highlights: •The electromigration behaviors of the composite solder joints were investigated. •The presence of Ni altered the morphology of the IMC layer after reflow. •Carbon nanotube network was observed in solder matrix. •Current crowding occurred at the carbon nanotube networks. •The electromigration effect of composite solder joint was suppressed effectively. -- Abstract: The electromigration behaviors of line-type Cu/Sn–Ag–Cu/Cu interconnects with and without Ni-Coated multi-walled Carbon Nanotubes addition were investigated in this work. After soldering, the (Cu,Ni){sub 6}Sn{sub 5} intermetallic compounds formed at the solder/Cu interface. The electromigration analysis shows that the presence of Carbon Nanotubes can suppress the atomic diffusion in the solder induced by electromigration effectively. And finite element simulation indicates that the Carbon Nanotube networks can reduce the current density in the solder matrix, which results in the improvement of electromigration resistance of composite solders.

  20. Correlation between liquid structure and γ2-phase precipitation of Cu-Al-Ni shape memory alloys

    Institute of Scientific and Technical Information of China (English)

    潘学民; 边秀房; 孙景芹; 王伟民

    2002-01-01

    Cu71Al25Ni4 (mole fraction,%) shape memory alloy ribbons exhibit a good shape memory effect, which were prepared by melt-spinning technique. The microstructure of the as-spun ribbons was identified by D/Max-rA X-ray diffractometer. The order degree of martensite increases with decreasing liquid quenching temperature at the same quenching rate. The liquid structure of Cu75Al25 and Cu71Al25Ni4 was investigated using X-ray diffraction method. The distinct pre-peaks have been found in front of main peaks of the structure factors. The pre-peak increases intensity with decreasing temperature or adding Ni. Gaussian peaks decomposing radial distribution function (RDF) indicated that Cu-Al distance is anomalously short. These results suggest that a strong interaction between Cu and Al is favorable to form β-phase-like clusters, which leads to chemical medium-range ordering in melt. This promotes formation of order martensite and suppresses γ2-phase precipitation.

  1. Double negative electromagnetic properties of percolated Fe53Ni47/Cu granular composites

    Science.gov (United States)

    Tsutaoka, Takanori; Massango, Herieta; Kasagi, Teruhiro; Yamamoto, Shinichiro; Hatakeyama, Kenichi

    2016-05-01

    Electromagnetic properties of hybrid composite materials containing copper and permalloy (Fe53Ni47 alloy) particles have been investigated in the RF to microwave frequency range up to 20 GHz. Double negative permittivity and permeability spectra have been observed in the percolated state of the hybrid composite material. The negative permittivity spectra in this composite can be attributed to the low frequency plasmonic state produced by the percolated Cu and permalloy cluster chains as well as the dielectric resonance of the isolated metal clusters. The refractive index spectra which were calculated from the measured permittivity and permeability data indicated the negative refraction from 200 MHz to 1.8 GHz. The near zero or zero refractive index state can be obtained near the two zero crossing frequencies in the refractive index spectra.

  2. Precipitation hardening in a 12%Cr-9%Ni-4%Mo-2%Cu stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Haettestrand, Mats; Nilsson, Jan-Olof; Stiller, Krystyna; Liu Ping; Andersson, Marcus

    2004-02-23

    A combination of complementary techniques including one-dimensional and three-dimensional atom probe, energy-filtered transmission electron microscopy and conventional transmission electron microscopy has been used to assess the precipitation reactions at 475 deg. C in a 12%Cr-9%Ni-4%Mo-2%Cu precipitation hardening stainless steel. The continuous hardening up to at least 1000 h of ageing was attributed to a sequence of precipitation reactions involving nickel-rich precipitates nucleating at copper clusters followed by molybdenum-rich quasicrystalline precipitates and nickel-rich precipitates of type L1{sub 0}. An estimate of the relative contributions to the strength increment during tempering based on measurements of particle densities was performed. Nickel-rich precipitates were found to play the most important role up to about 40 h of ageing after which the effect of quasicrystalline particles became increasingly important.

  3. Interaction Kinetics between Sn-Pb Solder Droplet and Au/Ni/Cu Pad

    Institute of Scientific and Technical Information of China (English)

    Fuquan LI; Chunqing WANG; Yanhong TIAN

    2006-01-01

    The interfacial phenomena of the Sn-Pb solder droplet on Au/Ni/Cu pad are investigated. A continuous AuSn2and needle-like AuSn4 are formed at the interface after the liquid state reaction (soldering). The interfacial reaction between the solder and Au layer continues during solid state aging with AuSn4 breaking off from the interface and felling into the solder. The kinetics of Au layer dissolution and diffusion into the solder during soldering and aging is analyzed to elucidate intermetallic formation mechanism at the solder/Au pad interface.The concentration of Au near the solder/pad interface is identified to increase and reach the solubility limit during the period of liquid state reaction. During solid state reaction, the thickening of Au-Sn compound is mainly controlled by element diffusion.

  4. Interfacial energy and match of cold pressure welded Ag/Ni and Al/Cu

    Institute of Scientific and Technical Information of China (English)

    李云涛; 杜则裕; 马成勇

    2002-01-01

    The technology of cold pressure welding was adopted to achieve the bonding of Al/Cu(limited soluble and forming compounds), Ag/Ni (hardly mutual soluble), and the relative state of interface was tested by HREM. The results indicate that stable interface is always corresponding to the low interfacial energy value; the stable interface is not coherent but partly-coherent because of the twisting of grain boundary caused by pressure, meanwhile existing dislocation. Namely, the interfacial match and other states under the condition of cold pressure welding are different from the situation that under the condition of thermal action. Moreover, theoretical analyses and calculation on the base of thermodynamics, crystallogeny, solid physics etc, were discussed.

  5. TEM observation of oxidation of CuZnAlMnNi shape memory alloy

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The atmospheric oxidation of a quenched CuZnAlMnNi alloy after ion-polishing was examined by transmission electron microscopy (TEM). It was found that a lot of oxide grains with various sizes yield homogeneously on the surface of the alloy after exposure at room temperature for 90 d. The grains mainly form along the planes of stacking fault, meanwhile, they can also be observed at the stacking fault tetrahedrals or around the dislocation lines. The formarion of the oxides gives rise to the reduction of the stacking faults, and even complete disappearance in some zones,which is partly responsible for the decrement of shape memory. effect (SME) of the alloy quenched during long-term holding at room temperature.

  6. Contribution to Analysis of Co/Cu Substituted Ni-Zn Ferrites

    Directory of Open Access Journals (Sweden)

    G. S. V. R. K. Choudary

    2013-01-01

    Full Text Available In this communication, Co/Cu substituted Ni-Zn ferrites processed through sol-gel synthesis using polyethylene glycol (PEG as a chelating agent are studied, intending to aid in understanding and choosing the optimum ferrite material for high frequency applications. Lattice constant and average crystallite size have been estimated from FWHM of the X-ray diffraction peaks, and these parameters are understood by considering the ionic radii of the substituted as well as the replacing ions. Observed variations in saturation magnetization and initial permeability for these ferrites have been explained on the basis of anisotropy contribution for cobalt and segregation of copper at grain boundaries evident from scanning electron micrographs.

  7. Kinetic Characteristic of Hydrogenation Zr-Ti-Cu-Ni-Be Bulk Amorphous Alloys

    Institute of Scientific and Technical Information of China (English)

    Delin PENG; Jun SHEN; Jianfei SUN; Yuyong CHEN

    2004-01-01

    The relationship between the hydrogen content and the microhardness and the charging period, the effect of hydrogen on the activation energy, the kinetics of glass transition and crystallization of Zr-Ti-Cu-Ni-Be bulk amorphous alloy were studied by differential scanning calorimetry (DSC) and the Kissinger equation. It shows that both of the hydrogen content and the microhardness are related to the charging period, and that the glass transition and crystallization behavior are associated with the heating rate, and possess the kinetic effect. Hydrogen increases the glass transition temperature and the crystallization temperature, decreasing the enthalpies in the different stages of crystallization.Hydrogen increases the activation energies of the glass transition and the crystallization and changes the kinetic effect. The dependent extent between the glass transition, the crystallization and heating rate decreases after hydrogen charging.

  8. Mechanical alloying in Fe2O3-MO (M: Zn, Ni, Cu, Mg) systems

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Gerward, Leif; Mørup, Steen

    1999-01-01

    of MFe2O4 ferrites are critically discussed. No significant with respect to ferrite formation rates was observed in open and closed containers used here. In the Fe2O3/ZnO system, a single ferrite phase can be synthesized but in other systems no significant amounts of ferrites are formed by high......Mechanical alloying processes in four Fe2O3MO (M: Zn, Ni, Cu, Mg) systems by high-energy ball milling from simple oxide powder mixtures in both open and closed tungsten carbide containers have been investigated by x-ray powder diffraction and Mossbauer spectroscopy. Mechanisms for the formation......-energy ball milling under the conditions used here. The dominant alloying mechanism depends on the interdiffusion at relatively low temperatures. The experimental results may also be explained by the crystal structures of the reactants and the ferrites....

  9. Threshold photoemission magnetic circular dichroism of perpendicularly magnetized Ni films on Cu(001): theory and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kronseder, Matthias; Guenther, Stefan; Woltersdorf, Georg; Back, Christian H. [Universitaet Regensburg, Regensburg (Germany)

    2011-07-01

    Threshold photoemission magnetic circular dichroism (TP-MCD) for perpendicularly magnetized Ni films on Cu(001) was measured with a total electron yield method. This dichroism was used to observe the magnetic domain structure of these samples in a photoemission electron microscope. A spin-polarized relativistic Korringa-Kohn-Rostoker Green's function calculation including a dynamical mean field theory approach within the one-step-photoemission model reproduces the measured asymmetry in the photocurrents for left and right circularly polarized light. In addition, a three-step photoemission model calculation based on the same ab-initio calculation is used to quantitatively explain the MCD effect near the photoemission threshold. Furthermore, the dependence of the MCD-asymmetry on the polarization state of the incoming photons is theoretically computed and experimentally verified.

  10. Bonding mechanism of ultrasonic wedge bonding of copper wire on Au/Ni/Cu substrate

    Institute of Scientific and Technical Information of China (English)

    TIAN Yan-hong; WANG Chun-qing; Y. Norman ZHOU

    2008-01-01

    The ultrasonic wedge bonding with d25 μm copper wire was achieved on Au/Ni plated Cu substrate at ambient temperature. Ultrasonic wedge bonding mechanism was investigated by using SEM/EDX, pull test, shear test and microhardness test. The results show that the thinning of the Au layer occurs directly below the center of the bonding tool with the bonding power increasing. The interdiffusion between copper wire and Au metallization during the wedge bonding is assumed negligible, and the wedge bonding is achieved by wear action induced by ultrasonic vibration. The ultrasonic power contributes to enhance the deformation of copper wire due to ultrasonic softening effect which is then followed by the strain hardening of the copper wedge bonding.

  11. Isothermal entropy changes in nanocomposite Co:Ni67Cu33

    Science.gov (United States)

    Michalski, S.; Skomski, R.; Li, X.-Zh.; Le Roy, D.; Mukherjee, T.; Binek, Ch.; Sellmyer, D. J.

    2012-04-01

    The temperature-dependent magnetic properties of artificial rare-earth, free-magnetic nanostructures are investigated for magnetic cooling. We consider two-phase nanocomposites, where 2 nm nanoclusters of cobalt are embedded in a Ni67Cu33 matrix. Several composite films were produced by cluster deposition. The average Co nanocluster size can be tuned by varying the deposition conditions. Isothermal magnetization curves were measured at various temperatures 150 K < T < 340 K in steps of 10 K. The isothermal entropy changes ΔS were calculated using the Maxwell relation. The entropy changes measured were, -ΔS = 0.15 J/kg.K in a field change of 1 T at 260 K and 0.72 J/kg.K in a field change of 7 T at 270 K.

  12. An investigation on supercooling directional solidification process of Cu-Ni single phase alloy

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Supercooling directional solidification (SDS) is put forward by combination of melt supercooling and conventional solidification by application of supercooling inheritance. On the self-designed SDS equipment, SDS of Cu-Ni alloy was achieved successfully. The results are as follows: (ⅰ) The primary arm spacing is about 30 m m, the growth of secondary arms are strongly suppressed. The primary arm spacing is nearly the same as LMC method (GL=25 K/mm, V=500 m m/s), the primary stems are straight, fine and completed, with an inclination angle of about 5.8o. (ⅱ) A semi-quantitative T-T model is brought forward to describe the dendrite growth rate V vs. undercooling D T. The prediction of T-T model agrees well with experimental results. The formation of fine equiaxed dendrites, transition region and dendrite region can be explained successfully by D T-V-x relation of T-T model.

  13. Effect of Chemical Composition on Structure and Corrosion Resistance of Ni-Mn-Cu Cast Iron

    Directory of Open Access Journals (Sweden)

    Medyński D.

    2016-09-01

    Full Text Available In the paper, a relationship between chemical composition of Ni-Mn-Cu cast iron and its structure, hardness and corrosion resistance is determined. The examinations showed a decrease of thermodynamic stability of austenite together with decreasing nickel equivalent value, in cast iron solidifying according to both the stable and the metastable systems. As a result of increasing degree of austenite transformation, the created martensite caused a significant hardness increase, accompanied by small decline of corrosion resistance. It was found at the same time that solidification way of the alloy and its matrix structure affect corrosion resistance to a much smaller extent than the nickel equivalent value, in particular concentration of elements with high electrochemical potential.

  14. Characteristics of flake graphite in Ni-Mn-Cu cast iron. Part 1

    Directory of Open Access Journals (Sweden)

    A. Janus

    2009-01-01

    Full Text Available Relationship between chemical composition of cast iron and properties of flake graphite occurring in hypoeutectic and eutectic nickelmanganese-copper cast iron was determined. The research covered over 60 alloys of cast iron containing 1.6 to 4.1 % C, 1.3 to 2.8 % Si,2.4 to 10.5 % Ni, 0.2 to 8.2 % Mn, 0.1 to 3.5 % Cu, 0.14 to 0.17 % P and 0.02 to 0.04 % S. Evolution of graphite properties with changingeutecticity degree of the examined cast iron is presented. For selected castings, histograms of eutectic graphite colonies are presented, showing numbers of graphite precipitates in individual size ranges and their shape described by the coefficient

  15. Electrodeposition and characterisation of Ni/Cu nanostructured multilayers from citrate solutions

    CERN Document Server

    Meuleman, W R A

    2002-01-01

    A study of the effect of chemical and electrochemical parameters such as solution composition, pH, and current and potential waveforms on magnetic metal multi-layers plated from citrate electrolytes was carried out. Until now, magnetic multilayers have usually been electrodeposited mainly form sulfamate electrolytes; far less information is available on Cu-Ni multilayers obtained from citrate electrolytes. Since copper is deposited at its diffusion limiting current during multilayer deposition from citrate electrolytes, a rotating disc electrode study was carried out. It was found that the apparent diffusion coefficient changes significantly depending on the citrate ion concentration and pH, indicating the importance of metal speciation. In order to identify the rate controlling species, speciation calculations were carried out in order to model the dependence of the limiting current on the solution composition. The model is based on the assumption that complexes in solution are either labile or inert. A vert...

  16. Glass forming ability and thermodynamic properties of Ti(Zr,Hf)NiCu shape memory alloys

    Science.gov (United States)

    Pasko, A.; Kolomytsev, V.; Babanly, M.; Sezonenko, A.; Ochin, P.; Portier, R.; Vermaut, Ph.

    2003-10-01

    Rapidly solidified amorphous and crystalline-amorphous ribbons have been produced from a number of quatemary Ti{50+z-x}(Zr,Hf){ x}Ni{50- z-y}Cu{ y} alloys where z =(-5, 0, 5). Structural states were checked by XRD, crystallization behaviour of amorphous phase and martensitic transformations in crystalline material were studied by DSC. The glass transition and crystallization temperatures have been measured at different heating rates, and the crystallization activation energy for each composition and heat event bas been calculated. Isothermal crystallization gives an alternative method of determining the activation energy according to the Arrhenius equation. Contradictory requirements for the conditions of martensitic transformation and good glass forming ability is discussed.

  17. Sintered Fe-Ni-Cu-Sn-C Alloys Made of Ball-Milled Powders

    Directory of Open Access Journals (Sweden)

    Romański A.

    2014-10-01

    Full Text Available The main objective of this paper was to perform sinterability studies of ball-milled Fe-12%Ni-6.4%Cu-1.6%Sn-0.6%C powders. A mixture of precisely weighed amounts of elemental iron, nickel and graphite, and pre-alloyed 80/20 bronze powders was ball-milled for 8, 30 and 120 hours. After cold-pressing at 400 MPa the specimens were sintered at 900oC for 30 minutes in a reducing atmosphere and subsequently tested for density and hardness as well as subjected to structural studies using scanning electron microscopy (SEM and X-ray diffraction (XRD analysis.

  18. Designing multifunctional chemical sensors using Ni and Cu doped carbon nanotubes

    DEFF Research Database (Denmark)

    Mowbray, Duncan; García Lastra, Juan Maria; Thygesen, Kristian Sommer

    2010-01-01

    We demonstrate a “bottom up” approach to the computational design of a multifunctional chemical sensor. General techniques are employed for describing the adsorption coverage and resistance properties of the sensor based on density functional theory and non-equilibrium Green's function methodolog......We demonstrate a “bottom up” approach to the computational design of a multifunctional chemical sensor. General techniques are employed for describing the adsorption coverage and resistance properties of the sensor based on density functional theory and non-equilibrium Green's function...... methodologies, respectively. Specifically, we show how Ni and Cu doped metallic (6,6) single-walled carbon nanotubes may work as effective multifunctional sensors for both CO and NH3....

  19. Structural Transformations in High-Capacity Li 2 Cu 0.5 Ni 0.5 O 2 Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Ruther, Rose; Pandian, Amaresh S.; Yan, Pengfei; Weker, Johanna N.; Wang, Chongmin; Nanda, Jagjit

    2017-03-21

    Cathode materials that can cycle > 1 Li+ per transition metal are of substantial interest to increase the overall energy density of lithium-ion batteries. Li2Cu0.5Ni0.5O2 has a very high theoretical capacity of ~ 500 mAh/g assuming both Li+ are cycled reversibly. The Cu2+/3+ and Ni2+/3+/4+ redox couples are also at high voltage, which could further boost the energy density of this system. Despite such promise, Li2Cu0.5Ni0.5O2 undergoes irreversible phase changes during charge (delithiation) that result in large first-cycle irreversible loss and poor long-term cycling stability. Oxygen is evolved before the Cu2+/3+ or Ni3+/4+ transitions are accessed. In this contribution, XRD, TEM, and TXM-XANES are used to follow the chemical and structural changes that occur in Li2Cu0.5Ni0.5O2 during electrochemical cycling. Li2Cu0.5Ni0.5O2 is a solid solution of orthorhombic Li2CuO2 and Li2NiO2, but the structural changes more closely mimic the Li2NiO2 endmember. Li2Cu0.5Ni0.5O2 loses long-range order during charge, but TEM analysis provides clear evidence for particle exfoliation and the transformation from orthorhombic to a partially layered structure. Linear combination fitting and principal component analysis of TXM-XANES are used to map the different phases that emerge during cycling ex situ and in situ. Significant changes in the XANES at the Cu and Ni K-edges correlate with the onset of oxygen evolution.

  20. The study on interfacial bonding strength of Ag-Ni, Ag-Cu in cold pressure welding

    Institute of Scientific and Technical Information of China (English)

    李云涛; 杜则裕; 陈丽萍

    2003-01-01

    The area of combination actually is a kind of interfacial phenomena that exist on the surface or thin film. The properties of interface have important effect on the whole welded joint, even decide directly the interfacial bonding strength. The bonding strength of metals in cold pressure welding such as Ag-Ni (they are hardly mutual soluble) and Ag-Cu(they are limited soluble) are discussed in this paper. The results of the tensile test suggest that two kinds of welded joints have enough strength to satisfy with the demand for being used. Moreover, thermodynamics, crystal logy, physics and metal electronic microscopic analysis etc are adopted to further calculate the bonding strength. The results of test and theoretical analyses prove that Ag-Ni, Ag-Cu, especially, for Ag-Ni can form strong welded joint which is higher than that of the relative soft base metals in cold pressure welding.

  1. Structural and magnetic analysis of Cu, Co substituted NiFe{sub 2}O{sub 4} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Hakikat; Bala, Kanchan; Negi, N. S. [Department of physics Himachal Pradesh University Shimla (H.P.) India (India)

    2016-05-23

    In the present work we prepared NiFe{sub 2}O{sub 4}, Ni{sub 0.95}Cu{sub 0.05}Fe{sub 2}O{sub 4} and Ni{sub 0.94}Cu{sub 0.05}Co{sub 0.01} Fe{sub 2}O{sub 4} thin films by metallo-organic decomposition method (MOD) using spin coating technique. The thin films were analyzed by X-ray diffractometer (XRD) and Atomic force microscope (AFM) for structural studies. The XRD patterns confirmed the ferrite phase of thin films. From AFM, we analyzed surface morphology, calculated grain size (GS) and root mean square roughness (RMSR). Room temperature magnetic properties were investigated by vibrating sample magnetometer (VSM).

  2. Preparation and characterization chemistry of nano-crystalline Ni-Cu-Zn ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Hashim, Mohd, E-mail: md.hashim09@gmail.com [Department of Applied Physics, Aligarh Muslim University, Aligarh 202002 (India); Alimuddin [Department of Applied Physics, Aligarh Muslim University, Aligarh 202002 (India); Shirsath, Sagar E. [Spin Device Technology Centre, Faculty of Engineering, Shinshu University, Nagano 380-8553 (Japan); Kumar, Shalendra [Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Kumar, Ravi [Centre for Material Science Engineering, National Institute of Technology, Hamirpur, HP (India); Roy, Aashis S. [Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka (India); Shah, Jyoti; Kotnala, R.K. [National Physical Laboratory (CSIR), Dr. K.S. Krishnan Road, New Delhi 110012 (India)

    2013-02-05

    Highlights: Black-Right-Pointing-Pointer Single phase Ni{sub 0.5}Cu{sub 0.25}Zn{sub 0.25}Fe{sub 2-x}In{sub x}O{sub 4} ferrites were synthesized by citrate-nitrate precursor auto combustion. Black-Right-Pointing-Pointer Magnetic properties decreased due to the substitution of In{sup 3+} ions. Black-Right-Pointing-Pointer Dielectric properties decreased with increase in frequency. Black-Right-Pointing-Pointer This composition can be used for multilayer chip inductor (MLCI) applications. - Abstract: In submitted research; nanocrystalline powders having elements Ni{sub 0.5}Cu{sub 0.25}Zn{sub 0.25}Fe{sub 2-x}In{sub x}O{sub 4} with varied amounts of indium (x = 0.0, 0.1, 0.2, 0.3 and 0.4) were grown-up by modified citrate to nitrate alchemy. The realism of single phase cubic spinel creation of the synthesized ferrite samples was studied by the DTA-TGA, XRD, SEM, EDX, FT-IR, VSM and dielectric measurements. SEM was applied to inspect the morphological variations and EDX was used to determine the compositional mass ratios. The studies on the dielectric constant ({epsilon} Prime ), dielectric loss ({epsilon} Double-Prime ), loss tangent (tan {delta}), ac conductivity ({sigma}{sub ac}), resistive and reactive parts of the impedance analysis (Z' and Z') at room temperature were also carried out. The saturation magnetizations (Ms) were determined using the vibrating sample magnetometer (VSM). Ms. decreased with the increase In{sup 3+} doping content, as Fe{sup 3+} of 5{mu}{sub B} ions are replaced by In{sup 3+} of 0 {mu}{sub B} ions.

  3. Magmatic Cu-Ni sulfide mineralization of the Huangshannan mafic-untramafic intrusion, Eastern Tianshan, China

    Science.gov (United States)

    Zhao, Yun; Xue, Chunji; Zhao, Xiaobo; Yang, YongQiang; Ke, Junjun

    2015-06-01

    The Huangshannan Ni-Cu (-PGE) sulfide deposit, a new discovery from geological prospecting in Eastern Tianshan, is in a belt of magmatic Ni-Cu (-PGE) sulfide deposits along the southern margin of the Central Asian Orogenic Belt. The host intrusion of the Huangshannan deposit is composed of a layered ultramafic sequence and a massive gabbro-diorite unit. The major sulfide orebodies occur mainly within websterite and lherzolite in the layered ultramafic sequence. In-situ zircon U-Pb dating analyses yielded a crystallization age of 282.5 ± 1.4 Ma, similar to the ages of the Permian Tarim mantle plume. Samples from the Huangshannan intrusion are characterized by nearly flat rare earth elements patterns, negative Zr, Ti and Nb anomalies, arc-like Th/Yb and Nb/Yb ratios, and significantly lower rare earth element and immobile trace element contents than the Tarim basalts. These characteristics suggest that the Huangshannan intrusion was not generated from the Tarim mantle plume. The primary magma for the Huangshannan intrusion and its associated sulfide mineralization were formed from different pulses of picritic magma with different degrees of crustal contamination. The first pulse underwent an initial removal of 0.016% sulfide in the deep magma chamber. The evolved magma reached sulfide saturation again in the shallow magma chamber and formed sulfide ores in lherzolite. The second pulse of magma reached a level of 0.022% sulfide segregation at staging chamber before ascending up to the shallow magma chamber. In the shallow conduit system, this sulfide-unsaturated magma mixed with the first pulse of magma and with contamination from the country rocks, leading to the formation of sulfide ores in websterite. The third magma pulse from the deep chamber formed the unmineralized massive gabbro-diorite unit of the Huangshannan intrusion.

  4. Proximitized NbN/NiCu nanostripes as new promising superconducting single-photon detectors

    Science.gov (United States)

    Pepe, Giampiero; Parlato, Loredana; Bonavolontà, Carmela; Valentino, Massimo; De Lisio, Corrado; Cristiano, Roberto; Ejrnaes, Mikkel; Myoren, Horoshi; Sobolewski, Roman

    2013-05-01

    Transport properties of NbN/NiCu superconductor/ferromagnet (S/F) nanostripes fabricated in both in single-wire and series-parallel, meander-type configurations are presented down to T = 4.2 K. In particular, the enhancement of the superconducting critical current has been observed at smaller widths, apparently, due to an extra pinning mechanism, arising from clustering of ferromagnetic atoms inside the thin S layer. Moreover, we observed a number of characteristic voltage steps on the nanostripe current-voltage characteristics and their nature was investigated as a function of temperature. An explanation in terms of active phase-slip phenomena has been proposed based of the time-dependent Ginzburg-Landau theory and led to an estimation of the inelastic electron-phonon relaxation time τe-ph ~ 1 ps, in agreement with the τopt = 1.2+/-0.3 ps value, measured by the femtosecond transient optical reflectivity spectroscopy method on the same bilayer. Transient optical properties of our superconducting S/F nano-bilayers have been also investigated and compared to those obtained for pure NbN nanostripe reference samples. Finally, electrical photoresponse signals of S/F heterostructures exposed to ultraweak pulsed (width 400 ps, repetition rate ~100 MHz) laser radiation at 850 nm wavelength exhibited the falling time of voltage responses directly dependent on the NiCu overlayer. We have also noticed that the presence of the top F layer and the resulting proximity effect reduced frequency of dark counts in our samples.

  5. EVALUATION OF FLY ASHES FOR THE REMOVAL OF CU, NI AND CD FROM ACIDIC WATERS

    Directory of Open Access Journals (Sweden)

    BEGOÑA FERNÁNDEZ PÉREZ

    2010-01-01

    Full Text Available La presencia de sulfuros en la mayoría de los residuos mineros y la subsiguiente formación de los drenajes ácidos de mina (AMD ha sido ampliamente reconocida como uno de los grandes problemas medioambientales actuales. Las aguas procedentes de las minas abandonadas, con miles de metros cúbicos de residuos dispersos en escombreras y balsas mineras, se ven afectadas por este tipo de contaminación caracterizada por su acidez alto contenido en sulfatos y metales pesados como el Fe, Mn, Al, Cu, Ni, y Cd. Este estudio fue diseñado para evaluar el efecto del uso de cenizas volantes procedentes de centrales eléctricas como un neutralizador de las aguas ácidas resultantes de este tipo de instalaciones abandonadas. En este trabajo, y debido a la heterogeneidad de los contaminantes presentes en dicho residuo hemos estudiado la eliminación del Ni, Cu y Cd. Para ello se estudiaron diferentes parámetros: la concentración de metal y el pH de la solución a tratar, el tiempo de reacción y la densidad de pulpa. Las cenizas volantes se pueden utilizar como agentes de neutralización o fijación. Su utilización en contacto con AMD permite aumentar la alcalinidad y el pH. Esto dará lugar a la precipitación de los hidróxidos metálicos correspondientes.

  6. Thermal Variation of Elastic Modulus on Nanocrystalline NiCuZn Ferrites

    Directory of Open Access Journals (Sweden)

    S. R. Murthy

    2013-01-01

    Full Text Available The nanopowders of Ni0.38Cu0.12Zn0.5Fe2O4 with particle size, 20 nm have been synthesised using Microwave-Hydrothermal method and characterized. Then the ferrite samples were microwave sintered at different temperatures in an air atmosphere and characterized. The magnetic properties were measured at room temperature. The dielectric constant (ɛ, initial permeability (μi and quality factor (Q has been measured on sintered samples at 1 MHz. Thermal variation of initial permeability has been measured over temperature range of 300 K–600 K. A detailed study of elastic behaviour of NiCuZn ferrites has been under taken using a composite piezoelectric oscillator method over a temperature of 300 K–600 K. The room temperature elastic moduli is found to be slightly sample dependent and decreases with increasing the temperature, except near the Curie temperature, TC, where a small anomaly is observed. The internal friction at room temperature is also found to be more particle size dependent. The temperature variation of internal friction exhibits a broad maximum around 500 K, just below Curie temperature TC 530 K. The above observations were carried on in the demagnetized state; on the application of a 400 mT magnetic field allowed us to reach the saturated state of the sample at any of the measuring temperature. The anomaly observed in the thermal variation of elastic moduli and internal friction is explained with the help of temperature variation of magneto-crystalline anisotropy constant.

  7. Thermolysis characteristics of salts of o-phthalic acid with the formation of Fe, Co, Ni, Cu metal particles

    Science.gov (United States)

    Yudanova, L. I.; Logvinenko, V. A.; Yudanov, N. F.; Rudina, N. A.; Ishchenko, A. V.; Korol'kov, I. V.; Semyannikov, P. P.; Sheludyakova, L. A.; Alferova, N. I.

    2016-06-01

    Studies of the thermolysis of ortho-[Ni(H2O)2(C8H4O4)](H2O)2, [Cu(H2O)(C8H4O4)], and acid [M(H2O)6](C8H5O4)2 (M(II) = Fe(II), Co(II), and Ni(II)), [Cu(H2O)2(C8H5O4)2] phthalates reveal that the solid products of their decomposition are composites with nanoparticles embedded in carbon-polymer matrices. Metallic nanoparticles with oxide nanoparticle impurities are detected in iron/cobalt polymer composites, while nickel/copper composites are composed of only metallic particles. It is found that nickel nanoparticles with the diameters of 6-8 nm are covered with disordered graphene layers, while the copperbased composite matrix contains spherical conglomerates (50-200 nm) with numerous spherical Cu particles (5-10 nm).

  8. Microwave sintering versus conventional sintering of NiCuZn ferrites. Part II: Microstructure and DC-bias superposition characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Chenxin, E-mail: cxouyang@foxmail.com [Department of Materials Science and Engineering, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, Guangdong 518055 (China); Research Center, Shenzhen Zhenhua Fu Electronics Co., Ltd., Shenzhen, Guangdong 518109 (China); Xiao, Shumin [Department of Materials Science and Engineering, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, Guangdong 518055 (China); Zhu, Jianhua [Research Center, Shenzhen Zhenhua Fu Electronics Co., Ltd., Shenzhen, Guangdong 518109 (China); College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060 (China); Shi, Wei [Research Center, Shenzhen Zhenhua Fu Electronics Co., Ltd., Shenzhen, Guangdong 518109 (China)

    2016-06-01

    NiCuZn ferrites with the composition of (Ni{sub 0.48}Cu{sub 0.10}Zn{sub 0.42}O){sub 1.04}(Fe{sub 2}O{sub 3}){sub 0.96} were consolidated by microwave sintering (MS) and conventional sintering (CS), respectively. The influences of external microwave field and additives (1 wt% BSZ glass or 1 wt% Bi{sub 2}O{sub 3}) on the microstructure and DC-bias superposition characteristics of NiCuZn ferrites were investigated. Experimental results demonstrated that the final grain size was much larger with higher density since applying microwave field. In addition, for undoped ferrites, coarse grains structure obtained from microwave sintering is harmful to the DC-bias superposition characteristics. However, since adding BSZ glass or Bi{sub 2}O{sub 3}, the discrepancy on the final grain size obtained from MS and CS methods is not obvious. NiCuZn ferrites with the addition of BSZ glass or Bi{sub 2}O{sub 3} exhibited a stronger ability to inhibit the drop of permeability under the DC-bias magnetic field. Possible mechanisms behind are discussed in this article. - Highlights: • Magnetization process of NiCuZn ferrite under bias current field is studied. • Coarse grains size from microwave sintering is harmful to endure bias current attack. • BSZ glass and Bi{sub 2}O{sub 3} could enhance the density and DC-bias superposition property.

  9. Effect of heat treatment on the physical properties of bimetallic doped catalyst, Cu-Ni/TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Bashiri, Robabeh, E-mail: noranimuti-mohamed@petronas.com.my; Sufian, Suriati [Chemical Engineering Dept. Universiti Teknologi PETRONAS, 31750 Tronoh, Perak (Malaysia); Mohamed, Norani Muti, E-mail: noranimuti-mohamed@petronas.com.my; Kait, Chong Fai, E-mail: chongfaikait@petronas.com.my [Fundamental and Applied Sciences Dept., Universiti Teknologi PETRONAS, 31750 Tronoh, Perak (Malaysia)

    2015-07-22

    Post heat treatment is critical for the doped semiconductor oxide in order to improve its photocatalytic performance. Thus work had been carried out to understand the effect of different calcination temperature (400, 450 and 500°C) on the physical properties of nanosized Cu-Ni/TiO{sub 2}Cu-Ni doped TiO{sub 2} nanoparticles prepared using a combined method of sol-gel and hydrothermal. The treated samples were characterized using Raman spectroscopy, Brunauer–Emmett–teller (BET) measurement, high resolution transmission electron microscopy (HRTEM), field-emission scanning electron microscopy (FESEM), and diffuse reflectance UV-Vis spectroscopy (DR-UV-Vis). Raman analysis showed that all samples displayed anatase (101) phase of TiO{sub 2}, which is in good agreement with the TEM results. BET data showed that all prepared Cu-Ni/TiO{sub 2} with different calcination temperature are mesoporous. SEM images displayed spherical particles with typical size of about 15 to 20 nm. UV-Vis spectra illustrated that the absorbance edge of all prepared Cu-Ni/TiO{sub 2} have extended to the visible region with bandgap energies (2-2.1 eV) less than the pure anatase TiO{sub 2} (3.2 eV). Calcination temperature of 450°C is considered to be the optimum as it converts the synthesized Cu-Ni/TiO{sub 2} sample to have smaller average particle size with higher surface area that lead to more absorbance in the visible region and lower bandgap energy.

  10. The potential pool of Co, Ni, Cu, Pb and Cd organic complexing ligands in coastal and urban rain waters

    Science.gov (United States)

    Nimmo, Malcolm; Fones, Gary R.

    The detection of dissolved ACSV (adsorptive cathodic stripping voltammetry) Co, Ni, Cu, Cd and Pb in rain waters collected from an urban and a coastal site in the northwest of England is described. The presence of metal complexing organic ligands in rain waters is indicated with an overall percentage of ACSV non - labile dissolved metal of the total dissolved metal fraction ( = %ACSV nl/t) being 33 (33); 28 (35); 26 (32); 33 (25); 27 (34): for Co, Ni, Cu, Cd and Pb, respectively, for the urban site (and coastal site). ACSV metal lability is theoretically defined and is dependent upon the a-coefficient ( β' MAL [AL]) of the added ACSV ligand (AL). No major differences were observed between %ACSV nl/t metal fractions in rain waters collected at the two contrasting sites for all the metals considered. As Cu, Pb, Cd and Ni had values greater than 10 for their Ef crust (crustal enrichment factor), rain water collected from both sites had predominantly anthropic chemical characteristics. The commonality of the aerosol chemical characteristics at the two sites may account for the observed similar (relative to total metal concentrations) proportions of metal organic complexation at the two different sites. The general order of increasing organic associations was Cu = Pb = Ni < Co < Cd, although the analytical log α-coefficients ( β' MAL [AL]) for each metal were different (9.62—Ni; 9.27—Cu; 5.29—Co; 2.15—Pb; 1.13—Cd). Significant correlations were encountered between ACSV non - labile and total dissolved trace metal concentrations of the pooled data from both sites, again an indication of the similarity of the chemical characteristics of the scavenged soluble organic ligands associated with background aerosol material.

  11. Understanding lattice defects to influence ferromagnetic order of ZnO nanoparticles by Ni, Cu, Ce ions

    Science.gov (United States)

    Verma, Kuldeep Chand; Kotnala, R. K.

    2017-02-01

    Future spintronics technologies based on diluted magnetic semiconductors (DMS) will rely heavily on a sound understanding of the microscopic origins of ferromagnetism in such materials. It remains unclear, however, whether the ferromagnetism in DMS is intrinsic - a precondition for spintronics - or due to dopant clustering. For this, we include a simultaneous doping from transition metal (Ni, Cu) and rare earth (Ce) ions in ZnO nanoparticles that increase the antiferromagnetic ordering to achieve high-Tc ferromagnetism. Rietveld refinement of XRD patterns indicate that the dopant ions in ZnO had a wurtzite structure and the dopants, Ni2+, Cu2+, Ce3+ ions, are highly influenced the lattice constants to induce lattice defects. The Ni, Cu, Ce ions in ZnO have nanoparticles formation than nanorods was observed in pure sample. FTIR involve some organic groups to induce lattice defects and the metal-oxygen bonding of Zn, Ni, Cu, Ce and O atoms to confirm wurtzite structure. Raman analysis evaluates the crystalline quality, structural disorder and defects in ZnO lattice with doping. Photoluminescence spectra have strong near-band-edge emission and visible emission bands responsible for defects due to oxygen vacancies. The energy band gap is calculated using Tauc relation. Room temperature ferromagnetism has been described due to bound magnetic polarons formation with Ni2+, Cu2+, Ce3+ ions in ZnO via oxygen vacancies. The zero field and field cooling SQUID measurement confirm the strength of antiferromagnetism in ZnO. The field cooling magnetization is studied by Curie-Weiss law that include antiferromagnetic interactions up to low temperature. The XPS spectra have involve +3/+4 oxidation states of Ce ions to influence the observed ferromagnetism.

  12. Superconducting characterization of Ni/Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub y} superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Tokuda, T.; Hidaka, K. [Department of Electrical and Electric Engineering, Tottori University, 4-101, Koyama-Minami, Tottori 680-8552 (Japan); Kishida, S. [Department of Electrical and Electric Engineering, Tottori University, 4-101, Koyama-Minami, Tottori 680-8552 (Japan)], E-mail: kishida@ele.tottori-u.ac.jp

    2007-10-01

    We deposited non-superconducting materials, Ni metal on the surface of Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub y} (BSCCO) superconductors. Critical temperature (T{sub c}) and critical current (I{sub c}) of Ni/BSCCO specimens decreased with increasing thickness of Ni films. This indicates that the T{sub c} and the I{sub c} of the BSCCO films are degraded with a thickness of Ni. This behavior is approximately equal to that of a Ni/YBa{sub 2}Cu{sub 3}O{sub y} (YBCO) specimen, where the T{sub c} and the I{sub c} of it were dependent on rf power during Ni deposition. Therefore, the degradation of the Ni/BSCCO specimen may be due to the Ni diffusion into the BSCCO films.

  13. Phase field simulation of monotectic transformation for liquid Ni-Cu-Pb alloys

    Institute of Scientific and Technical Information of China (English)

    LUO BingChi; WANG HaiPeng; WEI BingBo

    2009-01-01

    Based on the subregular solution model, the liquid phase separation of ternary (NixCu100-x)50Pb50monotectic alloys is simulated by the phase field method. It is found that if the surface segregation potential is not incorporated, the dynamic morphologies of alloy melt show a transition from disperse microstructure into bicontinuous microstructure with the increase of fluidity parameter. When the sur-face segregation potential is coupled, Pb-rich phase migrates preferentially to the surface of the liquid alloy, and the Ni-rich phase depends on the Pb-rich phase to nucleate. With the extension of the phase separation time, the surface layer is formed through coagulation and growth, and its thickness gradu-ally increases. The Ni-rich phase migrates to the central part, and finally a two-layer core-shell micro-structure is produced. The concentration in the surface layer fluctuates more conspicuously than that inside the bulk phase, which subsequently transfers from the surface to the interior by a wave. The fluid field near the liquid-liquid interface is strong at the beginning of phase separation, and reduces later on. The surface segregation is essential to the formation of the surface layer, concentration profile variation, fluid field distribution and phase separation morphology.

  14. Brazing of zirconia to titanium using Ag-Cu and Au-Ni filler alloys

    Directory of Open Access Journals (Sweden)

    Jean S. Pimenta

    2013-12-01

    Full Text Available Advanced ceramic is usually joined to metal by the well-known direct brazing process, where costly active filler alloys can be considered a limitation. Brazing using active-metal-free filler alloy as insert between the joint components is an attempt to overcome it. The active metal diffusion from the titanium member through the bulk of molten filler to the ceramic was responsible to produce an active filler alloy in loco and promote reduction of the zirconium oxide to improve wetting on the ceramic surface. Unalloyed titanium was joined in a high-vacuum furnace (<3x10-5 mbar to yttria-tetragonal zirconia polycristals (Y-TZP and zirconia partially stabilized with magnesia (Mg-PSZ, where commercial fillers Ag-28Cu and Au-18Ni with respective thermal cycles were evaluated. Helium gas leak detection test was performed at the ceramic/metal interface at room temperature; samples from reliable vacuum tight joints were examined by microstructural analysis techniques and energy dispersive X-ray analysis at the joint cross-section. Tight joints were produced with eutectic Ag-Cu filler, revealing an intermetallic layer and a dark reaction layer near the ceramic surface; titanium diffusion was efficient for superficial chemical interactions between individual components. Brazing joints were also tested using three-point flexure testing.

  15. Effect of component substitution on the microstructure and mechanical properties of MCoCrFeNiTix (M = Cu,Al) solid-solution alloys

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    MCoCrFeNiTix (M = Cu,Al;x:molar ratio,x = 0,0.5) alloys were prepared using the new alloy-design strategy of equal-atomic ratio and high entropy.By the component substitution of Al for Cu,the microstructure changes from the face-centered cubic solid solution of original CuCoCrFeNiTix alloys to the body-centered cubic solid solution of AICoCrFeNiTix alloys.Compared with original CuCoCrFeNiTix alloys,AICoCrFeNiTix alloys keep the similar good ductility and simultaneously possess a much higher compressive strength,which are even superior to most of the reported high-strength alloys like bulk metallic glasses.

  16. Copper-based alloys, crystallographic and crystallochemical parameters of alloys in binary systems Cu-Me (Me=Co, Rh, Ir, Cu, Ag, Au, Ni, Pd, Pt)

    Energy Technology Data Exchange (ETDEWEB)

    Porobova, Svetlana, E-mail: porobova.sveta@yandex.ru; Loskutov, Oleg, E-mail: lom58@mail.ru [Tomsk State University of Architecture and Building, Russia, Tomsk, 2 Solyanaya sq, Tomsk, 634003 (Russian Federation); Markova, Tat’jana, E-mail: patriot-rf@mail.ru [Siberian State Industrial University. 42 Kirov St., Novokuznetsk, 654007 (Russian Federation); Klopotov, Vladimir, E-mail: vdklopotov@mail.ru [Research Tomsk Polytechnic University, 30 Lenin Ave., Tomsk, 634050 (Russian Federation); Klopotov, Anatoliy, E-mail: klopotovaa@tsuab.ru [Tomsk State University of Architecture and Building, Russia, Tomsk, 2 Solyanaya sq, Tomsk, 634003 (Russian Federation); National Research Tomsk State University, 36, Lenin Ave., Tomsk, 634050 (Russian Federation); Vlasov, Viktor, E-mail: vik@tsuab.ru [Tomsk State University of Architecture and Building, Russia, Tomsk, 2 Solyanaya sq, Tomsk, 634003 (Russian Federation); Research Tomsk Polytechnic University, 30 Lenin Ave., Tomsk, 634050 (Russian Federation)

    2016-01-15

    The article presents the results of the analysis of phase equilibrium of ordered phases in binary systems based on copper Cu- Me (where Me - Co, Rh, Ir, Ag, Au, Ni, Pd, Pt) to find correlations of crystallochemical and crystallographic factors. It is established that the packing index in disordered solid solutions in binary systems based on copper is close to the value of 0.74 against the background of an insignificant deviation of atomic volumes from the Zen’s law.

  17. Effects of Fabrication Parameters on Interface of Zirconia and Ti-6Al-4V Joints Using Zr55Cu30Al10Ni5 Amorphous Filler

    Science.gov (United States)

    Liu, Yuhua; Hu, Jiandong; Shen, Ping; Guo, Zuoxing; Liu, Huijie

    2013-09-01

    ZrO2 was brazed to Ti-6Al-4V using a Zr55Cu30Al10Ni5 (at.%) amorphous filler in a high vacuum at 1173-1273 K. The influences of brazing temperature, holding time, and cooling rate on the microstructure and shear strength of the joints were investigated. The interfacial microstructures can be characterized as ZrO2/ZrO2- x + TiO/(Zr,Ti)2(Cu,Ni)/(Zr,Ti)2(Cu,Ni,Al)/acicular Widmanstäten structure/Ti-6Al-4V. With the increase in the brazing temperature, both the thickness of the ZrO2- x + TiO layer and the content of the (Zr,Ti)2(Cu,Ni) phase decreased. However, the acicular Widmanstäten structure gradually increased. With the increase in the holding time, the (Zr,Ti)2(Cu,Ni) phase decreased, and the thickness of the (Zr,Ti)2(Cu,Ni) + (Zr,Ti)2(Cu,Ni,Al) layer decreased. In addition, cracks formed adjacent to the ZrO2 side under rapid cooling. The microstructures produced under various fabrication parameters directly influence the shear strength of the joints. When ZrO2 and Ti-6Al-4V couples were brazed at 1173 K for 10 min and then cooled at a rate of 5 K/min, the maximum shear strength of 95 MPa was obtained.

  18. Direct production of carbon nanofibers decorated with Cu2O by thermal chemical vapor deposition on Ni catalyst electroplated on a copper substrate

    Directory of Open Access Journals (Sweden)

    MA Vesaghi

    2012-12-01

    Full Text Available  Carbon nanofibers (CNFs decorated with Cu2O particles were grown on a Ni catalyst layer deposited on a Cu substrate by thermal. chemical vapor deposition from liquid petroleum gas. Ni catalyst nanoparticles with different sizes were produced in an electroplating system at 35˚C. These nanoparticles provide the nucleation sites for CNF growth, removing the need for a buffer layer. High temperature surface segregation of the Cu substrate into the Ni catalyst layer and its exposition to O2 at atmospheric environment, during the CNFs growth, lead to the production of CNFs decorated with Cu2O particles. The surface morphology of the Ni catalyst films and grown CNFs over it was studied by scanning electron microscopy. Transmission electron microscopy and Raman spectroscopy revealed the formation of CNFs. The selected area electron diffraction pattern and electron diffraction studies show that these CNFs were decorated with Cu2O nanoparticles.

  19. Temperature-induced sign change of the magnetic interlayer coupling in Ni/Ni{sub 25}Mn{sub 75}/Ni trilayers on Cu{sub 3}Au(001)

    Energy Technology Data Exchange (ETDEWEB)

    Shokr, Y. A.; Zhang, B.; Sandig, O.; Kuch, W. [Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin (Germany); Erkovan, M. [Nanoscience and Nanoengineering Department, Sakarya University, 54687 Sakarya (Turkey); Wu, C.-B. [Department of Physics, Chung Yuan Christian University, Chungli 32023, Taiwan (China)

    2015-05-07

    We investigated the magnetic interlayer coupling between two ferromagnetic (FM) Ni layers through an antiferromagnetic (AFM) Ni{sub 25}Mn{sub 75} layer and the influence of this coupling on the exchange bias phenomenon. The interlayer coupling energy of an epitaxial trilayer of 14 atomic monolayers (ML) Ni/45 ML Ni{sub 25}Mn{sub 75}/16 ML Ni on Cu{sub 3}Au(001) was extracted from minor-loop magnetization measurements using in-situ magneto-optical Kerr effect. The interlayer coupling changes from ferromagnetic to antiferromagnetic when the temperature is increased above 300 K. This sign change is interpreted as the result of the competition between an antiparallel Ruderman-Kittel-Kasuya-Yosida (RKKY)-type interlayer coupling, which dominates at high temperature, and a stronger direct exchange coupling across the AFM layer, which is present only below the Néel temperature of the AFM layer.

  20. On the Path to Optimizing the Al-Co-Cr-Cu-Fe-Ni-Ti High Entropy Alloy Family for High Temperature Applications

    Directory of Open Access Journals (Sweden)

    Anna M. Manzoni

    2016-03-01

    Full Text Available The most commonly investigated high entropy alloy, AlCoCrCuFeNi, has been chosen for optimization of its microstructural and mechanical properties by means of compositional changes and heat treatments. Among the different available optimization paths, the decrease of segregating element Cu, the increase of oxidation protective elements Al and Cr and the approach towards a γ-γ′ microstructure like in Ni-based superalloys have been probed and compared. Microscopical observations have been made for every optimization step. Vickers microhardness measurements and/or tensile/compression test have been carried out when the alloy was appropriate. Five derived alloys AlCoCrFeNi, Al23Co15Cr23Cu8Fe15Ni16, Al8Co17Cr17Cu8Fe17Ni33, Al8Co17Cr14Cu8Fe17Ni34.8Mo0.1Ti1W0.1 and Al10Co25Cr8Fe15Ni36Ti6 (all at.% have been compared to the original AlCoCrCuFeNi and the most promising one has been selected for further investigation.