WorldWideScience

Sample records for hydrocarbon-fueled scramjet combustor

  1. Experimental investigations on active cooling thermal protection structure of hydrocarbon-fueled scramjet combustor in arc heated facility

    Science.gov (United States)

    Jianqiang, Tu; Jinlong, Peng; Xianning, Yang; Lianzhong, Chen

    2016-10-01

    The active cooling thermal protection technology is the efficient method to resolve the long-duration work and reusable problems of hydrocarbon-fueled scramjet combustor, where worst thermo-mechanical loads occur. The fuel is passed through coolant channels adjacent to the heated surfaces to absorb heat from the heating exchanger panels, prior to injection into the combustor. The heating exchanger both cooled down the wall temperature of the combustor wall and heats and cracks the hydrocarbon fuel inside the panel to permit an easier combustion and satisfying combustion efficiency. The subscale active cooling metallic panels, with dimensions of 100×100 mm and different coolant channel sizes, have been tested under typical combustion thermal environment produced by arc heated Turbulent Flow Duct (TFD). The heat exchange ability of different coolant channel sizes has been obtained. The big-scale active cooling metallic panel, with dimensions of 100 × 750 mm and the coolant channel sizes of better heating exchange performance, has been made and tested in the big-scale arc heated TFD facility. The test results show that the local superheated ablation is easy to happen for the cooling fuel assigned asymmetrically in the bigscale active cooling metallic panel, and the cooling fuel rate can reduce 8%˜10% after spraying the Thermal Barrier Coating (TBC) in the heating surface.

  2. Experimental Investigation of Hydrocarbon-fuel Ignition in Scramjet Combustor%超音速燃烧室碳氢燃料点火实验研究

    Institute of Scientific and Technical Information of China (English)

    宋文艳; 黎明; 蔡元虎; 刘伟雄; 白菡尘

    2004-01-01

    The direct-connected supersonic combustor experiment is finished for kerosene fuel ignition in H2/O2 preheated impulse facility. The entrance parameter of combustor corresponds to scramjet flight Mach number 3.5. Kerosene ignition is realized by using hydrogen as pilot flame. Wall pressure distributions of combustion are measured and flame photographs of ultraviolet ray are got. Experiment indicates that it is very difficult for kerosene fuel to realize self-ignition at low entrance temperature (below 900K) in supersonic combustor. Hydrogen pilot flame is one of the efficient methods for realizing kerosene ignition.%模拟飞行Ma=3.5的超燃冲压发动机的燃烧室进口条件,采用氢为先锋火焰,在氢氧燃烧加热脉冲风洞上,对超燃燃烧室煤油燃料的点火和火焰稳定进行了实验研究,实现了煤油的点火和火焰稳定.实验测量了燃烧室壁面压力分布,并拍摄了燃烧火焰紫外光图像.实验表明,在燃烧室进口温度较低(小于900K)的条件下,在超燃燃烧室中实现煤油自燃十分困难,采用氢为先锋火焰实现煤油的点火是较为有效的途径之一.

  3. Radical recombination in a hydrocarbon-fueled scramjet nozzle

    Directory of Open Access Journals (Sweden)

    Zhang Xiaoyuan

    2014-12-01

    Full Text Available To reveal the radical recombination process in the scramjet nozzle flow and study the effects of various factors of the recombination, weighted essentially non-oscillatory (WENO schemes are applied to solve the decoupled two-dimensional Euler equations with chemical reactions to simulate the hydrocarbon-fueled scramjet nozzle flow. The accuracy of the numerical method is verified with the measurements obtained by a shock tunnel experiment. The overall model length is nearly 0.5 m, with inlet static temperatures ranging from 2000 K to 3000 K, inlet static pressures ranging from 75 kPa to 175 kPa, and inlet Mach numbers of 2.0 ± 0.4 are involved. The fraction Damkohler number is defined as functions of static temperature and pressure to analyze the radical recombination progresses. Preliminary results indicate that the energy releasing process depends on different chemical reaction processes and species group contributions. In hydrocarbon-fueled scramjet nozzle flow, reactions with H have the greatest contribution during the chemical equilibrium shift. The contrast and analysis of the simulation results show that the radical recombination processes influenced by inflow conditions and nozzle scales are consistent with Damkohler numbers and potential dissociation energy release. The increase of inlet static temperature improves both of them, thus making the chemical non-equilibrium effects on the nozzle performance more significant. While the increase of inlet static pressure improves the former one and reduces the latter, it exerts little influence on the chemical non-equilibrium effects.

  4. Numerical Modelling of Scramjet Combustor

    Directory of Open Access Journals (Sweden)

    M. Deepu

    2007-07-01

    Full Text Available Numerical modelling of turbulent-reacting flow field of supersonic combustion ramjet(scramjet combustors are presented. The developed numerical procedure is based on the implicittreatment of chemical source terms by preconditioning and solved along with unstedy turbulentNavier-Stokes equations explicitly. Reaction is modelled using an eight-step hydrogen-airchemistry. Code is validated against a standard wall jet experimental data and is successfullyused to model the turbulent-reacting flow field resulting due to the combustion of hydrogeninjected from diamond-shaped strut and also in the wake region of wedge-shaped strut placedin the heated supersonic airstream. The analysis could demonstrate the effect of interaction ofoblique shock wave with a supersonic stream of hydrogen  in its (fuel-air mixing and reactionfor strut-based scramjet combustors.

  5. Experimental Study on Effects of Fuel Injection on Scramjet Combustor Performance

    Institute of Scientific and Technical Information of China (English)

    Wu Xianyu; Li Xiaoshan; Ding Meng; Liu Weidong; Wang Zhenguo

    2007-01-01

    In order to investigate the effects of fuel injection distribution on the scramjet combustor performance, there are conducted three sets of test on a hydrocarbon fueled direct-connect scramjet test facility. The results of Test A; whose fuel injection is carried out with injectors located on the top-wall and the bottom-wall, show that the fuel injection with an appropriate close-front and centralized distribution would be of much help to optimize combustor performances. The results of Test B, whose fuel injection is performed at the optimal injection locations found in Test A, with a given equivalence ratio and different injection proportions for each injector, show that this injection mode is of little benefit to improve combustor performances. The results of Test C with a circumferential fuel injection distribution displaies the possibility of ameliorating combustor performance. By analyzing the effects of injection location parameters on combustor performances on the base of the data of Test C, it is clear that the injector location has strong coupled influences on combustor performances. In addition, an inner-force synthesis specific impulse is used to reduce the errors caused by the disturbance of fuel supply and working state of air heater while assessing combustor performances.

  6. Endothermic Heat-Sink of Hydrocarbon Fuels for Scramjet Cooling AIAA 2002-3871

    National Research Council Canada - National Science Library

    Huang, H

    2002-01-01

    Storable liquid hydrocarbon fuels, such as JP-7, JP-8+ 100, and JP-10, that can undergo endothermic reactions may provide sufficient heat sink to enable hypersonic flight without having to resort to cryogenic fuels...

  7. Experimental Study of Ethylene Combustion in a Scramjet Combustor

    Institute of Scientific and Technical Information of China (English)

    XIAO Yin-li; SONG Wen-yan; LE Jia-ling

    2008-01-01

    In this paper the ignition characteristics of gaseous ethylene hydrocarbon fuel is investigated in the supersonic clean airstreams experimental facility with a resistance heater. The generic cavity flame holder is used to create recirculation and promote the fuel/air mixing at the lower wall of the combustor. Three different injection concepts are considered in this research: (1) ethylene injection upstream of the cavity; (2) ethylene and hydrogen injection upstream of the cavity simultaneously; (3) ethylene injection preceded by pilot hydrogen injection. The pilot injection showed to be a supportive tool for holding the flame of the main normal ethylene fuel injection. Therefore, using pilot hydrogen injection and cavity configuration necessitates optimizing the combustor length to ensure the complete combustion and the full liberation of the chemical energy stored in the fuel before exiting the combustor. The present study proved the possibility of igniting the ethylene and maintaining its flame in the supersonic airstreams.

  8. A Priori Analysis of a Compressible Flamelet Model using RANS Data for a Dual-Mode Scramjet Combustor

    Science.gov (United States)

    Quinlan, Jesse R.; Drozda, Tomasz G.; McDaniel, James C.; Lacaze, Guilhem; Oefelein, Joseph

    2015-01-01

    In an effort to make large eddy simulation of hydrocarbon-fueled scramjet combustors more computationally accessible using realistic chemical reaction mechanisms, a compressible flamelet/progress variable (FPV) model was proposed that extends current FPV model formulations to high-speed, compressible flows. Development of this model relied on observations garnered from an a priori analysis of the Reynolds-Averaged Navier-Stokes (RANS) data obtained for the Hypersonic International Flight Research and Experimentation (HI-FiRE) dual-mode scramjet combustor. The RANS data were obtained using a reduced chemical mechanism for the combustion of a JP-7 surrogate and were validated using avail- able experimental data. These RANS data were then post-processed to obtain, in an a priori fashion, the scalar fields corresponding to an FPV-based modeling approach. In the current work, in addition to the proposed compressible flamelet model, a standard incompressible FPV model was also considered. Several candidate progress variables were investigated for their ability to recover static temperature and major and minor product species. The effects of pressure and temperature on the tabulated progress variable source term were characterized, and model coupling terms embedded in the Reynolds- averaged Navier-Stokes equations were studied. Finally, results for the novel compressible flamelet/progress variable model were presented to demonstrate the improvement attained by modeling the effects of pressure and flamelet boundary conditions on the combustion.

  9. Experimental investigation on laser-induced plasma ignition of hydrocarbon fuel in scramjet engine at takeover flight conditions

    Science.gov (United States)

    Li, Xipeng; Liu, Weidong; Pan, Yu; Yang, Leichao; An, Bin

    2017-09-01

    Laser-induced plasma ignition of an ethylene fuelled cavity is successfully conducted in a model scramjet engine combustor with dual cavities. The simulated flight condition corresponds to takeover flight Mach 4, with isolator entrance Mach number of 2.1, the total pressure of 0.65 MPa and stagnation temperature of 947 K. Ethylene is injected 35 mm upstream of cavity flameholder from four orifices with 2-mm-diameter. The 1064 nm laser beam, from a Q-switched Nd:YAG laser source running at 10 Hz and 940 mJ per pulse, is focused into cavity for ignition. High speed photography is used to capture the transient ignition process. The laser-induced gas breakdown, flame kernel generation and propagation are all recorded and ensuing stable supersonic combustion is established in cavity. The highly ionized plasma zone is almost round at starting, and then the surface of the flame kernel is wrinkled severely in 150 μs after the laser pulse due to the strong turbulence flow in cavity. The flame kernel is found rotating anti-clockwise and gradually moves upstream as the entrainment of circulation flow in cavity. The flame is stabilized at the corner of the cavity for about 200 μs, and then spreads from leading edge to trailing edge via the under part of shear layer to fully fill the entire cavity. The corner recirculation zone of cavity is of great importance for flame spreading. Eventually, a cavity shear-layer stabilized combustion is established in the supersonic flow roughly 2.9 ms after the laser pulse. Both the temporal evolution of normalized chemiluminescence intensity and normalized flame area show that the entire ignition process can be divided into four stages, which are referred as turbulent dissipation stage, combustion enhancement stage, reverting stage and combustion stabilization stage. The results show promising potentials of laser induced plasma for ignition in real scramjets.

  10. Computational simulation of multi-strut central lobed injection of hydrogen in a scramjet combustor

    Directory of Open Access Journals (Sweden)

    Gautam Choubey

    2016-09-01

    Full Text Available Multi-strut injection is an approach to increase the overall performance of Scramjet while reducing the risk of thermal choking in a supersonic combustor. Hence computational simulation of Scramjet combustor at Mach 2.5 through multiple central lobed struts (three struts have been presented and discussed in the present research article. The geometry and model used here is slight modification of the DLR (German Aerospace Center scramjet model. Present results show that the presence of three struts injector improves the performance of scramjet combustor as compared to single strut injector. The combustion efficiency is also found to be highest in case of three strut fuel injection system. In order to validate the results, the numerical data for single strut injection is compared with experimental result which is taken from the literature.

  11. Simplified procedure for controlling pressure distribution of a scramjet combustor

    Directory of Open Access Journals (Sweden)

    Cui Tao

    2014-10-01

    Full Text Available Scramjet engines are used at extreme temperatures and velocity. New control problems involving distributed parameter control have been found concerning investigations of the control of scramjet engines whose physical states are spatially interacted. Succeeding the existing theoretical studies on the distributed parameter control for scramjet engines, this paper puts forward a simplified distributed parameter control approach for scramjet engines aimed at engineering application. The simplified control procedure uses the classical proportional-integral (PI compensation to control the target pressure distribution of scramjet engines, which is effective and applicable for practical implements. Simulation results show the validation of the simplified distributed parameter control procedure.

  12. Combustion efficiency and altitude operational limits of three liquid hydrocarbon fuels having high volumetric energy content in a J33 single combustor

    Science.gov (United States)

    Stricker, Edward G

    1950-01-01

    Combustion efficiency and altitude operational limits were determined in a J33 single combustor for AN-F-58 fuel and three liquid hydrocarbon fuels having high volumetric energy content (decalin, tetralin, and monomethylnaphthalene) at simulated altitude and combustor inlet-air conditions. At the conditions investigated, the combustion efficiency for the four fuels generally decreased with an increase in volumetric energy content. The altitude operational limits for decalin and tetralin fuels were higher than for AN-F-58 fuel; monomethylnaphthalene fuel gave the lowest altitude operational limit.

  13. Parametric study of combustion oscillation in a single-side expansion scramjet combustor

    Science.gov (United States)

    Ouyang, Hao; Liu, Weidong; Sun, Mingbo

    2016-10-01

    As a promising candidate for future air-breathing systems, the viability and efficiency of scramjet propulsion is challenged by a variety of factors including the combustion oscillation in scramjet combustor. A series of comparative experiments focusing on the combustion oscillation issue has been carried out in the present work. The obtained experimental results show that as the global equivalence ratio increases, the combustion oscillation becomes more regular and frequent which is the most intensive in the vicinity of the fuel jet and the periodic combustion oscillation is more possible when the injectors and flame-holding cavity are mounted on the expansion-side wall. In order to avoid the combustion oscillation in scramjet combustor, distributed injection scheme is an effective method which can induce two parts interacting stable flame. In addition, the results reveal that the varying fuel including hydrogen, ethylene and kerosene with different chemical kinetics has a significant effect on the reaction process in scramjet combustor, which can result in stable combustion, periodic oscillation and failed ignition respectively on the same operating condition of this paper. We believe that the present work is helpful to the designing of scramjet propulsion device.

  14. Investigations on the Influence of the In-Stream Pylon and Strut on the Performance of a Scramjet Combustor

    Directory of Open Access Journals (Sweden)

    Hao Ouyang

    2014-01-01

    Full Text Available The influence of the in-stream pylon and strut on the performance of scramjet combustor was experimentally and numerically investigated. The experiments were conducted with a direct-connect supersonic model combustor equipped with multiple cavities. The entrance parameter of combustor corresponds to scramjet flight Mach number 4.0 with a total temperature of 947 K. The research results show that, compared with the scramjet combustor without pylon and strut, the wall pressure and the thrust of the scramjet increase due to the improvement of mixing and combustion effect due to the pylon and strut. The total pressure loss caused by the strut is considerable whereas pylon influence is slight.

  15. A conceptual design of shock-eliminating clover combustor for large scale scramjet engine

    Science.gov (United States)

    Sun, Ming-bo; Zhao, Yu-xin; Zhao, Guo-yan; Liu, Yuan

    2017-01-01

    A new concept of shock-eliminating clover combustor is proposed for large scale scramjet engine to fulfill the requirements of fuel penetration, total pressure recovery and cooling. To generate the circular-to-clover transition shape of the combustor, the streamline tracing technique is used based on an axisymmetric expansion parent flowfield calculated using the method of characteristics. The combustor is examined using inviscid and viscous numerical simulations and a pure circular shape is calculated for comparison. The results showed that the combustor avoids the shock wave generation and produces low total pressure losses in a wide range of flight condition with various Mach number. The flameholding device for this combustor is briefly discussed.

  16. Evaluation of Kerosene Fuelled Scramjet Combustor using a Combination of Cooled and Uncooled Struts

    Directory of Open Access Journals (Sweden)

    C. Chandrasekhar

    2014-01-01

    Full Text Available The scramjet combustor a vital component of scramjet engine has been designed by employing fuel injection struts. Several experimental studies have been carried out to evaluate the propulsive performance and structural integrity of the in-stream fuel injection struts in the connect-pipe test facility. As the mission objective of hypersonic demonstrator is to flight test the scramjet engine for 20 s duration, in-stream fuel injection struts which are designed as heat sink devices encounter hostile flow field conditions especially in terms of high thermal and high convective loads in the scramjet combustor. To circumvent these adverse conditions, materials like Niobium C-103 and W-Ni-Fe alloys have been used for the construction of struts and a number of tests have been carried out to evaluate the survivability of the in-stream fuel injection struts in the scramjet combustor. The results thus obtained show that the erosion of leading edges of the Stage-II fuel injection struts in the initial phase and subsequently puncturing of the fuel injection manifold after 10-12 s of the test are noticed, while the other stages of the struts are found to be intact. This deteriorating leading edges of Stage-II struts with respect to time, affect the overall propulsive performance of the combustor. To mitigate this situation, Stage-II struts have been designed as cooled structure and other Stages of struts are designed as un-cooled structure. Material of construction of struts used is Nimonic C-263 alloy. This paper highlights the results of the static test of the scramjet combustor, which has been carried out at a combustor entry Mach number of 2.0, total temperature of 2000 K, with an overall kerosene fuel equivalence ratio of 1.0 and for the supersonic combustion duration of 20 s. Low back pressure has been created at the exit of the scramjet combustor using ejector system to avoid flow separation.Visual inspection of the fuel injection struts after the test

  17. Richtmyer-Meshkov Instability Induced Mixing Enhancement in the Scramjet Combustor with a Central Strut

    Directory of Open Access Journals (Sweden)

    Qingchun Yang

    2014-01-01

    Full Text Available Experimental and numerical study of Richtmyer-Meshkov instability (RMI induced mixing enhancement has been conducted in a liquid-fueled scramjet engine with a central strut. To generate the RMI in the scramjet engine, transverse high temperature jets are employed downstream the strut injector. Compared to the transverse ordinary temperature jet, the jet penetration into the supersonic airstream of high temperature jet increases by 60%. The numerical results indicate that the RMI phenomenon markedly enhances the mixing efficiency (up to 43%, which is necessary to initiate the chemical reactions. Ground experiments were carried out in the combustor, which verify the numerical method from the perspective of wall pressures of the combustor. In particular, the experiment results indicate that the RMI can benefit flame-holding due to the mixing enhancement.

  18. Experimental and computational study of the effect of shocks on film cooling effectiveness in scramjet combustors

    Science.gov (United States)

    Kamath, Pradeep S.; Holden, Michael S.; Mcclinton, Charles R.

    1990-01-01

    This paper presents results from a study conducted to investigate the effect of incident oblique shocks on the effectiveness of a coolant film at Mach numbers, typical of those expected in a scramjet combustor at Mach 15 to 20 flight. Computations with a parabolic code are in good agreement with the measured pressures and heat fluxes, after accounting for the influence of the shock upstream of its point of impingement on the plate, and the expansion from the trailing edge of the shock generator. The test data shows that, for the blowing rates tested, the film is rendered largely ineffective by the shock. Computations show that coolant blowing rates five to ten times those tested are required to protect against shock-induced heating. The implications of the results to scramjet combustor design are discussed.

  19. Numerical Studies on the Performance of Scramjet Combustor with Alternating Wedge-Shaped Strut Injector

    Science.gov (United States)

    Choubey, Gautam; Pandey, K. M.

    2017-04-01

    Numerical analysis of the supersonic combustion and flow structure through a scramjet engine at Mach 7 with alternating wedge fuel injection and with three angle of attack (α=-3°, α=0°, α=3°) have been studied in the present research article. The configuration used here is slight modification of the Rabadan et al. scramjet model. Steady two dimensional (2D) Reynolds-averaged Navier-Stokes (RANS) simulation and Shear stress transport (SST) based on k-ω turbulent model is used to predict the shock structure and combustion phenomenon inside the scramjet combustor. All the simulations are done by using Ansys 14-Fluent code. The combustion model used here is the combination of eddy dissipation and finite rate chemistry models since this model avoids Arrhenius calculations in which reaction rates are controlled by turbulence. Present results show that the geometry with negative angle of attack (α=-3°) have lowest ignition delay and it improves the performance of scramjet combustor as compared to geometry with α=0°, α=3°. The combustion phenomena and efficiency is also found to be stronger and highest in case of α=-3°.

  20. Flame quenching process in cavity based on model scramjet combustor

    Institute of Scientific and Technical Information of China (English)

    Yu Pan; Jing Lei; Jian-Han Liang; Wei-Dong Liu; Zhen-Guo Wang

    2012-01-01

    The flame quenching process in combustors was observed by high speed camera and Schlieren system,at the inflow conditions of Ma =2.64,To =1 483 K,P0 =1.65 MPa,T =724 K and P =76.3 kPa.Changing process of the flame and shock structure in the combustor was clearly observed.The results revealed that the precombustion shock disappeared accompanied with the process in which the flame was blown out and withdrawed from the mainflow into the cavity and vanished after a short while.The rime of quenching process was extended by the cavity flame holder,and the ability of flame holding was enhanced by arranging more cavities in the downstream as well.The flame was blown from the upstream to the downstream,so the flame in the downstream of the cavity was quenched out later than that in the upstream.

  1. Effects of Cavity Configurations on Flameholding and Performances of Kerosene Fueled Scramjet Combustor

    Science.gov (United States)

    Shi, Deyong; Song, Wenyan; Wang, Yuhang; Wang, Yanhua

    2017-08-01

    In this work, the effects of cavity flameholder configurations on flameholding and performances of kerosene fueled scramjet combustor were studied experimentally and numerically. For experiments, a directly connected ground facility was used and clean high enthalpy air, with a total temperature of 800 K and a total pressure of 800 Kpa, was provided by an electricity resistance heater. To investigate the effects of cavity configurations on flameholding capacity and reacting-flow characteristics, three different flameholders, one single cavity flameholder and two tandem cavity flameholders, were used in experiments. For the two combustors with tandem cavity flameholders, the location and configurations of its up-stream cavity were same with the single cavity flameholder, and the length-to-depth ratios for down-stream cavities were 9 and 11 respectively. The experimental results showed that stabilize kerosene combustion were achieved for combustor with tandem cavity flameholders mounted, and none for that with single cavity flameholder. The none-reacting and reacting flows of combustor models with tandem cavity flameholders were compared and studied with numerical and experimental results. The results showed that higher combustion efficiencies and pressure recovery ratios were achieved for the combustor with down-stream cavity length-to-depth ratio of 9.

  2. CFD prediction of the reacting flow field inside a subscale scramjet combustor

    Science.gov (United States)

    Chitsomboon, T.; Northam, G. B.; Rogers, R. C.; Diskin, G. S.

    1988-01-01

    A three-dimensional, Reynolds-averaged Navier-Stokes CFD code has been used to calculate the reacting flowfield inside a hydrogen-fueled, subscale scramjet combustor. Pilot fuel was injected transversely upstream of the combustor and the primary fuel was injected transversely downstream of a backward facing step. A finite rate combustion model with two-step kinetics was used. The CFD code used the explicit MacCormack algorithm with point-implicit treatment of the chemistry source terms. Turbulent mixing of the jets with the airstream was simulated by a simple mixing length scheme, whereas near wall turbulence was accounted for by the Baldwin-Lomax model. Computed results were compared with experimental wall pressure measurements.

  3. Numerical Investigation on Hydrogen-Fueled Scramjet Combustor with Parallel Strut Fuel Injector at a Flight Mach Number of 6

    Directory of Open Access Journals (Sweden)

    Krishna Pandey

    2016-01-01

    Full Text Available A numerical analysis of the inlet-combustor interaction and flow structure through a scramjet engine at a flight Mach number M = 6 with parallel injection (Strut with circular inlet is presented in the present research article. Three different angles of attack (α=-4°, α=0°, α=4° have been studied for parallel injection. The scramjet configuration used here is a modified version of DLR scramjet model. Fuel is injected at supersonic speed (M=2 through a parallel strut injector. For parallel injection, the shape of the strut is chosen in a way to produce strong stream wise vorticity and thus to enhance the hydrogen/air mixing inside the combustor. These numerical simulations are aimed to study the flow structure, supersonic mixing, and combustion phenomena for the three different types of geometries along with circular shaped strut configuration.

  4. The influence of cavity parameters on the combustion oscillation in a single-side expansion scramjet combustor

    Science.gov (United States)

    Ouyang, Hao; Liu, Weidong; Sun, Mingbo

    2017-08-01

    Cavity has been validated to be efficient flameholders for scramjet combustors, but the influence of its parameters on the combustion oscillation in scramjet combustor has barely been studied. In the present work, a series of experiments focusing on this issue have been carried out. The influence of flameholding cavity position, its length to depth ratio L/D and aft wall angle θ and number on ethylene combustion oscillation characteristics in scramjet combustor has been researched. The obtained experimental results show that, as the premixing distance between ethylene injector and flameholding cavity varies, the ethylene combustion flame will take on two distinct forms, small-amplitude high frequency fluctuation, and large-amplitude low frequency oscillation. The dominant frequency of the large-amplitude combustion oscillation is in inverse proportion to the pre-mixing distance. Moreover, the influence of cavity length to depth ratio and the aft wall angleθexists diversity when the flameholding cavity position is different and can be recognized as unnoticeable compared to the impact of the premixing distance. In addition, we also find that, when the premixing distance is identical and sufficient, increasing the number of tandem flameholding cavities can change the dominant frequency of combustion oscillation hardly, let alone avoid the combustion oscillation. It is believed that the present investigation will provide a useful reference for the design of the scramjet combustor.

  5. The effect of kerosene injection on ignition probability of local ignition in a scramjet combustor

    Science.gov (United States)

    Bao, Heng; Zhou, Jin; Pan, Yu

    2017-03-01

    The spark ignition of kerosene is investigated in a scramjet combustor with a flight condition of Ma 4, 17 km. Based plentiful of experimental data, the ignition probabilities of the local ignition have been acquired for different injection setups. The ignition probability distributions show that the injection pressure and injection location have a distinct effect on spark ignition. The injection pressure has both upper and lower limit for local ignition. Generally, the larger mass flow rate will reduce the ignition probability. The ignition position also affects the ignition near the lower pressure limit. The reason is supposed to be the cavity swallow effect on upstream jet spray near the leading edge, which will make the cavity fuel rich. The corner recirculation zone near the front wall of the cavity plays a significant role in the stabilization of local flame.

  6. The Two-Dimensional Supersonic Flow and Mixing with a Perpendicular Injection in a Scramjet Combustor

    Institute of Scientific and Technical Information of China (English)

    Mohammad Ali; S.Ahmed; A.K.M.Sadrul Islam

    2003-01-01

    A numerical investigation has been performed on supersonic mixing of hydrogen with air in a Scramjet(Supersonic Combustion Ramjet) combustor and its flame holding capability by solving Two-Dimensional full Navier-Stokes equations. The main flow is air entering through a finite width of inlet and gaseous hydrogen is injected perpendicularly from the side wall. An explicit Harten-Yee Non-MUSCL Modified-flux-type TVD scheme has been used to solve the system of equations, and a zero-equation algebraic turbulence model to calculate the eddy viscosity coefficient. In this study the enhancement of mixing and good flame holding capability of a supersonic combustor have been investigated by varying the distance of injector position from left boundary keeping constant the backward-facing step height and other calculation parameters. The results show that the configuration for small distance of injector position has high mixing efficiency but the upstream recirculation can not evolved properly which is an important factor for flame holding capability. On the other hand, the configuration for very long distance has lower mixing efficiency due to lower gradient of hydrogen mass concentration on the top of injector caused by the expansion of side jet in both upstream and downstream of injector. For moderate distance of injector position, large and elongated upstream recirculation can evolve which might be activated as a good flame holder.

  7. Testing of DLR C/C-SiC and C/C for HIFiRE 8 Scramjet Combustor

    Science.gov (United States)

    Glass, David E.; Capriotti, Diego P.; Reimer, Thomas; Kutemeyer, Marius; Smart, Michael K.

    2014-01-01

    Ceramic Matrix Composites (CMCs) have been proposed for use as lightweight hot structures in scramjet combustors. Previous studies have calculated significant weight savings by utilizing CMCs (active and passive) versus actively cooled metallic scramjet structures. Both a carbon/carbon (C/C) and a carbon/carbon-silicon carbide (C/C-SiC) material fabricated by DLR (Stuttgart, Germany) are being considered for use in a passively cooled combustor design for Hypersonic International Flight Research Experimentation (HIFiRE) 8, a joint Australia / Air Force Research Laboratory hypersonic flight program, expected to fly at Mach 7 for approximately 30 sec, at a dynamic pressure of 55 kilopascals. Flat panels of the DLR C/C and C/C-SiC materials were installed downstream of a hydrogen-fueled, dual-mode scramjet combustor and tested for several minutes at conditions simulating flight at Mach 5 and Mach 6. Gaseous hydrogen fuel was used to fuel the scramjet combustor. The test panels were instrumented with embedded Type K and Type S thermocouples. Zirconia felt insulation was used during some of the tests to reduce heat loss from the back surface and thus increase the heated surface temperature of the C/C-SiC panel approximately 177 C (350 F). The final C/C-SiC panel was tested for three cycles totaling over 135 sec at Mach 6 enthalpy. Slightly more erosion was observed on the C/C panel than the C/C-SiC panels, but both material systems demonstrated acceptable recession performance for the HIFiRE 8 flight.

  8. Mixing enhancement in a scramjet combustor using fuel jet injection swirl

    Science.gov (United States)

    Flesberg, Sonja M.

    The scramjet engine has proven to be a viable means of powering a hypersonic vehicle, especially after successful flights of the X-51 WaveRider and various Hy-SHOT test vehicles. The major challenge associated with operating a scramjet engine is the short residence time of the fuel and oxidizer in the combustor. The fuel and oxidizer have only milliseconds to mix, ignite and combust in the combustion chamber. Combustion cannot occur until the fuel and oxidizer are mixed on a molecular level. Therefore the improvement of mixing is of utmost interest since this can increase combustion efficiency. This study investigated mixing enhancement of fuel and oxidizer within the combustion chamber of a scramjet by introducing swirl to the fuel jet. The investigation was accomplished with numerical simulations using STAR-CCM+ computational fluid dynamic software. The geometry of the University of Virginia Supersonic Combustion Facility was used to model the isolator, combustor and nozzle of a scramjet engine for simulation purposes. Experimental data from previous research at the facility was used to verify the simulation model before investigating the effect of fuel jet swirl on mixing. The model used coaxial fuel jet with a swirling annular jet. Single coaxial fuel jet and dual coaxial fuel jet configurations were simulated for the investigation. The coaxial fuel jets were modelled with a swirling annular jet and non-swirling core jet. Numerical analysis showed that fuel jet swirl not only increased mixing and entrainment of the fuel with the oxidizer but the mixing occurred further upstream than without fuel jet swirl. The burning efficiency was calculated for the all the configurations. An increase in burning efficiency indicated an increase in the mixing of H2 with O2. In the case of the single fuel jet models, the maximum burning efficiency increase due to fuel injection jet swirl was 23.3%. The research also investigated the possibility that interaction between two

  9. 圆形燃烧室支板火箭超燃冲压发动机数值模拟%Numerical simulation of strut-rocket scramjet with circular combustor

    Institute of Scientific and Technical Information of China (English)

    秦飞; 何国强; 刘佩进; 李鹏飞

    2011-01-01

    For increasing the ability of ignition and flame holding of large scale scramjet, the strut-rocket scramjet is developed, which consists of main strut in isolator, strut rocket and circular combustor. The numerical simulation including multi-steps chemical mechanisms was developed to investigate the reactive flow characteristics for liquid hydrocarbon supersonic combustion in circular combustor strut-rocket scramjet which is combined with pylons and cavity. It is indicated that the combination of strut-rocket and pylons is the paramount mechanism for flame holding. The results show that the strut-rocket scramjet can provide robust ignition and combustion efficiency and wide operability for ambient liquid hydrocarbon fuel in large scale combnstor.%为了提高大尺寸超燃冲压发动机的掺混燃烧和火焰稳定能力,提出了以中心主支板和支板火箭进行点火和火焰稳定的超燃冲压发动机基本结构,采用轴对称的圆形燃烧室以及小支板和凹腔等混合增强方式,通过包含多步简化动力学的数值模拟方法,研究了支板、凹腔结构与圆形燃烧室的不同匹配关系.结果表明,隔离段中心主支板能有效提高燃料与空气的掺混度,支板火箭的富燃高温羽流在不同状态下均能实现可靠点火;圆形燃烧室结合多组小支板和凹腔能进一步增强燃料混合和高效燃烧.利用支板火箭与轴对称圆形燃烧室相结合能在较短燃烧室内实现高效燃烧,为将来开展大尺寸超燃冲压发动机燃烧技术研究奠定基础.

  10. Characterization of kerosene distribution around the ignition cavity in a scramjet combustor

    Science.gov (United States)

    Li, Xipeng; Liu, Weidong; Pan, Yu; Yang, Leichao; An, Bin; Zhu, Jiajian

    2017-05-01

    Kerosene distribution before its ignition in a scramjet combustor with dual cavity was measured using kerosene-PLIF under transverse injection upstream of the cavity and different injection pressures. The simulated flight condition is Ma 5.5, and the isolator entrance has a Mach number of 2.52, a total pressure of 1.6 MPa and a stagnation temperature of 1486 K. Effects of injection pressure on fuel distribution characteristics were analyzed. The majority of kerosene is present in the cavity shear layer as well as its upper region. Kerosene extends gradually into the cavity, almost, at a constant angle. Large scale structures are evident on the windward side of kerosene. The cavity shear layer plays an important role in determining the kerosene distribution and its entrainment into the cavity. The middle part of cavity is the most suitable location for ignition as a result of a favorable local equivalent ratio. As the injection pressure increases, the penetration height gets higher with the rate of increase getting slower at higher injection pressure. Meanwhile, the portion of kerosene entrained into cavity through shear layer becomes smaller as injection pressure increases. However, the kerosene entrained into cavity still increase due to the increased mass flow rate of kerosene.

  11. OH PLIF Visualization of a Premixed Ethylene-fueled Dual-Mode Scramjet Combustor

    Science.gov (United States)

    Cantu, Luca M. L.; Gallo, Emanuela C. A.; Cutler, Andrew D.; Danehy, Paul M.; Johansen, Craig T.; Rockwell, Robert D.; Goyne, Christopher P.; McDaniel, James C.

    2016-01-01

    Hydroxyl radical (OH) planar induced laser fluorescence (PLIF) measurements have been performed in a small-scale scramjet combustor at the University of Virginia Aerospace Research Laboratory at nominal simulated Mach 5 enthalpy. OH lines were carefully chosen to have fluorescent signal that is independent of pressure and temperature but linear with mole fraction. The OH PLIF signal was imaged in planes orthogonal to and parallel to the freestream flow at different equivalence ratios. Flameout limits were tested and identified. Instantaneous planar images were recorded and analyzed to compare the results with width increased dual-pump enhanced coherent anti-Stokes Raman spectroscopy (WIDECARS) measurements in the same facility and large eddy simulation/Reynolds average Navier-Stokes (LES/RANS) numerical simulation. The flame angle was found to be approximately 10 degrees for several different conditions, which is in agreement with numerical predictions and measurements using WIDECARS. Finally, a comparison between NO PLIF non-combustion cases and OH PLIF combustion cases is provided: the comparison reveals that the dominant effect of flame propagation is freestream turbulence rather than heat release and concentration gradients.

  12. Characteristics of transverse hydrogen jet in presence of multi air jets within scramjet combustor

    Science.gov (United States)

    Barzegar Gerdroodbary, M.; Fallah, Keivan; Pourmirzaagha, H.

    2017-03-01

    In this article, three-dimensional simulation is performed to investigate the effects of micro air jets on mixing performances of cascaded hydrogen jets within a scramjet combustor. In order to compare the efficiency of this technique, constant total fuel rate is injected through one, four, eight and sixteen arrays of portholes in a Mach 4.0 crossflow with a fuel global equivalence ratio of 0.5. In this method, micro air jets are released within fuel portholes to augment the penetration in upward direction. Extensive studies were performed by using the Reynolds-averaged Navier-Stokes equations with Menter's Shear Stress Transport (SST) turbulence model. Numerical studies on various air and fuel arrangements are done and the mixing rate and penetration are comprehensively investigated. Also, the flow feature of the fuel and air jets for different configuration is revealed. According to the obtained results, the influence of the micro air jets is significant and the presence of micro air jets increases the mixing rate about 116%, 77%, 56% and 41% for single, 4, 8 and 16 multi fuel jets, respectively. The maximum mixing rate of the hydrogen jet is obtained when the air jets are injected within the sixteen multi fuel jets. According to the circulation analysis of the flow for different air and fuel arrangements, it was found that the effects of air jets on flow structure are varied in various conditions and the presence of the micro jet highly intensifies the circulation in the case of 8 and 16 multi fuel jets.

  13. Visualization and Analysis of a Hydrocarbon Premixed Flame a in Small Scale Scramjet Combustor

    Science.gov (United States)

    Cantu, Luca Maria Luigi

    Nitric oxide (NO) planar induced laser fluorescence (PLIF) measurements have been performed in a small scale scramjet combustor at the University of Virginia Aerospace Research Laboratory at nominal simulated Mach 5 flight enthalpy. A mixture of NO and N2 was injected at the upstream end of the inlet isolator as a surrogate for ethylene fuel, and the mixing of this fuel simulant was studied with and without a shock train. The shock train was produced by an air throttle, which simulated the blockage effects of combustion downstream of the cavity flame holder. NO PLIF signal was imaged in a plane orthogonal to the freestream at the leading edge of the cavity. Instantaneous planar images were recorded and analyzed to identify the most uniform cases, which were achieved by varying the location of the fuel injection and shock train. This method was used to screen different possible fueling configurations to provide optimized test conditions for follow-on combustion measurements using ethylene fuel. A theoretical study of the selected NO rotational transitions was performed to obtain a LIF signal that is linear with NO mole fraction and approximately independent of pressure and temperature. In the same facility, OH PLIF measurements were also performed; OH lines were carefully chosen to have fluorescent signal that is independent of pressure and temperature but linear with mole fraction. The OH PLIF signal was imaged in planes orthogonal to and parallel to the freestream flow at different equivalence ratios. Flameout limits were tested and identified. Instantaneous planar images were recorded and analyzed to compare the results with width increased dual-pump enhanced coherent anti-Stokes Raman spectroscopy (WIDECARS) measurements in the same facility and large eddy simulation/Reynolds average Navier-Stokes (LES/RANS) numerical simulations. The flame angle was found to be approximately 10 degrees for several different conditions, which is in agreement with numerical

  14. Large Eddy Simulation of the fuel transport and mixing process in a scramjet combustor with rearwall-expansion cavity

    Science.gov (United States)

    Cai, Zun; Liu, Xiao; Gong, Cheng; Sun, Mingbo; Wang, Zhenguo; Bai, Xue-Song

    2016-09-01

    Large Eddy Simulation (LES) was employed to investigate the fuel/oxidizer mixing process in an ethylene fueled scramjet combustor with a rearwall-expansion cavity. The numerical solver was first validated for an experimental flow, the DLR strut-based scramjet combustor case. Shock wave structures and wall-pressure distribution from the numerical simulations were compared with experimental data and the numerical results were shown in good agreement with the available experimental data. Effects of the injection location on the flow and mixing process were then studied. It was found that with a long injection distance upstream the cavity, the fuel is transported much further into the main flow and a smaller subsonic zone is formed inside the cavity. Conversely, with a short injection distance, the fuel is entrained more into the cavity and a larger subsonic zone is formed inside the cavity, which is favorable for ignition in the cavity. For the rearwall-expansion cavity, it is suggested that the optimized ignition location with a long upstream injection distance should be in the bottom wall in the middle part of the cavity, while the optimized ignition location with a short upstream injection distance should be in the bottom wall in the front side of the cavity. By employing a cavity direct injection on the rear wall, the fuel mass fraction inside the cavity and the local turbulent intensity will both be increased due to this fueling, and it will also enhance the mixing process which will also lead to increased mixing efficiency. For the rearwall-expansion cavity, the combined injection scheme is expected to be an optimized injection scheme.

  15. Large-Eddy / Reynolds-Averaged Navier-Stokes Simulations of a Dual-Mode Scramjet Combustor

    Science.gov (United States)

    Fulton, Jesse A.; Edwards, Jack R.; Hassan, Hassan A.; Rockwell, Robert; Goyne, Christopher; McDaniel, James; Smith, Chad; Cutler, Andrew; Johansen, Craig; Danehy, Paul M.; Kouchi, Toshinori

    2012-01-01

    Numerical simulations of reacting and non-reacting flows within a scramjet combustor configuration experimentally mapped at the University of Virginia s Scramjet Combustion Facility (operating with Configuration A ) are described in this paper. Reynolds-Averaged Navier-Stokes (RANS) and hybrid Large Eddy Simulation / Reynolds-Averaged Navier-Stokes (LES / RANS) methods are utilized, with the intent of comparing essentially blind predictions with results from non-intrusive flow-field measurement methods including coherent anti-Stokes Raman spectroscopy (CARS), hydroxyl radical planar laser-induced fluorescence (OH-PLIF), stereoscopic particle image velocimetry (SPIV), wavelength modulation spectroscopy (WMS), and focusing Schlieren. NC State's REACTMB solver was used both for RANS and LES / RANS, along with a 9-species, 19- reaction H2-air kinetics mechanism by Jachimowski. Inviscid fluxes were evaluated using Edwards LDFSS flux-splitting scheme, and the Menter BSL turbulence model was utilized in both full-domain RANS simulations and as the unsteady RANS portion of the LES / RANS closure. Simulations were executed and compared with experiment at two equivalence ratios, PHI = 0.17 and PHI = 0.34. Results show that the PHI = 0.17 flame is hotter near the injector while the PHI = 0.34 flame is displaced further downstream in the combustor, though it is still anchored to the injector. Reactant mixing was predicted to be much better at the lower equivalence ratio. The LES / RANS model appears to predict lower overall heat release compared to RANS (at least for PHI = 0.17), and its capability to capture the direct effects of larger turbulent eddies leads to much better predictions of reactant mixing and combustion in the flame stabilization region downstream of the fuel injector. Numerical results from the LES/RANS model also show very good agreement with OH-PLIF and SPIV measurements. An un-damped long-wave oscillation of the pre-combustion shock train, which caused

  16. Computational Analysis of Geometric Effects on Strut Induced Mixing in a Scramjet Combustor

    Science.gov (United States)

    2009-03-01

    NASA also aided in the understanding of how VULCAN worked. Thanks to my advisor, Dr. Robert Greendyke, and the rest of the AFIT faculty for imparting...Magre, A. Bresson , F. Grisch, M. Orain, and M. Kodera, “Exper- imental study of strut injectors in a supersonic combustor using oh-plif,” AIAA Paper...OF RESPONSIBLE PERSON Dr. Robert Greendyke Associate Professor a. REPORT U b. ABSTRACT U c. THIS PAGE U 19b. TELEPHONE NUMBER (Include

  17. Summary of the GASP code application and evaluation effort for scramjet combustor flowfields

    Science.gov (United States)

    Srinivasan, Shivakumar; Bittner, Robert D.; Bobskill, Glenn J.

    1993-01-01

    Numerical simulations of 3D turbulent mixing and reacting flows have been systematically evaluated by comparison with experimental data and other numerical solutions to provide confidence in the General Aerodynamic Simulation Program (GASP) code version 1.3. Specifically, the GASP flow solver has been used to model high speed flow through scram jet combustors. Unit injector problems evaluated include (1) UVA staged sonic normal injection of air into Mach 2 air stream, (2) the VPI Mach 1.7 low angled (15 deg) flush wall helium injection into an unconfined Mach 6 'cold air' stream, and (3) the HYPULSE angled (30 deg) flush wall hydrogen injection into a Mach 6, high enthalpy (flight Mach 17 simulation) nitrogen and air test gases. Results of the numerical simulation for the first two test cases have been compared with detailed in-stream measurements and with SPARK CFD solutions. The results for the last two cases have been compared with measured wall pressure and heat flux data and with SPARK CFD solutions. The present GASP solutions compare favorably with both the experimental data and the SPARK solutions.

  18. X-51A Scramjet Demonstrator Program: Waverider Ground and Flight Test

    Science.gov (United States)

    2013-11-01

    USAF) WaveRider program. The overall test objective of the X-51A program was to demonstrate a scramjet engine using endothermic hydrocarbon fuel...Hypersonic Technology (HyTech) scramjet engine , integrated into the vehicle, used endothermic hydrocarbon fuel (JP-7). The X-51A was designed to be...unlimited, 412TW-PA-13417 X-51A SCRAMJET DEMONSTRATOR PROGRAM: WAVERIDER GROUND AND FLIGHT TEST Maj Christopher M. Rondeau Chief Flight Test Engineer

  19. Effect of variation of length-to-depth ratio and Mach number on the performance of a typical double cavity scramjet combustor

    Science.gov (United States)

    Mahto, Navin Kumar; Choubey, Gautam; Suneetha, Lakka; Pandey, K. M.

    2016-11-01

    The two equation standard k-ɛ turbulence model and the two-dimensional compressible Reynolds-Averaged Navier-Stokes (RANS) equations have been used to computationally simulate the double cavity scramjet combustor. Here all the simulations are performed by using ANSYS 14-FLUENT code. At the same time, the validation of the present numerical simulation for double cavity has been performed by comparing its result with the available experimental data which is in accordance with the literature. The results are in good agreement with the schlieren image and the pressure distribution curve obtained experimentally. However, the pressure distribution curve obtained numerically is under-predicted in 5 locations by numerical calculation. Further, investigations on the variations of the effects of the length-to-depth ratio of cavity and Mach number on the combustion characteristics has been carried out. The present results show that there is an optimal length-to-depth ratio for the cavity for which the performance of combustor significantly improves and also efficient combustion takes place within the combustor region. Also, the shifting of the location of incident oblique shock took place in the downstream of the H2 inlet when the Mach number value increases. But after achieving a critical Mach number range of 2-2.5, the further increase in Mach number results in lower combustion efficiency which may deteriorate the performance of combustor.

  20. Fire-safe hydrocarbon fuels

    Energy Technology Data Exchange (ETDEWEB)

    Fodor, G.E.; Weatherford, W.D. Jr.; Wright, B.R.

    1979-11-06

    A stabilized, fire-safe, aqueous hydrocarbon fuel emulsion prepared by mixing: a diesel fuel; an emulsifier (consisting of oleyl diethanolamide, diethanolamine, and diethanolamine soap of oleic acid) which has been treated with about 0 to 7 1/2 of oleic acid. A modified version of this fuel also contains 0 to 0.5% of an antimisting agent, and water.

  1. Experimental study of cone-struts and cavity flameholders in a kerosene-fueled round scramjet combustor

    Science.gov (United States)

    Zhang, Dongqing; Song, Wenyan

    2017-10-01

    Experimental investigations of liquid kerosene ignition and flameholding in a round supersonic combustor are presented. Three kinds of flameholders, a cone-struts structure, a cavity and the combination of the both, are studied for the kerosene ignition and flameholding. Results show that ignition and flameholding cannot be achieved by using the sole cone-struts flameholder, although flames are observed at the combustor outlet. The ignition and flameholding are achieved in a narrow range of equivalence ratios by using the cavity flameholder. This range is widened by employing the combination of the cone-struts and the cavity flameholders. It is observed that the back pressure disrupts the isolator entrance flow slightly by using the larger cone-struts (CR = 0.261). However, it does not happen when the smaller cone-struts (CR = 0.221) is employed. Then a characteristic air mass flow rate in the round combustor is redefined to calculate a modified Damkohler number that correlates the nonpremixed flame stability limits. The correlations are in good agreements with the experimental results.

  2. A Compact Safe Cold-Start (CS2) System for Scramjets using Dilute Triethylaluminum Fuel Mixtures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal addresses the cold-start requirements of scramjet engines by developing a safe, energy-dense, and low volume hydrocarbon fuel conditioning system based...

  3. Arc-heated Direct-connected Testing Technology Investigation on Scramjet Combustor Thermal Protection System%发动机燃烧室热防护系统电弧加热直连式试验技术

    Institute of Scientific and Technical Information of China (English)

    涂建强; 陈连忠; 马雪松; 陈海群; 王琴

    2013-01-01

    基于原有的电弧加热直连式试验燃烧室性能测试平台,阐述了结合燃油燃烧试验方法,发展了对主动和被动热防护冲压发动机燃烧室热防护性能进行长时间考核的新方法。根据主动冷却燃烧室的试验要求,改进燃油供给控制系统,使其在出口管路压力升高时能长时间稳定供给燃油;采用B型热电偶、隔热毡和高温合金钢卡环安装方法对燃烧室外壁面温度进行接触式测量,获取燃烧室的温度分布;采用轴向不限位的支撑和位移传感器测量燃烧室的轴向变形情况。通过以上3方面的测量技术创新,燃烧室热防护性能考核的电弧加热直连式试验技术能够对发动机燃烧室热防护性能进行千秒量级的考核,并且能够长时间获取燃烧室的燃油供给量、壁面温度分布和轴向变形等数据。%Based on the original arc-heater direct-connected scramjet combustor working performance test facility, a new method, which is used to test the long-time thermal protection performance of the active and passive scramjet combustor thermal protection system (TPS), has been developed. According to the active scramjet combustor test demand, the fuel supply and control system has been improved, which can steadily supply fuel when the exit pressure is increasing. The temperature distributing of the scramjet exterior wall has been measured by the B-type thermocouples, heat-insulation felt and high-temperature alloy steel ring. The axial deformation of the scramjet has been gained by the axial-free supports and displacement sensors. With the three parts improvement, the arc-heater direct-connected testing technology of the scramjet combustor TPS thermal protection performance can last for thousand seconds. And a mass of the scramjet combustor thermal protection performance data in the normal work situation, such as the fuel flux, the exterior wall temperature distributing and the axial

  4. Deep desulfurization of hydrocarbon fuels

    Science.gov (United States)

    Song, Chunshan [State College, PA; Ma, Xiaoliang [State College, PA; Sprague, Michael J [Calgary, CA; Subramani, Velu [State College, PA

    2012-04-17

    The invention relates to processes for reducing the sulfur content in hydrocarbon fuels such as gasoline, diesel fuel and jet fuel. The invention provides a method and materials for producing ultra low sulfur content transportation fuels for motor vehicles as well as for applications such as fuel cells. The materials and method of the invention may be used at ambient or elevated temperatures and at ambient or elevated pressures without the need for hydrogen.

  5. LIQUID HYDROCARBON FUEL CELL DEVELOPMENT.

    Science.gov (United States)

    A compound anode consists of a reforming catalyst bed in direct contact with a palladium-silver fuel cell anode. The objective of this study was to...prove the feasibility of operating a compound anode fuel cell on a liquid hydrocarbon and to define the important parameters that influence cell...performance. Both reformer and fuel cell tests were conducted with various liquid hydrocarbon fuels. Included in this report is a description of the

  6. Combustion characteristics of thermally stressed hydrocarbon fuels

    Science.gov (United States)

    Curtis, Colin William

    Liquid propelled propulsion systems, which range from rocket systems to hypersonic scramjet and ramjet engines, require active cooling in order to prevent additional payload requirements. In these systems, the liquid fuel is used as a coolant and is delivered through micro-channels that surround the combustion chambers, nozzles, as well as the exterior surfaces in order to extract heat from these affected areas. During this process, heat exchange occurs through phase change, sensible heat extraction, and endothermic reactions experienced by the liquid fuel. Previous research has demonstrated the significant modifications in fuel composition and changes to the fuel's physical properties that can result from these endothermic reactions. As a next step, we are experimentally investigating the effect that endothermic reactions have on fundamental flame behavior for real hydrocarbon fuels that are used as rocket and jet propellants. To achieve this goal, we have developed a counter-flow flame burner to measure extinction limits of the thermally stressed fuels. The counter-flow flame system is to be coupled with a high pressure reactor, capable of subjecting the fuel to 170 atm and 873 K, effectively simulating the extreme environment that cause the liquid fuel to experience endothermic reactions. The fundamental flame properties of the reacted fuels will be compared to those of unreacted fuels, allowing us to determine the role of endothermic reactions on the combustion behavior of current hydrocarbon jet and rocket propellants. To quantify the change in transport properties and chemical kinetics of the reacting mixture, simultaneous numerical simulations of the reactor portion of the experiment coupled with a counterflow flame simulation are performed using n-heptane and n-dodecane.

  7. Hydrocarbon-Fueled Scramjet Research at Hypersonic Mach Numbers

    Science.gov (United States)

    2005-03-31

    hypersonic flow. Laser-induced fluorescence has the threefold advantages for combustion studies of being non- intrusive , species-specific and highly sensitive...Propulsion Conference and Exhibit, Seattle, WA. Griffiths, A. (2004), Development and Demonstration of a Diode Laser Based Temperature and Water Vapour

  8. A brief review on the recent advances in scramjet engine

    Science.gov (United States)

    Choubey, Gautam; Pandey, K. M.; Maji, Ambarish; Deshamukhya, Tuhin

    2017-07-01

    The scramjet engine is the most favourable air breathing propulsive system and suitable option for high-speed flight (Macost access to space etc. The mixing phenomena associated with air and fuel is the salient feature for the effective combustion process and the fuel and air should be mixed adequately before entering into the combustor. But the key challenges associated with scramjet engine are the high speed of air inside the combustor and low residence time which actually deteriorate the combustion phenomena. That's why numerous computational, as well as experimental researches are being carried out by several researchers. The flow-field inside the scramjet engine is very complex. Hence an elaborated approach of the complicated combustion and mixing process inside the combustor is essential for the upgradation of the effective scramjet engine. This paper clearly signifies a brief review of the current development in scramjet engine.

  9. Shock tunnel studies of scramjet phenomena, supplement 8

    Science.gov (United States)

    Stalker, R. J.; Hollis, P.; Allen, G. A.; Roberts, G. T.; Tuttle, S.; Bakos, R. J.; Morgan, R. G.; Pulsonetti, M. V.; Brescianini, C.; Buttsworth, D. R.

    1993-01-01

    Reports by the staff of the University of Oueensland on various research studies related to the advancement of scramjet technology are presented. These reports document the tests conducted in the reflected shock tunnel T4 and supporting research facilities that have been used to study the injection, mixing, and combustion of hydrogen fuel in generic scramjets at flow conditions typical of hypersonic flight. In addition, topics include the development of instrumentation and measurement technology, such as combustor wall shear and stream composition in pulse facilities, and numerical studies and analyses of the scramjet combustor process and the test facility operation. This research activity is Supplement 8 under NASA Grant NAGW-674.

  10. Combustor nozzle for a fuel-flexible combustion system

    Science.gov (United States)

    Haynes, Joel Meier [Niskayuna, NY; Mosbacher, David Matthew [Cohoes, NY; Janssen, Jonathan Sebastian [Troy, NY; Iyer, Venkatraman Ananthakrishnan [Mason, OH

    2011-03-22

    A combustor nozzle is provided. The combustor nozzle includes a first fuel system configured to introduce a syngas fuel into a combustion chamber to enable lean premixed combustion within the combustion chamber and a second fuel system configured to introduce the syngas fuel, or a hydrocarbon fuel, or diluents, or combinations thereof into the combustion chamber to enable diffusion combustion within the combustion chamber.

  11. Numerical heat transfer analysis of transcritical hydrocarbon fuel flow in a tube partially filled with porous media

    Directory of Open Access Journals (Sweden)

    Jiang Yuguang

    2016-01-01

    Full Text Available Hydrocarbon fuel has been widely used in air-breathing scramjets and liquid rocket engines as coolant and propellant. However, possible heat transfer deterioration and threats from local high heat flux area in scramjet make heat transfer enhancement essential. In this work, 2-D steady numerical simulation was carried out to study different schemes of heat transfer enhancement based on a partially filled porous media in a tube. Both boundary and central layouts were analyzed and effects of gradient porous media were also compared. The results show that heat transfer in the transcritical area is enhanced at least 3 times with the current configuration compared to the clear tube. Besides, the proper use of gradient porous media also enhances the heat transfer compared to homogenous porous media, which could help to avoid possible over-temperature in the thermal protection.

  12. National Gas Survey. Synthesized gaseous hydrocarbon fuels

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-06-01

    The supply-Technical Advisory Task Force-Synthesized Gaseous Hydrocarbon Fuels considered coal, hydrocarbon liquids, oil shales, tar sands, and bioconvertible materials as potential feedstocks for gaseous fuels. Current status of process technology for each feedstock was reviewed, economic evaluations including sensitivity analysis were made, and constraints for establishment of a synthesized gaseous hydrocarbon fuels industry considered. Process technology is presently available to manufacture gaseous hydrocarbon fuels from each of the feedstocks. In 1975 there were eleven liquid feedstock SNG plants in the United States having a capacity of 1.1 billion SCFD. There can be no contribution of SNG before 1982 from plants using feedstocks other than liquids because there are no plants in operation or under construction as of 1977. Costs for SNG are higher than current regulated prices for U.S. natural gas. Because of large reserves, coal is a prime feedstock candidate although there are major constraints in the area of coal leases, mining and water permits, and others. Commercial technology is available and several new gasification processes are under development. Oil shale is also a feedstock in large supply and commercial process technology is available. There are siting and permit constraints, and water availability may limit the ultimate size of an oil shale processing industry. Under projected conditions, bioconvertible materials are not expected to support the production of large quantities of pipeline quality gas during the next decade. Production of low or medium Btu gas from municipal solid wastes can be expected to be developed in urban areas in conjunction with savings in disposal costs. In the economic evaluations presented, the most significant factor for liquid feedstock plants is the anticipated cost of feedstock and fuel. The economic viability of plants using other feedstocks is primarily dependent upon capital requirements.

  13. Waste Plastic Converting into Hydrocarbon Fuel Materials

    Energy Technology Data Exchange (ETDEWEB)

    Sarker, Moinuddin; Mamunor Rashid, Mohammad; Molla, Mohammad

    2010-09-15

    The increased demand and high prices for energy sources are driving efforts to convert organic compounds into useful hydrocarbon fuels. Although much of this work has focused on biomass, there are strong benefits to deriving fuels from waste plastic material. Natural State Research Inc. (NSR) has invented a simple and economically viable process to decompose the hydrocarbon polymers of waste plastic into the shorter chain hydrocarbon of liquid fuel (patent pending). The method and principle of the production / process will be discussed. Initial tests with several widely used polymers indicate a high potential for commercialization.

  14. Investigation Status of Heat Exchange while Boiling Hydrocarbon Fuel

    Directory of Open Access Journals (Sweden)

    D. S. Obukhov

    2006-01-01

    Full Text Available The paper contains analysis of heat exchange investigations while boiling hydrocarbon fuel. The obtained data are within the limits of the S.S. Kutateladze dependence proposed in 1939. Heat exchange at non-stationary heat release has not been investigated. The data for hydrocarbon fuel with respect to critical density of heat flow are not available even for stationary conditions.

  15. Pyrochlore catalysts for hydrocarbon fuel reforming

    Science.gov (United States)

    Berry, David A.; Shekhawat, Dushyant; Haynes, Daniel; Smith, Mark; Spivey, James J.

    2012-08-14

    A method of catalytically reforming a reactant gas mixture using a pyrochlore catalyst material comprised of one or more pyrochlores having the composition A2B2-y-zB'yB"zO7-.DELTA., where y>0 and z.gtoreq.0. Distribution of catalytically active metals throughout the structure at the B site creates an active and well dispersed metal locked into place in the crystal structure. This greatly reduces the metal sintering that typically occurs on supported catalysts used in reforming reactions, and reduces deactivation by sulfur and carbon. Further, oxygen mobility may also be enhanced by elemental exchange of promoters at sites in the pyrochlore. The pyrochlore catalyst material may be utilized in catalytic reforming reactions for the conversion of hydrocarbon fuels into synthesis gas (H2+CO) for fuel cells, among other uses.

  16. Investigation of heat sink of endothermic hydrocarbon fuels

    Institute of Scientific and Technical Information of China (English)

    GUO Yong-sheng; LIN Rui-sen

    2005-01-01

    Endothermic hydrocarbon fuels are advanced coolants for high-temperature structures of spacecraft. No data of tested-cooling-ability of endothermic fuels have been broadly discussed in literature. In this work a high-temperature flow calorimeter was designed, and the cooling capacity of six different hydrocarbon fuels were measured. Experimental results showed that these hydrocarbon fuels have capacity for cooling high-temperature structures, and that the cooling capacity of fuel N-1 can reach 3.15 M J/kg, which can nearly satisfy the requirement of thermal management for a Mach 3 cruise aircraft, whose heat sink requirement is about 3.5 M J/kg. The endothermic velocity of hydrocarbon fuels was also measured by the calorimeter.

  17. Experimental Researches on Catalytic Reforming Gas into Scramjet Model Engine%超燃模型发动机中引入催化重整燃气的试验研究

    Institute of Scientific and Technical Information of China (English)

    侯凌云; 龚景松; 柳发成; 马雪松; 刘小勇

    2012-01-01

    催化重整燃烧室能够产生氢体积分数高达16%的高温富油可燃燃气,所产生的可燃燃气从后支板供入到超燃模型发动机中,进行了直连式联调试验.在相同超音速来流状态下,与不通入可燃燃气的两种工况进行了压力、出口火焰形貌和壁面温度的对比,发现可燃燃气的加入能够在几乎不加入高压气堵情况下迅速着火,并能维持住稳定的超音速燃烧,在富油恶劣状态下,燃烧良好.结果表明,催化重整可燃成分在超燃模型发动机中起到了助燃和稳定燃烧的作用.%Catalytic reforming combustor can produce high temperature and hydrogen-rich (volumetric fraction up to 16%) flammable gases, which are supplied into scramjet model engine from the back strut of scramjet model engine. Under the same supersonic inflowing conditions, ignition and combustion experiments on the engine are carried out between one case with flammable gas and the other two cases without flammable gases. Their wall pressures, temperatures and flames are compared. The results show that the adding of flammable gases can rapidly ignite, almost without back aerodynamic throat, and the stable combustion can be sustained even with rich fuel. It is demonstrated that flammable gases generated by catalytic reforming can be helpful in igniting and combusting in the hydrocarbon-fueled scramjet engine.

  18. Syngas Upgrading to Hydrocarbon Fuels Technology Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Talmadge, M.; Biddy, Mary J.; Dutta, Abhijit; Jones, Susanne B.; Meyer, Pimphan A.

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates the upgrading of biomass derived synthesis gas (‘syngas’) to hydrocarbon biofuels. While this specific discussion focuses on the conversion of syngas via a methanol intermediate to hydrocarbon blendstocks, there are a number of alternative conversion routes for production of hydrocarbons through a wide array of intermediates from syngas. Future work will also consider the variations to this pathway to determine the most economically viable and risk adverse conversion route. Technical barriers and key research needs have been identified that should be pursued for the syngas to hydrocarbon pathway to be competitive with petroleum-derived gasoline, diesel and jet range blendstocks.

  19. A device for reforming a hydrocarbon fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kendzi, T.; Ikuo, M.

    1984-03-15

    In order to utilize the heat from the reaction of reforming of a hydrocarbon fuel and the heat scattered from a heater, a design is proposed for a fuel reforming reactor in which the gases entering the reactor first pass inside the reactor along the external wall and are heated by the heat dispersed inside the reactor. Then they go in the opposite direction along a clearance between the interior shell of the reactor and the internal body of the reactor itself with a catalyst (Kt) and a heated electrical cylindrical heater. Then the gases, already heated, go directly into the cavity of the reactor filled with the catalyst where the reforming reaction occurs and then the gases and the vapors of the reformed fuel are discharged, passing through a system of heat exchangers. The layout of such a reactor, which contains a cylindrical shell inside, a cylindrical sleeve coaxial with it and the body of the reactor itself with the heater, is given. A system for attaching the internal sleeve and the body of the reactor to the catalyst is cited. The course of the gases inside the reactor is also given.

  20. Numerical Investigation of the Mixing Process in Inlet-fuelled Scramjets

    Science.gov (United States)

    Gehre, R. M.; Peterson, D.; Wheatley, V.; Boyce, R. R.

    For decades, researchers have pursued the development of supersonic combustion ramjet (scramjet) engines. The scramjet is an airbreathing hypersonic propulsion system that utilizes atmospheric oxygen for combustion. Hence, the oxidizer does not have to be carried on-board, which makes scramjets more efficient than rockets and thus very attractive for hypersonic transportation or access-to-space systems. However, hypersonic speeds cause, amongst other challenges, very short residence times within the scramjet combustor. Therefore, achieving a high combustion efficiency poses a major challenge. The combustion efficiency is closely coupled with the mixing efficiency, since most scramjets are mixing limited. Thus, extensive studies focusing on mixing enhancement have been conducted in the past. Different injector shapes and angles [1, 2], flame holding devices [3] and mixing enhancing hypermixers [4] have been investigated in scramjets.

  1. Hypermixer Pylon Fuel Injection for Scramjet Combustors

    Science.gov (United States)

    2008-09-11

    Characteristics and Thrust of Jets from Asymmetric Nozzles,” AIAA Paper 96-0200, Jan. 1996. 25Haimovitch, Y., Gartenberg, E., Roberts , A., and Northam, G...Control Using Streamwise Vortices,” AIAA Paper 1998-3271, Jul. 1998. 43Sunami, T., Magre, P., Bresson , A., Grisch, F., Orain, M., and Kodera, M

  2. Simultaneous measurements of multiple flow parameters for scramjet characterization using tunable diode-laser sensors

    OpenAIRE

    Li, Fei; Yu, XiLong; Gu, Hongbin; Li, Zhi; Zhao, Yan; Ma, Lin; Chen, Lihong; Chang, Xinyu

    2011-01-01

    This paper reports the simultaneous measurements of multiple flow parameters in a scramjet facility operating at a nominal Mach number of 2.5 using a sensing system based on tunable diode-laser absorption spectroscopy (TDLAS). The TDLAS system measures velocity, temperature, and water vapor partial pressure at three different locations of the scramjet: the inlet, the combustion region near the flame stabilization cavity, and the exit of the combustor. These measurements enable the determinati...

  3. Scramjet Combustion Processes

    Science.gov (United States)

    2010-09-01

    plan for these flights is as follows: Scramjet Combustion Processes RTO-EN-AVT-185 11 - 21 HyShot 5 – A Free-Flying Hypersonic Glider HyShot...5 will be a hypersonic glider designed to fly at Mach 8. It will separate from its rocket booster in space and perform controlled manoeuvres as it...RTO-EN-AVT-185 11 - 1 Scramjet Combustion Processes Michael Smart and Ray Stalker Centre for Hypersonics The University of Queensland

  4. Parametric scramjet analysis

    Science.gov (United States)

    Choi, Jongseong

    The performance of a hypersonic flight vehicle will depend on existing materials and fuels; this work presents the performance of the ideal scramjet engine for three different combustion chamber materials and three different candidate fuels. Engine performance is explored by parametric cycle analysis for the ideal scramjet as a function of material maximum service temperature and the lower heating value of jet engine fuels. The thermodynamic analysis is based on the Brayton cycle as similarly employed in describing the performance of the ramjet, turbojet, and fanjet ideal engines. The objective of this work is to explore material operating temperatures and fuel possibilities for the combustion chamber of a scramjet propulsion system to show how they relate to scramjet performance and the seven scramjet engine parameters: specific thrust, fuel-to-air ratio, thrust-specific fuel consumption, thermal efficiency, propulsive efficiency, overall efficiency, and thrust flux. The information presented in this work has not been done by others in the scientific literature. This work yields simple algebraic equations for scramjet performance which are similar to that of the ideal ramjet, ideal turbojet and ideal turbofan engines.

  5. MHD Energy Bypass Scramjet Engine

    Science.gov (United States)

    Mehta, Unmeel B.; Bogdanoff, David W.; Park, Chul; Arnold, Jim (Technical Monitor)

    2001-01-01

    Revolutionary rather than evolutionary changes in propulsion systems are most likely to decrease cost of space transportation and to provide a global range capability. Hypersonic air-breathing propulsion is a revolutionary propulsion system. The performance of scramjet engines can be improved by the AJAX energy management concept. A magneto-hydro-dynamics (MHD) generator controls the flow and extracts flow energy in the engine inlet and a MHD accelerator downstream of the combustor accelerates the nozzle flow. A progress report toward developing the MHD technology is presented herein. Recent theoretical efforts are reviewed and ongoing experimental efforts are discussed. The latter efforts also include an ongoing collaboration between NASA, the US Air Force Research Laboratory, US industry, and Russian scientific organizations. Two of the critical technologies, the ionization of the air and the MHD accelerator, are briefly discussed. Examples of limiting the combustor entrance Mach number to a low supersonic value with a MHD energy bypass scheme are presented, demonstrating an improvement in scramjet performance. The results for a simplified design of an aerospace plane show that the specific impulse of the MHD-bypass system is better than the non-MHD system and typical rocket over a narrow region of flight speeds and design parameters. Equilibrium ionization and non-equilibrium ionization are discussed. The thermodynamic condition of air at the entrance of the engine inlet determines the method of ionization. The required external power for non-equilibrium ionization is computed. There have been many experiments in which electrical power generation has successfully been achieved by magneto-hydrodynamic (MHD) means. However, relatively few experiments have been made to date for the reverse case of achieving gas acceleration by the MHD means. An experiment in a shock tunnel is described in which MHD acceleration is investigated experimentally. MHD has several

  6. Development of a Premixed Combustion Capability for Scramjet Combustion Experiments

    Science.gov (United States)

    Rockwell, Robert D.; Goyne, Christopher P.; Rice, Brian E.; Chelliah, Harsha; McDaniel, James C.; Edwards, Jack R.; Cantu, Luca M. L.; Gallo, Emanuela C. A.; Cutler, Andrew D.; Danehy, Paul M.

    2015-01-01

    Hypersonic air-breathing engines rely on scramjet combustion processes, which involve high speed, compressible, and highly turbulent flows. The combustion environment and the turbulent flames at the heart of these engines are difficult to simulate and study in the laboratory under well controlled conditions. Typically, wind-tunnel testing is performed that more closely approximates engine testing rather than a careful investigation of the underlying physics that drives the combustion process. The experiments described in this paper, along with companion data sets being developed separately, aim to isolate the chemical kinetic effects from the fuel-air mixing process in a dual-mode scramjet combustion environment. A unique fuel injection approach is taken that produces a nearly uniform fuel-air mixture at the entrance to the combustor. This approach relies on the precombustion shock train upstream of the dual-mode scramjet combustor. A stable ethylene flame anchored on a cavity flameholder with a uniformly mixed combustor inflow has been achieved in these experiments allowing numerous companion studies involving coherent anti-Stokes Raman scattering (CARS), particle image velocimetry (PIV), and planar laser induced fluorescence (PLIF) to be performed.

  7. Hydrocarbon fuel processing of micro solid oxide fuel cell systems[Dissertation 17455

    Energy Technology Data Exchange (ETDEWEB)

    Stutz, M. J.

    2007-07-01

    The scope of this thesis is the numerical and experimental investigation of the fuel processing of a micro solid oxide fuel cell (SOFC) running on hydrocarbon fuel. The goal is to enhance the overall system efficiency by optimization of the reforming process in the steady state and the improvement of the start-up process. Micro SOFC are a potential alternative to the currently used batteries in portable devices. Liquid butane in a cartridge could be the energy source. This dissertation is focused on the fuel processing of the system, namely the reforming and post-combusting processes. The reformer converts the hydrocarbon fuel to a hydrogen rich gas that can be utilized by the SOFC. The post-combustor depletes the toxic and/or explosive gases before leaving the exhaust. Chapter One presents a short introduction to the field of hydrocarbon fuel processing in micro solid oxide fuel cell systems, the next three chapters deal with computational modeling of the transport phenomena inside a micro-reformer, which leads to a better understanding of the chemistry and the physics therein, hence progress in the design and operation parameters. The experimental part (i.e. Chapter Five) of this thesis focuses on the feasibility of a novel hybrid start-up method of a fuel cell system that employs existing components as an additional heat source. In Chapter Two the effect of wall heat conduction on the syngas (hydrogen and carbon monoxide) production of a micro-reformer, representing micro-fabricated channels or monoliths, is investigated. Methane is used as a model hydrocarbon fuel since its heterogeneous reaction path on rhodium is known and validated. The simulations demonstrate that the axial wall conduction strongly influences the performance of the micro-reformer and should not be neglected without a careful a priori investigation of its impact. Methane conversion and hydrogen yield are strongly dependent of the wall inner surface temperature, which is influenced by the

  8. Hydrocarbon fuel processing of micro solid oxide fuel cell systems[Dissertation 17455

    Energy Technology Data Exchange (ETDEWEB)

    Stutz, M. J.

    2007-07-01

    The scope of this thesis is the numerical and experimental investigation of the fuel processing of a micro solid oxide fuel cell (SOFC) running on hydrocarbon fuel. The goal is to enhance the overall system efficiency by optimization of the reforming process in the steady state and the improvement of the start-up process. Micro SOFC are a potential alternative to the currently used batteries in portable devices. Liquid butane in a cartridge could be the energy source. This dissertation is focused on the fuel processing of the system, namely the reforming and post-combusting processes. The reformer converts the hydrocarbon fuel to a hydrogen rich gas that can be utilized by the SOFC. The post-combustor depletes the toxic and/or explosive gases before leaving the exhaust. Chapter One presents a short introduction to the field of hydrocarbon fuel processing in micro solid oxide fuel cell systems, the next three chapters deal with computational modeling of the transport phenomena inside a micro-reformer, which leads to a better understanding of the chemistry and the physics therein, hence progress in the design and operation parameters. The experimental part (i.e. Chapter Five) of this thesis focuses on the feasibility of a novel hybrid start-up method of a fuel cell system that employs existing components as an additional heat source. In Chapter Two the effect of wall heat conduction on the syngas (hydrogen and carbon monoxide) production of a micro-reformer, representing micro-fabricated channels or monoliths, is investigated. Methane is used as a model hydrocarbon fuel since its heterogeneous reaction path on rhodium is known and validated. The simulations demonstrate that the axial wall conduction strongly influences the performance of the micro-reformer and should not be neglected without a careful a priori investigation of its impact. Methane conversion and hydrogen yield are strongly dependent of the wall inner surface temperature, which is influenced by the

  9. Simultaneous measurements of multiple flow parameters for scramjet characterization using tunable diode-laser sensors.

    Science.gov (United States)

    Li, Fei; Yu, Xilong; Gu, Hongbin; Li, Zhi; Zhao, Yan; Ma, Lin; Chen, Lihong; Chang, Xinyu

    2011-12-20

    This paper reports the simultaneous measurements of multiple flow parameters in a scramjet facility operating at a nominal Mach number of 2.5 using a sensing system based on tunable diode-laser absorption spectroscopy (TDLAS). The TDLAS system measures velocity, temperature, and water vapor partial pressure at three different locations of the scramjet: the inlet, the combustion region near the flame stabilization cavity, and the exit of the combustor. These measurements enable the determination of the variation of the Mach number and the combustion mode in the scramjet engine, which are critical for evaluating the combustion efficiency and optimizing engine performance. The results obtained in this work clearly demonstrated the applicability of TDLAS sensors in harsh and high-speed environments. The TDLAS system, due to its unique virtues, is expected to play an important role in the development of scramjet engines.

  10. Catalytic co-pyrolysis of waste vegetable oil and high density polyethylene for hydrocarbon fuel production.

    Science.gov (United States)

    Wang, Yunpu; Dai, Leilei; Fan, Liangliang; Cao, Leipeng; Zhou, Yue; Zhao, Yunfeng; Liu, Yuhuan; Ruan, Roger

    2017-03-01

    In this study, a ZrO2-based polycrystalline ceramic foam catalyst was prepared and used in catalytic co-pyrolysis of waste vegetable oil and high density polyethylene (HDPE) for hydrocarbon fuel production. The effects of pyrolysis temperature, catalyst dosage, and HDPE to waste vegetable oil ratio on the product distribution and hydrocarbon fuel composition were examined. Experimental results indicate that the maximum hydrocarbon fuel yield of 63.1wt. % was obtained at 430°C, and the oxygenates were rarely detected in the hydrocarbon fuel. The hydrocarbon fuel yield increased when the catalyst was used. At the catalyst dosage of 15wt.%, the proportion of alkanes in the hydrocarbon fuel reached 97.85wt.%, which greatly simplified the fuel composition and improved the fuel quality. With the augment of HDPE to waste vegetable oil ratio, the hydrocarbon fuel yield monotonously increased. At the HDPE to waste vegetable oil ratio of 1:1, the maximum proportion (97.85wt.%) of alkanes was obtained. Moreover, the properties of hydrocarbon fuel were superior to biodiesel and 0(#) diesel due to higher calorific value, better low-temperature low fluidity, and lower density and viscosity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Metabolic engineering for the production of hydrocarbon fuels.

    Science.gov (United States)

    Lee, Sang Yup; Kim, Hye Mi; Cheon, Seungwoo

    2015-06-01

    Biofuels have been attracting increasing attention to provide a solution to the problems of climate change and our dependence on limited fossil oil. During the last decade, metabolic engineering has been performed to develop superior microorganisms for the production of so called advanced biofuels. Among the advanced biofuels, hydrocarbons possess high-energy content and superior fuel properties to other biofuels, and thus have recently been attracting much research interest. Here we review the recent advances in the microbial production of hydrocarbon fuels together with the metabolic engineering strategies employed to develop their production strains. Strategies employed for the production of long-chain and short-chain hydrocarbons derived from fatty acid metabolism along with the isoprenoid-derived hydrocarbons are reviewed. Also, the current limitations and future prospects in hydrocarbon-based biofuel production are discussed.

  12. Pyrochlore-type catalysts for the reforming of hydrocarbon fuels

    Science.gov (United States)

    Berry, David A [Morgantown, WV; Shekhawat, Dushyant [Morgantown, WV; Haynes, Daniel [Morgantown, WV; Smith, Mark [Morgantown, WV; Spivey, James J [Baton Rouge, LA

    2012-03-13

    A method of catalytically reforming a reactant gas mixture using a pyrochlore catalyst material comprised of one or more pyrochlores having the composition A.sub.2-w-xA'.sub.wA''.sub.xB.sub.2-y-zB'.sub.yB''.sub.zO.sub.7-.DELTA.. Distribution of catalytically active metals throughout the structure at the B site creates an active and well dispersed metal locked into place in the crystal structure. This greatly reduces the metal sintering that typically occurs on supported catalysts used in reforming reactions, and reduces deactivation by sulfur and carbon. Further, oxygen mobility may also be enhanced by elemental exchange of promoters at sites in the pyrochlore. The pyrochlore catalyst material may be utilized in catalytic reforming reactions for the conversion of hydrocarbon fuels into synthesis gas (H.sub.2+CO) for fuel cells, among other uses.

  13. Microbial contamination of stored hydrocarbon fuels and its control

    Directory of Open Access Journals (Sweden)

    Gaylarde Christine C.

    1999-01-01

    Full Text Available The major microbial problem in the petroleum refining industry is contamination of stored products, which can lead to loss of product quality, formation of sludge and deterioration of pipework and storage tanks, both in the refinery and at the end-user. Three major classes of fuel are discussed in this article - gasoline, aviation kerosene and diesel, corresponding to increasingly heavy petroleum fractions. The fuel that presents the most serious microbiological problems is diesel. The many microorganisms that have been isolated from hydrocarbon fuel systems are listed. The conditions required for microbial growth and the methods used to monitor and to control this activity are discussed. The effects of various fuel additives, including biocides, are considered.

  14. Bifurcation of Scramjet Unstart

    Science.gov (United States)

    Jang, Ik; Nichols, Joseph; Duraisamy, Karthik; Moin, Parviz

    2011-11-01

    We investigate the bifurcation structure of catastrophic unstart in scramjets. The bifurcation of quasi-one-dimensional Rayleigh flow is first analyzed, followed by a numerical investigation of a more realistic model scramjet isolator (Wagner et al., AIAA paper, 2010). We show that the quasi-one-dimensional model recovers a similar hysteresis behavior as that observed in steady Reynolds-Averaged Navier-Stokes simulations of the model scramjet isolator close to the onset of unstart. In the hysteresis zone, steady but unstable solutions are obtained by means of pseudo-arclength continuation. Automatic differentiation permits the use of fully discrete Jacobians that result in an accurate representation of functional dependencies and linearized dynamics. Furthermore, we use an Arnoldi method to extract the least stable direct and adjoint eigenfunctions spanning the system dynamics close to unstart and obtain the system response to both harmonic and stochastic forcing. This information, along with the final bifurcation structure, allows us to evaluate the effectiveness of different metrics as indicators of the onset of unstart. Supported by the PSAAP program of DOE

  15. Process for Operating a Dual-Mode Combustor

    Science.gov (United States)

    Trefny, Charles J. (Inventor); Dippold, Vance F. (Inventor)

    2017-01-01

    A new dual-mode ramjet combustor used for operation over a wide flight Mach number range is described. Subsonic combustion mode is usable to lower flight Mach numbers than current dual-mode scramjets. High speed mode is characterized by supersonic combustion in a free-jet that traverses the subsonic combustion chamber to a variable nozzle throat. Although a variable combustor exit aperture is required, the need for fuel staging to accommodate the combustion process is eliminated. Local heating from shock-boundary-layer interactions on combustor walls is also eliminated.

  16. Conversion of hydrocarbon fuel in thermal protection reactors of hypersonic aircraft

    Science.gov (United States)

    Kuranov, A. L.; Mikhaylov, A. M.; Korabelnikov, A. V.

    2016-07-01

    Thermal protection of heat-stressed surfaces of a high-speed vehicle flying in dense layers of atmosphere is one of the topical issues. Not of a less importance is also the problem of hydrocarbon fuel combustion in a supersonic air flow. In the concept under development, it is supposed that in the most high-stressed parts of airframe and engine, catalytic thermochemical reactors will be installed, wherein highly endothermic processes of steam conversion of hydrocarbon fuel take place. Simultaneously with heat absorption, hydrogen generation will occur in the reactors. This paper presents the results of a study of conversion of hydrocarbon fuel in a slit reactor.

  17. Hydrocarbon Fuel Thermal Performance Modeling based on Systematic Measurement and Comprehensive Chromatographic Analysis

    Science.gov (United States)

    2016-07-31

    distribution unlimited Hydrocarbon Fuel Thermal Performance Modeling based on Systematic Measurement and Comprehensive Chromatographic Analysis Matthew...Technical Note 3. DATES COVERED (From - To) 04 January 2016 - 31 July 2016 4. TITLE AND SUBTITLE Hydrocarbon Fuel Thermal Performance Modeling based on...Systematic Measurement and Comprehensive Chromatographic Analysis 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S

  18. Methods of reforming hydrocarbon fuels using hexaaluminate catalysts

    Science.gov (United States)

    Gardner, Todd H [Morgantown, WV; Berry, David A [Morgantown, WV; Shekhawat, Dushyant [Morgantown, WV

    2012-03-27

    A metal substituted hexaaluminate catalyst for reforming hydrocarbon fuels to synthesis gas of the general formula AB.sub.yAl.sub.12-yO.sub.19-.delta., A being selected from alkali metals, alkaline earth metals and lanthanide metals or mixtures thereof. A dopant or surface modifier selected from a transitions metal, a spinel of an oxygen-ion conductor is incorporated. The dopant may be Ca, Cs, K, La, Sr, Ba, Li, Mg, Ce, Co, Fe, Ir, Rh, Ni, Ru, Cu, Pe, Os, Pd, Cr, Mn, W, Re, Sn, Gd, V, Ti, Ag, Au, and mixtures thereof. The oxygen-ion conductor may be a perovskite selected from M'RhO.sub.3, M'PtO.sub.3, M'PdO.sub.3, M'IrO.sub.3, M'RuO.sub.3 wherein M'=Mg, Sr, Ba, La, Ca; a spinel selected from MRh.sub.2O.sub.4, MPt.sub.2O.sub.4, MPd.sub.2O.sub.4, MIr.sub.2O.sub.4, MRu.sub.2O.sub.4 wherein M=Mg, Sr, Ba, La, Ca and mixtures thereof; a florite is selected from M''O.sub.2.

  19. Preliminary Economics for Hydrocarbon Fuel Production from Cellulosic Sugars

    Energy Technology Data Exchange (ETDEWEB)

    Collett, James R.; Meyer, Pimphan A.; Jones, Susanne B.

    2014-05-18

    Biorefinery process and economic models built in CHEMCAD and a preliminary, genome-scale metabolic model for the oleaginous yeast Lipomyces starkeyi were used to simulate the bioconversion of corn stover to lipids, and the upgrading of these hydrocarbon precursors to diesel and jet fuel. The metabolic model was based on the recently released genome sequence for L. starkeyi and on metabolic pathway information from the literature. The process model was based on bioconversion, lipid extraction, and lipid oil upgrading data found in literature, on new laboratory experimental data, and on yield predictions from the preliminary L. starkeyi metabolic model. The current plant gate production cost for a distillate-range hydrocarbon fuel was estimated by the process model Base Case to be $9.5/gallon ($9.0 /gallon of gasoline equivalent) with assumptions of 2011$, 10% internal return on investment, and 2205 ton/day dry feed rate. Opportunities for reducing the cost to below $5.0/gallon, such as improving bioconversion lipid yield and hydrogenation catalyst selectivity, are presented in a Target Case. The process and economic models developed for this work will be updated in 2014 with new experimental data and predictions from a refined metabolic network model for L. starkeyi. Attaining a production cost of $3.0/gallon will require finding higher value uses for lignin other than power generation, such as conversion to additional fuel or to a co-product.

  20. Thermocatalytic CO2-Free Production of Hydrogen from Hydrocarbon Fuels

    Energy Technology Data Exchange (ETDEWEB)

    University of Central Florida

    2004-01-30

    The main objective of this project is the development of an economically viable thermocatalytic process for production of hydrogen and carbon from natural gas or other hydrocarbon fuels with minimal environmental impact. The three major technical goals of this project are: (1) to accomplish efficient production of hydrogen and carbon via sustainable catalytic decomposition of methane or other hydrocarbons using inexpensive and durable carbon catalysts, (2) to obviate the concurrent production of CO/CO{sub 2} byproducts and drastically reduce CO{sub 2} emissions from the process, and (3) to produce valuable carbon products in order to reduce the cost of hydrogen production The important feature of the process is that the reaction is catalyzed by carbon particulates produced in the process, so no external catalyst is required (except for the start-up operation). This results in the following advantages: (1) no CO/CO{sub 2} byproducts are generated during hydrocarbon decomposition stage, (2) no expensive catalysts are used in the process, (3) several valuable forms of carbon can be produced in the process depending on the process conditions (e.g., turbostratic carbon, pyrolytic graphite, spherical carbon particles, carbon filaments etc.), and (4) CO{sub 2} emissions could be drastically reduced (compared to conventional processes).

  1. A new comprehensive reaction mechanism for combustion of hydrocarbon fuels

    Energy Technology Data Exchange (ETDEWEB)

    Ranzi, E.; Sogaro, A.; Gaffuri, P.; Pennati, G. [Politecnico di Milano (Italy). Dipt. di Chimica Industriale e Ingegneria Chimica; Westbrook, C.K.; Pitz, W.J. [Lawrence Livermore National Lab., CA (United States)

    1993-12-03

    A chemical kinetic model has been developed which describes pyrolysis, ignition and oxidation of many small hydrocarbon fuels over a wide range of experimental conditions. Fuels include carbon monoxide and hydrogen, methane and other alkane species up to n-butane, ethylene, propene, acetylene, and oxygenated species such as methanol, acetaldehyde and ethanol. Formation of some larger intermediate and product species including benzene, butadiene, large olefins, and cyclopentadiene has been treated in a semi-empirical manner. The reaction mechanism has been tested for conditions that do not involve transport and diffusional processes, including plug flow and stirred reactors, batch reactors and shock tubes. The present kinetic model and its validation differ from previous reaction mechanisms in two ways. First, in addition to conventional combustion data, experiments more commonly associated with chemical engineering problems such as oxidative coupling, oxidative pyrolysis and steam cracking are used to test the reaction mechanism, making it even more general than previous models. In addition, H atom abstraction and some other reaction rates, even for the smaller C{sub 2}, C{sub 3} and C{sub 4} species, are treated using approximations that facilitate future extensions to larger fuels in a convenient manner. Construction of the reaction mechanism and comparisons with experimental data illustrate the generality of the model.

  2. Arc Heated Scramjet Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Arc Heated Scramjet Test Facility is an arc heated facility which simulates the true enthalpy of flight over the Mach number range of about 4.7 to 8 for free-jet...

  3. Comparison between Hydrogen, Methane and Ethylene Fuels in a 3-D Scramjet at Mach 8

    Science.gov (United States)

    2016-06-24

    generates a strong recompression shock from its aft-wall; this spike in pressure is, very likely, caused by this shock. Downstream of this shock, the...equivalence ratio (shot 11698). Peak pressures on the bodyside are relatively unaffected by equivalence ratio, but the pressure rise is maintained...scramjet combustor conditions. The relative mixing efficiency, jet penetration and stagnation pressure loss for each fuel will be investigated

  4. Analysis of hydrocarbon fuel properties by means of Raman spectroscopy

    Science.gov (United States)

    Flatley, Martin W.

    The project is focused on the determination of Raman spectra of hydrocarbon fuel samples using a spectrometer employing a silicon linear array detector which has a spectral range of 400 nm to 1.1 mum. The spectra are processed using chemometric techniques in order to determine the concentrations of the tracked blend components and analytical values that are used to ensure that desired specifications are achieved. The verification is based on the American Standard Testing Methods procedures for the determination of the motor, research, and road octane numbers, simulated distillation and Reid vapour pressure. Blending is one of the most important steps in the final production of hydrocarbon fuels; as many as ten complex components are mixed to achieve the desired properties of the final product. Traditionally, blending relies on well-established analytical methods such as gas chromatography for component and simulated distillation analysis, knock engines and near infrared spectroscopy for octane analysis. All of these methods are reliable and accurate, but their results are not available in real time but rather with a substantial delay, since it is in the nature of the methods that the sample must be transported from a test site to the site where the instrument is located. Additional time is required for performing the analytical procedure; e.g. the results of a gas chromatography analysis are only available from minutes to hours after the sample has been introduced into the instrument. Consequently, the results, although accurate, become only available after the process of blending has been completed. The thesis describes an implementation of a Raman spectroscopic method, which is novel in the given context, since it allows monitoring and control of the blending process online, in real time. A Raman spectrometer was designed, using a solid state laser for excitation (785 nm, 800 mW), a blazed grating for the diffraction (600 lines-per-millimeter, 750 nm blaze, 635

  5. Effects of compression and expansion ramp fuel injector configuration on scramjet combustion and heat transfer

    Science.gov (United States)

    Stouffer, Scott D.; Baker, N. R.; Capriotti, D. P.; Northam, G. B.

    1993-01-01

    A scramjet combustor with four wall-ramp injectors containing Mach-1.7 fuel jets in the base of the ramps was investigated experimentally. During the test program, two swept ramp injector designs were evaluated. One swept-ramp model had 10-deg compression-ramps and the other had 10-deg expansion cavities between flush wall ramps. The scramjet combustor model was instrumented with pressure taps and heat-flux gages. The pressure measurements indicated that both injector configurations were effective in promoting mixing and combustion. Autoignition occurred for the compression-ramp injectors, and the fuel began to burn immediately downstream of the injectors. In tests of the expansion ramps, a pilot was required to ignite the fuel, and the fuel did not burn for a distance of at least two gaps downstream of the injectors. Once initiated, combustion was rapid in this configuration. Heat transfer measurements showed that the heat flux differed greatly both across the width of the combustor and along the length of the combustor.

  6. Scramjet Combustor Simulations Using Reduced Chemical Kinetics for Practical Fuels

    Science.gov (United States)

    2003-12-01

    Stochastic Simulation of an HCCI Engine Using an Automatically Reduced Mechanism,� ICE, Vol. 37-2, 2001 Fall Technical Conference...Christopher J. Montgomery, and Wei Zhao Reaction Engineering International (REI) 77 West 200 South, Suite 210 Salt Lake City, UT 84101 Dean R...DOUGLAS L. DAVIS CAPT. BRIAN C. MCDONALD AFRL/PRAS, Project Engineer Branch Chief Propulsion Sciences Branch Propulsion

  7. Clocked combustor can array

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Won-Wook; McMahan, Kevin Weston; Srinivasan, Shiva Kumar

    2017-01-17

    The present application provides a clocked combustor can array for coherence reduction in a gas turbine engine. The clocked combustor can array may include a number of combustor cans positioned in a circumferential array. A first set of the combustor cans may have a first orientation and a second set of the combustor cans may have a second orientation.

  8. Clocked combustor can array

    Science.gov (United States)

    Kim, Won-Wook; McMahan, Kevin Weston; Srinivasan, Shiva Kumar

    2017-01-17

    The present application provides a clocked combustor can array for coherence reduction in a gas turbine engine. The clocked combustor can array may include a number of combustor cans positioned in a circumferential array. A first set of the combustor cans may have a first orientation and a second set of the combustor cans may have a second orientation.

  9. Hydrocarbon Fuel Thermal Performance Modeling based on Systematic Measurement and Comprehensive Chromatographic Analysis

    Science.gov (United States)

    2016-07-27

    Conference Paper 3. DATES COVERED (From - To) 10 June 2016 - 27 July 2016 4. TITLE AND SUBTITLE Hydrocarbon Fuel Thermal Performance Modeling based on...The Johns Hopkins University Energetics Research Group (JHU/ERG), Columbia, MD and University of Washington, Seattle, WA 14. ABSTRACT Ensuring fuel ...is a common requirement for aircraft, rockets, and hypersonic vehicles. The Aerospace Fuels Quality Test and Model Development (AFQTMoDev) project

  10. Improving Catalyst Efficiency in Bio-Based Hydrocarbon Fuels; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-06-01

    This article investigates upgrading biomass pyrolysis vapors to form hydrocarbon fuels and chemicals using catalysts with different concentrations of acid sites. It shows that greater separation of acid sites makes catalysts more efficient at producing hydrocarbon fuels and chemicals. The conversion of biomass into liquid transportation fuels has attracted significant attention because of depleting fossil fuel reserves and environmental concerns resulting from the use of fossil fuels. Biomass is a renewable resource, which is abundant worldwide and can potentially be exploited to produce transportation fuels that are less damaging to the environment. This renewable resource consists of cellulose (40–50%), hemicellulose (25–35%), and lignin (16–33%) biopolymers in addition to smaller quantities of inorganic materials such as silica and alkali and alkaline earth metals (calcium and potassium). Fast pyrolysis is an attractive thermochemical technology for converting biomass into precursors for hydrocarbon fuels because it produces up to 75 wt% bio-oil,1 which can be upgraded to feedstocks and/or blendstocks for further refining to finished fuels. Bio-oil that has not been upgraded has limited applications because of the presence of oxygen-containing functional groups, derived from cellulose, hemicellulose and lignin, which gives rise to high acidity, high viscosity, low heating value, immiscibility with hydrocarbons and aging during storage. Ex situ catalytic vapor phase upgrading is a promising approach for improving the properties of bio-oil. The goal of this process is to reject oxygen and produce a bio-oil with improved properties for subsequent downstream conversion to hydrocarbons.

  11. Accounting for water formation from hydrocarbon fuel combustion in life cycle analyses

    Science.gov (United States)

    Belmont, E. L.; Davidson, F. T.; Glazer, Y. R.; Beagle, E. A.; Webber, M. E.

    2017-09-01

    Hydrocarbon fuel production and utilization are considered water intensive processes due to the high volumes of water used in source development and fuel processing. At the same time, there is significant water formed during combustion. However, this water is not currently widely harvested at the site of production. Instead, it is added to the hydrologic cycle, often in a different location from the fuel production site. This study quantifies the water formed from combustion of these fuels and analyzes the magnitudes of formation in the context of other hydrologic sources and sinks in order to facilitate future assessments of water harvesting technology and/or atmospheric impacts of combustion. Annual water formation from stoichiometric combustion of hydrocarbon fuels, including natural gas, oil- and natural gas liquid-derived products, and coal, in the United States and worldwide are presented and compared with quantities of water sequestered, evaporated, and stored in the atmosphere. Water production factors in terms of mass and energy of fuel consumed, WPFm and WPFe, respectively, are defined for the comparison of fuels and incorporation into future life cycle analyses (LCAs). Results show that water formation from combustion has increased worldwide from 2005 to 2015, with the largest increase coming from growth in combustion of natural gas. Water formation from combustion of hydrocarbon fuels equals or exceeds water sequestered from the hydrologic cycle through deep well injection in the US annually. Overall, water formation is deemed significant enough to warrant consideration by LCAs of water intensity in fuel production and use, and should be included in future analyses.

  12. Scramjet Combustion Stability Behavior Modeling Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A recent breakthrough in combustion stability analysis (UCDS) offers the means to accurately predict the combustion stability of a scramjet. This capability is very...

  13. Scramjet Combustion Stability Behavior Modeling Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A recent breakthrough in combustion stability analysis (UCDS) offers the potential to predict the combustion stability of a scramjet. This capability is very...

  14. Experimental investigations on effect of different materials and varying depths of one turn exhaust channel swiss roll combustor on its thermal performance

    Science.gov (United States)

    Mane Deshmukh, Sagar B.; Krishnamoorthy, A.; Bhojwani, V. K.; Pawane, Ashwini

    2017-05-01

    More energy density of hydrocarbon fuels compared to advanced batteries available in the market demands for development of systems which will use hydrocarbon fuels at small scale to generate power in small quantity (i.e. in few watts) and device efficiency should be reasonably good, but the basic requirement is to generate heat from the fuels like methane, propane, hydrogen, LPG and converting into power. Swiss roll combustor has proved to be best combustor at small scale. Present work is carried out on one turn exhaust channel and half turn of inlet mixture channel Swiss roll combustor. Purpose of keeping exhaust channel length more than the inlet mixture channel to ensure sufficient time for heat exchange between burned and unburned gases, which is not reported in earlier studies. Experimental study mentions effects of different design parameters like materials of combustor, various depths, equivalence ratio, mass flow rates of liquefied petroleum gas (LPG), volume of combustion space and environmental conditions (with insulation and without insulation to combustors) on fuel lean limit and fuel rich limit, temperature profile obtained on all external surfaces, in the main combustion chamber, in the channel carrying unburned gas mixture and burned gas mixture, heat loss to atmosphere from all the walls of combustor, flame location. Different combustor materials tested were stainless steel, Aluminum, copper, brass, bronze, Granite. Depths considered were 22mm, 15mm, 10mm and 5mm. It was observed that flame stability inside the combustion chamber is affected by materials, depths and flow rates. Unburned mixture carrying channel was kept below quenching distance of flame to avoid flash back. Burned gas carrying channel dimension was more than the quenching distance. Considerable temperature rise was observed with insulation to combustors. But combustors with more thermal conductivity showed more heat loss to atmosphere which led to instability of flame.

  15. Numerical Investigation on Supercritical Heat Transfer of RP3 Kerosene Flowing inside a Cooling Channel of Scramjet

    Directory of Open Access Journals (Sweden)

    Ning Wang

    2014-06-01

    Full Text Available Supercritical convective heat transfer characteristics of hydrocarbon fuel play a fundamental role in the active cooling technology of scramjet. In this paper, a 2D-axisymmetric numerical study of supercritical heat transfer of RP3 flowing inside the cooling channels of scramjet has been conducted. The main thermophysical properties of RP3, including density, specific heat, and thermal conductivity, are obtained from experimental data, while viscosity is evaluated from a commercial code with a ten-species surrogate. Effects of heat flux, mass flow rate, and inlet temperature on supercritical heat transfer processes have been investigated. Results indicate that when the wall temperature rises above the pseudocritical temperature of RP3, heat transfer coefficient decreases as a result of drastic decrease of the specific heat. The conventional heat transfer correlations, that is, Gnielinski formula, are no longer proper for the supercritical heat transfer of RP3. The modified Jackson and Hall formula, which was proposed for supercritical CO2 and water, gives good prediction except when the wall temperature is near or higher than the pseudocritical temperature.

  16. Effect of turbulence models on predicting convective heat transfer to hydrocarbon fuel at supercritical pressure

    Institute of Scientific and Technical Information of China (English)

    Tao Zhi; Cheng Zeyuan; Zhu Jianqin; Li Haiwang

    2016-01-01

    A variety of turbulence models were used to perform numerical simulations of heat transfer for hydrocarbon fuel flowing upward and downward through uniformly heated vertical pipes at supercritical pressure. Inlet temperatures varied from 373 K to 663 K, with heat flux rang-ing from 300 kW/m2 to 550 kW/m2. Comparative analyses between predicted and experimental results were used to evaluate the ability of turbulence models to respond to variable thermophys-ical properties of hydrocarbon fuel at supercritical pressure. It was found that the prediction per-formance of turbulence models is mainly determined by the damping function, which enables them to respond differently to local flow conditions. Although prediction accuracy for experimental results varied from condition to condition, the shear stress transport (SST) and launder and sharma models performed better than all other models used in the study. For very small buoyancy-influenced runs, the thermal-induced acceleration due to variations in density lead to the impairment of heat transfer occurring in the vicinity of pseudo-critical points, and heat transfer was enhanced at higher temperatures through the combined action of four thermophysical properties: density, viscosity, thermal conductivity and specific heat. For very large buoyancy-influenced runs, the thermal-induced acceleration effect was over predicted by the LS and AB models.

  17. Effect of turbulence models on predicting convective heat transfer to hydrocarbon fuel at supercritical pressure

    Directory of Open Access Journals (Sweden)

    Tao Zhi

    2016-10-01

    Full Text Available A variety of turbulence models were used to perform numerical simulations of heat transfer for hydrocarbon fuel flowing upward and downward through uniformly heated vertical pipes at supercritical pressure. Inlet temperatures varied from 373 K to 663 K, with heat flux ranging from 300 kW/m2 to 550 kW/m2. Comparative analyses between predicted and experimental results were used to evaluate the ability of turbulence models to respond to variable thermophysical properties of hydrocarbon fuel at supercritical pressure. It was found that the prediction performance of turbulence models is mainly determined by the damping function, which enables them to respond differently to local flow conditions. Although prediction accuracy for experimental results varied from condition to condition, the shear stress transport (SST and launder and sharma models performed better than all other models used in the study. For very small buoyancy-influenced runs, the thermal-induced acceleration due to variations in density lead to the impairment of heat transfer occurring in the vicinity of pseudo-critical points, and heat transfer was enhanced at higher temperatures through the combined action of four thermophysical properties: density, viscosity, thermal conductivity and specific heat. For very large buoyancy-influenced runs, the thermal-induced acceleration effect was over predicted by the LS and AB models.

  18. Energy and climate impacts of producing synthetic hydrocarbon fuels from CO(2).

    Science.gov (United States)

    van der Giesen, Coen; Kleijn, René; Kramer, Gert Jan

    2014-06-17

    Within the context of carbon dioxide (CO2) utilization there is an increasing interest in using CO2 as a resource to produce sustainable liquid hydrocarbon fuels. When these fuels are produced by solely using solar energy they are labeled as solar fuels. In the recent discourse on solar fuels intuitive arguments are used to support the prospects of these fuels. This paper takes a quantitative approach to investigate some of the claims made in this discussion. We analyze the life cycle performance of various classes of solar fuel processes using different primary energy and CO2 sources. We compare their efficacy with respect to carbon mitigation with ubiquitous fossil-based fuels and conclude that producing liquid hydrocarbon fuels starting from CO2 by using existing technologies requires much more energy than existing fuels. An improvement in life cycle CO2 emissions is only found when solar energy and atmospheric CO2 are used. Producing fuels from CO2 is a very long-term niche at best, not the panacea suggested in the recent public discourse.

  19. Biological Production of a Hydrocarbon Fuel Intermediate Polyhydroxybutyrate (Phb) from a Process Relevant Lignocellulosic Derived Sugar

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Mohagheghi, Ali; Mittal, Ashutosh; Pilath, Heidi; Johnson, David K.

    2015-03-22

    PHAs are synthesized by many microorganisms to serve as intracellular carbon storage molecules. In some bacterial strains, PHB can account for up to 80% of cell mass. In addition to its application in the packaging sector, PHB also has great potential as an intermediate in the production of hydrocarbon fuels. PHB can be thermally depolymerized and decarboxylated to propene which can be upgraded to hydrocarbon fuels via commercial oligomerization technologies. In recent years a great effort has been made in bacterial production of PHB, yet the production cost of the polymer is still much higher than conventional petrochemical plastics. The high cost of PHB is because the cost of the substrates can account for as much as half of the total product cost in large scale fermentation. Thus searching for cheaper and better substrates is very necessary for PHB production. In this study, we demonstrate production of PHB by Cupriavidus necator from a process relevant lignocellulosic derived sugar stream, i.e., saccharified hydrolysate slurry from pretreated corn stover. Good cell growth was observed on slurry saccharified with advanced enzymes and 40~60% of PHB was accumulated in the cells. The mechanism of inhibition in the toxic hydrolysate generated by pretreatment and saccharification of biomass, will be discussed.

  20. Techno-Economic Basis for Coproduct Manufacturing To Enable Hydrocarbon Fuel Production from Lignocellulosic Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Biddy, Mary J.; Davis, Ryan; Humbird, David; Tao, Ling; Dowe, Nancy; Guarnieri, Michael T.; Linger, Jeffrey G.; Karp, Eric M.; Salvachua, Davinia; Vardon, Derek R.; Beckham, Gregg T.

    2016-06-06

    Biorefinery process development relies on techno-economic analysis (TEA) to identify primary cost drivers, prioritize research directions, and mitigate technical risk for scale-up through development of detailed process designs. Here, we conduct TEA of a model 2000 dry metric ton-per-day lignocellulosic biorefinery that employs a two-step pretreatment and enzymatic hydrolysis to produce biomass-derived sugars, followed by biological lipid production, lipid recovery, and catalytic hydrotreating to produce renewable diesel blendstock (RDB). On the basis of projected near-term technical feasibility of these steps, we predict that RDB could be produced at a minimum fuel selling price (MFSP) of USD $9.55/gasoline-gallon-equivalent (GGE), predicated on the need for improvements in the lipid productivity and yield beyond current benchmark performance. This cost is significant given the limitations in scale and high costs for aerobic cultivation of oleaginous microbes and subsequent lipid extraction/recovery. In light of this predicted cost, we developed an alternative pathway which demonstrates that RDB costs could be substantially reduced in the near term if upgradeable fractions of biomass, in this case hemicellulose-derived sugars, are diverted to coproducts of sufficient value and market size; here, we use succinic acid as an example coproduct. The coproduction model predicts an MFSP of USD $5.28/GGE when leaving conversion and yield parameters unchanged for the fuel production pathway, leading to a change in biorefinery RDB capacity from 24 to 15 MM GGE/year and 0.13 MM tons of succinic acid per year. Additional analysis demonstrates that beyond the near-term projections assumed in the models here, further reductions in the MFSP toward $2-3/GGE (which would be competitive with fossil-based hydrocarbon fuels) are possible with additional transformational improvements in the fuel and coproduct trains, especially in terms of carbon efficiency to both fuels and

  1. Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy

    DEFF Research Database (Denmark)

    Graves, Christopher R.; Ebbesen, Sune; Mogensen, Mogens Bjerg

    2011-01-01

    . The dominant costs of the process are the electricity cost and the capital cost of the electrolyzer, and this capital cost is significantly increased when operating intermittently (on renewable power sources such as solar and wind). The potential of this CO2 recycling process is assessed, in terms of what......) and biofuels have received the most attention, similar hydrocarbons can be produced without using fossil fuels or biomass. Using renewable and/or nuclear energy, carbon dioxide and water can be recycled into liquid hydrocarbon fuels in non-biological processes which remove oxygen from CO2 and H2O (the reverse...... dissociation, and fuel synthesis. Dissociation methods include thermolysis, thermochemical cycles, electrolysis, and photoelectrolysis of CO2 and/or H2O. High temperature co-electrolysis of H2O and CO2 makes very efficient use of electricity and heat (near-100% electricity-to-syngas efficiency), provides high...

  2. Investigation of bubble-point vapor pressures for mixtures of an endothermic hydrocarbon fuel with ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Haiyun Sun; Wenjun Fang; Yongsheng Guo; Ruisen Lin [Zhejiang University, Hangzhou (China). Department of Chemistry, Molecular Thermodynamics

    2005-05-01

    Bubble-point vapor pressures and equilibrium temperatures for several mixtures with different mass fractions of a kerosene based endothermic hydrocarbon fuel (EHF) and ethanol were measured by comparative ebulliometry with inclined ebulliometers. Correlation between vapor pressures and equilibrium temperatures by the Antoine equation was given with satisfactory precision. The bubble-point lines of pressure versus composition at different temperatures and temperature versus composition at different pressures were obtained. The pseudo binary systems of EHF+ethanol appear with very large positive deviations from Raoult's law. It follows that the addition of ethanol had a critical effect on the vapor pressure of fuels. Ethanol may be an effective oxygenated hydrocarbon additive to adjust the volatility of EHF. 17 refs., 8 figs., 4 tabs.

  3. Design and evaluation of high performance rocket engine injectors for use with hydrocarbon fuels

    Science.gov (United States)

    Pavli, A. J.

    1979-01-01

    An experimental program to determine the feasibility of using a heavy hydrocarbon fuel as a rocket propellant is reported herein. A method of predicting performance of a heavy hydrocarbon in terms of vaporization effectiveness is described and compared to other fuels and to experimental test results. The work was done at a chamber pressure of 4137 KN/sq M (600 psia) with RP-1, JP-10, and liquefied natural gas as fuels, and liquid oxygen as the oxidizer. Combustion length effects were explored over a range of 21.6 cm (8 1/2 in.) to 55.9 cm (22 in.). Four injector types were tested, each over a range of mixture ratios. Further configuration modifications were obtained by 'reaming' each injector several times to provide test data over a range of injector pressure drop.

  4. Laser Spectrometric Measurement System for Local Express Diagnostics of Flame at Combustion of Liquid Hydrocarbon Fuels

    Science.gov (United States)

    Kobtsev, V. D.; Kozlov, D. N.; Kostritsa, S. A.; Smirnov, V. V.; Stel'makh, O. M.; Tumanov, A. A.

    2016-03-01

    A laboratory laser spectrometric measurement system for investigation of spatial distributions of local temperatures in a flame at combustion of vapors of various liquid hydrocarbon fuels in oxygen or air at atmospheric pressure is presented. The system incorporates a coherent anti-Stokes Raman spectrometer with high spatial resolution for local thermometry of nitrogen-containing gas mixtures in a single laser shot and a continuous operation burner with a laminar diffusion flame. The system test results are presented for measurements of spatial distributions of local temperatures in various flame zones at combustion of vapor—gas n-decane/nitrogen mixtures in air. Its applicability for accomplishing practical tasks in comparative laboratory investigation of characteristics of various fuels and for research on combustion in turbulent flames is discussed.

  5. Heat Transfer and Thermal Stability Research for Advanced Hydrocarbon Fuel Technologies

    Science.gov (United States)

    DeWitt, Kenneth; Stiegemeier, Benjamin

    2005-01-01

    In recent years there has been increased interest in the development of a new generation of high performance boost rocket engines. These efforts, which will represent a substantial advancement in boost engine technology over that developed for the Space Shuttle Main Engines in the early 1970s, are being pursued both at NASA and the United States Air Force. NASA, under its Space Launch Initiative s Next Generation Launch Technology Program, is investigating the feasibility of developing a highly reliable, long-life, liquid oxygen/kerosene (RP-1) rocket engine for launch vehicles. One of the top technical risks to any engine program employing hydrocarbon fuels is the potential for fuel thermal stability and material compatibility problems to occur under the high-pressure, high-temperature conditions required for regenerative fuel cooling of the engine combustion chamber and nozzle. Decreased heat transfer due to carbon deposits forming on wetted fuel components, corrosion of materials common in engine construction (copper based alloys), and corrosion induced pressure drop increases have all been observed in laboratory tests simulating rocket engine cooling channels. To mitigate these risks, the knowledge of how these fuels behave in high temperature environments must be obtained. Currently, due to the complexity of the physical and chemical process occurring, the only way to accomplish this is empirically. Heated tube testing is a well-established method of experimentally determining the thermal stability and heat transfer characteristics of hydrocarbon fuels. The popularity of this method stems from the low cost incurred in testing when compared to hot fire engine tests, the ability to have greater control over experimental conditions, and the accessibility of the test section, facilitating easy instrumentation. These benefits make heated tube testing the best alternative to hot fire engine testing for thermal stability and heat transfer research. This investigation

  6. Design and evaluation of high performance rocket engine injectors for use with hydrocarbon fuels

    Science.gov (United States)

    Pavli, A. J.

    1979-01-01

    The feasibility of using a heavy hydrocarbon fuel as a rocket propellant is examined. A method of predicting performance of a heavy hydrocarbon in terms of vaporization effectiveness is described and compared to other fuels and to experimental test results. Experiments were done at a chamber pressure of 4137 KN/sq M (600 psia) with RP-1, JP-10, and liquefied natural gas as fuels, and liquid oxygen as the oxidizer. Combustion length effects were explored over a range of 21.6 cm (8 1/2 in) to 55.9 cm (22 in). Four injector types were tested, each over a range of mixture ratios. Further configuration modifications were obtained by reaming each injector several times to provide test data over a range of injector pressure drop.

  7. Nano-structured noble metal catalysts based on hexametallate architecture for the reforming of hydrocarbon fuels

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, Todd H.

    2015-09-15

    Nano-structured noble metal catalysts based on hexametallate lattices, of a spinel block type, and which are resistant to carbon deposition and metal sulfide formation are provided. The catalysts are designed for the reforming of hydrocarbon fuels to synthesis gas. The hexametallate lattices are doped with noble metals (Au, Pt, Rh, Ru) which are atomically dispersed as isolated sites throughout the lattice and take the place of hexametallate metal ions such as Cr, Ga, In, and/or Nb. Mirror cations in the crystal lattice are selected from alkali metals, alkaline earth metals, and the lanthanide metals, so as to reduce the acidity of the catalyst crystal lattice and enhance the desorption of carbon deposit forming moieties such as aromatics. The catalysts can be used at temperatures as high as 1000.degree. C. and pressures up to 30 atmospheres. A method for producing these catalysts and applications of their use also is provided.

  8. On-Line Measurement of Heat of Combustion of Gaseous Hydrocarbon Fuel Mixtures

    Science.gov (United States)

    Sprinkle, Danny R.; Chaturvedi, Sushil K.; Kheireddine, Ali

    1996-01-01

    A method for the on-line measurement of the heat of combustion of gaseous hydrocarbon fuel mixtures has been developed and tested. The method involves combustion of a test gas with a measured quantity of air to achieve a preset concentration of oxygen in the combustion products. This method involves using a controller which maintains the fuel (gas) volumetric flow rate at a level consistent with the desired oxygen concentration in the combustion products. The heat of combustion is determined form a known correlation with the fuel flow rate. An on-line computer accesses the fuel flow data and displays the heat of combustion measurement at desired time intervals. This technique appears to be especially applicable for measuring heats of combustion of hydrocarbon mixtures of unknown composition such as natural gas.

  9. Experimental investigation of combustion mechanisms of kerosene-fueled scramjet engines with double-cavity flameholders

    Institute of Scientific and Technical Information of China (English)

    Yu Pan; Jian-Guo Tan; Jian-Han Liang; Wei-Dong Liu; Zhen-Guo Wang

    2011-01-01

    A scramjet combustor with double cavitybased flameholders was experimentally studied in a directconnected test bed with the inflow conditions of M =2.64,Pt =1.84 MPa,Tt =1 300 K.Successful ignition and selfsustained combustion with room temperature kerosene was achieved using pilot hydrogen,and kerosene was vertically injected into the combustor through 4×φ0.5 mm holes mounted on the wall.For different equivalence ratios and different injection schemes with both tandem cavities and parallel cavities,flow fields were obtained and compared using a high speed camera and a Schlieren system.Results revealed that the combustor inside the flow field was greatly influenced by the cavity installation scheme,cavities in tandem easily to form a single side flame distribution,and cavities in parallel are more likely to form a joint flame,forming a choked combustion mode.The supersonic combustion flame was a kind of diffusion flame and there were two kinds of combustion modes.In the unchoked combustion mode,both subsonic and supersonic combustion regions existed.While in the choked mode,the combustion region was fully subsonic with strong shock propagating upstream.Results also showed that there was a balance point between the boundary separation and shock enhanced combustion,depending on the intensity of heat release.

  10. Variable volume combustor

    Energy Technology Data Exchange (ETDEWEB)

    Ostebee, Heath Michael; Ziminsky, Willy Steve; Johnson, Thomas Edward; Keener, Christopher Paul

    2017-01-17

    The present application provides a variable volume combustor for use with a gas turbine engine. The variable volume combustor may include a liner, a number of micro-mixer fuel nozzles positioned within the liner, and a linear actuator so as to maneuver the micro-mixer fuel nozzles axially along the liner.

  11. Gas turbine combustor

    Science.gov (United States)

    Burd, Steven W. (Inventor); Cheung, Albert K. (Inventor); Dempsey, Dae K. (Inventor); Hoke, James B. (Inventor); Kramer, Stephen K. (Inventor); Ols, John T. (Inventor); Smith, Reid Dyer Curtis (Inventor); Sowa, William A. (Inventor)

    2011-01-01

    A gas turbine engine has a combustor module including an annular combustor having a liner assembly that defines an annular combustion chamber having a length, L. The liner assembly includes a radially inner liner, a radially outer liner that circumscribes the inner liner, and a bulkhead, having a height, H1, which extends between the respective forward ends of the inner liner and the outer liner. The combustor has an exit height, H3, at the respective aft ends of the inner liner and the outer liner interior. The annular combustor has a ratio H1/H3 having a value less than or equal to 1.7. The annular combustor may also have a ration L/H3 having a value less than or equal to 6.0.

  12. Recycling Carbon Dioxide into Sustainable Hydrocarbon Fuels: Electrolysis of Carbon Dioxide and Water

    Science.gov (United States)

    Graves, Christopher Ronald

    Great quantities of hydrocarbon fuels will be needed for the foreseeable future, even if electricity based energy carriers begin to partially replace liquid hydrocarbons in the transportation sector. Fossil fuels and biomass are the most common feedstocks for production of hydrocarbon fuels. However, using renewable or nuclear energy, carbon dioxide and water can be recycled into sustainable hydrocarbon fuels in non-biological processes which remove oxygen from CO2 and H2O (the reverse of fuel combustion). Capture of CO2 from the atmosphere would enable a closed-loop carbon-neutral fuel cycle. The purpose of this work was to develop critical components of a system that recycles CO2 into liquid hydrocarbon fuels. The concept is examined at several scales, beginning with a broad scope analysis of large-scale sustainable energy systems and ultimately studying electrolysis of CO 2 and H2O in high temperature solid oxide cells as the heart of the energy conversion, in the form of three experimental studies. The contributions of these studies include discoveries about electrochemistry and materials that could significantly improve the overall energy use and economics of the CO2-to-fuels system. The broad scale study begins by assessing the sustainability and practicality of the various energy carriers that could replace petroleum-derived hydrocarbon fuels, including other hydrocarbons, hydrogen, and storage of electricity on-board vehicles in batteries, ultracapacitors, and flywheels. Any energy carrier can store the energy of any energy source. This sets the context for CO2 recycling -- sustainable energy sources like solar and wind power can be used to provide the most energy-dense, convenient fuels which can be readily used in the existing infrastructure. The many ways to recycle CO2 into hydrocarbons, based on thermolysis, thermochemical loops, electrolysis, and photoelectrolysis of CO2 and/or H 2O, are critically reviewed. A process based on high temperature co

  13. Progress Toward Quality Assurance Standards for Advanced Hydrocarbon Fuels Based on Thermal Performance Testing and Chemometric Modeling

    Science.gov (United States)

    2015-12-15

    analyses; (2) Identify class distinguishing features, i.e., chemical compounds in the chromatographic data, that contribute to a fuel’s group ...implemented primarily to identify distinguishing chemical compounds that contribute to a fuel’s group assignment. F-ratio analysis was performed using...hydrocarbon-fueled liquid rocket engines, combustion enthalpy is transferred at high rates to thrust chamber surfaces, which are maintained at acceptably

  14. Physiological tolerance and stoichiometric potential of cyanobacteria for hydrocarbon fuel production.

    Science.gov (United States)

    Kämäräinen, Jari; Knoop, Henning; Stanford, Natalie J; Guerrero, Fernando; Akhtar, M Kalim; Aro, Eva-Mari; Steuer, Ralf; Jones, Patrik R

    2012-11-30

    Cyanobacteria are capable of directly converting sunlight, carbon dioxide and water into hydrocarbon fuel or precursors thereof. Many biological and non-biological factors will influence the ability of such a production system to become economically sustainable. We evaluated two factors in engineerable cyanobacteria which could potentially limit economic sustainability: (i) tolerance of the host to the intended end-product, and (ii) stoichiometric potential for production. Alcohols, when externally added, inhibited growth the most, followed by aldehydes and acids, whilst alkanes were the least inhibitory. The growth inhibition became progressively greater with increasing chain-length for alcohols, whilst the intermediate C6 alkane caused more inhibition than both C3 and C11 alkane. Synechocystis sp. PCC 6803 was more tolerant to some of the tested chemicals than Synechococcus elongatus PCC 7942, particularly ethanol and undecane. Stoichiometric evaluation of the potential yields suggested that there is no difference in the potential productivity of harvestable energy between any of the studied fuels, with the exception of ethylene, for which maximal stoichiometric yield is considerably lower. In summary, it was concluded that alkanes would constitute the best choice metabolic end-product for fuel production using cyanobacteria if high-yielding strains can be developed. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Uncertainty analysis of steady state incident heat flux measurements in hydrocarbon fuel fires.

    Energy Technology Data Exchange (ETDEWEB)

    Nakos, James Thomas

    2005-12-01

    The objective of this report is to develop uncertainty estimates for three heat flux measurement techniques used for the measurement of incident heat flux in a combined radiative and convective environment. This is related to the measurement of heat flux to objects placed inside hydrocarbon fuel (diesel, JP-8 jet fuel) fires, which is very difficult to make accurately (e.g., less than 10%). Three methods will be discussed: a Schmidt-Boelter heat flux gage; a calorimeter and inverse heat conduction method; and a thin plate and energy balance method. Steady state uncertainties were estimated for two types of fires (i.e., calm wind and high winds) at three times (early in the fire, late in the fire, and at an intermediate time). Results showed a large uncertainty for all three methods. Typical uncertainties for a Schmidt-Boelter gage ranged from {+-}23% for high wind fires to {+-}39% for low wind fires. For the calorimeter/inverse method the uncertainties were {+-}25% to {+-}40%. The thin plate/energy balance method the uncertainties ranged from {+-}21% to {+-}42%. The 23-39% uncertainties for the Schmidt-Boelter gage are much larger than the quoted uncertainty for a radiative only environment (i.e ., {+-}3%). This large difference is due to the convective contribution and because the gage sensitivities to radiative and convective environments are not equal. All these values are larger than desired, which suggests the need for improvements in heat flux measurements in fires.

  16. Microwave-Assisted Decarboxylation of Sodium Oleate and Renewable Hydrocarbon Fuel Production

    Institute of Scientific and Technical Information of China (English)

    Wang Yunpu; Liu Yuhuan; Ruan Rongsheng; Wen Pingwei; Wan Yiqin; Zhang Jinsheng

    2013-01-01

    The carboxyl terminal of sodium oleate has a stronger polarity than that of oleic acid;this terminal is more likely to be dipole polarized and ionically conductive in a microwave ifeld. Sodium oleate was used as the model compound to study the decarboxylation of oleic acid leading to hydrocarbon formation via microwave-assisted pyrolysis technology. The pyrolysis gas, liquid, and solid products were precisely analyzed to deduce the mechanism for decarboxylation of sodium oleate. Microwave energy was able to selectively heat the carboxyl terminal of sodium oleate. During decarboxylation, the double bond in the long hydrocarbon chain formed a p-πconjugated system with the carbanion intermediate. The resulting p-πconjugated system was more stable and beneifcial to the pyrolysis reaction (decarboxylation, terminal allylation, isomeriza-tion, and aromatization). The physical properties of pyrolysis liquid were generally similar to those of diesel fuel, thereby demonstrating the possible use of microwaves for controlling the decarboxylation of sodium oleate in order to manufacture renewable hydrocarbon fuels.

  17. Integration of direct carbon and hydrogen fuel cells for highly efficient power generation from hydrocarbon fuels

    Energy Technology Data Exchange (ETDEWEB)

    Muradov, Nazim; Choi, Pyoungho; Smith, Franklyn; Bokerman, Gary [Florida Solar Energy Center, University of Central Florida, 1679 Clearlake Road, Cocoa, FL 32922-5703 (United States)

    2010-02-15

    In view of impending depletion of hydrocarbon fuel resources and their negative environmental impact, it is imperative to significantly increase the energy conversion efficiency of hydrocarbon-based power generation systems. The combination of a hydrocarbon decomposition reactor with a direct carbon and hydrogen fuel cells (FC) as a means for a significant increase in chemical-to-electrical energy conversion efficiency is discussed in this paper. The data on development and operation of a thermocatalytic hydrocarbon decomposition reactor and its coupling with a proton exchange membrane FC are presented. The analysis of the integrated power generating system including a hydrocarbon decomposition reactor, direct carbon and hydrogen FC using natural gas and propane as fuels is conducted. It was estimated that overall chemical-to-electrical energy conversion efficiency of the integrated system varied in the range of 49.4-82.5%, depending on the type of fuel and FC used, and CO{sub 2} emission per kW{sub el}h produced is less than half of that from conventional power generation sources. (author)

  18. Raman Gas Species Measurements in Hydrocarbon-Fueled Rocket Engine Injector Flows

    Science.gov (United States)

    Wehrmeyer, Joseph; Hartfield, Roy J., Jr.; Trinh, Huu P.; Dobson, Chris C.; Eskridge, Richard H.

    2000-01-01

    Rocket engine propellent injector development at NASA-Marshall includes experimental analysis using optical techniques, such as Raman, fluorescence, or Mie scattering. For the application of spontaneous Raman scattering to hydrocarbon-fueled flows a technique needs to be developed to remove the interfering polycyclic aromatic hydrocarbon fluorescence from the relatively weak Raman signals. A current application of such a technique is to the analysis of the mixing and combustion performance of multijet, impinging-jet candidate fuel injectors for the baseline Mars ascent engine, which will burn methane and liquid oxygen produced in-situ on Mars to reduce the propellent mass transported to Mars for future manned Mars missions. The Raman technique takes advantage of the strongly polarized nature of Raman scattering. It is shown to be discernable from unpolarized fluorescence interference by subtracting one polarized image from another. Both of these polarized images are obtained from a single laser pulse by using a polarization-separating calcite rhomb mounted in the imaging spectrograph. A demonstration in a propane-air flame is presented, as well as a high pressure demonstration in the NASA-Marshall Modular Combustion Test Artice, using the liquid methane-liquid oxygen propellant system

  19. Chemical storage of renewable electricity in hydrocarbon fuels via H{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Eilers, H.; Iglesias Gonzalez, M.; Schaub, G. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Engler-Bunte-Institute I

    2012-07-01

    The increased generation of renewable electricity leads to an increasing demand for storage due to its fluctuating production. Electrical energy can be stored as chemical energy carriers e.g. in form of H{sub 2} that can be further processed to hydrocarbons. Storage in form of hydrocarbons is advantageous compared to H{sub 2} storage since (i) a higher volumetric energy density in the product can be achieved and (ii) the infrastructure for hydrocarbon distribution, storage and utilization already exists. The present contribution introduces the potential of H{sub 2} integration in upgrading/production processes to hydrocarbon fuels, based on stoichiometry and kind of carbon feedstock. Processes include petroleum refining, vegetable oil hydrogenation, production of synfuel from lignocellulosic biomass and substitute natural gas from H{sub 2}/CO{sub 2}. In the case of fossil raw materials, yields per feedstock can be increased and fossil CO{sub 2} emissions decreased since fossil resources for H{sub 2} production can be avoided. In the case of biomass conversion to synfuels, product yields per biomass/hectare can be increased. If CO{sub 2} is hydrogenated to fuels, no gasification step is needed, however lower hydrocarbon product yields per H{sub 2} are achieved since CO{sub 2} has the highest oxygen content. (orig.)

  20. Low Cost Method of Manufacturing Cooled Axisymmetric Scramjets Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Scramjet engine developers are working on advanced axisymmetric engine concepts that may not be feasible due to limitations of currently available manufacturing...

  1. Transpiring Cooling of a Scram-Jet Engine Combustion Chamber

    Science.gov (United States)

    Choi, Sang H.; Scotti, Stephen J.; Song, Kyo D.; Ries,Heidi

    1997-01-01

    The peak cold-wall heating rate generated in a combustion chamber of a scram-jet engine can exceed 2000 Btu/sq ft sec (approx. 2344 W/sq cm). Therefore, a very effective heat dissipation mechanism is required to sustain such a high heating load. This research focused on the transpiration cooling mechanism that appears to be a promising approach to remove a large amount of heat from the engine wall. The transpiration cooling mechanism has two aspects. First, initial computations suggest that there is a reduction, as much as 75%, in the heat flux incident on the combustion chamber wall due to the transpirant modifying the combustor boundary layer. Secondly, the heat reaching the combustor wall is removed from the structure in a very effective manner by the transpirant. It is the second of these two mechanisms that is investigated experimentally in the subject paper. A transpiration cooling experiment using a radiant heating method, that provided a heat flux as high as 200 Btu/sq ft sec ( approx. 234 W/sq cm) on the surface of a specimen, was performed. The experiment utilized an arc-lamp facility (60-kW radiant power output) to provide a uniform heat flux to a test specimen. For safety reasons, helium gas was used as the transpirant in the experiments. The specimens were 1.9-cm diameter sintered, powdered-stainless-steel tubes of various porosities and a 2.54cm square tube with perforated multi-layered walls. A 15-cm portion of each specimen was heated. The cooling effectivenes and efficiencies by transpiration for each specimen were obtained using the experimental results. During the testing, various test specimens displayed a choking phenomenon in which the transpirant flow was limited as the heat flux was increased. The paper includes a preliminary analysis of the transpiration cooling mechanism and a scaling conversion study that translates the results from helium tests into the case when a hydrogen medium is used.

  2. Numerical simulation and modeling of combustion in scramjets

    Science.gov (United States)

    Clark, Ryan James

    In the last fifteen years the development of a viable scramjet has quickly approached the following long term goals: responsive sub-orbital space access; long-range, prompt global strike; and high-speed transportation. Nonetheless, there are significant challenges that need to be resolved. These challenges include high skin friction drag and high heat transfer rates, inherent to vehicles in sustained, hypersonic flight. Another challenge is sustaining combustion. Numerical simulation and modeling was performed to provide insight into reducing skin friction drag and sustaining combustion. Numerical simulation was used to investigate boundary layer combustion, which has been shown to reduce skin friction drag. The objective of the numerical simulations was to quantify the effect of fuel injection parameters on boundary layer combustion and ultimately on the change in the skin friction coefficient and heat transfer rate. A qualitative analysis of the results suggest that the reduction in the skin friction coefficient depends on multiple parameters and potentially an interaction between parameters. Sustained combustion can be achieved through a stabilized detonation wave. Additionally, stabilizing a detonation wave will yield rapid combustion. This will allow for a shorter and lighter-weight engine system, resulting in less required combustor cooling. A stabilized detonation wave was numerically modeled for various inlet and geometric cases. The effect of fuel concentration, inlet Mach number, and geometric configuration on the stability of a detonation wave was quantified. Correlations were established between fuel concentration, inlet speed, geometric configuration and parameters characterizing the detonation wave. A linear relationship was quantified between the fuel concentration and the parameters characterizing the detonation wave.

  3. Scramjet Thermal Management (Tenue thermique des superstatoreacteurs)

    Science.gov (United States)

    2010-09-01

    ATD5 at ONERA [20]. A Thermal Barrier Coating can be added on the two solutions. Scramjet Thermal Management RTO-EN-AVT-185 13 - 11 ATD 5...CLEA ( ONERA Palaiseau) CHAMOIS (MBDA Bourges) Copper-type with or without thermal barrier Stainless steel with or without thermal barrier Figure 12...behaviour Thermocuple and pressure, generally no chemical analysis For example, the MPP experiment at ONERA allows studying decomposition and

  4. Opposed Jet Burner Extinction Limits: Simple Mixed Hydrocarbon Scramjet Fuels vs Air

    Science.gov (United States)

    Pellett, Gerald L.; Vaden, Sarah N.; Wilson, Lloyd G.

    2007-01-01

    Opposed Jet Burner tools have been used extensively by the authors to measure Flame Strength (FS) of laminar non-premixed H2 air and simple hydrocarbon (HC) air counterflow diffusion flames at 1-atm. FS represents a strain-induced extinction limit based on air jet velocity. This paper follows AIAA-2006-5223, and provides new HC air FSs for global testing of chemical kinetics, and for characterizing idealized flameholding potentials during early scramjet-like combustion. Previous FS data included six HCs, pure and N2-diluted; and three HC-diluted H2 fuels, where FS decayed very nonlinearly as HC was added to H2, due to H-atom scavenging. This study presents FSs on mixtures of (candidate surrogate) HCs, some with very high FS ethylene. Included are four binary gaseous systems at 300 K, and a hot ternary system at approx. 600 K. The binaries are methane + ethylene, ethane + ethylene, methane + ethane, and methane + propylene. The first three also form two ternary systems. The hot ternary includes both 10.8 and 21.3 mole % vaporized n-heptane and full ranges of methane + ethylene. Normalized FS data provide accurate means of (1) validating, globally, chemical kinetics for extinction of non-premixed flames, and (2) estimating (scaling by HC) the loss of incipient flameholding in scramjet combustors. The n-heptane is part of a proposed baseline simulant (10 mole % with 30% methane + 60% ethylene) that mimics the ignition of endothermically cracked JP-7 like kerosene fuel, as suggested by Colket and Spadaccini in 2001 in their shock tube Scramjet Fuels Autoignition Study. Presently, we use FS to gauge idealized flameholding, and define HC surrogates. First, FS was characterized for hot nheptane + methane + ethylene; then a hot 36 mole % methane + 64% ethylene surrogate was defined that mimics FS of the baseline simulant system. A similar hot ethane + ethylene surrogate can also be defined, but it has lower vapor pressure at 300 K, and thus exhibits reduced gaseous

  5. Flow field characteristics analysis and combustion modes classification for a strut/cavity dual-mode combustor

    Science.gov (United States)

    Zhang, Chenlin; Chang, Juntao; Zhang, Yuanshi; Wang, Youyin; Bao, Wen

    2017-08-01

    Experimental and numerical study of a strut/cavity dual-mode combustor has been conducted in this paper. Under different fuel equivalence ratio and allocation proportion conditions, the pressure distribution and flow field structure of combustor show distinct characteristics. For strut fuel injecting at a low equivalence ratio, the luminosity images show that combustion zone distributes in the shear layer behind the strut. The wall fuel injecting before strut would change the starting point of pressure rising. Based on the flow field structure, the dual-mode combustor operation process is classified into three combustion modes, including scramjet mode, weak ramjet mode and strong ramjet mode. Because of a strong interaction of the shock wave with the boundary layer, weak ramjet mode has a stronger isolator compression effect and higher combustion efficiency than scramjet mode. With heat release increasing, the thermal throat formation is an indication of the strong ramjet mode, which has a subsonic gap in the isolator. Further, by judging the pressure from dominant pressure sensor before the strut, the three different combustion modes could be classified. Comparing the specific impulse of combustor, it has an obvious distinction in the different combustion modes.

  6. OPERATION OF SOLID OXIDE FUEL CELL ANODES WITH PRACTICAL HYDROCARBON FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Scott A. Barnett; Jiang Liu; Yuanbo Lin

    2004-07-30

    This work was carried out to achieve a better understanding of how SOFC anodes work with real fuels. The motivation was to improve the fuel flexibility of SOFC anodes, thereby allowing simplification and cost reduction of SOFC power plants. The work was based on prior results indicating that Ni-YSZ anode-supported SOFCs can be operated directly on methane and natural gas, while SOFCs with novel anode compositions can work with higher hydrocarbons. While these results were promising, more work was clearly needed to establish the feasibility of these direct-hydrocarbon SOFCs. Basic information on hydrocarbon-anode reactions should be broadly useful because reformate fuel gas can contain residual hydrocarbons, especially methane. In the Phase I project, we have studied the reaction mechanisms of various hydrocarbons--including methane, natural gas, and higher hydrocarbons--on two kinds of Ni-containing anodes: conventional Ni-YSZ anodes and a novel ceramic-based anode composition that avoid problems with coking. The effect of sulfur impurities was also studied. The program was aimed both at achieving an understanding of the interactions between real fuels and SOFC anodes, and providing enough information to establish the feasibility of operating SOFC stacks directly on hydrocarbon fuels. A combination of techniques was used to provide insight into the hydrocarbon reactions at these anodes during SOFC operation. Differentially-pumped mass spectrometry was be used for product-gas analysis both with and without cell operation. Impedance spectroscopy was used in order to understand electrochemical rate-limiting steps. Open-circuit voltages measurements under a range of conditions was used to help determine anode electrochemical reactions. Life tests over a wide range of conditions were used to establish the conditions for stable operation of anode-supported SOFC stacks directly on methane. Redox cycling was carried out on ceramic-based anodes. Tests on sulfur tolerance of

  7. A Dual-Line Detection Rayleigh Scattering Diagnostic Technique for the Combustion of Hydrocarbon Fuels and Filtered UV Rayleigh Scattering for Gas Velocity Measurements

    Science.gov (United States)

    Otugen, M. Volkan

    1997-01-01

    Non-intrusive techniques for the dynamic measurement of gas flow properties such as density, temperature and velocity, are needed in the research leading to the development of new generation high-speed aircraft. Accurate velocity, temperature and density data obtained in ground testing and in-flight measurements can help understand the flow physics leading to transition and turbulence in supersonic, high-altitude flight. Such non-intrusive measurement techniques can also be used to study combustion processes of hydrocarbon fuels in aircraft engines. Reliable, time and space resolved temperature measurements in various combustor configurations can lead to a better understanding of high temperature chemical reaction dynamics thus leading to improved modeling and better prediction of such flows. In view of this, a research program was initiated at Polytechnic University's Aerodynamics Laboratory with support from NASA Lewis Research Center through grants NAG3-1301 and NAG3-1690. The overall objective of this program has been to develop laser-based, non-contact, space- and time-resolved temperature and velocity measurement techniques. In the initial phase of the program a ND:YAG laser-based dual-line Rayleigh scattering technique was developed and tested for the accurate measurement of gas temperature in the presence of background laser glare. Effort was next directed towards the development of a filtered, spectrally-resolved Rayleigh/Mie scattering technique with the objective of developing an interferometric method for time-frozen velocity measurements in high-speed flows utilizing the uv line of an ND:YAG laser and an appropriate molecular absorption filter. This effort included both a search for an appropriate filter material for the 266 nm laser line and the development and testing of several image processing techniques for the fast processing of Fabry-Perot images for velocity and temperature information. Finally, work was also carried out for the development of

  8. Hysteresis of mode transition in a dual-struts based scramjet

    Science.gov (United States)

    Yan, Zhang; Shaohua, Zhu; Bing, Chen; Xu, Xu

    2016-11-01

    Tests and numerical simulations were performed to investigate the combustion performance of a dual-staged scramjet combustor. High enthalpy vitiated inflow at a total temperature of 1231 K was supplied using a hydrogen-combustion heater. The inlet Mach number was 2.0. Liquid kerosene was injected into the combustor using the dual crossed struts. Three-dimensional Reynolds averaged reacting flow was solved using a two-equation k-ω SST turbulence model to calculate the effect of turbulent stress, and a partial-premixed flamelet model to model the effects of turbulence-chemistry interactions. The discrete phase model was utilized to simulate the fuel atomization and vaporization. For simplicity, the n-decane was chosen as the surrogate fuel with a reaction mechanism of 40 species and 141 steps. The predicted wall pressure profiles at three fuel injection schemes basically captured the axial varying trend of the experimental data. With the downstream equivalence ratio held constant, the upstream equivalence ratio was numerically increased from 0.1 to 0.4 until a steady combustion was obtained. Subsequently, the upstream equivalence ratio was decreased from 0.4 to 0.1 once again. Two ramjet modes with different wall pressure profiles and corresponding flow structures were captured under the identical upstream equivalence ratio of 0.1, illustrating an obvious hysteresis phenomenon. The mechanism of this hysteresis was explained by the transition hysteresis of the pre-combustion shock train in the isolator.

  9. Drag and distribution measurements of single-element fuel injectors for supersonic combustors

    Science.gov (United States)

    Povinelli, L. A.

    1974-01-01

    The drag caused by several vortex generating fuel injectors for scramjet combustors was measured in a Mach 2 to 3.5 airstream. Injector drag was found to be strongly dependent on injector thickness ratio. The distribution of helium injected into the stream was measured both in the near field and the far field of the injectors for a variety of pressure ratios. The far field results differed appreciably from measurements in the near field. Injection pressure ratio was found to profoundly influence the penetration. One of the aerowing configurations tested yielded low drag consistent with desirable penetration and spreading characteristics.

  10. Comparison of scramjet and scramjet propulsion for an hypersonic wave rider configuration

    NARCIS (Netherlands)

    Couture, D.; DeChamplain, A.; Stowe, R.A.; Harris, P.G.; Halswijk, W.H.C.; Moerel, J.L.P.A.

    2008-01-01

    Ramjet propulsion is often proposed for airbreathing applications with speeds higher than Mach 3. However, for speeds higher than Mach 5, the performance of a ramjet drops significantly and the scramjet is the preferred option. The shock-induced combustion ramjet, or shcramjet, is also an interestin

  11. Thermodynamic study of characteristics of the converter with separated supply of hydrocarbon fuel for thermo-oxidative and steam reforming

    Science.gov (United States)

    Bassina, I. A.; Malkov, Yu. P.; Molchanov, O. N.; Stepanov, S. G.; Troshchinenko, G. A.; Zasypkin, I. M.

    2014-04-01

    Thermodynamic studies of the converter characteristics were performed to produce hydrogen-containing syngas from hydrocarbon fuel (kerosene) with its separated supply for thermo-oxidative and steam reforming. It is demonstrated that the optimal conditions of the converter performance correlate with the oxidant ratio of α > 0.5 at the heattransfer wall temperature of 1200 K. Hydrogen content in the final syngas reaches 60 % by volume, free carbon (soot) deposition in reforming products is excluded, and there is no need to apply walls water cooling in the converter.

  12. Efficiency Analysis of Technological Methods for Reduction of NOx Emissions while Burning Hydrocarbon Fuels in Heat and Power Plants

    Directory of Open Access Journals (Sweden)

    S. Kabishov

    2013-01-01

    Full Text Available The paper contains a comparative efficiency analysis pertaining to application of existing technological methods for suppression of nitric oxide formation in heating boilers of heat generators. A special attention has been given to investigation of NOx  emission reduction while burning hydrocarbon fuel with the help of oxygen-enriched air. The calculations have demonstrated that while enriching oxidizer with the help of oxygen up to 50 % (by volume it is possible to reduce volume of NOx formation (while burning fuel unit by 21 %.

  13. Combustor liner construction

    Science.gov (United States)

    Craig, H. M.; Wagner, W. B.; Strock, W. J. (Inventor)

    1983-01-01

    A combustor liner is fabricated from a plurality of individual segments each containing counter/parallel Finwall material and are arranged circumferentially and axially to define the combustion zone. Each segment is supported by a hook and ring construction to an opened lattice frame with sufficient tolerance between the hook and ring to permit thermal expansion with a minimum of induced stresses.

  14. Catalytic combustor for hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Mercea, J.; Grecu, E.; Fodor, T.; Kreibik, S.

    1982-01-01

    The performance of catalytic combustors for hydrogen using platinum-supported catalysts is described. Catalytic plates of different sizes were constructed using fibrous and ceramic supports. The temperature distribution as well as the reaction efficiency as a function of the fuel input rate was determined, and a comparison between the performances of different plates is discussed.

  15. Biological Production of a Hydrocarbon Fuel Intermediate Polyhydroxybutyrate (PHB) from a Process Relevant Lignocellulosic Derived Sugar (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.; Mittal, A.; Mohagheghi, A.; Johnson, D. K.

    2014-04-01

    PHAs are synthesized by many microorganisms to serve as intracellular carbon storage molecules. In some bacterial strains, PHB can account for up to 80% of cell mass. In addition to its application in the packaging sector, PHB also has great potential as an intermediate in the production of hydrocarbon fuels. PHB can be thermally depolymerized and decarboxylated to propene which can be upgraded to hydrocarbon fuels via commercial oligomerization technologies. Cupriavidus necator is the microorganism that has been most extensively studied and used for PHB production on an industrial scale; However the substrates used for producing PHB are mainly fructose, glucose, sucrose, fatty acids, glycerol, etc., which are expensive. In this study, we demonstrate production of PHB from a process relevant lignocellulosic derived sugar stream, i.e., saccharified slurry from pretreated corn stover. The strain was first investigated in shake flasks for its ability to utilize glucose, xylose and acetate. In addition, the strain was also grown on pretreated lignocellulose hydrolyzate slurry and evaluated in terms of cell growth, sugar utilization, PHB accumulation, etc. The mechanism of inhibition in the toxic hydrolysate generated by the pretreatment and saccharification process of biomass, was also studied.

  16. Three Dimensional CFD Analysis of the GTX Combustor

    Science.gov (United States)

    Steffen, C. J., Jr.; Bond, R. B.; Edwards, J. R.

    2002-01-01

    The annular combustor geometry of a combined-cycle engine has been analyzed with three-dimensional computational fluid dynamics. Both subsonic combustion and supersonic combustion flowfields have been simulated. The subsonic combustion analysis was executed in conjunction with a direct-connect test rig. Two cold-flow and one hot-flow results are presented. The simulations compare favorably with the test data for the two cold flow calculations; the hot-flow data was not yet available. The hot-flow simulation indicates that the conventional ejector-ramjet cycle would not provide adequate mixing at the conditions tested. The supersonic combustion ramjet flowfield was simulated with frozen chemistry model. A five-parameter test matrix was specified, according to statistical design-of-experiments theory. Twenty-seven separate simulations were used to assemble surrogate models for combustor mixing efficiency and total pressure recovery. ScramJet injector design parameters (injector angle, location, and fuel split) as well as mission variables (total fuel massflow and freestream Mach number) were included in the analysis. A promising injector design has been identified that provides good mixing characteristics with low total pressure losses. The surrogate models can be used to develop performance maps of different injector designs. Several complex three-way variable interactions appear within the dataset that are not adequately resolved with the current statistical analysis.

  17. Rocket-Plume Spectroscopy Simulation for Hydrocarbon-Fueled Rocket Engines

    Science.gov (United States)

    Tejwani, Gopal D.

    2010-01-01

    The UV-Vis spectroscopic system for plume diagnostics monitors rocket engine health by using several analytical tools developed at Stennis Space Center (SSC), including the rocket plume spectroscopy simulation code (RPSSC), to identify and quantify the alloys from the metallic elements observed in engine plumes. Because the hydrocarbon-fueled rocket engine is likely to contain C2, CO, CH, CN, and NO in addition to OH and H2O, the relevant electronic bands of these molecules in the spectral range of 300 to 850 nm in the RPSSC have been included. SSC incorporated several enhancements and modifications to the original line-by-line spectral simulation computer program implemented for plume spectral data analysis and quantification in 1994. These changes made the program applicable to the Space Shuttle Main Engine (SSME) and the Diagnostic Testbed Facility Thruster (DTFT) exhaust plume spectral data. Modifications included updating the molecular and spectral parameters for OH, adding spectral parameter input files optimized for the 10 elements of interest in the spectral range from 320 to 430 nm and linking the output to graphing and analysis packages. Additionally, the ability to handle the non-uniform wavelength interval at which the spectral computations are made was added. This allowed a precise superposition of wavelengths at which the spectral measurements have been made with the wavelengths at which the spectral computations are done by using the line-by-line (LBL) code. To account for hydrocarbon combustion products in the plume, which might interfere with detection and quantification of metallic elements in the spectral region of 300 to 850 nm, the spectroscopic code has been enhanced to include the carbon-based combustion species of C2, CO, and CH. In addition, CN and NO have spectral bands in 300 to 850 nm and, while these molecules are not direct products of hydrocarbon-oxygen combustion systems, they can show up if nitrogen or a nitrogen compound is present

  18. Eulerian Transported PDF Framework for Scramjet Flowpath Analysis Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Scramjet engines promise to become a next-generation revolutionary technology for aerospace applications. Some of the significant challenges in rapid development of...

  19. Influences of Geometric Parameters upon Nozzle Performances in Scramjets

    Institute of Scientific and Technical Information of China (English)

    Li Jianping; Song Wenyan; Xing Ying; Luo Feiteng

    2008-01-01

    This article investigates and presents the influences of geomea'ic parameters of a scramjet exerting upon its nozzle performances. These parameters include divergent angles, total lengths, height ratios, cowl lengths, and cowl angles. The flow field within the scramjet nozzle is simulated numerically by using the CFD software--FLUENT in association with coupled implicit solver and an RNG k-ε tur-bulence model.

  20. Understanding of Electrochemical Mechanisms for CO2 Capture and Conversion into Hydrocarbon Fuels in Transition-Metal Carbides (MXenes).

    Science.gov (United States)

    Li, Neng; Chen, Xingzhu; Ong, Wee-Jun; MacFarlane, Douglas R; Zhao, Xiujian; Cheetham, Anthony K; Sun, Chenghua

    2017-09-13

    Two-dimensional (2D) transition-metal (groups IV, V, VI) carbides (MXenes) with formulas M3C2 have been investigated as CO2 conversion catalysts with well-resolved density functional theory calculations. While MXenes from the group IV to VI series have demonstrated an active behavior for the capture of CO2, the Cr3C2 and Mo3C2 MXenes exhibit the most promising CO2 to CH4 selective conversion capabilities. Our results predicted the formation of OCHO(•) and HOCO(•) radical species in the early hydrogenation steps through spontaneous reactions. This provides atomic level insights into the computer-aided screening for high-performance catalysts and the understanding of electrochemical mechanisms for CO2 reduction to energy-rich hydrocarbon fuels, which is of fundamental significance to elucidate the elementary steps for CO2 fixation.

  1. Progress in Applying Tunable Diode Laser Absorption Spectroscopy to Scramjet Isolators and Combustors

    Science.gov (United States)

    2010-05-01

    the point that several c ompanies including Z olo T echnologies I nc., Southwest Sciences, I nc., L os Gatos R esearch, Inc., a nd P hysical S...with the 10% beam going to a 50/50 splitter (Newport F-CPL- B12355) whose output is routed to either a SiO2 (Los Gatos Research) etalon with a 2.000

  2. Simulation of Aviation Kerosene Combustion in Dual-mode Scramjet Combustor

    Institute of Scientific and Technical Information of China (English)

    LIU Ou-zi; ZOU Jian-feng; CAI Yuan-hu; HU Yu-li

    2009-01-01

    Supersonic combustion of aviation kerosene is investigated under the flight conditions of Mach number 5 and fuel-air equivalence ratio 0.551. The trajectories of the fuel droplets and the heat/mass transfer between them are simulated by means of discrete phase model (DPM). The k-ω model is chosen for turbulence closure and the non-premixed probability density function (PDF) approach is used to calculate the turbulence-chemistry interaction. The calculated wall static pressure and the total pressure loss coefficient are very close to the experiment results. The strut and cavity devices significantly increase the combustion efficiency.

  3. Fuel/Air Mixing Characteristics of Strut Injections for Scramjet Combustor Applications (Postprint)

    Science.gov (United States)

    2008-08-01

    regions, and drag will be increased, as suggested by Povinelli .26 Both the total pressure recovery and mixing efficiency for the forward-swept strut are...Experimental Study of Cavity-Strut Combustion in Supersonic Flow,” AIAA Paper 2007-5394, 2007. 26. Povinelli , L.A., “Aerodynamic Drag and Fuel Spreading

  4. Large eddy simulation of a high aspect ratio combustor

    Science.gov (United States)

    Kirtas, Mehmet

    The present research investigates the details of mixture preparation and combustion in a two-stroke, small-scale research engine with a numerical methodology based on large eddy simulation (LES) technique. A major motivation to study such small-scale engines is their potential use in applications requiring portable power sources with high power density. The investigated research engine has a rectangular planform with a thickness very close to quenching limits of typical hydrocarbon fuels. As such, the combustor has a high aspect ratio (defined as the ratio of surface area to volume) that makes it different than the conventional engines which typically have small aspect ratios to avoid intense heat losses from the combustor in the bulk flame propagation period. In most other aspects, this engine involves all the main characteristics of traditional reciprocating engines. A previous experimental work has identified some major design problems and demonstrated the feasibility of cyclic combustion in the high aspect ratio combustor. Because of the difficulty of carrying out experimental studies in such small devices, resolving all flow structures and completely characterizing the flame propagation have been an enormously challenging task. The numerical methodology developed in this work attempts to complement these previous studies by providing a complete evolution of flow variables. Results of the present study demonstrated strengths of the proposed methodology in revealing physical processes occuring in a typical operation of the high aspect ratio combustor. For example, in the scavenging phase, the dominant flow structure is a tumble vortex that forms due to the high velocity reactant jet (premixed) interacting with the walls of the combustor. Since the scavenging phase is a long process (about three quarters of the whole cycle), the impact of the vortex is substantial on mixture preparation for the next combustion phase. LES gives the complete evolution of this flow

  5. Understanding of catalyst deactivation caused by sulfur poisoning and carbon deposition in steam reforming of liquid hydrocarbon fuels

    Science.gov (United States)

    Xie, Chao

    2011-12-01

    The present work was conducted to develop a better understanding on the catalyst deactivation in steam reforming of sulfur-containing liquid hydrocarbon fuels for hydrogen production. Steam reforming of Norpar13 (a liquid hydrocarbon fuel from Exxon Mobile) without and with sulfur was performed on various metal catalysts (Rh, Ru, Pt, Pd, and Ni) supported on different materials (Al2O3, CeO2, SiO2, MgO, and CeO2- Al2O3). A number of characterization techniques were applied to study the physicochemical properties of these catalysts before and after the reactions. Especially, X-ray absorption near edge structure (XANES) spectroscopy was intensively used to investigate the nature of sulfur and carbon species in the used catalysts to reveal the catalyst deactivation mechanism. Among the tested noble metal catalysts (Rh, Ru, Pt, and Pd), Rh catalyst is the most sulfur tolerant. Al2O3 and CeO2 are much better than SiO2 and MgO as the supports for the Rh catalyst to reform sulfur-containing hydrocarbons. The good sulfur tolerance of Rh/Al2O3 can be attributed to the acidic nature of the Al2O3 support and its small Rh crystallites (1-3 nm) as these characteristics facilitate the formation of electron-deficient Rh particles with high sulfur tolerance. The good catalytic performance of Rh/CeO2 in the presence of sulfur can be ascribed to the promotion effect of CeO2 on carbon gasification, which significantly reduced the carbon deposition on the Rh/CeO2catalyst. Steam reforming of Norpar13 in the absence and presence of sulfur was further carried out over CeO2-Al2O3 supported monometallic Ni and Rh and bimetallic Rh-Ni catalysts at 550 and 800 °C. Both monometallic catalysts rapidly deactivated at 550 °C, iv and showed poor sulfur tolerance. Although ineffective for the Ni catalyst, increasing the temperature to 800 °C dramatically improved the sulfur tolerance of the Rh catalyst. Sulfur K-edge XANES revealed that metal sulfide and organic sulfide are the dominant sulfur

  6. Improvement of lean combustion characteristics of heavy-hydrocarbon fuels with hydrogen addition; Suiso tenka ni yoru kokyu tanka suisokei nenryo no kihaku nensho no kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Y. [Saitama Institute of Technology, Saitama (Japan); Ishizuka, S. [Hiroshima University, Hiroshima (Japan). Faculty of Engineering

    1999-09-25

    The Lewis numbers of lean heavy-hydrocarbon fuels are larger than unity, and hence, their flames are prone to extinction in a shear flow, which occurs in a turbulent combustion. Here, propane is used as a representative fuel of heavy-hydrocarbon fuels because the Lewis number of lean propane/air mixtures is larger than unity, and an attempt to improve its combustion characteristics by hydrogen addition has been made. A tubular flame burner is used to evaluate its improvement, since a rotating, stretched vortex flow is established in the burner. The results show that with' hydrogen addition, the fuel concentration, the flame diameter and the flame temperature at extinction are reduced and its combustion characteristics are improved. However, it is found that the effective equivalence ration at extinction cannot become so small as that of lean methane/air mixture, which has a Lewis number less than unity. (author)

  7. Combustion Characteristics of Liquid Normal Alkane Fuels in a Model Combustor of Supersonic Combustion Ramjet Engine

    Science.gov (United States)

    今村, 宰; 石川, 雄太; 鈴木, 俊介; 福本, 皓士郎; 西田, 俊介; 氏家, 康成; 津江, 光洋

    Effect of kinds of one-component n-alkane liquid fuels on combustion characteristics was investigated experimentally using a model combustor of scramjet engine. The inlet condition of a model combustor is 2.0 of Mach number, up to 2400K of total temperature, and 0.38MPa of total pressure. Five kinds of n-alkane are tested, of which carbon numbers are 7, 8, 10, 13, and 16. They are more chemically active and less volatile with an increase of alkane carbon number. Fuels are injected to the combustor in the upstream of cavity with barbotage nitrogen gas and self-ignition performance was investigated. The result shows that self-ignition occurs with less equivalence ratio when alkane carbon number is smaller. This indicates that physical characteristic of fuel, namely volatile of fuel, is dominant for self-ignition behavior. Effect on flame-holding performance is also examined with adding pilot hydrogen and combustion is kept after cutting off pilot hydrogen with the least equivalence ratio where alkane carbon number is from 8 to 10. These points are discussed qualitatively from the conflict effect of chemical and physical properties on alkane carbon number.

  8. Self-doped Ti(3+)-TiO2 as a photocatalyst for the reduction of CO2 into a hydrocarbon fuel under visible light irradiation.

    Science.gov (United States)

    Sasan, Koroush; Zuo, Fan; Wang, Yuan; Feng, Pingyun

    2015-08-28

    Self-doped TiO2 shows visible light photocatalytic activity, while commercial TiO2 (P25) is only UV responsive. The incorporation of Ti(3+) into TiO2 structures narrows the band gap (2.90 eV), leading to significantly increased photocatalytic activity for the reduction of CO2 into a renewable hydrocarbon fuel (CH4) in the presence of water vapour under visible light irradiation.

  9. Ethanol dehydration via azeotropic distillation with gasoline fractions as entrainers: A pilot-scale study of the manufacture of an ethanol–hydrocarbon fuel blend

    OpenAIRE

    Gomis Yagües, Vicente; Pedraza Berenguer, Ricardo; Saquete Ferrándiz, María Dolores; Font, Alicia; García Cano, Jorge

    2015-01-01

    We establish experimentally and through simulations the economic and technical viability of dehydrating ethanol by means of azeotropic distillation, using a hydrocarbon as entrainer. The purpose of this is to manufacture a ready-to-use ethanol–hydrocarbon fuel blend. In order to demonstrate the feasibility of this proposition, we have tested an azeotropic water–ethanol feed mixture, using a hydrocarbon as entrainer, in a semi pilot-plant scale distillation column. Four different hydrocarbons ...

  10. Study of NOx Emissions of S.I. Engine Fueled with Different Kinds of Hydrocarbon Fuels and Hydrogen

    Directory of Open Access Journals (Sweden)

    Qahtan A. Abass

    2010-01-01

    Full Text Available Liquefied petroleum gas (LPG, Natural gas (NG and hydrogen were used to operate spark ignition internal combustion engine Ricardo E6, to compare NOx emissions emitted from the engine, with that emitted from engine fueled with gasoline as a fuel.The study was done when engine operated at HUCR for gasoline, compared with its operation at HUCR for each fuel. Compression ratio, equivalence ratio and spark timing were studied at constant speed 25rps.The results appeared that NOx concentrations will be at maximum value in the lean side near the stoichiometric ratio, and reduced with moving away from this ratio for mixture at both sides, these concentrations were at its highest value when hydrogen used at CR=8:1, and got near to each other for the three hydrocarbon fuels used in the study, when the engine operated at HUCR for each fuel, but still hydrogen had maximum value, the main variable affect these concentrations was spark timing

  11. Diagnostic development for determining the joint temperature/soot statistics in hydrocarbon-fueled pool fires : LDRD final report.

    Energy Technology Data Exchange (ETDEWEB)

    Casteneda, Jaime N.; Frederickson, Kraig; Grasser, Thomas W.; Hewson, John C.; Kearney, Sean Patrick; Luketa, Anay Josephine

    2009-09-01

    A joint temperature/soot laser-based optical diagnostic was developed for the determination of the joint temperature/soot probability density function (PDF) for hydrocarbon-fueled meter-scale turbulent pool fires. This Laboratory Directed Research and Development (LDRD) effort was in support of the Advanced Simulation and Computing (ASC) program which seeks to produce computational models for the simulation of fire environments for risk assessment and analysis. The development of this laser-based optical diagnostic is motivated by the need for highly-resolved spatio-temporal information for which traditional diagnostic probes, such as thermocouples, are ill-suited. The in-flame gas temperature is determined from the shape of the nitrogen Coherent Anti-Stokes Raman Scattering (CARS) signature and the soot volume fraction is extracted from the intensity of the Laser-Induced Incandescence (LII) image of the CARS probed region. The current state of the diagnostic will be discussed including the uncertainty and physical limits of the measurements as well as the future applications of this probe.

  12. Leaf-architectured 3D Hierarchical Artificial Photosynthetic System of Perovskite Titanates Towards CO2 Photoreduction Into Hydrocarbon Fuels

    Science.gov (United States)

    Zhou, Han; Guo, Jianjun; Li, Peng; Fan, Tongxiang; Zhang, Di; Ye, Jinhua

    2013-04-01

    The development of an ``artificial photosynthetic system'' (APS) having both the analogous important structural elements and reaction features of photosynthesis to achieve solar-driven water splitting and CO2 reduction is highly challenging. Here, we demonstrate a design strategy for a promising 3D APS architecture as an efficient mass flow/light harvesting network relying on the morphological replacement of a concept prototype-leaf's 3D architecture into perovskite titanates for CO2 photoreduction into hydrocarbon fuels (CO and CH4). The process uses artificial sunlight as the energy source, water as an electron donor and CO2 as the carbon source, mimicking what real leaves do. To our knowledge this is the first example utilizing biological systems as ``architecture-directing agents'' for APS towards CO2 photoreduction, which hints at a more general principle for APS architectures with a great variety of optimized biological geometries. This research would have great significance for the potential realization of global carbon neutral cycle.

  13. Catalytic conversion of palm oil over mesoporous aluminosilicate MCM-41 for the production of liquid hydrocarbon fuels

    Energy Technology Data Exchange (ETDEWEB)

    Twaiq, Farouq A.; Mohamed, Abdul Rahman; Bhatia, Subhash [School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, SPS, Pinang (Malaysia); Zabidi, Noor Asmawati M. [Universiti Teknologi Petronas, Sri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2003-11-15

    The catalytic cracking of palm oil to liquid hydrocarbon fuels was studied in a fixed bed micro-reactor operated at atmospheric pressure, reaction temperature of 723 K and weight hourly space velocity (WHSV) of 2.5 h{sup -1} over the synthesized mesoporous molecular sieve MCM-41 materials. Mesoporous aluminosilicate with Si/Al ratio of 50 was synthesized using the hydrothermal method. Different pore sizes were obtained by changing the type of template and organic directing agent (ODA) used. The synthesized materials were characterized using various analytical methods such as X-ray powder diffraction (XRD), BET surface area, inductive coupled plasma (ICP), MAS NMR, FTIR and temperature-programmed desorption (TPD). The materials exhibit a crystalline structure of MCM-41 mesoporous molecular sieves with surface area varying from 550 to 1200 m{sup 2}/g and an average pore size (APS) ranging from 1.8 to 2.8 nm. The synthesized MCM-41 catalysts show high activity for palm oil cracking. The conversion of palm kernel oil, lower-molecular-weight oil, was higher as compared to higher-molecular-weight, palm olein oil. MCM-41 materials were selective for the formation of linear hydrocarbons, particularly, C{sub 13} when palm kernel oil was used and C{sub 17} when palm olein oil was fed. The yield of liquid product decreased with the increase of surface area of the catalyst. The gasoline selectivity increased whereas diesel selectivity decreased with the conversion of palm oil.

  14. Valorization of Waste Lipids through Hydrothermal Catalytic Conversion to Liquid Hydrocarbon Fuels with in Situ Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongwook; Vardon, Derek R.; Murali, Dheeptha; Sharma, Brajendra K.; Strathmann, Timothy J.

    2016-03-07

    We demonstrate hydrothermal (300 degrees C, 10 MPa) catalytic conversion of real waste lipids (e.g., waste vegetable oil, sewer trap grease) to liquid hydrocarbon fuels without net need for external chemical inputs (e.g., H2 gas, methanol). A supported bimetallic catalyst (Pt-Re/C; 5 wt % of each metal) previously shown to catalyze both aqueous phase reforming of glycerol (a triacylglyceride lipid hydrolysis coproduct) to H2 gas and conversion of oleic and stearic acid, model unsaturated and saturated fatty acids, to linear alkanes was applied to process real waste lipid feedstocks in water. For reactions conducted with an initially inert headspace gas (N2), waste vegetable oil (WVO) was fully converted into linear hydrocarbons (C15-C17) and other hydrolyzed byproducts within 4.5 h, and H2 gas production was observed. Addition of H2 to the initial reactor headspace accelerated conversion, but net H2 production was still observed, in agreement with results obtained for aqueous mixtures containing model fatty acids and glycerol. Conversion to liquid hydrocarbons with net H2 production was also observed for a range of other waste lipid feedstocks (animal fat residuals, sewer trap grease, dry distiller's grain oil, coffee oil residual). These findings demonstrate potential for valorization of waste lipids through conversion to hydrocarbons that are more compatible with current petroleum-based liquid fuels than the biodiesel and biogas products of conventional waste lipid processing technologies.

  15. A quantum chemistry study on thermochemical properties of high energy-density endothermic hydrocarbon fuel JP-10.

    Science.gov (United States)

    Qin, Xiao-Mei; Xie, Hu-Jun; Yue, Lei; Lu, Xiao-Xing; Fang, Wen-Jun

    2014-04-01

    The density functional theory (DFT) calculations at the M06-2X/6-31++G(d,p) level have been performed to explore the molecular structure, electronic structure, C-H bond dissociation enthalpy, and reaction enthalpies for five isodesmic reactions of a high energy-density endothermic hydrocarbon fuel JP-10. On the basis of the calculations, it is found that the carbonium ion C-6 isomer formed from the catalytic cracking at the C₆ site of JP-10 has the lowest energy, and the R-5 radical generated from the thermal cracking at the C₅ site of JP-10 is the most stable isomer. Furthermore, a series of hypothetical and isodesmic work reactions containing similar bond environments are used to calculate the reaction enthalpies for target compounds. For the same isodesmic reaction, the reaction enthalpy of each carbon site radical has also been calculated. The present work is of fundamental significance and strategic importance to provide some valuable insights into the component design and energy utilization of advanced endothermic fuels.

  16. Free-radicals aided combustion with scramjet applications

    Science.gov (United States)

    Yang, Yongsheng; Kumar, Ramohalli

    1992-01-01

    Theoretical and experimental investigations aimed at altering 'nature-prescribed' combustion rates in hydrogen/hydrocarbon reactions with (enriched) air are presented. The intent is to anchor flame zones in supersonic streams, and to ensure proper and controllable complete combustion in scramjets. The diagnostics are nonintrusive through IR thermograms and acoustic emissions in the control and free-radicals altered flame zones.

  17. Laser Diagnostics Study of Plasma Assisted Combustion for Scramjet Applications

    Science.gov (United States)

    2011-12-01

    treatment of the fuel or reactants into hydrogen rich syngas prior to thermal oxidation [11-12], enhanced ignition of hydrocarbon fuels [9,13-14...dramatically, and a significant rise of OH in the post combustion gas region is evident. It is 532 nm Power Supply N d: YA G L as er Dye Laser...plasma, ne~1014-1015 cm-3). The power supply is a 2 kW magnetron (2.45 GHz), although no more than 40 W seems to be required for most test conditions due

  18. Micro-mixer/combustor

    KAUST Repository

    Badra, Jihad Ahmad

    2014-09-18

    A micro-mixer/combustor to mix fuel and oxidant streams into combustible mixtures where flames resulting from combustion of the mixture can be sustained inside its combustion chamber is provided. The present design is particularly suitable for diffusion flames. In various aspects the present design mixes the fuel and oxidant streams prior to entering a combustion chamber. The combustion chamber is designed to prevent excess pressure to build up within the combustion chamber, which build up can cause instabilities in the flame. A restriction in the inlet to the combustion chamber from the mixing chamber forces the incoming streams to converge while introducing minor pressure drop. In one or more aspects, heat from combustion products exhausted from the combustion chamber may be used to provide heat to at least one of fuel passing through the fuel inlet channel, oxidant passing through the oxidant inlet channel, the mixing chamber, or the combustion chamber. In one or more aspects, an ignition strip may be positioned in the combustion chamber to sustain a flame without preheating.

  19. Review of HxPyOz-Catalyzed H + OH Recombination in Scramjet Nozzle Expansions; and Possible Phosphoric Acid Enhancement of Scramjet Flameholding, from Extinction of H3PO4 + H2 - Air Counterflow Diffusion Flames

    Science.gov (United States)

    Pellett, Gerald

    2005-01-01

    Recent detailed articles by Twarowski indicate that small quantities of phosphorus oxides and acids in the fuel-rich combustion products of H2 + phosphine (PH3) + air should significantly catalyze H, OH and O recombination kinetics during high-speed nozzle expansions -- to reform H2O, release heat, and approach equilibrium more rapidly and closely than uncatalyzed kinetics. This paper is an initial feasibility study to determine (a) if addition of phosphoric acid vapor (H3PO4) to a H2 fuel jet -- which is much safer than using PH3 -- will allow combustion in a high-speed scramjet engine test without adverse effects on localized flameholding, and (b) if phosphorus-containing exhaust emissions are environmentally acceptable. A well-characterized axisymmetric straight-tube opposed jet burner (OJB) tool is used to evaluate H3PO4 addition effects on the air velocity extinction limit (flame strength) of a H2 versus air counterflow diffusion flame. Addition of nitric oxide (NO), also believed to promote catalytic H-atom recombination, was evaluated for comparison. Two to five mass percent H3PO4 in the H2 jet increased flame strength 4.2%, whereas airside addition decreased it 1%. Adding 5% NO to the H2 caused a 2% decrease. Products of H-atom attack on H3PO4 produced an intense green chemiluminescence near the stagnation point. The resultant exothermic production of phosphorus oxides and acids, with accelerated H-atom recombination, released sufficient heat near the stagnation point to increase flame strength. In conclusion, the addition of H3PO4 vapor (or more reactive P sources) to hydrogen in scramjet engine tests may positively affect flameholding stability in the combustor and thrust production during supersonic expansion -- a possible dual benefit with system design / performance implications. Finally, a preliminary assessment of possible environmental effects indicates that scramjet exhaust emissions should consist of phosphoric acid aerosol, with gradual

  20. Effects of injection pressure variation on mixing in a cold supersonic combustor with kerosene fuel

    Science.gov (United States)

    Liu, Wei-Lai; Zhu, Lin; Qi, Yin-Yin; Ge, Jia-Ru; Luo, Feng; Zou, Hao-Ran; Wei, Min; Jen, Tien-Chien

    2017-10-01

    Spray jet in cold kerosene-fueled supersonic flow has been characterized under different injection pressures to assess the effects of the pressure variation on the mixing between incident shock wave and transverse cavity injection. Based on the real scramjet combustor, a detailed computational fluid dynamics model is developed. The injection pressures are specified as 0.5, 1.0, 2.0, 3.0 and 4.0 MPa, respectively, with the other constant operation parameters (such as the injection diameter, angle and velocity). A three dimensional Couple Level Set & Volume of Fluids approach incorporating an improved Kelvin-Helmholtz & Rayleigh-Taylor model is used to investigate the interaction between kerosene and supersonic air. The numerical simulations primarily concentrate on penetration depth, span expansion area, angle of shock wave and sauter mean diameter distribution of the kerosene droplets with/without evaporation. Validation has been implemented by comparing the calculated against the measured in literature with good qualitative agreement. Results show that the penetration depth, span-wise angle and expansion area of the transverse cavity jet are all increased with the injection pressure. However, when the injection pressure is further increased, the value in either penetration depth or expansion area increases appreciably. This study demonstrates the feasibility and effectiveness of the combination of Couple Level Set & Volume of Fluids approach and an improved Kelvin-Helmholtz & Rayleigh-Taylor model, in turn providing insights into scramjet design improvement.

  1. 碳氢燃料低压裂解特性%Pyrolysis Characteristics of Hydrocarbon Fuel Under Low Pressure

    Institute of Scientific and Technical Information of China (English)

    张其翼; 魏微; 周灏; 文旭; 李象远

    2015-01-01

    针对主动冷却中利用碳氢燃料裂解吸热释放热沉的特性,研究分析了碳氢燃料在低压条件下的裂解反应特征,从产气率、气相组分与结焦等方面进行了对比研究.结果表明,在相同停留时间,压力降低,裂解的产气率更高,裂解气组分中烯烃含量大幅提升,表明低压裂解具有一定的反应定向性.通过吸光光度法半定量分析高温裂解残液,发现裂解压力降低,吸光度值降低,表明低压裂解可以明显抑制结焦反应发生.%This study focuses on the cracking reaction of hydrocarbon fuel under low pressure.The rate of pyrolysis gas yielding,pyrolysis gas composition and coke formation are studied and compared.The results demonstrate that during the same residence time,the rate of gas yielding increases while the pressure is reduced.A substantial rise of the olefin content in the pyrolysis gas indicates that the cracking reaction is directed.The semi-quantitative analysis of pyrolysis residue absorbance shows that absorbance values are reduced with the decrease of cracking pressure,and low pressure pyrolysis can significantly inhibit coking reaction.

  2. Understanding the role of multifunctional nanoengineered particulate additives on supercritical pyrolysis and combustion of hydrocarbon fuels/propellants

    Science.gov (United States)

    Sim, Hyung Sub

    This dissertation aims to understand the fundamental effects of colloidal nanostructured materials on the supercritical pyrolysis, injection, ignition, and combustion of hydrocarbon fuels/propellants. As a fuel additive, functionalized graphene sheets (FGS) without or with the decoration of metal catalysts, such as platinum (Pt) or polyoxometalates (POM) nanoparticles, were examined against conventional materials including nanometer sized fumed silica and aluminum particles. Supercritical pyrolysis experiments were performed as a function of temperature, residence time, and particle type, using a high pressure and temperature flow reactor designed to provide isothermal and isobaric flow conditions. Supercritical pyrolysis results showed that the addition of FGS-based particles at a loading concentration of 50 ppmw increased the conversion rates and reduced apparent activation energies for methylcyclohexane (MCH) and n-dodecane (n-C12H26) fuels. For example, conversion rates, and formations of C1-C5 n-alkanes and C2-C6 1-alkenes were significantly increased by 43.5 %, 59.1 %, and 50.0 % for MCH decomposition using FGS 19 (50 ppmw) at a temperature of 820 K and reduced pressure of 1.36. In addition, FGS decorated with 20 wt % Pt (20wt%Pt FGS) at a loading concentration of 50 ppmw exhibited additional enhancement in the conversion rate of n-C12H26 by up to 24.0 % compared to FGS. Especially, FGS-based particles seem to alter initiation mechanisms, which could result in higher hydrogen formation. Hydrogen selectivities for both MCH and n-C12H26 decompositions were observed to increase by nearly a factor of 2 and 10, respectively. Supercritical injection and combustion experiments were conducted using a high pressure and temperature windowed combustion chamber coupled to the flow reactor through a feed system. Supercritical injection/combustion experiments indicated that the presence of a small amount of particles (100 ppmw) in the fuel affected the injection, ignition

  3. Methanol tailgas combustor control method

    Science.gov (United States)

    Hart-Predmore, David J.; Pettit, William H.

    2002-01-01

    A method for controlling the power and temperature and fuel source of a combustor in a fuel cell apparatus to supply heat to a fuel processor where the combustor has dual fuel inlet streams including a first fuel stream, and a second fuel stream of anode effluent from the fuel cell and reformate from the fuel processor. In all operating modes, an enthalpy balance is determined by regulating the amount of the first and/or second fuel streams and the quantity of the first air flow stream to support fuel processor power requirements.

  4. Experimental investigation on the cavity-based scramjet model

    Institute of Scientific and Technical Information of China (English)

    GU HongBin; CHEN LiHong; CHANG XinYu

    2009-01-01

    The present work focused on improving the engine performance with different fuel equivalence ratios and fuel injections.A scramjet model with strut/cavity integrated configurations was tested under Math 5.8 flows.The results showed that the strut may sreve as an effective tool in a kerosene-fueled scramjet.The integration of strut/cavities also had great effect on stablizing the combustion in a wide range of fuel equivalence ratio.The one-sdimensional analysis method was used to analyze the main characteristics of the model.The two-stage fuel injection should have better performance in increasing the chemical reaction rate in the first cavity region.

  5. HVEPS Scramjet-Driven MHD Power Demonstration Test Results (Preprint)

    Science.gov (United States)

    2007-06-01

    seeding for the scramjet- driven MHD demonstration test was accomplished by the injection of liquid NaK into the backplate of the UTRC pre-heater... NaK is a eutectic consisting of approximately 80% potassium and 20% sodium. It exists in liquid form at room temperature and has flow properties...quite similar to water. However, there are materials handling safety issues with use of NaK since it is highly caustic alkali metal and burns on

  6. Study of Magnetogasdynamic Flow Acceleration in a Scramjet Nozzle

    Science.gov (United States)

    2005-06-01

    Institute of Tecnology , WPAFB, OH, March 2004. 8. Einstein, A. Relativity, The Special and General Theory . Three Rivers Press, 1961. 9. “Ramjet, Scramjet...Airforce Institute of Tecnology , WPAFB, OH, June 2004. BIB-1 17. Heiser, W.H. and D.T. Pratt. Hypersonic Airbreathing Propulsion. Washington, DC...DOCUMENTATION PAGE Form ApprovedOMB No. 0704–0188 The public reporting burden for this collection of information is estimated to average 1 hour per response

  7. Assessment of Combustor Working Environments

    Directory of Open Access Journals (Sweden)

    Leiyong Jiang

    2012-01-01

    Full Text Available In order to assess the remaining life of gas turbine critical components, it is vital to accurately define the aerothermodynamic working environments and service histories. As a part of a major multidisciplinary collaboration program, a benchmark modeling on a practical gas turbine combustor is successfully carried out, and the two-phase, steady, turbulent, compressible, reacting flow fields at both cruise and takeoff are obtained. The results show the complicated flow features inside the combustor. The airflow over each flow element of the combustor can or liner is not evenly distributed, and considerable variations, ±25%, around the average values, are observed. It is more important to note that the temperatures at the combustor can and cooling wiggle strips vary significantly, which can significantly affect fatigue life of engine critical components. The present study suggests that to develop an adequate aerothermodynamics tool, it is necessary to carry out a further systematic study, including validation of numerical results, simulations at typical engine operating conditions, and development of simple correlations between engine operating conditions and component working environments. As an ultimate goal, the cost and time of gas turbine engine fleet management must be significantly reduced.

  8. Direct hydrocarbon fuel cells

    Science.gov (United States)

    Barnett, Scott A.; Lai, Tammy; Liu, Jiang

    2010-05-04

    The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

  9. Experimental investigation on combustion performance of cavity-strut injection of supercritical kerosene in supersonic model combustor

    Science.gov (United States)

    Sun, Ming-bo; Zhong, Zhan; Liang, Jian-han; Wang, Hong-bo

    2016-10-01

    Supersonic combustion with cavity-strut injection of supercritical kerosene in a model scramjet engine was experimentally investigated in Mach 2.92 facility with the stagnation temperatures of approximately 1430 K. Static pressure distribution in the axial direction was determined using pressure transducers installed along the centerline of the model combustor top walls. High speed imaging camera was used to capture flame luminosity and combustion region distribution. Multi-cavities were used to and stabilize the combustion in the supersonic combustor. Intrusive injection by thin struts was used to enhance the fuel-air mixing. Supercritical kerosene at temperatures of approximately 780 K and various pressures was prepared using a heat exchanger driven by the hot gas from a pre-burner and injected at equivalence ratios of approximately 1.0. In the experiments, combustor performances with different strut injection schemes were investigated and compared to direct wall injection scheme based on the measured static pressure distributions, the specific thrust increments and the images obtained by high-speed imaging camera. The experimental results showed that the injection by thin struts could obtain an enhanced mixing in the field but could not acquire a steady flame when mixing field cannot well match cavity separation region. There is no significant difference on performance between different schemes since the unsteady intermittent and oscillating flame leads to no actual combustion efficiency improvement.

  10. 固体燃料超燃冲压发动机原理性试验研究%Experiment study on the principle of solid fuel scramjet

    Institute of Scientific and Technical Information of China (English)

    杨向明; 刘伟凯; 陈林泉; 郑凯斌

    2012-01-01

    进行了固体燃料超燃冲压发动机实验研究,并成功进行了点火和燃烧实验,包括固体碳氢燃料超音速燃烧试验和聚甲基丙烯酸甲酯(PMMA)超音速燃烧试验.实验验证了固体燃料在超音速气流中能可靠点火,并保持了火焰的稳定燃烧,获得了固体燃料的超音速燃烧内弹道特性,同时研究了固体燃料PMMA在超音速气流中的燃烧,分析了其在超燃冲压燃烧室内的退移规律,认为燃料退移速度随时间变化,燃烧趋向于将燃面轮廓变平,区域显示圆柱形.%Solid fuel scramjet was investigated by experiment. Ignition and combustion experiments that include solid hydrocarbon fuel and PMMA fuel were successfully done,which proved reliable ignition of the solid fuel in supersonic flow and stable combustion of the flame. Finally supersonic chamber characteristics of solid fuel were obtained. Combustion of PMMA fuel in supersonic flow was also investigated,and its regression rule was analyzed. Results show that regression rate of PMMA fuel changes with time, combustion outline tends to be plane and combustion region exhibits column.

  11. Self-doped Ti3+-TiO2 as a photocatalyst for the reduction of CO2 into a hydrocarbon fuel under visible light irradiation

    Science.gov (United States)

    Sasan, Koroush; Zuo, Fan; Wang, Yuan; Feng, Pingyun

    2015-08-01

    Self-doped TiO2 shows visible light photocatalytic activity, while commercial TiO2 (P25) is only UV responsive. The incorporation of Ti3+ into TiO2 structures narrows the band gap (2.90 eV), leading to significantly increased photocatalytic activity for the reduction of CO2 into a renewable hydrocarbon fuel (CH4) in the presence of water vapour under visible light irradiation.Self-doped TiO2 shows visible light photocatalytic activity, while commercial TiO2 (P25) is only UV responsive. The incorporation of Ti3+ into TiO2 structures narrows the band gap (2.90 eV), leading to significantly increased photocatalytic activity for the reduction of CO2 into a renewable hydrocarbon fuel (CH4) in the presence of water vapour under visible light irradiation. Electronic supplementary information (ESI) available: Experimental details, XPS, XRD and SEM images. See DOI: 10.1039/c5nr02974k

  12. Assessment of Combustor Working Environments

    OpenAIRE

    Leiyong Jiang; Andrew Corber

    2012-01-01

    In order to assess the remaining life of gas turbine critical components, it is vital to accurately define the aerothermodynamic working environments and service histories. As a part of a major multidisciplinary collaboration program, a benchmark modeling on a practical gas turbine combustor is successfully carried out, and the two-phase, steady, turbulent, compressible, reacting flow fields at both cruise and takeoff are obtained. The results show the complicated flow features inside the com...

  13. Experimental and Numerical Studies of Vitiated Air Effects on Hydrogen-fueled Supersonic Combustor Performance

    Institute of Scientific and Technical Information of China (English)

    LUO Feiteng; SONG Wenyan; ZHANG Zhiqiang; LI Weiqiang; LI Jianping

    2012-01-01

    This paper deals with the vitiation effects of test air on the scramjet performance in the ground combustion heated facilities.The primary goal is to evaluate the effects of H2O and CO2,the two major vitiated species generated by combustion heater,on hydrogen-fueled supersonic combustor performance with experimental and numerical approaches.The comparative experiments in the clean air and vitiated air are conducted by using the resistance heated direct-connected facility,with the typical Mach 4 flight conditions simulated.The H2O and CO2 species with accurately controlled contents are added to the high enthalpy clean air from resistance heater,to synthesize the vitiated air of a combustion-type heater.Typically,the contents of H2O species can be varied within the range of 3.5%-30o% by mole,and 3.0%-10% for CO2 species.The total temperature,total pressure,Mach number and O2 mole fraction at the combustor entrance are well-matched between the clean air and vitiated air.The combustion experiments are completed at the fuel equivalence ratios of 0.53 and 0.42 respectively.Furthermore,three-dimensional (3D) reacting flow simulations of combustor towpath are performed to provide insight into flow field structures and combustion chemistry details that cannot resolved by experimental instruments available.Finally,the experimental data,combined with computational results,are employed to analyze the effects of H2O and CO2 vitiated air on supersonic combustion characteristics and performance.It is concluded that H2O and CO2 contaminants can significantly inhibit the combustion induced pressure rise measured from combustor wall,and the pressure profile decreases with the increasing H2O and CO2 contents in nonlinear trend;simulation results agree well with experimental data and the overall vitiation effects are captured; direct extrapolation of the results from vitiated air to predict the performance of actual flight conditions could result in over-fueling the combustor

  14. Alternate-Fueled Combustor-Sector Performance: Part A: Combustor Performance Part B: Combustor Emissions

    Science.gov (United States)

    Shouse, D. T.; Neuroth, C.; Henricks, R. C.; Lynch, A.; Frayne, C.; Stutrud, J. S.; Corporan, E.; Hankins, T.

    2010-01-01

    Alternate aviation fuels for military or commercial use are required to satisfy MIL-DTL-83133F(2008) or ASTM D 7566 (2010) standards, respectively, and are classified as drop-in fuel replacements. To satisfy legacy issues, blends to 50% alternate fuel with petroleum fuels are certified individually on the basis of feedstock. Adherence to alternate fuels and fuel blends requires smart fueling systems or advanced fuel-flexible systems, including combustors and engines without significant sacrifice in performance or emissions requirements. This paper provides preliminary performance (Part A) and emissions and particulates (Part B) combustor sector data for synthetic-parafinic-kerosene- (SPK-) type fuel and blends with JP-8+100 relative to JP-8+100 as baseline fueling.

  15. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels. Thermochemical Research Pathways with In Situ and Ex Situ Upgrading of Fast Pyrolysis Vapors

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, A.; Sahir, A.; Tan, E.; Humbird, D.; Snowden-Swan, L. J.; Meyer, P.; Ross, J.; Sexton, D.; Yap, R.; Lukas, J.

    2015-03-01

    This report was developed as part of the U.S. Department of Energy’s Bioenergy Technologies Office’s efforts to enable the development of technologies for the production of infrastructurecompatible, cost-competitive liquid hydrocarbon fuels from biomass. Specifically, this report details two conceptual designs based on projected product yields and quality improvements via catalyst development and process integration. It is expected that these research improvements will be made within the 2022 timeframe. The two conversion pathways detailed are (1) in situ and (2) ex situ upgrading of vapors produced from the fast pyrolysis of biomass. While the base case conceptual designs and underlying assumptions outline performance metrics for feasibility, it should be noted that these are only two of many other possibilities in this area of research. Other promising process design options emerging from the research will be considered for future techno-economic analysis.

  16. Design and fabrication of a meso-scale stirling engine and combustor.

    Energy Technology Data Exchange (ETDEWEB)

    Echekki, Tarek (Sandia National Laboratories, Livermore, CA); Haroldsen, Brent L. (Sandia National Laboratories, Livermore, CA); Krafcik, Karen L. (Sandia National Laboratories, Livermore, CA); Morales, Alfredo Martin (Sandia National Laboratories, Livermore, CA); Mills, Bernice E. (Sandia National Laboratories, Livermore, CA); Liu, Shiling (Sandia National Laboratories, Livermore, CA); Lee, Jeremiah C. (Sandia National Laboratories, Livermore, CA); Karpetis, Adionos N. (Sandia National Laboratories, Livermore, CA); Chen, Jacqueline H. (Sandia National Laboratories, Livermore, CA); Ceremuga, Joseph T. (Sandia National Laboratories, Livermore, CA); Raber, Thomas N. (Sandia National Laboratories, Livermore, CA); Hekmuuaty, Michelle A. (Sandia National Laboratories, Livermore, CA)

    2005-05-01

    Power sources capable of supplying tens of watts are needed for a wide variety of applications including portable electronics, sensors, micro aerial vehicles, and mini-robotics systems. The utility of these devices is often limited by the energy and power density capabilities of batteries. A small combustion engine using liquid hydrocarbon fuel could potentially increase both power and energy density by an order of magnitude or more. This report describes initial development work on a meso-scale external combustion engine based on the Stirling cycle. Although other engine designs perform better at macro-scales, we believe the Stirling engine cycle is better suited to small-scale applications. The ideal Stirling cycle requires efficient heat transfer. Consequently, unlike other thermodynamic cycles, the high heat transfer rates that are inherent with miniature devices are an advantage for the Stirling cycle. Furthermore, since the Stirling engine uses external combustion, the combustor and engine can be scaled and optimized semi-independently. Continuous combustion minimizes issues with flame initiation and propagation. It also allows consideration of a variety of techniques to promote combustion that would be difficult in a miniature internal combustion engine. The project included design and fabrication of both the engine and the combustor. Two engine designs were developed. The first used a cylindrical piston design fabricated with conventional machining processes. The second design, based on the Wankel rotor geometry, was fabricated by through-mold electroforming of nickel in SU8 and LIGA micromolds. These technologies provided the requisite precision and tight tolerances needed for efficient micro-engine operation. Electroformed nickel is ideal for micro-engine applications because of its high strength and ductility. A rotary geometry was chosen because its planar geometry was more compatible with the fabrication process. SU8 lithography provided rapid

  17. MHD Energy Bypass Scramjet Performance with Real Gas Effects

    Science.gov (United States)

    Park, Chul; Mehta, Unmeel B.; Bogdanoff, David W.

    2000-01-01

    The theoretical performance of a scramjet propulsion system incorporating an magneto-hydro-dynamic (MHD) energy bypass scheme is calculated. The one-dimensional analysis developed earlier, in which the theoretical performance is calculated neglecting skin friction and using a sudden-freezing approximation for the nozzle flow, is modified to incorporate the method of Van Driest for turbulent skin friction and a finite-rate chemistry calculation in the nozzle. Unlike in the earlier design, in which four ramp compressions occurred in the pitch plane, in the present design the first two ramp compressions occur in the pitch plane and the next two compressions occur in the yaw plane. The results for the simplified design of a spaceliner show that (1) the present design produces higher specific impulses than the earlier design, (2) skin friction substantially reduces thrust and specific impulse, and (3) the specific impulse of the MHD-bypass system is still better than the non-MHD system and typical rocket over a narrow region of flight speeds and design parameters. Results suggest that the energy management with MHD principles offers the possibility of improving the performance of the scramjet. The technical issues needing further studies are identified.

  18. Focusing-schlieren visualization in a dual-mode scramjet

    Science.gov (United States)

    Kouchi, Toshinori; Goyne, Christopher P.; Rockwell, Robert D.; McDaniel, James C.

    2015-12-01

    Schlieren imaging is particularly suited to measuring density gradients in compressible flowfields and can be used to capture shock waves and expansion fans, as well as the turbulent structures of mixing and wake flows. Conventional schlieren imaging, however, has difficulty clearly capturing such structures in long-duration supersonic combustion test facilities. This is because the severe flow temperatures locally change the refractive index of the window glass that is being used to provide optical access. On the other hand, focusing-schlieren imaging presents the potential of reduced sensitivity to thermal distortion of the windows and to clearly capture the flow structures even during a combustion test. This reduced sensitivity is due the technique's ability to achieve a narrow depth of focus. As part of this study, a focusing-schlieren system was developed with a depth of focus near ±5 mm and was applied to a direct-connect, continuous-flow type, supersonic combustion test facility with a stagnation temperature near 1200 K. The present system was used to successfully visualize the flowfield inside a dual-mode scramjet. The imaging system captured combustion-induced volumetric expansion of the fuel jet and an anchored bifurcated shock wave at the trailing edge of the ramp fuel injector. This is the first time successful focusing-schlieren measurements have been reported for a dual-mode scramjet.

  19. Experimental/Computational Studies of Combined Cycle Propulsion: Physics and Transient Phenomena in Inlets and Scramjet Combustors

    Science.gov (United States)

    2010-10-01

    Fellow (Stanford University) d) Graduate Students supported all or in part on this grant Justin Wagner - Graduate Student (UT Austin) Agustin Valdivia...Mechanics Meeting, San Diego, CA, February, Paper Number AAS-10-274, 2010. 12. MacMartin, D., "Dynamics and Control of Shock Motion in aNear-Isentropic

  20. Chaos in an imperfectly premixed model combustor

    Energy Technology Data Exchange (ETDEWEB)

    Kabiraj, Lipika, E-mail: lipika.kabiraj@tu-berlin.de; Saurabh, Aditya; Paschereit, Christian O. [Hermann Föttinger Institut, Technische Universität Berlin (Germany); Karimi, Nader [School of Engineering, University of Glasgow (United Kingdom); Sailor, Anna [University of Wisconsin-Madison, Madison 53706 (United States); Mastorakos, Epaminondas; Dowling, Ann P. [Department of Engineering, University of Cambridge (United Kingdom)

    2015-02-15

    This article reports nonlinear bifurcations observed in a laboratory scale, turbulent combustor operating under imperfectly premixed mode with global equivalence ratio as the control parameter. The results indicate that the dynamics of thermoacoustic instability correspond to quasi-periodic bifurcation to low-dimensional, deterministic chaos, a route that is common to a variety of dissipative nonlinear systems. The results support the recent identification of bifurcation scenarios in a laminar premixed flame combustor (Kabiraj et al., Chaos: Interdiscip. J. Nonlinear Sci. 22, 023129 (2012)) and extend the observation to a practically relevant combustor configuration.

  1. Shock Train/Boundary-Layer Interaction in Rectangular Scramjet Isolators

    Science.gov (United States)

    Geerts, Jonathan Simon

    Numerous studies of the dual-mode scramjet isolator, a critical component in preventing inlet unstart and/or vehicle loss by containing a collection of flow disturbances called a shock train, have been performed since the dual-mode propulsion cycle was introduced in the 1960s. Low momentum corner flow and other three-dimensional effects inherent to rectangular isolators have, however, been largely ignored in experimental studies of the boundary layer separation driven isolator shock train dynamics. Furthermore, the use of two dimensional diagnostic techniques in past works, be it single-perspective line-of-sight schlieren/shadowgraphy or single axis wall pressure measurements, have been unable to resolve the three-dimensional flow features inside the rectangular isolator. These flow characteristics need to be thoroughly understood if robust dual-mode scramjet designs are to be fielded. The work presented in this thesis is focused on experimentally analyzing shock train/boundary layer interactions from multiple perspectives in aspect ratio 1.0, 3.0, and 6.0 rectangular isolators with inflow Mach numbers ranging from 2.4 to 2.7. Secondary steady-state Computational Fluid Dynamics studies are performed to compare to the experimental results and to provide additional perspectives of the flow field. Specific issues that remain unresolved after decades of isolator shock train studies that are addressed in this work include the three-dimensional formation of the isolator shock train front, the spatial and temporal low momentum corner flow separation scales, the transient behavior of shock train/boundary layer interaction at specific coordinates along the isolator's lateral axis, and effects of the rectangular geometry on semi-empirical relations for shock train length prediction. (Abstract shortened by ProQuest.).

  2. Alternate-Fueled Combustor-Sector Performance. Parts A and B; (A) Combustor Performance; (B) Combustor Emissions

    Science.gov (United States)

    Shouse, D. T.; Hendricks, R. C.; Lynch, A.; Frayne, C. W.; Stutrud, J. S.; Corporan, E.; Hankins, T.

    2012-01-01

    Alternate aviation fuels for military or commercial use are required to satisfy MIL-DTL-83133F(2008) or ASTM D 7566 (2010) standards, respectively, and are classified as "drop-in" fuel replacements. To satisfy legacy issues, blends to 50% alternate fuel with petroleum fuels are certified individually on the basis of processing and assumed to be feedstock agnostic. Adherence to alternate fuels and fuel blends requires "smart fueling systems" or advanced fuel-flexible systems, including combustors and engines, without significant sacrifice in performance or emissions requirements. This paper provides preliminary performance (Part A) and emissions and particulates (Part B) combustor sector data. The data are for nominal inlet conditions at 225 psia and 800 F (1.551 MPa and 700 K), for synthetic-paraffinic-kerosene- (SPK-) type (Fisher-Tropsch (FT)) fuel and blends with JP-8+100 relative to JP-8+100 as baseline fueling. Assessments are made of the change in combustor efficiency, wall temperatures, emissions, and luminosity with SPK of 0%, 50%, and 100% fueling composition at 3% combustor pressure drop. The performance results (Part A) indicate no quantifiable differences in combustor efficiency, a general trend to lower liner and higher core flow temperatures with increased FT fuel blends. In general, emissions data (Part B) show little differences, but with percent increase in FT-SPK-type fueling, particulate emissions and wall temperatures are less than with baseline JP-8. High-speed photography illustrates both luminosity and combustor dynamic flame characteristics.

  3. Numerical exploration of mixing and combustion in a dual-mode combustor with backward-facing steps

    Science.gov (United States)

    Huang, Wei; Li, Lang-quan; Yan, Li; Liao, Lei

    2016-10-01

    Dual-mode scramjet combustor is the crucial component for the combined cycle engine of space mission vehicles. The Reynolds Averaged Navier-Stokes (RANS) equations, Spalart-Allmaras turbulence model and the finite-rate reaction model have been utilized to investigate the mixing and combustion in a dual-mode combustor with backward-facing steps, and the species distributions and the Mach number profile of a turbulent diffusion combustion problem have been employed to validate the numerical approach. Moreover, the influences of the injection strategy and the fuel equivalence ratio arrangement on its mixing and combustion flow fields have been explored. The obtained results show that the vertical injection is beneficial for mode transition, and an obvious high pressure region is generated with the vertical injection strategy. Accordingly, its mass-weighted average Mach number drops more sharply. The lower total equivalence ratio is beneficial for the mixing augmentation, as well the smaller fuel equivalence ratio discrepancy. However, the larger total equivalence ratio is beneficial for the mode transition.

  4. Turbulent Recirculating Flows in Isothermal Combustor Geometries

    Science.gov (United States)

    Lilley, D.; Rhode, D.

    1985-01-01

    Computer program developed that provides mathematical solution to design and construction of combustion chambers for jet engines. Improved results in areas of combustor flow fields accomplished by this computerprogram solution, cheaper and quicker than experiments involving real systems for models.

  5. TRW Advanced Slagging Coal Combustor Utility Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    The TRW Advanced Slagging Coal Combustor Demonstration Project consists of retrofitting Orange and Rockland (O R) Utility Corporation's Lovett Plant Unit No. 3 with four (4) slagging combustors which will allow the gas/ou desip unit to fire 2.5 sulfur coal. The slogging combustor process will provide NO[sub x] and SO[sub x] emissions that meet NSPS and New York State Envirommental Standards. TRW-CBU scope of work includes the engineering, design and supply of the slogging combustors, coal and limestone feed systems and a control system for these components. During this report period, the design activities for all systems progressed to permit the release of specifications and requests for proposals. Award of contracts for long-delivery items and major equipment are being placed to meet the revised program schedule.

  6. Calculations of magnetohydrodynamic swirl combustor flowfields

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, A.K.; Beer, J.H.; Khan, H.; Lilley, D.G.

    1982-09-01

    The objectives of the paper were to theoretically calculate and experimentally verify the fluid mechanics in the second stage of a model MHD swirl combustor with special emphasis on avoidance of the boundary-layer separation as the flow turns in to the MHD disk generator; to find the most suitable seed injection point at the entrance to the second stage which will yield uniform seed concentration at the combustor exit prior to entry into the disk generator. The model combustor is a multiannular swirl burner that is placed at the exit of the first-stage swirl combustor, which in turn can be used to vary the turbulent shear that arises between the individual swirling concentric annuli. This design permits ultrahigh swirl in the second stage with swirl vanes (if any) to be placed outside the very high temperature regions of the combustor in the clean preheated air. The gas burns completely in the second-stage combustor and turns 90 deg into the disk generator along a trumpet-shaped exit module. In this synoptic results are presented of the fluid mechanics in the trumpet-shaped second-stage exit module, with water as the working fluid.

  7. Solution-chemical route to generalized synthesis of metal germanate nanowires with room-temperature, light-driven hydrogenation activity of CO2 into renewable hydrocarbon fuels.

    Science.gov (United States)

    Liu, Qi; Zhou, Yong; Tu, Wenguang; Yan, Shicheng; Zou, Zhigang

    2014-01-06

    A facile solution-chemical route was developed for the generalized preparation of a family of highly uniform metal germanate nanowires on a large scale. This route is based on the use of hydrazine monohydrate/H2O as a mixed solvent under solvothermal conditions. Hydrazine has multiple effects on the generation of the nanowires: as an alkali solvent, a coordination agent, and crystal anisotropic growth director. Different-percentage cobalt-doped Cd2Ge2O6 nanowires were also successfully obtained through the addition of Co(OAc)2·4H2O to the initial reaction mixture for future investigation of the magnetic properties of these nanowires. The considerably negative conduction band level of the Cd2Ge2O6 nanowire offers a high driving force for photogenerated electron transfer to CO2 under UV-vis illumination, which facilitates CO2 photocatalytic reduction to a renewable hydrocarbon fuel in the presence of water vapor at room temperature.

  8. Measurements on NASA Langley Durable Combustor Rig by TDLAT: Preliminary Results

    Science.gov (United States)

    Busa, Kristin; Ellison, Erik N.; McGovern, Brian J.; McDaniel, James C.; Diskin, Glenn S.; DePiro, Maxwell J.; Capriotti, Diego P.; Gaffney, Richard L.

    2013-01-01

    Detailed knowledge of the internal structure of high-enthalpy flows can provide valuable insight to the performance of scramjet combustors. Tunable Diode Laser Absorption Spectroscopy (TDLAS) is often employed to measure temperature and species concentration. However, TDLAS is a path-integrated line-of-sight (LOS) measurement, and thus does not produce spatially resolved distributions. Tunable Diode Laser Absorption Tomography (TDLAT) is a non-intrusive measurement technique for determining two-dimensional spatially resolved distributions of temperature and species concentration in high enthalpy flows. TDLAT combines TDLAS with tomographic image reconstruction. Several separate line-of-sight TDLAS measurements are analyzed in order to produce highly resolved temperature and species concentration distributions. Measurements have been collected at the University of Virginia's Supersonic Combustion Facility (UVaSCF) as well as at the NASA Langley Direct-Connect Supersonic Combustion Test Facility (DCSCTF). Measurements collected at the DCSCTF required significant modifications to system hardware and software designs due to its larger measurement area and shorter test duration. Initial LOS measurements from the NASA Langley DCSCTF operating at an equivalence ratio of 0.5 are presented. Results show the capability of TDLAT to adapt to several experimental setups and test parameters.

  9. Low emissions combustor test facility

    Energy Technology Data Exchange (ETDEWEB)

    Maloney, D.J.; Hadley, M.S.; Norton, T.S.

    1993-12-01

    The Morgantown Energy Technology Center (METC) is in the process of constructing a low emissions combustor test and research (LECTR) facility designed to support the development of low emissions gas turbine combustion systems fired on natural gas and coal derived gaseous fuels containing fuel bound nitrogen. The LECTR facility is a major test station located within METC`s new combustion facility. The heart of this test station is a 60 centimeter (24 inch) diameter, refractory lined pressure vessel made up of a series of flanged modules. The facility design offers the flexibility to test a variety of low emissions combustion concepts at pressures up to 3 MPa (30 atm). Upon completion of fabrication and shake-down testing in January of 1994, the facility will be available for use by industrial and university partners through Cooperative Research and Development Agreements (CRADAs) or through other cooperative arrangements. This paper is intended to describe the LECTR facility and associated operating parameter ranges and to inform interested parties of the facility availability.

  10. Dish stirling solar receiver combustor test program

    Science.gov (United States)

    Bankston, C. P.; Back, L. H.

    1981-01-01

    The operational and energy transfer characteristics of the Dish Stirling Solar Receiver (DSSR) combustor/heat exchanger system was evaluated. The DSSR is designed to operate with fossil fuel augmentation utilizing a swirl combustor and cross flow heat exchanger consisting of a single row of 4 closely spaced tubes that are curved into a conical shape. The performance of the combustor/heat exchanger system without a Stirling engine was studied over a range of operating conditions and output levels using water as the working fluid. Results show that the combustor may be started under cold conditions, controlled safety, and operated at a constant air/fuel ratio (10 percent excess air) over the required range of firing rates. Furthermore, nondimensional heat transfer coefficients based on total heat transfer are plotted versus Reynolds number and compared with literature data taken for single rows of closely spaced tubes perpendicular to cross flow. The data show enhanced heat transfer for the present geometry and test conditions. Analysis of the results shows that the present system meets specified thermal requirements, thus verifying the feasibility of the DSSR combustor design for final prototype fabrication.

  11. Alternate-Fueled Combustor-Sector Performance

    Science.gov (United States)

    Thomas, Anna E.; Saxena, Nikita T.; Shouse, Dale T.; Neuroth, Craig; Hendricks, Robert C.; Lynch, Amy; Frayne, Charles W.; Stutrud, Jeffrey S.; Corporan, Edwin; Hankins, Terry

    2013-01-01

    In order to realize alternative fueling for military and commercial use, the industry has set forth guidelines that must be met by each fuel. These aviation fueling requirements are outlined in MIL-DTL-83133F(2008) or ASTM D 7566 Annex (2011) standards, and are classified as "drop-in" fuel replacements. This report provides combustor performance data for synthetic-paraffinic-kerosene- (SPK-) type (Fischer-Tropsch (FT)) fuel and blends with JP-8+100, relative to JP-8+100 as baseline fueling. Data were taken at various nominal inlet conditions: 75 psia (0.52 MPa) at 500 degF (533 K), 125 psia (0.86 MPa) at 625 degF (603 K), 175 psia (1.21 MPa) at 725 degF (658 K), and 225 psia (1.55 MPa) at 790 degF (694 K). Combustor performance analysis assessments were made for the change in flame temperatures, combustor efficiency, wall temperatures, and exhaust plane temperatures at 3, 4, and 5 percent combustor pressure drop (DP) for fuel:air ratios (F/A) ranging from 0.010 to 0.025. Significant general trends show lower liner temperatures and higher flame and combustor outlet temperatures with increases in FT fueling relative to JP-8+100 fueling. The latter affects both turbine efficiency and blade and vane lives.

  12. Thermal cracking of aviation kerosene for scramjet applications

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Thermal cracking of China No.3 aviation kerosene was studied experimentally and analytically under supercritical conditions relevant to regenerative cooling system for Mach-6 scramjet applications. A two-stage heated tube system with cracked products collection/analysis was used and it can achieve a fuel temperature range of 700―1100 K,a pressure range of 3.5―4.5 MPa and a residence time of ap-proximately 0.5―1.3 s. Compositions of the cracked gaseous products and mass flow rate of the kerosene flow at varied temperatures and pressures were obtained experimentally. A one-step lumped model was developed with the cracked mixtures grouped into three categories:unreacted kerosene,gaseous products and residuals including liquid products and carbon deposits. Based on the model,fuel conversion on the mass basis,the reaction rate and the residence time were estimated as functions of temperature. Meanwhile,a sonic nozzle was used for the control of the mass flow rate of the cracked kerosene,and correlation of the mass flow rate gives a good agreement with the measurements.

  13. Thermal cracking of aviation kerosene for scramjet applications

    Institute of Scientific and Technical Information of China (English)

    ZHONG FengQuan; FAN XueJun; YU Gong; LI JianGuo

    2009-01-01

    Thermal cracking of China No.3 aviation kerosene was studied experimentally and analytically under supercritical conditions relevant to regenerative cooling system for Mach-6 scramjet applications. A two-stage heated tube system with cracked products collection/analysis was used and it can achieve a fuel temperature range of 700-1100 K, a pressure range of 3.5-4.5 MPa and a residence time of ap-proximately 0.5-1.3 s. Compositions of the cracked gaseous products and mass flow rate of the kerosene flow at varied temperatures and pressures were obtained experimentally. A one-step lumped model was developed with the cracked mixtures grouped into three categories: unreacted kerosene, gaseous products and residuals including liquid products and carbon deposits. Based on the model, fuel conversion on the mass basis, the reaction rate and the residence time were estimated as func-tions of temperature. Meanwhile, a sonic nozzle was used for the control of the mass flow rate of the cracked kerosene, and correlation of the mass flow rate gives a good agreement with the measure-ments.

  14. Numerical investigation of combustion field of hypervelocity scramjet engine

    Science.gov (United States)

    Zhang, Shikong; Li, Jiang; Qin, Fei; Huang, Zhiwei; Xue, Rui

    2016-12-01

    A numerical study of the ground testing of a hydrogen-fueled scramjet engine was undertaken using the commercial computational-fluid-dynamics code CFD++. The simulated Mach number was 12. A 7-species, 9-reaction-step hydrogen-air chemistry kinetics system was adopted for the Reynolds-averaged Navier-Stokes simulation. The two-equation SST turbulence model, which takes into account the wall functions, was used to handle the turbulence-chemistry interactions. The results were validated by experimentally measuring the wall pressure distribution, and the values obtained proved to be in good agreement. The flow pattern at non-reaction/reaction is presented, as are the results of analyzing the supersonic premix/non-premix flame structure, the reaction heat release distribution in different modes, and the change in the equivalence ratio. In this study, we realize the working mode of a hypervelocity engine and provide some suggestions for the combustion organization of the engine as well as offer insight into the potential for exploiting the processes of combustion and flow.

  15. Multi-Ducted Inlet Combustor Research and Development.

    Science.gov (United States)

    1983-11-01

    of a reactor or combustor as defined in equation (1) is the combustor volume divided by the fluid flow rate through the combustor. Therefore, for a...Development Laboratories, Inc., Costa Mesa, California, March, 1983. 3. 0. Levenspiel , Chemical Reaction Engineering, John Wiley and Sons, 1962. 59 •rac v £98 kg3-ඃ-,162-;8b

  16. Dilution jet experiments in compact combustor configurations

    Science.gov (United States)

    Greber, I.; Zizelman, J.

    1984-01-01

    This project concerns the effects of cooling jets on the velocity and temperature fields in a compact reverse flow combustor. The work is motivated by the need to limit the temperatures of post combustion gases in jet engines to values within the endurance capabilities of turbine blades. The application requires not only that the temperature be kept sufficiently low but also that a suitably tailored temperature profile be provided at the combustor exit, with higher temperatures generally permissible at the blade tip than at the blade root because of higher centrifugal loads at the root. Flows in reverse flow combustor accelerate both longitudinally because of area changes and transversely because of flow turning. The current project started with flow visualization experiments in water, using aqueous solutions of zinc bromide to model the relatively higher density of cooling jets.

  17. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Thermochemical Research Pathways with In Situ and Ex Situ Upgrading of Fast Pyrolysis Vapors

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Abhijit [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sahir, A. H. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tan, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Humbird, David [DWH Process Consulting, Denver, CO (United States); Snowden-Swan, Lesley J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Meyer, Pimphan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ross, Jeff [Harris Group, Inc., Seattle, WA (United States); Sexton, Danielle [Harris Group, Inc., Seattle, WA (United States); Yap, Raymond [Harris Group, Inc., Seattle, WA (United States); Lukas, John [Harris Group, Inc., Seattle, WA (United States)

    2015-03-01

    This report was developed as part of the U.S. Department of Energy’s Bioenergy Technologies Office’s efforts to enable the development of technologies for the production of infrastructure-compatible, cost-competitive liquid hydrocarbon fuels from biomass. Specifically, this report details two conceptual designs based on projected product yields and quality improvements via catalyst development and process integration. It is expected that these research improvements will be made within the 2022 timeframe. The two conversion pathways detailed are (1) in situ and (2) ex situ upgrading of vapors produced from the fast pyrolysis of biomass. While the base case conceptual designs and underlying assumptions outline performance metrics for feasibility, it should be noted that these are only two of many other possibilities in this area of research. Other promising process design options emerging from the research will be considered for future techno-economic analysis. Both the in situ and ex situ conceptual designs, using the underlying assumptions, project MFSPs of approximately $3.5/gallon gasoline equivalent (GGE). The performance assumptions for the ex situ process were more aggressive with higher distillate (diesel-range) products. This was based on an assumption that more favorable reaction chemistry (such as coupling) can be made possible in a separate reactor where, unlike in an in situ upgrading reactor, one does not have to deal with catalyst mixing with biomass char and ash, which pose challenges to catalyst performance and maintenance. Natural gas was used for hydrogen production, but only when off gases from the process was not sufficient to meet the needs; natural gas consumption is insignificant in both the in situ and ex situ base cases. Heat produced from the burning of char, coke, and off-gases allows for the production of surplus electricity which is sold to the grid allowing a reduction of approximately 5¢/GGE in the MFSP.

  18. Effect of strain rate on sooting limits in counterflow diffusion flames of gaseous hydrocarbon fuels: Sooting temperature index and sooting sensitivity index

    KAUST Repository

    Wang, Yu

    2014-05-01

    The effect of the strain rate on the sooting limits in counterflow diffusion flames was investigated in various gaseous hydrocarbon fuels by varying the nitrogen dilution in the fuel and oxidizer streams. The sooting limit was defined as the critical fuel and oxygen mole fraction at which soot started to appear in the elastic light scattering signal. The sooting region for normal alkane fuels at a specified strain rate, in terms of the fuel and oxygen mole fraction, expanded as the number of carbon atoms increased. The alkene fuels (ethylene, propene) tested had a higher propensity for sooting as compared with alkane fuels with the same carbon numbers (ethane, propane). Branched iso-butane had a higher propensity for sooting than did n-butane. An increase in the strain rate reduced the tendency for sooting in all the fuels tested. The sensitivity of the sooting limit to the strain rate was more pronounced for less sooting fuels. When plotted in terms of calculated flame temperature, the critical oxygen mole fraction exhibited an Arrhenius form under sooting limit conditions, which can be utilized to significantly reduce the effort required to determine sooting limits at different strain rates. We found that the limiting temperatures of soot formation flames are viable sooting metrics for quantitatively rating the sooting tendency of various fuels, based on comparisons with threshold soot index and normalized smoke point data. We also introduce a sooting temperature index and a sooting sensitivity index, two quantitative measures to describe sooting propensity and its dependence on strain rate. © 2013 The Combustion Institute.

  19. HZSM-5/MCM-41 composite molecular sieves for the catalytic cracking of endothermic hydrocarbon fuels: nano-ZSM-5 zeolites as the source

    Science.gov (United States)

    Sang, Yu; Jiao, Qingze; Li, Hansheng; Wu, Qin; Zhao, Yun; Sun, Kening

    2014-12-01

    A series of HZSM-5/MCM-41 composite molecular sieves (HZM-Ns ( x)) were prepared by employing nano-ZSM-5 zeolites with the SiO2/Al2O3 ratios ( x) of 50, 100 and 150 as the source. These materials were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive spectroscopy, transmission electron microscopy, N2 adsorption-desorption measurement, and NH3 temperature-programmed desorption. The catalytic cracking of endothermic hydrocarbon fuels over the HZM-Ns with n-decane as model was evaluated at atmospheric pressure and 500 °C. The effect of the parent zeolite, mesopore and SiO2/Al2O3 ratio on the structure, acidity, and catalytic performance of HZM-Ns was investigated. The HZM-Ns exhibited a skeletal matrix with nano-sized HZSM-5 particles (200-300 nm) with a controllable acidity well dispersed in and microporous-mesoporous hierarchical pores. The mesoporous structure improved the diffusion of the reactants and products in the pores, and the HZSM-5 nanoparticles uniformly dispersed in the MCM-41 matrix supplied a proper acidity, shorter channels, and a higher specific surface area for reaction. These resulted in a high catalytic activity, a high selectivity to light olefins and a long lifetime for n-decane catalytic cracking. The HZM-N (150) exhibited the excellent conversion, a high selectivity to light olefins and a long lifetime due to low diffusion resistance, high specific surface area, and appropriate acid distribution and strength, with the increasing SiO2/Al2O3 ratio.

  20. Micro-combustor for gas turbine engine

    Science.gov (United States)

    Martin, Scott M.

    2010-11-30

    An improved gas turbine combustor (20) including a basket (26) and a multiplicity of micro openings (29) arrayed across an inlet wall (27) for passage of a fuel/air mixture for ignition within the combustor. The openings preferably have a diameter on the order of the quenching diameter; i.e. the port diameter for which the flame is self-extinguishing, which is a function of the fuel mixture, temperature and pressure. The basket may have a curved rectangular shape that approximates the shape of the curved rectangular shape of the intake manifolds of the turbine.

  1. Variable volume combustor with aerodynamic support struts

    Energy Technology Data Exchange (ETDEWEB)

    Ostebee, Heath Michael; Johnson, Thomas Edward; Stewart, Jason Thurman; Keener, Christopher Paul

    2017-03-07

    The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles and a fuel injection system for providing a flow of fuel to the micro-mixer fuel nozzles. The fuel injection system may include a number of support struts supporting the fuel nozzles and providing the flow of fuel therethrough. The support struts may include an aerodynamic contoured shape so as to distribute evenly a flow of air to the micro-mixer fuel nozzles.

  2. Hydrocarbons Heterogeneous Pyrolysis: Experiments and Modeling for Scramjet Thermal Management

    CERN Document Server

    Bouchez, Marc; Visez, Nicolas; Herbinet, Olivier; Fournet, René; Marquaire, Paul-Marie

    2009-01-01

    The last years saw a renewal of interest for hypersonic research in general and regenerative cooling specifically, with a large increase of the number of dedicated facilities and technical studies. In order to quantify the heat transfer in the cooled structures and the composition of the cracked fuel entering the combustor, an accurate model of the thermal decomposition of the fuel is required. This model should be able to predict the fuel chemical composition and physical properties for a broad range of pressures, temperatures and cooling geometries. For this purpose, an experimental and modeling study of the thermal decomposition of generic molecules (long-chain or polycyclic alkanes) that could be good surrogates of real fuels, has been started at the DCPR laboratory located in Nancy (France). This successful effort leads to several versions of a complete kinetic model. These models do not assume any effect from the material that constitutes the cooling channel. A specific experimental study was performed ...

  3. Syngas combustor for fluidized bed applications

    Energy Technology Data Exchange (ETDEWEB)

    Brushwood, J.

    1999-07-01

    The Siemens Westinghouse Multi-Annular Swirl Burner (MASB) is a rich-quench-lean gas turbine combustor for use primarily on synthetic fuel gases made by gasifying solid fuels (coal or biomass). These fuels contain high amounts of fuel bound nitrogen, primarily as ammonia, which are converted to molecular nitrogen rather than to nitrogen oxides in the rich zone of this combustor. The combustor can operate in many modes. In second-generation pressurized fluidized bed combustion (PFBC) applications, the fuel gas is burned in a hot, depleted oxygen air stream generated in a fluid bed coal combustor. In 1-1/2 generation PFBC applications, natural gas is burned in this vitiated air stream. In an integrated gasification combined cycle (IGCC) application, the synthetic fuel gas is burned in turbine compressor air. In this paper, the MASB technology is described. Recent results of tests at the University of Tennessee Space Institute (UTSI) for these various operation modes on a full scale basket are summarized. The start-up and simple cycle operating experience on propane at the Wilsonville Power Systems Development Facility (PSDF) are also described. In addition, the design issues related to the integration of the MASB in the City of Lakeland PCFB Clean Coal Demonstration Project is summarized.

  4. Thermal Imaging Control of Furnaces and Combustors

    Energy Technology Data Exchange (ETDEWEB)

    David M. Rue; Serguei Zelepouga; Ishwar K. Puri

    2003-02-28

    The object if this project is to demonstrate and bring to commercial readiness a near-infrared thermal imaging control system for high temperature furnaces and combustors. The thermal imaging control system, including hardware, signal processing, and control software, is designed to be rugged, self-calibrating, easy to install, and relatively transparent to the furnace operator.

  5. Computation of Three-Dimensional Combustor Performance

    Science.gov (United States)

    Srivatsa, S.

    1985-01-01

    Existing steady-state 3-D computer program for calculating gasturbine flow fields modified to include computation of soot and nitrogen oxide emission. In addition, radiation calculation corrected for soot particles. These advanced tools offer potential of reducing design and development time required for gas-turbine combustors.

  6. Core/Combustor Noise - Research Overview

    Science.gov (United States)

    Hultgren, Lennart S.

    2017-01-01

    Contributions from the combustor to the overall propulsion noise of civilian transport aircraft are starting to become important due to turbofan design trends and advances in mitigation of other noise sources. Future propulsion systems for ultra-efficient commercial air vehicles are projected to be of increasingly higher bypass ratio from larger fans combined with much smaller cores, with ultra-clean burning fuel-flexible combustors. Unless effective noise-reduction strategies are developed, combustor noise is likely to become a prominent contributor to overall airport community noise in the future. This presentation gives a brief overview of the NASA outlook on pertinent issues and far-term research needs as well as current and planned research in the core/combustor-noise area. The research described herein is aligned with the NASA Ultra-Efficient Commercial Transport strategic thrust and is supported by the NASA Advanced Air Vehicle Program, Advanced Air Transport Technology Project, under the Aircraft Noise Reduction Subproject. The overarching goal of the Advanced Air Transport Technology (AATT) Project is to explore and develop technologies and concepts to revolutionize the energy efficiency and environmental compatibility of fixed wing transport aircrafts. These technological solutions are critical in reducing the impact of aviation on the environment even as this industry and the corresponding global transportation system continue to grow.

  7. A Compact Safe Cold-Start (CS2) System for Scramjets using Dilute Triethylaluminum Fuel Mixtures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal leverages a highly successful Phase 1 feasibility effort to further develop a system that satisfies the cold-start requirements of scramjet engines....

  8. 40 CFR 60.53b - Standards for municipal waste combustor operating practices.

    Science.gov (United States)

    2010-07-01

    ... Modular excess air 50 4 Refuse-derived fuel stoker 150 24 Bubbling fluidized bed combustor 100 4 Circulating fluidized bed combustor 100 4 Pulverized coal/refuse-derived fuel mixed fuel-fired combustor 150...

  9. Assumed PDF modeling in rocket combustor simulations

    Science.gov (United States)

    Lempke, M.; Gerlinger, P.; Aigner, M.

    2013-03-01

    In order to account for the interaction between turbulence and chemistry, a multivariate assumed PDF (Probability Density Function) approach is used to simulate a model rocket combustor with finite-rate chemistry. The reported test case is the PennState preburner combustor with a single shear coaxial injector. Experimental data for the wall heat flux is available for this configuration. Unsteady RANS (Reynolds-averaged Navier-Stokes) simulation results with and without the assumed PDF approach are analyzed and compared with the experimental data. Both calculations show a good agreement with the experimental wall heat flux data. Significant changes due to the utilization of the assumed PDF approach can be observed in the radicals, e. g., the OH mass fraction distribution, while the effect on the wall heat flux is insignificant.

  10. LES Modeling of Supersonic Combustion at SCRAMJET Conditions

    Science.gov (United States)

    Vane, Zachary; Lacaze, Guilhem; Oefelein, Joseph

    2016-11-01

    Results from a series of large-eddy simulations (LES) of the Hypersonic International Flight Research Experiment (HIFiRE) are examined with emphasis placed on the coupled performance of the wall and combustion models. The test case of interest corresponds to the geometry and conditions found in the ground based experiments performed in the HIFiRE Direct Connect Rig (HDCR) in dual-mode operation. In these calculations, the turbulence and mixing characteristics of the high Reynolds number turbulent boundary layer with multi-species fuel injection are analyzed using a simplified chemical model and combustion closure to predict the heat release measured experimentally. These simulations are then used to identify different flame regimes in the combustor section. Concurrently, the performance of an equilibrium wall-model is evaluated in the vicinity of the fuel injectors and in the flame-holding cavity where regions of boundary layer and thermochemical non-equilibrium are present. Support for this research was provided by the Defense Advanced Research Projects Agency (DARPA).

  11. Operational Characteristics of an Ultra Compact Combustor

    Science.gov (United States)

    2014-03-27

    Combustion simulator generated temperature profiles and b) commercial engine combustor temperature profiles [30]. Samuelson [31] describes why...better suited to handle the elevated heat flux. Thus, the desired temperature profile is skewed towards the OD. Samuelson [31] further defines both...backward facing step (Figure 2.30b) delivered the most desirable exit profile per Samuelson [31] and was utilized by 53 Zelina [10]. The downward angled

  12. Catalytic Combustor for Fuel-Flexible Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Laster, W. R.; Anoshkina, E.

    2008-01-31

    Under the sponsorship of the U. S. Department of Energy’s National Energy Technology Laboratory, Siemens Westinghouse has conducted a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1- Implementation Plan, Phase 2- Validation Testing and Phase 3 – Field Testing. Both Phase 1 and Phase 2 of the program have been completed. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCLTM) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to oxidize a portion of the fuel, increasing the temperature of fuel/air mixture prior to the main combustion zone. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the technology necessary for the application of the catalytic concept to IGCC fuels was developed through detailed design and subscale testing. Phase III (currently not funded) will consist of full-scale combustor basket testing on natural gas and syngas.

  13. Catalytic Combustor for Fuel-Flexible Turbine

    Energy Technology Data Exchange (ETDEWEB)

    W. R. Laster; E. Anoshkina

    2008-01-31

    Under the sponsorship of the U. S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse has conducted a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1 - Implementation Plan, Phase 2 - Validation Testing and Phase 3 - Field Testing. Both Phase 1 and Phase 2 of the program have been completed. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCLTM) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to oxidize a portion of the fuel, increasing the temperature of fuel/air mixture prior to the main combustion zone. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the technology necessary for the application of the catalytic concept to IGCC fuels was developed through detailed design and subscale testing. Phase III (currently not funded) will consist of full-scale combustor basket testing on natural gas and syngas.

  14. Apparatus and method for cooling a combustor cap

    Science.gov (United States)

    Zuo, Baifang; Washam, Roy Marshall; Wu, Chunyang

    2014-04-29

    A combustor includes an end cap having a perforated downstream plate and a combustion chamber downstream of the downstream plate. A plenum is in fluid communication with the downstream plate and supplies a cooling medium to the combustion chamber through the perforations in the downstream plate. A method for cooling a combustor includes flowing a cooling medium into a combustor end cap and impinging the cooling medium on a downstream plate in the combustor end cap. The method further includes flowing the cooling medium into a combustion chamber through perforations in the downstream plate.

  15. A comparative study of scramjet injection strategies for high Mach numbers flows

    Science.gov (United States)

    Riggins, D. W.; Mcclinton, C. R.; Rogers, R. C.; Bittner, R. D.

    1992-01-01

    A simple method for predicting the axial distribution of supersonic combustor thrust potential is described. A complementary technique for illustrating the spatial evolution and distribution of thrust potential and loss mechanisms in reacting flows is developed. Wall jet cases and swept ramp injector cases for Mach 17 and Mach 13.5 flight enthalpy inflow conditions are numerically modeled and analyzed using these techniques. The visualization of thrust potential in the combustor for the various cases examined provides a unique tool for increasing understanding of supersonic combustor performance potential.

  16. Methods for determining the internal thrust of scramjet engine modules from experimental data

    Science.gov (United States)

    Voland, Randall T.

    1990-01-01

    Methods for calculating zero-fuel internal drag of scramjet engine modules from experimental measurements are presented. These methods include two control-volume approaches, and a pressure and skin-friction integration. The three calculation techniques are applied to experimental data taken during tests of a version of the NASA parametric scramjet. The methods agree to within seven percent of the mean value of zero-fuel internal drag even though several simplifying assumptions are made in the analysis. The mean zero-fuel internal drag coefficient for this particular engine is calculated to be 0.150. The zero-fuel internal drag coefficient when combined with the change in engine axial force with and without fuel defines the internal thrust of an engine.

  17. Experimental Investigation of Brazilian 14-X B Hypersonic Scramjet Aerospace Vehicle

    Directory of Open Access Journals (Sweden)

    João Felipe de Araujo Martos

    2017-01-01

    Full Text Available The Brazilian hypersonic scramjet aerospace vehicle 14-X B is a technological demonstrator of a hypersonic airbreathing propulsion system based on the supersonic combustion (scramjet to be tested in flight into the Earth’s atmosphere at an altitude of 30 km and Mach number 7. The 14-X B has been designed at the Prof. Henry T. Nagamatsu Laboratory of Aerothermodynamics and Hypersonics, Institute for Advanced Studies (IEAv, Brazil. The IEAv T3 Hypersonic Shock Tunnel is a ground-test facility able to produce high Mach number and high enthalpy flows in the test section close to those encountered during the flight of the 14-X B into the Earth’s atmosphere at hypersonic flight speeds. A 1 m long stainless steel 14-X B model was experimentally investigated at T3 Hypersonic Shock Tunnel, for freestream Mach numbers ranging from 7 to 8. Static pressure measurements along the lower surface of the 14-X B, as well as high-speed Schlieren photographs taken from the 5.5° leading edge and the 14.5° deflection compression ramp, provided experimental data. Experimental data was compared to the analytical theoretical solutions and the computational fluid dynamics (CFD simulations, showing good qualitative agreement and in consequence demonstrating the importance of these methods in the project of the 14-X B hypersonic scramjet aerospace vehicle.

  18. Catastrophe,hysteresis and bifurcation of mode transition in scramjet engines and its model

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    This paper describes a class of nonlinear phenomena existing in the hypersonic flow and supersonic combustion process of scramjet engines:catastrophe,hysteresis and bifurcation,and further finds out the general rules(topological invariance)for the stability boundaries of mode transition in scramjet engines.With this topological invariance,a topological approach is put forward to model the stability boundaries,which may contribute to a complexity reduction of high-dimensional modeling when con-sidering more perturbation parameters,and help to explore the physical laws of the nonlinear phe-nomena.Accordingly,this paper interprets the characteristic of combustion mode transition based on the cusp topological model in singular theories,and observes the bifurcation characteristic in com-bustion mode transition.Moreover,a modeling approach is proposed to mathematically describe the stability boundaries of combustion mode transition in scramjet engines,and the model has high ac-curacy comparing to the simulation data,which proves the validation of the basic ideas proposed in this paper.Finally,future research directions are proposed.

  19. Catastrophe, hysteresis and bifurcation of mode transition in scramjet engines and its model

    Institute of Scientific and Technical Information of China (English)

    YU DaRen; CUI Tao; BAO Wen

    2009-01-01

    This paper describes a class of nonlinear phenomena existing in the hypersonic flow and supersonic combustion process of scramjet engines: catastrophe, hysteresis and bifurcation, and further finds out the general rules (topological invariance) for the stability boundaries of mode transition in scramjet engines. With this topological invariance, a topological approach is put forward to model the stability boundaries, which may contribute to a complexity reduction of high-dimensional modeling when con-sidering more perturbation parameters, and help to explore the physical laws of the nonlinear phe-nomena. Accordingly, this paper interprets the characteristic of combustion mode transition based on the cusp topological model in singular theories, and observes the bifurcation characteristic in com-bustion mode transition. Moreover, a modeling approach is proposed to mathematically describe the stability boundaries of combustion mode transition in scramjet engines, and the model has high ac-curacy comparing to the simulation data, which proves the validation of the basic ideas proposed in this paper. Finally, future research directions are proposed.

  20. Luminescent Measurement Systems for the Investigation of a Scramjet Inlet-Isolator

    Directory of Open Access Journals (Sweden)

    Azam Che Idris

    2014-04-01

    Full Text Available Scramjets have become a main focus of study for many researchers, due to their application as propulsive devices in hypersonic flight. This entails a detailed understanding of the fluid mechanics involved to be able to design and operate these engines with maximum efficiency even at their off-design conditions. It is the objective of the present cold-flow investigation to study and analyse experimentally the mechanics of the fluid structures encountered within a generic scramjet inlet at M = 5. Traditionally, researchers have to rely on stream-thrust analysis, which requires the complex setup of a mass flow meter, a force balance and a heat transducer in order to measure inlet-isolator performance. Alternatively, the pitot rake could be positioned at inlet-isolator exit plane, but this method is intrusive to the flow, and the number of pitot tubes is limited by the model size constraint. Thus, this urgent need for a better flow diagnostics method is addressed in this paper. Pressure-sensitive paint (PSP has been applied to investigate the flow characteristics on the compression ramp, isolator surface and isolator sidewall. Numerous shock-shock interactions, corner and shoulder separation regions, as well as shock trains were captured by the luminescent system. The performance of the scramjet inlet-isolator has been shown to improve when operated in a modest angle of attack.

  1. Variable volume combustor with nested fuel manifold system

    Energy Technology Data Exchange (ETDEWEB)

    McConnaughhay, Johnie Franklin; Keener, Christopher Paul; Johnson, Thomas Edward; Ostebee, Heath Michael

    2016-09-13

    The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles, a fuel manifold system in communication with the micro-mixer fuel nozzles to deliver a flow of fuel thereto, and a linear actuator to maneuver the micro-mixer fuel nozzles and the fuel manifold system.

  2. Variable volume combustor with pre-nozzle fuel injection system

    Energy Technology Data Exchange (ETDEWEB)

    Keener, Christopher Paul; Johnson, Thomas Edward; McConnaughhay, Johnie Franklin; Ostebee, Heath Michael

    2016-09-06

    The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of fuel nozzles, a pre-nozzle fuel injection system supporting the fuel nozzles, and a linear actuator to maneuver the fuel nozzles and the pre-nozzle fuel injection system.

  3. Gas turbine combustor insensitive to compressor outlet distortion

    Science.gov (United States)

    Humenik, F.; Norgren, C. T.

    1970-01-01

    Short-length annular combustor for turbojet engines eliminates change of exit temperature profile. Individual scoops of full annular height control air distribution so that shifts in the radial velocity profile of air entering the combustor will not affect combustion process or alter exit temperature profile.

  4. System and method for reducing combustion dynamics in a combustor

    Energy Technology Data Exchange (ETDEWEB)

    Uhm, Jong Ho; Ziminsky, Willy Steve; Johnson, Thomas Edward; Srinivasan, Shiva; York, William David

    2016-11-29

    A system for reducing combustion dynamics in a combustor includes an end cap that extends radially across the combustor and includes an upstream surface axially separated from a downstream surface. A combustion chamber is downstream of the end cap, and tubes extend from the upstream surface through the downstream surface. Each tube provides fluid communication through the end cap to the combustion chamber. The system further includes means for reducing combustion dynamics in the combustor. A method for reducing combustion dynamics in a combustor includes flowing a working fluid through tubes that extend axially through an end cap that extends radially across the combustor and obstructing at least a portion of the working fluid flowing through a first set of the tubes.

  5. Numerical investigation of recirculation in the UTSI MHD combustor

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, R.J.; Lee, J.J.; Giel, T.V. Jr.

    1983-09-01

    Numerical studies were carried out to investigate the gross structure of flow in cylindrical combustors. The combustor configurations studied are variations of a working design used at the University of Tennessee Space Institute to burn pulverized coal at temperatures in excess of 3000K for generation of a plasma feeding a magnetohydrodynamic channel. The numerical studies were conducted for an isothermal fluid; the main objective of the calculations was to study the effect of the oxidant injection pattern on the gross structure of recirculating flows within the combustor. The calculations illustrate the basic features of the flow in combustors of this type and suggest implications for the injection of coal and oxidizer in this type of combustor.

  6. System and method for reducing combustion dynamics in a combustor

    Science.gov (United States)

    Uhm, Jong Ho; Ziminsky, Willy Steve; Johnson, Thomas Edward; Srinivasan, Shiva; York, William David

    2016-11-29

    A system for reducing combustion dynamics in a combustor includes an end cap that extends radially across the combustor and includes an upstream surface axially separated from a downstream surface. A combustion chamber is downstream of the end cap, and tubes extend from the upstream surface through the downstream surface. Each tube provides fluid communication through the end cap to the combustion chamber. The system further includes means for reducing combustion dynamics in the combustor. A method for reducing combustion dynamics in a combustor includes flowing a working fluid through tubes that extend axially through an end cap that extends radially across the combustor and obstructing at least a portion of the working fluid flowing through a first set of the tubes.

  7. Coal desulfurization in a rotary kiln combustor

    Energy Technology Data Exchange (ETDEWEB)

    Cobb, J.T. Jr.

    1992-09-11

    The purpose of this project was to demonstrate the combustion of coal and coal wastes in a rotary kiln reactor with limestone addition for sulfur control. The rationale for the project was the perception that rotary systems could bring several advantages to combustion of these fuels, and may thus offer an alternative to fluid-bed boilers. Towards this end, an existing wood pyrolysis kiln (the Humphrey Charcoal kiln) was to be suitably refurbished and retrofitted with a specially designed version of a patented air distributor provided by Universal Energy, Inc. (UEI). As the project progressed beyond the initial stages, a number of issues were raised regarding the feasibility and the possible advantages of burning coals in a rotary kiln combustor and, in particular, the suitability of the Humphrey Charcoal kiln as a combustor. Instead, an opportunity arose to conduct combustion tests in the PEDCO Rotary Cascading-Bed Boiler (RCBB) commercial demonstration unit at the North American Rayon CO. (NARCO) in Elizabethton, TN. The tests focused on anthracite culm and had two objectives: (a) determine the feasibility of burning anthracite culms in a rotary kiln boiler and (b) obtain input for any further work involving the Humphrey Charcoal kiln combustor. A number of tests were conducted at the PEDCO unit. The last one was conducted on anthracite culm procured directly from the feed bin of a commercial circulating fluid-bed boiler. The results were disappointing; it was difficult to maintain sustained combustion even when large quantities of supplemental fuel were used. Combustion efficiency was poor, around 60 percent. The results suggest that the rotary kiln boiler, as designed, is ill-suited with respect to low-grade, hard to burn solid fuels, such as anthracite culm. Indeed, data from combustion of bituminous coal in the PEDCO unit suggest that with respect to coal in general, the rotary kiln boiler appears inferior to the circulating fluid bed boiler.

  8. Pulse Combustor Design, A DOE Assessment

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2003-07-31

    The goal of the U.S. Department of Energy's (DOE) Clean Coal Technology (CCT) program is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have developed beyond the proof-of-concept stage. This document serves as a DOE post-project assessment (PPA) of a project selected in CCT Round IV, the Pulse Combustor Design Qualification Test, as described in a Report to Congress (U.S. Department of Energy 1992). Pulse combustion is a method intended to increase the heat-transfer rate in a fired heater. The desire to demonstrate the use of pulse combustion as a source of heat for the gasification of coal, thus avoiding the need for an oxygen plant, prompted ThermoChem, Inc. (TCI), to submit a proposal for this project. In October 1992, TCI entered into a cooperative agreement with DOE to conduct this project. In 1998, the project was restructured and scaled down, and in September 1998, a new cooperative agreement was signed. The site of the revised project was TCI's facilities in Baltimore, Maryland. The original purpose of this CCT project was to demonstrate a unit that would employ ten identical 253-resonance tube combustors in a coal gasification unit. The objective of the scaled-down project was to test a single 253-resonance-tube combustor in a fluidized sand bed, with gasification being studied in a process development unit (PDU). DOE provided 50 percent of the total project funding of $8.6 million. The design for the demonstration unit was completed in February 1999, and construction was completed in November 2000. Operations were conducted in March 2001.

  9. 面向总体设计的超燃冲压发动机空气流量%Design-oriented research of air mass flux characteristic for scramjet

    Institute of Scientific and Technical Information of China (English)

    田宪科; 唐硕; 田宪长

    2014-01-01

    With regard to air mass flux characteristic of scramjet for airbreathing hypersonic flight vehicle,mathematical model of design-oriented air mass flux characteristic was derived by means of force analysis,energy conservation principle,specific impulse definition and so on.What’s more,design-oriented air mass flux characteristic was contrasted and analyzed in combination with in-stance in terms of quantitative and qualitative analysis.The results show that air mass flux obviously decreases by making use of hy-drocarbon fuel and air launch.Variation trend of cruising range was contrary to that of cruising speed,which requires optimization a-bout the both parameters.Air overflow and appropriate equivalent specific fuel consumption were required with mass reduction during cruise flight.%针对吸气式高超声速巡航飞行器超燃冲压发动机的空气流量设计问题,通过受力分析、能量守恒和比冲定义等基本原理,提出了面向总体设计的空气流量数学模型,给出了验证算例并且结合实例从定量和定性角度分别对空气流量进行了对比和分析。研究结果表明,面向总体设计的空气流量数学模型简洁正确可靠;采用碳氢燃料和空中发射所需要的空气流量明显减小;航程和巡航速度对空气流量的影响趋势异步,二者需要最优化折中;巡航飞行时随着飞行器质量的减小,应有适当空气溢流或恰当减小燃烧化学当量比。

  10. Combustor nozzles in gas turbine engines

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Thomas Edward; Keener, Christopher Paul; Stewart, Jason Thurman; Ostebee, Heath Michael

    2017-09-12

    A micro-mixer nozzle for use in a combustor of a combustion turbine engine, the micro-mixer nozzle including: a fuel plenum defined by a shroud wall connecting a periphery of a forward tube sheet to a periphery of an aft tubesheet; a plurality of mixing tubes extending across the fuel plenum for mixing a supply of compressed air and fuel, each of the mixing tubes forming a passageway between an inlet formed through the forward tubesheet and an outlet formed through the aft tubesheet; and a wall mixing tube formed in the shroud wall.

  11. Microwave-assisted Pyrolysis of Swida wilsoniana Fruit Oil Soap for Preparing Renewable Hydrocarbon Fuel via Selective Decarboxylation%微波裂解光皮树油皂化物脱羧制备烃类燃料研究

    Institute of Scientific and Technical Information of China (English)

    刘玉环; 王允圃; 王应宽; 万益琴; 张锦胜; 阮榕生

    2012-01-01

    以光皮树果实油脂通过皂化反应获得的皂类为研究对象,利用微波裂解选择性加热优势开展皂类脱羧制备烃类燃料研究.通过气质联用等方法对裂解产物的分析表明,单纯钠皂微波裂解所得到液态产物一般都在皂类干质量的70%以上,裂解液态产物的密度为0.850~0.875 g/cm3,运动粘度为2.09 ~2.85 mm2/s,与柴油的性质基本相似.裂解液态产物中最高峰是十五碳烯,证实脱羧是皂类微波裂解的主要反应形式.%In order to prepare hydrocarbon fuel, sodium soap made from Swida wilsoniana fruit oil was chosen as a model compound with significant molecular polarity for preparing hydrocarbon fuel by microwave-assisted pyrolysis. The result showed that the hydrocarbon content were usually above 70% . In addition, its density and dynamic viscosity were 0. 850 ~ 0. 875 g/cm and 2. 09 ~ 2. 85 mm /s, respectively, similar with petroleum diesel. The highest peak in the GC - MS profile of liquid product was fifteen carbon alkenes, decarboxylation was proved to be main reaction in microwave-assisted pyrolysis.

  12. Hydrodynamics in atmospheric fluidized bed coal combustors. Fluodinamica en combustores atmosfericos de carbon en lecho fluidizado

    Energy Technology Data Exchange (ETDEWEB)

    Adanez, J.; Abanades, J.C.; Fernandez, I. (Instituto de Carboquimica, Zaragoza (Spain))

    1990-01-01

    The different flow regimes present in an atmospheric fluidized bed coal combustor have been analyzed depending on working conditions (u, {rho}{sub s}, h{sub bed}). The minimum fluidizing velocity u{sub mf} is a basic parameter for these analyses. Also, there is a great discrepancy between the equations proposed by different workers, for calculating u{sub mf} in the usual conditions of operation in combustors of this kind. By this, the experimental u{sub mf} of limestone and partially sulphated lime has been determined at ambient temperature and 850{degree}C. In plots u vs d{sub p}, maps of flow have been constructed recognizing the different regions and flow regimes. Also, the effect of {rho} {sub s} and bed height over these maps of flow has been analyzed. 16 refs., 8 figs., 1 tab.

  13. Non-linear dynamics in pulse combustor: A review

    Indian Academy of Sciences (India)

    Sirshendu Mondal; Achintya Kukhopadhyay; Swarnendu Sen

    2015-03-01

    The state of the art of non-linear dynamics applied to pulse combustor theoretically and experimentally is reviewed. Pulse combustors are a class of air-breathing engines in which pulsations in combustion are utilized to improve the performance. As no analytical solution can be obtained for most of the nonlinear systems, the whole set of solutions can be investigated with the help of dynamical system theory. Many studies have been carried out on pulse combustors whose dynamics include limit cycle behaviour, Hopf bifurcation and period-doubling bifurcation. The dynamic signature has also been used for early prediction of extinction.

  14. Induction time effects in pulse combustors

    Energy Technology Data Exchange (ETDEWEB)

    Bell, J B; Marcus, D L; Pember, R B

    1999-04-09

    Combustion systems that take advantage of a periodic combustion process have many advantages over conventional systems. Their rate of heat transfer is greatly enhanced and their pollutant emissions are lower. They draw in their own supply of fuel and air and they are self-venting. They have few moving parts. The most common type of pulse combustor is based on a Helmholtz resonator - a burning cycle drives a resonant pressure wave, which in turn enhances the rate of combustion, resulting in a self-sustaining, large-scale oscillation. Although the basic physical mechanisms controlling such a process were explained by Rayleigh over a century ago, a full understanding of the operation of a pulse combustor still does not exist. The dominant processes in such a system--combustion, turbulent fluid dynamics, acoustics--are highly coupled and interact nonlinearly, which has reduced the design process to a costly and inefficient trial-and-error procedure. Several recent numerical and experimental studies, however, have been focused towards a better understanding of the basic underlying physics. Barr et al. [l] have elucidated the relative roles of the time scales governing the energy release, the turbulent mixing, and the acoustics. Keller et al. [5] have demonstrated the importance of the phase relation between the resonant pressure field in the tailpipe and the periodic energy release. Marcus et al. [6] have developed the capability for a fully three-dimensional simulation of the reacting flow in a pulse combustor. This paper is an application of that methodology to a detailed investigation of the frequency response of the model to changes in the chemical kinetics. The methodology consists of a fully conservative second-order Godunov algorithm for the inviscid, reacting gas dynamics equations coupled to an adaptive mesh refinement procedure[2]. The axisymmetric and three-dimensional simulations allow us to explore in detail the interaction between the transient fluid

  15. Alleviation of Facility/Engine Interactions in an Open-Jet Scramjet Test Facility

    Science.gov (United States)

    Albertson, Cindy W.; Emami, Saied

    2001-01-01

    Results of a series of shakedown tests to eliminate facility/engine interactions in an open-jet scramjet test facility are presented. The tests were conducted with the NASA DFX (Dual-Fuel eXperimental scramjet) engine in the NASA Langley Combustion Heated Scramjet Test Facility (CHSTF) in support of the Hyper-X program, The majority of the tests were conducted at a total enthalpy and pressure corresponding to Mach 5 flight at a dynamic pressure of 734 psf. The DFX is the largest engine ever tested in the CHSTF. Blockage, in terms of the projected engine area relative to the nozzle exit area, is 81% with the engine forebody leading edge aligned with the upper edge of the facility nozzle such that it ingests the nozzle boundary layer. The blockage increases to 95% with the engine forebody leading edge positioned 2 in. down in the core flow. Previous engines successfully tested in the CHSTF have had blockages of no more than 51%. Oil flow studies along with facility and engine pressure measurements were used to define flow behavior. These results guided modifications to existing aeroappliances and the design of new aeroappliances. These changes allowed fueled tests to be conducted without facility interaction effects in the data with the engine forebody leading edge positioned to ingest the facility nozzle boundary layer. Interaction effects were also reduced for tests with the engine forebody leading edge positioned 2 in. into the core flow, however some interaction effects were still evident in the engine data. A new shroud and diffuser have been designed with the goal of allowing fueled tests to be conducted with the engine forebody leading edge positioned in the core without facility interaction effects in the data. Evaluation tests of the new shroud and diffuser will be conducted once ongoing fueled engine tests have been completed.

  16. Oxy-combustor operable with supercritical fluid

    Energy Technology Data Exchange (ETDEWEB)

    Brun, Klaus; McClung, Aaron M.; Owston, Rebecca A.

    2017-04-04

    An oxy-combustor is provided which comprises a combustion vessel including at least one solid fuel slurry inlet port, at least one oxygen inlet port and at least one supercritical fluid inlet port, wherein the combustion vessel is operable at an operating pressure of at least 1,100 psi; an interior of the combustion vessel comprises a combustion chamber and a supercritical fluid infusion chamber surrounding at least a part of the combustion chamber, the supercritical fluid infusion chamber and the combustion chamber are separated by a porous liner surrounding the combustion chamber, and the supercritical infusion chamber is located between the porous liner and an outer casing of the combustion vessel.

  17. Application of numerical analysis to jet engine combustor design

    Energy Technology Data Exchange (ETDEWEB)

    To, H. (Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan))

    1991-04-01

    The design and development process of jet engine combustors in Ishikawajima-Harima Heavy Industries Co., Ltd. was presented which is featured by iterated numerical analyses in earlier stages of design. The analytical methods used, models applied and features were given together with verification results of numerical analyses of a velocity profile in a dump diffuser, flow and temperature distribution in a combustion liner, and liner skin temperature distribution. As examples in design and development of an airblast fuel injector type high temperature combustor, analytical results of the followings were given: flows through a diffuser, flows through a combustion liner, flows through liner cooling slots and liner skin temperature distribution. In addition, results of three-dimensional flow analysis were given in terms of optimization of design parameters for a jet-swirl combustor and calculation of a centrifugal force for a jet-swirl combustor liner as examples. 6 refs., 18 figs., 1 tab.

  18. Variable volume combustor with an air bypass system

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Thomas Edward; Ziminsky, Willy Steve; Ostebee, Heath Michael; Keener, Christopher Paul

    2017-02-07

    The present application provides a combustor for use with flow of fuel and a flow of air in a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles positioned within a liner and an air bypass system position about the liner. The air bypass system variably allows a bypass portion of the flow of air to bypass the micro-mixer fuel nozzles.

  19. Aerotrace. Measurement of particulates from an engine combustor

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, C.D. [DRA, Farnborough (United Kingdom)

    1997-12-31

    The effect of gas turbine operating conditions, inlet temperature, pressure and overall air fuel ratio, on particulate number density has been measured. Particulate number density was found to be proportional to combustor inlet pressure and decrease with increasing combustor inlet temperature. The relationship with air fuel ratio is more complex. The mechanism of particulate loss down sample lines has been elucidated and equations are presented to predict particulate losses for stainless steel and PTFE sample lines. (author) 3 refs.

  20. Transient heat transfer properties in a pulse detonation combustor

    OpenAIRE

    Fontenot, Dion G.

    2011-01-01

    Approved for public release; distribution is unlimited. The heat transfer along the axis of a pulse detonation combustor has been characterized for various frequencies and fill fractions at 2.5 atmospheres of pressure for chamber refresh conditions. In a pulse detonation combustor, a supersonic detonation wave is the method for transforming chemical energy into mechanical energy and the wave propagates much faster than the subsonic flames in devices such as rockets and ramjets. The flow...

  1. 三维磁流体强化超燃冲压发动机数值模拟%Simulation of three-dimensional magnetohydrodynamic enhanced scramjet

    Institute of Scientific and Technical Information of China (English)

    郑小梅; 杨兴宇

    2012-01-01

    Simulation model of the three-dimensional magnetohydrodynamic(MHD) enhanced scramjet viscous inner flow field was established.Geometry of a scramjet applied both MHD controlled inlet and MHD energy bypass was designed at Ma=6.Numerical simulation was performed,and three-dimensional flow field structure,distribution pattern of the electric parameters,and characteristics of energy transformation were analyzed.The results show when flight Ma=8,MHD controlled inlet can be used to draw the compressive shock waves back to the cowl lip,the separation zone disappears,and the flow field of the inner inlet recovers to the design condition.The MHD energy bypass can decrease Ma of the flow before combustor efficiently,so as to improve engine performance.In the MHD generator,distributions of flow and electric parameters are comparatively ideal to make efficient effect,while the MHD accelerator needs large amount of energy input to make a significant acceleration.In the MHD accelerator,Joule heating dissipation is severe near the electrodes,which results in local high temperature,flow field complication and performance deterioration of the MHD accelerator.%建立了三维磁流体强化超燃冲压发动机内部黏性流场的求解模型.针对马赫数为6设计了联合应用磁控进气道和磁流体能量旁路的磁流体强化超燃冲压发动机模型.针对该模型进行了数值模拟研究,分析其中的三维流场结构、电参数分布规律以及能量转换特性.结果表明:当飞行马赫数为8时,磁控进气道的应用能够使头部压缩激波回到唇口,使分离区消失,内进气道中的流动恢复到设计状态.磁流体能量旁路可有效降低燃烧室入口处的马赫数,从而改善发动机性能.其中发生器中的流动参数和电参数的分布比较理想,效果显著;而加速器要取得显著的加速效果则需要人量的能量输入.在加速器中,电极附近焦耳耗散严重,导致局部高温

  2. Review of Systems for Photocatalytic Conversion of CO2 to Hydrocarbon Fuels%光催化CO2转化为碳氢燃料体系的综述

    Institute of Scientific and Technical Information of China (English)

    蓝奔月; 史海峰

    2014-01-01

    Increasing global warming and energy shortage caused by traditional fossil energy combustion to carbon dioxide (CO2) has become a significant global issue in view of humansʹcontinuing development. The photocatalytic reduction of CO2 produced from hydrocarbon fuels using solar light and semiconductor photocatalytic materials could not only decrease the concentration of carbon dioxide in the atmosphere and thus reduce the greenhouse warming effect, but also provide hydrocarbon fuels to partial y al eviate the energy shortage crisis. Hence, the photocatalysis technique has attracted considerable attention in industry and academic areas. In this paper, the fundamental principles of heterogeneous photocatalysis and the recent progress in the photocatalytic reduction of CO2 to hydrocarbon fuels are introduced and reviewed. Based on previous reports in the field of photocatalysis research, the main types of semiconductors capable of photocatalytic reduction of carbon dioxide can be summarized as fol ows: pure TiO2 photocatalysts, ABO3 perovskite-structured photocatalysts, spinel-structured photocatalysts, doped oxide photocatalysts, composite semiconductor photocatalysts, V-, W-, Ge-, Ga-based photocatalysts, and graphene-based photocatalysts. In addition, the characteristics of various photocatalytic materials and some factors affecting photocatalytic activities are reviewed and analyzed. Final y, the prospects and chal enges for developing new photocatalysts for CO2 reduction are presented.%传统化石能源燃烧产生CO2引起的地球变暖和能源短缺已经成为一个严重的全球性问题。利用太阳光和光催化材料将CO2还原为碳氢燃料,不仅可以减少空气中CO2浓度,降低温室效应的影响,还可以提供碳氢燃料,缓解能源短缺问题,因此日益受到各国科学家的高度关注。本文综述了光催化还原CO2为碳氢燃料的研究进展,介绍了光催化还原CO2的反应机理,并对

  3. Laser-Induced Thermal Acoustics Theory and Expected Experimental Errors when Applied to a Scramjet Isolator Model

    Science.gov (United States)

    Middleton, Troy F.; Balla, Robert Jeffrey; Baurle, Robert A.; Wilson, Lloyd G.

    2011-01-01

    A scramjet isolator model test apparatus is being assembled in the Isolator Dynamics Research Lab (IDRL) at the NASA Langley Research Center in Hampton, Virginia. The test apparatus is designed to support multiple measurement techniques for investigating the flow field in a scramjet isolator model. The test section is 1-inch high by 2-inch wide by 24-inch long and simulates a scramjet isolator with an aspect ratio of two. Unheated, dry air at a constant stagnation pressure and temperature is delivered to the isolator test section through a Mach 2.5 planar nozzle. The isolator test section is mechanically back-pressured to contain the resulting shock train within the 24-inch isolator length and supports temperature, static pressure, and high frequency pressure measurements at the wall. Additionally, nonintrusive methods including laser-induced thermal acoustics (LITA), spontaneous Raman scattering, particle image velocimetry, and schlieren imaging are being incorporated to measure off-wall fluid dynamic, thermodynamic, and transport properties of the flow field. Interchangeable glass and metallic sidewalls and optical access appendages permit making multiple measurements simultaneously. The measurements will be used to calibrate computational fluid dynamics turbulence models and characterize the back-pressured flow of a scramjet isolator. This paper describes the test apparatus, including the optical access appendages; the physics of the LITA method; and estimates of LITA measurement uncertainty for measurements of the speed of sound and temperature.

  4. Numerical Simulation of Vitiation Effects on a Hydrogen-Fueled Dual-Mode Scramjet

    Science.gov (United States)

    Vyas, Manan A.; Engblom, William A.; Georgiadis, Nicholas J.; Trefny, Charles J.; Bhagwandin, Vishal A.

    2010-01-01

    The Wind-US computational fluid dynamics (CFD) flow solver was used to simulate dual-mode direct-connect ramjet/scramjet engine flowpath tests conducted in the University of Virginia (UVa) Supersonic Combustion Facility (SCF). The objective was to develop a computational capability within Wind-US to aid current hypersonic research and provide insight to flow as well as chemistry details that are not resolved by instruments available. Computational results are compared with experimental data to validate the accuracy of the numerical modeling. These results include two fuel-off non-reacting and eight fuel-on reacting cases with different equivalence ratios, split between one set with a clean (non-vitiated) air supply and the other set with a vitiated air supply (12 percent H2O vapor). The Peters and Rogg hydrogen-air chemical kinetics model was selected for the scramjet simulations. A limited sensitivity study was done to investigate the choice of turbulence model and inviscid flux scheme and led to the selection of the k-epsilon model and Harten, Lax and van Leer (for contact waves) (HLLC) scheme for general use. Simulation results show reasonably good agreement with experimental data and the overall vitiation effects were captured.

  5. Thermal behavior in the cracking reaction zone of scramjet cooling channels at different channel aspect ratios

    Science.gov (United States)

    Zhang, Silong; Feng, Yu; Jiang, Yuguang; Qin, Jiang; Bao, Wen; Han, Jiecai; Haidn, Oskar J.

    2016-10-01

    To study the thermal behavior in the cracking reaction zone of regeneratively cooled scramjet cooling channels at different aspect ratios, 3-D model of fuel flow in terms of the fuel's real properties and cracking reaction is built and validated through experiments. The whole cooling channel is divided into non-cracking and cracking reaction zones. Only the cracking reaction zone is studied in this article. The simulation results indicate that the fuel conversion presents a similar distribution with temperature because the fuel conversion in scramjet cooling channels is co-decided by the temperature and velocity but the temperature plays the dominate role. For the cases given in this paper, increasing the channel aspect ratio will increase the pressure drop and it is not beneficial for reducing the wall temperature because of the much severer thermal stratification, larger conversion non-uniformity, the corresponding M-shape velocity profile which will cause local heat transfer deterioration and the decreased chemical heat absorption. And the decreased chemical heat absorption caused by stronger temperature and conversion non-uniformities is bad for the utilization of chemical heat sink, chemical recuperation process and the ignition performance.

  6. Thermodynamic Analysis of Dual-Mode Scramjet Engine Operation and Performance

    Science.gov (United States)

    Riggins, David; Tacket, Regan; Taylor, Trent; Auslender, Aaron

    2006-01-01

    Recent analytical advances in understanding the performance continuum (the thermodynamic spectrum) for air-breathing engines based on fundamental second-law considerations have clarified scramjet and ramjet operation, performance, and characteristics. Second-law based analysis is extended specifically in this work to clarify and describe the performance characteristics for dual-mode scramjet operation in the mid-speed range of flight Mach 4 to 7. This is done by a fundamental investigation of the complex but predictable interplay between heat release and irreversibilities in such an engine; results demonstrate the flow and performance character of the dual mode regime and of dual mode transition behavior. Both analytical and computational (multi-dimensional CFD) studies of sample dual-mode flow-fields are performed in order to demonstrate the second-law capability and performance and operability issues. The impact of the dual-mode regime is found to be characterized by decreasing overall irreversibility with increasing heat release, within the operability limits of the system.

  7. Combustion modeling in a model combustor

    Institute of Scientific and Technical Information of China (English)

    L.Y.Jiang; I.Campbell; K.Su

    2007-01-01

    The flow-field of a propane-air diffusion flame combustor with interior and exterior conjugate heat transfers was numerically studied.Results obtained from four combustion models,combined with the re-normalization group (RNG) k-ε turbulence model,discrete ordinates radiation model and enhanced wall treatment are presented and discussed.The results are compared with a comprehensive database obtained from a series of experimental measurements.The flow patterns and the recirculation zone length in the combustion chamber are accurately predicted,and the mean axial velocities are in fairly good agreement with the experimental data,particularly at downstream sections for all four combustion models.The mean temperature profiles are captured fairly well by the eddy dissipation (EDS),probability density function (PDF),and laminar flamelet combustion models.However,the EDS-finite-rate combustion model fails to provide an acceptable temperature field.In general,the flamelet model illustrates little superiority over the PDF model,and to some extent the PDF model shows better performance than the EDS model.

  8. Analysis of Regen Cooling in Rocket Combustors

    Science.gov (United States)

    Harper, Brent (Technical Monitor); Merkle, C. L.; Li, D.; Sankaran, V.

    2004-01-01

    The use of detailed CFD modeling for the description of cooling in rocket chambers is discussed. The overall analysis includes a complete three-dimensional analysis of the flow in the regenerative cooling passages, conjugate heat transfer in the combustor walls, and the effects of film cooling on the inside chamber. The results in the present paper omit the effects of film cooling and include only regen cooling and the companion conjugate heat transfer. The hot combustion gases are replaced by a constant temperature wall boundary condition. Load balancing for parallel cluster computations is ensured by using single-block unstructured grids for both fluids and solids, and by using a 'multiple physical zones' to account for differences in the number of equations. Validation of the method is achieved by comparing simple two-dimensional solutions with analytical results. Representative results for cooling passages are presents showing the effects of heat conduction in the copper walls with tube aspect ratios of 1.5:l.

  9. A predication model for combustion modes of the scramjet-powered aerospace vehicle based on the nonlinear features of the isolator flow field

    Science.gov (United States)

    Yang, Qingchun; Wang, Hongxin; Chetehouna, Khaled; Gascoin, Nicolas

    2017-01-01

    The supersonic combustion ramjet (scramjet) engine remains the most promising airbreathing engine cycle for hypersonic flight, particularly the high-performance dual-mode scramjet in the range of flight Mach number from 4 to 7, because it can operates under different combustion modes. Isolator is a very key component of the dual-mode scramjet engine. In this paper, nonlinear characteristics of combustion mode transition is theoretically analyzed. The discontinuous sudden changes of static pressure and Mach number are obtained as the mode transition occurs, which emphasizing the importance of predication and control of combustion modes. In this paper, a predication model of different combustion modes is developed based on these these nonlinear features in the isolator flow field. it can provide a valuable reference for control system design of the scramjet-powered aerospace vehicle.

  10. Computer simulation of an advanced combustor for clean coal technology

    Energy Technology Data Exchange (ETDEWEB)

    Chang, S.L.; Lottes, S.A.

    1992-01-01

    Magnetohydrodynamic (MHD) power generation is a clean coal technology because of its higher thermal efficiency and lower pollutant emission. Argonne National Laboratory used a comprehensive integral combustion computer code to aid the development of a TRW's second stage combustor for MHD power generation. The integral combustion code is a computer code for two-phase, two-dimensional, steady state, turbulent, and reacting flows, based on mass, momentum, and energy conservation laws for multiple gas species and solid particles of variable sizes. In the MHD second stage combustor, opposed jets of oxidizer are injected into a confined cross-stream coal gas flow laden with seed particles. The performance of the downstream MHD power generation channel depends mainly on the degree and the uniformity of gas ionization, which, in turn, depends on the uniformity of temperature and seed vapor distributions leaving the combustor. The simulation provides in-depth information of flow, combustion, and heat transfer patterns in the combustor, which is used to predict ranges of combustor operating conditions for optimum performance of the MHD system.

  11. Computer simulation of an advanced combustor for clean coal technology

    Energy Technology Data Exchange (ETDEWEB)

    Chang, S.L.; Lottes, S.A.

    1992-09-01

    Magnetohydrodynamic (MHD) power generation is a clean coal technology because of its higher thermal efficiency and lower pollutant emission. Argonne National Laboratory used a comprehensive integral combustion computer code to aid the development of a TRW`s second stage combustor for MHD power generation. The integral combustion code is a computer code for two-phase, two-dimensional, steady state, turbulent, and reacting flows, based on mass, momentum, and energy conservation laws for multiple gas species and solid particles of variable sizes. In the MHD second stage combustor, opposed jets of oxidizer are injected into a confined cross-stream coal gas flow laden with seed particles. The performance of the downstream MHD power generation channel depends mainly on the degree and the uniformity of gas ionization, which, in turn, depends on the uniformity of temperature and seed vapor distributions leaving the combustor. The simulation provides in-depth information of flow, combustion, and heat transfer patterns in the combustor, which is used to predict ranges of combustor operating conditions for optimum performance of the MHD system.

  12. Computational Simulation of Acoustic Modes in Rocket Combustors

    Science.gov (United States)

    Harper, Brent (Technical Monitor); Merkle, C. L.; Sankaran, V.; Ellis, M.

    2004-01-01

    A combination of computational fluid dynamic analysis and analytical solutions is being used to characterize the dominant modes in liquid rocket engines in conjunction with laboratory experiments. The analytical solutions are based on simplified geometries and flow conditions and are used for careful validation of the numerical formulation. The validated computational model is then extended to realistic geometries and flow conditions to test the effects of various parameters on chamber modes, to guide and interpret companion laboratory experiments in simplified combustors, and to scale the measurements to engine operating conditions. In turn, the experiments are used to validate and improve the model. The present paper gives an overview of the numerical and analytical techniques along with comparisons illustrating the accuracy of the computations as a function of grid resolution. A representative parametric study of the effect of combustor mean flow Mach number and combustor aspect ratio on the chamber modes is then presented for both transverse and longitudinal modes. The results show that higher mean flow Mach numbers drive the modes to lower frequencies. Estimates of transverse wave mechanics in a high aspect ratio combustor are then contrasted with longitudinal modes in a long and narrow combustor to provide understanding of potential experimental simulations.

  13. Analysis of combustion efficiency in CFB coal combustors

    Energy Technology Data Exchange (ETDEWEB)

    Afsin Gungor [Nigde University, Nigde (Turkey). Department of Mechanical Engineering, Faculty of Engineering and Architecture

    2008-06-15

    Fluidized bed technology is well known for its high combustion efficiency and is widely used in coal combustion. In this study, the combustor efficiency has been defined and investigated for CFB coal combustor based on the losses using a dynamic 2D model. The model is shown to agree well with the published data. The effect of operating parameters such as excess air ratio, bed operational velocity, coal particle diameter and combustor load and the effect of design variables such as bed height and bed diameter on the mean bed temperature, the overall CO emission and the combustion efficiency are analyzed for the small-scale of CFBC in the presently developed model. As a result of this analysis, it is observed that the combustion efficiency decreases with increasing excess air value. The combustion efficiency increases with the bed operational velocity. Increasing coal particle size results in higher combustion efficiency values. The coal feed rate has negative effect on the combustion efficiency. The combustor efficiency considerably increases with increasing combustor height and diameter if other parameters are kept unchanged. 46 refs., 16 figs., 6 tabs.

  14. MEASUREMENT OF FLOW PARAMETERS IN A SCRAM JET COMBUSTOR BASED ON NEAR-INFRARED ABSORPTION%超燃燃烧室气流参数诊断

    Institute of Scientific and Technical Information of China (English)

    李飞; 余西龙; 顾洪斌; 李智; 陈立红; 张新宇

    2011-01-01

    A multi-channel tunable diode laser absorption spectroscopy (TDLAS) system was constructed to measure flow parameters in a direct-connected scramjet test facility fueled with ethylene. Two fibers coupled distributed feedback (DFB) lasers with narrow line width were used to probe two H2O absorption featuresby using direct absorption time-division-multiplexing (TDM) strategy at a 4 kHz scan rate. Flow parameters were measured, which included the distribution of temperature, water vapor concentration and velocity at the exit cross section of the combustor, the distribution of temperature and water vapor concentration in the cross section near the cavity. Combustion efficiency was obtained by using the water vapor partial pressure distribution and the wall static pressure. Mach number distribution was deduced from the temperature and velocity parameters distributions at the exit cross section of the combustor, and the distributions of temperature and water vapor concentration in the cross section near the in the combustor. cavity were used to analyze combustion characteristics%基于可调谐二极管激光器吸收光谱技术,利用7185.597cm-1,7444.35cm-1 +7444.37cm-1(重合吸收线)两条H20吸收线,采用分时扫描一直接探测策略组建多光路吸收测量系统,在4kHz的测量频率下,定量测量了燃烧室气流的静温、水蒸气浓度和流向速度.利用位移机构,在以CeH4为燃料的超燃直连式试验台中,在单次试验中同时诊断燃烧室内某截面和燃烧室出口的多气流参数的截面分布.利用燃烧室出口截面的水蒸气浓度分布,并结合壁面静压计算燃烧效率;利用燃烧室出口截面的静温和速度分布,获得出口气流马赫数分布;利用凹腔后部某截面的温度和水蒸气浓度分布,判读了凹腔附近流场特征.

  15. CFD Evaluation of a 3rd Generation LDI Combustor

    Science.gov (United States)

    Ajmani, Kumud; Mongia, Hukam; Lee, Phil

    2017-01-01

    An effort was undertaken to perform CFD analysis of fluid flow in Lean-Direct Injection (LDI) combustors with axial swirl-venturi elements for next-generation LDI-3 combustor design. The National Combustion Code (NCC) was used to perform non-reacting and two-phase reacting flow computations for a nineteen-element injector array arranged in a three-module, 7-5-7 element configuration. All computations were performed with a consistent approach of mesh-optimization, spray-modeling, ignition and kinetics-modeling with the NCC. Computational predictions of the aerodynamics of the injector were used to arrive at an optimal injector design that meets effective area and fuel-air mixing criteria. LDI-3 emissions (EINOx, EICO and UHC) were compared with the previous generation LDI-2 combustor experimental data at representative engine cycle conditions.

  16. Fabrication and development of several heat pipe honeycomb sandwich panel concepts. [airframe integrated scramjet engine

    Science.gov (United States)

    Tanzer, H. J.

    1982-01-01

    The feasibility of fabricating and processing liquid metal heat pipes in a low mass honeycomb sandwich panel configuration for application on the NASA Langley airframe-integrated Scramjet engine was investigated. A variety of honeycomb panel facesheet and core-ribbon wick concepts was evaluated within constraints dictated by existing manufacturing technology and equipment. The chosen design consists of an all-stainless steel structure, sintered screen facesheets, and two types of core-ribbon; a diffusion bonded wire mesh and a foil-screen composite. Cleaning, fluid charging, processing, and process port sealing techniques were established. The liquid metals potassium, sodium and cesium were used as working fluids. Eleven honeycomb panels 15.24 cm X 15.24 cm X 2.94 cm were delivered to NASA Langley for extensive performance testing and evaluation; nine panels were processed as heat pipes, and two panels were left unprocessed.

  17. A numerical study of turbulent combustion characteristics in a combustion chamber of a scramjet engine

    Institute of Scientific and Technical Information of China (English)

    LEE; ChunHian

    2010-01-01

    3D numerical simulation of flow fields in a combustion chamber of a scramjet engine using an SST turbulence model with an explicit compressibility correction was performed and the results were compared to the experimental results.The characteristics of the turbulent combustion flow fields were analyzed via the numerical results and presented.In order to identify the mechanisms of turbulent combustion in supersonic flows,the evolutions of governing dimensionless parameters in the flow fields were investigated based on the theory of combustion and the available numerical results.It was found that the supersonic combustion takes place in the region of fully developed turbulence and that the strongest effects of turbulence and combustion processes appear in the vicinity of the injector.The unsteady effects and the local flame extinction phenomenon induced by turbulent flows were found to be negligibly small,and the steady flamelet approximation will hold for practical applications.

  18. Numerical Simulations of Static Tested Ramjet Dump Combustor

    Science.gov (United States)

    Javed, Afroz; Chakraborty, Debasis

    2016-06-01

    The flow field of a Liquid Fuel Ram Jet engine side dump combustor with kerosene fuel is numerically simulated using commercial CFD code CFX-11. Reynolds Averaged 3-D Navier-Stokes equations are solved alongwith SST turbulence model. Single step infinitely fast reaction is assumed for kerosene combustion. The combustion efficiency is evaluated in terms of the unburnt kerosene vapour leaving the combustor. The comparison of measured pressures with computed values show that the computation underpredicts (~5 %) pressures for non reacting cases but overpredicts (9-7 %) for reacting cases.

  19. Variable volume combustor with aerodynamic fuel flanges for nozzle mounting

    Energy Technology Data Exchange (ETDEWEB)

    McConnaughhay, Johnie Franklin; Keener, Christopher Paul; Johnson, Thomas Edward; Ostebee, Heath Michael

    2016-09-20

    The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles and a fuel injection system for providing a flow of fuel to the micro-mixer fuel nozzles. The fuel injection system may include a number of support struts supporting the fuel nozzles and for providing the flow of fuel therethrough. The fuel injection system also may include a number of aerodynamic fuel flanges connecting the micro-mixer fuel nozzles and the support struts.

  20. Nonluminous Spray Combustion in a Jet-Mixing-Type Combustor

    OpenAIRE

    1990-01-01

    A new combustion system called a jet-mixing-type combustor was designed to obtain a nonluminous blue flame of a kerosene spray. A spray was injected by a conventional-type swirl atomizer into the combustor, and combustion air was introduced through a baffle plate with 16 inlet holes. The principle of this combustion method was revealed as a prompt mixing of the air and spray, which was achieved by high-speed air jets. The combustion characteristics such as combustion stability, temperature di...

  1. Variable volume combustor with center hub fuel staging

    Energy Technology Data Exchange (ETDEWEB)

    Ostebee, Heath Michael; McConnaughhay, Johnie Franklin; Stewart, Jason Thurman; Keener, Christopher Paul

    2016-08-23

    The present application and the resultant patent provide a combustor for use with a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles and a fuel injection system for providing a flow of fuel to the micro-mixer fuel nozzles. The fuel injection system may include a center hub for providing the flow of fuel therethrough. The center hub may include a first supply circuit for a first micro-mixer fuel nozzle and a second supply circuit for a second micro-mixer fuel nozzle.

  2. 台阶和凹腔在固体燃料超燃冲压发动机内自点火性能对比%Difference of self-ignition performance in solid fuel scramjet with step or cavity

    Institute of Scientific and Technical Information of China (English)

    迟鸿伟; 魏志军; 李彪; 王宁飞

    2014-01-01

    The self-ignition process of poly-methyl-methacrylate and the effect of combustor shape with step or cavity on self-ig-nition in solid fuel scramjet were simulated numerically.An unsteady,two-dimensional, axisymmetric,turbulent (SST model),reac-tion ( finite-rate/eddy dissipation reaction model) ,one dimensional heat conduction between the gas and solid fuel grain model was solved numerically.Main conclusions are as follows.Both of step and cavity could establish self-ignition.The self-ignition processes of these two flame-holders are consistent. Self-ignition could be established under a relatively wide range of inlet conditions for cavity compared with step.A cavity with appropriate length enhances not only the self-ignition performance but also the overall performance. Cavity is the advanced flame-holder which can be used for self-ignition in SFSCRJ combustor.%数值研究了PMMA在固体燃料超燃冲压发动机燃烧室中的非稳态自点火过程及带台阶或凹腔的燃烧室构型对自点火的影响。数值模型基于求解非定常二维轴对称RANS方程,采用SST k-ε湍流模型,采用有限速率/涡耗散燃烧模型,装药和内流场的耦合传热采用一维导热方程。结果表明,台阶和凹腔火焰稳定器都能实现自点火。带台阶和凹腔的不同燃烧室内自点火过程一致;与采用突扩台阶火焰稳定器相比,凹腔火焰稳定器能够满足更宽的进气条件下的自点火;加入适当长度的凹腔,既可改善点火性能,又可增强总体性能。建议采用凹腔来实现SFSCRJ的自点火。

  3. Comparison between Hydrogen and Methane Fuels in a 3-D Scramjet at Mach 8

    Science.gov (United States)

    2016-06-24

    M., Drummond, J. P., and Edwards , T., Future Directions of Supersonic Combustion Research Air Force /NASA Workshop on Supersonic Combustion, Reno...22203 Air Force Research Laboratory Air Force Materiel Command a. REPORT Unclassified b. ABSTRACT Unclassified c. THIS PAGE Unclassified REPORT...the simulations, the combustor is initially filled with low pressure quiescent air with a temperature of 300 K and a pressure of 66.5 Pa to match the

  4. Turbine combustor with fuel nozzles having inner and outer fuel circuits

    Science.gov (United States)

    Uhm, Jong Ho; Johnson, Thomas Edward; Kim, Kwanwoo

    2013-12-24

    A combustor cap assembly for a turbine engine includes a combustor cap and a plurality of fuel nozzles mounted on the combustor cap. One or more of the fuel nozzles would include two separate fuel circuits which are individually controllable. The combustor cap assembly would be controlled so that individual fuel circuits of the fuel nozzles are operated or deliberately shut off to provide for physical separation between the flow of fuel delivered by adjacent fuel nozzles and/or so that adjacent fuel nozzles operate at different pressure differentials. Operating a combustor cap assembly in this fashion helps to reduce or eliminate the generation of undesirable and potentially harmful noise.

  5. The Instituto de Investigaciones Electricas fluidized bed combustor; El combustor de lecho fluidizado del Instituto de Investigaciones Electricas

    Energy Technology Data Exchange (ETDEWEB)

    Milan Foressi, Julio [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1991-12-31

    After synthesizing the most important aspects of the combustion technology in fluidized bed, the experimental combustor developed at the Instituto de Investigaciones Electricas (IIE) is described, as well as the test results of the experiences carried out with coal from Rio Escondido, Coahuila. [Espanol] Tras sintetizar los aspectos mas importantes de la tecnologia de combustion en lecho fluidizado, se describe el combustor experimental desarrollado en el Instituto de Investigaciones Electricas (IIE), asi como los resultados de las experiencias realizadas con carbon proveniente de Rio Escondido, Coahuila.

  6. A forebody design technique for highly integrated bottom-mounted scramjets with application to a hypersonic research airplane

    Science.gov (United States)

    Edwards, C. L. W.

    1976-01-01

    A rapid and simple inviscid technique for designing forebodies which produce uniformly precompressed flows at the entrance for bottom-mounted scramjets was developed so that geometric constraints resulting from design trade-offs can be effectively evaluated. The flow fields resulting from several forebody designs generated in support of a conceptual design for a hypersonic research airplane have been analyzed in detail. Three-dimensional characteristics calculations were used to verify the uniform flow conditions. For the designs analyzed, uniform flow was maintained over a wide range of flight conditions (Mach numbers from 4 to 10; angles of attack of 6 and 10 deg) corresponding to the scramjet operation flight envelope of the research airplane.

  7. Exploiting Active Subspaces to Quantify Uncertainty in the Numerical Simulation of the HyShot II Scramjet

    CERN Document Server

    Constantine, Paul; Larsson, Johan; Iaccarino, Gianluca

    2014-01-01

    We present a computational analysis of the reactive flow in a hypersonic scramjet engine with emphasis on effects of uncertainties in the operating conditions. We employ a novel methodology based on active subspaces to characterize the effects of the input uncertainty on the scramjet performance. The active subspace re-parameterizes the operating conditions from seven well characterized physical parameters to a single derived active variable. This dimension reduction enables otherwise intractable---given the cost of the simulation---computational studies to quantify uncertainty; bootstrapping provides confidence intervals on the studies' results. In particular we (i) identify the parameters that contribute the most to the variation in the output quantity of interest, (ii) compute a global upper and lower bound on the quantity of interest, and (iii) classify sets of operating conditions as safe or unsafe corresponding to a threshold on the output quantity of interest. We repeat this analysis for two values of ...

  8. Idealized gas turbine combustor for performance research and validation of large eddy simulations.

    Science.gov (United States)

    Williams, Timothy C; Schefer, Robert W; Oefelein, Joseph C; Shaddix, Christopher R

    2007-03-01

    This paper details the design of a premixed, swirl-stabilized combustor that was designed and built for the express purpose of obtaining validation-quality data for the development of large eddy simulations (LES) of gas turbine combustors. The combustor features nonambiguous boundary conditions, a geometrically simple design that retains the essential fluid dynamics and thermochemical processes that occur in actual gas turbine combustors, and unrestrictive access for laser and optical diagnostic measurements. After discussing the design detail, a preliminary investigation of the performance and operating envelope of the combustor is presented. With the combustor operating on premixed methane/air, both the equivalence ratio and the inlet velocity were systematically varied and the flame structure was recorded via digital photography. Interesting lean flame blowout and resonance characteristics were observed. In addition, the combustor exhibited a large region of stable, acoustically clean combustion that is suitable for preliminary validation of LES models.

  9. Scramjet Nozzles

    Science.gov (United States)

    2010-09-01

    integration et gestion thermique ) 14. ABSTRACT The lecture is given in four parts, each being a step in the process of nozzle design, and within each part...project and applied to the conceptual design of a Mach 3.5 transport aircraft. The result is depicted in figure 4. The central feature of the concept is

  10. Novel designs of fluidized bed combustors for low pollutant emissions

    Energy Technology Data Exchange (ETDEWEB)

    Lin, W.; Bleek, C.M. van den [Delft Univ. of Technology (Netherlands). Dept. of Chemical Engineering; Dam-Johansen, K. [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Chemical Engineering

    1995-12-31

    It is known that NH{sub 3}, released during the devolatilization of fuel, is an important precursor for NO formation in fluidized bed combustors. On the other hand, NH{sub 3} may be used as a reducing agent in the thermal DeNO{sub x} process to reduce NO{sub x} emission levels. In this paper, a new concept of fluidized bed combustors is proposed based on the idea of in situ reduction of NO{sub x} by self-produced NH{sub 3} from fuel without lowering the sulfur capture level. This design is intended to separate the NH{sub 3} release process under reducing conditions from the char combustion process under oxidizing conditions; this self-released NH{sub 3}, together with some combustibles, is mixed with gaseous combustion products in the upper part of the combustor for a further reduction of the NO{sub x} formed during combustion. Furthermore, the combustion of the combustibles may cause the temperature to rise in this upper zone and thereby reduce the emission of N{sub 2}O. The applications of this design to bubbling and circulating fluidized bed combustors are described and the mechanisms of the main reactions involved discussed.

  11. MHD coal combustor technology. Final report, phase II

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-01

    The design, performance, and testing of a 20-MW coal combustor for scaleup to 50 MW for use in an MHD generator are described. The design incorporates the following key features: (1) a two-stage combustor with an intermediate slag separator to remove slag at a low temperture, thus minimizing enthalpy losses required for heating and vaporizing the slag; (2) a first-stage pentad (four air streams impinging on one coal stream) injector design with demonstrated efficient mixing, promoting high carbon burnout; (3) a two-section first-stage combustion chamber; the first stage using a thin slag-protected refractory layer and the second section using a thick refractory layer, both to minimize heat losses; (4) a refractory lining in the slag separator to minimize heat losses; (5) a second-stage combustor, which provided both de-swirl of the combustion products exiting from the slag separator and simple mixing of the vitiated secondary air and seed; (6) a dense-phase coal feed system to minimize cold carrier gas entering the first-stage combustors; (7) a dry seed injection system using pulverized K/sub 2/CO/sub 3/ with a 1% amorphous, fumed silicon dioxide additive to enhance flowability, resulting in rapid vaporization and ionization and ensuring maximum performance; and (8) a performance evaluation module (PEM) of rugged design based on an existing, successfully-fired unit. (WHK)

  12. Catalytic combustor for integrated gasification combined cycle power plant

    Science.gov (United States)

    Bachovchin, Dennis M.; Lippert, Thomas E.

    2008-12-16

    A gasification power plant 10 includes a compressor 32 producing a compressed air flow 36, an air separation unit 22 producing a nitrogen flow 44, a gasifier 14 producing a primary fuel flow 28 and a secondary fuel source 60 providing a secondary fuel flow 62 The plant also includes a catalytic combustor 12 combining the nitrogen flow and a combustor portion 38 of the compressed air flow to form a diluted air flow 39 and combining at least one of the primary fuel flow and secondary fuel flow and a mixer portion 78 of the diluted air flow to produce a combustible mixture 80. A catalytic element 64 of the combustor 12 separately receives the combustible mixture and a backside cooling portion 84 of the diluted air flow and allows the mixture and the heated flow to produce a hot combustion gas 46 provided to a turbine 48. When fueled with the secondary fuel flow, nitrogen is not combined with the combustor portion.

  13. One dimensional numerical simulation of small scale CFB combustors

    Energy Technology Data Exchange (ETDEWEB)

    Gungor, Afsin [Department of Mechanical Engineering, Faculty of Engineering and Architecture, Nigde University, 51100 Nigde (Turkey)

    2009-03-15

    In this study, a one-dimensional model which includes volatilization, attrition and combustion of char particles for a circulating fluidized bed (CFB) combustor has been developed. In the modeling, the CFB combustor is analyzed in two regions: bottom zone considering as a bubbling fluidized bed in turbulent fluidization regime and upper zone core-annulus solids flow structure is established. In the bottom zone, a single-phase back-flow cell model is used to represent the solid mixing. Solids exchange, between the bubble phase and emulsion phase is a function of the bubble diameter and varies along the axis of the combustor. In the upper zone, particles move upward in the core and downward in the annulus. Thickness of the annulus varies according to the combustor height. Using the developed simulation program, the effects of operational parameters which are the particle diameter, superficial velocity and air-to-fuel ratio on net solids flux, oxygen and carbon dioxide mole ratios along the bed height and carbon content and bed temperature on the top of the riser are investigated. Simulation results are compared with test results obtained from the 50 kW Gazi University Heat Power Laboratory pilot scale unit and good agreement is observed. (author)

  14. Low emissions combustor development for an industrial gas turbine to utilize LCV fuel gas

    Energy Technology Data Exchange (ETDEWEB)

    Kelsall, G.J.; Smith, M.A. (British Coal Corp., Glos (United Kingdom). Coal Research Establishment); Cannon, M.F. (European Gas Turbines Ltd., Lincoln (United Kingdom). Aero and Technology Products)

    1994-07-01

    Advanced coal-based power generation systems such as the British Coal Topping Cycle offer the potential for high-efficiency electricity generation with minimum environmental impact. An important component of the Topping cycle program is the gas turbine, for which development of a combustion system to burn low calorific value coal derived fuel gas, at a turbine inlet temperature of 1,260 C (2,300 F), with minimum pollutant emissions, is a key R and D issue. A phased combustor development program is underway burning low calorific value fuel gas (3.6--4.1 MJ/m[sup 3]) with low emissions, particularly NO[sub x] derived from fuel-bound nitrogen. The first phase of the combustor development program has now been completed using a generic tubo-annular, prototype combustor design. Tests were carried out at combustor loading and Mach numbers considerably greater than the initial design values. Combustor performance at these conditions was encouraging. The second phase of the program is currently in progress. This will assess, initially, an improved variant of the prototype combustor operating at conditions selected to represent a particular medium sized industrial gas turbine. This combustor will also be capable of operating using natural gas as an auxiliary fuel, to suite the start-up procedure for the Topping Cycle. The paper presents the Phase 1 test program results for the prototype combustor. Design of the modified combustor for Phase 2 of the development program is discussed, together with preliminary combustor performance results.

  15. Renewable hydrocarbon fuel prepared from microwave assisted decarboxylation of the potassium soap of Chinese tallow seed oil%乌桕籽油钾皂微波脱羧制备可再生烃类燃料

    Institute of Scientific and Technical Information of China (English)

    刘玉环; 马雯; 王允圃; 阮榕生; 温平威; 万益琴

    2013-01-01

    Chinese tallow seed contains as high as 40%oil. It is a good raw material for production of biodiesel. By microwave assisted decarboxylation of the potassium soap of Chinese tallow seed oil, renewable hydrocarbon fuel is obtained. In this efficient oil extraction process,high pressure vapor is used as extractor. In order to obtain a high extraction yield,some factors including solid/liquid ratio, baking time,baking temperature,pH value and high pressure processing time are investigated. The weight of microwave assisted pyrolysis liquid product is 60%of dry soap weight. The density of the liquid is 0.865 g/cm3 and the viscosity is 2.73 mm2/s,while its characteristic is similar to that of diesel fuel. Results in this study will give a useful information for the industrial production of biodiesel from Chinese tallow seed.%乌桕籽的含油率高达40%,是生产生物柴油的优质原料。本研究采用绿色环保节能高效的乌桕籽油提取方法,以高压蒸汽作为水剂提取油脂的方法,进行了相关工艺的实验研究,以乌桕油脂皂化物为研究对象,通过微波极化皂化物羧基端促进脱羧制备优质烃类燃料。探讨了料液比、烘烤时间、烘烤温度、pH值、高压蒸汽处理时间等因素对油脂提取率的影响。微波裂解所得到液态产物为皂类干重的60%以上,裂解液态产物的密度为0.865 g/cm3,黏度2.73 mm2/s,与柴油的性质基本相似。研究结果为利用乌桕籽油生产生物柴油的工业化提供了一定基础。

  16. 非热等离子体烃类燃料氧化重整反应器的研究进展%Progress of non-thermal plasma reactors for oxidative reforming of hydrocarbon fuel

    Institute of Scientific and Technical Information of China (English)

    丁天英; 刘景林; 赵天亮; 朱爱民

    2015-01-01

    Oxidative reforming (partial oxidation) of fuel is mildly exothermic and has the advantages of fast reaction and low energy cost, which is especially suitable for on-line production of H2 or H2-rich gas. Atmospheric-pressure non-thermal plasma provides a very promising new technology for oxidative reforming of fuel with significant advantages of feed flexibility, fast response, and compact, efficient reactor. The recent developments of atmospheric pressure non-thermal plasma reactors for oxidative reforming of hydrocarbon fuel are reviewed. The warm plasma generated by spark and gliding arc discharges and its fuel reforming reactors are presented. Compared with the reactors of cold plasma generated by corona and dielectric barrier discharges, the warm plasma reactor exhibits high fuel conversion as well as low energy cost.%燃料氧化重整(部分氧化)为温和的放热反应,其反应速率快、能耗低,特别适用于在线制取氢气或富氢气体。大气压非热等离子体为燃料氧化重整提供了一种应用前景广泛的新技术,展现了对燃料具有普适性、快速响应和反应器紧凑高效等优点。综述了大气压非热等离子体烃类燃料氧化重整反应器的研究进展,着重阐述了火花和滑动弧放电产生的暖等离子体及其烃类燃料重整反应器。与电晕和介质阻挡放电产生的冷等离子体反应器相比,暖等离子体反应器具有燃料转化率高和能耗低的优点。

  17. Electrochemical Routes towards Sustainable Hydrocarbon Fuels

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg

    2012-01-01

    The potential of renewable energy and possible solution to the intermittency problem of renewable energy sources like sun and wind are explained. The densest storage of energy is in the form of hydrocarbons. The most suitable method of conversion and storage within a foreseeable future is electro......The potential of renewable energy and possible solution to the intermittency problem of renewable energy sources like sun and wind are explained. The densest storage of energy is in the form of hydrocarbons. The most suitable method of conversion and storage within a foreseeable future...... is electrolysis followed by conversion into synthetic hydrocarbons, alcohols or ethers. Several types of electrolysers exist. The various types are listed together with a short description of principle and status. It is argued that electrolysis will at least become part of large sustainable energy systems...

  18. Syngas Upgrading to Hydrocarbon Fuels Technology Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Talmadge, M.; Biddy, M.; Dutta, A.; Jones, S.; Meyer, A.

    2013-03-01

    This technology pathway case investigates the upgrading of woody biomass derived synthesis gas (syngas) to hydrocarbon biofuels. While this specific discussion focuses on the conversion of syngas via a methanol intermediate to hydrocarbon blendstocks, there are a number of alternative conversion routes for production of hydrocarbons through a wide array of intermediates from syngas. Future work will also consider the variations to this pathway to determine the most economically viable and lowest risk conversion route. Technical barriers and key research needs have been identified that should be pursued for the syngas-to-hydrocarbon pathway to be competitive with petroleum-derived gasoline-, diesel- and jet-range hydrocarbon blendstocks.

  19. Experimental Study on Hydrocarbon Fuel Thermal Stability

    Institute of Scientific and Technical Information of China (English)

    J.S.Chin; A.H.Lefebvre

    1992-01-01

    The-thermal stability characteristics of kerosine-type fuels are examined using a heated-tube apparatus which allows independent control of fuel pressure,fuel temperature,tube-wall temperature and fuel flow rate.This method is identified simply as a "constant wall temperature method”,It is different from a previous widely used method ,which is identified as a “Constant heat flux method”,It is a single-pass system.Rate of deposition on the tube walls are measured by weighing the test tube before and after each test.For a fuel temperature of 250℃,it is found that deposition rates increease continuously with increase in tubewall temperature.This finding contradicts the results of previous studies which had led to the conclusion that deposition rates increase with increase in wall temperature up to a certain value(around 650K) beyond which any further increase in wall temperature causes the rate of deposition to decline.The present results show clearly that the constant wall temperature method is more suitable for assessing the thermal stability of gas turbine fuels.

  20. Reduced chemical kinetic mechanisms for hydrocarbon fuels

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, C J; Cremer, M A; Heap, M P; Chen, J -Y; Westbrook, C K; Maurice, L Q

    1999-12-10

    Using CARM (Computer Aided Reduction Method), a computer program that automates the mechanism reduction process, a variety of different reduced chemical kinetic mechanisms for ethylene and n-heptane have been generated. The reduced mechanisms have been compared to detailed chemistry calculations in simple homogeneous reactors and experiments. Reduced mechanisms for combustion of ethylene having as few as 10 species were found to give reasonable agreement with detailed chemistry over a range of stoichiometries and showed significant improvement over currently used global mechanisms. The performance of reduced mechanisms derived from a large detailed mechanism for n-heptane was compared to results from a reduced mechanism derived from a smaller semi-empirical mechanism. The semi-empirical mechanism was advantageous as a starting point for reduction for ignition delay, but not for PSR calculations. Reduced mechanisms with as few as 12 species gave excellent results for n-heptane/air PSR calculations but 16-25 or more species are needed to simulate n-heptane ignition delay.

  1. An analytical theory of heated duct flows in supersonic combustors

    Directory of Open Access Journals (Sweden)

    Chenxi Wu

    2014-01-01

    Full Text Available One-dimensional analytical theory is developed for supersonic duct flow with variation of cross section, wall friction, heat addition, and relations between the inlet and outlet flow parameters are obtained. By introducing a selfsimilar parameter, effects of heat releasing, wall friction, and change in cross section area on the flow can be normalized and a self-similar solution of the flow equations can be found. Based on the result of self-similar solution, the sufficient and necessary condition for the occurrence of thermal choking is derived. A relation of the maximum heat addition leading to thermal choking of the duct flow is derived as functions of area ratio, wall friction, and mass addition, which is an extension of the classic Rayleigh flow theory, where the effects of wall friction and mass addition are not considered. The present work is expected to provide fundamentals for developing an integral analytical theory for ramjets and scramjets.

  2. Innovative Adaptive Control Method Demonstrated for Active Suppression of Instabilities in Engine Combustors

    Science.gov (United States)

    Kopasakis, George

    2005-01-01

    This year, an improved adaptive-feedback control method was demonstrated that suppresses thermoacoustic instabilities in a liquid-fueled combustor of a type used in aircraft engines. Extensive research has been done to develop lean-burning (low fuel-to-air ratio) combustors that can reduce emissions throughout the mission cycle to reduce the environmental impact of aerospace propulsion systems. However, these lean-burning combustors are susceptible to thermoacoustic instabilities (high-frequency pressure waves), which can fatigue combustor components and even downstream turbine blades. This can significantly decrease the safe operating life of the combustor and turbine. Thus, suppressing the thermoacoustic combustor instabilities is an enabling technology for meeting the low-emission goals of the NASA Ultra-Efficient Engine Technology (UEET) Project.

  3. An Adaptive Instability Suppression Controls Method for Aircraft Gas Turbine Engine Combustors

    Science.gov (United States)

    Kopasakis, George; DeLaat, John C.; Chang, Clarence T.

    2008-01-01

    An adaptive controls method for instability suppression in gas turbine engine combustors has been developed and successfully tested with a realistic aircraft engine combustor rig. This testing was part of a program that demonstrated, for the first time, successful active combustor instability control in an aircraft gas turbine engine-like environment. The controls method is called Adaptive Sliding Phasor Averaged Control. Testing of the control method has been conducted in an experimental rig with different configurations designed to simulate combustors with instabilities of about 530 and 315 Hz. Results demonstrate the effectiveness of this method in suppressing combustor instabilities. In addition, a dramatic improvement in suppression of the instability was achieved by focusing control on the second harmonic of the instability. This is believed to be due to a phenomena discovered and reported earlier, the so called Intra-Harmonic Coupling. These results may have implications for future research in combustor instability control.

  4. Modeling Shock Train Leading Edge Detection in Dual-Mode Scramjets

    Science.gov (United States)

    Ladeinde, Foluso; Lou, Zhipeng; Li, Wenhai

    2016-11-01

    The objective of this study is to accurately model the detection of shock train leading edge (STLE) in dual-mode scramjet (DMSJ) engines intended for hypersonic flight in air-breathing propulsion systems. The associated vehicles have applications in military warfare and intelligence, and there is commercial interest as well. Shock trains are of interest because they play a significant role in the inability of a DMSJ engine to develop the required propulsive force. The experimental approach to STLE detection has received some attention; as have numerical calculations. However, virtually all of the numerical work focus on mechanically- (i.e., pressure-) generated shock trains, which are much easier to model relative to the phenomenon in the real system where the shock trains are generated by combustion. A focus on combustion, as in the present studies, enables the investigation of the effects of equivalence ratio, which, together with the Mach number, constitutes an important parameter determining mode transition. The various numerical approaches implemented in our work will be reported, with result comparisons to experimental data. The development of an STLE detection procedure in an a priori manner will also be discussed.

  5. Large eddy simulation of hydrogen/air scramjet combustion using tabulated thermo-chemistry approach

    Directory of Open Access Journals (Sweden)

    Cao Changmin

    2015-10-01

    Full Text Available Large eddy simulations (LES have been performed to investigate the flow and combustion fields in the scramjet of the German Aerospace Center (DLR. Turbulent combustion is modeled by the tabulated thermo-chemistry approach in combination with the presumed probability density function (PDF. A β-function is used to model the distribution of the mixture fraction, while two different PDFs, δ-function (Model I and β-function (Model II, are applied to model the reaction progress. Temperature is obtained by solving filtered energy transport equation and the reaction rate of the progress variable is rescaled by pressure to consider the effects of compressibility. The adaptive mesh refinement (AMR technique is used to properly capture shock waves, boundary layers, shear layers and flame structures. Statistical results of temperature and velocity predicted by Model II show better accuracy than that predicted by Model I. The results of scatter points and mixture fraction-conditional variables indicate the significant differences between Model I and Model II. It is concluded that second moment information in the presumed PDF of the reaction progress is very important in the simulation of supersonic combustion. It is also found that an unstable flame with extinction and ignition develops in the shear layers of bluff body and a fuel-rich partially premixed flame stabilizes in the central recirculation bubble.

  6. Large eddy simulation of hydrogen/air scramjet combustion using tabulated thermo-chemistry approach

    Institute of Scientific and Technical Information of China (English)

    Cao Changmin; Ye Taohong; Zhao Majie

    2015-01-01

    Large eddy simulations (LES) have been performed to investigate the flow and combus-tion fields in the scramjet of the German Aerospace Center (DLR). Turbulent combustion is mod-eled by the tabulated thermo-chemistry approach in combination with the presumed probability density function (PDF). A b-function is used to model the distribution of the mixture fraction, while two different PDFs, d-function (Model I) and b-function (Model II), are applied to model the reaction progress. Temperature is obtained by solving filtered energy transport equation and the reaction rate of the progress variable is rescaled by pressure to consider the effects of compressibil-ity. The adaptive mesh refinement (AMR) technique is used to properly capture shock waves, boundary layers, shear layers and flame structures. Statistical results of temperature and velocity predicted by Model II show better accuracy than that predicted by Model I. The results of scatter points and mixture fraction-conditional variables indicate the significant differences between Model I and Model II. It is concluded that second moment information in the presumed PDF of the reaction progress is very important in the simulation of supersonic combustion. It is also found that an unstable flame with extinction and ignition develops in the shear layers of bluff body and a fuel-rich partially premixed flame stabilizes in the central recirculation bubble.

  7. Computational investigation on combustion instabilities in a rocket combustor

    Science.gov (United States)

    Yuan, Lei; Shen, Chibing

    2016-10-01

    High frequency combustion instability is viewed as the most challenging task in the development of Liquid Rocket Engines. In this article, results of attempts to capture the self-excited high frequency combustion instability in a rocket combustor are shown. The presence of combustion instability was demonstrated using point measurements, along with Fast Fourier Transform analysis and instantaneous flowfield contours. A baseline case demonstrates a similar wall heat flux profile as the associated experimental case. The acoustic oscillation modes and corresponding frequencies predicted by current simulations are almost the same as the results obtained from classic acoustic analysis. Pressure wave moving back and forth across the combustor was also observed. Then this baseline case was compared against different fuel-oxidizer velocity ratios. It predicts a general trend: the smaller velocity ratio produces larger oscillation amplitudes than the larger one. A possible explanation for the trend was given using the computational results.

  8. Features of Ignition and Stable Combustion in Supersonic Combustor

    Science.gov (United States)

    Goldfeld, M.; Starov, A.; Timofeev, K.

    2009-01-01

    Present paper describes the results of experimental investigations of the supersonic combustor with entrance Mach numbers from 2 to 4 at static pressure from 0.8 to 2.5 bars, total temperature from 2000K to 3000K. Hydrogen and kerosene were used as fuel. The conditions, under which the self-ignition and intensive combustion of the fuel realized were found. Position of ignition area in the channel was determined and features of flame propagation in the channel presented. A possibility to ensure an efficient combustion of hydrogen and kerosene at a high supersonic flow velocity at the combustor entrance without special throttling and/or pseudo-shock introduction was shown. Analysis of applicability of existing methods of criterion descriptions of conditions of self-ignition and extinction of combustion is executed for generalization of experimental results on the basis of results obtained.

  9. Analytical fuel property effects, small combustors, phase 1

    Science.gov (United States)

    Cohen, J. D.

    1983-01-01

    The effects of nonstandard aviation fuels on a typical small gas turbine combustor was analyzed. The T700/CT7 engine family was chosen as being representative of the class of aircraft power plants desired. Fuel properties, as specified by NASA, are characterized by low hydrogen content and high aromatics levels. Higher than normal smoke output and flame radiation intensity for the current T700 combustor which serves as a baseline were anticipated. It is, therefore, predicted that out of specification smoke visibility and higher than normal shell temperatures will exist when using NASA ERBS fuels with a consequence of severe reduction in cyclic life. Three new designs are proposed to compensate for the deficiencies expected with the existing design. They have emerged as the best of the eight originally proposed redesigns or combinations thereof. After the five choices that were originally made by NASA on the basis of competing performance factors, General Electric narrowed the field to the three proposed.

  10. N+2 Advanced Low NOx Combustor Technology Final Report

    Science.gov (United States)

    Herbon, John; Aicholtz, John; Hsieh, Shih-Yang; Viars, Philip; Birmaher, Shai; Brown, Dan; Patel, Nayan; Carper, Doug; Cooper, Clay; Fitzgerald, Russell

    2017-01-01

    In accordance with NASAs technology goals for future subsonic vehicles, this contract identified and developed new combustor concepts toward meeting N+2 generation (2020) LTO (landing and take-off) NOx emissions reduction goal of 75 from the standard adopted at Committee on Aviation Environmental Protection 6 (CAEP6). Based on flame tube emissions, operability, and autoignition testing, one concept was down selected for sector testing at NASA. The N+2 combustor sector successfully demonstrated 75 reduction for LTO NOx (vs. CAEP6) and cruise NOx (vs. 2005 B777-200 reference) while maintaining 99.9 cruise efficiency and no increase in CO and HC emissions.The program also developed enabling technologies for the combustion system including ceramic matrix composites (CMC) liner materials, active combustion control concepts, and laser ignition for improved altitude relight.

  11. Systems and methods for preventing flashback in a combustor assembly

    Science.gov (United States)

    Johnson, Thomas Edward; Ziminsky, Willy Steve; Stevenson, Christian Xavier

    2016-04-05

    Embodiments of the present application include a combustor assembly. The combustor assembly may include a combustion chamber, a first plenum, a second plenum, and one or more elongate air/fuel premixing injection tubes. Each of the elongate air/fuel premixing injection tubes may include a first length at least partially disposed within the first plenum and configured to receive a first fluid from the first plenum. Moreover, each of the elongate air/fuel premixing injection tubes may include a second length disposed downstream of the first length and at least partially disposed within the second plenum. The second length may be formed of a porous wall configured to allow a second fluid from the second plenum to enter the second length and create a boundary layer about the porous wall.

  12. Numerical study of test gas vitiation effects on hydrogen-fueled scramjet combustion%Numerical study of test gas vitiation effects on hydrogen-fueled scramjet combustion

    Institute of Scientific and Technical Information of China (English)

    CHEN Chao-qun; TIAN Liang; XU Xu

    2012-01-01

    The effects of major vitiated species (H2O and CO2) and minor vitiated species (H,OH and O radicals) produced by combustion air preheater on ignition and combustion of hydrogen-fueled seramjet were numerically investigated. Firstly, kinetic analyses with CHEMKIN SENKIN code were conducted to evaluate the effects of contamination on the ignition delay times of hydrogen fuel over a range of temperature and pressure variations. Then numerical simulation of a three-dimensional reacting flow in hydrogen-fueled seramjet combustor was performed. The two-equation shear stress transport k-ω turbulence model was used for modeling turbulence and 33 reactions finite-rate chemistry was used for modeling the H2/air kinetics. The results show that: free radical species such as H,O,and OH may significantly promote the ignition process of hydrogen-air at relatively low initial temperature and pressure. However, H2O and CO2 have inhibition effects on the ignition process. Under the same conditions, H2O has more effective inhibition effects than CO2. The temperature and pressure rise due to combustion are lower in the air vitiated with H2O and CO2 because of their higher heat capacities and more dissociation. Combustion efficiency and thrust calculated for vitiated air case are lower than clean air case. These results indicate the importance of accounting for vitiation effects when extrapolating performance data from ground test to flight demonstration.

  13. Effects of Immersed Surfaces on the Combustor Efficiency of Small-Scale Fluidized Beds

    OpenAIRE

    Nurdil Eskin; Afsin Gungor

    2005-01-01

    In this study, effects of the different types of heat exchanger surfaces on the second law efficiency of a small-scale circulating fluidized bed (CFB) combustor are analyzed and the results are compared with the bubbling fluidized bed coal combustor effectiveness values. Using a previously developed simulation program, combustor efficiency and entropy generation values are obtained at different operation velocities at different height and volume ratios of the immersed surfaces, both for circu...

  14. Design and Performance of an Improved Trapped Vortex Combustor

    Institute of Scientific and Technical Information of China (English)

    JIN Yi; HE Xiaomin; JIANG Bo; WU Zejun; DING Guoyu

    2012-01-01

    A trapped vortex combustor (TVC) has been a very promising novel concept for it offers improvements in lean blow out,altitude relight,operating range,as well as a potential to decrease NOx emissions compared to conventional combustors.The present paper discusses the improved designs of the new combustor over the prior ones of our research group,including that:a) the overall dimensions,both axial and radial,are reduced to those of an actual aero-engine combustor; b) the air flow distribution is optimized,and especially 15% of the air is fed into the liner as cooling air; c) a straight-wall diffuser with divergence angle 9° is added.A series of experiments (cavity-fueled only,under atmospheric pressure) has been conducted to investigate the performance of the improved TVC.Experimental results show that at the inlet temperature of 523 K,the inlet pressure of 0.1 MPa,stable operation of the TVC test rig is observed for the Mach number 0.15-0.34,indicating good flame stability; the combustion efficiency obtained in this paper falls into the range of 60%-96%; as the total excess air ratio increases,the combustion efficiency decreases,while the increase of the inlet temperature is beneficial to high combustion efficiency; besides,the optimal Mach numbers for high combustion efficiency under different inlet conditions are confirmed.The outlet temperature profiles feature a bottom in the mid-height of the exit.This paper demonstrates the feasibility for the TVC to be applied to a realistic aero-engine preliminarily and provides reference for TVC design.

  15. System for tuning a combustor of a gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Michael John

    2016-12-27

    A system for tuning a combustor of a gas turbine includes a flow sleeve having an annular main body. The main body includes an upstream end, a downstream end, an inner surface and an outer surface. A cooling channel extends along the inner surface of the main body. The cooling channel extends at least partially between the downstream end and the upstream end of the main body.

  16. Flame dynamics of a meso-scale heat recirculating combustor

    Energy Technology Data Exchange (ETDEWEB)

    Vijayan, V.; Gupta, A.K. [Department of Mechanical Engineering, University of Maryland, College Park, MD 20742 (United States)

    2010-12-15

    The dynamics of premixed propane-air flame in a meso-scale ceramic combustor has been examined here. The flame characteristics in the combustor were examined by measuring the acoustic emissions and preheat temperatures together with high-speed cinematography. For the small-scale combustor, the volume to surface area ratio is small and hence the walls have significant effect on the global flame structure, flame location and flame dynamics. In addition to the flame-wall thermal coupling there is a coupling between flame and acoustics in the case of confined flames. Flame-wall thermal interactions lead to low frequency flame fluctuations ({proportional_to}100 Hz) depending upon the thermal response of the wall. However, the flame-acoustic interactions can result in a wide range of flame fluctuations ranging from few hundred Hz to few kHz. Wall temperature distribution is one of the factors that control the amount of reactant preheating which in turn effects the location of flame stabilization. Acoustic emission signals and high-speed flame imaging confirmed that for the present case flame-acoustic interactions have more significant effect on flame dynamics. Based on the acoustic emissions, five different flame regimes have been identified; whistling/harmonic mode, rich instability mode, lean instability mode, silent mode and pulsating flame mode. (author)

  17. Combustor cap having non-round outlets for mixing tubes

    Science.gov (United States)

    Hughes, Michael John; Boardman, Gregory Allen; McConnaughhay, Johnie Franklin; Arguinzoni, Carlo Antonio

    2016-12-27

    A system includes a a combustor cap configured to be coupled to a plurality of mixing tubes of a multi-tube fuel nozzle, wherein each mixing tube of the plurality of mixing tubes is configured to mix air and fuel to form an air-fuel mixture. The combustor cap includes multiple nozzles integrated within the combustor cap. Each nozzle of the multiple nozzles is coupled to a respective mixing tube of the multiple mixing tubes. In addition, each nozzle of the multiple nozzles includes a first end and a second end. The first end is coupled to the respective mixing tube of the multiple mixing tubes. The second end defines a non-round outlet for the air-fuel mixture. Each nozzle of the multiple nozzles includes an inner surface having first and second portions, the first portion radially diverges along an axial direction from the first end to the second end, and the second portion radially converges along the axial direction from the first end to the second end.

  18. Experimental study of entrainment phenomenon in a trapped vortex combustor

    Institute of Scientific and Technical Information of China (English)

    Zhang Rongchun; Fan Weijun

    2013-01-01

    Trapped vortex combustor (TVC) is an advanced low-pollution gas turbine combustor,with the adoption of staged combustion technique.To achieve low-pollutant emission and better combustion performance,the proportion of the air flow in each combustion zone should be precisely determined in the design of the combustor.Due to the presence of entrainment phenomenon,the total air flow in the cavity zone is difficult to estimate.To overcome the measurement difficulty,this study adopts the indirect measurement approach in the experimental research of entrainment phenomenon in the cavity.In accordance with the measurement principle,a TVC model fueled by methane is designed.Under two experimental conditions,i.e.with and without direct air intake in the cavity,the influence of the mainstream air flow velocity,the air intake velocity in the cavity,the height of inlet channel,the structure of holder and the structural proportion of the cavity on entrainment in the cavity is studied,respectively,through experiment at atmospheric temperature and pressure.The results suggest that the air flow velocity of mainstream,the air intake velocity of the cavity and the structure of the holder exert significant influence on the air entrainment,while the influence of structural proportion of the cavity is comparatively insignificant.The square root of momentum ratio of cavity air to mainstream air could be used to analyze the correlation of the entrainment data.

  19. Evaluation of a staged fuel combustor for turboprop engines

    Science.gov (United States)

    Verdouw, A. J.

    1976-01-01

    Proposed EPA emission regulations require emission reduction by 1979 for various gas turbine engine classes. Extensive combustion technology advancements are required to meet the proposed regulations. The T56 turboprop engine requires CO, UHC, and smoke reduction. A staged fuel combustor design was tested on a combustion rig to evaluate emission reduction potential in turboprop engines from fuel zoning. The can-type combustor has separately fueled-pilot and main combustion zones in series. The main zone fueling system was arranged for potential incorporation into the T56 with minor or no modifications to the basic engine. Three combustor variable geometry systems were incorporated to evaluate various airflow distributions. Emission results with fixed geometry operation met all proposed EPA regulations over the EPA LTO cycle. CO reduction was 82 percent, UHC reduction was 96 percent, and smoke reduction was 84 percent. NOx increased 14 percent over the LTO cycle. At high power, NOx reduction was 40 to 55 percent. This NOx reduction has potential application to stationary gas turbine powerplants which have different EPA regulations.

  20. Combustor concepts for aircraft gas turbine low-power emissions reduction

    Science.gov (United States)

    Mularz, E. J.; Gleason, C. C.; Dodds, W. J.

    1978-01-01

    Three combustor concepts have been designed and tested to demonstrate significant reductions in aircraft engine idle pollutant emissions. Each concept used a different approach for pollutant reductions: the Hot Wall Combustor employs a thermal barrier coating and impingement cooled liners, the Recuperative Cooling Combustor preheats the air before entering the combustion chamber, and the Catalytic Converter Combustor is composed of a conventional primary zone followed by a catalytic bed for pollutant cleanup. The designs are discussed in detail and test results are presented for a range of aircraft engine idle conditions. The results indicate that ultra-low levels of unburned hydrocarbons and carbon monoxide emissions can be achieved with this technology.

  1. Large eddy simulation of soot evolution in an aircraft combustor

    Science.gov (United States)

    Mueller, Michael E.; Pitsch, Heinz

    2013-11-01

    An integrated kinetics-based Large Eddy Simulation (LES) approach for soot evolution in turbulent reacting flows is applied to the simulation of a Pratt & Whitney aircraft gas turbine combustor, and the results are analyzed to provide insights into the complex interactions of the hydrodynamics, mixing, chemistry, and soot. The integrated approach includes detailed models for soot, combustion, and the unresolved interactions between soot, chemistry, and turbulence. The soot model is based on the Hybrid Method of Moments and detailed descriptions of soot aggregates and the various physical and chemical processes governing their evolution. The detailed kinetics of jet fuel oxidation and soot precursor formation is described with the Radiation Flamelet/Progress Variable model, which has been modified to account for the removal of soot precursors from the gas-phase. The unclosed filtered quantities in the soot and combustion models, such as source terms, are closed with a novel presumed subfilter PDF approach that accounts for the high subfilter spatial intermittency of soot. For the combustor simulation, the integrated approach is combined with a Lagrangian parcel method for the liquid spray and state-of-the-art unstructured LES technology for complex geometries. Two overall fuel-to-air ratios are simulated to evaluate the ability of the model to make not only absolute predictions but also quantitative predictions of trends. The Pratt & Whitney combustor is a Rich-Quench-Lean combustor in which combustion first occurs in a fuel-rich primary zone characterized by a large recirculation zone. Dilution air is then added downstream of the recirculation zone, and combustion continues in a fuel-lean secondary zone. The simulations show that large quantities of soot are formed in the fuel-rich recirculation zone, and, furthermore, the overall fuel-to-air ratio dictates both the dominant soot growth process and the location of maximum soot volume fraction. At the higher fuel

  2. Effects of nonuniform Mach-number entrance on scramjet nozzle flowfield and performance

    Science.gov (United States)

    Zhang, Pu; Xu, Jinglei; Quan, Zhibin; Mo, Jianwei

    2016-12-01

    Considering the non-uniformities of nozzle entrance influenced by the upstream, the effects of nonuniform Mach-number coupled with shock and expansion-wave on the flowfield and performances of single expansion ramp nozzle (SERN) are numerically studied using Reynolds-Averaged Navier-Stokes equations. The adopted Reynolds-averaged Navier-Stokes methodology is validated by comparing the numerical results with the cold experimental data, and the average method used in this paper is discussed. Uniform and nonuniform facility nozzles are designed to generate different Mach-number profile for the inlet of SERN, which is direct-connected with different facility nozzle, and the whole flowfield is simulated. Because of the coupling of shock and expansion-wave, flow direction of nonuniform SERN entrance is distorted. Compared with Mach contour of uniform case, the line is more curved for coupling shock-wave entrance (SWE) case, and flatter for the coupling expansion-wave entrance (EWE) case. Wall pressure distribution of SWE case appears rising region, whereas decreases like stairs of EWE case. The numerical results reveal that the coupled shock and expansion-wave play significant roles on nozzle performances. Compared with the SERN performances of uniform entrance case at the same work conditions, the thrust of nonuniform entrance cases reduces by 3-6%, pitch moment decreases by 2.5-7%. The negative lift presents an incremental trend with EWE while the situation is the opposite with SWE. These results confirm that considering the entrance flow parameter nonuniformities of a scramjet nozzle coupled with shock or expansion-wave from the upstream is necessary.

  3. Minimally Intrusive and Nonintrusive Supersonic Injectors for LANTR and RBCC/Scramjet Propulsion Systems

    Science.gov (United States)

    Buggele, Alvin E.; Gallagher, John R.

    2002-10-01

    A family of supersonic injectors for use on spaceplanes, rockets and missiles and the like is disclosed and claimed. Each injector maintains a specific constant (uniform) Mach number along its length when used while being minimally intrusive at significantly higher injectant pressure than combuster freestream total pressure. Each injector is substantially non-intrusive when it is not being used. The injectors may be used individually or in a group. Different orientations of the injectors in a group promotes greater penetration and mixing of fuel or oxidizer into a supersonic combustor. The injectors can be made from single piece of Aluminum, investment cast metal, or ceramic or they can be made from starboard and port blocks strapped together to accurately control the throat area. Each injector includes an elongated body having an opening which in cross section is an hour glass (venturi shaped) and the opening diverges in width and depth from the bow section to the stem section of the opening.

  4. Synthesis and Thermal Decomposition of Tetrahydrotricyclopentadiene as a High Density Hydrocarbon Fuel%高密度烃燃料四氢环戊二烯三聚体的合成及热裂解

    Institute of Scientific and Technical Information of China (English)

    杜咏梅; 李春迎; 张建伟; 王伟; 亢建平; 吕剑

    2014-01-01

    As a high density hydrocarbon fuel, tetrahydrotricyclopentadiene( THTCPD) was synthesized from dicyclopentadiene and indene by D-A reaction and hydrogenation. The density of THTCPD is 1.082 g/cm3 , volumetric combustion heat is 47.5 MJ/L, flash point is 120 ℃ and freezing point is 48-49 ℃. Thermal de-composition of THTCPD was studied in a decomposition reactor at atmospheric pressure, in the temperature range of 973-1153 K. Products were detected by gas chromatography-mass spectroscopy. The major products were methane, ethylene, propylene, cyclopentene, cyclopentadiene, benzene and toluene. The conversion of THTCPD at different temperatures and time was investigated. The results indicated that the effect of tempera-ture was superior to other factors in this reaction. A primary mechanism including nine pathways was also pre-sumed according to the main products of the reaction and the monoradical mechanism. Density functional theo-ry calculations ( X3 LYP ) of the potential energy surface was performed to investigate the mechanisms of THTCPD breakdown. Relative energy and ratio of reation routes were computed. The kinetic equation of ther-mal decomposition was obtained by relation of the conversion and temperature. The pre-exponential factor and activation energy overall reaction order for thermal cracking of THTCPD were determined by linear regression analysis to be 133.75 and 6.67í104 kJ/mol, respectively.%以双环戊二烯为原料,经D-A反应及催化加氢合成了高密度烃燃料四氢环戊二烯三聚体( THTCPD).该三聚体的密度为1.082 g/cm3,体积热值为47.5 MJ/L,闪点为120℃,凝固点为48~49℃.采用裂解器与色谱-质谱联用技术,对THTCPD的热裂解进行了在线监测,结果表明温度对裂解反应影响较大.对裂解产物的结构进行了分析,产物以甲烷、乙烯、丙烯、环戊烯、环戊二烯、苯和甲苯为主.依据产物结构及单分子自由基反应模型,推测得到了9种

  5. 40 CFR 60.53a - Standard for municipal waste combustor organics.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for municipal waste combustor organics. 60.53a Section 60.53a Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... September 20, 1994 § 60.53a Standard for municipal waste combustor organics. (a) (b) On and after the...

  6. Grimethorpe experimental pressurized fluidized-bed combustor: in future energy concepts

    Energy Technology Data Exchange (ETDEWEB)

    Broadbent, D.B.

    1979-01-01

    The experimental pressurized fluidized bed combustor project at Grimethorpe, UK, is described. The design of the combustor, which is a pressure vessel containing a furnace, which contains the fluidized bed is discussed. Details of the process, the steam water circuit, the fuel system and method of feeding coal, ash removal during the process, the water treatment plant and plant control are given.

  7. The preliminary design of an annular combustor for a mini gas turbine

    CSIR Research Space (South Africa)

    Meyers, Bronwyn C

    2015-10-01

    Full Text Available This study involves the redesign of the combustor liner for a 200N mini gas turbine engine using first principles and the design methods of the NREC series as shown in Figure 1. The combustor design was performed using five different operating...

  8. Gas Turbine Combustor Liner Life Assessment Using a Combined Fluid/Structural Approach

    NARCIS (Netherlands)

    Tinga, Tiedo; Kampen, van J.F.; Jager, de B.; Kok, J.B.W.

    2007-01-01

    A life assessment was performed on a fighter jet engine annular combustor liner, using a combined fluid/structural approach. Computational fluid dynamics analyses were performed to obtain the thermal loading of the combustor liner and finite element analyses were done to calculate the temperature an

  9. Development and testing of pulsed and rotating detonation combustors

    Science.gov (United States)

    St. George, Andrew C.

    Detonation is a self-sustaining, supersonic, shock-driven, exothermic reaction. Detonation combustion can theoretically provide significant improvements in thermodynamic efficiency over constant pressure combustion when incorporated into existing cycles. To harness this potential performance benefit, countless studies have worked to develop detonation combustors and integrate these devices into existing systems. This dissertation consists of a series of investigations on two types of detonation combustors: the pulse detonation combustor (PDC) and the rotating detonation combustor (RDC). In the first two investigations, an array of air-breathing PDCs is integrated with an axial power turbine. The system is initially operated with steady and pulsed cold air flow to determine the effect of pulsed flow on turbine performance. Various averaging approaches are employed to calculate turbine efficiency, but only flow-weighted (e.g., mass or work averaging) definitions have physical significance. Pulsed flow turbine efficiency is comparable to steady flow efficiency at high corrected flow rates and low rotor speeds. At these conditions, the pulse duty cycle expands and the variation of the rotor incidence angle is constrained to a favorable range. The system is operated with pulsed detonating flow to determine the effect of frequency, fill fraction, and rotor speed on turbine performance. For some conditions, output power exceeds the maximum attainable value from steady constant pressure combustion due to a significant increase in available power from the detonation products. However, the turbine component efficiency estimated from classical thermodynamic analysis is four times lower than the steady design point efficiency. Analysis of blade angles shows a significant penalty due to the detonation, fill, and purge processes simultaneously imposed on the rotor. The latter six investigations focus on fundamental research of the RDC concept. A specially-tailored RDC data

  10. Parametric Study of Pulse-Combustor-Driven Ejectors at High-Pressure

    Science.gov (United States)

    Yungster, Shaye; Paxson, Daniel E.; Perkins, Hugh D.

    2015-01-01

    Pulse-combustor configurations developed in recent studies have demonstrated performance levels at high-pressure operating conditions comparable to those observed at atmospheric conditions. However, problems related to the way fuel was being distributed within the pulse combustor were still limiting performance. In the first part of this study, new configurations are investigated computationally aimed at improving the fuel distribution and performance of the pulse-combustor. Subsequent sections investigate the performance of various pulse-combustor driven ejector configurations operating at highpressure conditions, focusing on the effects of fuel equivalence ratio and ejector throat area. The goal is to design pulse-combustor-ejector configurations that maximize pressure gain while achieving a thermal environment acceptable to a turbine, and at the same time maintain acceptable levels of NOx emissions and flow non-uniformities. The computations presented here have demonstrated pressure gains of up to 2.8%.

  11. Diffusion Combustion in a Tube-Nested Combustor

    OpenAIRE

    Tetsuji, Seko; Ryosuke, Matsumoto; Yoshitomo, Shintani; Isao, Ishihara; Mamoru, Ozawa

    2004-01-01

    An advanced-type compact water-tube boiler has been designed on the basis of the new concept of cooling flame by water-tube bank in the furnace, and is referred to as "tube-nested combustor". It realized drastic reduction in boiler size as well as in the NO_x emission. In this present study, aiming at further improvement of boiler efficiency and reduction of NO_x emission, the combustion characteristics in the furnace were investigated by using the test boiler of 0.5t/h steam output. Experime...

  12. Modeling of Sulfur Retention in Circulating Fluidized Bed Coal Combustors

    Institute of Scientific and Technical Information of China (English)

    乔锐; 吕俊复; 刘青; 吴学安; 岳光溪

    2001-01-01

    A comprehensive model for predicting the sulfur retention performance in circulating fluidized bedcombustors was developed which involves the different residence times, the wide particle size distribution andthe different forms of sulfur in the coal. In addition, the reductive decomposition of CaSO4 is highlighted. Thesimulation results from the model show that the sulfur contents, the bed temperature, the sorbent particle sizedistribution and the sorbent activity or the maximum conversion rate can significantly influence the sulfuretention performance in circulating fluidized bed (CFB) combustors.``

  13. Device for improved air and fuel distribution to a combustor

    Energy Technology Data Exchange (ETDEWEB)

    Laster, Walter R.; Schilp, Reinhard

    2016-05-31

    A flow conditioning device (30, 50, 70, 100, 150) for a can annular gas turbine engine, including a plurality of flow elements (32, 34, 52, 54, 72, 74, 102) disposed in a compressed air flow path (42, 60, 80, 114, 122) leading to a combustor (12), configured such that relative adjustment of at least one flow directing element (32, 52, 72, 110) with respect to an adjacent flow directing element (34, 54, 74, 112, 120) during operation of the gas turbine engine is effective to adjust a level of choking of the compressed air flow path (42, 60, 80, 114, 122).

  14. Dynamic analysis of a flameless combustion model combustor

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Flameless combustion is a new technology with the following advantages:1)Ultra-low emissions of both NOX and CO;2)fuel flexibility,from liquid fuels,natural gas to hydrogen-rich syngas;3)lower possibility of flashback and thermoacoustic oscillations.In this paper,we focus on the dynamic characteristics of a flameless model combustor.Experimental results show that flameless combustion can lower emissions while maintaining combustion stability.However,combining a pilot flame with flameless combustion may excite thermoacoustic instability.

  15. Refractory experience in circulating fluidized bed combustors, Task 7

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, R.Q.

    1989-11-01

    This report describes the results of an investigation into the status of the design and selection of refractory materials for coal-fueled circulating fluidized-bed combustors. The survey concentrated on operating units in the United States manufactured by six different boiler vendors: Babcock and Wilcox, Combustion Engineering, Foster Wheeler, Keeler Dorr-Oliver, Pyropower, and Riley Stoker. Information was obtained from the boiler vendors, refractory suppliers and installers, and the owners/operators of over forty units. This work is in support of DOE's Clean Coal Technology program, which includes circulating fluidized-bed technology as one of the selected concepts being evaluated.

  16. Active Combustion Control for Aircraft Gas-Turbine Engines-Experimental Results for an Advanced, Low-Emissions Combustor Prototype

    Science.gov (United States)

    DeLaat, John C.; Kopasakis, George; Saus, Joseph R.; Chang, Clarence T.; Wey, Changlie

    2012-01-01

    Lean combustion concepts for aircraft engine combustors are prone to combustion instabilities. Mitigation of instabilities is an enabling technology for these low-emissions combustors. NASA Glenn Research Center s prior activity has demonstrated active control to suppress a high-frequency combustion instability in a combustor rig designed to emulate an actual aircraft engine instability experience with a conventional, rich-front-end combustor. The current effort is developing further understanding of the problem specifically as applied to future lean-burning, very low-emissions combustors. A prototype advanced, low-emissions aircraft engine combustor with a combustion instability has been identified and previous work has characterized the dynamic behavior of that combustor prototype. The combustor exhibits thermoacoustic instabilities that are related to increasing fuel flow and that potentially prevent full-power operation. A simplified, non-linear oscillator model and a more physics-based sectored 1-D dynamic model have been developed to capture the combustor prototype s instability behavior. Utilizing these models, the NASA Adaptive Sliding Phasor Average Control (ASPAC) instability control method has been updated for the low-emissions combustor prototype. Active combustion instability suppression using the ASPAC control method has been demonstrated experimentally with this combustor prototype in a NASA combustion test cell operating at engine pressures, temperatures, and flows. A high-frequency fuel valve was utilized to perturb the combustor fuel flow. Successful instability suppression was shown using a dynamic pressure sensor in the combustor for controller feedback. Instability control was also shown with a pressure feedback sensor in the lower temperature region upstream of the combustor. It was also demonstrated that the controller can prevent the instability from occurring while combustor operation was transitioning from a stable, low-power condition to

  17. Characterization of the NASA Langley Arc Heated Scramjet Test Facility Using NO PLIF

    Science.gov (United States)

    Kidd, F. Gray, III; Narayanaswamy, Venkateswaran; Danehy, Paul M.; Inman, Jennifer A.; Bathel, Brett F.; Cabell, Karen F.; Hass, Neal E.; Capriotti, Diego P.; Drozda, Tomasz G.; Johansen, Criag T.

    2014-01-01

    The nitric oxide planar laser-induced fluorescence (NO PLIF) imaging was used to characterize the air flow of the NASA Langley Arc Heated Scramjet Test Facility (AHSTF) configured with a Mach 6 nozzle. The arc raises the enthalpy of the test gas in AHSTF, producing nitric oxide. Nitric oxide persists as the temperature drops through the nozzle into the test section. NO PLIF was used to qualitatively visualize the flowfield at different experimental conditions, measure the temperature of the gas flow exiting the facility nozzle, and visualize the wave structure downstream of the nozzle at different operating conditions. Uniformity and repeatability of the nozzle flow were assessed. Expansion and compression waves on the free-jet shear layer as the nozzle flow expands into the test section were visualized. The main purpose of these experiments was to assess the uniformity of the NO in the freestream gas for planned experiments, in which NO PLIF will be used for qualitative fuel-mole-fraction sensitive imaging. The shot-to-shot fluctuations in the PLIF signal, caused by variations in the overall laser intensity as well as NO concentration and temperature variations in the flow was 20-25% of the mean signal, as determined by taking the standard deviation of a set of images obtained at constant conditions and dividing by the mean. The fluctuations within individual images, caused by laser sheet spatial variations as well as NO concentration and temperature variations in the flow, were about 28% of the mean in images, determined by taking standard deviation within individual images, dividing by the mean in the same image and averaged over the set of images. Applying an averaged laser sheet intensity correction reduced the within-image intensity fluctuations to about 10% suggesting that the NO concentration is uniform to within 10%. There was no significant difference in flow uniformity between the low and high enthalpy settings. While not strictly quantitative, the

  18. Detecting deterministic nature of pressure measurements from a turbulent combustor

    Science.gov (United States)

    Tony, J.; Gopalakrishnan, E. A.; Sreelekha, E.; Sujith, R. I.

    2015-12-01

    Identifying nonlinear structures in a time series, acquired from real-world systems, is essential to characterize the dynamics of the system under study. A single time series alone might be available in most experimental situations. In addition to this, conventional techniques such as power spectral analysis might not be sufficient to characterize a time series if it is acquired from a complex system such as a thermoacoustic system. In this study, we analyze the unsteady pressure signal acquired from a turbulent combustor with bluff-body and swirler as flame holding devices. The fractal features in the unsteady pressure signal are identified using the singularity spectrum. Further, we employ surrogate methods, with translational error and permutation entropy as discriminating statistics, to test for determinism visible in the observed time series. In addition to this, permutation spectrum test could prove to be a robust technique to characterize the dynamical nature of the pressure time series acquired from experiments. Further, measures such as correlation dimension and correlation entropy are adopted to qualitatively detect noise contamination in the pressure measurements acquired during the state of combustion noise. These ensemble of measures is necessary to identify the features of a time series acquired from a system as complex as a turbulent combustor. Using these measures, we show that the pressure fluctuations during combustion noise has the features of a high-dimensional chaotic data contaminated with white and colored noise.

  19. Single Cavity Trapped Vortex Combustor Dynamics – Part-1: Experiments

    Directory of Open Access Journals (Sweden)

    Atul Singhal

    2011-03-01

    Full Text Available In the present work, a water-cooled, modular, atmospheric pressure Trapped Vortex Combustor (TVC test rig is designed and fabricated for reacting and non-reacting flow experiments. The unique features of this rig consist of a continuously variable length-to-depth ratio (L/D of the cavity and optical access through quartz plates provided on three sides for visualization. Flame stabilization in the single cavity TVC was successfully achieved with methane as fuel and the range of flow conditions for stable operation were identified. From these, a few cases were selected for detailed experimentation. Reacting flow experiments for the selected cases indicated that reducing L/D ratio and increasing cavity-air velocity favour stable combustion. The pressure drop across the single cavity TVC is observed to be lower as compared to conventional combustors. Temperatures are measured at the exit using thermocouples and corrected for radiative losses. Species concentrations are measured at the exit using an exhaust gas analyzer. The combustion efficiency is observed to be around 97-99 % and the pattern factor is observed to be in the range of 0.08 to 0.13. High-speed imaging made possible by the optical access indicates that the overall combustion is fairly steady, and there is no vortex shedding downstream.

  20. Scaling of heat transfer in gas-gas injector combustor

    Institute of Scientific and Technical Information of China (English)

    Wang Xiao-Wei; Cai Guo-Biao; Gao Yu-Shan

    2011-01-01

    The scaling of heat transfer in gas-gas injector combuetor is investigated theoretically, numerically and experimentally based on the previous study on the scaling of gas-gas combustion flowfield. The similarity condition of the gas-gas injector combustor heat transfer is obtained by conducting a formulation analysis of the boundary layer Navier-Stokes equations and a dimensional analysis of the corresponding heat transfer phenomenon. Then, a practicable engineering scaling criterion of the gas-gas injector combustor heat transfer is put forward. The criterion implies that when the similarity conditions of inner flowfield are satisfied, the size and the pressure of gas-gas combustion chamber can be changed, while the heat transfer can still be qualitatively similar to the distribution trend and quantitatively correlates well with the size and pressure as q ∝ pc0.8dt-0.2. Based on the criterion, single-element injector chambers with different geometric sizes and at different chamber pressures ranging from 1 MPa to 20 MPa are numerically simulated. A single-element injector chamber is designed and hot-fire tested at seven chamber pressures from 0.92 MPa to 6.1 MPa.The inner wall heat flux are obtained and analysed. The numerical and experimental results both verified the scaling criterion in gas-gas injector combustion chambers under different chamber pressures and geometries.

  1. CFD predictions of LBO limits for aero-engine combustors using fuel iterative approximation

    Institute of Scientific and Technical Information of China (English)

    Hu Bin; Huang Yong; Wang Fang; Xie Fa

    2013-01-01

    Lean blow-out (LBO) is critical to operational performance of combustion systems in propulsion and power generation.Current predictive tools for LBO limits are based on decadesold empirical correlations that have limited applicability for modern combustor designs.According to the Lefebvre's model for LBO and classical perfect stirred reactor (PSR) concept,a load parameter (LP) is proposed for LBO analysis of aero-engine combustors in this paper.The parameters contained in load parameter are all estimated from the non-reacting flow field of a combustor that is obtained by numerical simulation.Additionally,based on the load parameter,a method of fuel iterative approximation (FIA) is proposed to predict the LBO limit of the combustor.Compared with experimental data for 19 combustors,it is found that load parameter can represent the actual combustion load of the combustor near LBO and have good relativity with LBO fuel/air ratio (FAR).The LBO FAR obtained by FIA shows good agreement with experimental data,the maximum prediction uncertainty of FIA is about ± 17.5%.Because only the non-reacting flow is simulated,the time cost of the LBO limit prediction using FIA is relatively low (about 6 h for one combustor with computer equipment of CPU 2.66 GHz × 4 and 4 GB memory),showing that FIA is reliable and efficient to be used for practical applications.

  2. Combustion Dynamics in Multi-Nozzle Combustors Operating on High-Hydrogen Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Santavicca, Dom; Lieuwen, Tim

    2013-09-30

    Actual gas turbine combustors for power generation applications employ multi-nozzle combustor configurations. Researchers at Penn State and Georgia Tech have extended previous work on the flame response in single-nozzle combustors to the more realistic case of multi-nozzle combustors. Research at Georgia Tech has shown that asymmetry of both the flow field and the acoustic forcing can have a significant effect on flame response and that such behavior is important in multi-flame configurations. As a result, the structure of the flame and its response to forcing is three-dimensional. Research at Penn State has led to the development of a three-dimensional chemiluminescence flame imaging technique that can be used to characterize the unforced (steady) and forced (unsteady) flame structure of multi-nozzle combustors. Important aspects of the flame response in multi-nozzle combustors which are being studied include flame-flame and flame-wall interactions. Research at Penn State using the recently developed three-dimensional flame imaging technique has shown that spatial variations in local flame confinement must be accounted for to accurately predict global flame response in a multi-nozzle can combustor.

  3. Development of a new method for improving load turndown in fluidized bed combustors: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.C.

    1988-12-01

    The objective of this research was to investigate a new concept in fluidized bed design that improves load turndown capability. This improvement is accomplished by independently controlling heat transfer and combustion in the combustor. The design consists of two fluidized beds, one central and one annular. The central bed serves as the combustion bed. The annular bed is fluidized separately from the combustion bed and its level of fluidization determine the overall heat transfer rate from the combustion bed to the surrounding water jacket. Early theoretical considerations suggested a load turndown exceeding ten was possible for this design. This research consisted of three major phases: development of a computational model to predict heat transfer in the two-bed combustor, heat transfer measurements in hot-and-cold flow models of the combustor, and combustion tests in an optimally designed combustor. The computation model was useful in selecting the design of the combustor. Annular bed width and particle sizes were chosen with the aid of the model. The heat transfer tests were performed to determine if the existing correlations for fluidized bed heat transfer coefficients were sufficiently accurate for high aspect ratio fluidized beds (such as the annular bed in the combustor). Combustion tests were performed in an optimally designed combustor. Three fuel forms were used: double screened, crushed coal, coal-water-limestone mixtures (CWLM), and coal-limestone briquettes. 18 refs., 30 figs., 8 tabs.

  4. 多元醇一步法制备高碳烃液体燃料的研究%Preparation of liquid hydrocarbon fuels from polyols via one-step redox process

    Institute of Scientific and Technical Information of China (English)

    吕东灿; 刘运权; 王夺; 叶跃元

    2014-01-01

    Sorbitol and xylitol were used as raw materials for the preparation of heavier hydrocarbons byreduction with hydriodic acid under mild reaction conditions. The generated liquid hydrocarbons were analyzed by gas chromatography-mass spectrometry ( GC-MS ) and Fourier transform infrared spectroscopy ( FT-IR ) .Their physicochemical properties were further characterized. The heavier hydrocarbons obtained from sorbitol mainly include C12 H16 , C12 H18 , C12 H20 , C12 H22 and C18 H26 , with a yield of 85. 1%. In contrast, that prepared from xylitol were mainly composed of C10 and C15 hydrocarbons with a yield of 62. 8%. When using a mixture of sorbitol/xylitol ( 50 :50 ) as feedstock, C11 hydrocarbons were also generated besides C10 , C12 , C15 and C18 hydrocarbons. The yield of total heavier hydrocarbons was 65. 4%. To get purer liquid hydrocarbons, the obtained raw product was treated with potassium hydroxide in an ethyl alcohol solution, followed by rotary evaporation and vacuum distillation, and a liquid hydrocarbon fuel contains less than 0. 2% of water and 1. 8% ~2. 1% of oxygen was generated. Its kinematic viscosity is 3. 15~ 3. 17 mm2/s, density 0. 83~ 0. 84 g/mL, and calorific value greater than 43 MJ/kg at room temperature. The umpolung of the C-I bond and the intermolecularC C coupling may result in the formation of heavier hydrocarbons from polyols.%在较温和的条件下,山梨醇和木糖醇被氢碘酸还原转化为高碳烃液体燃料。产物采用 GC-MS 和 FT-IR 进行定量分析与表征,并对高碳烃产品的理化性质进行了测定。结果表明,以山梨醇为原料制备的高碳烃产物主要是包括 C12 H16、C 18、C12 H20、C12 H22和 C18 H26在内的烷烃、烯烃和芳香烃等化合物,烃类的总产率可达85.1%。以木糖醇为原料的反应过程与山梨醇相似,但所得高碳烃是以 C10和 C15为主的烃类化合物,产率为62.8%。实验还以质量分数为50%的山梨醇和50%的木糖醇混合物为原料

  5. NONEQUILIBRIUM SULFUR CAPTURE & RETENTION IN AN AIR COOLED SLAGGING COAL COMBUSTOR

    Energy Technology Data Exchange (ETDEWEB)

    Bert Zauderer

    2003-04-21

    Calcium oxide injected in a slagging combustor reacts with the sulfur from coal combustion to form sulfur-bearing particles. The reacted particles impact and melt in the liquid slag layer on the combustor wall by the centrifugal force of the swirling combustion gases. Due to the low solubility of sulfur in slag, it must be rapidly drained from the combustor to limit sulfur gas re-evolution. Prior analyses and laboratory scale data indicated that for Coal Tech's 20 MMBtu/hour, air-cooled, slagging coal combustor slag mass flow rates in excess of 400 lb/hr should limit sulfur re-evolution. The objective of this 42-month project was to validate this sulfur-in-slag model in a group of combustor tests. A total of 36 days of testing on the combustor were completed during the period of performance of this project. This was more that double the 16 test days that were required in the original work statement. The extra tests were made possible by cost saving innovations that were made in the operation of the combustor test facility and in additional investment of Coal Tech resources in the test effort. The original project plan called for two groups of tests. The first group of tests involved the injection of calcium sulfate particles in the form of gypsum or plaster of Paris with the coal into the 20 MMBtu/hour-combustor. The second group of tests consisted of the entire two-step process, in which lime or limestone is co-injected with coal and reacts with the sulfur gas released during combustion to form calcium sulfate particles that impact and dissolve in the slag layer. Since this sulfur capture process has been validated in numerous prior tests in this combustor, the primary effort in the present project was on achieving the high slag flow rates needed to retain the sulfur in the slag.

  6. Ignition and Flame Stabilization of a Strut-Jet RBCC Combustor with Small Rocket Exhaust

    OpenAIRE

    Jichao Hu; Juntao Chang; Wen Bao

    2014-01-01

    A Rocket Based Combined Cycle combustor model is tested at a ground direct connected rig to investigate the flame holding characteristics with a small rocket exhaust using liquid kerosene. The total temperature and the Mach number of the vitiated air flow, at exit of the nozzle are 1505 K and 2.6, respectively. The rocket base is embedded in a fuel injecting strut and mounted in the center of the combustor. The wall of the combustor is flush, without any reward step or cavity, so the strut-je...

  7. Design and preliminary results of a fuel flexible industrial gas turbine combustor

    Science.gov (United States)

    Novick, A. S.; Troth, D. L.; Yacobucci, H. G.

    1981-01-01

    The design characteristics are presented of a fuel tolerant variable geometry staged air combustor using regenerative/convective cooling. The rich/quench/lean variable geometry combustor is designed to achieve low NO(x) emission from fuels containing fuel bound nitrogen. The physical size of the combustor was calculated for a can-annular combustion system with associated operating conditions for the Allison 570-K engine. Preliminary test results indicate that the concept has the potential to meet emission requirements at maximum continuous power operation. However, airflow sealing and improved fuel/air mixing are necessary to meet Department of Energy program goals.

  8. Design and preliminary results of a fuel flexible industrial gas turbine combustor

    Science.gov (United States)

    Novick, A. S.; Troth, D. L.; Yacobucci, H. G.

    1981-01-01

    The design characteristics are presented of a fuel tolerant variable geometry staged air combustor using regenerative/convective cooling. The rich/quench/lean variable geometry combustor is designed to achieve low NO(x) emission from fuels containing fuel bound nitrogen. The physical size of the combustor was calculated for a can-annular combustion system with associated operating conditions for the Allison 570-K engine. Preliminary test results indicate that the concept has the potential to meet emission requirements at maximum continuous power operation. However, airflow sealing and improved fuel/air mixing are necessary to meet Department of Energy program goals.

  9. Fast Ignition and Stable Combustion of Coarse Coal Particles in a Nonslagging Cyclone Combustor

    Institute of Scientific and Technical Information of China (English)

    BiaoZhou; X.L.Wang; 等

    1995-01-01

    A combustion set-up of an innovative nonalagging cyclone combustor called “Spouting-Cyclone Combustor(SCC)”,,with two-stage combustion,organized in orthogonal vortex flows,was established and the experimental studies on the fast ignition and stable combustion of coarse coal particles in this combustor were carried out.The flame temperature versus ignition time and the practical fast ignition the temperature fields in SCC were obtained.These results whow that it is possible to obtain highly efficient and clean combustion of unground coal particles by using this technology.

  10. Gaseous Surrogate Hydrocarbons for a Hifire Scramjet that Mimic Opposed Jet Extinction Limits for Cracked JP Fuels

    Science.gov (United States)

    Pellett, Gerald L.; Vaden, Sarah N.; Wilson, Lloyd G.

    2008-01-01

    This paper describes, first, the top-down methodology used to define simple gaseous surrogate hydrocarbon (HC) fuel mixtures for a hypersonic scramjet combustion subtask of the HiFIRE program. It then presents new and updated Opposed Jet Burner (OJB) extinction-limit Flame Strength (FS) data obtained from laminar non-premixed HC vs. air counterflow diffusion flames at 1-atm, which follow from earlier investigations. FS represents a strain-induced extinction limit based on cross-section-average air jet velocity, U(sub air), that sustains combustion of a counter jet of gaseous fuel just before extinction. FS uniquely characterizes a kinetically limited fuel combustion rate. More generally, Applied Stress Rates (ASRs) at extinction (U(sub air) normalized by nozzle or tube diameter, D(sub n or t) can directly be compared with extinction limits determined numerically using either a 1-D or (preferably) a 2-D Navier Stokes simulation with detailed transport and finite rate chemistry. The FS results help to characterize and define three candidate surrogate HC fuel mixtures that exhibit a common FS 70% greater than for vaporized JP-7 fuel. These include a binary fuel mixture of 64% ethylene + 36% methane, which is our primary recommendation. It is intended to mimic the critical flameholding limit of a thermally- or catalytically-cracked JP-7 like fuel in HiFIRE scramjet combustion tests. Our supporting experimental results include: (1) An idealized kinetically-limited ASR reactivity scale, which represents maximum strength non-premixed flames for several gaseous and vaporized liquid HCs; (2) FS characterizations of Colket and Spadaccini s suggested ternary surrogate, of 60% ethylene + 30% methane + 10% n-heptane, which matches the ignition delay of a typical cracked JP fuel; (3) Data showing how our recommended binary surrogate, of 64% ethylene + 36% methane, has an identical FS; (4) Data that characterize an alternate surrogate of 44% ethylene + 56% ethane with identical

  11. Flame dynamics in a micro-channeled combustor

    Science.gov (United States)

    Hussain, Taaha; Markides, Christos N.; Balachandran, Ramanarayanan

    2015-01-01

    The increasing use of Micro-Electro-Mechanical Systems (MEMS) has generated a significant interest in combustion-based power generation technologies, as a replacement of traditional electrochemical batteries which are plagued by low energy densities, short operational lives and low power-to-size and power-to-weight ratios. Moreover, the versatility of integrated combustion-based systems provides added scope for combined heat and power generation. This paper describes a study into the dynamics of premixed flames in a micro-channeled combustor. The details of the design and the geometry of the combustor are presented in the work by Kariuki and Balachandran [1]. This work showed that there were different modes of operation (periodic, a-periodic and stable), and that in the periodic mode the flame accelerated towards the injection manifold after entering the channels. The current study investigates these flames further. We will show that the flame enters the channel and propagates towards the injection manifold as a planar flame for a short distance, after which the flame shape and propagation is found to be chaotic in the middle section of the channel. Finally, the flame quenches when it reaches the injector slots. The glow plug position in the exhaust side ignites another flame, and the process repeats. It is found that an increase in air flow rate results in a considerable increase in the length (and associated time) over which the planar flame travels once it has entered a micro-channel, and a significant decrease in the time between its conversion into a chaotic flame and its extinction. It is well known from the literature that inside small channels the flame propagation is strongly influenced by the flow conditions and thermal management. An increase of the combustor block temperature at high flow rates has little effect on the flame lengths and times, whereas at low flow rates the time over which the planar flame front can be observed decreases and the time of

  12. Gas turbine combustor exit piece with hinged connections

    Energy Technology Data Exchange (ETDEWEB)

    Charron, Richard C.; Pankey, William W.

    2016-04-26

    An exit piece (66) with an inlet throat (67) that conducts a combustion gas flow (36A) in a path (82) from a combustor (63) to an annular chamber (68) that feeds the first blade section (37) of a gas turbine (26). The exit piece further includes an outlet portion (69) that forms a circumferential segment of the annular chamber. The outlet portion interconnects with adjacent outlet portions by hinges (78A, 78B, 80A, 80B). Each hinge may have a hinge axis (82A, 82B) parallel to a centerline (21) of the turbine. Respective gas flows (36A) are configured by an assembly (60) of the exit pieces to converge on the feed chamber (68) into a uniform helical flow that drives the first blade section with minimal circumferential variations in force.

  13. Development of a pressure gain combustor for improved cycle efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Gemmen, R.S.; Richards, G.A.; Janus, M.C.

    1994-09-01

    This paper presents results from an experimental research program attempting to improve the thermodynamic efficiencies of gas-turbine combustors. An elementary thermodynamic analysis shows that the thermodynamic cycle efficiencies of gas turbines can be significantly improved by using unsteady combustion that achieves quasi-constant-volume combustion. The ability to produce the so-called pressure gain via this process has already been demonstrated by others for pressures less than 3 atmospheres. This paper presents experimental results for pressures up to 11 atmospheres, compares certain process parameters to a numerical simulation, and briefly examines the problem of scale-up. Results of pollutant measurements over the 2--11 atmospheric range of operation are also included.

  14. Flame Interactions and Thermoacoustics in Multiple-Nozzle Combustors

    Science.gov (United States)

    Dolan, Brian

    The first major chapter of original research (Chapter 3) examines thermoacoustic oscillations in a low-emission staged multiple-nozzle lean direct injection (MLDI) combustor. This experimental program investigated a relatively practical combustor sector that was designed and built as part of a commercial development program. The research questions are both practical, such as under what conditions the combustor can be safely operated, and fundamental, including what is most significant to driving the combustion oscillations in this system. A comprehensive survey of operating conditions finds that the low-emission (and low-stability) intermediate and outer stages are necessary to drive significant thermoacoustics. Phase-averaged and time-resolved OH* imaging show that dramatic periodic strengthening and weakening of the reaction zone downstream of the low-emission combustion stages. An acoustic modal analysis shows the pressure wave shapes and identifies the dominant thermoacoustic behavior as the first longitudinal mode for this combustor geometry. Finally, a discussion of the likely significant coupling mechanisms is given. Periodic reaction zone behavior in the low-emission fuel stages is the primary contributor to unsteady heat release. Differences between the fuel stages in the air swirler design, the fuel number of the injectors, the lean blowout point, and the nominal operating conditions all likely contribute to the limit cycle behavior of the low-emission stages. Chapter 4 investigates the effects of interaction between two adjacent swirl-stabilized nozzles using experimental and numerical tools. These studies are more fundamental; while the nozzle hardware is the same as the lean direct injection nozzles used in the MLDI combustion concept, the findings are generally applicable to other swirl-stabilized combustion systems as well. Much of the work utilizes a new experiment where the distance between nozzles was varied to change the level of interaction

  15. A Simplified Model for Detonation Based Pressure-Gain Combustors

    Science.gov (United States)

    Paxson, Daniel E.

    2010-01-01

    A time-dependent model is presented which simulates the essential physics of a detonative or otherwise constant volume, pressure-gain combustor for gas turbine applications. The model utilizes simple, global thermodynamic relations to determine an assumed instantaneous and uniform post-combustion state in one of many envisioned tubes comprising the device. A simple, second order, non-upwinding computational fluid dynamic algorithm is then used to compute the (continuous) flowfield properties during the blowdown and refill stages of the periodic cycle which each tube undergoes. The exhausted flow is averaged to provide mixed total pressure and enthalpy which may be used as a cycle performance metric for benefits analysis. The simplicity of the model allows for nearly instantaneous results when implemented on a personal computer. The results compare favorably with higher resolution numerical codes which are more difficult to configure, and more time consuming to operate.

  16. Turbulent transport measurements in a model of GT-combustor

    Science.gov (United States)

    Chikishev, L. M.; Gobyzov, O. A.; Sharaborin, D. K.; Lobasov, A. S.; Dulin, V. M.; Markovich, D. M.; Tsatiashvili, V. V.

    2016-10-01

    To reduce NOx formation modern industrial power gas-turbines utilizes lean premixed combustion of natural gas. The uniform distribution of local fuel/air ratio in the combustion chamber plays one of the key roles in the field of lean combustion to prevent thermo-acoustic pulsations. Present paper reports on simultaneous Particle Image Velocimetry and acetone Planar Laser Induced Fluorescence measurements in a cold model of GT-combustor to investigate mixing processes which are relevant to the organization of lean premixed combustion. Velocity and passive admixture pulsations correlations were measured to verify gradient closer model, which is often used in Reynolds-Averaged Navier-Stokes (RANS) simulation of turbulent mixing.

  17. Combustion of hydrogen in an experimental trapped vortex combustor

    Science.gov (United States)

    Wu, Hui; Chen, Qin; Shao, Weiwei; Zhang, Yongliang; Wang, Yue; Xiao, Yunhan

    2009-09-01

    Combustion performances of pure hydrogen in an experimental trapped vortex combustor have been tested under different operating conditions. Pressure fluctuations, NOx emissions, OH distributions, and LBO (Lean Blow Out) were measured in the tests. Results indicate that the TVC test rig has successfully realized a double vortex construction in the cavity zone in a wide range of flow conditions. Hydrogen combustion in the test rig has achieved an excellent LBO performance and relatively low NOx emissions. Through comparison of dynamic pressure data, OH fluctuation images, and NOx emissions, the optimal operating condition has been found out to be Φp =0.4, fuel split =0.4, and primary air/fuel premixed.

  18. Near-zero emissions combustor system for syngas and biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Yongho, Kim [Los Alamos National Laboratory; Rosocha, Louis [Los Alamos National Laboratory

    2010-01-01

    A multi-institutional plasma combustion team was awarded a research project from the DOE/NNSA GIPP (Global Initiative for Prolifereation Prevention) office. The Institute of High Current Electronics (Tomsk, Russia); Leonardo Technologies, Inc. (an American-based industrial partner), in conjunction with the Los Alamos National Laboratory are participating in the project to develop novel plasma assisted combustion technologies. The purpose of this project is to develop prototypes of marketable systems for more stable and cleaner combustion of syngas/biofuels and to demonstrate that this technology can be used for a variety of combustion applications - with a major focus on contemporary gas turbines. In this paper, an overview of the project, along with descriptions of the plasma-based combustors and associated power supplies will be presented. Worldwide, it is recognized that a variety of combustion fuels will be required to meet the needs for supplying gas-turbine engines (electricity generation, propulsion), internal combustion engines (propulsion, transportation), and burners (heat and electricity generation) in the 21st Century. Biofuels and biofuel blends have already been applied to these needs, but experience difficulties in modifications to combustion processes and combustor design and the need for flame stabilization techniques to address current and future environmental and energy-efficiency challenges. In addition, municipal solid waste (MSW) has shown promise as a feedstock for heat and/or electricity-generating plants. However, current combustion techniques that use such fuels have problems with achieving environmentally-acceptable air/exhaust emissions and can also benefit from increased combustion efficiency. This project involves a novel technology (a form of plasma-assisted combustion) that can address the above issues. Plasma-assisted combustion (PAC) is a growing field that is receiving worldwide attention at present. The project is focused on

  19. Single particle behaviour in circulating fluidized bed combustors

    DEFF Research Database (Denmark)

    Erik Weinell, Claus

    1994-01-01

    of fuel particles in a boiler. A cold pilot scale model of a circulating fluidized bed combustor was used. Here sand was recirculated by means of air. Pressure measurements along the riser determined suspension density. A radioactive tracking facility to determined the dynamic picture of the particle....... The tracer particles moved between the zones with a mean frequency of ca. 1 Hz. The upwards particle velocity in the upper dilute transport zone decreased with particle size and density, resulting in a decreased number of particle observations for the larger particles with the riser height. The particles...... kept their axial course within relatively short ranges but this pattern was wiped out at larger distances. The mean particle residence time in the zone above and below the secondary air inlet was almost independent of particle characteristics, but was proportional to the magnitude of the internal...

  20. Parametric Design of Injectors for LDI-3 Combustors

    Science.gov (United States)

    Ajmani, Kumud; Mongia, Hukam; Lee, Phil

    2015-01-01

    Application of a partially calibrated National Combustion Code (NCC) for providing guidance in the design of the 3rd generation of the Lean-Direct Injection (LDI) multi-element combustion configuration (LDI-3) is summarized. NCC was used to perform non-reacting and two-phase reacting flow computations on several LDI-3 injector configurations in a single-element and a five-element injector array. All computations were performed with a consistent approach for mesh-generation, turbulence, spray simulations, ignition and chemical kinetics-modeling. Both qualitative and quantitative assessment of the computed flowfield characteristics of the several design options led to selection of an optimal injector LDI- 3 design that met all the requirements including effective area, aerodynamics and fuel-air mixing criteria. Computed LDI-3 emissions (namely, NOx, CO and UHC) will be compared with the prior generation LDI- 2 combustor experimental data at relevant engine cycle conditions.

  1. Thermal treatment of wastes in an advanced cyclonic combustor

    Energy Technology Data Exchange (ETDEWEB)

    Abbasi, H.A.; Khinkis, M.J.; Kunc, W.

    1991-01-01

    IGT is developing an advanced waste combustion concept, based on cyclonic combustion principles, for application to a wide range of industrial wastes. In IGT's cyclonic combustor, a mixture of fuel and combustion air is fed tangentially at a relatively high velocity into a cylindrical chamber. The waste is injected either tangentially with the fuel or separately in a tangential, radial, or axial configuration. This approach provides high combustion intensity with internal recirculation of combustion products, which results in extremely stable and complete combustion, even at relatively low temperatures. IGT has performed three successful test programs involving cyclonic waste combustion for industrial clients. In one program, industrial wastewaters containing 40% to 50% organics and inorganics with heating values of 1600 to 3270 Btu/lb were combusted to 99.9% completion at only 2000{degrees}F. The low combustion temperature minimized the supplemental fuel required. In another program, simulated low-Btu industrial off-gases (55 to 65 BTu/SCF) were successfully combusted with stable combustion at 1900{degrees}F using air and waste preheat. Supplemental fuel was unnecessary because of the mixing that occurs in the cyclonic combustor. The conversion of fuel-bonded nitrogen to NO{sub x} was as low as 5%, and CO levels were in the range of 25 to 30 ppm. In the third program, CCl{sub 4} (as a test surrogate for PCBs) was efficiently destroyed by firing natural gas or hexane. With 100% CCl{sub 4} and natural gas firing, the DRE at 2200{degrees}F and a 0.25-second residence time ranged from 99.9999% to 99.9999%. These successful tests have led to the design and construction of a modular test facility at IGT's Energy Development Center. 13 figs., 17 tabs.

  2. Enabling Advanced Modeling and Simulations for Fuel-Flexible Combustors

    Energy Technology Data Exchange (ETDEWEB)

    Heinz Pitsch

    2010-05-31

    The overall goal of the present project is to enable advanced modeling and simulations for the design and optimization of fuel-flexible turbine combustors. For this purpose we use a high-fidelity, extensively-tested large-eddy simulation (LES) code and state-of-the-art models for premixed/partially-premixed turbulent combustion developed in the PI's group. In the frame of the present project, these techniques are applied, assessed, and improved for hydrogen enriched premixed and partially premixed gas-turbine combustion. Our innovative approaches include a completely consistent description of flame propagation, a coupled progress variable/level set method to resolve the detailed flame structure, and incorporation of thermal-diffusion (non-unity Lewis number) effects. In addition, we have developed a general flamelet-type transformation holding in the limits of both non-premixed and premixed burning. As a result, a model for partially premixed combustion has been derived. The coupled progress variable/level method and the general flamelet tranformation were validated by LES of a lean-premixed low-swirl burner that has been studied experimentally at Lawrence Berkeley National Laboratory. The model is extended to include the non-unity Lewis number effects, which play a critical role in fuel-flexible combustor with high hydrogen content fuel. More specifically, a two-scalar model for lean hydrogen and hydrogen-enriched combustion is developed and validated against experimental and direct numerical simulation (DNS) data. Results are presented to emphasize the importance of non-unity Lewis number effects in the lean-premixed low-swirl burner of interest in this project. The proposed model gives improved results, which shows that the inclusion of the non-unity Lewis number effects is essential for accurate prediction of the lean-premixed low-swirl flame.

  3. Enabling Advanced Modeling and Simulations for Fuel-Flexible Combustors

    Energy Technology Data Exchange (ETDEWEB)

    Pitsch, Heinz

    2010-05-31

    The overall goal of the present project is to enable advanced modeling and simulations for the design and optimization of fuel-flexible turbine combustors. For this purpose we use a high fidelity, extensively-tested large-eddy simulation (LES) code and state-of-the-art models for premixed/partially-premixed turbulent combustion developed in the PI's group. In the frame of the present project, these techniques are applied, assessed, and improved for hydrogen enriched premixed and partially premixed gas-turbine combustion. Our innovative approaches include a completely consistent description of flame propagation; a coupled progress variable/level set method to resolve the detailed flame structure, and incorporation of thermal-diffusion (non-unity Lewis number) effects. In addition, we have developed a general flamelet-type transformation holding in the limits of both non-premixed and premixed burning. As a result, a model for partially premixed combustion has been derived. The coupled progress variable/level method and the general flamelet transformation were validated by LES of a lean-premixed low-swirl burner that has been studied experimentally at Lawrence Berkeley National Laboratory. The model is extended to include the non-unity Lewis number effects, which play a critical role in fuel-flexible combustor with high hydrogen content fuel. More specifically, a two-scalar model for lean hydrogen and hydrogen-enriched combustion is developed and validated against experimental and direct numerical simulation (DNS) data. Results are presented to emphasize the importance of non-unity Lewis number effects in the lean-premixed low-swirl burner of interest in this project. The proposed model gives improved results, which shows that the inclusion of the non-unity Lewis number effects is essential for accurate prediction of the lean-premixed low-swirl flame.

  4. Robust High Fidelity Large Eddy Simulation Tool for Gas Turbine Combustors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective is to develop and demonstrate the use of Large Eddy Simulation (LES) for computations of gas turbine combustor flow and transport processes, using the...

  5. A variable-geometry combustor used to study primary and secondary zone stoichiometry

    Science.gov (United States)

    Briehl, D.; Schultz, D. F.; Ehlers, R. C.

    1983-01-01

    A combustion program is underway to evaluate fuel quality effects on gas turbine combustors. A rich-lean variable geometry combustor design was chosen to evaluate fuel quality effects over a wide range of primary and secondary zone equivalence ratios at simulated engine operating conditions. The first task of this effort, was to evaluate the performance of the variable geometry combustor. The combustor incorporates three stations of variable geometry to control primary and secondary zone equivalence ratio and overall pressure loss. Geometry changes could be made while a test was in progress through the use of remote control actuators. The primary zone liner was water cooled to eliminate the concern of liner durability. Emissions and performance data were obtained at simulated engine conditions of 80 percent and full power. Inlet air temperature varied from 611 to 665K, inlet total pressure varied from 1.02 to 1.24 MPa, reference velocity was a constant 1400 K.

  6. Design of Combustor for Long-range Ram-jet Engine and Performance of Rectangular Analog

    Science.gov (United States)

    Rayle, Warren D; Koch, Richard G

    1954-01-01

    The report describes the design of a piloted combustor intended for a ram-jet engine of long flight range. The unit comprises a large annular basket of V-type cross-section, the inner surface of which is slotted and bent into small V-gutters. At the trailing edge of the basket, eight V-gutters are used to propagate the flame into the main stream. A rectangular analog of this combustor was tested at air-flow conditions corresponding to those that might be obtained during cruise. At these conditions, combustion efficiencies of as much as 90 percent were calculated for the combustor at the design equivalence ratio of 0.52. The performance of the unit was relatively insensitive to mounting and flow variables; the greatest effect on efficiency was that of the manner and location of the fuel injection. A full-scale version of this combustor has been designed for a 48-inch-diameter engine.

  7. Thermoacoustic analysis of the dynamic pressure inside a model combustor during limit cycle oscillations

    NARCIS (Netherlands)

    Alemela, Panduranga Reddy; Roman Casado, Juan; Tarband Veeraraghavan, Santos Kumar; Kok, Jim

    2013-01-01

    In this work comprehensive experimental and numerical studies incorporating the most relevant physical mechanisms causing limit cycle pressure and combustion rate oscillations (LCO) in a laboratory scale combustor will be discussed. The strong interaction between the aerodynamics-combustion-acoustic

  8. A chemical reactor network for oxides of nitrogen emission prediction in gas turbine combustor

    Science.gov (United States)

    Hao, Nguyen Thanh

    2014-06-01

    This study presents the use of a new chemical reactor network (CRN) model and non-uniform injectors to predict the NOx emission pollutant in gas turbine combustor. The CRN uses information from Computational Fluid Dynamics (CFD) combustion analysis with two injectors of CH4-air mixture. The injectors of CH4-air mixture have different lean equivalence ratio, and they control fuel flow to stabilize combustion and adjust combustor's equivalence ratio. Non-uniform injector is applied to improve the burning process of the turbine combustor. The results of the new CRN for NOx prediction in the gas turbine combustor show very good agreement with the experimental data from Korea Electric Power Research Institute.

  9. TRW Advanced Slagging Coal Combustor Utility Demonstration. Fourth Quarterly progress report, August 1989--October 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    The TRW Advanced Slagging Coal Combustor Demonstration Project consists of retrofitting Orange and Rockland (O&R) Utility Corporation`s Lovett Plant Unit No. 3 with four (4) slagging combustors which will allow the gas/ou desip unit to fire 2.5 sulfur coal. The slogging combustor process will provide NO{sub x} and SO{sub x} emissions that meet NSPS and New York State Envirommental Standards. TRW-CBU scope of work includes the engineering, design and supply of the slogging combustors, coal and limestone feed systems and a control system for these components. During this report period, the design activities for all systems progressed to permit the release of specifications and requests for proposals. Award of contracts for long-delivery items and major equipment are being placed to meet the revised program schedule.

  10. Coupled generator and combustor performance calculations for potential early commercial MHD power plants

    Science.gov (United States)

    Dellinger, T. C.; Hnat, J. G.; Marston, C. H.

    1979-01-01

    A parametric study of the performance of the MHD generator and combustor components of potential early commercial open-cycle MHD/steam power plants is presented. Consideration is given to the effects of air heater system concept, MHD combustor type, coal type, thermal input power, oxygen enrichment of the combustion, subsonic and supersonic generator flow and magnetic field strength on coupled generator and combustor performance. The best performance is found to be attained with a 3000 F, indirectly fired air heater, no oxygen enrichment, Illinois no. 6 coal, a two-stage cyclone combustor with 85% slag rejection, a subsonic generator, and a magnetic field configuration yielding a constant transverse electric field of 4 kV/m. Results indicate that optimum net MHD generator power is generally compressor-power-limited rather than electric-stress-limited, with optimum net power a relatively weak function of operating pressure.

  11. Heat transport and parametric simulation of a porous ceramic combustor in a gas turbine environment

    Science.gov (United States)

    Lu, Wei David

    2002-09-01

    This study is to generate basic knowledge of heat transport inside a porous ceramic combustor in a gas turbine combustion environment. This work predicts the peak temperature inside the porous ceramic combustor, which directly affects the combustor life cycle and flame stability characteristics within the ceramic media. The results will help to generate an operating window for the stable operation of the porous ceramic combustor under the operating conditions of a gas turbine. A theoretical model is developed to study the operational characteristics of the combustor. The model used here accounts for both radiative and convective thermal transport between the solid and gas phases. The solid is assumed to absorb, emit, and scatter radiative energy. A one-step global reaction mechanism is used to model the released energy due to combustion. The effects of the properties of the porous material on gas and solid phase temperature distribution, radiative flux distribution, and flame location (as indicated by local temperature) were investigated. The results confirm that radiative heat transfer is a key mechanism in the stable operation of the combustor. For proper functioning of the combustor, the temperature of the porous material (the solid temperature) must be lowered in order to maintain material and structural integrity. Yet, the gas phase temperature has to be high enough so that a stable combustion process can be maintained. A lower value for the porous material temperature of the combustor can be obtained by enhancing the radiative output from the combustor to the downstream sections. This can be achieved by choosing optimized values of porosity and other properties of the porous ceramic matrix. Higher solid phase thermal conductivity enhances the radiative output from the combustor and helps to reduce the porous material's temperature. It is also desirable that the porous layer has an optimized optical thickness so that the radiative output of the combustor is

  12. Effects of injection angle and pressure on mixing performance of fuel injection via various geometries for upstream-fuel-injected scramjets

    Science.gov (United States)

    Ogawa, Hideaki

    2016-11-01

    Effective fuel injection and mixing is of crucial importance for reliable operation of scramjet engines, where fuel must be injected into high-speed crossflow and mixed with air at an extremely short timescale. This paper presents the results of a numerical study that investigates the effects of the injection angle and pressure for various orifice shapes on fuel mixing characteristics into hypersonic airflow at Mach 5, aiming at the application to scramjet operation with upstream fuel injection at Mach 10. The mixing performance has been evaluated with respect to the mixing efficiency, total pressure recovery, fuel penetration, and streamwise circulation. Significant influence of the injection angle and intensity on the mixing has been observed in conjunction with the geometric features of the injector orifice. An additional performance parameter, namely the mixing vorticity effectiveness, has been found to be an effective measure to quantify the contribution of the streamwise vorticity in mixing enhancement.

  13. CFD Study of NOx Emissions in a Model Commercial Aircraft Engine Combustor

    Institute of Scientific and Technical Information of China (English)

    ZHANG Man; FU Zhenbo; LIN Yuzhen; LI Jibao

    2012-01-01

    Air worthiness requirements of the aircraft engine emission bring new challenges to the combustor research and design.With the motivation to design high performance and clean combustor,computational fluid dynamics (CFD) is utilized as the powerful design approach.In this paper,Reynolds averaged Navier-Stokes (RANS) equations of reactive two-phase flow in an experimental low emission combustor is performed.The numerical approach uses an implicit compressible gas solver together with a Lagrangian liquid-phase tracking method and the extended coherent flamelet model for turbulence-combustion interaction.The NOx formation is modeled by the concept of post-processing,which resolves the NOx transport equation with the assumption of frozen temperature distribution.Both turbulence-combustion interaction model and NOx formation model are firstly evaluated by the comparison of experimental data published in open literature of a lean direct injection (LDI) combustor.The test rig studied in this paper is called low emission stirred swirl (LESS) combustor,which is a two-stage model combustor,fueled with liquid kerosene (RP-3) and designed by Beihang University (BUAA).The main stage of LESS combustor employs the principle of lean prevaporized and premixed (LPP) concept to reduce pollutant,and the pilot stage depends on a diffusion flame for flame stabilization.Detailed numerical results including species distribution,turbulence performance and burning performance are qualitatively and quantitatively evaluated.Numerical prediction of NOx emission shows a good agreement with test data at both idle condition and full power condition of LESS combustor.Preliminary results of the flame structure are shown in this paper.The flame stabilization mechanism and NOx reduction effort are also discussed with in-depth analysis.

  14. Combustor having mixing tube bundle with baffle arrangement for directing fuel

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Michael John; McConnaughhay, Johnie Franklin

    2016-08-23

    A combustor includes a tube bundle that extends radially across at least a portion of the combustor. The tube bundle includes an upstream surface axially separated from a downstream surface, and a plurality of tubes extend from the upstream surface through the downstream surface to provide fluid communication through the tube bundle. A barrier extends radially inside the tube bundle between the upstream and downstream surfaces, and a baffle extends axially inside the tube bundle between the upstream surface and the barrier.

  15. Laser-Induced Fluorescence and Performance Analysis of the Ultra-Compact Combustor

    Science.gov (United States)

    2008-06-01

    fuel consumption TVC Trapped Vortex Combustion UCC Ultra Compact Combustor UHC Unburned hydrocarbons UV Ultra-violet VI Virtual Instrument 2-D...unburned hydrocarbons ( UHC ), oxides of nitrogen (NOx), carbon monoxide (CO), and soot particles (Turns, 2006:3). In conventional combustors, a high...power (fuel-rich) condition tends to produce more NOx and soot, while low power (fuel-lean) produces more UHC and CO (Quaale, 2003:27). While the UCC

  16. Non-reacting Flow Analysis from Combustor Inlet to Outlet using Computational Fluid Dynamics Code

    Directory of Open Access Journals (Sweden)

    G. Ananda Reddy

    2004-10-01

    Full Text Available This paper describes non-reacting flow analysis of a gas turbine combustion system. The method is based on the solution of Navier-Strokes equations using generalised non-orthogonal coordinate system. The turbulence effects are modelled through the renormalisation group k-E model. The method has been applied to a practical gas turbine combustor. The combustionsystem includes swirler vane passages, fuel nozzles, rotor bleed, customer bleed, air-blast atomiser, swirl cone, and all holes in primary , dilution , dome, flare, and cooling ring. Thetotal geometry has been created using the pre-processors GAMBIT and CATIA, and the meshing has been done using GAMBIT, and the analysis carried out in a FLUENT solver. The interaction between the diffuser and the combustor external flows plays a key role in controlling the pressure loss, air flow distribution around the combustor liner, durability, and stability. The aero gas turbine combustor designs are generally guided by experimental methods and past experience; however, experimental methods are inherently slow, costly, especially at hightemperature engine-operating conditions. These drawbacks and the growing need to understand the complex flow-field phenomenon involved, have led to the development of a numericalmodel for predicting flow in the gas turbine combustor. These models are used to optimise the design of the combustor and its subcomponents, and reduce cost, time, and the number ofexperiments.

  17. The Use of an Ultra-Compact Combustor as an Inter-Turbine Burner for Improved Engine Performance

    Science.gov (United States)

    2014-03-27

    Alstom , formally known as ABB Power Generation, developed a line of SCgas turbines for the power generation industry [12]. The Alstom GT24 and GT26...consist of a primary combustor a turbine and a reheat combustor, with the aim of achieving high efficiency while delivering low emissions. Alstom has been...utilizing the SC concepts since the 1940’s using diffusion type combustors. In 1995 Alstom developed their modern line SC gas turbines shown in Figure

  18. Industrial Gas Turbine Engine Catalytic Pilot Combustor-Prototype Testing

    Energy Technology Data Exchange (ETDEWEB)

    Etemad, Shahrokh [Precision Combustion, Inc., North Haven, CT (United States); Baird, Benjamin [Precision Combustion, Inc., North Haven, CT (United States); Alavandi, Sandeep [Precision Combustion, Inc., North Haven, CT (United States); Pfefferle, William [Precision Combustion, Inc., North Haven, CT (United States)

    2010-04-01

    PCI has developed and demonstrated its Rich Catalytic Lean-burn (RCL®) technology for industrial and utility gas turbines to meet DOE's goals of low single digit emissions. The technology offers stable combustion with extended turndown allowing ultra-low emissions without the cost of exhaust after-treatment and further increasing overall efficiency (avoidance of after-treatment losses). The objective of the work was to develop and demonstrate emission benefits of the catalytic technology to meet strict emissions regulations. Two different applications of the RCL® concept were demonstrated: RCL® catalytic pilot and Full RCL®. The RCL® catalytic pilot was designed to replace the existing pilot (a typical source of high NOx production) in the existing Dry Low NOx (DLN) injector, providing benefit of catalytic combustion while minimizing engine modification. This report discusses the development and single injector and engine testing of a set of T70 injectors equipped with RCL® pilots for natural gas applications. The overall (catalytic pilot plus main injector) program NOx target of less than 5 ppm (corrected to 15% oxygen) was achieved in the T70 engine for the complete set of conditions with engine CO emissions less than 10 ppm. Combustor acoustics were low (at or below 0.1 psi RMS) during testing. The RCL® catalytic pilot supported engine startup and shutdown process without major modification of existing engine controls. During high pressure testing, the catalytic pilot showed no incidence of flashback or autoignition while operating over a wide range of flame temperatures. In applications where lower NOx production is required (i.e. less than 3 ppm), in parallel, a Full RCL® combustor was developed that replaces the existing DLN injector providing potential for maximum emissions reduction. This concept was tested at industrial gas turbine conditions in a Solar Turbines, Incorporated high-pressure (17 atm.) combustion rig and in a modified Solar

  19. 木质纤维素基平台化合物催化转化制备液体燃料及燃料添加剂%Catalytic production of liquid hydrocarbon fuels and fuel additives from lignocellulosic platform molecules

    Institute of Scientific and Technical Information of China (English)

    朱晨杰; 杜风光; 应汉杰; 欧阳平凯

    2015-01-01

    随着不可再生的石化资源的不断消耗以及生态环境的不断恶化,可再生资源和能源的开发和利用受到越来越多的重视。木质纤维素是地球上最丰富的可再生生物质资源,蕴藏量和产量巨大,具有广阔的开发利用前景。本文在介绍国内外木质纤维素资源开发利用研究的基础上,结合当今世界生物质能领域的研发现状,分别概述了经由呋喃类化合物及乙酰丙酸等木质纤维素基平台化合物分子,制备液体燃料和燃料添加剂的最新研究进展。在总结归纳合成途径的同时,分析了现阶段面临的主要问题及可能的解决办法,以期能为木质纤维素类生物质能源化利用的研究提供有益的参考与借鉴。%Development and utilization of renewable biomass resources has great significance in easing the energy crisis and reducing environmental pollution. Lignocellulosic biomass is much more concerned due to its abundant reserves, lower cost and fast-growing. In this work some relevant processes for the preparation of liquid hydrocarbon fuels and fuel additives from lignocellulosic platform molecules are discussed and summarized. Catalytic transformation of these platform molecules for the production of liquid hydrocarbon fuels can be obtained by combining oxygen removal processes (e.g. dehydration, hydrogenation, hydrogenolysis, decarbonylation) with the increase of molecular weightvia C-C coupling reactions (e.g. aldol condensation, hydroxyalkylation, ketonization, oligomerization). Moreover, it is shown that these platform molecules can also be converted into a variety of fuel additives through catalytic transformations that include reduction, esterification, etherification, and acetalization reactions. The catalysts and processes involved in these catalytic routes are intensively discussed, and their existing problems as well as possible solutions are addressed, which may provide insights helpful for

  20. Characterization and Simulation of Thermoacoustic Instability in a Low Emissions Combustor Prototype

    Science.gov (United States)

    DeLaat, John C.; Paxson, Daniel E.

    2008-01-01

    Extensive research is being done toward the development of ultra-low-emissions combustors for aircraft gas turbine engines. However, these combustors have an increased susceptibility to thermoacoustic instabilities. This type of instability was recently observed in an advanced, low emissions combustor prototype installed in a NASA Glenn Research Center test stand. The instability produces pressure oscillations that grow with increasing fuel/air ratio, preventing full power operation. The instability behavior makes the combustor a potentially useful test bed for research into active control methods for combustion instability suppression. The instability behavior was characterized by operating the combustor at various pressures, temperatures, and fuel and air flows representative of operation within an aircraft gas turbine engine. Trends in instability behavior vs. operating condition have been identified and documented. A simulation developed at NASA Glenn captures the observed instability behavior. The physics-based simulation includes the relevant physical features of the combustor and test rig, employs a Sectored 1-D approach, includes simplified reaction equations, and provides time-accurate results. A computationally efficient method is used for area transitions, which decreases run times and allows the simulation to be used for parametric studies, including control method investigations. Simulation results show that the simulation exhibits a self-starting, self-sustained combustion instability and also replicates the experimentally observed instability trends vs. operating condition. Future plans are to use the simulation to investigate active control strategies to suppress combustion instabilities and then to experimentally demonstrate active instability suppression with the low emissions combustor prototype, enabling full power, stable operation.

  1. Characterization and Simulation of the Thermoacoustic Instability Behavior of an Advanced, Low Emissions Combustor Prototype

    Science.gov (United States)

    DeLaat, John C.; Paxson, Daniel E.

    2008-01-01

    Extensive research is being done toward the development of ultra-low-emissions combustors for aircraft gas turbine engines. However, these combustors have an increased susceptibility to thermoacoustic instabilities. This type of instability was recently observed in an advanced, low emissions combustor prototype installed in a NASA Glenn Research Center test stand. The instability produces pressure oscillations that grow with increasing fuel/air ratio, preventing full power operation. The instability behavior makes the combustor a potentially useful test bed for research into active control methods for combustion instability suppression. The instability behavior was characterized by operating the combustor at various pressures, temperatures, and fuel and air flows representative of operation within an aircraft gas turbine engine. Trends in instability behavior versus operating condition have been identified and documented, and possible explanations for the trends provided. A simulation developed at NASA Glenn captures the observed instability behavior. The physics-based simulation includes the relevant physical features of the combustor and test rig, employs a Sectored 1-D approach, includes simplified reaction equations, and provides time-accurate results. A computationally efficient method is used for area transitions, which decreases run times and allows the simulation to be used for parametric studies, including control method investigations. Simulation results show that the simulation exhibits a self-starting, self-sustained combustion instability and also replicates the experimentally observed instability trends versus operating condition. Future plans are to use the simulation to investigate active control strategies to suppress combustion instabilities and then to experimentally demonstrate active instability suppression with the low emissions combustor prototype, enabling full power, stable operation.

  2. Numerical study of mixing flows in a solid fuel scramjet combustor%固体燃料超燃冲压发动机燃烧室掺混燃烧数值研究

    Institute of Scientific and Technical Information of China (English)

    刘伟凯; 陈林泉; 杨向明

    2012-01-01

    Based on direct-connected experimental data obtained at abroad, the model of solid fuel supersonic combustion was designed, the mathematical model for reaction flow field of supersonic combustion was established, the distributions of gas parameters in the flow field were obtained through numerical calculation. Results show that supersonic combustion static-pressure reduces gradually with increase of axial distance; central area of flow-field was mixing supersonic flow, circle area of back sidestep was subsonic flow;with increase of axial distance,combustion efficiency increases.%根据国外研究机构的直连式试验数据,设计了固体燃料超音速燃烧室模型,建立了超音速燃烧数值计算的数学模型,通过数值模拟获得了超音速燃烧室流场内的气体状态参数分布.结果表明,超音速燃烧室静压随轴向距离的增加而逐渐降低;流场中心区域为混合超音速流动,而后向台阶的圆周区域为亚音速流动;燃烧效率随轴向距离的增加而增加.

  3. Combustion oscillation study in a kerosene fueled rocket-based combined-cycle engine combustor

    Science.gov (United States)

    Huang, Zhi-Wei; He, Guo-Qiang; Qin, Fei; Xue, Rui; Wei, Xiang-Geng; Shi, Lei

    2016-12-01

    This study reports the combustion oscillation features in a three-dimensional (3D) rocket-based combined-cycle (RBCC) engine combustor under flight Mach number (Mflight) 3.0 conditions both experimentally and numerically. Experiment is performed on a direct-connect ground test facility, which measures the wall pressure along the flow-path. High-speed imaging of the flame luminosity and schlieren is carried out at exit of the primary rocket. Compressible reactive large eddy simulation (LES) with reduced chemical kinetics of a surrogate model for kerosene is performed to further understand the combustion oscillation mechanisms in the combustor. LES results are validated with experimental data by the time-averaged and root mean square (RMS) pressure values, and show acceptable agreement. Effects of the primary rocket jet on pressure oscillation in the combustor are analyzed. Relation of the high speed rocket jet oscillation, which is thought to among the most probable sources of combustion oscillation, with the RBCC combustor is recognized. Results reveal that the unsteady over-expanded rocket jet has significant impacts on the combustion oscillation feature of the RBCC combustor, which is different from a thermo-acoustics type oscillation. The rocket jet/air inflow physical interactions under different rocket jet expansion degrees are experimentally studied.

  4. The Mechanisms of Flame Stabilization and Low NOx Emission in an Eccentric Jet Pulverized Coal Combustor

    Institute of Scientific and Technical Information of China (English)

    SunWenchao; SunYezhu; 等

    1992-01-01

    The mechanisms of flame stabilization and low NOx emission features of an accentric jet pulverzed coal combustor were studied through numerical modelling and experimental investigation.The results show that the formation of the unique flowfield structure is closely related to the interaction among combustor configuration.the primary jet and the control Jet.and that certain rules should be follwed in orber to obtain the optimum condition for flame stabilization.The distributions of temperature and concentration of NO,O2,CO and CO2 inside the combustor were experimentally measured.The effects of strustural and operational parameters on combustion and NO formation were studied.It was found that reduction of primary air,suitable use of control jet and reasonable uptilt angle of the primary jet all contributed to the reduction of NOx at the combustor exit.A new hypothesis,that reasonable separation of oxygen and fuel within the fuel-rich zone is beneficial to further reduction of NOx emission,is given,The study showed that good compatibility existed between the capability of flame stabilization and low NOX emission for this type of combustor.

  5. Emission Characteristics of A P and W Axially Staged Sector Combustor

    Science.gov (United States)

    He, Zhuohui J.; Wey, Changlie; Chang, Clarence T.; Lee, Chi Ming; Surgenor, Angela D.; Kopp-Vaughan, Kristin; Cheung, Albert

    2016-01-01

    Emission characteristics of a three-cup P and W Axially Controlled Stoichiometry (ACS) sector combustor are reported in this article. Multiple injection points and fuel staging strategies are used in this combustor design. Pilot-stage injectors are located on the front dome plate of the combustor, and main-stage injectors are positioned on the top and bottom of the combustor liners downstream. Low power configuration uses only pilot-stage injectors. Main-stage injectors are added to high power configuration to help distribute fuel more evenly and achieve overall lean burn yielding very low NOx emissions. Combustion efficiencies at four ICAO LTO conditions were all above 99%. Three EINOx emissions correlation equations were developed based on the experimental data to describe the NOx emission trends of this combustor concept. For the 7% and 30% engine power conditions, NOx emissions are obtained with the low power configuration, and the EINOx values are 6.16 and 6.81. The high power configuration was used to assess 85% and 100% engine power NOx emissions, with measured EINOx values of 4.58 and 7.45, respectively. The overall landing-takeoff cycle NOx emissions are about 12% relative to ICAO CAEP/6 level.

  6. Forced and self-excited oscillations in a natural gas fired lean premixed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Daesik; Park, Sung Wook

    2010-11-15

    An experimental study of the flame response in a premixed gas turbine combustor has been conducted at room temperature and under atmospheric pressure inlet conditions using natural gas. The fuel is premixed with the air upstream of a choked inlet to avoid equivalence ratio fluctuations. Therefore the observed flame response is only the result of the imposed velocity fluctuations, which are produced using a variable-speed siren. Also, a variable length combustor is designed for investigating characteristics of self-excited instabilities. Measurements are made of the velocity fluctuation in the mixing section using hot wire anemometry and of the heat release fluctuation in the combustor using chemiluminescence emission. The results are analyzed to determine the phase and gain of the flame transfer function. The results show that the gain of flame transfer function is closely associated both with inlet flow forcing conditions such as frequency and amplitude of modulation as well as the operating conditions such as equivalence ratio. In order to predict the operating conditions where the combustor goes stable or unstable at given combustor and nozzle designs, time-lag analysis was tried using convection time delay measured from the phase information of the transfer function. The model prediction was in very good agreement with the self-excited instability measurement. However, spatial heat release distribution became more significant in long flames than in short flames and also had an important influence on the system damping procedure. (author)

  7. Combustion Dynamic Characteristics Identification in a 9-point LDI Combustor Under Choked Outlet Boundary Conditions

    Science.gov (United States)

    He, Zhuohui J.; Chang, Clarence T.

    2017-01-01

    Combustion dynamics data were collected at the NASA Glenn Research Center's CE-5 flame tube test facility under combustor outlet choked conditions. Two 9-point Swirl-Venturi Lean Direct Injection (SV-LDI) configurations were tested in a rectangular cuboid combustor geometry. Combustion dynamic data were measured at different engine operational conditions up to inlet air pressure and temperature of 24.13 bar and 828 K, respectively. In this study, the effects of acoustic cavity resonance, precessing vortex core (PVC), and non-uniform thermal expansion on the dynamic noise spectrum are identified by comparing the dynamic data that collected at various combustor inlet conditions along with combustor geometric calculations. The results show that the acoustic cavity resonance noises were seen in the counter-rotating pilot configuration but not in the co-rotating pilot configuration. Dynamic pressure noise band at around 0.9 kHz was only detected at the P'41 location (9.8 cm after fuel injector face) but not at the P'42 location (29 cm after the fuel injector face); the amplitude of this noise band depended on the thermal expansion ratio (T4/T3). The noise band at around 1.8 kHz was found to depend on the inlet air pressure or the air density inside the combustor. The PVC frequency was not observed in these two configurations.

  8. Investigation of swirling flow mixing for application in an MHD pulverized coal combustor using isothermal modeling

    Energy Technology Data Exchange (ETDEWEB)

    Power, W. H.

    1980-05-01

    The purpose of this study was to investigate combustor reactant mixing with swirling oxidizer flow. The combustor configuration that was considered was designed to simulate a 4 lbm/sec mas flow pulverized coal combustor being tested in The University of Tennessee Space Institute MHD Facility. A one-fourth dimensionally scaled combustor model was developed for isothermal flow testing. A comparison was made of cold flow tests using 3 swirler designs with a base case oxidizer injector design of perforated plated which demonstrated acceptable performance in the 4 lbm/sec MHD combustor. The three swirlers that were evaluated were designed to allow a wide range of swirl intensity to be investigated. The design criterion of the swirler was the swirl number which has been related to swirler geometry. The results of the study showed that the swirlers that were tested fell short of the mixing characteristics displayed with the perforated plate base case oxidizer injector. Test data obtained with the cold flow model established that the actual swirl numbers of two of the swirlers were much lower than the design swirl numbers. Recirculation zones were defined for all configurations that were tested, and a comparison of velocity profiles was made for the configurations.

  9. Wind-tunnel blockage and actuation systems test of a two-dimensional scramjet inlet unstart model at Mach 6

    Science.gov (United States)

    Holland, Scott D.

    1994-01-01

    The present study examines the wind-tunnel blockage and actuation systems effectiveness in starting and forcibly unstarting a two-dimensional scramjet inlet in the NASA Langley 20-Inch Mach 6 Tunnel. The intent of the overall test program is to study (both experimentally and computationally) the dynamics of the inlet unstart; however, prior to the design and fabrication of an expensive, instrumented wind-tunnel model, it was deemed necessary first to examine potential wind-tunnel blockage issues related to model sizing and to examine the adequacy of the actuation systems in accomplishing the start and unstart. The model is equipped with both a moveable cowl and aft plug. Windows in the inlet sidewalls allow limited optical access to the internal shock structure; schlieren video was used to identify inlet start and unstart. A chronology of each actuation sequence is provided in tabular form along with still frames from the schlieren video. A pitot probe monitored the freestream conditions throughout the start/unstart process to determine if there was a blockage effect due to the model start or unstart. Because the purpose of this report is to make the phase I (blockage and actuation systems) data rapidly available to the community, the data is presented largely without analysis of the internal shock interactions or the unstart process. This series of tests indicated that the model was appropriately sized for this facility and identified operability limits required first to allow the inlet to start and second to force the unstart.

  10. Comparison of Performances of Scramjet-Driven Experimental DCW-MHD Generators with Different Cross-Section

    Science.gov (United States)

    Niwa, Naoyuki; Takahashi, Toru; Fujino, Takayasu; Ishikawa, Motoo

    The purpose of this study is to examine the influence of shape of cross-section of scramjet engine driven experimental DCW-MHD generator on generator performance by three-dimensional numerical analyses. We have designed the MHD generators with symmetric square and circular cross-section, based on the experimental MHD generator with asymmetric square cross-section. Under the optimum load condition, the electric power output becomes 26.6kW for the asymmetric square cross-section, 24.6kW for the symmetric square cross-section, and 22.4kW for the circular cross-section. The highest output is obtained for the experimental generator with asymmetric square cross-section. The difference of electric power output is induced by the difference of flow velocity and boundary layer thickness. For the generator with asymmetric square cross-section, the average flow velocity becomes the highest and the boundary layer becomes the thinnest. The compression wave is generated depending on the channel shape. The difference of flow velocity and boundary layer thickness is induced by the superposition of compression wave.

  11. Thermodynamic Characteristic Study of a High-temperature Flow-rate Control Valve for Fuel Supply of Scramjet Engines

    Institute of Scientific and Technical Information of China (English)

    ZENG Wen; TONG Zhizhong; LI Songjing; LI Hongzhou; ZHANG Liang

    2012-01-01

    Thermodynamic characteristics are of great importance for the performance of a high-temperature flow-rate control valve,as high-temperature environment may bring problems,such as blocking of spool and increasing of leakage,to the valve.In this paper,a high-temperature flow-rate control valve,pilot-controlled by a pneumatic servo system is developed to control the fuel supply for scramjet engines.After introducing the construction and working principle,the thermodynamic mathematical models of the valve are built based on the heat transfer methods inside the valve.By using different boundary conditions,different methods of simulations are carried out and compared.The steady-state and transient temperature field distribution inside the valve body are predicted and temperatures at five interested points are measured.By comparing the simulation and experimental results,a reasonable 3D finite element analysis method is suggested to predict the thermodynamic characteristics of the high-temperature flow-rate control valve.

  12. Numerical study of effect of compressor swirling flow on combustor design in a MTE

    Science.gov (United States)

    Mu, Yong; Wang, Chengdong; Liu, Cunxi; Liu, Fuqiang; Hu, Chunyan; Xu, Gang; Zhu, Junqiang

    2017-08-01

    An effect of the swirling flow on the combustion performance is studied by the computational fluid dynamics (CFD) in a micro-gas turbine with a centrifugal compressor, dump diffuser and forward-flow combustor. The distributions of air mass and the Temperature Pattern Factor (as: Overall Temperature Distribution Factor -OTDF) in outlet are investigated with two different swirling angles of compressed air as 0° and 15° in three combustors. The results show that the influences of swirling flow on the air distribution and OTDF cannot be neglected. Compared with no-swirling flow, the air through outer liner is more, and the air through the inner liner is less, and the pressure loss is bigger under the swirling condition in the same combustor. The Temperature Pattern Factor changes under the different swirling conditions.

  13. Computational investigation of film cooling from cylindrical and row trenched cooling holes near the combustor endwall

    Directory of Open Access Journals (Sweden)

    Ehsan Kianpour

    2014-11-01

    Full Text Available This study was performed to investigate the effects of cylindrical and row trenched cooling holes with alignment angles of 0° and 90° at blowing ratio of 3.18 on the film cooling performance adjacent to the endwall surface of a combustor simulator. In this research a three-dimensional representation of Pratt and Whitney gas turbine engine was simulated and analyzed with a commercial finite volume package FLUENT 6.2. The analysis has been carried out with Reynolds-Averaged Navier–Stokes turbulence model (RANS on internal cooling passages. This combustor simulator was combined with the interaction of two rows of dilution jets, which were staggered in the streamwise direction and aligned in the spanwise direction. Film cooling was placed along the combustor liner walls. In comparison with the baseline case of cooling holes, the application of a row trenched hole near the endwall surface doubled the performance of film cooling effectiveness.

  14. Wide range operation of advanced low NOx aircraft gas turbine combustors

    Science.gov (United States)

    Roberts, P. B.; Fiorito, R. J.; Butze, H. F.

    1978-01-01

    The paper summarizes the results of an experimental test rig program designed to define and demonstrates techniques which would allow the jet-induced circulation and vortex air blast combustors to operate stably with acceptable emissions at simulated engine idle without compromise to the low NOx emissions under the high-altitude supersonic cruise condition. The discussion focuses on the test results of the key combustor modifications for both the simulated engine idle and cruise conditions. Several range-augmentation techniques are demonstrated that allow the lean-reaction premixed aircraft gas turbine combustor to operate with low NOx emissons at engine cruise and acceptable CO and UHC levels at engine idle. These techniques involve several combinations, including variable geometry and fuel switching designs.

  15. Combustion analysis for flame stability predictions at ground level and altitude in aviation gas turbine engines with low emissions combustors

    Science.gov (United States)

    Turek, Tomas

    Low emissions combustors operating with low fuel/air ratios may have challenges with flame stability. As combustion is made leaner in the primary zone, the flame can lose its stability, resulting in operability problems such as relight, flameout or cold starting. This thesis analyzes combustion processes for the prediction of flame stability in low emissions combustors. A detailed review of the literature on flame stability was conducted and main approaches in flame stability modelling were indicated. Three flame stability models were proposed (Characteristic Time, Loading Parameter, and Combustion Efficiency models) and developed into a unique Preliminary Multi-Disciplinary Design Optimization (PMDO) tool. Results were validated with a database of experimental combustor test data and showed that flame stability can be predicted for an arbitrary shape of combustors running at any operational conditions including ground and altitude situations with various jet fuels and nozzles. In conclusion, flame stability can be predicted for newly designed low emission combustors.

  16. Fuel Flexible, Low Emission Catalytic Combustor for Opportunity Fuel Applications

    Energy Technology Data Exchange (ETDEWEB)

    Eteman, Shahrokh

    2013-06-30

    Limited fuel resources, increasing energy demand and stringent emission regulations are drivers to evaluate process off-gases or process waste streams as fuels for power generation. Often these process waste streams have low energy content and/or highly reactive components. Operability of low energy content fuels in gas turbines leads to issues such as unstable and incomplete combustion. On the other hand, fuels containing higher-order hydrocarbons lead to flashback and auto-ignition issues. Due to above reasons, these fuels cannot be used directly without modifications or efficiency penalties in gas turbine engines. To enable the use of these wide variety of fuels in gas turbine engines a rich catalytic lean burn (RCL®) combustion system was developed and tested in a subscale high pressure (10 atm.) rig. The RCL® injector provided stability and extended turndown to low Btu fuels due to catalytic pre-reaction. Previous work has shown promise with fuels such as blast furnace gas (BFG) with LHV of 85 Btu/ft3 successfully combusted. This program extends on this work by further modifying the combustor to achieve greater catalytic stability enhancement. Fuels containing low energy content such as weak natural gas with a Lower Heating Value (LHV) of 6.5 MJ/m3 (180 Btu/ft3 to natural gas fuels containing higher hydrocarbon (e.g ethane) with LHV of 37.6 MJ/m3 (1010 Btu/ft3) were demonstrated with improved combustion stability; an extended turndown (defined as the difference between catalytic and non-catalytic lean blow out) of greater than 250oF was achieved with CO and NOx emissions lower than 5 ppm corrected to 15% O2. In addition, for highly reactive fuels the catalytic region preferentially pre-reacted the higher order hydrocarbons with no events of flashback or auto-ignition allowing a stable and safe operation with low NOx and CO emissions.

  17. Combustion Control and Diagnostics Sensor Testing in a Thermal Barrier Coated Combustor

    Energy Technology Data Exchange (ETDEWEB)

    Chorpening, B.T.; Dukes, M.G.; Robey, E.H.; Thornton, J.D.

    2007-05-01

    The combustion control and diagnostics sensor (CCADS) continues to be developed as an in-situ combustion sensor, with immediate application to natural gas fired turbines. In-situ combustion monitoring is also expected to benefit advanced power plants of the future, fueled by coal-derived syngas, liquified natural gas (LNG), hydrogen, or hydrogen blend fuels. The in-situ monitoring that CCADS provides can enable the optimal operation of advanced, fuel-flexible turbines for minimal pollutant emissions and maximum efficiency over the full operating range of an advanced turbine. Previous work has demonstrated CCADS as a useful sensor for in-situ monitoring of natural gas combustion, including detection of important combustion events such as flashback and lean blowoff, in experimental combustors without thermal barrier coatings (TBC). Since typical TBC materials are electrical insulators at room temperature, and CCADS operation requires conduction of electrical current to the walls of the combustor, a TBC on the combustion liner was identified as a potential barrier to CCADS operation in commercial application. This paper reports on CCADS experiments in a turbulent lean premixed combustor with a yttria-stabilized zirconia (YSZ) thermal barrier coating on the combustor wall. The tests were conducted at 0.1 MPa (1 atm), with a 15V excitation voltage on the CCADS electrodes. The results confirm that for a typical thermal barrier coating, CCADS operates properly, and the total measured average resistance is close to that of an uncoated combustor. This result is consistent with previous materials studies that found the electrical resistance of typical TBC materials considerably decreases at combustor operating temperatures.

  18. System for reducing combustion dynamics and NO.sub.x in a combustor

    Science.gov (United States)

    Uhm, Jong Ho; Ziminsky, Willy Steve; Johnson, Thomas Edward; Hughes, Michael John; York, William David

    2016-05-31

    A combustor includes an end cap that extends radially across at least a portion of the combustor. The end cap includes an upstream surface axially separated from a downstream surface. A plurality of tubes extend from the upstream surface through the downstream surface of the end cap to provide fluid communication through the end cap. Each tube in a first set of the plurality of tubes has an inlet proximate to the upstream surface and an outlet downstream from the downstream surface. Each outlet has a first portion that extends a different axial distance from the inlet than a second portion.

  19. Techno-economic assessment of a hybrid solar receiver and combustor

    Science.gov (United States)

    Lim, Jin Han; Nathan, Graham; Dally, Bassam; Chinnici, Alfonso

    2016-05-01

    A techno-economic analysis is performed to compare two different configurations of hybrid solar thermal systems with fossil fuel backup to provide continuous electricity output. The assessment compares a Hybrid Solar Receiver Combustor (HSRC), in which the functions of a solar cavity receiver and a combustor are integrated into a single device with a reference conventional solar thermal system using a regular solar cavity receiver with a backup boiler, termed the Solar Gas Hybrid (SGH). The benefits of the integration is assessed by varying the size of the storage capacity and heliostat field while maintaining the same overall thermal input to the power block.

  20. Capacity control of power stations by O 2/H 2 rocket combustor technology

    Science.gov (United States)

    Sternfeld, Ing. H. J.

    1995-10-01

    The concept of a hydrogen/oxygen spinning reserve system is described. The novel component of this concept is a socalled hydrogen/oxygen steam generator derived from modern H 2/O 2 rocket combustor technology. With the HYDROSS-project the DLR and German power plant industries as well as electric utilities have converted the rocket combustor technology to a power plant component. The status of the project as well as technical problems encountered with the conversion are described. Finally, future options for utilizing H 2/O 2 steam generator technology for stand-by and peak-load power plants are discussed.

  1. Evaluation of Water Injection Effect on NO(x) Formation for a Staged Gas Turbine Combustor

    Science.gov (United States)

    Fan, L.; Yang, S. L.; Kundu, K. P.

    1996-01-01

    NO(x) emission control by water injection on a staged turbine combustor (STC) was modeled using the KIVA-2 code with modification. Water is injected into the rich-burn combustion zone of the combustor by a single nozzle. Parametric study for different water injection patterns was performed. Results show NO(x) emission will decrease after water being injected. Water nozzle location also has significant effect for NO formation and fuel ignition. The chemical kinetic model is also sensitive to the excess water. Through this study, a better understanding of the physics and chemical kinetics is obtained, this will enhance the STC design process.

  2. Numerical Study of an Annular Gas Turbine Combustor with Dump Diffuser

    Institute of Scientific and Technical Information of China (English)

    J.X.Zhao; Y.B.Lai

    1999-01-01

    A general numerical method is presented for calculating steady three-dimensional and two-phase turbulent reactive flows with a nonstaggered body-fitted coordinate system in an annular gas turbine combustor with the dump diffuser.The modified two-equation model and the EDC turbulent combustion model are used for the gas phase.The liquid phase equations are solved in a Lagrangian frame of reference by PSIC algorithm.The effect of different velocity profiles at the entry of the prediffuser on combustor flow characteristics is calculated.

  3. Dynamic properties of combustion instability in a lean premixed gas-turbine combustor.

    Science.gov (United States)

    Gotoda, Hiroshi; Nikimoto, Hiroyuki; Miyano, Takaya; Tachibana, Shigeru

    2011-03-01

    We experimentally investigate the dynamic behavior of the combustion instability in a lean premixed gas-turbine combustor from the viewpoint of nonlinear dynamics. A nonlinear time series analysis in combination with a surrogate data method clearly reveals that as the equivalence ratio increases, the dynamic behavior of the combustion instability undergoes a significant transition from stochastic fluctuation to periodic oscillation through low-dimensional chaotic oscillation. We also show that a nonlinear forecasting method is useful for predicting the short-term dynamic behavior of the combustion instability in a lean premixed gas-turbine combustor, which has not been addressed in the fields of combustion science and physics.

  4. Evaluation of Durable Metallic Supports for Catalytic Combustors

    Energy Technology Data Exchange (ETDEWEB)

    Pint, BA

    2003-10-08

    In 2000, a Cooperative Research and Development Agreement (CRADA) was undertaken between the Oak Ridge National Laboratory (ORNL) and Catalytica Energy Systems Incorporated (CESI) to determine the properties of current metallic catalyst supports and examine new candidate alloys for this application. A team was established at ORNL to examine oxidation-limited lifetime of these thin-walled metallic components using standard lifetime models and to measure the mechanical properties of the foils (40-200:m in thickness) which can differ substantially from bulk properties. Oxidation experiments were conducted on foil specimens at 700-1100 C in laboratory air and in air with 10 vol.% water vapor to better simulate the combustor environment. At the higher test temperatures, time to oxidation-induced (i.e. breakaway oxidation) failure was determined in 1h cycles in order to verify predictions from a standard reservoir-type oxidation lifetime model. Selected specimens were run for >10,000h in 100 or 500h cycles at lower test temperatures in order to determine the oxidation kinetics for the model. The creep properties of selected foils were measured for 4,000-8,000h at operation-relevant stresses and temperatures. None of the new candidate alloys significantly out-performed currently used alloys in laboratory testing, particularly in oxidation lifetime testing. Therefore, engine testing was not performed on any of the new candidate alloys. Both the oxidation- and creep-resistance of FeCrAl alloys was greater than expected and the results of the CRADA allowed CESI to extend life or increase operating temperatures for these lower cost substrate alloys in the next generation of catalyst modules. Three work areas were defined for the CRADA. The first area was investigating the oxidation behavior of current and candidate alloy foils. The goal was to obtain data such as the oxidation rate as a function of temperature and environment, the time to breakaway oxidation at high test

  5. Trend of research and development of combustors for jet engines. Koku engine yo nenshoki no kenkyu kaihatsu doko

    Energy Technology Data Exchange (ETDEWEB)

    To, H. (Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan))

    1994-03-10

    To the aeroengine, a requirement for an improvement of the fuel consumption ratio from a viewpoint of the energy saving and for a reduction of the harmful exhaust materials from a viewpoint of environmental protection is being increasingly elevated. In order to improve a fuel consumption ratio of engine, making it a higher temperature and pressure is attempted for raising a engine cycle efficiency, and moreover there is a trend to elevate an inlet pressure and temperature of the combustor as for a combustor, and consequently an outlet temperature of the combustor becomes higher. Therefore to the combustor, a durability elongation of the liner and fuel injection valve, as well as a correspondence to a range expansion of a fuel-air ratio of the combustor are demanded. As the harmful exhaust materials, there are unburned hydrocarbon (UHC), carbon monoxides (CO), nitrogen oxides (NOx), and smoke. A reduction of NOx is most strongly requested at present. In addition to these requests on the combustor, making a study and development of the combustor more efficient is being demanded. For this purpose a numerical analysis is utilized by adapting the various purposes. As the recent utilization methods, the prediction examples of exhaust gas quantity are frequent. 14 refs., 12 figs., 1 tab.

  6. A three-dimensional algebraic grid generation scheme for gas turbine combustors with inclined slots

    Science.gov (United States)

    Yang, S. L.; Cline, M. C.; Chen, R.; Chang, Y. L.

    1993-01-01

    A 3D algebraic grid generation scheme is presented for generating the grid points inside gas turbine combustors with inclined slots. The scheme is based on the 2D transfinite interpolation method. Since the scheme is a 2D approach, it is very efficient and can easily be extended to gas turbine combustors with either dilution hole or slot configurations. To demonstrate the feasibility and the usefulness of the technique, a numerical study of the quick-quench/lean-combustion (QQ/LC) zones of a staged turbine combustor is given. Preliminary results illustrate some of the major features of the flow and temperature fields in the QQ/LC zones. Formation of co- and counter-rotating bulk flow and shape temperature fields can be observed clearly, and the resulting patterns are consistent with experimental observations typical of the confined slanted jet-in-cross flow. Numerical solutions show the method to be an efficient and reliable tool for generating computational grids for analyzing gas turbine combustors with slanted slots.

  7. Wall heat flux influence on the thermodynamic optimisation of irreversibilities of a circulating fluidised bed combustor

    CSIR Research Space (South Africa)

    Baloyi, J

    2016-07-01

    Full Text Available In the study the comparison of irreversibilities was done when the wall condition of the combustor was changed from adiabatic to negative heat flux, for incoming air temperature of 400 K. The reactant mixture of solid pitch pine wood fuel and air...

  8. 40 CFR 62.14105 - Requirements for municipal waste combustor operator training and certification.

    Science.gov (United States)

    2010-07-01

    ... 07007. You may inspect a copy at the Office of Air Quality Planning and Standards Air Docket, EPA... Office of Air Quality Planning and Standards Air Docket, EPA, Mutual Building, Room 540, 411 West Chapel... subpart; (2) A description of basic combustion theory applicable to a municipal waste combustor unit; (3...

  9. Studies of pressure oscillations in a research dump combustor. [low frequency vibration effect

    Science.gov (United States)

    Schadow, K. C.; Crump, J. E.; Derr, R. L.; Heaser, J. S.

    1980-01-01

    A coaxial research dump combustor was used to investigate the acoustic modes structure and its effect on the inlet shock system. Acoustic wave structure was determined including the amplitude, frequency, and phase as a function of position. Inlet shock position, shock displacement, shock displacement frequency, and phase relative to acoustic wave structure were also defined. All results were compared to with one dimensional modeling.

  10. Improved Robust Adaptive Control of a Fluidized Bed Combustor for Sewage Sludge

    Institute of Scientific and Technical Information of China (English)

    MENGHong-Xia; JIAYing-Min

    2005-01-01

    This paper presents a robust model reference adaptive control scheme to deal with uncertain time delay in the dynamical model of a fluidized bed combustor for sewage sludge. The theoretical analysis and simulation results show that the proposed scheme can guarantee not only stability and robustness, but also the adaptive decoupling performance of the system.

  11. Measurement and Modeling of the Acoustic Response in a High Pressure Combustor

    NARCIS (Netherlands)

    Kapucu, M.; Kapucu, Mehmet; Alemela, P.R.; Kok, Jacobus B.W.; Pozarlik, Artur Krzysztof

    2011-01-01

    In this paper, a one dimensional acoustic network model is presented which can be used as a design tool to predict the limit cycle pressure oscillations in a gas turbine combustor. Analytically represented models are combined with measured flame transfer functions and well defined boundary condition

  12. Experimental and numerical studies of a lean-burn internally-staged combustor

    Institute of Scientific and Technical Information of China (English)

    Fu Zhenbo; Lin Yuzhen; Li Lin; Zhang Chi

    2014-01-01

    A lean-burn internally-staged combustor for low emissions that can be used in civil avi-ation gas turbines is introduced in this paper. The main stage is designed and optimized in terms of fuel evaporation ratio, fuel/air pre-mixture uniformity, and particle residence time using commer-cial computational fluid dynamics (CFD) software. A single-module rectangular combustor is adopted in performance tests including lean ignition, lean blowout, combustion efficiency, emis-sions, and combustion oscillation using aviation kerosene. Furthermore, nitrogen oxides (NOx) emission is also predicted using CFD simulation to compare with test results. Under normal inlet temperature, this combustor can be ignited easily with normal and negative inlet pressures. The lean blowout fuel/air ratio (LBO FAR) at the idle condition is 0.0049. The fuel split proportions between the pilot and main stages are determined through balancing emissions, combustion efficiency, and combustion oscillation. Within the landing and take-off (LTO) cycle, this combustor enables 42%NOx reduction of the standard set by the 6th Committee on Aviation Environmental Protection (CAEP/6) with high combustion efficiency. The maximum board-band pressure oscillations of inlet air and fuel are below 1%of total pressure during steady-state operations at the LTO cycle specific conditions.

  13. Experimental and numerical studies of a lean-burn internally-staged combustor

    Directory of Open Access Journals (Sweden)

    Fu Zhenbo

    2014-06-01

    Full Text Available A lean-burn internally-staged combustor for low emissions that can be used in civil aviation gas turbines is introduced in this paper. The main stage is designed and optimized in terms of fuel evaporation ratio, fuel/air pre-mixture uniformity, and particle residence time using commercial computational fluid dynamics (CFD software. A single-module rectangular combustor is adopted in performance tests including lean ignition, lean blowout, combustion efficiency, emissions, and combustion oscillation using aviation kerosene. Furthermore, nitrogen oxides (NOx emission is also predicted using CFD simulation to compare with test results. Under normal inlet temperature, this combustor can be ignited easily with normal and negative inlet pressures. The lean blowout fuel/air ratio (LBO FAR at the idle condition is 0.0049. The fuel split proportions between the pilot and main stages are determined through balancing emissions, combustion efficiency, and combustion oscillation. Within the landing and take-off (LTO cycle, this combustor enables 42% NOx reduction of the standard set by the 6th Committee on Aviation Environmental Protection (CAEP/6 with high combustion efficiency. The maximum board-band pressure oscillations of inlet air and fuel are below 1% of total pressure during steady-state operations at the LTO cycle specific conditions.

  14. Bed agglomeration in fluidized combustor fueled by wood and rice straw blends

    NARCIS (Netherlands)

    Thy, P.; Jenkins, B.M.; Williams, R.B.; Lesher, C.E.; Bakker, R.R.

    2010-01-01

    Petrographic techniques have been used to examine bed materials from fluidized bed combustion experiments that utilized wood and rice straw fuel blends. The experiments were conducted using a laboratory-scale combustor with mullite sand beds, firing temperatures of 840 to 1030 °C, and run durations

  15. Bed agglomeration in fluidized combustor fueled by wood and rice straw blends

    DEFF Research Database (Denmark)

    Thy, Peter; Jenkins, Brian; Williams, R.B.

    2010-01-01

    Abstract Petrographic techniques have been used to examine bed materials from fluidized bed combustion experiments that utilized wood and rice straw fuel blends. The experiments were conducted using a laboratory-scale combustor with mullite sand beds, firing temperatures of 840 to 1030 °C, and run...

  16. Three-dimensional particle image velocimetry in a generic can-type gas turbine combustor

    CSIR Research Space (South Africa)

    Meyers, BC

    2009-09-01

    Full Text Available taken by the bulk flow from all inlets to the exit plane. Velocity vectors show the swirling action and the three-dimensional nature of the flow inside a combustor. This data can be used effectively as a test case for Computational Fluid Dynamics (CFD...

  17. Investigation of Combustion Control in a Dump Combustor Using the Feedback Free Fluidic Oscillator

    Science.gov (United States)

    Meier, Eric J.; Casiano, Matthew J.; Anderson, William E.; Heister, Stephen D.

    2015-01-01

    A feedback free fluidic oscillator was designed and integrated into a single element rocket combustor with the goal of suppressing longitudinal combustion instabilities. The fluidic oscillator uses internal fluid dynamics to create an unsteady outlet jet at a specific frequency. An array of nine fluidic oscillators was tested to mimic modulated secondary oxidizer injection into the combustor dump plane. The combustor has a coaxial injector that uses gaseous methane and decomposed hydrogen peroxide with an overall O/F ratio of 11.7. A sonic choke plate on an actuator arm allows for continuous adjustment of the oxidizer post acoustics enabling the study of a variety of instability magnitudes. The fluidic oscillator unsteady outlet jet performance is compared against equivalent steady jet injection and a baseline design with no secondary oxidizer injection. At the most unstable operating conditions, the unsteady outlet jet saw a 67% reduction in the instability pressure oscillation magnitude when compared to the steady jet and baseline data. Additionally, computational fluid dynamics analysis of the combustor gives insight into the flow field interaction of the fluidic oscillators. The results indicate that open loop high frequency propellant modulation for combustion control can be achieved through fluidic devices that require no moving parts or electrical power to operate.

  18. Resonant Pulse Combustors: A Reliable Route to Practical Pressure Gain Combustion

    Science.gov (United States)

    Paxson, Dan

    2017-01-01

    A particular type of pressure gain combustion (PGC) device is described, which is under investigation at GRC. The Resonant Pulse Combustor (RPC) has been largely overlooked due to its theoretically low performance. However, its practical performance is quite competitive with other PGC systems, and its physical simplicity is unmatched.

  19. Bed agglomeration in fluidized combustor fueled by wood and rice straw blends

    NARCIS (Netherlands)

    Thy, P.; Jenkins, B.M.; Williams, R.B.; Lesher, C.E.; Bakker, R.R.

    2010-01-01

    Petrographic techniques have been used to examine bed materials from fluidized bed combustion experiments that utilized wood and rice straw fuel blends. The experiments were conducted using a laboratory-scale combustor with mullite sand beds, firing temperatures of 840 to 1030 °C, and run durations

  20. Volatile properties of jet engine combustor particles during the partemis campaign

    Energy Technology Data Exchange (ETDEWEB)

    Nyeki, S.; Gysel, M.; Weingartner, E.; Baltensperger, U.; Petzold, A. [Deutsche Luft- und Raumfahrt, Oberpfaffenhofen (Germany); Wilson, C.W.

    2002-03-01

    The influence of fuel sulphur content (FSC) on exhaust particle properties from a jet engine combustor test rig was investigated during the EC PartEmis project. Volatile properties were measured using a Volatility Tandem Differential Mobility Analyser (V-TDMA). Measurements indicated that particles with diameter d <30 nm were more volatile than larger particles. (author)

  1. 77 FR 32022 - Direct Final Negative Declaration and Withdrawal of Large Municipal Waste Combustors State Plan...

    Science.gov (United States)

    2012-05-31

    ... AGENCY 40 CFR Part 62 Direct Final Negative Declaration and Withdrawal of Large Municipal Waste... from ``Large Municipal Waste Combustors'' (LMWC). DATES: This direct final rule will be effective July... Agency (EPA). ACTION: Direct final rule. SUMMARY: EPA is taking direct final action to approve Illinois...

  2. Effect of dilution holes on the performance of a triple swirler combustor

    Directory of Open Access Journals (Sweden)

    Ding Guoyu

    2014-12-01

    Full Text Available A triple swirler combustor is considered to be a promising solution for future high temperature rise combustors. The present paper aims to study dilution holes including primary dilution holes and secondary dilution holes on the performance of a triple swirler combustor. Experimental investigations are conducted at different inlet airflow velocities (40–70 m/s and combustor overall fuel–air ratio with fixed inlet airflow temperature (473 K and atmospheric pressure. The experimental results show that the ignition is very difficult with specific performance of high ignition fuel–air ratio when the primary dilution holes are located 0.6H (where H is the liner dome heightdownstream the dome, while the other four cases have almost the same ignition performance. The position of primary dilution holes has an effect on lean blowout stability and has a large influence on combustion efficiency. The combustion efficiency is the highest when the primary dilution holes are placed 0.9H downstream the dome among the five different locations. For the secondary dilution holes, the pattern factor of Design A is better than that of Design B.

  3. Overview of experimental measurements in a generic can-type gas turbine combustor

    CSIR Research Space (South Africa)

    Meyers, BC

    2009-11-01

    Full Text Available Due to CFD Shortfalls, experimental data on gas turbine combustors is required to obtain insight into the combustion and flow mechanisms as well as for simulation and model validation and evaluation. The temperature and velocity fields of a generic...

  4. Effect of dilution holes on the performance of a triple swirler combustor

    Institute of Scientific and Technical Information of China (English)

    Ding Guoyu; He Xiaomin; Zhao Ziqiang; An Bokun; Song Yaoyu; Zhu Yixiao

    2014-01-01

    A triple swirler combustor is considered to be a promising solution for future high temperature rise combustors. The present paper aims to study dilution holes including primary dilu-tion holes and secondary dilution holes on the performance of a triple swirler combustor. Experi-mental investigations are conducted at different inlet airflow velocities (40–70 m/s) and combustor overall fuel–air ratio with fixed inlet airflow temperature (473 K) and atmospheric pressure. The experimental results show that the ignition is very difficult with specific performance of high ignition fuel–air ratio when the primary dilution holes are located 0.6H (where H is the liner dome height)downstream the dome, while the other four cases have almost the same ignition performance. The position of primary dilution holes has an effect on lean blowout stability and has a large influence on combustion efficiency. The combustion efficiency is the highest when the primary dilution holes are placed 0.9H downstream the dome among the five different locations. For the secondary dilution holes, the pattern factor of Design A is better than that of Design B.

  5. Three-component particle image velocimetry in a generic can-type gas turbine combustor

    CSIR Research Space (South Africa)

    Meyers, Bronwyn C

    2012-11-01

    Full Text Available -1 Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy November 2012/ Vol. 226(7) Three-componentParticle Image Velocimetry in a Generic Can-type Gas Turbine Combustor B C Meyers 1, 2* , G C Snedden 1 , J P...

  6. Effect of Spray Cone Angle on Flame Stability in an Annular Gas Turbine Combustor

    Science.gov (United States)

    Mishra, R. K.; Kumar, S. Kishore; Chandel, Sunil

    2016-04-01

    Effect of fuel spray cone angle in an aerogas turbine combustor has been studied using computational fluid dynamics (CFD) and full-scale combustor testing. For CFD analysis, a 22.5° sector of an annular combustor is modeled and the governing equations are solved using the eddy dissipation combustion model in ANSYS CFX computational package. The analysis has been carried out at 125 kPa and 303 K inlet conditions for spray cone angles from 60° to 140°. The lean blowout limits are established by studying the behavior of combustion zone during transient engine operation from an initial steady-state condition. The computational study has been followed by testing the practical full-scale annular combustor in an aerothermal test facility. The experimental result is in a good agreement with the computational predictions. The lean blowout fuel-air ratio increases as the spray cone angle is decreased at constant operating pressure and temperature. At higher spray cone angle, the flame and high-temperature zone moves upstream close to atomizer face and a uniform flame is sustained over a wide region causing better flame stability.

  7. Performance of a Model Rich Burn-quick Mix-lean Burn Combustor at Elevated Temperature and Pressure

    Science.gov (United States)

    Peterson, Christopher O.; Sowa, William A.; Samuelsen, G. S.

    2002-01-01

    As interest in pollutant emission from stationary and aero-engine gas turbines increases, combustor engineers must consider various configurations. One configuration of increasing interest is the staged, rich burn - quick mix - lean burn (RQL) combustor. This report summarizes an investigation conducted in a recently developed high pressure gas turbine combustor facility. The model RQL combustor was plenum fed and modular in design. The fuel used for this study is Jet-A which was injected from a simplex atomizer. Emission (CO2, CO, O2, UHC, NOx) measurements were obtained using a stationary exit plane water-cooled probe and a traversing water-cooled probe which sampled from the rich zone exit and the lean zone entrance. The RQL combustor was operated at inlet temperatures ranging from 367 to 700 K, pressures ranging from 200 to 1000 kPa, and combustor reference velocities ranging from 10 to 20 m/s. Variations were also made in the rich zone and lean zone equivalence ratios. Several significant trends were observed. NOx production increased with reaction temperature, lean zone equivalence ratio and residence time and decreased with increased rich zone equivalence ratio. NOx production in the model RQL combustor increased to the 0.4 power with increased pressure. This correlation, compared to those obtained for non-staged combustors (0.5 to 0.7), suggests a reduced dependence on NOx on pressure for staged combustors. Emissions profiles suggest that rich zone mixing is not uniform and that the rich zone contributes on the order of 16 percent to the total NOx produced.

  8. Analytical and experimental evaluations of the effect of broad property fuels on combustors for commercial aircraft gas turbine engines

    Science.gov (United States)

    Smith, A. L.

    1980-01-01

    Analytical and experimental studies were conducted in three contract activities funded by the National Aeronautics and Space Administration, Lewis Research Center, to assess the impacts of broad property fuels on the design, performance, durability, emissions and operational characteristics of current and advanced combustors for commercial aircraft gas turbine engines. The effect of fuel thermal stability on engine and airframe fuel system was evaluated. Trade-offs between fuel properties, exhaust emissions and combustor life were also investigated. Results indicate major impacts of broad property fuels on allowable metal temperatures in fuel manifolds and injector support, combustor cyclic durability and somewhat lesser impacts on starting characteristics, lightoff, emissions and smoke.

  9. Experimental results showing the internal three-component velocity field and outlet temperature contours for a model gas turbine combustor

    CSIR Research Space (South Africa)

    Meyers, BC

    2011-09-01

    Full Text Available ,2]. These inconsistencies are especially great when combustion is simulated when there are already flow inconsistencies after modeling the flow in cold flow simulations. To enable the improvement of CFD modeling and techniques, a CFD test case has been created to aid.... [7], attempts have to be made to ensure that as many of the factors that influence the combustor flow should be included in the tests. The combustor in which these experiments were performed is a full, non-premixed, cylindrical, can-type combustor...

  10. NACA research on combustors for aircraft gas turbines I : effects of operating variables on steady-state performance

    Science.gov (United States)

    Olson, Walter T; Childs, J Howard

    1950-01-01

    Some of the systematic research conducted by the NACA on aircraft gas-turbine combustors is reviewed. Trends depicting the effect of inlet-air pressure, temperature, and velocity and fuel-air ratio on performance characteristics, such as combustion efficiency, maximum temperature rise attainable, pressure loss, and combustor-outlet temperature distribution are described for a variety of turbojet combustors of the liquid-fuel type. These trends are further discussed as effects significant to the turbojet engine, such as altitude operational limits, specific fuel consumption, thrust, acceleration, and turbine life.

  11. Pilot plant testing of IGT`s two-stage fluidized-bed/cyclonic agglomerating combustor

    Energy Technology Data Exchange (ETDEWEB)

    Rehmat, A.; Mensinger, M.C. [Institute of Gas Technology, Chicago, IL (United States); Richardson, T.L. [Environmental Protection Agency, Cincinnati, OH (United States)

    1993-12-31

    The Institute of Gas Technology (IGT) is conducting a multi-year experimental program to develop and test, through pilot-scale operation, IGT`s two-stage fluidized-bed/cyclonic agglomerating combustor (AGGCOM). The AGGCOM process is based on combining the fluidized-bed agglomeration and gasification technology with the cyclonic combustion technology, both of which have been developed at IGT over many years. AGGCOM is a unique and extremely flexible combustor that can operate over a wide range of conditions in the fluidized-bed first stage from low temperature (desorption) to high temperature (agglomeration), including gasification of high-energy-content wastes. The ACCCOM combustor can easily and efficiently destroy solid, liquid, and gaseous organic wastes, while isolating solid inorganic contaminants within an essentially non-leachable glassy matrix, suitable for disposal in ordinary landfills. Fines elutriated from the first stage are captured by a high-efficiency cyclone and returned to the fluidized bed for ultimate incorporation into the agglomerates. Intense mixing in the second-stage cyclonic combustor ensures high destruction and removal efficiencies (DRE) for organic compounds that may be present in the feed material. This paper presents an overview of the experimental development of the AGGCOM process and progress made to date in designing, constructing, and operating the 6-ton/day AGGCOM pilot plant. Results of the bench-scale tests conducted to determine the operating conditions necessary to agglomerate a soil were presented at the 1991 Incineration Conference. On-site construction of the AGGCOM pilot plant was initiated in August 1992 and completed at the end of March 1993, with shakedown testing following immediately thereafter. The initial tests in the AGGCOM pilot plant will focus on the integrated operation of both stages of the combustor and will be conducted with ``clean`` topsoil.

  12. Development of an Air Assisted Fuel Atomizer (Liquid Siphon Type for a Continuous Combustor

    Directory of Open Access Journals (Sweden)

    Pipatpong Watanawanyoo

    2009-01-01

    Full Text Available This research was the study of a fuel injection system in continuous combustor. Air atomizing nozzle is developed to good efficiency injection and used low air pressure (68.95-275.79kPa to assist the atomizing nozzle. Refined palm oil and automotive diesel oil were the fuels for the experiment for the system of atomization. The atomizer was designed in a manner that air could flow through the small nozzle. Consequently, the low-pressure airflow could induce fuel by siphoning and break oil into small fine droplets that were delivered through the outlet. The aim of design and develop a continuous combustor is emphasized on simplicity for construction, inexpensive, good stability and reduce import fuel for continuous combustor. Material for combustor chamber is stainless steel in order to avoid oxidation at high combustion temperature. The results showed practical combustion performance using refined palm oil as fuel with ultra-low CO and HC emissions less than 206 ppm and 7 ppm. Another main advantage is a clean combustion, as no sulfur content in the fuel. As a result, the combustor performance testing was evaluated with refined palm oil and LPG. By regulating atomizing air pressure between 68.9995- 275.79 kPa (10-40psi, Siphon height 0.45 m and regulating LPG pressure of 6.8 kPa (1 psi, result showed that 0.0001167-0.00019936 kg/s of fuel consumption, hot gas produced from combustion was in the range of 308-4980C depending on oxidizing air mass flow regulated between 0.0695-0.1067kg/s. The LPG mass flow was regulated 0.000489 kg/s in order to sustain the combustion stability.

  13. Low NO/sub x/ Heavy Fuel Combustor Concept Program. Phase I. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cutrone, M B

    1981-10-01

    Six combustor concepts were designed, fabricated, and underwent a series of combustion tests with the objective of evaluating and developing a combustor capable of meeting US New Source Performance Standards (NSPS), dry, for high-nitrogen liquid fuels. Three rich/lean and three lean/lean two-stage combustors were tested with ERBS distillate, petroleum residual, and SRC-II coal derived liquid (CDL) fuels with fuel-bound nitrogen contents of 0.0054, 0.23, and 0.87 weight percent, respectively. A lean/lean concept was demonstrated with ultralow NO/sub x/ emissions, dry, of 5 gm NO/sub x/kg fuel on ERBS, and NO/sub x/ emissions meeting the NSPS NO/sub x/ standard on residual fuel. This combustor concept met operational goals for pressure drop, smoke, exhaust pattern factor, and combustion efficiency. A rich/lean concept was identified and developed which demonstrated NO/sub x/ emissions approaching the NSPS standards, dry, for all liquid fuels including the 0.87 weight percent nitrogen SRC-II coal-derived liquid. Exhaust pattern factor and pressure drop met or approached goals. Smoke emissions were higher than the program goal. However, a significant improvement was made with only a minor modification of the fuel injector/air swirler system, and further development should result in meeting smoke goals for all fuels. Liner metal temperatures were higher than allowable for commercial application. Conceptual designs for further development of these two rich/lean and lean/lean concepts have been completed which address smoke and metal temperature concerns, and are available for the next phase of this NASA-sponsored, DOE-funded program. Tests of a rich/lean concept, and a catalytic combustor concept using low- and intermediate-Btu simulated coal-derived gases will be completed during the ongoing Phase IA extension of this program.

  14. Coupling between hydrodynamics, acoustics, and heat release in a self-excited unstable combustor

    Science.gov (United States)

    Harvazinski, Matthew E.; Huang, Cheng; Sankaran, Venkateswaran; Feldman, Thomas W.; Anderson, William E.; Merkle, Charles L.; Talley, Douglas G.

    2015-04-01

    The unsteady gas dynamic field in a closed combustor is determined by the nonlinear interactions between chamber acoustics, hydrodynamics, and turbulent combustion that can energize these modes. These interactions are studied in detail using hybrid RANS/large eddy simulations (RANS = Reynolds Averaged Navier-Stokes) of a non-premixed, high-pressure laboratory combustor that produces self-excited longitudinal instabilities. The main variable in the study is the relative acoustic length between the combustion chamber and the tube that injects oxidizer into the combustor. Assuming a half-wave (closed-closed) combustion chamber, the tube lengths approximately correspond to quarter-, 3/8-, and half-wave resonators that serve to vary the phasing between the acoustic modes in the tube and the combustion chamber. The simulation correctly predicts the relatively stable behavior measured with the shortest tube and the very unstable behavior measured with the intermediate tube. Unstable behavior is also predicted for the longest tube, a case for which bifurcated stability behavior was measured in the experiment. In the first (stable) configuration, fuel flows into the combustor uninterrupted, and heat release is spatially continuous with a flame that remains attached to the back step. In the second (unstable) configuration, a cyclic process is apparent comprising a disruption in the fuel flow, subsequent detachment of the flame from the back step, and accumulation of fuel in the recirculation zone that ignites upon arrival of a compression wave reflected from the downstream boundary of the combustion chamber. The third case (mixed stable/unstable) shares features with both of the other cases. The major difference between the two cases predicted to be unstable is that, in the intermediate length tube, a pressure wave reflection inside the tube pushes unburnt fuel behind the back step radially outward, leading to a post-coupled reignition mechanism, while in the case of the

  15. Large eddy simulation of combustion characteristics in a kerosene fueled rocket-based combined-cycle engine combustor

    Science.gov (United States)

    Huang, Zhi-wei; He, Guo-qiang; Qin, Fei; Cao, Dong-gang; Wei, Xiang-geng; Shi, Lei

    2016-10-01

    This study reports combustion characteristics of a rocket-based combined-cycle engine combustor operating at ramjet mode numerically. Compressible large eddy simulation with liquid kerosene sprayed and vaporized is used to study the intrinsic unsteadiness of combustion in such a propulsion system. Results for the pressure oscillation amplitude and frequency in the combustor as well as the wall pressure distribution along the flow-path, are validated using experimental data, and they show acceptable agreement. Coupled with reduced chemical kinetics of kerosene, results are compared with the simultaneously obtained Reynolds-Averaged Navier-Stokes results, and show significant differences. A flow field analysis is also carried out for further study of the turbulent flame structures. Mixture fraction is used to determine the most probable flame location in the combustor at stoichiometric condition. Spatial distributions of the Takeno flame index, scalar dissipation rate, and heat release rate reveal that different combustion modes, such as premixed and non-premixed modes, coexisted at different sections of the combustor. The RBCC combustor is divided into different regions characterized by their non-uniform features. Flame stabilization mechanism, i.e., flame propagation or fuel auto-ignition, and their relative importance, is also determined at different regions in the combustor.

  16. An Experimental Study on Axial Temperature Distribution of Combustion of Dewatered Poultry Sludge in Fluidized bed combustor

    Directory of Open Access Journals (Sweden)

    Abbas A.H.

    2016-01-01

    Full Text Available A laboratory scale bubbling fluidized bed combustor was designed and fabricated to study the combustion of dewatered poultry sludge at different operational parameters. This paper present a study on the influence of equivalent ratio, secondary to primary air ratio and the fuel feed rate on the temperature distribution along the combustor. The equivalent ratio has been changed between 0.8 to 1.4% under poultry sludge feed rate of 10 kg/h and from 0.8 to 1 under poultry sludge feed rate of 15 kg/h. The secondary to primary air ratio was varied from 0.1 to 0.5 at 0.65 m injection height and 1.25 equivalent ratio. The results showed that these factors had a significant influence on the combustion characteristics of poultry sludge. The temperature distribution along the combustor was found to be strongly dependent on the fuel feed rate and the equivalent ratio and it increased when these two factors increased. However, the secondary air ratio increased the temperature in the lower region of the combustor while no significant effect was observed at the upper region of the combustor. The results suggested that the poultry sludge can be used as a fuel with high thermal combustor efficiency.

  17. CHARACTERIZATION OF CATALYTIC COMBUSTOR TURBULENCE AND ITS INFLUENCE ON VANE AND ENDWALL HEAT TRANSFER AND ENDWALL FILM COOLING

    Energy Technology Data Exchange (ETDEWEB)

    Forrest E. Ames

    2002-10-01

    Endwall heat transfer distributions taken in a large-scale low speed linear cascade facility are documented for mock catalytic and dry low NOx (DLN) combustion systems. Inlet turbulence levels range from about 1.0 percent for the mock Catalytic combustor condition to 14 percent for the mock dry low NOx combustor system. Stanton number contours are presented at both turbulence conditions for Reynolds numbers based on true chord length and exit conditions ranging from 500,000 to 2,000,000. Catalytic combustor endwall heat transfer shows the influence of the complex three-dimensional flow field, while the effects of individual vortex systems are less evident for the mock dry low NOx cases. Turbulence scales have been documented for both cases. Inlet boundary layers are relatively thin for the mock catalytic combustor case while inlet flow approximates a channel flow with high turbulence for the mock DLN combustor case. Inlet boundary layer parameters are presented across the inlet passage for the three Reynolds numbers and both the mock catalytic and DLN combustor inlet cases. Both midspan and 95 percent span pressure contours are included. This research provides a well-documented database taken across a range of Reynolds numbers and turbulence conditions for assessment of endwall heat transfer predictive capabilities.

  18. Nitric Oxide and Oxygen Air-Contamination Effects on Extinction Limits of Non-Premixed Hydrocarbon-Air Flames for a HIFiRE Scramjet

    Science.gov (United States)

    Pellett, Gerald L.; Dawson, Lucy C.; Vaden, Sarah N.; Wilson, Lloyd G.

    2009-01-01

    Unique nitric oxide (NO) and oxygen air-contamination effects on the extinction Flame Strength (FS) of non-premixed hydrocarbon (HC) vs. air flames are characterized for 7 gaseous HCs, using a new idealized 9.3 mm straight-tube Opposed Jet Burner (OJB) at 1 atm. FS represents a laminar strain-induced extinction limit based on cross-section-average air jet velocity, Uair, that sustains combustion of a counter jet of gaseous fuel just before extinction. Besides ethane, propane, butane, and propylene, the HCs include ethylene, methane, and a 64 mole-% ethylene / 36 % methane mixture, the writer s previously recommended gaseous surrogate fuel for HIFiRE scramjet tests. The HC vs. clean air part of the work is an extension of a May 2008 JANNAF paper that characterized surrogates for the HIFiRE project that should mimic the flameholding of reformed (thermally- or catalytically-cracked) endothermic JP-like fuels. The new FS data for 7 HCs vs. clean air are thus consolidated with the previously validated data, normalized to absolute (local) axial-input strain rates, and co-plotted on a dual kinetically dominated reactivity scale. Excellent agreement with the prior data is obtained for all 7 fuels. Detailed comparisons are also made with recently published (Univ. Va) numerical results for ethylene extinction. A 2009-revised ethylene kinetic model (Univ. Southern Cal) led to predicted limits within approx. 5 % (compared to 45 %, earlier) of this writer s 2008 (and present) ethylene FSs, and also with recent independent data (Univ. Va) obtained on a new OJB system. These +/- 5 % agreements, and a hoped-for "near-identically-performing" reduced kinetics model, would greatly enhance the capability for accurate numerical simulations of surrogate HC flameholding in scramjets. The measured air-contamination effects on normalized FS extinction limits are projected to assess ongoing Arc-Heater-induced "facility test effects" of NO production (e.g., 3 mole-%) and resultant oxygen

  19. Thermal investigation of an internally cooled strut injector for scramjet application at moderate and hot gas conditions

    Science.gov (United States)

    Dröske, Nils C.; Förster, Felix J.; Weigand, Bernhard; von Wolfersdorf, Jens

    2017-03-01

    In this paper, we present a combined experimental and numerical approach to assess the thermal loads and the cooling mechanism of an internally cooled strut injector for a supersonic combustion ramjet. Infrared measurements of the injector surface are conducted at a moderate external flow temperature. In addition, the main flow field is investigated with the LITA technique. Main features of the cooling mechanism are identified based on experimental data. However, a full evaluation can only be obtained using a complex, conjugate CFD simulation, which couples the external and internal flow fields to the heat conduction inside the injector body. Furthermore, numerical simulations are also presented for hot gas conditions corresponding to combustion experiments. Both hydrogen, which would be used as fuel for flight tests, and air are considered as coolants. While the main features of the cooling mechanism will be shown to remain unchanged, the combustor wall temperature is found to have a significant influence on the cooling. This emphasizes the importance and the usefulness of such complex conjugate numerical simulations.

  20. Numerical Simulation of Combustion and Rotor-Stator Interaction in a Turbine Combustor

    Directory of Open Access Journals (Sweden)

    Dragos D. Isvoranu

    2003-01-01

    Full Text Available This article presents the development of a numerical algorithm for the computation of flow and combustion in a turbine combustor. The flow and combustion are modeled by the Reynolds-averaged Navier-Stokes equations coupled with the species-conservation equations. The chemistry model used herein is a two-step, global, finite-rate combustion model for methane and combustion gases. The governing equations are written in the strong conservation form and solved using a fully implicit, finite-difference approximation. The gas dynamics and chemistry equations are fully decoupled. A correction technique has been developed to enforce the conservation of mass fractions. The numerical algorithm developed herein has been used to investigate the flow and combustion in a one-stage turbine combustor.

  1. NOx results from two combustors tested on medium BTU coal gas

    Science.gov (United States)

    Sherlock, T. P.; Carl, D. E.; Vermes, G.; Schwab, J.; Notardonato, J. J.

    1982-01-01

    The results of tests of two combustor configurations using coal gas from a 25 ton/day fluidized bed coal gasifier are reported. The trials were run with a ceramic-lined, staged rich/lean burner and an integral, all metal multiannular swirl burner (MASB) using a range of temperatures and pressures representative of industrial turbine inlet conditions. A lean mixture was examined at 104, 197, and 254 Btu/Scf, yielding NO(x) emissions of 5, 20, and 70 ppmv, respectively. The MASB was employed only with a gas rated at 220-270 Btu/Scf, producing 80 ppmv NO(x) at rated engine conditions. The results are concluded to be transferrable to current machines. Further tests on the effects of gas composition, the scaling of combustors to utility size, and the development of improved wall cooling techniques and variable geometry are indicated.

  2. Combustion of biomass-derived, low caloric value, fuel gas in a gasturbine combustor

    Energy Technology Data Exchange (ETDEWEB)

    Andries, J.; Hoppesteyn, P.D.J.; Hein, K.R.G. [Technische Univ. Delf (Netherlands)

    1998-09-01

    The use of biomass and biomass/coal mixtures to produce electricity and heat reduces the net emissions of CO{sub 2}, contributes to the restructuring of the agricultural sector, helps to reduce the waste problem and saves finite fossil fuel reserves. Pressurised fluidised bed gasification followed by an adequate gas cleaning system, a gas turbine and a steam turbine, is a potential attractive way to convert biomass and biomass/coal mixtures. To develop and validate mathematical models, which can be used to design and operate Biomass-fired Integrated Gasification Combined Cycle (BIGCC) systems, a Process Development Unit (PPDU) with a maximum thermal capacity of 1.5 MW{sub th}, located at the Laboratory for Thermal Power Engineering of the Delft University of Technology in The Netherlands is being used. The combustor forms an integral part of this facility. Recirculated flue gas is used to cool the wall of the combustor. (orig.)

  3. Comprehensive Mathematical Model for Coal Combustion in a Circulating Fluidized Bed Combustor

    Institute of Scientific and Technical Information of China (English)

    金晓钟; 吕俊复; 杨海瑞; 刘青; 岳光溪; 冯俊凯

    2001-01-01

    Char combustion is on a special reducing condition in the dense bed of a circulating fluidized bedcombustor. Experimental findings were used to develop a comprehensive mathematical model to simulate thehydrodynamic and combustion processes in a circulating fluidized bed combustor. In the model, gas-solidinteraction was used to account for the mass transfer between the bubble phase and the emulsion phase in thedense bed, which contributes to the reducing atmosphere in the dense bed. A core-annular structure wasassumed in the dilute area rather than a one-dimensional model. The submodels were combined to build thecomprehensive model to analyze the combustion in a circulating fluidized bed combustor and the effect ofoperating parameters on the coal combustion. The model predictions agree well with experimental results.

  4. Computational Analysis of Mixing and Transport of Air and Fuel in Co-Fired Combustor

    Directory of Open Access Journals (Sweden)

    Javaid Iqbal

    2015-01-01

    Full Text Available Computational analysis for air fuel mixing and transport in a combustor used for co fired burner has been done by RANS (Reynolds-Averaged Navier?Stokes model comparing with 3D (Three Dimensional LES (Large Eddy Simulation. To investigate the better turbulence level and mixing within co fired combustor using the solid fuel biomass with coal is main purpose of this research work. The results show the difference in flow predicted by the two models, LES give better results than the RANS. For compressible flow the LES results show more swirling effect, The velocity decays along axial and radial distance for both swirling and non-swirling jet. Because of no slip condition near boundary the near the wall velocity is about zero

  5. Development of an LCV fuel gas combustor for an industrial gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Constant, D.R.; Bevan, D.M.; Cannon, M.F.; Kelsall, G.J. [British Coal Corporation, Stoke Orchard (United Kingdom). Coal Technology Development Division

    1997-12-31

    An important component of the Air Blown Gasification Cycle (ABGC) development is the gas turbine combustion system. It must burn low calorific value (LCV) coal derived fuel gas, at high turbine inlet temperatures with minimum pollutant emissions. A phase development programme has been completed burning LCV fuel gas (3.6-4.1 MJ/m{sup 3}) with low emissions, particularly NO{sub x} derived from fuel bound nitrogen. Performance tests were carried out on a generic tubo-annular, prototype combustor, at Mach numbers generally lower than those typical to engine applications, with encouraging results. Five design variants, operating at conditions selected to represent a particular medium sized industrial gas turbine each returned an improvement in combustor performance. A further five variants were investigated to establish which design characteristics and operating parameters most affected NO{sub x} emissions. 5 refs., 5 figs., 2 tabs.

  6. Co-combustion of agricultural residues with coal in a fluidized bed combustor.

    Science.gov (United States)

    Ghani, W A W A K; Alias, A B; Savory, R M; Cliffe, K R

    2009-02-01

    Power generation from biomass is an attractive technology that utilizes agricultural residual waste. In order to explain the behavior of biomass-fired fluidized bed incinerator, biomass sources from agricultural residues (rice husk and palm kernel) were co-fired with coal in a 0.15m diameter and 2.3m high fluidized bed combustor. The combustion efficiency and carbon monoxide emissions were studied and compared with those for pure coal combustion. Co-combustion of a mixture of biomass with coal in a fluidized bed combustor designed for coal combustion increased combustion efficiency up to 20% depending upon excess air levels. Observed carbon monoxide levels fluctuated between 200 and 900 ppm with the addition of coal. It is evident from this research that efficient co-firing of biomass with coal can be achieved with minimal modifications to existing coal-fired boilers.

  7. An Experimental Study of Turbulent Flow in Attachment Jet Combustors by LDV

    Institute of Scientific and Technical Information of China (English)

    JUNLI; CHENG-KANGWU

    1993-01-01

    Flame stabilization in attachment jet combustors is based on the existence of the high temperature recirculation zone,provided by the Coanda effect of an attachment jet.The single attachment jet in a rectangular channel is a fundamental form of this type of flow.In this paper,the detailed characteristics of turbulent flow of a single attachment jet were experimentally studied by using a 2-D LDV,The flowfield consists of a forward flow and two reverse flows.The forward one is composed of a curved and a straight section.The curved section resembles a bent turbulent free jet,and the straight part is basically a section of turbulent wall jet.A turbulent couter-gradient transport region exists at the curved section.According to the results,this kind of combustor should have a large sudden enlarge ment ratio and not too narrow in width.

  8. Large Eddy Simulations and Experimental Investigation of Flow in a Swirl Stabilized Combustor

    KAUST Repository

    Kewlani, Gaurav

    2012-01-09

    Swirling flows are the preferred mode of flame stabilization in lean premixed gas turbine engine combustors. Developing a fundamental understanding of combustion dynamics and flame stability in such systems requires a detailed investigation of the complex interactions between fluid mechanics and combustion. The turbulent reacting flow in a sudden expansion swirl combustor is studied using compressible large eddy simulations (LES) and compared with experimental data measured using PIV. Different vortex breakdown structures are observed, as the mixture equivalence ratio is reduced, that progressively diminish the stability of the flame. Sub-grid scale combustion models such as the artificially thickened flame method and the partially stirred reactor approach, along with appropriate chemical schemes, are implemented to describe the flame. The numerical predictions for average velocity correspond well with experimental results, and higher accuracy is obtained using the more detailed reaction mechanism. Copyright © 2012 American Institute of Aeronautics and Astronautics, Inc.

  9. Efficiency enhancement of wood stove integrated with catalytic combustor and modified chimney

    Directory of Open Access Journals (Sweden)

    G. Murali

    2014-12-01

    Full Text Available Domestic wood combustion produces smoke that is harmful to human health and increases fine particle level in the atmosphere. Some necessary changes in the design are essential in the domestic wood stove in order to improve the performance and scale down the emission. In this work, an improved wood stove integrated with the catalytic combustor and modified chimney that uses wood as fuel has been experimentally evaluated. Water boiling test, cooking test and emission test have been conducted to evaluate the performance of the stove. It was observed that emission has been considerably controlled because of the incorporation of catalytic combustor. The heat losses through the walls of stove decresed by providing ceramic insulation. The thermal efficiency value of an improved wood stove obtained was 41.18% and this is 31.52% higher than traditional stove. The improved wood stove results better performance than a traditional wood stove.

  10. Topping combustor status for second-generation pressurized fluidized bed cycle application

    Energy Technology Data Exchange (ETDEWEB)

    Domeracki, W.F.; Dowdy, T.E. [Westinghouse Electric Corp., Orlando, FL (United States). Power Generation Business Unit; Bachovchin, D.M. [Westinghouse Electric Corp., Pittsburgh, PA (United States). Science and Technology Center

    1997-01-01

    Second-generation Pressurized Fluidized (PFB) combined cycle employ topping combustion to raise the turbine inlet temperature for enhanced cycle efficiency. This concept creates special combustion system requirements that are very different from requirements of conventional gas turbine systems. The topping combustor provides the means for achieving state-of-the-art turbine inlet temperatures and is the main contributor to enhanced plant performance. The objective of this program is to develop a topping combustor that provides low emissions, and is a durable, efficient device exhibiting stable combustion and manageable wall temperature. The combustor will be required to burn a low-Btu syngas under normal coal-fired conditions. However, for start-up and/or carbonizer outage, it may be necessary to fire a clean fuel, such as oil or natural gas. Prior testing has shown the Westinghouse Multi-Annular Swirl Burner (MASB) to have excellent potential for this application. Metal wall temperatures can be maintained at acceptable levels, even though most cooling is done by 1,600 F vitiated air. Good pattern factors and combustion efficiencies have been obtained. Additionally, low conversion rates of fuel bound nitrogen to NO{sub x} have been demonstrated. This paper presents an update of the status of an ongoing topping combustor development and test program for application to Second-Generation Pressurized Fluidized Bed Combined Cycles (PFBCC). The program is sponsored by the Department of Energy`s Morgantown Energy Technology Center (DOE/METC) and will first be applied commercially into the Clean Coal Technology Round V Four Rivers Energy Modernization Project. Phase 1 of the program involved a conceptual and economic study (Robertson et al., 1988); Phase 2 addresses design and subscale testing of components; and Phase 3 will cover pilot plant testing of components integrated into one system.

  11. Characterisation of a gas turbine prototype combustor design for an ABGC plant

    Energy Technology Data Exchange (ETDEWEB)

    Kelsall, G.J.; Whinfrey, J. [European Gas Turbines Ltd. (United Kingdom)

    1997-08-01

    Advanced coal-based power generation systems, such as the Air Blown Gasification Cycle (ABGC), offer the potential for high efficiency electricity generation with low environmental impact. An important component of the ABGC development programme is the design of a gas turbine combustion system to burn the coal-derived low calorific value (LCV) fuel-gas, generated by the air-blown gasifier. The overall objective of this project was to characterise at full-scale the initial prototype combustor hardware designed for an ABGC Prototype Integrated Plant. As part of the project, European Gas Turbine Ltd., provisioned what is believed to be a unique combustion test facility within Europe for the development of LCV gas-fired gas turbine combustion systems. This facility utilises a synthetic fuel-gas system capable of providing a variable fuel-gas mixture at mass flow rates up to 3.0 kg s{sup -1} and temperatures up to 600{degree}C. This allows testing of turbine combustion systems at full engine operating pressure and fuel-gas flows appropriate to medium-sized industrial gas turbines. The facility was used to characterise the first prototype combustor firing a synthetic fuel-gas representing the essential features of a coal-derived LCV fuel-gas. Combustor performance was encouraging. Combustor performance firing distillate oil as supplementary fuel was satisfactory in regard to light-up and change-over to fuel-gas, but was not as good as that for synthetic fuel-gas operation. 6 refs., 9 figs., 2 tabs.

  12. Coupling between Hydrodynamics, Acoustics, and Heat Release in a Self-Excited Unstable Combustor

    Science.gov (United States)

    2015-04-07

    analysis of a laminar premixed M-flame to flow perturbations using a linearized compressible Navier-Stokes solver Phys. Fluids 27, 043602 (2015...10.1063/1.4918672 Ignition sequence of an annular multi-injector combustor Phys. Fluids 26, 091106 (2014); 10.1063/1.4893452 On the compressible...the expansion.4 Different source terms can then be interpreted as different contributing mechanisms. If only the first order linear terms are retained

  13. Pulse Combustor Driven Pressure Gain Combustion for High Efficiency Gas Turbine Engines

    KAUST Repository

    Lisanti, Joel

    2017-02-01

    The gas turbine engine is an essential component of the global energy infrastructure which accounts for a significant portion of the total fossil fuel consumption in transportation and electric power generation sectors. For this reason there is significant interest in further increasing the efficiency and reducing the pollutant emissions of these devices. Conventional approaches to this goal, which include increasing the compression ratio, turbine inlet temperature, and turbine/compressor efficiency, have brought modern gas turbine engines near the limits of what may be achieved with the conventionally applied Brayton cycle. If a significant future step increase in gas turbine efficiency is to be realized some deviation from this convention is necessary. The pressure gain gas turbine concept is a well established new combustion technology that promises to provide a dramatic increase in gas turbine efficiency by replacing the isobaric heat addition process found in conventional technology with an isochoric process. The thermodynamic benefit of even a small increase in stagnation pressure across a gas turbine combustor translates to a significant increase in cycle efficiency. To date there have been a variety of methods proposed for achieving stagnation pressure gains across a gas turbine combustor and these concepts have seen a broad spectrum of levels of success. The following chapter provides an introduction to one of the proposed pressure gain methods that may be most easily realized in a practical application. This approach, known as pulse combustor driven pressure gain combustion, utilizes an acoustically resonant pulse combustor to approximate isochoric heat release and thus produce a rise in stagnation pressure.

  14. Spectral analysis of CFB data: Predictive models of Circulating Fluidized Bed combustors

    Energy Technology Data Exchange (ETDEWEB)

    Gamwo, I.K.; Miller, A.; Gidaspow, D.

    1992-04-01

    The overall objective of this investigation is to develop experimentally verified models for circulating fluidized bed (CFB) combustors. Spectral analysis of CFB data obtained at Illinois Institute of Technology shows that the frequencies of pressure oscillations are less than 0.1 Hertz and that they increase with solids volume fraction to the usual value of one Hertz obtained in bubbling beds. These data are consistent with the kinetic theory interpretation of density wave propagation.

  15. Hygroscopic properties of jet engine combustor particles during the partemis campaign

    Energy Technology Data Exchange (ETDEWEB)

    Gysel, M.; Nyeki, S.; Weingartner, E.; Baltensperger, U.; Petzold, A. [Deutsche Luft- und Raumfahrt, Oberpfaffenhofen (Germany); Wilson, C.W.

    2002-03-01

    The influence of fuel sulphur content (FSC) on particle properties from a jet engine combustor test rig was investigated during the EC-project PartEmis. Hygroscopic growth factors were measured using a Hygroscopicity Tandem Differential Mobility Analyser (H-TDMA). While particles were hydrophobic at low FSC, hygroscopic growth factors increased significantly with increasing FSC. Under similar conditions small particles were more hygroscopic than large particles. (author)

  16. Report covering examination of parts from downhole steam generators. [Combustor head and sleeve parts

    Energy Technology Data Exchange (ETDEWEB)

    Pettit, F. S.; Meier, G. H.

    1983-08-01

    Combustor head and sleeve parts were examined by using optical and scanning electron metallography after use in oxygen/diesel and air/diesel downhole steam generators. The degradation of the different alloy components is described in terms of reactions with oxygen, sulfur and carbon in the presence of cyclic stresses, all generated by the combustion process. Recommendations are presented for component materials (alloys and coatings) to extend component lives in the downhole steam generators. 9 references, 22 figures, 3 tables.

  17. Modeling of complex physics & combustion dynamics in a combustor with a partially premixed turbulent flame

    OpenAIRE

    Shahi, Mina

    2014-01-01

    To avoid the formation of the high temperature stoichiometric regions in flames in a gas turbine combustor, and hence the formation of nitric oxides, an alternative concept of combustion technology was introduced by means of lean premixed combustion. However, the low emission of nitric oxides and carbon monoxide of the lean premixed combustion of natural gas comes at the cost of increased sensitivity to thermoacoustic instabilities. These are driven by the feedback loop between heat release, ...

  18. Lagrangian coherent structures during combustion instability in a premixed-flame backward-step combustor

    Science.gov (United States)

    Sampath, Ramgopal; Mathur, Manikandan; Chakravarthy, Satyanarayanan R.

    2016-12-01

    This paper quantitatively examines the occurrence of large-scale coherent structures in the flow field during combustion instability in comparison with the flow-combustion-acoustic system when it is stable. For this purpose, the features in the recirculation zone of the confined flow past a backward-facing step are studied in terms of Lagrangian coherent structures. The experiments are conducted at a Reynolds number of 18600 and an equivalence ratio of 0.9 of the premixed fuel-air mixture for two combustor lengths, the long duct corresponding to instability and the short one to the stable case. Simultaneous measurements of the velocity field using time-resolved particle image velocimetry and the C H* chemiluminescence of the flame along with pressure time traces are obtained. The extracted ridges of the finite-time Lyapunov exponent (FTLE) fields delineate dynamically distinct regions of the flow field. The presence of large-scale vortical structures and their modulation over different time instants are well captured by the FTLE ridges for the long combustor where high-amplitude acoustic oscillations are self-excited. In contrast, small-scale vortices signifying Kelvin-Helmholtz instability are observed in the short duct case. Saddle-type flow features are found to separate the distinct flow structures for both combustor lengths. The FTLE ridges are found to align with the flame boundaries in the upstream regions, whereas farther downstream, the alignment is weaker due to dilatation of the flow by the flame's heat release. Specifically, the FTLE ridges encompass the flame curl-up for both the combustor lengths, and thus act as the surrogate flame boundaries. The flame is found to propagate upstream from an earlier vortex roll-up to a newer one along the backward-time FTLE ridge connecting the two structures.

  19. Validation of the NCC Code for Staged Transverse Injection and Computations for a RBCC Combustor

    Science.gov (United States)

    Ajmani, Kumud; Liu, Nan-Suey

    2005-01-01

    The NCC code was validated for a case involving staged transverse injection into Mach 2 flow behind a rearward facing step. Comparisons with experimental data and with solutions from the FPVortex code was then used to perform computations to study fuel-air mixing for the combustor of a candidate rocket based combined cycle engine geometry. Comparisons with a one-dimensional analysis and a three-dimensional code (VULCAN) were performed to assess the qualitative and quantitative performance of the NCC solver.

  20. Flow structures in a lean-premixed swirl-stabilized combustor with microjet air injection

    KAUST Repository

    LaBry, Zachary A.

    2011-01-01

    The major challenge facing the development of low-emission combustors is combustion instability. By lowering flame temperatures, lean-premixed combustion has the potential to nearly eliminate emissions of thermally generated nitric oxides, but the chamber acoustics and heat release rate are highly susceptible to coupling in ways that lead to sustained, high-amplitude pressure oscillations, known as combustion instability. At different operating conditions, different modes of instability are observed, corresponding to particular flame shapes and resonant acoustic modes. Here we show that in a swirl-stabilized combustor, these instability modes also correspond to particular interactions between the flame and the inner recirculation zone. Two stable and two unstable modes are examined. At lean equivalence ratios, a stable conical flame anchors on the upstream edge of the inner recirculation zone and extends several diameters downstream along the wall. At higher equivalence ratios, with the injection of counter-swirling microjet air flow, another stable flame is observed. This flame is anchored along the upstream edge of a stronger recirculation zone, extending less than one diameter downstream along the wall. Without the microjets, a stationary instability coupled to the 1/4 wave mode of the combustor shows weak velocity oscillations and a stable configuration of the inner and outer recirculation zones. Another instability, coupled to the 3/4 wave mode of the combustor, exhibits periodic vortex breakdown in which the core flow alternates between a columnar mode and a vortex breakdown mode. © 2010 Published by Elsevier Inc. on behalf of The Combustion Institute. All rights reserved.

  1. Flow Field Dynamics in a High-g Ultra-Compact Combustor

    Science.gov (United States)

    2016-12-01

    common-source upstream flow diffuser, and a complex hybrid guide vane design. This research capitalized on the availability of advanced flow diagnostic...competitive with traditional axial combustors while capitalizing on the space- and weight-saving characteristics of the UCC. To that end, the details of...characteristics. 2.4.6.1. Early Work The first work aimed at capitalizing on the benefits of high-g combustion in a practical engine design is

  2. Bed agglomeration in fluidized combustor fueled by wood and rice straw blends

    DEFF Research Database (Denmark)

    Thy, Peter; Jenkins, Brian; Williams, R.B.

    2010-01-01

    Abstract Petrographic techniques have been used to examine bed materials from fluidized bed combustion experiments that utilized wood and rice straw fuel blends. The experiments were conducted using a laboratory-scale combustor with mullite sand beds, firing temperatures of 840 to 1030 °C, and run...... straw ash particles appear to have mostly been passively incorporated into the adhesive melt without melting or reaction....

  3. Efficiency and Pressure Loss Characteristics of an Ultra-Compact Combustor with Bulk Swirl

    Science.gov (United States)

    2007-06-01

    Compact Combustor UHC = Unburned hydrocarbons Symbols β = Angle or bypass ratio γ = Ratio of specific heats η = Efficiency π = Pressure ratio ρ...hydrocarbons ( UHC ), and oxides of nitrogen (NOx). Emissions of CO, UHCs , and NOx have had the most effort expended on them to reduce the quantity emitted...promise for lowered pollutant outputs because of its increased combustion efficiency. Typically, emissions of CO and UHC are the highest at idle

  4. Combustor and Vane Features and Components Tested in a Gas Turbine Environment

    Science.gov (United States)

    Roinson, R. Craig; Verrilli, Michael J.

    2003-01-01

    The use of ceramic matrix composites (CMCs) as combustor liners and turbine vanes provides the potential of improving next-generation turbine engine performance, through lower emissions and higher cycle efficiency, relative to today s use of superalloy hot-section components. For example, the introduction of film-cooling air in metal combustor liners has led to higher levels of nitrogen oxide (NOx) emissions from the combustion process. An environmental barrier coated (EBC) siliconcarbide- fiber-reinforced silicon carbide matrix (SiC/SiC) composite is a new material system that can operate at higher temperatures, significantly reducing the film-cooling requirements and enabling lower NOx production. Evaluating components and subcomponents fabricated from these advanced CMCs under gas turbine conditions is paramount to demonstrating that the material system can perform as required in the complex thermal stress and environmentally aggressive engine environment. To date, only limited testing has been conducted on CMC combustor and turbine concepts and subelements of this type throughout the industry. As part of the Ultra-Efficient Engine Technology (UEET) Program, the High Pressure Burner Rig (HPBR) at the NASA Glenn Research Center was selected to demonstrate coupon, subcomponent feature, and component testing because it can economically provide the temperatures, pressures, velocities, and combustion gas compositions that closely simulate the engine environments. The results have proven the HPBR to be a highly versatile test rig amenable to multiple test specimen configurations essential to coupon and component testing.

  5. Modeling of NO and N{sub 2}O emissions from biomass circulating fluidized bed combustors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H.; Gibbs, B.M. [Leeds Univ., Leeds (United Kingdom). Dept. of Fuel and Energy

    2002-07-01

    In order to correctly model biomass combustion in a circulating fluidized bed (CFB) combustor, it is necessary to examine the four main stages in the combustion of biomass particles. These include drying, devolatilization, volatile combustion and char combustion in a CFB combustor. This paper presents a newly developed model for nitric oxide (NO) and nitrous oxide (N{sub 2}O) emissions from biomass-fired CFB combustors. A typical woody biomass of pinewood chips was selected for the model parameters. The drying and devolatilization of biomass particles was modeled with limited rates according to woody biomass fuels. The partition of fuel nitrogen between volatiles and char was chosen for pinewood based on available data from literature. It was assumed that the volatile nitrogen was composed of ammonia (NH{sub 3}), hydrogen cyanide (HCN) and nitrogen (N{sub 2}). The model included 25 chemical reactions, of which 20 belonged to global fuel-nitrogen reaction kinetics. A 12 MW CFB boiler was used to apply the model. Results were compared with experimental values as well as data from literature. The reaction between NO and char was found to be the key reaction that determines NO emissions. The catalytic effect of bed materials on the oxidation of NH{sub 3} and the the homogeneous reaction of NH{sub 3} with nitric oxide was also significant. 25 refs., 2 tabs., 5 figs.

  6. Microjet Injection Strategies for Mitigating Dynamics in a Lean Premixed Swirl-Stabilized Combustor

    KAUST Repository

    LaBry, Zachary

    2011-01-04

    Combustion dynamics remain a challenge in the development of low-emission, air-breathing combustors for power generation and aircraft propulsion. In this paper, we presenta parametric study on the use of microjet injectors for suppressing or mitigating the combustion dynamics that energize the thermoacoustic instability in a swirl-stabilized, premixed combustor. Microjet injectors consist of small inlet ports intended to inject flow with high momentum at relatively low mass flow rates into the flame-anchoring region. The microjets were configured to inject flow either axially, into the outer recirculation zone, or radially into the inner recirculation zone. Additionally, different injectors were tested with different relative senses of swirl (signs of angular momentum)with respect to the main flow: co-swirling, not swirling, or counter-swirling. We observed that injecting air or premixed fuel/air into the inner recirculation zone via counter-swirling radial microjets, we were able to reduce the overall sound pressure level in the combustor by over 20 dB in the lean end of the operating range. Other injector configurations were not observed to positively influence the combust or stability. Detailed PIV measurements are used to examine possible mechanisms of how the microjets impact the combustion dynamics, and the technology implications of our experiments are discussed.

  7. Flow-acoustic Characterisation of a Cavity-based Combustor Configuration

    Directory of Open Access Journals (Sweden)

    Krishna Kant Agarwal

    2011-10-01

    Full Text Available This study concerns the flow-acoustic characterisation of a cavity-based combustor configuration. A well-validated numerical tool has been used to simulate the unsteady, two-dimensional reacting flow. Initially, a conventional flow over a cavity with dimensions and conditions corresponding to a compact cavity combustor was studied. Cavity mass injections in the form of fuel and air injections required for trapped vortex formation were then employed and the resonance features of this configuration were studied. The results indicate that the cavity depth mode resonance mechanism is dominant at the conditions studied in this work and that the oscillation frequencies do not change with cavity air injection. This observation is important since it implies that the only important variable which can alter resonant frequencies is the cavity depth. With combustion, the pressure oscillation amplitude was observed to increases significantly due to periodic entrainment of the cavity air jet and fluctuation of fuel-air mixture composition to produce highly fluctuating heat-release rates. The underlying mechanisms of the unsteady flow in the cavity combustor identified in this study indicate the strong dependence of the acoustics on the cavity injection strategies.Defence Science Journal, 2011, 61(6, pp.523-528, DOI:http://dx.doi.org/10.14429/dsj.61.870

  8. NASA One-Dimensional Combustor Simulation--User Manual for S1D_ML

    Science.gov (United States)

    Stueber, Thomas J.; Paxson, Daniel E.

    2014-01-01

    The work presented in this paper is to promote research leading to a closed-loop control system to actively suppress thermo-acoustic instabilities. To serve as a model for such a closed-loop control system, a one-dimensional combustor simulation composed using MATLAB software tools has been written. This MATLAB based process is similar to a precursor one-dimensional combustor simulation that was formatted as FORTRAN 77 source code. The previous simulation process requires modification to the FORTRAN 77 source code, compiling, and linking when creating a new combustor simulation executable file. The MATLAB based simulation does not require making changes to the source code, recompiling, or linking. Furthermore, the MATLAB based simulation can be run from script files within the MATLAB environment or with a compiled copy of the executable file running in the Command Prompt window without requiring a licensed copy of MATLAB. This report presents a general simulation overview. Details regarding how to setup and initiate a simulation are also presented. Finally, the post-processing section describes the two types of files created while running the simulation and it also includes simulation results for a default simulation included with the source code.

  9. Ignition and Flame Stabilization of a Strut-Jet RBCC Combustor with Small Rocket Exhaust

    Directory of Open Access Journals (Sweden)

    Jichao Hu

    2014-01-01

    Full Text Available A Rocket Based Combined Cycle combustor model is tested at a ground direct connected rig to investigate the flame holding characteristics with a small rocket exhaust using liquid kerosene. The total temperature and the Mach number of the vitiated air flow, at exit of the nozzle are 1505 K and 2.6, respectively. The rocket base is embedded in a fuel injecting strut and mounted in the center of the combustor. The wall of the combustor is flush, without any reward step or cavity, so the strut-jet is used to make sure of the flame stabilization of the second combustion. Mass flow rate of the kerosene and oxygen injected into the rocket is set to be a small value, below 10% of the total fuel when the equivalence ratio of the second combustion is 1. The experiment has generated two different kinds of rocket exhaust: fuel rich and pure oxygen. Experiment result has shown that, with a relative small total mass flow rate of the rocket, the fuel rich rocket plume is not suitable for ignition and flame stabilization, while an oxygen plume condition is suitable. Then the paper conducts a series of experiments to investigate the combustion characteristics under this oxygen pilot method and found that the flame stabilization characteristics are different at different combustion modes.

  10. Augmentation of Stagnation Region Heat Transfer Due to Turbulence from a DLN Can Combustor

    Science.gov (United States)

    VanFossen, G. James; Bunker, Ronald S.

    2001-01-01

    Heat transfer measurements have been made in the stagnation region of a flat plate with a circular leading edge. Electrically heated aluminum strips placed symmetrically about the leading edge stagnation region were used to measure spanwise-averaged heat transfer coefficients. The maximum Reynolds number obtained, based on leading edge diameter, was about 100,000. The model was immersed in the flow field downstream of an approximately half-scale model of a can-type combustor from a low NO(x), ground-based power-generating turbine. The tests were conducted with room temperature air; no fuel was added. Room air flowed into the combustor through six vane-type fuel/air swirlers. The combustor can contained no dilution holes. The fuel/air swirlers all swirled the incoming airflow in a counterclockwise direction (facing downstream). A five-hole probe flow field survey in the plane of the model stagnation point showed the flow was one big vortex with flow angles up to 36 deg at the outer edges of the rectangular test section. Hot-wire measurements showed test section flow had very high levels of turbulence, around 28.5%, and had a relatively large axial-length scale-to-leading edge diameter ratio of 0.5. X-wire measurements showed the turbulence to be nearly isotropic. Stagnation heat transfer augmentation over laminar levels was around 77% and was about 14% higher than predicted by a previously developed correlation for isotropic grid-generated turbulence.

  11. Demonstration of a Reheat Combustor for Power Production With CO2 Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Ben Chorpening; Geo. A. Richards; Kent H. Casleton; Mark Woike; Brian Willis; Larry Hoffman

    2005-10-01

    Concerns about climate change have encouraged significant interest in concepts for ultralow or “zero”-emissions power generation systems. In a concept proposed by Clean Energy Systems, Inc., nitrogen is removed from the combustion air and replaced with steam diluent. In this way, formation of nitrogen oxides is prevented, and the exhaust stream can be separated into concentrated CO2 and water streams. The concentrated CO2 stream could then serve as input to a CO2 sequestration process. In this study, experimental data are reported from a full-scale combustion test using steam as the diluent in oxy-fuel combustion. This combustor represents the “reheat” combustion system in a steam cycle that uses a high and low-pressure steam expansion. The reheat combustor serves to raise the temperature of the low-pressure steam turbine inlet, similar to the reheat stage of a conventional steam power cycle. Unlike a conventional steam cycle, the reheat enthalpy is actually generated by oxy-fuel combustion in the steam flow. This paper reports on the unique design aspects of this combustor, as well as initial emissions and operating performance.

  12. Ignition and flame stabilization of a strut-jet RBCC combustor with small rocket exhaust.

    Science.gov (United States)

    Hu, Jichao; Chang, Juntao; Bao, Wen

    2014-01-01

    A Rocket Based Combined Cycle combustor model is tested at a ground direct connected rig to investigate the flame holding characteristics with a small rocket exhaust using liquid kerosene. The total temperature and the Mach number of the vitiated air flow, at exit of the nozzle are 1505 K and 2.6, respectively. The rocket base is embedded in a fuel injecting strut and mounted in the center of the combustor. The wall of the combustor is flush, without any reward step or cavity, so the strut-jet is used to make sure of the flame stabilization of the second combustion. Mass flow rate of the kerosene and oxygen injected into the rocket is set to be a small value, below 10% of the total fuel when the equivalence ratio of the second combustion is 1. The experiment has generated two different kinds of rocket exhaust: fuel rich and pure oxygen. Experiment result has shown that, with a relative small total mass flow rate of the rocket, the fuel rich rocket plume is not suitable for ignition and flame stabilization, while an oxygen plume condition is suitable. Then the paper conducts a series of experiments to investigate the combustion characteristics under this oxygen pilot method and found that the flame stabilization characteristics are different at different combustion modes.

  13. A Comparison of Combustion Dynamics for Multiple 7-Point Lean Direct Injection Combustor Configurations

    Science.gov (United States)

    Tacina, K. M.; Hicks, Y. R.

    2017-01-01

    The combustion dynamics of multiple 7-point lean direct injection (LDI) combustor configurations are compared. LDI is a fuel-lean combustor concept for aero gas turbine engines in which multiple small fuel-air mixers replace one traditionally-sized fuel-air mixer. This 7-point LDI configuration has a circular cross section, with a center (pilot) fuel-air mixer surrounded by six outer (main) fuel-air mixers. Each fuel-air mixer consists of an axial air swirler followed by a converging-diverging venturi. A simplex fuel injector is inserted through the center of the air swirler, with the fuel injector tip located near the venturi throat. All 7 fuel-air mixers are identical except for the swirler blade angle, which varies with the configuration. Testing was done in a 5-atm flame tube with inlet air temperatures from 600 to 800 F and equivalence ratios from 0.4 to 0.7. Combustion dynamics were measured using a cooled PCB pressure transducer flush-mounted in the wall of the combustor test section.

  14. Gasifier-combustor using chips of eucalyptus firewood in drying pulped coffee; Gasificador/combustor a cavacos de lenha na secagem de cafe despolpado

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Jadir Nogueira da; Saiki, Emilio Takashi; Vilarinho, Mauricio Coelho; Cardoso Sobrinho, Jose [Vicosa Univ., MG (Brazil). Dept. de Engenharia Agricola

    2000-07-01

    This study aimed to determine the viability of the of a gasifier/combustor using chip of eucalyptus firewood as fuel, in drying pulped coffee. The gasifier used was designed by Silva (1988) with modifications in the gasification chamber, being the area of the grate reduced from 0,21 to 0,06m{sup 2}. An addition of a coating involving the gasifier was done and a damper was placed in the exit of the combustion chamber. The air heated up in the combustor was sent to dryer developed by Campos (1998) that possessed four movable metallic chambers with movement and hoisted by a pulleys system. It was dried coffee with initial moisture of 54,5% w.b. up to 11,1{+-}1,6% w.b. The moisture of the coffee was determined by equipment of the universal type, EDABO and stove. The temperature of the drying air was of 60 deg C, static pressure of the air in the exit of the fan of 9 mm ca with speed of 46,3m{sup 3}.min{sup -1}. It was ended that the gasifier using chips of eucalyptus firewood as fuel consumed among 15,3 and 18,8 kg/hour of the biomass and that the equipment is viable for the drying of pulped coffee, not impregnating it with smoke or other particles, usually generated in the direct fired furnaces. (author)

  15. A Novel Cyclic Catalytic Reformer for Hydrocarbon Fuels Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposed Small Business Innovative Research (SBIR) Phase I addresses development of a compact reformer system based on a cyclic partial oxidation (POx)...

  16. Catalysts and process for liquid hydrocarbon fuel production

    Science.gov (United States)

    White, Mark G; Liu, Shetian

    2014-12-09

    The present invention provides a novel process and system in which a mixture of carbon monoxide and hydrogen synthesis gas, or syngas, is converted into hydrocarbon mixtures composed of high quality gasoline components, aromatic compounds, and lower molecular weight gaseous olefins in one reactor or step. The invention utilizes a novel molybdenum-zeolite catalyst in high pressure hydrogen for conversion, as well as a novel rhenium-zeolite catalyst in place of the molybdenum-zeolite catalyst, and provides for use of the novel catalysts in the process and system of the invention.

  17. Solid Oxide Fuel Cell Operating on Hydrocarbon Fuel Project

    Data.gov (United States)

    National Aeronautics and Space Administration — One objective is to make structural and compositional changes to the largest electrical resistance element of the cell, the electrolyte. And the second objective is...

  18. High Energy Density Solid and Liquid Hydrocarbon Fuels

    Science.gov (United States)

    1989-02-01

    available to the general public, including foreign nations. This technical report has been reviewed and is approved for publica - tion. EF F , USAF...LLLL CCa S28 000 C)C 9 L) C4) UU L4) LOL 29rl LUz C0z o4c4 go =+ I 0 U., o -L WW LU 3:1 30 C’a £30 xI ao 0 0 cr ( ou uL ;: j z UIZ Z au ,ccLL :- LJ

  19. Research of some marks contemporary hydrocarbon fuel surface tension

    Directory of Open Access Journals (Sweden)

    С.В. Бойченко

    2005-01-01

    Full Text Available  The  surface  tension  of  some  marks  domestic  and  foreign  gasoline’s  and  jet  fuels  is  investigated  depending  on  distillation. Dependences  of  surface  tension,  composition,  boiling  points  liquid  fuel  experimentally  are  received.

  20. Effects of supercritical environment on hydrocarbon-fuel injection

    Science.gov (United States)

    Shin, Bongchul; Kim, Dohun; Son, Min; Koo, Jaye

    2017-04-01

    In this study, the effects of environment conditions on decane were investigated. Decane was injected in subcritical and supercritical ambient conditions. The visualization chamber was pressurized to 1.68 MPa by using nitrogen gas at a temperature of 653 K for subcritical ambient conditions. For supercritical ambient conditions, the visualization chamber was pressurized to 2.52 MPa by using helium at a temperature of 653 K. The decane injection in the pressurized chamber was visualized via a shadowgraph technique and gradient images were obtained by a post processing method. A large variation in density gradient was observed at jet interface in the case of subcritical injection in subcritical ambient conditions. Conversely, for supercritical injection in supercritical ambient conditions, a small density gradient was observed at the jet interface. In a manner similar to that observed in other cases, supercritical injection in subcritical ambient conditions differed from supercritical ambient conditions such as sphere shape liquid. Additionally, there were changes in the interface, and the supercritical injection core width was thicker than that in the subcritical injection. Furthermore, in cases with the same injection conditions, the change in the supercritical ambient normalized core width was smaller than the change in the subcritical ambient normalized core width owing to high specific heat at the supercritical injection and small phase change at the interface. Therefore, the interface was affected by the changing ambient condition. Given that the effect of changing the thermodynamic properties of propellants could be essential for a variable thrust rocket engine, the effects of the ambient conditions were investigated experimentally.

  1. Microchennel development for autothermal reforming of hydrocarbon fuels

    Science.gov (United States)

    Bae, J.-M.; Ahmed, S.; Kumar, R.; Doss, E.

    Fuel-processing is a bridging technology to assist the commercialization of fuel cell systems in the absence of a hydrogen infrastructure. The Argonne National Laboratory has been developing fuel-processing technologies for fuel cells, and has reported the development of novel catalysts that are active and selective for hydrocarbon-reforming reactions. It has been realized, however, that with pellets or conventional honeycomb catalysts, the reforming process is mass-transport limited. This study addresses the development of catalysts structures with microchannels that are able to reduce the diffusion resistance and, thereby, achieve the same production rate within a smaller reactor bed. The microchannel reforming catalysts are prepared and tested with natural gas and gasoline-type fuels in a microreactor (diameter: 1 cm) at space velocities of up to 250 000 h -1. The catalysts have also been used in engineering-scale reactors (10 kWe; diameter: 7 cm) with similar product qualities. Compared with pellet catalysts, the microchannel catalysts offer a nearly five-fold reduction in catalyst weight and volume.

  2. Ceramic Microchannel Development for Compact Fuel Processors of Hydrocarbon Fuels

    Science.gov (United States)

    Bae, J.-M.; Ahmed, S.; Kumar, R.; Doss, E.

    Fuel processing is a bridging technology for faster commercialization of fuel cell system under lack of hydrogen infrastructures. Argonne national laboratory has been developing fuel processing technologies for fuel cell based electric power. We have reported the development of novel catalysts that are active and selective for hydrocarbon reforming reactions. It has been realized, however, that with pellet or conventional honeycomb catalysts, the reforming process is mass transport limited. This paper reports the development of catalyst structures with microchannels that are able to reduce the diffusion resistance and thereby achieve the same production rate within a smaller reactor bed. These microchannel reforming catalysts were prepared and tested with natural gas and gasoline-type fuels in a microreactor (1-cm dia.) at space velocities of up to 250,000 per hour. These catalysts have also been used in engineering-scale reactors (10 kWe, 7-cm dia.) with similar product qualities. Compared to pellet catalysts, the microchannel catalysts enable a nearly 5-fold reduction in catalyst weight and volume.

  3. Catalysts and process for liquid hydrocarbon fuel production

    Energy Technology Data Exchange (ETDEWEB)

    White, Mark G.; Ranaweera, Samantha A.; Henry, William P.

    2016-08-02

    The present invention provides a novel process and system in which a mixture of carbon monoxide and hydrogen synthesis gas, or syngas, is converted into hydrocarbon mixtures composed of high quality distillates, gasoline components, and lower molecular weight gaseous olefins in one reactor or step. The invention utilizes a novel supported bimetallic ion complex catalyst for conversion, and provides methods of preparing such novel catalysts and use of the novel catalysts in the process and system of the invention.

  4. The new additive to improve the stability of hydrocarbon fuels

    Directory of Open Access Journals (Sweden)

    В.О. Чугуй

    2009-02-01

    Full Text Available  The antimicrobial PGMG is offered as biocyde additive for defence of aviation fuels from microbial contamination. The bactericidal concentrations of PGMG are set up for some bacteria separate from a contamination fuel. Influencing of bringing of different concentrations of PGMG in different solvents on the high-quality indexes of fuel is studied.

  5. Direct production of fractionated and upgraded hydrocarbon fuels from biomass

    Science.gov (United States)

    Felix, Larry G.; Linck, Martin B.; Marker, Terry L.; Roberts, Michael J.

    2014-08-26

    Multistage processing of biomass to produce at least two separate fungible fuel streams, one dominated by gasoline boiling-point range liquids and the other by diesel boiling-point range liquids. The processing involves hydrotreating the biomass to produce a hydrotreatment product including a deoxygenated hydrocarbon product of gasoline and diesel boiling materials, followed by separating each of the gasoline and diesel boiling materials from the hydrotreatment product and each other.

  6. A light hydrocarbon fuel processor producing high-purity hydrogen

    Science.gov (United States)

    Löffler, Daniel G.; Taylor, Kyle; Mason, Dylan

    This paper discusses the design process and presents performance data for a dual fuel (natural gas and LPG) fuel processor for PEM fuel cells delivering between 2 and 8 kW electric power in stationary applications. The fuel processor resulted from a series of design compromises made to address different design constraints. First, the product quality was selected; then, the unit operations needed to achieve that product quality were chosen from the pool of available technologies. Next, the specific equipment needed for each unit operation was selected. Finally, the unit operations were thermally integrated to achieve high thermal efficiency. Early in the design process, it was decided that the fuel processor would deliver high-purity hydrogen. Hydrogen can be separated from other gases by pressure-driven processes based on either selective adsorption or permeation. The pressure requirement made steam reforming (SR) the preferred reforming technology because it does not require compression of combustion air; therefore, steam reforming is more efficient in a high-pressure fuel processor than alternative technologies like autothermal reforming (ATR) or partial oxidation (POX), where the combustion occurs at the pressure of the process stream. A low-temperature pre-reformer reactor is needed upstream of a steam reformer to suppress coke formation; yet, low temperatures facilitate the formation of metal sulfides that deactivate the catalyst. For this reason, a desulfurization unit is needed upstream of the pre-reformer. Hydrogen separation was implemented using a palladium alloy membrane. Packed beds were chosen for the pre-reformer and reformer reactors primarily because of their low cost, relatively simple operation and low maintenance. Commercial, off-the-shelf balance of plant (BOP) components (pumps, valves, and heat exchangers) were used to integrate the unit operations. The fuel processor delivers up to 100 slm hydrogen >99.9% pure with thermal efficiency is better than 67% operating at full load. This fuel processor has been integrated with a 5-kW fuel cell producing electricity and hot water.

  7. Chemical – thermodynamics description of oxidization of hydrocarbon fuels

    Directory of Open Access Journals (Sweden)

    О.Л. Матвєєва

    2005-01-01

    Full Text Available  In theory it is grounded, that in the process of exploitation because of intensification of oxidizing processes worsening takes place of power properties of fuels, in particular warmth of combustion, due to reduction of thermal effects of reactions of combustion of the oxidized hydrocarbons.

  8. Prediction of soot and thermal radiation in a model gas turbine combustor burning kerosene fuel spray at different swirl levels

    Science.gov (United States)

    Ghose, Prakash; Patra, Jitendra; Datta, Amitava; Mukhopadhyay, Achintya

    2016-05-01

    Combustion of kerosene fuel spray has been numerically simulated in a laboratory scale combustor geometry to predict soot and the effects of thermal radiation at different swirl levels of primary air flow. The two-phase motion in the combustor is simulated using an Eulerian-Lagragian formulation considering the stochastic separated flow model. The Favre-averaged governing equations are solved for the gas phase with the turbulent quantities simulated by realisable k-ɛ model. The injection of the fuel is considered through a pressure swirl atomiser and the combustion is simulated by a laminar flamelet model with detailed kinetics of kerosene combustion. Soot formation in the flame is predicted using an empirical model with the model parameters adjusted for kerosene fuel. Contributions of gas phase and soot towards thermal radiation have been considered to predict the incident heat flux on the combustor wall and fuel injector. Swirl in the primary flow significantly influences the flow and flame structures in the combustor. The stronger recirculation at high swirl draws more air into the flame region, reduces the flame length and peak flame temperature and also brings the soot laden zone closer to the inlet plane. As a result, the radiative heat flux on the peripheral wall decreases at high swirl and also shifts closer to the inlet plane. However, increased swirl increases the combustor wall temperature due to radial spreading of the flame. The high incident radiative heat flux and the high surface temperature make the fuel injector a critical item in the combustor. The injector peak temperature increases with the increase in swirl flow mainly because the flame is located closer to the inlet plane. On the other hand, a more uniform temperature distribution in the exhaust gas can be attained at the combustor exit at high swirl condition.

  9. Effects of Combustion-Induced Vortex Breakdown on Flashback Limits of Syngas-Fueled Gas Turbine Combustors

    Energy Technology Data Exchange (ETDEWEB)

    Ahsan Choudhuri

    2011-03-31

    Turbine combustors of advanced power systems have goals to achieve very low pollutants emissions, fuel variability, and fuel flexibility. Future generation gas turbine combustors should tolerate fuel compositions ranging from natural gas to a broad range of syngas without sacrificing operational advantages and low emission characteristics. Additionally, current designs of advanced turbine combustors use various degrees of swirl and lean premixing for stabilizing flames and controlling high temperature NOx formation zones. However, issues of fuel variability and NOx control through premixing also bring a number of concerns, especially combustor flashback and flame blowout. Flashback is a combustion condition at which the flame propagates upstream against the gas stream into the burner tube. Flashback is a critical issue for premixed combustor designs, because it not only causes serious hardware damages but also increases pollutant emissions. In swirl stabilized lean premixed turbine combustors onset of flashback may occur due to (i) boundary layer flame propagation (critical velocity gradient), (ii) turbulent flame propagation in core flow, (iii) combustion instabilities, and (iv) upstream flame propagation induced by combustion induced vortex breakdown (CIVB). Flashback due to first two foregoing mechanisms is a topic of classical interest and has been studied extensively. Generally, analytical theories and experimental determinations of laminar and turbulent burning velocities model these mechanisms with sufficient precision for design usages. However, the swirling flow complicates the flashback processes in premixed combustions and the first two mechanisms inadequately describe the flashback propensity of most practical combustor designs. The presence of hydrogen in syngas significantly increases the potential for flashback. Due to high laminar burning velocity and low lean flammability limit, hydrogen tends to shift the combustor operating conditions towards

  10. Effects of Combustion-Induced Vortex Breakdown on Flashback Limits of Syngas-Fueled Gas Turbine Combustors

    Energy Technology Data Exchange (ETDEWEB)

    Ahsan Choudhuri

    2011-03-31

    Turbine combustors of advanced power systems have goals to achieve very low pollutants emissions, fuel variability, and fuel flexibility. Future generation gas turbine combustors should tolerate fuel compositions ranging from natural gas to a broad range of syngas without sacrificing operational advantages and low emission characteristics. Additionally, current designs of advanced turbine combustors use various degrees of swirl and lean premixing for stabilizing flames and controlling high temperature NOx formation zones. However, issues of fuel variability and NOx control through premixing also bring a number of concerns, especially combustor flashback and flame blowout. Flashback is a combustion condition at which the flame propagates upstream against the gas stream into the burner tube. Flashback is a critical issue for premixed combustor designs, because it not only causes serious hardware damages but also increases pollutant emissions. In swirl stabilized lean premixed turbine combustors onset of flashback may occur due to (i) boundary layer flame propagation (critical velocity gradient), (ii) turbulent flame propagation in core flow, (iii) combustion instabilities, and (iv) upstream flame propagation induced by combustion induced vortex breakdown (CIVB). Flashback due to first two foregoing mechanisms is a topic of classical interest and has been studied extensively. Generally, analytical theories and experimental determinations of laminar and turbulent burning velocities model these mechanisms with sufficient precision for design usages. However, the swirling flow complicates the flashback processes in premixed combustions and the first two mechanisms inadequately describe the flashback propensity of most practical combustor designs. The presence of hydrogen in syngas significantly increases the potential for flashback. Due to high laminar burning velocity and low lean flammability limit, hydrogen tends to shift the combustor operating conditions towards

  11. Assessment of Rich-Burn, Quick-Mix, Lean-Burn Trapped Vortex Combustor for Stationary Gas Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Douglas L. Straub; Kent H. Casleton; Robie E. Lewis; Todd G. Sidwell; Daniel J. Maloney; George A. Richards

    2005-01-01

    This paper describes the evaluation of an alternative combustion approach to achieve low emissions for a wide range of fuel types. This approach combines the potential advantages of a staged rich-burn, quick-mix, lean-burn (RQL) combustor with the revolutionary trapped vortex combustor (TVC) concept. Although RQL combustors have been proposed for low-Btu fuels, this paper considers the application of an RQL combustor for high-Btu natural gas applications. This paper will describe the RQL/TVC concept and experimental results conducted at 10 atm (1013 kPa or 147 psia) and an inlet-air temperature of 644 K (700°F). The results from a simple network reactor model using detailed kinetics are compared to the experimental observations. Neglecting mixing limitations, the simplified model suggests that NOx and CO performance below 10 parts per million could be achieved in an RQL approach. The CO levels predicted by the model are reasonably close to the experimental results over a wide range of operating conditions. The predicted NOx levels are reasonably close for some operating conditions; however, as the rich-stage equivalence ratio increases, the discrepancy between the experiment and the model increases. Mixing limitations are critical in any RQL combustor, and the mixing limitations for this RQL/TVC design are discussed.

  12. NOx Emissions Characteristics and Correlation Equations of Two P and W's Axially Staged Sector Combustors Developed Under NASA Environmentally Responsible Aviation (ERA) Project

    Science.gov (United States)

    He, Zhuohui J.

    2017-01-01

    Two P&W (Pratt & Whitney)'s axially staged sector combustors have been developed under NASA's Environmentally Responsible Aviation (ERA) project. One combustor was developed under ERA Phase I, and the other was developed under ERA Phase II. Nitrogen oxides (NOx) emissions characteristics and correlation equations for these two sector combustors are reported in this article. The Phase I design was to optimize the NOx emissions reduction potential, while the Phase II design was more practical and robust. Multiple injection points and fuel staging strategies are used in the combustor design. Pilot-stage injectors are located on the front dome plate of the combustor, and main-stage injectors are positioned on the top and bottom (Phase I) or on the top only (Phase II) of the combustor liners downstream. Low power configuration uses only pilot-stage injectors. Main-stage injectors are added to high power configuration to help distribute fuel more evenly and achieve lean burn throughout the combustor yielding very low NOx emissions. The ICAO (International Civil Aviation Organization) landing-takeoff NOx emissions are verified to be 88 percent (Phase I) and 76 percent (Phase II) under the ICAO CAEP/6 (Committee on Aviation Environmental Protection 6th Meeting) standard, exceeding the ERA project goal of 75 percent reduction, and the combustors proved to have stable combustion with room to maneuver on fuel flow splits for operability.

  13. Application of numerical analysis to jet engine combustor design. Jet engine nenshoki sekkei eno suchi kaiseki no tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Fuji, H. (Ishikawajima-Harima Heavy Industries, Co. Ltd., Tokyo (Japan))

    1990-11-01

    Numerical methods are applied in practice to complement and support jet engine combustor design and development. Part of the conventional design-trial fabrication-testing performance evaluation cycle replaced by iterated numerical analysis applied in a preliminary cycle of design-evaluation, undertaken before proceeding to actual trial fabrication testing and final evaluation. Presented examples are of numerical methods applied to design/development of a high temperature combustor of airblast fuel injector type, in which analysis is undertaken of flows through diffuser and through combustion liner, of temperature distributions, of flows through liner cooling slots, and liner skin temperature distributions. Furthermore, results of three-dimensional flow analysis are applied to optimizing the design parameters of a jet-swirl combustor and to calculation of the centrifugal force in a jet swirl combustion liner. 3 refs., 18 figs., 1 tab.

  14. Coal desulfurization in a rotary kiln combustor. Final report, March 15, 1990--July 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Cobb, J.T. Jr.

    1992-09-11

    The purpose of this project was to demonstrate the combustion of coal and coal wastes in a rotary kiln reactor with limestone addition for sulfur control. The rationale for the project was the perception that rotary systems could bring several advantages to combustion of these fuels, and may thus offer an alternative to fluid-bed boilers. Towards this end, an existing wood pyrolysis kiln (the Humphrey Charcoal kiln) was to be suitably refurbished and retrofitted with a specially designed version of a patented air distributor provided by Universal Energy, Inc. (UEI). As the project progressed beyond the initial stages, a number of issues were raised regarding the feasibility and the possible advantages of burning coals in a rotary kiln combustor and, in particular, the suitability of the Humphrey Charcoal kiln as a combustor. Instead, an opportunity arose to conduct combustion tests in the PEDCO Rotary Cascading-Bed Boiler (RCBB) commercial demonstration unit at the North American Rayon CO. (NARCO) in Elizabethton, TN. The tests focused on anthracite culm and had two objectives: (a) determine the feasibility of burning anthracite culms in a rotary kiln boiler and (b) obtain input for any further work involving the Humphrey Charcoal kiln combustor. A number of tests were conducted at the PEDCO unit. The last one was conducted on anthracite culm procured directly from the feed bin of a commercial circulating fluid-bed boiler. The results were disappointing; it was difficult to maintain sustained combustion even when large quantities of supplemental fuel were used. Combustion efficiency was poor, around 60 percent. The results suggest that the rotary kiln boiler, as designed, is ill-suited with respect to low-grade, hard to burn solid fuels, such as anthracite culm. Indeed, data from combustion of bituminous coal in the PEDCO unit suggest that with respect to coal in general, the rotary kiln boiler appears inferior to the circulating fluid bed boiler.

  15. Rayleigh/Raman/LIF measurements in a turbulent lean premixed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Nandula, S.P.; Pitz, R.W. [Vanderbilt Univ., Nashville, TN (United States); Barlow, R.S. [Sandia National Labs., Livermore, CA (United States)] [and others

    1995-10-01

    Much of the industrial electrical generation capability being added worldwide is gas-turbine engine based and is fueled by natural gas. These gas-turbine engines use lean premixed (LP) combustion to meet the strict NO{sub x} emission standards, while maintaining acceptable levels of CO. In conventional, diffusion flame gas turbine combustors, large amount of NO{sub x} forms in the hot stoichiometric zones via the Zeldovich (thermal) mechanism. Hence, lean premixed combustors are rapidly becoming the norm, since they are specifically designed to avoid these hot stoichiometric zones and the associated thermal NO, However, considerable research and development are still required to reduce the NO{sub x} levels (25-40 ppmvd adjusted to 15% O{sub 2} with the current technology), to the projected goal of under 10 ppmvd by the turn of the century. Achieving this objective would require extensive experiments in LP natural gas (or CH{sub 4}) flames for understanding the combustion phenomena underlying the formation of the exhaust pollutants. Although LP combustion is an effective way to control NO{sub x}, the downside is that it increases the CO emissions. The formation and destruction of the pollutants (NO{sub x} and CO) are strongly affected by the fluid mechanics, the finite-rate chemistry, and their (turbulence-chemistry) interactions. Hence, a thorough understanding of these interactions is vital for controlling and reducing the pollutant emissions. The present research is contributing to this goal by providing a detailed nonintrusive laser based data set with good spatial and temporal resolutions of the pollutants (NO and CO) along with the major species, temperature, and OH. The measurements reported in this work, along with the existing velocity data on a turbulent LP combustor burning CH{sub 4}, would provide insight into the turbulence-chemistry interactions and their effect on pollutant formation.

  16. 不同碱金属乌桕油皂微波极化脱羧成烃类燃料的工艺%Microwave polarizing decarboxylation of different saponificated Chinese tallow seed oil for the preparation of renewable hydrocarbon fuel

    Institute of Scientific and Technical Information of China (English)

    王允圃; 刘玉环; 阮榕生; 温平威; 马雯; 万益琴

    2014-01-01

    不饱和脂肪酸盐微波极化条件下更容易脱羧成烃,本研究分别以氢氧化锂、氢氧化钠、氢氧化钾皂化乌桕油,以不同碱金属乌桕油皂化物和乌桕油为研究对象,在恒定的微波功率下裂解脱羧成烃,通过GC-MS等分析裂解产物,微波能选择性地加热乌桕油皂羧基端,不饱和键在微波极化过程中与碳负离子中间体形成P-π共轭体系,使裂解反应(脱羧、端烯化、异构化和芳构化等)顺利进行。皂化物极性越大,升温速率越快,液体烃类产率越高,脱羧效果越明显,裂解液体的密度为0.825~0.865 g/cm3,黏度为2.10~2.55 mm2/s,与柴油的性质非常相似,从而证明微波极化乌桕油皂脱羧制烃类燃料的可行性。%It is easier for the decarboxylation reaction of unsaturated fatty acid salt. The Chinese tallow seed oil was saponified by lithium hydroxide,sodium hydroxide,potassium hydroxide. Different saponificated Chinese tallow seed oils were used as model compounds to study the decarboxylation leading to hydrocarbon formation via microwave-assisted pyrolysis technology,the pyrolysis products were analyzed by GC-MS and FT-IR. Microwave energy was able to selectively heat the carboxyl terminal of saponificated Chinese tallow seed oil. During decarboxylation,the double bond in the long hydrocarbon chain formed a P-πconjugated system with the carbanion intermediate. The resulting P-πconjugated system was more stable and beneficial to the pyrolysis reaction (decarboxylation,terminal allylation,isomerization,and aromatization). The saponificated oil has a stronger polarity,the heating rate is higher,liquid hydrocarbon yield is bigger. The viscosity(2.10-2.55 mm2/s) and density(0.825-0.865 g/cm3) of the pyrolysis liquid obtained from this experiment were similar to those of diesel. It was proved feasible to derive renewable hydrocarbon fuel from saponificated Chinese tallow seed oil by microwave

  17. Two-phase flow in a swirling circulating fluidized bed (SCFB) coal combustor

    Energy Technology Data Exchange (ETDEWEB)

    Ilias, S.; Govind, R. (Cincinnati Univ., OH (USA). Dept. of Chemical and Nuclear Engineering)

    1988-01-01

    Coal combustors are difficult to model accurately due to their inherent complexities of coal devolatization, char combustion and volatile combustion with simultaneous momentum, heat and mass transfer effects. A fluidized bed which takes the advantages of tangential injection of secondary air, termed as Swirling Circulating Fluidized Bed is being developed at the University of Cincinnati. Preliminary experimental studies on coal combustion using the pilot plant and hydrodynamics using a cold model have been conducted. The system has also been simulated. Results of these studies are presented in this paper. Results on three dimensional behavior of the fluid-particle system in the SCFB are presented.

  18. Stability analysis of thermo-acoustic nonlinear eigenproblems in annular combustors. Part II. Uncertainty quantification

    CERN Document Server

    Magri, Luca; Nicoud, Franck; Juniper, Matthew

    2016-01-01

    Monte Carlo and Active Subspace Identification methods are combined with first- and second-order adjoint sensitivities to perform (forward) uncertainty quantification analysis of the thermo-acoustic stability of two annular combustor configurations. This method is applied to evaluate the risk factor, i.e., the probability for the system to be unstable. It is shown that the adjoint approach reduces the number of nonlinear-eigenproblem calculations by up to $\\sim\\mathcal{O}(M)$, as many as the Monte Carlo samples.

  19. A novel vortex-fluidized bed combustor with two combustion chambers for rice-husk fuel

    Directory of Open Access Journals (Sweden)

    Madhiyanon, T.

    2004-11-01

    Full Text Available A novel vortexing-fluidized bed combustor (VFBC using rice-husk as fuel was developed and presented. The combined characteristics of vortex combustion and fluidized bed combustion are the main features of the VFBC, which was designed to achieve high thermal capacity (MWth m-3, high thermal efficiency and low diameter to height ratio. The VFBC comprises a vertical cylinder chamber and a conical base, which provides a bed for incompletely combusted fuel. The overall dimensions are 1.10 m in height and 0.40 m in diameter. To evaluate combustor performance, the specific feed rate of fuel and mass flow rates of the primary, secondary, and tertiary air were varied independently of one another. The combustion appeared into two zones characterized by different combustion behaviors, i.e. 1 vortext combustion above the vortex ring and 2 fluidized bed combustion below the vortex ring. The fluidized bed zone has uniform temperature distributions across the cross-section of the combustor. The swirling of air above the vortex ringand the vortex ring itself played important roles in preventing the escape of combustion particulates. Bottomash appeared as fine black and grey particles of ash, which ranged in size from 200 to 600 µm. Fluidizationcould be initiated without the assistance of any inert material mixed into the bed. The experimental resultsindicated that thermal efficiency did not depend on the secondary or tertiary airflows, but was significantlyinfluenced by the excess air resulting from the combined total of the three airflows. The introduction of thetertiary airflow helped maintaining the temperature inside the combustor within acceptable levels. According to experimental conditions, i.e. a specific feed rate of 240 kg h-1m-3 and excess air (157%, it was found that the VFBC could achieve an exit gas temperature of 1060ºC, thermal efficiency of 95%, and thermal capacity of 0.91 MWth m-3. The amounts of CO2, CO, and O2 gases emitted were directly

  20. Spatially-resolved measurements of soot size and population in a swirl-stabilized combustor

    OpenAIRE

    1985-01-01

    Isooctane, and mixtures of isooctane with various ring and aromatic compounds blended to yield the same smoke point were separately injected through a twin-fluid atomizer into a turbulent, swirl-stabilized model combustor. A nonintrusive optical probe based on larege angle (60°, 20°) intensity ratio scattering was used to yield a point measurement of soot particulate in the size range of 0.08 to 0.38 μm. The velocity and temperature fields were characterized by a two-color laser anemometer an...

  1. Experimental Studies on Swirling Gas—Particle Flows in a Spouting —Cyclone Combustor

    Institute of Scientific and Technical Information of China (English)

    L.X.Zhou; B.Zhou; 等

    1992-01-01

    The gas and particle time-averaged velocity and RMS fluctuation velocity of swirling gas-particle flows in a spouting-cyclone combustor were maesured by a hot-ball probe and a conventional LDV system.The results show large velocity slip between the two phases both in tangential and axial directions and high noisotropic turbulence of the two phases were also observed which is favorable to coal combustion.the particle RMS flutuation velocity is higher than the gas RMS fluctuation velocity only in some regions of the flow field.

  2. A nonlinear dynamical system for combustion instability in a pulse model combustor

    Science.gov (United States)

    Takagi, Kazushi; Gotoda, Hiroshi

    2016-11-01

    We theoretically and numerically study the bifurcation phenomena of nonlinear dynamical system describing combustion instability in a pulse model combustor on the basis of dynamical system theory and complex network theory. The dynamical behavior of pressure fluctuations undergoes a significant transition from steady-state to deterministic chaos via the period-doubling cascade process known as Feigenbaum scenario with decreasing the characteristic flow time. Recurrence plots and recurrence networks analysis we adopted in this study can quantify the significant changes in dynamic behavior of combustion instability that cannot be captured in the bifurcation diagram.

  3. Radial flow fuel nozzle for a combustor of a gas turbine

    Science.gov (United States)

    Means, Gregory Scott; Boardman, Gregory Allen; Berry, Jonathan Dwight

    2016-07-05

    A combustor for a gas turbine generally includes a radial flow fuel nozzle having a fuel distribution manifold, and a fuel injection manifold axially separated from the fuel distribution manifold. The fuel injection manifold generally includes an inner side portion, an outer side portion, and a plurality of circumferentially spaced fuel ports that extend through the outer side portion. A plurality of tubes provides axial separation between the fuel distribution manifold and the fuel injection manifold. Each tube defines a fluid communication path between the fuel distribution manifold and the fuel injection manifold.

  4. Thermo-hydrodynamic design of fluidized bed combustors estimating metal wastage

    CERN Document Server

    Lyczkowski, Robert W; Bouillard, Jacques X; Folga, Stephen M

    2012-01-01

    Thermo-Hydrodynamic Design of Fluidized Bed Combustors: Estimating Metal Wastage is a unique volume that finds that the most sensitive parameters affecting metal wastage are superficial fluidizing velocity, particle diameter, and particle sphericity.  Gross consistencies between disparate data sources using different techniques were found when the erosion rates are compared on the same basis using the concept of renormalization.  The simplified mechanistic models and correlations, when validated, can be used to renormalize any experimental data so they can be compared on a consistent basis using a master equation.

  5. Characterization of complexities in combustion instability in a lean premixed gas-turbine model combustor.

    Science.gov (United States)

    Gotoda, Hiroshi; Amano, Masahito; Miyano, Takaya; Ikawa, Takuya; Maki, Koshiro; Tachibana, Shigeru

    2012-12-01

    We characterize complexities in combustion instability in a lean premixed gas-turbine model combustor by nonlinear time series analysis to evaluate permutation entropy, fractal dimensions, and short-term predictability. The dynamic behavior in combustion instability near lean blowout exhibits a self-affine structure and is ascribed to fractional Brownian motion. It undergoes chaos by the onset of combustion oscillations with slow amplitude modulation. Our results indicate that nonlinear time series analysis is capable of characterizing complexities in combustion instability close to lean blowout.

  6. Refractory experience in circulating fluidized bed combustors, Task 7. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, R.Q.

    1989-11-01

    This report describes the results of an investigation into the status of the design and selection of refractory materials for coal-fueled circulating fluidized-bed combustors. The survey concentrated on operating units in the United States manufactured by six different boiler vendors: Babcock and Wilcox, Combustion Engineering, Foster Wheeler, Keeler Dorr-Oliver, Pyropower, and Riley Stoker. Information was obtained from the boiler vendors, refractory suppliers and installers, and the owners/operators of over forty units. This work is in support of DOE`s Clean Coal Technology program, which includes circulating fluidized-bed technology as one of the selected concepts being evaluated.

  7. Turbomachine combustor nozzle including a monolithic nozzle component and method of forming the same

    Energy Technology Data Exchange (ETDEWEB)

    Stoia, Lucas John; Melton, Patrick Benedict; Johnson, Thomas Edward; Stevenson, Christian Xavier; Vanselow, John Drake; Westmoreland, James Harold

    2016-02-23

    A turbomachine combustor nozzle includes a monolithic nozzle component having a plate element and a plurality of nozzle elements. Each of the plurality of nozzle elements includes a first end extending from the plate element to a second end. The plate element and plurality of nozzle elements are formed as a unitary component. A plate member is joined with the nozzle component. The plate member includes an outer edge that defines first and second surfaces and a plurality of openings extending between the first and second surfaces. The plurality of openings are configured and disposed to register with and receive the second end of corresponding ones of the plurality of nozzle elements.

  8. Concentration Measurements in a Cold Flow Model Annular Combustor Using Laser Induced Fluorescence

    Science.gov (United States)

    Morgan, Douglas C.

    1996-01-01

    A nonintrusive concentration measurement method is developed for determining the concentration distribution in a complex flow field. The measurement method consists of marking a liquid flow with a water soluble fluorescent dye. The dye is excited by a two dimensional sheet of laser light. The fluorescent intensity is shown to be proportional to the relative concentration level. The fluorescent field is recorded on a video cassette recorder through a video camera. The recorded images are analyzed with image processing hardware and software to obtain intensity levels. Mean and root mean square (rms) values are calculated from these intensity levels. The method is tested on a single round turbulent jet because previous concentration measurements have been made on this configuration by other investigators. The previous results were used to comparison to qualify the current method. These comparisons showed that this method provides satisfactory results. 'Me concentration measurement system was used to measure the concentrations in the complex flow field of a model gas turbine annular combustor. The model annular combustor consists of opposing primary jets and an annular jet which discharges perpendicular to the primary jets. The mixing between the different jet flows can be visualized from the calculated mean and rms profiles. Concentration field visualization images obtained from the processing provide further qualitative information about the flow field.

  9. Lean blowout limits of a gas turbine combustor operated with aviation fuel and methane

    Science.gov (United States)

    Xiao, Wei; Huang, Yong

    2016-05-01

    Lean blowout (LBO) limits is critical to the operational performance of combustion systems in propulsion and power generation. The swirl cup plays an important role in flame stability and has been widely used in aviation engines. Therefore, the effects of swirl cup geometry and flow dynamics on LBO limits are significant. An experiment was conducted for studying the lean blowout limits of a single dome rectangular model combustor with swirl cups. Three types of swirl cup (dual-axial swirl cup, axial-radial swirl cup, dual-radial swirl cup) were employed in the experiment which was operated with aviation fuel (Jet A-1) and methane under the idle condition. Experimental results showed that, with using both Jet A-1 and methane, the LBO limits increase with the air flow of primary swirler for dual-radial swirl cup, while LBO limits decrease with the air flow of primary swirler for dual-axial swirl cup. In addition, LBO limits increase with the swirl intensity for three swirl cups. The experimental results also showed that the flow dynamics instead of atomization poses a significant influence on LBO limits. An improved semi-empirical correlation of experimental data was derived to predict the LBO limits for gas turbine combustors.

  10. Melt Infiltrated Ceramic Matrix Composites for Shrouds and Combustor Liners of Advanced Industrial Gas Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Gregory Corman; Krishan Luthra; Jill Jonkowski; Joseph Mavec; Paul Bakke; Debbie Haught; Merrill Smith

    2011-01-07

    This report covers work performed under the Advanced Materials for Advanced Industrial Gas Turbines (AMAIGT) program by GE Global Research and its collaborators from 2000 through 2010. A first stage shroud for a 7FA-class gas turbine engine utilizing HiPerComp{reg_sign}* ceramic matrix composite (CMC) material was developed. The design, fabrication, rig testing and engine testing of this shroud system are described. Through two field engine tests, the latter of which is still in progress at a Jacksonville Electric Authority generating station, the robustness of the CMC material and the shroud system in general were demonstrated, with shrouds having accumulated nearly 7,000 hours of field engine testing at the conclusion of the program. During the latter test the engine performance benefits from utilizing CMC shrouds were verified. Similar development of a CMC combustor liner design for a 7FA-class engine is also described. The feasibility of using the HiPerComp{reg_sign} CMC material for combustor liner applications was demonstrated in a Solar Turbines Ceramic Stationary Gas Turbine (CSGT) engine test where the liner performed without incident for 12,822 hours. The deposition processes for applying environmental barrier coatings to the CMC components were also developed, and the performance of the coatings in the rig and engine tests is described.

  11. Measurement of nitrogen species NO{sub y} at the exhaust of an aircraft engine combustor

    Energy Technology Data Exchange (ETDEWEB)

    Ristori, A. [Office National d`Etudes et de Recherches Aerospatiales (ONERA), Palaiseau (France); Baudoin, C. [Societe Nationale d`Etude et de Construction de Moteurs d`Aviation (SNECMA), Villaroche (France)

    1997-12-31

    A research programme named AEROTRACE was supported by the EC (CEC contract AERA-CT94-0003) in order to investigate trace species measurements at the exhaust of aero-engines. Within this project, NO{sub y}, NO, HNO{sub 3} and HONO were measured at the exhaust of aircraft engine combustors. Major species (NO{sub y},NO) were measured by using a chemiluminescence instrument. Minor species (HNO{sub 3},HONO) were measured by using filter packs. Two combustors were tested under various running conditions; the first one at ONERA (Task 2) and the second one at DRA (Task 5). Results show that EI{sub NOy} < 50 g/kg, EI{sub HNO3} < 0.2 g/kg and EI{sub HONO} < 0.55 g/kg. Regarding ratios, (HNO{sub 3})/(NO{sub y}) < 0.5%, (HONO)/(NO{sub y}) < 8%, (HONO)/(NO{sub 2}) {approx} 19.2%, and (HNO{sub 3})/(NO{sub 2}) {approx} 0.8% was found. (author) 9 refs.

  12. Instability Suppression in a Swirl-Stabilized Combustor Using Microjet Air Injection

    KAUST Repository

    LaBry, Zachary

    2010-01-04

    In this study, we examine the effectiveness of microjet air injection as a means of suppressing thermoacoustic instabilities in a swirl-stabilized, lean-premixed propane/air combustor. High-speed stereo PIV measurements, taken to explore the mechanism of combustion instability, reveal that the inner recirculation zone plays a dominant role in the coupling of acoustics and heat release that leads to combustion instability. Six microjet injector configurations were designed to modify the inner and outer recirculation zones with the intent of decoupling the mechanism leading to instability. Microjets that injected air into the inner recirculation zone, swirling in the opposite sense to the primary swirl were effective in suppressing combustion instability, reducing the overall sound pressure level by up to 17 dB within a certain window of operating conditions. Stabilization was achieved near an equivalence ratio of 0.65, corresponding to the region where the combustor transitions from a 40 Hz instability mode to a 110 Hz instability mode. PIV measurements made of the stabilized flow revealed significant modification of the inner recirculation zone and substantial weakening of the outer recirculation zone.

  13. Effect of flue gas recirculation on heat transfer in a supercritical circulating fluidized bed combustor

    Science.gov (United States)

    Błaszczuk, Artur

    2015-09-01

    This paper focuses on assessment of the effect of flue gas recirculation (FGR) on heat transfer behavior in 1296t/h supercritical coal-fired circulating fluidized bed (CFB) combustor. The performance test in supercritical CFB combustor with capacity 966 MWth was performed with the low level of flue gas recirculation rate 6.9% into furnace chamber, for 80% unit load at the bed pressure of 7.7 kPa and the ratio of secondary air to the primary air SA/PA = 0.33. Heat transfer behavior in a supercritical CFB furnace between the active heat transfer surfaces (membrane wall and superheater) and bed material has been analyzed for Geldart B particle with Sauter mean diameters of 0.219 and 0.246 mm. Bed material used in the heat transfer experiments had particle density of 2700 kg/m3. A mechanistic heat transfer model based on cluster renewal approach was used in this work. A heat transfer analysis of CFB combustion system with detailed consideration of bed-to-wall heat transfer coefficient distributions along furnace height is investigated. Heat transfer data for FGR test were compared with the data obtained for representative conditions without recycled flue gases back to the furnace through star-up burners.

  14. Restricted Modal Analysis Applied to Internal Annular Combustor Autospectra and Cross-Spectra Measurements

    Science.gov (United States)

    Miles, Jeffrey Hilton

    2007-01-01

    A treatment of the modal decomposition of the pressure field in a combustor as determined by two pressure time history measurements is developed herein. It is applied to a Pratt and Whitney PW4098 engine combustor over a range of operating conditions. For modes other than the plane wave the assumption is made that there are distinct frequency bands in which the individual modes, including the plane wave mode, overlap such that if circumferential mode m and circumferential mode m-1 are present then circumferential mode m-2 is not. In the analysis used herein at frequencies above the first cutoff mode frequency, only pairs of circumferential modes are individually present at each frequency. Consequently, this is a restricted modal analysis. As part of the analysis one specifies mode cut-on frequencies. This creates a set of frequencies that each mode spans. One finding was the successful use of the same modal span frequencies over a range of operating conditions for this particular engine. This suggests that for this case the cut-on frequencies are in proximity at each operating condition. Consequently, the combustion noise spectrum related to the circumferential modes might not change much with operating condition.

  15. Restricted Acoustic Modal Analysis Applied to Internal Combustor Spectra and Cross-Spectra Measurements

    Science.gov (United States)

    Miles, Jeffrey Hilton

    2006-01-01

    A treatment of the modal decomposition of the pressure field in a combustor as determined by two Kulite pressure measurements is developed herein. It is applied to a Pratt & Whitney PW4098 engine combustor over a range of operating conditions. For modes other than the plane wave the new part of the treatment is the assumption that there are distinct frequency bands in which the individual modes, including the plane wave mode, overlap such that if circumferential mode m and circumferential mode m-1 are present than circumferential mode m 2 is not. Consequently, in the analysis used herein at frequencies above the first cut-off mode frequency, only pairs of circumferential modes are individually present at each frequency. Consequently, this is a restricted modal analysis. A new result is that the successful use of the same modal span frequencies over a range of operating conditions for this particular engine suggests that the temperature, T, and the velocity, v, of the flow at each operating condition are related by c(sup 2)-v(sup 2) = a constant where c is the speed of sound.

  16. Thermionic combustor application to combined gas and steam turbine power plants

    Science.gov (United States)

    Miskolczy, G.; Wang, C. C.; Lieb, D. P.; Margulies, A. E.; Fusegni, L. J.; Lovell, B. J.

    A design for the insertion of thermionic converters into the wall of a conventional combustor to produce electricity in a topping cycle is described, and a study for applications in gas and steam generators of 70 and 30 MW is evaluated for engineering and economic feasibility. Waste heat from the thermionic elements is used to preheat the combustor air; the heat absorbed by the elements plus further quenching of the exhaust gases with ammonia is projected to reduce NO(x) emissions to acceptable levels. Schematics, flow diagrams, and components of a computer model for cost projections are provided. It was found that temperatures around the emitters must be maintained above 1,600 K, with maximum efficiency and allowable temperature at 1,800 K, while collectors generate maximally at 950 K, with a corresponding work function of 1.5 eV. Cost sensitive studies indicate an installed price of $475/kW for the topping cycle, with improvements in thermionic converter characteristics bringing the cost to $375/kW at a busbar figure of 500 mills/kWh.

  17. Effect of flue gas recirculation on heat transfer in a supercritical circulating fluidized bed combustor

    Directory of Open Access Journals (Sweden)

    Błaszczuk Artur

    2015-09-01

    Full Text Available This paper focuses on assessment of the effect of flue gas recirculation (FGR on heat transfer behavior in 1296t/h supercritical coal-fired circulating fluidized bed (CFB combustor. The performance test in supercritical CFB combustor with capacity 966 MWth was performed with the low level of flue gas recirculation rate 6.9% into furnace chamber, for 80% unit load at the bed pressure of 7.7 kPa and the ratio of secondary air to the primary air SA/PA = 0.33. Heat transfer behavior in a supercritical CFB furnace between the active heat transfer surfaces (membrane wall and superheater and bed material has been analyzed for Geldart B particle with Sauter mean diameters of 0.219 and 0.246 mm. Bed material used in the heat transfer experiments had particle density of 2700 kg/m3. A mechanistic heat transfer model based on cluster renewal approach was used in this work. A heat transfer analysis of CFB combustion system with detailed consideration of bed-to-wall heat transfer coefficient distributions along furnace height is investigated. Heat transfer data for FGR test were compared with the data obtained for representative conditions without recycled flue gases back to the furnace through star-up burners.

  18. High temperature degradation by erosion-corrosion in bubbling fluidized bed combustors

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Peggy Y.; MacAdam, S.; Niu, Y.; Stringer, J.

    2003-04-22

    Heat-exchanger tubes in fluidized bed combustors (FBCs) often suffer material loss due to combined corrosion and erosion. Most severe damage is believed to be caused by the impact of dense packets of bed material on the lower parts of the tubes. In order to understand this phenomenon, a unique laboratory test rig at Berkeley was designed to simulate the particle hammering interactions between in-bed particles and tubes in bubbling fluidized bed combustors. In this design, a rod shaped specimen is actuated a short distance within a partially fluidized bed. The downward specimen motion is controlled to produce similar frequencies, velocities and impact forces as those experienced by the impacting particle aggregates in practical systems. Room temperature studies have shown that the degradation mechanism is a three-body abrasion process. This paper describes the characteristics of this test rig, reviews results at elevated temperatures and compares them to field experience. At higher temperatures, deposits of the bed material on tube surfaces can act as a protective layer. The deposition depended strongly on the type of bed material, the degree of tube surface oxidation and the tube and bed temperatures. With HCl present in the bed, wastage was increased due to enhanced oxidation and reduced oxide scale adherence.

  19. Experimental Study in a Swirl-Stabilized Combustor with and Without Spray Combustion

    Science.gov (United States)

    Ghaffarpour, Mohammad-Reza

    1992-01-01

    To investigate the combustion characteristics and structure of hollow-cone spray flames similar to those occurring in the primary zone of gas turbine combustion chambers, a swirl-stabilized combustor and a water-cooled stainless-steel gas sampling probe were designed. A kerosene spray was generated by a simplex atomizer with a nominal angle of 30 degrees. Swirling air with swirl number of 1.5 was produced from an air swirl plate. Video imaging and photography were employed to document the flame stability and its structure with changes in both design and operating conditions. A Phase Doppler Particle Analyzer (PDPA) was used to measure the drop size, mean and rms values of axial drop velocity and other relevant parameters with and without combustion. Air and fuel flow rates and other conditions were kept identical for reacting and non-reacting cases to investigate effects of combustion alone on the spray. A thermocouple was used to measure the average uncorrected temperature in this turbulent spray flame. A gas chromatograph was also employed to measure the gaseous species concentrations such as hydrogen, oxygen, nitrogen, carbon monoxide, methane, and carbon dioxide in this combustor.

  20. 3D measurements of ignition processes at 20 kHz in a supersonic combustor

    Science.gov (United States)

    Ma, Lin; Lei, Qingchun; Wu, Yue; Ombrello, Timothy M.; Carter, Campbell D.

    2015-05-01

    The ignition dynamics in a Mach 2 combustor were investigated using a three-dimensional (3D) diagnostic with 20 kHz temporal resolution. The diagnostic was based on a combination of tomographic chemiluminescence and fiber-based endoscopes (FBEs). Customized FBEs were employed to capture line-of-sight integrated chemiluminescence images (termed projections) of the combustor from eight different orientations simultaneously at 20 kHz. The measured projections were then used in a tomographic algorithm to obtain 3D reconstruction of the sparks, ignition kernel, and stable flame. Processing the reconstructions frame by frame resulted in 4D measurements. Key properties were then extracted to quantify the ignition processes, including 3D volume, surface area, sphericity, and velocity of the ignition kernel. The data collected in this work revealed detailed spatiotemporal dynamics of the ignition kernel, which are not obtainable with planar diagnostics, such as its growth, movement, and development into "stable" combustion. This work also illustrates the potential for obtaining quantitative 3D measurements using tomographic techniques and the practical utility of FBEs.