WorldWideScience

Sample records for hydrocarbon-diffuse interstellar band

  1. Diffuse interstellar absorption bands

    Institute of Scientific and Technical Information of China (English)

    XIANG FuYuan; LIANG ShunLin; LI AiGen

    2009-01-01

    The diffuse interstellar bands (DIBs) are a large number of absorption bands that are superposed on the interstellar extinction curve and are of interstellar origin. Since the discovery of the first two DIBs in the 1920s, the exact nature of DIBs still remains unclear. This article reviews the history of the detec-tions of DIBs in the Milky Way and external galaxies, the major observational characteristics of DIBs, the correlations or anti-correlations among DIBs or between DIBs and other interstellar features (e.g. the prominent 2175 Angstrom extinction bump and the far-ultraviolet extinction rise), and the proposed candidate carriers. Whether they are also present in circumstellar environments is also discussed.

  2. Diffuse interstellar absorption bands

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The diffuse interstellar bands(DIBs) are a large number of absorption bands that are superposed on the interstellar extinction curve and are of interstellar origin. Since the discovery of the first two DIBs in the 1920s,the exact nature of DIBs still remains unclear. This article reviews the history of the detections of DIBs in the Milky Way and external galaxies,the major observational characteristics of DIBs,the correlations or anti-correlations among DIBs or between DIBs and other interstellar features(e.g. the prominent 2175 Angstrom extinction bump and the far-ultraviolet extinction rise),and the proposed candidate carriers. Whether they are also present in circumstellar environments is also discussed.

  3. Interstellar Fullerene Compounds and Diffuse Interstellar Bands

    CERN Document Server

    Omont, Alain

    2015-01-01

    Recently, the presence of fullerenes in the interstellar medium (ISM) has been confirmed, especially with the first confirmed identification of two strong diffuse interstellar bands (DIBs) with C60+. This justifies reassesing the importance of interstellar fullerenes of various sizes with endohedral or exohedral inclusions and heterofullerenes (EEHFs). The phenomenology of fullerenes is complex. In addition to formation in shock shattering, fully dehydrogenated PAHs in diffuse interstellar (IS) clouds could perhaps efficiently transform into fullerenes including EEHFs. But it is extremely difficult to assess their expected abundance, composition and size distribution, except for C60+. As often suggested, EEHFs share many properties with C60, as regards stability, formation/destruction, chemical processes and many basic spectral features. We address the importance of various EEHFs as possible DIB carriers. Specifically, we discuss IS properties and the contributions of fullerenes of various sizes and charge su...

  4. Diffuse Interstellar Bands and Their Families

    CERN Document Server

    Wszolek, B

    2006-01-01

    Diffuse interstellar bands (DIBs) still await an explanation. One expects that some progress in this field will be possible when all the known DIBs are divided into families in such a way that only one carrier is responsible for all bands belonging to the given family. Analysing high resolution optical spectra of reddened stars we try to find out spectroscopic families for two prominent DIBs, at 5780 and 5797 angstroms. Among the DIBs, observed in the spectral range from 5590 to 6830 angstroms, we have found 8 candidates to belong to 5780 spectroscopic family and the other 12 DIBs candidating to family of 5797 structure.

  5. Diffuse interstellar bands in M33

    CERN Document Server

    Smith, Keith T; Evans, Christopher J; Cox, Nick L J; Sarre, Peter J

    2013-01-01

    We present the first sample of diffuse interstellar bands (DIBs) in the nearby galaxy M33. Studying DIBs in other galaxies allows the behaviour of the carriers to be examined under interstellar conditions which can be quite different from those of the Milky Way, and to determine which DIB properties can be used as reliable probes of extragalactic interstellar media. Multi-object spectroscopy of 43 stars in M33 has been performed using Keck/DEIMOS. The stellar spectral types were determined and combined with literature photometry to determine the M33 reddenings E(B-V)_M33. Equivalent widths or upper limits have been measured for the {\\lambda}5780 DIB towards each star. DIBs were detected towards 20 stars, demonstrating that their carriers are abundant in M33. The relationship with reddening is found to be at the upper end of the range observed in the Milky Way. The line of sight towards one star has an unusually strong ratio of DIB equivalent width to E(B-V)_M33, and a total of seven DIBs were detected towards...

  6. Extra-Galactic Diffuse Interstellar Bands

    Science.gov (United States)

    Cox, N.; Ehrenfreund, Pascale; Kaper, Lex; Spaans, Marco; Foing, Bernard

    Diffuse Interstellar Bands (DIBs) have been observed ubiquitously along many sight-lines probing the interstellar medium of the Milky Way. Despite extensive efforts, their carrier(s) have not yet been identified, although they are very likely of a carbonaceous nature and reside in the gas phase. Possible candidates include, but are not limited to, polycyclic aromatic hydro- carbons (PAHs), fullerenes and carbon chains. To advance our understanding of DIB behaviour and thus DIB carrier properties we need to study environments inherently different from those observed in the Milky Way. Only recent advances in instrumentation and telescope capabilities are providing us with new exciting possibilities for extra-galactic DIB research. We present here a selection of our recent observational results for (extra)-galactic DIBs in the Local Group and beyond. In particular, DIBs in the Magellanic Clouds and in the spiral galaxy NGC1448. These first results show surprising similarities between certain DIB profiles as well as differences in DIB behaviour. Understanding diffuse cloud chemistry, in particular with respect to complex (carbonaceous) molecules, is crucial to any DIB carrier identification. In this respect, external galaxies offer a unique window as they exhibit local interstellar conditions (such as metallicity, UV-field and gas-to-dust ratio) very different from those observed in the Milky Way. We discuss briefly the effect of metallicity and the gas-to-dust ratio on the physi-chemical properties of diffuse clouds and the subsequent effects on the PAH charge state distribution and the DIB carriers.

  7. Puzzling Phenomenon of Diffuse Interstellar Bands

    CERN Document Server

    Wszolek, B

    2007-01-01

    The discovery of the first diffuse interstellar bands (DIBs) dates back to the pioneering years of stellar spectroscopy. Today, we know about 300 absorption structures of this kind. There exists a great variety of the profiles and intensities of DIBs, so they can not be readily described, classified or characterized. To the present day no reliable identification of the DIBs' carriers has been found. Many carriers of DIBs have been proposed over the years. They ranged from dust grains to free molecules of different kinds, and to more exotic specimens, like hydrogen negative ion. Unfortunately, none of them is responsible for observed DIBs. Furthermore, it was shown that a single carrier cannot be responsible for all known DIBs. It is hard to estimate how many carriers can participate in producing these bands. The problem is further complicated by the fact that to this day it is still impossible to find any laboratory spectrum of any substance which would match the astrophysical spectra. Here, a historical outl...

  8. TRES survey of variable diffuse interstellar bands

    Science.gov (United States)

    Law, Charles J.; Milisavljevic, Dan; Crabtree, Kyle N.; Johansen, Sommer L.; Patnaude, Daniel J.; Margutti, Raffaella; Parrent, Jerod T.; Drout, Maria R.; Sanders, Nathan E.; Kirshner, Robert P.; Latham, David W.

    2017-09-01

    Diffuse interstellar bands (DIBs) are absorption features commonly observed in optical/near-infrared spectra of stars and thought to be associated with polyatomic molecules that comprise a significant reservoir of organic material in the Universe. However, the central wavelengths of almost all DIBs do not correspond with electronic transitions of known atomic or molecular species and the specific physical nature of their carriers remains inconclusive despite decades of observational, theoretical and experimental research. It is well established that DIB carriers are located in the interstellar medium, but the recent discovery of time-varying DIBs in the spectra of the extragalactic supernova SN 2012ap suggests that some may be created in massive star environments. Here, we report evidence of short time-scale (∼10-60 d) changes in DIB absorption line substructure towards 3 of 17 massive stars observed as part of a pathfinder survey of variable DIBs conducted with the 1.5-m Tillinghast telescope and Tillinghast Reflector Echelle Spectrograph (TRES) at Fred L. Whipple Observatory. The detections are made in high-resolution optical spectra (R ∼ 44 000) having signal-to-noise ratios of 5-15 around the 5797 and 6614 Å features, and are considered significant but requiring further investigation. We find that these changes are potentially consistent with interactions between stellar winds and DIB carriers in close proximity. Our findings motivate a larger survey to further characterize these variations and may establish a powerful new method for probing the poorly understood physical characteristics of DIB carriers.

  9. Dusting off the Diffuse Interstellar Bands

    CERN Document Server

    Baron, Dalya; Watson, Darach; Yao, Yushu; Prochaska, J Xavier

    2014-01-01

    Using over a million and a half extragalactic spectra we study the properties of the mysterious Diffuse Interstellar Bands (DIBs) in the Milky Way. These data provide us with an unprecedented sampling of the skies at high Galactic-latitude and low dust-column-density. In this first paper we present our method, study the correlation of the equivalent width of 12 DIBs with dust extinction and with a few atomic species, and the distribution of four DIBs over nearly 15,000 square degrees. As previously found, DIBs strengths correlate with extinction and therefore inevitably with each other. However, we find that DIBs can exist even in dust free areas. Furthermore, we find that the DIBs correlation with dust varies significantly over the sky. DIB under- or over-densities, relative to the expectation from dust, are often spread over hundreds of square degrees. These patches are different for the four DIBs, showing that they are unlikely to originate from the same carrier.

  10. Interstellar gas, dust and diffuse bands in the SMC

    NARCIS (Netherlands)

    Cox, N.L.J.; Cordiner, M.A.; Ehrenfreund, P.; Kaper, L.; Sarre, P.J.; Foing, B.H.; Spaans, M.; Cami, J.; Sofia, U.J.; Clayton, G.C.; Gordon, K.D.; Salama, F.

    2007-01-01

    Aims.In order to gain new insight into the unidentified identity of the diffuse interstellar band (DIB) carriers, this paper describes research into possible links between the shape of the interstellar extinction curve (including the 2175 Å bump and far-UV rise), the presence or absence of DIBs, and

  11. Fullerenes, Organics and the Diffuse Interstellar Bands

    Science.gov (United States)

    Foing, Bernard H.

    2016-07-01

    The status of DIB research has strongly advanced since 20 years [1], as well as the quest for fullerenes, PAHs and large organics in space. In 1994 we reported the discovery of two near IR diffuse bands coincident with C60+, confirmed in subsequent years [2-6] and now by latest laboratory experiments. A number of DIB observational studies have been published, dealing with: DIB surveys [1,7-10]; measurements of DIB families, correlations and environment dependences [11-14]; extragalactic DIBs [15, 16]. Resolved substructures were detected [17,18] and compared to predicted rotational contours by large molecules [19]. Polarisation studies provided upper limits constraints [20, 21]. DIBs carriers have been linked with organic molecules observed in the interstellar medium [22-25] such as IR bands (assigned to PAHs), Extended Red Emission or recently detected Anomalous Microwave Emission (AME, assigned to spinning dust) and with spectroscopic IR emission bands measured with ISO or Spitzer. Fullerenes and PAHs have been proposed to explain some DIBs and specific molecules were searched in DIB spectra [eg 2-6, 26-31]. These could be present in various dehydrogenation and ionisation conditions [32,33]. Experiments in the laboratory and in space [eg 34-36] allow to measure the survival and by-products of these molecules. We review DIB observational results and their interpretation, and discuss the presence of large organics, fullerenes, PAHs, graphenes in space. References [1] Herbig, G. 1995 ARA&A33, 19; [2] Foing, B. & Ehrenfreund, P. 1994 Natur 369, 296; [3] Foing, B. & Ehrenfreund, P. 1997 A&A317, L59; [4] Foing, B. & Ehrenfreund, P. 1995 ASSL202, 65; [5] Ehrenfreund, P., Foing, B. H. 1997 AdSpR19, 1033; [6] Galazutdinov, G. A. et al. 2000 MNRAS317, 750; [7] Jenniskens, P., Desert, F.-X. 1994 A&AS106, 39; [8] Ehrenfreund, P. et al. 1997 A&A318, L28; [9] Tuairisg, S. Ó. et al. 2000 A&AS142, 225; [10] Cox, N. et al. 2005 A&A438, 187; [11] Cami, J. et al. 1997A&A.326, 822

  12. Catalogue of diffuse interstellar band measurements

    Science.gov (United States)

    Snow, T. P., Jr.; York, D. G.; Welty, D. E.

    1976-01-01

    Diffuse-band data have been collected from the literature and reduced statistically to a common measurement system, enabling correlation analyses to be made with a larger quantity of data than previously possible. A full listing of the catalogued data is presented, along with some discussion of the correlations. One important application of such studies is the identification of cases of peculiar diffuse-band behavior, and a table is given showing all cases of band strengths deviating by more than twice the mean dispersion from the best-fit correlations. This table may be useful in planning further observations.

  13. Detection of diffuse interstellar bands in M31

    CERN Document Server

    Cordiner, M A; Trundle, C; Evans, C J; Hunter, I; Przybilla, N; Bresolin, F; Salama, F

    2008-01-01

    We investigate the diffuse interstellar band (DIB) spectrum in the interstellar medium of M31. The DEIMOS spectrograph of the W. M. Keck observatory was used to make optical spectroscopic observations of two supergiant stars, MAG 63885 and MAG 70817, in the vicinity of the OB78 association in M31 where the metallicity is approximately equal to solar. The 5780, 5797, 6203, 6283 and 6613 DIBs are detected in both sightlines at velocities matching the M31 interstellar Na I absorption. The spectra are classified and interstellar reddenings are derived for both stars. Diffuse interstellar band (DIB) equivalent widths and radial velocities are presented. The spectrum of DIBs observed in M31 towards MAG 63885 is found to be similar to that observed in the Milky Way. Towards MAG 70817 the DIB equivalent widths per unit reddening are about three times the Galactic average. Compared to observations elsewhere in the Universe, relative to reddening the M31 ISM in the vicinity of OB78 is apparently a highly favourable env...

  14. Polycyclic Aromatic Hydrocarbons and the Diffuse Interstellar Bands: a Survey

    Science.gov (United States)

    Salama, F.; Galazutdinov, G. A.; Krelowski, J.; Allamandola, L. J.; Musaev, F. A.; DeVincenzi, Donald L. (Technical Monitor)

    1999-01-01

    We discuss the proposal relating the origin of some of the diffuse interstellar bands (DIBs) to neutral and ionized polycyclic aromatic hydrocarbons (PAHs) present in interstellar clouds. Laboratory spectra of several PAHs, isolated at low temperature in inert gas matrices, are compared with an extensive set of astronomical spectra of reddened, early type stars. From this comparison, it is concluded that PAN ions are good candidates to explain some of the DIBs. Unambiguous assignments are difficult, however, due to the shift in wavelengths and the band broadening induced in the laboratory spectra by the solid matrix. Definitive band assignments and, ultimately, the test of the of the proposal that PAH ions carry some of the DIB must await the availability of gas-phase measurements in the laboratory. The present assessment offers a guideline for future laboratory experiments by allowing the preselection of promising PAH molecules to be studied in jet expansions.

  15. Diffuse interstellar bands as probes of small-scale interstellar structure

    CERN Document Server

    Smith, Keith T; Sarre, Peter J

    2013-01-01

    We present observations which probe the small-scale structure of the interstellar medium using diffuse interstellar bands (DIBs). Towards HD 168075/6 in the Eagle Nebula, significant differences in DIB absorption are found between the two lines of sight, which are separated by 0.25 pc, and {\\lambda}5797 exhibits a velocity shift. Similar data are presented for four stars in the {\\mu} Sgr system. We also present a search for variations in DIB absorption towards {\\kappa} Vel, where the atomic lines are known to vary on scales of ~10 AU. Observations separated by ~9 yr yielded no evidence for changes in DIB absorption strength over this scale, but do reveal an unusual DIB spectrum.

  16. Redshifted Diffuse Interstellar Bands in Orion OB1 association

    CERN Document Server

    Krełowski, J; Mulas, G; Maszewska, M; Cecchi-Pestellini, C

    2015-01-01

    The wavelength displacement of the Diffuse Interstellar Bands at 4502, 5705, 5780, 6284, and 7224 \\AA\\ with respect to the well known, narrow atomic/molecular interstellar lines (of Ca{\\sc ii} and Na{\\sc i}) have been measured in the spectra of the 2 Orion Trapezium stars HD 37022 and HD 37020, using the HARPS\\textendash N spectrograph, fed with the 3.5 m Telescopio Nazionale Galileo, and the BOES spectrograph, fed with the 1.8m Korean telescope. The red shift is $\\sim$25 km/s for all these DIBs. We discuss the various possible origins of this very peculiar wavelength shift in the light of the particular physical conditions in the Orion Trapezium. The above mentioned shift is seemingly absent in the DIBs at 6196 and 6993 \\AA.

  17. Using machine learning to classify the diffuse interstellar bands

    OpenAIRE

    Baron, Dalya; Poznanski, Dovi; Watson, Darach; Yao, Yushu; Cox, Nick L. J.; Prochaska, J. Xavier

    2015-01-01

    Using over a million and a half extragalactic spectra we study the correlations of the Diffuse Interstellar Bands (DIBs) in the Milky Way. We measure the correlation between DIB strength and dust extinction for 142 DIBs using 24 stacked spectra in the reddening range E(B-V) < 0.2, many more lines than ever studied before. Most of the DIBs do not correlate with dust extinction. However, we find 10 weak and barely studied DIBs with correlations that are higher than 0.7 with dust extinction and ...

  18. Spatial structure of several diffuse interstellar band carriers

    Science.gov (United States)

    Kos, Janez

    2017-07-01

    Diffuse interstellar bands (DIBs) hold a lot of information about the state and the structure of the interstellar medium (ISM). Structure can most directly be observed by extensive spectroscopic surveys, including surveys of stars where DIBs are especially important, as they are conveniently found in all observed bands. Large surveys lack the quality of spectra to detect weak DIBs, so many spectra from small regions on the sky have to be combined before a sufficient signal-to-noise ratio (SNR) is achieved. However, the clumpiness of the DIB clouds is unknown, which poses a problem, as the measured properties can end up being averaged over a too large area. We use a technique called Gaussian processes to accurately measure profiles of interstellar absorption lines in 145 high SNR and high-resolution spectra of hot stars. Together with Bayesian Markov chain Monte Carlo approach, we also get reliable estimates of the uncertainties. We derive scales at which column densities of 18 DIBs, CH, CH+, Ca I and Ca II show some spatial correlation. This correlation scale is associated with the size of the ISM clouds. Scales expressed as the angle on the sky vary significantly from DIB to DIB between ∼0.23° for the DIB at 5512 Å and 3.5° for the DIB at 6196 Å, suggesting that different DIB carriers have different clumpiness but occupy the same general space. Our study includes lines of sight all over the northern Milky Way, as well as out of the Galactic plane, covering regions with different physical conditions. The derived correlation scales therefore represent a general image of the Galactic ISM on the scales of ∼5-100 pc.

  19. Studies of the Diffuse Interstellar Bands. III. HD 183143

    CERN Document Server

    Hobbs, L M; Thorburn, J A; Snow, T P; Bishof, M; Friedman, S D; McCall, B J; Oka, T; Rachford, B; Sonnentrucker, P; Welty, D E; 10.1088/0004-637X/705/1/32

    2009-01-01

    Echelle spectra of HD 183143 [B7Iae, E(B-V) = 1.27] were obtained on three nights, at a resolving power R = 38,000 and with a signal-to-noise ratio ~1000 at 6400 A in the final, combined spectrum. A catalog is presented of 414 diffuse interstellar bands (DIBs) measured between 3900 and 8100 A in this spectrum. The central wavelengths, the widths (FWHM), and the equivalent widths of nearly all of the bands are tabulated, along with the minimum uncertainties in the latter. Among the 414 bands, 135 (or 33%) were not reported in four previous, modern surveys of the DIBs in the spectra of various stars, including HD 183143. The principal result of this study is that the great majority of the bands in the catalog are very weak and fairly narrow. Typical equivalent widths amount to a few mA, and the bandwidths (FWHM) are most often near 0.7 A. No preferred wavenumber spacings among the 414 bands are identified which could provide clues to the identities of the large molecules thought to cause the DIBs. At generally ...

  20. Probing the Local Bubble with Diffuse Interstellar Bands (DIBs)

    CERN Document Server

    van Loon, Jacco Th; Javadi, Atefeh; Bailey, Mandy; Khosroshahi, Habib

    2015-01-01

    The Sun lies in the middle of an enormous cavity of a million degree gas, known as the Local Bubble. The Local Bubble is surrounded by a wall of denser neutral and ionized gas. The Local Bubble extends around 100 pc in the plane of Galaxy and hundreds of parsecs vertically, but absorption-line surveys of neutral sodium and singly-ionized calcium have revealed a highly irregular structure and the presence of neutral clouds within an otherwise tenuous and hot gas. We have undertaken an all-sky, European-Iranian survey of the Local Bubble in the absorption of a number of diffuse interstellar bands (DIBs) to offer a novel view of our neighbourhood. Our dedicated campaigns with ESO's New Technology Telescope and the ING's Isaac Newton Telescope comprise high signal-to-noise, medium-resolution spectra, concentrating on the 5780 and 5797 \\AA\\ bands which trace ionized/irradiated and neutral/shielded environments, respectively; their carriers are unknown but likely to be large carbonaceous molecules. With about 660 s...

  1. MAPPING THE INTERSTELLAR MEDIUM WITH NEAR-INFRARED DIFFUSE INTERSTELLAR BANDS

    Energy Technology Data Exchange (ETDEWEB)

    Zasowski, G.; Ménard, B. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Bizyaev, D. [Apache Point Observatory, Sunspot, NM 88349 (United States); García-Hernández, D. A. [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain); Pérez, A. E. García; Majewski, S. R. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Hayden, M. R.; Holtzman, J.; Kinemuchi, K. [Department of Astronomy, New Mexico State University, Las Cruces, NM 88003 (United States); Johnson, J. A.; Wilson, J. C. [Department of Astronomy, The Ohio State University, Columbus, OH 43210 (United States); Nidever, D. L. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48104 (United States); Shetrone, M., E-mail: gail.zasowski@gmail.com [The University of Texas at Austin, McDonald Observatory, McDonald Observatory, TX 79734 (United States)

    2015-01-01

    We map the distribution and properties of the Milky Way's interstellar medium as traced by diffuse interstellar bands (DIBs) detected in near-infrared stellar spectra from the SDSS-III/APOGEE survey. Focusing exclusively on the strongest DIB in the H band, at λ ∼ 1.527 μm, we present a projected map of the DIB absorption field in the Galactic plane, using a set of about 60,000 sightlines that reach up to 15 kpc from the Sun and probe up to 30 mag of visual extinction. The strength of this DIB is linearly correlated with dust reddening over three orders of magnitude in both DIB equivalent width (W {sub DIB}) and extinction, with a power law index of 1.01 ± 0.01, a mean relationship of W {sub DIB}/A{sub V} = 0.1 Å mag{sup –1} and a dispersion of ∼0.05 Å mag{sup –1} at extinctions characteristic of the Galactic midplane. These properties establish this DIB as a powerful, independent probe of dust extinction over a wide range of A{sub V} values. The subset of about 14,000 robustly detected DIB features have a W {sub DIB} distribution that follows an exponential trend. We empirically determine the intrinsic rest wavelength of this transition to be λ{sub 0} = 15 272.42 Å  and use it to calculate absolute radial velocities of the carrier, which display the kinematical signature of the rotating Galactic disk. We probe the DIB carrier distribution in three dimensions and show that it can be characterized by an exponential disk model with a scale height of about 100 pc and a scale length of about 5 kpc. Finally, we show that the DIB distribution also traces large-scale Galactic structures, including the Galactic long bar and the warp of the outer disk.

  2. A Tale of Two Mysteries in Interstellar Astrophysics: The 2175 Angstrom Extinction Bump and Diffuse Interstellar Bands

    CERN Document Server

    Xiang, F Y; Zhong, J X

    2012-01-01

    The diffuse interstellar bands (DIBs) are ubiquitous absorption spectral features arising from the tenuous material in the space between stars -- the interstellar medium (ISM). Since their first detection nearly nine decades ago, over 400 DIBs have been observed in the visible and near-infrared wavelength range in both the Milky Way and external galaxies, both nearby and distant. However, the identity of the species responsible for these bands remains as one of the most enigmatic mysteries in astrophysics. An equally mysterious interstellar spectral signature is the 2175 Angstrom extinction bump, the strongest absorption feature observed in the ISM. Its carrier also remains unclear since its first detection 46 years ago. Polycyclic aromatic hydrocarbon (PAH) molecules have long been proposed as a candidate for DIBs as their electronic transitions occur in the wavelength range where DIBs are often found. In recent years, the 2175 Angstrom extinction bump is also often attributed to the \\pi--\\pi* transition in ...

  3. A Principal Component Analysis of the Diffuse Interstellar Bands

    Science.gov (United States)

    Ensor, T.; Cami, J.; Bhatt, N. H.; Soddu, A.

    2017-02-01

    We present a principal component (PC) analysis of 23 line-of-sight parameters (including the strengths of 16 diffuse interstellar bands, DIBs) for a well-chosen sample of single-cloud sightlines representing a broad range of environmental conditions. Our analysis indicates that the majority (˜93%) of the variations in the measurements can be captured by only four parameters The main driver (i.e., the first PC) is the amount of DIB-producing material in the line of sight, a quantity that is extremely well traced by the equivalent width of the λ5797 DIB. The second PC is the amount of UV radiation, which correlates well with the λ5797/λ5780 DIB strength ratio. The remaining two PCs are more difficult to interpret, but are likely related to the properties of dust in the line of sight (e.g., the gas-to-dust ratio). With our PCA results, the DIBs can then be used to estimate these line-of-sight parameters.

  4. Linear/circular spectropolarimetry of diffuse interstellar bands

    CERN Document Server

    Cox, N L J; Foing, B H; d'Hendecourt, L; Salama, F; Sarre, P J

    2011-01-01

    Context. The identification of the carriers of diffuse interstellar bands (DIBs) remains one of the long-standing mysteries in astronomy. The detection of a polarisation signal in a DIB profile can be used to distinguish between a dust or gas-phase carrier. The polarisation profile can give additional information on the grain or molecular properties of the absorber. In order to detect and measure the linear and circular polarisation of the DIBs we observed reddened lines of sight showing continuum polarisation. For this study we selected two stars HD 197770 and HD 194279. We used high-resolution (R~64.000) spectropolarimetry in the wavelength range from 3700 to 10480 Angstrom with the ESPaDOnS echelle spectrograph mounted at the CFHT. Results. High S/N and high resolution Stokes V (circular), Q and U (linear) spectra were obtained. We constrained upper limits by a factor of 10 for previously observed DIBs. Furthermore, we analysed ~30 additional DIBs for which no spectropolarimetry data has been obtained befo...

  5. Using machine learning to classify the diffuse interstellar bands

    CERN Document Server

    Baron, Dalya; Watson, Darach; Yao, Yushu; Cox, Nick L J; Prochaska, J Xavier

    2015-01-01

    Using over a million and a half extragalactic spectra we study the correlations of the Diffuse Interstellar Bands (DIBs) in the Milky Way. We measure the correlation between DIB strength and dust extinction for 142 DIBs using 24 stacked spectra in the reddening range E(B-V) < 0.2, many more lines than ever studied before. Most of the DIBs do not correlate with dust extinction. However, we find 10 weak and barely studied DIBs with correlations that are higher than 0.7 with dust extinction and confirm the high correlation of additional 5 strong DIBs. Furthermore, we find a pair of DIBs, 5925.9A and 5927.5A which exhibits significant negative correlation with dust extinction, indicating that their carrier may be depleted on dust. We use Machine Learning algorithms to divide the DIBs to spectroscopic families based on 250 stacked spectra. By removing the dust dependency we study how DIBs follow their local environment. We thus obtain 6 groups of weak DIBs, 4 of which are tightly associated with C2 or CN absorp...

  6. Diffuse Interstellar Band at 5850 as a Member of 5797 Spectroscopic Family

    CERN Document Server

    Bryndal, K; Bryndal, Katarzyna; Wszo{\\l}ek, Bogdan

    2006-01-01

    The carriers of diffuse interstellar bands are still mysterious species. There exist many arguments that diffuse bands at 5797 and 5850 angstroms have the same carrier. Using high-resolution spectra of few dozens of reddened stars we have searched mutual correlation between intensities of considered bands. Results of our analysis indicate that 5797 and 5850 really tend to have the same carrier.

  7. A Tale of Two Mysteries in Interstellar Astrophysics: The 2175 Å Extinction Bump and Diffuse Interstellar Bands

    Science.gov (United States)

    Xiang, F. Y.; Li, Aigen; Zhong, J. X.

    2011-06-01

    The diffuse interstellar bands (DIBs) are ubiquitous absorption spectral features arising from the tenuous material in the space between stars—the interstellar medium (ISM). Since their first detection nearly nine decades ago, over 400 DIBs have been observed in the visible and near-infrared wavelength range in both the Milky Way and external galaxies, both nearby and distant. However, the identity of the species responsible for these bands remains as one of the most enigmatic mysteries in astrophysics. An equally mysterious interstellar spectral signature is the 2175 Å extinction bump, the strongest absorption feature observed in the ISM. Its carrier also remains unclear since its first detection 46 years ago. Polycyclic aromatic hydrocarbon (PAH) molecules have long been proposed as a candidate for DIBs as their electronic transitions occur in the wavelength range where DIBs are often found. In recent years, the 2175 Å extinction bump is also often attributed to the π-π* transition in PAHs. If PAHs are indeed responsible for both the 2175 Å extinction feature and DIBs, their strengths may correlate. We perform an extensive literature search for lines of sight for which both the 2175 Å extinction feature and DIBs have been measured. Unfortunately, we found no correlation between the strength of the 2175 Å feature and the equivalent widths of the strongest DIBs. A possible explanation might be that DIBs are produced by small free gas-phase PAH molecules and ions, while the 2175 Å bump is mainly from large PAHs or PAH clusters in condensed phase so that there is no tight correlation between DIBs and the 2175 Å bump.

  8. Properties of Diffuse Interstellar Bands at Different Physical Conditions of the ISM

    CERN Document Server

    Kos, J

    2013-01-01

    Diffuse interstellar bands (DIBs) can trace different conditions of the ISM along the sightline toward the observed stars. A small survey was made in optical wavelengths, producing high resolution and high signal to noise spectra. We present measurements of 19 DIBs' properties in 50 sightlines towards hot stars, distributed at a variety of galactic coordinates and interstellar reddening. Equivalent widths were obtained by fitting asymmetric Gaussian and variable continuum to DIBs. Conditions of the ISM were calculated from 8 atomic and molecular interstellar lines. Two distinctively different types of DIBs were identified, by carefully comparing correlation coefficients between DIBs and reddening and by different behaviour in UV shielded ($\\zeta$) and non-shielded ($\\sigma$) sightlines. A ratio of DIBs at 5780 \\AA\\ and~5797 \\AA\\ proved to be reliable enough to distinguish between two different sightline types. Based on linear relations between DIB equivalent width and reddening for $\\sigma$ and $\\zeta$ sightl...

  9. Diffuse Interstellar Bands vs. Known Atomic and Molecular Species in the Interstellar Medium of M82 toward SN 2014J

    CERN Document Server

    Welty, Daniel E; Dahlstrom, Julie A; York, Donald G

    2014-01-01

    We discuss the absorption due to various constituents of the interstellar medium of M82 seen in moderately high resolution, high signal-to-noise ratio optical spectra of SN 2014J. Complex absorption from M82 is seen, at velocities 45 $\\le$ $v_{\\rm LSR}$ $\\le$ 260 km s$^{-1}$, for Na I, K I, Ca I, Ca II, CH, CH$^+$, and CN; many of the diffuse interstellar bands (DIBs) are also detected. Comparisons of the column densities of the atomic and molecular species and the equivalent widths of the DIBs reveal both similarities and differences in relative abundances, compared to trends seen in the ISM of our Galaxy and the Magellanic Clouds. Of the ten relatively strong DIBs considered here, six (including $\\lambda$5780.5) have strengths within $\\pm$20% of the mean values seen in the local Galactic ISM, for comparable N(K I); two are weaker by 20--45% and two (including $\\lambda$5797.1) are stronger by 25--40%. Weaker than "expected" DIBs [relative to N(K I), N(Na I), and E(B-V)] in some Galactic sight lines and towar...

  10. The VLT-FLAMES Tarantula Survey. IX. The interstellar medium seen through Diffuse Interstellar Bands and neutral sodium

    CERN Document Server

    van Loon, Jacco Th; Tatton, Benjamin L; Apellaniz, Jesus Maiz; Crowther, Paul A; de Koter, Alex; Evans, Christopher J; Henault-Brunet, Vincent; Howarth, Ian D; Richter, Philipp; Sana, Hugues; Simon-Diaz, Sergio; Taylor, William; Walborn, Nolan R

    2012-01-01

    The Tarantula Nebula (30 Dor) is a spectacular star-forming region in the Large Magellanic Cloud, seen through gas in the Galactic Disc and Halo. Diffuse Interstellar Bands offer a unique probe of the diffuse, cool-warm gas in these regions. The aim is to use DIBs as diagnostics of the local interstellar conditions, whilst at the same time deriving properties of the yet-unknown carriers. Spectra of over 800 early-type stars from the VLT Flames Tarantula Survey (VFTS) were analysed. Maps were created, separately, for the Galactic and LMC absorption in the DIBs at 4428 and 6614 Ang and - in a smaller region near the central cluster R136 - neutral sodium (Na I D); we also measured the DIBs at 5780 and 5797 Ang. The maps show strong 4428 and 6614 Ang DIBs in the quiescent cloud complex to the south of 30 Dor but weak absorption in the harsher environments to the north (bubbles) and near the OB associations. The Na maps show at least five kinematic components in the LMC and a shell-like structure surrounding R136,...

  11. ESO Diffuse Interstellar Bands Large Exploration Survey (EDIBLES) - Merging Observations and Laboratory Data

    Science.gov (United States)

    Salama, Farid

    2016-01-01

    The Diffuse Interstellar Bands (DIBs) are a set of 500 absorption bands that are detected in the spectra of stars with interstellar clouds in the line of sight. DIBs are found from the NUV to the NIR in the spectra of reddened stars spanning different interstellar environments in our local, and in other galaxies. DIB carriers are a significant part of the interstellar chemical inventory. They are stable and ubiquitous in a broad variety of environments and play a unique role in interstellar physics/chemistry. It has long been realized that the solving of the DIB problem requires a strong synergy between astronomical observations, laboratory astrophysics, and astrophysical modeling of line-of-sights. PAHs are among the molecular species that have been proposed as DIB carriers. We will present an assessment of the PAH-DIB model in view of the progress and the advances that have been achieved over the past years through a series of studies involving astronomical observations of DIBs, laboratory simulation of interstellar analogs for neutrals and ionized PAHs, theoretical calculations of PAH spectra and the modelization of diffuse and translucent interstellar clouds. We will present a summary of what has been learned from these complementary studies, the constraints that can now be derived for the PAHs as DIB carriers in the context of the PAH-DIB model and how these constraints can be applied to the EDIBLES project. The spectra of several neutral and ionized PAHs isolated in the gas phase at low temperature have been measured in the laboratory under experimental conditions that mimic interstellar conditions and are compared with an extensive set of astronomical spectra of reddened, early type stars. The comparisons of astronomical and laboratory data provide upper limits for the abundances of specific neutral PAH molecules and ions along specific lines-of-sight. Something that is not attainable from infrared observations alone. We present the characteristics of the

  12. Diffuse interstellar bands versus known atomic and molecular species in the interstellar medium of M82 toward SN 2014J

    Energy Technology Data Exchange (ETDEWEB)

    Welty, Daniel E.; York, Donald G. [Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Ritchey, Adam M. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Dahlstrom, Julie A., E-mail: dwelty@oddjob.uchicago.edu [Department of Physics and Astronomy, Carthage College, 2001 Alford Park Drive, Kenosha, WI 53140 (United States)

    2014-09-10

    We discuss the absorption due to various constituents of the interstellar medium (ISM) of M82 seen in moderately high-resolution, high signal-to-noise ratio optical spectra of SN 2014J. Complex absorption from M82 is seen, at velocities 45 ≲ v {sub LSR} ≲ 260 km s{sup –1}, for Na I, K I, Ca I, Ca II, CH, CH{sup +}, and CN; many of the diffuse interstellar bands (DIBs) are also detected. Comparisons of the column densities of the atomic and molecular species and the equivalent widths of the DIBs reveal both similarities and differences in relative abundances, compared to trends seen in the ISM of our Galaxy and the Magellanic Clouds. Of the 10 relatively strong DIBs considered here, 6 (including λ5780.5) have strengths within ±20% of the mean values seen in the local Galactic ISM, for comparable N(K I); 2 are weaker by 20%-45% and 2 (including λ5797.1) are stronger by 25%-40%. Weaker than 'expected' DIBs (relative to N(K I), N(Na I), and E(B – V)) in some Galactic sight lines and toward several other extragalactic supernovae appear to be associated with strong CN absorption and/or significant molecular fractions. While the N(CH)/N(K I) and N(CN)/N(CH) ratios seen toward SN 2014J are similar to those found in the local Galactic ISM, the combination of high N(CH{sup +})/N(CH) and high W(5797.1)/W(5780.5) ratios has not been seen elsewhere. The centroids of many of the M82 DIBs are shifted relative to the envelope of the K I profile—likely due to component-to-component variations in W(DIB)/N(K I) that may reflect the molecular content of the individual components. We compare estimates for the host galaxy reddening E(B – V) and visual extinction A {sub V} derived from the various interstellar species with the values estimated from optical and near-IR photometry of SN 2014J.

  13. Diffuse Interstellar Bands versus Known Atomic and Molecular Species in the Interstellar Medium of M82 toward SN 2014J

    Science.gov (United States)

    Welty, Daniel E.; Ritchey, Adam M.; Dahlstrom, Julie A.; York, Donald G.

    2014-09-01

    We discuss the absorption due to various constituents of the interstellar medium (ISM) of M82 seen in moderately high-resolution, high signal-to-noise ratio optical spectra of SN 2014J. Complex absorption from M82 is seen, at velocities 45 <~ v LSR <~ 260 km s-1, for Na I, K I, Ca I, Ca II, CH, CH+, and CN; many of the diffuse interstellar bands (DIBs) are also detected. Comparisons of the column densities of the atomic and molecular species and the equivalent widths of the DIBs reveal both similarities and differences in relative abundances, compared to trends seen in the ISM of our Galaxy and the Magellanic Clouds. Of the 10 relatively strong DIBs considered here, 6 (including λ5780.5) have strengths within ±20% of the mean values seen in the local Galactic ISM, for comparable N(K I); 2 are weaker by 20%-45% and 2 (including λ5797.1) are stronger by 25%-40%. Weaker than "expected" DIBs (relative to N(K I), N(Na I), and E(B - V)) in some Galactic sight lines and toward several other extragalactic supernovae appear to be associated with strong CN absorption and/or significant molecular fractions. While the N(CH)/N(K I) and N(CN)/N(CH) ratios seen toward SN 2014J are similar to those found in the local Galactic ISM, the combination of high N(CH+)/N(CH) and high W(5797.1)/W(5780.5) ratios has not been seen elsewhere. The centroids of many of the M82 DIBs are shifted relative to the envelope of the K I profile—likely due to component-to-component variations in W(DIB)/N(K I) that may reflect the molecular content of the individual components. We compare estimates for the host galaxy reddening E(B - V) and visual extinction A V derived from the various interstellar species with the values estimated from optical and near-IR photometry of SN 2014J.

  14. Further Studies of λ 5797.1 Diffuse Interstellar Band

    Science.gov (United States)

    Oka, Takeshi; Hobbs, L. M.; Welty, Daniel E.; York, Donald G.; Dahlstrom, Julie; Witt, Adolf N.

    2015-06-01

    The λ~5797.1 DIB is unique with its sharp central feature. We simulated the spectrum based on three premises: (1) Its carrier molecule is polar as concluded from the anomalous spectrum toward the star Herschel 36. (2) The central feature is Q-branch of a parallel band of a prolate top. (3) The radiative temperature of the environment is T_r = 2.73 K. A comparison with observed spectrum indicated that the carrier contains 5-7 heavy atoms. To further strengthen this hypothesis, we have looked for vibronic satellites of the λ~5797.1 DIB. Since its anomaly toward Her 36 was ascribed to the lengthening of bonds upon the electronic excitation, vibronic satellites involving stretch vibrations are expected. Among the 73 DIBs observed toward HD 183143 to the blue of 5797.1 Å, two DIBs, λ~5545.1 and λ~5494.2 stand out as highly correlated with λ~5797.1 DIB. Their correlation coefficients 0.941 and 0.943, respectively, are not sufficiently high to establish the vibronic relation by themselves but can be explained as due to high uncertainties due to their weakness and their stellar blends. They are above the λ~5797.1 DIB by 784.0 cm-1 and 951.2 cm-1, respectively, approximately expected for stretching vibrations. Another observations which may possibly be explained by our hypothesis is the emission at 5800 Å from the Red Rectangle Nebula called RR 5800. Our analysis suggests that λ~5797.1 DIB and RR 5800 are consistently explained as caused by the same molecule. T.H. Kerr, R.E. Hibbins, S.J. Fossey, J.R. Miles, P.J. Sarre, ApJ 495, 941 (1998) T. Oka, D.E. Welty, S. Johnson, D.G. York, J. Dahlstrom, L.M. Hobbs, ApJ 773, 42 (2013) J. Huang, T. Oka, Mol. Phys. J.P. Maier Special Issue in press. G.D. Schmidt, A.N. Witt, ApJ 383, 698 (1991)

  15. Probing Milky Way Structure with Near-Infrared Diffuse Interstellar Bands

    Science.gov (United States)

    Zasowski, Gail; Ménard, Brice; Bizyaev, Dmitry; Garcia-Hernandez, D.; García Pérez, Ana; Hayden, Michael R.; Hearty, Fred; Holtzman, Jon A.; Johnson, Jennifer; Kinemuchi, Karen; Majewski, Steven R.; Nidever, David L.; Sellgren, Kristen; Shetrone, Matthew D.; Whelan, David G.; Wilson, John C.

    2015-01-01

    Astronomers have studied the set of interstellar absorption features known as the diffuse interstellar bands (DIBs) for nearly a century, characterizing them into families and using them as probes of local interstellar medium (ISM) conditions even while trying to understand their origin. Though most DIB studies have focused on the optical features, recent DIB identifications at infrared (IR) wavelengths -- where extinction by interstellar dust is significantly decreased -- provide us with tracers of ISM along heavily extincted, previously inaccessible sightlines. This talk will briefly summarize results from a project using the strongest of these IR DIBs (detected in more than 60,000 sightlines towards cool, distant giant stars observed as part of the SDSS-III/APOGEE survey) to characterize the large-scale distribution and properties of the Galactic ISM, including in the heavily reddened bulge and inner disk. The DIB absorption's tight correlation with foreground reddening makes it a powerful, independent probe of line-of-sight dust extinction. For the first time, we map the velocity field of a DIB on large scales and find that it displays the signature of the rotating Galactic disk. Three-dimensional modeling of the carrier distribution reveals not only large-scale gradients consistent with other ISM components, but also substructures that coincide with particular Galactic bulge and disk features. Finally, we find that features that are outliers in the distribution of DIB profile shapes may have an origin in circumstellar, rather than interstellar, environments along these particular sightlines, and the properties of these atypical features may contain clues towards identifying the currently-unknown carrier molecule of this DIB.

  16. Tracing differential reddening with Diffuse Interstellar Bands. The globular cluster M 4 as a testbed

    CERN Document Server

    Monreal-Ibero, A; Puspitarini, L; Bonifacio, P; Monaco, L

    2015-01-01

    Diffuse interstellar bands (DIBs) are weak absorption features of interstellar origin present in the optical and infrared spectra of stars. Their use as a tool to trace the structure of the Galactic ISM is gaining relevance in the recent years. Here we present an experiment to test our ability to trace differential reddening on the plane of the sky by using the information relative to the DIB at $\\lambda$6614 extracted from the spectra of cool stars. For that we made use of archive FLAMES data of the globular cluster M4, as well as WISE and Planck images for reference. We found a global positive trend between the distribution of the strength of the DIB, as traced by its equivalent width, and the amount of Galactic reddening, as traced by Planck. This result supports the use of DIBs to trace the small scale structure of the Galactic ISM.

  17. PROBING THE LOCAL BUBBLE WITH DIFFUSE INTERSTELLAR BANDS. III. THE NORTHERN HEMISPHERE DATA AND CATALOG

    Energy Technology Data Exchange (ETDEWEB)

    Farhang, Amin; Khosroshahi, Habib G.; Javadi, Atefeh [School of Astronomy, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5746, Tehran (Iran, Islamic Republic of); Van Loon, Jacco Th., E-mail: a.farhang@ipm.ir [Astrophysics Group, Lennard-Jones Laboratories, Keele University, Staffordshire ST5 5BG (United Kingdom)

    2015-02-01

    We present new high signal-to-noise ratio (S/N) observations of the diffuse interstellar bands (DIBs) in the Local Bubble and its surroundings. We observed 432 sightlines and obtain the equivalent widths of the λ5780 and λ5797 Å DIBs up to a distance of ∼200 pc. All of the observations were carried out using the Intermediate Dispersion Spectrograph on the 2.5 m Isaac Newton Telescope, during three years, to reach a minimum S/N of ∼2000. All of the λ5780 and λ5797 absorptions are presented in this paper and we tabulate the observed values of the interstellar parameters, λ5780, λ5797, Na ID{sub 1}, and Na ID{sub 2}, including the uncertainties.

  18. Probing the Local Bubble with Diffuse Interstellar Bands. III. The Northern hemisphere data and catalog

    CERN Document Server

    Farhang, Amin; Javadi, Atefeh; van Loon, Jacco Th

    2014-01-01

    We present a new high signal-to-noise (S/N) observations of the Diffuse Interstellar Bands (DIBs) in the Local Bubble and its surroundings. We observed 432 sightlines and obtain the equivalent widths of $\\lambda$5780 and $\\lambda$5797 \\AA\\ DIBs up to distance of $\\sim$ 200 pc. All observations have been carried out by using Intermediate Dispersion Spectrograph (IDS) on 2.5 m Isaac Newton Telescope, during three years, to reach a minimum S/N ratio of $\\sim$ 2000. All $\\lambda$5780 and $\\lambda$5797 absorptions are presented in this paper and the observed values of interstellar parameter; $\\lambda$5780, $\\lambda$5797, Na I D lines including the uncertainties are tabulated.

  19. A catalog of 1.5273 micron diffuse interstellar bands based on APOGEE hot telluric calibrators

    CERN Document Server

    Elyajouri, Meriem; Remy, Quentin; Lallement, Rosine

    2016-01-01

    High resolution stellar spectroscopic surveys provide massive amounts of diffuse interstellar bands (DIBs) measurements. Data can be used to study the distribution of the DIB carriers and those environmental conditions that favor their formation. In parallel, recent studies have also proved that DIBs extracted from stellar spectra constitute new tools for building the 3D structure of the Galactic Interstellar Medium (ISM). The amount of details on the structure depends directly on the quantity of available lines of sight (LOS). Therefore there is a need to construct databases of high-quality DIB measurements as large as possible. We aim at providing the community with a catalog of high-quality measurements of the 1.5273 micron DIB towards a large fraction of the Apache Point Observatory Galactic Evolution Experiment (APOGEE) hot stars observed to correct for the telluric absorption and not used for ISM studies so far. This catalog would complement the extensive database recently extracted from the APOGEE obse...

  20. A framework for resolving the origin, nature and evolution of the diffuse interstellar band carriers?

    CERN Document Server

    Jones, Anthony P

    2014-01-01

    The carriers of the diffuse interstellar bands (DIBs) still remain an unknown commodity. Both dust and molecules have been suggested as carriers but none proposed have yet been able to explain the nature and the diversity of the DIBs. Hence, it is perhaps time to review the problem in terms of the intermediate-sized nano-particles. It is here proposed that the DIB carriers are the nm-sized and sub- nm-sized products of the UV photo-fragmentation of hydrogenated amorphous carbon grains, a-C(:H), and their heteroatom-doped variants, a-C:H:X (where X may be O, N, Mg, Si, Fe, S, Ni, P, ...). An interstellar hydrogenated amorphous carbon dust evolutionary framework is described within which a solution to the age-old DIB problem could perhaps be found.

  1. Mapping the three-dimensional multi-band extinction and diffuse interstellar bands in the Milky Way with LAMOST

    CERN Document Server

    Yuan, Haibo; Xiang, Maosheng; Huo, Zhiying; Zhang, Huihua; Huang, Yang; Zhang, Huawei

    2013-01-01

    With modern large scale spectroscopic surveys, such as the SDSS and LSS-GAC, Galactic astronomy has entered the era of millions of stellar spectra. Taking advantage of the huge spectroscopic database, we propose to use a "standard pair" technique to a) Estimate multi-band extinction towards sightlines of millions of stars; b) Detect and measure the diffuse interstellar bands in hundreds of thousands SDSS and LAMOST low-resolution spectra; c) Search for extremely faint emission line nebulae in the Galaxy; and d) Perform photometric calibration for wide field imaging surveys. In this contribution, we present some results of applying this technique to the SDSS data, and report preliminary results from the LAMOST data.

  2. The Rotational Excitation Temperature of the $\\lambda$6614 Diffuse Interstellar Band Carrier

    CERN Document Server

    Cami, J; Jiménez-Vicente, J; Galazutdinov, G A; Krelowski, J

    2004-01-01

    Analysis of high spectral resolution observations of the $\\lambda$6614 diffuse interstellar band (DIB) line profile show systematic variations in the positions of the peaks in the substructure of the profile. These variations -- shown here for the first time -- can be understood most naturally in the framework of rotational contours of large molecules, where the variations are caused by changes in the rotational excitation temperature. We show that the rotational excitation temperature for the DIB carrier is likely significantly lower than the gas kinetic temperature -- indicating that for this particular DIB carrier angular momentum buildup is not very efficient.

  3. Radio Search for H2CCC toward HD 183143 as a Candidate for a Diffuse Interstellar Band Carrier

    CERN Document Server

    Araki, Mitsunori; Yamabe, Hiromichi; Tsukiyama, Koichi; Kuze, Nobuhiko

    2012-01-01

    To clarify the authenticity of a recently proposed identification of H2CCC (linear-C3H2) as a diffuse interstellar band carrier, we searched for the rotational transition of H2CCC at a frequency of 103 GHz toward HD 183143 using a 45-m telescope at the Nobeyama Radio Observatory. Although rms noise levels of 32 mK in the antenna temperature were achieved, detection of H2CCC was unsuccessful, producing a 3 sigma upper limit corresponding to a column density of 2.0 \\times 1013 cm-2. The upper limit indicates that the contribution of H2CCC to the diffuse interstellar band at 5450 {\\AA} is less than 1/25; thus, it is unlikely that the laboratory bands of the B1B1-X1A1 transition of H2CCC and the diffuse interstellar bands at 5450 {\\AA} (and also 4881 {\\AA}) toward HD 183143 are related.

  4. Diffuse interstellar bands (DIB): co-planar doubly excited He and metal atoms embedded in Rydberg Matter

    CERN Document Server

    Holmlid, Leif

    2011-01-01

    The interpretation of the more than 300 diffuse interstellar bands (DIBs) is one of the most long-standing problems in interstellar spectra since the two first bands were reported in 1921. We now predict the frequencies of 260 diffuse interstellar bands (DIBs) using the Rydberg Matter model we have developed previously. These transitions involve mainly He atoms, but other two-electron atoms like Ca and other metals can take part in the absorption processes. Approximately 70% of the total intensity of the DIBs is due to absorption in doubly excited states and 30% in singly excited He atoms. The doubly excited states are in inverted states while the He atoms are thermal. The possibilities to observe DIBs in the UV and NIR ranges are discussed and band positions are predicted.

  5. A Catalog of 1.5273 um Diffuse Interstellar Bands Based on APOGEE Hot Telluric Calibrators

    Science.gov (United States)

    Elyajouri, M.; Monreal-Ibero, A.; Remy, Q.; Lallement, R.

    2016-08-01

    High resolution stellar spectroscopic surveys provide massive amounts of diffuse interstellar bands (DIBs) measurements. Data can be used to study the distribution of the DIB carriers and those environmental conditions that favor their formation. In parallel, recent studies have also proved that DIBs extracted from stellar spectra constitute new tools for building the 3D structure of the Galactic interstellar medium (ISM). The amount of details on the structure depends directly on the quantity of available lines of sight. Therefore there is a need to construct databases of high-quality DIB measurements as large as possible. We aim at providing the community with a catalog of high-quality measurements of the 1.5273 μm DIB toward a large fraction of the Apache Point Observatory Galactic Evolution Experiment (APOGEE) hot stars observed to correct for the telluric absorption and not used for ISM studies so far. This catalog would complement the extensive database recently extracted from the APOGEE observations and used for 3D ISM mapping. We devised a method to fit the stellar continuum of the hot calibration stars and extracted the DIB from the normalized spectrum. Severe selection criteria based on the absorption characteristics are applied to the results. In particular limiting constraints on the DIB widths and Doppler shifts are deduced from the H i 21 cm measurements, following a new technique of decomposition of the emission spectra. From ˜16,000 available hot telluric spectra we have extracted ˜6700 DIB measurements and their associated uncertainties. The statistical properties of the extracted absorptions are examined and our selection criteria are shown to provide a robust dataset. The resulting catalog contains the DIB total equivalent widths, central wavelengths and widths. We briefly illustrate its potential use for the stellar and interstellar communities.

  6. A Catalog of Diffuse Interstellar Bands in the Spectrum of HD 204827

    CERN Document Server

    Hobbs, L M; Snow, T P; Oka, T; Thorburn, J A; Bishof, M; Friedman, S D; McCall, B J; Rachford, B; Sonnentrucker, P; Welty, D E

    2008-01-01

    Echelle spectra of the double-lined spectroscopic binary HD 204827 were obtained on five nights, at a resolving power R = 38,000 and with a S/N ratio = 750 near 6000 A in the final, combined spectrum. The stars show E(B-V) = 1.11 and spectral types near O9.5V and B0.5III. A catalog is presented of 380 diffuse interstellar bands (DIBs) measured between 3900 and 8100 A in the stars' spectrum. The central wavelengths, the widths (FWHM), and the equivalent widths of nearly all of the bands are tabulated, along with the minimum uncertainties in the latter. The reliable removal of very weak stellar lines from the catalog, and of some stellar lines from the less severe blends with DIBs, is made generally easy by the highly variable radial velocities of both stars. The principal result of this investigation is that the great majority of the bands in the catalog are very weak and relatively narrow. Typical equivalent widths amount to a few mA, and the band widths (FWHM) are most often near 0.55 A. Therefore, most of t...

  7. Mapping atomic and diffuse interstellar band absorption across the Magellanic Clouds and the Milky Way

    CERN Document Server

    Bailey, Mandy; Sarre, Peter J; Beckman, John E

    2015-01-01

    Diffuse interstellar bands (DIBs) trace warm neutral and weakly-ionized diffuse interstellar medium (ISM). Here we present a dedicated, high signal-to-noise spectroscopic study of two of the strongest DIBs, at 5780 and 5797 \\AA, in optical spectra of 666 early-type stars in the Small and Large Magellanic Clouds, along with measurements of the atomic Na\\,{\\sc i}\\,D and Ca\\,{\\sc ii}\\,K lines. The resulting maps show for the first time the distribution of DIB carriers across large swathes of galaxies, as well as the foreground Milky Way ISM. We confirm the association of the 5797 \\AA\\ DIB with neutral gas, and the 5780 \\AA\\ DIB with more translucent gas, generally tracing the star-forming regions within the Magellanic Clouds. Likewise, the Na\\,{\\sc i}\\,D line traces the denser ISM whereas the Ca\\,{\\sc ii}\\,K line traces the more diffuse, warmer gas. The Ca\\,{\\sc ii}\\,K line has an additional component at $\\sim200$--220 km s$^{-1}$ seen towards both Magellanic Clouds; this may be associated with a pan-Magellanic ...

  8. Exploring the diffuse interstellar bands with the Sloan Digital Sky Survey

    CERN Document Server

    Lan, Ting-Wen; Zhu, Guangtun

    2014-01-01

    We use star, galaxy and quasar spectra taken by the Sloan Sky Digital Survey to map out the distribution of diffuse interstellar bands (DIBs) induced by the Milky Way. We show that, after carefully removing the intrinsic spectral energy distribution of each source, it is possible to measure statistical flux fluctuations at the 1e-3 level, detect about thirty DIBs and measure their strength as a function of position on the sky. We create a map of DIB absorption covering about 5,000 square degrees and measure correlations with various tracers of the interstellar medium: atomic & molecular hydrogen, dust and polycyclic aromatic hydrocarbons (PAHs). After recovering known correlations, we show that each DIB has a different dependence on atomic and molecular hydrogen: while they are all positively correlated with N(HI), they exhibit a range of behaviors with N(H2) showing positive, negative or no correlation. We show that a simple parametrization involving only N(HI) and N(H2) applied to all the DIBs is suffic...

  9. Near-infrared diffuse interstellar bands in 0.91-1.32 micron

    CERN Document Server

    Hamano, Satoshi; Kondo, Sohei; Ikeda, Yuji; Nakanishi, Kenshi; Yasui, Chikako; Mizumoto, Misaki; Matsunaga, Noriyuki; Fukue, Kei; Mito, Hiroyuki; Yamamoto, Ryo; Izumi, Natsuko; Nakaoka, Tetsuya; Kawanishi, Takafumi; Kitano, Ayaka; Otsubo, Shogo; Kinoshita, Masaomi; Kobayashi, Hitomi; Kawakita, Hideyo

    2014-01-01

    We present a comprehensive survey of diffuse interstellar bands (DIBs) in $0.91-1.32\\mu$m with a newly-developed near-infrared (NIR) spectrograph, WINERED, mounted on the Araki 1.3 m Telescope in Japan. We obtained high-resolution ($R=28,300$) spectra of 25 early-type stars with color excesses of $0.07interstellar clouds, such as UV flux. Three NIR DIBs, $\\lambda\\lambda$10780, 10792, and 11797, are found to be classifiable as a "family," in which the DIBs are well correlated with each other, suggesting that the carriers of these DIBs a...

  10. Diffuse Interstellar Bands and the Ultraviolet Extinction Curves: The Missing Link Revisited

    CERN Document Server

    Xiang, F Y; Zhong, J X

    2016-01-01

    A large number of interstellar absorption features at ~ 4000\\AA\\ -- 1.8 {\\mu}m, known as the "diffuse interstellar bands" (DIBs), remains unidentified. Most recent works relate them to large polycyclic aromatic hydrocarbon (PAH) molecules or ultrasmall carbonaceous grains which are also thought to be responsible for the 2175 \\AA\\ extinction bump and/or the far ultraviolet (UV) extinction rise at $\\lambda^{-1} > 5.9\\ {\\mu}m^{-1}$. Therefore, one might expect some relation between the UV extinction and DIBs. Such a relationship, if established, could put important constraints on the carrier of DIBs. Over the past four decades, whether DIBs are related to the shape of the UV extinction curves has been extensively investigated. However, the results are often inconsistent, partly due to the inconsistencies in characterizing the UV extinction. Here we re-examine the connection between the UV extinction curve and DIBs. We compile the extinction curves and the equivalent widths of 40 DIBs along 97 slightlines. We dec...

  11. Detections of Diffuse Interstellar Bands in the SDSS Low-resolution Spectra

    CERN Document Server

    Yuan, Haibo

    2012-01-01

    Diffuse interstellar bands (DIBs) have been discovered for almost a century, but their nature remains one of the most challenging problems in astronomical spectroscopy. Most recent work to identify and investigate the properties and carriers of DIBs concentrates on high-resolution spectroscopy of selected sight-lines. In this paper, we report detections of DIBs in the Sloan Digital Sky Survey (SDSS) low-resolution spectra of a large sample of Galactic stars. Using a template subtraction method, we have successfully identified the DIBs $\\lambda$$\\lambda$5780, 6283 in the SDSS spectra of a sample of about 2,000 stars and measured their strengths and radial velocities. The sample is by far the largest ever assembled. The targets span a large range of reddening, E(B-V) ~ 0.2 -- 1.0, and are distributed over a large sky area and involve a wide range of stellar parameters (effective temperature, surface gravity and metallicity), confirming that the carriers of DIBs are ubiquitous in the diffuse interstellar medium ...

  12. Identification of New Near-Infrared Diffuse Interstellar Bands in the Orion Nebula

    Science.gov (United States)

    Misawa, Toru; Gandhi, Poshak; Hida, Akira; Tamagawa, Toru; Yamaguchi, Tomohiro

    2009-08-01

    Large organic molecules and carbon clusters are basic building blocks of life, but their existence in the universe has not been confirmed beyond doubt. A number of unidentified absorption features (arising in the diffuse interstellar medium), usually called "Diffuse Interstellar Bands" (DIBs), are hypothesized to be produced by large molecules. Among these, buckminsterfullerene C60 has gained much attention as a candidate for DIB absorbers because of its high stability in space. Two DIBs at λ ~ 9577 Å and 9632 Å have been reported as possible features of C+ 60. However, it is still not clear how their existence depends on their environment. We obtained high-resolution spectra of three stars in/around the Orion Nebula, to search for any correlations of the DIB strength with carrier's physical conditions, such as dust abundance and UV radiation field. We find three DIBs at λ ~ 9017 Å, 9210 Å, and 9258 Å as additional C+ 60 feature candidates, which could support this identification. These DIBs have asymmetric profiles similar to the longer wavelength features. However, we also find that the relative strengths of DIBs are close to unity and differ from laboratory measurements, a similar trend as noticed for the 9577/9632 DIBs. Based on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  13. Probing the Local Bubble with Diffuse Interstellar Bands. I. Project overview and Southern hemisphere survey

    CERN Document Server

    Bailey, Mandy; Farhang, Amin; Javadi, Atefeh; Khosroshahi, Habib G; Sarre, Peter J; Smith, Keith T

    2016-01-01

    We have conducted a high signal-to-noise spectroscopic survey of 670 nearby early-type stars, to map Diffuse Interstellar Band (DIB) absorption in and around the Local Bubble. The project started with a Southern hemisphere survey conducted at the European Southern Observatory's New Technology Telescope and has since been extended to an all-sky survey using the Isaac Newton Telescope. In this first paper in the series, we introduce the overall project and present the results from the Southern hemisphere survey. We make available a catalogue of equivalent-width measurements of the DIBs at 5780, 5797, 5850, 6196, 6203, 6270, 6283 \\& 6614 \\AA, the interstellar Na\\,{\\sc i} D lines at 5890 \\& 5896 \\AA, and the stellar He\\,{\\sc i} line at 5876 \\AA. We find that the 5780 \\AA\\ DIB is relatively strong throughout, as compared to the 5797 \\AA\\ DIB, but especially within the Local Bubble and at the interface with more neutral medium. The 6203 \\AA\\ DIB shows a similar behaviour, but with respect to the 6196 \\AA\\ D...

  14. ANOMALOUS DIFFUSE INTERSTELLAR BANDS IN THE SPECTRUM OF HERSCHEL 36. II. ANALYSIS OF RADIATIVELY EXCITED CH{sup +}, CH, AND DIFFUSE INTERSTELLAR BANDS

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Takeshi; Welty, Daniel E.; Johnson, Sean; York, Donald G.; Hobbs, L. M. [Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Dahlstrom, Julie, E-mail: t-oka@uchicago.edu [Department of Physics and Astronomy, Carthage College, 2001 Alford Park Drive, Kenosha, WI 53140 (United States)

    2013-08-10

    Absorption spectra toward Herschel 36 (Her 36) for the A-bar{sup 1}{Pi} Leftwards-Open-Headed-Arrow X-tilde{sup 1}{Sigma} transitions of CH{sup +} in the J = 1 excited rotational level and for the A-bar{sup 2}{Delta} Leftwards-Open-Headed-Arrow X-tilde{sup 2}{Pi} transitions of CH in the J = 3/2 excited fine structure level have been analyzed. These excited levels are above their ground levels by 40.1 K and {approx}25.7 K and indicate high radiative temperatures of the environment of 14.6 K and 6.7 K, respectively. The effect of the high radiative temperature is more spectacular in some diffuse interstellar bands (DIBs) observed toward Her 36; remarkable extended tails toward red (ETRs) were observed. We interpret these ETRs as being due to a small decrease of the rotational constants upon excitation of the excited electronic states. Along with radiative pumping of a great many high-J rotational levels, this causes the ETRs. In order to study this effect quantitatively, we have developed a model calculation in which the effects of collisions and radiation are treated simultaneously. The simplest case of linear molecules is considered. It has been found that the ETR is reproduced if the fraction of the variation of the rotational constant, {beta} {identical_to} (B' - B)/B, is sufficiently high (3%-5%) and the radiative temperature is high (T{sub r} > 50 K). Although modeling for general molecules is beyond the scope of this paper, the results indicate that the prototypical DIBs {lambda}5780.5, {lambda}5797.1, and {lambda}6613.6 which show the pronounced ETRs are due to polar molecules that are sensitive to the radiative excitation. The requirement of high {beta} favors relatively small molecules with three to six heavy atoms. DIBs {lambda}5849.8, {lambda}6196.0, and {lambda}6379.3 that do not show the pronounced ETRs are likely due to non-polar molecules or large polar molecules with small {beta}.

  15. Anomalous Diffuse Interstellar Bands in the Spectrum of Herschel 36. II. Analysis of Radiatively Excited CH+, CH, and Diffuse Interstellar Bands

    Science.gov (United States)

    Oka, Takeshi; Welty, Daniel E.; Johnson, Sean; York, Donald G.; Dahlstrom, Julie; Hobbs, L. M.

    2013-08-01

    Absorption spectra toward Herschel 36 (Her 36) for the \\tilde{A}^1\\Pi \\leftarrow \\tilde{X}^1\\Sigma transitions of CH+ in the J = 1 excited rotational level and for the \\tilde{A}^2\\Delta \\leftarrow \\tilde{X}^2\\Pi transitions of CH in the J = 3/2 excited fine structure level have been analyzed. These excited levels are above their ground levels by 40.1 K and ~25.7 K and indicate high radiative temperatures of the environment of 14.6 K and 6.7 K, respectively. The effect of the high radiative temperature is more spectacular in some diffuse interstellar bands (DIBs) observed toward Her 36; remarkable extended tails toward red (ETRs) were observed. We interpret these ETRs as being due to a small decrease of the rotational constants upon excitation of the excited electronic states. Along with radiative pumping of a great many high-J rotational levels, this causes the ETRs. In order to study this effect quantitatively, we have developed a model calculation in which the effects of collisions and radiation are treated simultaneously. The simplest case of linear molecules is considered. It has been found that the ETR is reproduced if the fraction of the variation of the rotational constant, β ≡ (B' - B)/B, is sufficiently high (3%-5%) and the radiative temperature is high (T r > 50 K). Although modeling for general molecules is beyond the scope of this paper, the results indicate that the prototypical DIBs λ5780.5, λ5797.1, and λ6613.6 which show the pronounced ETRs are due to polar molecules that are sensitive to the radiative excitation. The requirement of high β favors relatively small molecules with three to six heavy atoms. DIBs λ5849.8, λ6196.0, and λ6379.3 that do not show the pronounced ETRs are likely due to non-polar molecules or large polar molecules with small β.

  16. Constraining the size of the carrier of the $\\lambda$5797.1 diffuse interstellar band

    CERN Document Server

    Huang, Jane

    2016-01-01

    The diffuse interstellar band (DIB) at 5797.1 \\AA\\ is simulated based on three premises: (1) The carrier of the DIB is polar as concluded by T. Oka et al. from the anomalous spectrum toward Herschel 36. (2) The sharp central feature observed by P. J. Sarre's group is the $Q$-branch of a parallel band of a prolate top. (3) The radiative temperature of the environment is $T_r$=2.73 K. A $^2 \\Pi \\leftarrow$ $^2\\Pi$ transition of a linear radical is simulated. Results depend on 10 parameters, with the rotational constant $B$ being the most critical. Comparisons of calculated spectra with observed data constrain $B$, which in turn constrains the number of heavy atoms to 5 $\\leq n \\leq 7$. Upper limits based on the Her 36 spectrum and lower limits based on stability against photodissociation are also discussed. The latter is based on the assumption that the DIB molecules are produced top-down from the breakdown of dust rather than bottom-up by chemical reactions. A difficulty with this limit is that J. P. Maier's l...

  17. CH^+ Spectrum and Diffuse Interstellar Bands Toward Herschel 36 Excited by Dust Emission

    Science.gov (United States)

    Dahlstrom, Julie; Oka, Takeshi; Johnson, Sean; Welty, Daniel E.; Hobbs, Lew M.; York, Donald G.

    2012-06-01

    All electronic CH^+ interstellar absorption lines so far observed had been limited to the R(0) transition starting from the J = 0 ground level; this is because of the very rapid J = 1 → 0 spontaneous emission with the life time of ˜ 140 s. We have observed the R(1) and Q(1) lines of the A^1π ← X^1Σ band from the excited J = 1 level 40.08 K (27.86 cm-1) above the J = 0 level toward Herschel 36 indicating high radiative temperature of T_r = 17.5 K. The high temperature is most likely due to far infrared dust emission from the Her 36 SE. We have also observed the R_1(3/2) line of CH starting from the excited fine structure level J = 3/2 which is 25.76 - 25.57 K above the J = 1/2 level. The effect of high radiative temperature is also noticed as unique lineshapes of diffuse interstellar bands (DIBs) observed toward Her 36. We have examined seven DIBs including λ 5780.5, λ 5797.1, λ 6190.0, and λ 6613.0 that are correlated with each other with correlation coefficients > 0.93. While for ordinary sightlines the lineshapes of these DIBs are more or less symmetric, those toward Her 36 show a long tail toward the red. This is due to far infrared pumping of high J rotational levels of polar carriers of the DIBs by the dust emission. We have developed a model calculation of relaxation taking into account of both radiative and collisional processes. A linear molecule with about 6 carbon atoms can explain some of the DIBs. For the DIBs we have examined, probably the carriers are of this size since we cannot explain the large difference between the DIBs toward ordinary sightlines and toward Her 36 with larger molecules. Goto, M., Stecklum, B., Linz, H., Feldt, M., Henning, Th., Pascucci, I., and Usuda, T. 2006, ApJ, {649} 299.

  18. Near infrared diffuse interstellar bands toward the Cygnus OB2 association

    CERN Document Server

    Hamano, Satoshi; Kondo, Sohei; Sameshima, Hiroaki; Nakanishi, Kenshi; Ikeda, Yuji; Yasui, Chikako; Mizumoto, Misaki; Matsunaga, Noriyuki; Fukue, Kei; Yamamoto, Ryo; Izumi, Natsuko; Mito, Hiroyuki; Nakaoka, Tetsuya; Kawanishi, Takafumi; Kitano, Ayaka; Otsubo, Shogo; Kinoshita, Masaomi; Kawakita, Hideyo

    2016-01-01

    We obtained the near-infrared (NIR) high-resolution ($R\\equiv\\lambda/\\Delta\\lambda\\sim20,000$) spectra of the seven brightest early-type stars in the Cygnus OB2 association for investigating the environmental dependence of diffuse interstellar bands (DIBs). The WINERED spectrograph mounted on the Araki 1.3m telescope in Japan was used to collect data. All 20 of the known DIBs within the wavelength coverage of WINERED ($0.91<\\lambda<1.36\\mu$m) were clearly detected along all lines of sight because of their high flux density in the NIR wavelength range and the large extinction. The equivalent widths (EWs) of DIBs were not correlated with the column densities of C$_2$ molecules, which trace the patchy dense component, suggesting that the NIR DIB carriers are distributed mainly in the diffuse component. On the basis of the correlations among the NIR DIBs both for stars in Cyg OB2 and stars observed previously, $\\lambda\\lambda$10780, 10792, 11797, 12623, and 13175 are found to constitute a "family", in which...

  19. Diffuse Interstellar Bands in Seven Intermediate Redshift Damped Lyman-Alpha Absorbers

    CERN Document Server

    Lawton, Brandon; York, Brian A; Ellison, Sara L; Snow, Theodore P; Johnson, Rachel A; Ryan, Sean G; Benn, Chris R

    2008-01-01

    We present equivalent width measurements and limits of six diffuse interstellar bands (DIBs) in seven damped Ly-alpha absorbers (DLAs) over the redshift range 0.091

  20. PROBING THE LOCAL BUBBLE WITH DIFFUSE INTERSTELLAR BANDS. II. THE DIB PROPERTIES IN THE NORTHERN HEMISPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Farhang, Amin; Khosroshahi, Habib G.; Javadi, Atefeh; Molaeinezhad, Alireza; Tavasoli, Saeed; Habibi, Farhang; Kourkchi, Ehsan; Rezaei, Sara; Saberi, Maryam [School of Astronomy, Institute for Research in Fundamental Sciences (IPM), PO Box 19395-5746 Tehran (Iran, Islamic Republic of); Van Loon, Jacco Th.; Bailey, Mandy [Astrophysics Group, Lennard-Jones Laboratories, Keele University, Staffordshire ST5 5BG (United Kingdom); Hardy, Liam, E-mail: a.farhang@ipm.ir [Isaac Newton Group, Apartado 321, E-38700 Santa Cruz de La Palma (Spain)

    2015-02-10

    We present a new high signal-to-noise ratio spectroscopic survey of the Northern hemisphere to probe the Local Bubble and its surroundings using the λ5780 Å and λ5797 Å diffuse interstellar bands (DIBs). We observed 432 sightlines to a distance of 200 pc over a duration of three years. In this study, we establish the λ5780 and λ5797 correlations with Na I, Ca II and E {sub B-V}, for both inside and outside the Local Bubble. The correlations show that among all neutral and ionized atoms, the correlation between Ca II and λ5780 is stronger than its correlation with λ5797, suggesting that λ5780 is more associated with regions where Ca{sup +} is more abundant. We study the λ5780 correlation with λ5797, which shows a tight correlation within and outside the Local Bubble. In addition, we investigate the DIB properties in UV irradiated and UV shielded regions. We find that, within and beyond the Local Bubble, λ5797 is located in denser parts of clouds, protected from UV irradiation, while λ5780 is located in the low-density regions of clouds.

  1. THE DIFFUSE INTERSTELLAR BANDS AND ANOMALOUS MICROWAVE EMISSION MAY ORIGINATE FROM THE SAME CARRIERS

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, L. S.; Cline, J. A. [Spectral Sciences, Inc., 4 Fourth Avenue, Burlington, MA 01803 (United States); Clark, F. O. [Wopeco Research 125 South Great Road, Lincoln, MA 01773 (United States); Lynch, D. K., E-mail: larry@spectral.com, E-mail: jcline@spectral.com, E-mail: frank.clark@gmail.com, E-mail: dave@thulescientific.com [Thule Scientific, P.O. Box 953, Topanga, CA 90290 (United States)

    2015-11-10

    We argue that the observed spectroscopic and statistical properties of the diffuse interstellar band (DIB) carriers are those that are needed to produce the anomalous microwave emission (AME). We explore this idea using a carrier-impartial model for AME based on the observed DIB statistical properties. We show that an observed distribution of profile widths for narrow DIBs can be mapped into an AME spectrum. The mapping model is applied to width distributions observed for HD 204827 and HD 183143, selected because their spectroscopic and statistical properties bracket those for most other sight lines. The predicted AME spectra for these sight lines agree well with the range of spectral shapes, and peak frequencies, ∼23–31 GHz, typically observed for AME. We use the AME spectral profiles to derive a strong constraint between the average carrier size and its rotational temperature. The constraint is applied to a variety of postulated molecular carrier classes, including polycyclic aromatic hydrocarbons, fulleranes, hydrocarbon chains, and amorphous hydrocarbon clusters. The constraint favors small, cold carriers with average sizes of ∼8–15 carbon atoms, and average rotational temperatures of ∼3–10 K, depending on carrier type. We suggest new observations, analyses, and modeling efforts to help resolve the ambiguities with regard to carrier size and class, and to further clarify the DIB–AME relationship.

  2. VLT/X-shooter survey of near-infrared diffuse interstellar bands

    CERN Document Server

    Cox, N L J; Kaper, L; Ehrenfreund, P; Foing, B H; Ochsendorf, B B; van Hooff, S H M; Salama, F

    2014-01-01

    This paper presents a spectral survey of diffuse interstellar bands (DIBs) in the NIR range, from 0.9 to 2.5 micron. The observations were designed to detect new DIBs, confirm previously proposed NIR DIBs, and characterise their behaviour with respect to known line-of-sight properties (including the optical DIBs present in our spectra). X-shooter at the VLT was used to obtained medium-resolution spectra of eight known DIB targets and one telluric reference star. In addition to the known 9577, 9632, 11797, and 13175 Angstroms NIR DIBs, we confirm 9 out of the 13 NIR DIBs that were presented by Geballe and co-workers in 2011. Furthermore, we report 12 new NIR DIB candidates. The strengths of the strongest NIR DIBs show a general correlation with reddening, E(B-V), but with a large scatter. Several NIR DIBs are more strongly correlated with the 5780 Angstroms DIB strength than with E(B-V); this is especially the case for the 15268 Angstroms DIB. The NIR DIBs are strong: the summed equivalent widths of the five s...

  3. PAHs and the Diffuse Interstellar Bands. What have we Learned from the New Generation of Laboratory and Observational Studies?

    Science.gov (United States)

    Salama, Farid

    2005-01-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are an important and ubiquitous component of carbon-bearing materials in space. PAHs are the best-known candidates to account for the IR emission bands (UIR bands) and PAH spectral features are now being used as new probes of the ISM. PAHs are also thought to be among the carriers of the diffuse interstellar absorption bands (DIBs). In the model dealing with the interstellar spectral features, PAHs are present as a mixture of radicals, ions and neutral species. PAH ionization states reflect the ionization balance of the medium while PAH size, composition, and structure reflect the energetic and chemical history of the medium. A major challenge for laboratory astrophysics is to reproduce (in a realistic way) the physical conditions that exist in the emission and/or absorption interstellar zones, An extensive laboratory program has been developed at NASA Ames to characterize the physical and chemical properties of PAHs in astrophysical environments and to describe how they influence the radiation and energy balance in space and the interstellar chemistry. In particular, laboratory experiments provide measurements of the spectral characteristics of interstellar PAH analogs from the ultraviolet and visible range to the infrared range for comparison with astronomical data. This paper will focus on the recent progress made in the laboratory to measure the direct absorption spectra of neutral and ionized PAHs in the gas phase in the near-W and visible range in astrophysically relevant environments. These measurements provide data on PAHs and nanometer-sized particles that can now be directly compared to astronomical observations. The harsh physical conditions of the IS medium - characterized by a low temperature, an absence of collisions and strong V W radiation fields - are simulated in the laboratory by associating a molecular beam with an ionizing discharge to generate a cold plasma expansion. PAH ions are formed from the neutral

  4. Interaction Between The Broad-lined Type Ic Supernova 2012ap and Carriers of Diffuse Interstellar Bands

    CERN Document Server

    Milisavljevic, D; Crabtree, K N; Foster, J B; Soderberg, A M; Fesen, R A; Parrent, J T; Sanders, N E; Drout, M R; Kamble, A; Chakraborti, S; Pickering, T E; Cenko, S B; Silverman, J M; Filippenko, A V; Kirshner, R P; Mazzali, P; Maeda, K; Marion, G H; Vinko, J; Wheeler, J C

    2014-01-01

    The diffuse interstellar bands (DIBs) are absorption features observed in optical and near-infrared spectra that are thought to be associated with carbon-rich polyatomic molecules in interstellar gas. However, because the central wavelengths of these bands do not correspond with electronic transitions of any known atomic or molecular species, their nature has remained uncertain since their discovery almost a century ago. Here we report on unusually strong DIBs in optical spectra of the broad-lined Type Ic supernova SN 2012ap that exhibit changes in equivalent width over short (~30 days) timescales. The 4428 and 6283 Angstrom DIB features get weaker with time, whereas the 5780 Angstrom feature shows a marginal increase. These nonuniform changes suggest that the supernova is interacting with a nearby source of the DIBs and that the DIB carriers possess high ionization potentials, such as small cations or charged fullerenes. We conclude that moderate-resolution spectra of supernovae with DIB absorptions obtained...

  5. Time Dependent Density Functional Theory Calculations of Large Compact PAH Cations: Implications for the Diffuse Interstellar Bands

    Science.gov (United States)

    Weisman, Jennifer L.; Lee, Timothy J.; Salama, Farid; Gordon-Head, Martin; Kwak, Dochan (Technical Monitor)

    2002-01-01

    We investigate the electronic absorption spectra of several maximally pericondensed polycyclic aromatic hydrocarbon radical cations with time dependent density functional theory calculations. We find interesting trends in the vertical excitation energies and oscillator strengths for this series containing pyrene through circumcoronene, the largest species containing more than 50 carbon atoms. We discuss the implications of these new results for the size and structure distribution of the diffuse interstellar band carriers.

  6. The Gaia-ESO Survey: Extracting diffuse interstellar bands from cool star spectra, DIB-based interstellar medium line-of-sight structures at the kpc scale

    CERN Document Server

    Puspitarini, L; Babusiaux, C; Chen, H-C; Bonifacio, P; Sbordone, L; Caffau, E; Duffau, S; Hill, V; Monreal-Ibero, A; Royer, F; Arenou, F; R.,; Peralta, A; Drew, J E; Bonito, R; Lopez-Santiago, J; Alfaro, E; Bensby, T; Bragaglia, A; Flaccomio, E; Lanzafame, A; Pancino, E; Recio-Blanco, A; Smiljanic, R; Costado, M T; Lardo, C; de Laverny, P; Zwitter, T

    2014-01-01

    We study how diffuse interstellar bands (DIBs) measured toward distance-distributed target stars can be used to locate dense interstellar (IS) clouds in the Galaxy and probe a line-of-sight (LOS) kinematical structure, a potential useful tool when gaseous absorption lines are saturated or not available in the spectral range. Cool target stars are numerous enough for this purpose. We have devised automated DIB fitting methods appropriate to cool star spectra and multiple IS components. The data is fitted with a combination of a synthetic stellar spectrum, a synthetic telluric transmission, and empirical DIB profiles. In parallel, stellar distances and extinctions are estimated self-consistently by means of a 2D Bayesian method, from spectroscopically-derived stellar parameters and photometric data. We have analyzed Gaia-ESO Survey (GES) and previously recorded spectra that probe between $\\sim$ 2 and 10 kpc long LOS in five different regions of the Milky Way. Depending on the observed spectral intervals, we ext...

  7. Laboratory Determination of the Infrared Band Strengths of Pyrene Frozen in Water Ice: Implications for the Composition of Interstellar Ices

    CERN Document Server

    Hardegree-Ullman, E E; Boogert, A C A; Lignell, H; Allamandola, L J; Stapelfeldt, K R; Werner, M

    2014-01-01

    Broad infrared emission features (e.g., at 3.3, 6.2, 7.7, 8.6, and 11.3 microns) from the gas phase interstellar medium have long been attributed to polycyclic aromatic hydrocarbons (PAHs). A significant portion (10%-20%) of the Milky Way's carbon reservoir is locked in PAH molecules, which makes their characterization integral to our understanding of astrochemistry. In molecular clouds and the dense envelopes and disks of young stellar objects (YSOs), PAHs are expected to be frozen in the icy mantles of dust grains where they should reveal themselves through infrared absorption. To facilitate the search for frozen interstellar PAHs, laboratory experiments were conducted to determine the positions and strengths of the bands of pyrene mixed with H2O and D2O ices. The D2O mixtures are used to measure pyrene bands that are masked by the strong bands of H2O, leading to the first laboratory determination of the band strength for the CH stretching mode of pyrene in water ice near 3.25 microns. Our infrared band str...

  8. NEAR INFRARED DIFFUSE INTERSTELLAR BANDS TOWARD THE CYGNUS OB2 ASSOCIATION

    Energy Technology Data Exchange (ETDEWEB)

    Hamano, Satoshi; Kondo, Sohei; Sameshima, Hiroaki; Nakanishi, Kenshi; Kawakita, Hideyo [Laboratory of Infrared High-resolution Spectroscopy, Koyama Astronomical Observatory, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555 (Japan); Kobayashi, Naoto [Institute of Astronomy, School of Science, University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Ikeda, Yuji [Photocoding, 460-102 Iwakura-Nakamachi, Sakyo-ku, Kyoto, 606-0025 (Japan); Yasui, Chikako; Mizumoto, Misaki; Matsunaga, Noriyuki; Fukue, Kei; Yamamoto, Ryo; Izumi, Natsuko [Department of Astronomy, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); Mito, Hiroyuki [Kiso Observatory, Institute of Astronomy, School of Science, The University of Tokyo, 10762-30 Mitake, Kiso-machi, Kiso-gun, Nagano, 397-0101 (Japan); Nakaoka, Tetsuya; Kawanishi, Takafumi; Kitano, Ayaka; Otsubo, Shogo [Department of Physics, Faculty of Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555 (Japan); Kinoshita, Masaomi, E-mail: hamano@cc.kyoto-su.ac.jp [Solar-Terrestrial Environment Laboratory, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601 (Japan)

    2016-04-10

    We obtained the near-infrared (NIR) high-resolution (R ≡ λ/Δλ ∼ 20,000) spectra of the seven brightest early-type stars in the Cygnus OB2 association for investigating the environmental dependence of diffuse interstellar bands (DIBs). The WINERED spectrograph mounted on the Araki 1.3 m telescope in Japan was used to collect data. All 20 of the known DIBs within the wavelength coverage of WINERED (0.91 < λ < 1.36 μm) were clearly detected along all lines of sight because of their high flux density in the NIR wavelength range and the large extinction. The equivalent widths (EWs) of DIBs were not correlated with the column densities of C{sub 2} molecules, which trace the patchy dense component, suggesting that the NIR DIB carriers are distributed mainly in the diffuse component. On the basis of the correlations among the NIR DIBs both for stars in Cyg OB2 and stars observed previously, λλ10780, 10792, 11797, 12623, and 13175 are found to constitute a “family,” in which the DIBs are correlated well over the wide EW range. In contrast, the EW of λ10504 is found to remain almost constant over the stars in Cyg OB2. The extinction estimated from the average EW of λ10504 (A{sub V} ∼ 3.6 mag) roughly corresponds to the lower limit of the extinction distribution of OB stars in Cyg OB2. This suggests that λ10504 is absorbed only by the foreground clouds, implying that the carrier of λ10504 is completely destroyed in Cyg OB2, probably by the strong UV radiation field. The different behaviors of the DIBs may be caused by different properties of the DIB carriers.

  9. On a common carrier hypothesis for the 6613.6 and 6196.0 {\\AA} diffuse interstellar bands

    CERN Document Server

    Glinski, R J

    2016-01-01

    We explore via spectroscopic modeling whether the highly correlated diffuse interstellar bands at 6613.6 and 6196.0 {\\AA} might originate from a single molecule. Efforts were made to simulate the band contours of the DIBs along the three lines-of-sight, which have been observed by others at high resolution: HD179406, HD174165, and Her 36. Reasonable simultaneous fits were obtained using a prolate symmetric top molecule that exhibits transitions of two different band types, type-a parallel and type-b perpendicular bands. Two different excited states of a long- or heavy-chain, forked molecule are proposed. A minimum number of adjustable parameters were used including ground and excited state A and B rotational constants, an excited state centrifugal distortion constant, and three different rotational excitation temperatures. Points in favor and against the hypothesis are discussed.

  10. Laboratory determination of the infrared band strengths of pyrene frozen in water ice: Implications for the composition of interstellar ices

    Energy Technology Data Exchange (ETDEWEB)

    Hardegree-Ullman, E. E. [New York Center for Astrobiology and Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180 (United States); Gudipati, M. S.; Werner, M. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Boogert, A. C. A. [Infrared Processing and Analysis Center, Mail Code 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Lignell, H. [Department of Chemistry, University of California Irvine, Irvine, CA 92697-2025 (United States); Allamandola, L. J. [Space Science Division, Mail Stop 245-6, NASA Ames Research Center, Moffett Field, CA 94035 (United States); Stapelfeldt, K. R., E-mail: hardee@rpi.edu, E-mail: gudipati@jpl.nasa.gov [NASA Goddard Space Flight Center, Exoplanets and Stellar Astrophysics Laboratory, Code 667, Greenbelt, MD 20771 (United States)

    2014-04-01

    Broad infrared emission features (e.g., at 3.3, 6.2, 7.7, 8.6, and 11.3 μm) from the gas phase interstellar medium have long been attributed to polycyclic aromatic hydrocarbons (PAHs). A significant portion (10%-20%) of the Milky Way's carbon reservoir is locked in PAH molecules, which makes their characterization integral to our understanding of astrochemistry. In molecular clouds and the dense envelopes and disks of young stellar objects (YSOs), PAHs are expected to be frozen in the icy mantles of dust grains where they should reveal themselves through infrared absorption. To facilitate the search for frozen interstellar PAHs, laboratory experiments were conducted to determine the positions and strengths of the bands of pyrene mixed with H{sub 2}O and D{sub 2}O ices. The D{sub 2}O mixtures are used to measure pyrene bands that are masked by the strong bands of H{sub 2}O, leading to the first laboratory determination of the band strength for the CH stretching mode of pyrene in water ice near 3.25 μm. Our infrared band strengths were normalized to experimentally determined ultraviolet band strengths, and we find that they are generally ∼50% larger than those reported by Bouwman et al. based on theoretical strengths. These improved band strengths were used to reexamine YSO spectra published by Boogert et al. to estimate the contribution of frozen PAHs to absorption in the 5-8 μm spectral region, taking into account the strength of the 3.25 μm CH stretching mode. It is found that frozen neutral PAHs contain 5%-9% of the cosmic carbon budget and account for 2%-9% of the unidentified absorption in the 5-8 μm region.

  11. Observations and Analysis of Extended Tail Toward Red in the Diffuse Interstellar Bands of Herschel 36

    Science.gov (United States)

    Oka, Takeshi; Welty, Daniel E.; Johnson, Sean; York, Donald G.; Hobbs, Lew M.; Dahlstrom, Julie

    2013-06-01

    In the studies of the Diffuse Interstellar Bands (DIBs), the sightline toward Herschel 36 near the center of the HII region Messier 8 is unique. It shows spectra of CH^+ and CH in the first excited level indicating the presence of a cloud with high radiative temperature. The heating is most likely due to far infrared emission from the adjacent intense infrared source Her 36 SE at a distance of 0.25" from Her 36. The effect of the high radiative temperature on some DIBs is spectacular. It produces on a normally symmetric bell-shape line a very prominent Extended Tail toward Red (ETR) on prototypical DIBs λ 5780.5, λ 5797.1, and λ 6613 while other DIBs λ 5849.8, λ 6196.0, and λ 6379.3 are little affected. We interpret this as indicating that the carriers of the former 3 DIBs that are seriously affected by the radiation are polar molecules and the pronounced ETRs are the result of the decrease of rotational constant B (3 - 5 %) upon electronic excitation. High J rotational levels are pumped radiatively and with the negative (B' - B) produces the ETR. We have developed a model calculation of rotational distribution taking into account of both radiative and collisional processes. In view of the complexity of the problem linear molecules are considered. 7 parameters enter into the calculation but we find the fractional variation of B and the radiative temperature T_r are the most decisive. Although molecules with a general shape is beyond the scope of this work, we conclude that the 3 DIBs which show the pronounced ETRs are due to polar molecules and the requirement of high variation of B indicates that the molecules are not that large perhaps composed of 3-6 heavy atoms. The 3 DIBs that do not show the pronounced ETRs are likely due to non-polar molecules or large polar molecules with small fractional variation of B. Goto, M., Stecklum, B., Linz, H., Feldt, M., Henning, Th., Pascucci, I., and Usuda, T. 2006, ApJ, 649 299. Oka, T., Welty, D. E., Johnson, S., York

  12. Radio Search for H2CCC toward HD 183143 as a Candidate for a Diffuse Interstellar Band Carrier

    Science.gov (United States)

    Araki, Mitsunori; Takano, Shuro; Yamabe, Hiromichi; Tsukiyama, Koichi; Kuze, Nobuhiko

    2012-07-01

    To clarify the authenticity of a recently proposed identification of H2CCC (linear-C3H2) as a diffuse interstellar band (DIB) carrier, we searched for the rotational transition of H2CCC at a frequency of 103 GHz toward HD 183143 using the 45 m telescope at the Nobeyama Radio Observatory. Although rms noise levels of 32 mK in the antenna temperature were achieved, detection of H2CCC was unsuccessful, producing a 3σ upper limit corresponding to a column density of 2.0 × 1013 cm-2. The upper limit indicates that the contribution of H2CCC to the DIB at 5450 Å is less than 1/25; thus, it is unlikely that the laboratory bands of the B 1 B 1-X 1 A 1 transition of H2CCC and the DIBs at 5450 Å (and also 4881 Å) toward HD 183143 are related.

  13. The Gaia-ESO Survey: Extracting diffuse interstellar bands from cool star spectra. DIB-based interstellar medium line-of-sight structures at the kpc scale

    Science.gov (United States)

    Puspitarini, L.; Lallement, R.; Babusiaux, C.; Chen, H.-C.; Bonifacio, P.; Sbordone, L.; Caffau, E.; Duffau, S.; Hill, V.; Monreal-Ibero, A.; Royer, F.; Arenou, F.; Peralta, R.; Drew, J. E.; Bonito, R.; Lopez-Santiago, J.; Alfaro, E. J.; Bensby, T.; Bragaglia, A.; Flaccomio, E.; Lanzafame, A. C.; Pancino, E.; Recio-Blanco, A.; Smiljanic, R.; Costado, M. T.; Lardo, C.; de Laverny, P.; Zwitter, T.

    2015-01-01

    Aims: We study how diffuse interstellar bands (DIBs) measured toward distance-distributed target stars can be used to locate dense interstellar (IS) clouds in the Galaxy and probe a line-of-sight (LOS) kinematical structure, a potentially useful tool when gaseous absorption lines are saturated or not available in the spectral range. Cool target stars are numerous enough for this purpose. Methods: We devised automated DIB-fitting methods appropriate for cool star spectra and multiple IS components. The data were fitted with a combination of a synthetic stellar spectrum, a synthetic telluric transmission, and empirical DIB profiles. The initial number of DIB components and their radial velocity were guided by HI 21 cm emission spectra, or, when available in the spectral range, IS neutral sodium absorption lines. For NaI, radial velocities of NaI lines and DIBs were maintained linked during a global simultaneous fit. In parallel, stellar distances and extinctions were estimated self-consistently by means of a 2D Bayesian method from spectroscopically-derived stellar parameters and photometric data. Results: We have analyzed Gaia-ESO Survey (GES) spectra of 225 stars that probe between ~2 and 10 kpc long LOS in five different regions of the Milky Way. The targets are the two CoRoT fields, two open clusters (NGC 4815 and γ Vel), and the Galactic bulge. Two OGLE fields toward the bulge observed before the GES are also included (205 target stars). Depending on the observed spectral intervals, we extracted one or more of the following DIBs: λλ 6283.8, 6613.6, and 8620.4. For each field, we compared the DIB strengths with the Bayesian distances and extinctions, and the DIB Doppler velocities with the HI emission spectra. Conclusions: For all fields, the DIB strength and the target extinction are well correlated. For targets that are widely distributed in distance, marked steps in DIBs and extinction radial distance profiles match each other and broadly correspond to the

  14. Detection of Diffuse Interstellar Bands in the z=0.5 Damped Lyman alpha system towards AO 0235+164

    CERN Document Server

    York, B A; Lawton, B; Churchill, C W; Snow, T P; Johnson, R A; Ryan, S G; York, Brian A.; Ellison, Sara L.; Lawton, Brandon; Churchill, Christopher W.; Snow, Theodore P.; Johnson, Rachel A.; Ryan, Sean G.

    2006-01-01

    We report the first detection of the 5705 and 5780 A Diffuse Interstellar Bands (DIBs) in a moderate redshift Damped Lyman alpha (DLA) system. We measure a rest frame equivalent width of 63.2 +- 8.7 mA for the 5705 and 216+-9 mA for the 5780 A feature in the z_abs 0.524 DLA towards AO 0235+164 and derive limits for the equivalent widths of the bands at 5797, 6284, and 6613 A. The equivalent width of the 5780 band is lower than would be expected based on the Galactic correlation of DIB strength with N(HI), but is in good agreement with the correlation with E(B-V). The relative strengths of the 5780 and 6284 A DIBs are inconsistent with all Galactic and extragalactic sightlines, except one Small Magellanic Cloud wing sightline towards Sk 143. However, the relative strengths of the 5705 and 5780 A DIBs are consistent with the Galactic relation, indicating that the relative strengths of these bands may be less sensitive to environment or that they may be associated with a similar carrier. The detection of DIBs at...

  15. Dust evolution, a global view: II. Top-down branching, nanoparticle fragmentation and the mystery of the diffuse interstellar band carriers

    Science.gov (United States)

    Jones, A. P.

    2016-12-01

    The origin of the diffuse interstellar bands (DIBs), one of the longest-standing mysteries of the interstellar medium (ISM), is explored within the framework of The Heterogeneous dust Evolution Model for Interstellar Solids (THEMIS). The likely nature of the DIB carriers and their evolution is here explored within the framework of the structures and sub-structures inherent to doped hydrogenated amorphous carbon grains in the ISM. Based on the natural aromatic-rich moieties (asphaltenes) recovered from coal and oil, the likely structure of their interstellar analogues is investigated within the context of the diffuse band problem. It is here proposed that the top-down evolution of interstellar carbonaceous grains, and, in particular, a-C(:H) nanoparticles, is at the heart of the formation and evolution of the DIB carriers and their associations with small molecules and radicals, such as C2, C3, CH and CN. It is most probable that the DIBs are carried by dehydrogenated, ionized, hetero-cyclic, olefinic and aromatic-rich moieties that form an integral part of the contiguous structure of hetero-atom-doped hydrogenated amorphous carbon nanoparticles and their daughter fragmentation products. Within this framework, it is proposed that polyene structures in all their variants could be viable DIB carrier candidates.

  16. Diffuse Interstellar Bands and the Ultraviolet Extinction Curves: The Missing Link Revisited

    Science.gov (United States)

    Xiang, F. Y.; Li, Aigen; Zhong, J. X.

    2017-01-01

    A large number of interstellar absorption features at ˜4000 Å-1.8 μm, known as the “diffuse interstellar bands” (DIBs), remains unidentified. Most recent works relate them to large polycyclic aromatic hydrocarbon (PAH) molecules or ultrasmall carbonaceous grains which are also thought to be responsible for the 2175 \\mathringA extinction bump and/or the far-ultraviolet (UV) extinction rise at {λ }-1> 5.9 μ {{{m}}}-1. Therefore, one might expect some relation between UV extinction and DIBs. Such a relationship, if established, could put important constraints on the carrier of DIBs. Over the past four decades, whether DIBs are related to the shape of the UV extinction curves has been extensively investigated. However, the results are often inconsistent, partly due to the inconsistencies in characterizing UV extinction. Here we re-examine the connection between the UV extinction curve and DIBs. We compile the extinction curves and the equivalent widths of 40 DIBs along 97 sightlines. We decompose the extinction curve into three Drude-like functions composed of the visible/near-infrared component, the 2175 \\mathringA bump, and the far-UV (FUV) extinction at {λ }-1> 5.9 μ {{{m}}}-1. We argue that the wavelength-integrated FUV extinction derived from this decomposition technique best measures the strength of the FUV extinction. No correlation is found between the FUV extinction and most (˜90%) of the DIBs. We have also shown that the color excess E(1300{--}1700), the extinction difference at 1300 and 1700 \\mathringA often used to measure the strength of the FUV extinction, does not correlate with DIBs. Finally, we confirm the earlier findings of no correlation between the 2175 \\mathringA bump and DIBs or between the 2175 \\mathringA bump and the FUV extinction. Dedicated to J. Mayo Greenberg (1922.1.14-2001.11.29) and Naomi Greenberg (1923.4.23-2015.8.19), who had always been a source of inspiration.

  17. VLT/UVES Observations of Interstellar Molecules and Diffuse Bands in the Magellanic Clouds

    CERN Document Server

    Welty, D E; Gredel, R; Lambert, D L; Thorburn, J A

    2006-01-01

    We discuss the abundances of interstellar CH, CH+, and CN in the Magellanic Clouds (MC), derived from spectra of 7 SMC and 13 LMC stars obtained (mostly) with the VLT/UVES. CH and/or CH+ are detected toward 3 SMC and 9 LMC stars; CN is detected toward 2 stars. In the MC, the CH/H2 ratio is comparable to that found for diffuse Galactic molecular clouds in some sight lines, but is lower by factors up to 10-15 in others. The abundance of CH in the MC thus appears to depend on local physical conditions -- and not just on metallicity. The observed relationships between the column density of CH and those of CN, CH+, Na I, and K I in the MC are generally consistent with the trends observed in our Galaxy. Using existing data for the rotational populations of H2, we estimate temperatures, radiation field strengths, and local hydrogen densities for the diffuse molecular gas. Densities estimated from N(CH), assuming that CH is produced via steady-state gas-phase reactions, are considerably higher; much better agreement ...

  18. Modeling Linear Molecules as Carriers of the λ5797 Å and λ6613 Å Diffuse Interstellar Bands

    Science.gov (United States)

    Huang, Jane; Oka, Takeshi

    2014-06-01

    Electronic transitions of polar linear molecules have been modeled and compared to archival high resolution spectra of the diffuse interstellar bands (DIBs) at 5797 and 6613 Å. These two bands are notable for fine structure that has most commonly been attributed to the rotational structure of electronic transitions of gas-phase molecules. Most strikingly, the 5797 DIB has a sharp, narrow center peak that is characteristic of the Q branch of parallel transitions with non-zero Λ. This work is also motivated by Oka et al.'s analysis of the anomalously extended redward tails seen in certain DIBs toward Herschel 36, which are reminiscent of electronic transitions of polar linear molecules at high radiative temperatures. The determination of rotational distributions, which includes radiative and collisional effects, is based on the model presented in the earlier work. Thus far, the most promising models are a ^2Π ← ^2Π transition for the 5797 DIB and a ^2Δ ← ^2Π transition for the 6613 DIB, with the effects of spin-orbit coupling examined in each case. The degree of consistency of these transitions with respect to the anomalous DIBs toward Herschel 36 is also discussed. Sarre, P. J., Miles, J. R., Kerr, T. H. et al. 1995, MNRAS, 177L 41 Oka, T., Welty, D. E., Johnson, S. et al. 2013, ApJ, 773 42

  19. H2 Molecular Clusters with Embedded Molecules and Atoms as the Source of the Diffuse Interstellar Bands

    Science.gov (United States)

    Bernstein, L. S.; Clark, F. O.; Lynch, D. K.

    2013-05-01

    We suggest that the diffuse interstellar bands (DIBs) arise from absorption lines of electronic transitions in molecular clusters primarily composed of a single molecule, atom, or ion ("seed"), embedded in a single-layer shell of H2 molecules. Less abundant variants of the cluster, including two seed molecules and/or a two-layer shell of H2 molecules, may also occur. The lines are broadened, blended, and wavelength-shifted by interactions between the seed and surrounding H2 shell. We refer to these clusters as contaminated H2 clusters (CHCs). We show that CHC spectroscopy matches the diversity of observed DIB spectral profiles and provides good fits to several DIB profiles based on a rotational temperature of 10 K. CHCs arise from ~centimeter-sized, dirty H2 ice balls, called contaminated H2 ice macro-particles (CHIMPs), formed in cold, dense, giant molecular clouds (GMCs), and later released into the interstellar medium (ISM) upon GMC disruption. Attractive interactions, arising from Van der Waals and ion-induced dipole potentials, between the seeds and H2 molecules enable CHIMPs to attain centimeter-sized dimensions. When an ultraviolet (UV) photon is absorbed in the outer layer of a CHIMP, it heats the icy matrix and expels CHCs into the ISM. While CHCs are quickly destroyed by absorbing UV photons, they are replenished by the slowly eroding CHIMPs. Since CHCs require UV photons for their release, they are most abundant at, but not limited to, the edges of UV-opaque molecular clouds, consistent with the observed, preferred location of DIBs. An inherent property of CHCs, which can be characterized as nanometer size, spinning, dipolar dust grains, is that they emit in the radio-frequency region. We also show that the CHCs offer a natural explanation for the anomalous microwave emission feature in the ~10-100 GHz spectral region.

  20. Studies of Diffuse Interstellar Bands. V. Pairwise Correlations of Eight Strong DIBs and Neutral Hydrogen, Molecular Hydrogen, and Color Excess

    CERN Document Server

    Friedman, Scott D; McCall, Benjamin J; Dahlstrom, Julie; Sonnentrucker, Paule; Welty, Daniel E; Drosback, Meredith M; Hobbs, L M; Rachford, Brian L; Snow, Theodore P

    2010-01-01

    We establish correlations between equivalent widths of eight diffuse interstellar bands (DIBs), and examine their correlations with atomic hydrogen, molecular hydrogen, and EB-V . The DIBs are centered at \\lambda\\lambda 5780.5, 6204.5, 6283.8, 6196.0, 6613.6, 5705.1, 5797.1, and 5487.7, in decreasing order of Pearson’s correlation coefficient with N(H) (here defined as the column density of neutral hydrogen), ranging from 0.96 to 0.82. We find the equivalent width of \\lambda 5780.5 is better correlated with column densities of H than with E(B-V) or H2, confirming earlier results based on smaller datasets. We show the same is true for six of the seven other DIBs presented here. Despite this similarity, the eight strong DIBs chosen are not well enough correlated with each other to suggest they come from the same carrier. We further conclude that these eight DIBs are more likely to be associated with H than with H2 , and hence are not preferentially located in the densest, most UV shielded parts of interste...

  1. Measuring diffuse interstellar bands with cool stars. Improved line lists to model background stellar spectra

    Science.gov (United States)

    Monreal-Ibero, A.; Lallement, R.

    2017-03-01

    Context. Diffuse stellar bands (DIBs) are ubiquitous in stellar spectra. Traditionally, they have been studied through their extraction from hot (early-type) stars because of their smooth continuum. In an era in which there are several ongoing or planned massive Galactic surveys using multi-object spectrographs, cool (late-type) stars constitute an appealing set of targets. However, from the technical point of view, the extraction of DIBs in their spectra is more challenging because of the complexity of the continuum. Aims: In this contribution we provide the community with an improved set of stellar lines in the spectral regions associated with the strong DIBs at λ6196.0, λ6269.8, λ6283.8, and λ6379.3. These lines allow for the creation of better stellar synthetic spectra, reproducing the background emission and a more accurate extraction of the magnitudes associated with a given DIB (e.g., equivalent width, radial velocity). Methods: The Sun and Arcturus were used as representative examples of dwarf and giant stars, respectively. A high quality spectrum for each of them was modeled using TURBOSPECTRUM and the Vienna Atomic Line Database (VALD) stellar line list. The oscillator strength log (gf) and wavelength of specific lines were modified to create synthetic spectra in which the residuals in both the Sun and Arcturus were minimized. Results: The TURBOSPECTRUM synthetic spectra, based on improved line lists, reproduce the observed spectra for the Sun and Arcturus in the mentioned spectral ranges with greater accuracy. Residuals between the synthetic and observed spectra are always ≲10%, which is much better than residuals with previously existing options. We tested the new line lists with some characteristic spectra from a variety of stars, including both giant and dwarf stars, and under different degrees of extinction. As occurred with the Sun and Arcturus, residuals in the fits used to extract the DIB information are smaller when using synthetic spectra

  2. Anomalous Diffuse Interstellar Bands in the Spectrum of Herschel 36. I. Observations of Rotationally Excited CH and CH+ Absorption and Strong, Extended Redward Wings on Several DIBs

    CERN Document Server

    Dahlstrom, Julie; Welty, Daniel E; Oka, Takeshi; Hobbs, L M; Johnson, Sean; Friedman, Scott D; Jiang, Zihao; Rachford, Brian L; Sherman, Reid; Snow, Theodore P; Sonnentrucker, Paule

    2013-01-01

    Anomalously broad diffuse interstellar bands (DIBs) at 5780.5, 5797.1, 6196.0, and 6613.6 A are found in absorption along the line of sight to Herschel 36, the star illuminating the bright Hourglass region of the H II region Messier 8. Interstellar absorption from excited CH+ in the J=1 level and from excited CH in the J=3/2 level is also seen. To our knowledge, neither those excited molecular lines nor such strongly extended DIBs have previously been seen in absorption from interstellar gas. These unusual features appear to arise in a small region near Herschel 36 which contains most of the neutral interstellar material in the sight line. The CH+ and CH in that region are radiatively excited by strong far-IR radiation from the adjacent infrared source Her 36 SE. Similarly, the broadening of the DIBs toward Herschel 36 may be due to radiative pumping of closely spaced high-J rotational levels of relatively small, polar carrier molecules. If this picture of excited rotational states for the DIB carriers is cor...

  3. Towards DIB mapping in galaxies beyond 100 Mpc. A radial profile of the $\\lambda$5780.5 diffuse interstellar band in AM 1353-272 B

    CERN Document Server

    Monreal-Ibero, Ana; Wendt, Martin; Selman, Fernando; Lallement, Rosine; Brinchmann, Jarle; Kamann, Sebastian; Sandin, Christer

    2015-01-01

    Diffuse Interstellar Bands (DIBs) are non-stellar weak absorption features of unknown origin found in the spectra of stars viewed through one or several clouds of Interstellar Medium (ISM). Research of DIBs outside the Milky Way is currently very limited. Specifically spatially resolved investigations of DIBs outside of the Local Group is, to our knowledge, inexistent. Here, we explore the capability of the high sensitivity Integral Field Spectrograph, MUSE, as a tool to map diffuse interstellar bands at distances larger than 100 Mpc. We use MUSE commissioning data for AM 1353-272 B, the member with highest extinction of the "The Dentist's Chair", an interacting system of two spiral galaxies. High signal-to-noise spectra were created by co-adding the signal of many spatial elements distributed in a geometry of concentric elliptical half-rings. We derived decreasing radial profiles for the equivalent width of the $\\lambda$5780.5 DIB both in the receding and approaching side of the companion galaxy up to distan...

  4. Near-Infrared Band Strengths of Molecules Diluted in N2 and H2O Ice Mixtures Relevant to Interstellar and Planetary Ices

    Science.gov (United States)

    Richey, Christina Rae; Gerakines, P.A.

    2012-01-01

    The relative abundances of ices in astrophysical environments rely on accurate laboratory measurements of physical parameters, such as band strengths (or absorption intensities), determined for the molecules of interest in relevant mixtures. In an extension of our previous study on pure-ice samples, here we focus on the near-infrared absorption features of molecules in mixtures with the dominant components of interstellar and planetary ices, H2O and N2. We present experimentally measured near-infrared spectral information (peak positions, widths, and band strengths) for both H2O- and N2-dominated mixtures of CO (carbon monoxide), CO2 (carbon dioxide), CH4 (methane), and NH3 (ammonia). Band strengths were determined during sample deposition by correlating the growth of near-infrared features (10,000-4000 per centimeter, 1-2.5 micrometers) with better-known mid-infrared features (4000-400 per centimeter, 2.5-25 micrometers) at longer wavelengths.

  5. Interstellar Ices

    CERN Document Server

    Boogert, A C A

    2003-01-01

    Currently ~36 different absorption bands have been detected in the infrared spectra of cold, dense interstellar and circumstellar environments. These are attributed to the vibrational transitions of ~17 different molecules frozen on dust grains. We review identification issues and summarize the techniques required to extract information on the physical and chemical evolution of these ices. Both laboratory simulations and line of sight studies are essential. Examples are given for ice bands observed toward high mass protostars, fields stars and recent work on ices in disks surrounding low mass protostars. A number of clear trends have emerged in recent years. One prominent ice component consists of an intimate mixture between H2O, CH3OH and CO2 molecules. Apparently a stable balance exists between low temperature hydrogenation and oxidation reactions on grain surfaces. In contrast, an equally prominent ice component, consisting almost entirely of CO, must have accreted directly from the gas phase. Thermal proc...

  6. Interstellar ice analogs: band strengths of H$_2$O, CO$_2$, CH$_3$OH, and NH$_3$ in the far-infrared region

    CERN Document Server

    Giuliano, B M; Martín-Doménech, R; Dartois, E; Caro, G M Muñoz

    2014-01-01

    We measure the band strengths in the far-infrared region of interstellar ice analogs of astrophysically relevant species, such as H$_2$O, CO$_2$, CH$_3$OH, and NH$_3$, deposited at low temperature (8-10 $\\mathrm{K}$), followed by warm-up, to induce amorphous-crystalline phase transitions when relevant. The spectra of pure H$_2$O, NH$_3$, and CH$_3$OH ices have been measured in the near-, mid- and far-infrared spectroscopic regions using the Interstellar Astrochemistry Chamber (ISAC) ultra-high-vacuum setup. In addition, far-infrared spectra of NH$_3$ and CO$_2$ were measured using a different set-up equipped with a bolometer detector. Band strengths in the far-infrared region were estimated using the corresponding near- and mid-infrared values as a reference. We also performed theoretical calculations of the amorphous and crystalline structures of these molecules using solid state computational programs at density functional theory (DFT) level. Vibrational assignment and mode intensities for these ices were p...

  7. Broad Balmer Wings in BA Hyper/Supergiants Distorted by Diffuse Interstellar Bands: Five Examples in the 30 Doradus Region from the VLT-FLAMES Tarantula Survey

    CERN Document Server

    Walborn, Nolan R; Evans, Christopher J; Taylor, William D; Sabbi, Elena; Barbá, Rodolfo H; Morrell, Nidia I; Apellániz, Jesús Maíz; Sota, Alfredo; Dufton, Philip L; McEvoy, Catherine M; Clark, J Simon; Markova, Nevena; Ulaczyk, Krzysztof

    2015-01-01

    Extremely broad emission wings at H$\\beta$ and H$\\alpha$ have been found in VFTS data for five very luminous BA supergiants in or near 30 Doradus in the Large Magellanic Cloud. The profiles of both lines are extremely asymmetrical, which we have found to be caused by very broad diffuse interstellar bands (DIBs) in the longward wing of H$\\beta$ and the shortward wing of H$\\alpha$. These DIBs are well known to interstellar but not to many stellar specialists, so that the asymmetries may be mistaken for intrinsic features. The broad emission wings are generally ascribed to electron scattering, although we note difficulties for that interpretation in some objects. Such profiles are known in some Galactic hyper/supergiants and are also seen in both active and quiescent Luminous Blue Variables. No prior or current LBV activity is known in these 30 Dor stars, although a generic relationship to LBVs is not excluded; subject to further observational and theoretical investigation, it is possible that these very luminou...

  8. Ultrafast studies on the photophysics of matrix-isolated radical cations of polycyclic aromatic hydrocarbons: implications for the Diffuse Interstellar Bands (DIB) problem

    CERN Document Server

    Zhao, L; Shkrob, I A; Crowell, R A; Pommeret, S; Chronister, E L; Liu, A D; Trifunac, A D; Zhao, Liang; Lian, Rui; Shkrob, Ilya A.; Crowell, Robert A.; Pommeret, Stanislas; Chronister, Eric L.; Liu, An Dong; Trifunac, Alexander D.

    2004-01-01

    Rapid, efficient deactivation of the photoexcited PAH cations accounts for their remarkable photostability and have important implications for astrochemistry, as these cations are the leading candidates for the species responsible for the diffuse interstellar bands (DIB) observed throughout the Galaxy.Ultrafast relaxation dynamics for photoexcited PAH cations isolated in boric acid glass have been studied using femtosecond and picosecond transient grating spectroscopy. With the exception of perylene+, the recovery kinetics for the ground doublet (D0) states of these radical cations are biexponential, containing a fast (< 200 fs) and a slow (3-20 ps) components. No temperature dependence or isotope effect was observed for the fast component, whereas the slow component exhibits both the H/D isotope effect (1.1-1.3) and strong temperature dependence (15 to 300 K). We suggest that the fast component is due to internal Dn to D0 conversion and the slow component is due to vibrational energy transfer (VET) from a...

  9. Interstellar PAHs

    Science.gov (United States)

    Allamandola, Louis J.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Tremendous strides have been made in our understanding of interstellar material over the past twenty years thanks to significant, parallel developments in two closely related areas: observational astronomy and laboratory astrophysics. Twenty years ago the composition of interstellar dust was largely guessed at and the notion of abundant, gas phase, polycyclic aromatic hydrocarbons (PAHs) anywhere in the interstellar medium (ISM) considered impossible. Today the dust composition of the diffuse and dense ISM is reasonably well constrained and the spectroscopic case for interstellar PAHs, shockingly large molecules by early interstellar chemistry standards, is very strong.

  10. Laboratory Astrochemistry: Interstellar PAHs

    Science.gov (United States)

    Salama, Farid; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are now considered to be an important and ubiquitous component of the organic material in space. PAHs are found in a large variety of extraterrestrial materials such as interplanetary dust particles (IDPs) and meteoritic materials. PAHs are also good candidates to account for the infrared emission bands (UIRs) and the diffuse interstellar optical absorption bands (DIBs) detected in various regions of the interstellar medium. The recent observations made with the Infrared Space Observatory (ISO) have confirmed the ubiquitous nature of the UIR bands and their carriers. PAHs are thought to form through chemical reactions in the outflow from carbon-rich stars in a process similar to soot formation. Once injected in the interstellar medium, PAHs are further processed by the interstellar radiation field, interstellar shocks and energetic particles. A major, dedicated, laboratory effort has been undertaken to measure the physical and chemical characteristics of these complex molecules and their ions under experimental conditions that mimic the interstellar conditions. These measurements require collision-free conditions where the molecules and ions are cold and chemically isolated. The spectroscopy of PAHs under controlled conditions represents an essential diagnostic tool to study the evolution of extraterrestrial PAHs. The Astrochemistry Laboratory program will be discussed through its multiple aspects: (1) objectives, (2) approach and techniques adopted, (3) adaptability to the nature of the problem(s), and (4) results and implications for astronomy as well as for molecular spectroscopy. A review of the data generated through laboratory simulations of space environments and the role these data have played in our current understanding of the properties of interstellar PAHs will be presented. The discussion will also introduce the newest generation of laboratory experiments that are currently being developed in order to provide a

  11. Observations of the Near- to Mid-Infrared Unidentified Emission Bands in the Interstellar Medium of the Large Magellanic Cloud

    CERN Document Server

    Mori, Tamami I; Onaka, Takashi; Kaneda, Hidehiro; Umehata, Hideki; Ohsawa, Ryou

    2011-01-01

    We present the results of near- to mid-infrared slit spectroscopic observations (2.55--13.4 um) of the diffuse emission toward nine positions in the Large Magellanic Cloud with the Infrared Camera (IRC) on board AKARI. The target positions are selected to cover a wide range of the intensity of the incident radiation field. The unidentified infrared bands at 3.3, 6.2, 7.7, 8.6 and 11.3 um are detected toward all the targets, and ionized gas signatures: hydrogen recombination lines and ionic forbidden lines toward three of them. We classify the targets into two groups: those without the ionized gas signatures (Group A) and those with the ionized signatures (Group B). Group A includes molecular clouds and photo-dissociation regions, whereas Group B consists of HII regions. In Group A, the band ratios of I(3.3)/I(11.3), I(6.2)/I(11.3), I(7.7)/$I(11.3) and $I(8.6)/$I(11.3) show positive correlation with the IRAS and AKARI colors, but those of Group B do not follow the correlation. We discuss the results in terms o...

  12. Interstellar Extinction

    Science.gov (United States)

    Gontcharov, G. A.

    2016-12-01

    This review describes our current understanding of interstellar extinction. This differ substantially from the ideas of the 20th century. With infrared surveys of hundreds of millions of stars over the entire sky, such as 2MASS, SPITZER-IRAC, and WISE, we have looked at the densest and most rarefied regions of the interstellar medium at distances of a few kpc from the Sun. Observations at infrared and microwave wavelengths, where the bulk of the interstellar dust absorbs and radiates, have brought us closer to an understanding of the distribution of the dust particles on scales of the Galaxy and the universe. We are in the midst of a scientific revolution in our understanding of the interstellar medium and dust. Progress in, and the key results of, this revolution are still difficult to predict. Nevertheless, (a) a physically justified model has been developed for the spatial distribution of absorbing material over the nearest few kiloparsecs, including the Gould belt as a dust container, which gives an accurate estimate of the extinction for any object just by its galactic coordinates. It is also clear that (b) the interstellar medium contains roughly half the mass of matter in the galactic vicinity of the solar system (the other half is made up of stars, their remnants, and dark matter) and (c) the interstellar medium and, especially, dust, differ substantially in different regions of space and deep space cannot be understood by only studying near space.

  13. Heteroatom-doped hydrogenated amorphous carbons, a-C:H:X 'Volatile' silicon, sulphur and nitrogen depletion, blue photoluminescence, diffuse interstellar bands and ferro-magnetic carbon grain connections (Research Note)

    CERN Document Server

    Jones, A P

    2014-01-01

    Context. Hydrogenated amorphous carbons, a-C:H, can incorporate a variety of heteroatoms, which can lead to interesting effects. Aims. To investigate the doping of interstellar a-C:H grains with, principally, Si, O, N and S atoms within the astrophysical context. Methods. A search of the literature on doped a-C:H reveals a number of interesting phenomena of relevance to astrophysics. Results. X dopants in a-C:H:X materials can affect the sp3/sp2 ratio (X = Si, O and N), lead to blue photoluminescence (undoped or X = N), induce ferromagnetic-like behaviour (X = N and S) or simply be incorporated (depleted) into the structure (X = Si, O, N and S). Si and N atoms could also incorporate into fullerenes, possibly forming colour-centres that could mimic diffuse interstellar bands. Conclusions. Doped a-C:H grains could explain several dust-related conundrums, such as: 'volatile' Si in photo-dissociation regions, S and N depletion in molecular clouds, blue luminescence, some diffuse interstellar bands and ferromagnet...

  14. Chemical composition of interstellar dust

    Science.gov (United States)

    Das, Ankan; Chakrabarti, Sandip Kumar; Majumdar, Liton; Sahu, Dipen

    Study of chemical evolution of interstellar medium is well recognized to be a challenging task. Interstellar medium (ISM) is a rich reservoir of complex molecules. So far, around 180 gas phase molecules and around 20 molecular species on the interstellar dust have been detected in various regions of ISM, especially in regions of star formation. In last decade, it was well established that gas phase reactions alone cannot explain molecular abundances in ISM. Chemical reactions which occur on interstellar dust grains are essential to explain formation of several molecules especially hydrogenated species including simplest and most abundant molecule H2. Interstellar grains provide surface for accreted species to meet and react. Therefore, an understanding of formation of molecules on grain surfaces is of prime importance. We concentrate mainly on water, methanol, carbon dioxide, which constitute nearly 90% of the grain mantle. These molecules are detected on grain surface due to their strong absorption bands arising out of multiple vibrational modes. Water is the most abundant species (with a surface coverage >60% ) on a grain in dense interstellar medium. CO2 is second most abundant molecule in interstellar medium with an abundance of around 20% with respect to H2O. However, this can vary from cloud to cloud. In clouds like W 33A it could be even less than 5% of water abundance. The next most abundant molecule is CO, which is well studied ice with an abundance varying between 2%\\ to 15% of water. Methanol (CH3OH) is also very abundant having abundance 2% to 30% of water. Measurement of water deuterium fractionation is a relevant tool for understanding mechanisms of water formation and evolution from prestellar phase to formation of planets and comets. We are also considering deuterated species in our simulation. We use Monte Carlo method (considering multilayer regime) to mimic the exact scenario. We study chemical evolution of interstellar grain mantle by varying

  15. Interstellar Extinction Law toward the Galactic Center III: J, H, Ks bands in the 2MASS and the MKO systems, and 3.6, 4.5, 5.8, 8.0 micron in the Spitzer/IRAC system

    CERN Document Server

    Nishiyama, Shogo; Hatano, Hirofumi; Kato, Daisuke; Tanabe, Toshihiko; Sugitani, Koji; Nagata, Tetsuya

    2009-01-01

    We have determined interstellar extinction law toward the Galactic center (GC) at the wavelength from 1.2 to 8.0 micron, using point sources detected in the IRSF/SIRIUS near-infrared survey and those in the 2MASS and Spitzer/IRAC/GLIMPSE II catalogs. The central region |l| 3 micron from a simple extrapolation of the power-law extinction at shorter wavelengths, in accordance with recent studies. The extinction law in the 2MASS JHKs bands has also been calculated, and a good agreement with that in the MKO system is found. In nearby molecular clouds and diffuse interstellar medium, the lack of reliable measurements of the total to selective extinction ratios hampers unambiguous determination of the extinction law; however, observational results toward these lines of sight cannot be reconciled with a single extinction law.

  16. Interstellar holography

    NARCIS (Netherlands)

    Walker, M. A.; Koopmans, L. V. E.; Stinebring, D. R.; van Straten, W.

    2008-01-01

    The dynamic spectrum of a radio pulsar is an in-line digital hologram of the ionized interstellar medium. It has previously been demonstrated that such holograms permit image reconstruction, in the sense that one can determine an approximation to the complex electric field values as a function of Do

  17. ANOMALOUS DIFFUSE INTERSTELLAR BANDS IN THE SPECTRUM OF HERSCHEL 36. I. OBSERVATIONS OF ROTATIONALLY EXCITED CH AND CH{sup +} ABSORPTION AND STRONG, EXTENDED REDWARD WINGS ON SEVERAL DIBs

    Energy Technology Data Exchange (ETDEWEB)

    Dahlstrom, Julie [Carthage College, 2001 Alford Park Dr., Kenosha, WI 53140 (United States); York, Donald G.; Welty, Daniel E.; Oka, Takeshi; Johnson, Sean; Jiang Zihao; Sherman, Reid [University of Chicago, Astronomy and Astrophysics Center, 5640 S. Ellis Avenue, Chicago, IL 60637 (United States); Hobbs, L. M. [University of Chicago, Yerkes Observatory, Williams Bay, WI 53191 (United States); Friedman, Scott D.; Sonnentrucker, Paule [Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218 (United States); Rachford, Brian L. [Department of Physics, Embry-Riddle Aeronautical University, 3700 Willow Creek Road, Prescott, AZ 86301 (United States); Snow, Theodore P., E-mail: jdahlstrom1@carthage.edu [University of Colorado, CASA-Campus Box 389, Boulder, CO 80309 (United States)

    2013-08-10

    Anomalously broad diffuse interstellar bands (DIBs) at 5780.5, 5797.1, 6196.0, and 6613.6 A are found in absorption along the line of sight to Herschel 36, the star illuminating the bright Hourglass region of the H II region Messier 8. Interstellar absorption from excited CH{sup +} in the J = 1 level and from excited CH in the J = 3/2 level is also seen. To our knowledge, neither those excited molecular lines nor such strongly extended DIBs have previously been seen in absorption from interstellar gas. These unusual features appear to arise in a small region near Herschel 36 which contains most of the neutral interstellar material in the sight line. The CH{sup +} and CH in that region are radiatively excited by strong far-IR radiation from the adjacent infrared source Her 36 SE. Similarly, the broadening of the DIBs toward Herschel 36 may be due to radiative pumping of closely spaced high-J rotational levels of relatively small, polar carrier molecules. If this picture of excited rotational states for the DIB carriers is correct and applicable to most DIBs, the 2.7 K cosmic microwave background may set the minimum widths (about 0.35 A) of known DIBs, with molecular processes and/or local radiation fields producing the larger widths found for the broader DIBs. Despite the intense local UV radiation field within the cluster NGC 6530, no previously undetected DIBs stronger than 10 mA in equivalent width are found in the optical spectrum of Herschel 36, suggesting that neither dissociation nor ionization of the carriers of the known DIBs by this intense field creates new carriers with easily detectable DIB-like features. Possibly related profile anomalies for several other DIBs are noted.

  18. Infrared emission from interstellar PAHs

    Science.gov (United States)

    Allamandola, L. J.; Tielens, A. G. G. M.; Barker, J. R.

    1987-01-01

    The mid-IR absorption and Raman spectra of polycyclic aromatic hydrocarbons (PAHs) and the mechanisms determining them are reviewed, and the implications for observations of similar emission spectra in interstellar clouds are considered. Topics addressed include the relationship between PAHs and amorphous C, the vibrational spectroscopy of PAHs, the molecular emission process, molecular anharmonicity, and the vibrational quasi-continuum. Extensive graphs, diagrams, and sample spectra are provided, and the interstellar emission bands are attributed to PAHs with 20-30 C atoms on the basis of the observed 3.3/3.4-micron intensity ratios.

  19. INTERSTELLAR TURBULENCE

    Directory of Open Access Journals (Sweden)

    D. Falceta-Gonçalves

    2011-01-01

    Full Text Available The Interstellar Medium (ISM is a complex, multi-phase system, where the history of the stars occurs. The processes of birth and death of stars are strongly coupled to the dynamics of the ISM. The observed chaotic and diffusive motions of the gas characterize its turbulent nature. Understanding turbulence is crucial for understanding the star-formation process and the energy-mass feedback from evolved stars. Magnetic fields, threading the ISM, are also observed, making this effort even more difficult. In this work, I briefly review the main observations and the characterization of turbulence from these observable quantities. Following on, I provide a review of the physics of magnetized turbulence. Finally, I will show the main results from theoretical and numerical simulations, which can be used to reconstruct observable quantities, and compare these predictions to the observations.

  20. On the Nature of Interstellar Grains

    Science.gov (United States)

    Hoyle, F.; Wickramasinghe, C.

    Data on interstellar extinction are interpreted to imply an identification of interstellar grains with naturally freeze-dried bacteria and algae. The total mass of such bacterial and algal cells in the galaxy is enormous, ~1040 g. The identification is based on Mie scattering calculations for an experimentally determined size distribution of bacteria. Agreement between our model calculations and astronomical data is remarkably precise over the wavelength intervals 1 μ-1 pigments. The strongest of the diffuse interstellar bands are provisionally assigned to carotenoid-chlorophyll pigment complexes such as exist in algae and pigmented bacteria. The λ2200 Å interstellar absorption feature could be due to `degraded' cellulose strands which form spherical graphitic particles, but could equally well be due to protein-lipid-nucleic acid complexes in bacteria and viruses. Interstellar extinction at wavelengths λ < 1800 Å could be due to scattering by virus particles.

  1. Near-Infrared Band Strengths of Molecules Diluted in N2 and H20 Ice Mixtures Relevant to Interstellar and Planetary Ices

    Science.gov (United States)

    Richey, C. R.; Richey, Christina R.

    2012-01-01

    In order to determine the column density of a component of an ice from its infrared absorption features, the strengths of these features must be known. The peak positions, widths, profiles, and strengths of a certain ice component's infrared absorption features are affected be the overall composition of the ice. Many satellites within the solar system have surfaces that are dominated by H2O or N2 and ices in the interstellar medium (ISM) are primarily composed of H2O. The experiments presented here focus on the near-infrared absorption features of CO, CO2, CH4, and NH3 (nu=10,000-4,000/cm, lambda=1-2.5 microns) and the effects of diluting these molecules in N2 or H2O ice (mixture ratio of 5:1). This is a continuation of previous results published by our research group.

  2. PAHs in Translucent Interstellar Clouds

    Science.gov (United States)

    Salama, Farid; Galazutdinov, G.; Krelowski, J.; Biennier, L.; Beletsky, Y.; Song, I.

    2011-05-01

    We discuss the proposal of relating the origin of some of the diffuse interstellar bands (DIBs) to neutral polycyclic aromatic hydrocarbons (PAHs) present in translucent interstellar clouds. The spectra of several cold, isolated gas-phase PAHs have been measured in the laboratory under experimental conditions that mimic the interstellar conditions and are compared with an extensive set of astronomical spectra of reddened, early type stars. This comparison provides - for the first time - accurate upper limits for the abundances of specific PAH molecules along specific lines-of-sight. Something that is not attainable from IR observations alone. The comparison of these unique laboratory data with high resolution, high S/N ratio astronomical observations leads to two major findings: (1) a finding specific to the individual molecules that were probed in this study and, which leads to the clear and unambiguous conclusion that the abundance of these specific neutral PAHs must be very low in the individual translucent interstellar clouds that were probed in this survey (PAH features remain below the level of detection) and, (2) a general finding that neutral PAHs exhibit intrinsic band profiles that are similar to the profile of the narrow DIBs indicating that the carriers of the narrow DIBs must have close molecular structure and characteristics. This study is the first quantitative survey of neutral PAHs in the optical range and it opens the way for unambiguous quantitative searches of PAHs in a variety of interstellar and circumstellar environments. // Reference: F. Salama et al. (2011) ApJ. 728 (1), 154 // Acknowledgements: F.S. acknowledges the support of the NASA's Space Mission Directorate APRA Program. J.K. acknowledges the financial support of the Polish State (grant N203 012 32/1550). The authors are deeply grateful to the ESO archive as well as to the ESO staff members for their active support.

  3. Molecular Spectroscopy in Astrophysics: Interstellar PAHs

    Science.gov (United States)

    Salama, Farid; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are now considered to be an important and ubiquitous component of the organic material in space. PAHs are found in a large variety of extraterrestrial materials such as interplanetary dust particles (IDPs) and meteoritic materials. PAHs are also good candidates to account for the infrared emission bands (UIRs) and the diffuse interstellar optical absorption bands (DIBs) detected in various regions of the interstellar medium. The recent observations made with the Infrared Space Observatory (ISO) have confirmed the ubiquitous nature of the UIR bands and their carriers. PAHs are thought to form through chemical reactions in the outflow from carbon-rich stars in a process similar to soot formation. Once injected in the interstellar medium, PAHs are further processed by the interstellar radiation field, interstellar shocks and energetic particles. A long-term laboratory effort has been undertaken to measure the physical and chemical characteristics of these carbon molecules and their ions under experimental conditions that mimic the interstellar conditions. These measurements require collision-free conditions where the molecules and ions are cold and chemically isolated. The spectroscopy of PAHs under controlled conditions represents an essential diagnostic tool to study the evolution of extraterrestrial PAHs. The laboratory results will be discussed as well as the implications for astronomy and for molecular spectroscopy. A review of the data generated through laboratory simulations of space environments and the role these data have played in our current understanding of the properties of interstellar PAHs will be presented. We will also present the new generation of laboratory experiments that are currently being developed in order to provide a closer simulation of space environments and a better support to space missions.

  4. Interstellar Molecules Their Laboratory and Interstellar Habitat

    CERN Document Server

    Yamada, Koichi M T

    2011-01-01

    This book deals with the astrophysics and spectroscopy of the interstellar molecules. In the introduction, overview and history of interstellar observations are described in order to help understanding how the modern astrophysics and molecular spectroscopy have been developed interactively. The recent progress in the study of this field, after the 4th Cologne-Bonn-Zermatt symposium 2003 is briefly summarized. Furthermore, the basic knowledge of molecular spectroscopy, which is essential to correctly comprehend the astrophysical observations, is presented in a compact form.

  5. Interstellar grain chemistry and organic molecules

    Science.gov (United States)

    Allamandola, L. J.; Sandford, S. A.

    1990-01-01

    The detection of prominant infrared absorption bands at 3250, 2170, 2138, 1670 and 1470 cm(-1) (3.08, 4.61, 4.677, 5.99 and 6.80 micron m) associated with molecular clouds show that mixed molecular (icy) grain mantles are an important component of the interstellar dust in the dense interstellar medium. These ices, which contain many organic molecules, may also be the production site of the more complex organic grain mantles detected in the diffuse interstellar medium. Theoretical calculations employing gas phase as well as grain surface reactions predict that the ices should be dominated only by the simple molecules H2O, H2CO, N2, CO, O2, NH3, CH4, possibly CH3OH, and their deuterated counterparts. However, spectroscopic observations in the 2500 to 1250 cm(-1)(4 to 8 micron m) range show substantial variation from source reactions alone. By comparing these astronomical spectra with the spectra of laboratory-produced analogs of interstellar ices, one can determine the composition and abundance of the materials frozen on the grains in dense clouds. Experiments are described in which the chemical evolution of an interstellar ice analog is determined during irradiation and subsequent warm-up. Particular attention is paid to the types of moderately complex organic materials produced during these experiments which are likely to be present in interstellar grains and cometary ices.

  6. Interstellar Solid Hydrogen

    CERN Document Server

    Lin, Ching Yeh; Walker, Mark A

    2011-01-01

    We consider the possibility that solid molecular hydrogen is present in interstellar space. If so cosmic-rays and energetic photons cause ionisation in the solid leading to the formation of H6+. This ion is not produced by gas-phase reactions and its radiative transitions therefore provide a signature of solid H2 in the astrophysical context. The vibrational transitions of H6+ are yet to be observed in the laboratory, but we have characterised them in a quantum-theoretical treatment of the molecule; our calculations include anharmonic corrections, which are large. Here we report on those calculations and compare our results with astronomical data. In addition to the H6+ isotopomer, we focus on the deuterated species (HD)3+ which is expected to dominate at low ionisation rates as a result of isotopic condensation reactions. We can reliably predict the frequencies of the fundamental bands for five modes of vibration. For (HD)3+ all of these are found to lie close to some of the strongest of the pervasive mid-in...

  7. Is interstellar archeology possible?

    Science.gov (United States)

    Carrigan, Richard A.

    2012-09-01

    Searching for signatures of cosmic-scale archeological artifacts such as Dyson spheres is an interesting alternative to conventional radio SETI. Uncovering such an artifact does not require the intentional transmission of a signal on the part of the original civilization. This type of search is called interstellar archeology or sometimes cosmic archeology. A variety of interstellar archeology signatures is discussed including non-natural planetary atmospheric constituents, stellar doping, Dyson spheres, as well as signatures of stellar, and galactic-scale engineering. The concept of a Fermi bubble due to interstellar migration is reviewed in the discussion of galactic signatures. These potential interstellar archeological signatures are classified using the Kardashev scale. A modified Drake equation is introduced. With few exceptions interstellar archeological signatures are clouded and beyond current technological capabilities. However SETI for so-called cultural transmissions and planetary atmosphere signatures are within reach.

  8. Interstellar C2 Molecule as Seen in HST/STIS Data

    CERN Document Server

    Dyrka, M; Pawlikowski, M; Dyrka, Marcin; Wszo{\\l}ek, Bogdan; Pawlikowski, Micha l

    2006-01-01

    Carbon chains are sometimes considered as possible carriers of some diffuse interstellar bands. Spectroscopic observations in UV band carried by spectrometer STIS fed with HST, give us the possibility to detect many interstellar molecules. We focused our attention on C2 molecule and we detected it in spectra of three reddened stars (HD27778, HD147933, HD207198). Interstellar molecule C2 was detected as a set of absorption lines around 2313 angstroms.

  9. The galactic interstellar medium

    CERN Document Server

    Burton, WB; Genzel, R

    1992-01-01

    This volume contains the papers of three extended lectures addressing advanced topics in astronomy and astrophysics. The topics discussed include the most recent observational data on interstellar matter outside our galaxy and the physics and chemistry of molecular clouds.

  10. Interstellar organic chemistry.

    Science.gov (United States)

    Sagan, C.

    1972-01-01

    Most of the interstellar organic molecules have been found in the large radio source Sagittarius B2 toward the galactic center, and in such regions as W51 and the IR source in the Orion nebula. Questions of the reliability of molecular identifications are discussed together with aspects of organic synthesis in condensing clouds, degradational origin, synthesis on grains, UV natural selection, interstellar biology, and contributions to planetary biology.

  11. Interstellar organic chemistry.

    Science.gov (United States)

    Sagan, C.

    1972-01-01

    Most of the interstellar organic molecules have been found in the large radio source Sagittarius B2 toward the galactic center, and in such regions as W51 and the IR source in the Orion nebula. Questions of the reliability of molecular identifications are discussed together with aspects of organic synthesis in condensing clouds, degradational origin, synthesis on grains, UV natural selection, interstellar biology, and contributions to planetary biology.

  12. Facts and Artifacts in Interstellar Diamond Spectra

    Science.gov (United States)

    Mutschke, H.; Dorschner, J.; Henning, T.; Jager, C.; Ott, U.

    1995-12-01

    Absorption spectra of presolar diamonds extracted from the Murchison meteorite have been measured in the extended wavelength range 0.2--500 mu m in order to make available optical properties of this supposed component of interstellar carbon dust. In contrast to terrestrial natural and synthetic diamonds, spectra of the meteoritic diamonds show prominent bands in the middle-IR. In this Letter, experimental evidence is presented that the OH band at 3200 cm-1 and the CH bands in the 2800--3000 cm-1 range are not intrinsic features of the diamonds and that the band at 1100 cm-1 contains an artificial component due to the extraction procedure. In addition, in our spectra a conspicuous band at 120 cm-1 was found. If the intrinsic character of this band, which, up to now, is unidentified, is confirmed, it would offer a chance to observe interstellar diamonds, e.g., by the ISO satellite. We encourage laboratory astrophysicists and observers to study this promising possibility.

  13. Interstellar Antifreeze: Ethylene Glycol

    Science.gov (United States)

    Hollis, J. M.; Lovas, F. J.; Jewell, P. R.; Coudert, L. H.

    2002-01-01

    Interstellar ethylene glycol (HOCH2CH2,OH) has been detected in emission toward the Galactic center source Sagittarius B2(N-LMH) by means of several millimeter-wave rotational torsional transitions of its lowest energy conformer. The types and kinds of molecules found to date in interstellar clouds suggest a chemistry that favors aldehydes and their corresponding reduced alcohols-e.g., formaldehyde (H2CO)/methanol (CH3OH), acetaldehyde (CH3CHO)/ethanol (CH3CH2OH). Similarly, ethylene glycol is the reduced alcohol of glycolaldehyde (CH2OHCHO), which has also been detected toward Sgr B2(N-LMH). While there is no consensus as to how any such large complex molecules are formed in the interstellar clouds, atomic hydrogen (H) and carbon monoxide (CO) could form formaldehyde on grain surfaces, but such surface chemistry beyond that point is uncertain. However, laboratory experiments have shown that the gas-phase reaction of atomic hydrogen (H) and solid-phase CO at 10-20 K can produce formaldehyde and methanol and that alcohols and other complex molecules can be synthesized from cometary ice analogs when subject to ionizing radiation at 15 K. Thus, the presence of aldehyde/ reduced alcohol pairs in interstellar clouds implies that such molecules are a product of a low-temperature chemistry on grain surfaces or in grain ice mantles. This work suggests that aldehydes and their corresponding reduced alcohols provide unique observational constraints on the formation of complex interstellar molecules.

  14. The Local Interstellar Medium

    CERN Document Server

    Redfield, S

    2006-01-01

    The Local Interstellar Medium (LISM) is a unique environment that presents an opportunity to study general interstellar phenomena in great detail and in three dimensions. In particular, high resolution optical and ultraviolet spectroscopy have proven to be powerful tools for addressing fundamental questions concerning the physical conditions and three-dimensional (3D) morphology of this local material. After reviewing our current understanding of the structure of gas in the solar neighborhood, I will discuss the influence that the LISM can have on stellar and planetary systems, including LISM dust deposition onto planetary atmospheres and the modulation of galactic cosmic rays through the astrosphere - the balancing interface between the outward pressure of the magnetized stellar wind and the inward pressure of the surrounding interstellar medium. On Earth, galactic cosmic rays may play a role as contributors to ozone layer chemistry, planetary electrical discharge frequency, biological mutation rates, and cl...

  15. Interstellar and circumstellar fullerenes

    CERN Document Server

    Bernard-Salas, J; Jones, A P; Peeters, E; Micelotta, E R; Otsuka, M; Sloan, G C; Kemper, F; Groenewegen, M

    2014-01-01

    Fullerenes are a particularly stable class of carbon molecules in the shape of a hollow sphere or ellipsoid that might be formed in the outflows of carbon stars. Once injected into the interstellar medium (ISM), these stable species survive and are thus likely to be widespread in the Galaxy where they contribute to interstellar extinction, heating processes, and complex chemical reactions. In recent years, the fullerene species C60 (and to a lesser extent C70) have been detected in a wide variety of circumstellar and interstellar environments showing that when conditions are favourable, fullerenes are formed efficiently. Fullerenes are the first and only large aromatics firmly identified in space. The detection of fullerenes is thus crucial to provide clues as to the key chemical pathways leading to the formation of large complex organic molecules in space, and offers a great diagnostic tool to describe the environment in which they reside. Since fullerenes share many physical properties with PAHs, understand...

  16. A Rigorous Attempt to Verify Interstellar Glycine

    Science.gov (United States)

    Snyder, L. E.; Lovas, F. J.; Hollis, J. M.; Friedel, D. N.; Jewell, P. R.; Remijan, A.; Ilyushin, V. V.; Alekseev, E. A.; Dyubko, S. F.

    2004-01-01

    In 2003, Kuan, Charnley, and co-workers reported the detection of interstellar glycine (NH2CH2COOH) based on observations of 27 lines in 19 different spectral bands in one or more of the sources Sgr BP(N-LMH), Orion KL, and W51 e1/e2. They supported their detection report with rotational temperature diagrams for all three sources. In this paper, we present essential criteria which can be used in a straightforward analysis technique to confirm the identity of an interstellar asymmetric rotor such as glycine. We use new laboratory measurements of glycine as a basis for applying this analysis technique, both to our previously unpublished 12 m telescope data and to the previously published SEST data of Nummelin and colleagues. We conclude that key lines necessary for an interstellar glycine identification have not yet been found. We identify several common molecular candidates that should be examined further as more likely carriers of the lines reported as glycine. Finally, we illustrate that rotational temperature diagrams used without the support of correct spectroscopic assignments are not a reliable tool for the identification of interstellar molecules. Subject headings: ISM: abundances - ISM: clouds - ISM: individual (Sagittarius B2[N-

  17. Detection of organic matter in interstellar grains.

    Science.gov (United States)

    Pendleton, Y J

    1997-06-01

    Star formation and the subsequent evolution of planetary systems occurs in dense molecular clouds, which are comprised, in part, of interstellar dust grains gathered from the diffuse interstellar medium (DISM). Radio observations of the interstellar medium reveal the presence of organic molecules in the gas phase and infrared observational studies provide details concerning the solid-state features in dust grains. In particular, a series of absorption bands have been observed near 3.4 microns (approximately 2940 cm-1) towards bright infrared objects which are seen through large column densities of interstellar dust. Comparisons of organic residues, produced under a variety of laboratory conditions, to the diffuse interstellar medium observations have shown that aliphatic hydrocarbon grains are responsible for the spectral absorption features observed near 3.4 microns (approximately 2940 cm-1). These hydrocarbons appear to carry the -CH2- and -CH3 functional groups in the abundance ratio CH2/CH3 approximately 2.5, and the amount of carbon tied up in this component is greater than 4% of the cosmic carbon available. On a galactic scale, the strength of the 3.4 microns band does not scale linearly with visual extinction, but instead increases more rapidly for objects near the Galactic Center. A similar trend is noted in the strength of the Si-O absorption band near 9.7 microns. The similar behavior of the C-H and Si-O stretching bands suggests that these two components may be coupled, perhaps in the form of grains with silicate cores and refractory organic mantles. The ubiquity of the hydrocarbon features seen in the near infrared near 3.4 microns throughout out Galaxy and in other galaxies demonstrates the widespread availability of such material for incorporation into the many newly forming planetary systems. The similarity of the 3.4 microns features in any organic material with aliphatic hydrocarbons underscores the need for complete astronomical observational

  18. Airborne and laboratory studies of interstellar PAHs

    Science.gov (United States)

    Allamandola, L. J.; Sandford, S. A.; Hudgins, D. M.; Witteborn, Fred C.

    1995-01-01

    A brief history of the observations which have led to the hypothesis that polycyclic aromatic hydrocarbons (PAH's) are the carriers of the widespread interstellar emission features near 3050, 1615, '1300' and 890 cm(exp -1) (3.29, 6.2, '7.7', and 11.2 mu m) is presented. The central role of airborne spectroscopy is stressed. The principal reason for the assignment to PAH's was the resemblance of the interstellar emission spectrum to the laboratory absorption spectra of PAH's and PAH-like materials. Since precious little information was available on the properties of PAH's in the forms that are thought to exist under interstellar conditions -isolated and ionized in the emission zones, with the smallest PAH's being dehydrogenated- there was a need for a spectral data base on PAH's taken in these states. Here, the relevant infrared spectroscopic properties of PAH's will be reviewed. These laboratory spectra show that relative band intensities are severely altered and that band frequencies shift. It is shown that these new data alleviate several of the spectroscopic criticisms previously leveled at the hypothesis.

  19. Structural Evolution of Interstellar Polycyclic Aromatic Hydrocarbons

    Science.gov (United States)

    Hammonds, Mark; Candian, Alessandra; Mori, Tamami; Usui, Fumihiko; Onaka, Takashi

    2015-08-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are an important reservoir for molecular carbon in the interstellar medium (ISM), and investigations into their chemistry and behaviour may be important to the understanding of how carbon is processed from simple forms into complex prebiotic molecules such as those detected in chondritic meteorites. In this study, infrared astronomical data from AKARI and other observatories are used together with laboratory and theoretical data to study variations in the structure of emitting PAHs in interstellar environments using spectroscopic decomposition techniques and bands arising from carbon-hydrogen bond vibrations at wavelengths from 3 - 14 microns. Results and inferences are discussed in terms of the processing of large carbonaceous molecules in astrophysical environments.

  20. Interstellar hydrogen sulfide.

    Science.gov (United States)

    Thaddeus, P.; Kutner, M. L.; Penzias, A. A.; Wilson, R. W.; Jefferts, K. B.

    1972-01-01

    Hydrogen sulfide has been detected in seven Galactic sources by observation of a single line corresponding to the rotational transition from the 1(sub 10) to the 1(sub 01) levels at 168.7 GHz. The observations show that hydrogen sulfide is only a moderately common interstellar molecule comparable in abundance to H2CO and CS, but somewhat less abundant than HCN and much less abundant than CO.

  1. VUV spectroscopy of carbon dust analogs: contribution to interstellar extinction

    Science.gov (United States)

    Gavilan, L.; Alata, I.; Le, K. C.; Pino, T.; Giuliani, A.; Dartois, E.

    2016-02-01

    Context. A full spectral characterization of carbonaceous dust analogs is necessary to understand their potential as carriers of observed astronomical spectral signatures such as the ubiquitous UV bump at 217.5 nm and the far-ultraviolet (FUV) rise common to interstellar extinction curves. Aims: Our goal is to study the spectral properties of carbonaceous dust analogs from the FUV to the mid-infrared (MIR) domain. We seek in particular to understand the spectra of these materials in the FUV range, for which laboratory studies are scarce. Methods: We produced analogs to carbonaceous interstellar dust encountered in various phases of the interstellar medium: amorphous hydrogenated carbons (a-C:H), for carbonaceous dust observed in the diffuse interstellar medium, and soot particles, for the polyaromatic component. Analogs to a-C:H dust were produced using a radio-frequency plasma reactor at low pressures, and soot nanoparticles films were produced in an ethylene (C2H4) flame. We measured transmission spectra of these thin films (thickness Kronig inversion. We used these constants for comparison to existing interstellar extinction curves. Conclusions: We extend the spectral measurements of these types of carbonaceous analogs into the VUV and link the spectral features in this range to the 3.4 μm band. We suggest that these two materials might contribute to different classes of interstellar extinction curves.

  2. Detection of buckminsterfullerene emission in the diffuse interstellar medium

    Science.gov (United States)

    Berné, O.; Cox, N. L. J.; Mulas, G.; Joblin, C.

    2017-08-01

    Emission of fullerenes in their infrared vibrational bands has been detected in space near hot stars. The proposed attribution of the diffuse interstellar bands at 9577 and 9632 Å to electronic transitions of the buckminsterfullerene cation (i.e. C) was recently supported by new laboratory data, confirming the presence of this species in the diffuse interstellar medium (ISM). In this Letter, we present the detection, also in the diffuse ISM, of the 17.4 and 18.9 μm emission bands commonly attributed to vibrational bands of neutral C60 . According to classical models that compute the charge state of large molecules in space, C60 is expected to be mostly neutral in the diffuse ISM. This is in agreement with the abundances of diffuse C60 we derive here from observations.

  3. Visualizing Interstellar's Wormhole

    Science.gov (United States)

    James, Oliver; von Tunzelmann, Eugénie; Franklin, Paul; Thorne, Kip S.

    2015-06-01

    Christopher Nolan's science fiction movie Interstellar offers a variety of opportunities for students in elementary courses on general relativity theory. This paper describes such opportunities, including: (i) At the motivational level, the manner in which elementary relativity concepts underlie the wormhole visualizations seen in the movie; (ii) At the briefest computational level, instructive calculations with simple but intriguing wormhole metrics, including, e.g., constructing embedding diagrams for the three-parameter wormhole that was used by our visual effects team and Christopher Nolan in scoping out possible wormhole geometries for the movie; (iii) Combining the proper reference frame of a camera with solutions of the geodesic equation, to construct a light-ray-tracing map backward in time from a camera's local sky to a wormhole's two celestial spheres; (iv) Implementing this map, for example, in Mathematica, Maple or Matlab, and using that implementation to construct images of what a camera sees when near or inside a wormhole; (v) With the student's implementation, exploring how the wormhole's three parameters influence what the camera sees—which is precisely how Christopher Nolan, using our implementation, chose the parameters for Interstellar's wormhole; (vi) Using the student's implementation, exploring the wormhole's Einstein ring and particularly the peculiar motions of star images near the ring, and exploring what it looks like to travel through a wormhole.

  4. Dehydrogenation of polycyclic aromatic hydrocarbons in the diffuse interstellar medium

    CERN Document Server

    Foing, B H

    2000-01-01

    We present a model for the hydrogenation states of Polycyclic Aromatic Hydrocarbons (PAHs) in the diffuse interstellar medium. First, we study the abundance of hydrogenation and charge states of PAHs due to photo-ionization, photo-dissociation in the interstellar UV field, electron recombination and chemical reactions between PAH cations and H or H_2. For PAH cations, we find that the dehydrogenation effects are dominant. The hydrogenation state of PAHs depends strongly on the H density, the size of the molecule and UV field. In diffuse clouds with low H density and normal UV radiation, PAHs containing less than 40 C are completely or strongly dehydrogenated whereas at high H density, they are normally hydrogenated. The partially dehydrogenated species dominate in intermediate density clouds. PAHs above 40 C are quite stable and are fully hydrogenated, which would favor their spectroscopic search in near IR surveys of Diffuse Interstellar Bands (DIBs).

  5. Visualizing Interstellar's Wormhole

    CERN Document Server

    James, Oliver; Franklin, Paul; Thorne, Kip S

    2015-01-01

    Christopher Nolan's science fiction movie Interstellar offers a variety of opportunities for students in elementary courses on general relativity theory. This paper describes such opportunities, including: (i) At the motivational level, the manner in which elementary relativity concepts underlie the wormhole visualizations seen in the movie. (ii) At the briefest computational level, instructive calculations with simple but intriguing wormhole metrics, including, e.g., constructing embedding diagrams for the three-parameter wormhole that was used by our visual effects team and Christopher Nolan in scoping out possible wormhole geometries for the movie. (iii) Combining the proper reference frame of a camera with solutions of the geodesic equation, to construct a light-ray-tracing map backward in time from a camera's local sky to a wormhole's two celestial spheres. (iv) Implementing this map, for example in Mathematica, Maple or Matlab, and using that implementation to construct images of what a camera sees when...

  6. Infrared absorption and emission characteristics of interstellar PAHs

    Science.gov (United States)

    Barker, J. R.; Allamandola, Louis J.; Tielens, Alexander G. G. M.; Barker, J. R.; Barker, J. R.

    1986-01-01

    The mid-infrared interstellar emission spectrum with features at 3.28, 6.2, 7.7, 8.7 and 11.3 microns is discussed in terms of the Polycyclic Aromatic Hydrocarbon (PAH) hypothesis, which is based on the suggestive, but inconclusive comparison between the interstellar emission spectrum with the infrared absorption and Raman spectra of a few PAHs. The fundamental vibrations of PAHs and PAH-like species which determine the IR and Raman properties are discussed. Interstellar IR band emission is due to relaxation from highly vibrationally excited PAHs excited by ultraviolet photons. The excitation/emission process is described and the IR fluorescence from one PAH, chrysene, is traced. Generally, there is sufficient energy to populate several vibrational levels in each mode. Molecular vibrational potentials are anharmonic and emission from these higher levels will fall at lower frequencies and produce weak features to the red of the stronger fundamentals. This process is also described and can account for some spectroscopic details of the interstellar emission spectra previously unexplained. Analysis of the interstellar spectrum shows that PAHs contain between 20 and 30 carbon atoms are responsible for the emission.

  7. A sensitive spectral survey of interstellar features in the near-UV [3050-3700{\\AA}

    CERN Document Server

    Bhatt, Neil Hemant

    2014-01-01

    We present a comprehensive and sensitive unbiased survey of interstellar features in the near-UV range (3050-3700 {\\AA}). We combined a large number of VLT/UVES archival observations of a sample of highly reddened early type stars -- typical diffuse interstellar band (DIB) targets -- and unreddened standards. We stacked the individual observations to obtain a reddened "superspectrum" in the interstellar rest frame with a signal-to-noise (S/N) ratio exceeding 1500. We compared this to the analogous geocentric and stellar rest frame superspectra as well as to an unreddened superspectrum to find interstellar absorption features. We find 30 known features (11 atomic and 19 molecular) and tentatively detect up to 7 new interstellar absorption lines of unknown origin. Our survey is sensitive to narrow and weak features; telluric residuals preclude us from detecting broader features. For each sightline, we measured fundamental parameters (radial velocities, line widths, and equivalent widths) of the detected interst...

  8. Detection of interstellar $CH_{3}$

    CERN Document Server

    Feuchtgruber, H; Van Dishoeck, E F; Wright, C M

    2000-01-01

    Observations with the Short Wavelength Spectrometer (SWS) onboard the {\\it Infrared Space Observatory} (ISO) have led to the first detection of the methyl radical ${\\rm CH_3}$ in the interstellar medium. The $\

  9. Turbulence in the Interstellar Medium

    CERN Document Server

    Falceta-Goncalves, D; Falgarone, E; Chian, A C -L

    2014-01-01

    Turbulence is ubiquitous in the insterstellar medium and plays a major role in several processes such as the formation of dense structures and stars, the stability of molecular clouds, the amplification of magnetic fields, and the re-acceleration and diffusion of cosmic rays. Despite its importance, interstellar turbulence, alike turbulence in general, is far from being fully understood. In this review we present the basics of turbulence physics, focusing on the statistics of its structure and energy cascade. We explore the physics of compressible and incompressible turbulent flows, as well as magnetized cases. The most relevant observational techniques that provide quantitative insights of interstellar turbulence are also presented. We also discuss the main difficulties in developing a three-dimensional view of interstellar turbulence from these observations. Finally, we briefly present what could be the the main sources of turbulence in the interstellar medium.

  10. The Interstellar Conspiracy

    Science.gov (United States)

    Johnson, Les; Matloff, Gregory L.

    2005-01-01

    If we were designing a human-carrying starship that could be launched in the not-too-distant future, it would almost certainly not use a warp drive to instantaneously bounce around the universe, as is done in Isaac Asimov's classic Foundation series or in episodes of Star Trek or Star Wars. Sadly, those starships that seem to be within technological reach could not even travel at high relativistic speeds, as does the interstellar ramjet in Poul Anderson's Tau Zero. Warp-speeds seem to be well outside the realm of currently understood physical law; proton-fusing ramjets may never be technologically feasible. Perhaps fortunately in our terrorist-plagued world, the economics of antimatter may never be attractive for large-scale starship propulsion. But interstellar travel will be possible within a few centuries, although it will certainly not be as fast as we might prefer. If humans learn how to hibernate, perhaps we will sleep our way to the stars, as do the crew in A. E. van Vogt's Far Centaurus. However, as discussed in a landmark paper in The Journal of the British Interplanetary Society, the most feasible approach to transporting a small human population to the planets (if any) of Alpha Centauri is the worldship. Such craft have often been featured in science fiction. See for example Arthur C. Clarke's Rendezvous with Rama, and Robert A. Heinlein's Orphans of the Sky. Worldships are essentially mobile versions of the O Neill free-space habitats. Constructed mostly from lunar and/or asteroidal materials, these solar-powered, multi-kilometer-dimension structures could house 10,000 to 100,000 humans in Earth-approximating environments. Artificial gravity would be provided by habitat rotation, and cosmic ray shielding would be provided by passive methods, such as habitat atmosphere and mass shielding, or magnetic fields. A late 21st century space-habitat venture might support itself economically by constructing large solar-powered satellites to beam energy back to

  11. Discovery of Interstellar CF+

    CERN Document Server

    Neufeld, D A; Menten, K M; Wolfire, M G; Black, J H; Schuller, F; Müller, H; Thorwirth, S; Gusten, R; Philipp, S

    2006-01-01

    We discuss the first astronomical detection of the CF+ (fluoromethylidynium) ion, obtained by observations of the J=1-0 (102.6 GHz), J=2-1 (205.2 GHz) and J=3-2 (307.7 GHz) rotational transitions toward the Orion Bar region. Our search for CF+, carried out using the IRAM 30m and APEX 12m telescopes, was motivated by recent theoretical models that predict CF+ abundances of a few times 1.E-10 in UV-irradiated molecular regions where C+ is present. The CF+ ion is produced by exothermic reactions of C+ with HF. Because fluorine atoms can react exothermically with H2, HF is predicted to be the dominant reservoir of fluorine, not only in well-shielded regions but also in the surface layers of molecular clouds where the C+ abundance is large. The observed CF+ line intensities imply the presence of CF+ column densities of at least 1.E+12 cm-2 over a region of size at least ~ 1 arcmin, in good agreement with theoretical predictions. They provide support for our current theories of interstellar fluorine chemistry, whic...

  12. Interstellar molecular clouds

    Science.gov (United States)

    Bally, J.

    1986-04-01

    The physical properties of the molecular phase of the interstellar medium are studied with regard to star formation and the structure of the Galaxy. Most observations of molecular clouds are made with single-dish, high-surface precision radio telescopes, with the best resolution attainable at 0.2 to 1 arcmin; the smallest structures that can be resolved are of order 10 to the 17th cm in diameter. It is now believed that: (1) most of the mass of the Galaxy is in the form of giant molecular clouds; (2) the largest clouds and those responsible for most massive star formation are concentrated in spiral arms; (3) the molecular clouds are the sites of perpetual star formation, and are significant in the chemical evolution of the Galaxy; (4) giant molecular clouds determine the evolution of the kinematic properties of galactic disk stars; (5) the total gas content is diminishing with time; and (6) most clouds have supersonic internal motions and do not form stars on a free-fall time scale. It is concluded that though progress has been made, more advanced instruments are needed to inspect the processes operating within stellar nurseries and to study the distribution of the molecular clouds in more distant galaxies. Instruments presently under construction which are designed to meet these ends are presented.

  13. Near-infrared absorption spectroscopy of interstellar hydrocarbon grains

    Science.gov (United States)

    Pendleton, Y. J.; Sandford, S. A.; Allamandola, L. J.; Tielens, A. G. G. M.; Sellgren, K.

    1994-01-01

    We present new 3600 - 2700/cm (2.8 - 3.7 micrometer) spectra of objects whose extinction is dominated by dust in the diffuse interstellar medium. The observations presented here augment an ongoing study of the organic component of the diffuse interstellar medium. These spectra contain a broad feature centered near 3300/cm (3.0 micrometers) and/or a feature with a more complex profile near 2950/cm (3.4 micrometers), the latter of which is attributed to saturated aliphatic hydrocarbons in interstellar grains and is the primary interest of this paper. As in our earlier work, the similarity of the absorption bands near 2950/cm (3.4 micrometers) along different lines of sight and the correlation of these features with interstellar extinction reveal that the carrier of this band lies in the dust in the diffuse interstellar medium (DISM). At least 2.5% of the cosmic carbon in the local interstellar medium and 4% toward the Galactic center is tied up in the carrier of the 2950/cm (3.4 micrometer) band. The spectral structure of the diffuse dust hydrocarbon C-H stretch absorption features is reasonably similar to UV photolyzed laboratory ice residues and is quite similar to the carbonaceous component of the Murchison meteorite. The similarity between the DISM and the meteoritic spectrum suggests that some of the interstellar material originally incorporated into the solar nebula may have survived relatively untouched in primitive solar system bodies. Comparisons of the DISM spectrum to hydrogenated amorphous carbon and quenched carbonaceous composite are also presented. The A(sub V)/tau ratio for the 2950/cm (3.4 micrometer) feature is lower toward the Galactic center than toward sources in the local solar neighborhood (approximately 150 for the Galactic center sources vs. approximately 250 for the local ISM sources). A similar trend has been observed previously for silicates in the diffuse medium by Roche & Aitken, suggesting that (1) the silicate and carbonaceous

  14. Interstellar Dust Close to the Sun

    CERN Document Server

    Frisch, Priscilla C

    2012-01-01

    The low density interstellar medium (ISM) close to the Sun and inside of the heliosphere provides a unique laboratory for studying interstellar dust grains. Grain characteristics in the nearby ISM are obtained from observations of interstellar gas and dust inside of the heliosphere and the interstellar gas towards nearby stars. Comparison between the gas composition and solar abundances suggests that grains are dominated by olivines and possibly some form of iron oxide. Measurements of the interstellar Ne/O ratio by the Interstellar Boundary Explorer spacecraft indicate that a high fraction of interstellar oxygen in the ISM must be depleted onto dust grains. Local interstellar abundances are consistent with grain destruction in ~150 km/s interstellar shocks, provided that the carbonaceous component is hydrogenated amorphous carbon and carbon abundances are correct. Variations in relative abundances of refractories in gas suggest variations in the history of grain destruction in nearby ISM. The large observed ...

  15. Depolarization canals and interstellar turbulence

    Science.gov (United States)

    Fletcher, A.; Shukurov, A.

    Recent radio polarization observations have revealed a plethora of unexpected features in the polarized Galactic radio background that arise from propagation effects in the random (turbulent) interstellar medium. The canals are especially striking among them, a random network of very dark, narrow regions clearly visible in many directions against a bright polarized Galactic synchrotron background. There are no obvious physical structures in the ISM that may have caused the canals, and so they have been called Faraday ghosts. They evidently carry information about interstellar turbulence but only now is it becoming clear how this information can be extracted. Two theories for the origin of the canals have been proposed; both attribute the canals to Faraday rotation, but one invokes strong gradients in Faraday rotation in the sky plane (specifically, in a foreground Faraday screen) and the other only relies on line-of-sight effects (differential Faraday rotation). In this review we discuss the physical nature of the canals and how they can be used to explore statistical properties of interstellar turbulence. This opens studies of magnetized interstellar turbulence to new methods of analysis, such as contour statistics and related techniques of computational geometry and topology. In particular, we can hope to measure such elusive quantities as the Taylor microscale and the effective magnetic Reynolds number of interstellar MHD turbulence.

  16. Theory of interstellar medium diagnostics

    Science.gov (United States)

    Fahr, H. J.

    1983-01-01

    The theoretical interpretation of observed interplanetary resonance luminescence patterns is used as one of the must promising methods to determine the state of the local interstellar medium (LISM). However, these methods lead to discrepant results that would be hard to understand in the framework of any physical LISM scenario. Assuming that the observational data are reliable, two possibilities which could help to resolve these discrepancies are discussed: (1) the current modeling of resonance luminescence patterns is unsatisfactory and has to be improved, and (2) the extrapolated interstellar parameters are not indicative of the unperturbed LISM state, but rather designate an intermediate state attained in the outer regions of the solar system. It is shown that a quantitative treatment of the neutral gas-plasma interaction effects in the interface between the heliospheric and the interstellar plasmas is of major importance for the correct understanding of the whole complex.

  17. Interstellar Isotopes: Prospects with ALMA

    Science.gov (United States)

    Charnley Steven B.

    2010-01-01

    Cold molecular clouds are natural environments for the enrichment of interstellar molecules in the heavy isotopes of H, C, N and O. Anomalously fractionated isotopic material is found in many primitive Solar System objects, such as meteorites and comets, that may trace interstellar matter that was incorporated into the Solar Nebula without undergoing significant processing. Models of the fractionation chemistry of H, C, N and O in dense molecular clouds, particularly in cores where substantial freeze-out of molecules on to dust has occurred, make several predictions that can be tested in the near future by molecular line observations. The range of fractionation ratios expected in different interstellar molecules will be discussed and the capabilities of ALMA for testing these models (e.g. in observing doubly-substituted isotopologues) will be outlined.

  18. Laboratory studies of polycyclic aromatic hydrocarbons: the search for interstellar candidates

    CERN Document Server

    Joblin, C; Simon, A; Mulas, G

    2009-01-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are considered as a major constituent of interstellar dust. They have been proposed as the carriers of the Aromatic Infrared Bands (AIBs) observed in emission in the mid-IR. They likely have a significant contribution to various features of the extinction curve such as the 220 nm bump,the far-UV rise and the diffuse interstellar bands. Emission bands are also expected in the far-IR, which are better fingerprints of molecular identity than the AIBs. They will be searched for with the Herschel Space Observatory. Rotational emission is also expected in the mm range for those molecules which carry significant dipole moments. Despite spectroscopic studies in the laboratory, no individual PAH species could be identified. This emphasises the need for an investigation on where interstellar PAHs come from and how they evolve due to environmental conditions: ionisation and dissociation upon UV irradiation, interactions with electrons, gas and dust. There is also evidence for PAH ...

  19. Interstellar Initiative Web Page Design

    Science.gov (United States)

    Mehta, Alkesh

    1999-01-01

    This summer at NASA/MSFC, I have contributed to two projects: Interstellar Initiative Web Page Design and Lenz's Law Relative Motion Demonstration. In the Web Design Project, I worked on an Outline. The Web Design Outline was developed to provide a foundation for a Hierarchy Tree Structure. The Outline would help design a Website information base for future and near-term missions. The Website would give in-depth information on Propulsion Systems and Interstellar Travel. The Lenz's Law Relative Motion Demonstrator is discussed in this volume by Russell Lee.

  20. The Warped Science of Interstellar

    CERN Document Server

    Luminet, Jean-Pierre

    2015-01-01

    The science fiction film, Interstellar, tells the story of a team of astronauts searching a distant galaxy for habitable planets to colonize. Interstellar's story draws heavily from contemporary science. The film makes reference to a range of topics, from established concepts such as fast-spinning black holes, accretion disks, tidal effects, and time dilation, to far more speculative ideas such as wormholes, time travel, additional space dimensions, and the theory of everything. The aim of this article is to decipher some of the scientific notions which support the framework of the movie.

  1. The formation of interstellar jets

    Science.gov (United States)

    Tenorio-Tagle, G.; Canto, J.; Rozyczka, M.

    1988-01-01

    The formation of interstellar jets by convergence of supersonic conical flows and the further dynamical evolution of these jets are investigated theoretically by means of numerical simulations. The results are presented in extensive graphs and characterized in detail. Strong radiative cooling is shown to result in jets with Mach numbers 2.5-29 propagating to lengths 50-100 times their original widths, with condensation of swept-up interstellar matter at Mach 5 or greater. The characteristics of so-called molecular outflows are well reproduced by the simulations of low-Mach-number and quasi-adiabatic jets.

  2. On the question of interstellar travel

    Science.gov (United States)

    Wolfe, J. H.

    1985-01-01

    Arguments are presented which show that motives for interstellar travel by advanced technological civilizations based on an extrapolation of earth's history may be quite invalid. In addition, it is proposed that interstellar travel is so enormously expensive and perhaps so hazardous, that advanced civilizations do not engage in such practices because of the ease of information transfer via interstellar communication.

  3. Experimental interstellar organic chemistry - Preliminary findings

    Science.gov (United States)

    Khare, B. N.; Sagan, C.

    1973-01-01

    Review of the results of some explicit experimental simulation of interstellar organic chemistry consisting in low-temperature high-vacuum UV irradiation of condensed simple gases known or suspected to be present in the interstellar medium. The results include the finding that acetonitrile may be present in the interstellar medium. The implication of this and other findings are discussed.

  4. Experimental interstellar organic chemistry - Preliminary findings

    Science.gov (United States)

    Khare, B. N.; Sagan, C.

    1973-01-01

    Review of the results of some explicit experimental simulation of interstellar organic chemistry consisting in low-temperature high-vacuum UV irradiation of condensed simple gases known or suspected to be present in the interstellar medium. The results include the finding that acetonitrile may be present in the interstellar medium. The implication of this and other findings are discussed.

  5. Interstellar Aldehydes and their corresponding Reduced Alcohols: Interstellar Propanol?

    Science.gov (United States)

    Etim, Emmanuel; Chakrabarti, Sandip Kumar; Das, Ankan; Gorai, Prasanta; Arunan, Elangannan

    2016-07-01

    There is a well-defined trend of aldehydes and their corresponding reduced alcohols among the known interstellar molecules; methanal (CH_2O) and methanol (CH_3OH); ethenone (C_2H_2O) and vinyl alcohol (CH_2CHOH); ethanal (C_2H_4O) and ethanol(C_2H_5OH); glycolaldehyde (C_2H_4O_2) and ethylene glycol(C_2H_6O_2). The reduced alcohol of propanal (CH_3CH_2CHO) which is propanol (CH_3CH_2CH_2OH) has not yet been observed but its isomer; ethyl methyl ether (CH_3CH_2OCH_3) is a known interstellar molecule. In this article, different studies are carried out in investigating the trend between aldehydes and their corresponding reduced alcohols and the deviation from the trend. Kinetically and with respect to the formation route, alcohols could have been produced from their corresponding reduced aldehydes via two successive hydrogen additions. This is plausible because of (a) the unquestionable high abundance of hydrogen, (b) presence of energy sources within some of the molecular clouds and (c) the ease at which successive hydrogen addition reaction occurs. In terms of stability, the observed alcohols are thermodynamically favorable as compared to their isomers. Regarding the formation process, the hydrogen addition reactions are believed to proceed on the surface of the interstellar grains which leads to the effect of interstellar hydrogen bonding. From the studies, propanol and propan-2-ol are found to be more strongly attached to the surface of the interstellar dust grains which affects its overall gas phase abundance as compared to its isomer ethyl methyl ether which has been observed.

  6. Herschel observations of interstellar chloronium

    NARCIS (Netherlands)

    Neufeld, David A.; Roueff, Evelyne; Snell, Ronald L.; Lis, Dariusz; Benz, Arnold O.; Bruderer, Simon; Black, John H.; De Luca, Massimo; Gerin, Maryvonne; Goldsmith, Paul F.; Gupta, Harshal; Indriolo, Nick; Le Bourlot, Jacques; Le Petit, Franck; Larsson, Bengt; Melnick, Gary J.; Menten, Karl M.; Monje, Raquel; Nagy, Zsofia; Phillips, Thomas G.; Sandqvist, Aage; Sonnentrucker, Paule; van der Tak, Floris; Wolfire, Mark G.

    2012-01-01

    Using the Herschel Space Observatory's Heterodyne Instrument for the Far-Infrared, we have observed parachloronium (H2Cl+) toward six sources in the Galaxy. We detected interstellar chloronium absorption in foreground molecular clouds along the sight lines to the bright submillimeter continuum sourc

  7. Stardust Interstellar Preliminary Examination (ISPE)

    Science.gov (United States)

    Westphal, A. J.; Allen, C.; Bajt, S.; Basset, R.; Bastien, R.; Bechtel, H.; Bleuet, P.; Borg, J.; Brenker F.; Bridges, J.

    2009-01-01

    In January 2006 the Stardust sample return capsule returned to Earth bearing the first solid samples from a primitive solar system body, C omet 81P/Wild2, and a collector dedicated to the capture and return o f contemporary interstellar dust. Both collectors were approximately 0.1m(exp 2) in area and were composed of aerogel tiles (85% of the co llecting area) and aluminum foils. The Stardust Interstellar Dust Col lector (SIDC) was exposed to the interstellar dust stream for a total exposure factor of 20 m(exp 2-) day during two periods before the co metary encounter. The Stardust Interstellar Preliminary Examination ( ISPE) is a three-year effort to characterize the collection using no ndestructive techniques. The ISPE consists of six interdependent proj ects: (1) Candidate identification through automated digital microsco py and a massively distributed, calibrated search (2) Candidate extr action and photodocumentation (3) Characterization of candidates thro ugh synchrotronbased FourierTranform Infrared Spectroscopy (FTIR), S canning XRay Fluoresence Microscopy (SXRF), and Scanning Transmission Xray Microscopy (STXM) (4) Search for and analysis of craters in f oils through FESEM scanning, Auger Spectroscopy and synchrotronbased Photoemission Electron Microscopy (PEEM) (5) Modeling of interstell ar dust transport in the solar system (6) Laboratory simulations of h ypervelocity dust impacts into the collecting media

  8. Physical processes in the interstellar medium

    CERN Document Server

    Spitzer, Lyman

    2008-01-01

    Physical Processes in the Interstellar Medium discusses the nature of interstellar matter, with a strong emphasis on basic physical principles, and summarizes the present state of knowledge about the interstellar medium by providing the latest observational data. Physics and chemistry of the interstellar medium are treated, with frequent references to observational results. The overall equilibrium and dynamical state of the interstellar gas are described, with discussions of explosions produced by star birth and star death and the initial phases of cloud collapse leading to star formation.

  9. The Sun's dusty interstellar environment

    Science.gov (United States)

    Sterken, Veerle

    2016-07-01

    The Sun's dusty interstellar environment Interstellar dust from our immediate interstellar neighborhood travels through the solar system at speeds of ca. 26 km/s: the relative speed of the solar system with respect to the local interstellar cloud. On its way, its trajectories are altered by several forces like the solar radiation pressure force and Lorentz force. The latter is due to the charged dust particles that fly through the interplanetary magnetic field. These trajectories differ per particle type and size and lead to varying fluxes and directions of the flow inside of the solar system that depend on location but also on phase in the solar cycle. Hence, these fluxes and directions depend strongly on the configuration of the inner regions and outer regions of the heliosphere. Several missions have measured this dust in the solar system directly. The Ulysses dust detector data encompasses 16 years of intestellar dust fluxes and approximate directions, Stardust captured returned to Earth a few of these particles sucessfully, and finally the Cassini dust detector allowed for compositional information to be obtained from the impacts on the instrument. In this talk, we give an overview of the current status of interstellar dust research through the measurements made inside of the solar system, and we put them in perspective to the knowledge obtained from more classical astronomical means. In special, we focus on the interaction of the dust with the interplanetary magnetic field, and on what we learn about the dust (and the fields) by comparing the available dust data to computer simulations of dust trajectories. Finally, we synthesize the different methods of observation, their results, and give a preview on new research opportunities in the coming year(s).

  10. Interstellar HOCN in the Galactic center region

    CERN Document Server

    Bruenken, S; Martin, S; Verheyen, L; Menten, K M

    2010-01-01

    Aims. Our aim is to confirm the interstellar detection of cyanic acid, HOCN, in the Galactic center clouds. It has previously been tentatively detected only in Sgr B2(OH). Methods. We used a complete line survey of the hot cores Sgr B2(N) and (M) in the 3 mm range, complemented by additional observations carried out with the IRAM 30 m telescope at selected frequencies in the 2 mm band and towards four additional positions in the Sgr B2 cloud complex in the 2 and 3 mm bands. The spectral survey was analysed in the local thermodynamical equilibrium approximation (LTE) by modeling the emission of all identified molecules simultaneously. This allowed us to distinguish weak features of HOCN from the rich line spectrum observed in Sgr B2(N) and (M). Lines of the more stable (by 1.1 eV) isomer isocyanic acid, HNCO, in these sources, as well as those of HOCN and HNCO towards the other positions, were analysed in the LTE approximation as well. Results. Four transitions of HOCN were detected in a quiescent molecular cl...

  11. Interstellar dust. Evidence for interstellar origin of seven dust particles collected by the Stardust spacecraft.

    Science.gov (United States)

    Westphal, Andrew J; Stroud, Rhonda M; Bechtel, Hans A; Brenker, Frank E; Butterworth, Anna L; Flynn, George J; Frank, David R; Gainsforth, Zack; Hillier, Jon K; Postberg, Frank; Simionovici, Alexandre S; Sterken, Veerle J; Nittler, Larry R; Allen, Carlton; Anderson, David; Ansari, Asna; Bajt, Saša; Bastien, Ron K; Bassim, Nabil; Bridges, John; Brownlee, Donald E; Burchell, Mark; Burghammer, Manfred; Changela, Hitesh; Cloetens, Peter; Davis, Andrew M; Doll, Ryan; Floss, Christine; Grün, Eberhard; Heck, Philipp R; Hoppe, Peter; Hudson, Bruce; Huth, Joachim; Kearsley, Anton; King, Ashley J; Lai, Barry; Leitner, Jan; Lemelle, Laurence; Leonard, Ariel; Leroux, Hugues; Lettieri, Robert; Marchant, William; Ogliore, Ryan; Ong, Wei Jia; Price, Mark C; Sandford, Scott A; Sans Tresseras, Juan-Angel; Schmitz, Sylvia; Schoonjans, Tom; Schreiber, Kate; Silversmit, Geert; Solé, Vicente A; Srama, Ralf; Stadermann, Frank; Stephan, Thomas; Stodolna, Julien; Sutton, Stephen; Trieloff, Mario; Tsou, Peter; Tyliszczak, Tolek; Vekemans, Bart; Vincze, Laszlo; Von Korff, Joshua; Wordsworth, Naomi; Zevin, Daniel; Zolensky, Michael E

    2014-08-15

    Seven particles captured by the Stardust Interstellar Dust Collector and returned to Earth for laboratory analysis have features consistent with an origin in the contemporary interstellar dust stream. More than 50 spacecraft debris particles were also identified. The interstellar dust candidates are readily distinguished from debris impacts on the basis of elemental composition and/or impact trajectory. The seven candidate interstellar particles are diverse in elemental composition, crystal structure, and size. The presence of crystalline grains and multiple iron-bearing phases, including sulfide, in some particles indicates that individual interstellar particles diverge from any one representative model of interstellar dust inferred from astronomical observations and theory.

  12. Depolarization canals and interstellar turbulence

    CERN Document Server

    Fletcher, A; Fletcher, Andrew; Shukurov, Anvar

    2006-01-01

    Recent radio polarization observations have revealed a plethora of unexpected features in the polarized Galactic radio background that arise from propagation effects in the random (turbulent) interstellar medium. The canals are especially striking among them, a random network of very dark, narrow regions clearly visible in many directions against a bright polarized Galactic synchrotron background. There are no obvious physical structures in the ISM that may have caused the canals, and so they have been called Faraday ghosts. They evidently carry information about interstellar turbulence but only now is it becoming clear how this information can be extracted. Two theories for the origin of the canals have been proposed; both attribute the canals to Faraday rotation, but one invokes strong gradients in Faraday rotation in the sky plane (specifically, in a foreground Faraday screen) and the other only relies on line-of-sight effects (differential Faraday rotation). In this review we discuss the physical nature o...

  13. Interstellar Grains: 50 Years On

    CERN Document Server

    Wickramasinghe, N Chandra

    2011-01-01

    Our understanding of the nature of interstellar grains has evolved considerably over the past half century with the present author and Fred Hoyle being intimately involved at several key stages of progress. The currently fashionable graphite-silicate-organic grain model has all its essential aspects unequivocally traceable to original peer-reviewed publications by the author and/or Fred Hoyle. The prevailing reluctance to accept these clear-cut priorities may be linked to our further work that argued for interstellar grains and organics to have a biological provenance - a position perceived as heretical. The biological model, however, continues to provide a powerful unifying hypothesis for a vast amount of otherwise disconnected and disparate astronomical data.

  14. One Kilogram Interstellar Colony Mission

    Science.gov (United States)

    Mole, A.

    Small interstellar colony probes based on nanotechnology will become possible long before giant multi-generation ships become affordable. A beam generator and magnetic sail can accelerate a one kg probe to .1 c, braking via the interstellar field can decelerate it, and the field in a distant solar system can allow it to maneuver to an extrasolar planet. A heat shield is used for landing and nanobots emerge to build ever-larger robots and construct colony infrastructure. Humans can then be generated from genomes stored as data in computer memory. Technology is evolving towards these capabilities and should reach the required level in fifty years. The plan appears to be affordable, with the principal cost being the beam generator, estimated at $17 billion.

  15. Ionization in nearby interstellar gas

    Science.gov (United States)

    Frisch, P. C.; Welty, D. E.; York, D. G.; Fowler, J. R.

    1990-01-01

    Due to dielectric recombination, neutral magnesium represents an important tracer for the warm low-density gas around the solar system. New Mg I 2852 absorption-line data from IUE are presented, including detections in a few stars within 40 pc of the sun. The absence of detectable Mg I in Alpha CMa and other stars sets limits on the combined size and electron density of the interstellar cloud which gives rise to the local interstellar wind. For a cloud radius greater than 1 pc and density of 0.1/cu cm, the local cloud has a low fractional ionization, n(e)/n(tot) less than 0.05, if magnesium is undepleted, equilibrium conditions prevail, the cloud temperature is 11,750 K, and 80 percent of the magnesium in the sightline is Mg II.

  16. Ionization in nearby interstellar gas

    Energy Technology Data Exchange (ETDEWEB)

    Frisch, P.C.; Welty, D.E.; York, D.G.; Fowler, J.R. (Chicago Univ., IL (USA) New Mexico State Univ., Las Cruces (USA))

    1990-07-01

    Due to dielectric recombination, neutral magnesium represents an important tracer for the warm low-density gas around the solar system. New Mg I 2852 absorption-line data from IUE are presented, including detections in a few stars within 40 pc of the sun. The absence of detectable Mg I in Alpha CMa and other stars sets limits on the combined size and electron density of the interstellar cloud which gives rise to the local interstellar wind. For a cloud radius greater than 1 pc and density of 0.1/cu cm, the local cloud has a low fractional ionization, n(e)/n(tot) less than 0.05, if magnesium is undepleted, equilibrium conditions prevail, the cloud temperature is 11,750 K, and 80 percent of the magnesium in the sightline is Mg II. 85 refs.

  17. Representing culture in interstellar messages

    Science.gov (United States)

    Vakoch, Douglas A.

    2008-09-01

    As scholars involved with the Search for Extraterrestrial Intelligence (SETI) have contemplated how we might portray humankind in any messages sent to civilizations beyond Earth, one of the challenges they face is adequately representing the diversity of human cultures. For example, in a 2003 workshop in Paris sponsored by the SETI Institute, the International Academy of Astronautics (IAA) SETI Permanent Study Group, the International Society for the Arts, Sciences and Technology (ISAST), and the John Templeton Foundation, a varied group of artists, scientists, and scholars from the humanities considered how to encode notions of altruism in interstellar messages art_science/2003>. Though the group represented 10 countries, most were from Europe and North America, leading to the group's recommendation that subsequent discussions on the topic should include more globally representative perspectives. As a result, the IAA Study Group on Interstellar Message Construction and the SETI Institute sponsored a follow-up workshop in Santa Fe, New Mexico, USA in February 2005. The Santa Fe workshop brought together scholars from a range of disciplines including anthropology, archaeology, chemistry, communication science, philosophy, and psychology. Participants included scholars familiar with interstellar message design as well as specialists in cross-cultural research who had participated in the Symposium on Altruism in Cross-cultural Perspective, held just prior to the workshop during the annual conference of the Society for Cross-cultural Research . The workshop included discussion of how cultural understandings of altruism can complement and critique the more biologically based models of altruism proposed for interstellar messages at the 2003 Paris workshop. This paper, written by the chair of both the Paris and Santa Fe workshops, will explore the challenges of communicating concepts of altruism that draw on both biological and cultural models.

  18. Photodissociation of interstellar N2

    CERN Document Server

    Li, Xiaohu; Visser, Ruud; Ubachs, Wim; Lewis, Brenton R; Gibson, Stephen T; van Dishoeck, Ewine F

    2013-01-01

    Molecular nitrogen is one of the key species in the chemistry of interstellar clouds and protoplanetary disks and the partitioning of nitrogen between N and N2 controls the formation of more complex prebiotic nitrogen-containing species. The aim of this work is to gain a better understanding of the interstellar N2 photodissociation processes based on recent detailed theoretical and experimental work and to provide accurate rates for use in chemical models. We simulated the full high-resolution line-by-line absorption + dissociation spectrum of N2 over the relevant 912-1000 \\AA\\ wavelength range, by using a quantum-mechanical model which solves the coupled-channels Schr\\"odinger equation. The simulated N2 spectra were compared with the absorption spectra of H2, H, CO, and dust to compute photodissociation rates in various radiation fields and shielding functions. The effects of the new rates in interstellar cloud models were illustrated for diffuse and translucent clouds, a dense photon dominated region and a ...

  19. Observations of interstellar C2 toward Chi Oph, HD 154368, 147889 and 149404

    NARCIS (Netherlands)

    Dishoeck, van E.F.; Zeeuw, de P.T.

    1984-01-01

    Interstellar absorption lines of the C2 (2-0) Phillips band at 8750 A have been searched for in the spectra of southern stars. Seventeen lines originating from the lowest eight rotational levels have been detected toward Chi Oph, and eleven lines originating from the lowest five rotational levels to

  20. Observations of interstellar C2 toward Chi Oph, HD 154368, 147889 and 149404

    NARCIS (Netherlands)

    Dishoeck, van E.F.; Zeeuw, de P.T.

    1984-01-01

    Interstellar absorption lines of the C2 (2-0) Phillips band at 8750 A have been searched for in the spectra of southern stars. Seventeen lines originating from the lowest eight rotational levels have been detected toward Chi Oph, and eleven lines originating from the lowest five rotational levels to

  1. Laboratory spectroscopic studies of interstellar ice analogues

    OpenAIRE

    Puletti, F

    2014-01-01

    In recent years, the molecular chemistry in interstellar environments has proven to be far more complex than was initially expected. We live in a molecular universe that is rich with molecules formed both in the gas phase and on the surface of interstellar icy dust grains. Two important classes of interstellar molecules are sulphur-bearing species and complex organic molecules, i.e., molecules containing carbon and containing more than 6 atoms. The former are relevant because of their potenti...

  2. Physics of the interstellar and intergalactic medium

    CERN Document Server

    Draine, Bruce T

    2010-01-01

    This is a comprehensive and richly illustrated textbook on the astrophysics of the interstellar and intergalactic medium--the gas and dust, as well as the electromagnetic radiation, cosmic rays, and magnetic and gravitational fields, present between the stars in a galaxy and also between galaxies themselves. Topics include radiative processes across the electromagnetic spectrum; radiative transfer; ionization; heating and cooling; astrochemistry; interstellar dust; fluid dynamics, including ionization fronts and shock waves; cosmic rays; distribution and evolution of the interstellar medium

  3. Interstellar Extinction by Spheroidal Dust Grains

    OpenAIRE

    Gupta, Ranjan; Mukai, Tadashi; Vaidya, D. B.; Sen, Asoke K.; Okada, Yasuhiko

    2005-01-01

    Observations of interstellar extinction and polarization indicate that the interstellar medium consists of aligned non-spherical dust grains which show variation in the interstellar extinction curve for wavelengths ranging from NIR to UV. To model the extinction and polarization, one cannot use the Mie theory which assumes the grains as solid spheres. We have used a T-matrix based method for computing the extinction efficiencies of spheroidal silicate and graphite grains of different shapes (...

  4. Structure and Dynamics of the Interstellar Medium

    Science.gov (United States)

    Tenorio-Tagle, Guillermo; Moles, Mariano; Melnick, Jorge

    Here for the first time is a book that treats practically all aspects of modern research in interstellar matter astrophysics. 20 review articles and 40 carefully selected and refereed papers give a thorough overview of the field and convey the flavor of enthusiastic colloquium discussions to the reader. The book includes sections on: - Molecular clouds, star formation and HII regions - Mechanical energy sources - Discs, outflows, jets and HH objects - The Orion Nebula - The extragalactic interstellar medium - Interstellar matter at high galactic latitudes - The structure of the interstellar medium

  5. A search for interstellar anthracene toward the Perseus anomalous microwave emission region

    CERN Document Server

    Iglesias-Groth, S; Rebolo, R; Hernandez, J I Gonzalez; Garcia-Hernandez, D A; Lambert, D L

    2010-01-01

    We report the discovery of a new broad interstellar (or circumstellar) band at 7088.8 +- 2.0 \\AA coincident to within the measurement uncertainties with the strongest band of the anthracene cation (C$_{14}$H$_{10} sence of PAH cations and other related hydrogenated carbon molecules which are likely to occur in this type of clouds reinforce the suggestion that electric dipole radiation from fast spinning PAHs is responsible of the anomalous microwave emission detected toward Perseus.

  6. Constraining the Properties of Cold Interstellar Clouds

    Science.gov (United States)

    Spraggs, Mary Elizabeth; Gibson, Steven J.

    2016-01-01

    Since the interstellar medium (ISM) plays an integral role in star formation and galactic structure, it is important to understand the evolution of clouds over time, including the processes of cooling and condensation that lead to the formation of new stars. This work aims to constrain and better understand the physical properties of the cold ISM by utilizing large surveys of neutral atomic hydrogen (HI) 21cm spectral line emission and absorption, carbon monoxide (CO) 2.6mm line emission, and multi-band infrared dust thermal continuum emission. We identify areas where the gas may be cooling and forming molecules using HI self-absorption (HISA), in which cold foreground HI absorbs radiation from warmer background HI emission.We are developing an algorithm that uses total gas column densities inferred from Planck and other FIR/sub-mm data in parallel with CO and HISA spectral line data to determine the gas temperature, density, molecular abundance, and other properties as functions of position. We can then map these properties to study their variation throughout an individual cloud as well as any dependencies on location or environment within the Galaxy.Funding for this work was provided by the National Science Foundation, the NASA Kentucky Space Grant Consortium, the WKU Ogden College of Science and Engineering, and the Carol Martin Gatton Academy for Mathematics and Science in Kentucky.

  7. Deuterium enrichment of interstellar dusts

    Science.gov (United States)

    Das, Ankan; Chakrabarti, Sandip Kumar; Majumdar, Liton; Sahu, Dipen

    2016-07-01

    High abundance of some abundant and simple interstellar species could be explained by considering the chemistry that occurs on interstellar dusts. Because of its simplicity, the rate equation method is widely used to study the surface chemistry. However, because the recombination efficiency for the formation of any surface species is highly dependent on various physical and chemical parameters, the Monte Carlo method is best suited for addressing the randomness of the processes. We carry out Monte-Carlo simulation to study deuterium enrichment of interstellar grain mantle under various physical conditions. Based on the physical properties, various types of clouds are considered. We find that in diffuse cloud regions, very strong radiation fields persists and hardly a few layers of surface species are formed. In translucent cloud regions with a moderate radiation field, significant number of layers would be produced and surface coverage is mainly dominated by photo-dissociation products such as, C, CH_3, CH_2D, OH and OD. In the intermediate dense cloud regions (having number density of total hydrogen nuclei in all forms ˜2 × 10^4 cm^{-3}), water and methanol along with their deuterated derivatives are efficiently formed. For much higher density regions (˜10^6 cm^{-3}), water and methanol productions are suppressed but surface coverage of CO, CO_2, O_2, O_3 are dramatically increased. We find a very high degree of fractionation of water and methanol. Observational results support a high fractionation of methanol but surprisingly water fractionation is found to be low. This is in contradiction with our model results indicating alternative routes for de-fractionation of water.

  8. HERSCHEL OBSERVATIONS OF INTERSTELLAR CHLORONIUM

    Energy Technology Data Exchange (ETDEWEB)

    Neufeld, David A.; Indriolo, Nick [Department of Physics and Astronomy, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218 (United States); Roueff, Evelyne; Le Bourlot, Jacques; Le Petit, Franck [Observatoire de Paris-Meudon, LUTH UMR 8102, 5 Pl. Jules Janssen, F-92195 Meudon Cedex (France); Snell, Ronald L. [Astronomy Department, University of Massachusetts at Amherst, Amherst, MA 01003 (United States); Lis, Dariusz; Monje, Raquel; Phillips, Thomas G. [Astronomy Department, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Benz, Arnold O. [Institute of Astronomy, ETH Zurich, 8092 Zurich (Switzerland); Bruderer, Simon [Max Planck Institut fuer Extraterrestrische Physik, Giessenbachstrasse 1, D-85748, Garching (Germany); Black, John H.; Larsson, Bengt [Department of Earth and Space Sciences, Chalmers University of Technology, Onsala (Sweden); De Luca, Massimo; Gerin, Maryvonne [LERMA, UMR 8112 du CNRS, Observatoire de Paris, Ecole Normale Superieure, UPMC and UCP (France); Goldsmith, Paul F.; Gupta, Harshal [JPL, California Institute of Technology, Pasadena, CA (United States); Melnick, Gary J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Menten, Karl M. [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany); Nagy, Zsofia [Kapteyn Astronomical Institute University of Groningen, Groningen (Netherlands); and others

    2012-03-20

    Using the Herschel Space Observatory's Heterodyne Instrument for the Far-Infrared, we have observed para-chloronium (H{sub 2}Cl{sup +}) toward six sources in the Galaxy. We detected interstellar chloronium absorption in foreground molecular clouds along the sight lines to the bright submillimeter continuum sources Sgr A (+50 km s{sup -1} cloud) and W31C. Both the para-H{sup 35}{sub 2}Cl{sup +} and para-H{sup 37}{sub 2}Cl{sup +} isotopologues were detected, through observations of their 1{sub 11}-0{sub 00} transitions at rest frequencies of 485.42 and 484.23 GHz, respectively. For an assumed ortho-to-para ratio (OPR) of 3, the observed optical depths imply that chloronium accounts for {approx}4%-12% of chlorine nuclei in the gas phase. We detected interstellar chloronium emission from two sources in the Orion Molecular Cloud 1: the Orion Bar photodissociation region and the Orion South condensation. For an assumed OPR of 3 for chloronium, the observed emission line fluxes imply total beam-averaged column densities of {approx}2 Multiplication-Sign 10{sup 13} cm{sup -2} and {approx}1.2 Multiplication-Sign 10{sup 13} cm{sup -2}, respectively, for chloronium in these two sources. We obtained upper limits on the para-H{sup 35}{sub 2}Cl{sup +} line strengths toward H{sub 2} Peak 1 in the Orion Molecular cloud and toward the massive young star AFGL 2591. The chloronium abundances inferred in this study are typically at least a factor {approx}10 larger than the predictions of steady-state theoretical models for the chemistry of interstellar molecules containing chlorine. Several explanations for this discrepancy were investigated, but none has proven satisfactory, and thus the large observed abundances of chloronium remain puzzling.

  9. Grain Destruction in Interstellar Shocks

    OpenAIRE

    1995-01-01

    Interstellar shock waves can erode and destroy grains present in the shocked gas, primarily as the result of sputtering and grain-grain collisions. Uncertainties in current estimates of sputtering yields are reviewed. Results are presented for the simple case of sputtering of fast grains being stopped in cold gas. An upper limit is derived for sputtering of refractory grains in C-type MHD shocks: shock speeds $v_s \\gtrsim 50 \\kms$ are required for return of more than 30\\% of the silicate to t...

  10. A Search for Interstellar Pyrimidine

    CERN Document Server

    Kuan, Y J; Charnley, S B; Kisiel, Z; Ehrenfreund, P; Huang, H C; Kuan, Yi-Jehng; Yan, Chi-Hung; Charnley, Steven B.; Kisiel, Zbigniew; Ehrenfreund, Pascale; Huang, Hui-Chun

    2003-01-01

    We have searched three hot molecular cores for submillimeter emission from the nucleic acid building-block pyrimidine. We obtain upper limits to the total pyrimidine (beam-averaged) column densities towards Sgr B2(N), Orion KL and W51 e1/e2 of 1.7E+14 cm^{-2}, 2.4E+14 cm^{-2} and 3.4E+14 cm^{-2}, respectively. The associated upper limits to the pyrimidine fractional abundances lie in the range (0.3-3)E-10. Implications of this result for interstellar organic chemistry, and for the prospects of detecting nitrogen heterocycles in general, are briefly discussed.

  11. Discovery of Interstellar Heavy Water

    OpenAIRE

    Butner, H. M.; Charnley, S. B.; Ceccarelli, C.; Rodgers, S.D.; Pardo Carrión, Juan Ramón; Parise, B.; Cernicharo, José; Davis, G. R.

    2007-01-01

    We report the discovery of doubly deuterated water (D2O, heavy water) in the interstellar medium. Using the James Clerk Maxwell Telescope and the Caltech Submillimeter Observatory 10 m telescope, we detected the 1_10–1_01 transition of para-D2O at 316.7998 GHz in both absorption and emission toward the protostellar binary system IRAS 16293-2422. Assuming that the D2O exists primarily in the warm regions where water ices have been evaporated (i.e., in a "hot corino" environment), we determi...

  12. The Identification of Complex Organic Molecules in the Interstellar Medium: Using Lasers and Matrix Isolation Spectroscopy to Simulate the Interstellar Environment

    Science.gov (United States)

    Stone, Bradley M.

    1998-01-01

    The Astrochemistry Group at NASA Ames Research Center is interested in the identification of large organic molecules in the interstellar medium Many smaller organic species (e.g. hydrocarbons, alcohols, etc.) have been previously identified by their radiofrequency signature due to molecular rotations. However, this becomes increasingly difficult to observe as the size of the molecule increases. Our group in interested in the identification of the carriers of the Diffuse Interstellar Bands (absorption features observed throughout the visible and near-infrared in the spectra of stars, due to species in the interstellar medium). Polycyclic Aromatic Hydrocarbons (PAHs) and related molecules are thought to be good candidates for these carriers. Laboratory experiments am performed at Ames to simulate the interstellar environment, and to compare spectra obtained from molecules in the laboratory to those derived astronomically. We are also interested in PAHs with respect to their possible connection to the UIR (Unidentified infrared) and ERE (Extended Red Emission) bands - emission features found to emanate from particular regions of our galaxy (e.g. Orion nebula, Red Rectangle, etc.). An old, "tried and proven spectroscopic technique, matrix isolation spectroscopy creates molecular conditions ideal for performing laboratory astrophysics.

  13. The Possible Interstellar Anion CH2CN-: Spectroscopic Constants, Vibrational Frequencies, and Other Considerations

    Science.gov (United States)

    Fortenberry, Ryan C.; Crawford, T. Daniel; Lee, Timothy J.

    2012-01-01

    The A 1B1 anion (CH2CN??) has been hypothesized as the carrier for one di use interstellar band. However, this particular molecular system has not been detected in the interstellar medium even though the related cyanomethyl radical and the isoelectronic ketenimine molecule have been found. In this study we are employing the use of proven quartic force elds and second-order vibrational perturbation theory to compute accurate spectroscopic constants and fundamental vibrational frequencies for X 1A0 CH2CN?? in order to assist in laboratory studies and astronomical observations. Keywords: Astrochemistry, ISM: molecular anions, Quartic force elds, Rotational constants, Vibrational frequencies

  14. Photodissociation of OH in interstellar clouds

    NARCIS (Netherlands)

    Dishoeck, van E.F.; Dalgarno, A.

    1984-01-01

    Calculations are presented of the lifetime of OH against photodissociation by the interstellar radiation field as a function of depth into interstellar clouds containing grains of various scattering properties. The effectiveness of the different photodissociation channels changes with depth into a c

  15. Detection of interstellar hydrogen peroxide

    CERN Document Server

    Bergman, P; Liseau, R; Larsson, B; Olofsson, H; Menten, K M; Güsten, R

    2011-01-01

    The molecular species hydrogen peroxide, HOOH, is likely to be a key ingredient in the oxygen and water chemistry in the interstellar medium. Our aim with this investigation is to determine how abundant HOOH is in the cloud core {\\rho} Oph A. By observing several transitions of HOOH in the (sub)millimeter regime we seek to identify the molecule and also to determine the excitation conditions through a multilevel excitation analysis. We have detected three spectral lines toward the SM1 position of {\\rho} Oph A at velocity-corrected frequencies that coincide very closely with those measured from laboratory spectroscopy of HOOH. A fourth line was detected at the 4{\\sigma} level. We also found through mapping observations that the HOOH emission extends (about 0.05 pc) over the densest part of the {\\rho} Oph A cloud core. We derive an abundance of HOOH relative to that of H_2 in the SM1 core of about 1\\times10^(-10). To our knowledge, this is the first reported detection of HOOH in the interstellar medium.

  16. Herschel observations of interstellar chloronium

    CERN Document Server

    Neufeld, David A; Snell, Ronald L; Lis, Dariusz; Benz, Arnold O; Bruderer, Simon; Black, John H; De Luca, Massimo; Gerin, Maryvonne; Goldsmith, Paul F; Gupta, Harshal; Indriolo, Nick; Bourlot, Jacques Le; Petit, Franck Le; Larsson, Bengt; Melnick, Gary J; Menten, Karl M; Monje, Raquel; Nagy, Zsofia; Phillips, Thomas G; Sandqvist, Aage; Sonnentrucker, Paule; van der Tak, Floris; Wolfire, Mark G

    2012-01-01

    Using the Herschel Space Observatory's Heterodyne Instrument for the Far-Infrared (HIFI), we have observed para-chloronium (H2Cl+) toward six sources in the Galaxy. We detected interstellar chloronium absorption in foreground molecular clouds along the sight-lines to the bright submillimeter continuum sources Sgr A (+50 km/s cloud) and W31C. Both the para-H2-35Cl+ and para-H2-37Cl+ isotopologues were detected, through observations of their 1(11)-0(00) transitions at rest frequencies of 485.42 and 484.23 GHz, respectively. For an assumed ortho-to-para ratio of 3, the observed optical depths imply that chloronium accounts for ~ 4 - 12% of chlorine nuclei in the gas phase. We detected interstellar chloronium emission from two sources in the Orion Molecular Cloud 1: the Orion Bar photodissociation region and the Orion South condensation. For an assumed ortho-to-para ratio of 3 for chloronium, the observed emission line fluxes imply total beam-averaged column densities of ~ 2.0E+13 cm-2 and ~ 1.2E+13 cm-2, respect...

  17. Realistic Detectability of Close Interstellar Comets

    CERN Document Server

    Cook, Nathaniel V; Granvik, Mikael; Stephens, Denise C

    2016-01-01

    During the planet formation process, billions of comets are created and ejected into interstellar space. The detection and characterization of such interstellar comets (also known as extra-solar planetesimals or extra-solar comets) would give us in situ information about the efficiency and properties of planet formation throughout the galaxy. However, no interstellar comets have ever been detected, despite the fact that their hyperbolic orbits would make them readily identifiable as unrelated to the solar system. Moro-Mart\\'in et al. 2009 have made a detailed and reasonable estimate of the properties of the interstellar comet population. We extend their estimates of detectability with a numerical model that allows us to consider "close" interstellar comets, e.g., those that come within the orbit of Jupiter. We include several constraints on a "detectable" object that allow for realistic estimates of the frequency of detections expected from the Large Synoptic Survey Telescope (LSST) and other surveys. The inf...

  18. Thermodynamics and Charging of Interstellar Iron Nanoparticles

    Science.gov (United States)

    Hensley, Brandon S.; Draine, B. T.

    2017-01-01

    Interstellar iron in the form of metallic iron nanoparticles may constitute a component of the interstellar dust. We compute the stability of iron nanoparticles to sublimation in the interstellar radiation field, finding that iron clusters can persist down to a radius of ≃4.5 Å, and perhaps smaller. We employ laboratory data on small iron clusters to compute the photoelectric yields as a function of grain size and the resulting grain charge distribution in various interstellar environments, finding that iron nanoparticles can acquire negative charges, particularly in regions with high gas temperatures and ionization fractions. If ≳10% of the interstellar iron is in the form of ultrasmall iron clusters, the photoelectric heating rate from dust may be increased by up to tens of percent relative to dust models with only carbonaceous and silicate grains.

  19. Thermodynamics and Charging of Interstellar Iron Nanoparticles

    CERN Document Server

    Hensley, Brandon S

    2016-01-01

    Interstellar iron in the form of metallic iron nanoparticles may constitute a component of the interstellar dust. We compute the stability of iron nanoparticles to sublimation in the interstellar radiation field, finding that iron clusters can persist down to a radius of $\\simeq 4.5\\,$\\AA, and perhaps smaller. We employ laboratory data on small iron clusters to compute the photoelectric yields as a function of grain size and the resulting grain charge distribution in various interstellar environments, finding that iron nanoparticles can acquire negative charges particularly in regions with high gas temperatures and ionization fractions. If $\\gtrsim 10\\%$ of the interstellar iron is in the form of ultrasmall iron clusters, the photoelectric heating rate from dust may be increased by up to tens of percent relative to dust models with only carbonaceous and silicate grains.

  20. Anthracene clusters and the interstellar infrared emission features

    Energy Technology Data Exchange (ETDEWEB)

    Roser, J. E. [NASA Ames Research Center, Mail Stop 245-6, Building N245, Room 148, P.O. Box 1, Moffett Field, CA 94035 (United States); Ricca, A. [SETI Institute, 189 Bernardo Avenue, Suite 100, Mountain View, CA 94043 (United States); Allamandola, L. J., E-mail: Joseph.E.Roser@nasa.gov [NASA Ames Research Center, Moffett Field, CA 94035 (United States)

    2014-03-10

    The unidentified infrared bands are ubiquitous in the interstellar medium and typically attributed to emission from neutral and ionized polycyclic aromatic hydrocarbons (or PAHs). The contribution of neutral PAH clusters to these bands has been impossible to determine due to a paucity of infrared spectral data. Here we investigated neutral clusters of the three-ring PAH anthracene using FTIR absorption spectroscopy of anthracene matrix-isolated at varying concentrations in solid argon. In order to determine likely cluster structures of the embedded molecules, we also calculated theoretical absorption spectra for the anthracene monomer through hexamer using density functional theory with a dispersion correction (DFT-D). The DFT-D calculations have been calibrated for the anthracene dimer using the second-order Møller-Plesset approach. Because there is some support for the hypothesis that three or four-ring PAHs are present in the Red Rectangle nebula, we discuss the application of our results to this nebula in particular as well as to the interstellar infrared emission in general.

  1. Evidence for the Heating of Atomic Interstellar Gas by PAHs

    CERN Document Server

    Helou, G; Hollenbach, D J; Dale, D A; Contursi, A; Helou, George; Malhotra, Sangeeta; Hollenbach, David J.; Dale, Daniel A.; Contursi, Alessandra

    2001-01-01

    We report a strong correlation between the [CII] 158 micron cooling line and the mid-infrared flux in the 5-10 micron range in a wide variety of star-forming galaxies. The mid-infrared flux is dominated by Aromatic Feature Emission (AFE), which is thought to arise from large polycyclic aromatic hydrocarbon molecules or `PAHs' and generally associated with the smallest interstellar grains. The [CII] line is the dominant gas coolant in most regions of atomic interstellar gas, and therefore reflects the heating input to the gas. The ratio of these two quantities, [CII]/AFE, remains nearly constant with the ratio of the IRAS 60 micron band flux to the 100 micron band flux, R(60/100). This is in contrast to the drop in the [CII]/FIR ratio with increasing R(60/100), which signal higher dust temperatures and more intense radiation fields. We interpret the stable [CII]/AFE ratio as evidence that gas heating is dominated by the PAHs or small grains which are also AFE carriers over a wide range of conditions. The trend...

  2. Measurement and correction of variations in interstellar dispersion in high-precision pulsar timing

    CERN Document Server

    Keith, M J; Shannon, R M; Hobbs, G B; Manchester, R N; Bailes, M; Bhat, N D R; Burke-Spolaor, S; Champion, D J; Chaudhary, A; Hotan, A W; Khoo, J; Kocz, J; Oslowski, S; Ravi, V; Reynolds, J E; Sarkissian, J; van Straten, W; Yardley, D R B

    2012-01-01

    Signals from radio pulsars show a wavelength-dependent delay due to dispersion in the interstellar plasma. At a typical observing wavelength, this delay can vary by tens of microseconds on five-year time scales, far in excess of signals of interest to pulsar timing arrays, such as that induced by a gravitational-wave background. Measurement of these delay variations is not only crucial for the detection of such signals, but also provides an unparallelled measurement of the turbulent interstellar plasma at au scales. In this paper we demonstrate that without consideration of wavelength- independent red-noise, 'simple' algorithms to correct for interstellar dispersion can attenuate signals of interest to pulsar timing arrays. We present a robust method for this correction, which we validate through simulations, and apply it to observations from the Parkes Pulsar Timing Array. Correction for dispersion variations comes at a cost of increased band-limited white noise. We discuss scheduling to minimise this additi...

  3. Polarimetry of the Interstellar Medium

    Science.gov (United States)

    Sandford, Scott; Witteborn, Fred C. (Technical Monitor)

    1995-01-01

    The talk will review what is known about the composition of ices and organics in the dense and diffuse interstellar media (ISM). Mixed molecular ices make up a significant fraction of the solid materials in dense molecular clouds and it is now known that thermal and radiation processing of these ices results in the production of more complex organic species, some of which may survive transport into forming stellar systems and the diffuse ISM. Molecular species identified in interstellar ices include H2O, CH3OH, CO, CH4, CO2, and somewhat surprisingly, H2. Theoretical and laboratory studies of the processing of interstellar analog ices containing these species indicate that species like HCO, H2CO, CH3, and NH3 are readily made and should also be present. The irradiation of mixed molecular ices containing these species, when followed by warming, leads to the production of a large variety of more complex species, including ethanol (CH3CH2OH), formamide (HC(=O)NH2), acetamide (CH3C(=O)NH2), nitriles or isonitriles (R-CN or R-NC hexamethylenetetramine (HMT; C6H12N4), a number of polymeric species related to polyoxymethylene [POM,(-CH2O-)n], and ketones {R-C(=O)-R'}. Spectral studies of dust in the diffuse ISM indicate the presence of fairly complex organics, some of which may be related to the organics produced in dense molecular clouds. Spectral comparisons indicate that the diffuse ISM organics may be quite similar to meteoritic kerogens, i.e. they may consist largely of aromatic moieties interlinked by short aliphatic bridges. Interestingly, recent evidence indicates that the galactic distribution of this material closely matches that of silicates, but does not correlate directly with visual extinction. This implies that a large fraction of the visual extinction is caused by a material other than these organics and silicates and that this other material has a significantly different distribution within the galaxy.

  4. Interstellar Dust Inside and Outside the Heliosphere

    CERN Document Server

    Krueger, Harald

    2008-01-01

    In the early 1990s, after its Jupiter flyby, the Ulysses spacecraft identified interstellar dust in the solar system. Since then the in-situ dust detector on board Ulysses continuously monitored interstellar grains with masses up to 10e-13 kg, penetrating deep into the solar system. While Ulysses measured the interstellar dust stream at high ecliptic latitudes between 3 and 5 AU, interstellar impactors were also measured with the in-situ dust detectors on board Cassini, Galileo and Helios, covering a heliocentric distance range between 0.3 and 3 AU in the ecliptic plane. The interstellar dust stream in the inner solar system is altered by the solar radiation pressure force, gravitational focussing and interaction of charged grains with the time varying interplanetary magnetic field. The grains act as tracers of the physical conditions in the local interstellar cloud (LIC). Our in-situ measurements imply the existence of a population of 'big' interstellar grains (up to 10e-13 kg) and a gas-to-dust-mass ratio i...

  5. Polarized Emission from Interstellar Dust

    CERN Document Server

    Vaillancourt, J E

    2006-01-01

    Observations of far-infrared (FIR) and submillimeter (SMM) polarized emission are used to study magnetic fields and dust grains in dense regions of the interstellar medium (ISM). These observations place constraints on models of molecular clouds, star-formation, grain alignment mechanisms, and grain size, shape, and composition. The FIR/SMM polarization is strongly dependent on wavelength. We have attributed this wavelength dependence to sampling different grain populations at different temperatures. To date, most observations of polarized emission have been in the densest regions of the ISM. Extending these observations to regions of the diffuse ISM, and to microwave frequencies, will provide additional tests of grain and alignment models. An understanding of polarized microwave emission from dust is key to an accurate measurement of the polarization of the cosmic microwave background. The microwave polarization spectrum will put limits on the contributions to polarized emission from spinning dust and vibrat...

  6. Discovery of Interstellar Hydrogen Fluoride

    Science.gov (United States)

    Neufeld, David A.; Zmuidzinas, Jonas; Schilke, Peter; Phillips, Thomas G.

    1997-01-01

    We report the first detection of interstellar hydrogen fluoride. Using the Long Wavelength Spectrometer of the Infrared Space Observatory (ISO), we have detected the 121.6973 micron J = 2-1 line of HF in absorption toward the far-infrared continuum source Sagittarius B2. The detection is statistically significant at the 13 sigma level. On the basis of our model for the excitation of HF in Sgr B2, the observed line equivalent width of 1.0 nm implies a hydrogen fluoride abundance of approximately 3 x 10(exp -10) relative to H2. If the elemental abundance of fluorine in Sgr B2 is the same as that in the solar system, then HF accounts for approximately 2% of the total number of fluorine nuclei. We expect hydrogen fluoride to be the dominant reservoir of gas-phase fluorine in Sgr B2, because it is formed rapidly in exothermic reactions of atomic fluorine with either water or molecular hydrogen; thus, the measured HF abundance suggests a substantial depletion of fluorine onto dust grains. Similar conclusions regarding depletion have previously been reached for the case of chlorine in dense interstellar clouds. We also find evidence at a lower level of statistical significance (approximately 5 sigma) for an emission feature at the expected position of the 4(sub 32)-4(sub 23) 121.7219 micron line of water. The emission-line equivalent width of 0.5 nm for the water feature is consistent with the water abundance of 5 x 10(exp -6) relative to H2 that has been inferred previously from observations of the hot core of Sgr B2.

  7. Niagara Falls Cascade Model for Interstellar Energetic Ions in the Heliosheath

    Science.gov (United States)

    Cooper, John F.

    The origin of anomalous cosmic ray ions has long been assumed to be heliospheric pickup ion production from interstellar neutrals and acceleration at the solar wind termination shock. The Voyager-1 shock crossing showed a well-defined boundary for sharply increased keV ion fluxes in the heliosheath but no sign of local acceleration. Ion flux spectra at keV to MeV energies are instead unfolding with outward passage to approximate the E(-1.5) power-law expected for compressional magnetic tubulence. This spectrum provides excellent connection over many energy decades of a maxwellian distribution for local interstellar plasma ions to well-known flux spectra of high energy galactic ions at GeV energies. The Niagara Falls cascade model is proposed that the heliosheath is a transitional region for direct entry of ions from the local interstellar ‘river’ through a permeable heliopause into the supersonic outer heliosphere. As Voyager-1 moves outwards in the heliosheath to the heliopause, energy-dependent transport features can appear in the transitional 0.01 - 1 GeV/n energy band but otherwise a general unfolding to the interstellar limiting spectrum should continue by this model. Spectral regions then become dominated by bulk plasma flow at low energy, cascade transport at intermediate energies, and interstellar shock acceleration at higher energies.

  8. Interstellar Grains: Effect of Inclusions on Extinction

    CERN Document Server

    Katyal, Nisha; Vaidya, D B

    2011-01-01

    A composite dust grain model which simultaneously explains the observed interstellar extinction, polarization, IR emission and the abundance constraints, is required. We present a composite grain model, which is made up of a host silicate oblate spheroid and graphite inclusions. The interstellar extinction curve is evaluated in the spectral region 3.4-0.1$\\mu m$ using the extinction efficiencies of the composite spheroidal grains for three axial ratios. Extinction curves are computed using the discrete dipole approximation (DDA). The model curves are subsequently compared with the average observed interstellar extinction curve and with an extinction curve derived from the IUE catalogue data.

  9. Interstellar grains: Effect of inclusions on extinction

    Science.gov (United States)

    Katyal, N.; Gupta, R.; Vaidya, D. B.

    2011-10-01

    A composite dust grain model which simultaneously explains the observed interstellar extinction, polarization, IR emission and the abundance constraints, is required. We present a composite grain model, which is made up of a host silicate oblate spheroid and graphite inclusions. The interstellar extinction curve is evaluated in the spectral region 3.4-0.1 μm using the extinction efficiencies of composite spheroidal grains for three axial ratios. Extinction curves are computed using the discrete dipole approximation (DDA). The model curves are subsequently compared with the average observed interstellar extinction curve and with an extinction curve derived from the IUE catalogue data.

  10. High Resolution Mapping of Interstellar Clouds by Near--IR Scattering

    CERN Document Server

    Padoan, P; Pelkonen, V M; Padoan, Paolo; Juvela, Mika; Pelkonen, Veli-Matti

    2006-01-01

    We discuss the possibility of mapping interstellar clouds at unprecedentedly high spatial resolution by means of near-IR imaging of their scattered light. We calculate the scattering of the interstellar radiation field by a cloud model obtained from the simulation of a supersonic turbulent flow. Synthetic maps of scattered light are computed in the J, H and K bands and are found to allow an accurate estimate of column density, in the range of visual extinction between 1 and 20 magnitudes. We provide a formalism to convert the intensity of scattered light at these near-IR bands into a total gas column density. We also show that this new method of mapping interstellar clouds is within the capability of existing near-IR facilities, which can achieve a spatial resolution of up to ~ 0.1 arcsec. This opens new perspectives in the study of interstellar dust and gas structure on very small scales. The validity of the method has been recently demonstrated by the extraordinary images of the Perseus region obtained by F...

  11. Cosmocultural Evolution: Cosmic Motivation for Interstellar Travel?

    Science.gov (United States)

    Lupisella, M.

    Motivations for interstellar travel can vary widely from practical survival motivations to wider-ranging moral obligations to future generations. But it may also be fruitful to explore what, if any, "cosmic" relevance there may be regarding interstellar travel. Cosmocultural evolution can be defined as the coevolution of cosmos and culture, with cultural evolution playing an important and perhaps critical role in the overall evolution of the universe. Strong versions of cosmocultural evolution might suggest that cultural evolution may have unlimited potential as a cosmic force. In such a worldview, the advancement of cultural beings throughout the universe could have significant cosmic relevance, perhaps providing additional motivation for interstellar travel. This paper will explore some potential philosophical and policy implications for interstellar travel of a cosmocultural evolutionary perspective and other related concepts, including some from a recent NASA book, Cosmos and Culture: Cultural Evolution in a Cosmic Context.

  12. Physical Processes in the Interstellar Medium

    CERN Document Server

    Klessen, Ralf S

    2014-01-01

    Interstellar space is filled with a dilute mixture of charged particles, atoms, molecules and dust grains, called the interstellar medium (ISM). Understanding its physical properties and dynamical behavior is of pivotal importance to many areas of astronomy and astrophysics. Galaxy formation and evolution, the formation of stars, cosmic nucleosynthesis, the origin of large complex, prebiotic molecules and the abundance, structure and growth of dust grains which constitute the fundamental building blocks of planets, all these processes are intimately coupled to the physics of the interstellar medium. However, despite its importance, its structure and evolution is still not fully understood. Observations reveal that the interstellar medium is highly turbulent, consists of different chemical phases, and is characterized by complex structure on all resolvable spatial and temporal scales. Our current numerical and theoretical models describe it as a strongly coupled system that is far from equilibrium and where th...

  13. Silicate Composition of the Interstellar Medium

    CERN Document Server

    Fogerty, Shane; Watson, Dan M; Sargent, Benjamin A; Koch, Ingrid

    2016-01-01

    The composition of silicate dust in the diffuse interstellar medium and in protoplanetary disks around young stars informs our understanding of the processing and evolution of the dust grains leading up to planet formation. Analysis of the well-known 9.7{\\mu}m feature indicates that small amorphous silicate grains represent a significant fraction of interstellar dust and are also major components of protoplanetary disks. However, this feature is typically modelled assuming amorphous silicate dust of olivine and pyroxene stoichiometries. Here, we analyze interstellar dust with models of silicate dust that include non-stoichiometric amorphous silicate grains. Modelling the optical depth along lines of sight toward the extinguished objects Cyg OB2 No. 12 and {\\zeta} Ophiuchi, we find evidence for interstellar amorphous silicate dust with stoichiometry intermediate between olivine and pyroxene, which we simply refer to as "polivene." Finally, we compare these results to models of silicate emission from the Trapez...

  14. Physical Processes in the Interstellar Medium

    OpenAIRE

    2014-01-01

    Interstellar space is filled with a dilute mixture of charged particles, atoms, molecules and dust grains, called the interstellar medium (ISM). Understanding its physical properties and dynamical behavior is of pivotal importance to many areas of astronomy and astrophysics. Galaxy formation and evolution, the formation of stars, cosmic nucleosynthesis, the origin of large complex, prebiotic molecules and the abundance, structure and growth of dust grains which constitute the fundamental buil...

  15. Scouting the spectrum for interstellar travellers

    CERN Document Server

    Garcia-Escartin, Juan Carlos

    2012-01-01

    Advanced civilizations capable of interstellar travel, if they exist, are likely to have advanced propulsion methods. Spaceships moving at high speeds would leave a particular signature which could be detected from Earth. We propose a search based on the properties of light reflecting from objects travelling at relativistic speeds. Based on the same principles, we also propose a simple interstellar beacon with a solar sail.

  16. The hydrogen coverage of interstellar PAHs

    Science.gov (United States)

    Tielens, A. G. G. M.; Allamandola, L. J.; Barker, J. R.; Cohen, M.

    1987-01-01

    The rate at which the CH bond in interstellar Polycyclic Aromatic Hydrocarbons (PAHs) rupture due to the absorption of a UV photon has been calculated. The results show that small PAHs (less than or equal to 25 carbon atoms) are expected to be partially dehydrogenated in regions with intense UV fields, while large PAHs (greater than or equal to 25 atoms) are expected to be completely hydrogenated in those regions. Because estimate of the carbon content of interstellar PAHs lie in the range of 20 to 25 carbon atoms, dehydrogenation is probably not very important. Because of the absence of other emission features besides the 11.3 micrometer feature in ground-based 8 to 13 micrometer spectra, it has been suggested that interstellar PAHs are partially dehydrogenated. However, IRAS 8 to 22 micrometer spectra of most sources that show strong 7.7 and 11.2 micrometer emission features also show a plateau of emission extending from about 11.3 to 14 micrometer. Like the 11.3 micrometer feature, this new feature is attributed to the CH out of plane bending mode in PAHs. This new feature shows that interstellar PAHs are not as dehydrogenated as estimated from ground-based 8 to 13 micrometer spectra. It also constrains the molecular structure of interstellar PAHs. In particular, it seems that very condensed PAHs, such as coronene and circumcoronene, dominate the interstellar PAH mixture as expected from stability arguments.

  17. Amino Acid Formation on Interstellar Dust Particles

    Science.gov (United States)

    Meierhenrich, U. J.; Munoz Caro, G. M.; Barbier, B.; Brack, A.; Thiemann, W.; Goesmann, F.; Rosenbauer, H.

    2003-04-01

    In the dense interstellar medium dust particles accrete ice layers of known molecular composition. In the diffuse interstellar medium these ice layers are subjected to energetic UV-irradiation. Here, photoreactions form complex organic molecules. The interstellar processes were recently successfully simulated in two laboratories. At NASA Ames Research Center three amino acids were detected in interstellar ice analogues [1], contemporaneously, our European team reported on the identification of 16 amino acids therein [2]. Amino acids are the molecular building blocks of proteins in living organisms. The identification of amino acids on the simulated icy surface of interstellar dust particles strongly supports the assumption that the precursor molecules of life were delivered from interstellar and interplanetary space via (micro-) meteorites and/or comets to the earyl Earth. The results shall be verified by the COSAC experiment onboard the ESA cometary mission Rosetta [3]. [1] M.P. Bernstein, J.P. Dworkin, S.A. Sandford, G.W. Cooper, L.J. Allamandola: itshape Nature \\upshape 416 (2002), 401-403. [2] G.M. Muñoz Caro, U.J. Meierhenrich, W.A. Schutte, B. Barbier, A. Arcones Sergovia, H. Rosenbauer, W.H.-P. Thiemann, A. Brack, J.M. Greenberg: itshape Nature \\upshape 416 (2002), 403-406. [3] U. Meierhenrich, W.H.-P. Thiemann, H. Rosenbauer: itshape Chirality \\upshape 11 (1999), 575-582.

  18. Tracking Interstellar Space Weather Toward Timing-Array Millisecond Pulsars

    Science.gov (United States)

    Bhat, N. D. R.; Ord, S. M.; Tremblay, S. E.; Shannon, R. M.; van Straten, W.; Kaplan, D. L.; Macquart, J.-P.; Kirsten, F.

    2017-01-01

    The recent LIGO detection of milli-Hertz gravitational wave (GW) signals from black-hole merger events has further reinforced the important role of Pulsar timing array (PTA) experiments in the GW astronomy. PTAs exploit the clock-like stability of fast-spinning millisecond pulsars (MSPs) to make a direct detection of ultra-low frequency (nano-Hertz) gravitational waves, and this is a key science objective for the SKA. The science enabled by PTAs is highly complementary to that possible with LIGO-like detectors. PTA efforts of the past few years clearly suggest that interstellar propagation effects on pulsar signals may ultimately limit the detection sensitivity of PTAs if they are not accurately measured and corrected for in timing measurements. Interstellar medium (ISM) effects are much stronger at lower radio frequencies and therefore the MWA presents an exciting and unique opportunity to calibrate interstellar propagation delays. This will potentially lead to enhanced sensitivity and scientific impact of PTA projects. Since our demonstration early this year of our ability to form a coherent (tied-array) beam by re-processing the recorded VCS data (Bhat et al. 2016), we have successfully ported the full processing pipeline on to the Galaxy cluster of Pawsey and also demonstrated the value of high-sensitivity multi-band pulsar observations that are now possible with the MWA. Here we propose further observations of three most promising PTA pulsars that will be nightly objects in the 2017A period. The main science driver is to characterise the nature of the turbulent ISM through high-quality scintillation and dispersion studies including the investigation of chromatic (frequency-dependent) DMs. Success of these efforts will define the breadth and scope of a more ambitious program in the future, bringing in a new science niche for MWA and SKA-low.

  19. Effects of shock waves in the interstellar medium

    Science.gov (United States)

    Petriella, Alberto

    2013-12-01

    In this Thesis, we study the effects on the interstellar medium of shock waves produced by massive stars during different stages of their evolution. We investigate the interaction between HII regions, interstellar bubbles, and supernova remnants and the surrounding medium and we analize the star forming activity to establish if they can trigger star formation around them. We study the distribution of the molecular gas around the supernova remnants G20.0-0.2 and G24.7+0.6 and we find molecular clouds probably shocked by the remnants. These clouds host star forming regions, which suggest a connection between the birth of the new stars and the expansion of the supernova remnants. We analyze the distribution of the interstellar medium around three HII regions (an HII region complex near the supernova remnant G18.8+0.3 and the HII regions N65 and G35.673-0.847) and we find shells of molecular material swept up by their front shocks. These shells show signs of star forming activity probably triggered by the expanding HII regions. Lastly, we find evidence of the interaction between the stellar winds of the LBV stars G24.73+0.69 and G26.47+0.02 and the surrounding molecular gas. The data used in this Thesis were obtained through dedicated observations of several molecular transitions with the Atacama Submillimeter Telescope Experiment (ASTE) and through the calibration of unpublished archival observations of the Chandra X-ray telescope and the VLA interferometer. Additional data were extracted from public surveys in the radio, infrared, millimeter and submillimeter bands.

  20. Characterization of Interstellar Organic Molecules

    Science.gov (United States)

    Gençaǧa, Deniz; Carbon, Duane F.; Knuth, Kevin H.

    2008-11-01

    Understanding the origins of life has been one of the greatest dreams throughout history. It is now known that star-forming regions contain complex organic molecules, known as Polycyclic Aromatic Hydrocarbons (PAHs), each of which has particular infrared spectral characteristics. By understanding which PAH species are found in specific star-forming regions, we can better understand the biochemistry that takes place in interstellar clouds. Identifying and classifying PAHs is not an easy task: we can only observe a single superposition of PAH spectra at any given astrophysical site, with the PAH species perhaps numbering in the hundreds or even thousands. This is a challenging source separation problem since we have only one observation composed of numerous mixed sources. However, it is made easier with the help of a library of hundreds of PAH spectra. In order to separate PAH molecules from their mixture, we need to identify the specific species and their unique concentrations that would provide the given mixture. We develop a Bayesian approach for this problem where sources are separated from their mixture by Metropolis Hastings algorithm. Separated PAH concentrations are provided with their error bars, illustrating the uncertainties involved in the estimation process. The approach is demonstrated on synthetic spectral mixtures using spectral resolutions from the Infrared Space Observatory (ISO). Performance of the method is tested for different noise levels.

  1. Interstellar Transfer of Planetary Microbiota

    Science.gov (United States)

    Wallis, Max K.; Wickramasinghe, N. C.

    Panspermia theories require the transport of micro-organisms in a viable form from one astronomical location to another. The evidence of material ejection from planetary surfaces, of dynamical orbit evolution and of potential survival on landing is setting a firm basis for interplanetary panspermia. Pathways for interstellar panspermia are less clear. We compare the direct route, whereby life-bearing planetary ejecta exit the solar system and risk radiation hazards en route to nearby stellar systems, and an indirect route whereby ejecta hitch a ride within the shielded environment of comets of the Edgeworth- Kuiper Belt that are subsequently expelled from the solar system. We identify solutions to the delivery problem. Delivery to fully-fledged planetary systems of either the direct ejecta or the ejecta borne by comets depends on dynamical capture and is of very low efficiency. However, delivery into a proto-planetary disc of an early solar-type nebula and into pre-stellar molecular clouds is effective, because the solid grains efficiently sputter the incoming material in hypervelocity collisions. The total mass of terrestrial fertile material delivered to nearby pre-stellar systems as the solar system moves through the galaxy is from kilogrammes up to a tonne. Subject to further study of bio-viability under irradiation and fragmenting collisions, a few kg of original grains and sputtered fragments could be sufficient to seed the planetary system with a wide range of solar system micro-organisms.

  2. The interstellar medium in galaxies

    CERN Document Server

    1997-01-01

    It has been more than five decades ago that Henk van de Hulst predicted the observability of the 21-cm line of neutral hydrogen (HI ). Since then use of the 21-cm line has greatly improved our knowledge in many fields and has been used for galactic structure studies, studies of the interstellar medium (ISM) in the Milky Way and other galaxies, studies of the mass distribution of the Milky Way and other galaxies, studies of spiral struc­ ture, studies of high velocity gas in the Milky Way and other galaxies, for measuring distances using the Tully-Fisher relation etc. Regarding studies of the ISM, there have been a number of instrumen­ tal developments over the past decade: large CCD's became available on optical telescopes, radio synthesis offered sensitive imaging capabilities, not only in the classical 21-cm HI line but also in the mm-transitions of CO and other molecules, and X-ray imaging capabilities became available to measure the hot component of the ISM. These developments meant that Milky Way was n...

  3. Rotational spectroscopy of interstellar PAHs

    CERN Document Server

    Ali-Haïmoud, Yacine

    2013-01-01

    Polycyclic aromatic hydrocarbons (PAHs) have long been part of the standard model of the interstellar medium, and are believed to play important roles in its physics and chemistry. Yet, up to now it has not been possible to identify any specific molecule among them. In this paper, a new observational avenue is suggested to detect individual PAHs, using their rotational line emission at radio frequencies. Previous PAH searches based on rotational spectroscopy have only targeted the bowl-shaped corannulene molecule, with the underlying assumption that other polar PAHs are triaxial and as a consequence their rotational emission is diluted over a very large number of lines and unusable for detection purposes. In this paper the rotational spectrum of quasi-symmetric PAHs is computed analytically, as a function of the level of triaxiality. It is shown that the asymmetry of planar, nitrogen-substituted symmetric PAHs is small enough that their rotational spectrum, when observed with a resolution of about a MHz, has ...

  4. Physical Processes of Interstellar Turbulence

    CERN Document Server

    Vazquez-Semadeni, Enrique

    2012-01-01

    I discuss the role of self-gravity and radiative heating and cooling in shaping the nature of the turbulence in the interstellar medium (ISM) of our galaxy. The heating and cooling cause it to be highly compressible, and, in some regimes of density and temperature, to become thermally unstable, tending to spontaneously segregate into warm/diffuse and cold/dense phases. On the other hand, turbulence is an inherently mixing process, tending to replenish the density and temperature ranges that would be forbidden under thermal processes alone. The turbulence in the ionized ISM appears to be transonic (i.e, with Mach numbers $\\Ms \\sim 1$), and thus to behave essentially incompressibly. However, in the neutral medium, thermal instability causes the sound speed of the gas to fluctuate by up to factors of $\\sim 30$, and thus the flow can be highly supersonic with respect to the dense/cold gas, although numerical simulations suggest that this behavior corresponds more to the ensemble of cold clumps than to the clumps'...

  5. Complex Organics from Laboratory Simulated Interstellar Ices

    Science.gov (United States)

    Dworkin, J. P.

    2003-01-01

    Many of the volatiles in interstellar dense clouds exist in ices surrounding dust grains. The low temperatures of these ices (T organics. We study the UV and proton radiation processing of interstellar ice analogs to explore links between interstellar chemistry, the organics in comets and meteorites, and the origin of life on Earth. The high D/H ratios in some interstellar species, and the knowledge that many of the organics in primitive meteorites are D-enriched, suggest that such links are plausible. Once identified, these species may serve as markers of interstellar heritage of cometary dust and meteorites. Of particular interest are our findings that UV photolysis of interstellar ice analogs produce molecules of importance in current living organisms, including quinones, amphiphiles, and amino acids. Quinones are essential in vital metabolic roles such as electron transport. Studies show that quinones should be made wherever polycyclic aromatic hydrocarbons are photolyzed in interstellar ices. In the case of anthracene-containing ices, we have observed the production of 9-anthrone and 9,10 anthraquinone, both of which have been observed in the Murchison meteorite. Amphiphiles are also made when mixed molecular ices are photolyzed. These amphiphiles self-assemble into fluorescent vesicles when placed in liquid water, as do Murchison extracts. Both have the ability to trap an ionic dye. Photolysis of plausible ices can also produce alanine, serine, and glycine as well as a number of small alcohols and amines. Flash heating of the room temperature residue generated by such experiments generates mass spectral distributions similar to those of IDPs. The detection of high D/H ratios in some interstellar molecular species, and the knowledge that many of the organics, such as hydroxy and amino acids, in primitive meteorites are D-enriched provides evidence for a connection between intact organic material in the interstellar medium and in meteorites. Thus, some of the

  6. THE STRUCTURE, ORIGIN, AND EVOLUTION OF INTERSTELLAR HYDROCARBON GRAINS

    Energy Technology Data Exchange (ETDEWEB)

    Chiar, J. E.; Ricca, A. [SETI Institute, Carl Sagan Center, 189 Bernardo Avenue, Mountain View, CA 94043 (United States); Tielens, A. G. G. M. [Leiden Observatory, P.O. Box 9513, NL-2300 RA Leiden (Netherlands); Adamson, A. J., E-mail: jchiar@seti.org, E-mail: Alessandra.Ricca@1.nasa.gov, E-mail: tielens@strw.leidenuniv.nl, E-mail: aadamson@gemini.edu [Gemini Observatory, Northern Operations Center, 670 North A' ohoku Place, Hilo, HI 96729 (United States)

    2013-06-10

    Many materials have been considered for the carrier of the hydrocarbon absorption bands observed in the diffuse interstellar medium (ISM). In order to refine the model for ISM hydrocarbon grains, we analyze the observed aromatic (3.28, 6.2 {mu}m) and aliphatic (3.4 {mu}m) hydrocarbon absorption features in the diffuse ISM along the line of sight toward the Galactic center Quintuplet Cluster. Observationally, sp {sup 2} bonds can be measured in astronomical spectra using the 6.2 {mu}m CC aromatic stretch feature, whereas the 3.4 {mu}m aliphatic feature can be used to quantify the fraction of sp {sup 3} bonds. The fractional abundance of these components allows us to place the Galactic diffuse ISM hydrocarbons on a ternary phase diagram. We conclude that the Galactic hydrocarbon dust has, on average, a low H/C ratio and sp {sup 3} content and is highly aromatic. We have placed the results of our analysis within the context of the evolution of carbon dust in the ISM. We argue that interstellar carbon dust consists of a large core of aromatic carbon surrounded by a thin mantle of hydrogenated amorphous carbon (a-C:H), a structure that is a natural consequence of the processing of stardust grains in the ISM.

  7. A quantitative analysis of OCN- formation in interstellar ice analogs

    CERN Document Server

    Van Broekhuizen, F A; Schutte, W A

    2003-01-01

    The 4.62 micron absorption band, observed along the line-of-sight towards various young stellar objects, is generally used as a qualitative indicator for energetic processing of interstellar ice mantles. This interpretation is based on the excellent fit with OCN-, which is readily formed by ultraviolet (UV) or ion-irradiation of ices containing H2O, CO and NH3. However, the assignment requires both qualitative and quantitative agreement in terms of the efficiency of formation as well as the formation of additional products. Here, we present the first quantitative results on the efficiency of laboratory formation of OCN- from ices composed of different combinations of H2O, CO, CH3OH, HNCO and NH3 by UV- and thermally-mediated solid state chemistry. Our results show large implications for the use of the 4.62 micron feature as a diagnostic for energetic ice-processing. UV-mediated formation of OCN- from H2O/CO/NH3 ice matrices falls short in reproducing the highest observed interstellar abundances. In this case,...

  8. Organic chemistry and biology of the interstellar medium

    Science.gov (United States)

    Sagan, C.

    1973-01-01

    Interstellar organic chemistry is discussed as the field of study emerging from the discovery of microwave lines of formaldehyde and of hydrogen cyanide in the interstellar medium. The reliability of molecular identifications and comparisons of interstellar and cometary compounds are considered, along with the degradational origin of simple organics. It is pointed out that the contribution of interstellar organic chemistry to problems in biology is not substantive but analogical. The interstellar medium reveals the operation of chemical processes which, on earth and perhaps on vast numbers of planets throughout the universe, led to the origin of life, but the actual molecules of the interstellar medium are unlikely to play any significant biological role.

  9. Hydrocarbons on Saturns Satellites: Relationship to Interstellar Dust and the Solar Nebula

    Science.gov (United States)

    Cruikshank, D. P.

    2012-01-01

    To understand the origin and evolution of our Solar System, and the basic components that led to life on Earth, we study interstellar and planetary spectroscopic signatures. The possible relationship of organic material detected in carbonaceous meteorites, interplanetary dust particles (IDPs), comets and the interstellar medium have been the source of speculation over the years as the composition and processes that governed the early solar nebula have been explored to understand the extent to which primitive material survived or became processed. The Cassini VIMS has provided new data relevant to this problem. Three of Saturn's satellites, Phoebe, Iapetus, and Hyperion, are found to have aromatic and aliphatic hydrocarbons on their surfaces. The aromatic hydrocarbon signature (C-H stretching mode at 3.28 micrometers) is proportionally significantly stronger (relative to the aliphatic bands) than that seen in other Solar System bodies (e.g., comets) and materials (Stardust samples, IDPs, meteorites) and the distinctive sub-features of the 3.4 micrometer aliphatic band (CH2 and CH3 groups) are reminiscent of those widely detected throughout the diffuse ISM. Phoebe may be a captured object that originated in the region beyond the present orbit of Neptune, where the solar nebula contained a large fraction of original interstellar ice and dust that was less processed than material closer to the Sun. Debris from Phoebe now resident on Iapetus and Hyperion, as well as o Phoebe itself, thus presents a unique blend of hydrocarbons, amenable to comparisons with interstellar hydrocarbons and other Solar System materials. The dust ring surrounding Saturn, in which Phoebe is embedded, probably originated from a collision with Phoebe. Dust ring particles are the likely source of the organic-bearing materials, and perhaps the recently identified small particles of Fe detected on Saturn's satellites. Lab measurements of the absolute band strengths of representative aliphatic and

  10. Shielding of CO from dissociating radiation in interstellar clouds

    Science.gov (United States)

    Glassgold, A. E.; Huggins, P. J.; Langer, W. D.

    1985-01-01

    The paper investigates the photodissociation of CO in interstellar clouds in the light of recent laboratory studies which suggest that line rather than continuum processes dominate its dissociation by ultraviolet radiation. Using a simple radiative transfer model, the shielding of representative dissociating bands is estimated, including self-shielding, mutual shielding between different isotopes, and near coincidences with strong lines of H2. Each of these processes materially affects the photodestruction rates of the various isotopic species in the transition regions of molecular clouds. These results are combined with an appropriate gas phase chemical model to determine how the abundances of the CO isotopes vary with depth into the cloud. It is found that self-shielding and mutual shielding cause significant variations in isotopic ratios. In addition, fractionation enhances species containing C-13. The relationship between the column densities of CO and H2 is found to vary for the different isotopes and to be sensitive to local conditions.

  11. Interstellar Dust in the Solar System

    CERN Document Server

    Krueger, Harald; Altobelli, Nicolas; Gruen, Eberhard

    2007-01-01

    The Ulysses spacecraft has been orbiting the Sun on a highly inclined ellipse almost perpendicular to the ecliptic plane (inclination 79 deg, perihelion distance 1.3 AU, aphelion distance 5.4 AU) since it encountered Jupiter in 1992. The in-situ dust detector on board continuously measured interstellar dust grains with masses up to 10^-13 kg, penetrating deep into the solar system. The flow direction is close to the mean apex of the Sun's motion through the solar system and the grains act as tracers of the physical conditions in the local interstellar cloud (LIC). While Ulysses monitored the interstellar dust stream at high ecliptic latitudes between 3 and 5 AU, interstellar impactors were also measured with the in-situ dust detectors on board Cassini, Galileo and Helios, covering a heliocentric distance range between 0.3 and 3 AU in the ecliptic plane. The interstellar dust stream in the inner solar system is altered by the solar radiation pressure force, gravitational focussing and interaction of charged gr...

  12. Prospective of Photon Propulsion for Interstellar Flight

    Science.gov (United States)

    Bae, Young K.

    Mastering photon propulsion is proposed to be the key to overcoming the limit of the current propulsion technology based on conventional rocketry and potentially opening a new space era. A perspective on photon propulsion is presented here to elucidate that interstellar manned roundtrip flight could be achievable in a century within a frame of exiting scientific principles, once the required existing technologies are further developed. It is shown that the developmental pathway towards the interstellar flight demands not only technological breakthroughs, but consistent long-term world-scale economic interest and investment. Such interest and investment will result from positive financial returns from routine interstellar commutes that can transport highly valuable commodities in a profitable manner. The Photonic Railway, a permanent energy-efficient transportation structure based on the Beamed-Laser Propulsion (BLP) by Forward and the Photonic Laser Thruster (PLT) by the author, is proposed to enable such routine interstellar commutes via Spacetrains. A four-phased evolutionary developmental pathway towards the Interstellar Photonic Railway is proposed. Each phase poses evolutionary, yet daunting, technological and financial challenges that need to be overcome within each time frame of 20 _ 30 years, and is projected to generate multitudes of applications that would lead to sustainable reinvestment into its development. If successfully developed, the Photonic Railway would bring about a quantum leap in the human economic and social interests in space from explorations to terraforming, mining, colonization, and permanent habitation in exoplanets.

  13. O vi in the local interstellar medium

    CERN Document Server

    Barstow, M A; Welsh, B Y; Lallement, R; Preval, J K Barstow A E Forbes And S

    2010-01-01

    We report the results of a search for O VI absorption in the spectra of 80 hot DA white dwarfs observed by the FUSE satellite. We have carried out a detailed analysis of the radial velocities of interstellar and (where present) stellar absorption lines for the entire sample of stars. In approximately 35% of cases (where photospheric material is detected), the velocity differences between the interstellar and photospheric components were beneath the resolution of the FUSE spectrographs. Therefore, in 65% of these stars the interstellar and photospheric contributions could be separated and the nature of the O VI component unambiguously determined. Furthermore, in other examples, where the spectra were of a high signal-to-noise, no photospheric material was found and any O VI detected was assumed to be interstellar. Building on the earlier work of Oegerle et al. (2005) and Savage & Lehner (2006), we have increased the number of detections of interstellar O VI and, for the first time, compared their locations...

  14. Communicating Concepts about Altruism in Interstellar Messages

    Science.gov (United States)

    Vakoch, Douglas A.

    2002-01-01

    This project identifies key principles of altruism that can be translated into interstellar messages for communication with extraterrestrial intelligence. The message contents will focus specifically on the evolution of altruism, drawing on recent insights in evolutionary biology, with particular emphasis on sociobiological accounts of kin selection and reciprocal altruism. This focus on altruism for message contents has several advantages. First, the subject can be translated into interstellar messages both via an existing formal interstellar language and via pictorial messages. For example, aspects of reciprocal altruism can be described through mathematical modeling, such as game theoretic approaches, which in turn can be described readily in the interstellar language Lincos. Second, concentrating on altruism as a message content may facilitate communications with extraterrestrial intelligence. Some scientists have argued that humans may be expected to communicate something about their moral status and development in an exchange with extraterrestrials. One of the most salient ways that terrestrial and extraterrestrial civilizations might be expected to evaluate one another is in terms of ethical motivations. Indeed, current search strategies assume some measure of altruism on the part of transmitting civilizations; with no guarantee of a response, the other civilization would be providing information to us with no direct payoff. Thus, concepts about altruism provide an appropriate content for interstellar messages, because the concepts themselves might be understood by extraterrestrial civilizations.

  15. Interstellar processes; Proceedings of the Symposium, Grand Teton National Park, WY, July 1-7, 1986

    Science.gov (United States)

    Hollenbach, David J. (Editor); Thronson, Harley A., Jr. (Editor)

    1987-01-01

    The conference presents papers on the Milky Way as a galaxy; observations of components of the interstellar medium; interstellar magnetic properties; interstellar processes on a galactic scale; dynamical processes in interstellar clouds; interstellar dust grains; interstellar chemical processes; and heating, cooling, and radiative processes. Attention is given to H2 in the Galaxy, hot interstellar gas in the Galactic disk and halo, interstellar magnetic fields, cloud formation and destruction, theoretical approaches to interstellar turbulence, and infrared absorption and emission characteristics of interstellar PAHs. Other topics include gas phase chemical processes in molecular clouds, the chemical evolution of galaxies, and the atomic and molecular physics of interstellar heating and cooling.

  16. Investigating nearby exoplanets via interstellar radar

    Science.gov (United States)

    Scheffer, Louis K.

    2014-01-01

    Interstellar radar is a potential intermediate step between passive observation of exoplanets and interstellar exploratory missions. Compared with passive observation, it has the traditional advantages of radar astronomy. It can measure surface characteristics, determine spin rates and axes, provide extremely accurate ranges, construct maps of planets, distinguish liquid from solid surfaces, find rings and moons, and penetrate clouds. It can do this even for planets close to the parent star. Compared with interstellar travel or probes, it also offers significant advantages. The technology required to build such a radar already exists, radar can return results within a human lifetime, and a single facility can investigate thousands of planetary systems. The cost, although too high for current implementation, is within the reach of Earth's economy.

  17. Long-Term Perspectives on Interstellar Flight

    Science.gov (United States)

    Michaud, M. A. G.

    Realizing interstellar travel by machines or living beings will require not only scientific and technological progress, but also a shared secular belief among a determined minority that this enterprise is important for the human future. Their efforts may have to extend beyond individual human lifetimes. Historical perspectives, on both the past and the future, are proposed. Interstellar probes could be a more thorough way of searching for alien forms of life and intelligence in nearby systems, particularly if there were intelligent beings there who did not employ technologies our astronomical observing devices can detect from here. Perspectives on the ethical, policy, and design issues of such close encounters with alien life and intelligence are presented. Ways of accelerating the coming of interstellar probes are suggested.

  18. Model atmospheres - Tool for identifying interstellar features

    Science.gov (United States)

    Frisch, P. C.; Slojkowski, S. E.; Rodriguez-Bell, T.; York, D.

    1993-01-01

    Model atmosphere parameters are derived for 14 early A stars with rotation velocities, from optical spectra, in excess of 80 km/s. The models are compared with IUE observations of the stars in regions where interstellar lines are expected. In general, with the assumption of solar abundances, excellent fits are obtained in regions longward of 2580 A, and accurate interstellar equivalent widths can be derived using models to establish the continuum. The fits are poorer at shorter wavelengths, particularly at 2026-2062 A, where the stellar model parameters seem inadequate. Features indicating mass flows are evident in stars with known infrared excesses. In gamma TrA, variability in the Mg II lines is seen over the 5-year interval of these data, and also over timescales as short as 26 days. The present technique should be useful in systematic studies of episodic mass flows in A stars and for stellar abundance studies, as well as interstellar features.

  19. Investigating Nearby Exoplanets via Interstellar Radar

    CERN Document Server

    Scheffer, Louis K

    2013-01-01

    Interstellar radar is a potential intermediate step between passive observation of exoplanets and interstellar exploratory missions. Compared to passive observation, it has the traditional advantages of radar astronomy. It can measure surface characteristics, determine spin rates and axes, provide extremely accurate ranges, construct maps of planets, distinguish liquid from solid surfaces, find rings and moons, and penetrate clouds. It can do this even for planets close to the parent star. Compared to interstellar travel or probes, it also offers significant advantages. The technology required to build such a radar already exists, radar can return results within a human lifetime, and a single facility can investigate thousands of planetary systems. The cost, although high, is within the reach of Earth's economy, so it is cheaper as well.

  20. Observational astrochemistry: The quest for interstellar molecules

    Directory of Open Access Journals (Sweden)

    Guélin M.

    2012-01-01

    Full Text Available Over 160 molecular species, not counting isotopologues, have been identified in circumstellar envelopes and interstellar clouds. These species have revealed a wealth of familiar, as much as exotic molecules and in complex organic (and silicon compounds, that was fully unexpected in view of the harshness of surrounding conditions: vanishingly low densities, extreme temperatures and intense embedding UV radiation. They illustrate the diversity of astrochemistry and show robust prebiotic molecules may be. In this lecture, we review the quest for interstellar molecules and show how tributary it is from theoretical ideas and technology developments. A. A. Penzias, who discovered interstellar CO and the 2.7 K Cosmic Background radiation, used to joke that astronomical research is easy: the great questions have largely been formulated; one only has to wait until technological progress makes it possible to answer.

  1. Interstellar water chemistry: from laboratory to observations

    CERN Document Server

    van Dishoeck, Ewine F; Neufeld, David A

    2013-01-01

    Water is observed throughout the universe, from diffuse interstellar clouds to protoplanetary disks around young stars, and from comets in our own solar system and exoplanetary atmospheres to galaxies at high redshifts. This review summarizes the spectroscopy and excitation of water in interstellar space as well as the basic chemical processes that form and destroy water under interstellar conditions. Three major routes to water formation are identified: low temperature ion-molecule chemistry, high-temperature neutral-neutral chemistry and gas-ice chemistry. The rate coefficients of several important processes entering the networks are discussed in detail; several of them have been determined only in the last decade through laboratory experiments and theoretical calculations. Astronomical examples of each of the different chemical routes are presented using data from powerful new telescopes, in particular the Herschel Space Observatory. Basic chemical physics studies remain critically important to analyze ast...

  2. Interstellar Travel. (Latest citations from the Aerospace Database)

    Science.gov (United States)

    1996-01-01

    The bibliography contains citations concerning travel between the stars. Topics include cost considerations, hyperspace navigation, exploration, and propulsion systems for vehicles to be used in interstellar travel. Human factor issues and social aspects of interstellar travel are also discussed.

  3. The Interstellar Line of Sight to the Interacting Galaxy NGC 5195

    CERN Document Server

    Ritchey, Adam M

    2015-01-01

    We present moderately-high resolution echelle observations of the nucleus of NGC 5195, the line of sight to which samples intervening interstellar material associated with the outer spiral arm of M51. Our spectra reveal absorption from interstellar Na I, K I, Ca II, and CH+, and from a number of diffuse interstellar bands (DIBs), at a velocity close to that exhibited by H I 21 cm emission from M51 at the position of NGC 5195. The H I column density implied by the equivalent width of the 5780.5 DIB, based on the relationship between W(5780.5) and N(H I) derived for sight lines in the local Galactic interstellar medium, is consistent with the column density obtained from the integrated H I emission. The H2 column density predicted from the observed column density of K I, using the Galactic relationship between N(K I) and N(H2), is comparable to N(H I), suggesting a high molecular fraction (~0.65) for the M51 gas toward NGC 5195. The DIBs toward NGC 5195 are, on average, ~40% weaker than would be expected based ...

  4. Diffuse Atomic and Molecular Gas in the Interstellar Medium of M82 toward SN 2014J

    CERN Document Server

    Ritchey, Adam M; Dahlstrom, Julie A; York, Donald G

    2014-01-01

    We present a comprehensive analysis of interstellar absorption lines seen in moderately-high resolution, high S/N ratio optical spectra of SN 2014J in M82. Our observations were acquired over the course of six nights, covering the period from ~7 days before to ~29 days after the supernova reached its maximum V-band brightness. Complex interstellar absorption is observed from Na I, Ca II, K I, Ca I, CH+, CH, and CN, much of which arises from gas in the interstellar medium of M82, although absorption features associated with the Galactic disk and halo are also observed. We detect Li I absorption over a range in velocity consistent with that exhibited by the strongest Na I and K I components associated with M82; this is the first detection of interstellar Li in a galaxy outside of the Local Group. There are no significant temporal variations in the absorption-line profiles over the 37 days sampled by our observations. The relative abundances of the observed atomic and molecular species reveal that the ISM of M82...

  5. Problems of Interplanetary and Interstellar Trade

    Science.gov (United States)

    Hickman, John

    2008-01-01

    If and when interplanetary and interstellar trade develops, it will be novel in two respects. First, the distances and time spans involved will reduce all or nearly all trade to the exchange of intangible goods. That threatens the possibility of conducting business in a genuinely common currency and of enforcing debt agreements, especially those involving sovereign debt. Second, interstellar trade suggests trade between humans and aliens. Cultural distance is a probable obstacle to initiating and sustaining such trade. Such exchange also threatens the release of new and potentially toxic memes.

  6. Water in the interstellar media of galaxies

    CERN Document Server

    van der Tak, Floris

    2015-01-01

    This paper reviews recent observations of water in Galactic interstellar clouds and nearby galactic nuclei. Two results are highlighted: (1) Multi-line H$_2$O mapping of the Orion Bar shows that the water chemistry in PDRs is driven by photodissociation and -desorption, unlike in star-forming regions. (2) High-resolution spectra of H$_2$O and its ions toward 5 starburst / AGN systems reveal low ionization rates, unlike as found from higher-excitation lines. We conclude that the chemistry of water strongly depends on radiation environment, and that the ionization rates of interstellar clouds decrease by at least 10 between galactic nuclei and disks.

  7. Interstellar gas in the Gum Nebula

    Science.gov (United States)

    Wallerstein, G.; Jenkins, E. B.; Silk, J.

    1980-01-01

    A survey of the interstellar gas near the Gum Nebula by optical observation of 67 stars at Ca II, 42 stars at Na I, and 14 stars in the UV with the Copernicus satellite provided radial velocities and column densities for all resolved absorption components. Velocity dispersions for gas in the Gum Nebula are not significantly larger than in the general interstellar medium; the ionization structure is predominantly that of an H II region with moderately high ionization. Denser, more highly ionized clouds are concentrated toward the Gum Nebula; these clouds do not show the anomalously high ionization observed in the Vela remnant clouds.

  8. The Voyager Journey to Interstellar Space

    Science.gov (United States)

    Stone, E. C.

    Launched in 1977 to explore Jupiter, Saturn, Uranus, and Neptune, the two Voyager spacecraft continued their journeys beyond the planets as they searched for the heliopause, the boundary between the solar wind and the local interstellar medium. After traveling more than 23 billion kilometers, Voyager 1 left the heliosphere on August 25, 2012, and began returning the first in-situ observations of local interstellar space. Voyager 1 found a wall of interstellar plasma beyond the heliopause with a density forty times greater than inside and an interstellar magnetic field that is compressed and wrapped around the outside. Voyager 1 also observed the energy spectrum of low energy galactic cosmic ray protons that are excluded from the heliosphere by solar modulation, finding a peak intensity at ˜30 MeV. that is ten times the maximum intensity at 1 AU that occurs at ˜300 MeV. An overview of the journey and the new aspects of the interaction of the sun and the nearby region of the Milky Way will be discussed.

  9. Bubbles and holes in the interstellar medium

    NARCIS (Netherlands)

    vanderHulst, JM; Skillman, ED

    1996-01-01

    Studies of the HI in nearby galaxies now clearly begin to show the effects of star formation on the interstellar medium. Holes, filaments, expanding motions and other anomalous velocity signatures are clearly apparent in sensitive observations of the HI in nearby galaxies. A global relation with the

  10. The composition of circumstellar and interstellar dust

    NARCIS (Netherlands)

    Tielens, AGGM; Woodward, CE; Biscay, MD; Shull, JM

    2001-01-01

    A large number of solid dust components have been identified through analysis of stardust recovered from meteorites, and analysis of IR observations of circumstellar shells and the interstellar medium. These include graphite, hydrogenated amorphous carbon, diamond, PAHs, silicon-, iron-, and titanin

  11. Physics and chemistry of interstellar ice

    NARCIS (Netherlands)

    Guss (née Isokoski), Karoliina Marja-Riita

    2013-01-01

    The importance of ice in the interstellar medium is indisputable. Gas phase reactions relying on three-body collisions are exceedingly rare in the sparse medium between the stars. On solid surfaces, atoms and molecules can reside and rove the surface until a reaction takes place. Upon reaction, the

  12. Infrared spectroscopy of interstellar apolar ice analogs

    NARCIS (Netherlands)

    Ehrenfreund, P; Boogert, ACA; Gerakines, PA; Tielens, AGGM; van Dishoeck, EF

    1997-01-01

    Apolar ices have been observed in several regions in dense clouds and are likely dominated by molecules such as CO, CO(2) and the infrared inactive molecules O(2) and N(2). Interstellar solid CO has been well characterized by ground-based high resolution measurements. Recent ISO results showed the u

  13. Abundances and Depletions of Interstellar Oxygen

    Science.gov (United States)

    Jensen, A. G.; Rachford, B. L.; Snow, T. P.

    2003-12-01

    We extend previous work on interstellar oxygen abundances with the addition of data from the Far Ultraviolet Spectroscopic Explorer (FUSE). We report on the abundance of interstellar neutral oxygen (OI) for several sightlines, using data from FUSE, the International Spectroscopic Explorer (IUE), and the Hubble Space Telescope (HST). OI column densities are derived by measuring the equivalent widths of several ultraviolet absorption lines, and subsequently fitting those to a curve of growth. The column densities of our best-constrained sightlines show a ratio of O/H that agrees with the current best solar value if dust is considered. We do not see evidence of enhanced depletion of gas-phase oxygen that is systematically variable with respect to the physical parameters of different environments (e.g., reddening or molecular fraction). The column densities of our less well-constrained sightlines show some scatter in O/H, but many agree with the solar value to within errors. We discuss these results in the context of deriving the best methods for determining interstellar abundances, the unresolved question of the best value for O/H in the interstellar medium (ISM), the O/H ratio observed in Galactic stars, and the depletion of gas-phase oxygen onto dust grains. Financial support for this research has been provided by the National Science Foundation GK-12 Program and NASA contract NAS 5-32985.

  14. The photodissociation and chemistry of interstellar CO

    NARCIS (Netherlands)

    Dishoeck, van E.F.; Black, J.H.

    1988-01-01

    Recent work on the vacuum UV absorption spectrum of CO to the description of the photodissociation of interstellar CO and its principal isotopic varieties is discussed. The effects of line broadening, self-shielding, shielding by H and H2, and isotope-selective shielding are examined as functions of

  15. Far-infrared spectroscopy of interstellar dust

    NARCIS (Netherlands)

    Tielens, AGGM; Wilson, A

    2005-01-01

    The composition of interstellar dust is best studied using mid-infrared spectroscopy. Nevertheless, the far-infrared can make some unique contributions to this field. This includes studies on the Mg/Fe ratio and the temperature of crystalline silicates, the presence of carbonates, and the precense o

  16. The composition of circumstellar and interstellar dust

    NARCIS (Netherlands)

    Tielens, AGGM; Woodward, CE; Biscay, MD; Shull, JM

    2001-01-01

    A large number of solid dust components have been identified through analysis of stardust recovered from meteorites, and analysis of IR observations of circumstellar shells and the interstellar medium. These include graphite, hydrogenated amorphous carbon, diamond, PAHs, silicon-, iron-, and titanin

  17. TRIANGULATION OF THE INTERSTELLAR MAGNETIC FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Schwadron, N. A.; Moebius, E. [University of New Hampshire, Durham, NH 03824 (United States); Richardson, J. D. [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Burlaga, L. F. [Goddard Space Flight Center, Greenbelt, MD 20771 (United States); McComas, D. J. [Southwest Research Institute, San Antonio, TX 78228 (United States)

    2015-11-01

    Determining the direction of the local interstellar magnetic field (LISMF) is important for understanding the heliosphere’s global structure, the properties of the interstellar medium, and the propagation of cosmic rays in the local galactic medium. Measurements of interstellar neutral atoms by Ulysses for He and by SOHO/SWAN for H provided some of the first observational insights into the LISMF direction. Because secondary neutral H is partially deflected by the interstellar flow in the outer heliosheath and this deflection is influenced by the LISMF, the relative deflection of H versus He provides a plane—the so-called B–V plane in which the LISMF direction should lie. Interstellar Boundary Explorer (IBEX) subsequently discovered a ribbon, the center of which is conjectured to be the LISMF direction. The most recent He velocity measurements from IBEX and those from Ulysses yield a B–V plane with uncertainty limits that contain the centers of the IBEX ribbon at 0.7–2.7 keV. The possibility that Voyager 1 has moved into the outer heliosheath now suggests that Voyager 1's direct observations provide another independent determination of the LISMF. We show that LISMF direction measured by Voyager 1 is >40° off from the IBEX ribbon center and the B–V plane. Taking into account the temporal gradient of the field direction measured by Voyager 1, we extrapolate to a field direction that passes directly through the IBEX ribbon center (0.7–2.7 keV) and the B–V plane, allowing us to triangulate the LISMF direction and estimate the gradient scale size of the magnetic field.

  18. Interstellar medium, young stars, and astrometric binaries in Galactic archaeology spectroscopic surveys

    CERN Document Server

    Zwitter, Tomaž; Žerjal, Maruša; Traven, Gregor

    2015-01-01

    Current ongoing stellar spectroscopic surveys (RAVE, GALAH, Gaia-ESO, LAMOST, APOGEE, Gaia) are mostly devoted to studying Galactic archaeology and structure of the Galaxy. But they allow for important auxiliary science: (i) Galactic interstellar medium can be studied in four dimensions (position in space + radial velocity) through weak but numerous diffuse insterstellar bands and atomic absorptions seen in spectra of background stars, (ii) emission spectra which are quite frequent even in field stars can serve as a good indicator of their youth, pointing e.g. to stars recently ejected from young stellar environments, (iii) astrometric solution of the photocenter of a binary to be obtained by Gaia can yield accurate masses when joined by spectroscopic information obtained serendipitously during a survey. These points are illustrated by first results from the first three surveys mentioned above. These hint at the near future: spectroscopic studies of the dynamics of the interstellar medium can identify and qua...

  19. Scientists Toast the Discovery of Vinyl Alcohol in Interstellar Space

    Science.gov (United States)

    2001-10-01

    Astronomers using the National Science Foundation's 12 Meter Telescope at Kitt Peak, AZ, have discovered the complex organic molecule vinyl alcohol in an interstellar cloud of dust and gas near the center of the Milky Way Galaxy. The discovery of this long-sought compound could reveal tantalizing clues to the mysterious origin of complex organic molecules in space. Vinyl Alcohol and its fellow isomers "The discovery of vinyl alcohol is significant," said Barry Turner, a scientist at the National Radio Astronomy Observatory (NRAO) in Charlottesville, Va., "because it gives us an important tool for understanding the formation of complex organic compounds in interstellar space. It may also help us better understand how life might arise elsewhere in the Cosmos." Vinyl alcohol is an important intermediary in many organic chemistry reactions on Earth, and the last of the three stable members of the C2H4O group of isomers (molecules with the same atoms, but in different arrangements) to be discovered in interstellar space. Turner and his colleague A. J. Apponi of the University of Arizona's Steward Observatory in Tucson detected the vinyl alcohol in Sagittarius B -- a massive molecular cloud located some 26,000 light-years from Earth near the center of our Galaxy. The astronomers were able to detect the specific radio signature of vinyl alcohol during the observational period of May and June of 2001. Their results have been accepted for publication in the Astrophysical Journal Letters. Of the approximately 125 molecules detected in interstellar space, scientists believe that most are formed by gas-phase chemistry, in which smaller molecules (and occasionally atoms) manage to "lock horns" when they collide in space. This process, though efficient at creating simple molecules, cannot explain how vinyl alcohol and other complex chemicals are formed in detectable amounts. For many years now, scientists have been searching for the right mechanism to explain how the building

  20. Exploring the gas-phase spectroscopy of interstellar PAH and dust analogs: Astrophysical applications

    Science.gov (United States)

    Biennier, Ludovic; Salama, Farid; Allamandola, Lou; Gupta, Manish; O'Keefe, Anthony; Scherer, James J.

    We present and discuss the gas-phase electronic absorption spectra of selected ionized polycyclic aromatic hydrocarbons (PAHs) measured in the UV-Visible-NIR range in an astrophysically relevant environment. This type of measurements provides data on PAHs and nanometer-sized particles that can now be directly compared to astronomical spectra of the UV interstellar (IS) extinction curve and of the diffuse interstellar bands (DIBs). The harsh physical conditions of the IS medium - characterized by a low temperature, an absence of collisions and strong VUV radiation fields - are simulated in the laboratory by associating a molecular beam with an ionizing discharge to generate a cold plasma expansion. This source combines a pulsed slit supersonic free jet expansion of argon seeded with PAHs (Salama, F., Allamandola, L. J. & Scherer, J. J., `Pulsed discharge nozzle cavity ringdown spectroscopy of cold PAH ions', J. Chem Phys.;in press) that have been pre-selected from Matrix Isolation Spectroscopy (MIS) studies. The absorption spectrum of the Pyrene cation (C16H10+) has also been measured. These experiments provide unique information on the spectra of free, large carbon-containing molecules and ions in the gas phase. The electronic bands measured for this selection of PAH ions are all found to be intrinsically broad (>˜20 cm-1). The laboratory data are compared with recent astronomical spectra of large DIBs. Preliminary results also show that carbon nanoparticles (˜2 nm size) are formed during the short residence time of the precursors in the plasma. This finding holds great potential for the spectroscopy of nanoparticles isolated in the gas-phase in an interstellar-like environment and for understanding the formation process of interstellar grains.

  1. A search for interstellar anthracene towards the Perseus anomalous microwave emission region

    Science.gov (United States)

    Iglesias-Groth, S.; Manchado, A.; Rebolo, R.; González Hernández, J. I.; García-Hernández, D. A.; Lambert, D. L.

    2010-10-01

    We report the discovery of a new broad interstellar (or circumstellar) band at 7088.8 +/- 2.0 Å coincident to within the measurement uncertainties with the strongest band of the anthracene cation (C14H10+) as measured in gas-phase laboratory spectroscopy at low temperatures. The band is detected in the line of sight of star Cernis 52, a likely member of the very young star cluster IC 348, and is probably associated with cold absorbing material in an intervening molecular cloud of the Perseus star-forming region where various experiments have recently detected anomalous microwave emission. From the measured intensity and available oscillator strength we find a column density of implying that ~0.008 per cent of the carbon in the cloud could be in the form of C14H10+. A similar abundance has been recently claimed for the naphthalene cation in this cloud. This is the first location outside the Solar system where specific polycyclic aromatic hydrocarbons (PAHs) are identified. We report observations of interstellar lines of CH and CH+ that support a rather high column density for these species and for molecular hydrogen. The strength ratio of the two prominent diffuse interstellar bands at 5780 and 5797 Å suggests the presence of a `zeta'-type cloud in the line of sight (consistent with steep far-ultraviolet extinction and high molecular content). The presence of PAH cations and other related hydrogenated carbon molecules which are likely to occur in this type of clouds reinforces the suggestion that electric dipole radiation from fast-spinning PAHs is responsible of the anomalous microwave emission detected towards Perseus.

  2. Interstellar Probe: The Next Step To Flight

    Science.gov (United States)

    McNutt, Ralph; Zurbuchen, Thomas H.

    2016-07-01

    In the years following the discovery of the solar wind, the term "heliosphere" was coined and defined as "the region of interplanetary space where the solar wind is flowing supersonically." In June 1971, with the development of the Pioneer probes to Jupiter and beyond well underway, a session of the American Astronautical Society meeting considered scientific exploration reaching beyond the solar system and into the interstellar medium. Despite many discussions, studies, and meetings since, the most recent held under the auspices of the Keck Institute for Space Studies (8-11 September 2014 and 13-15 January 2015), such missions have been relegated to the '"future" due to the large distances and solar system escape speeds contemplated for their execution. In the meantime, the Voyager Interstellar Mission (VIM), consisting of the twin Voyager spacecraft almost 40 years since their respective launches, are making inroads into this region beyond the termination shock of the solar wind, a new region of the solid bodies of the solar system has been opened by the New Horizons flyby of the Pluto system, and the Cassini Ion and Neutral CAmera (INCA) and Interstellar Boundary Explorer (IBEX) have remotely sensed neutral atoms that have provided significant clues to the global structure of the interaction of the solar wind and interstellar medium. It is now time for a dedicated mission to the regime beyond the solar system to explore our galactic environment. A first, near-term implementation can be carried out with the near-current flight system technology. What is also clear is that the high speeds required will limit the spacecraft to a relatively small mass of no more than ~500 kg, regardless of the propulsion details. The recent success of the New Horizons mission at the Pluto system illustrates that with modern technologies, such spacecraft sizes can still accommodate the means to produce paradigm-shifting science, providing for a compelling scientific mission. The

  3. Turbulence and the ionization of interstellar gas

    Science.gov (United States)

    Hill, Alex S.

    2015-08-01

    Turbulence is widely observed in the ionized gas in the interstellar media of star-forming galaxies. Observations in the Milky Way indicate emission from that the warm ionized medium -- ionized gas far from massive stars, the most likely source of the ionization -- has a lognormal intensity distribution. This and other measurements indicate that the gas is well-described as a transonic turbulent fluid. Such a fluid can be produced by feedback from supernovae in the Galaxy. Understanding of this turbulence has also led to a natural explanation for a long-standing puzzle: how do ionizing photons travel through the largely-neutral interstellar medium and produce the ionization? In the turbulent gas, low-density pathways allow ionizing photons to propagate for kiloparsecs, with implications for radiative energy transport in star-forming galaxies.

  4. Human factors issues for interstellar spacecraft

    Science.gov (United States)

    Cohen, Marc M.; Brody, Adam R.

    1991-01-01

    Developments in research on space human factors are reviewed in the context of a self-sustaining interstellar spacecraft based on the notion of traveling space settlements. Assumptions about interstellar travel are set forth addressing costs, mission durations, and the need for multigenerational space colonies. The model of human motivation by Maslow (1970) is examined and directly related to the design of space habitat architecture. Human-factors technology issues encompass the human-machine interface, crew selection and training, and the development of spaceship infrastructure during transtellar flight. A scenario for feasible instellar travel is based on a speed of 0.5c, a timeframe of about 100 yr, and an expandable multigenerational crew of about 100 members. Crew training is identified as a critical human-factors issue requiring the development of perceptual and cognitive aids such as expert systems and virtual reality.

  5. Interstellar molecules - Formation in solar nebulae

    Science.gov (United States)

    Anders, E.

    1973-01-01

    Herbig's (1970) hypothesis that solar nebulae might be the principal source of interstellar grains and molecules is investigated. The investigation includes the determination of physical and chemical conditions in the early solar system. The production of organic compounds in the solar nebula is studied, and the compounds in meteorites are compared with those obtained in Miller-Urey and Fischer-Tropsch-type (FTT) reactions, taking into consideration aliphatic hydrocarbons, aromatic hydrocarbons, purines, pyrimidines, amino acids, porphyrins, and aspects of carbon-isotope fractionation. It is found that FTT reactions account reasonably well for all well-established features of organic matter in meteorites investigated. The distribution of compounds produced by FTT reactions is compared with the distribution of interstellar molecules. Biological implications of the results are considered.

  6. Organic Synthesis in Simulated Interstellar Ice Analogs

    Science.gov (United States)

    Dworkin, Jason P.; Bernstein, Max P.; Sandford, Scott A.; Allamandola, Louis J.; Deamer, David W.; Elsila, Jamie; Zare, Richard N.

    2001-01-01

    Comets and carbonaceous micrometeorites may have been significant sources of organic compounds on the early Earth. Ices on grains in interstellar dense molecular clouds contain a variety of simple molecules as well as aromatic molecules of various sizes. While in these clouds the icy grains are processed by ultraviolet light and cosmic radiation which produces more complex organic molecules. We have run laboratory simulations to identify the types of molecules which could have been generated photolytically in pre-cometary ices. Experiments were conducted by forming various realistic interstellar mixed-molecular ices with and without polycyclic aromatic hydrocarbons (PAHs) at approx. 10 K under high vacuum irradiated with UV light from a hydrogen plasma lamp. The residue that remained after warming to room temperature was analyzed by HPLC, and by laser desorption mass spectrometry. The residue contains several classes of compounds which may be of prebiotic significance.

  7. Interstellar Turbulence II: Implications and Effects

    CERN Document Server

    Scalo, J

    2004-01-01

    Interstellar turbulence has implications for the dispersal and mixing of the elements, cloud chemistry, cosmic ray scattering, and radio wave propagation through the ionized medium. This review discusses the observations and theory of these effects. Metallicity fluctuations are summarized, and the theory of turbulent transport of passive tracers is reviewed. Modeling methods, turbulent concentration of dust grains, and the turbulent washout of radial abundance gradients are discussed. Interstellar chemistry is affected by turbulent transport of various species between environments with different physical properties and by turbulent heating in shocks, vortical dissipation regions, and local regions of enhanced ambipolar diffusion. Cosmic rays are scattered and accelerated in turbulent magnetic waves and shocks, and they generate turbulence on the scale of their gyroradii. Radio wave scintillation is an important diagnostic for small scale turbulence in the ionized medium, giving information about the power spe...

  8. Interstellar Gas and a Dark Disk

    Science.gov (United States)

    Kramer, Eric David; Randall, Lisa

    2016-10-01

    We introduce a potentially powerful method for constraining or discovering a thin dark matter disk in the Milky Way. The method relies on the relationship between the midplane densities and scale heights of interstellar gas being determined by the gravitational potential, which is sensitive to the presence of a dark disk. We show how to use the interstellar gas parameters to set a bound on a dark disk and discuss the constraints suggested by the current data. However, current measurements for these parameters are discordant, with the uncertainty in the constraint being dominated by the molecular hydrogen midplane density measurement, as well as by the atomic hydrogen velocity dispersion measurement. Magnetic fields and cosmic ray pressure, which are expected to play a role, are uncertain as well. The current models and data are inadequate to determine the disk's existence, but taken at face value, may favor its existence depending on the gas parameters used.

  9. Star Formation in Turbulent Interstellar Gas

    CERN Document Server

    Klessen, R S

    2003-01-01

    Understanding the star formation process is central to much of modern astrophysics. For several decades it has been thought that stellar birth is primarily controlled by the interplay between gravity and magnetostatic support, modulated by ambipolar diffusion. Recently, however, both observational and numerical work has begun to suggest that supersonic interstellar turbulence rather than magnetic fields controls star formation. Supersonic turbulence can provide support against gravitational collapse on global scales, while at the same time it produces localized density enhancements that allow for collapse on small scales. The efficiency and timescale of stellar birth in Galactic molecular clouds strongly depend on the properties of the interstellar turbulent velocity field, with slow, inefficient, isolated star formation being a hallmark of turbulent support, and fast, efficient, clustered star formation occurring in its absence.

  10. Organic Synthesis in Simulated Interstellar Ice Analogs

    Science.gov (United States)

    Dworkin, Jason P.; Bernstein, Max P.; Sandford, Scott A.; Allamandola, Louis J.; Deamer, David W.; Elsila, Jamie; Zare, Richard N.

    2001-01-01

    Comets and carbonaceous micrometeorites may have been significant sources of organic compounds on the early Earth. Ices on grains in interstellar dense molecular clouds contain a variety of simple molecules as well as aromatic molecules of various sizes. While in these clouds the icy grains are processed by ultraviolet light and cosmic radiation which produces more complex organic molecules. We have run laboratory simulations to identify the types of molecules which could have been generated photolytically in pre-cometary ices. Experiments were conducted by forming various realistic interstellar mixed-molecular ices with and without polycyclic aromatic hydrocarbons (PAHs) at approx. 10 K under high vacuum irradiated with UV light from a hydrogen plasma lamp. The residue that remained after warming to room temperature was analyzed by HPLC, and by laser desorption mass spectrometry. The residue contains several classes of compounds which may be of prebiotic significance.

  11. Local Interstellar Magnetic Field Determined from the Interstellar Boundary Explorer Ribbon

    Science.gov (United States)

    Zirnstein, E. J.; Heerikhuisen, J.; Funsten, H. O.; Livadiotis, G.; McComas, D. J.; Pogorelov, N. V.

    2016-02-01

    The solar wind emanating from the Sun interacts with the local interstellar medium (LISM), forming the heliosphere. Hydrogen energetic neutral atoms (ENAs) produced by the solar-interstellar interaction carry important information about plasma properties from the boundaries of the heliosphere, and are currently being measured by NASA's Interstellar Boundary Explorer (IBEX). IBEX observations show the existence of a “ribbon” of intense ENA emission projecting a circle on the celestial sphere that is centered near the local interstellar magnetic field (ISMF) vector. Here we show that the source of the IBEX ribbon as a function of ENA energy outside the heliosphere, uniquely coupled to the draping of the ISMF around the heliopause, can be used to precisely determine the magnitude (2.93 ± 0.08 μG) and direction (227.°28 ± 0.°69, 34.°62 ± 0.°45 in ecliptic longitude and latitude) of the pristine ISMF far (∼1000 AU) from the Sun. We find that the ISMF vector is offset from the ribbon center by ∼8.°3 toward the direction of motion of the heliosphere through the LISM, and their vectors form a plane that is consistent with the direction of deflected interstellar neutral hydrogen, thought to be controlled by the ISMF. Our results yield draped ISMF properties close to that observed by Voyager 1, the only spacecraft to directly measure the ISMF close to the heliosphere, and give predictions of the pristine ISMF that Voyager 1 has yet to sample.

  12. Kinetic chemistry of dense interstellar clouds

    Energy Technology Data Exchange (ETDEWEB)

    Graedel, T.E.; Langer, W.D.; Frerking, M.A.

    1982-03-01

    A detailed model of the time-dependent chemistry of dense interstellar clouds has been developed to study the dominant chemical processes in carbon and oxygen isotope fractionation, formation of nitrogen-containing molecules, evolution of product molecules as a function of cloud density and temperature, and other topics of interest. The full computation involves 328 individual reactions (expanded to 1067 to study carbon and oxygen isotope chemistry); photodegradation processes are unimportant in these dense clouds and are excluded.

  13. TAU as Tao. [interstellar spacecraft performance

    Science.gov (United States)

    Lyman, P. T.; Reid, M. S.

    1989-01-01

    This paper discusses the feasibility of building and launching a truly deep-space spacecraft mission that will penetrate near interstellar space to a depth of one thousand astronomical units (TAU) within a flight time of 50 years. Particular attention is given to the mission profile and to its communications system, power system, and propulsion system. Results of experimental studies indicate that, with advanced technology, reasonable trip times can be achieved and adequate science information can be brought to earth.

  14. Building Interstellar's black hole: the gravitational renderer

    OpenAIRE

    James, Oliver; Dieckmann, Sylvan; Pabst, Simon; Roberts, Paul-George H.; Thorne, Kip S.

    2015-01-01

    Interstellar is the first feature film to attempt depicting a black hole as it would actually be seen by somebody nearby. A close collaboration between the production's Scientific Advisor and the Visual Effects team led to the development of a new renderer, DNGR (Double Negative Gravitational Renderer) which uses novel techniques for rendering in curved space-time. Following the completion of the movie, the code was adapted for scientific research, leading to new insights into gravitational l...

  15. On the smoothness of the interstellar extinction curve in the UV. Comparison with recent laboratory measurements of PAH mixtures

    CERN Document Server

    Steglich, Mathias; Jäger, Cornelia; Huisken, Friedrich; Räder, Hans-Joachim; Henning, Thomas

    2012-01-01

    Context: As revealed by high-resolution spectral investigations in the wavelength range between 300 and 400 nm, the interstellar extinction curve does not display any sharp electronic absorption bands characteristic for large polyatomic molecules, like polycyclic aromatic hydrocarbons (PAHs), which belong to the most abundant interstellar molecules. Aims: We try to verify whether the absorption curves of mixtures of medium-sized PAHs produced in the laboratory can explain the astronomical observations. Methods: The PAH mixtures were synthesized by infrared laser pyrolysis and subsequent chemical extraction and size separation. The matrix isolation technique was used to study the absorption spectra of isolated molecules at low temperature. Results: Our experimental results demonstrate that the UV-visible absorption curves of PAH mixtures can be very smooth, displaying no sharp bands, if the molecular diversity is sufficiently high. Conclusions: In view of the absence of sharp electronic features on the interst...

  16. Band Together!

    Science.gov (United States)

    Olson, Cathy Applefeld

    2011-01-01

    After nearly a decade as band director at St. James High School in St. James, Missouri, Derek Limback knows that the key to building a successful program is putting the program itself above everything else. Limback strives to augment not only his students' musical prowess, but also their leadership skills. Key to his philosophy is instilling a…

  17. New Large Interstellar Molecules Detected with the GBT

    Science.gov (United States)

    Hollis, Jan M.

    2005-01-01

    At present, more than 135 different molecules have been identified in interstellar clouds. The newest instrument in the interstellar molecule search arsenal is the recently commissioned Green Bank Telescope (GBT). In 2004, the large aldehydes propenal (CH2CHCHO) and propanal (CH3CH2CHO) were the first new interstellar molecules discovered with the GBT. At the same time, the GBT was used to observe interstellar glycolaldehyde (CH2OHCHO), which is the simplest possible aldehyde sugar; interstellar ethylene glycol (HOCH2CH2OH), which is the sugar alcohol of glycolaldehyde; and interstellar methylcyanodiacetylene (CH3C5N). These new GBT observations suggest that successive atomic addition reactions are common in the formation of larger related species. The observations will be presented and discussed.

  18. The Ingenious Theory of Interstellar Trade

    Science.gov (United States)

    Radhakrishnan, Arun; Ganapathy, Rohan M.

    This paper extends interplanetary trade theory to an interstellar setting. It is chiefly concerned with the following question: How should interest charges on goods in transit be computed when the goods travel at speeds close to the actual speed of light? This is a problem because the time taken in transit will appear less to an observer travelling with the goods than to a stationary observer. An innovative and ingenious solution is derived from the economic theory, and two useless but TRUE theorems are proved. The interstellar trade would happen in such a way that two time frames must be considered namely that of the stationary observer whose time runs faster compared to the time frame of the observer in transit The interest in a given trade is purely based on the time taken for the debtor to pay the amount, once the goods have been delivered by the seller. But, in case of interstellar trade, the interest to be calculated in between two time frames would lead to the question of which time frame to be considered and moreover, the time taken for the goods to reach the destination is signicantly prolonged compared to the interplanetary trade, which means, even the slightest variations in the interest rate would be magnied. Apart from this, various new factors arise while calculating the interest. The factors include the time value of money, and the risk of variation in demand for goods, the risk of interspace accidents causing loss of the goods and the rate of perish-ability in case of organic goods. The first two factors considered, for which the time frame of the stationary observer is considered and the factors such as the risk of accidents and the rate of perish-ability of the goods are considered based on the time frame of the observer in transit's point of view. The reasons for such considerations and various assumptions on these concepts are dealt in this paper. The theorems that are formulated in this paper would provide the interstellar traders a basic

  19. Probing the Surfaces of Interstellar Dust Grains: The Adsorption of CO at Bare Grain Surfaces

    CERN Document Server

    Fraser, H J; Pontoppidan, K M; Van Dishoeck, A G; Fraser, Helen J.; Bisschop, Suzanne E.; Pontoppidan, Klaus M.; Dishoeck, Alexander G.G.M. Tielens & Ewine F. van

    2004-01-01

    A solid-state feature was detected at around 2175 cm-1 towards 30 embedded young stellar objects in spectra obtained using the ESO VLT-ISAAC. We present results from laboratory studies of CO adsorbed at the surface of Zeolite wafers, where absorption bands were detected at 2177 and 2168 cm-1 (corresponding to CO chemisorbed at the Zeolite surface), and 2130 cm-1 (corresponding to CO physisorbed at the Zeolite surface), providing an excellent match to the observational data. We propose that the main carrier of the 2175-band is CO chemisorbed at bare surfaces of dust grains in the interstellar medium. This result provides the first direct evidence that gas-surface interactions do not have to result in the formation of ice mantles on interstellar dust. The strength of the 2175-band is estimated to be ~ 4 x 10-19 cm molecule-1. The abundance of CO adsorbed at bare grain surfaces ranges from 0.06 to 0.16 relative to H2O ice, which is, at most, half of the abundance (relative to H2O ice) of CO residing in H2O-domin...

  20. The abundance of C3H2 and other small hydrocarbons in the diffuse interstellar medium

    CERN Document Server

    Liszt, Harvey; Cordiner, Martin; Gerin, Maryvonne

    2012-01-01

    Hydrocarbons are ubiquitous in the interstellar medium, observed in diverse environments ranging from diffuse to molecular dark clouds and strong photon-dominated regions near HII regions. Recently, two broad diffuse interstellar bands (DIBs) at 4881{\\AA} and 5450{\\AA} were attributed to the linear version of propynylidene l-C3H2, a species whose more stable cyclic conformer c-C3H2 has been widely observed in the diffuse interstellar medium at radio wavelengths. This attribution has already been criticized on the basis of indirect plausibility arguments because the required column densities are quite large, N(l-C3H2)/EB-V = 4 \\times 1014 cm-2 mag-1. Here we present new measurements of N(l-C3H2) based on simultaneous 18-21 GHz VLA absorption profiles of cyclic and linear C3H2 taken along sightlines toward extragalactic radiocontinuum background sources with foreground Galactic reddening EB-V = 0.1 - 1.6 mag. We find that N(l-C3H2)/N(c-C3H2) ? 1/15 - 1/40 and N(l-C3H2)/EB-V ? 2 \\pm 1 \\times 1011 cm-2 mag-1, so ...

  1. Enhanced Turbulence in M82 and M51 from Observations of Interstellar CH+

    Science.gov (United States)

    Ritchey, Adam M.; Welty, Daniel E.; Wallerstein, George

    2015-01-01

    Recent observations of diffuse molecular gas in M82 toward SN 2014J and in M51 toward its companion galaxy NGC 5195 have led to the discovery of high CH+ abundances in these extragalactic lines of sight. The column densities of CH+ are much higher in these directions (relative to the CH column densities) than would be expected based on other properties of the material. The equivalent widths of the λ5780.5 and λ5797.1 diffuse interstellar bands, for example, are suggestive of weak ambient radiation fields and/or significantly shielded environments, where the CH+ abundance would normally be expected to be rather low. We interpret these findings within the framework of recent models of turbulent dissipation regions, which find that the CH+ abundance is directly proportional to the average turbulent dissipation rate and inversely proportional to the square of the gas density. The high CH+ abundances toward SN 2014J and NGC 5195 then suggest that the average turbulent dissipation rates could be significantly enhanced in M82 and M51 (relative to typical values characterizing the local Galactic interstellar medium). As both M82 and M51 are interacting with neighboring galaxies, such enhanced interstellar turbulence could be due to those interactions, either directly (i.e., as a result of the gravitational encounter) or indirectly (e.g., through increased star formation and supernova rates).

  2. Analysis of "Midnight" Tracks in the Stardust Interstellar Dust Collector: Possible Discovery of a Contemporary Interstellar Dust Grain

    Science.gov (United States)

    Westphal, A. J.; Allen, C.; Bajit, S.; Bastien, R.; Bechtel, H.; Bleuet, P.; Borg, J.; Brenker, F.; Bridges, J.; Brownlee, D. E.; Burchell, M.; Burghammer, M.; Butterworth, A. L.; Cloetens, P.; Cody, G.; Ferrior, T.; Floss, C.; Flynn, G. J.; Frank, D.; Gainsforth, Z.; Grun, E.; Hoppe, P.; Hudson, B.; Kearsley, A.; Lai, B.

    2010-01-01

    In January 2006, the Stardust sample return capsule returned to Earth bearing the first solid samples from a primitive solar system body, Comet 81P/Wild2, and a collector dedicated to the capture and return of contemporary interstellar dust. Both collectors were approximately 0.1m(exp 2) in area and were composed of aerogel tiles (85% of the collecting area) and aluminum foils. The Stardust Interstellar Dust Collector (SIDC) was exposed to the interstellar dust stream for a total exposure factor of 20 m(exp 2) day. The Stardust Interstellar Preliminary Examination (ISPE) is a three-year effort to characterize the collection using nondestructive techniques.

  3. [SiPAH]+ pi-Complexes in the Interstellar Medium

    CERN Document Server

    Joalland, B; Marsden, C J; Joblin, C

    2008-01-01

    We investigate the presence of silicon atoms adsorbed on the surface of interstellar polycyclic aromatic hydrocarbons (PAHs) to form SiPAH pi-complexes. We use quantum chemistry calculations to obtain structural, thermodynamic and mid-IR properties of neutral and cationic SiPAH complexes. The binding energy was found to be at least 1.5 eV for [SiPAH]+ complexes whereas it is roughly 0.5 eV for their neutral counterparts. From the spectral analysis of the calculated IR spectra, we found that the coordination of silicon to PAH+ does not strongly affect the intensities of the PAH+ spectra, but systematically introduces blueshifts of the C-C in-plane and the C-H out-of-plane bands. The thermodynamic data calculated for [SiPAH]+ complexes show that these species are stable and can be easily formed by radiative association of Si+ and PAH species that are known to be abundant in photodissociation regions. Their mid-IR fingerprints show features induced by the coordination of silicon that could account for (i) the bl...

  4. Potential Variations in the Interstellar N I Abundance

    CERN Document Server

    Knauth, D C; McCandliss, S R; Moos, H W; Knauth, David C.; Candliss, Stephan R.Mc

    2003-01-01

    We present Far Ultraviolet Spectroscopic Explorer (FUSE) and Space Telescope Imaging Spectrograph observations of the weak interstellar N I doublet at 1160 Angstroms toward 17 high-density sight lines [N(Htot)>=10^21 cm^-2]. When combined with published data, our results reveal variations in the fractional N I abundance showing a systematic deficiency at large N(Htot). At the FUSE resolution (~20 km s^-1), the effects of unresolved saturation cannot be conclusively ruled out, although O I at 1356 Angstroms shows little evidence of saturation. We investigated the possibility that the N I variability is due to the formation of N_2 in our mostly dense regions. The 0-0 band of the c'_4 ^1Sigma^+_u - X ^1Sigma^+_g transition of N_2 at 958 Angstroms should be easily detected in our FUSE data; for 10 of the denser sight lines, N_2 is not observed at a sensitivity level of a few times 10^14 cm^-2. The observed N I variations are suggestive of an incomplete understanding of nitrogen chemistry. Based on observations ma...

  5. PAHs molecules and heating of the interstellar gas

    Science.gov (United States)

    Verstraete, Laurent; Leger, Alain; Dhendecourt, Louis B.; Dutuit, O.; Defourneau, D.

    1989-01-01

    Until now it has remained difficult to account for the rather high temperatures seen in many diffuse interstellar clouds. Various heating mechanisms have been considered: photoionization of minor species, ionization of H by cosmic rays, and photoelectric effect on small grains. Yet all these processes are either too weak or efficient under too restricting conditions to balance the observed cooling rates. A major heat source is thus still missing in the thermal balance of the diffuse gas. Using photoionization cross sections measured in the lab, it was shown that in order to balance the observed cooling rates in cold diffuse clouds (T approx. 80 K) the PAHs would have to contain 15 percent of the cosmic abundance of carbon. This value does not contradict the former estimation of 6 percent deduced from the IR emission bands since this latter is to be taken as a lower limit. Further, it was estimated that the contribution to the heating rate due to PAH's in a warm HI cloud, assuming the same PAH abundance as for a cold HI cloud, would represent a significant fraction of the value required to keep the medium in thermal balance. Thus, photoionization of PAHs might well be a major heat source for the cold and warm HI media.

  6. Solar lens mission concept for interstellar exploration

    Science.gov (United States)

    Brashears, Travis; Lubin, Philip; Turyshev, Slava; Shao, Michael; Zhang, Qicheng

    2015-09-01

    The long standing approach to space travel has been to incorporate massive on-board electronics, probes and propellants to achieve space exploration. This approach has led to many great achievements in science, but will never help to explore the interstellar medium. Fortunately, a paradigm shift is upon us in how a spacecraft is constructed and propelled. This paper describes a mission concept to get to our Sun's Gravity Lens at 550AU in less than 10 years. It will be done by using DE-STAR, a scalable solar-powered phased-array laser in Earth Orbit, as a directed energy photon drive of low-mass wafersats. [1] [2] [3] [4] [5] With recent technologies a complete mission can be placed on a wafer including, power from an embedded radio nuclear thermal generator (RTG), PV, laser communications, imaging, photon thrusters for attitude control and other sensors. As one example, a futuristic 200 MW laser array consisting of 1 - 10 kw meter scale sub elements with a 100m baseline can propel a 10 gram wafer scale spacecraft with a 3m laser sail to 60AU/Year. Directed energy propulsion of low-mass spacecraft gives us an opportunity to capture images of Alpha Centauri and its planets, detailed imaging of the cosmic microwave background, set up interstellar communications by using gravity lenses around nearby stars to boost signals from interstellar probes, and much more. This system offers a very large range of missions allowing hundreds of wafer scale payload launches per day to reach this cosmological data reservoir. Directed Energy Propulsion is the only current technology that can provide a near-term path to utilize our Sun's Gravity Lens.

  7. Magnetic Fields in the Interstellar Medium

    Science.gov (United States)

    Clark, Susan

    2017-01-01

    The Milky Way is magnetized. Invisible magnetic fields thread the Galaxy on all scales and play a vital but still poorly understood role in regulating flows of gas in the interstellar medium and the formation of stars. I will present highlights from my thesis work on magnetic fields in the diffuse interstellar gas and in accretion disks. At high Galactic latitudes, diffuse neutral hydrogen is organized into an intricate network of slender linear features. I will show that these neutral hydrogen “fibers” are extremely well aligned with the ambient magnetic field as traced by both starlight polarization (Clark et al. 2014) and Planck 353 GHz polarized dust emission (Clark et al. 2015). The structure of the neutral interstellar medium is more tightly coupled to the magnetic field than previously known. Because the orientation of neutral hydrogen is an independent predictor of the local dust polarization angle, our work provides a new tool in the search for inflationary gravitational wave B-mode polarization in the cosmic microwave background, which is currently limited by dust foreground contamination. Magnetic fields also drive accretion in astrophysical disks via the magnetorotational instability (MRI). I analytically derive the behavior of this instability in the weakly nonlinear regime and show that the saturated state of the instability depends on the geometry of the background magnetic field. The analytical model describes the behavior of the MRI in a Taylor-Couette flow, a set-up used by experimentalists in the ongoing quest to observe MRI in the laboratory (Clark & Oishi 2016a, 2016b).

  8. Interstellar extinction by fractal polycrystalline graphite clusters?

    CERN Document Server

    Andersen, A C; Pustovit, V N; Niklasson, G A

    2001-01-01

    Certain dust particles in space are expected to appear as clusters of individual grains. The morphology of these clusters could be fractal or compact. To determine how these structural features would affect the interpretation of the observed interstellar extinction peak at $\\sim 4.6~\\mu$m, we have calculated the extinction by compact and fractal polycrystalline graphite clusters consisting of touching identical spheres. We compare three general methods for computing the extinction of the clusters, namely, a rigorous solution and two different discrete-dipole approximation methods.

  9. The 2014 KIDA network for interstellar chemistry

    CERN Document Server

    Wakelam, V; Herbst, E; Pavone, B; Bergeat, A; Béroff, K; Chabot, M; Faure, A; Galli, D; Geppert, W D; Gerlich, D; Gratier, P; Harada, N; Hickson, K M; Honvault, P; Klippenstein, S J; Picard, S D Le; Nyman, G; Ruaud, M; Schlemmer, S; Sims, I R; Talbi, D; Tennyson, J; Wester, R

    2015-01-01

    Chemical models used to study the chemical composition of the gas and the ices in the interstellar medium are based on a network of chemical reactions and associated rate coefficients. These reactions and rate coefficients are partially compiled from data in the literature, when available. We present in this paper kida.uva.2014, a new updated version of the kida.uva public gas-phase network first released in 2012. In addition to a description of the many specific updates, we illustrate changes in the predicted abundances of molecules for cold dense cloud conditions as compared with the results of the previous version of our network, kida.uva.2011.

  10. Formation of Interstellar OH and CH

    Science.gov (United States)

    Kwak, Kyujin; Yoon, Jeongkwan; Hong, Seungyeong

    2017-01-01

    From the absorption spectra of bright UV-emitting stars, column densities of interstellar OH (3078 and 3082 Å) and CH (3886 and 3890 Å) have been measured simultaneously along about 20 sightlines. In order to understand the physical and chemical environments in which these two molecules exist, we perform numerical simulations by using Astrochem, a publically available astrochemical reaction code. We investigate the effect of cosmic ray, grain, environmental photon, and initial composition on the formation of these two molecules. We also compare our simulated results with observations of molecule-forming objects such as supernova remnants, molecular clouds, and evolved stars along the observed sightlines.

  11. Can spores survive in interstellar space?

    Science.gov (United States)

    Weber, P.; Greenberg, J. M.

    1985-01-01

    Experimental evidence is presented for the effects of very low temperature and UV radiation, characteristic of the interstellar medium, on the survival of bacteria. In the most general space environment, 10 percent survival times are only of the order of hundreds of years, too short for panspermia to work. In a substantial fraction of space within dark clouds, however, it is shown that, even with conservative figures, survival times as long as millions to tens of millions of years are attainable. In such conditions, clouds could transport organisms from one solar system to another in times significantly shorter than the mean survival time. This occurs with significant probability.

  12. Ambient Interstellar Pressure and Superbubble Evolution

    CERN Document Server

    Oey, M S

    2004-01-01

    High ambient interstellar pressure is suggested as a possible factor to explain the ubiquitous observed growth-rate discrepancy for supernova-driven superbubbles and stellar wind bubbles. Pressures of P/k ~ 1e5 cm-3 K are plausible for regions with high star formation rates, and these values are intermediate between the estimated Galactic mid-plane pressure and those observed in starburst galaxies. High-pressure components also are commonly seen in Galactic ISM localizations. We demonstrate the sensitivity of shell growth to the ambient pressure, and suggest that superbubbles ultimately might serve as ISM barometers.

  13. Interstellar nomads: The problem of detecting comets

    Science.gov (United States)

    Jones, Eric M.; Newman, William I.; Campbell, Donald B.

    1993-01-01

    This paper shows that, using only a modest extrapolation of current phased-array radar and massively parallel processor computer technologies, radar transmitter in the outer solar system or in interstellar space could be used to detect comets passing within 1 or 2 AU of the transmitter. It discusses how this potential development could be instrumental to the colonisation of the outer solar system and beyond. This development is germane to contemporary investigations of the population of the Oort cloud as well as to the Search for Extraterrestrial Intelligence (SETI) question.

  14. LOCAL INTERSTELLAR MAGNETIC FIELD DETERMINED FROM THE INTERSTELLAR BOUNDARY EXPLORER RIBBON

    Energy Technology Data Exchange (ETDEWEB)

    Zirnstein, E. J.; Livadiotis, G.; McComas, D. J. [Southwest Research Institute, San Antonio, TX 78228 (United States); Heerikhuisen, J.; Pogorelov, N. V. [Department of Space Science, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Funsten, H. O., E-mail: ezirnstein@swri.edu [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2016-02-10

    The solar wind emanating from the Sun interacts with the local interstellar medium (LISM), forming the heliosphere. Hydrogen energetic neutral atoms (ENAs) produced by the solar-interstellar interaction carry important information about plasma properties from the boundaries of the heliosphere, and are currently being measured by NASA's Interstellar Boundary Explorer (IBEX). IBEX observations show the existence of a “ribbon” of intense ENA emission projecting a circle on the celestial sphere that is centered near the local interstellar magnetic field (ISMF) vector. Here we show that the source of the IBEX ribbon as a function of ENA energy outside the heliosphere, uniquely coupled to the draping of the ISMF around the heliopause, can be used to precisely determine the magnitude (2.93 ± 0.08 μG) and direction (227.°28 ± 0.°69, 34.°62 ± 0.°45 in ecliptic longitude and latitude) of the pristine ISMF far (∼1000 AU) from the Sun. We find that the ISMF vector is offset from the ribbon center by ∼8.°3 toward the direction of motion of the heliosphere through the LISM, and their vectors form a plane that is consistent with the direction of deflected interstellar neutral hydrogen, thought to be controlled by the ISMF. Our results yield draped ISMF properties close to that observed by Voyager 1, the only spacecraft to directly measure the ISMF close to the heliosphere, and give predictions of the pristine ISMF that Voyager 1 has yet to sample.

  15. Abundances of Neutral and Ionized PAH Along The Lines-of-Sight of Diffuse and Translucent Interstellar Clouds

    Science.gov (United States)

    Salama, Farid; Galazutdinov, Gazinur; Krewloski, Jacek; Biennier, Ludovic; Beletsky, Yuri; Song, In-Ok

    2013-01-01

    The spectra of neutral and ionized PAHs isolated in the gas phase at low temperature have been measured in the laboratory under conditions that mimic interstellar conditions and are compared with a set of astronomical spectra of reddened, early type stars. The comparisons of astronomical and laboratory data provide upper limits for the abundances of neutral PAH molecules and ions along specific lines-of-sight. Something that is not attainable from infrared observations. We present the characteristics of the laboratory facility (COSmIC) that was developed for this study and discuss the findings resulting from the comparison of the laboratory data with high resolution, high S/N ratio astronomical observations. COSmIC combines a supersonic jet expansion with discharge plasma and cavity ringdown spectroscopy and provides experimental conditions that closely mimic the interstellar conditions. The column densities of the individual PAH molecules and ions probed in these surveys are derived from the comparison of the laboratory data with high resolution, high S/N ratio astronomical observations. The comparisons of astronomical and laboratory data lead to clear conclusions regarding the expected abundances for PAHs in the interstellar environments probed in the surveys. Band profile comparisons between laboratory and astronomical spectra lead to information regarding the molecular structures and characteristics associated with the DIB carriers in the corresponding lines-of-sight. These quantitative surveys of neutral and ionized PAHs in the optical range open the way for quantitative searches of PAHs and complex organics in a variety of interstellar and circumstellar environments.

  16. The shape and composition of interstellar silicate grains

    NARCIS (Netherlands)

    Min, M.; Waters, L.B.F.M.; de Koter, A.; Hovenier, J.W.; Keller, L.P.; Markwick-Kemper, F.

    2007-01-01

    We investigate the composition and shape distribution of silicate dust grains in the interstellar medium. The effects of the amount of magnesium and iron in the silicate lattice are studied in detail. We fit the spectral shape of the interstellar 10 mu m extinction feature as observed towards the ga

  17. The shape and composition of interstellar silicate grains

    NARCIS (Netherlands)

    Min, M.; Waters, L.B.F.M.; de Koter, A.; Hovenier, J.W.; Keller, L.P.; Markwick-Kemper, F.

    2007-01-01

    We investigate the composition and shape distribution of silicate dust grains in the interstellar medium. The effects of the amount of magnesium and iron in the silicate lattice are studied in detail. We fit the spectral shape of the interstellar 10 mu m extinction feature as observed towards the

  18. Editorial: Interstellar Boundary Explorer (IBEX): Direct Sampling of the Interstellar Medium

    Science.gov (United States)

    McComas, D. J.

    2012-02-01

    This special supplement issue of the Astrophysical Journal comprises six coordinated papers that provide the first detailed analyses of the direct sampling of interstellar neutral atoms by the Interstellar Boundary Explorer (IBEX). Interstellar atoms are the detritus of older stars—their stellar winds, novae, and supernovae—spread across the galaxy, which fill the vast interstellar space between the stars. The very local interstellar medium around the Sun is filled with both ionized and neutral atoms with approximately equal numbers, and occasional ionization, charge exchange, and recombination makes them a single interacting material over large distances. IBEX (McComas et al. 2009a) is a NASA Small Explorer mission with the sole, focused science objective to discover the global interaction between the solar wind and the interstellar medium; this objective has primarily been achieved by taking the first global energetic neutral atom (ENA) images, which provide detailed ENA fluxes and energy spectra over all look directions in space. IBEX was launched 2008 October 19 and subsequently maneuvered into a high-altitude, highly elliptical (~15,000 × 300,000 km), roughly week-long orbit. The payload comprises two very high sensitivity, single-pixel ENA cameras: IBEX-Hi (Funsten et al. 2009a), which measures ENAs from ~300 eV to 6 keV, and IBEX-Lo (Fuselier et al. 2009a), which measures ENAs from ~10 eV to 2 keV. The initial IBEX ENA results were published together in a special issue of Science magazine (McComas et al. 2009b; Funsten et al. 2009b; Fuselier et al. 2009b; Schwadron et al. 2009). Since then there have been numerous additional studies of the IBEX ENA observations of the heliosphere, as well as ENAs from the Moon and Earth's magnetosphere (see recent review by McComas et al. 2011 and references therein). Prior to IBEX, the only interstellar neutral atoms to be directly sampled were He, observed by the Ulysses spacecraft a decade ago (Witte et al. 1996

  19. Erratum: "Anomalous Diffuse Interstellar Bands in the Spectrum of Herschel 36. II. Analysis of Radiatively Excited CH+, CH, and Diffuse Interstellar Bands" (2013, ApJ, 773, 42)

    Science.gov (United States)

    Oka, Takeshi; Welty, Daniel E.; Johnson, Sean; York, Donald G.; Dahlstrom, Julie; Hobbs, Lew

    2014-09-01

    Absorption spectra toward Herschel 36 for the A^1Pi 50 K). Although modeling for general molecules is beyond the scope of this paper, the results indicate that the prototypical DIBs at 5780.5, 5797.1, and 6613.6 A which show the pronounced ETRs are due to polar molecules sensitive to the radiative excitation. The requirement of high beta favors relatively small molecules with 3-6 heavy atoms. DIBs at 5849.8, 6196.0, and 6379.3 A which do not show the pronounced ETRs are likely due to non-polar molecules or large polar molecules with small beta.

  20. Graphene Solar Photon Sails and Interstellar Arks

    Science.gov (United States)

    Matloff, G. L.

    2014-06-01

    A review of conceptual interstellar generation ships is followed by a presentation of optical and thermal properties of graphene and a discussion of kinematics/thermal-aspects of the solar-acceleration phase of a starship propelled by a graphene hollowbody solar-photon sail. The spacecraft departs from an initially parabolic solar orbit and the sail is oriented normal to the Sun during solar-acceleration. Perihelion is constrained to 0.1 AU because humans can tolerate ~3g for several hours without lasting effects. The 5 × 106 kg payload mass and 9.16 × 106 kg sail mass are applied as cosmic-ray shielding for the ship's 20-50 person population during the ~1,400-year cruise phase. Artificial gravity, the Coriolis Effect, closed-environment agriculture, illumination, on-board energy requirements, thermal dissipation, and hygiene/recreation are considered in a discussion of habitat design. Many concepts for mid-course trajectory correction are discussed including a new one that expels mass collected by a Cassenti toroidal ion scoop in a direction normal to the ship's trajectory. Although acceleration is affected by the unfurled sail, other options are discussed, as is the problem of protection from interstellar-dust erosion. As well as presenting the total mass budget, the conclusion reviews published variations and modifications on the generation-ship theme.

  1. The Ionization of Nearby Interstellar Gas

    CERN Document Server

    Slavin, J D; Slavin, Jonathan D.; Frisch, Priscilla C.

    2002-01-01

    We present new calculations of the photoionization of interstellar matter within ~5 pc of the Sun (which we refer to as the Local Cloud Complex or LCC) by directly observed radiation sources including nearby hot stars and the diffuse emission of the Soft X-ray Background (SXRB). In addition, we model the important, unobserved EUV emission both from the hot gas responsible for the SXRB and from a possible evaporative boundary between the LCC and the hot gas. We carry out radiative transfer calculations and show that these radiation sources can provide the ionization and heating of the cloud required to match a variety of observations. The ionization predicted in our models shows good agreement with pickup ion results, interstellar absorption line data towards epsilon CMa, and EUV opacity measurements of nearby white dwarf stars. Including the radiation from the conductive boundary improves agreement with data on the temperature and electron density in the cloud. The presence of dust in the cloud, or at least d...

  2. Galactic civilizations - Population dynamics and interstellar diffusion

    Science.gov (United States)

    Newman, W. I.; Sagan, C.

    1981-01-01

    A model is developed of the interstellar diffusion of galactic civilizations which takes into account the population dynamics of such civilizations. The problem is formulated in terms of potential theory, with a family of nonlinear partial differential and difference equations specifying population growth and diffusion for an organism with advantageous genes that undergoes random dispersal while increasing in population locally, and a population at zero population growth. In the case of nonlinear diffusion with growth and saturation, it is found that the colonization wavefront from the nearest independently arisen galactic civilization can have reached the earth only if its lifetime exceeds 2.6 million years, or 20 million years if discretization can be neglected. For zero population growth, the corresponding lifetime is 13 billion years. It is concluded that the earth is uncolonized not because interstellar spacefaring civilizations are rare, but because there are too many worlds to be colonized in the plausible colonization lifetime of nearby civilizations, and that there exist no very old galactic civilizations with a consistent policy of the conquest of inhabited worlds.

  3. Temperature fluctuations of interstellar dust grains

    CERN Document Server

    Horn, Kobi; Biham, Ofer

    2007-01-01

    The temperatures of interstellar dust grains are analyzed using stochastic simulations, taking into account the grain composition and size and the discreteness of the photon flux. [...] The distribution of grain temperatures is calculated for a broad range of grain sizes and for different intensities of the interstellar radiation field, relevant to diffuse clouds and to PDRs. The dependence of the average grain temperature on its size is shown for different irradiation intensities. It is found that the average temperatures of grains with radii smaller than about 0.02 $\\mu$m are reduced due to the fluctuations. The average temperatures of grains of radii larger than about 0.35 $\\mu$m are also slightly reduced due to their more efficient emission of infrared radiation, particularly when exposed to high irradiation intensities. The average temperatures of silicate and carbonaceous grains are found to depend on the radiation field intensity X_MMP according to ~X_MMP^gamma, where the exponent gamma depends on the...

  4. Interstellar Clouds Near the Sun, III

    Science.gov (United States)

    Frisch, Priscilla C.

    We propose to continue a study of interstellar sight-lines with low total column densities in order to determine the nature (temperature, density, fractional ionization) of the low density gas near the Sun and within the interior of the local superbubble. IUE data, combined with previous Copernicus observations, can be used to delimit the filling factor of nearby low density warm gas, and by default restrict the filling factor of 10^6 K plasma. In the proposed program, observations of MgI and ZnII(and in one region CIV) are combined with cloud maps and ground-based NaI observations (from a separate program) to restrict gas temperature, spatial and electron densities. The Welty et al. (1986) technique for removing fixed pattern noise through observations of a template star (used to flat-field the target stars on a pixel-by-pixel basis) is used to enable 3sigma absorption line detections at the 6-9 mA level, depending on the number of exposures involved. The ultimate goal of both the IUE and ground-based program is to map out the local interstellar medium. Apart from the intrinsic interest of this problem, it will help define regions where ultraviolet sources can be observed with FUSE/Lyman at lambda<912 A.

  5. Interstellar sulfur isotopes and stellar oxygen burning

    CERN Document Server

    Chin, Y N; Whiteoak, J B; Langer, N; Churchwell, E B; Chin, Y N

    1995-01-01

    A 12C32S, 13C32S, 12C34S, and 12C33S J = 2 - 1 line survey has been made to study interstellar 32S/34S and 34S/33S ratios from the galactic disk. The four CS isotopomers were detected in 20 star forming regions with galactocentric distances between 3 and 9 kpc. From a comparison of line velocities, the C33S J = 2 - 1 rest frequency is about 250 kHz below the value given in the Lovas (1992) catalog. Taking 12C/13C ratios from Wilson & Rood (1994) and assuming equal 12C32S and 13C32S excitation temperatures and beam filling factors, 12C32S opacities are in the range 3 to 15; average 32S/34S and 34S/33S isotope ratios are 24.4 +/- 5.0 and 6.27 +/- 1.01, respectively. While no systematic variation in the 34S/33S isotope ratio is found, the 32S/34S ratio increases with galactocentric distance when accounting for the 12C/13C gradient of the galactic disk. A fit to the unweighted data yields 32S/34S = 3.3 +/- 0.5 (dGC/kpc) + 4.1 +/- 3.1 with a correlation coefficient of 0.84. Since the interstellar sulfur (S) is...

  6. Prospects for the Detection of Interstellar Cyanovinylidene

    Science.gov (United States)

    Kołos, Robert; Gronowski, Marcin; Dobrowolski, Jan Cz.

    2009-08-01

    Prospects for the presence and detection of interstellar cyanovinylidene, CC(H)CN, a Y-shaped isomer of cyanoacetylene, are discussed. It is proposed that CC(H)CN can arise in interstellar clouds as one of the HC3NH+ + e - dissociative recombination products, by rearrangements of the neutral chain radical HC3NH into branched species HCCC(H)N, CC(H)C(H)N, and/or HCC(H)CN, and by the subsequent elimination of a hydrogen atom. It is deduced that the abundance of cyanovinylidene in molecular clouds should be confined between the abundances of its chain isomers HNCCC and HCNCC. Quantum chemical predictions regarding cyanovinylidene geometry, ground-state rotational constants, centrifugal distortion constants, spin-orbit coupling, IR absorption spectroscopy, and electric dipole moment are given. The spectroscopically observed molecules formyl cyanide, NC2(H)O, and propynal, HC3(H)O, with structures qualitatively resembling cyanovinylidene, served to prove the adequacy of the calculational procedures employed.

  7. A Search for Interstellar Monohydric Thiols

    Science.gov (United States)

    Gorai, Prasanta; Das, Ankan; Das, Amaresh; Sivaraman, Bhalamurugan; Etim, Emmanuel E.; Chakrabarti, Sandip K.

    2017-02-01

    It has been pointed out by various astronomers that a very interesting relationship exists between interstellar alcohols and the corresponding thiols (sulfur analog of alcohols) as far as the spectroscopic properties and chemical abundances are concerned. Monohydric alcohols such as methanol and ethanol are widely observed and 1-propanol was recently claimed to have been seen in Orion KL. Among the monohydric thiols, methanethiol (chemical analog of methanol) has been firmly detected in Orion KL and Sgr B2(N2) and ethanethiol (chemical analog of ethanol) has been observed in Sgr B2(N2), though the confirmation of this detection is yet to come. It is very likely that higher order thiols could be observed in these regions. In this paper, we study the formation of monohydric alcohols and their thiol analogs. Based on our quantum chemical calculation and chemical modeling, we find that the Tg conformer of 1-propanethiol is a good candidate of astronomical interest. We present various spectroscopically relevant parameters of this molecule to assist in its future detection in the interstellar medium.

  8. Elemental nitrogen partitioning in dense interstellar clouds

    CERN Document Server

    Daranlot, Julien; Bergeat, Astrid; Costes, Michel; Loison, Jean-Christophe; Wakelam, Valentine; Hickson, Kevin M

    2012-01-01

    Many chemical models of dense interstellar clouds predict that the majority of gas-phase elemental nitrogen should be present as N2, with an abundance approximately five orders of magnitude less than that of hydrogen. As a homonuclear diatomic molecule, N2 is difficult to detect spectroscopically through infrared or millimetre-wavelength transitions so its abundance is often inferred indirectly through its reaction product N2H+. Two main formation mechanisms each involving two radical-radical reactions are the source of N2 in such environments. Here we report measurements of the low temperature rate constants for one of these processes, the N + CN reaction down to 56 K. The effect of the measured rate constants for this reaction and those recently determined for two other reactions implicated in N2 formation are tested using a gas-grain model employing a critically evaluated chemical network. We show that the amount of interstellar nitrogen present as N2 depends on the competition between its gas-phase format...

  9. The Interstellar Production of Biologically Important Organics

    Science.gov (United States)

    Sandford, Scott A.; Bernstein, Max P.; Dworkin, Jason; Allamandola, Louis J.

    2000-01-01

    One of the primary tasks of the Astrochemistry Laboratory at Ames Research Center is to use laboratory simulations to study the chemical processes that occur in dense interstellar clouds. Since new stars are formed in these clouds, their materials may be responsible for the delivery of organics to new habitable planets and may play important roles in the origin of life. These clouds are extremely cold (less than 50 kelvin), and most of the volatiles in these clouds are condensed onto dust grains as thin ice mantles. These ices are exposed to cosmic rays and ultraviolet (UV) photons that break chemical bonds and result in the production of complex molecules when the ices are warmed (as they would be when incorporated into a star-forming region). Using cryovacuum systems and UV lamps, this study simulates the conditions of these clouds and studies the resulting chemistry. Some of the areas of progress made in 1999 are described below. It shows some of the types of molecules that may be formed in the interstellar medium. Laboratory simulations have already confirmed that many of these compounds are made under these conditions.

  10. Streaming of interstellar grains in the solar system

    Science.gov (United States)

    Gustafson, B. A. S.; Misconi, N. Y.

    1979-01-01

    Results of a theoretical study of the interactions between interstellar grains streaming through the solar system and the solar wind are presented. It is shown that although elongated core-mantle interstellar particles of a characteristic radius of about 0.12 microns are subject to a greater force due to radiation pressure than to gravitational attraction, they are still able to penetrate deep inside the solar system. Calculations of particle trajectories within the solar system indicate substantial effects of the solar activity cycle as reflected in the interplanetary magnetic field on the distribution of 0.12- and 0.0005-micron interstellar grains streaming through the solar system, leading to a 50-fold increase in interstellar grain densities 3 to 4 AU ahead of the sun during years 8 to 17 of the solar cycle. It is noted that during the Solar Polar Mission, concentrations are expected which will offer the opportunity of detecting interstellar grains in the solar system.

  11. A Precise Determination of the Mid-Infrared Interstellar Extinction Law Based on the APOGEE Spectroscopic Survey

    CERN Document Server

    Xue, Mengyao; Gao, Jian; Liu, Jiaming; Wang, Shu; Li, Aigen

    2016-01-01

    A precise measure of the mid-infrared interstellar extinction law is crucial to the investigation of the properties of interstellar dust, especially of the grains in the large size end. Based on the stellar parameters derived from the SDSS-III/APOGEE spectroscopic survey, we select a large sample of G- and K-type giants as the tracers of the Galactic mid-infrared extinction. We calculate the intrinsic stellar color excesses from the stellar effective temperatures and use them to determine the mid-infrared extinction for a given line of sight. For the entire sky of the Milky Way surveyed by APOGEE, we derive the extinction (relative to the K$_{\\rm S}$ band at wavelength $\\lambda=2.16\\mu$m) for the four \\emph{WISE} bands at 3.4, 4.6, 12 and 22$\\mu$m, the four \\emph{Spitzer}/IRAC bands at 3.6, 4.5, 5.8 and 8$\\mu$m, the \\emph{Spitzer}/MIPS24 band at 23.7$\\mu$m and for the first time, the \\emph{AKARI}/S9W band at 8.23$\\mu$m. Our results agree with previous works in that the extinction curve is flat in the ~3--8$\\m...

  12. Interstellar Medium, Young Stars, and Astrometric Binaries in Galactic Archaeology Spectroscopic Surveys

    Science.gov (United States)

    Zwitter, T.; Kos, J.; Žerjal, M.; Traven, G.

    2016-10-01

    Current ongoing stellar spectroscopic surveys (RAVE, GALAH, Gaia-ESO, LAMOST, APOGEE, Gaia) are mostly devoted to studying Galactic archaeology and the structure of the Galaxy. But they allow also for important auxiliary science: (i) the Galactic interstellar medium can be studied in four dimensions (position in space plus radial velocity) through weak but numerous diffuse interstellar bands and atomic absorptions seen in spectra of background stars, (ii) emission spectra which are quite frequent even in field stars can serve as a good indicator of their youth, pointing e.g. to stars recently ejected from young stellar environments, (iii) an astrometric solution of the photocenter of a binary to be obtained by Gaia can yield accurate masses when joined by spectroscopic information obtained serendipitously during a survey. These points are illustrated by first results from the first three surveys mentioned above. These hint at the near future: spectroscopic studies of the dynamics of the interstellar medium can identify and quantify Galactic fountains which may sustain star formation in the disk by entraining fresh gas from the halo; RAVE already provided a list of ˜ 14,000 field stars with chromospheric emission in Ca II lines, to be supplemented by many more observations by Gaia in the same band, and by GALAH and Gaia-ESO observations of Balmer lines; several millions of astrometric binaries with periods up to a few years which are being observed by Gaia can yield accurate masses when supplemented with measurements from only a few high-quality ground based spectra.

  13. THE NANOGRAV NINE-YEAR DATA SET: MONITORING INTERSTELLAR SCATTERING DELAYS

    Energy Technology Data Exchange (ETDEWEB)

    Levin, Lina; McLaughlin, Maura A.; Palliyaguru, Nipuni; Jones, Megan L. [Department of Physics and Astronomy, West Virginia University, P.O. Box 6315, Morgantown, WV 26505 (United States); Jones, Glenn [Department of Physics, Columbia University, 550 W. 120th Street, New York, NY 10027 (United States); Cordes, James M.; Chatterjee, Shami; Dolch, Timothy; Lam, Michael T. [Department of Astronomy, Cornell University, Ithaca, NY 14853 (United States); Stinebring, Daniel R. [Department of Physics and Astronomy, Oberlin College, Oberlin, OH 44074 (United States); Lazio, T. Joseph W.; Ellis, Justin A. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91106 (United States); Arzoumanian, Zaven [Center for Research and Exploration in Space Science and Technology and X-Ray Astrophysics Laboratory, NASA Goddard Space Flight Center, Code 662, Greenbelt, MD 20771 (United States); Crowter, Kathryn; Fonseca, Emmanuel; Gonzalez, Marjorie E. [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Demorest, Paul B. [National Radio Astronomy Observatory, P.O. Box 0, Socorro, NM, 87801 (United States); Ferdman, Robert D. [Department of Physics, McGill University, 3600 rue Universite, Montreal, QC H3A 2T8 (Canada); Nice, David J. [Department of Physics, Lafayette College, Easton, PA 18042 (United States); Pennucci, Timothy T. [University of Virginia, Department of Astronomy, P.O. Box 400325 Charlottesville, VA 22904-4325 (United States); and others

    2016-02-20

    We report on an effort to extract and monitor interstellar scintillation parameters in regular timing observations collected for the North American Nanohertz Observatory for Gravitational Waves pulsar timing array. Scattering delays are measured by creating dynamic spectra for each pulsar and observing epoch of wide-band observations centered near 1500 MHz and carried out at the Green Bank Telescope and the Arecibo Observatory. The ∼800 MHz wide frequency bands imply dramatic changes in scintillation bandwidth across the bandpass, and a stretching routine has been included to account for this scaling. For most of the 10 pulsars for which the scaling has been measured, the bandwidths scale with frequency less steeply than expected for a Kolmogorov medium. We find estimated scattering delay values that vary with time by up to an order of magnitude. The mean measured scattering delays are similar to previously published values and are slightly higher than predicted by interstellar medium models. We investigate the possibility of increasing the timing precision by mitigating timing errors introduced by the scattering delays. For most of the pulsars, the uncertainty in the time of arrival of a single timing point is much larger than the maximum variation of the scattering delay, suggesting that diffractive scintillation remains as only a negligible part of their noise budget.

  14. Filtration of interstellar hydrogen in the two-shock heliospheric interface Inferences on the local interstellar electron density

    CERN Document Server

    Izmodenov, V V; Lallement, R; Glöckler, G; Baranov, V B; Malama, Y G

    1998-01-01

    The solar system is moving through the partially ionized local interstellar cloud (LIC). The ionized matter of the LIC interacts with the expanding solar wind forming the heliospheric interface. The neutral component (interstellar atoms) penetrates through the heliospheric interface into the heliosphere, where it is measured directly "in situ" as pick-up ions and neutral atoms (and as anomalous cosmic rays) or indirectly through resonant scattering of solar Ly-alpha. When crossing the heliospheric interface, interstellar atoms interact with the plasma component through charge exchange. This interaction leads to changes of both neutral gas and plasma properties. The heliospheric interface is also the source of radio emissions which have been detected by the Voyager since 1983. In this paper, we have used a kinetic model of the flow of the interstellar atoms with updated values of velocity, temperature, and density of the circumsolar interstellar hydrogen and calculated how all quantities which are directly ass...

  15. Interstellar Mapping and Acceleration Probe (IMAP)

    Science.gov (United States)

    Schwadron, N. A.; Opher, M.; Kasper, J.; Mewaldt, R.; Moebius, E.; Spence, H. E.; Zurbuchen, T. H.

    2016-11-01

    Our piece of cosmic real estate, the heliosphere, is the domain of all human existence - an astrophysical case history of the successful evolution of life in a habitable system. By exploring our global heliosphere and its myriad interactions, we develop key physical knowledge of the interstellar interactions that influence exoplanetary habitability as well as the distant history and destiny of our solar system and world. IBEX is the first mission to explore the global heliosphere and in concert with Voyager 1 and Voyager 2 is discovering a fundamentally new and uncharted physical domain of the outer heliosphere. In parallel, Cassini/INCA maps the global heliosphere at energies (˜5-55 keV) above those measured by IBEX. The enigmatic IBEX ribbon and the INCA belt were unanticipated discoveries demonstrating that much of what we know or think we understand about the outer heliosphere needs to be revised. This paper summarizes the next quantum leap enabled by IMAP that will open new windows on the frontier of Heliophysics at a time when the space environment is rapidly evolving. IMAP with 100 times the combined resolution and sensitivity of IBEX and INCA will discover the substructure of the IBEX ribbon and will reveal, with unprecedented resolution, global maps of our heliosphere. The remarkable synergy between IMAP, Voyager 1 and Voyager 2 will remain for at least the next decade as Voyager 1 pushes further into the interstellar domain and Voyager 2 moves through the heliosheath. Voyager 2 moves outward in the same region of sky covered by a portion of the IBEX ribbon. Voyager 2’s plasma measurements will create singular opportunities for discovery in the context of IMAP's global measurements. IMAP, like ACE before, will be a keystone of the Heliophysics System Observatory by providing comprehensive measurements of interstellar neutral atoms and pickup ions, the solar wind distribution, composition, and magnetic field, as well as suprathermal ion, energetic

  16. Can Composite Fluffy Dust Particles Solve the Interstellar Carbon Crisis?

    CERN Document Server

    Dwek, E

    1997-01-01

    Interstellar dust models are facing a "carbon crisis", so called because recent observations suggest that the abundance of carbon available for dust in the interstellar medium is less than half of the amount required to be tied up in graphite grains in order to explain the interstellar extinction curve. This paper presents an detailed assessment of a newly-proposed dust model (Mathis 1996), in which the majority of the interstellar carbon is contained in composite and fluffy dust (CFD) grains. Per unit mass, these grains produce more UV extinction, and can therefore account for the interstellar extinction curve with about half the carbon required in traditional dust models. The results of our analysis show that the CFD model falls short in solving the carbon crisis, in providing a fit to the UV-optical interstellar extinction curve. It also predicts a far-infrared emissivity in excess of that observed with the COBE/DIRBE and FIRAS instruments from the diffuse interstellar medium. The failure of the new model ...

  17. The interstellar dust reservoir: SPICA's view on dust production and the interstellar medium in galaxies

    CERN Document Server

    Kemper, F; Jones, O C; Srinivasan, S

    2016-01-01

    Typical galaxies emit about one third of their energy in the infrared. The origin of this emission reprocessed starlight absorbed by interstellar dust grains and reradiated as thermal emission in the infrared. In particularly dusty galaxies, such as starburst galaxies, the fraction of energy emitted in the infrared can be as high as 90%. Dust emission is found to be an excellent tracer of the beginning and end stages of a star's life, where dust is being produced by post-main-sequence stars, subsequently added to the interstellar dust reservoir, and eventually being consumed by star and planet formation. This work reviews the current understanding of the size and properties of this interstellar dust reservoir, by using the Large Magellanic Cloud as an example, and what can be learned about the dust properties and star formation in galaxies from this dust reservoir, using SPICA, building on previous work performed with the Herschel and Spitzer Space Telescopes, as well as the Infrared Space Observatory.

  18. Comparisons of the Interstellar Magnetic Field Directions obtained from the IBEX Ribbon and Interstellar Polarizations

    CERN Document Server

    Frisch, Priscilla C; Berdyugin, Andrei; Funsten, Herbert O; Magalhaes, Mario; McComas, David J; Piirola, Vilppu; Schwadron, Nathan A; Slavin, Jonathan D; Wiktorowicz, Sloane J

    2010-01-01

    Variations in the spatial configuration of the interstellar magnetic field (ISMF) near the Sun can be constrained by comparing the ISMF direction at the heliosphere found from the Interstellar Boundary Explorer spacecraft (IBEX) observations of a 'Ribbon' of energetic neutral atoms (ENAs), with the ISMF direction derived from optical polarization data for stars within ~40 pc. Using interstellar polarization observations towards ~30 nearby stars within 90 deg of the heliosphere nose, we find that the best fits to the polarization position angles are obtained for a magnetic pole directed towards ecliptic coordinates of lambda, beta 263 deg, 37 deg (or galactic coordinates of L,B 38 deg, 23deg), with uncertainties of +/- 35 deg, based on the broad minimum of the best fits and the range of data quality. This magnetic pole is 33 deg from the magnetic pole that is defined by the center of the arc of the ENA Ribbon. The IBEX ENA ribbon is seen in sightlines that are perpendicular to the ISMF as it drapes over the he...

  19. The Centauri project: Manned interstellar travel

    Science.gov (United States)

    Ciesla, Thomas M.

    1990-01-01

    The development of antimatter engines for spacecraft propulsion will allow man to expand to the nearest stellar neighbors such as the Alpha Centuri system. Compared to chemically powered rockets like the Apollo mission class which would take 50,000 years to reach the Centauri system, antimatter propulsion would reduce one way trip time to 30 years or less. The challenges encountered by manned interstellar travel are formidable. The spacecraft must be a combination of sublight speed transportation system and a traveling microplanet serving an expanding population. As the population expands from the initial 100 people to approximately 300, the terraformed asteroid, enclosed by a man-made shell will allow for expansion over its surface in the fashion of a small terrestrial town. All aspects of human life - birth; death; physical, emotional, and educational needs; and government and law must be met by the structure, systems, and institutions on-board.

  20. Supernova Feedback and Multiphase Interstellar Medium

    Science.gov (United States)

    Li, Miao; Ostriker, Jeremiah P.; Cen, Renyue; Bryan, Greg; Naab, Thorsten

    2015-01-01

    Without feedback, galaxies in cosmological simulations fail to generate outflows and tend to be too massive and too centrally concentrated, in contrast to the prominent disks observed ubiquitously in our universe. The nature of supernova (SN) feedback remains, however, highly uncertain, and most galaxy simulations so far adopt ad hoc models. Here we perform parsec-resolution simulations of a patch of the interstellar medium (ISM), and show that the unresolved multiphase gas in cosmological simulations can greatly affect the SN feedback by allowing blastwaves to travel in-between the clouds. We also show how ISM clumping varies with the mean gas density and SN rate encountered in real galactic environments. We emphasize that the inhomogeneity of the ISM must be considered in coarse-resolution simulations. We discuss how the gas pressure maintained by SN explosions can help to launch the galactic winds, and compare our results with the sub-grid models adopted in current cosmological simulations.

  1. Ritual, meaningfulness, and interstellar message construction

    Science.gov (United States)

    Traphagan, John W.

    2010-10-01

    In this paper, I am interested in exploring the potential of ritual performance as a means of communication with ETI. I argue that the study of ritual and ritualized behavior, understood as a technique for representation of meaning and meaningfulness about the world, has potential to inform how scientists think about the construction and interpretation of interstellar messages. I do not suggest that ritual activities themselves provide more than limited potential for communication with ETI. However, the structural elements of ritual and the manner in which meaning is conveyed through the formality and repetition of ritual is at least to some extent decipherable cross-culturally and provides one way to think about how to express important aspects of humans and their cultures to ETI and to represent, if not specific meanings themselves, the fact that a message is meaningful.

  2. Supernova Feedback in an Inhomogeneous Interstellar Medium

    CERN Document Server

    Martizzi, Davide; Quataert, Eliot

    2014-01-01

    Supernova (SN) feedback is one of the key processes shaping the interstellar medium (ISM) of galaxies. SNe contribute to (and in some cases may dominate) driving turbulence in the ISM and accelerating galactic winds. Modern cosmological simulations have sufficient resolution to capture the main structures in the ISM of galaxies, but are typically still not capable of explicitly resolving all of the small-scale stellar feedback processes, including the expansion of supernova remnants (SNRs). We perform a series of controlled three-dimensional hydrodynamic (adaptive mesh refinement, AMR) simulations of single SNRs expanding in an inhomogeneous density field with statistics motivated by those of the turbulent ISM. We use these to quantify the momentum and thermal energy injection from SNe as a function of spatial scale and the density, metallicity, and structure of the ambient medium. Using these results, we develop an analytic sub-resolution model for SN feedback for use in galaxy formation simulations. We then...

  3. Interstellar Dust models towards some IUE stars

    CERN Document Server

    Katyal, Nisha; Vaidya, D B

    2013-01-01

    We study the extinction properties of the composite dust grains, consisting of host silicate spheroids and graphite as inclusions, using discrete dipole approximation (DDA). We calculate the extinction cross sections of the composite grains in the ultraviolet spectral region, 1200\\AA -3200\\AA and study the variation in extinction as a function of the volume fraction of the inclusions. We compare the model extinction curves with the observed interstellar extinction curves obtained from the data given by the International Ultraviolet Explorer (IUE) satellite. Our results for the composite grains show a distinct variation in the extinction efficiencies with the variation in the volume fraction of the inclusions. In particular, it is found that the wavelength of peak absorption at `2175\\AA' shifts towards the longer wavelength with the variation in the volume fraction of inclusions. We find that the composite grain models with the axial ratios viz. 1.33 and 2.0 fit the observed extinction reasonably well with a g...

  4. Modelling Study of Interstellar Ethanimine Isomers

    Science.gov (United States)

    Quan, Donghui; Herbst, Eric; Corby, Joanna F.; Durr, Allison; Hassel, George

    2016-06-01

    Ethanimine (CH3CHNH) , including both the E- and Z- isomers, were detected towards the star-forming region Sgr B2(N) using the GBT PRIMOS data (Loomis et al 2013), and were recently imaged by the ACTA (Corby et al. 2015). These aldimines can serve as precursors of biological molecules such as amino acids thus are considered prebiotic molecules in interstellar medium. In this study, we present chemical simulations of ethanimine with various physical conditions. From models for Sgr B2(N) and environs, calculated ethanimine abundances show reasonable agreement with observed values, while the translucent cloud models yield much lower abundances. These results agree with locations suggested by observations that ethanimine isomers were detected in the foreground of the shells of the hot core.

  5. Formation of Cyanoformaldehyde in the interstellar space

    CERN Document Server

    Das, Ankan; Chakrabarti, Sandip K; Saha, Rajdeep; Chakrabarti, Sonali

    2013-01-01

    Cyanoformaldehyde (HCOCN) molecule has recently been suspected towards the Sagittarius B2(N) by the Green Bank telescope, though a confirmation of this observation has not yet been made. In and around a star forming region, this molecule could be formed by the exothermic reaction between two abundant interstellar species, H$_2$CO and CN. Till date, the reaction rate coefficient for the formation of this molecule is unknown. Educated guesses were used to explain the abundance of this molecule by chemical modeling. In this paper, we carried out quantum chemical calculations to find out empirical rate coefficients for the formation of HCOCN and different chemical properties during the formation of HCOCN molecules. Though HCOCN is stable against unimolecular decomposition, this gas phase molecule could be destroyed by many other means, like: ion-molecular reactions or by the effect of cosmic rays. Ion-molecular reaction rates are computed by using the capture theories. We have also included the obtained rate coef...

  6. The kinetic chemistry of dense interstellar clouds

    Science.gov (United States)

    Graedel, T. E.; Langer, W. D.; Frerking, M. A.

    1982-01-01

    A model of the time-dependent chemistry of dense interstellar clouds is formulated to study the dominant chemical processes in carbon and oxygen isotope fractionation, the formation of nitrogen-containing molecules, and the evolution of product molecules as a function of cloud density and temperature. The abundances of the dominant isotopes of the carbon- and oxygen-bearing molecules are calculated. The chemical abundances are found to be quite sensitive to electron concentration since the electron concentration determines the ratio of H3(+) to He(+), and the electron density is strongly influenced by the metals abundance. For typical metal abundances and for H2 cloud density not less than 10,000 molecules/cu cm, nearly all carbon exists as CO at late cloud ages. At high cloud density, many aspects of the chemistry are strongly time dependent. Finally, model calculations agree well with abundances deduced from observations of molecular line emission in cold dense clouds.

  7. Calculating Cross Sections of Composite Interstellar Grains

    CERN Document Server

    Voshchinnikov, N V; Voshchinnikov, Nikolai V.; Mathis, John S.

    1999-01-01

    Interstellar grains may be composite collections of particles of distinct materials, including voids, agglomerated together. We determine the various optical cross sections of such composite grains, given the optical properties of each constituent, using an approximate model of the composite grain. We assume it consists of many concentric spherical layers of the various materials, each with a specified volume fraction. In such a case the usual Mie theory can be generalized and the extinction, scattering, and other cross sections determined exactly. We find that the ordering of the materials in the layering makes some difference to the derived cross sections, but averaging over the various permutations of the order of the materials provides rapid convergence as the number of shells (each of which is filled by all of the materials proportionately to their volume fractions) is increased. Three shells, each with one layer of a particular constituent material, give a very satisfactory estimate of the average cross...

  8. SPIRE spectroscopy of the interstellar medium

    Science.gov (United States)

    Habart, E.; Dartois, E.; Abergel, A.; Baluteau, J.-P.; Naylor, D.; Polehampton, E.; Joblin, C.

    2010-12-01

    The SPIRE Fourier Transform Spectrometer on-board Herschel allows us, for the first time, to simultaneously measure the complete far-infrared spectrum from 194 to 671 μm. A wealth of rotational lines of CO (and its isotopologues), fine structure lines of C^0 and N^+, and emission lines from radicals and molecules has been observed towards several galactic regions and nearby galaxies. The strengths of the atomic and molecular lines place fundamental constraints on the physical conditions but also the chemistry of the interstellar medium. FTS mapping capabilities are also extremely powerful in characterizing the spatial morphology of the extended region and understand how the gas properties vary within the studied region. Here, we present a first analysis of SPIRE spectroscopic observations of the prototypical Orion Bar photodissociation region.

  9. Atom addition reactions in interstellar ice analogues

    CERN Document Server

    Linnartz, Harold; Fedoseev, Gleb

    2015-01-01

    This review paper summarizes the state-of-the-art in laboratory based interstellar ice chemistry. The focus is on atom addition reactions, illustrating how water, carbon dioxide and methanol can form in the solid state at astronomically relevant temperatures, and also the formation of more complex species such as hydroxylamine, an important prebiotic molecule, and glycolaldehyde, the smallest sugar, is discussed. These reactions are particularly relevant during the dark ages of star and planet formation, i.e., when the role of UV light is restricted. A quantitative characterization of such processes is only possible through dedicated laboratory studies, i.e., under full control of a large set of parameters such as temperature, atom-flux, and ice morphology. The resulting numbers, physical and chemical constants, e.g., barrier heights, reaction rates and branching ratios, provide information on the molecular processes at work and are needed as input for astrochemical models, in order to bridge the timescales t...

  10. Cometary Refractory Grains: Interstellar and Nebular Sources

    Science.gov (United States)

    Wooden, D. H.

    2008-07-01

    Comets are heterogeneous mixtures of interstellar and nebular materials. The degree of mixing of interstellar sources and nebular sources at different nuclear size scales holds the promise of revealing how cometary particles, cometesimals, and cometary nuclei accreted. We can ascribe cometary materials to interstellar and nebular sources and see how comets probe planet-forming process in our protoplanetary disk. Comets and cometary IDPs contain carbonaceous matter that appears to be either similar to poorly-graphitized (amorphous) carbon, a likely ISM source, or highly labile complex organics, with possible ISM or outer disk heritage. The oxygen fugacity of the solar nebula depends on the dynamical interplay between the inward migration of carbon-rich grains and of icy (water-rich) grains. Inside the water dissociation line, OH- reacts with carbon to form CO or CO2, consuming available oxygen and contributing to the canonical low oxygen fugacity. Alternatively, the influx of water vapor and/or oxygen rich dust grains from outer (cooler) disk regions can raise the oxygen fugacity. Low oxygen fugacity of the canonical solar nebula favors the condensation of Mg-rich crystalline silicates and Fe-metal, or the annealing of Fe-Mg amorphous silicates into Mg-rich crystals and Fe-metal via Fe-reduction. High oxygen fugacity nebular conditions favors the condensation of Fe-bearing to Fe-rich crystalline silicates. In the ISM, Fe-Mg amorphous silicates are prevalent, in stark contrast to Mg-rich crystalline silicates that are rare. Hence, cometary Mg-rich crystalline silicates formed in the hot, inner regions of the canonical solar nebula and they are the touchstone for models of the outward radial transport of nebular grains to the comet-forming zone. Stardust samples are dominated by Mg-rich crystalline silicates but also contain abundant Fe-bearing and Fe-rich crystalline silicates that are too large (≫0.1 μm) to be annealed Fe-Mg amorphous silicates. By comparison

  11. Radio search for interstellar phosphorus compounds

    Energy Technology Data Exchange (ETDEWEB)

    Hollis, J.M.; Snyder, L.E.; Lovas, F.J.; Ulich, B.L.

    1980-10-01

    The J=1--0 and 3--2 transitions of phosphorus nitride, PN, with resolvable hyperfine components at 46.99 GHz and blended components at 140.97 GHz, and transitions of phosphine, PH/sub 3/, at 47.39 and 46.94 GHz, arising from a small induced dipole moment, have been searched for but not found in interstellar molecular clouds. The J=3/2--1/2, F=3/2--3/2 transition of nitric oxide, NO, and the J/sub K/-K+=16/sub 4,12/15/sub 5,11/ transition of sulfur dioxide, SO/sub 2/, have been detected in Orion and Sagittarius B2. An unidentified emission line, U140921.8 MHz, has been observed in IRC+10216.

  12. A radio search for interstellar phosphorus compounds

    Science.gov (United States)

    Hollis, J. M.; Snyder, L. E.; Lovas, F. J.; Ulich, B. L.

    1980-01-01

    The J = 1-0 and 3-2 transitions of phosphorus nitride, PN, with resolvable hyperfine components at 46.99 GHz and blended components at 140.97 GHz, and transitions of phosphine, PH3, at 47.39 and 46.94 GHz, arising from a small induced dipole moment, have been searched for but not found in interstellar molecular clouds. The J = 3/2-1/2, F - 3/2-3/2 transition of nitric oxide, NO, and the J(K-K+) = 16(4, 12) -15(5, 11) transition of sulfur dioxide, SO2, have been detected in Orion and Sagittarius B2. An unidentified emission line, U140921.8 MHz, has been observed in IRC + 10216.

  13. A speckle hologram of the interstellar plasma

    Science.gov (United States)

    Desai, K. M.; Gwinn, C. R.; Reynolds, J.; King, E. A.; Jauncey, D.; Flanagan, C.; Nicolson, G.; Preston, R. A.; Jones, D. L.

    1992-01-01

    Observations of a speckle hologram of scattering material along the line of sight to the Vela pulsar indicate that this material is concentrated in the Vela supernova remnant, deep within the Gum Nebula. The speckle hologram is observed through the amplitude and phase variations of the interferometric cross-power spectrum with time and frequency. These variations describe the density fluctuations of the interstellar plasma, in a holographic fashion. The decorrelation due to the phase variations of the speckles yields the angular size of the scattering disk; comparison with the bandwidth of their amplitude variations yields a characteristic distance from earth to the scattering material of 0.81 +/- 0.03 of the distance from earth to the pulsar. This result is consistent with theories of irregularities associated with particle acceleration in shocks in supernova remnants.

  14. Thermal instability in the interstellar medium

    Directory of Open Access Journals (Sweden)

    J. Ghanbari

    2000-06-01

    Full Text Available   This study demonstrates how thermal structures in the interstellar medium can emerge as a result of thermal instability. For a two-dimensional case, the steady state thermal structures was investigeted and it was shown that a large class of solutions exist. For a one –dimensional case the conductivity was found to be negligible. The effects of to cal cooling on the thermal instability were explored in some depth. In this case analytical results for time-dependent cooling function were presented, too. We studied nonlinear wave phenomena in thermal fluid systems, with a particular emphasis on presenting analytical results. When conductivity is proportional to temperature, the beliavior of thermal waves is soliton like. For slow thermal waves, approximate analytical results were presented. Extensions of this work are discussed briefly, together with possible astrophysical applications.

  15. Scattering by interstellar graphite dust analog

    Science.gov (United States)

    Ahmed, Gazi A.; Gogoi, Ankur

    2014-10-01

    The analysis of optical scattering data of interstellar carbonaceous graphite dust analog at 543.5 nm, 594.5 nm and 632.8 nm laser wavelengths by using an original laboratory light scattering setup is presented. The setup primarily consisted of a laser source, optical units, aerosol sprayer, data acquisition system and associated instrumentation. The instrument measured scattered light signals from 10° to 170° in steps of 1°. The results of the measurements of the volume scattering function β(θ) and degree of linear polarization P(θ) of the carbonaceous graphite dust particles that were sprayed in front of the laser beam by using an aerosol sprayer were subsequently compared with theoretically generated Mie plots with estimated parameters.

  16. Molecular hydrogen formation in the interstellar medium

    CERN Document Server

    Cazaux, S

    2002-01-01

    We have developed a model for molecular hydrogen formation under astrophysically relevant conditions. This model takes fully into account the presence of both physisorbed and chemisorbed sites on the surface, allows quantum mechanical diffusion as well as thermal hopping for absorbed H-atoms, and has been benchmarked versus recent laboratory experiments on H2 formation on silicate surfaces. The results show that H2 formation on grain surface is efficient in the interstellar medium up to some 300K. At low temperatures (<100K), H2 formation is governed by the reaction of a physisorbed H with a chemisorbed H. At higher temperatures, H2 formation proceeds through reaction between two chemisorbed H atoms. We present simple analytical expressions for H2 formation which can be adopted to a wide variety of surfaces once their surfaces characteristics have been determined experimentally.

  17. Experimental Limit to Interstellar 244Pu Abundance

    CERN Document Server

    Paul, M; Ahmad, I; Berkovits, D; Bordeanu, C; Ghelberg, S; Hashimoto, Y; Hershcovitch, A I; Jiang, S; Nakanishi, T; Sakamoto, K

    2001-01-01

    Short-lived nuclides, now extinct in the solar system, are expected to be present in the interstellar medium (ISM). Grains of ISM origin were recently discovered in the inner solar system and at Earth orbit and may accrete onto Earth after ablation in the atmosphere. A favorable matrix for detection of such extraterrestrial material is presented by deep open-sea sediments with very low sedimentation rates (0.8-3 mm/kyr). We report here on the measurement of Pu isotopic abundances in a 1-kg deep-sea dry sediment collected in 1992 in the North Pacific. Our measured value of (3+-3)x10^5 244Pu atoms in the Pu-separated fraction of the sample shows no excess over the expected stratospheric nuclear fallout content and under reasonable assumptions we derive a limit of 2x10^-11 g-244Pu/g-ISM for the abundance of 244Pu in ISM.

  18. Predicted profiles of ultraviolet interstellar absorption lines

    Energy Technology Data Exchange (ETDEWEB)

    Welty, D.E.; Hobbs, L.M.; York, D.G. (Chicago, University, IL (USA))

    1991-02-01

    In this paper, values of the column density, line width parameter, and velocity are determined for as many components derived from optical interstellar absorption-line profiles of Na I and K I as needed to reproduce the observed high-resolution optical profiles of the D lines of Na I toward eight lightly reddened stars and of the 7698 A line of K I toward six moderately reddened stars. The derived component structures are then used to predict UV absorption-line profiles due to C I, Mg I, S I, Si I, and Fe I along the same lines of sight. Comparison of the predicted profiles with existing lower resolution line profiles and equivalent width data suggests that this simple scaling procedure can in many cases fairly reliably predict the UV profiles from the observed optical ones. 64 refs.

  19. From Interstellar PAHs and Ices to the Origin of Life

    Science.gov (United States)

    Allamandola, Louis J.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Tremendous strides have been made in our understanding of interstellar material over the past twenty years thanks to significant, parallel developments in observational astronomy and laboratory astrophysics. Twenty years ago the composition of interstellar dust was largely guessed at, the concept of ices in dense molecular clouds ignored, and the notion of large, abundant, gas phase, carbon rich molecules widespread throughout the interstellar medium (ISM) considered impossible. Today the composition of dust in the diffuse ISM is reasonably well constrained to micron-sized cold refractory materials comprised of amorphous and crystalline silicates mixed with an amorphous carbonaceous material containing aromatic structural units and short, branched aliphatic chains. In dense molecular clouds, the birthplace of stars and planets, these cold dust particles are coated with mixed molecular ices whose composition is very well constrained. Lastly, the signature of carbon-rich polycyclic aromatic hydrocarbons (PAHs), shockingly large molecules by earlier interstellar chemistry standards, is widespread throughout the Universe. The first part of this lecture will describe how infrared studies of interstellar space, combined with laboratory simulations, have revealed the composition of interstellar ices (the building blocks of comets) and the high abundance and nature of interstellar PAHs. The laboratory database has now enabled us to gain insight into the identities, concentrations, and physical state of many interstellar materials. Within a dense molecular cloud, and especially in the solar nebula during the star and planet formation stage, the materials frozen into interstellar/precometary ices are photoprocessed by ultraviolet light, producing more complex molecules. The remainder of the presentation will focus on the photochemical evolution of these materials and the possible role of these compounds on the early Earth. As these materials are thought to be the building

  20. Realistic Detectability of Close Interstellar Comets

    Science.gov (United States)

    Cook, Nathaniel V.; Ragozzine, Darin; Granvik, Mikael; Stephens, Denise C.

    2016-07-01

    During the planet formation process, billions of comets are created and ejected into interstellar space. The detection and characterization of such interstellar comets (ICs) (also known as extra-solar planetesimals or extra-solar comets) would give us in situ information about the efficiency and properties of planet formation throughout the galaxy. However, no ICs have ever been detected, despite the fact that their hyperbolic orbits would make them readily identifiable as unrelated to the solar system. Moro-Martín et al. have made a detailed and reasonable estimate of the properties of the IC population. We extend their estimates of detectability with a numerical model that allows us to consider “close” ICs, e.g., those that come within the orbit of Jupiter. We include several constraints on a “detectable” object that allow for realistic estimates of the frequency of detections expected from the Large Synoptic Survey Telescope (LSST) and other surveys. The influence of several of the assumed model parameters on the frequency of detections is explored in detail. Based on the expectation from Moro-Martín et al., we expect that LSST will detect 0.001-10 ICs during its nominal 10 year lifetime, with most of the uncertainty from the unknown number density of small (nuclei of ˜0.1-1 km) ICs. Both asteroid and comet cases are considered, where the latter includes various empirical prescriptions of brightening. Using simulated LSST-like astrometric data, we study the problem of orbit determination for these bodies, finding that LSST could identify their orbits as hyperbolic and determine an ephemeris sufficiently accurate for follow-up in about 4-7 days. We give the hyperbolic orbital parameters of the most detectable ICs. Taking the results into consideration, we give recommendations to future searches for ICs.

  1. Amniotic constriction bands

    Science.gov (United States)

    ... of function of an arm or a leg. Congenital bands affecting the hand often cause the most problems. Alternative Names Pseudo-ainhum; Streeter dysplasia; Amniotic band sequence; Amniotic constriction bands; Constriction band ...

  2. Applications of the Electrodynamic Tether to Interstellar Travel

    Science.gov (United States)

    Matloff, Gregory L.; Johnson, Les

    2005-01-01

    After considering relevant properties of the local interstellar medium and defining a sample interstellar mission, this paper considers possible interstellar applications of the electrodynamic tether, or EDT. These include use of the EDT to provide on-board power and affect trajectory modifications and direct application of the EDT to starship acceleration. It is demonstrated that comparatively modest EDTs can provide substantial quantities of on-board power, if combined with a large-area electron-collection device such as the Cassenti toroidal-field ramscoop. More substantial tethers can be used to accomplish large-radius thrustless turns. Direct application of the EDT to starship acceleration is apparently infeasible.

  3. Interstellar and ejecta dust in the cas a supernova remnant

    Energy Technology Data Exchange (ETDEWEB)

    Arendt, Richard G. [CRESST, University of Maryland, Baltimore County, Baltimore, MD 21250 (United States); Dwek, Eli; Kober, Gladys [NASA Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); Rho, Jeonghee [SETI Institute, 189 Bernardo Avenue, Mountain View, CA 94043 (United States); Hwang, Una, E-mail: Richard.G.Arendt@nasa.gov [NASA Goddard Space Flight Center, Code 662, Greenbelt, MD 20771 (United States)

    2014-05-01

    Infrared continuum observations provide a means of investigating the physical composition of the dust in the ejecta and swept up medium of the Cas A supernova remnant (SNR). Using low-resolution Spitzer IRS spectra (5-35 μm), and broad-band Herschel PACS imaging (70, 100, and 160 μm), we identify characteristic dust spectra, associated with ejecta layers that underwent distinct nuclear burning histories. The most luminous spectrum exhibits strong emission features at ∼9 and 21 μm and is closely associated with ejecta knots with strong Ar emission lines. The dust features can be reproduced by magnesium silicate grains with relatively low Mg to Si ratios. Another dust spectrum is associated with ejecta having strong Ne emission lines. It has no indication of any silicate features and is best fit by Al{sub 2}O{sub 3} dust. A third characteristic dust spectrum shows features that are best matched by magnesium silicates with a relatively high Mg to Si ratio. This dust is primarily associated with the X-ray-emitting shocked ejecta, but it is also evident in regions where shocked interstellar or circumstellar material is expected. However, the identification of dust composition is not unique, and each spectrum includes an additional featureless dust component of unknown composition. Colder dust of indeterminate composition is associated with emission from the interior of the SNR, where the reverse shock has not yet swept up and heated the ejecta. Most of the dust mass in Cas A is associated with this unidentified cold component, which is ≲ 0.1 M {sub ☉}. The mass of warmer dust is only ∼0.04 M {sub ☉}.

  4. Combining Magnetic and Electric Sails for Interstellar Deceleration

    CERN Document Server

    Perakis, Nikolaos

    2016-01-01

    The main benefit of an interstellar mission is to carry out in-situ measurements within a target star system. To allow for extended in-situ measurements, the spacecraft needs to be decelerated. One of the currently most promising technologies for deceleration is the magnetic sail which uses the deflection of interstellar matter via a magnetic field to decelerate the spacecraft. However, while the magnetic sail is very efficient at high velocities, its performance decreases with lower speeds. This leads to deceleration durations of several decades depending on the spacecraft mass. Within the context of Project Dragonfly, initiated by the Initiative of Interstellar Studies (i4is), this paper proposes a novel concept for decelerating a spacecraft on an interstellar mission by combining a magnetic sail with an electric sail. Combining the sails compensates for each technologys shortcomings: A magnetic sail is more effective at higher velocities than the electric sail and vice versa. It is demonstrated that using ...

  5. Ionization of Interstellar Hydrogen Beyond the Termination Shock

    Science.gov (United States)

    Gruntman, Mike

    2016-11-01

    Models of solar wind interaction with the surrounding interstellar medium usually disregard ionization of interstellar hydrogen atoms beyond the solar wind termination shock. If and when included, the effects of ionization in the heliospheric interface region are often obscured by complexities of the interaction. This work assesses the importance of interstellar hydrogen ionization in the heliosheath. Photoionization could be accounted for in a straightforward way. In contrast, electron impact ionization is largely unknown because of poorly understood energy transfer to electrons at the termination shock and beyond. We first estimate the effect of photoionization and then use it as a yardstick to assess the role of electron impact ionization. The physical estimates show that ionization of interstellar hydrogen may lead to significant mass loading in the inner heliosheath which would slow down plasma flowing toward the heliotail and deplete populations of nonthermal protons, with the corresponding effect on heliospheric fluxes of energetic neutral atoms.

  6. Multiphase turbulent interstellar medium: some recent results from radio astronomy

    CERN Document Server

    Roy, Nirupam

    2015-01-01

    The radio frequency 1.4 GHz transition of the atomic hydrogen is one of the important tracers of the diffuse neutral interstellar medium. Radio astronomical observations of this transition, using either a single dish telescope or an array interferometer, reveal different properties of the interstellar medium. Such observations are particularly useful to study the multiphase nature and turbulence in the interstellar gas. Observations with multiple radio telescopes have recently been used to study these two closely related aspects in greater detail. Using various observational techniques, the density and the velocity fluctuations in the Galactic interstellar medium was found to have a Kolmogorov-like power law power spectra. The observed power law scaling of the turbulent velocity dispersion with the length scale can be used to derive the true temperature distribution of the medium. Observations from a large ongoing atomic hydrogen absorption line survey have also been used to study the distribution of gas at d...

  7. Photochemistry and Astrochemistry: Photochemical Pathways to Interstellar Complex Organic Molecules.

    Science.gov (United States)

    Öberg, Karin I

    2016-09-14

    The interstellar medium is characterized by a rich and diverse chemistry. Many of its complex organic molecules are proposed to form through radical chemistry in icy grain mantles. Radicals form readily when interstellar ices (composed of water and other volatiles) are exposed to UV photons and other sources of dissociative radiation, and if sufficiently mobile the radicals can react to form larger, more complex molecules. The resulting complex organic molecules (COMs) accompany star and planet formation and may eventually seed the origins of life on nascent planets. Experiments of increasing sophistication have demonstrated that known interstellar COMs as well as the prebiotically interesting amino acids can form through ice photochemistry. We review these experiments and discuss the qualitative and quantitative kinetic and mechanistic constraints they have provided. We finally compare the effects of UV radiation with those of three other potential sources of radical production and chemistry in interstellar ices: electrons, ions, and X-rays.

  8. The Interstellar Medium in External Galaxies: Summaries of contributed papers

    Science.gov (United States)

    Hollenbach, David J. (Editor); Thronson, Harley A., Jr. (Editor)

    1990-01-01

    The Second Wyoming Conference entitled, The Interstellar Medium in External Galaxies, was held on July 3 to 7, 1989, to discuss the current understanding of the interstellar medium in external galaxies and to analyze the basic physical processes underlying interstellar phenomena. The papers covered a broad range of research on the gas and dust in external galaxies and focused on such topics as the distribution and morphology of the atomic, molecular, and dust components; the dynamics of the gas and the role of the magnetic field in the dynamics; elemental abundances and gas depletions in the atomic and ionized components; cooling flows; star formation; the correlation of the nonthermal radio continuum with the cool component of the interstellar medium; the origin and effect of hot galactic halos; the absorption line systems seen in distant quasars; and the effect of galactic collisions.

  9. The crystalline fraction of interstellar silicates in starburst galaxies

    CERN Document Server

    Kemper, F; Woods, Paul M

    2010-01-01

    We present a model using the evolution of the stellar population in a starburst galaxy to predict the crystallinity of the silicates in the interstellar medium of this galaxy. We take into account dust production in stellar ejecta, and amorphisation and destruction in the interstellar medium and find that a detectable amount of crystalline silicates may be formed, particularly at high star formation rates, and in case supernovae are efficient dust producers. We discuss the effect of dust destruction and amorphisation by supernovae, and the effect of a low dust-production efficiency by supernovae, and find that when taking this into account, crystallinity in the interstellar medium becomes hard to detect. Levels of 6.5-13% crystallinity in the interstellar medium of starburst galaxies have been observed and thus we conclude that not all these crystalline silicates can be of stellar origin, and an additional source of crystalline silicates associated with the Active Galactic Nucleus must be present.

  10. In situ observations of interstellar plasma with Voyager 1.

    Science.gov (United States)

    Gurnett, D A; Kurth, W S; Burlaga, L F; Ness, N F

    2013-09-27

    Launched over 35 years ago, Voyagers 1 and 2 are on an epic journey outward from the Sun to reach the boundary between the solar plasma and the much cooler interstellar medium. The boundary, called the heliopause, is expected to be marked by a large increase in plasma density, from about 0.002 per cubic centimeter (cm(-3)) in the outer heliosphere, to about 0.1 cm(-3) in the interstellar medium. On 9 April 2013, the Voyager 1 plasma wave instrument began detecting locally generated electron plasma oscillations at a frequency of about 2.6 kilohertz. This oscillation frequency corresponds to an electron density of about 0.08 cm(-3), very close to the value expected in the interstellar medium. These and other observations provide strong evidence that Voyager 1 has crossed the heliopause into the nearby interstellar plasma.

  11. Tentative Identification of Interstellar Dust in Heliosphere Nose

    CERN Document Server

    Frisch, P C

    2005-01-01

    Observations of polarization toward nearby stars in the upwind direction made by (Tinbergen, 1982) are consistent with an origin associated with interstellar dust grains entrained in interstellar magnetic fields wrapped around the heliosphere nose. The region of maximum polarization is centered around ecliptic coordinates (295 deg,0 deg). The direction of maximum polarization is offset along the ecliptic longitude by about 35 deg from the heliosphere nose. An offset is also seen between the region with the best aligned dust grains (ecliptic longitudes 281 deg to 330 deg) and inflowing interstellar dust grains observed by Ulysses and Galileo, and in this region polarization strength anti-correlates with ecliptic latitude. These offsets support an interpretation whereby the maximum polarization occurs in a direction perpendicular to the interstellar field lines, the region of consistent polarization angle shows the deflection of small grains, and the inflow of larger grains shows the undeflected grain populatio...

  12. Starry Messages: Searching for Signatures of Interstellar Archaeology

    CERN Document Server

    Carrigan, Richard A

    2010-01-01

    Searching for signatures of cosmic-scale archaeological artifacts such as Dyson spheres or Kardashev civilizations is an interesting alternative to conventional SETI. Uncovering such an artifact does not require the intentional transmission of a signal on the part of the original civilization. This type of search is called interstellar archaeology or sometimes cosmic archaeology. The detection of intelligence elsewhere in the Universe with interstellar archaeology or SETI would have broad implications for science. For example, the constraints of the anthropic principle would have to be loosened if a different type of intelligence was discovered elsewhere. A variety of interstellar archaeology signatures are discussed including non-natural planetary atmospheric constituents, stellar doping with isotopes of nuclear wastes, Dyson spheres, as well as signatures of stellar and galactic-scale engineering. The concept of a Fermi bubble due to interstellar migration is introduced in the discussion of galactic signatu...

  13. The prebiotic synthesis of amino acids - interstellar vs. atmospheric mechanisms

    Science.gov (United States)

    Meierhenrich, U. J.; Muñoz Caro, G. M.; Schutte, W. A.; Barbier, B.; Arcones Segovia, A.; Rosenbauer, H.; Thiemann, W. H.-P.; Brack, A.

    2002-11-01

    Until very recently, prebiotic amino acids were believed to have been generated in the atmosphere of the early Earth, as successfully simulated by the Urey-Miller experiments. Two independent studies now identified ice photochemistry in the interstellar medium as a possible source of prebiotic amino acids. Ultraviolet irradiation of ice mixtures containing identified interstellar molecules (such as H2O, CO2, CO, CH3OH, and NH3) in the conditions of vacuum and low temperature found in the interstellar medium generated amino acid structures including glycine, alanine, serine, valine, proline, and aspartic acid. After warmup, hydrolysis and derivatization, our team was able to identify 16 amino acids as well as furans and pyrroles. Enantioselective analyses of the amino acids showed racemic mixtures. A prebiotic interstellar origin of amino acid structures is now discussed to be a plausible alternative to the Urey-Miller mechanism.

  14. On the maximum sufficient range of interstellar vessels

    CERN Document Server

    Cartin, Daniel

    2011-01-01

    This paper considers the likely maximum range of space vessels providing the basis of a mature interstellar transportation network. Using the principle of sufficiency, it is argued that this range will be less than three parsecs for the average interstellar vessel. This maximum range provides access from the Solar System to a large majority of nearby stellar systems, with total travel distances within the network not excessively greater than actual physical distance.

  15. Refractive Interstellar Scintillation for Flux Density Variations of Two Pulsars

    Institute of Scientific and Technical Information of China (English)

    周爱芝; 吴鑫基; 艾力·伊沙木丁

    2003-01-01

    The flux density structure functions of PSRs B0525+21 and B2111+46 are calculated with the refractive interstellar scintillation (RISS) theory. The theoretical curves are in good agreement with observations [Astrophys.J. 539 (2000) 300] (hereafter S2000). The spectra of the electron density fluctuations both are of Kolmogorov spectra. We suggest that the flux density variations observed for these two pulsars are attributed to refractive interstellar scintillation, not to intrinsic variability.

  16. The interaction of the solar wind with the interstellar medium

    Science.gov (United States)

    Axford, W. I.

    1972-01-01

    The expected characteristics of the solar wind, extrapolated from the vicinity of the earth are described. Several models are examined for the interaction of the solar wind with the interstellar plasma and magnetic field. Various aspects of the penetration of neutral interstellar gas into the solar wind are considered. The dynamic effects of the neutral gas on the solar wind are described. Problems associated with the interaction of cosmic rays with the solar wind are discussed.

  17. Interstellar Organics, the Solar Nebula, and Saturn's Satellite Phoebe

    Science.gov (United States)

    Pendleton, Y. J.; Cruikshank, D. P.

    2014-01-01

    The diffuse interstellar medium inventory of organic material (Pendleton et al. 1994, Pendleton & Allamandola 2002) was likely incorporated into the molecular cloud in which the solar nebula condensed. This provided the feedstock for the formation of the Sun, major planets, and the smaller icy bodies in the region outside Neptune's orbit (transneptunian objects, or TNOs). Saturn's satellites Phoebe, Iapetus, and Hyperion open a window to the composition of one class of TNO as revealed by the near-infrared mapping spectrometer (VIMS) on the Cassini spacecraft at Saturn. Phoebe (mean diameter 213 km) is a former TNO now orbiting Saurn. VIMS spaectral maps of PHoebe's surface reveal a complex organic spectral signature consisting of prominent aromatic (CH) and alophatic hydrocarbon (CH2, CH3) absorption bands (3.2-3.6 micrometers). Phoebe is the source of a huge debris ring encircling Saturn, and from which particles (approximately 5-20 micrometer size) spiral inward toward Saturn. They encounter Iapetus and Hperion where they mix with and blanket the native H2O ice of those two bodies. Quantitative analysis of the hydrocarbon bands on Iapetus demonstrates that aromatic CH is approximately 10 times as abundant as aliphatic CH2+CH3, significantly exceeding the strength of the aromatic signature in interplanetary dust particles, comet particles, ad in carbonaceous meteorites (Cruikshank et al. 2013). A similar excess of aromatics over aliphatics is seen in the qualitative analysis of Hyperion and Phoebe itself (Dalle Ore et al. 2012). The Iapetus aliphatic hydrocarbons show CH2/CH3 approximately 4, which is larger than the value found in the diffuse ISM (approximately 2-2.5). In so far as Phoebe is a primitive body that formed in the outer regions of the solar nebula and has preserved some of the original nebula inventory, it can be key to understanding the content and degree of procesing of the nebular material. There are other Phoebe-like TNOs that are presently

  18. Starry messages: Searching for signatures of interstellar archaeology

    Energy Technology Data Exchange (ETDEWEB)

    Carrigan, Richard A., Jr.; /Fermilab

    2009-12-01

    Searching for signatures of cosmic-scale archaeological artifacts such as Dyson spheres or Kardashev civilizations is an interesting alternative to conventional SETI. Uncovering such an artifact does not require the intentional transmission of a signal on the part of the original civilization. This type of search is called interstellar archaeology or sometimes cosmic archaeology. The detection of intelligence elsewhere in the Universe with interstellar archaeology or SETI would have broad implications for science. For example, the constraints of the anthropic principle would have to be loosened if a different type of intelligence was discovered elsewhere. A variety of interstellar archaeology signatures are discussed including non-natural planetary atmospheric constituents, stellar doping with isotopes of nuclear wastes, Dyson spheres, as well as signatures of stellar and galactic-scale engineering. The concept of a Fermi bubble due to interstellar migration is introduced in the discussion of galactic signatures. These potential interstellar archaeological signatures are classified using the Kardashev scale. A modified Drake equation is used to evaluate the relative challenges of finding various sources. With few exceptions interstellar archaeological signatures are clouded and beyond current technological capabilities. However SETI for so-called cultural transmissions and planetary atmosphere signatures are within reach.

  19. Matrix isolation as a tool for studying interstellar chemical reactions

    Science.gov (United States)

    Ball, David W.; Ortman, Bryan J.; Hauge, Robert H.; Margrave, John L.

    1989-01-01

    Since the identification of the OH radical as an interstellar species, over 50 molecular species were identified as interstellar denizens. While identification of new species appears straightforward, an explanation for their mechanisms of formation is not. Most astronomers concede that large bodies like interstellar dust grains are necessary for adsorption of molecules and their energies of reactions, but many of the mechanistic steps are unknown and speculative. It is proposed that data from matrix isolation experiments involving the reactions of refractory materials (especially C, Si, and Fe atoms and clusters) with small molecules (mainly H2, H2O, CO, CO2) are particularly applicable to explaining mechanistic details of likely interstellar chemical reactions. In many cases, matrix isolation techniques are the sole method of studying such reactions; also in many cases, complexations and bond rearrangements yield molecules never before observed. The study of these reactions thus provides a logical basis for the mechanisms of interstellar reactions. A list of reactions is presented that would simulate interstellar chemical reactions. These reactions were studied using FTIR-matrix isolation techniques.

  20. Starry Messages - Searching for Signatures of Interstellar Archaeology

    Science.gov (United States)

    Carrigan, R. A., Jr.

    Searching for signatures of cosmic-scale archaeological artefacts such as Dyson spheres or Kardashev civilizations is an interesting alternative to conventional SETI. Uncovering such an artifact does not require the intentional transmission of a signal on the part of the originating civilization. This type of search is called interstellar archaeology or sometimes cosmic archaeology . The detection of intelligence elsewhere in the Universe with interstellar archaeology or SETI would have broad implications for science. For example, the constraints of the anthropic principle would have to be loosened if a different type of intelligence was discovered elsewhere. A variety of interstellar archaeology signatures are discussed including non-natural planetary atmospheric constituents, stellar doping with isotopes of nuclear wastes, Dyson spheres, as well as signatures of stellar and galactic-scale engineering. The concept of a Fermi bubble due to interstellar migration is introduced in the discussion of galactic signatures. These potential interstellar archaeological signatures are classified using the Kardashev scale. A modified Drake equation is used to evaluate the relative challenges of finding various sources. With few exceptions interstellar archaeological signatures are clouded and beyond current technological capabilities. However SETI for so-called cultural transmissions and planetary atmosphere signatures are within reach.

  1. The Interstellar Cloud Surrounding the Solar System

    Science.gov (United States)

    Frisch, P. C.

    Ultraviolet spectral data of nearby stars indicate that the cloud surrounding the solar system has an average neutral density n(HI)~0.1 cm-3, temperature ~6800 K, and turbulence ~1.7 km/s. Comparisons between the anomalous cosmic ray data and ultraviolet data suggest that the electron density is in the range n(e-)~0.22 to 0.44 cm-3. This cloud is flowing past the Sun from a position centered in the Norma-Lupis region. The cloud properties are consistent with interstellar gas which originated as material evaporated from the surfaces of embedded clouds in the Scorpius-Centaurus Association, and which was then displaced towards the Sun by a supernova event about 4 Myrs ago. The Sun and surrounding cloud velocities are nearly perpendicular in space, and this cloud is sweeping past the Sun. The morphology of this cloud can be reconstructed by assuming that the cloud moves in a direction parallel to the surface normal. With this assumption, the Sun entered the surrounding cloud 2000 to 8000 years ago, and is now about 0.05 to 0.16 pc from the cloud surface. Prior to its recent entry into the surrounding cloud complex, the Sun was embedded in a region of space with average density lower than 0.0002 cm-3. If a denser cloud velocity component seen towards alpha Cen A,B is real, it will encounter the solar system within 50,000 yr. The nearby magnetic field seen upwind has a spatial orientation that is parallel to the cloud surface. The nearby star Sirius is viewed through the wake of the solar system, but this direction also samples the hypothetical cloud interface. Comparisons of anomalous cosmic ray and interstellar absorption line data suggest that trace elements in the surrounding cloud are in ionization equilibrium. Data towards nearby white dwarfs indicate partial helium ionization, N(N(HI)(/N(HeI)>~13.7, which is consistent with pickup ion data within the solar system if less than 40% hydrogen ionization occurs in the heliopause region. However, the white dwarfs may

  2. Detection of Interstellar Urea with Carma

    Science.gov (United States)

    Kuo, H.-L.; Snyder, L. E.; Friedel, D. N.; Looney, L. W.; McCall, B. J.; Remijan, A. J.; Lovas, F. J.; Hollis, J. M.

    2010-06-01

    Urea, a molecule discovered in human urine by H. M. Rouelle in 1773, has a significant role in prebiotic chemistry. Previous BIMA observations have suggested that interstellar urea [(NH_2)_2CO] is a compact hot core molecule such as other large molecules, e.g. methyl formate and acetic acid (2009, 64th OSU Symposium On Molecular Spectroscopy, WI05). We have conducted an extensive search for urea toward the high mass hot molecular core Sgr B2(N-LMH) using CARMA and the IRAM 30 m. Because the spectral lines of heavy molecules like urea tend to be weak and hot cores display lines from a wide range of molecules, a major problem in identifying urea lines is confusion with lines of other molecules. Therefore, it is necessary to detect a number of urea lines and apply sophisticated statistical tests before having confidence in an identification. The 1 mm resolution of CARMA enables favorable coupling of the source size and synthesized beam size, which was found to be essential for the detection of weak signals. The 2.5^"×2^" synthesized beam of CARMA significantly resolves out the contamination by extended emission and reveals the eight weak urea lines that were previously blended with nearby transitions. Our analysis indicates that these lines are likely to be urea since the resulting observed line frequencies are coincident with a set of overlapping connecting urea lines, and the observed line intensities are consistent with the expected line strengths of urea. In addition, we have developed a new statistical approach to examine the spatial correlation between the observed lines by applying the Student T-test to the high resolution channel maps obtained from CARMA. The T-test shows similar spatial distributions from all eight candidate lines, suggesting a common molecular origin, urea. Our T-test method could have a broad impact on the next generation of arrays, such as ALMA, because the new arrays will require a method to systematically determine the credibility of

  3. Interstellar Mapping and Acceleration Probe (IMAP)

    Science.gov (United States)

    Schwadron, Nathan

    2016-04-01

    Our piece of cosmic real-estate, the heliosphere, is the domain of all human existence - an astrophysical case-history of the successful evolution of life in a habitable system. By exploring our global heliosphere and its myriad interactions, we develop key physical knowledge of the interstellar interactions that influence exoplanetary habitability as well as the distant history and destiny of our solar system and world. IBEX was the first mission to explore the global heliosphere and in concert with Voyager 1 and Voyager 2 is discovering a fundamentally new and uncharted physical domain of the outer heliosphere. In parallel, Cassini/INCA maps the global heliosphere at energies (~5-55 KeV) above those measured by IBEX. The enigmatic IBEX ribbon and the INCA belt were unanticipated discoveries demonstrating that much of what we know or think we understand about the outer heliosphere needs to be revised. The next quantum leap enabled by IMAP will open new windows on the frontier of Heliophysics at a time when the space environment is rapidly evolving. IMAP with 100 times the combined resolution and sensitivity of IBEX and INCA will discover the substructure of the IBEX ribbon and will reveal in unprecedented resolution global maps of our heliosphere. The remarkable synergy between IMAP, Voyager 1 and Voyager 2 will remain for at least the next decade as Voyager 1 pushes further into the interstellar domain and Voyager 2 moves through the heliosheath. The "A" in IMAP refers to acceleration of energetic particles. With its combination of highly sensitive pickup and suprathermal ion sensors, IMAP will provide the species and spectral coverage as well as unprecedented temporal resolution to associate emerging suprathermal tails with interplanetary structures and discover underlying physical acceleration processes. These key measurements will provide what has been a critical missing piece of suprathermal seed particles in our understanding of particle acceleration to high

  4. Interstellar dust properties of M51 from AKARI mid-infrared images

    CERN Document Server

    Egusa, Fumi; Sakon, Itsuki; Onaka, Takashi; Arimatsu, Ko; Matsuhara, Hideo

    2013-01-01

    Using mid-infrared (MIR) images of four photometric bands of the Infrared Camera (IRC) onboard the AKARI satellite, S7 (7 um), S11 (11 um), L15 (15 um), and L24 (24 um), we investigate the interstellar dust properties of the nearby pair of galaxies M51 with respect to its spiral arm structure. The arm and interarm regions being defined based on a spatially filtered stellar component model image, we measure the arm-to-interarm contrast for each band. The contrast is lowest in the S11 image, which is interpreted as that among the four AKARI MIR bands the S11 image best correlates with the spatial distribution of dust grains including colder components, while the L24 image with the highest contrast traces warmer dust heated by star forming activities. The surface brightness ratio between the bands, i.e. color, is measured over the disk of the main galaxy, M51a, at 300 pc resolution. We find that the distribution of S7/S11 is smooth and well traces the global spiral arm pattern while L15/S11 and L24/S11 peak at i...

  5. The Interstellar Boundary Explorer (IBEX): Tracing the Interaction between the Heliosphere and Surrounding Interstellar Material with Energetic Neutral Atoms

    CERN Document Server

    Frisch, Priscilla C

    2010-01-01

    The Interstellar Boundary Explorer (IBEX) mission is exploring the frontiers of the heliosphere where energetic neutral atoms (ENAs) are formed from charge exchange between interstellar neutral hydrogen atoms and solar wind ions and pickup ions. The geography of this frontier is dominated by an unexpected nearly complete arc of ENA emission, now known as the IBEX 'Ribbon'. While there is no consensus agreement on the Ribbon formation mechanism, it seems certain this feature is seen for sightlines that are perpendicular to the interstellar magnetic field as it drapes over the heliosphere. At the lowest energies, IBEX also measures the flow of interstellar H, He, and O atoms through the inner heliosphere. The asymmetric helium profile suggests that a secondary flow of helium is present, such as would be expected if some fraction of helium is lost through charge exchange in the heliosheath regions. The detailed spectra characterized by the ENAs provide time-tagged samples of the energy distributions of the under...

  6. Hydrogenation reactions in interstellar CO ice analogues

    CERN Document Server

    Fuchs, G W; Ioppolo, S; Romanzin, C; Bisschop, S E; Andersson, S; Van Dishoeck, E F; Linnartz, H

    2009-01-01

    Hydrogenation reactions of CO in inter- and circumstellar ices are regarded as an important starting point in the formation of more complex species. Previous laboratory measurements by two groups on the hydrogenation of CO ices resulted in controversial results on the formation rate of methanol. Our aim is to resolve this controversy by an independent investigation of the reaction scheme for a range of H-atom fluxes and different ice temperatures and thicknesses. Reaction rates are determined by using a state-of-the-art ultra high vacuum experimental setup to bombard an interstellar CO ice analog with room temperature H atoms. The reaction of CO + H into H2CO and subsequently CH3OH is monitored by a Fourier transform infrared spectrometer in a reflection absorption mode. In addition, after each completed measurement a temperature programmed desorption experiment is performed to identify the produced species. Different H-atom fluxes, morphologies, and ice thicknesses are tested. The formation of both formaldeh...

  7. DYNAMIC SPECTRAL MAPPING OF INTERSTELLAR PLASMA LENSES

    Energy Technology Data Exchange (ETDEWEB)

    Tuntsov, Artem V.; Walker, Mark A. [Manly Astrophysics, 3/22 Cliff Street, Manly 2095 (Australia); Koopmans, Leon V. E. [Kapteyn Astronomical Institute, University of Groningen, P.O. Box 800, NL-9700 AV Groningen (Netherlands); Bannister, Keith W.; Stevens, Jamie; Johnston, Simon [CSIRO Astronomy and Space Science, P.O. Box 76, Epping NSW 1710 (Australia); Reynolds, Cormac; Bignall, Hayley E., E-mail: Artem.Tuntsov@manlyastrophysics.org, E-mail: Mark.Walker@manlyastrophysics.org, E-mail: koopmans@astro.rug.nl [International Centre for Radio Astronomy Research—Curtin University, Perth (Australia)

    2016-02-01

    Compact radio sources sometimes exhibit intervals of large, rapid changes in their flux density, due to lensing by interstellar plasma crossing the line of sight. A novel survey program has made it possible to discover these “Extreme Scattering Events” (ESEs) in real time, resulting in a high-quality dynamic spectrum of an ESE observed in PKS 1939–315. Here we present a method for determining the column-density profile of a plasma lens, given only the dynamic radio spectrum of the lensed source, under the assumption that the lens is either axisymmetric or totally anisotropic. Our technique relies on the known, strong frequency dependence of the plasma refractive index in order to determine how points in the dynamic spectrum map to positions on the lens. We apply our method to high-frequency (4.2–10.8 GHz) data from the Australia Telescope Compact Array of the PKS 1939–315 ESE. The derived electron column-density profiles are very similar for the two geometries we consider, and both yield a good visual match to the data. However, the fit residuals are substantially above the noise level, and deficiencies are evident when we compare the predictions of our model to lower-frequency (1.6–3.1 GHz) data on the same ESE, thus motivating future development of more sophisticated inversion techniques.

  8. Interstellar Contact - A Thousand-Year Perspective

    Science.gov (United States)

    Tough, A.

    Rapid progress is already being made in space exploration and the scientific search for intelligent life. By the year 3000, humankind will likely be sending extraordinarily smart probes and even staffed spaceships to explore nearby stars and planetary systems. Because any other civilizations in our galaxy are likely much older than humankind, their technology likely became capable long ago of exploring their galactic neighbourhood. Their motivation to do so is probably very strong, according to three sets of disciplined speculation: some role-playing exercises; a set of four universal values shared by all civilizations; and Vulpetti's Conscious-Life Expansion Principle. If other civilizations (or their intelligent probes) are already traveling throughout the galaxy, and if we do the same by the year 3000, it seems highly probable that contact will be made one way or another. Indeed, during the next 1000 years, we may experience contact in various ways (telescopes, probes, or staffed spacecraft) and with various civilizations. Of all the positive events that humanity will experience over the next 1000 years, interstellar contact will likely have the highest impact. Humanity's major benefits will likely include practical information, answers to major questions, changes in our view of ourselves, and cooperation in joint galactic projects.

  9. Dynamic spectral mapping of interstellar plasma lenses

    CERN Document Server

    Tuntsov, Artem V; Koopmans, Leon V E; Bannister, Keith W; Stevens, Jamie; Johnston, Simon; Reynolds, Cormac; Bignall, Hayley E

    2015-01-01

    Compact radio sources sometimes exhibit intervals of large, rapid changes in their flux-density, due to lensing by interstellar plasma crossing the line-of-sight. A novel survey program has made it possible to discover these "Extreme Scattering Events" (ESEs) in real time, resulting in a high-quality dynamic spectrum of an ESE observed in PKS 1939-315. Here we present a method for determining the column-density profile of a plasma lens, given only the dynamic radio spectrum of the lensed source, under the assumption that the lens is either axisymmetric or totally anisotropic. Our technique relies on the known, strong frequency dependence of the plasma refractive index in order to determine how points in the dynamic spectrum map to positions on the lens. We apply our method to high-frequency (4.2-10.8 GHz) data from the Australia Telescope Compact Array of the PKS 1939-315 ESE. The derived electron column-density profiles are very similar for the two geometries we consider, and both yield a good visual match t...

  10. Interstellar Dust Models Towards Some IUE Stars

    Science.gov (United States)

    Katyal, N.; Gupta, R.; Vaidya, D. B.

    2013-12-01

    We study the extinction properties of the composite dust grains, consisting of host silicate spheroids and graphite as inclusions, using discrete dipole approximation (DDA). We calculate the extinction cross sections of the composite grains in the ultraviolet spectral region, 1200\\AA -3200\\AA and study the variation in extinction as a function of the volume fraction of the inclusions. We compare the model extinction curves with the observed interstellar extinction curves obtained from the data given by the International Ultraviolet Explorer (IUE) satellite. Our results for the composite grains show a distinct variation in the extinction efficiencies with the variation in the volume fraction of the inclusions. In particular, it is found that the wavelength of peak absorption at `2175\\AA' shifts towards the longer wavelength with the variation in the volume fraction of inclusions. We find that the composite grain models with the axial ratios viz. 1.33 and 2.0 fit the observed extinction reasonably well with a grain size distribution, a = 0.005-0.250$\\mu m$. Moreover, our results of the composite grains clearly indicate that the inhomogeneity in the grain structure, composition and the surrounding media modifies the extinction properties of the grains.

  11. Deuterium enrichment of the interstellar grain mantle

    CERN Document Server

    Das, Ankan; Chakrabarti, Sandip K

    2015-01-01

    We carry out Monte-Carlo simulation to study deuterium enrichment of interstellar grain mantles under various physical conditions. Based on the physical properties, various types of clouds are considered. We find that in diffuse cloud regions, very strong radiation fields persists and hardly a few layers of surface species are formed. In translucent cloud regions with a moderate radiation field, significant number of layers would be produced and surface coverage is mainly dominated by photo-dissociation products such as, C,CH_3,CH_2D,OH and OD. In the intermediate dense cloud regions (having number density of total hydrogen nuclei in all forms ~ 2 x 10^4 cm^-3), water and methanol along with their deuterated derivatives are efficiently formed. For much higher density regions (~ 10^6 cm^-3), water and methanol productions are suppressed but surface coverage of CO,CO_2,O_2,O_3 are dramatically increased. We find a very high degree of fractionation of water and methanol. Observational results support a high frac...

  12. Interstellar Bubbles in Two Young HII Regions

    CERN Document Server

    Naze, Y; Points, S D; Danforth, C W; Rosado, M; Chen, C H R; Naze, Yael; Chu, You-Hua; Points, Sean D.; Danforth, Charles W.; Rosado, Margarita

    2001-01-01

    Massive stars are expected to produce wind-blown bubbles in the interstellar medium; however, ring nebulae, suggesting the existence of bubbles, are rarely seen around main-sequence O stars. To search for wind-blown bubbles around main-sequence O stars, we have obtained high-resolution Hubble Space Telescope WFPC2 images and high-dispersion echelle spectra of two pristine HII regions, N11B and N180B, in the Large Magellanic Cloud. These HII regions are ionized by OB associations that still contain O3 stars, suggesting that the HII regions are young and have not hosted any supernova explosions. Our observations show that wind-blown bubbles in these HII regions can be detected kinematically but not morphologically because their expansion velocities are comparable to or only slightly higher than the isothermal sound velocity in the HII regions. Bubbles are detected around concentrations of massive stars, individual O stars, and even an evolved red supergiant (a fossil bubble). Comparisons between the observed bu...

  13. Porphyrins in the interstellar medium (in grains)

    Science.gov (United States)

    Johnson, Fred M.

    1994-05-01

    Spectral sensitivity of the chromophores to their immediate chemical environment establishes some of the chemical constituents of the grains in which they reside. These are: (1) Paraffins, such as, octane, nonane, decane, and others...(needed for Shpolskii matrices and producing quasi-lines); and (2) Pyridine. The presence of pyridine is required not only to produce the spectral DIB matching, but also to produce the 36 cm-1 crystal field splitting of the S1 electronic state. The presence of pyridine in the grains can be confirmed spectroscopically. Pyridine produces a transmission window at 2175 A, matching exactly the well known UV hump. On grain reflection, some of the incoming UV radiation is absorbed into the grain's outer layers. Spikes in the lab and in the astronomical data are due to vibronic transitions in pyridine. The lab spectroscopy reported here clearly establishes the presence of MgTBP, H2TPB, and pyridine in the interstellar grains. The high fluorescence efficiency of MgTBP (being optically pumped in the visible) apparently accounts for all the observed UIR emissions.

  14. Electron Irradiation of Interstellar Ice Analogues

    Science.gov (United States)

    Nair, B. G.; Mason, N. J.

    2011-05-01

    Molecular synthesis in the Universe primarily occurs in the icy mantles on dust grains in dense interstellar dust clouds. The interaction of photons, electrons and cosmic rays with these ice mantles triggers complex chemical synthesis leading to the formation of complex molecules. Such molecular reactions can only be understood by systematic laboratory studies. In our experiments astrophysical environments are recreated in the laboratory using an ultra high vacuum chamber (UHV) capable of reaching pressures of the order of 10 -10 mBar containing a liquid helium cryostat capable of attaining a temperature of 20 K. Ice films are deposited on a ZnSe substrate (cooled by cryostat) by background deposition and irradiated with electrons of 1KeV energy. Chemical changes induced by electron irradiation were monitored by an infrared spectrometer. By varying the temperature, we also investigate the temperature dependence on the kinetics of the reactions. In this poster we will present the first results of electron irradiation of simple organic molecules like formamide (HCONH2) and allyl alcohol (CH2CHCH2OH).

  15. Interstellar Medium Absorption Profile Spectrograph (IMAPS)

    Science.gov (United States)

    Jenkins, E. B.

    1985-08-01

    The design and fabrication of an objective-grating echelle spectrograph to fly on sounding rockets and record spectra of stars from approximately 920 to 1120A with a resolving power lambda/delta lambda = 200,000 is discussed. The scientific purpose of the program is to observe, with ten times better velocity resolution than before, the plentiful absorption lines in this spectral region produced by atoms, ions and molecules in the interstellar medium. In addition, an important technical goal is to develop and flight-quality a new ultraviolet, photon-counting image sensor which has a windowless, opaque photocathode and a CCD bombarded directly by the accelerated photoelectrons. Except for some initial difficulties with the performance of CCDs, the development of the payload instrument is relatively straightforward and our overall design goals are satisfied. The first flight occurred in late 1984, but no data were obtained because of an inrush of air degraded the instrument's vacuum and caused the detector's high voltage to arc. A second flight in early 1985 was a complete success and obtained a spectrum of pi Sco. Data from this mission are currently being reduced; quick-look versions of the spectra indicate that excellent results will be obtained. Currently, the payload is being reconfigured to fly on a Spartan mission in 1988.

  16. Observations of interstellar helium with a gas absorption cell - Implications for the structure of the local interstellar medium

    Science.gov (United States)

    Freeman, J.; Paresce, F.; Bowyer, S.; Lampton, M.

    1980-01-01

    A photometer sensitive at the 584 A line of He 1, incorporating a helium gas resonance absorption cell, was flown on the Apollo-Soyuz Test Project in July 1975. The instrument observed much of the night-time sky, and returned 42 min of usable data. The data were analyzed by fitting to a model of resonant scattering of solar 584 A flux from nearby interstellar helium. Good model fits were obtained for an interstellar gas bulk velocity vector pointing toward alpha = 72 deg, delta = +15 deg, with speed 20 km/s, with interstellar medium temperatures from 5000 to 20,000 K and with neutral interstellar helium density (8.9 plus or minus 10 to the -3rd/cu cm). In the context of theoretical studies of the interstellar medium by McKee and Ostriker (1977), the results may indicate that the sun lies in the warm, partially ionized periphery of a cold interstellar cloud, surrounded by a high-temperature gas heated by old supernova remnants.

  17. HYBASE : HYperspectral BAnd SElection

    NARCIS (Netherlands)

    Schwering, P.B.W.; Bekman, H.H.P.T.; Seijen, H.H. van

    2009-01-01

    Band selection is essential in the design of multispectral sensor systems. This paper describes the TNO hyperspectral band selection tool HYBASE. It calculates the optimum band positions given the number of bands and the width of the spectral bands. HYBASE is used to assess the minimum number of spe

  18. Detailed Interstellar Polarimetric Properties of the Pipe Nebula at Core Scales

    CERN Document Server

    Franco, G A P; Girart, J M

    2010-01-01

    We use R-band CCD linear polarimetry collected for about 12000 background field stars in 46 fields of view toward the Pipe nebula to investigate the properties of the polarization across this dark cloud. Based on archival 2MASS data we estimate that the surveyed areas present total visual extinctions in the range 0.6 < Av < 4.6. While the observed polarizations show a well ordered large scale pattern, with polarization vectors almost perpendicularly aligned to the cloud's long axis, at core scales one see details that are characteristics of each core. Although many observed stars present degree of polarization which are unusual for the common interstellar medium, our analysis suggests that the dust grains constituting the diffuse parts of the Pipe nebula seem to have the same properties as the normal Galactic interstellar medium. Estimates of the second-order structure function of the polarization angles suggest that most of the Pipe nebula is magnetically dominated and that turbulence is sub-Alvenic. T...

  19. A hidden reservoir of Fe/FeS in interstellar silicates?

    CERN Document Server

    Köhler, M; Ysard, N

    2014-01-01

    The depletion of iron and sulphur into dust in the interstellar medium and the exact nature of interstellar amorphous silicate grains is still an open question. We study the incorporation of iron and sulphur into amorphous silicates of olivine- and pyroxene-type and their effects on the dust spectroscopy and thermal emission. We used the Maxwell-Garnett effective-medium theory to construct the optical constants for a mixture of silicates, metallic iron, and iron sulphide. We also studied the effects of iron and iron sulphide in aggregate grains. Iron sulphide inclusions within amorphous silicates that contain iron metal inclusions shows no strong differences in the optical properties of the grains. A mix of amorphous olivine- and pyroxene-type silicate broadens the silicate features. An amorphous carbon mantle with a thickness of 10 nm on the silicate grains leads to an increase in absorption on the short-wavelength side of the 10 $\\mu$m silicate band. The assumption of amorphous olivine-type and pyroxene-typ...

  20. PRESSURE EQUILIBRIUM BETWEEN THE LOCAL INTERSTELLAR CLOUDS AND THE LOCAL HOT BUBBLE

    Energy Technology Data Exchange (ETDEWEB)

    Snowden, S. L.; Chiao, M.; Collier, M. R.; Porter, F. S.; Thomas, N. E. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Cravens, T.; Robertson, I. P. [Department of Physics and Astronomy, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS 66045 (United States); Galeazzi, M.; Uprety, Y.; Ursino, E. [Department of Physics, University of Miami, 1320 Campo Sano Drive, Coral Gables, FL 33146 (United States); Koutroumpa, D. [Université Versailles St-Quentin, Sorbonne Universités, UPMC Univ. Paris 06, CNRS/INSU, LATMOS-IPSL, 11 Boulevard d' Alembert, F-78280 Guyancourt (France); Kuntz, K. D. [The Henry A. Rowland Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD 21218 (United States); Lallement, R.; Puspitarini, L. [GEPI, Observatoire de Paris, CNRS UMR8111, Université Paris Diderot, 5 Place Jules Janssen, F-92190 Meudon (France); Lepri, S. T. [University of Michigan, 2455 Hayward Street, Ann Arbor, MI 48109 (United States); McCammon, D.; Morgan, K. [Department of Physics, University of Wisconsin, 1150 University Avenue, Madison, WI 53706 (United States); Walsh, B. M., E-mail: steven.l.snowden@nasa.gov [Space Sciences Laboratory, 7 Gauss Way, Berkeley, CA 94720 (United States)

    2014-08-10

    Three recent results related to the heliosphere and the local interstellar medium (ISM) have provided an improved insight into the distribution and conditions of material in the solar neighborhood. These are the measurement of the magnetic field outside of the heliosphere by Voyager 1, the improved mapping of the three-dimensional structure of neutral material surrounding the Local Cavity using extensive ISM absorption line and reddening data, and a sounding rocket flight which observed the heliospheric helium focusing cone in X-rays and provided a robust estimate of the contribution of solar wind charge exchange emission to the ROSAT All-Sky Survey 1/4 keV band data. Combining these disparate results, we show that the thermal pressure of the plasma in the Local Hot Bubble (LHB) is P/k = 10, 700 cm{sup –3} K. If the LHB is relatively free of a global magnetic field, it can easily be in pressure (thermal plus magnetic field) equilibrium with the local interstellar clouds, eliminating a long-standing discrepancy in models of the local ISM.

  1. Small-scale structure in the interstellar medium: time-varying interstellar absorption towards {\\kappa} Velorum

    CERN Document Server

    Smith, Keith T; Cordiner, Martin A; Sarre, Peter J; Smith, Arfon M; Bell, Tom A; Viti, Serena

    2012-01-01

    Ultra-high spectral resolution observations of time-varying interstellar absorption towards {\\kappa} Vel are reported, using the Ultra-High Resolution Facility on the Anglo-Australian Telescope. Detections of interstellar Ca I, Ca II, K I, Na I and CH are obtained, whilst an upper limit on the column density is reported for C_2. The results show continued increases in column densities of K I and Ca I since observations ~ 4 yr earlier, as the transverse motion of the star carried it ~ 10 AU perpendicular to the line of sight. Line profile models are fitted to the spectra and two main narrow components (A & B) are identified for all species except CH. The column density N(K I) is found to have increased by 82 +10-9 % between 1994 and 2006, whilst N(Ca I) is found to have increased by 32 +- 5 % over the shorter period of 2002-2006. The line widths are used to constrain the kinetic temperature to T_k,A 7 * 10^3 cm^-3 and n_B > 2 * 10^4 cm^-3. Calcium depletions are estimated from the Ca I / K I ratio. Compar...

  2. DIFFUSE ATOMIC AND MOLECULAR GAS IN THE INTERSTELLAR MEDIUM OF M82 TOWARD SN 2014J

    Energy Technology Data Exchange (ETDEWEB)

    Ritchey, Adam M. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Welty, Daniel E.; York, Donald G. [Department of Astronomy and Astrophysics, University of Chicago, 5640 S. Ellis Ave., Chicago, IL 60637 (United States); Dahlstrom, Julie A., E-mail: aritchey@astro.washington.edu [Department of Physics and Astronomy, Carthage College, 2001 Alford Park Dr., Kenosha, WI 53140 (United States)

    2015-02-01

    We present a comprehensive analysis of interstellar absorption lines seen in moderately high resolution, high signal-to-noise ratio optical spectra of SN 2014J in M82. Our observations were acquired over the course of six nights, covering the period from ∼6 days before to ∼30 days after the supernova reached its maximum B-band brightness. We examine complex absorption from Na I, Ca II, K I, Ca I, CH{sup +}, CH, and CN, arising primarily from diffuse gas in the interstellar medium (ISM) of M82. We detect Li I absorption over a range in velocity consistent with that exhibited by the strongest Na I and K I components associated with M82; this is the first detection of interstellar Li in a galaxy outside of the Local Group. There are no significant temporal variations in the absorption-line profiles over the 37 days sampled by our observations. The relative abundances of the various interstellar species detected reveal that the ISM of M82 probed by SN 2014J consists of a mixture of diffuse atomic and molecular clouds characterized by a wide range of physical/environmental conditions. Decreasing N(Na I)/N(Ca II) ratios and increasing N(Ca I)/N(K I) ratios with increasing velocity are indicative of reduced depletion in the higher-velocity material. Significant component-to-component scatter in the N(Na I)/N(Ca II) and N(Ca I)/N(Ca II) ratios may be due to variations in the local ionization conditions. An apparent anti-correlation between the N(CH{sup +})/N(CH) and N(Ca I)/N(Ca II) ratios can be understood in terms of an opposite dependence on gas density and radiation field strength, while the overall high CH{sup +} abundance may be indicative of enhanced turbulence in the ISM of M82. The Li abundance also seems to be enhanced in M82, which supports the conclusions of recent gamma-ray emission studies that the cosmic-ray acceleration processes are greatly enhanced in this starburst galaxy.

  3. Diffuse Atomic and Molecular Gas in the Interstellar Medium of M82 toward SN 2014J

    Science.gov (United States)

    Ritchey, Adam M.; Welty, Daniel E.; Dahlstrom, Julie A.; York, Donald G.

    2015-02-01

    We present a comprehensive analysis of interstellar absorption lines seen in moderately high resolution, high signal-to-noise ratio optical spectra of SN 2014J in M82. Our observations were acquired over the course of six nights, covering the period from ~6 days before to ~30 days after the supernova reached its maximum B-band brightness. We examine complex absorption from Na I, Ca II, K I, Ca I, CH+, CH, and CN, arising primarily from diffuse gas in the interstellar medium (ISM) of M82. We detect Li I absorption over a range in velocity consistent with that exhibited by the strongest Na I and K I components associated with M82; this is the first detection of interstellar Li in a galaxy outside of the Local Group. There are no significant temporal variations in the absorption-line profiles over the 37 days sampled by our observations. The relative abundances of the various interstellar species detected reveal that the ISM of M82 probed by SN 2014J consists of a mixture of diffuse atomic and molecular clouds characterized by a wide range of physical/environmental conditions. Decreasing N(Na I)/N(Ca II) ratios and increasing N(Ca I)/N(K I) ratios with increasing velocity are indicative of reduced depletion in the higher-velocity material. Significant component-to-component scatter in the N(Na I)/N(Ca II) and N(Ca I)/N(Ca II) ratios may be due to variations in the local ionization conditions. An apparent anti-correlation between the N(CH+)/N(CH) and N(Ca I)/N(Ca II) ratios can be understood in terms of an opposite dependence on gas density and radiation field strength, while the overall high CH+ abundance may be indicative of enhanced turbulence in the ISM of M82. The Li abundance also seems to be enhanced in M82, which supports the conclusions of recent gamma-ray emission studies that the cosmic-ray acceleration processes are greatly enhanced in this starburst galaxy.

  4. Surfatron accelerator in the local interstellar cloud

    Energy Technology Data Exchange (ETDEWEB)

    Loznikov, V. M., E-mail: vloznikov@yandex.ru; Erokhin, N. S.; Zol’nikova, N. N.; Mikhailovskaya, L. A. [Russian Academy of Sciences, Space Research Institute (Russian Federation)

    2017-01-15

    Taking into account results of numerous experiments, the variability of the energy spectra of cosmic rays (protons and helium nuclei) in the energy range of 10 GeV to ~10{sup 7} GeV is explained on the basis of a hypothesis of the existence of two variable sources close to the Sun. The first (soft) surfatron source (with a size of ~100 AU) is located at the periphery of the heliosphere. The second (hard) surfatron source (with a size of ~1 pc) is situated in the Local Interstellar Cloud (LIC) at a distance of <1 pc. The constant background is described by a power-law spectrum with a slope of ~2.75. The variable heliospheric surfatron source is described by a power-law spectrum with a variable amplitude, slope, and cutoff energy, the maximum cutoff energy being in the range of E{sub CH}/Z < 1000 GeV. The variable surfatron source in the LIC is described by a power-law spectrum with a variable amplitude, slope, and cut-off energy, the maximum cut-off energy being E{sub Ð}¡{sub L}/Z ≤ 3 × 10{sup 6} GeV. The proposed model is used to approximate data from several experiments performed at close times. The energy of each cosmic-ray component is calculated. The possibility of surfatron acceleration of Fe nuclei (Z = 26) in the LIC up to an energy of E{sub CL} ~ 10{sup 17} eV and electron and positrons to the “knee” in the energy spectrum is predicted. By numerically solving a system of nonlinear equations describing the interaction between an electromagnetic wave and a charged particle with an energy of up to E/Z ~ 3 × 10{sup 6} GeV, the possibility of trapping, confinement, and acceleration of charged cosmic-ray particles by a quasi-longitudinal plasma wave is demonstrated.

  5. The Interstellar Vision: Principles and Practice

    Science.gov (United States)

    Gilster, P. A.

    The ambitious title of the 100 Year Starship study will resonate with the public, a fact that requires the recipient of the DARPA grant to use communicators who can follow a careful strategy as they bring this vision to the Internet and other outlets. It will be necessary to spur public engagement and sustain the `buzz' that will help the organization develop its ideas. This paper examines these issues in the context of the author's long involvement with Centauri Dreams, a Web site devoted to presenting interstellar flight to a broad, general audience. Central to the presentation of the starship idea is the advocacy of long-term thinking and the value of spin-off research by placing the goal of a starship in the context of other human activities that have transcended the lifetime of individual participants. Teaching cross-generational responsibility will invoke issues of history, economics and philosophy in addition to the technology issues raised by a journey of this magnitude. The best communicators for this role will be generalists who can connect such widely dispersed disciplines. Key to the study is the development of a Web presence that uses the Internet with caution. Certain Internet myths including `the wisdom of crowds' and resistance to top-down editing will compromise the project. The benefits and drawbacks of social networking will be discussed in this context. A strong editorial voice willing to cull public responses to maintain high standards in the resulting discussions is essential. Furthermore, a high standard of reporting demands the presentation of research without associated hype and a level of discourse that educates but does not patronize its audience. Careful citation of relevant research and a willingness to set the bar of discussion high will result in feedback from researchers and the public that, with the help of strenuous moderation, will build a database of thirdparty ideas that will engage interest and add materially to the value of

  6. A search with Copernicus for interstellar N2 in diffuse clouds

    Science.gov (United States)

    Lutz, B. L.; Snow, T. P., Jr.; Owen, T.

    1979-01-01

    Multiple Copernicus scans of two N2 band regions (near 958.5 and 960.2A) of Delta Sco and Epsilon Per are reported. The observations indicate upper limits for the number of N2 molecules equal to 1.0-3.8 times 10 to the -12th/sq cm and 1.2-4.4 times 10 to the -12th/sq cm, respectively; the limits depend on the cloud temperature. It is suggested that the limits are consistent with the column densities predicted by chemical models for diffuse interstellar clouds, and the predicted relative abundances are presented in terms of the ratio of N(N2)/(2N(H2) + N(Hl)).

  7. The diffuse interstellar features at 5780 and 5797 A in star-formation regions

    Science.gov (United States)

    Wallerstein, George; Cardelli, Jason A.

    1987-01-01

    Substantially reddened stars on the Rho Oph and T Cha clouds, as well as individual hot stars associated with nebulosity in the 5780, 5797 A diffuse interstellar line region, have been observed. 5780 A is found to be generally weak, except in Z CMa and stars SR 3 and SR 5 in the Rho Oph cloud. The line at 5797 A is weak relative to 5780 A in all of the program stars. The suggestion by others that 5780 and 5797 A are due to different sources is confirmed. Finally, the implications of the weakness of these bands in regions of high gas and dust density, as well as an enhanced radiation field due to the presence of recently formed stars, are discussed.

  8. The interplay between the young stellar super cluster Westerlund 1, and the surrounding interstellar medium

    Directory of Open Access Journals (Sweden)

    Carrasco L.

    2012-02-01

    Full Text Available We analyze the multi-band (CO, HI and Spitzer maps, large-scale (150 pc gaseous structure around Westerlund 1, the most massive known superstar cluster in the Milky Way, with the intention of exploring the effect of feedback from massive stars in this young (age < 5 Myr cluster on the surrounding interstellar medium. We find no traces of the parental molecular cloud in the immediate vicinity of the cluster, instead this volume is partially filled by HI gas. On the other hand, there are two giant molecular clouds, both moving away from the cluster at 5–10 km s−1, at distances of around 50–150 pc. There are several ultra-compact HII regions associated with these giant molecular clouds. All these events suggest that the cluster has played an important role in re-structuring the ISM, in the form of ejecting the molecular gas, as well as triggering secondary star formation.

  9. Diffuse Interstellar Bands: How Are They Related to Known Gas-Phase Constituents of the ISM?

    OpenAIRE

    Welty, Daniel E.

    2013-01-01

    In this brief review of recent work relating the DIBs to other gas-phase constituents of the ISM, we explore correlations between DIB equivalent widths and the column densities of various atomic and molecular species, drawn from a large database constructed for that purpose. The tightness and slopes of the correlations can provide information on how the DIBs might be related to those species (physically, chemically, spatially) and on various properties of the DIB carriers. Deviations from the...

  10. Diffuse Interstellar Bands: How Are They Related to Known Gas-Phase Constituents of the ISM?

    CERN Document Server

    Welty, Daniel E

    2013-01-01

    In this brief review of recent work relating the DIBs to other gas-phase constituents of the ISM, we explore correlations between DIB equivalent widths and the column densities of various atomic and molecular species, drawn from a large database constructed for that purpose. The tightness and slopes of the correlations can provide information on how the DIBs might be related to those species (physically, chemically, spatially) and on various properties of the DIB carriers. Deviations from the mean relationships can reveal dependences of DIB strengths on other parameters, regional variations in DIB behavior, and individual sight lines where unusual environmental conditions affect the DIBs. Variations in DIB profiles (e.g., wings, substructure) and relative strengths may be related to differences in physical conditions inferred from atomic and/or molecular absorption lines.

  11. Analysis of Anomalous Diffuse Interstellar Bands in the Spectrum of Herschel 36

    Science.gov (United States)

    Oka, T.; Welty, D. E.; Johnson, S.; York, D. G.; Dahlstrom, J.; Hobbs, L. M.

    2014-02-01

    The extraordinary DIBs observed toward Herschel 36 (Dahlstrom et al. 2013) have been analyzed (Oka et al. 2013). The analysis led us to a new way to classify the carriers of DIBs depending on whether the molecules are polar or non-polar. The pronounced Extended Tails toward Red (ETR) observed for DIBs λ5780.5, λ5797.1, and λ6613.6 are explained as due to radiative excitation of high rotational levels of polar carrier molecules in an environment with high radiative temperature ~90 K. Other DIBs (e.g., λ5849.8, λ6196.0, and λ6379.3) which do not show ETR are likely due to non-polar molecules. Model calculations taking into account the interplay of radiative and collisional effects reproduce the observed ETR using realistic molecular parameters if the radiative temperature is sufficiently high (~90 K). The calculation suggests that the carriers of DIBs with ETR are likely medium size molecules with 3 - 6 heavy atoms unless the radiative temperature is much higher.

  12. Diffuse Interstellar Bands: How are they related to known Gas-Phase Constituents of the ISM?

    Science.gov (United States)

    Welty, D. E.

    2014-02-01

    In this brief review of recent work relating the DIBs to other gas-phase constituents of the ISM, we explore correlations between DIB equivalent widths and the column densities of various atomic and molecular species, drawn from a large database constructed for that purpose. The tightness and slopes of the correlations can provide information on how the DIBs might be related to those species (physically, chemically, spatially) and on various properties of the DIB carriers. Deviations from the mean relationships can reveal dependences of DIB strengths on other parameters, regional variations in DIB behavior, and individual sight lines where unusual environmental conditions affect the DIBs. Variations in DIB profiles (e.g., wings, substructure) and relative strengths may be related to differences in physical conditions inferred from atomic and/or molecular absorption lines.

  13. SOLAR RADIATION PRESSURE AND LOCAL INTERSTELLAR MEDIUM FLOW PARAMETERS FROM INTERSTELLAR BOUNDARY EXPLORER LOW ENERGY HYDROGEN MEASUREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Schwadron, N. A.; Moebius, E.; Kucharek, H.; Lee, M. A.; French, J. [University of New Hampshire, Durham, NH 03824 (United States); Saul, L.; Wurz, P. [University of Bern, 3012 Bern (Switzerland); Bzowski, M. [Space Research Centre of the Polish Academy of Sciences, Warsaw (Poland); Fuselier, S. A.; Livadiotis, G.; McComas, D. J. [Southwest Research Institute, San Antonio, TX 78228 (United States); Frisch, P. [University of Chicago, Chicago, IL 60637 (United States); Gruntman, M. [University of Southern California, Los Angeles, CA 90089 (United States); Mueller, H. R. [Dartmouth College, Hanover, NH 03755 (United States)

    2013-10-01

    Neutral hydrogen atoms that travel into the heliosphere from the local interstellar medium (LISM) experience strong effects due to charge exchange and radiation pressure from resonant absorption and re-emission of Lyα. The radiation pressure roughly compensates for the solar gravity. As a result, interstellar hydrogen atoms move along trajectories that are quite different than those of heavier interstellar species such as helium and oxygen, which experience relatively weak radiation pressure. Charge exchange leads to the loss of primary neutrals from the LISM and the addition of new secondary neutrals from the heliosheath. IBEX observations show clear effects of radiation pressure in a large longitudinal shift in the peak of interstellar hydrogen compared with that of interstellar helium. Here, we compare results from the Lee et al. interstellar neutral model with IBEX-Lo hydrogen observations to describe the distribution of hydrogen near 1 AU and provide new estimates of the solar radiation pressure. We find over the period analyzed from 2009 to 2011 that radiation pressure divided by the gravitational force (μ) has increased slightly from μ = 0.94 ± 0.04 in 2009 to μ = 1.01 ± 0.05 in 2011. We have also derived the speed, temperature, source longitude, and latitude of the neutral H atoms and find that these parameters are roughly consistent with those of interstellar He, particularly when considering the filtration effects that act on H in the outer heliosheath. Thus, our analysis shows that over the period from 2009 to 2011, we observe signatures of neutral H consistent with the primary distribution of atoms from the LISM and a radiation pressure that increases in the early rise of solar activity.

  14. The Local Interstellar Magnetic Field Determined from the IBEX Ribbon

    Science.gov (United States)

    Zirnstein, E.; Funsten, H. O.; Heerikhuisen, J.; Livadiotis, G.; McComas, D. J.; Pogorelov, N. V.

    2015-12-01

    As the solar wind plasma flows away from the Sun, it eventually collides with the local interstellar medium, creating the heliosphere. Neutral atoms from interstellar space travel inside the heliosphere and charge-exchange with the solar wind plasma, creating energetic neutral atoms (ENAs). Some of these ENAs travel outside the heliosphere, undergo two charge-exchange events, and travel back inside the heliosphere towards Earth, with the strongest intensity in directions perpendicular to the interstellar magnetic field (IMF). It is widely believed that this process generates the "ribbon" of enhanced ENA intensity observed by the Interstellar Boundary Explorer (IBEX), and has been shown to explain many key features of the observations. IBEX observations of the ribbon are composed of a complex, line-of-sight integration of ENAs that come from different distances beyond the heliopause, and thus the ENAs detected by IBEX over a wide range of energies are uniquely coupled to the IMF draped around the heliosphere. We present a detailed analysis of the IBEX ribbon measurements using 3D simulations of the heliosphere and computations of the ribbon flux at Earth based on IBEX capabilities, and derive the magnitude and direction of the IMF required to reproduce the position of the IBEX ribbon in the sky. These results have potentially large implications for our understanding of the solar-interstellar environment.

  15. Potential formation of three pyrimidine bases in interstellar regions

    CERN Document Server

    Majumdar, Liton; Das, Ankan; Chakrabarti, Sandip K

    2015-01-01

    Work on the chemical evolution of pre-biotic molecules remains incomplete since the major obstacle is the lack of adequate knowledge of rate coefficients of various reactions which take place in interstellar conditions. In this work, we study the possibility of forming three pyrimidine bases, namely, cytosine, uracil and thymine in interstellar regions. Our study reveals that the synthesis of uracil from cytosine and water is quite impossible under interstellar circumstances. For the synthesis of thymine, reaction between uracil and :CH2 is investigated. Since no other relevant pathways for the formation of uracil and thymine were available in the literature, we consider a large gas-grain chemical network to study the chemical evolution of cytosine in gas and ice phases. Our modeling result shows that cytosine would be produced in cold, dense interstellar conditions. However, presence of cytosine is yet to be established. We propose that a new molecule, namely, C4N3OH5 could be observable in the interstellar ...

  16. The properties of diffuse interstellar dust clouds as determined from GALEX and infrared (IRAS, Herschel) observations

    Science.gov (United States)

    Armengot, M.; Gómez de Castro, A. I.

    2017-03-01

    Dust grain properties are known to vary in the interstellar medium depending on the density, the ultraviolet radiation field and the local abundances of metal elements. Though there are plenty of studies addressing the atomic and molecular gas component or the infrared radiation of dust grains, there are very few studies that address the spatial distribution of small large grains and large molecules such as the Polyaromathic Hydrocarbons (PAHs).In this work, we make use of the GALEX survey of the Galaxy to identify the absorption produced in the GALEX far UV (write in the spectral range) and new UV (write in the spectral range) by well know infrared cirrus and compare the absorption produced in the UV by the thin cirrus with the infrared dust emissivity in various bands; (describe the IRAS bands used and whether there is any Herschel band in this study). As the spatial resolution of GALEX images is significantly larger than that of IRAS images data handling has required mosaicking and and rescaling GALEX data as well as transforming the images form equinox 1950 to equinox 2000. We describe in this work the computational procedures used to generate the ultraviolet and infrared maps. Also we present our first results that show there is an anticorrelation between UV and infrared (IR) emission, as other wise expected. The largest concentrations of dust grains radiate IR photons and absorb UV photons.

  17. Small and Large Molecules in the Diffuse Interstellar Medium

    Science.gov (United States)

    Oka, Takeshi; Huang, Jane

    2014-06-01

    Although molecules with a wide range of sizes exist in dense clouds (e.g. H(C≡C)_nC≡N with n = 0 - 5), molecules identified in diffuse clouds are all small ones. Since the initial discovery of CH, CN, and CH^+, all molecules detected in the optical region are diatomics except for H_3^+ in the infrared and C_3 in the visible. Radio observations have been limited up to triatomic molecules except for H_2CO and the ubiquitous C_3H_2. The column densities of all molecules are less than 1014 cm-2 with the two exceptions of CO and H_3^+ as well as CH and C_2 in a few special sightlines. Larger molecules with many carbon atoms have been searched for but have not been detected. On the other hand, the observations of a great many diffuse interstellar bands (380 toward HD 204827 and 414 toward HD 183143) with equivalent widths from 1 to 5700 m Å indicate high column densities of many heavy molecules. If an electronic transition dipole moment of 1 Debye is assumed, the observed equivalent widths translate to column densities from 5 × 1011 cm-2 to 3 × 1015 cm-2. It seems impossible that these large molecules are formed from chemical reactions in space from small molecules. It is more likely that they are fragments of aggregates, perhaps mixed aromatic/aliphatic organic nanoparticles (MAONS). MAONS and their large fragment molecules are stable against photodissociation in the diffuse ISM because the energy of absorbed photons is divided into statistical distributions of vibrational energy and emitted in the infrared rather than breaking a chemical bond. We use a simple Rice-Ramsperger-Kassel-Marcus theory to estimate the molecular size required for the stabilization. Snow, T. P. & McCall, B. J. 2006, ARA&A, 44 367 Hobbs, L. M., York, D. G., Snow, T. P., Oka, T., Thorburn, J. A., et al. 2008, ApJ, 680 1256 Hobbs, L. M., York, D. G., Thorburn, J. A., Snow, T. P., Bishof, M., et al. 2009, ApJ, 705 32 Kwok, S. & Zhang, S. 2013, ApJ, 771 5 Freed, K. F., Oka, T., & Suzuki, H

  18. PAHs in the Ices of Saturn's Satellites: Connections to the Solar Nebula and the Interstellar Medium

    Science.gov (United States)

    Cruikshank, Dale P.; Pendleton, Yvonne J.

    2015-01-01

    Aliphatic hydrocarbons and PAHs have been observed in the interstellar medium (e.g., Allamandola et al. 1985, Pendleton et al. 1994, Pendleton & Allamandola 2002, Tielens 2013, Kwok 2008, Chiar & Pendleton 2008) The inventory of organic material in the ISM was likely incorporated into the molecular cloud in which the solar nebula condensed, contributing to the feedstock for the formation of the Sun, major planets, and the smaller icy bodies in the region outside Neptune's orbit (transneptunian objects, or TNOs). Additional organic synthesis occurred in the solar nebula (Ciesla & Sandford 2012). Saturn's satellites Phoebe, Iapetus, and Hyperion open a window to the composition of one class of TNO as revealed by the near-infrared mapping spectrometer (VIMS) on the Cassini spacecraft at Saturn. Phoebe (mean diameter 213 km) is a former TNO now orbiting Saturn (Johnson & Lunine 2005). VIMS spectral maps of Phoebe's surface reveal a complex organic spectral signature consisting of prominent aromatic (CH) and aliphatic hydrocarbon (=CH2, -CH3) absorption bands (3.2-3.6 micrometers). Phoebe is the source of a huge debris ring encircling Saturn, and from which particles ((is) approximately 5-20 micrometers size) spiral inward toward Saturn (Verbiscer et al. 2009). They encounter Iapetus and Hyperion where they mix with and blanket the native H2O ice of those two bodies. Quantitative analysis of the hydrocarbon bands on Iapetus demonstrates that aromatic CH is approximately 10 times as abundant as aliphatic CH2+CH3, significantly exceeding the strength of the aromatic signature in interplanetary dust particles, comet particles, and in carbonaceous meteorites (Cruikshank et al. 2014). A similar excess of aromatics over aliphatics is seen in the qualitative analysis of Hyperion and Phoebe itself (Dalle Ore et al. 2012). The Iapetus aliphatic hydrocarbons show CH2/CH3 (is) approximately 4, which is larger than the value found in the diffuse ISM ((is) approximately 2

  19. Observations of interstellar helium with a gas absorption cell - Limits on the bulk velocity of the interstellar medium

    Science.gov (United States)

    Freeman, J.; Paresce, F.; Bowyer, S.; Lampton, M.

    1976-01-01

    Results are reported for observations of solar 584-A flux resonantly scattered by the 1s(2)-1s2p transition of neutral interstellar helium. A photometer equipped with a helium gas-absorption cell and flown aboard a sounding rocket to a peak altitude of 185 km was employed to observe the sky in Perseus. The data reduction procedure is described, including subtraction of the terrestrial atmospheric background, calculation of the solar flux, and reduction of the number density of scatters to a function of phase-space parameters of the local interstellar medium. The ratio of 584-A fluxes observed with the gas cell full and empty is computed and compared with numerical models of the interstellar-helium flow through the solar system. The results show that the bulk speed of the distant interstellar medium with respect to the sun is unlikely to be less than 10 to 15 km/s, at the 2-sigma level. Since this value is inconsistent with results obtained from Lyman-alpha observations, it is suggested that either the total ionization rate for helium is variable or present models of the behavior of the local interstellar medium need further refinement.

  20. A scenario for interstellar exploration and its financing

    CERN Document Server

    Bignami, Giovanni F

    2013-01-01

    This book develops a credible scenario for interstellar exploration and colonization. In so doing, it examines: • the present situation and prospects for interstellar exploration technologies; • where to go: the search for habitable planets; • the motivations for space travel and colonization; • the financial mechanisms required to fund such enterprises. The final section of the book analyzes the uncertainties surrounding the presented scenario. The purpose of building a scenario is not only to pinpoint future events but also to highlight the uncertainties that may propel the future in different directions. Interstellar travel and colonization requires a civilization in which human beings see themselves as inhabitants of a single planet and in which global governance of these processes is conducted on a cooperative basis. The key question is, then, whether our present civilization is ready for such an endeavor, reflecting the fact that the critical uncertainties are political and cultural in nature. I...

  1. Interstellar Refractive Scintillation and Intraday Polarization Angle Swings

    Institute of Scientific and Technical Information of China (English)

    Shan-Jie Qian; Xi-Zhen Zhang; A. Kraus

    2005-01-01

    Intraday polarization angle swings of ~180° observed in two sources (QSO 0917+624 and QSO 1150+812) are discussed in the framework of refractive interstellar scintillation by a continuous interstellar medium. Model-fits to the I-,Q- and U- light curves were made for both sources. It is shown that for the case of 0917+624 both the intraday intensity variations and the polarization angle swing of ~180° could be explained consistently in terms of a four-component model, which comprises one steady and two scintillating polarized components and one further non-polarized scintillating component. The polarization angle swing of ~180° observed in 1150+812, which occurred when the polarized flux density was almost constant, could not be explained in terms of refractive scintillation by a continuous medium and might be due to other mechanisms (e.g., scintillation by interstellar clouds).

  2. Mapping the interstellar medium in galaxies with Herschel/SPIRE

    CERN Document Server

    Eales, S A; Wilson, C D; Bendo, G J; Cortese, L; Pohlen, M; Boselli, A; Gomez, H L; Auld, R; Baes, M; Barlow, M J; Bock, J J; Bradford, M; Buat, V; Castro-Rodriguez, N; Chanial, P; Charlot, S; Ciesla, L; Clements, D L; Cooray, A; Cormier, D; Davies, J I; Dwek, E; Elbaz, D; Galametz, M; Galliano, F; Gear, W K; Glenn, J; Griffin, M; Hony, S; Isaak, K G; Levenson, L R; Lu, N; Madden, S; O'Halloran, B; Okumura, K; Oliver, S; Page, M J; Panuzzo, P; Papageorgiou, A; Parkin, T J; Perez-Fournon, I; Rangwala, N; Rigby, E E; Roussel, H; Rykala, A; Sacchi, N; Sauvage, M; Schulz, B; Schirm, M R P; Spinoglio, L; Srinivasan, S; Stevens, J A; Symeonidis, M; Trichas, M; Vaccari, M; Vigroux, L; Wozniak, H; Wright, G S; Zeilinger, W W

    2010-01-01

    The standard method of mapping the interstellar medium in a galaxy, by observing the molecular gas in the CO 1-0 line and the atomic gas in the 21-cm line, is largely limited with current telescopes to galaxies in the nearby universe. In this letter, we use SPIRE observations of the galaxies M99 and M100 to explore the alternative approach of mapping the interstellar medium using the continuum emission from the dust. We have compared the methods by measuring the relationship between the star-formation rate and the surface density of gas in the galaxies. We find the two methods give relationships with a similar dispersion, confirming that observing the continuum emission from the dust is a promising method of mapping the interstellar medium in galaxies.

  3. Interstellar Pickup Ion Production in the Global Heliosphere and Heliosheath

    CERN Document Server

    Wu, Yihong; Guo, Xiaocheng

    2016-01-01

    Interstellar Pickup ions (PUIs) play a significant part in mediating the solar wind (SW) interaction with the interstellar medium. In this paper, we examine the details of spatial variation of the PUI velocity distribution function (VDF) in the SW by solving the PUI transport equation. We assume the PUI distribution is isotropic resulting from strong pitch-angle scattering by wave-particle interaction. A three-dimensional model combining the MHD treatment of the background SW and neutrals with a kinetic treatment of PUIs throughout the heliosphere and the surrounding local interstellar medium (LISM) has been developed. The model generates PUI power law tails via second-order Fermi process. We analyze how PUIs transform across the heliospheric termination shock (TS) and obtain the PUI phase space distribution in the inner heliosheath including continuing velocity diffusion. Our simulated PUI spectra are compared with observations made by New Horizons, Ulysses, Voyager 1, 2 and Cassini, and a satisfactory agree...

  4. Probing Interstellar Dust With Space-Based Coronagraphs

    CERN Document Server

    Turner, N J; Breckinridge, J B

    2008-01-01

    We show that space-based telescopes such as the proposed Terrestrial Planet Finder Coronagraph will be able to detect the light scattered by the interstellar grains along lines of sight passing near stars in our Galaxy. The relative flux of the scattered light within one arcsecond of a star at 100 pc in a uniform interstellar medium of 0.1 H atoms cm^-3 is about 10^-7. The halo increases in strength with the distance to the star and is unlikely to limit the coronagraphic detection of planets around the nearest stars. Grains passing within 100 AU of Sun-like stars are deflected by radiation, gravity and magnetic forces, leading to features in the scattered light that can potentially reveal the strength of the stellar wind, the orientation of the stellar magnetic field and the relative motion between the star and the surrounding interstellar medium.

  5. A new model of composite interstellar dust grains

    CERN Document Server

    Voshchinnikov, N V; Henning, T; Dubkova, D N; Henning, Th.

    2003-01-01

    The approach to model composite interstellar dust grains, using the exact solution to the light scattering problem for multi-layered spheres as suggested by Voshchinnikov & Mathis (1999), is further developed. Heterogeneous scatteres are represented by particles with very large number of shells, each including a homogeneous layer per material considered (amorphous carbon, astronomical silicate and vacuum). The applicability of the effective medium theory (EMT) mostly utilized earlier to approximate inhomogeneous interstellar grains is examined on the basis of the new model. It is shown that the EMT rules generally have an accuracy of several percent in the whole range of particle sizes provided the porosity does not exceed about 50%. For larger porosity, the EMT rules give wrong results. Using the model, we reanalyze various basic features of cosmic dust -- interstellar extinction, scattered radiation, infrared radiation, radiation pressure, etc. As an example of the potential of the model, it is applied ...

  6. Photochemistry and astrochemistry: photochemical pathways to interstellar complex organic molecules

    CERN Document Server

    Oberg, Karin I

    2016-01-01

    The interstellar medium is characterized by a rich and diverse chemistry. Many of its complex organic molecules are proposed to form through radical chemistry in icy grain mantles. Radicals form readily when interstellar ices (composed of water and other volatiles) are exposed to UV photons and other sources of dissociative radiation, and, if sufficiently mobile, the radicals can react to form larger, more complex molecules. The resulting complex organic molecules (COMs) accompany star and planet formation, and may eventually seed the origins of life on nascent planets. Experiments of increasing sophistication have demonstrated that known interstellar COMs as well as the prebiotically interesting amino acids can form through ice photochemistry. We review these experiments and discuss the qualitative and quantitative kinetic and mechanistic constraints they have provided. We finally compare the effects of UV radiation with those of three other potential sources of radical production and chemistry in interstell...

  7. The feedback of massive stars on interstellar astrochemical processes

    CERN Document Server

    De Becker, Michael

    2013-01-01

    Astrochemistry is a discipline that studies physico-chemical processes in astrophysical environments. Such environments are characterized by conditions that are substantially different from those existing in usual chemical laboratories. Models which aim to explain the formation of molecular species in interstellar environments must take into account various factors, including many that are directly, or indirectly related to the populations of massive stars in galaxies. The aim of this paper is to review the influence of massive stars, whatever their evolution stage, on the physico-chemical processes at work in interstellar environments. These influences include the ultraviolet radiation field, the production of high energy particles, the synthesis of radionuclides and the formation of shocks that permeate the interstellar medium.

  8. Reaction Networks For Interstellar Chemical Modelling: Improvements and Challenges

    CERN Document Server

    Wakelam, V; Herbst, E; Troe, J; Geppert, W; Linnartz, H; Oberg, K; Roueff, E; Agundez, M; Pernot, P; Cuppen, H M; Loison, J C; Talbi, D

    2010-01-01

    We survey the current situation regarding chemical modelling of the synthesis of molecules in the interstellar medium. The present state of knowledge concerning the rate coefficients and their uncertainties for the major gas-phase processes -- ion-neutral reactions, neutral-neutral reactions, radiative association, and dissociative recombination -- is reviewed. Emphasis is placed on those reactions that have been identified, by sensitivity analyses, as 'crucial' in determining the predicted abundances of the species observed in the interstellar medium. These sensitivity analyses have been carried out for gas-phase models of three representative, molecule-rich, astronomical sources: the cold dense molecular clouds TMC-1 and L134N, and the expanding circumstellar envelope IRC +10216. Our review has led to the proposal of new values and uncertainties for the rate coefficients of many of the key reactions. The impact of these new data on the predicted abundances in TMC-1 and L134N is reported. Interstellar dust p...

  9. Experimental evidence of water formation on interstellar dust grains

    CERN Document Server

    Dulieu, F; Fillion, J-H; Matar, E; Momeni, A; Pirronello, V; Lemaire, J L

    2009-01-01

    The synthesis of water is one necessary step in the origin and development of life. It is believed that pristine water is formed and grows on the surface of icy dust grains in dark interstellar clouds. Until now, there has been no experimental evidence whether this scenario is feasible or not. We present here the first experimental evidence of water synthesis under interstellar conditions. After D and O deposition on a water ice substrate (HO) held at 10 K, we observe production of HDO and DO. The water substrate itself has an active role in water formation, which appears to be more complicated than previously thought. Amorphous water ice layers are the matrices where complex organic prebiotic species may be synthesized. This experiment opens up the field of a little explored complex chemistry that could occur on interstellar dust grains, believed to be the site of key processes leading to the molecular diversity and complexity observed in our universe.

  10. Laboratory production of complex organics in simulated interstellar ices

    Science.gov (United States)

    Dworkin, J.; Bernstein, M.; Ashbourn, S.; Iraci, L.; Cooper, G.; Sandford, S.; Allamandola, L.

    1 see www.astrochem.org for more information. Bernstein, M., Dworkin, J., Sandford, S., &Allamandola, L. (2001). Ultraviolet Ir- radiation of Naphthalene in H2O Ice: Implications for Meteorites and Biogenesis. Meteoritics and Planetary Science36, 351-358. Bernstein, M., Dworkin, J., Sandford, S., Cooper, G. &Allamandola, L. (2002) The Formation of Racemic Amino Acids byUltraviolet Photolysis of Interstellar Ice Analogs. Nature, 416, 401U403 Dworkin, J., Deamer, D., Sandford, S., &Allamandola, L. (2001). Self-Assembling Amphiphilic Molecules: Synthesis in Simulated Interstellar/Precometary Ices. Proc. Nat. Acad. Sci. USA 98, 815-819. Krishnamurthy, R., Epstein, S., Cronin, J., Pizzarello, S. &Yuen, G. (1992) Isotopic and molecular analyses of hydrocarbons and monocarboxylic acids of the Murchison meteorite. Geochim. Cosmochim. Acta 56, 4045-4058. Sandford, S. A., Bernstein, M. P., &Dworkin, J. P. (2001). Assessment of the interstellar processes leading to deuterium enrichment in meteoritic organics. Meteoritics and Planetary Sci- ence36, 1117-1133.

  11. IS VOYAGER 1 INSIDE AN INTERSTELLAR FLUX TRANSFER EVENT?

    Energy Technology Data Exchange (ETDEWEB)

    Schwadron, N. A. [University of New Hampshire, 105 Main Street, Durham, NH 03824 (United States); McComas, D. J., E-mail: n.schwadron@unh.edu [Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78238-5166 (United States)

    2013-12-01

    Plasma wave observations from Voyager 1 have recently shown large increases in plasma density, to about 0.1 cm{sup –3}, consistent with the density of the local interstellar medium. However, corresponding magnetic field observations continue to show the spiral magnetic field direction observed throughout the inner heliosheath. These apparently contradictory observations may be reconciled if Voyager 1 is inside an interstellar flux transfer event—similar to flux transfer events routinely seen at the Earth's magnetopause. If this were the case, Voyager 1 remains inside the heliopause and based on the Voyager 1 observations we can determine the polarity of the interstellar magnetic field for the first time.

  12. The Relation between Interstellar Turbulence and Star Formation

    CERN Document Server

    Klessen, R S

    2004-01-01

    (ABBREVIATED) Understanding the formation of stars in galaxies is central to much of modern astrophysics. In this review the relation between interstellar turbulence and star formation is discussed. Supersonic turbulence can provide support against gravitational collapse on global scales, while at the same time it produces localized density enhancements that allow for collapse on small scales. The efficiency and timescale of stellar birth in Galactic gas clouds strongly depend on the properties of the interstellar turbulent velocity field, with slow, inefficient, isolated star formation being a hallmark of turbulent support, and fast, efficient, clustered star formation occurring in its absence. Star formation on scales of galaxies as a whole is expected to be controlled by the balance between gravity andturbulence, just like star formation on scales of individual interstellar gas clouds, but may be modulated by additional effects like cooling and differential rotation. The dominant mechanism for driving inte...

  13. Radiative torques on interstellar grains; 1, superthermal spinup

    CERN Document Server

    Draine, B T; Weingartner, Joseph C

    1996-01-01

    Irregular dust grains are subject to radiative torques when irradiated by interstellar starlight. It is shown how these radiative torques may be calculated using the discrete dipole approximation. Calculations are carried out for one irregular grain geometry, and three different grain sizes. It is shown that radiative torques can play an important dynamical role in spinup of interstellar dust grains, resulting in rotation rates which may exceed even those expected from H_2 formation on the grain surface. Because the radiative torque on an interstellar grain is determined by the overall grain geometry rather than merely the state of the grain surface, the resulting superthermal rotation is expected to be long-lived. By itself, long-lived superthermal rotation would permit grain alignment by normal paramagnetic dissipation on the "Davis-Greenstein" timescale. However, radiative torques arising from anisotropy of the starlight background can act directly to alter the grain alignment on much shorter timescales, a...

  14. Structure analysis of interstellar clouds: II. Applying the Delta-variance method to interstellar turbulence

    CERN Document Server

    Ossenkopf, V; Stutzki, J

    2008-01-01

    The Delta-variance analysis is an efficient tool for measuring the structural scaling behaviour of interstellar turbulence in astronomical maps. In paper I we proposed essential improvements to the Delta-variance analysis. In this paper we apply the improved Delta-variance analysis to i) a hydrodynamic turbulence simulation with prominent density and velocity structures, ii) an observed intensity map of rho Oph with irregular boundaries and variable uncertainties of the different data points, and iii) a map of the turbulent velocity structure in the Polaris Flare affected by the intensity dependence on the centroid velocity determination. The tests confirm the extended capabilities of the improved Delta-variance analysis. Prominent spatial scales were accurately identified and artifacts from a variable reliability of the data were removed. The analysis of the hydrodynamic simulations showed that the injection of a turbulent velocity structure creates the most prominent density structures are produced on a sca...

  15. Hydrostatic equilibrium of interstellar gas and magnetic fields in the 6 kpc region of the galaxy

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, B.; Spreckels, H.; Thielheim, K.O.

    1980-01-01

    A two-component gas model is applied to the vertical hydrogen distribution in the 6 kpc region of the Galaxy. Galactic gravitational field and interstellar magnetic field determination of the dynamics of interstellar gas is reviewed.

  16. Interstellar Propulsion Research: Realistic Possibilities and Idealistic Dreams

    Science.gov (United States)

    Johnson, Les

    2009-01-01

    Though physically possible, interstellar travel will be exceedingly difficult. Both the known laws of physics and the limits of our current understanding of engineering place extreme limits on what may actually be possible. Our remote ancestors looked at the night sky and assumed those tiny points of light were campfires around which other tribes were gathered -- and they dreamed of someday making the trip to visit them. In our modern era, we've grown accustomed to humans regularly traveling into space and our robots voyaging ever-deeper into the outer edges of our solar system. Traveling to those distant campfires (stars) has been made to look easy by the likes of Captains Kirk and Picard as well as Han Solo and Commander Adama. Our understanding of physics and engineering has not kept up with our imaginations and many are becoming frustrated with the current pace at which we are exploring the universe. Fortunately, there are ideas that may one day lead to new physical theories about how the universe works and thus potentially make rapid interstellar travel possible -- but many of these are just ideas and are not even close to being considered a scientific theory or hypothesis. Absent any scientific breakthroughs, we should not give up hope. Nature does allow for interstellar travel, albeit slowly and requiring an engineering capability far beyond what we now possess. Antimatter, fusion and photon sail propulsion are all candidates for relatively near-term interstellar missions. The plenary lecture will discuss the dreams and challenges of interstellar travel, our current understanding of what may be possible and some of the "out of the box" ideas that may allow us to become an interstellar species someday in the future.

  17. The existence and nature of the interstellar bow shock

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Jaffel, Lotfi [UPMC Univ Paris 06, UMR7095, Institut d' Astrophysique de Paris, F-75014, Paris (France); Strumik, M.; Ratkiewicz, R.; Grygorczuk, J., E-mail: bjaffel@iap.fr [Space Research Centre, Polish Academy of Sciences, Bartycka 18A, 00-716 Warsaw (Poland)

    2013-12-20

    We report a new diagnosis of two different states of the local interstellar medium (LISM) near our solar system by using a sensitivity study constrained by several distinct and complementary observations of the LISM, solar wind, and inner heliosphere. Assuming the Interstellar Boundary Explorer (IBEX) He flow parameters for the LISM, we obtain a strength of ∼2.7 ± 0.2 μG and a direction pointing away from galactic coordinates (28, 52) ± 3° for the interstellar magnetic field as a result of fitting Voyager 1 and Voyager 2 in situ plasma measurements and IBEX energetic neutral atoms ribbon. When using Ulysses parameters for the LISM He flow, we recently reported the same direction but with a strength of 2.2 ± 0.1 μG. First, we notice that with Ulysses He flow, our solution is in the expected hydrogen deflection plane (HDP). In contrast, for the IBEX He flow, the solution is ∼20° away from the corresponding HDP plane. Second, the long-term monitoring of the interplanetary H I flow speed shows a value of ∼26 km s{sup –1} measured upwind from the Doppler shift in the strong Lyα sky background emission line. All elements of the diagnosis seem therefore to support Ulysses He flow parameters for the interstellar state. In that frame, we argue that reliable discrimination between superfast, subfast, or superslow states of the interstellar flow should be based on most existing in situ and remote observations used together with global modeling of the heliosphere. For commonly accepted LISM ionization rates, we show that a fast interstellar bow shock should be standing off upstream of the heliopause.

  18. Ultraviolet spectroscopy of the hot interstellar medium

    Science.gov (United States)

    Indebetouw, Remy

    I study the hot phase of the interstellar medium (ISM) in our Galaxy. The lithium-like ions of common metals are a powerful tracer of gas between the hot (106 K) and cooler (104 K) phases of the ISM, and are particularly sensitive to dynamical processes because gas at several 105 K cools very rapidly. These ions are usually produced in nonequilibrium processes such as shocks, evaporative interfaces, or rapidly cooling gas. There are two different approaches to studying the hot ISM via Li-like ions---analysis of the microphysics in a well-defined location in the Galaxy, and observation of a large part of the Galaxy searching for global trends. This thesis describes two experiments which follow these two approaches. Chapter 2 describes a sounding rocket experiment which could perform simultaneous ultra-high spectroscopy of C IV, N V, and O VI. In particular, it was to study the interface between the local bubble, a diffuse region of the Galaxy in which the Sun is located, and denser neighboring gas. I redesigned, integrated, and directed the flight of the payload, which in addition to its scientific goals was the first space demonstration of a low-order echelle spectrograph. Chapter 3 describes a survey of N V, O VI, and C IV in the Galactic halo using data from the Far Ultraviolet Spectroscopic Explorer and the Hubble Space Telescope. Searching for global trends, I found a general trend of higher ionization (lower N V/O VI column density ratio) at larger positive line-of-sight velocities. I modeled the various physical situations in which Li-like ions are produced, and found that the observed trend is qualitatively consistent with a cooling Galactic fountain flow which rises, cools, and recombines as it returns to the disk. The observed trend is also consistent with shocks moving towards the observer, and with observing through a conductive interface, looking from the hot gas into cooler gas. The latter geometry is consistent with the solar system being inside a hot

  19. The Interstellar Ethics of Self-Replicating Probes

    Science.gov (United States)

    Cooper, K.

    Robotic spacecraft have been our primary means of exploring the Universe for over 50 years. Should interstellar travel become reality it seems unlikely that humankind will stop using robotic probes. These probes will be able to replicate themselves ad infinitum by extracting raw materials from the space resources around them and reconfiguring them into replicas of themselves, using technology such as 3D printing. This will create a colonising wave of probes across the Galaxy. However, such probes could have negative as well as positive consequences and it is incumbent upon us to factor self-replicating probes into our interstellar philosophies and to take responsibility for their actions.

  20. Efficient simulations of gas-grain chemistry in interstellar clouds

    CERN Document Server

    Lipshtat, A; Lipshtat, Azi; Biham, Ofer

    2004-01-01

    Chemical reactions on dust grains are of crucial importance in interstellar chemistry because they produce molecular hydrogen and various organic molecules. Due to the submicron size of the grains and the low flux, the surface populations of reactive species are small and strongly fluctuate. Under these conditions rate equations fail and the master equation is needed for modeling these reactions. However, the number of equations in the master equation grows exponentially with the number of reactive species, severely limiting its feasibility. Here we present a method which dramatically reduces the number of equations, thus enabling the incorporation of the master equation in models of interstellar chemistry.

  1. Interstellar Scintillation and Scattering of Micro-arc-second AGN

    Directory of Open Access Journals (Sweden)

    David L. Jauncey

    2016-11-01

    Full Text Available The discovery of the first quasar 3C 273 led directly to the discovery of their variability at optical and radio wavelengths. We review the radio variability observations, in particular the variability found at frequencies below 1 GHz, as well as those exhibiting intra-day variability (IDV at cm wavelengths. Observations have shown that IDV arises principally from scintillation caused by scattering in the ionized interstellar medium of our Galaxy. The sensitivity of interstellar scintillation towards source angular sizes has provided a powerful tool for studying the most compact components of radio-loud AGN at microarcsecond and milliarcsecond scale resolution.

  2. Observations of several new transitions of interstellar HCO

    Science.gov (United States)

    Snyder, L. E.; Schenewerk, M. S.; Hollis, J. M.

    1985-01-01

    Four new transitions of the interstellar formyl radical, HCO have been detected. Five transitions are now known for interstellar HCO, and thus its identification is secure. The column density found by assuming NGC 2024 is an extended source is N subT(HCO) = (8.5 + or - 4.0) x 10 to the 12th/sq cm. This gives a fractional abundance (abundance relative to hydrogen) for NGC 2024 which agrees quite well with some theoretical predictions. Several unidentified lines were detected and are reported here. Tentative identification for some of the unidentified lines are suggested.

  3. UV IRRADIATION OF AROMATIC NITROGEN HETEROCYCLES IN INTERSTELLAR ICE ANALOGS

    Science.gov (United States)

    Elsila, J. E.; Bernstein, M. P.; Sanford, S. A.

    2005-01-01

    Here, we present information on the properties of the ANH quinoline frozen in interstellar water-ice analogs. Quinoline is a two-ring compound structurally analogous to the PAH naphthalene. In this work, binary mixtures of water and quinoline were frozen to create interstellar ice analogs, which were then subjected to ultraviolet photolysis. We will present the infrared spectra of the resulting ices at various temperatures, as well as chromatographic analysis of the residues remaining upon warm-up of these ices to room temperature.

  4. Protonated acetylene - An important circumstellar and interstellar ion

    Science.gov (United States)

    Glassgold, A. E.; Omont, A.; Guelin, M.

    1992-01-01

    In a circumstellar envelope, a substantial amount of acetylene is transported in a wind to the outer envelope, where it can be photoionized by interstellar radiation and then converted into C2H3(+) by a low-temperature reaction with H2. New chemical modeling calculations indicate that sufficient C2H3(+) may be produced in the outer envelope of IRC + 10216 to be observable. Similar considerations suggest that C2H3(+) should also be detectable in interstellar clouds, provided its rotational spectrum has been measured accurately in the laboratory.

  5. The interstellar carbon abundance. II - Rho Ophiuchi and Beta Scorpii

    Science.gov (United States)

    Welty, D. E.; York, D. G.; Hobbs, L. M.

    1986-01-01

    A procedure designed to obtain increased sensitivity from high-dispersion IUE spectra by using a flat-field spectrum to remove nonrandom noise due to the response pattern of the SEC vidicon detector is described. Application of this procedure to spectra of Rho Oph and Beta(1) Sco near the spin-forbidden interstellar 2325 line of C II yields 2 sigma upper limits on absorption of W (lambda) not greater than about 4 mA. The resulting depletion of carbon from the interstellar gas toward Rho Oph exceeds a factor of 1.4.

  6. A New View on Interstellar Dust - High Fidelity Studies of Interstellar Dust Analogue Tracks in Stardust Flight Spare Aerogel

    Science.gov (United States)

    Zolensky, Michael E.; Postberg F.; Allen, C.; Bajt, S.; Bechtel, H. A.; Borg, J.; Brenker, F.; Bridges, J.; Brownlee, D. E.; Bugiel, S.; Burchell, M.; Burghammer, M.; Butterworth, A. L.; Cloetens, P.; Davis, A. M.; Floss, C.; Flynn, G. J.; Frank, D.; Gainsforth, Z.

    2011-01-01

    In 2000 and 2002 the Stardust Mission exposed aerogel collector panels for a total of about 200 days to the stream of interstellar grains sweeping through the solar system. The material was brought back to Earth in 2006. The goal of this work is the laboratory calibration of the collection process by shooting high speed [5 - 30km/s] interstellar dust (ISD) analogues onto Stardust aerogel flight spares. This enables an investigation into both the morphology of impact tracks as well as any structural and chemical modification of projectile and collector material. First results indicate a different ISD flux than previously assumed for the Stardust collection period.

  7. Evolution of energetic neutral atom spectra as measured by the Interstellar Boundary Explorer during its first seven years

    Science.gov (United States)

    Dayeh, Maher A.; Heerikhuisen, Jacob; McComas, David; Schwadron, Nathan; Desai, Mihir; Zirnstein, Eric J.

    2016-07-01

    The Interstellar Boundary Explorer (IBEX) mission continues to provide remote Energetic Neutral Atom (ENA) measurements produced by charge exchange between energetic protons and interstellar neutrals at the edge of our heliosphere. Using the first seven years of IBEX-Hi ENA measurements (January 2009 through December 2015), we examine the evolution of the spectral slopes in four different energy bands, namely, ˜0.7-1.1 keV, ˜1.1-1.7 keV, ˜1.7-2.7 keV, and ˜2.7-4.3 keV, across different regions of the sky. Results show that spectral slopes at each energy band are characterized with unique distribution properties (e.g., width, shape, and mode), which vary in time at different rates and in both directions (distribution modes increase or decrease). We attempt to explain these results in context of ENA source regions, solar wind temporal variations, and changes in the heliosheath thickness and its plasma properties. These results provide insights into ENA production mechanisms, properties of their plasma progenitors, and how they relate to changes in the solar wind.

  8. A search of diffuse bands in fullerene planetary nebulae: evidence for diffuse circumstellar bands

    CERN Document Server

    Diaz-Luis, J J; Rao, N Kameswara; Manchado, A; Cataldo, F

    2014-01-01

    Large fullerenes and fullerene-based molecules have been proposed as carriers of diffuse interstellar bands (DIBs). The recent detection of the most common fullerenes (C60 and C70) around some Planetary Nebulae (PNe) now enable us to study the DIBs towards fullerene-rich space environments. We search DIBs in the optical spectra towards three fullerene-containing PNe (Tc 1, M 1-20, and IC 418). Special attention is given to DIBs which are found to be unusually intense towards these fullerene sources. In particular, an unusually strong 4428A absorption feature is a common charateristic to fullerene PNe. Similarly to Tc 1, the strongest optical bands of neutral C60 are not detected towards IC 418. Our high-quality (S/N > 300) spectra for PN Tc 1 together with its large radial velocity permits us to search for the presence of diffuse bands of circumstellar origin which we refer to as diffuse circumstellar bands (DCBs). We report the first tentative detection of two DCBs at 4428 and 5780 A in the fullerene-rich ci...

  9. Band structure of semiconductors

    CERN Document Server

    Tsidilkovski, I M

    2013-01-01

    Band Structure of Semiconductors provides a review of the theoretical and experimental methods of investigating band structure and an analysis of the results of the developments in this field. The book presents the problems, methods, and applications in the study of band structure. Topics on the computational methods of band structure; band structures of important semiconducting materials; behavior of an electron in a perturbed periodic field; effective masses and g-factors for the most commonly encountered band structures; and the treatment of cyclotron resonance, Shubnikov-de Haas oscillatio

  10. Systematic Theoretical Study on the Interstellar Carbon Chain Molecules

    Science.gov (United States)

    Etim, Emmanuel E.; Gorai, Prasanta; Das, Ankan; Chakrabarti, Sandip K.; Arunan, Elangannan

    2016-12-01

    In an effort to further our interest in understanding the basic chemistry of interstellar molecules, here we carry out an extensive investigation of the stabilities of interstellar carbon chains; C n , H2C n , HC n N and C n X (X = N, O, Si, S, H, P, H-, N-). These sets of molecules account for about 20% of all the known interstellar and circumstellar molecules. Their high abundances, therefore, demand serious attention. High-level ab initio quantum chemical calculations are employed to accurately estimate the enthalpy of formation, chemical reactivity indices, global hardness and softness, and other chemical parameters of these molecules. Chemical modeling of the abundances of these molecular species has also been performed. Of the 89 molecules considered from these groups, 47 have been astronomically observed, and these observed molecules are found to be more stable with respect to other members of the group. Of the 47 observed molecules, 60% are odd-numbered carbon chains. Interstellar chemistry is not actually driven by thermodynamics, but it is primarily dependent on various kinetic parameters. However, we found that the detectability of the odd-numbered carbon chains could be correlated due to the fact that they are more stable than the corresponding even-numbered carbon chains. Based on this aspect, the next possible carbon chain molecule for astronomical observation in each group is proposed. The effect of kinetics in the formation of some of these carbon chain molecules is also discussed.

  11. The interstellar medium towards the Ara OB1 region

    CERN Document Server

    Henderson, Christopher D; Hearnshaw, John B

    2008-01-01

    We present high resolution (R ~ 4 km/s) absorption measurements of the interstellar NaI and CaII lines measured towards 14 early-type stars of distance 123 pc - 1650 pc, located in the direction of the Ara OB1 stellar cluster. The line profiles can broadly be split into four distinct groupings of absorption component velocity, and we have attempted to identify an origin and distance to each of these interstellar features. For gas with absorption covering the velocity range -10 km/s < V_helio < +10 km/s, we can identify the absorbing medium with local gas belonging to the Lupus-Norma interstellar cavity located between 100 and 485 pc in this galactic direction. Gas with velocities spanning the range -20 km/s < V_helio < +20 km/s is detected towards stars with distances of 570-800 pc. We identify a wide-spread interstellar feature at V_helio ~ -15 km/s with the expanding HI shell called GSH 337+00-05, which is now placed at a distance of ~530 pc.

  12. Rapid interstellar scintillation of quasar PKS 1257-326

    NARCIS (Netherlands)

    Bignall, Hayley E.; Jauncey, David L.; Lovell, James E. J.; Tzioumis, Anastasios K.; Macquart, Jean-Pierre; Kedziora-Chudczer, Lucyna; Engvold, O

    2005-01-01

    PKS 1257-326 is one of three quasars known to show unusually large and rapid, intra-hour intensity variations, as a result of scintillation in the turbulent Galactic interstellar medium. We have measured time delays in the variability pattern arrival times at the VLA and the ATCA, as well as an

  13. Searches for interstellar molecules of potential prebiotic importance

    NARCIS (Netherlands)

    Kuan, Y.-J.; Charnley, S.B.; Huang, H.-C.; Kisiel, Z.; Ehrenfreund, P.; Tseng, W.-L.; Yan, C.-H.

    2004-01-01

    Interstellar chemistry leads to the formation of many prebiologically important molecules and is therefore of the fundamental interest to Astrobiology. Many organics can be produced in the gas phase where they can be detected. Molecules formed by reactions on the surfaces of dust grains are also bes

  14. Evidence for an interstellar dust filament in the outer heliosheath

    CERN Document Server

    Frisch, P C; Berdyugin, A; Funsten, H O; Magalhaes, A M; McComas, D J; Piirola, V; Schwadron, N A; Seriacopi, D B; Slavin, J D; Wiktorowicz, S J

    2015-01-01

    A recently discovered filament of polarized starlight that traces a coherent magnetic field is shown to have several properties that are consistent with an origin in the outer heliosheath of the heliosphere: (1) The magnetic field that provides the best fit to the polarization position angles is directed within 6.7+-11 degrees of the observed upwind direction of the flow of interstellar neutral helium gas through the heliosphere. (2) The magnetic field is ordered; the component of the variation of the polarization position angles that can be attributed to magnetic turbulence is small. (3) The axis of the elongated filament can be approximated by a line that defines an angle of 80+/-14 degrees with the plane that is formed by the interstellar magnetic field vector and the vector of the inflowing neutral gas (the "BV" plane). We propose that this polarization feature arises from aligned interstellar dust grains in the outer heliosheath where the interstellar plasma and magnetic field are deflected around the he...

  15. Radiation-pressure-driven dust waves inside bursting interstellar bubbles

    NARCIS (Netherlands)

    Ochsendorf, B.B.; Verdolini, S.; Cox, N.L.J.; Berné, O.; Kaper, L.; Tielens, A.G.G.M.

    2014-01-01

    Massive stars drive the evolution of the interstellar medium through their radiative and mechanical energy input. After their birth, they form "bubbles" of hot gas surrounded by a dense shell. Traditionally, the formation of bubbles is explained through the input of a powerful stellar wind, even tho

  16. The shape and composition of interstellar silicate grains

    CERN Document Server

    Min, M; De Koter, A; Hovenier, J W; Keller, L P; Markwick-Kemper, F

    2006-01-01

    We investigate the composition and shape distribution of silicate dust grains in the interstellar medium. The effect of the amount of magnesium in the silicate lattice is studied. We fit the spectral shape of the interstellar 10 mu extinction feature as observed towards the galactic center. We use very irregularly shaped coated and non-coated porous Gaussian Random Field particles as well as a statistical approach to model shape effects. For the dust materials we use amorphous and crystalline silicates with various composition and SiC. The results of our analysis of the 10 mu feature are used to compute the shape of the 20 mu silicate feature and to compare this with observations. By using realistic particle shapes we are, for the first time, able to derive the magnesium fraction in interstellar silicates. We find that the interstellar silicates are highly magnesium rich (Mg/(Fe+Mg)>0.9) and that the stoichiometry lies between pyroxene and olivine type silicates. This composition is not consistent with that o...

  17. Three-Component Dust Models for Interstellar Extinction

    Indian Academy of Sciences (India)

    C. Muthumariappan

    2010-03-01

    Interstellar extinction curves obtained from the ‘extinction without standard’ method were used to constrain the dust characteristics in the mean ISM (V = 3.1), along the lines of sight through a high latitude diffuse molecular cloud towards HD 210121 (V = 2.1) and in a dense interstellar environment towards the cluster NGC 1977 (V = 6.42). We have used three-component dust models comprising silicate, graphite and very small carbonaceous grains (polycyclic aromatic hydrocarbons) following the grain size distributions introduced by Li & Draine in 2001. It is shown that oxygen, carbon and silicon abundances derived from our models are closer with the available elemental abundances for the dust grains in the ISM if F & G type stars atmospheric abundances are taken for the ISM than the solar. The importance of very small grains in modelling the variation of interstellar extinction curves has been investigated. Grain size distributions and elemental abundances locked up in dust are studied and compared at different interstellar environments using these three extinction curves. We present the albedo and the scattering asymmetry parameter evaluated from optical to extreme-UV wavelengths for the proposed dust models.

  18. VUV spectroscopy of carbon dust analogs: contribution to interstellar extinction

    CERN Document Server

    Gavilan, L; Le, K C; Pino, T; Giuliani, A; Dartois, E

    2016-01-01

    A full spectral characterization of carbonaceous dust analogs is necessary to understand their potential as carriers of observed astronomical spectral signatures such as the ubiquitous UV bump at 217.5 nm and the far-ultraviolet (FUV) rise common to interstellar extinction curves. Our goal is to study the spectral properties of carbonaceous dust analogs from the FUV to the mid-infrared (MIR) domain. We seek in particular to understand the spectra of these materials in the FUV range, for which laboratory studies are scarce. We produced analogs to carbonaceous interstellar dust encountered in various phases of the interstellar medium: amorphous hydrogenated carbons (a-C:H), for carbonaceous dust observed in the diffuse interstellar medium, and soot particles, for the polyaromatic component. Analogs to a-C:H dust were produced using a radio-frequency plasma reactor at low pressures, and soot nanoparticles films were produced in an ethylene (C$_2$H$_4$) flame. We measured transmission spectra of these thin films ...

  19. Systematic Theoretical Study on the Interstellar Carbon Chain Molecules

    CERN Document Server

    Etim, Emmanuel E; Das, Ankan; Chakrabarti, Sandip K; Arunan, Elangannan

    2016-01-01

    In an effort to further our interest in understanding basic chemistry of interstellar molecules, we carry out here an extensive investigation of the stabilities of interstellar carbon chains; Cn, H2Cn, HCnN and CnX (X=N, O, Si, S, H, P, H-, N-). These sets of molecules accounts for about 20% of all the known interstellar and circumstellar molecules, their high abundances therefore demand a serious attention. High level ab initio quantum chemical calculations are employed to accurately estimate enthalpy of formation, chemical reactivity indices; global hardness and softness; and other chemical parameters of these molecules. Chemical modeling of the abundances of these molecular species has also been performed. Of the 89 molecules considered from these groups, 47 have been astronomically observed, these observed molecules are found to be more stable with respect to other members of the group. Of the 47 observed molecules, 60% are odd number carbon chains. Interstellar chemistry is not actually driven by the the...

  20. A study of the hot local interstellar medium

    Science.gov (United States)

    McLean, Ryan

    2000-10-01

    Material synthesized in stellar furnaces and supernova explosions recycles through a hot phase of the interstellar medium (ISM) before it condenses into new stellar systems. I have studied the hot phase of the interstellar medium using ISM absorption line spectra of hot gas. O VI, N V and C IV each have resonance absorption lines at ultraviolet wavelength and are the most cosmically abundant elements other than hydrogen and helium. Two sounding rocket experiments built at the University of Colorado observed hot gas in the interstellar medium of galaxies. The Hot Carbon Oxygen Nitrogen Echelle Spectrograph ( HotCONES) made observations of O VI, N V and C IV in the local interstellar medium and the Wadsworth High-resolution Instrument (WHI) observed O VI in both the ISM of our galaxy and in the ISM of the Large Magellanic Cloud. I have discovered evidence for O VI components moving at speeds of up to 750 km s-1 along the line of sight. These high velocity components may be indicative of an extended supernova remnant.

  1. CO$_2$ Infrared Phonon Modes in Interstellar Ice Mixtures

    CERN Document Server

    Cooke, Ilsa R; Öberg, Karin I

    2016-01-01

    CO$_2$ ice is an important reservoir of carbon and oxygen in star and planet forming regions. Together with water and CO, CO$_2$ sets the physical and chemical characteristics of interstellar icy grain mantles, including desorption and diffusion energies for other ice constituents. A detailed understanding of CO$_2$ ice spectroscopy is a prerequisite to characterize CO$_2$ interactions with other volatiles both in interstellar ices and in laboratory experiments of interstellar ice analogs. We report laboratory spectra of the CO$_2$ longitudinal optical (LO) phonon mode in pure CO$_2$ ice and in CO$_2$ ice mixtures with H$_2$O, CO, O$_2$ components. We show that the LO phonon mode position is sensitive to the mixing ratio of various ice components of astronomical interest. In the era of JWST, this characteristic could be used to constrain interstellar ice compositions and morphologies. More immediately, LO phonon mode spectroscopy provides a sensitive probe of ice mixing in the laboratory and should thus enabl...

  2. The interstellar abundances of tin and four other heavy elements

    Science.gov (United States)

    Hobbs, L. M.; Welty, D. E.; Morton, D. C.; Spitzer, L.; York, D. G.

    1993-01-01

    Spectra recorded at 1150-1600 A with an instrumental resolution near 16 km/s were obtained with the Goddard High-Resolution Spectrograph on board the HST. The gaseous interstellar abundances of five heavy elements along the light paths to 23 Ori, 15 Mon, 1 Sco, Pi Sco, and Pi Aqr were determined from the observations. The 1400.450 A line of Sn II was detected and identified toward three stars; at Z = 50, tin is the first element from the fifth row of the periodic table to be identified in the interstellar medium. One spectral line of each of Cu II (Z = 29) and Ga II (Z = 31), three lines of Ge II (Z = 32), and two lines of Kr I (Z = 36) were also detected toward some or all of the five stars. The depletions of these five heavy elements generally decrease monotonically with increasing atomic number toward each of the six stars, and tin is generally undepleted within the observational errors. The depletions of 26 elements from the interstellar gas in an average dense interstellar cloud appear to correlate with the elemental 'nebular' condensation temperatures more closely than with the first ionization potentials.

  3. Time dependent chemistry in dense molecular clouds. III - Infrared band cross sections of molecules in the solid state at 10 K

    Science.gov (United States)

    Dhendecourt, L. B.; Allamandola, L. J.

    1986-01-01

    Thin film transmission infrared spectra and a list of integrated absorbance values (band strengths) of bands in the 2.5 to 20 micron range of various molecular solids deposited on a CsI window cooled to 10 K are presented. These solids include molecules known or suspected to be present on interstellar grains such as H2O, CO, NH3 and CH4 and mixtures of these molecules as well as various hydrocarbons. The method is described by which the absorbance values derived can be used to estimate column densities of species adsorbed on interstellar grains and other solids associated with celestial IR sources.

  4. The life cycle of the Interstellar Medium in other galaxies

    Science.gov (United States)

    Knapp, G. R.

    1995-01-01

    Gas in spiral galaxies cycles between the diffuse and dense phases as clouds collapse, form stars and are dispersed back into the ISM. Far infrared observations of continuum emission from interstellar dust and line emission from interstellar gas have revealed a wealth of information on the state of the ISM in galaxies of different morphological types. The analysis of these observations gives us information about the processes of star formation and about the evolution of the ISM. Star formation rates vary widely from galaxy to galaxy, with the rates in starburst galaxies being 10 - 100 times those in quiescent spiral galaxies. Far infrared spectroscopy of star-forming galaxies shows that the interstellar pressure increases with star formation rate. The structure of the interstellar medium in starburst galaxies is quite different from that of quiescent galaxies - much of the mass and volume are in HII regions and photodissociation regions. The size distribution of dust grains seems to depend on environment; small grains are abundant in the diffuse interstellar medium but not in dense molecular star forming regions. Quiescent spiral and elliptical galaxies contain a significant population of small grains, but starburst galaxies do not. Dwarf irregular galaxies also seem to contain few small grains; this may be the result of the higher UV flux in these galaxies. The star forming regions in dwarf irregulars also have a higher ratio of atomic to molecular gas than do those in the Galaxy. These results show that the ISM in galaxies of different morphological types reaches different equilibria, resulting in different modes of star formation and global galaxy evolution.

  5. Combining Magnetic and Electric Sails for Interstellar Deceleration

    Science.gov (United States)

    Perakis, Nikolaos; Hein, Andreas M.

    2016-07-01

    The main benefit of an interstellar mission is to carry out in-situ measurements within a target star system. To allow for extended in-situ measurements, the spacecraft needs to be decelerated. One of the currently most promising technologies for deceleration is the magnetic sail which uses the deflection of interstellar matter via a magnetic field to decelerate the spacecraft. However, while the magnetic sail is very efficient at high velocities, its performance decreases with lower speeds. This leads to deceleration durations of several decades depending on the spacecraft mass. Within the context of Project Dragonfly, initiated by the Initiative of Interstellar Studies (i4is), this paper proposes a novel concept for decelerating a spacecraft on an interstellar mission by combining a magnetic sail with an electric sail. Combining the sails compensates for each technologys shortcomings: A magnetic sail is more effective at higher velocities than the electric sail and vice versa. It is demonstrated that using both sails sequentially outperforms using only the magnetic or electric sail for various mission scenarios and velocity ranges, at a constant total spacecraft mass. For example, for decelerating from 5% c, to interplanetary velocities, a spacecraft with both sails needs about 29 years, whereas the electric sail alone would take 35 years and the magnetic sail about 40 years with a total spacecraft mass of 8250 kg. Furthermore, it is assessed how the combined deceleration system affects the optimal overall mission architecture for different spacecraft masses and cruising speeds. Future work would investigate how operating both systems in parallel instead of sequentially would affect its performance. Moreover, uncertainties in the density of interstellar matter and sail properties need to be explored.

  6. Interstellar Dust Properties of M51 from AKARI Mid-infrared Images

    Science.gov (United States)

    Egusa, Fumi; Wada, Takehiko; Sakon, Itsuki; Onaka, Takashi; Arimatsu, Ko; Matsuhara, Hideo

    2013-11-01

    Using mid-infrared (MIR) images of four photometric bands of the Infrared Camera on board the AKARI satellite, S7 (7 μm), S11 (11 μm), L15 (15 μm), and L24 (24 μm), we investigate the interstellar dust properties of the nearby pair of galaxies M51 with respect to their spiral arm structure. The arm and interarm regions are defined based on a spatially filtered stellar component model image and we measure the arm/interarm contrast for each band. The contrast is lowest in the S11 image, which we interpret as meaning that among the four AKARI MIR bands, the S11 image best correlates with the spatial distribution of dust grains including colder components. On the other hand, the L24 image, with the highest contrast, traces warmer dust heated by star forming activity. The surface brightness ratio between the bands, i.e., color, is measured over the disk of the main galaxy, M51a, at 300 pc resolution. We find that the distribution of S7/S11 is smooth and traces the global spiral arm pattern well while L15/S11 and L24/S11 peak at individual H II regions. This result indicates that the ionization state of polycyclic aromatic hydrocarbons (PAHs) is related to the spiral structure. Comparison with observational data and dust models also supports the importance of the variation in the PAH ionization state within the M51a disk. However, the mechanism driving this variation is not yet clear from the currently available datasets. Another suggestion from the comparison with the models is that the PAH fraction in the total dust mass is higher than previously estimated.

  7. Multiband Fourier Analysis and Interstellar Reddening of Variable Stars in the Globular Cluster NGC 6584

    Science.gov (United States)

    Villiger, Nathan J.; Weinschenk, Sedrick; Hettinger, Paul T.; Murphy, Brian W.

    2017-01-01

    Globular clusters are excellent objects to study to help us understand the ways in which stars evolve. Key to this understanding are RR Lyrae variable stars. This research focused on the RR Lyrae stars in the globular cluster NGC 6584 to gain a better knowledge of post main sequence stellar evolution, horizontal branch morphology, and interstellar reddening to cluster variables. Using the 0.6 m SARA telescope at CTIO, we obtained nearly 1000 images in B, V, and I bands from July 2014 through July 2015. In addition to our prior work in V-band, this research adds B and I bands. By using difference image analysis, we found 77 variable stars in our 13’ x 13’ field of view. These consisted of 66 RR Lyrae stars, 7 long period variables, and 4 eclipsing binaries. The RR Lyrae stars were divided into 50 RR0 type stars, of which 14 exhibit the Blazhko effect, and 16 RR1 type stars. We found an average period for the RR0 variables of 0.56465 days and 0.30610 for the RR1 variables. By applying Fourier decomposition and examining the light curves in B, V, and I bands for each RR Lyrae variable, we were able to determine an average [Fe/H]JKZW of -1.619 ± 0.090, an average E(B-V) of 0.100 ± 0.032, and a distance to the cluster of 13527 ± 939 pc. This is the first detailed study to use RR Lyrae variable stars to estimate these parameters and the results are consistent with those obtained by other methods.

  8. Neutral interstellar helium parameters based on IBEX-Lo observations and test particle calculations

    CERN Document Server

    Bzowski, M; Moebius, E; Bochsler, P; Leonard, T; Heirtzler, D; Kucharek, H; Sokol, J M; Hlond, M; Crew, G B; Schwadron, N A; Fuselier, S A; McComas, D J; 10.1088/0067--0049/198/2/12

    2012-01-01

    Neutral Interstellar Helium (NISHe) is almost unaffected at the heliospheric interface with the interstellar medium and freely enters the solar system. It provides some of the best information on the characteristics of the interstellar gas in the Local Interstellar Cloud. The Interstellar Boundary Explorer (IBEX) is the second mission to directly detect NISHe. We present a comparison between recent IBEX NISHe observations and simulations carried out using a well-tested quantitative simulation code. Simulation and observation results compare well for times when measured fluxes are dominated by NISHe (and contributions from other species are small). Differences between simulations and observations indicate a previously undetected secondary population of neutral helium, likely produced by interaction of interstellar helium with plasma in the outer heliosheath. Interstellar neutral parameters are statistically different from previous in situ results obtained mostly from the GAS/Ulysses experiment, but they do agr...

  9. Band parameters of phosphorene

    DEFF Research Database (Denmark)

    Lew Yan Voon, L. C.; Wang, J.; Zhang, Y.;

    2015-01-01

    Phosphorene is a two-dimensional nanomaterial with a direct band-gap at the Brillouin zone center. In this paper, we present a recently derived effective-mass theory of the band structure in the presence of strain and electric field, based upon group theory. Band parameters for this theory...

  10. Polysulfanes on interstellar grains as a possible reservoir of interstellar sulphur

    CERN Document Server

    Druard, C

    2012-01-01

    The form of depleted sulphur in dense clouds is still unknown. Until now, only two molecules, OCS and SO2, have been detected in interstellar ices but cannot account for the elemental abundance of sulphur observed in diffuse medium. Chemical models suggest that solid H2S is the main form of sulphur in denser sources but observational constraints exist that infirm this hypothesis. We have used the Nautilus gas-grain code in which new chemical reactions have been added, based on recent experiments of H2S ice irradiation with UV photons and high energy protons. In particular, we included the new species Sn, H2Sn and C2S. We found that at the low temperature observed in dense clouds, i.e. 10 K, these new molecules are not efficiently produced and our modifications of the network do not change the previous pre- dictions. At slightly higher temperature, 20 K in less dense clouds or in the proximity of protostars, H2S abundance on the surfaces is strongly decreased in favor of the polysulfanes H2S3. Such a result ca...

  11. Stardust Interstellar Preliminary Examination VIII: Identification of crystalline material in two interstellar candidates

    Science.gov (United States)

    Gainsforth, Zack; Brenker, Frank E.; Simionovici, Alexandre S.; Schmitz, Sylvia; Burghammer, Manfred; Butterworth, Anna L.; Cloetens, Peter; Lemelle, Laurence; Tresserras, Juan-Angel Sans; Schoonjans, Tom; Silversmit, Geert; Solé, Vicente A.; Vekemans, Bart; Vincze, Laszlo; Westphal, Andrew J.; Allen, Carlton; Anderson, David; Ansari, Asna; Bajt, SašA.; Bastien, Ron K.; Bassim, Nabil; Bechtel, Hans A.; Borg, Janet; Bridges, John; Brownlee, Donald E.; Burchell, Mark; Changela, Hitesh; Davis, Andrew M.; Doll, Ryan; Floss, Christine; Flynn, George; Fougeray, Patrick; Frank, David; Grün, Eberhard; Heck, Philipp R.; Hillier, Jon K.; Hoppe, Peter; Hudson, Bruce; Huth, Joachim; Hvide, Brit; Kearsley, Anton; King, Ashley J.; Lai, Barry; Leitner, Jan; Leroux, Hugues; Leonard, Ariel; Lettieri, Robert; Marchant, William; Nittler, Larry R.; Ogliore, Ryan; Ong, Wei Ja; Postberg, Frank; Price, Mark C.; Sandford, Scott A.; Srama, Ralf; Stephan, Thomas; Sterken, Veerle; Stodolna, Julien; Stroud, Rhonda M.; Sutton, Steven; Trieloff, Mario; Tsou, Peter; Tsuchiyama, Akira; Tyliszczak, Tolek; von Korff, Joshua; Zevin, Daniel; Zolensky, Michael E.

    2014-09-01

    Using synchrotron-based X-ray diffraction measurements, we identified crystalline material in two particles of extraterrestrial origin extracted from the Stardust Interstellar Dust Collector. The first particle, I1047,1,34 (Hylabrook), consisted of a mosaiced olivine grain approximately 1 µm in size with internal strain fields up to 0.3%. The unit cell dimensions were a = 4.85 ± 0.08 Å, b = 10.34 ± 0.16 Å, c = 6.08 ± 0.13 Å (2σ). The second particle, I1043,1,30 (Orion), contained an olivine grain ≈ 2 µm in length and >500 nm in width. It was polycrystalline with both mosaiced domains varying over ≈ 20° and additional unoriented domains, and contained internal strain fields Fo65 (2σ). Orion also contained abundant spinel nanocrystals of unknown composition, but unit cell dimension a = 8.06 ± 0.08 Å (2σ). Two additional crystalline phases were present and remained unidentified. An amorphous component appeared to be present in both these particles based on STXM and XRF results reported elsewhere.

  12. Low Power Band to Band Tunnel Transistors

    Science.gov (United States)

    2010-12-15

    the E-field and tunneling at the source- pocket junction you form a parasitic NPN + transistor and the injection mechanism of carriers into the...hypothesis that the 1000 ° C, 5s anneal split lead to a very wide pocket and the accidental formation of a NPN + transistor , while the 1000 ° C, 1s anneal...Low Power Band to Band Tunnel Transistors Anupama Bowonder Electrical Engineering and Computer Sciences University of California at Berkeley

  13. Looking for the Weak Members of the 60+C Family in the Interstellar Medium

    Science.gov (United States)

    Galazutdinov, G. A.; Krełowski, J.

    2017-06-01

    We demonstrate, using the high resolution spectra from the ESPADONS spectrograph, fed with the 3.6 m CFH telescope, that the strength ratios of the strong-to-weak spectral features, attributed to C60+, are variable. We found that in the range of expected 9366 Å C60+ feature there are two diffuse bands centered at 9362.0±0.1 Å and 9365.3±0.1 Å with variable intensity ratio. We confidently confirm the lack of 9428 Å feature which, in the laboratory spectra of C60+, is stronger than 9366 Å. The weakest laboratory feature, near 9348.4 Å, remains below the level of detection in all spectra. The intensity ratio 9577/9365 is variable. These facts contradict the possibility of their common origin and so - the identification of some interstellar spectral features as being carried by the cation of the "soccer ball". We also refined the rest wavelength position of the strongest diffuse band in this range: it is 9576.8±0.1 Å.

  14. The distribution of interstellar dust in CALIFA edge-on galaxies via oligochromatic radiative transfer fitting

    CERN Document Server

    De Geyter, Gert; Camps, Peter; Fritz, Jacopo; De Looze, Ilse; Hughes, Thomas M; Viaene, Sebastien; Gentile, Gianfranco

    2014-01-01

    We investigate the amount and spatial distribution of interstellar dust in edge-on spiral galaxies, using detailed radiative transfer modeling of a homogeneous sample of 12 galaxies selected from the CALIFA survey. Our automated fitting routine, FitSKIRT, was first validated against artificial data. This is done by simultaneously reproducing the SDSS $g$-, $r$-, $i$- and $z$-band observations of a toy model in order to combine the information present in the different bands. We show that this combined, oligochromatic fitting, has clear advantages over standard monochromatic fitting especially regarding constraints on the dust properties. We model all galaxies in our sample using a three-component model, consisting of a double exponential disc to describe the stellar and dust discs and using a S\\'ersic profile to describe the central bulge. The full model contains 19 free parameters, and we are able to constrain all these parameters to a satisfactory level of accuracy without human intervention or strong bounda...

  15. Laboratory Astrophysics Studies with the COSmIC Facility: Interstellar and Planetary Applications.

    Science.gov (United States)

    Salama, Farid; Contreras, Cesar S.; Sciamma-O'Brien, Ella; Bejaoui, Salma

    2015-08-01

    We present and discuss the characteristics and the capabilities of the laboratory facility, COSmIC, that was developed at NASA Ames to generate, process and analyze interstellar, circumstellar and planetary analogs in the laboratory [1]. COSmIC stands for “Cosmic Simulation Chamber” and is dedicated to the study of neutral and ionized molecules and nano particles under the low temperature and high vacuum conditions that are required to simulate space environments. COSmIC integrates a variety of state-of-the-art instruments that allow forming, processing and monitoring simulated space conditions for planetary, circumstellar and interstellar materials in the laboratory. COSmIC is composed of a Pulsed Discharge Nozzle (PDN) expansion that generates a plasma in free supersonic jet expansion coupled to two high-sensitivity, complementary in situ diagnostics: a Cavity Ring Down Spectroscopy (CRDS) and laser induced fluorescence (LIF) systems for photonic detection and a Reflectron Time-Of-Flight Mass Spectrometer (ReTOF-MS) for mass detection [2].Recent laboratory astrophysics results that were obtained using COSmIC will be presented, in particular the progress that has been achieved in the domain of the diffuse interstellar bands (DIBs) and in monitoring, in the laboratory, the formation of dust grains and aerosols from their gas-phase molecular precursors in environments as varied as stellar/circumstellar outflows [3] and planetary atmospheres [4]. Plans for future, next generation, laboratory experiments on cosmic molecules and grains in the growing field of laboratory astrophysics will also be addressed as well as the implications of the current studies for astronomy.References:[1] Salama F., In Organic Matter in Space, IAU Symposium 251, Kwok & Sandford Eds.Cambridge University Press, Vol. 4, S251, p. 357 (2008) and references therein.[2] Ricketts C., Contreras C., Walker, R., Salama F., Int. J. Mass Spec, 300, 26 (2011)[3] Cesar Contreras and Farid Salama, The

  16. Laboratory Studies on the Formation of Formic Acid (HCOOH) in Interstellar and Cometary Ices

    Science.gov (United States)

    Bennett, Chris J.; Hama, Tetsuya; Kim, Yong Seol; Kawasaki, Masahiro; Kaiser, Ralf I.

    2011-01-01

    Mixtures of water (H2O) and carbon monoxide (CO) ices were irradiated at 10 K with energetic electrons to simulate the energy transfer processes that occur in the track of galactic cosmic-ray particles penetrating interstellar ices. We identified formic acid (HCOOH) through new absorption bands in the infrared spectra at 1690 and 1224 cm-1 (5.92 and 8.17 μm, respectively). During the subsequent warm-up of the irradiated samples, formic acid is evident from the mass spectrometer signal at the mass-to-charge ratio, m/z = 46 (HCOOH+) as the ice sublimates. The detection of formic acid was confirmed using isotopically labeled water-d2 with carbon monoxide, leading to formic acid-d2 (DCOOD). The temporal fits of the reactants, reaction intermediates, and products elucidate two reaction pathways to formic acid in carbon monoxide-water ices. The reaction is induced by unimolecular decomposition of water forming atomic hydrogen (H) and the hydroxyl radical (OH). The dominating pathway to formic acid (HCOOH) was found to involve addition of suprathermal hydrogen atoms to carbon monoxide forming the formyl radical (HCO); the latter recombined with neighboring hydroxyl radicals to yield formic acid (HCOOH). To a lesser extent, hydroxyl radicals react with carbon monoxide to yield the hydroxyformyl radical (HOCO), which recombined with atomic hydrogen to produce formic acid. Similar processes are expected to produce formic acid within interstellar ices, cometary ices, and icy satellites, thus providing alternative processes for the generation of formic acid whose abundance in hot cores such as Sgr-B2 cannot be accounted for solely by gas-phase chemistry.

  17. Grain destruction in shocks in the interstellar medium

    Science.gov (United States)

    Jones, A. P.; Tielens, A. G. G. M.; Hollenbach, D. J.; McKee, C. F.

    1994-10-01

    Destruction of interstellar dust occurs predominantly in supernova shock waves in the warm neutral/ionized medium (density approximately = 0.25/cu cm, temperature approximately = 104 K). Recent theoretical developments and laboratory data for sputtering processes and grain-grain collisional vaporization allows us to better evaluate the grain destruction rate in interstellar shocks in the warm medium. We find that, independent of composition, grain destruction in supernova blast waves is dominated by nonthermal sputtering for shock velocities greater than 50 km/s and less than or equal to 150 km/s and thermal sputtering at higher shock velocities. We use a detailed scheme for the vaporization of grains colliding at high velocities (vs greater than or equal to 20 km/s) and show that the grain-grain collision destruction process is only dominant for shock velocities of less than or equal to 50-80 km/s and is less important than previously assumed. Nevertheless, the grain-grain destruction rates are of order 30%-90% of the sputtering rates at vs greater than 100 km/s and less than 200 km/s and are important in vaporizing the cores of grains. Detailed results for grain destruction as a function of grain size and composition are presented. We also present results for silicon carbide, iron, ice, and porous test particles. For carbonaceous grains we find that the fractional destruction is less than or equal to 0.29, and for silicate it is less than or equal to 0.45, for vs less than or equal to 200 km/s. We have calculated grain lifetimes, using the three-phase model of the interstellar medium, and find lifetimes of 4 x 108 yr for carbonaceous grains and 2.2 x 108 yr for silicate grains. Given that the typical stardust injection timescale of 2.5 x 109 yr, we conclude that efficient mechanisms for grain growth in the interstellar medium must exist in order that a significant fraction of the refractory elements be incorporated in dust, as observed. Therefore, although our

  18. Cyanogen excitation in diffuse interstellar clouds

    Science.gov (United States)

    Roth, Katherine C.; Meyer, David M.

    1995-03-01

    We present high signal-to-noise ratio observations of optical CN absorption from the B (2)sigma(+) -X (2)sigma(+) (0, 0) and (1, 0) vibrational bands in the five diffuse lines of sight toward zeta Ophiuchi, zeta Persei, HD 27778, HD 21483, and HD 154368. The observed level of CN excitation is consistent with direct satellite and rocket measurements of the cosmic microwave background radiation (CMBR), implying that local collision effects are small. The weak 2.64 mm CN line emission observed toward HD 21483 and HD 154368 is used to correct the observed CN excitation temperatures and derive a weighted mean CMBR temperature at 2.64 mm of 2.729(+0.023, -0.031) K which agrees remarkably well with the Cosmic Background Explorer Satellite (COBE) measurement obtained with the Far Infrared Absolute Spectrometer (FIRAS) instrument of 2.726 +/- 0.010 K. These absorption data were obtained during 10 separate observing runs, and we find excellent agreement between independent equivalent width measurements resulting from widely varying instrument combinations. Finally we discuss the limitations and future applications of CN excitation absorption-line measurements.

  19. The interstellar medium in Andromeda's dwarf spheroidal galaxies - I. Content and origin of the interstellar dust

    Science.gov (United States)

    De Looze, Ilse; Baes, Maarten; Bendo, George J.; Fritz, Jacopo; Boquien, Médéric; Cormier, Diane; Gentile, Gianfranco; Kennicutt, Robert C.; Madden, Suzanne C.; Smith, Matthew W. L.; Young, Lisa

    2016-07-01

    Dwarf spheroidal galaxies are among the most numerous galaxy population in the Universe, but their main formation and evolution channels are still not well understood. The three dwarf spheroidal satellites (NGC 147, NGC 185, and NGC 205) of the Andromeda galaxy are characterized by very different interstellar medium properties, which might suggest them being at different galaxy evolutionary stages. While the dust content of NGC 205 has been studied in detail in an earlier work, we present new Herschel dust continuum observations of NGC 147 and NGC 185. The non-detection of NGC 147 in Herschel SPIRE maps puts a strong constraint on its dust mass (≤128^{+124}_{-68} M⊙). For NGC 185, we derive a total dust mass Md = 5.1±1.0 × 103 M⊙, which is a factor of ˜2-3 higher than that derived from ISO and Spitzer observations and confirms the need for longer wavelength observations to trace more massive cold dust reservoirs. We, furthermore, estimate the dust production by asymptotic giant branch (AGB) stars and supernovae (SNe). For NGC 147, the upper limit on the dust mass is consistent with expectations of the material injected by the evolved stellar population. In NGC 185 and NGC 205, the observed dust content is one order of magnitude higher compared to the estimated dust production by AGBs and SNe. Efficient grain growth, and potentially longer dust survival times (3-6 Gyr) are required to account for their current dust content. Our study confirms the importance of grain growth in the gas phase to account for the current dust reservoir in galaxies.

  20. The Gaia-ESO Survey: Tracing interstellar extinction

    CERN Document Server

    Schultheis, M; Recio-Blanco, A; de Laverny, P; Hill, V; Gilmore, G; Alfaro, E J; Costado, M T; Bensby, T; Damiani, F; Feltzing, S; Flaccomio, E; Lardo, C; Jofre, P; Prisinzano, L; Zaggia, S; Jimenez-Esteban, F; Morbidelli, L; Lanzafame, A C; Hourihane, A; Worley, C; Francois, P

    2015-01-01

    Large spectroscopic surveys have enabled in the recent years the computation of three-dimensional interstellar extinction maps thanks to accurate stellar atmospheric parameters and line-of-sight distances. Such maps are complementary to 3D maps extracted from photometry, allowing a more thorough study of the dust properties. Our goal is to use the high-resolution spectroscopic survey Gaia-ESO in order to obtain with a good distance resolution the interstellar extinction and its dependency as a function of the environment and the Galactocentric position. We use the stellar atmospheric parameters of more than 5000 stars, obtained from the Gaia-ESO survey second internal data release, and combine them with optical (SDSS) and near-infrared (VISTA) photometry as well as different sets of theoretical stellar isochrones, in order to calculate line-of-sight extinction and distances. The extinction coefficients are then compared with the literature to discuss their dependancy on the stellar parameters and position in ...

  1. Energetic Processing of Interstellar Silicate Grains by Cosmic Rays

    Energy Technology Data Exchange (ETDEWEB)

    Bringa, E M; Kucheyev, S O; Loeffler, M J; Baragiola, R A; Tielens, A G Q M; Dai, Z R; Graham, G; Bajt, S; Bradley, J; Dukes, C A; Felter, T E; Torres, D F; van Breugel, W

    2007-03-28

    While a significant fraction of silicate dust in stellar winds has a crystalline structure, in the interstellar medium nearly all of it is amorphous. One possible explanation for this observation is the amorphization of crystalline silicates by relatively 'low' energy, heavy ion cosmic rays. Here we present the results of multiple laboratory experiments showing that single-crystal synthetic forsterite (Mg{sub 2}SiO{sub 4}) amorphizes when irradiated by 10 MeV Xe{sup ++} ions at large enough fluences. Using modeling, we extrapolate these results to show that 0.1-5.0 GeV heavy ion cosmic rays can rapidly ({approx}70 Million yrs) amorphize crystalline silicate grains ejected by stars into the interstellar medium.

  2. Determining the Fractal Dimension of the Interstellar Medium

    CERN Document Server

    Sanchez, Nestor; Perez, Enrique

    2008-01-01

    The Interstellar Medium seems to have an underlying fractal structure, which can be characterized through its fractal dimension (Df). However, several factors may affect the determination of Df, such as distortions due to projection, low image resolution, opacity of the cloud, and low signal-to-noise ratio. Here we use both simulated clouds and real molecular cloud maps to study these effects in order to estimate Df in a reliable way. Our results indicate in a self-consistent way that the fractal dimension of the Interstellar Medium is in the range 2.6 < Df < 2.8, which is significantly higher than the value Df = 2.3 usually assumed in the literature.

  3. Abundance of atomic carbon /C I/ in dense interstellar clouds

    Science.gov (United States)

    Phillips, T. G.; Huggins, P. J.

    1981-01-01

    The abundance of interstellar neutral atomic carbon is investigated by means of its ground state fine-structure line emission at 492 GHz using the 91.5 cm telescope of NASAs Kuiper Airborne Observatory. Atomic carbon is found to be very abundant in dense interstellar molecular clouds with column densities of about 10 to the 19th per sq cm. Because the observations have considerably greater column densities than current theories of carbon chemistry, it is suggested that the physical conditions of these clouds are not as simple as assumed in the models. Various situations are discussed which would lead to large C I abundances, including the possibility that the chemical lifetimes of the clouds are relatively short.

  4. Restructuring and destruction of hydrocarbon dust in the interstellar medium

    CERN Document Server

    Murga, M S; Wiebe, D S

    2016-01-01

    A model of key processes influencing the evolution of a hydrocarbon grain of an arbitrary size under astrophysical conditions corresponding to ionized hydrogen regions (HII regions) and supernova remnants is presented. The considered processes include aromatization and photodestruction, sputtering by electrons and ions, and shattering due to collisions between grains. The model can be used to simulate the grain size distribution and the aromatization degree during the evolution of HII regions and supernova remnants for a specified radiation field, relative velocity of gas and dust, etc. The contribution of various processes to the evolution of hydrocarbon dust grains for parameters typical for the interstellar medium of our Galaxy is presented. Small grains (less than 50 carbon atoms) should be fully aromatized in the general interstellar medium. If larger grains initially have an aliphatic structure, it is preserved to a substantial extent. Variations in the size distribution of the grains due to their mutua...

  5. Trans-cis molecular photoswitching in interstellar Space*

    Science.gov (United States)

    Cuadrado, S.; Goicoechea, J. R.; Roncero, O.; Aguado, A.; Tercero, B.; Cernicharo, J.

    2016-01-01

    As many organic molecules, formic acid (HCOOH) has two conformers (trans and cis). The energy barrier to internal conversion from trans to cis is much higher than the thermal energy available in molecular clouds. Thus, only the most stable conformer (trans) is expected to exist in detectable amounts. We report the first interstellar detection of cis-HCOOH. Its presence in ultraviolet (UV) irradiated gas exclusively (the Orion Bar photodissociation region), with a low trans-to-cis abundance ratio of 2.8 ± 1.0, supports a photoswitching mechanism: a given conformer absorbs a stellar photon that radiatively excites the molecule to electronic states above the interconversion barrier. Subsequent fluorescent decay leaves the molecule in a different conformer form. This mechanism, which we specifically study with ab initio quantum calculations, was not considered in Space before but likely induces structural changes of a variety of interstellar molecules submitted to UV radiation. PMID:28003686

  6. The Origin of Radio Scintillation In the Local Interstellar Medium

    CERN Document Server

    Linsky, Jeffrey L; Redfield, Seth

    2007-01-01

    We study three quasar radio sources (B1257-326, B1519-273, and J1819+385) that show large amplitude intraday and annual scintillation variability produced by the Earth's motion relative to turbulent-scattering screens located within a few parsecs of the Sun. We find that the lines of sight to these sources pass through the edges of partially ionized warm interstellar clouds where two or more clouds may interact. From the gas flow vectors of these clouds, we find that the relative radial and transverse velocities of these clouds are large and could generate the turbulence that is responsible for the observed scintillation. For all three sight lines the flow velocities of nearby warm local interstellar clouds are consistent with the fits to the transverse flows of the radio scintillation signals.

  7. X-Ray Absorption and Scattering by Interstellar Grains

    CERN Document Server

    Hoffman, John A

    2015-01-01

    Interstellar abundance determinations from fits to X-ray absorption edges often rely on the following false assumptions: (1) the grains are "optically thin" at the observed X-ray wavelengths, and (2) scattering is insignificant and can be ignored. We show instead that scattering contributes significantly to the attenuation of X-rays for realistic dust grain size distributions and substantially modifies the spectrum near absorption edges of elements present in grains. The dust attenuation modules used in major X-ray spectral fitting programs do not take this into account. We show that the consequences of neglecting scattering on the determination of interstellar elemental abundances are modest; however, scattering (along with uncertainties in the grain size distribution) must be taken into account when near-edge extinction fine structure is used to infer dust mineralogy. We advertise the benefits and accuracy of anomalous diffraction theory for both X-ray halo analysis and near edge absorption studies. An open...

  8. Tholins - Organic chemistry of interstellar grains and gas

    Science.gov (United States)

    Sagan, C.; Khare, B. N.

    1979-01-01

    The paper discusses tholins, defined as complex organic solids formed by the interaction of energy - for example, UV light or spark discharge - with various mixtures of cosmically abundant gases - CH4, C2H6, NH3, H2O, HCHO, and H2S. It is suggested that tholins occur in the interstellar medium and are responsible for some of the properties of the interstellar grains and gas. Additional occurrences of tholins are considered. Tholins have been produced experimentally; 50 or so pyrolytic fragments of the brown, sometimes sticky substances have been identified by gas chromatography-mass spectrometry, and the incidence of these fragments in tholins produced by different procedures is reported.

  9. Trans-cis molecular photoswitching in interstellar Space

    CERN Document Server

    Cuadrado, S; Roncero, O; Aguado, A; Tercero, B; Cernicharo, J

    2016-01-01

    As many organic molecules, formic acid (HCOOH) has two conformers (trans and cis). The energy barrier to internal conversion from trans to cis is much higher than the thermal energy available in molecular clouds. Thus, only the most stable conformer (trans) is expected to exist in detectable amounts. We report the first interstellar detection of cis-HCOOH. Its presence in ultraviolet (UV) irradiated gas exclusively (the Orion Bar photodissociation region), with a low trans-to-cis abundance ratio of 2.8+-1.0, supports a photoswitching mechanism: a given conformer absorbs a stellar photon that radiatively excites the molecule to electronic states above the interconversion barrier. Subsequent fluorescent decay leaves the molecule in a different conformer form. This mechanism, which we specifically study with ab initio quantum calculations, was not considered in Space before but likely induces structural changes of a variety of interstellar molecules submitted to UV radiation.

  10. A review of the theory of interstellar communication

    Science.gov (United States)

    Billingham, J.; Wolfe, J. H.; Oliver, B. M.

    1975-01-01

    The probability is analyzed that intelligent civilizations capable of interstellar communication exist in the galaxy. Drake's (1960) equation for the prevalence of communicative civilization is used in the calculations, and attempts are made to place limits on the search range that must be covered to contact other civilizations, the longevity of the communicative phase of such civilizations, and the possible number of two-way exchanges between civilizations in contact with each other. The minimum estimates indicate that some 100,000 civilizations probably coexist within several tens of astronomical units of each other and that some 1,000,000 probably coexist within 10 light years of each other. Attempts to detect coherent signals characteristic of intelligent life are briefly noted, including Projects Ozma and Cyclops as well as some Soviet attempts. Recently proposed American and Soviet programs for interstellar communication are outlined.

  11. The effect of selective desorption mechanisms during interstellar ice formation

    CERN Document Server

    Kalvans, Juris

    2015-01-01

    Major components of ices on interstellar grains in molecular clouds - water and carbon oxides - occur at various optical depths. This implies that selective desorption mechanisms are at work. An astrochemical model of a contracting low-mass molecular cloud core is presented. Ice was treated as consisting of the surface and three subsurface layers (sublayers). Photodesorption, reactive desorption, and indirect reactive desorption were investigated. The latter manifests itself through desorption from H+H reaction on grains. Desorption of shallow subsurface species was included. Modeling results suggest the existence of a "photon-dominated ice" during the early phases of core contraction. Subsurface ice is chemically processed by interstellar photons, which produces complex organic molecules. Desorption from the subsurface layer results in high COM gas-phase abundances at Av = 2.4...10mag. This may contribute towards an explanation for COM observations in dark cores. It was found that photodesorption mostly gove...

  12. Interstellar shock studies: the SOFIA/GREAT contribution

    CERN Document Server

    Gusdorf, Antoine

    2015-01-01

    Shocks are ubiquitous in the interstellar medium of galaxies, where they contribute to the energetic balance and to the cycle of matter, and where they are thought to be the primary sites for cosmic rays acceleration. Most of the time: in jets and outflows, supernova remnants, or colliding flows, they are linked with star formation. The study of shocks is hence a powerful tool to probe the evolution of the interstellar medium and to better understand star formation. To these aims, the most precise observations must be compared with the most precise models of shocks. The SOFIA/GREAT instrument represents a powerful observational tool to support our progresses, as it allows to observe numerous shock tracers in the far-infrared range.

  13. Isotopic Fractionation in Comets: Quantifying the Contribution of Interstellar Chemistry

    Science.gov (United States)

    Charnley, Steven

    2010-01-01

    Anomalously fractionated isotopic material is found in many primitive Solar System objects, such as meteorites and comets. It is thought, in some cases, to trace interstellar matter that was incorporated into the Solar Nebula without undergoing significant processing. We will present the results of models of the nitrogen, oxygen, and carbon fractionation chemistry in dense molecular clouds, particularly in cares where substantial freeze-taut of molecules on to dust has occurred. The range of fractionation ratios expected in different interstellar molecules will be discussed and compared to the ratios measured in molecular clouds, comets and meteoritic material. These models make several predictions that can be tested in the near future by molecular line observations, particularly with the GBT.

  14. Models of Veritcal Disturbances in the Interstellar Medium

    CERN Document Server

    Walters, M A; Walters, Michael A.; cox, Donald P.

    2000-01-01

    This paper describes some interesting properties of waves in, and oscillations of, the interstellar medium in the direction normal to the plane of the Galaxy. Our purpose is to examine possible reasons for four observed phenomena: the falling sky in the northern hemisphere; the apparent presence of clouds in absorption spectra when a sightline is occupied primarily only by warm intercloud gas; the peculiar structuring of spiral arms involving clumps, spurs, and feathering; and the existence of an abundance of high stage ions far off the plane of the Galaxy. We explored the reaction of the interstellar medium - in the vertical direction only - to large imposed disturbances (initial displacements, expansive velocities, and compressions), and to the introduction of small amplitude waves via oscillation of the midplane. Our findings included: 1) the anticipated growth in amplitude of high frequency waves with height; 2) the four lowest normal modes for the oscillation of the atmosphere as a whole, as functions of...

  15. Tsallis statistics as a tool for studying interstellar turbulence

    CERN Document Server

    Esquivel, A

    2009-01-01

    We used magnetohydrodynamic (MHD) simulations of interstellar turbulence to study the probability distribution functions (PDFs) of increments of density, velocity, and magnetic field. We found that the PDFs are well described by a Tsallis distribution, following the same general trends found in solar wind and Electron MHD studies. We found that the PDFs of density are different in subsonic and supersonic turbulence. In order to extend this work to ISM observations we studied maps of column density obtained from 3D MHD simulations. From the column density maps we found the parameters that fit to Tsallis distributions and demonstrated that these parameters vary with the Mach and Alfvenic Mach numbers of turbulence. This opens avenues for using Tsallis distributions to study the dynamical and magnetic states of interstellar gas.

  16. $H_{2}$ Formation on Interstellar Grains in Different Physical Regimes

    CERN Document Server

    Biham, O; Katz, N; Pirronello, V; Vidali, G

    1998-01-01

    An analysis of the kinetics of H2 formation on interstellar dust grains is presented using rate equations. It is shown that semi-empirical expressions that appeared in the literature represent two different physical regimes. In particular, it is shown that the expression given by Hollenbach, Werner and Salpeter [ApJ, 163, 165 (1971)] applies when high flux, or high mobility, of H atoms on the surface of a grain, makes it very unlikely that H atoms evaporate before they meet each other and recombine. The expression of Pirronello et al.\\ [ApJ, 483, L131 (1997)] -- deduced on the basis of accurate measurements on realistic dust analogue -- applies to the opposite regime (low coverage and low mobility). The implications of this analysis for the understanding of the processes dominating in the Interstellar Medium are discussed.

  17. Chemical Evolution in the Interstellar Medium: From Astrochemistry to Astrobiology

    Science.gov (United States)

    Allamandola, Louis J.

    2009-01-01

    Great strides have been made in our understanding of interstellar material thanks to advances in infrared astronomy and laboratory astrophysics. Ionized polycyclic aromatic hydrocarbons (PAHs), shockingly large molecules by earlier astrochemical standards, are widespread and very abundant throughout much of the Universe. In cold molecular clouds, the birthplace of planets and stars, interstellar molecules freeze onto dust and ice particles forming mixed molecular ices dominated by simple species such as water, methanol, ammonia, and carbon monoxide. Within these clouds, and especially in the vicinity of star and planet forming regions, these ices and PAHs are processed by ultraviolet light and cosmic rays forming hundreds of far more complex species, some of biogenic interest. Eventually, these are delivered to primordial planets by comets and meteorites. Astrochemical evolution, highlights of this field from a chemist's perspective, and the astronomer's infrared toolbox will be reviewed.

  18. Dynamical evolution and molecular abundances of interstellar clouds

    Science.gov (United States)

    Prasad, Sheo S.; Heere, Karen R.; Tarafdar, Shankar P.

    1991-01-01

    Dynamical models are presented that start with interstellar gas in an initial diffuse state and consider their gravitational collapse and the formation of dense cores. Frozen-in tangled magnetic fields are included to mimic forces that might oppose gravitational contraction and whose effectiveness may increase with increasing core densities. Results suggest the possibility that dense cloud cores may be dynamically evolving ephemeral objects, such that their lifespan at a given core density decreases as that density increases.

  19. The interstellar chemistry of H2C3O isomers

    Science.gov (United States)

    Loison, Jean-Christophe; Agúndez, Marcelino; Marcelino, Núria; Wakelam, Valentine; Hickson, Kevin M.; Cernicharo, José; Gerin, Maryvonne; Roueff, Evelyne; Guélin, Michel

    2016-01-01

    We present the detection of two H2C3O isomers, propynal and cyclopropenone, toward various starless cores and molecular clouds, together with upper limits for the third isomer propadienone. We review the processes controlling the abundances of H2C3O isomers in interstellar media showing that the reactions involved are gas-phase ones. We show that the abundances of these species are controlled by kinetic rather than thermodynamic effects. PMID:27013768

  20. X-Ray Absorption and Scattering by Interstellar Grains

    OpenAIRE

    Hoffman, John A.; Draine, Bruce T.

    2015-01-01

    Interstellar abundance determinations from fits to X-ray absorption edges often rely on the incorrect assumption that scattering is insignificant and can be ignored. We show instead that scattering contributes significantly to the attenuation of X-rays for realistic dust grain size distributions and substantially modifies the spectrum near absorption edges of elements present in grains. The dust attenuation modules used in major X-ray spectral fitting programs do not take this into account. W...

  1. Dark matter properties implied by gamma ray interstellar emission models

    OpenAIRE

    Balázs, Csaba; Li, Tong

    2016-01-01

    We infer dark matter properties from gamma ray residuals extracted using eight different interstellar emission scenarios proposed by the Fermi-LAT Collaboration to explain the Galactic Center gamma ray excess. Adopting the most plausible simplified ansatz, we assume that the dark matter particle is a Majorana fermion interacting with standard fermions via a scalar mediator. Using this theoretical hypothesis and the Fermi residuals we calculate Bayesian evidences, including Fermi-LAT exclusion...

  2. A Survey of Interstellar Gas Inside the 3 KPC Arm

    Science.gov (United States)

    Massa, Derck L.

    We are requesting 5 US1 shifts to obtain high dispersion spectra Of B stars in the direction of the 3 kpc arm. The interstellar absorption along these lines of sight will be compared to models for the absorbing gas in order to determine whether additional absorption is present inside the 3 kpc arm. This information will help to distinguish between the two competing theories for the formation of the arm.

  3. Interstellar Extinction and Polarization by Graphite-Silicate Clusters

    Science.gov (United States)

    Johnson, E. T.; Draine, B. T.

    2004-12-01

    The geometry of interstellar dust continues to be uncertain. In some models, intertellar grains are assumed to homogeneous spheres, with a suitable mixture of sizes and compositions in order to reproduce observations of of absorption and scattering (e.g., Weingartner & Draine 2001, or Zubko et al. 2004). However, it is often thought that the larger interstellar grains may be formed by agglomeration of smaller particles, with the resulting ``cluster'' being of nonuniform composition and having a ``fluffy'' geometry. The optical properties of such ``fluffy'' grains have sometimes been estimated using ``effective medium theory'' or other approximations, but it is now possible to directly calculate scattering and absorption using the discrete dipole approximation (Draine & Flatau 1994). We construct candidate clusters by random ballistic agglomeration of small graphite and silicate spheres, and calculate their scattering and absorption cross sections using the discrete dipole approximation code DDSCAT 6.x (Draine & Flatau 2004). We consider a model for interstellar dust consisting of very small grains plus clusters built by ballistic agglomeration with a suitable size distribution, and we test the model by trying to reproduce the observed wavelength dependence of interstellar extinction and polarization. This research was supported in part by NSF grants AST-0216105 and AST-0406883. References: Draine, B.T., & Flatau, P.J. 1994, JOSA, A11, 1491l Draine, B.T., & Flatau, P.J. 2004, http://arxiv.org/abs/astro-ph/0409262l Weingartner, J.C., & Draine, B.T. 2001, ApJ, 548, 296l Zubko, V., Dwek, E., & Arendt, R.G. 2004, ApJS, 152, 211l

  4. Moment equations for chemical reactions on interstellar dust grains

    CERN Document Server

    Lipshtat, A; Lipshtat, Azi; Biham, Ofer

    2003-01-01

    While most chemical reactions in the interstellar medium take place in the gas phase, those occurring on the surfaces of dust grains play an essential role. Chemical models based on rate equations including both gas phase and grain surface reactions have been used in order to simulate the formation of chemical complexity in interstellar clouds. For reactions in the gas phase and on large grains, rate equations, which are highly efficient to simulate, are an ideal tool. However, for small grains under low flux, the typical number of atoms or molecules of certain reactive species on a grain may go down to order one or less. In this case the discrete nature of the opulations of reactive species as well as the fluctuations become dominant, thus the mean-field approximation on which the rate equations are based does not apply. Recently, a master equation approach, that provides a good description of chemical reactions on interstellar dust grains, was proposed. Here we present a related approach based on moment equ...

  5. Evolution of interstellar dust and stardust in the solar neighbourhood

    CERN Document Server

    Zhukovska, Svitlana; Trieloff, Mario

    2007-01-01

    The abundance evolution of interstellar dust species originating from stellar sources and from condensation in molecular clouds in the local interstellar medium of the Milky Way is studied and the input of dust material to the Solar System is determined. A one-zone chemical evolution model of the Milky Way for the elemental composition of the disk combined with an evolution model for its interstellar dust component similar to that of Dwek (1998) is developed. The dust model considers dust-mass return from AGB stars as calculated from synthetic AGB models combined with models for dust condensation in stellar outflows. Supernova dust formation is included in a simple parameterized form which is gauged by observed abundances of presolar dust grains with supernova origin. For dust growth in the ISM a simple method is developed for coupling this with disk and dust evolution models. The time evolution of the abundance of the following dust species is followed in the model: silicate, carbon, silicon carbide, and iro...

  6. H2-rich interstellar grain mantles: An equilibrium description

    Science.gov (United States)

    Dissly, Richard W.; Allen, Mark; Anicich, Vincent G.

    1994-01-01

    Experiments simulating the codeposition of molecular hydrogen and water ice on interstellar grains demonstrate that amorphous water ice at 12 K can incorporate a substantial amount of H2, up to a mole ratio of H2/H2O = 0.53. We find that the physical behavior of approximately 80% of the hydrogen can be explained satisfactorily in terms of an equilibrium population, thermodynamically governed by a wide distribution of binding site energies. Such a description predicts that gas phase accretion could lead to mole fractions of H2 in interstellar grain mantles of nearly 0.3; for the probable conditions of WL5 in the rho Ophiuchi cloud, an H2 mole fraction of between 0.05 and 0.3 is predicted, in possible agreement with the observed abundance reported by Sandford, Allamandola, & Geballe. Accretion of gas phase H2 onto grain mantles, rather than photochemical production of H2 within the ice, could be a general explanation for frozen H2 in interstellar ices. We speculate on the implications of such a composition for grain mantle chemistry and physics.

  7. The chemistry of interstellar HnO+ beyond the Galaxy

    CERN Document Server

    van der Tak, Floris

    2010-01-01

    The astrochemistry of the HnO+ (n=1..3) ions is important as the main gas-phase formation route for water, and as tracer of the interstellar ionization rate by cosmic rays and other processes. While interstellar H3O+ has been known since the early 1990's, interstellar OH+ and H2O+ have only recently been detected using the Herschel space observatory and also from the ground. This paper reviews detections of HnO+ toward external galaxies and compares with ground-based work. The similarities and differences of the HnO+ chemistry within the Galaxy and beyond are discussed. Special attention is given to the low H2O/H3O+ ratio in M82 of only 3.3, suggesting rapid H2O photodissociation, and the high apparent OH+ and H2O+ abundances in Mrk 231, suggesting radiative excitation and/or formation pumping. Photodissociation rates for H3O+ and collisional cross-sections for OH+ and H2O+ with H, He and electrons are needed to test these interpretations.

  8. Copernicus observations of interstellar matter in the direction of HR 1099

    Science.gov (United States)

    Anderson, R. C.; Weiler, E. J.

    1978-01-01

    Results are reported for high-resolution Copernicus U1 and V2 scans of the bright RS CVn spectroscopic binary HR 1099. The observations reveal strong UV emission lines at L-alpha and Mg II h and k from the stars as well as interstellar H I and D I L-alpha absorption lines and interstellar Mg II h and k absorption in the direction of the binary system. Column densities, bulk velocities, and temperatures are derived for the interstellar features. A comparison of the derived number density of interstellar H I with data for the nearby star Epsilon Eri indicates an inhomogeneous distribution of interstellar hydrogen along the line of sight. The range of values obtained for the D/H ratio is shown to be consistent with results of other studies. A depletion factor of at least 5 with respect to the solar abundance is estimated for the interstellar magnesium.

  9. Kinetic vs. multi-fluid approach for interstellar neutrals in the heliosphere: exploration of the interstellar magnetic field effects

    CERN Document Server

    Alouani-Bibi, Fathallah; Alexashov, Dimitry; Izmodenov, Vladislav; Toth, Gabor

    2011-01-01

    We present a new 3d self-consistent two-component (plasma and neutral hydrogen) model of the solar wind interaction with the local interstellar medium (LISM). This model (K-MHD) combines the MHD treatment of the solar wind and the ionized LISM component, with a kinetic model of neutral interstellar hydrogen (LISH). The local interstellar magnetic field (BLISM) intensity and orientation are chosen based on an early analysis of the heliosheath flows (Opher et al. 2009). The properties of the plasma and neutrals obtained using the (K-MHD) model are compared to previous multi-fluid (Opher et al. 2009) and kinetic models (Izmodenov et al. 2005). The new treatment of LISH revealed important changes in the heliospheric properties not captures by the multi-fluid model. These include a decrease in the heliocentric distance to the termination shock (TS), a thinner heliosheath and a reduced deflection angle ({\\theta}) of the heliosheath flows. The asymmetry of the termination shock, however, seems to be unchanged by the...

  10. STRUCTURE OF THE INTERSTELLAR BOUNDARY EXPLORER RIBBON FROM SECONDARY CHARGE-EXCHANGE AT THE SOLAR–INTERSTELLAR INTERFACE

    Energy Technology Data Exchange (ETDEWEB)

    Zirnstein, E. J.; McComas, D. J. [Southwest Research Institute, San Antonio, TX 78228 (United States); Heerikhuisen, J., E-mail: ezirnstein@swri.edu, E-mail: dmccomas@swri.edu, E-mail: jacob.heerikhuisen@uah.edu [Department of Space Science and Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, Huntsville, AL 35899 (United States)

    2015-05-01

    In 2009, the Interstellar Boundary Explorer discovered a bright “ribbon” of energetic neutral atom (ENA) flux in the energy range ≤0.4–6 keV, encircling a large portion of the sky. This observation was not previously predicted by any models or theories, and since its discovery, it has been the subject of numerous studies of its origin and properties. One of the most studied mechanisms for its creation is the “secondary ENA” process. Here, solar wind ions, neutralized by charge-exchange with interstellar atoms, propagate outside the heliopause; experience two charge-exchange events in the dense outer heliosheath; and then propagate back inside the heliosphere, preferentially in the direction perpendicular to the local interstellar magnetic field. This process has been extensively analyzed using state-of-the-art modeling and simulation techniques, but it has been difficult to visualize. In this Letter, we show the three-dimensional structure of the source of the ribbon, providing a physical picture of the spatial and energy scales over which the secondary ENA process occurs. These results help us understand how the ribbon is generated and further supports a secondary ENA process as the leading ribbon source mechanism.

  11. DETECTION OF OH{sup +} IN TRANSLUCENT INTERSTELLAR CLOUDS: NEW ELECTRONIC TRANSITIONS AND PROBING THE PRIMARY COSMIC RAY IONIZATION RATE

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, D.; Linnartz, H. [Sackler Laboratory for Astrophysics, Leiden Observatory, University of Leiden, PO Box 9513, 2300 RA Leiden (Netherlands); Galazutdinov, G. A. [Instituto de Astronomia, Universidad Catolica del Norte, Av. Angamos 0610, Antofagasta (Chile); Krełowski, J., E-mail: zhao@strw.leidenuniv.nl [Center for Astronomy, Nicholas Copernicus University, Gagarina 11, Pl-87-100 Toruń (Poland)

    2015-06-01

    We present the detection of rotationally resolved electronic transitions in the OH{sup +} A{sup 3}Π–X{sup 3}Σ{sup −} (0, 0) and (1, 0) bands toward CD-32 4348, HD 63804, HD 78344, and HD 80077. These four translucent clouds have been studied in a recent Very Large Telescope/Ultraviolet and Visual Echelle Spectrograph observational run. In total, seven absorption features of OH{sup +} are detected, and six of them are identified here for the first time, providing a precise tool to trace OH{sup +} in translucent interstellar clouds. An improved set of line positions and oscillator strengths is compiled to support our data interpretation. A dedicated analysis of the observed features in individual targets yields an accurate determination of OH{sup +} column densities. The results are applied to estimate the primary cosmic ray ionization rate in the investigated translucent clouds, which yields a typical value of ∼1.0 × 10{sup −16} s{sup −1}. In addition, following this work, two of the new interstellar features recently reported by Bhatt and Cami, at ∼3572.65 and 3346.96 Å, can be identified as OH{sup +} absorption lines now.

  12. Properties of interstellar wind leading to shape morphology of the dust surrounding HD 61005

    Science.gov (United States)

    Pástor, P.

    2017-08-01

    Aims: A structure formed by dust particles ejected from the debris ring around HD 61005 is observed in the scattered light. The main aim here is to constrain interstellar wind parameters that lead to shape morphology in the vicinity of HD 61005 using currently available observational data for the debris ring. Methods: Equation of motion of 2 × 105 dust particles ejected from the debris ring under the action of the electromagnetic radiation, stellar wind, and interstellar wind is solved. A two-dimensional (2D) grid is placed in a given direction for accumulation of the light scattered on the dust particles in order to determine the shape morphology. The interaction of the interstellar wind and the stellar wind is considered. Results: Groups of unknown properties of the interstellar wind that create the observed morphology are determined. A relation between number densities of gas components in the interstellar wind and its relative velocity is found. Variations of the shape morphology caused by the interaction with the interstellar clouds of various temperatures are studied. When the interstellar wind velocity is tilted from debris ring axis a simple relation between the properties of the interstellar wind and an angle between the line of sight and the interstellar wind velocity exists. Dust particles that are most significantly influenced by stellar radiation move on the boundary of observed structure. Conclusions: Observed structure at HD 61005 can be explained as a result of dust particles moving under the action of the interstellar wind. Required number densities or velocities of the interstellar wind are much higher than that of the interstellar wind entering the solar system.

  13. Stretch Band Exercise Program

    Science.gov (United States)

    Skirka, Nicholas; Hume, Donald

    2007-01-01

    This article discusses how to use stretch bands for improving total body fitness and quality of life. A stretch band exercise program offers a versatile and inexpensive option to motivate participants to exercise. The authors suggest practical exercises that can be used in physical education to improve or maintain muscular strength and endurance,…

  14. ZEBRAFISH CHROMOSOME-BANDING

    NARCIS (Netherlands)

    PIJNACKER, LP; FERWERDA, MA

    1995-01-01

    Banding techniques were carried out on metaphase chromosomes of zebrafish (Danio rerio) embryos. The karyotypes with the longest chromosomes consist of 12 metacentrics, 26 submetacentrics, and 12 subtelocentrics (2n = 50). All centromeres are C-band positive. Eight chromosomes have a pericentric C-b

  15. Progressive Band Selection

    Science.gov (United States)

    Fisher, Kevin; Chang, Chein-I

    2009-01-01

    Progressive band selection (PBS) reduces spectral redundancy without significant loss of information, thereby reducing hyperspectral image data volume and processing time. Used onboard a spacecraft, it can also reduce image downlink time. PBS prioritizes an image's spectral bands according to priority scores that measure their significance to a specific application. Then it uses one of three methods to select an appropriate number of the most useful bands. Key challenges for PBS include selecting an appropriate criterion to generate band priority scores, and determining how many bands should be retained in the reduced image. The image's Virtual Dimensionality (VD), once computed, is a reasonable estimate of the latter. We describe the major design details of PBS and test PBS in a land classification experiment.

  16. THE ABUNDANCE OF C{sub 3}H{sub 2} AND OTHER SMALL HYDROCARBONS IN THE DIFFUSE INTERSTELLAR MEDIUM

    Energy Technology Data Exchange (ETDEWEB)

    Liszt, Harvey [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903-2475 (United States); Sonnentrucker, Paule [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Cordiner, Martin [Astrochemistry Laboratory and the Goddard Center for Astrobiology, Mailstop 691, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20770 (United States); Gerin, Maryvonne, E-mail: hliszt@nrao.edu [LERMA, UMR 8112 du CNRS, Observatoire de Paris Ecole Normale Superieure, UPMC and UCP (France)

    2012-07-10

    Hydrocarbons are ubiquitous in the interstellar medium, observed in diverse environments ranging from diffuse to molecular dark clouds and strong photon-dominated regions near H II regions. Recently, two broad diffuse interstellar bands (DIBs) at 4881 A and 5450 A were attributed to the linear version of propynylidene l-C{sub 3}H{sub 2}, a species whose more stable cyclic conformer c-C{sub 3}H{sub 2} has been widely observed in the diffuse interstellar medium at radio wavelengths. This attribution has already been criticized on the basis of indirect plausibility arguments because the required column densities are quite large, N(l-C{sub 3}H{sub 2})/E{sub B-V} =4 Multiplication-Sign 10{sup 14} cm{sup -2} mag{sup -1}. Here we present new measurements of N(l-C{sub 3}H{sub 2}) based on simultaneous 18-21 GHz Very Large Array absorption profiles of cyclic and linear C{sub 3}H{sub 2} taken along sight lines toward extragalactic radio-continuum background sources with foreground Galactic reddening E{sub B-V} = 0.1-1.6 mag. We find that N(l-C{sub 3}H{sub 2})/N(c-C{sub 3}H{sub 2}) Almost-Equal-To 1/15-1/40 and N(l-C{sub 3}H{sub 2})/E{sub B-V} Almost-Equal-To (2 {+-} 1) Multiplication-Sign 10{sup 11} cm{sup -2} mag{sup -1}, so that the column densities of l-C{sub 3}H{sub 2} needed to explain the DIBs are some three orders of magnitude higher than what is observed. We also find N(C{sub 4}H)/E{sub B-V} <1.3 Multiplication-Sign 10{sup 13} cm{sup -2} mag{sup -1} and N(C{sub 4}H{sup -})/E{sub B-V} <1 Multiplication-Sign 10{sup 11} cm{sup -2} mag{sup -1} (3{sigma}). Using available data for CH and C{sub 2}H we compare the abundances of small hydrocarbons in diffuse and dark clouds as a guide to their ability to contribute as DIB carriers over a wide range of conditions in the interstellar medium.

  17. On the Formation of Benzoic Acid and Higher Order Benzene Carboxylic Acids in Interstellar Model Ices grains

    Science.gov (United States)

    McMurtry, Brandon M.; Saito, Sean E. J.; Turner, Andrew M.; Chakravarty, Harish K.; Kaiser, Ralf I.

    2016-11-01

    With a binary ice mixture of benzene (C6H6) and carbon dioxide (CO2) at 10 K under contamination-free ultrahigh vacuum conditions, the formation of benzene carboxylic acids in interstellar ice grains was studied. Fourier transform infrared spectroscopy was used to probe for the formation of new species during the chemical processing of the ice mixture and during the following temperature-programmed desorption. Newly formed benzene carboxylic acid species, i.e., benzoic acid, as well as meta- and para-benzene dicarboxylic acid, were assigned using newly emerging bands in the infrared spectrum; a reaction mechanism, along with rate constants, was proposed utilizing the kinetic fitting of the coupled differential equations.

  18. Chemical Evolution of Interstellar Dust into Planetary Materials

    Science.gov (United States)

    Fomenkova, M. N.; Chang, S.; DeVincenzi, Donald L. (Technical Monitor)

    1995-01-01

    Comets are believed to retain some interstellar materials, stored in fairly pristine conditions since-their formation. The composition and properties of cometary dust grains should reflect those of grains in the outer part of the protosolar nebula which, at least in part, were inherited from the presolar molecular cloud. However, infrared emission features in comets differ from their interstellar counterparts. These differences imply processing of interstellar material on its way to incorporation in comets, but C and N appear to be retained. Overall dust evolution from the interstellar medium (ISM) to planetary materials is accompanied by an increase in proportion of complex organics and a decrease in pure carbon phases. The composition of cometary dust grains was measured in situ during fly-by missions to comet Halley in 1986. The mass spectra of about 5000 cometary dust grains with masses of 5 x 10(exp -17) - 5 x 10(exp -12) g provide data about the presence and relative abundances of the major elements H, C, N, O,Na, Mg, Al, Si, S, Cl, K, Ca, Ti, Cr, Fe, Ni. The bulk abundances of major rock-forming elements integrated over all spectra were found to be solar within a factor of 2, while the volatile elements H, C, N, O in dust are depleted in respect to their total cosmic abundances. The abundances of C and N in comet dust are much closer to interstellar than to meteoritic and are higher than those of dust in the diffuse ISM. In dense molecular clouds dust grains are covered by icy mantles, the average composition of which is estimated to be H:C:N:O = 96:14:1:34. Up to 40% of elemental C and O may be sequestered in mantles. If we use this upper limit to add H, C, N and O as icy mantle material to the abundances residing in dust in the diffuse ISM, then the resulting values for H. C, and N match cometary abundances. Thus, ice mantles undergoing chemical evolution on grains in the dense ISM appear to have been transformed into less volatile and more complex organic

  19. A multifrequency study of the active star-forming complex NGC 6357 - I. Interstellar structures linked to the open cluster Pis 24

    Science.gov (United States)

    Cappa, C. E.; Barbá, R.; Duronea, N. U.; Vasquez, J.; Arnal, E. M.; Goss, W. M.; Fernández Lajús, E.

    2011-08-01

    We investigate the distribution of gas (ionized, neutral atomic and molecular) and interstellar dust in the complex star-forming region NGC 6357 with the goal of studying the interplay between the massive stars in the open cluster Pis 24 and the surrounding interstellar matter. Our study of the distribution of the ionized gas is based on narrow-band Hα, [S II]and [O III] images obtained with the Curtis-Schmidt Camera at CTIO, Chile, and on radio continuum observations at 1465 MHz taken with the VLA with a synthesized beam of 40 arcsec. The distribution of the molecular gas is analysed using 12CO(1-0) data obtained with the NANTEN radiotelescope, Chile (angular resolution = 2.7 arcmin). The interstellar dust distribution was studied using mid-infrared data from the GLIMPSE survey and far-infrared observations from IRAS. NGC 6357 consists of a large ionized shell and a number of smaller optical nebulosities. The optical, radio continuum, and near- and mid-IR images delineate the distributions of the ionized gas and interstellar dust in the H II regions and in previously unknown wind-blown bubbles linked to the massive stars in Pis 24 revealing surrounding photodissociation regions. The CO line observations allowed us to identify the molecular counterparts of the ionized structures in the complex and to confirm the presence of photodissociation regions. The action of the WR star HD 157504 on the surrounding gas was also investigated. The molecular mass in the complex is estimated to be (4 ± 2) × 105 M⊙. The mean electron densities derived from the radio data suggest electron densities >200 cm-3, indicating that NGC 6357 is a complex formed in a region of high ambient density. The known massive stars in Pis 24 and a number of newly inferred massive stars are mainly responsible for the excitation and photodissociation of the parental molecular cloud.

  20. A FUSE Survey of Interstellar Molecular Hydrogen toward High-Latitude AGN

    CERN Document Server

    Gillmon, K; Tumlinson, J; Danforth, C; Gillmon, Kristen; Tumlinson, Jason; Danforth, Charles

    2006-01-01

    We report results from a FUSE survey of interstellar molecular hydrogen (H2) along 45 sight lines to AGN at high Galactic latitudes (|b| > 20 degrees). Most (39 of 45) of the sight lines show detectable Galactic H2 absorption from Lyman and Werner bands between 1000 and 1126 A, with column densities ranging from N(H2) = 10^(14.17-19.82) cm^-2. In the northern Galactic hemisphere, we identify many regions of low column, N(H2) 54 degrees. These `"H2 holes" provide valuable, uncontaminated sight lines for extragalactic UV spectroscopy, and a few may be related to the "Northern Chimney" (low Na I absorption) and "Lockman Hole" with low N(HI). A comparison of high-latitude H2 with 139 OB-star sight lines surveyed in the Galactic disk suggests that high-latitude and disk H2 clouds may have different rates of heating, cooling, and UV excitation. For rotational states J = 0 and 1, the mean excitation temperature at high latitude, = 124 +/- 8 K, is somewhat above that in the Galactic disk, = 86 +/- 20 K. For J = 2-...

  1. On the formation of niacin (vitamin B3) and pyridine carboxylic acids in interstellar model ices

    Science.gov (United States)

    McMurtry, Brandon M.; Turner, Andrew M.; Saito, Sean E. J.; Kaiser, Ralf I.

    2016-06-01

    The formation of pyridine carboxylic acids in interstellar ice grains was simulated by electron exposures of binary pyridine (C5H5N)-carbon dioxide (CO2) ice mixtures at 10 K under contamination-free ultrahigh vacuum conditions. Chemical processing of the pristine ice and subsequent warm-up phase was monitored on line and in situ via Fourier transform infrared spectroscopy to probe for the formation of new radiation induced species. In the infrared spectra of the irradiated ice, bands assigned to nicotinic acid (niacin; vitamin B3; m-C5H4NCOOH) along with 2,3-, 2,5-, 3,4-, and 3,5-pyridine dicarboxylic acid (C5H3N(COOH)2) were unambiguously identified along with the hydroxycarbonyl (HOCO) radical. Our study suggests that the reactive pathway responsible for pyridine carboxylic acids formation involves a HOCO intermediate, which forms through the reaction of suprathermal hydrogen ejected from pyridine with carbon dioxide. The newly formed pyridinyl radical may then undergo radical-radical recombination with a hydroxycarbonyl radical to form a pyridine carboxylic acid.

  2. Interstellar-Medium Mapping in M82 through Light Echoes around Supernova 2014J

    CERN Document Server

    Yang, Yi; Baade, Dietrich; Brown, Peter J; Cracraft, Misty; Hoflich, Peter A; Maund, Justyn; Patat, Ferdinando; Sparks, William B; Spyromilio, Jason; Stevance, Heloise F; Wang, Xiaofeng; Wheeler, J Craig

    2016-01-01

    We present multiple-epoch measurements of the size and surface brightness of the light echoes from supernova (SN) 2014J in the nearby starburst galaxy M82. Hubble Space Telescope (HST) ACS/WFC images were taken ~277 and ~416 days after B-band maximum in the filters F475W, F606W, and F775W. Observations with HST WFC3/UVIS images at epochs ~216 and ~365 days (Crotts_2015) are included for a more complete analysis. The images reveal the temporal evolution of at least two major light-echo components. The first one exhibits a filled ring structure with position-angle-dependent intensity. This radially-extended, diffuse echo indicates the presence of an inhomogeneous interstellar dust cloud ranging from ~100 pc to ~500 pc in the foreground of the SN. The second echo component appears as an unresolved luminous quarter-circle arc centered on the SN. The wavelength dependence of scattering measured in different dust components suggests that the dust producing the luminous arc favors smaller grain sizes, while that cau...

  3. Computational Confirmation of the Carrier for the "XCN" Interstellar Ice Bank: OCN(-) Charge Transfer Complexes

    Science.gov (United States)

    Park, J.-Y.; Woon, D. E.

    2004-01-01

    Recent experimental studies provide evidence that carrier for the so-called XCN feature at 2165 cm(exp -1) (4.62 micron) in young stellar objects is an OCN(-)/NH4(+) charge transfer (CT) complex that forms in energetically processed interstellar icy grain mantles. Although other RCN nitriles and RCN iosonitriles have been considered, Greenberg's conjecture that OCN(-) is associated with the XCN feature has persisted for over 15 years. In this work we report a computational investigation that thoroughly confirms the hypothesis that the XCN feature observed in laboratory studies can result from OCN(-)/NH4(+) CT complexes arising from HNCO and NH3, in a water ice environment. Density functional theory calculations with theory calculations with HNCO, NH3, and up to 12 waters reproduce seven spectroscopic measurements associated with XCN: the band origin of the asymmetric stretching mode of OCN(-), shifts due to isotopic substitutions of C, N, O, and H, and two weak features. However, very similar values are also found for the OCN(-)/NH4(+) CT complex arising from HOCN and NH3. In both cases, the complex forms by barrierless proton transfer from HNCO or HOCN to NH3 during the optimization of the solvated system. Scaled B3LYP/6-31+G** harmonic frequencies for HNCO and HOCN cases are 2181 and 2202 cm(exp -1), respectively.

  4. Probing interstellar extinction near the 30 Doradus nebula with red giant stars

    CERN Document Server

    De Marchi, Guido; Girardi, Leo

    2013-01-01

    We have studied the interstellar extinction in a field of 3' x 3' located about 6' SW of 30 Doradus in the Large Magellanic Cloud (LMC). Hubble Space Telescope observations in the U, B, V, I and Halpha bands reveal patchy extinction in this field. The colour-magnitude diagram (CMD) shows an elongated stellar sequence, almost parallel to the main sequence (MS), which is in reality made up of stars of the red giant clump (RC) spread across the CMD by the uneven levels of extinction in this region. Since these objects are all at the same distance from us and share very similar physical properties, we can derive quantitatively both the extinction law in the range 3000 - 8000 Angstrom and the absolute extinction towards about 100 objects, setting statistically significant constraints on the dust grains properties in this area. We find an extinction curve considerably flatter than the standard Galactic one and than those obtained before for the LMC. The derived value of Rv = 5.6 +/- 0.3 implies that in this region ...

  5. Physical conditions of the interstellar medium in star-forming galaxies at z~1.5

    CERN Document Server

    Hayashi, Masao; Shimasaku, Kazuhiro; Motohara, Kentaro; Malkan, Matthew A; Nagao, Tohru; Kashikawa, Nobunari; Goto, Ryosuke; Naito, Yoshiaki

    2015-01-01

    We present results from Subaru/FMOS near-infrared (NIR) spectroscopy of 118 star-forming galaxies at $z\\sim1.5$ in the Subaru Deep Field. These galaxies are selected as [OII]$\\lambda$3727 emitters at $z\\approx$ 1.47 and 1.62 from narrow-band imaging. We detect H$\\alpha$ emission line in 115 galaxies, [OIII]$\\lambda$5007 emission line in 45 galaxies, and H$\\beta$, [NII]$\\lambda$6584, and [SII]$\\lambda\\lambda$6716,6731 in 13, 16, and 6 galaxies, respectively. Including the [OII] emission line, we use the six strong nebular emission lines in the individual and composite rest-frame optical spectra to investigate physical conditions of the interstellar medium in star-forming galaxies at $z\\sim$1.5. We find a tight correlation between H$\\alpha$ and [OII], which suggests that [OII] can be a good star formation rate (SFR) indicator for galaxies at $z\\sim1.5$. The line ratios of H$\\alpha$/[OII] are consistent with those of local galaxies. We also find that [OII] emitters have strong [OIII] emission lines. The [OIII]/[...

  6. Planck Early Results: Properties of the interstellar medium in the Galactic plane

    CERN Document Server

    Abergel, A; Aghanim, N; Arnaud, M; Ashdown, M; Aumont, J; Baccigalupi, C; Balbi, A; Banday, A J; Barreiro, R B; Bartlett, J G; Battaner, E; Benabed, K; Benoît, A; Bernard, J -P; Bersanelli, M; Bhatia, R; Bock, J J; Bonaldi, A; Bond, J R; Borrill, J; Bouchet, F R; Boulanger, F; Bucher, M; Burigana, C; Cabella, P; Cardoso, J -F; Catalano, A; Cayón, L; Challinor, A; Chamballu, A; Chiang, L -Y; Chiang, C; Christensen, P R; Colombi, S; Couchot, F; Coulais, A; Crill, B P; Cuttaia, F; Dame, T; Danese, L; Davies, R D; Davis, R J; de Bernardis, P; de Gasperis, G; de Rosa, A; de Zotti, G; Delabrouille, J; Delouis, J -M; Désert, F -X; Dickinson, C; Donzelli, S; Doré, O; Dörl, U; Douspis, M; Dupac, X; Efstathiou, G; En\\sslin, T A; Finelli, F; Forni, O; Frailis, M; Franceschi, E; Galeotta, S; Ganga, K; Giard, M; Giardino, G; Giraud-Héraud, Y; González-Nuevo, J; Górski, K M; Gratton, S; Gregorio, A; Grenier, I A; Gruppuso, A; Hansen, F K; Harrison, D; Henrot-Versillé, S; Herranz, D; Hildebrandt, S R; Hivon, E; Hobson, M; Holmes, W A; Hovest, W; Hoyland, R J; Huffenberger, K M; Jaffe, T R; Jaffe, A H; Jones, W C; Juvela, M; Keihänen, E; Keskitalo, R; Kisner, T S; Kneissl, R; Knox, L; Kurki-Suonio, H; Lagache, G; Lähteenmäki, A; Lamarre, J -M; Lasenby, A; Laureijs, R J; Lawrence, C R; Leach, S; Leonardi, R; Leroy, C; Lilje, P B; Linden-V\\ornle, M; López-Caniego, M; Lubin, P M; Macías-Pérez, J F; MacTavish, C J; Maffei, B; Mandolesi, N; Mann, R; Maris, M; Marshall, D J; Martínez-González, E; Masi, S; Matarrese, S; Matthai, F; Mazzotta, P; McGehee, P; Meinhold, P R; Melchiorri, A; Mendes, L; Mennella, A; Miville-Deschênes, M -A; Moneti, A; Montier, L; Morgante, G; Mortlock, D; Munshi, D; Murphy, A; Naselsky, P; Natoli, P; Netterfield, C B; N\\orgaard-Nielsen, H U; Noviello, F; Novikov, D; Novikov, I; Osborne, S; Pajot, F; Paladini, R; Pasian, F; Patanchon, G; Perdereau, O; Perotto, L; Perrotta, F; Piacentini, F; Piat, M; Plaszczynski, S; Pointecouteau, E; Polenta, G; Ponthieu, N; Poutanen, T; Prézeau, G; Prunet, S; Puget, J -L; Rachen, J P; Reach, W T; Rebolo, R; Reich, W; Renault, C; Ricciardi, S; Riller, T; Ristorcelli, I; Rocha, G; Rosset, C; Rubi\; Rusholme, B; Sandri, M; Santos, D; Savini, G; Scott, D; Seiffert, M D; Shellard, P; Smoot, G F; Starck, J -L; Stivoli, F; Stolyarov, V; Stompor, R; Sudiwala, R; Sygnet, J -F; Tauber, J A; Terenzi, L; Toffolatti, L; Tomasi, M; Torre, J -P; Tristram, M; Tuovinen, J; Umana, G; Valenziano, L; Varis, J; Vielva, P; Villa, F; Vittorio, N; Wade, L A; Wandelt, B D; Wilkinson, A; Ysard, N; Yvon, D; Zacchei, A; Zonca, A

    2011-01-01

    (abridged) Planck has observed the entire sky from 30 GHz to 857GHz. The observed foreground emission contains contributions from different phases of the interstellar medium (ISM). We have separated the observed Galactic emission into the different gaseous components (atomic, molecular and ionised) as well as into a number of Galactocentric rings. Templates are created for various Galactocentric radii using velocity information from atomic (neutral hydrogen) and molecular (12CO) observations. The ionised template is assumed to be traced by free-free emission as observed by WMAP, and 408 MHz emission is used to trace the synchrotron component. Gas emission not traced by the above templates, namely dark gas, as evidenced using Planck data, is included as an additional template. These templates are then correlated with each of the Planck frequency bands, as well as with higher frequency data from IRAS and DIRBE along with radio data at 1.4GHz. The emission per column density of the gas templates allows us to cre...

  7. On the Formation of Interstellar Water Ice: Constraints from a Search for Hydrogen Peroxide Ice in Molecular Clouds

    Science.gov (United States)

    Smith, R. G.; Charnely, S. B.; Pendleton, Y. J.; Wright, C. M.; Maldoni, M. M.; Robinson, G.

    2011-01-01

    Recent surface chemistry experiments have shown that the hydrogenation of molecular oxygen on interstellar dust grains is a plausible formation mechanism, via hydrogen peroxide (H2O2), for the production of water (H2O) ice mantles in the dense interstellar medium. Theoretical chemistry models also predict the formation of a significant abundance of H2O2 ice in grain mantles by this route. At their upper limits, the predicted and experimental abundances are sufficiently high that H2O2 should be detectable in molecular cloud ice spectra. To investigate this further, laboratory spectra have been obtained for H2O2/H2O ice films between 2.5 and 200 micron, from 10 to 180 K, containing 3%, 30%, and 97% H2O2 ice. Integrated absorbances for all the absorption features in low-temperature H2O2 ice have been derived from these spectra. For identifying H2O2 ice, the key results are the presence of unique features near 3.5, 7.0, and 11.3 micron. Comparing the laboratory spectra with the spectra of a group of 24 protostars and field stars, all of which have strong H2O ice absorption bands, no absorption features are found that can definitely be identified with H2O2 ice. In the absence of definite H2O2 features, the H2O2 abundance is constrained by its possible contribution to the weak absorption feature near 3.47 micron found on the long-wavelength wing of the 3 micron H2O ice band. This gives an average upper limit for H2O2, as a percentage of H2O, of 9% +/- 4%. This is a strong constraint on parameters for surface chemistry experiments and dense cloud chemistry models.

  8. Iliotibial band friction syndrome.

    Science.gov (United States)

    Lavine, Ronald

    2010-07-20

    Published articles on iliotibial band friction syndrome have been reviewed. These articles cover the epidemiology, etiology, anatomy, pathology, prevention, and treatment of the condition. This article describes (1) the various etiological models that have been proposed to explain iliotibial band friction syndrome; (2) some of the imaging methods, research studies, and clinical experiences that support or call into question these various models; (3) commonly proposed treatment methods for iliotibial band friction syndrome; and (4) the rationale behind these methods and the clinical outcome studies that support their efficacy.

  9. Discovery of Interstellar Anions in Cepheus and Auriga

    Science.gov (United States)

    Cordiner, M. A.; Charnely, S. B.; Buckle, J. V.; Walsh, C.

    2011-01-01

    We report the detection of microwave emission lines from the hydrocarbon anion C6H(-) and its parent neutral C6H in the star-forming region LI251 A (in Cepheus), and the pre-stellar core LI512 (in Auriga). The carbon chain-bearing species C4H, HC3N, HC5N, HC7N, and C3S are also detected in large abundances. The observations of L1251A constitute the first detections of anions and long-chain polyynes and cyanopolyynes (with more than five carbon atoms) in the Cepheus Flare star-forming region, and the first detection of anions in the vicinity of a protostar outside of the Taurus molecular cloud complex, indicating a possible wider importance for anions in the chemistry of star formation. Rotational excitation temperatures have been derived from the HC3N hyperfine structure lines and are found to be 6.2 K for L1251A and 8.7 K for LI5l2. The anion-to-neutral ratios are 3.6% and 4.1%, respectively, which are within the range of values previously observed in the interstellar medium, and suggest a relative uniformity in the processes governing anion abundances in different dense interstellar clouds. This research contributes toward the growing body of evidence that carbon chain anions are relatively abundant in interstellar clouds throughout the Galaxy, but especially in the regions of relatively high density and high depletion surrounding pre-stellar cores and young, embedded protostars.

  10. Effects of turbulent dust grain motion to interstellar chemistry

    Science.gov (United States)

    Ge, J. X.; He, J. H.; Yan, H. R.

    2016-02-01

    Theoretical studies have revealed that dust grains are usually moving fast through the turbulent interstellar gas, which could have significant effects upon interstellar chemistry by modifying grain accretion. This effect is investigated in this work on the basis of numerical gas-grain chemical modelling. Major features of the grain motion effect in the typical environment of dark clouds (DC) can be summarized as follows: (1) decrease of gas-phase (both neutral and ionic) abundances and increase of surface abundances by up to 2-3 orders of magnitude; (2) shifts of the existing chemical jumps to earlier evolution ages for gas-phase species and to later ages for surface species by factors of about 10; (3) a few exceptional cases in which some species turn out to be insensitive to this effect and some other species can show opposite behaviours too. These effects usually begin to emerge from a typical DC model age of about 105 yr. The grain motion in a typical cold neutral medium (CNM) can help overcome the Coulomb repulsive barrier to enable effective accretion of cations on to positively charged grains. As a result, the grain motion greatly enhances the abundances of some gas-phase and surface species by factors up to 2-6 or more orders of magnitude in the CNM model. The grain motion effect in a typical molecular cloud (MC) is intermediate between that of the DC and CNM models, but with weaker strength. The grain motion is found to be important to consider in chemical simulations of typical interstellar medium.

  11. The interstellar cloud surrounding the Sun: a new perspective

    Science.gov (United States)

    Gry, Cécile; Jenkins, Edward B.

    2014-07-01

    Aims: We offer a new, simpler picture of the local interstellar medium, made of a single continuous cloud enveloping the Sun. This new outlook enables the description of a diffuse cloud from within and brings to light some unexpected properties. Methods: We re-examine the kinematics and abundances of the local interstellar gas, as revealed by the published results for the ultraviolet absorption lines of Mg II, Fe II, and H I. Results: In contrast to previous representations, our new picture of the local interstellar medium consists of a single, monolithic cloud that surrounds the Sun in all directions and accounts for most of the matter present in the first 50 parsecs around the Sun. The cloud fills the space around us out to about 9 pc in most directions, although its boundary is very irregular with possibly a few extensions up to 20 pc. The cloud does not behave like a rigid body: gas within the cloud is being differentially decelerated in the direction of motion, and the cloud is expanding in directions perpendicular to this flow, much like a squashed balloon. Average H I volume densities inside the cloud vary between 0.03 and 0.1 cm-3 over different directions. Metals appear to be significantly depleted onto grains, and there is a steady increase in depletion from the rear of the cloud to the apex of motion. There is no evidence that changes in the ionizing radiation influence the apparent abundances. Secondary absorption components are detected in 60% of the sight lines. Almost all of them appear to be interior to the volume occupied by the main cloud. Half of the sight lines exhibit a secondary component moving at about -7.2 km s-1 with respect to the main component, which may be the signature of a shock propagating toward the cloud's interior.

  12. Consequences of the Solar System passage through dense interstellar clouds

    Directory of Open Access Journals (Sweden)

    A. G. Yeghikyan

    Full Text Available Several consequences of the passage of the solar system through dense interstellar molecular clouds are discussed. These clouds, dense (more than 100 cm-3, cold (10–50 K and extended (larger than 1 pc, are characterized by a gas-to-dust mass ratio of about 100, by a specific power grain size spectrum (grain radii usually cover the range 0.001–3 micron and by an average dust-to-gas number density ratio of about 10-12. Frequently these clouds contain small-scale (10–100 AU condensations with gas concentrations ranging up to 10 5 cm-3. At their casual passage over the solar system they exert pressures very much enhanced with respect to today’s standards. Under these conditions it will occur that the Earth is exposed directly to the interstellar flow. It is shown first that even close to the Sun, at 1 AU, the cloud’s matter is only partly ionized and should mainly interact with the solar wind by charge exchange processes. Dust particles of the cloud serve as a source of neutrals, generated by the solar UV irradiation of dust grains, causing the evaporation of icy materials. The release of neutral atoms from dust grains is then followed by strong influences on the solar wind plasma flow. The behavior of the neutral gas inflow parameters is investigated by a 2-D hydrodynamic approach to model the interaction processes. Because of a reduction of the heliospheric dimension down to 1 AU, direct influence of the cloud’s matter to the terrestrial environment and atmosphere could be envisaged.

    Key words. Interplanetary physics (heliopause and solar wind termination; interplanetary dust; interstellar gas

  13. Interstellar dust thermal emission at millimeter and microwave wavelengths

    Science.gov (United States)

    Liang, Zhuohan

    Interstellar dust grains are particles of size between a few to hundreds of nanometers, mostly made up of carbon and silicon, found in the vast space between stars within a galaxy. They are important because dust plays a major role in cycling matter and energy between stars and the interstellar medium. Models for interstellar dust thermal emission are fit to a set of 214-channel dust spectra at 60--3000 GHz. Data consist of a new and improved version of dust spectra derived from the measurements of the Far Infrared Absolute Spectrophotometer of the COsmic Background Explorer satellite, sky maps at 100 mum, 140 mum and 240 mum measured by the Diffuse Infrared Background Experiment, also onboard the CUBE satellite, and the 94 GHz dust map measured by the Wilkinson Microwave Anisotropy Probe satellite. A single-component model with its emissivity spectral index fixed at 1.7 is the best among all dust models tested. It fits 88% of the sky with a chi2dof ≤ 1.13 at 210 degrees of freedom. Within this sky region, temperatures of the dust grains are predicted to be between 16.4 K and 25.1 K, and optical depths are between 1.3 x 10 -6 and 5.1 x 10-4. The uncertainties of the dust temperature are FIRAS frequency coverage in sky regions where these two models are valid. Currently, uncertainties of the best-fit parameters are limited by FIRAS angular resolution and noise, and the angular resolution of the model inherits that of the FIRAS. When data of better quality become available, such as from the Planck mission, this one-component alpha = 1.7 (deltaTdust/ Tdust ≤ 10%) model can be used to check future dust models.

  14. Trajectories for a Near Term Mission to the Interstellar Medium

    Science.gov (United States)

    Arora, Nitin; Strange, Nathan; Alkalai, Leon

    2015-01-01

    Trajectories for rapid access to the interstellar medium (ISM) with a Kuiper Belt Object (KBO) flyby, launching between 2022 and 2030, are described. An impulsive-patched-conic broad search algorithm combined with a local optimizer is used for the trajectory computations. Two classes of trajectories, (1) with a powered Jupiter flyby and (2) with a perihelion maneuver, are studied and compared. Planetary flybys combined with leveraging maneuvers reduce launch C3 requirements (by factor of 2 or more) and help satisfy mission-phasing constraints. Low launch C3 combined with leveraging and a perihelion maneuver is found to be enabling for a near-term potential mission to the ISM.

  15. Spectroscopy of the earth's atmosphere and interstellar medium

    CERN Document Server

    Rao, KN

    1992-01-01

    Spectroscopy of the Earth's Atmosphere and Interstellar Medium focuses on the characteristics of the electromagnetic spectrum of the Earth's atmosphere in the far-infrared and microwave regions. It discusses the modes of observation in field measurements and reviews the two techniques used in the spectral region. Organized into six chapters, this volume begins with an overview of the effect of water-vapor absorption, followed by a discussion on the two frequently used method for deriving atmospheric parameters from high-resolution infrared atmospheric spectra, namely, the equivalent width

  16. Physical conditions in CaFe interstellar clouds

    CERN Document Server

    Gnacinski, P

    2007-01-01

    Interstellar clouds that exhibit strong Ca I and Fe I lines were called CaFe clouds. The ionisation equilibrium equations were used to model the column densities of Ca II, Ca I, K I, Na I, Fe I and Ti II in CaFe clouds. The chemical composition of CaFe clouds is that of the Solar System and no depletion of elements onto dust grains is seen. The CaFe clouds have high electron densities n=1 cm^-3 that leads to high column densities of neutral Ca and Fe.

  17. Strategic Roadmap for the Development of an Interstellar Space Program

    Science.gov (United States)

    Gifra, M.; Peeters, W.

    Recent technological advances and scientific discoveries, particularly in astronomy and space technology, are opening our minds into the deepest realms of the universe, and also they are bringing a new era of space exploration and development. This sense of entering into a new era of space exploration is being boosted by the permanent discovery of new planets - to date, there are 684 confirmed extrasolar planets [1] - outside our solar system. The possibility that astronomers may soon find a habitable extrasolar planet near Earth and the recent advances in space propulsion that could reduce travel times have stimulated the space community to consider the development of an interstellar manned mission. But this scenario of entering into a new era of space development is ultimately contingent on the outcome of the actual world's economic crisis. The current financial crisis, on top of recent national and sovereign debts problems, could have serious consequences for space exploration and development as the national budgets for space activities are to freeze [2].This paper proposes a multi-decade space program for an interstellar manned mission. It designs a roadmap for the achievement of interstellar flight capability within a timeframe of 40 years, and also considers different scenarios where various technological and economical constraints are taken into account in order to know if such a space endeavour could be viable. It combines macro-level scenarios with a strategic roadmap to provide a framework for condensing all information in one map and timeframe, thus linking decision-making with plausible scenarios. The paper also explores the state of the art of space technologies 20 to 40 years in the future and its potential economic impact. It estimates the funding requirements, possible sources of funds, and the potential returns.The Interstellar Space Program proposed in this paper has the potential to help solve the global crisis by bringing a new landscape of

  18. IUE study of the very local interstellar medium. [Copernicus spacecraft

    Science.gov (United States)

    Henry, R. C.; Murthy, J.; Moos, H. W.; Landsman, W. B.; Linsky, J. L.; Vidal-Madjar, A.; Gry, C.

    1986-01-01

    The IUE and Copernicus results for the very local interstellar medium are compared. Despite its lower resolution, IUE produces results of comparable quality, giving important confirmation of Copernicus results on the density, temperature, turbulence, and deuterium-to-hydrogen ratio in the region within 10 pc of the Sun. The stars observed are in a very low-density quarter of the galaxy: multicomponent structure seen in other directions may not be present in the direction of most of the observed stars. The exceedingly low densities observed in certain directions encourages the idea that EUV studies of certain normal stars may be possible.

  19. Status of Solar Sail Propulsion: Moving Toward an Interstellar Probe

    Science.gov (United States)

    Johnson, Les; Young, Roy M.; Montgomery, Edward E., IV

    2006-01-01

    NASA's In-Space Propulsion Technology Program has developed the first-generation of solar sail propulsion systems sufficient to accomplish inner solar system science and exploration missions. These first-generation solar sails, when operational, will range in size from 40 meters to well over 100 meters in diameter and have an areal density of less than 13 grams-per-square meter. A rigorous, multiyear technology development effort culminated last year in the testing of two different 20-meter solar sail systems under thermal vacuum conditions. This effort provided a number of significant insights into the optimal design and expected performance of solar sails as well as an understanding of the methods and costs of building and using them. In a separate effort, solar sail orbital analysis tools for mission design were developed and tested. Laboratory simulations of the effects of long-term space radiation exposure were also conducted on two candidate solar sail materials. Detailed radiation and charging environments were defined for mission trajectories outside the protection of the earth's magnetosphere, in the solar wind environment. These were used in other analytical tools to prove the adequacy of sail design features for accommodating the harsh space environment. Preceding, and in conjunction with these technology efforts, NASA sponsored several mission application studies for solar sails, including one that would use an evolved sail capability to support humanity's first mission into nearby interstellar space. The proposed mission is called the Interstellar Probe. The Interstellar Probe might be accomplished in several ways. A 200-meter sail, with an areal density approaching 1 gram-per-square meter, could accelerate a robotic probe to the very edge of the solar system in just under 20 years from launch. A sail using the technology just demonstrated could make the same mission, but take significantly longer. Conventional chemical propulsion systems would require

  20. The determination of electron abundances in interstellar clouds

    Science.gov (United States)

    Wootten, A.; Snell, R.; Glassgold, A. E.

    1979-01-01

    An independent method is proposed for the determination of electron abundances in dense clouds based upon the abundance ratio of HCO(+) and CO. The method is derived from a simple application of gas phase ion molecule interstellar chemistry. It is noted that unlike the fractionation of deuterated molecules, it applies to warm as well as to cool clouds. The method is illustrated with the results of the recent abundance survey of Wooten et al. (1978). Finally, it is shown that in cases where deuterium enhancement is measured, an upper limit can be obtained for the cosmic ray ionization rate.