WorldWideScience

Sample records for hydrocarbon systems phase

  1. Simulation of the high-pressure phase equilibria of hydrocarbon-water/brine systems

    DEFF Research Database (Denmark)

    Zuo, You-Xiang; Stenby, Erling Halfdan; Guo, Tian-Min

    1996-01-01

    The major objectives of this work are: (1) extend the modified Patel-Teja (MPT) equation of state proposed for aqueous electrolyte systems (Zuo and Guo, 1991) to describe the liquid-liquid and vapor-liquid-liquid equilibria of hydrocarbon-water/brine systems through introducing an unconventional ...

  2. PHASE EQUILIBRIA FOR BINARY SYSTEMS CONTAINING IONIC LIQUID WITH WATER OR HYDROCARBONS

    Directory of Open Access Journals (Sweden)

    Dheiver Santos

    2015-12-01

    Full Text Available Abstract In this work, the mutual solubilities of sets of ionic liquids ([CnMIM] [TF2N] (n = 4, 8, 12, [C4PY] [TF2N], [C8MIM] [OTF] and organic compounds (heptane, o-xylene, toluene, or water are investigated. The experimental data measured for these systems were used to adjust the binary interaction parameters between their components for the Non-Random Two Liquid (NRTL model. The results showed that the solubility increased with temperature, with high hygroscopicity (10-1 in terms of mole fraction of the ILs, low interactions with aliphatic hydrocarbons, high interactions with aromatic hydrocarbons and the presence of a lower critical solution temperature (LCST. In addition, this study is the first to show that [C12MIM] [TF2N] is completely soluble in toluene and ortho-xylene between 273.15 and 373.15 K at 1 bar. The average deviations related to the mole fraction between the experimental and calculated values by the NRTL were less than 2.4%.

  3. HYDROCARBON AND SULFUR SENSORS FOR SOFC SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    A.M. Azad; Chris Holt; Todd Lesousky; Scott Swartz

    2003-11-01

    The following report summarizes work conducted during the Phase I program Hydrocarbon and Sulfur Sensors for SOFC Systems under contract No. DE-FC26-02NT41576. For the SOFC application, sensors are required to monitor hydrocarbons and sulfur in order to increase the operation life of SOFC components. This report discusses the development of two such sensors, one based on thick film approach for sulfur monitoring and the second galvanic based for hydrocarbon monitoring.

  4. Phase equilibria study of {N-hexylisoquinolinium bis{(trifluoromethyl)sulfonyl}imide + aromatic hydrocarbons or an alcohol} binary systems.

    Science.gov (United States)

    Domańska, Urszula; Zawadzki, Maciej; Tshibangu, M Marc; Ramjugernath, Deresh; Letcher, Trevor M

    2011-04-14

    Isoquinolinium ionic liquid (IL) has been synthesized from N-hexylisoquinolinium bromide as a substrate. Specific basic characterization of the synthesized compound is included, which includes NMR spectra, elementary analysis, and water content. The basic thermal properties of the pure IL, that is, melting and solid-solid transition temperatures, as well as the enthalpy of fusion, or solid-solid transition have been measured using a differential scanning microcalorimetry technique. The density and viscosity as a function of temperature have been measured for the pure IL at temperatures higher than the melting temperature and were extrapolated to T = 298.15 K. The temperature-composition phase diagrams of 8 binary mixtures composed of the IL N-hexylisoquinolinium bis{(trifluoromethyl)sulfonyl}imide, ([HiQuin][NTf(2)]) and an aromatic hydrocarbon (benzene, or toluene, or ethylbenzene, n-propylbenzene) or an alcohol (1-butanol, or 1-hexanol, or 1-octanol, or 1-decanol) have been determined from ambient temperature to the boiling-point temperature of the solvent at ambient pressure. A dynamic method was used over a broad range of mole fractions and temperatures from 270 to 330 K. For the binary systems, the eutectic diagrams were observed with immiscibility in the liquid phase with an upper critical solution temperature (UCST). In the case of the mixture {IL + benzene, or alkylbenzene} the eutectic systems with mutual immiscibility in the liquid phase with very high UCSTs were observed. These points were not detectable with our method and were observed at low IL mole fraction. For mixtures with alcohols, it was observed that with an increasing chain length of an alcohol, the solubility decreases and the UCST increases. The coexistence curves corresponding to liquid-liquid phase equilibrium boundaries and the solid-liquid phase equilibrium has been correlated using the well-known nonrandom two-liquid (NRTL) model.

  5. Extracellular polymeric substances enhanced mass transfer of polycyclic aromatic hydrocarbons in the two-liquid-phase system for biodegradation.

    Science.gov (United States)

    Zhang, Yinping; Wang, Fang; Yang, Xinglun; Gu, Chenggang; Kengara, Fredrick Orori; Hong, Qing; Lv, Zhengyong; Jiang, Xin

    2011-05-01

    The objective was to elucidate the role of extracellular polymeric substances (EPS) in biodegradation of polycyclic aromatic hydrocarbons in two-liquid-phase system (TLPs). Therefore, biodegradation of phenanthrene (PHE) was conducted in a typical TLPs--silicone oil-water--with PHE-degrading bacteria capable of producing EPS, Sphingobium sp. PHE3 and Micrococcus sp. PHE9. The results showed that the presence of both strains enhanced mass transfer of PHE from silicone oil to water, and that biodegradation of PHE mainly occurred at the interfaces. The ratios of tightly bound (TB) proteins to TB polysaccharides kept almost constant, whereas the ratios of loosely bound (LB) proteins to LB polysaccharides increased during the biodegradation. Furthermore, polysaccharides led to increased PHE solubility in the bulk water, which resulted in an increased PHE mass transfer. Both LB-EPS and TB-EPS (proteins and polysaccharides) correlated with PHE mass transfer in silicone oil, indicating that both proteins and polysaccharides favored bacterial uptake of PHE at the interfaces. It could be concluded that EPS could facilitate microbial degradation of PHE in the TLPs.

  6. Thermophysical properties and phase equilibria study of the binary systems {l_brace}N-hexylquinolinium bis(trifluoromethylsulfonyl)imide + aromatic hydrocarbons, or an alcohol{r_brace}

    Energy Technology Data Exchange (ETDEWEB)

    Domanska, Urszula, E-mail: ula@ch.pw.edu.p [Department of Physical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw (Poland); Thermodynamic Research Unit, School of Chemical Engineering, University of KwaZulu-Natal, Howard College Campus, King George V Avenue, Durban 4001 (South Africa); Zawadzki, Maciej [Department of Physical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw (Poland); Zwolinska, Magdalena [Department of Ergonomics, Laboratory of Thermal Loads, Central Institute for Labour Protection-National Research Institute, Czerniakowska 16, 00-701 Warsaw (Poland)

    2011-05-15

    Research highlights: We synthesized new ionic liquid, [HQuin][NTf{sub 2}] with low viscosity, and low density. We found high heat capacity, high enthalpy of melting and low melting temperature. HQuin][NTf{sub 2}] is proposed for possible use in the phase change materials (PCM). We examine phase equilibrium changes, SLE and LLE with hydrocarbons and alcohols. [HQuin][NTf{sub 2}] may be proposed as entrainer for the separation proceses. - Abstract: The new quinolinium ionic liquid has been synthesised as a continuation of our work with quinolinium-based ionic liquids (ILs). The work includes specific basic characterisation of synthesized compounds: N-hexylquinolinium bromide, [HQuin][Br] and N-hexylquinolinium bis{l_brace}(trifluoromethyl)sulfonyl{r_brace}imide [HQuin][NTf{sub 2}] by NMR spectra, elementary analysis and water content. The basic thermal properties of the pure [HQuin][NTf{sub 2}] i.e. melting and glass-transition temperatures, the enthalpy of fusion as well as heat capacity have been measured using a differential scanning microcalorimetry technique (DSC) and thermal analysis instrument (TA). Densities and viscosities were determined as a function of temperature. Phase equilibria for the binary systems: {l_brace}[HQuin][NTf{sub 2}]) + aromatic hydrocarbon (benzene, or toluene, or ethylbenzene, or n-propylbenzene), or an alcohol (1-butanol, or 1-hexanol, or 1-octanol, or 1-decanol){r_brace} have been determined at ambient pressure. A dynamic method was used over a broad range of mole fractions and temperatures from (270 to 320) K. For all the binary systems with benzene and alkylbenzenes, the eutectic diagrams were observed with immiscibility gap in the liquid phase beginning from (0.13 to 0.28) mole fraction of the IL with very high an upper critical solution temperature (UCST). For mixtures with alcohols, the complete miscibility was observed for 1-butanol and immiscibility with UCST in the liquid phase for the remaining alcohols. The typical

  7. Hydrocarbon radical thermochemistry: Gas-phase ion chemistry techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ervin, Kent M. [Univ. of Nevada, Reno, NV (United States)

    2014-03-21

    Final Scientific/Technical Report for the project "Hydrocarbon Radical Thermochemistry: Gas-Phase Ion Chemistry Techniques." The objective of this project is to exploit gas-phase ion chemistry techniques for determination of thermochemical values for neutral hydrocarbon radicals of importance in combustion kinetics.

  8. Structure and chemistry of the heteronuclear oxo-cluster [VPO4]•+: a model system for the gas-phase oxidation of small hydrocarbons.

    Science.gov (United States)

    Dietl, Nicolas; Wende, Torsten; Chen, Kai; Jiang, Ling; Schlangen, Maria; Zhang, Xinhao; Asmis, Knut R; Schwarz, Helmut

    2013-03-06

    The heteronuclear oxo-cluster [VPO4](•+) is generated via electrospray ionization and investigated with respect to both its electronic structure as well as its gas-phase reactivity toward small hydrocarbons, thus permitting a comparison to the well-known vanadium-oxide cation [V2O4](•+). As described in previous studies, the latter oxide exhibits no or just minor reactivity toward small hydrocarbons, such as CH4, C2H6, C3H8, n-C4H10, and C2H4, while substitution of one vanadium by a phosphorus atom yields the reactive [VPO4](•+) ion; the latter brings about oxidative dehydrogenation (ODH) of saturated hydrocarbons, e.g., propane and butane as well as oxygen-atom transfer (OAT) to unsaturated hydrocarbons, e.g. ethene, at thermal conditions. Further, the gas-phase structure of [VPO4](•+) is determined by IR photodissociation spectroscopy and compared to that of [V2O4](•+). DFT calculations help to elucidate the reaction mechanism. The results underline the crucial role of phosphorus in terms of C-H bond activation of hydrocarbons by mixed VPO clusters.

  9. Phase equilibria at low temperature for light hydrocarbons-methanol-water-acid gases mixtures: measurements and modelling; Equilibres de phases a basse temperature de systemes complexes CO{sub 2} - hydrocarbures legers - methanol - eau: mesures et modelisation

    Energy Technology Data Exchange (ETDEWEB)

    Ruffine, L.

    2005-10-15

    The need to develop and improve natural gas treatment processes is real. The petroleum industry usually uses separation processes which require phase equilibrium phenomena. Yet, the complexity of the phase equilibria involved results in a lack of data, which in turn limits the development of thermodynamic models. The first part of this work is devoted to experimental investigations for systems containing light hydrocarbons, methanol, water and acid gases. We present a new apparatus that was developed to measure vapor-liquid and vapor-liquid-liquid equilibria. It allowed us to obtain new phase composition data for the methanol-ethane binary system and different mixtures, and also to determine a part of the three phases equilibrium envelope of the same systems. In the second part of this work, we have developed a thermodynamic model based on the CPA equation of state. This choice may be justified by the presence of associating components like methanol, hydrogen sulfide and water in the systems. Such model is necessary for the design of gas treatment plants. Our model provides good results for phase equilibrium calculations for binaries systems without binary interaction parameter in many cases, and describes correctly the vapour-liquid and vapor-liquid-liquid equilibria for complex mixtures. (author)

  10. Gas-phase infrared photodissociation spectroscopy of cationic polyaromatic hydrocarbons

    NARCIS (Netherlands)

    Oomens, J.; van Roij, A. J. A.; Meijer, G.; von Helden, G.

    2000-01-01

    Infrared spectra of gas-phase cationic naphthalene, phenanthrene, anthracene, and pyrene are recorded in the 500-1600 cm(-1) range using multiphoton dissociation in an ion trap. Gas-phase polyaromatic hydrocarbons are photoionized by an excimer laser and stored in a quadrupole ion trap. Subsequent i

  11. Retention mechanism for polycyclic aromatic hydrocarbons in reversed-phase liquid chromatography with monomeric stationary phases.

    Science.gov (United States)

    Rafferty, Jake L; Siepmann, J Ilja; Schure, Mark R

    2011-12-23

    Reversed-phase liquid chromatography (RPLC) is the foremost technique for the separation of analytes that have very similar chemical functionalities, but differ only in their molecular shape. This ability is crucial in the analysis of various mixtures with environmental and biological importance including polycyclic aromatic hydrocarbons (PAHs) and steroids. A large amount of effort has been devoted to studying this phenomenon experimentally, but a detailed molecular-level description remains lacking. To provide some insight on the mechanism of shape selectivity in RPLC, particle-based simulations were carried out for stationary phases and chromatographic parameters that closely mimic those in an experimental study by Sentell and Dorsey [J. Chromatogr. 461 (1989) 193]. The retention of aromatic hydrocarbons ranging in size from benzene to the isomeric PAHs of the formula C(18)H(12) was examined for model RPLC systems consisting of monomeric dimethyl octadecylsilane (ODS) stationary phases with surface coverages ranging from 1.6 to 4.2 μmol/m(2) (i.e., stationary phases yielding low to intermediate shape selectivity) in contact with a 67/33 mol% acetonitrile/water mobile phase. The simulations show that the stationary phase acts as a very heterogeneous environment where analytes with different shapes prefer different spatial regions with specific local bonding environments of the ODS chains. However, these favorable retentive regions cannot be described as pre-existing cavities because the chain conformation in these local stationary phase regions adapts to accommodate the analytes.

  12. Artificial Hydrocarbon Networks Fuzzy Inference System

    Directory of Open Access Journals (Sweden)

    Hiram Ponce

    2013-01-01

    Full Text Available This paper presents a novel fuzzy inference model based on artificial hydrocarbon networks, a computational algorithm for modeling problems based on chemical hydrocarbon compounds. In particular, the proposed fuzzy-molecular inference model (FIM-model uses molecular units of information to partition the output space in the defuzzification step. Moreover, these molecules are linguistic units that can be partially understandable due to the organized structure of the topology and metadata parameters involved in artificial hydrocarbon networks. In addition, a position controller for a direct current (DC motor was implemented using the proposed FIM-model in type-1 and type-2 fuzzy inference systems. Experimental results demonstrate that the fuzzy-molecular inference model can be applied as an alternative of type-2 Mamdani’s fuzzy control systems because the set of molecular units can deal with dynamic uncertainties mostly present in real-world control applications.

  13. Phase Behavior of Light Gases in Hydrocarbon and Aqueous Solvents

    Energy Technology Data Exchange (ETDEWEB)

    Gasem, K.A.M.; Robinson, R.L., Jr.; Trvedi, N.J., Gao, W.

    1997-09-01

    Under previous support from the Department of Energy, an experimental facility has been established and operated to measure valuable vapor-liquid equilibrium data for systems of interest in the production and processing of coal fluids. To facilitate the development and testing of models for prediction of the phase behavior for such systems, we have acquired substantial amounts of data on the equilibrium phase compositions for binary mixtures of heavy hydrocarbon solvents with a variety of supercritical solutes, including hydrogen, methane, ethane, carbon monoxide, and carbon dioxide. The present project focuses on measuring the phase behavior of light gases and water in Fischer-Tropsch (F-T) type solvents at conditions encountered in indirect liquefaction processes and evaluating and developing theoretically-based correlating frameworks to predict the phase behavior of such systems. Specific goals of the proposed work include (a) developing a state-of-the-art experimental facility to permit highly accurate measurements of equilibrium phase compositions (solubilities) of challenging F-T systems, (b) measuring these properties for systematically-selected binary, ternary and molten F-T wax mixtures to provide critically needed input data for correlation development, (c) developing and testing models suitable for describing the phase behavior of such mixtures, and (d) presenting the modeling results in generalized, practical formats suitable for use in process engineering calculations. During the present reporting period, our solubility apparatus was refurbished and restored to full service. To test the experimental apparatus and procedures used, measurements were obtained for the solubility Of C0{sub 2} in benzene at 160{degrees}F. Having confirmed the accuracy of the newly acquired data in comparison with our previous measurements and data reported in the literature for this test system, we have begun to measure the solubility of hydrogen in hexane. The measurements

  14. Thermodynamics of organic mixtures containing amines. X. Phase equilibria for binary systems formed by imidazoles and hydrocarbons: Experimental data and modelling using DISQUAC

    Energy Technology Data Exchange (ETDEWEB)

    Domanska, Urszula; Zawadzki, Maciej [Physical Chemistry Division, Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw (Poland); Gonzalez, Juan Antonio, E-mail: jagl@termo.uva.e [G.E.T.E.F., Grupo Especializado en Termodinamica de Equilibrio entre Fases, Departamento de Fisica Aplicada, Facultad de Ciencias, Universidad de Valladolid, E-47071, Valladolid (Spain)

    2010-04-15

    (Solid + liquid) equilibrium (SLE) temperatures have been determined using a dynamic method for the systems (1H-imidazole, + benzene, + toluene, + hexane, or + cyclohexane; 1-methylimidazole + benzene, or + toluene, 2-methyl-1H-imidazole + benzene, + toluene, or + cyclohexane, and benzimidazole + benzene). In addition (liquid + liquid) equilibrium (LLE) temperatures have been obtained using a cloud point method for (1H-imidazole, + hexane, or + cyclohexane; 1-methylimidazole + toluene, and 2-methyl-1H-imidazole + cyclohexane). The measured systems show positive deviations from the Raoult's law, due to strong dipolar interactions between amine molecules related to the high dipole moment of imidazoles. On the other hand, DISQUAC interaction parameters for the contacts present in these solutions and for the amine/hydroxyl contacts in (1H-imidazole + 1-alkanol) mixtures have been determined. The model correctly represents the available data for the examined systems. Deviations between experimental and calculated SLE temperatures are similar to those obtained using the Wilson or NRTL equations, or the UNIQUAC association solution model. The quasichemical interaction parameters are the same for mixtures containing 1H-imidazole, 1-methylimidazole, or 2-methyl-1H-imidazole and hydrocarbons. This may be interpreted assuming that they are members of a homologous series. Benzimidazole behaves differently.

  15. Escherichia coli as a potential hydrocarbon conversion microorganism. Oxidation of aliphatic and aromatic compounds by recombinant E. coli in two-liquid phase (aqueous-organic) systems

    NARCIS (Netherlands)

    Favre-Bulle, Olivier

    1992-01-01

    The increased interest in the study of hydrocarbon utilizing microorganisms in recent years has been stimulated by the possibility of using their monooxygenases in the selective oxidation of aliphatic and aromatic compounds. As an example, long chain (>C16) n-alkanes are converted to dicarboxylic

  16. An equation of state for property prediction of alcohol-hydrocarbon and water-hydrocarbon systems

    Energy Technology Data Exchange (ETDEWEB)

    Pires, Adolfo P. [Laboratory of Petroleum Engineering and Exploration, Universidade Estadual do Norte Fluminense-UENF, RJ Macae (Brazil); Mohamed, Rahoma S. [Process Engineering Laboratory, School of Chemical Engineering, Universidade Estadual de Campinas, Unicamp, Caixa Postal 6066, 13083-970 SP Campinas (Brazil); Ali Mansoori, G. [Department of Chemical Engineering, University of Illinois at Chicago, 810 S. Clinton Street, 60607-7000 Chicago, IL (United States)

    2001-12-29

    Equations of state have been widely used in the petroleum and chemical industries for thermodynamic property calculation. In the presence of polar substances that self-associate through hydrogen bonding (such as water or alcohol), equations of state are of very limited use. One way to account for the association is to consider the equation of state to be formed of two contributions: physical and chemical. In this work, we develop an equation of state consisting of two terms as proposed by Andreko [Fluid Phase Equilib. 65 (1991) 89], a chemical and a physical term, for correlation of thermodynamic properties of mixtures containing an associating species. This equation of state is used to correlate vapor pressure data for a number of associating molecules, such as alcohol and water, as well as bubble point pressure data for binary water-hydrocarbon and alcohol-hydrocarbon systems. The results obtained are in good agreement with the experimental data and requiring the use of only one adjustable parameter for each binary system.

  17. A RESEARCH ON PHASE CHARACTERISTICS OF THE HYDROCARBONS IN KUCHE PETROLEUM SYSTEM%库车油气系统烃类的流体相态特征研究

    Institute of Scientific and Technical Information of China (English)

    周兴熙

    2001-01-01

    22 oil and gas reservoirs have been found in Kuche petroleumsystem, being of various phase state types. According to the PVT experimental data and phase diagrams of 43 layers in these reservoirs, the hydrocarbons in Kuche petroleum system may be divided into 4 types and 7 subtypes. The results of studying the proved oil and gas reserves and predicted oil and gas resources indicate that the petroleum system is mainly rich in natural gas and the black oil and volatile oil sit in subordinate status, being mostly the associated and residual volatile oil formed by differentiation. Through comprehensively analyzing the physical properties and phase parameters of the oil and gas and the oil and gas resources in the system, it is clearly shown that the heavy hydrocarbon content and condensate content in natural gas are mainly controlled by the maturities of hydrocarbon source rocks;the reservoir formation conditions and exploration results (especially the discovery of giant Kela-2 gas field) indicate that the high-temperature cracking gas is of a good potential in the system,mainly distributing in the high- and post-maturity areas in the middle section of northern zone;and a wide region is occupied mainly by condensate gas and associated liquid hydrocarbon in the system.%库车油气系统已经发现了22个油气藏,其相态类型的多样性的特点十分鲜明,据这些油气藏的43层PVT实验数据和相图,可以把库车油气系统的烃类分为四类7种。探明的油气储量和油气资源预测结果表明该系统“整体富气”,黑油、挥发油处于从属地位,而且多为分异作用形成的伴生型和残余型的轻质油。综合分析油、气的物理性质、相态参数和系统的油气资源等地质条件,可明显地看出天然气的干湿程度及凝析油含量的高低主要受烃源岩成熟度控制;系统的成藏条件和勘探成果(特别是克拉2大气田的发现)都说明高

  18. System and process for upgrading hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Bingham, Dennis N.; Klingler, Kerry M.; Smith, Joseph D.; Turner, Terry D.; Wilding, Bruce M.

    2015-08-25

    In one embodiment, a system for upgrading a hydrocarbon material may include a black wax upgrade subsystem and a molten salt gasification (MSG) subsystem. The black wax upgrade subsystem and the MSG subsystem may be located within a common pressure boundary, such as within a pressure vessel. Gaseous materials produced by the MSG subsystem may be used in the process carried out within the black wax upgrade subsystem. For example, hydrogen may pass through a gaseous transfer interface to interact with black wax feed material to hydrogenate such material during a cracking process. In one embodiment, the gaseous transfer interface may include one or more openings in a tube or conduit which is carrying the black wax material. A pressure differential may control the flow of hydrogen within the tube or conduit. Related methods are also disclosed.

  19. Phase behaviour in water/hydrocarbon mixtures involved in gas production systems; etude des equilibres des systemes: eau-hydrocarbures-gaz acides dans le cadre de la production de gaz

    Energy Technology Data Exchange (ETDEWEB)

    Chapoy, A.

    2004-11-15

    Inside wells, natural gases frequently coexist with water. The gases are in equilibrium with the sub-adjacent aquifer. Many problems are associated with the presence of water during the production, transport and processing of natural gases. Accurate knowledge of the thermodynamic properties of the water/hydrocarbon and water-inhibitor/hydrocarbon equilibria near the hydrate forming conditions, at sub-sea pipeline conditions and during the transport is crucial for the petroleum industry. An apparatus based on a static/analytic method combined with a dilutor apparatus to calibrate on the gas chromatograph (GC) detectors with water was used to measure the water content of binary systems (i.e.: water - methane, ethane - water, nitrogen - water...) as well of a synthetic hydrocarbon gas mixture (i.e.: 94% methane, 4% ethane and 2% n-butane) with and without inhibitor. This same apparatus was also used generate data of methane, ethane, propane, n-butane and nitrogen solubility in water and also the solubilities of a synthetic mixture in water. In-house software has been developed in order to fit and model the experimental data. (author)

  20. Noble gas and hydrocarbon tracers in multiphase unconventional hydrocarbon systems: Toward integrated advanced reservoir simulators

    Science.gov (United States)

    Darrah, T.; Moortgat, J.; Poreda, R. J.; Muehlenbachs, K.; Whyte, C. J.

    2015-12-01

    Although hydrocarbon production from unconventional energy resources has increased dramatically in the last decade, total unconventional oil and gas recovery from black shales is still less than 25% and 9% of the totals in place, respectively. Further, the majority of increased hydrocarbon production results from increasing the lengths of laterals, the number of hydraulic fracturing stages, and the volume of consumptive water usage. These strategies all reduce the economic efficiency of hydrocarbon extraction. The poor recovery statistics result from an insufficient understanding of some of the key physical processes in complex, organic-rich, low porosity formations (e.g., phase behavior, fluid-rock interactions, and flow mechanisms at nano-scale confinement and the role of natural fractures and faults as conduits for flow). Noble gases and other hydrocarbon tracers are capably of recording subsurface fluid-rock interactions on a variety of geological scales (micro-, meso-, to macro-scale) and provide analogs for the movement of hydrocarbons in the subsurface. As such geochemical data enrich the input for the numerical modeling of multi-phase (e.g., oil, gas, and brine) fluid flow in highly heterogeneous, low permeability formations Herein we will present a combination of noble gas (He, Ne, Ar, Kr, and Xe abundances and isotope ratios) and molecular and isotopic hydrocarbon data from a geographically and geologically diverse set of unconventional hydrocarbon reservoirs in North America. Specifically, we will include data from the Marcellus, Utica, Barnett, Eagle Ford, formations and the Illinois basin. Our presentation will include geochemical and geological interpretation and our perspective on the first steps toward building an advanced reservoir simulator for tracer transport in multicomponent multiphase compositional flow (presented separately, in Moortgat et al., 2015).

  1. Molecular networks in Position, Momentum, and Phase Space: A Case Study on Simple Hydrocarbons

    DEFF Research Database (Denmark)

    Schmider, Hartmut; Ho, Minhhuy

    1996-01-01

    The notion of a molecular network as a system of local density maxima, connected by gradient paths, is extended from position space and the underlying charge density to momentum and phase space, and the momentum density and Husimi distribution, respectively. Local maxima and gradient paths...... are identified in a series of nine small hydrocarbonic molecules, and the resulting "molecular graphs" are interpreted in terms of symmetry and topology. For the example of a symmetric SN2 reaction, it is shown that the topology of the Husimi function based graphs can be useful for the classification of chemical...

  2. Phases equilibria at low temperature between light hydrocarbons mixtures, methanol and water: measures and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Rossilhol, N.

    1995-12-01

    In this work we discuss phase equilibria of mixtures similar to those formed during natural gas treatment (transportation and purification). The mixtures can contain light hydrocarbons (methane, ethane, propane, etc), acid gases (hydrogen sulfide, carbon dioxide), methanol (solvent, inhibitor) and (water). We present a low temperature phase equilibrium equipment to obtain two and three phase equilibrium data of light hydrocarbon-methanol-water mixtures. The realisation of the equipment, the measuring procedure and some determination of binary, ternary and quaternary systems are described. The range of application is - 100 deg. C to 0 deg. C in temperature and between 0 and 100 bar in pressure. The binary subsystems of the systems mentioned above are calculated in order to study the possibilities of the MHV2 and Wong and Sandler methods to represent simultaneously their vapor-liquid and liquid-liquid equilibria. According to the formalism proposed by the two methods, the cubic Soave-Redlich-Kwong equation of state is systematically combined with the NRTL excess Gibbs energy model. (authors). 72 refs., 47 figs., 38 tabs.

  3. Cogeneration systems and processes for treating hydrocarbon containing formations

    Science.gov (United States)

    Vinegar, Harold J.; Fowler, Thomas David; Karanikas, John Michael

    2009-12-29

    A system for treating a hydrocarbon containing formation includes a steam and electricity cogeneration facility. At least one injection well is located in a first portion of the formation. The injection well provides steam from the steam and electricity cogeneration facility to the first portion of the formation. At least one production well is located in the first portion of the formation. The production well in the first portion produces first hydrocarbons. At least one electrical heater is located in a second portion of the formation. At least one of the electrical heaters is powered by electricity from the steam and electricity cogeneration facility. At least one production well is located in the second portion of the formation. The production well in the second portion produces second hydrocarbons. The steam and electricity cogeneration facility uses the first hydrocarbons and/or the second hydrocarbons to generate electricity.

  4. Hydrogen production by aqueous phase reforming of light oxygenated hydrocarbons

    Science.gov (United States)

    Shabaker, John William

    Aqueous phase reforming (APR) of renewable oxygenated hydrocarbons (e.g., methanol, ethylene glycol, glycerol, sorbitol, glucose) is a promising new technology for the catalytic production of high-purity hydrogen for fuel cells and chemical processing. Supported Pt catalysts are effective catalysts for stable and rapid H2 production at temperatures near 500 K (H 2 turnover frequencies near 10 min-1). Inexpensive Raney Ni-based catalysts have been developed using a combination of fundamental and high-throughput studies that have similar catalytic properties as Pt-based materials. Promotion of Raney Ni with Sn by controlled surface reaction of organometallic tin compounds is necessary to control formation of thermodynamically-favorable alkane byproducts. Detailed characterization by Mossbauer spectroscopy, electron microscopy, adsorption studies, and x-ray photoelectron spectroscopy (XPS/ESCA) has shown that NiSn alloys are formed during heat treatment, and may be responsible for enhanced stability and selectivity for hydrogen production. Detailed kinetic studies led to the development of a kinetic mechanism for the APR reaction on Pt and NiSn catalysts, in which the oxygenate decomposes through C--H and O--H cleavage, followed by C--C cleavage and water gas shift of the CO intermediate. The rate limiting step on Pt surfaces is the initial dehydrogenation, while C--C cleavage appears rate limiting over NiSn catalysts. Tin promotion of Raney Ni catalysts suppresses C--O bond scission reactions that lead to alkane formation without inhibiting fast C--C and C--H cleavage steps that are necessary for high rates of reforming. A window of operating temperature, pressure, and reactor residence time has been identified for use of the inexpensive NiSn catalysts as a Pt substitute. Concentrated feed stocks and aggressive pretreatments have been found to counteract catalyst deactivation by sintering in the hydrothermal APR environment and allow stable, long-term production of H

  5. Unravelling the impact of hydrocarbon structure on the fumarate addition mechanism--a gas-phase ab initio study.

    Science.gov (United States)

    Bharadwaj, Vivek S; Vyas, Shubham; Villano, Stephanie M; Maupin, C Mark; Dean, Anthony M

    2015-02-14

    The fumarate addition reaction mechanism is central to the anaerobic biodegradation pathway of various hydrocarbons, both aromatic (e.g., toluene, ethyl benzene) and aliphatic (e.g., n-hexane, dodecane). Succinate synthase enzymes, which belong to the glycyl radical enzyme family, are the main facilitators of these biochemical reactions. The overall catalytic mechanism that converts hydrocarbons to a succinate molecule involves three steps: (1) initial H-abstraction from the hydrocarbon by the radical enzyme, (2) addition of the resulting hydrocarbon radical to fumarate, and (3) hydrogen abstraction by the addition product to regenerate the radical enzyme. Since the biodegradation of hydrocarbon fuels via the fumarate addition mechanism is linked to bio-corrosion, an improved understanding of this reaction is imperative to our efforts of predicting the susceptibility of proposed alternative fuels to biodegradation. An improved understanding of the fuel biodegradation process also has the potential to benefit bioremediation. In this study, we consider model aromatic (toluene) and aliphatic (butane) compounds to evaluate the impact of hydrocarbon structure on the energetics and kinetics of the fumarate addition mechanism by means of high level ab initio gas-phase calculations. We predict that the rate of toluene degradation is ∼100 times faster than butane at 298 K, and that the first abstraction step is kinetically significant for both hydrocarbons, which is consistent with deuterium isotope effect studies on toluene degradation. The detailed computations also show that the predicted stereo-chemical preference of the succinate products for both toluene and butane are due to the differences in the radical addition rate constants for the various isomers. The computational and kinetic modeling work presented here demonstrates the importance of considering pre-reaction and product complexes in order to accurately treat gas phase systems that involve intra and inter

  6. Diesel-related hydrocarbons can dominate gas phase reactive carbon in megacities

    Directory of Open Access Journals (Sweden)

    R. E. Dunmore

    2015-09-01

    Full Text Available Hydrocarbons are key precursors to two priority air pollutants, ozone and particulate matter. Those with two to seven carbons have historically been straightforward to observe and have been successfully reduced in many developed cities through air quality policy interventions. Longer chain hydrocarbons released from diesel vehicles are not considered explicitly as part of air quality strategies and there are few direct measurements of their gaseous abundance in the atmosphere. This study describes the chemically comprehensive and continuous measurements of organic compounds in a developed megacity (London, which demonstrate that on a seasonal median basis, diesel-related hydrocarbons represent only 20–30 % of the total hydrocarbon mixing ratio but comprise more than 50 % of the atmospheric hydrocarbon mass and are a dominant local source of secondary organic aerosols. This study shows for the first time that 60 % of the winter primary hydrocarbon hydroxyl radical reactivity is from diesel-related hydrocarbons and using the maximum incremental reactivity scale, we predict that they contribute up to 50 % of the ozone production potential in London. Comparing real-world urban composition with regulatory emissions inventories in the UK and US highlights a previously unaccounted for, but very significant, under-reporting of diesel-related hydrocarbons; an underestimation of a factor ~4 for C9 species rising to a factor of over 70 for C12 during winter. These observations show that hydrocarbons from diesel vehicles can dominate gas phase reactive carbon in cities with high diesel fleet fractions. Future control of urban particulate matter and ozone in such locations requires a shift in policy focus onto gas phase hydrocarbons released from diesels as this vehicle type continues to displace gasoline world-wide.

  7. Calculation of Interfacial Tensions of Hydrocarbon-water Systems under Reservoir Conditions

    DEFF Research Database (Denmark)

    Zuo, You-Xiang; Stenby, Erling Halfdan

    1998-01-01

    Assuming that the number densities of each component in a mixture are linearly distributed across the interface between the coexisting vapor-liquid or liquid-liquid phases, we developed in this research work a linear-gradient-theory (LGT) model for computing the interfacial tension of hydrocarbon......-brine systems. The new model was tested on a number of hydrocarbon-water/brine mixtures and two crude oil-water systems under reservoir conditions. The results show good agreement between the predicted and the experimental interfacial tension data....

  8. Method of preparing and utilizing a catalyst system for an oxidation process on a gaseous hydrocarbon stream

    Science.gov (United States)

    Berry, David A; Shekhawat, Dushyant; Smith, Mark; Haynes, Daniel

    2013-07-16

    The disclosure relates to a method of utilizing a catalyst system for an oxidation process on a gaseous hydrocarbon stream with a mitigation of carbon accumulation. The system is comprised of a catalytically active phase deposited onto an oxygen conducting phase, with or without supplemental support. The catalytically active phase has a specified crystal structure where at least one catalytically active metal is a cation within the crystal structure and coordinated with oxygen atoms within the crystal structure. The catalyst system employs an optimum coverage ratio for a given set of oxidation conditions, based on a specified hydrocarbon conversion and a carbon deposition limit. Specific embodiments of the catalyst system are disclosed.

  9. A review of catalytic aqueous-phase reforming of oxygenated hydrocarbons derived from biorefinery water fractions

    NARCIS (Netherlands)

    Coronado, I.; Stekrova, M.; Reinikainen, M.; Simell, P.; Lefferts, Leonardus; Lehtonen, J.

    2016-01-01

    Aqueous-phase reforming (APR) of oxygenated hydrocarbons is a process for the production of hydrogen and light alkanes. The reactants of APR remain in liquid phase during the reaction avoiding an energetically demanding vaporization-step compared to processes such as steam reforming (SR).

  10. Recommended Liquid-Liquid Equilibrium Data. Hydrocarbons with Seawater Systems

    Science.gov (United States)

    Góral, Marian; Gierycz, Paweł; Oracz, Paweł; Shaw, David G.

    2011-12-01

    The solubilities of C5-C26 hydrocarbons in seawater, reviewed previously, were re-evaluated using a predictive model based on the Sechenov equation. It was found that, within the scope of investigated data, the Sechenov constant is proportional to a hydrocarbon-specific parameter representing the size of the cavity in water needed to accommodate the dissolved molecule of the hydrocarbon. The proportionality coefficient has one value for n-alkanes, cycloalkanes, and alkylbenzenes, whereas for higher aromatics (including those with fused rings), a second value of the coefficient is indicated. The proposed model provides a framework for comparison of the data for various systems and helps in the recognition of systematic error. Evaluation of experimental solubility data and analysis of error propagation is given.

  11. Chemical Kinetics of Hydrocarbon Ignition in Practical Combustion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Westbrook, C.K.

    2000-07-07

    Chemical kinetic factors of hydrocarbon oxidation are examined in a variety of ignition problems. Ignition is related to the presence of a dominant chain branching reaction mechanism that can drive a chemical system to completion in a very short period of time. Ignition in laboratory environments is studied for problems including shock tubes and rapid compression machines. Modeling of the laboratory systems are used to develop kinetic models that can be used to analyze ignition in practical systems. Two major chain branching regimes are identified, one consisting of high temperature ignition with a chain branching reaction mechanism based on the reaction between atomic hydrogen with molecular oxygen, and the second based on an intermediate temperature thermal decomposition of hydrogen peroxide. Kinetic models are then used to describe ignition in practical combustion environments, including detonations and pulse combustors for high temperature ignition, and engine knock and diesel ignition for intermediate temperature ignition. The final example of ignition in a practical environment is homogeneous charge, compression ignition (HCCI) which is shown to be a problem dominated by the kinetics intermediate temperature hydrocarbon ignition. Model results show why high hydrocarbon and CO emissions are inevitable in HCCI combustion. The conclusion of this study is that the kinetics of hydrocarbon ignition are actually quite simple, since only one or two elementary reactions are dominant. However, there are many combustion factors that can influence these two major reactions, and these are the features that vary from one practical system to another.

  12. Thermochemical properties and phase behavior of halogenated polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Fu, Jinxia; Suuberg, Eric M

    2012-03-01

    Knowledge of vapor pressure of organic pollutants is essential in predicting their fate and transport in the environment. In the present study, the vapor pressures of 12 halogenated polycyclic aromatic compounds (PACs), 9-chlorofluorene, 2,7-dichlorofluorene, 2-bromofluorene, 9-bromofluorene, 2,7-dibromofluorene, 2-bromoanthracene, 9-chlorophenanthrene, 9-bromophenanthrene, 9,10-dibromophenanthrene, 1-chloropyrene, 7-bromobenz[a]anthracene, and 6,12-dibromochrysene, were measured using the Knudsen effusion method over the temperature range of 301 to 464 K. Enthalpies and entropies of sublimation of these compounds were determined via application of the Clausius-Clapeyron equation. The data were also compared with earlier published literature values to study the influence of halogen substitution on vapor pressure of PACs. As expected, the halogen substitution decreases vapor pressure compared with parent compounds but does not necessarily increase the enthalpy of sublimation. Furthermore, the decrease of vapor pressure also depends on the substitution position and the substituted halogen, and the di-substitution of chlorine and/or bromine decreases the vapor pressure compared with single halogen-substituted polycyclic aromatic hydrocarbons. In addition, the enthalpy of fusion and melting temperature of these 12 PACs were determined using differential scanning calorimetry and melting point analysis.

  13. Standard state Gibbs energies of hydration of hydrocarbons at elevated temperatures as evaluated from experimental phase equilibria studies

    Science.gov (United States)

    Plyasunov, Andrey V.; Shock, Everett L.

    2000-08-01

    Experimental results of phase equilibria studies at elevated temperatures for more than twenty hydrocarbon-water systems were uniformly correlated within the framework of the Peng-Robinson-Stryjek-Vera equation of state in combination with simple mixing rules. This treatment allows evaluation of the Gibbs energy of hydration for many alkanes, 1-alkenes, cycloalkanes (derivatives of cyclohexane) and alkylbenzenes up to 623 K at saturated water vapor pressure and up to 573 K at 50 MPa. Results for homologous series show regular changes with increasing carbon number, and confirm the applicability of the group contribution approach to the Gibbs energy of hydration of hydrocarbons at elevated temperatures. The temperature dependence of group contributions to the Gibbs energy of hydration were determined for CH 3, CH 2, and CH in aliphatic hydrocarbons; C=C and H for alkenes; c-CH 2 and c-CH in cycloalkanes; and CH ar and C ar in alkylbenzenes (or aromatic hydrocarbons). Close agreement between calculated and experimental results suggests that this approach provides reasonable estimates of Gibbs energy of hydration for many alkanes, 1-alkenes, alkyl cyclohexanes and alkylbenzenes at temperatures up to 623 K and pressures up to 50 MPa.

  14. The Effect of Hydrocarbon Contamination on the Volta Potential of Second Phase Particles in Beryllium

    OpenAIRE

    Mallinson, Christopher; Watts, John

    2016-01-01

    The effect on the Volta potential, measured from second phase particles in beryllium, by the thin layer of hydrocarbon contamination pyrolised onto the surface under the action of an electron beam during secondary electron imaging has been investigated. Despite being only a few nanometres thick, this contamination has a significant influence on the Volta potential of second phase particles of interest. This work shows that such contamination can have a substantial effect on the measured poten...

  15. Use of dissolved and vapor-phase gases to investigate methanogenic degradation of petroleum hydrocarbon contamination in the subsurface

    Science.gov (United States)

    Amos, R.T.; Mayer, K.U.; Bekins, B.A.; Delin, G.N.; Williams, R.L.

    2005-01-01

    [1] At many sites contaminated with petroleum hydrocarbons, methanogenesis is a significant degradation pathway. Techniques to estimate CH4 production, consumption, and transport processes are needed to understand the geochemical system, provide a complete carbon mass balance, and quantify the hydrocarbon degradation rate. Dissolved and vapor-phase gas data collected at a petroleum hydrocarbon contaminated site near Bemidji, Minnesota, demonstrate that naturally occurring nonreactive or relatively inert gases such as Ar and N2 can be effectively used to better understand and quantify physical and chemical processes related to methanogenic activity in the subsurface. In the vadose zone, regions of Ar and N2 depletion and enrichment are indicative of methanogenic and methanotrophic zones, and concentration gradients between the regions suggest that reaction-induced advection can be an important gas transport process. In the saturated zone, dissolved Ar and N2 concentrations are used to quantify degassing driven by methanogenesis and also suggest that attenuation of methane along the flow path, into the downgradient aquifer, is largely controlled by physical processes. Slight but discernable preferential depletion of N2 over Ar, in both the saturated and unsaturated zones near the free-phase oil, suggests reactivity of N2 and is consistent with other evidence indicating that nitrogen fixation by microbial activity is taking place at this site. Copyright 2005 by the American Geophysical Union.

  16. Evaluation of analytical methodology for hydrocarbons in high pressure air and nitrogen systems. [data aquisition

    Science.gov (United States)

    1977-01-01

    Information regarding the safety limits of hydrocarbons in liquid and gaseous oxygen, the steps taken for hydrocarbon removal from liquified gases, and the analysis of the contaminants was searched and the results are presented. The safety of hydrocarbons in gaseous systems was studied, and the latest hydrocarbon test equipment and methodology is reviewed. A detailed sampling and analysis plan is proposed to evaluate high pressure GN2 and LOX systems.

  17. Dual phase vacuum extraction technology for the recovery of petroleum hydrocarbon contamination from the subsurface : a case study

    Energy Technology Data Exchange (ETDEWEB)

    Kallur, V.G.; Agar, J.G.; Wong, T.T.; Naus, J. [O' Connor Associates Environmental Inc., Calgary, AB (Canada); Michielsen, A.P. [Imperial Oil Ltd., Burnaby, BC (Canada)

    2003-07-01

    This paper presents a case history concerning the application of dual phase vacuum extraction (DPVE) technology for the remediation of subsurface petroleum hydrocarbon (PHC) contamination in silty soils at a service station site located in Vancouver, British Columbia. It also summarized the design and performance monitoring results for the site, in conjunction with the performance monitoring results from similar DPVE systems in operation at 7 other sites in western Canada. Each of these sites is underlain by both fine-grained and coarser grained sandy soils. The study offers useful design guidance and insight on the practical limitations of DPVE technology for PHC remediation. 2 refs., 6 tabs., 4 figs.

  18. Phase behavior, rheological property, and transmutation of vesicles in fluorocarbon and hydrocarbon surfactant mixtures.

    Science.gov (United States)

    Yuan, Zaiwu; Qin, Menghua; Chen, Xiushan; Liu, Changcheng; Li, Hongguang; Hao, Jingcheng

    2012-06-26

    We present a detailed study of a salt-free cationic/anionic (catanionic) surfactant system where a strongly alkaline cationic surfactant (tetradecyltrimethylammonium hydroxide, TTAOH) was mixed with a single-chain fluorocarbon acid (nonadecafluorodecanoic acid, NFDA) and a hyperbranched hydrocarbon acid [di-(2-ethylhexyl)phosphoric acid, DEHPA] in water. Typically the concentration of TTAOH is fixed while the total concentration and mixing molar ratio of NFDA and DEHPA is varied. In the absence of DEHPA and at a TTAOH concentration of 80 mmol·L(-1), an isotropic L(1) phase, an L(1)/L(α) two-phase region, and a single L(α) phase were observed successively with increasing mixing molar ratio of NFDA to TTAOH (n(NFDA)/n(TTAOH)). In the NFDA-rich region (n(NFDA)/n(TTAOH) > 1), a small amount of excess NFDA can be solubilized into the L(α) phase while a large excess of NFDA eventually leads to phase separation. When NFDA is replaced gradually by DEHPA, the mixed system of TTAOH/NFDA/DEHPA/H(2)O follows the same phase sequence as that of the TTAOH/NFDA/H(2)O system and the phase boundaries remain almost unchanged. However, the viscoelasticity of the samples in the single L(α) phase region becomes higher at the same total surfactant concentration as characterized by rheological measurements. Cryo-transmission electron microscopic (cryo-TEM) observations revealed a microstructural evolution from unilamellar vesicles to multilamellar ones and finally to gaint onions. The size of the vesicle and number of lamella can be controlled by adjusting the molar ratio of NFDA to DEHPA. The dynamic properties of the vesicular solutions have also been investigated. It is found that the yield stress and the storage modulus are time-dependent after a static mixing process between the two different types of vesicle solutions, indicating the occurrence of a dynamic fusion between the two types of vesicles. The microenvironmental changes induced by aggregate transitions were probed by

  19. Apparatus for hydrocarbon extraction

    Science.gov (United States)

    Bohnert, George W.; Verhulst, Galen G.

    2013-03-19

    Systems and methods for hydrocarbon extraction from hydrocarbon-containing material. Such systems and methods relate to extracting hydrocarbon from hydrocarbon-containing material employing a non-aqueous extractant. Additionally, such systems and methods relate to recovering and reusing non-aqueous extractant employed for extracting hydrocarbon from hydrocarbon-containing material.

  20. Significance of Microbiology in Porous Hydrocarbon Related Systems

    KAUST Repository

    Augsburger, Nicolas

    2017-07-01

    This thesis explores bio-mediated processes in geotechnical and petroleum engineering. Worldwide energy consumption is rapidly increasing as the world population and per-capita consumption rises. The US Energy Information Agency (EIA) predicts that hydrocarbons will remain the primary energy source to satisfy the surging energy demands in the near future. The three topics described in detail in this document aim to link microbiology with geotechnical engineering and the petroleum industry. Microorganisms have the potential to exploit residual hydrocarbons in depleted reservoirs in a technique known as microbial enhanced oil recovery, MEOR. The potential of biosurfactants was analyzed in detail with a literature review. Biosurfactant production is the most accepted MEOR technique, and has been successfully implemented in over 700 field cases. Temperature is the main limiting factor for these techniques. The dissolution of carbonates by microorganisms was investigated experimentally. We designed a simple, economical, and robust procedure to monitor diffusion through porous media. This technique determined the diffusion coefficient of H+ in 1.5% agar, 1.122 x 10-5 cm2 sec-1, by using bromothymol blue as a pH indicator and image processing. This robust technique allows for manipulation of the composition of the agar to identify the effect of specific compounds on diffusion. The Red Sea consists of multiple seeps; the nearby sediments are telltales of deeper hydrocarbon systems. Microbial communities associated with the sediments function as in-situ sensors that provide information about the presence of carbon sources, metabolites, and the remediation potential. Sediments seeps in the Red Sea revealed different levels of bioactivity. The more active seeps, from the southern site in the Red Sea, indicated larger pore sizes, higher levels of carbon, and bioactivity with both bacteria and archaeal species present.

  1. Energy Field Adjustment and Hydrocarbon Phase Evolution in Sinian-Lower Paleozoic,Sichuan Basin

    Institute of Scientific and Technical Information of China (English)

    Liu Shugen; Wang Hua; Sun Wei; Wang Guozhi; Xu Guosheng; Yuan Haifeng

    2008-01-01

    The Sinian-Lower Paleozoic (also called the lower association) in Sichuan (四川) basin has undergone geologic evolution for several hundred million years.The subsidence history of the Sinian-Lower Paleozoic can be divided into four stages:the stable subsidence during Cambrian and Silurian; the uplift and denudation during Devonian and Carboniferous; the subsidence (main process)during Permian to Late Cretaceous; and the rapid uplift and denudation since Late Cretaceous.The later two stages could be regarded as critical factors for the development of oil and gas in the lower association.The evolution of energy field such as temperature,pressure,and hydrocarbon phase in the lower association during the deep burial and uplift in the third stage might be induced as follows:(1)super-high pressure was developed during oil-cracking,previous super-high pressure was sustained,or changed as normal pressure during late uplift; (2) temperature increased with deep burial during persistent subsidence and decreased during uplift in late stage; (3) as a response to the change of the energy field,hydrocarbon phase experienced a series of changes such as organic material (solid),oil (liquid),oil-cracking gas (gaseous) + bitumen (solid) + abnormal high pressure,gas cap gas with super-high pressure (gaseous) + bitumen (solid) + water soluble gas (liquid),and gas in pool (gaseous) + water soluble gas (liquid) + bitumen (solid).The restoration of hydrocarbon phase evolution is of important value for the exploration of natural gas in the Sinian-Lower Paleozoic in Sichuan basin.

  2. Importance of Aqueous-phase Secondary Organic Aerosol Formation from Aromatics in an Atmospheric Hydrocarbon Mixture

    Science.gov (United States)

    Parikh, H. M.; Carlton, A. G.; Vizuete, W.; Zhang, H.; Zhou, Y.; Chen, E.; Kamens, R. M.

    2010-12-01

    Two new secondary organic aerosol (SOA) modeling frameworks are developed, one based on an aromatic gas and particle-phase kinetic mechanism and another based on a parameterized SOA model used in conjunction with an underlying gas-phase mechanism, both of which simulate SOA formation through partitioning to two stable liquid phases: one hydrophilic containing particle aqueous-phase and the other hydrophobic comprising mainly organic components. The models were evaluated against outdoor smog chamber experiments with different combinations of initial toluene, o-xylene, p-xylene, toluene and xylene mixtures, NOx, non-SOA-forming hydrocarbon mixture, initial seed type, and humidity. Aerosol data for experiments with either ammonium sulfate or initial background seed particles, in the presence of an atmospheric hydrocarbon mixture, NOx and in sunlight under a dry atmosphere (RH = 6 to 10%) show reduced SOA formation when compared to experiments with similar initial gas and particle concentrations at higher relative humidities (RH = 40 to 90%). Both frameworks simulated reasonable fits to the total observed SOA concentrations under all conditions. For both dry and wet experiments with low initial seed, semi-volatile product partitioning in particle organic-phase is mass-transfer limited and is modeled using a dynamic gas-particle partitioning algorithm with accommodation coefficient as the primary pseudo-transport parameter. Further, the modeled SOA product distributions for both frameworks clearly show the importance of the contribution of aqueous-phase SOA particularly under conditions of low initial seed concentrations and high-humidity. For both models, under these conditions, aqueous-phase SOA from uptake of glyoxal, methylglyoxal and related polar products to particle water phase dominates as compared to the partitioning of semi-volatiles to particle organic phase. Interestingly, both the kinetic and parameterized SOA frameworks simulate similar amounts of aqueous-phase

  3. Determination of chlorinated polycyclic aromatic hydrocarbons in water by solid-phase extraction coupled with gas chromatography and mass spectrometry.

    Science.gov (United States)

    Wang, Xianli; Kang, Haiyan; Wu, Junfeng

    2016-05-01

    Given the potential risks of chlorinated polycyclic aromatic hydrocarbons, the analysis of their presence in water is very urgent. We have developed a novel procedure for determining chlorinated polycyclic aromatic hydrocarbons in water based on solid-phase extraction coupled with gas chromatography and mass spectrometry. The extraction parameters of solid-phase extraction were optimized in detail. Under the optimal conditions, the proposed method showed wide linear ranges (1.0-1000 ng/L) with correlation coefficients ranging from 0.9952 to 0.9998. The limits of detection and the limits of quantification were in the range of 0.015-0.591 and 0.045-1.502 ng/L, respectively. Recoveries ranged from 82.5 to 102.6% with relative standard deviations below 9.2%. The obtained method was applied successfully to the determination of chlorinated polycyclic aromatic hydrocarbons in real water samples. Most of the chlorinated polycyclic aromatic hydrocarbons were detected and 1-monochloropyrene was predominant in the studied water samples. This is the first report of chlorinated polycyclic aromatic hydrocarbons in water samples in China. The toxic equivalency quotients of chlorinated polycyclic aromatic hydrocarbons in the studied tap water were 9.95 ng the toxic equivalency quotient m(-3) . 9,10-Dichloroanthracene and 1-monochloropyrene accounted for the majority of the total toxic equivalency quotients of chlorinated polycyclic aromatic hydrocarbons in tap water.

  4. Nonionic diethanolamide amphiphiles with isoprenoid-type hydrocarbon chains: thermotropic and lyotropic liquid crystalline phase behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Sagnella, Sharon M.; Conn, Charlotte E.; Krodkiewska, Irena; Drummond, Calum J. (CSIRO/MSE)

    2014-09-24

    The thermotropic and lyotropic liquid crystalline phase behaviour of a series of diethanolamide amphiphiles with isoprenoid-type hydrocarbon chains (geranoyl, H-farnesoyl, and phytanoyl) has been investigated. When neat, both H-farnesoyl and phytanoyl diethanolamide form a smectic liquid crystalline structure at sub-zero temperatures. In addition, all three diethanolamides exhibit a glass transition temperature at around -73 C. Geranoyl diethanolamide forms a lamellar crystalline phase with a lattice parameter of 17.4 {angstrom} following long term storage accompanied by the loss of the glass transition. In the presence of water, H-farnesoyl and phytanoyl diethanolamide form lyotropic liquid crystalline phases, whilst geranoyl diethanolamide forms an L{sub 2} phase. H-farnesoyl diethanolamide forms a fluid lamellar phase (L{sub {alpha}}) at room temperature and up to {approx} 40 C. Phytanoyl diethanolamide displays a rich mesomorphism forming the inverse diamond (Q{sub II}{sup D}) and gyroid (Q{sub II}{sup G}) bicontinuous cubic phases in addition to an L{sub {alpha}} phase.

  5. Phase Transitions of Simple Systems

    CERN Document Server

    Berry, Stephen

    2008-01-01

    This monograph develops a unified microscopic basis for phases and phase changes of bulk matter and small systems in terms of classical physics. The origins of such phase changes are derived from simple but physically relevant models of how transitions between rigid crystalline, glassy and fluid states occur, how phase equilibria arise, and how bulk properties evolve from those of small systems.

  6. New caffeine bonded phase for separation of polyaromatic hydrocarbons and petroleum asphaltenes by high-performance liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Felix, G.; Bertrand, C.; Gastel, F. van

    1985-03-01

    The preparation of a new caffeine phase for HPLC is described. The capacity ratios (k') of about ten polyaromatic hydrocarbons have been determined. It has been shown that the aromatics were eluted according the number of rings, only slightly influenced by the substituents. The performance of the stationary phase is demonstrated with separations of petroleum asphalts and residues and aromatic mixtures.

  7. Questioning the existence of superconducting potassium doped phases for aromatic hydrocarbons

    Science.gov (United States)

    Heguri, Satoshi; Kobayashi, Mototada; Tanigaki, Katsumi

    2015-07-01

    Superconductivity in aromatic hydrocarbons doped with potassium (K) such as K3 [picene (PCN)] and K3 [phenanthrene (PHN)] is found for only armchair-type polycyclic aromatic hydrocarbon. In this paper the thermodynamics of the reaction processes of PHN or anthracene (AN, zigzag type) with K was studied using differential scanning calorimetry and x-ray diffraction. We show that PHN decomposes during the reaction, triggered by hydrogen abstraction, to give metal hydride KH and unknown amorphous. No stable doped phases exist in Kx(PHN ) with stoichiometries of x =1 -3 . However, in the case of AN, a stable doped phase forms. We claim that PHN, which has been reported to be energetically more stable in the ground state than AN by first principle calculations, is unstable upon doping. We also suggest that the superconductivity in K3(PCN ) is due to the misinterpretation of experimental data, which actually arises from ferromagnetic impurities. We have never detected the superconductivity above 2 K in these compounds. The superconductivity in both Kx(PHN ) and Kx(PCN ) is concluded to be highly questionable.

  8. Accumulation of polycyclic aromatic hydrocarbons by lichen transplants: Comparison with gas-phase passive air samplers.

    Science.gov (United States)

    Loppi, S; Pozo, K; Estellano, V H; Corsolini, S; Sardella, G; Paoli, L

    2015-09-01

    This study compared the accumulation of 16 polycyclic aromatic hydrocarbons (PAHs) in samples of the lichen Evernia prunastri exposed for 3 months in and around an industrial area of S Italy with that in co-located passive gas-phase air samplers. The results showed a strong linear correlations (R=0.96, P<0.05) between total PAHs in lichens and in passive samplers, clearly indicating that lichen transplants may provide direct quantitative information on the atmospheric load by total PAHs, allowing translation of lichen values into atmospheric concentrations. To the best of our knowledge this is the first study reporting such a correlation with gas-phase passive air samplers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Comparison of indigenous and exogenous microbial populations during slurry phase biodegradation of long-term hydrocarbon-contaminated soil.

    Science.gov (United States)

    Aburto-Medina, Arturo; Adetutu, Eric M; Aleer, Sam; Weber, John; Patil, Sayali S; Sheppard, Petra J; Ball, Andrew S; Juhasz, Albert L

    2012-11-01

    In this study, a number of slurry-phase strategies were trialled over a 42 day period in order to determine the efficacy of bioremediation for long-term hydrocarbon-contaminated soil (145 g kg(-1) C(10)-C(40)). The addition of activated sludge and nutrients to slurries (bioaugmentation) resulted in enhanced hydrocarbon removal (51.6 ± 8.5 %) compared to treatments receiving only nutrients (enhanced natural attenuation [ENA]; 41.3 ± 6.4 %) or no amendments (natural attenuation; no significant hydrocarbon removal, P hydrocarbons in ENA slurries. Microbial diversity in slurries was monitored using DGGE with dominant bands excised and sequenced for identification. Applying the different bioremediation strategies resulted in the formation of four distinct community clusters associated with the activated sludge (inoculum), bioaugmentation strategy at day 0, bioaugmentation strategy at weeks 2-6 and slurries with autoclaved sludge and nutrient additions (bioaugmentation negative control). While hydrocarbon-degrading bacteria genera (e.g. Aquabacterium and Haliscomenobacter) were associated with the hydrocarbon-contaminated soil, bioaugmentation of soil slurries with activated sludge resulted in the introduction of bacteria associated with hydrocarbon degradation (Burkholderiales order and Klebsiella genera) which presumably contributed to the enhanced efficacy for this slurry strategy.

  10. Confinement-Induced Supercriticality and Phase Equilibria of Hydrocarbons in Nanopores.

    Science.gov (United States)

    Luo, Sheng; Lutkenhaus, Jodie L; Nasrabadi, Hadi

    2016-11-08

    For over a century, the phase behavior of bulk fluids has been described as PVT (pressure-volume-temperature) three-dimensional properties, but it has become increasingly clear that the liquid-vapor phase behavior in confined geometries is significantly altered from the bulk. Efforts have been devoted to accessing confined phase transitions using sorption, molecular simulations, and theoretical methods. However, a comprehensive picture of PVT relationships for confined hydrocarbons remains uncertain. Herein, we introduce d (confining pore diameter) as a fourth dimension, and we present PVT-d behavior of confined fluids in nanopores. For the first time, a T-d phase diagram is presented for n-hexane, n-octane, and n-decane under multiple confinement scales (37.9, 14.8, 9.8, 6.0, 4.1, 3.3, and 2.2 nm cylindrical pore diameter) using experimental differential scanning calorimetry and PVT-d equation of state theory at atmospheric pressure. As pore diameter decreases from 37.9 to 4.1 nm, the bubble point increases by as much as 15 K above bulk, until we observe behavior consistent with a supercritical state, pointing to confinement-induced supercriticality. Remarkably, experimental and theoretical findings overlap very well, showing that this approach effectively captures the phase boundaries between the liquid, vapor, and supercritical fluid regions. The model and completed EOS are additionally extended to calculation of isothermal capillary adsorption, and its validity is discussed.

  11. Study of two-phase systems of petroleum industry interest: low volatile hydrocarbons - water-methanol and water-methanol-sodium chloride mixtures; Etude de systemes biphasiques d'interet petrolier: hydrocarbures peu volatils - melanges eau-methanol et eau-methanol-chlorure de sodium

    Energy Technology Data Exchange (ETDEWEB)

    Getachew Sawaya, Terufat

    1998-07-01

    The characteristic of this study is the high precision requested for the measurements of vapor pressures. Therefore, a careful calibration of pressure sensors has been performed first and verified by the study of naphthalene. The vapor pressures of 3 condensed poly-aromatics, of 2 aromatic compounds and of 2 compounds coming from the degradation of biological substances at the origin of petroleum have been measured. Most of these results are new, taking into consideration the wide range of pressures considered. They have been correlated using Antoine's equation. Most of the production of North Sea oil and gas fields is transported by submarine pipelines inside which gas, petroleum and water circulate together. The most serious drawback of this kind of polyphasic transport is the risk of hydrocarbon hydrates formation which can lead to the plugging of the pipeline. Massive quantities of methanol are currently injected by operators to avoid the formation of hydrates. In order to optimize this injection, the study of water-methanol and water-methanol-sodium chloride systems is necessary. Two types of works have been carried out: 1 - the study of the liquid-vapor equilibria with the on-line analysis of the vapor phase. For this study, an original device comprising the static apparatus coupled to a chromatograph has been developed; and 2 - the study of the densities at 25 deg. C and 1 atm. These two types of data (liquid-vapor equilibria and densities) are essential for the setting of the parameters of the state equations used to model and forecast the behaviour of the gas-oil-brine system. (J.S.)

  12. Analysis of polycyclic aromatic hydrocarbons in vegetable oils combining gel permeation chromatography with solid-phase extraction clean-up

    DEFF Research Database (Denmark)

    Fromberg, Arvid; Højgård, A.; Duedahl-Olesen, Lene

    2007-01-01

    of benzo[a]pyrene levels in foods laid down by the Commission of the European Communities. A survey of 69 vegetable oils sampled from the Danish market included olive oil as well as other vegetable oils such as rapeseed oil, sunflower oil, grape seed oil and sesame oil. Levels of benzo[a]pyrene in all......A semi-automatic method for the determination of polycyclic aromatic hydrocarbons (PAHs) in edible oils using a combined gel permeation chromatography/solid-phase extraction (GPC/SPE) clean-up is presented. The method takes advantage of automatic injections using a Gilson ASPEC XL sample handling...... system equipped with a GPC column (S-X3) and pre-packed silica SPE columns for the subsequent clean-up and finally gas chromatography-mass spectrometry (GC-MS) determination. The method was validated for the determination of PAHs in vegetable oils and it can meet the criteria for the official control...

  13. Gas- and particle-phase distribution of polycyclic aromatic hydrocarbons in two-stroke, 50-cm 3 moped emissions

    Science.gov (United States)

    Spezzano, Pasquale; Picini, Paolo; Cataldi, Dario

    Gas- and particle-phase polycyclic aromatic hydrocarbons (PAHs) concentrations evaluated in the exhaust of 10 two-stroke, 50-cm 3 mopeds belonging to three different levels of emission legislation (EURO-0, EURO-1 and EURO-2) were used to assess the prevalent mechanism driving the gas/particle partitioning of PAHs in moped exhaust. Sampling was performed on a dynamometer bench both during the "cold-start" and the "hot" phases of the ECE-47 driving cycle. Gas and particulate phase PAHs were collected on polyurethane foam (PUF) plugs and 47-mm Pallflex T60A20 filters, respectively, under isokinetic conditions by using sampling probes inserted into the dilution tunnel of a Constant Volume Sampling - Critical Flow Venturi (CVS-CFV) system. The results show that semi-volatile PAHs were predominantly partitioned to the particle phase. The soluble organic fraction (SOF) of the collected particulates ranged between 72 and 98%. Measured total suspended particulate matter normalized partition coefficients ( Kp) were predicted within a factor of 3-5 by assuming absorption into the organic fraction according to a model developed by Harner and Bidleman [Harner, T., Bidleman, T.F., 1998. Octanol-air partition coefficient for describing particle/gas partitioning of aromatic compounds in urban air. Environmental Science & Technology 32, 1494-1502.]. This suggests that the gas/particle partitioning in moped exhaust is mainly driven by the high fraction of organic matter of the emitted particles and that absorption could be the main partitioning mechanism of PAHs.

  14. Poly-phase salt tectonics and hydrocarbon accumulation in Tarim superimposed basin, northwest China

    Institute of Scientific and Technical Information of China (English)

    TANG Liangjie; JIN Zhijun; JlA Chengzao; PI Xuejun; CHEN Suping

    2004-01-01

    The purpose of this paper is to discuss the poly-phase salt tectonics and its relation to the hydrocarbon accumulation of the Tarim superimposed basin. Several salt sequences are developed in the Tarim basin, they are: (1) the Mid-Early Cambrian salt sequence, mainly distributed in the west part of the north Tarim uplift and Keping uplift; (2) the Early Carboniferous salt sequence, mainly distributed in the south slope of the north Tarim uplift; (3) the Paleogene salt sequence, mainly distributed in the mid-west part of the Kuqa foreland fold belt and north Tarim uplift; and (4) the Miocene salt sequence, mainly distributed in the east part of the Kuqa foreland fold belt. The salt sequences deposited in the tectonically calm scenario, while the salt layers deformed during the period of intense tectonism. Although the salt sequences are characteristic of plastic flow, the differences of salt deformation styles exist in the different salt sequences because of the different deformation mechanism. It is attractive that the distribution of the large oil-gas fields or pools has a bearing upon the salt sequences and salt structures, such as the Tahe oilfield related to the Lower Carboniferous salt sequence and laterally facies changed mudstone, the Kela No.2 gas field to the Paleogene salt structures, and the Dina gas field to the Miocene salt structures. It is indicated that the large-scale hydrocarbon accumulation is controlled by the poly-phase salt sequences and structures. The deep analysis of the poly-phase salt tectonics is helpful to understanding the characteristics of the structural deformation and oil-gas accumulation of the Tarim basin.

  15. Design and implementation of a highly integrated and automated in situ bioremediation system for petroleum hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Dey, J.C.; Rosenwinkel, P. [Resource Control Corp., Rancocas, NJ (United States); Norris, R.D. [Eckenfelder, Inc., Nashville, TN (United States)

    1996-12-31

    The proposed sale of an industrial property required that an environmental investigation be conducted as part of the property transfer agreement. The investigation revealed petroleum hydrocarbon compounds (PHCs) in the subsurface. Light nonaqueous phase liquids (LNAPLs) varsol (a gasoline like solvent), gasoline, and fuel oil were found across a three (3) acre area and were present as liquid phase PHCs, as dissolved phase PHCs, and as adsorbed phase PHCs in both saturated and unsaturated soils. Fuel oil was largely present in the unsaturated soils. Fuel oil was largely present in the unsaturated soils. Varsol represented the majority of the PHCs present. The presence of liquid phase PHCs suggested that any remedial action incorporate free phase recovery. The volatility of varsol and gasoline and the biodegradability of the PHCs present in the subsurface suggested that bioremediation, air sparging, and soil vapor extraction/bioventing were appropriate technologies for incorporation in a remedy. The imminent conversion of the impacted area to a retail facility required that any long term remedy be unobtrusive and require minimum activity across much of the impacted area. In the following sections the site investigation, selection and testing of remedial technologies, and design and implementation of an integrated and automated remedial system is discussed.

  16. Method and system for capturing hydrocarbons from a leaking oilwell at a predetermined seabed location

    NARCIS (Netherlands)

    Van Nauta Lemke, A.H.A.; Willemse, C.A.

    2013-01-01

    Method and system for capturing hydrocarbons from a leaking oilwell at a predetermined seabed location, in which the steps are applied of: a. deploying a dome near the predetermined seabed location; b. moving the dome to the predetermined seabed location; c. capturing the hydrocarbons from the leaki

  17. Systems and processes for conversion of ethylene feedstocks to hydrocarbon fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lilga, Michael A.; Hallen, Richard T.; Albrecht, Karl O.; Cooper, Alan R.; Frye, John G.; Ramasamy, Karthikeyan Kallupalayam

    2017-05-30

    Systems, processes, and catalysts are disclosed for obtaining fuel and fuel blends containing selected ratios of open-chain and closed-chain fuel-range hydrocarbons suitable for production of alternate fuels including gasolines, jet fuels, and diesel fuels. Fuel-range hydrocarbons may be derived from ethylene-containing feedstocks and ethanol-containing feedstocks.

  18. Method for Hydrocarbon Detection Based on Theory of Multi-phase Medium

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A way is developed to detect hydrocarbon in accordance with BOlT theory and laboratory data,which is applied to several areas .The coincidence rate for hydrocarbon detection is higher than other sirnilar techniques. This method shows a good prospect for being widely used in hydrocarbon detecting at exploration stage and in reservoir monitoring at production stage.

  19. Effect of interface fertilization on biodegradation of polycyclic aromatic hydrocarbons present in nonaqueous-phase liquids.

    Science.gov (United States)

    Tejeda-Agredano, M C; Gallego, S; Niqui-Arroyo, J L; Vila, J; Grifoll, M; Ortega-Calvo, J J

    2011-02-01

    The main goal of this study was to use an oleophilic biostimulant (S-200) to target possible nutritional limitations for biodegradation of polycyclic aromatic hydrocarbons (PAHs) at the interface between nonaqueous-phase liquids (NAPLs) and the water phase. Biodegradation of PAHs present in fuel-containing NAPLs was slow and followed zero-order kinetics, indicating bioavailability restrictions. The biostimulant enhanced the biodegradation, producing logistic (S-shaped) kinetics and 10-fold increases in the rate of mineralization of phenanthrene, fluoranthene, and pyrene. Chemical analysis of residual fuel oil also evidenced an enhanced biodegradation of the alkyl-PAHs and n-alkanes. The enhancement was not the result of an increase in the rate of partitioning of PAHs into the aqueous phase, nor was it caused by the compensation of any nutritional deficiency in the medium. We suggest that biodegradation of PAH by bacteria attached to NAPLs can be limited by nutrient availability due to the simultaneous consumption of NAPL components, but this limitation can be overcome by interface fertilization.

  20. Optimization of a Hydrocarbon Bioremediation System at Laboratory Scale

    Directory of Open Access Journals (Sweden)

    Acuña A.J.

    2012-01-01

    Full Text Available The aim of this study was to optimize the parameters of moisture, temperature and ratio of nutrients to estimate the possibility of applying the technique of bioremediation in a soil contaminated with hydrocarbons. For this, an initial characterization of contaminated soil was made according to their physical and chemical characteristics and the number of heterotrophic and hydrocarbon degraders bacteria. Also the contaminant concentration by gravimetric method and by gas chromatography was studied. To optimize moisture and temperature, microcosms with moisture of 3%, 10%, 15% and 20% and temperatures of 5°C, 15°C, 28°C and 37°C were used. The monitoring of the mineralization of hydrocarbons was performed by measuring the CO2 produced. To optimize the ratio of nutrients, different microcosms were designed and were monitored by oxygen consumption and by determination of hydrocarbons by gas chromatography. The C:N:P relationships studied were 100:20:2, 100:10:1, 100:5:0,5 and 100:1:0,1. The results indicate that the mineralization of hydrocarbons was optimal for moisture of 10% to 20% and temperatures of 25°C to 37°C with CO2 production values of 3000-4500 mgCO2 kg-1. The optimal C:N:P ratio was 100:1:0,1 in which the highest oxygen consumption was and the elimination of 83% of total hydrocarbons determined by gas chromatography with 78% and 89% of n-alkanes and polyaromatic hydrocarbons elimination, respectively.

  1. Solid-phase microextraction-gas chromatographic determination of volatile monoaromatic hydrocarbons in soil.

    Science.gov (United States)

    Zygmunt, B; Namiesnik, J

    2001-08-01

    Benzene, toluene, ethylbenzene, three isomers of xylene, and cumene have been isolated and enriched from soil samples by a combination of water extraction at room and elevated temperature and headspace-solid-phase microextraction before their gas chromatographic-mass spectrometric (GC-MS) determination. The conditions used for all stages of sample preparation and chromatographic analysis were optimized. Analytes sampled on a polydimethylsiloxane-coated solid-phase microextraction fiber were thermally desorbed in the split/splitless injector of a gas chromatograph (GC) coupled with a mass spectrometer (MS). The desorption temperature was optimized. The GC separation was performed in a capillary column. Detection limits were found to be of the order of ca. 1 ng g(-1). Relative recoveries of the analytes from soils were found to be highly dependent on soil organic-matter content and on compound identity; they ranged from ca 92 to 96% for sandy soil (extraction at room temperature) and from ca 27 to 55% for peaty soil (extraction at elevated temperature). A few real-world soil samples were analyzed; the individual monoaromatic hydrocarbon content ranged from below detection limits to 6.4 ng g(-1) for benzene and 8.1 for the total of p- + m-xylene.

  2. GREEN CATALYZED OXIDATION OF HYDROCARBONS IN ALTERNATIVE SOLVENT SYSTEMS GENERATED BY PARIS II

    Science.gov (United States)

    Green Catalyzed Oxidation of Hydrocarbons in Alternative Solvent Systems Generated by PARIS IIMichael A. Gonzalez*, Thomas M. Becker, and Paul F. Harten; Sustainable Technology Division, Office of Research and Development; United States Environmental Protection Agency, 26...

  3. Quantitative analysis of fuel-related hydrocarbons in surface water and wastewater samples by solid-phase microextraction.

    Science.gov (United States)

    Langenfeld, J J; Hawthorne, S B; Miller, D J

    1996-01-01

    Solid-phase microextraction (SPME) parameters were examined on water contaminated with hydrocarbons including benzene and alkylbenzenes, n-alkanes, and polycyclic aromatic hydrocarbons (PAHs). Absorption equilibration times ranged from several minutes for low molecular weight compounds such as benzene to 5 h for high molecular weight compounds such as benzo[a]pyrene. Under equilibrium conditions, SPME analysis with GC/FID was linear over 3-6 orders of magnitude, with linear correlation coefficients (r(2)) greater than 0.96. Experimentally determined FID detection limits ranged from ∼30 ppt (w/w hydrocarbon/sample water) for high molecular weight PAHs (e.g., MW > 202) to ∼1 ppb for low molecular weight aromatic hydrocarbons. Experimental distribution constants (K) were different with 100- and 7-μm poly(dimethylsiloxane) fibers, and poor correlations with previously published values suggest that K depends on the fiber coating thickness and the sorbent preparation method. The sensitivity of SPME analysis is not significantly enhanced by larger sample volumes, since increasing the water volume (e.g., from 1 to 100 mL) has little effect on the number of analyte molecules absorbed by the fiber, especially for compounds with K solids. Quantitative determinations of aromatic and aliphatic hydrocarbons (e.g., in gasoline-contaminated water) can be performed using GC/MS with deuterated internal standard or standard addition calibration as long as the target components or standards had unique ions for quantitation or sufficient chromatographic resolution from interferences. SPME analysis gave good quantitative performance with surface waters having high suspended sediment contents, as well as with coal gasification wastewater which contained matrix organics at 10(6)-fold higher concentrations than the target aromatic hydrocarbons. Good agreement was obtained between a 45-min SPME and methylene chloride extraction for the determination of PAH concentrations in creosote

  4. Formation Dynamics and Quantitative Prediction of Hydrocarbons of the Superpressure System in the Dongying Sag

    Institute of Scientific and Technical Information of China (English)

    SUI Fenggui; HAO Xuefeng; LIU Qing; ZHUO Qingong; ZHANG Shouchun

    2008-01-01

    Based on the theory of formation dynamics of oil/gas pools, the Dongying sag can be divided into three dynamic systems regarding the accumulation of oil and gas: the superpressure closed system,the semi-closed system and the normal pressure open system. Based on the analysis of genesis of superpressure in the superpressure closed system and the rule of hydrocarbon expulsion,it is found that hydrocarbon generation is related to superpressure, which is the main driving factor of hydrocarbon migration. Micro fractures formed by superpressure are the main channels for hydrocarbon migration. There are three dynamic patterns for hydrocarbon expulsion: free water drainage, hydrocarbon accumulation and drainage through micro fissures. In the superpressure closed system, the oil-driving-water process and oil/gas accumulation were completed in lithologic traps by way of such two dynamic patterns as episodic evolution of superpressure systems and episodic pressure release of faults. The oil-bearing capacity of lithologic traps is intimately related to reservoir-forming dynamic force. Quantitative evaluation of dynamic conditions for pool formation can effectively predict the oil-bearing capability of traps.

  5. Analysis of coal tar polycyclic aromatic hydrocarbon LC-fractions by capillary SFC on a liquid crystalline stationary phase

    Energy Technology Data Exchange (ETDEWEB)

    Kithinji, J.P.; Raynor, M.W.; Egia, B.; Davies, I.L.; Bartle, K.D.; Clifford, A.A. (University of Leeds, Leeds (UK). School of Chemistry)

    1990-01-01

    Supercritical fluid chromatography (SFC) on a capillary column coated with a smectic mesomorphic crystalline phase is shown to exhibit a typical turnover effect (retention versus column temperature) for polycyclic aromatic hydrocarbons (PAHs) at lower temperatures than are found on a methylpolysiloxane phase. Liquid chromatography is used to separate various fractions from a coal tar, which are analyzed by high resolution capillary SFC. Different density and temperature programs were investigated to optimize the separations. Simultaneous density and temperature programs gave the best results, and this is thought to be due to increased solute diffusion coefficients which yield highly efficient separations for the high molecular weight polycyclic aromatic hydrocarbons. The separation mechanism is based on the shape of the liquid crystalline phase, solubility, volatility, and molecular geometry of the PAHs.

  6. Vapor-Liquid Equilibrium of Toluene-Polycyclic Aromatic Hydrocarbon System in Sub-and Supercritical State

    Institute of Scientific and Technical Information of China (English)

    Cheol-Joong; KIM; Dong-Bok; WON; 等

    2002-01-01

    The phase behaviors of toluene/polycyclic aromatic hydrocarbon mixture systems were investigated with a continuous-flow type apparatus at 573.2,598.2.623.2 and 648.2K,while the pressure changed from 1 tp 5 MPa,The pseudo-binary phase behaviors were predicted with the Peng-Robinson equation of state with interaction parameters between toluene and pseudo-components considered.The phase diagrams of the system have been classified following the category of phase boundary diagram models.The extraction selectivity and efficiency of toluene as a solvent was discussed by comparing with that of hexane .The prediction model for selectivity was also suggested.

  7. Discovery of abundant, accessible hydrocarbons nearly everywhere in the solar system

    Energy Technology Data Exchange (ETDEWEB)

    Zuppero, A.

    1996-05-01

    analysis of the data gathered during the Comet Halley encounter during 1987 resulted in a body of literature asserting that all comets contain substantial percentages of hydrocarbon solids. These solids appear to have a strong similarity to petrochemicals. Arguments are made that the amount of hydrocarbon material in the accessible comets of the inner Solar system can substantially exceed the known reserves of hydrocarbons on Earth. An example is given of at least one conceptually simple method to use comet material as feedstock for space transportation schemes that can move masses through the solar system comparable to the mass carried by oil supertankers. The presentation concludes we need to send prospecting and assay probes to a sampling of the accessible comets to determine the amount of hydrocarbons and the form and location of materials needed for space transportation systems.

  8. Accelerated Molecular Dynamics Simulations of Reactive Hydrocarbon Systems

    Energy Technology Data Exchange (ETDEWEB)

    Stuart, Steven J.

    2014-02-25

    The research activities in this project consisted of four different sub-projects. Three different accelerated dynamics techniques (parallel replica dynamics, hyperdynamics, and temperature-accelerated dynamics) were applied to the modeling of pyrolysis of hydrocarbons. In addition, parallel replica dynamics was applied to modeling of polymerization.

  9. Seasonal distribution of aliphatic hydrocarbons in the Vaza Barris Estuarine System, Sergipe, Brazil.

    Science.gov (United States)

    Barbosa, José Carlos S; Santos, Lukas G G V; Sant'Anna, Mércia V S; Souza, Michel R R; Damasceno, Flaviana C; Alexandre, Marcelo R

    2016-03-15

    The seasonal assessment of anthropogenic activities in the Vaza Barris estuarine river system, located in the Sergipe state, northeastern Brazil, was performed using the aliphatic hydrocarbon distribution. The aliphatic hydrocarbon and isoprenoid (Pristane and Phytane) concentrations ranged between 0.19 μg g(-1) and 8.5 μg g(-1) of dry weight. Data were analyzed using Kruskal-Wallis test, with significance level set at p n-alkanes/n-C16, Low Molecular Weight/High Molecular Weight ratio (LMW/HMW) and Terrigenous to Aquatic Ratio (TAR) suggested biogenic input of aliphatic hydrocarbons for most samples, with significant contribution of higher plants.

  10. Biomass-derived Lignin to Jet Fuel Range Hydrocarbons via Aqueous Phase Hydrodeoxygenation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongliang; Ruan, Hao; Pei, Haisheng; Wang, Huamin; Chen, Xiaowen; Tucker, Melvin P.; Cort, John R.; Yang, Bin

    2015-09-14

    A catalytic process, involving the hydrodeoxygenation (HDO) of the dilute alkali extracted corn stover lignin catalysed by noble metal catalyst (Ru/Al2O3) and acidic zeolite (H+-Y), to produce lignin-substructure-based hydrocarbons (C7-C18), primarily C12-C18 cyclic structure hydrocarbons in the jet fuel range, was demonstrated.

  11. Role of glyoxal in SOA formation from aromatic hydrocarbons: gas-phase reaction trumps reactive uptake

    Directory of Open Access Journals (Sweden)

    S. Nakao

    2011-11-01

    Full Text Available This study evaluates the significance of glyoxal acting as an intermediate species leading to SOA formation from aromatic hydrocarbon photooxidation under humid conditions. Rapid SOA formation from glyoxal uptake onto aqueous (NH42SO4 seed particles is observed; however, glyoxal did not partition to SOA or SOA coated aqueous seed during all aromatic hydrocarbon experiments (RH up to 80%. Glyoxal is found to only influence SOA formation by raising hydroxyl (OH radical concentrations. Four experimental approaches supporting this conclusion are presented in this paper: (1 increased SOA formation and decreased SOA volatility in the toluene + NOx photooxidation system with additional glyoxal was reproduced by matching OH radical concentrations through H2O2 addition; (2 glyoxal addition to SOA seed formed from toluene + NOx photooxidation did not increase observed SOA volume; (3 SOA formation from toluene + NOx photooxidation with and without deliquesced (NH42SO4 seed resulted in similar SOA growth, consistent with a coating of SOA preventing glyoxal uptake onto deliquesced (NH42SO4 seed; and (4 the fraction of a C4H9+ fragment (observed by Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer, HR-ToF-AMS from SOA formed by 2-tert-butylphenol (BP oxidation was unchanged in the presence of additional glyoxal despite enhanced SOA formation. This study suggests that glyoxal uptake onto aerosol is minor when the surface (and near-surface of aerosols are primarily composed of secondary organic compounds.

  12. Nonionic surfactants with linear and branched hydrocarbon tails: compositional analysis, phase behavior, and film properties in bicontinuous microemulsions.

    Science.gov (United States)

    Frank, Christian; Frielinghaus, Henrich; Allgaier, Jürgen; Prast, Hartmut

    2007-06-05

    Nonionic alcohol ethoxylates are widely used as surfactants in many different applications. They are available in a large number of structural varieties as technical grade products. This variety is mainly based on the use of different alcohols, which can be linear or branched and contain primary, secondary, or tertiary OH groups. Technical grade products are poorly defined as they are composed of alcohol mixtures being different in chain length and structure. On the other hand, monodisperse alcohol ethoxylates are commercially available; however, these surfactants exist only with primary and linear alcohols. In the field of microemulsion research the monodisperse alcohol ethoxylates are widely used. The phase behavior and film properties of these surfactants were studied intensively with respect to the size of the hydrophilic and hydrophobic moieties. Due to the lack of appropriate model surfactants until now, there is little information on how the structure of the hydrocarbon tail influences the microemulsion behavior. To examine structural influences, we synthesized a series of surfactants with the composition C10E5 and having different linear and branched hydrocarbon tails. The surfactants were monodisperse with respect to the hydrocarbon tail but polydisperse with respect to the ethoxylation degree. However, a detailed characterization showed that they were similar concerning the average ethoxylation degree and EO chain length distribution. The phase behavior was investigated for bicontinuous microemulsions, and the film properties were analyzed by small-angle neutron scattering (SANS). Our results show that the structure of the hydrocarbon tail strongly influences the microemulsion behavior. The most efficient surfactant is obtained if the hydrocarbon tail is linear and the hydrophilic group is attached in the C-1 position. Surfactants having the hydrophilic group bound to the C-2 or C-4 position or which contain a branched hydrocarbon tail are less efficient

  13. Distribution of particle-phase hydrocarbons, PAHs and OCPs in Tianjin, China

    Energy Technology Data Exchange (ETDEWEB)

    Wu, S.P.; Tao, S.; Zhang, Z.H.; Lan, T.; Zuo, Q. [Peking University, Beijing (China). College of Environmental Science

    2005-12-01

    Aliphatic hydrocarbons, polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) were determined in the total suspended particles (TSP) collected from 13 different locations in Tianjin, China, where intensive coal burning for domestic heating in winter takes place and a large quantity of pesticides had been produced and applied. Carbon preference index (CPI), carbon number maximum (C{sub max}) of n-alkane and plant wax index (%wax C{sub n}) indicate that n-alkanes come from both biogenic and petrogenic sources, and biogenic source contributes more n-alkanes in autumn than in winter. Petroleum biomarkers as indicators of petrogenic source such as hopanes and steranes were also detected in both seasons' samples. The sum of 16 PAH concentrations ranged from 69.3 to 2170 ng m{sup -3} in winter and from 7.01 to 40.0 ng m{sup -3} in autumn. Seasonal variations were mainly attributed to the difference in coal combustion emission and meteorological conditions. The results of a source diagnostic analysis suggest that PAHs in TSP. mainly come from coal combustion. Seven OCPs (four hexachlorohexanes (HCHs) and three dichlorodipheny-trichloroethane and metabolites (DDTs)) were detected in most samples. Concentrations of the sum of alpha-, beta-, delta- and gamma-HCH {Sigma} HCH) and the sum of p,p'-DDT, p,p'-DDD and p,p'-DDE {Sigma} DDT) in autumn varied in the ranges of 0.002-0.9 ng m{sup -3} and 0.025-2.21 ng m{sup -3} respectively. In winter, {Sigma} HCH and {Sigma} DDT in TSP ranged from 0.071 to 5.35 ng m{sup -3} and from 0.416 to 3.14 ng m{sup -3} respectively. Both of the illegal application of technical HCH and DDT and the volatilization from topsoil contributed to the particle-phase contents of HCHs and DDTs in the atmosphere.

  14. Electron attachment and ion mobility in hydrocarbons and related systems

    Energy Technology Data Exchange (ETDEWEB)

    Bakale, G.

    1988-01-01

    During the last two decades, a firm base for the emerging field of liquid state electronics (LSE) has developed through studies of the transport and reaction properties of excess electrons in a variety of liquid-phase systems. Pulse-conductivity techniques were used in many of these studies to measure the mobilities of electrons and ions in pure liquids as well as the rate constants of electron attachment to a wide variety of electron-accepting solutes. Results obtained through such studies have interdisciplinary implications that are described in the discussion that follows which includes examples of the contributions of LSE to physics, chemistry and biology. 42 refs.

  15. Crosslinked structurally-tuned polymeric ionic liquids as stationary phases for the analysis of hydrocarbons in kerosene and diesel fuels by comprehensive two-dimensional gas chromatography.

    Science.gov (United States)

    Zhang, Cheng; Park, Rodney A; Anderson, Jared L

    2016-04-01

    Structurally-tuned ionic liquids (ILs) have been previously applied as the second dimension column in comprehensive two-dimensional gas chromatography (GC×GC) and have demonstrated high selectivity in the separation of individual aliphatic hydrocarbons from other aliphatic hydrocarbons. However, the maximum operating temperatures of these stationary phases limit the separation of analytes with high boiling points. In order to address this issue, a series of polymeric ionic liquid (PIL)-based stationary phases were prepared in this study using imidazolium-based IL monomers via in-column free radical polymerization. The IL monomers were functionalized with long alkyl chain substituents to provide the needed selectivity for the separation of aliphatic hydrocarbons. Columns were prepared with different film thicknesses to identify the best performing stationary phase for the separation of kerosene. The bis[(trifluoromethyl)sulfonyl]imide ([NTf2](-))-based PIL stationary phase with larger film thickness (0.28μm) exhibited higher selectivity for aliphatic hydrocarbons and showed a maximum allowable operating temperature of 300°C. PIL-based stationary phases containing varied amount of IL-based crosslinker were prepared to study the effect of the crosslinker on the selectivity and thermal stability of the resulting stationary phase. The optimal resolution of aliphatic hydrocarbons was achieved when 50% (w/w) of crosslinker was incorporated into the PIL-based stationary phase. The resulting stationary phase exhibited good selectivity for different groups of aliphatic hydrocarbons even after being conditioned at 325°C. Finally, the crosslinked PIL-based stationary phase was compared with SUPELCOWAX 10 and DB-17 columns for the separation of aliphatic hydrocarbons in diesel fuel. Better resolution of aliphatic hydrocarbons was obtained when employing the crosslinked PIL-based stationary phase as the second dimension column.

  16. Distribution of MEG and methanol in well-defined hydrocarbon and water systems: Experimental measurement and modeling using the CPA EoS

    DEFF Research Database (Denmark)

    Riaz, Muhammad; Yussuf, Mustafe A.; Kontogeorgis, Georgios;

    2013-01-01

    and MEG) in various phases is modeled using CPA. The hydrocarbon phase consists of mixture-1 (methane, ethane, n-butane) or mixture-2 (methane, ethane, propane, n-butane, n-heptane, toluene and n-decane). CPA can satisfactorily predict the water content in the gas phase of the multicomponent systems...... + water. These data are satisfactorily correlated (binaries) and predicted (ternaries) using Cubic Plus Association (CPA) equation of state (EoS). CPA is also applied to binary LLE of aromatic hydrocarbon + water and VLE of methane + methanol. Finally the distribution of water and inhibitors (methanol...... containing mixture-1 over a range of temperatures and pressures. Similarly the methanol content in the gas phase of mixture-1 + water + methanol systems is predicted satisfactorily with accuracy within experimental uncertainty. For VLLE of mixture-2. +. water, mixture-2 + MEG + water and mixture-2 + methanol...

  17. Paleozoic Composite Petroleum System of North Africa:Hydrocarbon Distribution and Main Controlling Factors

    Institute of Scientific and Technical Information of China (English)

    Bai Guoping; Zheng Lei

    2007-01-01

    North Africa,which is one of the main oil and gas producing regions in the world,is best known for its sub-salt Paleozoic-Triassic reservoirs and Paleozoic source rocks. Hydrocarbon abundance varies greatly from one structural domain to another areally and from one stratigraphic interval to another vertically. Analyses of the essential elements and geological processes of the Paleozoic petroleum system indicate that the distribution of the Lower Silurian shale source rocks,the development of a thick Mesozoic overburden,the presence of the Upper Triassic-Lower Jurassic evaporite seal are the most important factors governing the distribution of the Paleozoic-sourced hydrocarbons in North Africa. The Mesozoic sequence plays a critical role for hydrocarbons to accumulate by enabling the maturation of the Paleozoic source rocks during the Mesozoic-Paleogene times and preserving the accumulated hydrocarbons. Basins and surrounding uplifts,particularly the latter,with a thick Mesozoic sequence and a regional evaporite seal generally have abundant hydrocarbons. Basins where only a thin Mesozoic overburden was developed tend to have a very poor to moderate hydrocarbon prospectivity.

  18. Inhalation of Hydrocarbon Jet Fuel Suppress Central Auditory Nervous System Function.

    Science.gov (United States)

    Guthrie, O'neil W; Wong, Brian A; McInturf, Shawn M; Reboulet, James E; Ortiz, Pedro A; Mattie, David R

    2015-01-01

    More than 800 million L/d of hydrocarbon fuels is used to power cars, boats, and jet airplanes. The weekly consumption of these fuels necessarily puts the public at risk for repeated inhalation exposure. Recent studies showed that exposure to hydrocarbon jet fuel produces lethality in presynaptic sensory cells, leading to hearing loss, especially in the presence of noise. However, the effects of hydrocarbon jet fuel on the central auditory nervous system (CANS) have not received much attention. It is important to investigate the effects of hydrocarbons on the CANS in order to complete current knowledge regarding the ototoxic profile of such exposures. The objective of the current study was to determine whether inhalation exposure to hydrocarbon jet fuel might affect the functions of the CANS. Male Fischer 344 rats were randomly divided into four groups (control, noise, fuel, and fuel + noise). The structural and functional integrity of presynaptic sensory cells was determined in each group. Neurotransmission in both peripheral and central auditory pathways was simultaneously evaluated in order to identify and differentiate between peripheral and central dysfunctions. There were no detectable effects on pre- and postsynaptic peripheral functions. However, the responsiveness of the brain was significantly depressed and neural transmission time was markedly delayed. The development of CANS dysfunctions in the general public and the military due to cumulative exposure to hydrocarbon fuels may represent a significant but currently unrecognized public health issue.

  19. Vacuum-assisted headspace solid phase microextraction of polycyclic aromatic hydrocarbons in solid samples.

    Science.gov (United States)

    Yiantzi, Evangelia; Kalogerakis, Nicolas; Psillakis, Elefteria

    2015-08-26

    For the first time, Vacuum Assisted Headspace Solid Phase Microextraction (Vac-HSSPME) is used for the recovery of polycyclic aromatic hydrocarbons (PAHs) from solid matrices. The procedure was investigated both theoretically and experimentally. According to the theory, reducing the total pressure increases the vapor flux of chemicals at the soil surface, and hence improves HSSPME extraction kinetics. Vac-HSSPME sampling could be further enhanced by adding water as a modifier and creating a slurry mixture. For these soil-water mixtures, reduced pressure conditions may increase the volatilization rates of compounds with a low K(H) present in the aqueous phase of the slurry mixture and result in a faster HSSPME extraction process. Nevertheless, analyte desorption from soil to water may become a rate-limiting step when significant depletion of the aqueous analyte concentration takes place during Vac-HSSPME. Sand samples spiked with PAHs were used as simple solid matrices and the effect of different experimental parameters was investigated (extraction temperature, modifiers and extraction time). Vac-HSSPME sampling of dry spiked sand samples provided the first experimental evidence of the positive combined effect of reduced pressure and temperature on HSSPME. Although adding 2 mL of water as a modifier improved Vac-HSSPME, humidity decreased the amount of naphthalene extracted at equilibrium as well as impaired extraction of all analytes at elevated sampling temperatures. Within short HSSPME sampling times and under mild sampling temperatures, Vac-HSSPME yielded linear calibration curves in the range of 1-400 ng g(-1) and, with the exception of fluorene, regression coefficients were found higher than 0.99. The limits of detection for spiked sand samples ranged from 0.003 to 0.233 ng g(-1) and repeatability from 4.3 to 10 %. Finally, the amount of PAHs extracted from spiked soil samples was smaller compared to spiked sand samples, confirming that soil could bind target

  20. Phase control of excitable systems

    Energy Technology Data Exchange (ETDEWEB)

    Zambrano, S; Seoane, J M; Marino, I P; Sanjuan, M A F [Nonlinear Dynamics and Chaos Group, Departamento de Fisica, Universidad Rey Juan Carlos, Tulipan s/n, 28933 Mostoles, Madrid (Spain); Euzzor, S; Meucci, R; Arecchi, F T [CNR-Istituto Nazionale di Ottica Applicata, Largo E. Fermi, 6 50125 Firenze (Italy)], E-mail: samuel.zambrano@urjc.es, E-mail: jesus.seoane@urjc.es, E-mail: ines.perez@urjc.es

    2008-07-15

    Here we study how to control the dynamics of excitable systems by using the phase control technique. Excitable systems are relevant in neuronal dynamics and therefore this method might have important applications. We use the periodically driven FitzHugh-Nagumo (FHN) model, which displays both spiking and non-spiking behaviours in chaotic or periodic regimes. The phase control technique consists of applying a harmonic perturbation with a suitable phase {phi} that we adjust in search of different behaviours of the FHN dynamics. We compare our numerical results with experimental measurements performed on an electronic circuit and find good agreement between them. This method might be useful for a better understanding of excitable systems and different phenomena in neuronal dynamics.

  1. Dual-Bed Catalytic System for Direct Conversion of Methane to Liquid Hydrocarbons

    Institute of Scientific and Technical Information of China (English)

    N.A.S.Amin; Sriraj Ammasi

    2006-01-01

    A dual-bed catalytic system is proposed for the direct conversion of methane to liquid hydrocarbons. In this system, methane is converted in the first stage to oxidative coupling of methane (OCM) products by selective catalytic oxidation with oxygen over La-supported MgO catalyst. The second bed, comprising of the HZSM-5 zeolite catalyst, is used for the oligomerization of OCM light hydrocarbon products to liquid hydrocarbons. The effects of temperature (650-800 ℃), methane to oxygen ratio (4-10), and SiO2/Al2O3 ratio of the HZSM-5 zeolite catalyst on the process are studied. At higher reaction temperatures, there is considerable dealumination of HZSM-5, and thus its catalytic performance is reduced. The acidity of HZSM-5 in the second bed is responsible for the oligomerization reaction that leads to the formation of liquid hydrocarbons. The activities of the oligomerization sites were unequivocally affected by the SiO2/Al2O3 ratio. The relation between the acidity and the activity of HZSM-5 is studied by means of TPD-NH3 techniques. The rise in oxygen concentration is not beneficial for the C5+ selectivity, where the combustion reaction of intermediate hydrocarbon products that leads to the formation of carbon oxide (CO+CO2) products is more dominant than the oligomerization reaction. The dual-bed catalytic system is highly potential for directly converting methane to liquid fuels.

  2. Phase behavior of fluorocarbon and hydrocarbon double-chain hydroxylated and galactosylated amphiphiles and bolaamphiphiles. Long-term shelf-stability of their liposomes.

    Science.gov (United States)

    Clary, L; Gadras, C; Greiner, J; Rolland, J P; Santaella, C; Vierling, P; Gulik, A

    1999-06-01

    This paper describes the morphological characterization, by freeze-fracture electron microscopy, and the thermotropic phase behavior, by differential scanning calorimetry and/or X-ray scattering, of aqueous dispersions of various hydroxylated and galactosylated double-chain amphiphiles and bolaamphiphiles, several of them containing one or two hydrophobic fluorocarbon chains. Colloidal systems are observed in water with the hydroxylated hydrocarbon or fluorocarbon bolaamphiphiles only when they are dispersed with a co-amphiphile such as rac-1,2-dimyristoylphosphatidylcholine (DMPC) or rac-1,2-distearoylphosphatidylcholine (DSPC). Liposomes are formed providing the relative content of bolaamphiphiles does not exceed 20% mol. Most of these liposomes can be thermally sterilized and stored at room temperature for several months without any significant modification of their size and size distribution. The hydrocarbon galactosylated bolaamphiphile HO[C24][C12]Gal forms in water a lamellar phase (the gel to liquid-crystal phase transition is complete at 45 degrees C) and a Im3m cubic phase above 47 degrees C. The fluorocarbon HO[C24][F6C5]Gal analog displays a more complex and metastable phase behavior. The fluorinated non-bolaform galactosylated [F8C7][C16]AEGal and SerGal amphiphiles form lamellar phases in water. Low amounts (10% molar ratio) of the HO[C24][F6C5]Gal or HO[C24][C12]Gal bolaamphiphiles or of the single-headed [F8C7][C16]AEGal improve substantially the shelf-stability of reference phospholipon/cholesterol 2/1 liposomes. These liposomes when co-formulated with a single-headed amphiphile from the SerGal series are by far less stable.

  3. Potentiometric online detection of aromatic hydrocarbons in aqueous phase using carbon nanotube-based sensors.

    Science.gov (United States)

    Washe, Alemayehu P; Macho, Santiago; Crespo, Gastón A; Rius, F Xavier

    2010-10-01

    Surfaces made of entangled networks of single-walled carbon nanotubes (SWCNTs) display a strong adsorption affinity for aromatic hydrocarbons. Adsorption of these compounds onto the walls of SWCNTs changes the electrical characteristics of the SWCNT-solution interface. Using these features, we have developed a potentiometric sensor to detect neutral aromatic species. Specifically, we can detect online aromatic hydrocarbons in industrial coolant water. Our chromatographic results confirm the adsorption of toluene onto the walls of carbon nanotubes, and our impedance spectroscopy data show the change in the double layer capacitance of the carbon nanotube-solution interface upon addition of toluene, thus confirming the proposed sensing mechanism. The sensor showed a toluene concentration dependent EMF response that follows the shape of an adsorption isotherm and displayed an immediate response to the presence of toluene with a detection limit of 2.1 ppm. The sensor does not respond to other nonaromatic hydrocarbons that may coexist with aromatic hydrocarbons in water. It shows a qualitative sensitivity and selectivity of 100% and 83%, respectively, which confirms its ability to detect aromatic hydrocarbons in aqueous solutions. The sensor showed an excellent ability to immediately detect the presence of toluene in actual coolant water. Its operational characteristics, including its fast response, low cost, portability, and easy use in online industrial applications, improve those of current chromatographic or spectroscopic techniques.

  4. Analytical system for stable carbon isotope measurements of low molecular weight (C2-C6) hydrocarbons

    NARCIS (Netherlands)

    Zuiderweg, A.T.; Holzinger, R.; Roeckmann, T.

    2011-01-01

    We present setup, testing and initial results from a new automated system for stable carbon isotope ratio measurements on C2 to C6 atmospheric hydrocarbons. The inlet system allows analysis of trace gases from air samples ranging from a few liters for urban samples and samples with high mixing ratio

  5. Solution mining systems and methods for treating hydrocarbon containing formations

    Science.gov (United States)

    Vinegar, Harold J.; de Rouffignac, Eric Pierre; Schoeling, Lanny Gene

    2009-07-14

    A method for treating an oil shale formation comprising nahcolite is disclosed. The method includes providing a first fluid to a portion of the formation through at least two injection wells. A second fluid is produced from the portion through at least one injection well until at least two injection wells are interconnected such that fluid can flow between the two injection wells. The second fluid includes at least some nahcolite dissolved in the first fluid. The first fluid is injected through one of the interconnected injection wells. The second fluid is produced from at least one of the interconnected injection wells. Heat is provided from one or more heaters to the formation to heat the formation. Hydrocarbon fluids are produced from the formation.

  6. Phase transitions in finite systems

    Energy Technology Data Exchange (ETDEWEB)

    Chomaz, Ph. [Grand Accelerateur National d' Ions Lourds (GANIL), DSM-CEA / IN2P3-CNRS, 14 - Caen (France); Gulminelli, F. [Caen Univ., 14 (France). Lab. de Physique Corpusculaire

    2002-07-01

    In this series of lectures we will first review the general theory of phase transition in the framework of information theory and briefly address some of the well known mean field solutions of three dimensional problems. The theory of phase transitions in finite systems will then be discussed, with a special emphasis to the conceptual problems linked to a thermodynamical description for small, short-lived, open systems as metal clusters and data samples coming from nuclear collisions. The concept of negative heat capacity developed in the early seventies in the context of self-gravitating systems will be reinterpreted in the general framework of convexity anomalies of thermo-statistical potentials. The connection with the distribution of the order parameter will lead us to a definition of first order phase transitions in finite systems based on topology anomalies of the event distribution in the space of observations. Finally a careful study of the thermodynamical limit will provide a bridge with the standard theory of phase transitions and show that in a wide class of physical situations the different statistical ensembles are irreducibly inequivalent. (authors)

  7. Molecular networks in Position, Momentum, and Phase Space: A Case Study on Simple Hydrocarbons

    DEFF Research Database (Denmark)

    Schmider, Hartmut; Ho, Minhhuy

    1996-01-01

    are identified in a series of nine small hydrocarbonic molecules, and the resulting "molecular graphs" are interpreted in terms of symmetry and topology. For the example of a symmetric SN2 reaction, it is shown that the topology of the Husimi function based graphs can be useful for the classification of chemical...

  8. Liquid phase in situ hydrodeoxygenation of biomass-derived phenolic compounds to hydrocarbons over bifunctional catalysts

    Science.gov (United States)

    Junfeng Feng; Chung-yun Hse; Zhongzhi Yang; Kui Wang; Jianchun Jiang; Junming Xu

    2017-01-01

    The objective of this study was to find an effective method for converting renewable biomass-derived phenolic compounds into hydrocarbons bio-fuel via in situ catalytic hydrodeoxygenation. The in situ hydrodeoxygenation of biomass-derived phenolic compounds was carried out in methanol-water solvent over bifunctional catalysts of Raney Ni and HZSM-5 or H-Beta. In the in...

  9. Gas phase adiabatic electron affinities of cyclopenta-fused polycyclic aromatic hydrocarbons

    NARCIS (Netherlands)

    Todorov, P.D.; Koper, C.; van Lenthe, J.H.; Jenneskens, L.W.

    2008-01-01

    The B3LYP/DZP++ adiabatic electron affinity (AEA) of nine (non)-alternant polycyclic aromatic hydrocarbons are reported and discussed. Calculations became feasible for molecules this size by projecting out the near-linearly dependent part of the one-electron basis. Non-alternant PAH consisting of an

  10. Advances and perspectives in catalytic oxidation of hydrocarbons in liquid phase

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This review article summarizes recent advances in catalytic oxidation of hydrocarbons, especially presents two strategies for activation of C-H bonds or molecular oxygen. Based on our own research results, the applications of the two methods in the oxidation of cyclohexane, toluene and ethyl benzene, etc. are introduced, and the perspectives of the two methods are also discussed.

  11. Evaluation of analytical methodology for hydrocarbons in high pressure air and nitrogen systems. [evaluation of methodology

    Science.gov (United States)

    1977-01-01

    Samples of liquid oxygen, high pressure nitrogen, low pressure nitrogen, and missile grade air were studied to determine the hydrocarbon concentrations. Concentration of the samples was achieved by adsorption on a molecular sieve and activated charcoal. The trapped hydrocarbons were then desorbed and transferred to an analytical column in a gas chromatograph. The sensitivity of the method depends on the volume of gas passed through the adsorbent tubes. The value of the method was verified through recoverability and reproducibility studies. The use of this method enables LOX, GN2, and missile grade air systems to be routinely monitored to determine low level increases in specific hydrocarbon concentration that could lead to potentially hazardous conditions.

  12. Systems including catalysts in porous zeolite materials within a reactor for use in synthesizing hydrocarbons

    Science.gov (United States)

    Rolllins, Harry W [Idaho Falls, ID; Petkovic, Lucia M [Idaho Falls, ID; Ginosar, Daniel M [Idaho Falls, ID

    2012-07-24

    Catalytic structures include a catalytic material disposed within a zeolite material. The catalytic material may be capable of catalyzing a formation of methanol from carbon monoxide and/or carbon dioxide, and the zeolite material may be capable of catalyzing a formation of hydrocarbon molecules from methanol. The catalytic material may include copper and zinc oxide. The zeolite material may include a first plurality of pores substantially defined by a crystal structure of the zeolite material and a second plurality of pores dispersed throughout the zeolite material. Systems for synthesizing hydrocarbon molecules also include catalytic structures. Methods for synthesizing hydrocarbon molecules include contacting hydrogen and at least one of carbon monoxide and carbon dioxide with such catalytic structures. Catalytic structures are fabricated by forming a zeolite material at least partially around a template structure, removing the template structure, and introducing a catalytic material into the zeolite material.

  13. Formation of organic solid phases in hydrocarbon reservoir fluids. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, S.I.; Lindeloff, N.; Stenby, E.H.

    1998-12-31

    The occurrence of solid phases during oil recovery is a potential problem. The present work has mainly been concerned with wax formation due to cooling of oils with a large paraffin content. 8 oils have been included in this project, although only a few of these have till now been subject to all the experimental techniques applied. The oils and wax fractions from these have been characterized using techniques such as GC-MS and Ftir. The goal has in part been to get a detailed description of the oil composition for use in model evaluation and development and in part to get a fundamental understanding of waxy oil properties and behaviour. A high pressure (200 bar) equipment has been developed for automatic detection of wax appearance using a filtration technique and laser light turbidimetry. The latter was found to be far superior to the filtration. The filtration was used to sample the incipient solid phase for characterization. However entrapment of liquid in the filters currently used have hampered this part. A number of model systems and one gas condensate have been investigated. The GC-MS procedure was found only to been able to detect molecules up to n-C45 and the group type analysis was not accurate enough for modelling purposes. Using Ftir it was obvious that incipient phases may contain very complex molecules (asphaltenes) which are not captured by GC-MS especially when fractionation is done using the acetone precipitation at elevated temperature. The latter fractionation procedure has been investigated thoroughly as a tool for understanding wax distribution etc. Within thermodynamic modelling a delta lattice parameter model has been developed which incorporates the non-ideality of the solid phases into the calculation of SLE. The non-ideality is estimated from pure component properties. A new algorithm for phase equilibria involving gas-liquid-solid has been developed. Currently both the model work and the experimental works are continued. (au)

  14. Simultaneous determination of 16 polycyclic aromatic hydrocarbons in reclaimed water using solid-phase extraction followed by ultra-performance convergence chromatography with photodiode array detection.

    Science.gov (United States)

    Zhang, Yun; Xiao, Zhiyong; Lv, Surong; Du, Zhenxia; Liu, Xiaoxia

    2016-03-01

    A new fast and effective analysis method has been developed to simultaneously determine 16 polycyclic aromatic hydrocarbons in reclaimed water samples by ultra-performance convergence chromatography with photodiode array detection and solid-phase extraction. The parameters of ultra-performance convergence chromatography on the separation behaviors and the crucial condition of solid-phase extraction were investigated systematically. Under optimal conditions, the 16 polycyclic aromatic hydrocarbons could be separated within 4 min. The limits of detection and quantification were in the range of 0.4-4 and 1-10 μg/L in water, respectively. This approach has been applied to a real industrial wastewater treatment plant successfully. The results showed that polycyclic aromatic hydrocarbons were dramatically decreased after chemical treatment procedure, and the oxidation procedure was effective to remove trace polycyclic aromatic hydrocarbons.

  15. Three-phase Photovoltaic Systems

    DEFF Research Database (Denmark)

    Kerekes, Tamas; Sera, Dezso; Máthé, Lászlo

    2015-01-01

    the grid through a three-phase power electronic converter are now well on the way to becoming a major player in the power system in many countries. Therefore, this article gives an overview of photovoltaic systems with a focus on three-phase applications, presenting these both from a hardware point of view......Photovoltaic technology has experienced unprecedented growth in the last two decades, transforming from mainly off-grid niche generation to a major renewable energy technology, reaching approximately 180 GW of capacity worldwide at the end of 2014. Large photovoltaic power plants interfacing......, detailing the different photovoltaic inverter structures and topologies as well as discussing the different control layers within a grid-connected photovoltaic plant. Modulation schemes for various photovoltaic inverter topologies, grid synchronization, current control, active and reactive power control...

  16. Determination of solubility parameters and thermodynamic properties in hydrocarbon-solvent systems by gas chromatography

    Directory of Open Access Journals (Sweden)

    E. Díaz

    2007-06-01

    Full Text Available Gas chromatography used to calculate the specific retention volume of several hydrocarbons in different chromatographic liquid phases (Squalane, Carbowax-400, Carbowax-1500, Carbowax-4000, Amine-220, Dinonyl phthalate, Tributyl phosphate and Trixylenyl phosphate. Some thermodynamic parameters, such as enthalpy of sorption and Flory-Huggins parameters relating the interaction between liquid phases and solutes, were also calculated from the determined retention volumes. Liquid phase solubility parameters of Squalane, Carbowax-400, Carbowax-1500 and Carbowax-4000 at 80 ºC as well as the polar and apolar components were calculated too. A new model was proposed to correlate polar contribution to the solubility parameter of a liquid phase with the specific retention volume of a solute in this liquid phase.

  17. ANALYSIS OF HYDROCARBON TREATING SYSTEM TO THE EMISSION OFF SPARK-IGNITION FOUR-STROKE ENGINE

    Directory of Open Access Journals (Sweden)

    Binyamin Binyamin

    2016-08-01

    Full Text Available The reduction of carbon monoxide (CO, unburnthydrocarbon (UHC emission and fuel consumption on spark-ignition four-stroke engine is continuously attempted. The purposes from this research were to determine the effect of Hydrocarbon Treating System (HTS  on levels of CO, UHC and fuel consumption. This is an experimental research. Its is conducted by comparing the exhaust pollutant concentration such as carbon monoxide, unburnt hydrocarbon and also fuel consumption between standard engine setting and Hydrocarbon Treating System applied. The research variable are HTS flow rate from Q1 = 0 cc/s (without HTS, Q2 = 1,5 cc/s, Q3 = 2 cc/s, Q4 = 2,5 cc/s, and Q5 = 33 cc/s. The research will be done in three conditions which are low, medium and high rotation. The result showed that Hydrocarbon Threating System decrease fuel consumption up to 19,43% with flow rate Q5 = 3 cc/s, but on the other hand it increase CO emission up to 80.84% with flow rate Q5 = 3 cc/s and UHC emission level up to 124.75% with flow rate Q5 = 3 cc/s from engine standart condition.

  18. Bacterial diversity of a consortium degrading high-molecular-weight polycyclic aromatic hydrocarbons in a two-liquid phase biosystem.

    Science.gov (United States)

    Lafortune, Isabelle; Juteau, Pierre; Déziel, Eric; Lépine, François; Beaudet, Réjean; Villemur, Richard

    2009-04-01

    High-molecular-weight (HMW) polycyclic aromatic hydrocarbons (PAHs) are pollutants that persist in the environment due to their low solubility in water and their sequestration by soil and sediments. Although several PAH-degrading bacterial species have been isolated, it is not expected that a single isolate would exhibit the ability to degrade completely all PAHs. A consortium composed of different microorganisms can better achieve this. Two-liquid phase (TLP) culture systems have been developed to increase the bioavailability of poorly soluble substrates for uptake and biodegradation by microorganisms. By combining a silicone oil-water TLP system with a microbial consortium capable of degrading HMW PAHs, we previously developed a highly efficient PAH-degrading system. In this report, we characterized the bacterial diversity of the consortium with a combination of culture-dependent and culture-independent methods. Polymerase chain reaction (PCR) of part of the 16S ribosomal RNA gene (rDNA) sequences combined with denaturing gradient gel electrophoresis was used to monitor the bacterial population changes during PAH degradation of the consortium when pyrene, chrysene, and benzo[a]pyrene were provided together or separately in the TLP cultures. No substantial changes in bacterial profiles occurred during biodegradation of pyrene and chrysene in these cultures. However, the addition of the low-molecular-weight PAHs phenanthrene or naphthalene in the system favored one bacterial species related to Sphingobium yanoikuyae. Eleven bacterial strains were isolated from the consortium but, interestingly, only one-IAFILS9 affiliated to Novosphingobium pentaromativorans-was capable of growing on pyrene and chrysene as sole source of carbon. A 16S rDNA library was derived from the consortium to identify noncultured bacteria. Among 86 clones screened, 20 were affiliated to different bacterial species-genera. Only three strains were represented in the screened clones. Eighty

  19. Apparatus and methods for hydrocarbon extraction

    Science.gov (United States)

    Bohnert, George W.; Verhulst, Galen G.

    2016-04-26

    Systems and methods for hydrocarbon extraction from hydrocarbon-containing material. Such systems and methods relate to extracting hydrocarbon from hydrocarbon-containing material employing a non-aqueous extractant. Additionally, such systems and methods relate to recovering and reusing non-aqueous extractant employed for extracting hydrocarbon from hydrocarbon-containing material.

  20. Phase control system for SSRF linac

    Institute of Scientific and Technical Information of China (English)

    YIN Chongxian; YU Luyang; LIU Dekang

    2008-01-01

    The design of phase control system in Shanghai Synchrotron Radiation Facility (SSRF) linac is presented in this paper. And digital phase detecting algorithm, the key for phase control system, is fully described. The testing results for phase control system in 100MeV linac are discussed in detail.

  1. Hydrologic setting and geochemical characterization of free-phase hydrocarbons in the alluvial aquifer at Mandan, North Dakota, November 2000

    Science.gov (United States)

    Hostettler, Frances D.; Rostad, Colleen E.; Kvenvolden, Keith A.; Delin, Geoffrey N.; Putnam, Larry D.; Kolak, Jonathan J.; Chaplin, Brain P.; Schaap, Bryan D.

    2001-01-01

    Free-phase hydrocarbons are present in the alluvial aquifer at Mandan, North Dakota. A large contaminant body of the hydrocarbons [light nonaqueous phase liquid (LNAPL)] floats on the water table about 20 feet below land surface. The main LNAPL body is about 6 feet thick, and the areal extent is about 657,000 square feet. A study was conducted to describe the hydrologic setting and characterize the geochemical composition of the free-phase hydrocarbons in the alluvial aquifer. Most of the study area is underlain by alluvium of the Heart River Valley that ranges in thickness from about 25 to 109 feet. The alluvium can be divided into three stratigraphic units--silty clay, silty sand, and sand--and is underlain by shales and sandstones. Monitoring wells were installed prior to this study, to an average depth of about 29 feet. Regional ground-water flow in the Heart River aquifer generally may be from west-northwest to east-southeast and is influenced by hydraulic connections to the river. Hydraulic connections also are probable between the aquifer and the Missouri River. Ground-water flow across the north boundary of the aquifer is minimal because of adjacent shales and sandstones of relatively low permeability. Recharge occurs from infiltration of precipitation and is spatially variable depending on the thickness of overlying clays and silts. Although the general water-table gradient may be from west-northwest to east-southeast, the flow directions can vary depending on the river stage and recharge events. Any movement of the LNAPL is influenced by the gradients created by changes in water-level altitudes. LNAPL samples were collected from monitoring wells using dedicated bailers. The samples were transferred to glass containers, stored in the dark, and refrigerated before shipment for analysis by a variety of analytical techniques. For comparison purposes, reference-fuel samples provided by the refinery in Mandan also were analyzed. These reference-fuel samples

  2. REGULATION OF CENTRAL NERVOUS SYSTEM AUTOIMMUNITY BY THE ARYL HYDROCARBON RECEPTOR

    OpenAIRE

    Quintana, Francisco J.

    2013-01-01

    The ligand-activated transcription factor aryl hydrocarbon receptor controls the activity of several components of the immune system, many of which play an important role in neuroinflammation. This review discusses the role of AhR in T cells and dendritic cells, its relevance for the control of autoimmunity in the central nervous system, and its potential as a therapeutic target for immune mediated disorders.

  3. Can conventional bases and unsaturated hydrocarbons be converted into gas-phase superacids that are stronger than most of the known oxyacids? The role of beryllium bonds.

    Science.gov (United States)

    Yáñez, Manuel; Mó, Otilia; Alkorta, Ibon; Elguero, José

    2013-08-26

    The association of BeX2 (X: H, F, Cl) derivatives with azoles leads to a dramatic increase of their intrinsic acidity. Hence, whereas 1H-tetrazole can be considered as a typical N base in the gas phase, the complex 1H-tetrazole-BeCl2 is predicted to be, through the use of high-level G4 ab initio calculations, a nitrogen acid stronger than perchloric acid. This acidity enhancement is due to a more favorable stabilization of the deprotonated species after the beryllium bond is formed, because the deprotonated anion is a much better electron donor than the neutral species. Consequently, this is a general phenomenon that should be observed for any Lewis base, including those in which the basic site is a hydroxy group, an amino group, a carbonyl group, an aromatic N atom, a second-row atom, or the π system of unsaturated hydrocarbons. The consequence is that typical bases like aniline or formamide lead to BeX2 complexes that are stronger acids than phosphoric or chloric acids. Similarly, water, methanol, and SH2 become stronger acids than sulfuric acid, pyridine becomes a C acid almost as strong as acetic acid, and unsaturated hydrocarbons such as ethylene and acetylene become acids as strong as nitric and sulfuric acids, respectively.

  4. Phase Multistability in Coupled Oscillator Systems

    DEFF Research Database (Denmark)

    Mosekilde, Erik; Postnov, D.E.; Sosnovtseva, Olga

    2003-01-01

    The phenomenon of phase multistability arises in connection with the synchronization of coupled oscillator systems when the systems individually display complex wave forms associated, for instance, with the presence of subharmonic components or with significant variations of the phase velocity...

  5. Boiling Point Distribution of Hydrocarbon Types in Diesel Using Solid-Phase Extraction Followed by GC/FID-EIMS

    Institute of Scientific and Technical Information of China (English)

    Li Chengwei; Tian Songbai; Liu Zelong; Zhu Xinyi

    2008-01-01

    In this paper, a method was established to determine the boiling point distribution of hydro-carbon types in diesel. The diesel sample was separated into the saturate and aromatic fractions by means of solid-phase extraction (SPE), and each fraction was analyzed by GC/FID-EIMS. According to the relationship between boiling point and retention time of n-paraffins in the chromatogram, the percent-ages of saturates and aromatics at each temperature interval were calculated. According to the average mass spectra of the saturate and aromatic fractions at each temperature interval, the hydrocarbon types of the sample were identified through summation of characteristic mass fragments. Using this method,the changes in composition of diesel during hydrotreating process were studied. The results showed that hydrogenation of aromatics is the main reaction during the hydrotreating process. The more rings the aromatics have, the easier the hydrogenation reactions would take place. The aromatics were converted into cycloparaffins via the hydrogenation and saturation process, leading to an increase in low boiling point fractions in the hydrotreated oil.

  6. Hydrocarbon pneumonia

    Science.gov (United States)

    Pneumonia - hydrocarbon ... Coughing Fever Shortness of breath Smell of a hydrocarbon product on the breath Stupor (decreased level of ... Most children who drink or inhale hydrocarbon products and develop ... hydrocarbons may lead to rapid respiratory failure and death.

  7. Processes controlling water and hydrocarbon composition in seeps from the Salton Sea geothermal system, California, USA

    Science.gov (United States)

    Svensen, Henrik; Karlsen, Dag A.; Sturz, Anne; Backer-Owe, Kristian; Banks, David A.; Planke, Sverre

    2007-01-01

    Water-, mud-, gas-, and petroleum-bearing seeps are part of the Salton Sea geothermal system (SSGS) in Southern California. Seeps in the Davis-Schrimpf seep field (˜14,000 m2) show considerable variations in water temperature, pH, density, and solute content. Water-rich springs have low densities (98 vol%). Halogen geochemistry of the waters indicates that mixing of deep and shallow waters occurs and that near-surface dissolution of halite may overprint the original fluid compositions. Carbon isotopic analyses suggest that hydrocarbon seep gases have a thermogenic origin. This hypothesis is supported by the presence of petroleum in a water-dominated spring, composed of 53% saturated compounds, 35% aromatics, and 12% polar compounds. The abundance of polyaromatic hydrocarbons and immature biomarkers suggests a hydrothermal formation of the petroleum, making the SSGS a relevant analogue to less accessible hydrothermal seep systems, e.g., the Guaymas Basin in the Gulf of California.

  8. Lipidic ionic liquid stationary phases for the separation of aliphatic hydrocarbons by comprehensive two-dimensional gas chromatography.

    Science.gov (United States)

    Nan, He; Zhang, Cheng; O'Brien, Richard A; Benchea, Adela; Davis, James H; Anderson, Jared L

    2017-01-20

    Lipidic ionic liquids (ILs) possessing long alkyl chains as well as low melting points have the potential to provide unique selectivity as well as wide operating ranges when used as stationary phases in gas chromatography. In this study, a total of eleven lipidic ILs containing various structural features (i.e., double bonds, linear thioether chains, and cyclopropanyl groups) were examined as stationary phases in comprehensive two dimensional gas chromatography (GC×GC) for the separation of nonpolar analytes in kerosene. N-alkyl-N'-methyl-imidazolium-based ILs containing different alkyl side chains were used as model structures to investigate the effects of alkyl moieties with different structural features on the selectivities and operating temperature ranges of the IL-based stationary phases. Compared to a homologous series of ILs containing saturated side chains, lipidic ILs exhibit improved selectivity toward the aliphatic hydrocarbons in kerosene. The palmitoleyl IL provided the highest selectivity compared to all other lipidic ILs as well as the commercial SUPELCOWAX 10 column. The linoleyl IL containing two double bonds within the alkyl side chain showed the lowest chromatographic selectivity. The lipidic IL possessing a cyclopropanyl group within the alkyl moiety exhibited the highest thermal stability. The Abraham solvation parameter model was used to evaluate the solvation properties of the lipidic ILs. This study provides the first comprehensive examination into the relation between lipidic IL structure and the resulting solvation characteristics. Furthermore, these results establish a basis for applying lipidic ILs as stationary phases for solute specific separations in GC×GC.

  9. Prediction of vapor-liquid equilibriafor hydrocarbon binary systems by regular solution model

    OpenAIRE

    下山, 裕介; 米澤, 節子; 小渕, 茂寿; 福地, 賢治; 荒井, 康彦; Shimoyama, Yusuke; Yonezawa, Setsuko; Kobuchi, Shigetoshi; Fukuchi, Kenii; Arai, Yasuhiko

    2007-01-01

    Vapor-liquid equilibria (VLE) of hydrocarbon binary systems : hexane + benzene (25 °C), toluene + octane (60°C) and cyclohexane + toluene (50°C) were predicted by using a regular solution model. In the present model, the mixing entropy term (Flory-Huggins equation) is included and an interaction parameter between unlike molecules is introduced. Solubility parameters and molar volumes at each temperature required in calculation are estimated by previously proposed methods. VLE of hexane + benz...

  10. Retentivity, selectivity and thermodynamic behavior of polycyclic aromatic hydrocarbons on charge-transfer and hypercrosslinked stationary phases under conditions of normal phase high performance liquid chromatography.

    Science.gov (United States)

    Jiang, Ping; Lucy, Charles A

    2016-03-11

    Charge-transfer and hypercrosslinked polystyrene phases offer retention and separation for polycyclic aromatic hydrocarbons (PAHs) and thus have potential for petroleum analysis. The size, shape and planarity selectivity for PAH standards on charge-transfer (DNAP column) and hypercrosslinked polystyrene (HC-Tol and 5HGN columns) phases are different under normal phase liquid chromatography (NPLC). The HC-Tol column behaves like a conventional NPLC column with low retention of PAHs. Retention of PAHs on the DNAP and 5HGN are strong and increases with the number of aromatic rings. The main retention mechanism is through π-π interactions and dipole-induced dipole interaction. Thermodynamics indicates that the retention mechanism of PAHs remains unchanged over the temperature range 20-60°C. In addition, on either DNAP or 5HGN column, both linear and bent PAHs are retained through the same mechanism. But DNAP possesses smaller π-π interaction and higher planarity selectivity than 5HGN for PAHs. This is suggestive that DNAP interacts with PAHs through a disordered phase arrangement, while 5HGN behaves as an ordered adsorption phase.

  11. Gas-phase Reactions of Polycyclic Aromatic Hydrocarbon Anions with Molecules of Interstellar Relevance

    Science.gov (United States)

    Demarais, Nicholas J.; Yang, Zhibo; Martinez, Oscar; Wehres, Nadine; Snow, Theodore P.; Bierbaum, Veronica M.

    2012-02-01

    We have studied reactions of small dehydrogenated polycyclic aromatic hydrocarbon anions with neutral species of interstellar relevance. Reaction rate constants are measured at 300 K for the reactions of phenide (C6H- 5), naphthalenide (C10H- 7), and anthracenide (C14H- 9) with atomic H, H2, and D2 using a flowing afterglow-selected ion flow tube instrument. Reaction rate constants of phenide with neutral molecules (CO, O2, CO2, N2O, C2H2, CH3OH, CH3CN, (CH3)2CO, CH3CHO, CH3Cl, and (CH3CH2)2O) are also measured under the same conditions. Experimental measurements are accompanied by ab initio calculations to provide insight into reaction pathways and enthalpies. Our measured reaction rate constants should prove useful in the modeling of astrophysical environments, particularly when applied to dense regions of the interstellar and circumstellar medium.

  12. Sourcing hydrocarbons in CO2-rich in hydrothermal systems

    OpenAIRE

    Fiebig, J; F. Tassi; D'Alessandro, W.; A. B. Woodland

    2009-01-01

    Methane (CH4) emanating from a continental volcanichydrothermal system in Nisyros, Greece, is processed through the abiogenic reduction of mantle- and marine limestonederived CO2 [1]. Evidence for the occurrence of abiogenic hydrothermal reduction of CO2 is from the chemical and carbon isotopic equilibrium patterns. We have further characterized this abiogenic methane (C1) source for the concentrations of ethane (C2) and propane (C3), as well as for the hydrogen isotop...

  13. Enhanced bioremediation of hydrocarbon-contaminated soil using pilot-scale bioelectrochemical systems

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Lu; Yazdi, Hadi [Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO (United States); Jin, Song [Department of Civil and Architectural Engineering, University of Wyoming, Laramie, WY (United States); Zuo, Yi [Chevron Energy Technology Company, San Ramon, CA (United States); Fallgren, Paul H. [Department of Civil Engineering, University of Colorado Denver, Denver, CO (United States); Ren, Zhiyong Jason, E-mail: jason.ren@colorado.edu [Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO (United States); Department of Civil Engineering, University of Colorado Denver, Denver, CO (United States)

    2014-06-01

    Highlights: • Pilot bioelectrochemical system showed high-performance hydrocarbon remediation. • Radius of influence characterization demonstrated system efficacy. • Current serves as degradation indicator. - Abstract: Two column-type bioelectrochemical system (BES) modules were installed into a 50-L pilot scale reactor packed with diesel-contaminated soils to investigate the enhancement of passive biodegradation of petroleum compounds. By using low cost electrodes such as biochar and graphite granule as non-exhaustible solid-state electron acceptors, the results show that 82.1–89.7% of the total petroleum hydrocarbon (TPH) was degraded after 120 days across 1–34 cm radius of influence (ROI) from the modules. This represents a maximum of 241% increase of biodegradation compared to a baseline control reactor. The current production in the BESs correlated with the TPH removal, reaching the maximum output of 70.4 ± 0.2 mA/m{sup 2}. The maximum ROI of the BES, deducting influence from the baseline natural attenuation, was estimated to be more than 90 cm beyond the edge of the reactor (34 cm), and exceed 300 cm should a non-degradation baseline be used. The ratio of the projected ROI to the radius of BES (ROB) module was 11–12. The results suggest that this BES can serve as an innovative and sustainable technology for enhanced in situ bioremediation of petroleum hydrocarbons in large field scale, with additional benefits of electricity production and being integrated into existing field infrastructures.

  14. Case study of a novel geocomposite barrier system for hydrocarbon containment on Brevoort Island

    Energy Technology Data Exchange (ETDEWEB)

    Bathurst, R.J.; Zeeb, B.; Reimer, K. [Royal Military Coll. of Canada, Kingston, ON (Canada); Rowe, R.K. [Queen' s Univ., Kingston, ON (Canada)

    2005-07-01

    North Warning System Office has undertaken a program focused on the cleanup of Canadian District Early Warning Line and Pole Vault sites located on the Canadian sub-Arctic and Arctic coastline. The implementation plan emphasizes cost-effective methods of preventing the movement of chemical contaminants into the ecosystem. This paper describes remediation steps that were taken to restrict the migration of a hydrocarbon plume before the excavation of contaminated ground at a Pole Vault site on Brevoort Island. This is the first published field application of a fluorinated geomembrane. A composite liner consisting of fluorine surface-treated polyethylene geomembrane and a geosynthetic clay liner was chosen as a barrier against hydrocarbon migration until full remediation measures could be applied. Design details, selection criteria and various challenges in the installation procedure were presented. Due to the remoteness of the location and the extremes of temperature, a site monitoring program was also initiated. Details of the programs were also presented, along with details of a parallel program of laboratory testing, initiated to investigate the long-term effects of contact with jet fuel on specimens of the barrier components as well as freeze-thaw and general lower temperatures. Results indicated that the barrier system was performing as planned. Laboratory tests indicated that the geosynthetic materials selected for the Brevoort site were expected to maintain low rates of hydrocarbon diffusion and advection beyond the original design life of the barrier system. 14 refs., 10 figs.

  15. Optrode for sensing hydrocarbons

    Science.gov (United States)

    Miller, Holly; Milanovich, Fred P.; Hirschfeld, Tomas B.; Miller, Fred S.

    1987-01-01

    A two-phase system employing the Fujiwara reaction is provided for the fluorometric detection of halogenated hydrocarbons. A fiber optic is utilized to illuminate a column of pyridine trapped in a capillary tube coaxially attached at one end to the illuminating end of the fiber optic. A strongly alkaline condition necessary for the reaction is maintained by providing a reservoir of alkali in contact with the column of pyridine, the surface of contact being adjacent to the illuminating end of the fiber optic. A semipermeable membrane caps the other end of the capillary tube, the membrane being preferentially permeable to the halogenated hydrocarbon and but preferentially impermeable to water and pyridine. As the halogenated hydrocarbon diffuses through the membrane and into the column of pyridine, fluorescent reaction products are formed. Light propagated by the fiber optic from a light source, excites the fluorescent products. Light from the fluorescence emission is also collected by the same fiber optic and transmitted to a detector. The intensity of the fluorescence gives a measure of the concentration of the halogenated hydrocarbons.

  16. Hydrocarbon anomaly in soil gas as near-surface expressions of upflows and outflows in geothermal systems

    Energy Technology Data Exchange (ETDEWEB)

    Ong, H.L.; Higashihara, M.; Klusman, R.W.; Voorhees, K.J.; Pudjianto, R.; Ong, J

    1996-01-24

    A variety of hydrocarbons, C1 - C12, have been found in volcanic gases (fumarolic) and in geothermal waters and gases. The hydrocarbons are thought to have come from products of pyrolysis of kerogen in sedimentary rocks or they could be fed into the geothermal system by the recharging waters which may contain dissolved hydrocarbons or hydrocarbons extracted by the waters from the rocks. In the hot geothermal zone, 300°+ C, many of these hydrocarbons are in their critical state. It is thought that they move upwards due to buoyancy and flux up with the upflowing geothermal fluids in the upflow zones together with the magmatic gases. Permeability which could be provided by faults, fissures, mini and micro fractures are thought to provide pathways for the upward flux. A sensitive technique (Petrex) utilizing passive integrative adsorption of the hydrocarbons in soil gas on activated charcoal followed by desorption and analysis of the hydrocarbons by direct introduction mass spectrometry allows mapping of the anomalous areas. Surveys for geothermal resources conducted in Japan and in Indonesia show that the hydrocarbon anomaly occur over known fields and over areas strongly suspected of geothermal potential. The hydrocarbons found and identified were n-paraffins (C7-C9) and aromatics (C7-C8). Detection of permeable, i.e. active or open faults, parts of older faults which have been reactivated, e.g. by younger intersecting faults, and the area surrounding these faulted and permeable region is possible. The mechanism leading to the appearance of the hydrocarbon in the soil gas over upflow zones of the geothermal reservoir is proposed. The paraffins seems to be better pathfinders for the location of upflows than the aromatics. However the aromatics may, under certain circumstances, give better indications of the direction of the outflow of the geothermal system. It is thought that an upflow zone can be

  17. Evaluation of a Cyclodextrin-silica Hybrid Microporous Composite for the Solid-phase Extraction of Polycyclic Aromatic Hydrocarbons.

    Science.gov (United States)

    Soler-Seguí, Salomé; Belenguer-Sapiña, Carolinakn-Aut-Sei; Amorós, Pedro; Mauri-Aucejo, Adela

    2016-01-01

    Solid-phase extraction (SPE) coupled with high-performance liquid chromatography (HPLC) with fluorescence detection were employed to determine trace polycyclic aromatic hydrocarbons in water samples. In this way, the use of cartridges containing cyclodextrin-silica hybrid microporous solid phases was proposed. The experimental results indicated that the method provided relative standard deviations of below 15% and detection limits recorded were 12, 1.2, 12, 38, 4, 6 and 4 ng L(-1) for benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[g,h,i]perylene, indeno[1,2,3]pyrene, benzo[a]pyrene, dibenzo[a,h]anthracene and benzo[a]anthracene, respectively. Moreover, the method was successfully applied for the determination of these organic compounds in water samples, where they were found to be in the 7 to 580 ng L(-1) range. It can be concluded that the major advantages of cyclodextrin-silica hybrid microporous solid phases are that they reduce the consumption and the toxicity of the solvent and the time consumption of the sample treatment step.

  18. Supra-Atomic Coarse-Grained GROMOS Force Field for Aliphatic Hydrocarbons in the Liquid Phase.

    Science.gov (United States)

    Eichenberger, Andreas P; Huang, Wei; Riniker, Sereina; van Gunsteren, Wilfred F

    2015-07-14

    A supra-atomic coarse-grained (CG) force field for liquid n-alkanes is presented. The model was calibrated using experimental thermodynamic data and structural as well as energetic properties for 14 n-alkanes as obtained from atomistic fine-grained (FG) simulations of the corresponding hydrocarbons using the GROMOS 45A3 biomolecular force field. A variation of the nonbonded force-field parameters obtained from mapping the FG interactions onto the CG degrees of freedom to fit the density and heat of vaporization to experimental values turned out to be mandatory for a correct reproduction of these data by the CG model, while the bonded force-field parameters for the CG model could be obtained from a Boltzmann-weighted fit with some variations with respect to the corresponding properties from the FG simulations mapped onto the CG degrees of freedom. The model presents 6 different CG bead types, for bead sizes from 2 to 4 distinguishing between terminal and nonterminal beads within an alkane chain (end or middle). It contains different nonbonded Lennard-Jones parameters for the interaction of CG alkanes with CG water. The CG alkane model was further tested by comparing predictions of the excess free energy, the self-diffusion constant, surface tension, isothermal compressibility, heat capacity, thermal expansion coefficient, and shear viscosity for n-alkanes to experimental values. The CG model offers a thermodynamically calibrated basis for the development of CG models of lipids.

  19. Stepwise pumping approach to improve free phase light hydrocarbon recovery from unconfined aquifers

    OpenAIRE

    1995-01-01

    A stepwise, time-varying pumping approach is developed to improve free phase oil recovery of light non-aqueous phase liquids {LNAPL) from a homogeneous, unconfined aquifer. Stepwise pumping is used to contain the floating oil plume and obtain efficient free oil recovery. The pumping approach is developed using detailed simulations, multiple linear regression and graphical plots. The approach uses ARMOS©, an areal two-dimensional multiphase flow, finite-element simulation model. Systematic sim...

  20. Phase Noise in Photonic Phased-Array Antenna Systems

    Science.gov (United States)

    Logan, Ronald T., Jr.; Maleki, Lute

    1998-01-01

    The total noise of a phased-array antenna system employing a photonic feed network is analyzed using a model for the individual component noise including both additive and multiplicative equivalent noise generators.

  1. Transferable Tight-Binding Potential for Hydrocarbons

    CERN Document Server

    Wang, Y; Wang, Yang

    1994-01-01

    A transferable tight-binding potential has been constructed for heteroatomic systems containing carbon and hydrogen. The electronic degree of freedom is treated explicitly in this potential using a small set of transferable parameters which has been fitted to small hydrocarbons and radicals. Transferability to other higher hydrocarbons were tested by comparison with ab initio calculations and experimental data. The potential can correctly reproduce changes in the electronic configuration as a function of the local bonding geometry around each carbon atom. This type of potential is well suited for computer simulations of covalently bonded systems in both gas-phase and condensed-phase systems.

  2. SOLID FUEL OF HYDROCARBON, WOOD AND AGRICULTURAL WASTE FOR LOCAL HEAT SUPPLY SYSTEMS

    Directory of Open Access Journals (Sweden)

    B. M. Khroustalev

    2017-01-01

    Full Text Available In Belarus oil refining and oil producing industries are paid close attention. On the background of the active maintaining the level of oil processing and volume of oil extraction in our country and in the countries of the Eurasian Economic Union there is a steady formation of hydrocarbon-containing waste; therefore recycling of the latter is an urgent task to improve the competitiveness of production. The most cost-effective way of using hydrocarbon waste is the conversion of it into power resources. In this case it is possible to obtain significant power-saving and economic effect of the combined use of a hydrocarbon, wood, agricultural and other combustible waste, meanwhile improving the ecological situation at the sites of waste storage and creating a solid fuel with the necessary energy and specified physical-and-chemical properties. A comprehensive solution of a recycling problem makes it possible to use as energy resources a lot of waste that has not found application in other technologies, to produce alternative multi-component fuel which structure meets environmental and energy requirement for local heating systems. In addition, the implementation of such technology will make it possible to reduce power consumption of enterprises of various kinds that consume fuel and will also increase the share of local fuels in the energy balance of a particular region.

  3. Comparison of the solid-phase extraction efficiency of a bounded and an included cyclodextrin-silica microporous composite for polycyclic aromatic hydrocarbons determination in water samples.

    Science.gov (United States)

    Mauri-Aucejo, Adela; Amorós, Pedro; Moragues, Alaina; Guillem, Carmen; Belenguer-Sapiña, Carolina

    2016-08-15

    Solid-phase extraction is one of the most important techniques for sample purification and concentration. A wide variety of solid phases have been used for sample preparation over time. In this work, the efficiency of a new kind of solid-phase extraction adsorbent, which is a microporous material made from modified cyclodextrin bounded to a silica network, is evaluated through an analytical method which combines solid-phase extraction with high-performance liquid chromatography to determine polycyclic aromatic hydrocarbons in water samples. Several parameters that affected the analytes recovery, such as the amount of solid phase, the nature and volume of the eluent or the sample volume and concentration influence have been evaluated. The experimental results indicate that the material possesses adsorption ability to the tested polycyclic aromatic hydrocarbons. Under the optimum conditions, the quantification limits of the method were in the range of 0.09-2.4μgL(-1) and fine linear correlations between peak height and concentration were found around 1.3-70μgL(-1). The method has good repeatability and reproducibility, with coefficients of variation under 8%. Due to the concentration results, this material may represent an alternative for trace analysis of polycyclic aromatic hydrocarbons in water trough solid-phase extraction.

  4. Evaluation of polycyclic aromatic hydrocarbons in asphalt binder using matrix solid-phase dispersion and gas chromatography.

    Science.gov (United States)

    Fernandes, Paulo R N; Soares, Sandra de A; Nascimento, Ronaldo F; Soares, Jorge B; Cavalcante, Rivelino M

    2009-10-01

    A method developed for the extraction and analysis of polycyclic aromatic hydrocarbons (PAHs) in the asphalt binder using a matrix solid-phase dispersion (MSPD) and gas chromatography is presented. The MSPD method was proposed as a rapid and easy approach to determining PAHs present in the maltenic phase of asphalt binder extracted through a mechanical shaking and sonication of the material. The recovery rates ranged from 62.77-89.92% (shaking) and from 56.54-93.6% (sonication) with relative standard deviations lower than 8.8%. The study shows that the recovery rates using shaking and sonication extractions are not significantly different at the p asphalt binder from Brazil. The main PAHs found were BbF, BaP, Per, IncdP, DahA, and BghiP, with average concentrations of 10.2-20.7 mg/kg, but the PAHs Ace and Acy were not detected. However, Nap, Fl, Phen, Ant, Flr, Pyr, Chry, BaA, and BkF were present in average concentrations amounting to less than 10 mg/kg. The results showed that the MSPD method is potentially a valuable tool for the determination of PAHs in the asphalt binder.

  5. Silver nanoparticle aggregates on metal fibers for solid phase microextraction-surface enhanced Raman spectroscopy detection of polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Liu, Cuicui; Zhang, Xiaoli; Li, Limei; Cui, Jingcheng; Shi, Yu-e; Wang, Le; Zhan, Jinhua

    2015-07-07

    Solid phase microextraction (SPME), a solvent free technique for sample preparation, has been successfully coupled with GC, GC-MS, and HPLC for environmental analysis. In this work, a method combining solid phase microextraction with surface enhanced Raman spectroscopy (SERS) is developed for detection of polycyclic aromatic hydrocarbons (PAHs). Silver nanoparticle aggregates were deposited on the Ag-Cu fibers via layer-by-layer deposition, which were modified with propanethiol (PTH). The SERS-active SPME fiber was immersed in water directly to extract PAHs and then detected using a portable Raman spectrometer. The pronounced valence vibration of the C-C bond at 1030 cm(-1) was chosen as an internal standard peak for the constant concentration of PTH. The RSD values of the stability and the uniformity of the SERS-active SPME fiber are 2.97% and 5.66%, respectively. A log-log plot of the normalized SERS intensity versus fluoranthene concentration showed a linear relationship (R(2) = 0.95). The detection limit was 7.56 × 10(-10) M and the recovery rate of water samples was in the range of 95% to 115%. The method can also be applied to detection of PAH mixtures, and each component of the mixtures can be distinguished by Raman characteristic peaks. The SERS-active SPME fiber could be further confirmed by GC-MS.

  6. Phases, phase equilibria, and phase rules in low-dimensional systems

    Energy Technology Data Exchange (ETDEWEB)

    Frolov, T., E-mail: timfrol@berkeley.edu [Department of Materials Science and Engineering, University of California, Berkeley, California 94720 (United States); Mishin, Y., E-mail: ymishin@gmu.edu [Department of Physics and Astronomy, MSN 3F3, George Mason University, Fairfax, Virginia 22030 (United States)

    2015-07-28

    We present a unified approach to thermodynamic description of one, two, and three dimensional phases and phase transformations among them. The approach is based on a rigorous definition of a phase applicable to thermodynamic systems of any dimensionality. Within this approach, the same thermodynamic formalism can be applied for the description of phase transformations in bulk systems, interfaces, and line defects separating interface phases. For both lines and interfaces, we rigorously derive an adsorption equation, the phase coexistence equations, and other thermodynamic relations expressed in terms of generalized line and interface excess quantities. As a generalization of the Gibbs phase rule for bulk phases, we derive phase rules for lines and interfaces and predict the maximum number of phases than may coexist in systems of the respective dimensionality.

  7. Phases, phase equilibria, and phase rules in low-dimensional systems.

    Science.gov (United States)

    Frolov, T; Mishin, Y

    2015-07-28

    We present a unified approach to thermodynamic description of one, two, and three dimensional phases and phase transformations among them. The approach is based on a rigorous definition of a phase applicable to thermodynamic systems of any dimensionality. Within this approach, the same thermodynamic formalism can be applied for the description of phase transformations in bulk systems, interfaces, and line defects separating interface phases. For both lines and interfaces, we rigorously derive an adsorption equation, the phase coexistence equations, and other thermodynamic relations expressed in terms of generalized line and interface excess quantities. As a generalization of the Gibbs phase rule for bulk phases, we derive phase rules for lines and interfaces and predict the maximum number of phases than may coexist in systems of the respective dimensionality.

  8. Direct-immersion solid-phase microextraction coupled to fast gas chromatography mass spectrometry as a purification step for polycyclic aromatic hydrocarbons determination in olive oil.

    Science.gov (United States)

    Purcaro, Giorgia; Picardo, Massimo; Barp, Laura; Moret, Sabrina; Conte, Lanfranco S

    2013-09-13

    The aim of the present work was to optimize a preparation step for polycyclic aromatic hydrocarbons in a fatty extract. Solid-phase microextraction is an easy preparation technique, which allows to minimize solvent consumption and reduce sample manipulation. A Carbopack Z/polydimethylsiloxane fiber, particularly suitable for extraction of planar compounds, was employed to extract polycyclic aromatic hydrocarbons from a hexane solution obtained after a previous extraction with acetonitrile from oil, followed by a liquid-liquid partition between acetonitrile and hexane. The proposed method was a rapid and sensitive solution to reduce the interference of triglycerides saving the column life and avoiding frequent cleaning of the mass spectrometer ion source. Despite the non-quantitative extraction of polycyclic aromatic hydrocarbons from oil using acetonitrile, the signal-to-noise ratio was significantly improved obtaining a limit of detection largely below the performance criteria required by the European Union legislation.

  9. Phase Diagrams of Silicate Systems: Handbook; Third Issue; Ternary Systems

    Science.gov (United States)

    In the third issue of the handbook Phase Diagrams of Silicate Systems, information is included on the phase relationships in systems containing...radioelectronics, nuclear engineering, etc. Not only are equilibrium phase diagrams presented in the handbook, but the phases existing in the

  10. Equilibrium passive sampling as a tool to study polycyclic aromatic hydrocarbons in Baltic Sea sediment pore-water systems

    DEFF Research Database (Denmark)

    Lang, Susann-Cathrin; Hursthouse, Andrew; Mayer, Philipp

    2015-01-01

    Solid Phase Microextraction (SPME) was applied to provide the first large scale dataset of freely dissolved concentrations for 9 polycyclic aromatic hydrocarbons (PAHs) in Baltic Sea sediment cores. Polydimethylsiloxane (PDMS) coated glass fibers were used for ex-situ equilibrium sampling followed...

  11. Determination of descriptors for polycyclic aromatic hydrocarbons and related compounds by chromatographic methods and liquid-liquid partition in totally organic biphasic systems.

    Science.gov (United States)

    Ariyasena, Thiloka C; Poole, Colin F

    2014-09-26

    Retention factors on several columns and at various temperatures using gas chromatography and from reversed-phase liquid chromatography on a SunFire C18 column with various mobile phase compositions containing acetonitrile, methanol and tetrahydrofuran as strength adjusting solvents are combined with liquid-liquid partition coefficients in totally organic biphasic systems to calculate descriptors for 23 polycyclic aromatic hydrocarbons and eighteen related compounds of environmental interest. The use of a consistent protocol for the above measurements provides descriptors that are more self consistent for the estimation of physicochemical properties (octanol-water, air-octanol, air-water, aqueous solubility, and subcooled liquid vapor pressure). The descriptor in this report tend to have smaller values for the L and E descriptors and random differences in the B and S descriptors compared with literature sources. A simple atom fragment constant model is proposed for the estimation of descriptors from structure for polycyclic aromatic hydrocarbons. The new descriptors show no bias in the prediction of the air-water partition coefficient for polycyclic aromatic hydrocarbons unlike the literature values.

  12. Oscillating systems with cointegrated phase processes

    DEFF Research Database (Denmark)

    Østergaard, Jacob; Rahbek, Anders; Ditlevsen, Susanne

    2017-01-01

    We present cointegration analysis as a method to infer the network structure of a linearly phase coupled oscillating system. By defining a class of oscillating systems with interacting phases, we derive a data generating process where we can specify the coupling structure of a network that resemb......We present cointegration analysis as a method to infer the network structure of a linearly phase coupled oscillating system. By defining a class of oscillating systems with interacting phases, we derive a data generating process where we can specify the coupling structure of a network...

  13. Isotope reversals in hydrocarbon gases of natural shale systems and well head production data

    Energy Technology Data Exchange (ETDEWEB)

    Berner, U.; Schloemer, S.; Stiller, E. [Bundesanstalt fuer Geowissenschaften und Rohstoffe (BGR), Hannover (Germany); Marquardt, D. [Rijksuniversiteit Utrecht (Netherlands)

    2013-08-01

    Relationships between gas geochemical signatures and the thermal maturity of source rocks containing aquatic organic matter are based on on pyrolysis experiments and have been successfully used in conventional hydrocarbon exploration since long. We demonstrate how these models can be applied to the evaluation of unconventional shale resources. For this purpose hydrocarbon gases have been extracted from low and high mature source rocks (type II kerogens) using laboratory desorption techniques. We determined the molecular composition of the gases as well as the carbon isotope ratios of methane to propane. In the extracted gases we observe an increase of {sup 13}C content in methane with increasing dry gas ratio (C1/{Sigma}C1-6). The carbon isotope ratios of ethane and propane initially increase with increasing dryness but start to become isotopically lighter above a dry gas ratio of 0.8. We show that oil-to-gas cracking explains the observed gas geochemical data, and that mixing between gases from different processes is a key factor to describe natural hydrocarbon systems of shales. However, data from published case studies using well head gases which show 'isotope roll-over' effects indicate that the isotopic reversal observed in well head samples deviate from those observed in natural shale systems in a fundamental way. We show that isotope reversals related to well head gases are best explained by an additional isotope fractionation effect induced through hydraulic fracturing and gas migration from the shale to the well head. Although, this induced isotope fractionation is an artifact which obscures isotopic information of natural systems to a large extend, we suggest a simple classification scheme which allows distinguishing between hot and cool spot areas using well head or mud line gas data. (orig.)

  14. Analytical system for stable carbon isotope measurements of low molecular weight (C2-C6 hydrocarbons

    Directory of Open Access Journals (Sweden)

    T. Röckmann

    2011-06-01

    Full Text Available We present setup, testing and initial results from a new automated system for stable carbon isotope ratio measurements on C2 to C6 atmospheric hydrocarbons. The inlet system allows analysis of trace gases from air samples ranging from a few liters for urban samples and samples with high mixing ratios, to many tens of liters for samples from remote unpolluted regions with very low mixing ratios. The centerpiece of the sample preparation is the separation trap, which is used to separate CO2 and methane from the compounds of interest. The main features of the system are (i the capability to sample up to 300 l of air, (ii long term (since May 2009 operational δ13C accuracy levels in the range 0.3–0.8 ‰ (1-σ, and (iii detection limits of order 1.5–2.5 ngC (collected amount of substance for all reported compounds. The first application of this system was the analysis of 21 ambient air samples taken during 48 h in August 2009 in Utrecht, the Netherlands. Results obtained are generally in good agreement with those from similar urban ambient air studies. Short sample intervals allowed by the design of the instrument help to illustrate the complex diurnal behavior of hydrocarbons in an urban environment, where diverse sources, dynamical processes, and chemical reactions are present.

  15. Thermodynamic analysis of hydrocarbon refrigerants-based ethylene BOG re-liquefaction system

    Science.gov (United States)

    Beladjine, Boumedienne M.; Ouadha, Ahmed; Addad, Yacine

    2016-09-01

    The present study aims to make a thermodynamic analysis of an ethylene cascade re-liquefaction system that consists of the following two subsystems: a liquefaction cycle using ethylene as the working fluid and a refrigeration cycle operating with a hydrocarbon refrigerant. The hydrocarbon refrigerants considered are propane (R290), butane (R600), isobutane (R600a), and propylene (R1270). A computer program written in FORTRAN is developed to compute parameters for characteristic points of the cycles and the system's performance, which is determined and analyzed using numerical solutions for the refrigerant condensation temperature, temperature in tank, and temperature difference in the cascade condenser. Results show that R600a gives the best performance, followed by (in order) R600, R290, and R1270. Furthermore, it is found that an increase in tank temperature improves system performance but that an increase in refrigerant condensation temperature causes deterioration. In addition, it is found that running the system at a low temperature difference in the cascade condenser is advantageous.

  16. Phase control system concepts and simulations. [solar power satellite system

    Science.gov (United States)

    Lindsay, V. C.

    1980-01-01

    A phase control system concept for a solar power satellite is proposed which partitions the system into three major levels. The first level of phase control consists of a reference phase distribution system implemented in the form of phase distribution tree structure. The major purpose of the tree structure is to electronically compensate for the phase shift due to the transition path lengths from the center of the spacetenna to each phase control center located in each subarray. In the reference system, this is accomplished using the master slave returnable timing system technique. The second level of phase control consists of the beam steering and microwave power generating system which houses the power transponders. This transponder consists of a set of phase conjugation multipliers driven by the reference phase distribution system output and the output of a pilot spread spectrum receiver which accepts the received pilot via a diplexer connected to a separate receive horn or the subarray itself. The output of the phase conjugation circuits serve as inputs to the third level of the phase control system. The third level of phase control is associated with maintaining an equal and constant phase shift through the microwave power amplifier devices while minimizing the associated phase noise effects on the generated power beam. This is accomplished by providing a phase locked loop around each high power amplifier.

  17. Design and Testing of a Labview- Controlled Catalytic Packed- Bed Reactor System For Production of Hydrocarbon Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Street, J.; Yu, F.; Warnock, J.; Wooten, J.; Columbus, E.; White, M. G.

    2012-05-01

    Gasified woody biomass (producer gas) was converted over a Mo/H+ZSM-5 catalyst to produce gasolinerange hydrocarbons. The effect of contaminants in the producer gas showed that key retardants in the system included ammonia and oxygen. The production of gasoline-range hydrocarbons derived from producer gas was studied and compared with gasoline-range hydrocarbon production from two control syngas mixes. Certain mole ratios of syngas mixes were introduced into the system to evaluate whether or not the heat created from the exothermic reaction could be properly controlled. Contaminant-free syngas was used to determine hydrocarbon production with similar mole values of the producer gas from the gasifier. Contaminant-free syngas was also used to test an ideal contaminant-free synthesis gas situation to mimic our particular downdraft gasifier. Producer gas was used in this study to determine the feasibility of using producer gas to create gasoline-range hydrocarbons on an industrial scale using a specific Mo/H+ZSM-5 catalyst. It was determined that after removing the ammonia, other contaminants poisoned the catalyst and retarded the hydrocarbon production process as well.

  18. Thermodynamic Analysis of Hydrocarbon Refrigerants-Based Ethylene BOG Re-liquefaction System

    Institute of Scientific and Technical Information of China (English)

    Boumedienne M Beladjine; Ahmed Ouadha; and Yacine Addad

    2016-01-01

    The present study aims to make a thermodynamic analysis of an ethylene cascade re-liquefaction system that consists of the following two subsystems: a liquefaction cycle using ethylene as the working fluid and a refrigeration cycle operating with a hydrocarbon refrigerant. The hydrocarbon refrigerants considered are propane (R290), butane (R600), isobutane (R600a), and propylene (R1270). A computer program written in FORTRAN is developed to compute parameters for characteristic points of the cycles and the system’s performance, which is determined and analyzed using numerical solutions for the refrigerant condensation temperature, temperature in tank, and temperature difference in the cascade condenser. Results show that R600a gives the best performance, followed by (in order) R600, R290, and R1270. Furthermore, it is found that an increase in tank temperature improves system performance but that an increase in refrigerant condensation temperature causes deterioration. In addition, it is found that running the system at a low temperature difference in the cascade condenser is advantageous.

  19. Inorganic-organic hybrid coating material for the online in-tube solid-phase microextraction of monohydroxy polycyclic aromatic hydrocarbons in urine.

    Science.gov (United States)

    Wang, ShuLing; Xu, Hui

    2016-12-01

    An inorganic-organic hybrid nanocomposite (zinc oxide/polypyrrole) that represents a novel kind of coating for in-tube solid-phase microextraction is reported. The composite coating was prepared by a facile electrochemical polymerization strategy on the inner surface of a stainless-steel tube. Based on the coated tube, a novel online in-tube solid-phase microextraction with liquid chromatography and mass spectrometry method was developed and applied for the extraction of three monohydroxy polycyclic aromatic hydrocarbons in human urine. The coating displayed good extraction ability toward monohydroxy polycyclic aromatic hydrocarbons. In addition, long lifespan, excellent stability, and good compression resistance were also obtained for the coating. The experimental conditions affecting the extraction were optimized systematically. Under the optimal conditions, the limits of detection and quantification were in the range of 0.039-0.050 and 0.130-0.167 ng/mL, respectively. Good linearity (0.2-100 ng/mL) was obtained with correlation coefficients larger than 0.9967. The repeatability, expressed as relative standard deviation, ranged between 2.5% and 9.4%. The method offered the advantage of process simplicity, rapidity, automation, and sensitivity in the analysis of human urinary monohydroxy polycyclic aromatic hydrocarbons in two different cities of Hubei province. An acceptable recovery of monohydroxy polycyclic aromatic hydrocarbons (64-122%) represented the additional attractive features of the method in real urine analysis.

  20. Phase-Modulated Optical Communication Systems

    CERN Document Server

    Ho, Keang-Po

    2005-01-01

    Fiber-optic communication systems have revolutionized our telecommunication infrastructures – currently, almost all telephone land-line, cellular, and internet communications must travel via some form of optical fibers. In these transmission systems, neither the phase nor frequency of the optical signal carries information – only the intensity of the signal is used. To transmit more information in a single optical carrier, the phase of the optical carrier must be explored. As a result, there is renewed interest in phase-modulated optical communications, mainly in direct-detection DPSK signals for long-haul optical communication systems. When optical amplifiers are used to maintain certain signal level among the fiber link, the system is limited by amplifier noises and fiber nonlinearities. Phase-Modulated Optical Communication Systems surveys this newly popular area, covering the following topics: The transmitter and receiver for phase-modulated coherent lightwave systems Method for performance analysis o...

  1. Cycle slipping in phase synchronization systems

    Science.gov (United States)

    Yang, Ying; Huang, Lin

    2007-02-01

    Cycle slipping is a characteristically nonlinear phenomenon in phase synchronization systems, which is highly dependent of the initial state of the system. Slipping a cycle means that the phase error is increased to such an extent that the generator to be synchronized slips one complete cycle with respect to the input phase. In this Letter, a linear matrix inequality (LMI) based approach is proposed and the estimation of the number of cycles which slips a solution of the system is obtained by solving a quasi-convex optimization problem of LMI. Applications to phase locked loops demonstrate the validity of the proposed approach.

  2. Phase equilibrium in a water + n-hexane system with a high water content

    Science.gov (United States)

    Rasulov, S. M.; Orakova, S. M.; Isaev, Z. A.

    2017-02-01

    The P, ρ, and T-properties of a water + n-hexane system immiscible under normal conditions are measured piezometrically in the water mole fraction range of 0.918-0.977 at 309-685 K and pressures of up to 66 MPa. Two phase transitions are observed on each isochore corresponding to phase transitions of hydrocarbon liquid into gas or the dissolution of n-hexane in water and the transition of aqueous liquid into gas. The boundaries of phase transitions and their critical parameters are determined.

  3. Determination of Trace Amount of Polycyclic Aromatic Hydrocarbons in Urban Sewage by Solid-phase Extraction Coupled with High Performance Liquid Chromatograph

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Method] This study aimed to determine trace amount of polycyclic aromatic hydrocarbons(PAHs) in urban sewage by using solid-phase extraction(SPE) coupled with high performance liquid chromatograph(HPLC).[Method] From the aspects of solid-phase extraction column,elution solvent,elution volume,elution speed and so forth,the test conditions of SPE-HPLC method were optimized,and trace amount of PAHs in urban sewage was determined.[Result] The optimized solid-phase extraction conditions were SUPELCLEAN LC-18 so...

  4. Calibration of the complex matrix effects on the sampling of polycyclic aromatic hydrocarbons in milk samples using solid phase microextraction.

    Science.gov (United States)

    Lin, Wei; Wei, Songbo; Jiang, Ruifen; Zhu, Fang; Ouyang, Gangfeng

    2016-08-24

    Solid phase microextraction (SPME), a simple, fast and promising sampling technique, has been widely used for complex sample analysis. However, complex matrices could modify the absorption property of coatings as well as the uptake kinetics of analytes, eventually biasing the quantification results. In the current study, we demonstrated the feasibility of a developed calibration method for the analysis of polycyclic aromatic hydrocarbons (PAHs) in complex milk samples. Effects of the complex matrices on the SPME sampling process and the sampling conditions were investigated. Results showed that short exposure time (pre-equilibrium SPME, PE-SPME) could increase the lifetime of coatings, and the complex matrices in milk samples could significantly influence the sampling kinetics of SPME. In addition, the optimized sampling time, temperature and dilution factor for PAHs were 10 min, 85 °C and 20, respectively. The obtained LODs and LOQs of all the PAHs were 0.1-0.8 ng/mL and 1.4-4.7 ng/mL, respectively. Furthermore, the accuracy of the proposed PE-SPME method for milk sampling was validated by the recoveries of the studied compounds in two concentration levels, which ranged from 75% to 110% for all the compounds. Finally, the proposed method was applied to the screening of PAHs in milk samples.

  5. Graphene oxide bound silica for solid-phase extraction of 14 polycyclic aromatic hydrocarbons in mainstream cigarette smoke.

    Science.gov (United States)

    Shi, Rui; Yan, Lihong; Xu, Tongguang; Liu, Dongye; Zhu, Yongfa; Zhou, Jun

    2015-01-02

    Polycyclic aromatic hydrocarbons (PAHs) were considered as a source of carcinogenicity in mainstream cigarette smoke (MSS). Accurate quantification of these components was necessary for assessing public health risk. In our study, a solid-phase extraction (SPE) method using graphene oxide (GO) bound silica as adsorbent for purification of 14 PAHs in MSS was developed. During SPE process, large matrices interferences of MSS were adsorbed on SPE column. The result of FTIR spectra demonstrated that these matrices interferences were adsorbed on GO mainly through OH and CO groups. The concentrations of PAHs in MSS extract were determined by gas chromatography-mass spectrometry (GC-MS). The limit of detection (LOD) and limit of quantification (LOQ) of the developed method for 14 PAHs ranged from 0.05 to 0.36 ng/cig and 0.17 to 1.19 ng/cig, respectively. The accuracy of the measurement of 14 PAHs was from 73 to 116%. The relative standard deviations of intra- and inter-day analysis were less than 7.8% and 13.9%, respectively. Moreover, the developed method was successfully applied for analysis of real cigarette containing 1R5F reference cigarette and 12 top-selling commercial cigarettes in China.

  6. New cold-fiber headspace solid-phase microextraction device for quantitative extraction of polycyclic aromatic hydrocarbons in sediment.

    Science.gov (United States)

    Ghiasvand, Ali Reza; Hosseinzadeh, Shokouh; Pawliszyn, Janusz

    2006-08-18

    A new automated headspace solid-phase microextraction (HS-SPME) sampling device was developed, with the capability of heating the sample matrix and simultaneously cooling the fiber coating. The device was evaluated for the quantitative extraction of polycyclic aromatic hydrocarbons (PAHs) from solid matrices. The proposed device improves the efficiency of the release of analytes from the matrix, facilitates the mass transfer into the headspace and significantly increases the partition coefficients of the analytes, by creating a temperature gap between the cold-fiber (CF) coating and the hot headspace. The reliability and applicability of previously reported cold-fiber devices are significantly enhanced by this improvement. In addition, it can be easily adopted for full automation of extraction, enrichment and introduction of different samples using commercially available autosampling devices. Sand samples spiked with PAHs were used as solid matrices and the effect of different experimental parameters were studied, including the extraction temperature, extraction time, moisture content, and the effect of sonication and modifier under optimal experimental conditions, linear calibration curves were obtained in the range of 0.0009-1000 ng/g, with regression coefficients higher than 0.99 and detection limits that ranged from 0.3 to 3 pg/g. Reproducible, precise and high throughput extraction, monitoring and quantification of PAHs were achieved with the automated cold-fiber headspace solid-phase microextraction (CF-HS-SPME) device coupled to GC-flame ionization detection. Determination of PAHs in certified reference sediments using the proposed approach exhibited acceptable agreement with the standard values.

  7. Laser Spectrometric Measurement System for Local Express Diagnostics of Flame at Combustion of Liquid Hydrocarbon Fuels

    Science.gov (United States)

    Kobtsev, V. D.; Kozlov, D. N.; Kostritsa, S. A.; Smirnov, V. V.; Stel'makh, O. M.; Tumanov, A. A.

    2016-03-01

    A laboratory laser spectrometric measurement system for investigation of spatial distributions of local temperatures in a flame at combustion of vapors of various liquid hydrocarbon fuels in oxygen or air at atmospheric pressure is presented. The system incorporates a coherent anti-Stokes Raman spectrometer with high spatial resolution for local thermometry of nitrogen-containing gas mixtures in a single laser shot and a continuous operation burner with a laminar diffusion flame. The system test results are presented for measurements of spatial distributions of local temperatures in various flame zones at combustion of vapor—gas n-decane/nitrogen mixtures in air. Its applicability for accomplishing practical tasks in comparative laboratory investigation of characteristics of various fuels and for research on combustion in turbulent flames is discussed.

  8. Evaluation of ground-penetrating radar to detect free-phase hydrocarbons in fractured rocks - Results of numerical modeling and physical experiments

    Science.gov (United States)

    Lane, J.W.; Buursink, M.L.; Haeni, F.P.; Versteeg, R.J.

    2000-01-01

    The suitability of common-offset ground-penetrating radar (GPR) to detect free-phase hydrocarbons in bedrock fractures was evaluated using numerical modeling and physical experiments. The results of one- and two-dimensional numerical modeling at 100 megahertz indicate that GPR reflection amplitudes are relatively insensitive to fracture apertures ranging from 1 to 4 mm. The numerical modeling and physical experiments indicate that differences in the fluids that fill fractures significantly affect the amplitude and the polarity of electromagnetic waves reflected by subhorizontal fractures. Air-filled and hydrocarbon-filled fractures generate low-amplitude reflections that are in-phase with the transmitted pulse. Water-filled fractures create reflections with greater amplitude and opposite polarity than those reflections created by air-filled or hydrocarbon-filled fractures. The results from the numerical modeling and physical experiments demonstrate it is possible to distinguish water-filled fracture reflections from air- or hydrocarbon-filled fracture reflections, nevertheless subsurface heterogeneity, antenna coupling changes, and other sources of noise will likely make it difficult to observe these changes in GPR field data. This indicates that the routine application of common-offset GPR reflection methods for detection of hydrocarbon-filled fractures will be problematic. Ideal cases will require appropriately processed, high-quality GPR data, ground-truth information, and detailed knowledge of subsurface physical properties. Conversely, the sensitivity of GPR methods to changes in subsurface physical properties as demonstrated by the numerical and experimental results suggests the potential of using GPR methods as a monitoring tool. GPR methods may be suited for monitoring pumping and tracer tests, changes in site hydrologic conditions, and remediation activities.The suitability of common-offset ground-penetrating radar (GPR) to detect free-phase hydrocarbons

  9. A Simulator for a Hydrocarbon Ramrocket Fuel Gas Generator - First Phase Development

    Science.gov (United States)

    1989-05-01

    Australian Airlines, Library Qantas Airways Limited Gas & Fuel Corporation of Vic., Manager Scientific Services SEC of Vic., Herman Research Laboratory...EXHAUST SAMPLING AND ANALYSIS 8 7.1 Solid Products 9 7.1.1 Probe System 9 7.1.2 Wet Filtering 9 7.1.3 Dry Filtering 10 7.2 Gaseous Products 10 7.2.1 Gas...Sampling System 10 7.2.2 Gas Chromatography 11 8. OBSERVATIONS OF TEST HARDWARE PERFORMANCE 11 9. RESULTS AND DISCUSSION 13 9.1 Analysis of Zaccardi

  10. Two-phase flow in refrigeration systems

    CERN Document Server

    Gu, Junjie; Gan, Zhongxue

    2013-01-01

    Two-Phase Flow in Refrigeration Systems presents recent developments from the authors' extensive research programs on two-phase flow in refrigeration systems. This book covers advanced mass and heat transfer and vapor compression refrigeration systems and shows how the performance of an automotive air-conditioning system is affected through results obtained experimentally and theoretically, specifically with consideration of two-phase flow and oil concentration. The book is ideal for university postgraduate students as a textbook, researchers and professors as an academic reference book, and b

  11. Phase synchronization in time-delay systems.

    Science.gov (United States)

    Senthilkumar, D V; Lakshmanan, M; Kurths, J

    2006-09-01

    Though the notion of phase synchronization has been well studied in chaotic dynamical systems without delay, it has not been realized yet in chaotic time-delay systems exhibiting non-phase-coherent hyperchaotic attractors. In this paper we report identification of phase synchronization in coupled time-delay systems exhibiting hyperchaotic attractor. We show that there is a transition from nonsynchronized behavior to phase and then to generalized synchronization as a function of coupling strength. These transitions are characterized by recurrence quantification analysis, by phase differences based on a transformation of the attractors, and also by the changes in the Lyapunov exponents. We have found these transitions in coupled piecewise linear and in Mackey-Glass time-delay systems.

  12. Hydrocarbon fuels from gas phase decarboxylation of hydrolyzed free fatty acid

    KAUST Repository

    Wang, Weicheng

    2012-01-01

    Gas phase decarboxylation of hydrolyzed free fatty acid (FFA) from canola oil has beeninvestigated in two fix-bed reactors by changing reaction parameters such as temperatures,FFA feed rates, and H 2-to-FFA molar ratios. FFA, which contains mostly C 18 aswell as a few C 16, C 20, C 22, and C 24 FFA, was fed into the boiling zone, evaporated, carriedby hydrogen flow at the rate of 0.5-20 ml/min, and reacted with the 5% Pd/C catalystin the reactor. Reactions were conducted atmospherically at 380-450 °C and the products,qualified and quantified through gas chromatography-flame ionization detector(GC-FID), showed mostly n-heptadecane and a few portion of n-C 15, n-C 19, n-C 21, n-C 23 as well as some cracking species. Results showed that FFA conversion increased withincreasing reaction temperatures but decreased with increasing FFA feed rates and H 2-to-FFA molar ratios. The reaction rates were found to decrease with higher temperatureand increase with higher H 2 flow rates. Highly selective heptadecane was achieved byapplying higher temperatures and higher H 2-to-FFA molar ratios. From the results, ascatalyst loading and FFA feed rate were fixed, an optimal reaction temperature of 415 °C as well as H 2-to-FFA molar ratio of 4.16 were presented. These results provided goodbasis for studying the kinetics of decarboxylation process. © 2012 American Society of Mechanical Engineers.

  13. Phase behaviour of tertiary recovery sulfonates - petroleum fractions - aqueous systems

    Energy Technology Data Exchange (ETDEWEB)

    Ghoniem, S.A.; Darwish, T.A.; Salamah, A.O.

    1988-02-01

    The phase behaviour of tertiary recovery sulfonates having commercial names TRS-10, TRS-16 and TRS-40 with aqueous phase and light petroleum fractions (non polar kerosene and gasoline) was studied at 20, 40 and 60/sup 0/C. The adopted pseudo components of the ternary diagram are hydrocarbon, surfactant and aqueous phase. The aqueous phase was composed of bidistilled water in addition to different proportions of pure alcohols and sodium chloride. The tested alcohols included methanol, ethanol, iso-propanol, n-butanol and n-pentanol. Thus, the best alcohol type and concentration in addition to optimum salinity, which correspond to maximum single phase region, were established for each surfactant at the various tested temperatures. It was shown that higher the affinity of the tested surfactant for hydrocarbon phase, the greater is the solubility of the corresponding optimum co-surfactant in water. The variation of optimum alcohol concentration with temperature, the effect of salt on the single phase region and the effect of hydrocarbon phase on the observed phenomena were discussed and found to agree with the previously established theories.

  14. Enhanced bioremediation of hydrocarbon-contaminated soil using pilot-scale bioelectrochemical systems.

    Science.gov (United States)

    Lu, Lu; Yazdi, Hadi; Jin, Song; Zuo, Yi; Fallgren, Paul H; Ren, Zhiyong Jason

    2014-06-15

    Two column-type bioelectrochemical system (BES) modules were installed into a 50-L pilot scale reactor packed with diesel-contaminated soils to investigate the enhancement of passive biodegradation of petroleum compounds. By using low cost electrodes such as biochar and graphite granule as non-exhaustible solid-state electron acceptors, the results show that 82.1-89.7% of the total petroleum hydrocarbon (TPH) was degraded after 120 days across 1-34 cm radius of influence (ROI) from the modules. This represents a maximum of 241% increase of biodegradation compared to a baseline control reactor. The current production in the BESs correlated with the TPH removal, reaching the maximum output of 70.4 ± 0.2 mA/m(2). The maximum ROI of the BES, deducting influence from the baseline natural attenuation, was estimated to be more than 90 cm beyond the edge of the reactor (34 cm), and exceed 300 cm should a non-degradation baseline be used. The ratio of the projected ROI to the radius of BES (ROB) module was 11-12. The results suggest that this BES can serve as an innovative and sustainable technology for enhanced in situ bioremediation of petroleum hydrocarbons in large field scale, with additional benefits of electricity production and being integrated into existing field infrastructures.

  15. Geophysical Monitoring of Hydrocarbon-Contaminated Soils Remediated with a Bioelectrochemical System.

    Science.gov (United States)

    Mao, Deqiang; Lu, Lu; Revil, André; Zuo, Yi; Hinton, John; Ren, Zhiyong Jason

    2016-08-01

    Efficient noninvasive techniques are desired for monitoring the remediation process of contaminated soils. We applied the direct current resistivity technique to image conductivity changes in sandbox experiments where two sandy and clayey soils were initially contaminated with diesel hydrocarbon. The experiments were conducted over a 230 day period. The removal of hydrocarbon was enhanced by a bioelectrochemical system (BES) and the electrical potentials of the BES reactors were also monitored during the course of the experiment. We found that the variation in electrical conductivity shown in the tomograms correlate well with diesel removal from the sandy soil, but this is not the case with the clayey soil. The clayey soil is characterized by a larger specific surface area and therefore a larger surface conductivity. In sandy soil, the removal of the diesel and products from degradation leads to an increase in electrical conductivity during the first 69 days. This is expected since diesel is electrically insulating. For both soils, the activity of BES reactors is moderately imaged by the inverted conductivity tomogram of the reactor. An increase in current production by electrochemically active bacteria activity corresponds to an increase in conductivity of the reactor.

  16. Multidimensional Field Mapping of Gaseous C-H-O-S Species in Hydrothermal Systems: Distinguishing Potential Sites for Hydrocarbon Generation

    Science.gov (United States)

    Schwandner, F. M.; Dunn, E. E.; Shock, E. L.

    2005-12-01

    Organic compounds in hydrothermal gas emissions have been documented since the mid-1800's, yet their origin is still a matter of some debate. Thermal alteration such as maturation and cracking can produce thermogenic hydrocarbons from pre-existing organic matter in hydrothermal systems. Gas-phase radical reactions and catalytic hydrogenation reactions of CO2 and CO to methane and higher hydrocarbons have also been suggested as being responsible for observations of organic compounds in hydrothermal emissions. Recently published data indicated that some organic signatures in volcanic-hydrothermal systems cannot be explained by pre-existing organic matter alone, and more representative analyses are now required to shed light on this question. Choosing a representative site within a hydrothermal field for sampling is in itself a complicated task, and heterogeneities can be easily missed. Spatial analysis of the distribution of C-O-H-S species in the gas phase can potentially indicate possible sites of increased hydrocarbon generation potentials via the catalytic hydrogenation pathway. This approach offers the advantage of providing information in the field that can be used to judge appropriate sampling locations prior to the more complex and costly standard organic analyses of gaseous emissions. A portable multi-sensor system with electrochemical and infrared sensors can in a short time provide large spatial data sets that yield potential target areas for selectively sampling organic compounds. Statistical methods, including probability tests and spatial correlation of concentrations and fluxes of selected species, can be applied later to yield information on the number of populations as well as genetic relationships between different populations. This approach was tested at three acid-sulfate sites in Yellowstone National Park, USA. The chosen sites were the Greater Obsidian Pool area (GOPA, Mud Volcanoes hot spring group), the Sylvan Springs area, and the Washburn

  17. High-pressure vapor-phase hydrodeoxygenation of lignin-derived oxygenates to hydrocarbons by a PtMo bimetallic catalyst: Product selectivity, reaction pathway, and structural characterization

    Energy Technology Data Exchange (ETDEWEB)

    Yohe, Sara L.; Choudhari, Harshavardhan J.; Mehta, Dhairya D.; Dietrich, Paul J.; Detwiler, Michael D.; Akatay, Cem M.; Stach, Eric A.; Miller, Jeffrey T.; Delgass, W. Nicholas; Agrawal, Rakesh; Ribeiro, Fabio H.

    2016-12-01

    High-pressure, vapor-phase, hydrodeoxygenation (HDO) reactions of dihydroeugenol (2-methoxy-4-propylphenol), as well as other phenolic, lignin-derived compounds, were investigated over a bimetallic platinum and molybdenum catalyst supported on multi-walled carbon nanotubes (5%Pt2.5%Mo/MWCNT). Hydrocarbons were obtained in 100% yield from dihydroeugenol, including 98% yield of the hydrocarbon propylcyclohexane. The final hydrocarbon distribution was shown to be a strong function of hydrogen partial pressure. Kinetic analysis showed three main dihydroeugenol reaction pathways: HDO, hydrogenation, and alkylation. The major pathway occurred via Pt catalyzed hydrogenation of the aromatic ring and methoxy group cleavage to form 4-propylcyclohexanol, then Mo catalyzed removal of the hydroxyl group by dehydration to form propylcyclohexene, followed by hydrogenation of propylcyclohexene on either the Pt or Mo to form the propylcyclohexane. Transalkylation by the methoxy group occurred as a minor side reaction. Catalyst characterization techniques including chemisorption, scanning transmission electron microscopy, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy were employed to characterize the catalyst structure. Catalyst components identified were Pt particles, bimetallic PtMo particles, a Mo carbide-like phase, and Mo oxide phases.

  18. Analysis of binary mixtures of aqueous aromatic hydrocarbons with low-phase-noise shear-horizontal surface acoustic wave sensors using multielectrode transducer designs.

    Science.gov (United States)

    Bender, Florian; Mohler, Rachel E; Ricco, Antonio J; Josse, Fabien

    2014-11-18

    The present work investigates a compact sensor system that provides rapid, real-time, in situ measurements of the identities and concentrations of aromatic hydrocarbons at parts-per-billion concentrations in water through the combined use of kinetic and thermodynamic response parameters. The system uses shear-horizontal surface acoustic wave (SH-SAW) sensors operating directly in the liquid phase. The 103 MHz SAW sensors are coated with thin sorbent polymer films to provide the appropriate limits of detection as well as partial selectivity for the analytes of interest, the BTEX compounds (benzene, toluene, ethylbenzene, and xylenes), which are common indicators of fuel and oil accidental releases in groundwater. Particular emphasis is placed on benzene, a known carcinogen and the most challenging BTEX analyte with regard to both regulated levels and its solubility properties. To demonstrate the identification and quantification of individual compounds in multicomponent aqueous samples, responses to binary mixtures of benzene with toluene as well as ethylbenzene were characterized at concentrations below 1 ppm (1 mg/L). The use of both thermodynamic and kinetic (i.e., steady-state and transient) responses from a single polymer-coated SH-SAW sensor enabled identification and quantification of the two BTEX compounds in binary mixtures in aqueous solution. The signal-to-noise ratio was improved, resulting in lower limits of detection and improved identification at low concentrations, by designing and implementing a type of multielectrode transducer pattern, not previously reported for chemical sensor applications. The design significantly reduces signal distortion and root-mean-square (RMS) phase noise by minimizing acoustic wave reflections from electrode edges, thus enabling limits of detection for BTEX analytes of 9-83 ppb (calculated from RMS noise); concentrations of benzene in water as low as ~100 ppb were measured directly. Reliable quantification of BTEX

  19. Expert system for the reliability assessment of hydro-carbon transporting pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Lukacs, J.; Nagy, G.; Toeroek, I. [Department of Mechanical Technology, University of Miskolc, Miskolc-Egyetemvaros (Hungary)

    1998-12-31

    Safety operation, condition monitoring, periodical inspection and rehabilitation of high-pressure hydro-carbon transporting pipelines are a complex problem. To answer arising questions is inconceivable without technical-critical evaluation of defects - originated during manufacturing or operation - can be found on the pipeline. This evaluation must be in line with requirements of our age, i.e. it has to assert such concept of which basis is not the `possible worst` but the `just happening wrong`. Solving these problems without application of computer resources is inconceivable in our time. The final purpose of the solution is the expert system and among the components of the expert system primarily the development of the knowledge base is needed. The paper demonstrates a possible structure of the knowledge base, furthermore its fundamental elements and their contents (defect types, evaluation possibilities of defects, categorisation of pipelines) and summaries the prospective advantages of its application. (orig.) 27 refs.

  20. Phase balancing optimization for radial feeder systems

    Science.gov (United States)

    Zhu, Jinxiang

    In the power distribution systems, unbalanced feeder causes deteriorating power quality and increases investment and operating costs. There are two approaches to balance a feeder system. One approach is feeder reconfiguration, the other is phase swapping. Feeder reconfiguration is an on-line operation of sectionalizing switches. However, feeder reconfiguration is difficult to find the phase balancing solution for a unbalanced feeder system. On the other hand, phase swapping is a direct and effective approach for phase balancing. Phase swapping is an off-line operation of re-tapping loads/laterals to the phase lines during maintenance and restoration periods. Unfortunately, phase balancing problem has not received its deserved importance. Deregulation in power industry has arisen phase balancing issue because it can improve power quality, improve service reliability, and reduce total costs. Thus, phase balancing can enhance utility competitive capability. This research provides utilities the optimization tools to maximize the benefits of phase balancing and minimize the costs. This dissertation proposed several mathematical formulations, including Mixed-integer programming (MIP), Dynamic programming (DP), Simulated annealing (SA), and Fuzzy logic (FL), to perform phase swapping to balance phase in a radial feeder. Due to the discrete nature of phase swapping, a MIP model is proposed to find the optimal phase swapping scheme for small-sized feeder. Candidate sets and monitored branches are then introduced to solve the large-scale feeder systems. Possibilistic integer programming (PIP) is proposed to incorporate load uncertainties in phase swapping problems. The tests show that the load uncertainties may change the optimal phase swapping. DP computation is significant reduced by introducing the tighter upper/lower bounds. The upper bound can be quickly obtained by assignment algorithm. Even though SA is a time-consuming heuristic method, it can provide better solution

  1. Hazardous Waste Management System - Identification and Listing of Hazardous Waste - Toxicity Characteristic - Hydrocarbon Recovery Operations - Federal Register Notice, April 2, 1991

    Science.gov (United States)

    Proposal to extend the compliance date for the Toxicity Characteristic until January 25, 1993 for produced groundwater from free phase hydrocarbon recovery operations at certain petroleum industry sites-namely, refineries, marketing terminals, bulk plants.

  2. Polyimide-coated magnetic nanoparticles as a sorbent in the solid-phase extraction of polycyclic aromatic hydrocarbons in seawater samples.

    Science.gov (United States)

    Mehdinia, Ali; Haddad, Hosein; Mozaffari, Shahla

    2016-09-01

    Magnetic polyimide poly(4,4'-oxydiphenylene-pyromellitimide) nanoparticles were successfully synthesized and developed for the solid-phase extraction of polycyclic aromatic hydrocarbons in seawater samples. The aromatic rings of polyimide coating provided a good adsorption capacity (28.3-42.5 mg/g) for polycyclic aromatic hydrocarbons because of the π-π stacking interaction. The developed method was used as a simple, fast, and efficient extraction and preconcentration technique for the trace analysis of polycyclic aromatic hydrocarbons. The high chemical, physical and thermal stability, excellent reusability, and good magnetic properties are the merits of the sorbent. High preconcentration factors (41-63) were obtained. The sorbent was also characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray spectrometry, transmission electron microscopy, and vibrating sample magnetometry. After optimizing several appropriate extraction parameters, the results indicated that the extraction recoveries of polycyclic aromatic hydrocarbons were in the range of 61.6-94.7%, with relative standard deviations between 2.9 and 5.4%, the calibration graph was linear in the concentration range of 1-100 μg/L (r > 0.9991) with limit of detection in the range of 0.15-0.19 μg/L (n = 3). Seawater samples were analyzed as real samples and good recoveries (68.5-99.5%) were obtained at different spiked values.

  3. Comparison of two association models (Elliott-Suresh-Donohue and simplified PC-SAFT) for complex phase equilibria of hydrocarbon-water and amine-containing mixtures

    DEFF Research Database (Denmark)

    Grenner, Andreas; Schmelzer, Jürgen; von Solms, Nicolas;

    2006-01-01

    Two Wertheim-based association models, the simplified PC-SAFT and the Elliott-Suresh-Donohue (ESD) equation of state, are compared in this work for the description of vapor-liquid equilibria (VLE) and liquid-liquid equilibria (LLE) in binary systems of aniline, cyclohexylamine (CHA), hydrocarbons...

  4. Time resolved studies of the addition reactions of silylenes and unsaturated hydrocarbons in the gas phase (an investigation of the strain energies of silirane and silirene rings)

    CERN Document Server

    Dormer, G

    1999-01-01

    This thesis reports the measurement of absolute rate constants for number of silylene addition reactions with unsaturated hydrocarbons. The reactions of SiH sub 2 , SiD sub 2 and Me sub 2 Si with alkene and alkynes were studied. The silylenes were formed, in situ, by the photolysis of an organosilicon precursor, and the rate constants obtained by the direct observation of the absorption decay of the silylene reactant. The reactions were studied in the gas phase and their temperature and pressure dependence investigated. The reaction of SiH sub 2 and 1,3-butadiene was investigated and found to be pressure dependent. The following Arrhenius equation was yielded at infinite pressure; log(k supinfinity/cm sup 3 molecule sup - sup 1 s sup - sup 1) = (-9.57 +- 0.05) + (3.22 +- 0.35) kJmol sup - sup 1 /RT ln 10. The reaction was found to proceed via a two-channel pathway, leading to the products vinylsilirane and silacyclopentane. RRKM modelling of the system was carried out and led to the calculation of the strain ...

  5. Detailed elucidation of hydrocarbon contamination in food products by using solid-phase extraction and comprehensive gas chromatography with dual detection.

    Science.gov (United States)

    Purcaro, Giorgia; Tranchida, Peter Q; Barp, Laura; Moret, Sabrina; Conte, Lanfranco S; Mondello, Luigi

    2013-04-22

    The present work is focused on the development/optimization of a comprehensive two-dimensional gas chromatography method, with dual detection [flame ionization (FID) and mass spectrometric], for the simultaneous identification and quantification of mineral-oil contaminants in a variety of food products. The two main classes of contaminants, namely saturated and aromatic hydrocarbons, were previously fractionated on a manually-packed silver silica solid-phase extraction (SPE) cartridge. The quantitative results were compared with those obtained by performing a large volume injection, in a GC-FID system, after the same SPE process and by an on-line liquid-gas chromatography method, with very similar results observed. The presence of a series of unknown compounds, that appeared when using the off-line methods, was investigated using the mass spectrometric data, and were tentatively-identified as esterified fatty acids, most probably derived from vegetable oil based ink. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Comparison of solid phase extraction, saponification and gel permeation chromatography for the clean-up of microwave-assisted biological extracts in the analysis of polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Navarro, P; Cortazar, E; Bartolomé, L; Deusto, M; Raposo, J C; Zuloaga, O; Arana, G; Etxebarria, N

    2006-09-22

    The feasibility of different clean-up procedures was studied for the determination of polycyclic aromatic hydrocarbons (PAHs) in biota samples such as oysters, mussels and fish liver. In this sense, once the samples were extracted--essentially with acetone and in a microwave system--and before they could be analysed by gas chromatography-mass spectrometry (GC-MS), three different approaches were studied for the clean-up step: solid phase extraction (SPE), microwave-assisted saponification (MAS) and gel permeation chromatography (GPC). The main aim of this work was to maximise the recoveries of PAHs and to minimise the presence of interfering compounds in the last extract. In the case of SPE, Florisil cartridges of 1, 2 and 5 g, and silica cartridges of 5 g were studied. In that case, and with oysters and mussels, microwave-assisted extraction and 5 g Florisil cartridges provided good results. In addition, the concentrations obtained for Standard Reference Material (SRM) NIST 2977 (mussel tissue) were in good agreement with the certified values. In the case of microwave-assisted saponification, the extracts were not as clean as those obtained with 5 g Florisil and this fact lead to overestimate the concentration of the heaviest PAHs. Finally, the cleanest extracts were obtained by GPC. The method was successfully applied to mussels, oysters and hake liver, and the results obtained for NIST 2977 (mussel tissue) were within the confidence interval of the certified reference material for most of the certified analytes.

  7. Magnetic solid phase extraction using gold immobilized magnetic mesoporous silica nanoparticles coupled with dispersive liquid-liquid microextraction for determination of polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Mehdinia, Ali; Khojasteh, Esmail; Baradaran Kayyal, Tohid; Jabbari, Ali

    2014-10-17

    An efficient magnetic sorbent was introduced for solid phase extraction by incorporation of the gold nanoparticles into the hexagonal lattice of magnetic MCM-41. For the effective incorporation of the gold nanoparticles, magnetic MCM-41 was functionalized with 3-aminopropyltriethoxysilane (APTES), which then interacted with Au atoms through the amine groups. Furthermore, to achieve high pre-concentration factors (PFs), the method was coupled with dispersive liquid-liquid microextraction (DLLME) procedure. Polycyclic aromatic hydrocarbons (PAHs) were used as the model compounds to evaluate the extraction performance of the proposed method. The π-system of PAH compounds and immobilized Au atoms on the surface of the sorbent can cause the electron donor-acceptor interactions. The parameters affecting extraction recovery such as types of the disperser and extraction solvents, pH of the sample solution, and the extraction time were optimized. Under the optimized conditions, the high PFs were obtained in the range 5519-6271 for the target analytes. The kinetic adsorption illustrated that 5 min was sufficient to achieve adsorption equilibrium for PAHs. The evaluations also showed a linearity range 0.01-50 μg L(-1) with the detection limit in the range 0.002-0.004 μg L(-1) for the PAHs. The applicability of the method for the analysis of PAHs in real samples was justified by the extraction of PAHs from seawater samples. The results indicated good recovery efficiencies ranging from 91.4 to 104.2%.

  8. Numerical modelling on fate and transport of petroleum hydrocarbons in an unsaturated subsurface system for varying source scenario

    Indian Academy of Sciences (India)

    M Berlin; M Vasudevan; G Suresh Kumar; Indumathi M Nambi

    2015-04-01

    The vertical transport of petroleum hydrocarbons from a surface spill through an unsaturated subsurface system is of major concern in assessing the vulnerability of groundwater contamination. A realistic representation on fate and transport of volatile organic compounds at different periods after spill is quite challenging due to the variation in the source behaviour at the surface of spill as well as the variation in the hydrodynamic parameters and the associated inter-phase partitioning coefficients within the subsurface. In the present study, a one dimensional numerical model is developed to simulate the transport of benzene in an unsaturated subsurface system considering the effect of volatilization, dissolution, adsorption and microbial degradation of benzene for (i) constant continuous source, (ii) continuous decaying source, and (iii) residual source. The numerical results suggest that volatilization is the important sink for contaminant removal considering the soil air migration within the unsaturated zone. It is also observed that the coupled effect of dissolution and volatilization is important for the decaying source at the surface immediately after the spill, whereas rate-limited dissolution from residually entrapped source is responsible for the extended contamination towards later period.

  9. Vapor phase heat transport systems

    Energy Technology Data Exchange (ETDEWEB)

    Hedstrom, J.C.; Neeper, D.A.

    1985-09-01

    This report describes progress in theoretical and experimental investigations of various forms of a vapor transport system for solar space heating, which could also be applied to service water heating. Refrigerant is evaporated in a solar collector, which may be located on the external wall or roof of a building. The vapor is condensed in a passively discharged thermal storage unit located within the building. The condensed liquid can be returned to the collector either by a motor-driven pump or by a completely passive self-pumping mechanism in which the vapor pressure lifts the liquid from the condenser to the collector. The theoretical investigation analyzes this self-pumping scheme. Experiments in solar test cells compare the operation of both passive and active forms of the vapor system with the operation of a passive water wall. The vapor system operates as expected, with potential advantages over other passive systems in design flexibility and energy yield.

  10. Mixing in a three-phase system: Enhanced production of oil-wet reservoirs by CO2 injection

    Science.gov (United States)

    Jiménez-Martínez, Joaquín.; Porter, Mark L.; Hyman, Jeffrey D.; Carey, J. William; Viswanathan, Hari S.

    2016-01-01

    We recreate three-phase reservoir conditions (high-pressure/temperature) using a microfluidics system and show that the use of scCO2 for restimulation operations, such as hydraulic fracturing, can enhance mixing and production. The results inform hydrocarbon extraction from deep shale formations, which has recently generated an energy boom that has lowered hydrocarbon costs. However, production decreases rapidly and methods to increase efficiency or allow restimulation of wells are needed. In our experiments, the presence of residual brine from initial production creates spatiotemporal variability in the system that causes the injected scCO2 to more effectively interact-mix with trapped hydrocarbon, thereby increasing recovery. We apply volume-averaging techniques to upscale brine saturation, which allows us to analyze the complex three-phase system in the framework of well characterized two-phase systems. The upscaled three-phase system behaves like a two-phase system: greater mixing with larger non-wetting content and higher heterogeneity. The results are contrary to previous observations in water-wet systems.

  11. MBBR system performance improvement for petroleum hydrocarbon removal using modified media with activated carbon.

    Science.gov (United States)

    Sayyahzadeh, Amir Hossein; Ganjidoust, Hossein; Ayati, Bita

    2016-01-01

    Moving bed biofilm reactor (MBBR) system has a successful operation in the treatment of different types of wastewater. Since the media, i.e. the place of growth and formation of biofilm, play the main role in the treatment in this system, MBBR systems were operated in the present research with modified Bee-cell media. Activated carbon granules of almond or walnut shells were placed in media pores to improve the treatment of refinery oil wastewater and their operation with MBBR system was compared with the conventional Bee-cell media. In these experiments, the effects of organic loading rate, hydraulic retention time (HRT), media filling ratio (MFR), and activated carbon concentration (ACC) used in the media were investigated on the operation of MBBR systems. The analysis of results estimated the optimal values of HRT, MFR, and ACC used in the media between the studied levels, being equal to 22 h, 50%, and 7.5 g/L, respectively. Under these conditions, total petroleum hydrocarbons removal efficiencies for MBBR systems using Bee-cell media with carbon of almond, carbon of walnut shells, and a carbon-free system were 95 ± 1.17%, 91 ± 1.11%, and 57 ± 1.7%, respectively, which confirms the adsorption ability of systems with the media containing activated carbon in the removal of petroleum compounds from wastewater.

  12. Quantum Phase Transitions in a Finite System

    CERN Document Server

    Leviatan, A

    2006-01-01

    A general procedure for studying finite-N effects in quantum phase transitions of finite systems is presented and applied to the critical-point dynamics of nuclei undergoing a shape-phase transition of second-order (continuous), and of first-order with an arbitrary barrier.

  13. Chaotic systems in complex phase space

    CERN Document Server

    Bender, Carl M; Hook, Daniel W; Weir, David J

    2008-01-01

    This paper examines numerically the complex classical trajectories of the kicked rotor and the double pendulum. Both of these systems exhibit a transition to chaos, and this feature is studied in complex phase space. Additionally, it is shown that the short-time and long-time behaviors of these two PT-symmetric dynamical models in complex phase space exhibit strong qualitative similarities.

  14. Optimizing discrete control systems with phase limitations

    Energy Technology Data Exchange (ETDEWEB)

    Shakhverdian, S.B.; Abramian, A.K.

    1981-01-01

    A new method is proposed for solving discrete problems of optimizing control systems with limitations on the phase coordinates. Results are given from experimental research which demonstrate the need to introduce tangential limitations independent of the method of accounting for the phase limitations.

  15. Characterization of polycyclic aromatic hydrocarbon emissions in the particulate phase from burning incenses with various atomic hydrogen/carbon ratios

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Tzu-Ting, E-mail: d89844001@ntu.edu.tw [Department of Environmental Engineering and Health, Yuanpei University, No. 306, Yuanpei St., Hsin Chu, 300, Taiwan (China); Lin, Shaw-Tao [Department of Applied Chemistry, Providence University, 200 Chung-Chi Rd., Salu Dist., Taichung City 43301, Taiwan (China); Lin, Tser-Sheng [Department of Safety, Health, and Environmental Engineering, National United University, 2 Lien Da, Maioli, 360, Taiwan (China); Hong, Wei-Lun [Department of Environmental Engineering and Health, Yuanpei University, No. 306, Yuanpei St., Hsin Chu, 300, Taiwan (China)

    2012-01-01

    Polycyclic aromatic hydrocarbons in the particulate phase generated from burning various incense was investigated by a gas chromatography/mass spectrometry. Among the used incenses, the atomic H/C ratio ranged from 0.51 to 1.69, yielding the emission factor ranges for total particulate mass and PAHs of 4.19-82.16 mg/g and 1.20-9.50 {mu}g/g, respectively. The atomic H/C ratio of the incense was the key factor affecting particulate mass and the PAHs emission factors. Both the maximum emission factor and the slowest burning rate appear at the H/C ratio of 1.57. The concentrations of the four-ring PAHs predominated and the major species among the 16 PAHs were fluoranthene, phenanthrene, pyrene, and chrysene for most incense types. The benzo[a]pyrene, benzo[a]anthracene, benzo[b]fluoranthene, and dibenzo[a,h]anthracene accounted for 87.08-93.47% of the total toxic equivalency emission factor. - Highlights: Black-Right-Pointing-Pointer The atomic H/C ratio of incense was the key factor affecting PAHs emission factors. Black-Right-Pointing-Pointer Burning incense with lower atomic H/C ratio minimized the production of total PAHs. Black-Right-Pointing-Pointer The BaP, BaA, BbF, and DBA accounted for 87.08-93.47% of the TEQ emission factor. Black-Right-Pointing-Pointer Special PAH ratios were regarded as characteristic ratios for burning incense.

  16. Ecopiling: a combined phytoremediation and passive biopiling system for remediating hydrocarbon impacted soils at field scale.

    Science.gov (United States)

    Germaine, Kieran J; Byrne, John; Liu, Xuemei; Keohane, Jer; Culhane, John; Lally, Richard D; Kiwanuka, Samuel; Ryan, David; Dowling, David N

    2014-01-01

    Biopiling is an ex situ bioremediation technology that has been extensively used for remediating a wide range of petrochemical contaminants in soils. Biopiling involves the assembling of contaminated soils into piles and stimulating the biodegrading activity of microbial populations by creating near optimum growth conditions. Phytoremediation is another very successful bioremediation technique and involves the use of plants and their associated microbiomes to degrade, sequester or bio-accumulate pollutants from contaminated soil and water. The objective of this study was to investigate the effectiveness of a combined phytoremediation/biopiling system, termed Ecopiling, to remediate hydrocarbon impacted industrial soil. The large scale project was carried out on a sandy loam, petroleum impacted soil [1613 mg total petroleum hydrocarbons (TPHs) kg(-1) soil]. The contaminated soil was amended with chemical fertilizers, inoculated with TPH degrading bacterial consortia and then used to construct passive biopiles. Finally, a phyto-cap of perennial rye grass (Lolium perenne) and white clover (Trifolium repens) was sown on the soil surface to complete the Ecopile. Monitoring of important physico-chemical parameters was carried out at regular intervals throughout the trial. Two years after construction the TPH levels in the petroleum impacted Ecopiles were below detectable limits in all but one subsample (152 mg TPH kg(-1) soil). The Ecopile system is a multi-factorial bioremediation process involving bio-stimulation, bio-augmentation and phytoremediation. One of the key advantages to this system is the reduced costs of the remediation process, as once constructed, there is little additional cost in terms of labor and maintenance (although the longer process time may incur additional monitoring costs). The other major advantage is that many ecological functions are rapidly restored to the site and the process is esthetically pleasing.

  17. Ecopiling: A combined Phytoremediation and Passive Biopiling System for Remediating Hydrocarbon Impacted Soils at Field Scale

    Directory of Open Access Journals (Sweden)

    Kieran J Germaine

    2015-01-01

    Full Text Available Biopiling is an ex situ bioremediation technology that has been extensively used for remediating a wide range of petrochemical contaminants in soils. Biopiling involves the assembling of contaminated soils into piles and stimulating the biodegrading activity of microbial populations by creating near optimum growth conditions. Phytoremediation is another very successful bioremediation technique and involves the use of plants and their associated microbiomes to degrade, sequester or bio-accumulate pollutants from contaminated soil and water. The objective of this study was to investigate the effectiveness of a combined phytoremediation/biopiling system, termed Ecopiling, to remediate hydrocarbon impacted industrial soil. The large scale project was carried out on a sandy loam, petroleum impacted soil (1613 mg Total Petroleum Hydrocarbons (TPH kg-1 soil. The contaminated soil was amended with chemical fertilisers, inoculated with TPH degrading bacterial consortia and then used to construct passive biopiles. Finally, a phyto-cap of perennial rye grass (Lolium multiflorum and white clover (Trifolium repens was sown on the soil surface to complete the Ecopile. Monitoring of important physico-chemical parameters was carried out at regular intervals throughout the trial. Two years after construction the TPH levels in the petroleum impacted Ecopiles were below detectable limits in all but 1 subsample (152mg TPH kg-1 soil. The Ecopile system is a multi-factorial bioremediation process involving bio-stimulation, bio-augmentation and phytoremediation. One of the key advantages to this system is the reduced costs of the remediation process, as once constructed, there is little additional cost in terms of labour and maintenance (although the longer process time may incur additional monitoring costs. The other major advantage is that many ecological functions are rapidly restored to the site and the process is aesthetically pleasing.

  18. 气相光催化氧化降解卤代烃的研究%Gas-Phase Photocatalytic Oxidation of Halogenated Hydrocarbons

    Institute of Scientific and Technical Information of China (English)

    李功虎; 安纬珠

    2000-01-01

      本文介绍了气相光催化作用的基本原理,从光催化剂的改性技术、反应动力学和反应机理三个方面综述了近年来气相光催化氧化降解卤代烃的研究。%  This paper introduced the photocatalyzing principle of semiconductor in gas phase,and summarized the recent studies on the gas-phase photocatalytic oxidation of halogenated hydrocarbons,including modification of semiconductor,reaction kinetics and the degradation mechanism of TCE.

  19. Development of Buoy Mounted Hydrocarbon Vapor Sensors for Use in Local Area Pollution Surveillance Systems

    Science.gov (United States)

    1975-07-01

    PNP transistor as hydrocarbon vapor sensor . . . . 3. Hot wire sensors for hydrocarbons 4. Suitability of an lonlzatlon sensor for... PNP transistors , (A) a radioactive ionlzatlon sensor, and (5) the Taguchl semiconductor gas sensor, TGS. Later, the Esso piezoelectric oll-on- water...sensors with coating 12 showed some promise as ammonia vapor sensors. 2. PNP transistor as hydrocarbon vapor sensor; Limited studies have been made

  20. Development of a system for "in situ" determination of chlorinated hydrocarbons in groundwater

    OpenAIRE

    Boutsiadou, Xanthippe; Hunkeler, Daniel

    2012-01-01

    Volatile organic compounds (VOCs), and especially chlorinated hydrocarbons, are common groundwater contaminants. Efficient monitoring that can be conducted directly in the field is needed to detect a possible pollution by organic contaminants such as chlorinated hydrocarbons. The general aim of this project is to develop a portable instrument for the in situ measurement of chlorinated hydrocarbons in groundwater. The instrument relies on the transfer of volatile organic compounds to the gas p...

  1. Geometric phases in discrete dynamical systems

    Energy Technology Data Exchange (ETDEWEB)

    Cartwright, Julyan H.E., E-mail: julyan.cartwright@csic.es [Instituto Andaluz de Ciencias de la Tierra, CSIC–Universidad de Granada, E-18100 Armilla, Granada (Spain); Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, E-18071 Granada (Spain); Piro, Nicolas, E-mail: nicolas.piro@epfl.ch [École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne (Switzerland); Piro, Oreste, E-mail: piro@imedea.uib-csic.es [Departamento de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Tuval, Idan, E-mail: ituval@imedea.uib-csic.es [Mediterranean Institute for Advanced Studies, CSIC–Universitat de les Illes Balears, E-07190 Mallorca (Spain)

    2016-10-14

    In order to study the behaviour of discrete dynamical systems under adiabatic cyclic variations of their parameters, we consider discrete versions of adiabatically-rotated rotators. Parallelling the studies in continuous systems, we generalize the concept of geometric phase to discrete dynamics and investigate its presence in these rotators. For the rotated sine circle map, we demonstrate an analytical relationship between the geometric phase and the rotation number of the system. For the discrete version of the rotated rotator considered by Berry, the rotated standard map, we further explore this connection as well as the role of the geometric phase at the onset of chaos. Further into the chaotic regime, we show that the geometric phase is also related to the diffusive behaviour of the dynamical variables and the Lyapunov exponent. - Highlights: • We extend the concept of geometric phase to maps. • For the rotated sine circle map, we demonstrate an analytical relationship between the geometric phase and the rotation number. • For the rotated standard map, we explore the role of the geometric phase at the onset of chaos. • We show that the geometric phase is related to the diffusive behaviour of the dynamical variables and the Lyapunov exponent.

  2. Hydrocarbon fuel processing of micro solid oxide fuel cell systems[Dissertation 17455

    Energy Technology Data Exchange (ETDEWEB)

    Stutz, M. J.

    2007-07-01

    The scope of this thesis is the numerical and experimental investigation of the fuel processing of a micro solid oxide fuel cell (SOFC) running on hydrocarbon fuel. The goal is to enhance the overall system efficiency by optimization of the reforming process in the steady state and the improvement of the start-up process. Micro SOFC are a potential alternative to the currently used batteries in portable devices. Liquid butane in a cartridge could be the energy source. This dissertation is focused on the fuel processing of the system, namely the reforming and post-combusting processes. The reformer converts the hydrocarbon fuel to a hydrogen rich gas that can be utilized by the SOFC. The post-combustor depletes the toxic and/or explosive gases before leaving the exhaust. Chapter One presents a short introduction to the field of hydrocarbon fuel processing in micro solid oxide fuel cell systems, the next three chapters deal with computational modeling of the transport phenomena inside a micro-reformer, which leads to a better understanding of the chemistry and the physics therein, hence progress in the design and operation parameters. The experimental part (i.e. Chapter Five) of this thesis focuses on the feasibility of a novel hybrid start-up method of a fuel cell system that employs existing components as an additional heat source. In Chapter Two the effect of wall heat conduction on the syngas (hydrogen and carbon monoxide) production of a micro-reformer, representing micro-fabricated channels or monoliths, is investigated. Methane is used as a model hydrocarbon fuel since its heterogeneous reaction path on rhodium is known and validated. The simulations demonstrate that the axial wall conduction strongly influences the performance of the micro-reformer and should not be neglected without a careful a priori investigation of its impact. Methane conversion and hydrogen yield are strongly dependent of the wall inner surface temperature, which is influenced by the

  3. Hydrocarbon fuel processing of micro solid oxide fuel cell systems[Dissertation 17455

    Energy Technology Data Exchange (ETDEWEB)

    Stutz, M. J.

    2007-07-01

    The scope of this thesis is the numerical and experimental investigation of the fuel processing of a micro solid oxide fuel cell (SOFC) running on hydrocarbon fuel. The goal is to enhance the overall system efficiency by optimization of the reforming process in the steady state and the improvement of the start-up process. Micro SOFC are a potential alternative to the currently used batteries in portable devices. Liquid butane in a cartridge could be the energy source. This dissertation is focused on the fuel processing of the system, namely the reforming and post-combusting processes. The reformer converts the hydrocarbon fuel to a hydrogen rich gas that can be utilized by the SOFC. The post-combustor depletes the toxic and/or explosive gases before leaving the exhaust. Chapter One presents a short introduction to the field of hydrocarbon fuel processing in micro solid oxide fuel cell systems, the next three chapters deal with computational modeling of the transport phenomena inside a micro-reformer, which leads to a better understanding of the chemistry and the physics therein, hence progress in the design and operation parameters. The experimental part (i.e. Chapter Five) of this thesis focuses on the feasibility of a novel hybrid start-up method of a fuel cell system that employs existing components as an additional heat source. In Chapter Two the effect of wall heat conduction on the syngas (hydrogen and carbon monoxide) production of a micro-reformer, representing micro-fabricated channels or monoliths, is investigated. Methane is used as a model hydrocarbon fuel since its heterogeneous reaction path on rhodium is known and validated. The simulations demonstrate that the axial wall conduction strongly influences the performance of the micro-reformer and should not be neglected without a careful a priori investigation of its impact. Methane conversion and hydrogen yield are strongly dependent of the wall inner surface temperature, which is influenced by the

  4. Mixing in three-phase systems: Implications for enhanced oil recovery and unconventional gas extraction

    Science.gov (United States)

    Jimenez-Martinez, J.; Porter, M. L.; Hyman, J.; Carey, J. W.; Viswanathan, H. S.

    2015-12-01

    Although the mixing of fluids within a porous media is a common process in natural and industrial systems, how the degree of mixing depends on the miscibility of multiple phases is poorly characterized. Often, the direct consequence of miscible mixing is the modification of the resident fluid (brine and hydrocarbons) rheological properties. We investigate supercritical (sc)CO2 displacement and mixing processes in a three-phase system (scCO2, oil, and H2O) using a microfluidics experimental system that accommodates the high pressures and temperatures encountered in fossil fuel extraction operations. The miscibility of scCO2 with the resident fluids, low with aqueous solutions and high with hydrocarbons, impacts the mixing processes that control sweep efficiency in enhanced oil recovery (EOR) and the unlocking of the system in unconventional oil and gas extraction. Using standard volume-averaging techniques we upscale the aqueous phase saturation to the field-scale (i.e., Darcy scale) and interpret the results as a simpler two-phase system. This process allows us to perform a statistical analysis to quantify i) the degree of heterogeneity in the system resulting from the immiscible H2O and ii) how that heterogeneity impacts mixing between scCO2 and oil and their displacement. Our results show that when scCO2 is used for miscible displacement, the presence of an aqueous solution, which is common in secondary and tertiary EOR and unconventional oil and gas extraction, strongly impacts the mixing of scCO2 with the hydrocarbons due to low scCO2-H2O miscibility. H2O, which must be displaced advectively by the injected scCO2, introduces spatio-temporal variability into the system that acts as a barrier between the two miscibile fluids. This coupled with the effect of viscosity contrast, i.e., viscous fingering, has an impact on the mixing of the more miscible pair.

  5. An investigation on polycyclic aromatic hydrocarbon emissions from pulverized coal combustion systems

    Science.gov (United States)

    Pisupati; Wasco; Scaroni

    2000-05-29

    Results from a series of tests conducted to study the emission of polynuclear or polycyclic aromatic hydrocarbons (PAHs) from bench-scale and small industrial, water-tube boiler are discussed. A Middle Kittanning, and Upper Freeport seam coals were used in the study. Samples were extracted from the reactor outlet and from the inlet and outlet sides of the research boiler's (RB) baghouse using EPA promulgated methods.Only acenaphthene and fluoranthene were detected in down-fired combustor (DFC) samples. In addition to these two, naphthalene was detected in the RB samples. Emission factors ranged from 80 to 320 &mgr;g/kg of fuel fired. Although there were minor trends in the emissions' data, given the reproducibility limits for PAH compounds, no significant differences were found in the emissions with respect to the fuel type or form (pulverized coal (PC) vs. coal-water slurry fuel (CWSF), and raw vs. cleaned coal) and firing conditions (high and low excess air). The PAH emissions showed a decrease with increase in the firing rate.A bench-scale drop-tube reactor (DTR) was used to study the effects of temperature and residence time on PAH formation. The results revealed near constant PAH concentrations in the solid-phase samples, while the PAH concentrations in the vapor-phase samples increased as a function of temperature. At a temperature of around 1300 degrees C, the rate of PAH formation was exceeded by the rate of PAH oxidation, and PAH concentrations in the vapor phase began to decrease.

  6. Deuteration in a chromato-mass spectrometer inlet system in a study of the fragmentation mechanisms of cyclobutane hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Mikaya, A.N.; Romanov, G.D.; Zaikin, V.G.; Vdovin, V.M.

    1986-04-20

    The authors have recently shown that a heterogenized Wilkinson catalyst consisting of a solution of (Ph/sub 3/P)/sub 3/RhCl in Carbowax 20M supported on Chromaton-W may be used for the selective addition of D/sub 2/ at the double bond of alkenes under conditions of gas-liquid-solid-phase catalysts (1). Carrying out this reaction directly in the inlet system of a chromato-mass spectrometer permits the preparation of vicinal dideuteroalkanes and the position of the double bond in the starting alkenes may be reliably determined from the mass spectra of these deutero products. Such analysis is possible on the submicrogram level and does not require isolation of reaction products. It was of interest to use this approach for the study of the mechanisms of the dissociative ionization of organic compounds whose labeled analogs may be prepared during the mass spectrometric study. In the present communication, they have established the mechanism for fragmentation upon electron impact of cyclobutane hydrocarbons.

  7. Enhanced removal of petroleum hydrocarbons using a bioelectrochemical remediation system with pre-cultured anodes

    Energy Technology Data Exchange (ETDEWEB)

    Venkidusamy, Krishnaveni [Centre for Environmental Risk Assessment and Remediation (CERAR), University of South (Australia); CRC for Contamination Assessment and Remediation of the Environment (CRCCARE), Mawson Lakes, SA5095 (Australia); Megharaj, Mallavarapu, E-mail: megh.mallavarapu@newcastle.edu.au [Centre for Environmental Risk Assessment and Remediation (CERAR), University of South (Australia); CRC for Contamination Assessment and Remediation of the Environment (CRCCARE), Mawson Lakes, SA5095 (Australia); Global Centre for Environmental Remediation, Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW 2308 (Australia); Marzorati, Massimo [Laboratory for Microbial Ecology and Technology (LabMET), Gent University, 9000 Gent (Belgium); Lockington, Robin [Centre for Environmental Risk Assessment and Remediation (CERAR), University of South (Australia); CRC for Contamination Assessment and Remediation of the Environment (CRCCARE), Mawson Lakes, SA5095 (Australia); Naidu, Ravi [Centre for Environmental Risk Assessment and Remediation (CERAR), University of South (Australia); CRC for Contamination Assessment and Remediation of the Environment (CRCCARE), Mawson Lakes, SA5095 (Australia); Global Centre for Environmental Remediation, Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW 2308 (Australia)

    2016-01-01

    Bioelectrochemical remediation (BER) systems such as microbial fuel cells (MFCs) have recently emerged as a green technology for the effective remediation of petroleum hydrocarbon contaminants (PH) coupled with simultaneous energy recovery. Recent research has shown that biofilms previously enriched for substrate degrading bacteria resulted in excellent performance in terms of substrate removal and electricity generation but the effects on hydrocarbon contaminant degradation were not examined. Here we investigate the differences between enriched biofilm anodes and freshly inoculated new anodes in diesel fed single chamber mediatorless microbial fuel cells (DMFC) using various techniques for the enhancement of PH contaminant remediation with concomitant electricity generation. An anodophilic microbial consortium previously selected for over a year through continuous culturing with a diesel concentration of about 800 mg l{sup −1} and which now showed complete removal of this concentration of diesel within 30 days was compared to that of a freshly inoculated new anode MFC (showing 83.4% removal of diesel) with a simultaneous power generation of 90.81 mW/m{sup 2} and 15.04 mW/m{sup 2} respectively. The behaviour of pre-cultured anodes at a higher concentration of PH (8000 mg l{sup −1}) was also investigated. Scanning electron microscopy observation revealed a thick biofilm covering the pre-cultured anodic electrode but not the anode from the freshly inoculated MFC. High resolution imaging showed the presence of thin 60 nm diametre pilus-like projections emanating from the cells. Anodic microbial community profiling confirmed that the selection for diesel degrading exoelectrogenic bacteria had occurred. Identification of a biodegradative gene (alkB) provided strong evidence of the catabolic pathway used for diesel degradation in the DMFCs.

  8. Enhanced removal of petroleum hydrocarbons using a bioelectrochemical remediation system with pre-cultured anodes.

    Science.gov (United States)

    Venkidusamy, Krishnaveni; Megharaj, Mallavarapu; Marzorati, Massimo; Lockington, Robin; Naidu, Ravi

    2016-01-01

    Bioelectrochemical remediation (BER) systems such as microbial fuel cells (MFCs) have recently emerged as a green technology for the effective remediation of petroleum hydrocarbon contaminants (PH) coupled with simultaneous energy recovery. Recent research has shown that biofilms previously enriched for substrate degrading bacteria resulted in excellent performance in terms of substrate removal and electricity generation but the effects on hydrocarbon contaminant degradation were not examined. Here we investigate the differences between enriched biofilm anodes and freshly inoculated new anodes in diesel fed single chamber mediatorless microbial fuel cells (DMFC) using various techniques for the enhancement of PH contaminant remediation with concomitant electricity generation. An anodophilic microbial consortium previously selected for over a year through continuous culturing with a diesel concentration of about 800mgl(-1) and which now showed complete removal of this concentration of diesel within 30days was compared to that of a freshly inoculated new anode MFC (showing 83.4% removal of diesel) with a simultaneous power generation of 90.81mW/m(2) and 15.04mW/m(2) respectively. The behaviour of pre-cultured anodes at a higher concentration of PH (8000mgl(-1)) was also investigated. Scanning electron microscopy observation revealed a thick biofilm covering the pre-cultured anodic electrode but not the anode from the freshly inoculated MFC. High resolution imaging showed the presence of thin 60nm diametre pilus-like projections emanating from the cells. Anodic microbial community profiling confirmed that the selection for diesel degrading exoelectrogenic bacteria had occurred. Identification of a biodegradative gene (alkB) provided strong evidence of the catabolic pathway used for diesel degradation in the DMFCs. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Phased array based ultrasound scanning system development

    Science.gov (United States)

    Sagdiev, R. K.; Denisov, E. S.; Evdokimov, Yu K.; Fazlyyyakhmatov, M. G.; Kashapov, N. F.

    2014-12-01

    Multichannel ultrasound scanning system based on phased arrays development is presented in this paper. Substantiation of system parameters is presented. The description of block diagram and hardware development is presented. The combination of the self-developed receiving and a transmitting units and commercially available FPGA unit and Personal Computer can solve our scientific goals, while providing a relatively low device cost.

  10. Ka-Band Phased Array System Characterization

    Science.gov (United States)

    Acosta, R.; Johnson, S.; Sands, O.; Lambert, K.

    2001-01-01

    Phased Array Antennas (PAAs) using patch-radiating elements are projected to transmit data at rates several orders of magnitude higher than currently offered with reflector-based systems. However, there are a number of potential sources of degradation in the Bit Error Rate (BER) performance of the communications link that are unique to PAA-based links. Short spacing of radiating elements can induce mutual coupling between radiating elements, long spacing can induce grating lobes, modulo 2 pi phase errors can add to Inter Symbol Interference (ISI), phase shifters and power divider network introduce losses into the system. This paper describes efforts underway to test and evaluate the effects of the performance degrading features of phased-array antennas when used in a high data rate modulation link. The tests and evaluations described here uncover the interaction between the electrical characteristics of a PAA and the BER performance of a communication link.

  11. Reductive dechlorination of chlorinated hydrocarbons as non-aqueous phase liquid (NAPL): Preliminary investigation on effects of cement doses

    Energy Technology Data Exchange (ETDEWEB)

    Do, Si-Hyun, E-mail: sihyun2@hanyang.ac.kr [Department of Chemical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Batchelor, Bill [Zachry Department of Civil Engineering, Texas A and M University, College Station, TX 77843 (United States)

    2012-07-15

    The reactivities of various types of iron mixtures to degrade chlorinated hydrocarbons (PCE, TCE and 1,1,1-TCA) in the form of non-aqueous phase liquids were investigated. The iron mixtures included a mixture of Fe(II) and Portland cement (Fe(II)-C), a mixture of Fe(II), Fe(III) and Ca(OH){sub 2} (Fe(II/III)-L), and a mixture of Fe(II), Fe(III), Ca(OH){sub 2}, and Portland cement (Fe(II/III)-C). When the same amount of Fe(II) was used, Fe(II)-C was more reactive with chlorinated ethylenes (i.e. PCE and TCE) than Fe(II/III)-L. The reductive pathway for high concentrations of total PCE (i.e. above solubility) with Fe(II)-C was determined to be a combination of two-electron transfer, {beta}-elimination and hydrogenolysis. Increasing the cement dose from 5% to 10% in Fe(II)-C did not affect PCE dechlorination rates, but it did favor the {beta}-elimination pathway. In addition, when Fe(II/III)-C with 5%C was used, PCE dechlorination was similar to that by Fe(II)-C, but this mixture did not effectively degrade TCE. A modified second-order kinetic model was developed and shown to appropriately describe degradation of TCE at high concentrations. Fe(II/III)-L effectively degraded high concentrations of 1,1,1-TCA at rates that were similar to those obtained with Fe(II)-C using 10% C. Moreover, both increasing cement doses and the presence of Fe(III) increased dechlorination rates of 1,1,1-TCA, which was mainly through the hydrogenolysis pathway. The reactivity of Fe(II/III)-L was strongly dependent on the target compound (i.e. less reactivity with TCE, more with 1,1,1-TCA). Therefore, Fe(II/III)-L could be a potential mixture for degrading 1,1,1-TCA, but it should be modified to degrade TCE more effectively. - Highlights: Black-Right-Pointing-Pointer TCE yield indicated that PCE dechlorination was through hydrogenolysis and {beta}-elimination. Black-Right-Pointing-Pointer {beta}-elimination, especially PCE to dichloroacetylene, was favored with the higher cement doses. Black

  12. Chaotic systems in complex phase space

    Indian Academy of Sciences (India)

    Carl M Bender; Joshua Feinberg; Daniel W Hook; David J Weir

    2009-09-01

    This paper examines numerically the complex classical trajectories of the kicked rotor and the double pendulum. Both of these systems exhibit a transition to chaos, and this feature is studied in complex phase space. Additionally, it is shown that the short-time and long-time behaviours of these two $\\mathcal{PT}$ -symmetric dynamical models in complex phase space exhibit strong qualitative similarities.

  13. Morrowan stratigraphy, depositional systems, and hydrocarbon accumulation, Sorrento field, Cheyenne County, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Orchard, D.M.; Kidwell, M.R.

    1983-08-01

    The Sorrento field, located on the western flank of the present-day Las Animas arch in western Cheyenne County, Colorado, has approximately 29 million bbl of oil and 12 bcf of gas in place in sandstones of the Lower Pennsylvanian Morrow units. The sandstones were deposited in a fluvially dominated deltaic system, and the trap for the hydrocarbon accumulation is formed by pinch-out of this deltaic system onto regional dip. The primary reservoirs are point-bar deposits. At the Sorrento field, the basal Keyes limestone member of the Morrow formation rests unconformably on the Mississippian St. Louis Formation. Above the Keyes limestone, the Morrow shale is 180 to 214 ft (55 to 65 m) thick, and locally contains reservoir sands. Gas/oil and oil/water contacts are not uniform through the field owing to discontinuities between separate point bars. One such discontinuity is formed by an apparent mud plug of an abandoned channel separating two point bars on the southeastern end of the field. In a well 7000 ft (2100 m) from the edge of the meander belt, the regressive sequence is represented by a shoreline siltstone unit 8 ft (2 m) thick with flaser bedding, graded bedding, load structures, and rare wave-ripple cross-bedding overlain by 3 ft (1 m) of flood-plain mudstone and coal with no indication of proximity to a nearby sand system.

  14. Vapor-phase heat-transport system

    Energy Technology Data Exchange (ETDEWEB)

    Hedstrom, J.C.

    1983-01-01

    A vapor-phase heat-transport system is being tested in one of the passive test cells at Los Alamos. The system consists of one selective-surface collector and a condenser inside a water storage tank. The refrigerant, R-11, can be returned to the collector by gravity or with a pump. Results from several operating configurations are presented, together with a comparison with other passive systems. A new self-pumping concept is presented.

  15. Magnetic metal-organic framework MIL-100(Fe) microspheres for the magnetic solid-phase extraction of trace polycyclic aromatic hydrocarbons from water samples.

    Science.gov (United States)

    Du, Fuyou; Qin, Qun; Deng, Jianchao; Ruan, Guihua; Yang, Xianqing; Li, Laihao; Li, Jianping

    2016-06-01

    In this work, a magnetic metal-organic framework designated as MIL-100(Fe) was prepared and applied as a magnetic solid-phase extraction sorbent for the determination of trace polycyclic aromatic hydrocarbons in environmental water samples by coupling with high-performance liquid chromatography and fluorescence detection. The magnetic microspheres exhibited large surface areas and high extraction ability, making them excellent candidates as sorbents for enrichment of trace polycyclic aromatic hydrocarbons. Under the optimized experimental conditions, good sensitivity levels were achieved with low detection limits ranging from 32 to 2110 pg/mL and good linearities with correlation coefficients higher than 0.9990 for the investigated 13 polycyclic aromatic hydrocarbons. The proposed method has been validated in the analysis of real water samples with mean recoveries in the range of 81.4-126.9% at four spiked levels and the relative standard deviations in the range of 1.3-17.0%. The magnetic MIL-100(Fe) microspheres were stable enough for 150 extractions without a significant loss of extraction performance.

  16. Polythiophene/hexagonally ordered silica nanocomposite coating as a solid-phase microextraction fiber for the determination of polycyclic aromatic hydrocarbons in water.

    Science.gov (United States)

    Abolghasemi, Mir Mahdi; Yousefi, Vahid

    2014-01-01

    A highly porous fiber coated with polythiophene/hexagonally ordered silica nanocomposite was prepared for solid-phase microextraction (SPME). The prepared nanomaterial was immobilized onto a stainless-steel wire for the fabrication of the SPME fiber. Polythiophene/hexagonally ordered silica nanocomposite fibers were used for the extraction of some polycyclic aromatic hydrocarbons from water samples. The extracted analytes were transferred to the injection port of a gas chromatograph using a laboratory-designed SPME device. The results obtained prove the ability of the polythiophene/hexagonally ordered silica material as a new fiber for the sampling of organic compounds from water samples. This behavior is due most probably to the increased surface area of the polythiophene/hexagonally ordered silica nanocomposite. A one-at-a-time optimization strategy was applied for optimizing the important extraction parameters such as extraction temperature, extraction time, ionic strength, stirring rate, and desorption temperature and time. Under the optimum conditions, the LOD of the proposed method is 0.1-3 pg/mL for analysis of polycyclic aromatic hydrocarbons from aqueous samples, and the calibration graphs were linear in a concentration range of 0.001-20 ng/mL (R(2) > 0.990) for most of the polycyclic aromatic hydrocarbons. The single fiber repeatability and fiber-to-fiber reproducibility were less than 8.6 and 19.1% (n = 5), respectively.

  17. Phase diagram of colloid-rod system

    Science.gov (United States)

    Lai, S. K.; Xiao, Xuhui

    2010-01-01

    The semigrand ensemble theory [H. N. W. Lekkerkerker, W. C. K. Poon, P. N. Pusey, A. Stroobants, and P. B. Warren, Europhys. Lett. 20, 559 (1992)] in conjunction with the fundamental measure density functional theory [V. B. Warshavsky and X. Song, Phys. Rev. E 69, 061113 (2004)] are used to construct the Helmholtz free energy densities of a mixture of uncharged colloidal hard spheres and colloidal rods in its solid and liquid phases. Given these free energy density functions, we apply the free energy density minimization method [G. F. Wang and S. K. Lai, Phys. Rev. E 70, 051402 (2004)] to crosshatch the system's regions of phases in coexistence. The calculated results show that the triangular area bounded by gas-liquid, gas-solid, and liquid-solid coexisting two phases which has been called the coexistence region of gas-liquid-solid corresponds in fact to sets of two phases in coexistence. The phase boundaries which define our calculated coexistence domains compare very well with previous theoretical calculations. The relevance of the phase-diagram domains to three phases in coexistence will be discussed.

  18. Molecular systems under shock compression into the dense plasma regime: carbon dioxide and hydrocarbon polymers

    Science.gov (United States)

    Mattsson, Thomas R.; Cochrane, Kyle R.; Root, Seth; Carpenter, John H.

    2013-10-01

    Density Functional Theory (DFT) has proven remarkably accurate in predicting properties of matter under shock compression into the dense plasma regime. Materials where chemistry plays a role are of interest for many applications, including planetary science and inertial confinement fusion (ICF). As examples of systems where chemical reactions are important, and demonstration of the high fidelity possible for these both structurally and chemically complex systems, we will discuss shock- and re-shock of liquid carbon dioxide (CO2) in the range 100 to 800 GPa and shock compression of hydrocarbon polymers, including GDP (glow discharge polymer) which is used as an ablator in laser ICF experiments. Experimental results from Sandia's Z machine validate the DFT simulations at extreme conditions and the combination of experiment and DFT provide reliable data for evaluating existing and constructing future wide-range equations of state models for molecular compounds. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  19. Characterization and concentrations of polycyclic aromatic hydrocarbons in emissions from different heating systems in Damascus, Syria.

    Science.gov (United States)

    Alkurdi, Farouk; Karabet, François; Dimashki, Marwan

    2014-04-01

    Traffic has long been recognized as the major contributor to polycyclic aromatic hydrocarbon (PAH) emissions to the urban atmosphere. Stationary combustion sources, including residential space heating systems, are also a major contributor to PAH emissions. The aim of this study was to determine the profile and concentration of PAHs in stack flue gas emissions from different kinds of space heaters in order to increase the understanding of the scale of the PAH pollution problem caused by this source. This study set out to first assess the characteristics of PAHs and their corresponding benzo[a]pyrene equivalent emissions from a few types of domestic heaters and central heating systems to the urban atmosphere. The study, enabled for the first time, the characterization of PAHs in stationary combustion sources in the city of Damascus, Syria. Nine different types of heating systems were selected with respect to age, design, and type of fuel burned. The concentrations of 15 individual PAH compounds in the stack flue gas were determined in the extracts of the collected samples using high-performance liquid chromatography system (HPLC) equipped with ultraviolet-visible and fluorescence detectors. In general, older domestic wood stoves caused considerably higher PAH emissions than modern domestic heaters burning diesel oil. The average concentration of ΣPAH (sum of 15 compounds) in emissions from all types of studied heating systems ranged between 43 ± 0.4 and 316 ± 1.4 μg/m(3). Values of total benzo[a]pyrene equivalent ranged between 0.61 and 15.41 μg/m(3).

  20. Phase equilibria study of the binary systems (N-hexylisoquinolinium thiocyanate ionic liquid + organic solvent or water).

    Science.gov (United States)

    Królikowska, Marta; Karpińska, Monika; Zawadzki, Maciej

    2012-04-12

    Liquid-liquid phase equilibria (LLE) of binary mixtures containing a room-temperature ionic liquid N-hexylisoquinolinium thiocyanate, [HiQuin][SCN] with an aliphatic hydrocarbon (n-hexane, n-heptane), aromatic hydrocarbon (benzene, toluene, ethylbenzene, n-propylbenzene), cyclohexane, thiophene, water, and 1-alcohol (1-ethanol, 1-butanol, 1-hexanol, 1-octanol, 1-decanol) have been determined using a dynamic method from room temperature to the boiling-point of the solvent at ambient pressure. N-hexylisoquinolinium thiocyanate, [HiQuin][SCN] has been synthesized from N-hexyl-isoquinolinium bromide as a substrate. Specific basic characterization of the new compound including NMR spectra, elementary analysis, and water content have been done. The density and viscosity of pure ionic liquid were determined over a wide temperature range from 298.15 to 348.15 K. The mutual immiscibility with an upper critical solution temperature (UCST) for the binary systems {IL + aliphatic hydrocarbon, cyclohexane, or water} was detected. In the systems of {IL + aromatic hydrocarbon or thiophene} an immiscibility gap with a lower critical solution temperature (LCST) was observed. Complete miscibility in the liquid phase, over a whole range of ionic liquid mole fraction, was observed for the binary mixtures containing IL and an 1-alcohol. For the tested binary systems with immiscibility gap {IL + aliphatic hydrocarbon, aromatic hydrocarbon, cyclohexane, thiophene, or water}, the parameters of the LLE correlation have been derived using the NRTL equation. The basic thermal properties of the pure IL, that is, the glass-transition temperature as well as the heat capacity at the glass-transition temperature, have been measured using a differential scanning microcalorimetry technique (DSC). Decomposition of the IL was detected by simultaneous thermogravimetric/differential thermal analysis (TG/DTA) experiments.

  1. Power system identification toolbox: Phase two progress

    Energy Technology Data Exchange (ETDEWEB)

    Trudnowski, D.J.

    1994-08-01

    This report describes current progress on a project funded by the Bonneville Power Administration (BPA) to develop a set of state-of-the-art analysis software (termed the Power System Identification [PSI] Toolbox) for fitting dynamic models to measured data. The project is being conducted as a three-phase effort. The first phase, completed in late 1992, involved investigating the characteristics of the analysis techniques by evaluating existing software and developing guidelines for best use. Phase Two includes extending current software, developing new analysis algorithms and software, and demonstrating and developing applications. The final phase will focus on reorganizing the software into a modular collection of documented computer programs and developing user manuals with instruction and application guidelines. Phase Two is approximately 50% complete; progress to date and a vision for the final product of the PSI Toolbox are described. The needs of the power industry for specialized system identification methods are particularly acute. The industry is currently pushing to operate transmission systems much closer to theoretical limits by using real-time, large-scale control systems to dictate power flows and maintain dynamic stability. Reliably maintaining stability requires extensive system-dynamic modeling and analysis capability, including measurement-based methods. To serve this need, the BPA has developed specialized system-identification computer codes through in-house efforts and university contract research over the last several years. To make full integrated use of the codes, as well as other techniques, the BPA has commissioned Pacific Northwest Laboratory (PNL) to further develop the codes and techniques into the PSI Toolbox.

  2. Fast Offset Laser Phase-Locking System

    Science.gov (United States)

    Shaddock, Daniel; Ware, Brent

    2008-01-01

    Figure 1 shows a simplified block diagram of an improved optoelectronic system for locking the phase of one laser to that of another laser with an adjustable offset frequency specified by the user. In comparison with prior systems, this system exhibits higher performance (including higher stability) and is much easier to use. The system is based on a field-programmable gate array (FPGA) and operates almost entirely digitally; hence, it is easily adaptable to many different systems. The system achieves phase stability of less than a microcycle. It was developed to satisfy the phase-stability requirement for a planned spaceborne gravitational-wave-detecting heterodyne laser interferometer (LISA). The system has potential terrestrial utility in communications, lidar, and other applications. The present system includes a fast phasemeter that is a companion to the microcycle-accurate one described in High-Accuracy, High-Dynamic-Range Phase-Measurement System (NPO-41927), NASA Tech Briefs, Vol. 31, No. 6 (June 2007), page 22. In the present system (as in the previously reported one), beams from the two lasers (here denoted the master and slave lasers) interfere on a photodiode. The heterodyne photodiode output is digitized and fed to the fast phasemeter, which produces suitably conditioned, low-latency analog control signals which lock the phase of the slave laser to that of the master laser. These control signals are used to drive a thermal and a piezoelectric transducer that adjust the frequency and phase of the slave-laser output. The output of the photodiode is a heterodyne signal at the difference between the frequencies of the two lasers. (The difference is currently required to be less than 20 MHz due to the Nyquist limit of the current sampling rate. We foresee few problems in doubling this limit using current equipment.) Within the phasemeter, the photodiode-output signal is digitized to 15 bits at a sampling frequency of 40 MHz by use of the same analog

  3. Correlation of Critical Loci for Water-Hydrocarbon Binary Systems by EOS Based on the Multi-Fluid Nonrandom Lattice Theory

    Institute of Scientific and Technical Information of China (English)

    Hun; Yong; SHIN; Hwayong; KIM; 等

    2002-01-01

    Quantitative representation of complicated behavior of fluid mixtures in the critical region by any of equation-of-state theories remains as a difficults thermodynamic topics to date.In the present work,a computational efforts were made for representing various types of critical loci of binary water with hydrocarbon systems showing Type Ⅱ and Type Ⅲ phase behavior by an elementary equation of state[called multi-fluid nonrandom lattice fluid EOS(MF-NLF EOS)]based on the lattice statistical mechanical theory.The model EOS requires two molecular parameters which representing molecular size and interaction energy for a pure component and single adjustable interaction energy parameter for binary mixtures.Critical temperature and pressure data were used to obtain molecular size parameter and vapor pressure data were used to obtain interaction energy parameter.The MF-NLF EOS model adapted in the present study correlated quantitatively well the critical loci of various binary water with hydrocarbon systems.

  4. Future of phased array radar systems

    Science.gov (United States)

    Bassyouni, Ahmed

    2011-12-01

    This paper spots the light on the future progress of phased array radar systems, presenting two innovative examples on the directions of development. The first example starts with the classic radar range equation to develop the topology of what is called a "Mobile Adaptive Digital Array Radar" (MADAR) system. The second example discusses the possibility to achieve what is called "Entangled Photonic Radar" (EPR) system. The EPR quantum range equation is derived and compared to the classic one to compare the performance. Block diagrams and analysis for both proposed systems are presented.

  5. Structure of the body-centered cubic phase of lipid systems.

    Science.gov (United States)

    Saludjian, P; Reiss-Husson, F

    1980-12-01

    A new model is proposed for the structure of the body-centered cubic phase of lipid systems. Infinite rods of polar groups (and water) are arranged with axes parallel to the four cubic [unk]1 1 1[unk] directions. The hydrocarbon chains fill the space between the rods to form a continuous matrix. With this unified topology, the model explains satisfactorily the x-ray diffraction patterns of strontium soaps, lecithin, galactolipids, potassium soaps, and hexadecyltrimethylammonium bromide and explains the transition between cubic/H(II) phases. The paradoxical thermal effects on the lipid cubic phase, in particular the decrease of unit cell dimensions with increasing temperature, can be explained with the proposed model by mechanisms similar to those used for the monodimensional and bidimensional (mesomorphic) phases.

  6. ISDSN Sensor System Phase One Test Report

    Energy Technology Data Exchange (ETDEWEB)

    Gail Heath

    2011-09-01

    This Phase 1 Test Report documents the test activities and results completed for the Idaho National Laboratory (INL) sensor systems that will be deployed in the meso-scale test bed (MSTB) at Florida International University (FIU), as outlined in the ISDSN-MSTB Test Plan. This report captures the sensor system configuration tested; test parameters, testing procedure, any noted changes from the implementation plan, acquired test data sets, and processed results.

  7. Development of gas chromatography-flame ionization detection system with a single column and liquid nitrogen-free for measuring atmospheric C2-C12 hydrocarbons.

    Science.gov (United States)

    Liu, Chengtang; Mu, Yujing; Zhang, Chenglong; Zhang, Zhibo; Zhang, Yuanyuan; Liu, Junfeng; Sheng, Jiujiang; Quan, Jiannong

    2016-01-04

    A liquid nitrogen-free GC-FID system equipped with a single column has been developed for measuring atmospheric C2-C12 hydrocarbons. The system is consisted of a cooling unit, a sampling unit and a separation unit. The cooling unit is used to meet the temperature needs of the sampling unit and the separation unit. The sampling unit includes a dehydration tube and an enrichment tube. No breakthrough of the hydrocarbons was detected when the temperature of the enrichment tube was kept at -90 °C and sampling volume was 400 mL. The separation unit is a small round oven attached on the cooling column. A single capillary column (OV-1, 30 m × 0.32 mm I.D.) was used to separate the hydrocarbons. An optimal program temperature (-60 ∼ 170 °C) of the oven was achieved to efficiently separate C2-C12 hydrocarbons. There were good linear correlations (R(2)=0.993-0.999) between the signals of the hydrocarbons and the enrichment amount of hydrocarbons, and the relative standard deviation (RSD) was less than 5%, and the method detection limits (MDLs) for the hydrocarbons were in the range of 0.02-0.10 ppbv for sampling volume of 400 mL. Field measurements were also conducted and more than 50 hydrocarbons from C2 to C12 were detected in Beijing city.

  8. Formation, phase composition, texture and catalytic properties of Co-MgO-alumino-calcium catalysts in synthesis of hydrocarbons from CO and H/sub 2/

    Energy Technology Data Exchange (ETDEWEB)

    Lapidus, A.L.; Bruk, I.A.; Mal' tsev, V.V.; Iem, K.C.; Yakerson, V.I.; Golosman, Y.Z.; Mamayeva, I.A.; Kalacheva, N.B.; Danyushevskii, V.Y.; Nissenbaum, V.D.

    1981-01-01

    A study was made of the mechanism of formation of catalysts; a special feature of this mechanism is the interaction of components (calcium aluminates and basic carbonates of cobalt and magnesium); the carrier with a developed surface and the active component distributed on this surface are formed during this process. Catalysts show maximum selectivity in synthesis of liquid hydrocarbons from CO and H/sub 2/ with a degree of reduction of the metal of 65-84% and a dispersion (according to chemisorption of CO) of 6 x 10/sup -3/ - 10 x 10/sup -3/. Maximum yield of liquid hydrocarbons (114.1 g/nm/sup 3/) was obtained in the pressure of a system of 33Co-3MgO-64 talum treated with hydrogen at 550/sup 0/C.

  9. (DURIP 10) High Speed Intensified Imaging System For Studies Of Mixing And Combustion In Supersonic Flows And Hydrocarbon Flame Structure Measurements At Elevated Pressures

    Science.gov (United States)

    2016-11-09

    AFRL-AFOSR-VA-TR-2016-0357 (DURIP 10) HIGH-SPEED INTENSIFIED IMAGING SYSTEM FOR STUDIES OF MIXING AND COMBUSTION IN SUPERSONIC FLOWS AND HYDROCARBON...COVERED (From - To) 03 Sep 2010 to 29 Sep 2011 4. TITLE AND SUBTITLE (DURIP 10) HIGH-SPEED INTENSIFIED IMAGING SYSTEM FOR STUDIES OF MIXING AND COMBUSTION ...91125 HIGH SPEED INTENSIFIED IMAGING SYSTEM FOR MIXING AND COMBUSTION IN SUPERSONIC FLOWS AND HYDROCARBON- FLAME STRUCTURE MEASUREMENTS AT

  10. GREEN CATALYZED OXIDATION OF HYDROCARBONS IN ALTERNATIVE SOLVENT SYSTEMS GENERATED BY PARIS II DECHEMA; GREEN SOLVENTS FOR CATALYSIS - ENVIRONMENTALLY BENIGN REACTION MEDIA

    Science.gov (United States)

    Green catalyzed oxidation of hydrocarbons in alternative solvent systems generated by PARIS IIThomas M. Becker, Michael A. Gonzalez, Paul F. Harten; Sustainable Technology Division, Office of Research and Development; United States Environmental Protection Agency, 26 West Mar...

  11. 2Dbasin modelling of the hydrocarbon systems in the forearc basin of Sumatra; 2D-Beckenmodellierung des Kohlenwasserstoff-Systems im Forearc-Bereich von Sumatra

    Energy Technology Data Exchange (ETDEWEB)

    Stratmann, V.; Berglar, K.; Lutz, R.; Schloemer, S. [Bundesanstalt fuer Geowissenschaften und Rohstoffe, Hannover (Germany); Djajadihardja, Y.S. [Agency for the Assessment and Application of Technology, Jakarta (Indonesia)

    2008-10-23

    In the forearc basin of Sumatra, individual industrial drillings indicated the existence of hydrocarbons. The authors of the contribution under consideration report on an investigation of the hydrocarbon system within this forearc basin by means of a two-dimensional modelling of this basin. The structural development of the basins in the forearc area proceeded differently. Therefore, geophysical data for the investigation of the geological structures as well as geological/geochemical data were raised. The preliminary results of the two-dimensional modelling of the Simeulue basin northwest from Sumatra are presented.

  12. Quantum phase transitions in constrained Bose systems

    OpenAIRE

    Bonnes, Lars

    2011-01-01

    This doctoral thesis studies low dimensional quantum systems that can be realized in recent cold atom experiments. From the viewpoint of quantum statistical mechanics, the main emphasis is on the detailed study of the different quantum and thermal phases and their transitions using numerical methods, such as quantum Monte Carlo and the Tensor Network Renormalization Group. The first part of this work deals with a lattice Boson model subject to strong three-body losses. In a quantum-Zeno li...

  13. Mesoporous titanium oxide with high-specific surface area as a coating for in-tube solid-phase microextraction combined with high-performance liquid chromatography for the analysis of polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Wang, Xiuqin; Feng, Juanjuan; Bu, Yanan; Tian, Yu; Luo, Chuannan; Sun, Min

    2017-06-01

    Stainless-steel wires coated with mesoporous titanium oxide were placed into a polyether ether ketone tube for in-tube solid-phase microextraction, and the coating sorbent was characterized by X-ray diffraction and scanning electron microscopy. It was combined with high-performance liquid chromatography to build an online system. Using eight polycyclic aromatic hydrocarbons as the analytes, some conditions including sample flow rate, sample volume, organic solvent content, and desorption time were investigated. Under optimum conditions, an online analysis method was established and provided good linearity (0.03-30 μg/L), low detection limits (0.01-0.10 μg/L), and high enrichment factors (77.6-678). The method was applied to determine target analytes in river water and water sample of coal ash, and the recoveries are in the range of 80.6-106.6 and 80.9-103.5%, respectively. Compared with estrogens and plasticizers, extraction coating shows better extraction efficiency for polycyclic aromatic hydrocarbons. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Hydrogen production by steam reforming of higher hydrocarbons in a novel circulating fluidized bed reactor-regenerator system

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Z.; Elnashaie, S.; Yan, Y. [Auburn Univ., AL (United States). Dept. of Chemcial Engineering

    2003-07-01

    A mathematical model was developed to demonstrate the production of hydrogen by steam reforming of higher hydrocarbons in a circulating fluidized bed reactor-regenerator system (CFBRR). Heptane was the higher hydrocarbon used in this study. The process simulation of the riser steam reformer, catalyst regenerator, and downer indicate that the impact of catalyst deactivation is negligible because of the large mass flow ratio of solid to gas stream and the catalyst regenerator. The carbon deposited on the catalyst can be either gasified efficiently in the steam reformer or burned with air in the catalyst regenerator. The burning of carbon on the catalyst supplies the heat required for endothermic steam reforming of heptane and methane. This method has potential advantages for both energy consumption as well as hydrogen production.

  15. Phase-Locked Loop Noise Reduction via Phase Detector Implementation for Single-Phase Systems

    Energy Technology Data Exchange (ETDEWEB)

    Thacker, Timothy [Virginia Polytechnic Institute and State University (Virginia Tech); Boroyevich, Dushan [Virginia Polytechnic Institute and State University (Virginia Tech); Burgos, Rolando [ABB; Wang, Fei [ORNL

    2011-01-01

    A crucial component of grid-connected converters is the phase-locked loop (PLL) control subsystem that tracks the grid voltage's frequency and phase angle. Therefore, accurate fast-responding PLLs for control and protection purposes are required to provide these measurements. This paper proposes a novel feedback mechanism for single-phase PLL phase detectors using the estimated phase angle. Ripple noise appearing in the estimated frequency, most commonly the second harmonic under phase-lock conditions, is reduced or eliminated without the use of low-pass filters, which can cause delays to occur and limits the overall performance of the PLL response to dynamic changes in the system. The proposed method has the capability to eliminate the noise ripple entirely and, under extreme line distortion conditions, can reduce the ripple by at least half. Other modifications implemented through frequency feedback are shown to decrease the settling time of the PLL up to 50%. Mathematical analyses with the simulated and experimental results are provided to confirm the validity of the proposed methods.

  16. A novel three-phase UPS system with a single-phase resonant HF link

    OpenAIRE

    Darwish, MK

    2006-01-01

    This paper presents a new three-phase uninterruptible power supply (UPS) system based on a single-phase resonant high frequency (HF) link and a single-phase transformer. The three-phase output voltage is constructed and regulated from a three-phase cycloconverter fed from the constant amplitude, constant frequency link voltage. The generation of a novel switching stategy for the three-phase cycloconverter is presented. The simulation of the proposed system is carried out and verified with exp...

  17. SNR Degradation in Undersampled Phase Measurement Systems

    Directory of Open Access Journals (Sweden)

    David Salido-Monzú

    2016-10-01

    Full Text Available A wide range of measuring applications rely on phase estimation on sinusoidal signals. These systems, where the estimation is mainly implemented in the digital domain, can generally benefit from the use of undersampling to reduce the digitizer and subsequent digital processing requirements. This may be crucial when the application characteristics necessarily imply a simple and inexpensive sensor. However, practical limitations related to the phase stability of the band-pass filter prior digitization establish restrictions to the reduction of noise bandwidth. Due to this, the undersampling intensity is practically defined by noise aliasing, taking into account the amount of signal-to-noise ratio (SNR reduction caused by it considering the application accuracy requirements. This work analyzes the relationship between undersampling frequency and SNR reduction, conditioned by the stability requirements of the filter that defines the noise bandwidth before digitization. The effect of undersampling is quantified in a practical situation where phase differences are measured by in-phase and quadrature (I/Q demodulation for an infrared ranging application.

  18. PT phase transition in multidimensional quantum systems

    CERN Document Server

    Bender, Carl M

    2012-01-01

    Non-Hermitian PT-symmetric quantum-mechanical Hamiltonians generally exhibit a phase transition that separates two parametric regions, (i) a region of unbroken PT symmetry in which the eigenvalues are all real, and (ii) a region of broken PT symmetry in which some of the eigenvalues are complex. This transition has recently been observed experimentally in a variety of physical systems. Until now, theoretical studies of the PT phase transition have generally been limited to one-dimensional models. Here, four nontrivial coupled PT-symmetric Hamiltonians, $H=p^2/2+x^2/2+q^2/2+y^2/2+igx^2y$, $H=p^2/2+x^2/2+q^2/2+y^2+igx^2y$, $H=p^2/2+x^2/2+q^2/2+y^2/2+r^2/2+z^2/2+igxyz$, and $H=p^2/2+x^2/2+q^2/2+y^2+r^2/2+3z^2/2+igxyz$ are examined. Based on extensive numerical studies, this paper conjectures that all four models exhibit a phase transition. The transitions are found to occur at $g\\approx 0.1$, $g\\approx 0.04$, $g\\approx 0.1$, and $g\\approx 0.05$. These results suggest that the PT phase transition is a robust phen...

  19. Rapid and sensitive solid phase extraction-large volume injection-gas chromatography for the analysis of mineral oil saturated and aromatic hydrocarbons in cardboard and dried foods.

    Science.gov (United States)

    Moret, Sabrina; Barp, Laura; Purcaro, Giorgia; Conte, Lanfranco S

    2012-06-22

    A rapid off-line solid phase extraction-large volume injection-gas chromatography-flame ionisation detection (SPE-LVI-GC-FID) method, based on the use of silver silica gel and low solvent consumption, was developed for mineral oil saturated hydrocarbon (MOSH) and mineral oil aromatic hydrocarbon (MOAH) determination in cardboard and dried foods packaged in cardboard. The SPE method was validated using LVI with a conventional on-column injector and the retention gap technique (which allowed to inject up to 50 μL of the sample). Detector response was linear over all the concentration range tested (0.5-250 μg/mL), recoveries were practically quantitative, repeatability was good (coefficients of variation lower than 7%) and limit of quantification adequate to quantify the envisioned limit of 0.15 mg/kg proposed in Germany for MOAH analysis in food samples packaged in recycled cardboard. Rapid heating of the GC oven allowed to increase sample throughput (3-4 samples per hour) and to enhance sensitivity. The proposed method was used for MOSH and MOAH determination in selected food samples usually commercialised in cardboard packaging. The most contaminated was a tea sample (102.2 and 7.9 mg/kg of MOSH and MOAH below n-C25, respectively), followed by a rice and a sugar powder sample, all packaged in recycled cardboard.

  20. Magnetic solid phase extraction of typical polycyclic aromatic hydrocarbons from environmental water samples with metal organic framework MIL-101 (Cr) modified zero valent iron nano-particles.

    Science.gov (United States)

    Zhou, Qingxiang; Lei, Man; Wu, Yalin; Yuan, Yongyong

    2017-03-03

    Metal-organic framework material has been paid more attention because of its good physical and chemical properties. Nanoscale zero valent iron is also in the center of concern recently. Combination of their merits will give impressive results. Present study firstly synthesized a new magnetic nanomaterial nano-scale zero valent iron-functionalized metal-organic framworks MIL-101 (Fe@MIL-101) by co-precipitation method. The morphology and structure of the as-prepared Fe@MIL-101 were characterized by transmission electron microscopy and X-ray diffraction, etc. The experimental results showed that Fe@MIL-101 earned good adsorption ability to polycyclic aromatic hydrocarbons. The limits of detection of developed magnetic solid phase extraction were all below 0.064μgL(-1) and precision can be expressed as relative standard deviation (RSD, %) and which was better than 4.4% (n=6). The real water analysis indicated that the spiked recoveries were satisfied, and Fe@MIL-101 earned excellent reusability. All these demonstrated that Fe@MIL-101 exhibited excellent adsorption capability to polycyclic aromatic hydrocarbons and would be a good adsorbent for development of new monitoring methods for environmental pollutants.

  1. Solid-phase Microextraction with Benzoxy-calix[6]arene Fiber Coupled to Gas Chromatography for the Analysis of Polycyclic Aromatic Hydrocarbons in Water

    Institute of Scientific and Technical Information of China (English)

    YE Chang-wen; ZHANG Xue-na; HUANG Jiang-yan; LI Xiu-juan; PAN Si-yi

    2011-01-01

    Headspace solid-phase microextraction(HS-SPME) with sol-gel calix[6]arene-containing fiber followed by gas chromatography with a flame ionization detector was used to examine the composition and distribution of seven polycyclic aromatic hydrocarbons(PAHs) in water. The novel SPME fiber exhibited higher extraction efficien cy to PAHs compared with poly(dimethylsiloxane) and other calixarene-containing fibers. Extraction/retention me chanism based on the interactions between calixarenes and PAHs was discussed. Owing to the good selectivity and high extraction capability of this calixarene fiber, low detection limits were obtained in a range of 0.34—6.50 ng/L and the relative standard deviation values were ≤ 12.3% for all of the analytes. The linear ranges of the proposed method were five orders of magnitude for the tested compounds, with linear correlation coefficients(r) greater than 0.998. The method was applied to the determination of polycyclic aromatic hydrocarbons in nine water sources in Wuhan City, China. Standard addition method was selected for the quantification and the recovery values were in a satisfactory range. Total PAHs concentrations in the nine surface water samples were found to vary between unde tectable and 8.840 μg/L with two-and three-ring PAHs predominating.

  2. Solid-phase microextraction and gas chromatography-mass spectrometry for the determination of polycyclic aromatic hydrocarbons in environmental solid matrices.

    Science.gov (United States)

    Cam, D; Gagni, S; Lombardi, N; Punin, M O

    2004-07-01

    A solid-phase microextraction (SPME) and gas chromatography-mass spectrometry method for determining polycyclic aromatic hydrocarbons (PAHs) in environmental solid matrices is developed. Investigated matrices include seaweed (Undaria pinnatifida and Himanthalia elongata), humic substances (isolated from a wetland out-flow and purchased from Aldrich), and soil. Optimal conditions for a good SPME efficiency of 16 hydrocarbon compounds are obtained using a 100- micro m polydimethylsiloxane fiber directly immersed in aqueous carrier medium. The method is remarkable for presenting short extraction times and considerably high sensitivities. The SPME results obtained by using internal calibration give the total analyte concentration based on the identical partitioning behavior of native and spiked pollutants. The detection limits range from 0.001 to 0.1 mg of PAH per kilogram of dry matrix. SPME external calibration provides information regarding freely dissolved analytes. The detection limits range from 0.001 to 0.05 micro g of PAH per liter of carrier medium. The SPME with external calibration procedure can be applied to measure free concentrations of a target compound spiked into a carrier medium and onto a matrix. Based on a comparison of results obtained for the two samples, the partitioning of the target analyte between the matrix and the carrier medium is calculated.

  3. Zinc oxide/polypyrrole nanocomposite as a novel solid phase microextraction coating for extraction of aliphatic hydrocarbons from water and soil samples

    Energy Technology Data Exchange (ETDEWEB)

    Amanzadeh, Hatam; Yamini, Yadollah [Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175 Tehran (Iran, Islamic Republic of); Moradi, Morteza [Department of Semiconductors, Materials and Energy Research Center, Karaj (Iran, Islamic Republic of)

    2015-07-16

    Highlights: • ZnO/polypyrrole (ZNO/PPY) nanocomposite coating was fabricated on stainless steel. • Nanocomposite coating morphology was evaluated using scanning electron microscopy. • It was applied for HS-SPME of aliphatic hydrocarbons in water and soil samples. • Separation and determination of the hydrocarbons were performed by GC-FID. • The method is suitable for routine analysis of n-alkanes in various environmental samples. - Abstract: In this work, ZnO/PPy nanocomposite coating was fabricated on stainless steel and evaluated as a novel headspace solid phase microextraction (HS-SPME) fiber coating for extraction of ultra-trace amounts of environmental pollutants; namely, aliphatic hydrocarbons in water and soil samples. The ZnO/PPy nanocomposite were prepared by a two-step process including the electrochemical deposition of PPy on the surface of stainless steel in the first step, and the synthesis of ZnO nanorods by hydrothermal process in the pores of PPy matrix in the second step. Porous structure together with ZnO nanorods with the average diameter of 70 nm were observed on the surface by using scanning electron microscopy (SEM). The effective parameters on HS-SPME of hydrocarbons (i.e., extraction temperature, extraction time, desorption temperature, desorption time, salt concentration, and stirring rate) were investigated and optimized by one-variable-at-a-time method. Under optimized conditions (extraction temperature, 65 ± 1 °C; extraction time, 15 min; desorption temperature, 250 °C; desorption time, 3 min; salt concentration, 10% w/v; and stirring rate, 1200 rpm), the limits of detection (LODs) were found in the range of 0.08–0.5 μg L{sup −1}, whereas the repeatability and fiber-to-fiber reproducibility were in the range 5.4–7.6% and 8.6–10.4%, respectively. Also, the accuracies obtained for the spiked n-alkanes were in the range of 85–108%; indicating the absence of matrix effects in the proposed HS-SPME method. The results

  4. Agarose film liquid phase microextraction combined with gas chromatography-mass spectrometry for the determination of polycyclic aromatic hydrocarbons in water.

    Science.gov (United States)

    Sanagi, Mohd Marsin; Loh, Saw Hong; Wan Ibrahim, Wan Aini; Hasan, Mohamed Noor

    2012-11-01

    Agarose film liquid phase microextraction (AF-LPME) procedure for the extraction and preconcentration of polycyclic aromatic hydrocarbons (PAHs) in water has been investigated. Agarose film was used for the first time as an interface between donor and acceptor phases in liquid phase microextraction which allowed for selective extraction of the analytes prior to gas chromatography-mass spectrometry. Using 1-octanol as acceptor phase, high enrichment factors in the range of 57-106 for the targeted analytes (fluorene, phenanthrene, fluoranthene and pyrene) were achieved. Under the optimum extraction conditions, the method showed good linearity in the range of 0.1-200 μgL(-1), good correlation coefficients in the range of 0.9963-0.9999, acceptable reproducibility (RSD 6.1-9.2%, n=3), low limits of detection (0.01-0.04 μgL(-1)) and satisfactory relative recoveries (92.9-104.7%). As the AF-LPME device was non-expensive, reuse or recycle of the film was not required, thus eliminating the possibility of analytes carry-over between runs. The AF-LPME technique is environment-friendly and compatible with the green chemistry concept as agarose is biodegradable polysaccharide extracted from seaweed and the procedure requires small volume of organic solvent and generates little waste. The validated method was successfully applied to the analysis of the four analytes in river water samples.

  5. Distribution of Polycyclic Aromatic Hydrocarbons between the Particulate and the Gas Phase of Mainstream Cigarette Smoke in Relation to Cigarette Technological Characteristics

    Directory of Open Access Journals (Sweden)

    Kalaitzoglou M

    2014-12-01

    Full Text Available Particulate- and gas-phase polycyclic aromatic hydrocarbons (PAHs were determined in the mainstream smoke (MSS of 59 manufactured cigarette brands (commercially available brands of unknown tobacco and blend type with variable ‘tar’ yields and physical/technological characteristics. Depending on the existence/absence of filter, the ‘tar’ yield indicated on the packet, and the cigarette length and diameter, the examined cigarette brands were classified into 15 groups: non filter (NF, high (H, medium (M, light (L, super light (SL, ultra light (UL, one-tar yields (O, 100 mm long cigarettes (H-100, L-100, SL-100, UL-100, O-100, and slim cigarettes (SL-SLIM, UL-SLIM, O-SLIM. Cigarettes were smoked in a reference smoking machine equipped with glass fibre filters for collection of PAHs bound to total particulate matter (TPM, and polyurethane foam plugs (PUF for collection of gas-phase PAHs. The relationships of gas- and particulate-phase concentrations of PAHs (ng/cig with the contents of typical MSS components, such as TPM, ‘tar’, nicotine and carbon monoxide were investigated. In addition, the phase partitioning of PAHs in MSS was evaluated in relation to the technological characteristics of cigarettes.

  6. A New Software for Management, Scheduling, and Optimization for the Light Hydrocarbon Pipeline Network System of Daqing Oilfield

    Directory of Open Access Journals (Sweden)

    Yongtu Liang

    2014-01-01

    Full Text Available This paper presents the new software which specifically developed based on Visual Studio 2010 for Daqing Oilfield China includes the most complex light hydrocarbon pipeline network system in Asia, has become a powerful auxiliary tool to manage field data, makes scheduling plans for batching operation, and optimizes pumping plans. Firstly, DMM for recording and managing field data is summarized. Then, the batch scheduling simulation module called SSM for the difficult batch-scheduling issues of the multiple-source pipeline network system is introduced. Finally, SOM, that is Scheduling Optimization Module, is indicated for solving the problem of the pumps being started up/shut-down frequently.

  7. Abnormal pressure in hydrocarbon environments

    Science.gov (United States)

    Law, B.E.; Spencer, C.W.

    1998-01-01

    Abnormal pressures, pressures above or below hydrostatic pressures, occur on all continents in a wide range of geological conditions. According to a survey of published literature on abnormal pressures, compaction disequilibrium and hydrocarbon generation are the two most commonly cited causes of abnormally high pressure in petroleum provinces. In young (Tertiary) deltaic sequences, compaction disequilibrium is the dominant cause of abnormal pressure. In older (pre-Tertiary) lithified rocks, hydrocarbon generation, aquathermal expansion, and tectonics are most often cited as the causes of abnormal pressure. The association of abnormal pressures with hydrocarbon accumulations is statistically significant. Within abnormally pressured reservoirs, empirical evidence indicates that the bulk of economically recoverable oil and gas occurs in reservoirs with pressure gradients less than 0.75 psi/ft (17.4 kPa/m) and there is very little production potential from reservoirs that exceed 0.85 psi/ft (19.6 kPa/m). Abnormally pressured rocks are also commonly associated with unconventional gas accumulations where the pressuring phase is gas of either a thermal or microbial origin. In underpressured, thermally mature rocks, the affected reservoirs have most often experienced a significant cooling history and probably evolved from an originally overpressured system.

  8. In situ hydrothermal growth of ytterbium-based metal-organic framework on stainless steel wire for solid-phase microextraction of polycyclic aromatic hydrocarbons from environmental samples.

    Science.gov (United States)

    Li, Qiu-Lin; Wang, Xia; Chen, Xiang-Feng; Wang, Ming-Lin; Zhao, Ru-Song

    2015-10-09

    In this paper, we report the use of a porous ytterbium-based metal-organic framework (Yb-MOF) coating material with good thermal stability for the headspace solid-phase microextraction (HS-SPME) of polycyclic aromatic hydrocarbons (PAHs) from environmental samples. The Yb-MOF thin films, grown in situ on stainless steel wire in solution, exhibited high selectivity and sensitivity toward PAHs. Under the optimal conditions, the novel fibers achieved large enrichment factors (130-2288), low limits of detection (0.07-1.67ngL(-1)), and wide range of linearity (10-1000ngL(-1)) for 16 PAHs in the tested samples. The novel fiber was successfully used in the analysis of PAHs in real environmental samples. These results demonstrated that Yb-MOF is a promising coating material for the SPME of PAHs at trace levels from environmental samples.

  9. New photosensitive systems for volume phase holography

    Science.gov (United States)

    Bianco, Andrea; Colella, Letizia; Galli, Paola; Zanutta, Alessio; Bertarelli, Chiara

    2017-05-01

    Volume phase holographic elements are becoming attractive thanks to the large efficiency and good optical quality. They are based on photosensitive materials where a modulation of the refractive index is induced. In this paper, we highlight the strategies to obtain a change in the refractive index in a dielectric material, namely a change in the material density and/or in the molecular polarizability. Moreover, we show the results achieved for materials that undergo the photo-Fries reaction as function of the molecular structure and the illumination conditions. We also report the results on a system based on the diazo Meldrum's acid where volatile molecules are produced upon light exposure.

  10. Exhaust after-treatment system with in-cylinder addition of unburnt hydrocarbons

    Science.gov (United States)

    Coleman, Gerald N.; Kesse, Mary L.

    2007-10-30

    Certain exhaust after-treatment devices, at least periodically, require the addition of unburnt hydrocarbons in order to create reductant-rich exhaust conditions. The present disclosure adds unburnt hydrocarbons to exhaust from at least one combustion chamber by positioning, at least partially within a combustion chamber, a mixed-mode fuel injector operable to inject fuel into the combustion chamber in a first spray pattern with a small average angle relative to a centerline of the combustion chamber and a second spray pattern with a large average angle relative to the centerline of the combustion chamber. An amount of fuel is injected in the first spray pattern into a non-combustible environment within the at least one combustion chamber during at least one of an expansion stroke and exhaust stroke. The exhaust with the unburnt amount of fuel is moved into an exhaust passage via an exhaust valve.

  11. Phase transitions in open quantum systems

    CERN Document Server

    Jung, C; Rotter, I

    1999-01-01

    We consider the behaviour of open quantum systems in dependence on the coupling to one decay channel by introducing the coupling parameter $\\alpha$ being proportional to the average degree of overlapping. Under critical conditions, a reorganization of the spectrum takes place which creates a bifurcation of the time scales with respect to the lifetimes of the resonance states. We derive analytically the conditions under which the reorganization process can be understood as a second-order phase transition and illustrate our results by numerical investigations. The conditions are fulfilled e.g. for a picket fence with equal coupling of the states to the continuum. Energy dependencies within the system are included. We consider also the generic case of an unfolded Gaussian Orthogonal Ensemble. In all these cases, the reorganization of the spectrum occurs at the critical value $\\alpha_{crit}$ of the control parameter globally over the whole energy range of the spectrum. All states act cooperatively.

  12. The use of coarse, separable, condensed-phase organic carbon particles to characterize desorption resistance of polycyclic aromatic hydrocarbons in contaminated sediments

    Energy Technology Data Exchange (ETDEWEB)

    Chai, Y.Z.; Kochetkov, A.; Reible, D.D. [University of Texas, Austin, TX (United States)

    2007-07-15

    Physical separations were employed to characterize the source of desorption-resistant behavior for polycyclic aromatic hydrocarbons (PAHs) in laboratory- and field-contaminated sediments. Size and density separation of laboratory-contaminated sediments did not effectively separate the amorphous-phase (volatile) and condensed-phase (nonvolatile) organic carbon as measured by thermal oxidation at 375 {sup o}C. These separations also did not result in sediment fractions with significantly different desorption characteristics as measured by apparent partition coefficients. Coarse particles from a field-contaminated sediment from Utica Harbor (UH; Utica, NY, USA), however, could be directly separated into sandy fractions and organic fractions that were composed of woody organic matter, charcoal or charred vegetative matter, and coal-like and coal-cinder particles. Chemical analysis showed that coal-like (glassy, nonporous) and coal-cinder (porous, sintered) particles exhibited very high PAH concentrations and high apparent partition coefficients. These particles also exhibited significantly higher condensed-phase (nonvolatile) organic carbon contents as defined by thermal oxidation at 375{sup o}C. The apparent partition coefficients of PAHs in the coal-cinder particles were a good indication of the apparent partition coefficients in the desorption-resistant fraction of UH sediment, indicating that the coarse particles provided a reasonable characterization of the desorption-resistance phenomena in these sediments even though the coarse fractions represented less than 25% of the organic carbon in the whole sediment.

  13. Optimization of pressurized liquid extraction using a multivariate chemometric approach and comparison of solid-phase extraction cleanup steps for the determination of polycyclic aromatic hydrocarbons in mosses.

    Science.gov (United States)

    Foan, L; Simon, V

    2012-09-21

    A factorial design was used to optimize the extraction of polycyclic aromatic hydrocarbons (PAHs) from mosses, plants used as biomonitors of air pollution. The analytical procedure consists of pressurized liquid extraction (PLE) followed by solid-phase extraction (SPE) cleanup, in association with analysis by high performance liquid chromatography coupled with fluorescence detection (HPLC-FLD). For method development, homogeneous samples were prepared with large quantities of the mosses Isothecium myosuroides Brid. and Hypnum cupressiforme Hedw., collected from a Spanish Nature Reserve. A factorial design was used to identify the optimal PLE operational conditions: 2 static cycles of 5 min at 80 °C. The analytical procedure performed with PLE showed similar recoveries (∼70%) and total PAH concentrations (∼200 ng g(-1)) as found using Soxtec extraction, with the advantage of reducing solvent consumption by 3 (30 mL against 100mL per sample), and taking a fifth of the time (24 samples extracted automatically in 8h against 2 samples in 3.5h). The performance of SPE normal phases (NH(2), Florisil, silica and activated aluminium) generally used for organic matrix cleanup was also compared. Florisil appeared to be the most selective phase and ensured the highest PAH recoveries. The optimal analytical procedure was validated with a reference material and applied to moss samples from a remote Spanish site in order to determine spatial and inter-species variability.

  14. The use of coarse, separable, condensed-phase organic carbon particles to characterize desorption resistance of polycyclic aromatic hydrocarbons in contaminated sediments.

    Science.gov (United States)

    Chai, Yunzhou; Kochetkov, Alexander; Reible, Danny D

    2007-07-01

    Physical separations were employed to characterize the source of desorption-resistant behavior for polycyclic aromatic hydrocarbons (PAHs) in laboratory- and field-contaminated sediments. Size and density separation of laboratory-contaminated sediments did not effectively separate the amorphous-phase (volatile) and condensed-phase (nonvolatile) organic carbon as measured by thermal oxidation at 375 degrees C. These separations also did not result in sediment fractions with significantly different desorption characteristics as measured by apparent partition coefficients. Coarse particles from a field-contaminated sediment from Utica Harbor (UH; Utica, NY, USA), however, could be directly separated into sandy fractions and organic fractions that were composed of woody organic matter, charcoal or charred vegetative matter, and coal-like and coal-cinder particles. Chemical analysis showed that coal-like (glassy, nonporous) and coal-cinder (porous, sintered) particles exhibited very high PAH concentrations and high apparent partition coefficients. These particles also exhibited significantly higher condensed-phase (nonvolatile) organic carbon contents as defined by thermal oxidation at 375 degrees C. The apparent partition coefficients of PAHs in the coal-cinder particles were a good indication of the apparent partition coefficients in the desorption-resistant fraction of UH sediment, indicating that the coarse particles provided a reasonable characterization of the desorption-resistance phenomena in these sediments even though the coarse fractions represented less than 25% of the organic carbon in the whole sediment.

  15. A Survey of Phase Change Memory Systems

    Institute of Scientific and Technical Information of China (English)

    夏飞; 蒋德钧; 熊劲; 孙凝晖

    2015-01-01

    As the scaling of applications increases, the demand of main memory capacity increases in order to serve large working set. It is difficult for DRAM (dynamic random access memory) based memory system to satisfy the memory capacity requirement due to its limited scalability and high energy consumption. Compared to DRAM, PCM (phase change memory) has better scalability, lower energy leakage, and non-volatility. PCM memory systems have become a hot topic of academic and industrial research. However, PCM technology has the following three drawbacks: long write latency, limited write endurance, and high write energy, which raises challenges to its adoption in practice. This paper surveys architectural research work to optimize PCM memory systems. First, this paper introduces the background of PCM. Then, it surveys research efforts on PCM memory systems in performance optimization, lifetime improving, and energy saving in detail, respectively. This paper also compares and summarizes these techniques from multiple dimensions. Finally, it concludes these optimization techniques and discusses possible research directions of PCM memory systems in future.

  16. System response in passively phased fiber amplifier arrays

    Science.gov (United States)

    Shakir, Sami A.; Culver, Bill; Nelson, Burke; Starcher, Yuji; Bates, George M.; Hedrick, Jerry W., Jr.

    2008-08-01

    System temporal response in passively phased fiber amplifier arrays dictates how fast a passively phased system can correct for phase fluctuations due to thermal and mechanical effects. The system response time was measured by employing a variable-speed mechanical chopper in the feedback loop of a passively phased system then measuring the on-axis output intensity of the system as a function of time. Observed relaxation oscillations are compared to theory. The system response time was measured to be about 20 μsec. We also find that passive phasing improved the system's beam stability and extraction efficiency.

  17. Probable existence of a Gondwana transcontinental rift system in western India: Implications in hydrocarbon exploration in Kutch and Saurashtra offshore: A GIS-based approach

    Science.gov (United States)

    Mazumder, S.; Tep, Blecy; Pangtey, K. K. S.; Das, K. K.; Mitra, D. S.

    2017-08-01

    The Gondwanaland assembly rifted dominantly during Late Carboniferous-Early Permian forming several intracratonic rift basins. These rifts were subsequently filled with a thick sequence of continental clastic sediments with minor marine intercalations in early phase. In western part of India, these sediments are recorded in enclaves of Bikaner-Nagaur and Jaisalmer basins in Rajasthan. Facies correlatives of these sediments are observed in a number of basins that were earlier thought to be associated with the western part of India. The present work is a GIS based approach to reconnect those basins to their position during rifting and reconstruct the tectono-sedimentary environment at that time range. The study indicates a rift system spanning from Arabian plate in the north and extending to southern part of Africa that passes through Indus basin, western part of India and Madagascar, and existed from Late Carboniferous to Early Jurassic. Extensions related to the opening of Neo-Tethys led to the formation of a number of cross trends in the rift systems that acted as barriers to marine transgressions from the north as well as disrupted the earlier continuous longitudinal drainage systems. The axis of this rift system is envisaged to pass through present day offshore Kutch and Saurashtra and implies a thick deposit of Late Carboniferous to Early Jurassic sediments in these areas. Based on analogy with other basins associated with this rift system, these sediments may be targeted for hydrocarbon exploration.

  18. Probable existence of a Gondwana transcontinental rift system in western India: Implications in hydrocarbon exploration in Kutch and Saurashtra offshore: A GIS-based approach

    Indian Academy of Sciences (India)

    S Mazumder; Blecy Tep; K K S Pangtey; K K Das; D S Mitra

    2017-08-01

    The Gondwanaland assembly rifted dominantly during Late Carboniferous–Early Permian forming several intracratonic rift basins. These rifts were subsequently filled with a thick sequence of continental clastic sediments with minor marine intercalations in early phase. In western part of India, these sediments are recorded in enclaves of Bikaner–Nagaur and Jaisalmer basins in Rajasthan. Facies correlatives of these sediments are observed in a number of basins that were earlier thought to be associated with the western part of India. The present work is a GIS based approach to reconnect those basins to their position during rifting and reconstruct the tectono-sedimentary environment at that time range. The study indicates a rift system spanning from Arabian plate in the north and extending to southern part of Africa that passes through Indus basin, western part of India and Madagascar, and existed from Late Carboniferous to Early Jurassic. Extensions related to the opening of Neo-Tethys led to the formation of a number of cross trends in the rift systems that acted as barriers to marine transgressions from the north as well as disrupted the earlier continuous longitudinal drainage systems. The axis of this rift system is envisaged to pass through present day offshore Kutch and Saurashtra and implies a thick deposit of Late Carboniferous to Early Jurassic sediments in these areas. Based on analogy with other basins associated with this rift system, these sediments may be targeted for hydrocarbon exploration.

  19. Hydrocarbon Rocket Technology Impact Forecasting

    Science.gov (United States)

    Stuber, Eric; Prasadh, Nishant; Edwards, Stephen; Mavris, Dimitri N.

    2012-01-01

    Forecasting method is a normative forecasting technique that allows the designer to quantify the effects of adding new technologies on a given design. This method can be used to assess and identify the necessary technological improvements needed to close the gap that exists between the current design and one that satisfies all constraints imposed on the design. The TIF methodology allows for more design knowledge to be brought to the earlier phases of the design process, making use of tools such as Quality Function Deployments, Morphological Matrices, Response Surface Methodology, and Monte Carlo Simulations.2 This increased knowledge allows for more informed decisions to be made earlier in the design process, resulting in shortened design cycle time. This paper will investigate applying the TIF method, which has been widely used in aircraft applications, to the conceptual design of a hydrocarbon rocket engine. In order to reinstate a manned presence in space, the U.S. must develop an affordable and sustainable launch capability. Hydrocarbon-fueled rockets have drawn interest from numerous major government and commercial entities because they offer a low-cost heavy-lift option that would allow for frequent launches1. However, the development of effective new hydrocarbon rockets would likely require new technologies in order to overcome certain design constraints. The use of advanced design methods, such as the TIF method, enables the designer to identify key areas in need of improvement, allowing one to dial in a proposed technology and assess its impact on the system. Through analyses such as this one, a conceptual design for a hydrocarbon-fueled vehicle that meets all imposed requirements can be achieved.

  20. Bioaccumulation of polycyclic aromatic hydrocarbons in the soil-plant systems of the northern-taiga biocenoses

    Science.gov (United States)

    Yakovleva, E. V.; Beznosikov, V. A.; Kondratenok, B. M.; Gabov, D. N.

    2012-03-01

    Regularities in the formation of the pool of priority polycyclic aromatic hydrocarbons (PAHs) in the soil-plant systems of the northern taiga forest biocenoses were revealed. In soils and plants, PAHs mainly consisted of 3- and 4-nuclear structures. The content of polyarenes in plants on technogenically contaminated areas exceeded the background values by 2-5 times. The maximum bioconsumption of polyarenes was observed for bilberry leaves and Siberian spruce sprouts 4-5 years old. The highest mass fraction of PAHs was found in Siberian spruce plants of a mixed spruce-birch forest of the northern taiga. It was revealed that bilberry plants are hyperaccumulators of light PAHs.

  1. Phase-field simulation of liquid phase migration in the WC-Co system during liquid phase sintering

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Kaiming; Zhang, Lijun; Du, Yong [Central South Univ., Changsha (China). State Key Lab. of Powder Metallurgy; Schwarze, Christian; Steinbach, Ingo [Bochum Univ. (Germany). Interdisciplinary Centre for Advanced Materials Simulation

    2016-04-15

    Liquid phase sintering is a process for forming high performance, multiple-phase components from powders. The process includes very complex interactions between various mass transportation phenomena, among which the liquid phase migration represents an important one in the aspect of forming a gradient structure in cemented carbide. In the present work, phase-field simulation of the liquid phase migration phenomenon during liquid phase sintering is performed in the WC-Co based cemented carbide. The simulation results are analyzed and compared with the experimentally determined key factors of microstructural evolution, such as contiguity and liquid phase migration rate. The diffusion-controlled solution-precipitation mechanism of the liquid phase migration process in the cemented carbide system is confirmed from the current simulation result, which provides deeper understanding of the microstructural evolution during the liquid phase migration process. These simulations can offer guidance in preventing the liquid phase migration process during liquid phase sintering of cellular cemented carbide.

  2. VARIANCE OF NONLINEAR PHASE NOISE IN FIBER-OPTIC SYSTEM

    OpenAIRE

    RANJU KANWAR; SAMEKSHA BHASKAR

    2013-01-01

    In communication system, the noise process must be known, in order to compute the system performance. The nonlinear effects act as strong perturbation in long- haul system. This perturbation effects the signal, when interact with amplitude noise, and results in random motion of the phase of the signal. Based on the perturbation theory, the variance of nonlinear phase noise contaminated by both self- and cross-phase modulation, is derived analytically for phase-shift- keying system. Through th...

  3. Variation in toxicity during the biodegradation of various heterocyclic and homocyclic aromatic hydrocarbons in single and multi-substrate systems.

    Science.gov (United States)

    Oberoi, Akashdeep Singh; Philip, Ligy

    2017-01-01

    In the present study, an attempt was made to understand the variation in the toxicity during the biodegradation of aromatic hydrocarbons in single and multi-substrate system. The bacterial bioassay based on the inhibition of dehydrogenase enzyme activity of two different bacterial sp. E.coli and Pseudomonas fluorescens was used for toxicity assessment. Amongst the chosen pollutants, the highest acute toxicity was observed for benzothiophene followed by benzofuran having EC50 value of 16.60mg/L and 19.30mg/L respectively. Maximum residual toxicity of 30.8% was observed at the end during the degradation of benzothiophene. Due to the accumulation of transitory metabolites in both single and multisubstrate systems, reduction in toxicity was not proportional to the decrease in pollutant concentration. In multi-substrate system involving mixture of heterocyclic hydrocarbons, maximum residual toxicity of 39.5% was observed at the end of biodegradation. Enhanced degradation of benzofuran, benzothiophene and their metabolic intermediates were observed in the presence of naphthalene resulting in significant reduction in residual toxicity. 2 (1H) - quinolinone, an intermediate metabolite of quinoline was observed having significant eco-toxicity amongst all other intermediates investigated.

  4. THERMOCHEMISTRY OF HYDROCARBON RADICALS

    Energy Technology Data Exchange (ETDEWEB)

    Kent M. Ervin, Principal Investigator

    2004-08-17

    Gas phase negative ion chemistry methods are employed to determine enthalpies of formation of hydrocarbon radicals that are important in combustion processes and to investigate the dynamics of ion-molecule reactions. Using guided ion beam tandem mass spectrometry, we measure collisional threshold energies of endoergic proton transfer and hydrogen atom transfer reactions of hydrocarbon molecules with negative reagent ions. The measured reaction threshold energies for proton transfer yield the relative gas phase acidities. In an alternative methodology, competitive collision-induced dissociation of proton-bound ion-molecule complexes provides accurate gas phase acidities relative to a reference acid. Combined with the electron affinity of the R {center_dot} radical, the gas phase acidity yields the RH bond dissociation energy of the corresponding neutral molecule, or equivalently the enthalpy of formation of the R{center_dot} organic radical, using equation: D(R-H) = {Delta}{sub acid}H(RH) + EA(R) - IE(H). The threshold energy for hydrogen abstraction from a hydrocarbon molecule yields its hydrogen atom affinity relative to the reagent anion, providing the RH bond dissociation energy directly. Electronic structure calculations are used to evaluate the possibility of potential energy barriers or dynamical constrictions along the reaction path, and as input for RRKM and phase space theory calculations. In newer experiments, we have measured the product velocity distributions to obtain additional information on the energetics and dynamics of the reactions.

  5. The use of solvent extractions and solubility theory to discern hydrocarbon associations in coal, with application to the coal-supercritical CO2 system

    Science.gov (United States)

    Kolak, Jonathan J.; Burruss, Robert A.

    2014-01-01

    findings indicate that hydrocarbon solubility does not exert a strong influence on hydrocarbon behavior in the systems studied. Other factors such as coal composition and maceral content, surface processes (physisorption), or other molecular interactions appear to affect the partitioning of hydrocarbons within the coal–supercritical CO2 system. Resolving the extent to which these factors might affect hydrocarbon behavior under different geological settings is important to efforts seeking to model petroleum generation, fractionation and expulsion from coal beds and to delineate potential hydrocarbon fate and transport in geologic CO2 sequestration settings.

  6. Microbial production of aliphatic hydrocarbons. Progress report, February 1, 1979-September 30, 1979. [Optimization for commercial oily hydrocarbon production

    Energy Technology Data Exchange (ETDEWEB)

    Tornabene, T G

    1979-09-01

    The neutral lipids of nine species of methanogenic bacteria, two thermoacidophiles, two alkalinophiles and 20 algal samples were analyzed. The major components were C/sub 30/, C/sub 25/, and/or C/sub 20/ acyclic isoprenoid hydrocarbons with a continuous range of hydroisoprenoid homologues. The range or acyclic isoprenoids detected were from C/sub 14/ to C/sub 30/. The neutral lipid composition from these bacteria resembles the isoprenoid distribution isolated from ancient sediments and petroleum. Therefore, these findings may have major implications to biological and biogeochemical evolution. In this connection, samples and cores from ancient sediments and future fossil fuel source beds are being analyzed for these neutral lipids as well as the more polar isopranyl glycerol-ether lipids. The derivation of fossil fuels and the biomass accumulations are the focal points of this phase of the study. Ancient and recent sediments, future source beds, and local esturaries are being enriched for microorganisms to establish a range and capability profile for hydrocarbon production. Only a relatively small percent of the microorganisms isolated demonstrated the ability to synthesize hydrocarbons; however, one particular algal isolate demonstrated that it can synthesize hydrocarbons while in a green physiological stage. Greater production is expected in the brown phase of growth. Hydrocarbon biosynthesis studies were conducted in an attempt to better understand the conditions required to maximize hydrocarbon production. The program involved physical and chemical parameters as well as assays of specifically labelled precusors with a cell free enzyme system to measure their conversions to hydrocarbons. The results have indicated a complex one enzyme system is involved in condensation and reduction of two fatty acids into hydrocarbons.

  7. Liquid-liquid equilibria for binary and ternary systems containing glycols, aromatic hydrocarbons, and water: Experimental measurements and modeling with the CPA EoS

    DEFF Research Database (Denmark)

    Folas, Georgios; Kontogeorgis, Georgios; Michelsen, Michael Locht;

    2006-01-01

    Liquid-liquid equilibrium data of four binary glycol + aromatic hydrocarbon systems and three ternary systems containing water have been measured at atmospheric pressure. The measured systems are monoethylene glycol (MEG) + benzene or toluene, triethylene glycol (TEG) + benzene or toluene, MEG + ...

  8. Phase Noise Influence in Optical OFDM Systems employing RF Pilot Tone for Phase Noise Cancellation

    OpenAIRE

    Jacobsen, Gunnar; Kazovsky, Leonid G.; Xu, TianHua; Popov, Sergei; Li, Jie; Zhang, Yimo; Friberg, Ari T.

    2016-01-01

    For coherent and direct-detection Orthogonal Frequency Division Multiplexed (OFDM) systems employing radio frequency (RF) pilot tone phase noise cancellation the influence of laser phase noise is evaluated. Novel analytical results for the common phase error and for the (modulation dependent) inter carrier interference are evaluated based upon Gaussian statistics for the laser phase noise. In the evaluation it is accounted for that the laser phase noise is filtered in the correlation signal d...

  9. Low Cost Phased Array Antenna System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — JEM Engineering proved the technical feasibility of the FlexScan array?a very low-cost, highly-efficient, wideband phased array antenna?in Phase I, and stands ready...

  10. Re-entrant phase behavior for systems with competition between phase separation and self-assembly.

    Science.gov (United States)

    Reinhardt, Aleks; Williamson, Alexander J; Doye, Jonathan P K; Carrete, Jesús; Varela, Luis M; Louis, Ard A

    2011-03-14

    In patchy particle systems where there is a competition between the self-assembly of finite clusters and liquid-vapor phase separation, re-entrant phase behavior can be observed, with the system passing from a monomeric vapor phase to a region of liquid-vapor phase coexistence and then to a vapor phase of clusters as the temperature is decreased at constant density. Here, we present a classical statistical mechanical approach to the determination of the complete phase diagram of such a system. We model the system as a van der Waals fluid, but one where the monomers can assemble into monodisperse clusters that have no attractive interactions with any of the other species. The resulting phase diagrams show a clear region of re-entrance. However, for the most physically reasonable parameter values of the model, this behavior is restricted to a certain range of density, with phase separation still persisting at high densities.

  11. Enhanced kinetics of solid-phase microextraction and biodegradation of polycyclic aromatic hydrocarbons in the presence of dissolved organic matter

    NARCIS (Netherlands)

    Haftka, J.J.H.; Parsons, J.R.; Govers, H.A.J.; Ortega-Calvo, J.J.

    2008-01-01

    The uptake kinetics of fluorene, phenanthrene, fluoranthene, pyrene, and benzo[e]pyrene by solid-phase microextraction fibers was studied in the presence of dissolved organic matter (DOM) obtained from sediment pore water and resulted in increased fiber absorption and desorption rate coefficients. C

  12. Phase Space Cell in Nonextensive Classical Systems

    Directory of Open Access Journals (Sweden)

    Piero Quarati

    2003-06-01

    Full Text Available Abstract: We calculate the phase space volume Ω occupied by a nonextensive system of N classical particles described by an equilibrium (or steady-state, or long-term stationary state of a nonequilibrium system distribution function, which slightly deviates from Maxwell-Boltzmann (MB distribution in the high energy tail. We explicitly require that the number of accessible microstates does not change respect to the extensive MB case. We also derive, within a classical scheme, an analytical expression of the elementary cell that can be seen as a macrocell, different from the third power of Planck constant. Thermodynamic quantities like entropy, chemical potential and free energy of a classical ideal gas, depending on elementary cell, are evaluated. Considering the fractional deviation from MB distribution we can deduce a physical meaning of the nonextensive parameter q of the Tsallis nonextensive thermostatistics in terms of particle correlation functions (valid at least in the case, discussed in this work, of small deviations from MB standard case.

  13. Method of treating emissions of a hybrid vehicle with a hydrocarbon absorber and a catalyst bypass system

    Science.gov (United States)

    Roos, Bryan Nathaniel; Gonze, Eugene V; Santoso, Halim G; Spohn, Brian L

    2014-01-14

    A method of treating emissions from an internal combustion engine of a hybrid vehicle includes directing a flow of air created by the internal combustion engine when the internal combustion engine is spinning but not being fueled through a hydrocarbon absorber to collect hydrocarbons within the flow of air. When the hydrocarbon absorber is full and unable to collect additional hydrocarbons, the flow of air is directed through an electrically heated catalyst to treat the flow of air and remove the hydrocarbons. When the hydrocarbon absorber is not full and able to collect additional hydrocarbons, the flow of air is directed through a bypass path that bypasses the electrically heated catalyst to conserve the thermal energy stored within the electrically heated catalyst.

  14. Microfluidic System for CO2 Reduction to Hydrocarbons in Microgravity Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In the combined Phase I and Phase II programs Faraday and our MIT collaborators will demonstrate the feasibility of low-cost fabrication of high-efficiency,...

  15. Developing Mathematical Provisions for Assessment of Liquid Hydrocarbon Emissions in Emergency Situations

    Science.gov (United States)

    Zemenkova, M. Yu; Zemenkov, Yu D.; Shantarin, V. D.

    2016-10-01

    The paper reviews the development of methodology for calculation of hydrocarbon emissions during seepage and evaporation to monitor the reliability and safety of hydrocarbon storage and transportation. The authors have analyzed existing methods, models and techniques for assessing the amount of evaporated oil. Models used for predicting the material balance of multicomponent two-phase systems have been discussed. The results of modeling the open-air hydrocarbon evaporation from an oil spill are provided and exemplified by an emergency pit. Dependences and systems of differential equations have been obtained to assess parameters of mass transfer from the open surface of a liquid multicomponent mixture.

  16. Characterization of hydrocarbon utilizing fungi from hydrocarbon ...

    African Journals Online (AJOL)

    Prof. Ogunji

    hydrocarbon polluted sediments and water .... ecosystem may result in selective increase or decrease in microbial population (Okpokwasili ... been implicated in degradation of hydrocarbons such as crude oil, polyaromatic hydrocarbons and.

  17. Integrable system on phase space with nonplanar metrics

    CERN Document Server

    Bogdanov, E I

    2001-01-01

    The problem on the integrability of the evolution system on the phase spaces with the nonplanar metrics is studied. It is shown that in the case, when the phase space is a sphere, the system Hamiltonians are generated under the action of the Poisson operators on the variations of the phase space geodesic lines and the problem on the evolution system integrability is reduced to the task on the integrability of the repers motion equations on the phase space. The bihamiltonian representation of the evaluation systems is connected with the differential-geometric properties of the phase space

  18. The Evolution of Multicomponent Systems at High Pressures: VI. The Thermodynamic Stability of the Hydrogen-Carbon System: The Genesis of Hydrocarbons and the Origin of Petroleum

    CERN Document Server

    Kenney, J F; Bendeliani, N A; Alekseev, V A; Kutcherov, Vladimir G.; Bendeliani, Nikolai A.; Alekseev, Vladimir A.

    2002-01-01

    The spontaneous genesis of hydrocarbons which comprise natural petroleum have been analyzed by chemical thermodynamic stability theory. The constraints imposed upon chemical evolution by the second law of thermodynamics are briefly reviewed; and the effective prohibition of transformation, in the regime of temperatures and pressures characteristic of the near-surface crust of the Earth, of biological molecules into hydrocarbon molecules heavier than methane is recognized. A general, first-principles equation of state has been developed by extending scaled particle theory (SPT) and by using the technique of the factored partition function of the Simplified Perturbed Hard Chain Theory (SPHCT). The chemical potentials, and the respective thermodynamic Affinity, have been calculated for typical components of the hydrogen-carbon (H-C) system over a range pressures between 1-100 kbar, and at temperatures consistent with those of the depths of the Earth at such pressures. The theoretical analyses establish that the ...

  19. Windowed phase unwrapping using a first-order dynamic system following iso-phase contours.

    Science.gov (United States)

    Estrada, Julio C; Vargas, Javier; Flores-Moreno, J Mauricio; Quiroga, J Antonio

    2012-11-01

    In this work, we show a windowed phase-unwrapping technique that uses a first-order dynamic system and scans the phase following its iso-phase contours. In previous works, we have shown that low-pass first-order dynamic systems are very robust and useful in phase-unwrapping problems. However, it is well known that all phase-unwrapping methods have a minimum signal-to-noise ratio that they tolerate. This paper shows that scanning the phase within local windows and using a path following strategy, the first-order unwrapping method increases its tolerance to noise. In this way, using the improved approach, we can unwrap phase maps where the basic dynamic phase-unwrapping system fails. Tests and results are given, as well as the source code in order to show the performance of the proposed method.

  20. Ice phase as an important factor on the seasonal variation of polycyclic aromatic hydrocarbons in the Tumen River, Northeastern of China.

    Science.gov (United States)

    Cong, Linlin; Fang, Yingyu; He, Miao; Wang, Xinshun; Kannan, Narayanan; Li, Donghao

    2010-08-01

    The climatic characteristic is a major parameter affecting on the distribution variation of organic pollutants such as polycyclic aromatic hydrocarbons (PAHs). The Tumen River is located in Northeastern of China. The winter era lasts for more than 5 months in a year, and the river water was frozen and covered by ice phase. Coal combustion is an essential heating source in the Tumen River Basin. The objective of this research is to study ice phase effect on the seasonal variation of PAHs in the Tumen River environment. Samples were collected from 13 sites along the River in March, July, October, and December of 2008. In addition, the ice sample, under ice water and air particulate were also collected in winter. The samples were analyzed for 16 PAHs (naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, beazo[a]anthene, chrysene, beazo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, indeno(1,2,3-cd)pyrene, dibenz(a,h)anthracene, and benzo(ghi)perylene). The compounds were extracted from the water samples and solid samples using LLE and Soxhlet extraction technique, respectively, and it is determined by gas chromatography-mass spectrometry. Among 16 PAHs, fluorene, phenanthrene, and pyrene were found to be present in high concentrations and at high detection frequencies. The total concentration of PAHs in the water, particulate, sediment and ice phase ranged from 35.1-1.05 x 10(3) ng L(-1), 25.4-817 ng L(-1), 117-562 ng g(-1)and 62.8-136 ng g(-1), respectively. The levels of PAHs were generally higher in spring than other seasons. The ice phase in winter acts like a major reservoir of the pollutants and it is major contributor on the seasonal variation of PAHs in Tumen River. The PAHs found in water, particulate, and sediment in the Tumen River were possibly derived from similar pollution sources a proposition based on the compositions and isomer ratios of PAHs. The distribution of PAHs was showed clear seasonal

  1. Characterization of polycyclic aromatic hydrocarbon emissions in the particulate and gas phase from smoldering mosquito coils containing various atomic hydrogen/carbon ratios

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Tzu-Ting, E-mail: d89844001@ntu.edu.tw [Department of Environmental Engineering and Health, Yuanpei University, No. 306, Yuanpei St., Hsin Chu 30015, Taiwan (China); Lin, Shaw-Tao [Department of Applied Chemistry, Providence University, No. 200 Chung-Chi Rd., Salu Dist., Taichung City 43301, Taiwan (China); Lin, Tser-Sheng [Department of Safety, Health, and Environmental Engineering, National United University, 2 Lien Da, Maioli 360, Taiwan (China); Chung, Hua-Yi [Department of Environmental Engineering and Health, Yuanpei University, No. 306, Yuanpei St., Hsin Chu 30015, Taiwan (China)

    2015-02-15

    The polycyclic aromatic hydrocarbon emissions in particulate and gas phases generated from smoldering mosquito coils containing various atomic H/C ratios were examined. Five types of mosquito coils were burned in a test chamber with a total airflow rate of 8.0 L/min at a constant relative humidity and temperature. The concentrations of individual PAHs were determined using the GC/MS technique. Among the used mosquito coils, the atomic H/C ratio ranged from 1.23 to 1.57, yielding total mass, gaseous, and particulate PAH emission factors of 28.17–78.72 mg/g, 26,139.80–35,932.98 and 5735.22–13,431.51 ng/g, respectively. The various partitions of PAHs in the gaseous and particulate phases were in the ranges, 70.26–83.70% and 16.30–29.74% for the utilized mosquito coils. The carcinogenic potency of PAH emissions in the particulate phase (203.82–797.76 ng/g) was approximately 6.92–25.08 times higher than that of the gaseous phase (26.27–36.07 ng/g). Based on the analyses of PAH emissions, mosquito coils containing the lowest H/C ratio, a low oxygen level, and additional additives (i.e., CaCO{sub 3}) are recommended for minimizing the production of total PAH emission factors and carcinogenic potency. - Highlights: • PAHs emissions are influenced by mosquito coils containing various atomic H/C ratios. • The PAHs generated by burning mosquito coils mainly occur in the gaseous phase. • Total TEQ emission factors of PAHs mainly consisted of the particulate phase (> 87%). • The BaP and BaA accounted for 71.13–77.28% of the total TEQ emission factors. • Special PAH ratios were regarded as characteristic ratios for burning mosquito coil.

  2. Distribution and sources of aliphatic and polycyclic aromatic hydrocarbons in suspended particulate matter in water from two Brazilian estuarine systems

    Science.gov (United States)

    Maioli, Otávio L. G.; Rodrigues, Kamila C.; Knoppers, Bastiaan A.; Azevedo, Débora A.

    2011-07-01

    The levels of selected organic markers, including 17 polycyclic aromatic hydrocarbons (PAHs), 16 of which are classified as priority pollutants by the US-EPA and perylene, aliphatic hydrocarbons (total and linear alkanes) and petroleum biomarkers (hopanes and steranes), were measured in suspended particulate matter (SPM) of the Mundaú-Manguaba estuarine-lagoon system (MMELS) in northeastern Brazil and the Paraíba do Sul River (PSR) estuary in southeastern Brazil, both of which are affected by sugarcane agriculture and urbanization. A total of 33 surface water samples of SPM were collected (22 from the MMELS and 11 from the PSR). The ∑16PAH ranged from 221 to 1243 ng g -1 in the MMELS and from 228 to 1814 ng g -1 in the PSR. Hopane and sterane concentrations in the PSR were higher than in the MMELS due to the input from petrogenic sources in PSR. The contributions of higher plants were also observed by n-alkane analyses. The PAH isomeric ratios indicated that the SPM from MMELS showed characteristics of combustion from biomass or petroleum and PSR was associated to petrogenic input, either from combustion or from unburned petroleum. Three sampling sites located near to the sugarcane plant and mouth of the rivers showed higher PAH concentrations and may largely be considered as highly contaminated. However, levels of n-alkanes and petroleum biomarkers in both study areas were relatively low.

  3. Phase behaviour of transfer functions in vibrating systems

    DEFF Research Database (Denmark)

    Zhu, Jianyuan; Ohlrich, Mogens

    1998-01-01

    This paper investigates the applicabilities of pole-zero models and wave propagation theory in estimating the phase characteristics of vibrating systems. The measured phase spectra are compared with the estimated reverberant phase limit and wave propagation phase. The relations between transfer...... on frequency in this band, but from the transition frequency and onwards the phase increases only with the square root of frequency. This behaviour is characteristic for free propagating waves....

  4. Study of the Raveling Resistance of Porous Asphalt Pavements Used in Sustainable Drainage Systems Affected by Hydrocarbon Spills

    Directory of Open Access Journals (Sweden)

    Jorge Rodriguez-Hernandez

    2015-12-01

    Full Text Available Permeable pavements are one of the most commonly-used sustainable drainage systems (SuDS in urban areas for managing stormwater runoff problems. Porous asphalt is widely used in surface layers of permeable pavement systems, where it can suffer from accidental oil spills from vehicles. Oil spills affect bituminous mixes through the solvent action of the hydrocarbons on the bitumen, reducing the raveling resistance of asphalt pavements. In order to assess the raveling resistance in porous asphalt pavements, the Cantabro abrasion test was performed on 200 test samples after applying controlled oil spills. Three different types of binders were used: conventional bitumen, polymer-modified bitumen and special fuel-resistant bitumen. After analyzing the results, it was concluded that the most suitable bitumen to protect against oil leakages is the polymer-modified one, which is far better than the other two types of bitumen tested.

  5. Incised valley filling deposits: an important pathway system for long-distance hydrocarbon migration——a case study of the Fulaerji Oilfield in the Songliao Basin

    Institute of Scientific and Technical Information of China (English)

    Xin Renchen; Liu Hao; Li Guifan

    2009-01-01

    In this paper, incised valley filling deposits, which formed an important pathway system for long-distance hydrocarbon migration, are discussed in detail based on core and logging data. The sequence SQy23 of the Cretaceous Yaojia Formation is the main hydrocarbon-beating layer in the Fulaerji Oilfield. The hydrocarbon source of the oilfield is the Qijia-Gulong Sag which is about 80 km away from the Fulaerji Oilfield. The transport layer of long-distance hydrocarbon migration is the overlapped sandstone complex which fills the incised valley. The incised valley developed during the depositional period from the late Qingshankou Formation to the early Yaojia Formation of Cretaceous (SQqn4-SQy1)was about 70 km long and 20 km wide, and extended in the NW-SE direction. The overlapped filling of the incised valley mainly occurred in the expanding system tract of the third-order sequence SQy23 (ESTy23). Towards the basin, incised valley filling deposits overlapped on the delta developed in the early period, and towards the basin margin, incised valley filling deposits were covered by the shore-shallow lacustrine sandy beach bar developed in the maximum flooding period. All of the delta, the incised valley filling and the shore-shallow sandy beach bar are sandstone-rich, and have high porosity and permeability, and can form an effective hydrocarbon migration and accumulation system. Deltaic sand bodies collected and pumped hydrocarbon from the active source, incised valley filling depositional system completed the long-distance hydrocarbon migration, and lithological traps of shore-shallow lacustrine sandy beach bar accumulated hydrocarbon. The incised valley filling sequences are multi-cycle: an integrated short- term filling cycle was developed on the erosion surface, and the sequences upward were mud-gravel stone, medium-fine sandstone containing terrigenous gravels and muddy pebbles with cross bedding, silty mudstone with ripple bedding, and mudstone. The incised valley

  6. System For Characterizing Three-Phase Brushless dc Motors

    Science.gov (United States)

    Howard, David E.; Smith, Dennis A.

    1996-01-01

    System of electronic hardware and software developed to automate measurements and calculations needed to characterize electromechanical performances of three-phase brushless dc motors, associated shaft-angle sensors needed for commutation, and associated brushless tachometers. System quickly takes measurements on all three phases of motor, tachometer, and shaft-angle sensor simultaneously and processes measurements into performance data. Also useful in development and testing of motors with not only three phases but also two, four, or more phases.

  7. Adaptive optimisation of a generalised phase contrast beam shaping system

    Science.gov (United States)

    Kenny, F.; Choi, F. S.; Glückstad, J.; Booth, M. J.

    2015-05-01

    The generalised phase contrast (GPC) method provides versatile and efficient light shaping for a range of applications. We have implemented a generalised phase contrast system that used two passes on a single spatial light modulator (SLM). Both the pupil phase distribution and the phase contrast filter were generated by the SLM. This provided extra flexibility and control over the parameters of the system including the phase step magnitude, shape, radius and position of the filter. A feedback method for the on-line optimisation of these properties was also developed. Using feedback from images of the generated light field, it was possible to dynamically adjust the phase filter parameters to provide optimum contrast.

  8. Phase transitions in fluids and biological systems

    Science.gov (United States)

    Sipos, Maksim

    metric to 16S rRNA metagenomic studies of 6 vertebrate gastrointestinal microbiomes and find that they assembled through a highly non-neutral process. I then consider a phase transition that may occur in nutrient-poor environments such as ocean surface waters. In these systems, I find that the experimentally observed genome streamlining, specialization and opportunism may well be generic statistical phenomena.

  9. Superconductivity in aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Kubozono, Yoshihiro, E-mail: kubozono@cc.okayama-u.ac.jp [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Research Center of New Functional Materials for Energy Production, Storage and Transport, Okayama University, Okayama 700-8530 (Japan); Japan Science and Technology Agency, ACT-C, Kawaguchi 332-0012 (Japan); Goto, Hidenori; Jabuchi, Taihei [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Yokoya, Takayoshi [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Research Center of New Functional Materials for Energy Production, Storage and Transport, Okayama University, Okayama 700-8530 (Japan); Kambe, Takashi [Department of Physics, Okayama University, Okayama 700-8530 (Japan); Sakai, Yusuke; Izumi, Masanari; Zheng, Lu; Hamao, Shino; Nguyen, Huyen L.T. [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Sakata, Masafumi; Kagayama, Tomoko; Shimizu, Katsuya [Center of Science and Technology under Extreme Conditions, Osaka University, Osaka 560-8531 (Japan)

    2015-07-15

    Highlights: • Aromatic superconductor is one of core research subjects in superconductivity. Superconductivity is observed in certain metal-doped aromatic hydrocarbons. Some serious problems to be solved exist for future advancement of the research. This article shows the present status of aromatic superconductors. - Abstract: ‘Aromatic hydrocarbon’ implies an organic molecule that satisfies the (4n + 2) π-electron rule and consists of benzene rings. Doping solid aromatic hydrocarbons with metals provides the superconductivity. The first discovery of such superconductivity was made for K-doped picene (K{sub x}picene, five benzene rings). Its superconducting transition temperatures (T{sub c}’s) were 7 and 18 K. Recently, we found a new superconducting K{sub x}picene phase with a T{sub c} as high as 14 K, so we now know that K{sub x}picene possesses multiple superconducting phases. Besides K{sub x}picene, we discovered new superconductors such as Rb{sub x}picene and Ca{sub x}picene. A most serious problem is that the shielding fraction is ⩽15% for K{sub x}picene and Rb{sub x}picene, and it is often ∼1% for other superconductors. Such low shielding fractions have made it difficult to determine the crystal structures of superconducting phases. Nevertheless, many research groups have expended a great deal of effort to make high quality hydrocarbon superconductors in the five years since the discovery of hydrocarbon superconductivity. At the present stage, superconductivity is observed in certain metal-doped aromatic hydrocarbons (picene, phenanthrene and dibenzopentacene), but the shielding fraction remains stubbornly low. The highest priority research area is to prepare aromatic superconductors with a high superconducting volume-fraction. Despite these difficulties, aromatic superconductivity is still a core research target and presents interesting and potentially breakthrough challenges, such as the positive pressure dependence of T{sub c} that is clearly

  10. Phase- and intensity-dependence of ultrafast dynamics in hydrocarbon molecules in few-cycle laser fields

    CERN Document Server

    Kübel, Matthias; Siemering, Robert; Kling, Nora G; Bergues, Boris; Alnaser, Ali S; Ben-Itzhak, Itzik; Moshammer, Robert; de Vivie-Riedle, Regina; Kling, Matthias F

    2016-01-01

    In strong laser fields, sub-femtosecond control of chemical reactions with the carrier-envelope phase (CEP) becomes feasible. We have studied the control of reaction dynamics of acetylene and allene in intense few-cycle laser pulses at 750 nm, where ionic fragments are recorded with a reaction microscope. We find that by varying the CEP and intensity of the laser pulses it is possible to steer the motion of protons in the molecular dications, enabling control over deprotonation and isomerization reactions. The experimental results are compared to predictions from a quantum dynamical model, where the control is based on the manipulation of the phases of a vibrational wave packet by the laser waveform. The measured intensity dependence in the CEP-controlled deprotonation of acetylene is well captured by the model. In the case of the isomerization of acetylene, however, we find differences in the intensity dependence between experiment and theory. For the isomerization of allene, an inversion of the CEP-dependen...

  11. 33 CFR 157.166 - Hydrocarbon emissions.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Hydrocarbon emissions. 157.166... Crude Oil Washing (COW) System on Tank Vessels Cow Operations § 157.166 Hydrocarbon emissions. If the... ballasted in that port the hydrocarbon vapors in each tank are contained by a means under § 157.132....

  12. Compositions and methods for hydrocarbon functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Gunnoe, Thomas Brent; Fortman, George; Boaz, Nicholas C.; Groves, John T.

    2017-03-28

    Embodiments of the present disclosure provide for methods of hydrocarbon functionalization, methods and systems for converting a hydrocarbon into a compound including at least one group ((e.g., hydroxyl group) (e.g., methane to methanol)), functionalized hydrocarbons, and the like.

  13. Cork as a new (green) coating for solid-phase microextraction: determination of polycyclic aromatic hydrocarbons in water samples by gas chromatography-mass spectrometry.

    Science.gov (United States)

    Dias, Adriana Neves; Simão, Vanessa; Merib, Josias; Carasek, Eduardo

    2013-04-15

    A new fiber for solid-phase microextraction (SPME) was prepared employing cork as a coating. The morphology and composition of the cork fiber was evaluated by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR), respectively. The proposed fiber was used for the determination of polycyclic aromatic hydrocarbons (PAHs) in river water samples by gas chromatography-selected ion monitoring-mass spectrometry (GC-SIM-MS). A central composite design was used for optimization of the variables involved in the extraction of PAHs from water samples. The optimal extraction conditions were extraction time and temperature of 60 min and 80°C, respectively. The detection and quantification limits were 0.03 and 0.1 μg L(-1), respectively. The recovery values were between 70.2 and 103.2% and the RSD was ≤15.7 (n=3). The linear range was 0.1-10 μg L(-1) with r≥0.96 and the fiber-to-fiber reproducibility showed RSD≤18.6% (n=5). The efficiency of the cork fiber was compared with commercially available fibers and good results were achieved, demonstrating the applicability and great potential of cork as a coating for SPME.

  14. In situ solvothermal synthesis of metal-organic framework coated fiber for highly sensitive solid-phase microextraction of polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Gao, Jia; Huang, Chuanhui; Lin, Yifen; Tong, Ping; Zhang, Lan

    2016-03-04

    The present work reported a facile and simple in situ solvothermal growth method for immobilization of metal-organic framework UiO-66 via covalent bonding on amino functional silica fiber for highly sensitive solid-phase microextraction (SPME) of ten polycyclic aromatic hydrocarbons (PAHs) by coupling with gas chromatography-mass spectrometry (GC-MS) analysis. The developed SPME coated fiber has been characterized through SEM, TGA and XRD, confirmed the coating thickness of ∼25μm with high thermal and chemical stability. Under optimized conditions, the obtained method exhibited satisfactory linearity in range of 1.0-5000.0ngL(-1) for all the PAHs. The low detection limits were from 0.28ngL(-1) to 0.60ngL(-1) (S/N=3). The UiO-66 coated fibers showed good repeatability (RSDs less than 8.2%, n=5) and satisfying reproducibility between fiber to fiber (RSDs less than 8.9%, n=5). This method was successfully used for simultaneous determination of ten PAHs from Minjiang water and soil samples with satisfactory recoveries of 87.0-113.6% and 83.8-116.7%, respectively. Experimental results shows that the chemical bonding approach has dramatically improve the stability and lifetime of pure MOFs coating for SPME in sample pretreatment.

  15. Exploration of metal-organic framework MOF-177 coated fibers for headspace solid-phase microextraction of polychlorinated biphenyls and polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Wang, Guanhua; Lei, Yongqian; Song, Huacan

    2015-11-01

    Metal-organic frameworks (MOFs) have received much attention in analytical science for their large langmuir surface and high thermostability. Herein MOF-177-coated solid-phase micro-extraction (SPME) fibers were fabricated on etched stainless steel by an adhensive method, and applied to the enrichment of polychlorinated biphenyls (PCB01, PCB05, PCB29, PCB47, PCB98, PCB154, PCB171, PCB201) and polycyclic aromatic hydrocarbons (ANY, ANA, FLU, PHE, ANT, FLT, PYR) from environmental water samples. Several parameters affecting the extraction efficiency were optimized prior to the gas chromatography-mass spectrometry analysis, including extraction temperature and time, desorption time, stirring rate and salt addition. The results indicated that the coated fiber gave low detection limits (0.69-4.42 ng L(-1)) and good repeatability with the RSD ranging from 1.47% to 8.67% for PCBs and PAHs. The recoveries were between 81.8% and 113% with the spiked level of 10 ng L(-1) for the real water samples. Besides, the MOF-177 coated fiber was stable enough over 100 extraction cycles and the RSD for fiber-to- fiber reproducibility was less than 9.82% during the experiment.

  16. QuEChERS Method Followed by Solid Phase Extraction Method for Gas Chromatographic-Mass Spectrometric Determination of Polycyclic Aromatic Hydrocarbons in Fish

    Directory of Open Access Journals (Sweden)

    Mona Khorshid

    2015-01-01

    Full Text Available A gas chromatography equipped with mass spectrometer (GCMS method was developed and validated for determination of 16 polycyclic aromatic hydrocarbons (PAHs in fish using modified quick, easy, cheap, effective, rugged, and safe (QuEChERS method for extraction and solid phase extraction for sample cleanup to remove most of the coextract combined with GCMS for determination of low concentration of selected group of PAHs in homogenized fish samples. PAHs were separated on a GCMS with HP-5ms Ultra Inert GC Column (30 m, 0.25 mm, and 0.25 µm. Mean recovery ranged from 56 to 115%. The extraction efficiency was consistent over the entire range where indeno(1,2,3-cdpyrene and benzo(g,h,iperylene showed recovery (65, 69%, respectively, at 2 µg/kg. No significant dispersion of results was observed for the other remaining PAHs and recovery did not differ substantially, and at the lowest and the highest concentrations mean recovery and RSD% showed that most of PAHs were between 70% and 120% with RSD less than 10%. The measurement uncertainty is expressed as expanded uncertainty and in terms of relative standard deviation (at 95% confidence level is ±12%. This method is suitable for laboratories engaged daily in routine analysis of a large number of samples.

  17. Determination of polycyclic aromatic hydrocarbons in coffee and tea samples by magnetic solid-phase extraction coupled with HPLC-FLD.

    Science.gov (United States)

    Shi, Yating; Wu, Hao; Wang, Chaoqiong; Guo, Xiaozhen; Du, Juanli; Du, Liming

    2016-05-15

    This study reports the synthesis of a benign nano-adsorbent based on an ionic liquid of immobilized Fe3O4@3-(Trimethoxysilyl)propyl methacrylate@ionic liquid magnetic nanoparticles (Fe3O4@MPS@IL NPs). This material was applied to the magnetic solid phase extraction of seven heavy molecular weight polycyclic aromatic hydrocarbons (PAHs) from coffee and tea samples for high performance liquid chromatography coupled with fluorescence detection. The effects of various parameters of the analytical method were investigated, including pH, sorbent amount, desorption solvent, desorption volume, and extraction and desorption time. Under the optimized conditions, good linearities were obtained, with correlation coefficients (R(2)) between 0.9987 and 0.9998. The detection limits of the proposed method were in the range of 0.1-10ngL(-1). The spiked recoveries of the seven PAHs in coffee and tea samples ranged from 87.5% to 104.5%, with RSDs of less than 3.7%. In addition, a satisfactory reproducibility was achieved, with intra- and inter-day precisions with RSDs of less than 3.1% and 3.8%, respectively.

  18. Distribution and Source of Polycyclic Aromatic Hydrocarbons (PAHs) in Water Dissolved Phase, Suspended Particulate Matter and Sediment from Weihe River in Northwest China.

    Science.gov (United States)

    Chen, Yuyun; Jia, Rui; Yang, Shengke

    2015-11-06

    Weihe River is a typical river located in the arid and semi-arid regions of Northwest China. In this study, the distribution and sources of 16 polycyclic aromatic hydrocarbons (PAHs) in Weihe River were investigated. The concentrations of ∑PAHs ranged from 351 to 4427 ng/L with a mean value of 835.4 ng/L in water dissolved phase (WDP), from 3557 ng/L to 147,907 ng/L with a mean value of 20,780 ng /L in suspended particulate matter (SPM), and from 362 to 15,667 ng/g dry weight (dw) with a mean value of 2000 ng/g dw in sediment, respectively. The concentrations of PAHs in Weihe River were higher compared with other rivers in the world. In both WDP and sediment, the highest concentrations of ∑PAHs were observed in the middle reach, while the lowest concentrations of ∑PAHs were found in the lower reach. For SPM, however, the PAHs concentrations in the lower reach were highest and the PAHs concentrations in the upper reach were lowest. The ratios of anthracene/(anthracene + phenanthrene) and fluoranthene/ (fluoranthene + pyrene) reflected a pattern of both pyrolytic and petrogenic input of PAHs in Weihe River. The potential ecosystem risk assessment indicated that harmful biological impairments occur frequently in Weihe River.

  19. Quantification of 13 priority polycyclic aromatic hydrocarbons in human urine by headspace solid-phase microextraction gas chromatography-isotope dilution mass spectrometry.

    Science.gov (United States)

    Campo, Laura; Mercadante, Rosa; Rossella, Federica; Fustinoni, Silvia

    2009-01-12

    Polycyclic aromatic hydrocarbons (PAHs) are common environmental pollutants in both living and working environments. The aim of this study was the development of a headspace solid-phase microextraction gas chromatography-isotope dilution mass spectrometry (HS-SPME/GC-IDMS) method for the simultaneous quantification of 13 PAHs in urine samples. Different parameters affecting PAHs extraction by HS-SPME were considered and optimized: type/thickness of fiber coatings, extraction temperature/time, desorption temperature/time, ionic strength and sample agitation. The stability of spiked PAHs solutions and of real urine samples stored up to 90 days in containers of different materials was evaluated. In the optimized method, analytes were absorbed for 60min at 80 degrees C in the sample headspace with a 100mum polydimethylsiloxane fiber. The method is very specific, with linear range from the limit of quantification to 8.67 x 10(3)ngL(-1), a within-run precision of <20% and a between-run precision of <20% for 2-, 3- and 4-ring compounds and of <30% for 5-ring compounds, trueness within 20% of the spiked concentration, and limit of quantification in the 2.28-2.28 x 10(1)ngL(-1) range. An application of the proposed method using 15 urine samples from subjects exposed to PAHs at different environmental levels is shown.

  20. Quantification of 13 priority polycyclic aromatic hydrocarbons in human urine by headspace solid-phase microextraction gas chromatography-isotope dilution mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Campo, Laura [Department of Occupational and Environmental Health, University of Milan and Fondazione IRCCS Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Milan (Italy)], E-mail: laura.campo@unimi.it; Mercadante, Rosa; Rossella, Federica; Fustinoni, Silvia [Department of Occupational and Environmental Health, University of Milan and Fondazione IRCCS Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Milan (Italy)

    2009-01-12

    Polycyclic aromatic hydrocarbons (PAHs) are common environmental pollutants in both living and working environments. The aim of this study was the development of a headspace solid-phase microextraction gas chromatography-isotope dilution mass spectrometry (HS-SPME/GC-IDMS) method for the simultaneous quantification of 13 PAHs in urine samples. Different parameters affecting PAHs extraction by HS-SPME were considered and optimized: type/thickness of fiber coatings, extraction temperature/time, desorption temperature/time, ionic strength and sample agitation. The stability of spiked PAHs solutions and of real urine samples stored up to 90 days in containers of different materials was evaluated. In the optimized method, analytes were absorbed for 60 min at 80 deg. C in the sample headspace with a 100 {mu}m polydimethylsiloxane fiber. The method is very specific, with linear range from the limit of quantification to 8.67 x 10{sup 3} ng L{sup -1}, a within-run precision of <20% and a between-run precision of <20% for 2-, 3- and 4-ring compounds and of <30% for 5-ring compounds, trueness within 20% of the spiked concentration, and limit of quantification in the 2.28-2.28 x 10{sup 1} ng L{sup -1} range. An application of the proposed method using 15 urine samples from subjects exposed to PAHs at different environmental levels is shown.

  1. Polydimethylsiloxane/metal-organic frameworks coated fiber for solid-phase microextraction of polycyclic aromatic hydrocarbons in river and lake water samples.

    Science.gov (United States)

    Zhang, Guijiang; Zang, Xiaohuan; Li, Zhi; Wang, Chun; Wang, Zhi

    2014-11-01

    In this study, polydimethylsiloxane/metal-organic frameworks (PDMS/MOFs), including PDMS/MIL-101 and PDMS/MOF-199, were immobilized onto a stainless steel wire through sol-gel technique as solid-phase microextraction (SPME) fiber coating. The prepared fibers were used for the extraction of some polycyclic aromatic hydrocarbons (PAHs) from water samples prior to gas chromatography-mass spectrometry (GC-MS) analysis. Under the optimized experiment conditions, the PDMS/MIL-101 coated fiber exhibited higher extraction efficiency towards PAHs than that of PDMS/MOF-199. Several parameters affecting the extraction of PAHs by SPME with PDMS/MIL-101 fiber, including the extraction temperature, extraction time, sample volume, salt addition and desorption conditions, were investigated. The limits of detection (LODs) were less than 4.0 ng L(-1) and the linearity was observed in the range from 0.01 to 2.0 µg L(-1) with the correlation coefficients (r) ranging from 0.9940 to 0.9986. The recoveries of the method for the PAHs from water samples at spiking levels of 0.05 and 0.2 µg L(-1) ranged from 78.2% to 110.3%. Single fiber repeatability and fiber-to-fiber reproducibility were less than 9.3% and 13.8%, respectively.

  2. Determination of 16 polycyclic aromatic hydrocarbons in seawater using molecularly imprinted solid-phase extraction coupled with gas chromatography-mass spectrometry.

    Science.gov (United States)

    Song, Xingliang; Li, Jinhua; Xu, Shoufang; Ying, Rongjian; Ma, Jiping; Liao, Chunyang; Liu, Dongyan; Yu, Junbao; Chen, Lingxin

    2012-09-15

    A method of solid-phase extraction (SPE) using molecularly imprinted polymers (MIPs) as adsorbent coupled with gas chromatography-mass spectrometry (GC-MS) was developed for the determination of 16 types of polycyclic aromatic hydrocarbons (PAHs) in seawater samples. The MIPs were prepared through non-covalent polymerization by using the 16 PAHs mixture as a template based on sol-gel surface imprinting. Compared with the non-imprinted polymers (NIPs), the MIPs exhibited excellent affinity towards 16 PAHs with binding capacity of 111.0-195.0 μg g(-1), and imprinting factor of 1.50-3.12. The significant binding specificity towards PAHs even in the presence of environmental parameters such as dissolved organic matter and various metal ions, suggested that this new imprinting material was capable of removing 93.2% PAHs in natural seawater. High sensitivity was attained, with the low limits of detection for 16 PAHs in natural seawater ranging from 5.2-12.6 ng L(-1). The application of MIPs with high affinity and excellent stereo-selectivity toward PAHs in SPE might offer a more attractive alternative to conventional sorbents for extraction and abatement of PAH-contaminated seawater.

  3. MultiSimplex optimisation of the solid-phase microextraction-gas chromatographic-mass spectrometric determination of polycyclic aromatic hydrocarbons, polychlorinated biphenyls and phthalates from water samples.

    Science.gov (United States)

    Cortazar, E; Zuloaga, O; Sanz, J; Raposo, J C; Etxebarria, N; Fernández, L A

    2002-11-29

    Solid-phase microextraction coupled to GC-MS was optimised for the determination of polycyclic aromatic hydrocarbons (PAHs), phthalate esters and polychlorinated biphenyls (PCBs) in water samples. A 30-microm polydimethylsiloxane fiber was immersed in a 30-ml water sample that contained the analytes of interest (PAHs, PCBs and phthalate esters) and the variables studied were extraction time (15-60 min), extraction temperature (30-90 degrees C), desorption time (1-5 min), desorption temperature (220-270 degrees C) and the addition of sodium chloride (0-9 g). The MultiSimplex programme based on the simplex algorithm was used to establish the optimal conditions. MultiSimplex allowed the simultaneous study of the variables mentioned above and considered the answers of all types of compounds studied in this work. Thus, the optimal conditions obtained allowed the simultaneous determination of PAHs, phthalate esters and PCBs. Furthermore, the accuracy and repeatability of the developed method were calculated from water samples spiked at known concentrations of the analytes. Finally, the optimised method was used to analyse water samples from different sampling points of the Urdaibai and Nerbioi-Ibaizabal estuaries (Biscay, Spain).

  4. Facile synthesis of magnetic carbon nitride nanosheets and its application in magnetic solid phase extraction for polycyclic aromatic hydrocarbons in edible oil samples.

    Science.gov (United States)

    Zheng, Hao-Bo; Ding, Jun; Zheng, Shu-Jian; Zhu, Gang-Tian; Yuan, Bi-Feng; Feng, Yu-Qi

    2016-01-01

    In this study, we proposed a method to fabricate magnetic carbon nitride (CN) nanosheets by simple physical blending. Low-cost CN nanosheets prepared by urea possessed a highly π-conjugated structure; therefore the obtained composites were employed as magnetic solid-phase extraction (MSPE) sorbent for extraction of polycyclic aromatic hydrocarbons (PAHs) in edible oil samples. Moreover, sample pre-treatment time could be carried out within 10 min. Thus, a simple and cheap method for the analysis of PAHs in edible oil samples was established by coupling magnetic CN nanosheets-based MSPE with gas chromatography-mass spectrometry (GC/MS) analysis. Limits of quantitation (LOQs) for eight PAHs ranged from 0.4 to 0.9 ng/g. The intra- and inter-day relative standard deviations (RSDs) were less than 15.0%. The recoveries of PAHs for spiked soybean oil samples ranged from 91.0% to 124.1%, with RSDs of less than 10.2%. Taken together, the proposed method offers a simple and cost-effective option for the convenient analysis of PAHs in oil samples.

  5. Preparation of an aminopropyl imidazole-modified silica gel as a sorbent for solid-phase extraction of carboxylic acid compounds and polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Wang, Na; Guo, Yong; Wang, Licheng; Liang, Xiaojing; Liu, Shujuan; Jiang, Shengxiang

    2014-05-21

    In this paper, a kind of aminopropyl imidazole-modified silica sorbent was synthesized and used as a solid-phase extraction (SPE) sorbent for the determination of carboxylic acid compounds and polycyclic aromatic hydrocarbons (PAHs). The resultant aminopropyl imidazole-modified silica sorbent was characterized by Fourier transform infrared spectroscopy (FT-IR) and elemental analysis (EA) to ensure the successful binding of aminopropyl imidazole on the surface of silica gel. Then the aminopropyl imidazole-modified silica sorbent served as a SPE sorbent for the enrichment of carboxylic acid compounds and PAHs. The new sorbent exhibited high extraction efficiency towards the tested compounds and the results show that such a sorbent can offer multiple intermolecular interactions: electrostatic, π-π, and hydrophobic interactions. Several parameters affecting the extraction recovery, such as the pH of sample solution, the pH of eluent, the solubility of eluent, the volume of eluent, and sample loading, were also investigated. Under the optimized conditions, the proposed method was applied to the analysis of four carboxylic acid compounds and four PAHs in environmental water samples. Good linearities were obtained for all the tested compounds with R(2) larger than 0.9903. The limits of detection were found to be in the range of 0.0065-0.5 μg L(-1). The recovery values of spiked river water samples were from 63.2% to 112.3% with relative standard deviations (RSDs) less than 10.1% (n = 4).

  6. Application of a fiber-optic NIR-EFA sensor system for in situ monitoring of aromatic hydrocarbons in contaminated groundwater.

    Science.gov (United States)

    Buerck, J; Roth, S; Kraemer, K; Scholz, M; Klaas, N

    2001-05-07

    Interaction of analyte molecules with the evanescent wave of light guided in optical fibers is among the most promising novel sensing schemes that can be applied for environmental monitoring and on-line process analysis. By combining this measuring principle with the solid-phase extraction of analyte molecules into the polymer cladding of a fiber, it is possible to perform direct absorption measurements in the cladding, if the fiber is adapted to a conventional spectrometer/photometer. A big advantage of this arrangement is that the measurement is scarcely disturbed by matrix effects (background absorption of water in IR measurements, stray light due to turbidity in the sample). By using near-infrared (NIR) evanescent field absorption (EFA) measurements in quartz glass fibers coated with a hydrophobic silicone membrane it is possible to design and construct sensors for monitoring apolar hydrocarbons (HCs) in aqueous matrices.The paper presents a fiber-optic sensor system for the determination of aromatic HCs in groundwater or industrial wastewater. Generally, this instrument is suitable for quantitative in situ monitoring of pollutants such as aromatic solvents, fuels, mineral oils or chlorinated HCs with relatively low water saturation solubility (typically between 0.01 and 10 g l(-1)). The sensor probe is connected via all-silica fibers to a filter photometer developed at the IFIA, thus, allowing even remote analysis in a monitoring well. This portable instrument provides a total concentration signal of the organic compounds extracted into the fiber cladding by measuring the integral absorption at the 1st C--H overtone bands in the NIR spectral range. In situ measurements with the sensor system were performed in a groundwater circulation well at the VEGAS research facility of the University of Stuttgart (Germany). The NIR-EFA sensor system was tested within the frame of an experiment that was carried through in a tank containing sandy gravel with a groundwater

  7. A solid-phase microextraction coating of sol-gel-derived perhydroxy cucurbit[6]uril and its application on to the determination of polycyclic aromatic hydrocarbon.

    Science.gov (United States)

    Dong, Nan; Li, Tao; Luo, Yujie; Shao, Lin; Tao, Zhu; Zhu, Chun

    2016-10-28

    A novel solid-phase microextraction coating that contains perhydroxy cucurbit[6]uril((OH)12Q[6]) was prepared by a sol-gel method. (OH)12Q[6] was used as a starting coating material with hydroxy-terminated poly(dimethylsiloxane) (OH-PDMS) to bond chemically to a fused-silica substrate using 3-(2-cyclooxypropoxyl)propyltrimethoxysilane as cross-linking agent; hydrolysis and polycondensation reactions then led to the formation of a (OH)12Q[6]/PDMS-coating. The coating has a high thermal stability (360°C), long lifetime and can withstand organic and inorganic solvent rinsing because of the chemical binding between the coating and silica substrate. Its performance was tested by headspace (HS) solid-phase microextraction fiber coupled with gas chromatography to determine polycyclic aromatic hydrocarbon (PAHs) compounds in water samples. The (OH)12Q[6]/PDMS-coated fiber exhibited higher enrichment factors from fourfold for naphthalene to tenfold for pyrene compared with commercial PDMS fiber, and the enrichment factors increased with the number of condensed PAH rings. The strong adsorption affinity is believed to be attributed to hydrogen bonding and CH⋯π interactions between PAHs and (OH)12Q[6], according to the results of quantum chemical calculations. In the PAH analysis, the (OH)12Q[6]-coated fiber showed a good repeatability (<4.7%) and reproducibility between fibers (<9.4%), low detection limits (0.03-0.15μgL(-1)), and a wide linearity (0.1-1000μgL(-1)) under optimized conditions. This method was used for the simultaneous determination of seven PAHs with satisfactory recoveries of 90.56%-107.4% for Huaxi river water samples and 90.23%-109.5% for local wastewater samples, respectively.

  8. Cork as a new (green) coating for solid-phase microextraction: Determination of polycyclic aromatic hydrocarbons in water samples by gas chromatography–mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Adriana Neves; Simão, Vanessa; Merib, Josias [Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis 88040900, SC (Brazil); Carasek, Eduardo, E-mail: eduardo.carasek@ufsc.br [Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis 88040900, SC (Brazil)

    2013-04-15

    Highlights: ► Cork as a new coating for solid-phase microextraction was proposed. ► Good results were achieved, demonstrating the applicability of the cork as coating for SPME. ► The efficiency of cork fiber was very similar to commercially available fibers. -- Abstract: A new fiber for solid-phase microextraction (SPME) was prepared employing cork as a coating. The morphology and composition of the cork fiber was evaluated by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR), respectively. The proposed fiber was used for the determination of polycyclic aromatic hydrocarbons (PAHs) in river water samples by gas chromatography–selected ion monitoring–mass spectrometry (GC–SIM–MS). A central composite design was used for optimization of the variables involved in the extraction of PAHs from water samples. The optimal extraction conditions were extraction time and temperature of 60 min and 80 °C, respectively. The detection and quantification limits were 0.03 and 0.1 μg L{sup −1}, respectively. The recovery values were between 70.2 and 103.2% and the RSD was ≤15.7 (n = 3). The linear range was 0.1–10 μg L{sup −1} with r ≥ 0.96 and the fiber-to-fiber reproducibility showed RSD ≤ 18.6% (n = 5). The efficiency of the cork fiber was compared with commercially available fibers and good results were achieved, demonstrating the applicability and great potential of cork as a coating for SPME.

  9. Quantification of carcinogenic 4- to 6-ring polycyclic aromatic hydrocarbons in human urine by solid-phase microextraction gas chromatography-isotope dilution mass spectrometry.

    Science.gov (United States)

    Campo, Laura; Fustinoni, Silvia; Bertazzi, Pieralberto

    2011-08-01

    Polycyclic aromatic hydrocarbons (PAHs) are pollutants found in living and working environments. The aim of this study was to develop a solid-phase microextraction (SPME) gas chromatography (GC)-isotope dilution mass spectrometry method for the quantification of 10 four- to six-ring PAHs in urine samples. Seven of the selected PAHs have been classified as carcinogenic. Under the final conditions, analytes were sampled with a 100-μm polydimethylsiloxane SPME fibre for 60 min at 80 °C and desorbed in the injection port of the GC at 270 °C. Fluoranthene, pyrene, benz[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenzo[a,h]anthracene, indeno[1,2,3-cd]pyrene and benzo[ghi]perylene were separated using a highly arylene-modified phase capillary column and quantified by MS using eight deuterated PAHs as surrogate internal standards. Limits of quantification (LOQ) were in the 0.5- to 2.2-ng/L range. Validation showed linear dynamic ranges up to 340 ng/L, inter- and intra-run precisions <20%, and accuracies within 20% of spiked concentrations. Matrix effect evaluation and the use of control charts to monitor process performances showed that the isotope dilution approach allowed for the control of bias sources. Urinary PAHs were above or equal to LOQ, depending on different compounds, in 58-100% (min-max), 40-100% and 5-39% of samples from coke oven workers (n = 12), asphalt workers (n = 10) and individuals not occupationally exposed to PAHs (n = 18), respectively. Chrysene was the most abundant PAH determined with median levels of 62.6, 6.9 and <0.6 ng/L, respectively. These results show that the method is suitable for quantifying carcinogenic PAHs in specimens from individuals with different levels of PAH exposure.

  10. Purge-assisted headspace solid-phase microextraction combined with gas chromatography/mass spectrometry for the determination of trace nitrated polycyclic aromatic hydrocarbons in aqueous samples.

    Science.gov (United States)

    Hung, Cheng-Han; Ho, Hsin-Pin; Lin, Mei-Tzu; Chen, Chung-Yu; Shu, Youn-Yuen; Lee, Maw-Rong

    2012-11-23

    This study describes a new procedure, namely, purge-assisted headspace solid phase microextraction combined with gas chromatography/negative ion chemical ionization mass spectrometry (PA/HS-SPME-GC/NICI-MS), which is used to determine seven nitrated polycyclic aromatic hydrocarbons (NPAHs) in aqueous samples. High extraction efficiency was obtained with PA/HS-SPME with polydimethylsiloxane (PDMS) fiber coating. A programmable temperature vaporizing (PTV) inlet was used in the desorption process. Selected ion monitoring (SIM) was used for quantitative and qualitative purposes. The linear range of detection of the proposed method was 5-5000 pg/mL with coefficients of determination between 0.995 and 0.999. Limits of detection (LODs) for seven NPAHs were 0.01-0.06 pg/mL. The relative standard deviation was below 12.7% at a concentration of 50 pg/mL. Compared with headspace-solid phase microextraction (HS-SPME), the purge procedure enhanced the extraction efficiency for high boiling point analytes, such as 7-nitrobenz[a]anthracene (7-NBA) and 6-nitrochrysene (6-NC). The proposed method provides a sensitive method for NPAH analysis at the pg/mL level. The application of the proposed method for the determination of trace NPAHs in real samples was investigated by analyzing aqueous samples from rivers. The concentrations of NPAHs detected from the samples ranged from 5.2 to 7.5 pg/mL. This method was applied successfully in the analysis of trace NPAHs in river samples.

  11. Efficacy of head space solid-phase microextraction coupled to gas chromatography-mass spectrometry method for determination of the trace extracellular hydrocarbons of cyanobacteria.

    Science.gov (United States)

    Guan, Wenna; Zhu, Tao; Wang, Yuejie; Zhang, Zhongyi; Jin, Zhao; Wang, Cong; Bai, Fali

    2016-09-01

    Hydrocarbons are widespread in cyanobacteria, and the biochemical synthetic pathways were recently identified. Intracellular fatty alka(e)nes of cyanobacteria have been detected by liquid-liquid extraction (LLE) coupled to gas chromatography-mass spectrometry (GC/MS). However, whether fatty alka(e)nes can be released to cyanobacterial culture media remains to be clarified. This work develops a sensitive method for analyzing the trace level of extracellular hydrocarbons in cyanobacterial culture media by head space solid-phase microextraction (HS-SPME) coupled to GC/MS. Headspace (HS) extraction mode using polydimethylsiloxane fiber to extract for 30min at 50°C was employed as the optimal extraction conditions. Five cyanobacterial fatty alka(e)nes analogs including pentadecene (C15:1), pentadecane (C15:0), heptadecene (C17:1), heptadecane (C17:0), nonadecane (C19:0) were analyzed, and the data obtained from HS-SPME-GC/MS method were quantified using internal standard peak area comparisons. Limits of detection (LOD), limits of quantitation (LOQ), linear dynamic range, precisions (RSD) and recovery for the analysis of extracellular fatty alka(e)nes of cyanobacteria by HS-SPME-GC/MS were evaluated. The LODs limits of detection (S/N = 3) varied from 10 to 21 ng L-1. The correlation coefficients (r) of the calibration curves ranged from 0.9873 to 0.9977 with a linearity from 0.1 to 50 μg L-1. The RSD values were ranging from 7.8 to 14.0% and from 4.0 to 8.8% at 1.0 μg L-1 and 10.0 μg L-1 standard solutions, respectively. Comparative analysis of extracellular fatty alka(e)nes in the culture media of model cyanobacteria Synechocystis sp. PCC 6803 demonstrated that sensitivity of HS-SPME-GC/MS method was significantly higher than LLE method. Finally, we found that heptadecane can be released into the culture media of Synechocystis sp. PCC 6803 at the later growth period.

  12. Upgrading light hydrocarbons via tandem catalysis: a dual homogeneous Ta/Ir system for alkane/alkene coupling.

    Science.gov (United States)

    Leitch, David C; Lam, Yan Choi; Labinger, Jay A; Bercaw, John E

    2013-07-17

    Light alkanes and alkenes are abundant but are underutilized as energy carriers because of their high volatility and low energy density. A tandem catalytic approach for the coupling of alkanes and alkenes has been developed in order to upgrade these light hydrocarbons into heavier fuel molecules. This process involves alkane dehydrogenation by a pincer-ligated iridium complex and alkene dimerization by a Cp*TaCl2(alkene) catalyst. These two homogeneous catalysts operate with up to 60/30 cooperative turnovers (Ir/Ta) in the dimerization of 1-hexene/n-heptane, giving C13/C14 products in 40% yield. This dual system can also effect the catalytic dimerization of n-heptane (neohexene as the H2 acceptor) with cooperative turnover numbers of 22/3 (Ir/Ta).

  13. Low Cost Phased Array Antenna System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A program is proposed to research the applicability of a unique phased array technology, dubbed FlexScan, to S-band and Ku-band communications links between...

  14. Determining phase diagrams of gas-liquid systems using a microfluidic PVT.

    Science.gov (United States)

    Mostowfi, Farshid; Molla, Shahnawaz; Tabeling, Patrick

    2012-11-07

    A novel microfluidic device designed for analyzing phase diagrams of gas-liquid systems (PVT or pressure-volume-temperature measurements) is described. The method mimics the phase transition of a reservoir fluid as it travels through the wellbore from the formation to the surface. The device consists of a long serpentine microchannel etched in a silicon substrate. The local pressure inside the channel is measured using membrane-based optical pressure sensors positioned along the channel. Geometrical restrictions are placed along the microchannel in order to nucleate bubbles when nucleation conditions are met, thus preventing the development of a supersaturation state in the channel. We point out that a local equilibrium state between gas and liquid phases is achieved, which implies that equilibrium properties can be directly measured on the chip. We analyze different mixtures of hydrocarbon systems and, consistently with the preceding analysis, obtain excellent agreement between our technique and conventional measurements. From a practical viewpoint (important for the relevance of the technology), we observe that the measurement time of thermodynamic properties of gas-liquid systems is reduced from hours to minutes with the present device without compromising the measurement accuracy.

  15. Identification of sink spots in two thermal desorption GC/MS systems for the analysis of polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Li, Yingjie; Zhu, Jiping

    2017-04-08

    Thermal desorption (TD) GC/MS has been used for the analysis of polycyclic aromatic hydrocarbons (PAHs) and other semi-volatile organic compounds. However, thermal desorption recovery of PAHs have not been well studied and the cause of PAH residues in a TD system has not been clearly understood. Our results showed that low volatility of PAHs can lead to their incomplete recovery in a TD system: for the PAHs with low vapour pressures, up to 10% and 3% could be lost in a two-stage (TS) TD system and a short-path (SP) TD system, respectively. Within the TSTD system, the majority of residues were found in the 4-port valve and in the spot where internal trap and the 4-port valve connects. Within the SPTD system, residues were largely confined to the tube needle connecting the sample tube and GC injection port as well as inside the injection port. Since the volatility of PAHs can represent the range typical of semi-volatile organic compounds (SVOCs), our results have a wide implication for the thermal desorption of SVOCs in general. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  16. Nonlinear phase noise in coherent optical OFDM transmission systems.

    Science.gov (United States)

    Zhu, Xianming; Kumar, Shiva

    2010-03-29

    We derive an analytical formula to estimate the variance of nonlinear phase noise caused by the interaction of amplified spontaneous emission (ASE) noise with fiber nonlinearity such as self-phase modulation (SPM), cross-phase modulation (XPM), and four-wave mixing (FWM) in coherent orthogonal frequency division multiplexing (OFDM) systems. The analytical results agree very well with numerical simulations, enabling the study of the nonlinear penalties in long-haul coherent OFDM systems without extensive numerical simulation. Our results show that the nonlinear phase noise induced by FWM is significantly larger than that induced by SPM and XPM, which is in contrast to traditional WDM systems where ASE-FWM interaction is negligible in quasi-linear systems. We also found that fiber chromatic dispersion can reduce the nonlinear phase noise. The variance of the total phase noise increases linearly with the bit rate, and does not depend significantly on the number of subcarriers for systems with moderate fiber chromatic dispersion.

  17. Extraction and analysis of polycyclic aromatic hydrocarbons (PAHs) by solid phase micro-extraction/supercritical fluid chromatography (SPME/SFC)

    Energy Technology Data Exchange (ETDEWEB)

    Lesellier, E. [Institut Universitaire de Technologie, (LETIAM), 91 - Orsay (France)

    1999-05-01

    Solid phase micro-extraction (SPME) is a clean and simple pre-concentration method. Previously used for trace analysis of volatile compounds, the use of SPME was extended to non volatile molecules with the development of an SPME/HPLC interface. This new interface allows the extraction and the analysis of high molecular weight compounds found in aqueous samples. Since superficial fluid chromatography is particularly well suited for analysis of complex mixtures containing non volatile compounds, the feasibility of coupling SPME and SFC has been investigated and applied to PAHs. Several points have been studied: behavior of interface and of fiber to superficial fluid and high pressure required by the analytical method; kind of the compounds transfer from the fiber to the analytical column; relation between the nature of the fibers and the quantity of extracted compounds; effect of salt addition. The results show that the SPME/SFC technic may be used for extraction and analysis of PAHs, since the quantity of extracted compounds reach 30 %. (author) 17 refs.

  18. Pollution level, phase distribution and health risk of polycyclic aromatic hydrocarbons in indoor air at public places of Hangzhou, China

    Energy Technology Data Exchange (ETDEWEB)

    Lu Hao [Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310028 (China)], E-mail: luhaozju@163.com; Zhu Lizhong [Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310028 (China)], E-mail: zlz@zju.edu.cn; Chen Shuguang [Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310028 (China)], E-mail: chenshuguang@zju.edu.cn

    2008-04-15

    PAHs pollution survey in air of public places was conducted in Hangzhou, China. The most serious PAHs pollution was observed in indoor air of shopping centers and the slightest was in train stations. The molecular weight of chrysene (MW 228) appeared to be the dividing line for the PAHs with a larger or smaller distribution in the vapor or particulate phase. Concentrations of 15 PAHs on PM{sub 2.5} accounted for 71.3% of total particulate PAHs, and followed by PM{sub 2.5-10} fraction (17.6%) and >PM{sub 10} fraction (11.1%). In shopping centers and supermarkets, emission of 2-4 rings PAHs occurred from indoor sources, whereas 5-6 rings PAHs predominantly originated from transport of outdoor air. In temples, PAHs in indoor air mainly originated from incense burning. Health risks associated with the inhalation of PAHs were assessed, and naphthalene made the greatest contribution (62.4%) to the total health risks. - Concentrations of PAHs in the air of selected public places in Hangzhou correspond to 10{sup -3} life-time lung cancer risk.

  19. Phase-space networks of geometrically frustrated systems

    Science.gov (United States)

    Han, Yilong

    2009-11-01

    We illustrate a network approach to the phase-space study by using two geometrical frustration models: antiferromagnet on triangular lattice and square ice. Their highly degenerated ground states are mapped as discrete networks such that the quantitative network analysis can be applied to phase-space studies. The resulting phase spaces share some comon features and establish a class of complex networks with unique Gaussian spectral densities. Although phase-space networks are heterogeneously connected, the systems are still ergodic due to the random Poisson processes. This network approach can be generalized to phase spaces of some other complex systems.

  20. A Novel Single Phase Hybrid Switched Reluctance Motor Drive System

    DEFF Research Database (Denmark)

    Liang, Jianing; Xu, Guoqing; Jian, Linni

    2011-01-01

    In this paper, a novel single phase hybrid switched reluctance motor(SRM) drive system is proposed. It integrated a single phase hybrid SRM and a novel single phase boost converter. This motor can reduce the number of phase switch. And the permanent magnet which is used in the motor can improve t...... SRM reduce the negative torque before zero-crossing point of torque curve, and build desired phase current to generate more power. Some experimental results are done to verify the performance of proposed hybrid SRM drive system....

  1. Integrated thermal treatment system sudy: Phase 2, Results

    Energy Technology Data Exchange (ETDEWEB)

    Feizollahi, F.; Quapp, W.J.

    1995-08-01

    This report presents the second phase of a study on thermal treatment technologies. The study consists of a systematic assessment of nineteen thermal treatment alternatives for the contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. The treatment alternatives consist of widely varying technologies for safely destroying the hazardous organic components, reducing the volume, and preparing for final disposal of the MLLW. The alternatives considered in Phase 2 were innovative thermal treatments with nine types of primary processing units. Other variations in the study examined the effect of combustion gas, air pollution control system design, and stabilization technology for the treatment residues. The Phase 1 study, the results of which have been published as an interim report, examined ten initial thermal treatment alternatives. The Phase 2 systems were evaluated in essentially the same manner as the Phase 2 systems. The assumptions and methods were the same as for the Phase 1 study. The quantities, and physical and chemical compositions, of the input waste used in he Phase 2 systems differ from those in the Phase 1 systems, which were based on a preliminary waste input database developed at the onset of the Integrated Thermal Treatment System study. The inventory database used in the Phase 2 study incorporates the latest US Department of Energy information. All systems, both primary treatment systems and subsystem inputs, have now been evaluated using the same waste input (2,927 lb/hr).

  2. QSAR for Predicting Biodegradation Rates of Polycyclic Aromatic Hydrocarbons in Aqueous Systems

    Institute of Scientific and Technical Information of China (English)

    XU Xiang; LI Xian-Guo

    2012-01-01

    The relationship between chemical structures and biodegradation rates (k b) of 22 polycyclic aromatic hydrocarbons (PAHs) was studied using density functional theory (DFT) and stepwise multiple linear regression analysis (SMLR) method.The equilibrium geometries and vibration frequency have been investigated at the B3LYP/6-31+G(d,p) level by thinking Solvent effects using a selfconsistent reaction field (SCRF) based on the polarizable continuum model (PCM).It was concluded that the biodegradation rate was closely related to its molecular structure,and there is one high correlation coefficient between the in-plane bending vibration frequency of the conjugated ring of PAHs (Freq) and k b.By means of regression analysis,the main factors affecting the biodegradation rate were obtained and the equation of quantitative structure-activity relationship (QSAR) was successfully established kb =-0.653+0.001Freq+0.068CQ+0.049N1.Statistical evaluation of the developed QSAR showed that the relationships were statistically significant and the model had good predictive ability.The fact that a bending frequency is more important than the HOMO or LUMO energies in predicting k b suggests that the bending of benzene ring might play an important role in the enzymatic catalysis of the initial oxidation step.

  3. Combined effects of DOM and biosurfactant enhanced biodegradation of polycylic armotic hydrocarbons (PAHs) in soil-water systems.

    Science.gov (United States)

    Yu, Hui; Huang, Guo-He; Xiao, Huining; Wang, Lei; Chen, Wei

    2014-09-01

    This study systematically investigated the interactive effects of dissolved organic matter (DOM) and biosurfactant (rhamnolipid) on the biodegradation of phenanthrene (PHE) and pyrene (PYR) in soil-water systems. The degradations of two polycyclic aromatic hydrocarbons (PAHs) were fitted well with first order kinetic model and the degradation rates were in proportion to the concentration of biosurfactant. In addition, the degradation enhancement of PHE was higher than that of PYR. The addition of soil DOM itself at an environmental level would inhibit the biodegradation of PAHs. However, in the system with co-existence of DOM and biosurfactant, the degradation of PAHs was higher than that in only biosurfactant addition system, which may be attributed to the formation of DOM-biosurfactant complex micelles. Furthermore, under the combined conditions, the degradation of PAH increased with the biosurfactant concentration, and the soil DOM added system showed slightly higher degradation than the compost DOM added system, indicating that the chemical structure and composition of DOM would also affect the bioavailability of PAHs. The study result may broaden knowledge of biosurfactant enhanced bioremediation of PAHs contaminated soil and groundwater.

  4. Experimental study and phase equilibrium modeling of systems containing acid gas and glycol

    DEFF Research Database (Denmark)

    Afzal, Waheed; Breil, Martin P.; Tsivintzelis, Ioannis

    2012-01-01

    In this work, we study phase equilibria of systems containing acid gases and glycols. The acid gases include carbonyl sulfide (COS), hydrogen sulfide (H2S), and carbon dioxide (CO2) while glycols include monoethylene glycol (MEG), diethylene glycol (DEG), and triethylene glycol (TEG). A brief...... literature survey on the solubility of the acid gases and hydrocarbons in glycols is presented. New experimental solubility data mainly for COS and some limited data for H2S in glycols from 276 to 333K and at elevated pressures are reported. Experimental measurements have been carried out using the “static......-synthetic” method. The reliability and repeatability of the experimental work are demonstrated. The experimental solubility data for COS and glycols, from this work, and those for H2S and CO2 from the literature are modeled using the cubic-plus-association (CPA) equation of state (EoS). CPA parameters for pure...

  5. Active phase compensation of quantum key distribution system

    Institute of Scientific and Technical Information of China (English)

    CHEN Wei; HAN ZhengFu; MO XiaoFan; XU FangXing; WEI Guo; GUO GuangCan

    2008-01-01

    Quantum key distribution (QKD) system must be robust enough in practical communication. Besides birefringence of fiber, system performance is notably affected by phase drift. The Faraday-Michelson QKD system can auto-compensate the birefringence of fiber, but phase shift is still a serious problem in its practical operation. In this paper, the major reason of phase drift and its effect on Faraday-Michel-son QKD system is analyzed and an effective active phase compensation scheme is proposed. By this means, we demonstrate a quantum key distribution system which can stably run over 37-km fiber in practical working condition with the long-time averaged quantum bit error rate of 1.59% and the stan-dard derivation of 0.46%. This result shows that the active phase compensation scheme is suitable to be used in practical QKD systems based on double asymmetric interferometers without additional de-vices and thermal controller.

  6. Quantum phase transition and entanglement in Li atom system

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    By use of the exact diagonalization method, the quantum phase transition and en- tanglement in a 6-Li atom system are studied. It is found that entanglement appears before the quantum phase transition and disappears after it in this exactly solvable quantum system. The present results show that the von Neumann entropy, as a measure of entanglement, may reveal the quantum phase transition in this model.

  7. Effect of central ventilation and air conditioner system on the concentration and health risk from airborne polycyclic aromatic hydrocarbons

    Institute of Scientific and Technical Information of China (English)

    Jinze LV; Lizhong Zhu

    2013-01-01

    Central ventilation and air conditioner systems are widely utilized nowadays in public places for air exchange and temperature control,which significantly influences the transfer of pollutants between indoors and outdoors.To study the effect of central ventilation and air conditioner systems on the concentration and health risk from airborne pollutants,a spatial and temporal survey was carried out using polycyclic aromatic hydrocarbons (PAHs) as agent pollutants.During the period when the central ventilation system operated without air conditioning (AC-off period),concentrations of 2-4 ring PAHs in the model supermarket were dominated by outdoor levels,due to the good linearity between indoor air and outdoor air (rp > 0.769,p < 0.05),and the slopes (1.2-4.54) indicated that ventilating like the model supermarket increased the potential health risks from low molecular weight PAHs.During the period when the central ventilation and air conditioner systems were working simultaneously (AC-on period),although the total levels of PAHs were increased,the concentrations and percentage of the particulate PAHs indoors declined significantly.The BaP equivalency (BaPeq concentration indicated that utilization of air conditioning reduced the health risks from PAHs in the model supermarket.

  8. Effect of central ventilation and air conditioner system on the concentration and health risk from airborne polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Lv, Jinze; Zhu, Lizhong

    2013-03-01

    Central ventilation and air conditioner systems are widely utilized nowadays in public places for air exchange and temperature control, which significantly influences the transfer of pollutants between indoors and outdoors. To study the effect of central ventilation and air conditioner systems on the concentration and health risk from airborne pollutants, a spatial and temporal survey was carried out using polycyclic aromatic hydrocarbons (PAHs) as agent pollutants. During the period when the central ventilation system operated without air conditioning (AC-off period), concentrations of 2-4 ring PAHs in the model supermarket were dominated by outdoor levels, due to the good linearity between indoor air and outdoor air (r(p) > 0.769, p supermarket increased the potential health risks from low molecular weight PAHs. During the period when the central ventilation and air conditioner systems were working simultaneously (AC-on period), although the total levels of PAHs were increased, the concentrations and percentage of the particulate PAHs indoors declined significantly. The BaP equivalency (BaPeq) concentration indicated that utilization of air conditioning reduced the health risks from PAHs in the model supermarket.

  9. Accumulation, allocation, and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in soil-Brassica chinensis system.

    Science.gov (United States)

    Zhang, Juan; Fan, Shukai; Du, Xiaoming; Yang, Juncheng; Wang, Wenyan; Hou, Hong

    2015-01-01

    Farmland soil and leafy vegetables accumulate more polycyclic aromatic hydrocarbons (PAHs) in suburban sites. In this study, 13 sampling areas were selected from vegetable fields in the outskirts of Xi'an, the largest city in northwestern China. The similarity of PAH composition in soil and vegetation was investigated through principal components analysis and redundancy analysis (RDA), rather than discrimination of PAH congeners from various sources. The toxic equivalent quantity of PAHs in soil ranged from 7 to 202 μg/kg d.w., with an average of 41 μg/kg d.w., which exceeded the agricultural/horticultural soil acceptance criteria for New Zealand. However, the cancer risk level posed by combined direct ingestion, dermal contact, inhalation of soil particles, and inhalation of surface soil vapor met the rigorous international criteria (1 × 10(-6)). The concentration of total PAHs was (1052 ± 73) μg/kg d.w. in vegetation (mean ± standard error). The cancer risks posed by ingestion of vegetation ranged from 2×10-5 to 2 × 10(-4) with an average of 1.66 × 10(-4), which was higher than international excess lifetime risk limits for carcinogens (1 × 10(-4)). The geochemical indices indicated that the PAHs in soil and vegetables were mainly from vehicle and crude oil combustion. Both the total PAHs in vegetation and bioconcentration factor for total PAHs (the ratio of total PAHs in vegetation to total PAHs in soil) increased with increasing pH as well as decreasing sand in soil. The total variation in distribution of PAHs in vegetation explained by those in soil reached 98% in RDA, which was statistically significant based on Monte Carlo permutation. Common pollution source and notable effects of soil contamination on vegetation would result in highly similar distribution of PAHs in soil and vegetation.

  10. Accumulation, allocation, and risk assessment of polycyclic aromatic hydrocarbons (PAHs in soil-Brassica chinensis system.

    Directory of Open Access Journals (Sweden)

    Juan Zhang

    Full Text Available Farmland soil and leafy vegetables accumulate more polycyclic aromatic hydrocarbons (PAHs in suburban sites. In this study, 13 sampling areas were selected from vegetable fields in the outskirts of Xi'an, the largest city in northwestern China. The similarity of PAH composition in soil and vegetation was investigated through principal components analysis and redundancy analysis (RDA, rather than discrimination of PAH congeners from various sources. The toxic equivalent quantity of PAHs in soil ranged from 7 to 202 μg/kg d.w., with an average of 41 μg/kg d.w., which exceeded the agricultural/horticultural soil acceptance criteria for New Zealand. However, the cancer risk level posed by combined direct ingestion, dermal contact, inhalation of soil particles, and inhalation of surface soil vapor met the rigorous international criteria (1 × 10(-6. The concentration of total PAHs was (1052 ± 73 μg/kg d.w. in vegetation (mean ± standard error. The cancer risks posed by ingestion of vegetation ranged from 2×10-5 to 2 × 10(-4 with an average of 1.66 × 10(-4, which was higher than international excess lifetime risk limits for carcinogens (1 × 10(-4. The geochemical indices indicated that the PAHs in soil and vegetables were mainly from vehicle and crude oil combustion. Both the total PAHs in vegetation and bioconcentration factor for total PAHs (the ratio of total PAHs in vegetation to total PAHs in soil increased with increasing pH as well as decreasing sand in soil. The total variation in distribution of PAHs in vegetation explained by those in soil reached 98% in RDA, which was statistically significant based on Monte Carlo permutation. Common pollution source and notable effects of soil contamination on vegetation would result in highly similar distribution of PAHs in soil and vegetation.

  11. A new atmospheric aerosol phase equilibrium model (UHAERO: organic systems

    Directory of Open Access Journals (Sweden)

    N. R. Amundson

    2007-09-01

    Full Text Available In atmospheric aerosols, water and volatile inorganic and organic species are distributed between the gas and aerosol phases in accordance with thermodynamic equilibrium. Within an atmospheric particle, liquid and solid phases can exist at equilibrium. Models exist for computation of phase equilibria for inorganic/water mixtures typical of atmospheric aerosols; when organic species are present, the phase equilibrium problem is complicated by organic/water interactions as well as the potentially large number of organic species. We present here an extension of the UHAERO inorganic thermodynamic model (Amundson et al., 2006c to organic/water systems. Phase diagrams for a number of model organic/water systems characteristic of both primary and secondary organic aerosols are computed. Also calculated are inorganic/organic/water phase diagrams that show the effect of organics on inorganic deliquescence behavior. The effect of the choice of activity coefficient model for organics on the computed phase equilibria is explored.

  12. A new atmospheric aerosol phase equilibrium model (UHAERO: organic systems

    Directory of Open Access Journals (Sweden)

    N. R. Amundson

    2007-06-01

    Full Text Available In atmospheric aerosols, water and volatile inorganic and organic species are distributed between the gas and aerosol phases in accordance with thermodynamic equilibrium. Within an atmospheric particle, liquid and solid phases can exist at equilibrium. Models exist for computation of phase equilibria for inorganic/water mixtures typical of atmospheric aerosols; when organic species are present, the phase equilibrium problem is complicated by organic/water interactions as well as the potentially large number of organic species. We present here an extension of the UHAERO inorganic thermodynamic model (Amundson et al., 2006c to organic/water systems. Phase diagrams for a number of model organic/water systems characteristic of both primary and secondary organic aerosols are computed. Also calculated are inorganic/organic/water phase diagrams that show the effect of organics on inorganic deliquescence behavior. The effect of the choice of activity coefficient model for organics on the computed phase equilibria is explored.

  13. Linear C32H66 hydrocarbon in the mixed state with C10H22, C12H26, C14H30, C16H34 and C18H38: Comparison of strength of phases and role of tunnel-like defects

    Indian Academy of Sciences (India)

    P B Shashikanth; P B V Prasad

    2003-02-01

    Strengths of m, o and phases of linear dotriacontane hydrocarbon in mixed state with certain shorter chain length homologues (SMOLLENCs), estimated from powder XRD analysis, are compared. The results suggest strong evidence in favour of tunnel-like defects (TLIDs).

  14. Phase equilibria in the Ni-Co-Ga alloy system

    Energy Technology Data Exchange (ETDEWEB)

    Ducher, R. [Department of Materials Science, Graduate School of Engineering, Tohoku University, 6-6-02 Aoba-yama, Sendai 980-8579 (Japan); Kainuma, R. [Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Sendai 980-8577 (Japan)], E-mail: kainuma@tagen.tohoku.ac.jp; Ishida, K. [Department of Materials Science, Graduate School of Engineering, Tohoku University, 6-6-02 Aoba-yama, Sendai 980-8579 (Japan)

    2008-10-20

    Phase equilibria among the {alpha} (A1), {alpha}' (L1{sub 2}), {beta} (B2), {delta} (Ni{sub 5}Ga{sub 3}) and {epsilon} (Ni{sub 13}Ga{sub 9}) phases at elevated temperatures and the existing composition region of the martensite phase at room temperature in the Ni-Co side of the Ni-Co-Ga system were examined by electron probe microanalysis (EPMA) using diffusion triples which were fabricated by two-step diffusion coupling. It was confirmed that single-phase regions of the {alpha}, {alpha}' and {beta} phases at 700 and 1000 deg. C exist in a wide composition range parallel to Ni-Co section and that the existing region of the martensite phase at room temperature is also located over a wide range in the {beta} phase along the {beta} + {alpha} (or {alpha}') two-phase region.

  15. Fluctuations, conformational asymmetry and block copolymer phase behaviour

    DEFF Research Database (Denmark)

    Bates, F.S.; Schulz, M.F.; Khandpur, A.K.;

    1994-01-01

    Phase behaviour near the order-disorder transition (ODT) of 58 model hydrocarbon diblock copolymers, representing four different systems, is summarized. Six distinct ordered-state microstructures are reported, including hexagonally modulated lamellae (HML), hexagonally perforated layers (HPL) and...

  16. Effects of in vivo chronic hydrocarbons pollution on sanitary status and immune system in sea bass (Dicentrarchus labrax L.).

    Science.gov (United States)

    Danion, Morgane; Le Floch, Stéphane; Kanan, Rami; Lamour, François; Quentel, Claire

    2011-10-01

    Following the development of an experimental system to expose adult fish to low and stable concentration of pollutant over a prolonged period, the in vivo effects of hydrocarbons on sanitary status, i.e. the health status of fish with regard to chemical pollution, and immune system in sea bass, Dicentrarchus labrax were assessed. A total of 90 fish were acclimated for 15 days, then 45 fish were exposed to the water soluble fraction (WSF) of Arabian crude oil, similar to a complex pollution by hydrocarbons chronically observed in situ in estuaries, while the 45 other control fish sustained the same experimental conditions in clean seawater. After 21 days of exposure, 30 contaminated and control fish were sampled, then 30 other fish were collected after a 15 day recovery period in clean sea water. PAH concentrations in crude oil, WSF, muscles and bile were measured by gas chromatography coupled with mass spectrometry analysis. White blood cell counts and differential leucocyte counts were determined by classical haematology methods. Cell mortality and phagocytosis activity of leucocytes were analyzed by flow cytometry. Haemolytic alternative complement activity and stress parameters were analyzed in blood plasma by spectrophotometry. After a 21 day exposure period to a mixture of 41 parent/alkylated-PAHs (835 ± 52/85 ± 1 5 ng L(-1)). Fish flesh was contaminated by a bioconcentration of naphthalene very closed to the Reference Dose for Oral Exposure estimated by US-EPA's Integrated Risk Information System, causing a potential risk for human consumers. A leucopenia due to a lymphopenia, a rise in leucocyte mortality and a decrease in phagocytosis activity were noted in contaminated fish compared to controls. All these results may be explained by the damage to membrane cells integrity by uptake of PAHs and suggested an impairment of specific and nonspecific immune systems. After a 15 day recovery period, effects were reversible for sanitary status and an offset in

  17. Phase diagram for a nano-yttria-stabilized zirconia system

    DEFF Research Database (Denmark)

    Asadikiya, Mohammad; Sabarou, Hooman; Chen, Ming;

    2016-01-01

    Due to the attractive properties of nanoparticles because of their effective surface area, they have been studied widely. Nano-yttria-stabilized zirconia (n-YSZ) is a ceramic which has been scrutinized extensively in past years. Because of the different stability behavior of n-YSZ in comparison...... with bulk YSZ, a new phase diagram is needed for the n-YSZ system in order to identify stable phases under various conditions. In this study, a phase diagram for the n-YSZ system was provided to determine phase stability ranges at room temperature with respect to particle size and composition....... By applying the CALPHAD approach, a 3-D phase diagram for the n-YSZ system was established in which the stability range of each individual phase can be predicted based on the particle size, composition, and temperature....

  18. Ternary phase diagram calculations of pentaerythritol-pentaglycerine-neopentylglycol system

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, A.; Talekar, A. [Chemical and Materials Engineering Department (MS388), University of Nevada, Reno, NV 89557 (United States); Chandra, D., E-mail: dchandra@unr.edu [Chemical and Materials Engineering Department (MS388), University of Nevada, Reno, NV 89557 (United States); Chien, W.-M. [Chemical and Materials Engineering Department (MS388), University of Nevada, Reno, NV 89557 (United States)

    2012-05-10

    Highlights: Black-Right-Pointing-Pointer Ternary phase diagrams of polyalcohols are developed using the CALPHAD method. Black-Right-Pointing-Pointer These ternary phase diagrams are thermodynamically calculated for the first time. Black-Right-Pointing-Pointer Orientational disorder is observed in the high temperature (energy storage) phase. Black-Right-Pointing-Pointer Polyalcohols are potential thermal energy storage materials. - Abstract: The pentaerythritol (PE)-pentaglycerine (PG)-neopentylglycol (NPG) ternary system has been thermodynamically assessed using the CALPHAD method and Thermo-Calc software. The PE-PG, PG-NPG, PE-NPG binary systems have also been calculated using CALPHAD on the basis of reported binary experimental data. The solution phases are modeled as substitutional solutions, in which the excess Gibbs energies are expressed by the Redlich-Kister-Muggianu polynomial. The PE-NPG binary phase diagram was modeled using Henrian solution model, and the liquid phase was assumed ideal. The PG-NPG system was optimized using regular and sub-regular solution models and show invariant equilibria at 298 K. The PE-NPG binary system was calculated from room temperature to the liquid phase temperatures. The modeled phase diagrams and the experimental data are in good agreement. A set of self consistent thermodynamic parameters formulating the Gibbs energies of various phases in the PE-PG-NPG ternary system are obtained in the present work. Thermodynamic properties, several vertical and isopleth sections have been calculated and are in good agreement with experimental data.

  19. Effect of heat recovery water heater system on the performance of residential split air conditioner using hydrocarbon refrigerant (HCR22)

    Science.gov (United States)

    Aziz, A.; Thalal; Amri, I.; Herisiswanto; Mainil, A. K.

    2017-09-01

    This This paper presents the performance of residential split air conditioner (RSAC) using hydrocarbon refrigerant (HCR22) as the effect on the use of heat recovery water heater system (HRWHS). In this study, RSAC was modified with addition of dummy condenser (trombone coil type) as heat recovery water heater system (HRWHS). This HRWHS is installed between a compressor and a condenser by absorbing a part of condenser waste heat. The results show that RSAC with HRWHS is adequate to generate hot water with the temperature range about 46.58˚C - 48.81˚C when compared to without HRWHS and the use of dummy condenser does not give significant effect to the split air conditioner performance. When the use of HRWHS, the refrigerant charge has increase about 19.05%, the compressor power consumption has slightly increase about 1.42% where cooling capacity almost the same with slightly different about 0.39%. The condenser heat rejection is lower about 2.68% and the COP has slightly increased about 1.05% when compared to without HRWHS. The use of HRWHS provide free hot water, it means there is energy saving for heating water without negative impact to the system performance of RSAC.

  20. Phase Diagrams for Systems Containing Hyperbranched Polymers

    Directory of Open Access Journals (Sweden)

    Tim Zeiner

    2012-01-01

    Full Text Available Hyperbranched polymers show an outstanding potential for applications ranging from chemistry over nanotechnology to pharmacy. In order to take advantage of this potential, the underlying phase behaviour must be known. From the thermodynamic point of view, the modelling of these phase diagrams is quite challenging, because the thermodynamic properties depend on the architecture of the hyperbranched polymer as well as on the number and kind of present functional end groups. The influence of architecture can be taken into account via the lattice cluster theory (LCT as an extension of the well-known Flory–Huggins theory. Whereas the Flory–Huggins theory is limited to linear polymer chains, the LCT can be applied to an arbitrary chain architecture. The number and the kind of functional groups can be handled via the Wertheim perturbation theory, applicable for directed forces between the functional groups and the surrounding solvent molecules. The combination of the LCT and the Wertheim theory can be established for the modelling or even prediction of the liquid-liquid equilibria (LLE of polymer solutions in a single solvent or in a solvent mixture or polymer blends, where the polymer can have an arbitrary structure. The applied theory predicts large demixing regions for mixtures of linear polymers and hyperbranched polymers, as well as for mixtures made from two hyperbranched polymers. The introduction of empty lattice sites permits the theoretical investigation of pressure effects on phase behaviour. The calculated phase diagrams were compared with own experimental data or to experimental data taken from literature.

  1. Phase Diagram Modelling: Nickel - Aluminum - Chromium System

    Science.gov (United States)

    1998-04-01

    conducted by Kaufman and co-workers and their lattice stabilities have formed the basis of phase diagram calculations to the present day.1 In...mol ( 0.74827 Ni + 0.73305E-01 Cr + 0.83609E-02 Al ( 1200.00 C, 1.0000 <—s -.Molten alloy <—s <—s) atm, L- NiCrAl , a=0.82994 ) 0.00000

  2. Retinal Drug Delivery System, Phase I

    Science.gov (United States)

    1997-06-01

    macular degeneration (AMD) and diabetic retinopathy. Intraocular injection can place the drug directly into the vitreous cavity but is not recommended...drugs for treatment of other ocular diseases such as retinal tumors, diabetic retinopathy, age related macular degeneration and cytomegalovirus...with the changes in mobile phase as indicated in each section. Data was collected for 10 min and the peak area was analyzed using the standard

  3. Demonstration Advanced Avionics System (DAAS), Phase 1

    Science.gov (United States)

    Bailey, A. J.; Bailey, D. G.; Gaabo, R. J.; Lahn, T. G.; Larson, J. C.; Peterson, E. M.; Schuck, J. W.; Rodgers, D. L.; Wroblewski, K. A.

    1981-01-01

    Demonstration advanced anionics system (DAAS) function description, hardware description, operational evaluation, and failure mode and effects analysis (FMEA) are provided. Projected advanced avionics system (PAAS) description, reliability analysis, cost analysis, maintainability analysis, and modularity analysis are discussed.

  4. Macrocyclic polyamine-functionalized silica as a solid-phase extraction material coupled with ionic liquid dispersive liquid-liquid extraction for the enrichment of polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Liu, Longhui; He, Lijun; Jiang, Xiuming; Zhao, Wenjie; Xiang, Guoqiang; Anderson, Jared L

    2014-04-01

    In this study, silica modified with a 30-membered macrocyclic polyamine was synthesized and first used as an adsorbent material in SPE. The SPE was further combined with ionic liquid (IL) dispersive liquid-liquid microextraction (DLLME). Five polycyclic aromatic hydrocarbons were employed as model analytes to evaluate the extraction procedure and were determined by HPLC combined with UV/Vis detection. Acetone was used as the elution solvent in SPE as well as the dispersive solvent in DLLME. The enrichment of analytes was achieved using the 1,3-dibutylimidazolium bis[(trifluoromethyl)sulfonyl]imide IL/acetone/water system. Experimental conditions for the overall macrocycle-SPE-IL-DLLME method, such as the amount of adsorbent, sample solution volume, sample solution pH, type of elution solvent as well as addition of salt, were studied and optimized. The developed method could be successfully applied to the analysis of four real water samples. The macrocyclic polyamine offered higher extraction efficiency for analytes compared with commercially available C18 cartridge, and the developed method provided higher enrichment factors (2768-5409) for model analytes compared with the single DLLME. Good linearity with the correlation coefficients ranging from 0.9983 to 0.9999 and LODs as low as 0.002 μg/L were obtained in the proposed method.

  5. Phase Noise Influence in Optical OFDM Systems employing RF Pilot Tone for Phase Noise Cancellation

    Science.gov (United States)

    Jacobsen, Gunnar; Kazovsky, Leonid G.; Xu, Tianhua; Popov, Sergei; Li, Jie; Zhang, Yima; Friberg, Ari T.

    2011-06-01

    For coherent and direct-detection Orthogonal Frequency Division Multiplexed (OFDM) systems employing radio frequency (RF) pilot tone phase noise cancellation the influence of laser phase noise is evaluated. Novel analytical results for the common phase error and for the (modulation dependent) inter carrier interference are evaluated based upon Gaussian statistics for the laser phase noise. In the evaluation it is accounted for that the laser phase noise is filtered in the correlation signal detection. Numerical results are presented for OFDM systems with 4 and 16 PSK modulation, 200 OFDM bins and baud rate of 1 GS/s. It is found that about 225 km transmission is feasible for the coherent 4PSK-OFDM system over normal (G.652) fiber.

  6. Phase Noise Influence in Optical OFDM Systems employing RF Pilot Tone for Phase Noise Cancellation

    CERN Document Server

    Jacobsen, Gunnar; Xu, Tianhua; Popov, Sergei; Li, Jie; Zhang, Yimo; Friberg, Ari T

    2016-01-01

    For coherent and direct-detection Orthogonal Frequency Division Multiplexed (OFDM) systems employing radio frequency (RF) pilot tone phase noise cancellation the influence of laser phase noise is evaluated. Novel analytical results for the common phase error and for the (modulation dependent) inter carrier interference are evaluated based upon Gaussian statistics for the laser phase noise. In the evaluation it is accounted for that the laser phase noise is filtered in the correlation signal detection. Numerical results are presented for OFDM systems with 4 and 16 PSK modulation, 200 OFDM bins and baud rate of 1 GS/s. It is found that about 225 km transmission is feasible for the coherent 4PSK-OFDM system over normal (G.652) fiber.

  7. Simulation model for a seven-phase BLDCM drive system

    Science.gov (United States)

    Park, Sang-Hoon; Lee, Won-Cheol; Lee, Jung-Hyo; Yu, Jae-Sung; Kim, Gyu-Sik; Won, Chung-Yuen

    2007-12-01

    BLDC motors have many advantages over brushed DC motors and induction motors. So, BLDC motors extend their application to many industrial fields. In this paper, the digital simulation and modeling of a 7-phase brushless DC motor have been presented. The 14-switch inverter and a 7-phase brushless DC motor drive system are simulated using hysteresis current controller and logic of switching pattern with the Boolean¡s function. Through some simulations, we found that our modeling and analysis of a 7-phase BLDCM with PWM inverter would be helpful for the further studies of the multi-phase BLDCM drive systems.

  8. Argus phase II optical data collection system

    Science.gov (United States)

    Wasson, Wayne E.

    1996-11-01

    The Argus aircraft is a highly modified NC-135E fitted with an infrared and ultraviolet-visible sensor suite for radiometric and spectral data collection. Each suite is operated independently with its own separate gimbal for precision pointing, telescope, and relay optics. The system includes a silica window for the ultraviolet-visible, and a zinc selenide window for the infrared. The entire system was developed and fabricated in-house at the Phillips Laboratory. All sensors are calibrated as a system onboard the aircraft through a unique facility called the aircraft optical calibration facility. The data is all recorded digitally, and can be transferred to secure data reduction facilities via optical fiber. The system is modular, in that the ultraviolet-visible and infrared benches can be separated, or the entire system can be quickly removed to allow for the introduction of other sensor suites or systems. The gimbals and telescopes can be used independently of the rest of the system. The aircraft is also fitted with an anemometry system, which can be operated independently of the sensor systems. This aircraft is capable of many types of missions, and will soon be fitted with a LIDAR system for remote sensing. The philosophy in building the system is to make it capable of quick changes during mission.

  9. 4F-based optical phase imaging system

    DEFF Research Database (Denmark)

    2013-01-01

    The invention relates to 4F-based optical phase imaging system and in particular to reconstructing quantitative phase information of an object when using such systems. The invention applies a two-dimensional, complex spatial light modulator (SLM) to impress a complex spatial synthesized modulation...... in addition to the complex spatial modulation impressed by the object. This SLM is arranged so that the synthesized modulation is superimposed with the object modulation and is thus placed at an input plane to the phase imaging system. By evaluating output images from the phase imaging system, the synthesized...... modulation is selected to optimize parameters in the output image which improves the reconstruction of qualitative and quantitative object phase information from the resulting output images....

  10. Contact solid-phase microextraction with uncoated glass and polydimethylsiloxane-coated fibers versus solvent sampling for the determination of hydrocarbons in adhesion secretions of Madagascar hissing cockroaches Gromphadorrhina portentosa (Blattodea) by gas chromatography-mass spectrometry.

    Science.gov (United States)

    Gerhardt, Heike; Schmitt, Christian; Betz, Oliver; Albert, Klaus; Lämmerhofer, Michael

    2015-04-03

    Molecular profiles of adhesion secretions of Gromphadorrhina portentosa (Madagascar hissing cockroach, Blattodea) were investigated by gas chromatography mass spectrometry with particular focus on a comprehensive analysis of linear and branched hydrocarbons. For this purpose, secretions from the tarsi (feet), possibly contributing to adhesion on smooth surfaces, and control samples taken from the tibiae (lower legs), which contain general cuticular hydrocarbons that are supposed to be not involved in the biological adhesion function, were analyzed and their molecular fingerprints compared. A major analytical difficulty in such a study constitutes the representative, spatially controlled, precise and reproducible sampling from a living insect as well as the minute quantities of insect secretions on both tarsi and tibiae. Thus, three different in vivo sampling methods were compared in terms of sampling reproducibility and extraction efficiency by replicate measurement of samples from tarsi and tibiae. While contact solid-phase microextraction (SPME) with a polydimethylsiloxane (PDMS) fiber showed higher peak intensities, a self-made uncoated glass fiber had the best repeatability in contact-SPME sampling. Chromatographic profiles of these two contact-SPME sampling methods were statistically not significantly different. Inter-individual variances were larger than potentially existing minor differences in molecular patterns of distinct sampling methods. Sampling by solvent extraction was time consuming, showed lower sensitivities and was less reproducible. In general, sampling by contact-SPME with a cheap glass fiber turned out to be a viable alternative to PDMS-SPME sampling. Hydrocarbon patterns of the tarsal adhesion secretions were qualitatively similar to those of epicuticular hydrocarbon profiles of the tibiae. However, hydrocarbons were in general less abundant in tarsal secretions than secretions from tibiae.

  11. Synthesis of g-C3N4/Fe3O4 nanocomposites and application as a new sorbent for solid phase extraction of polycyclic aromatic hydrocarbons in water samples.

    Science.gov (United States)

    Wang, Man; Cui, Shihai; Yang, Xiaodi; Bi, Wentao

    2015-01-01

    An easy preparation of g-C3N4/Fe3O4 nanocomposites by chemical co-precipitation has been demonstrated. The as-prepared materials were characterized by X-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy and thermogravimetric analysis. The high affinity of g-C3N4 toward polycyclic aromatic hydrocarbons and the magnetic behavior of Fe3O4 were combined to provide an efficient and simple magnetic solid phase extraction (MSPE). The adsorption and desorption of polycyclic aromatic hydrocarbons on g-C3N4/Fe3O4 were examined. Different factors affecting the magnetic solid phase extraction of polycyclic aromatic hydrocarbons were assessed in terms of adsorption, desorption, and recovery. Under the optimized conditions, the proposed method showed good limits of detection (LOD, S/N=3) in the range of 0.05-0.1 ng mL(-1) and precision in the range of 1.8-5.3% (RSDs, n=3). This method was also successfully applied to the analysis of real water samples; good spiked recoveries over the range of 80.0-99.8% were obtained.

  12. Differential phase contrast X-ray imaging system and components

    Science.gov (United States)

    Stutman, Daniel; Finkenthal, Michael

    2014-07-01

    A differential phase contrast X-ray imaging system includes an X-ray illumination system, a beam splitter arranged in an optical path of the X-ray illumination system, and a detection system arranged in an optical path to detect X-rays after passing through the beam splitter.

  13. Differential phase contrast X-ray imaging system and components

    Energy Technology Data Exchange (ETDEWEB)

    Stutman, Daniel; Finkenthal, Michael

    2017-01-31

    A differential phase contrast X-ray imaging system includes an X-ray illumination system, a beam splitter arranged in an optical path of the X-ray illumination system, and a detection system arranged in an optical path to detect X-rays after passing through the beam splitter.

  14. AC system stabilization via phase shift transformer with thyristor commutation

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Jose Carlos de; Guimaraes, Geraldo Caixeta; Moraes, Adelio Jose [Uberlandia Univ., MG (Brazil); Abreu, Jose Policarpo G. de [Escola Federal de Engenharia de Itajuba, MG (Brazil); Oliveira, Edimar Jose de [Juiz de Fora Univ., MG (Brazil)

    1994-12-31

    This article aims to present initially the constructive and operative forms of a phase-shift autotransformer which provides both magnitude and phase angle change through thyristor commutation, including a technic to reduce the number of thyristors. Following, it is proposed a control system to make such equipment an efficient AC system stabilizing tool. It is presented some simulation results to show the operation of this transformer in an electrical system. (author) 3 refs., 11 figs., 3 tabs.

  15. Flexible Manufacturing System--The procurement phase

    Energy Technology Data Exchange (ETDEWEB)

    Van Cleave, R.A.

    1992-02-01

    A method has been developed for procuring a Flexible Manufacturing System (FMS). The method includes preparation of a functional specification that defines equipment and system requirements; development of relationships between the potential suppliers and purchasers; proposal evaluation and selection in a competitive bid environment; and a technique to minimize misunderstandings between buyer requirements and supplier offerings. Methods established during this development effort have permitted successful procurement of a multimillion-dollar FMS. Techniques used will be helpful to procurement of other systems.

  16. Leaf-architectured 3D Hierarchical Artificial Photosynthetic System of Perovskite Titanates Towards CO2 Photoreduction Into Hydrocarbon Fuels

    Science.gov (United States)

    Zhou, Han; Guo, Jianjun; Li, Peng; Fan, Tongxiang; Zhang, Di; Ye, Jinhua

    2013-04-01

    The development of an ``artificial photosynthetic system'' (APS) having both the analogous important structural elements and reaction features of photosynthesis to achieve solar-driven water splitting and CO2 reduction is highly challenging. Here, we demonstrate a design strategy for a promising 3D APS architecture as an efficient mass flow/light harvesting network relying on the morphological replacement of a concept prototype-leaf's 3D architecture into perovskite titanates for CO2 photoreduction into hydrocarbon fuels (CO and CH4). The process uses artificial sunlight as the energy source, water as an electron donor and CO2 as the carbon source, mimicking what real leaves do. To our knowledge this is the first example utilizing biological systems as ``architecture-directing agents'' for APS towards CO2 photoreduction, which hints at a more general principle for APS architectures with a great variety of optimized biological geometries. This research would have great significance for the potential realization of global carbon neutral cycle.

  17. Turbo Receiver Design for Phase Noise Mitigation in OFDM Systems

    CERN Document Server

    Sridharan, Gokul

    2010-01-01

    This paper addresses the issue of phase noise in OFDM systems. Phase noise (PHN) is a transceiver impairment resulting from the non-idealities of the local oscillator. We present a case for designing a turbo receiver for systems corrupted by phase noise by taking a closer look at the effects of the common phase error (CPE). Using an approximate probabilistic framework called variational inference (VI), we develop a soft-in soft-out (SISO) algorithm that generates posterior bit-level soft estimates while taking into account the effect of phase noise. The algorithm also provides an estimate of the phase noise sequence. Using this SISO algorithm, a turbo receiver is designed by passing soft information between the SISO detector and an outer forward error correcting (FEC) decoder that uses a soft decoding algorithm. It is shown that the turbo receiver achieves close to optimal performance.

  18. Measuring the Aharonov-Anandan phase in multiport photonic systems.

    Science.gov (United States)

    Wang, Kai; Weimann, Steffen; Nolte, Stefan; Perez-Leija, Armando; Szameit, Alexander

    2016-04-15

    Beyond the adiabatic limit, the Aharonov-Anandan phase is a generalized description of Berry's phase. In this regime, systems with time-independent Hamiltonians may also acquire observable geometric phases. Here we report on a measurement of the Aharonov-Anandan phase in photonics. Different from previous optical experiments on geometric phases, the implementation is based on light modes confined in evanescently coupled waveguides rather than polarization-like systems, thereby physical models in more than two-dimensional Hilbert spaces are achievable. In a tailored photonic lattice, we realize time-independent quantum-driven harmonic oscillators initially prepared in the vacuum state and achieve a measurement of the Aharonov-Anandan phase via integrated interferometry.

  19. Noise robust linear dynamic system for phase unwrapping and smoothing.

    Science.gov (United States)

    Estrada, Julio C; Servin, Manuel; Quiroga, Juan A

    2011-03-14

    Phase unwrapping techniques remove the modulus ambiguities of wrapped phase maps. The present work shows a first-order feedback system for phase unwrapping and smoothing. This system is a fast sequential unwrapping system which also allows filtering some noise because in deed it is an Infinite Impulse Response (IIR) low-pass filter. In other words, our system is capable of low-pass filtering the wrapped phase as the unwrapping process proceeds. We demonstrate the temporal stability of this unwrapping feedback system, as well as its low-pass filtering capabilities. Our system even outperforms the most common and used unwrapping methods that we tested, such as the Flynn's method, the Goldstain's method, and the Ghiglia least-squares method (weighted or unweighted). The comparisons with these methods shows that our system filters-out some noise while preserving the dynamic range of the phase-data. Its application areas may cover: optical metrology, synthetic aperture radar systems, magnetic resonance, and those imaging systems where information is obtained as a demodulated wrapped phase map.

  20. CLASSIFICATION AND CHARACTERISTICS OF HYDROCARBON PRIMARY MIGRATION AND TRANSPORT SYSTEM IN CLASTIC ROCKS%碎屑岩中油气初次运移输导体系分类及特征

    Institute of Scientific and Technical Information of China (English)

    康德江

    2009-01-01

    Studies of hydrocarbon primary migration and transport system play an important role in secondary migration, even influencing final reservoir scale. According to researches of transport system during secondary migration, from microcosmic angle, based on generation and combination of different transport channels, the primary transport system in clastic rocks has been divided into 3 types: normal, secondary and terminative. The normal transport system is composed of pore throat and kerogen network. Hydrocarbon (most miscible phase and little immiscible phase) is expelled from source rock by capillary driving force formed from hydrocarbon bulging. The secondary transport system is formed by a large quantity of secondary microcracks. High excess pressure in source rocks is the main force for immiscible hydrocarbon expelling. In the secondary transport system, hydrocarbon expelling quantity is the largest and efficiency is the highest. The terminative system is composed of intergranular cracks and residual microcracks. The low excess pressure acts as the main force. The efficiency is low and the translocation is very weak, even down to vanish. Along with changes of burial history of source rocks in basins, the normal and the secondary transport system can transform reciprocally to certain extent, whereas the terminative system means the end of perpetual close of the primary transport canals and the complete finish of transport period.%油气初次输导体系对于油气二次运移有着直接影响,甚至关系到最终油气藏规模.参照、类比烃类二次运移输导体系,从微观角度分析入手,基于不同油气微观输导通道的产生和组合形式,将碎屑岩中油气初次运移输导体系分为3类,即:正常型、次生型和终结型.正常型输导体系由烃源岩颗粒孔隙喉道和干酪根网络组成,以生烃膨胀而增大的毛细管力为主要动力,油气多以混溶相排出,少量为非混溶相;次生型输导体系由大量

  1. Advanced phase change materials and systems for solar passive heating and cooling of residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Salyer, I.O.; Sircar, A.K.; Dantiki, S.

    1988-01-01

    During the last three years under the sponsorship of the DOE Solar Passive Division, the University of Dayton Research Institute (UDRI) has investigated four phase change material (PCM) systems for utility in thermal energy storage for solar passive heating and cooling applications. From this research on the basis of cost, performance, containment, and environmental acceptability, we have selected as our current and most promising series of candidate phase change materials, C-15 to C-24 linear crystalline alkyl hydrocarbons. The major part of the research during this contract period was directed toward the following three objectives. Find, test, and develop low-cost effective phase change materials (PCM) that melt and freeze sharply in the comfort temperature range of 73--77{degree}F for use in solar passive heating and cooling of buildings. Define practical materials and processes for fire retarding plasterboard/PCM building products. Develop cost-effective methods for incorporating PCM into building construction materials (concrete, plasterboard, etc.) which will lead to the commercial manufacture and sale of PCM-containing products resulting in significant energy conservation.

  2. Phased Antenna Array for Global Navigation Satellite System Signals

    Science.gov (United States)

    Turbiner, Dmitry (Inventor)

    2015-01-01

    Systems and methods for phased array antennas are described. Supports for phased array antennas can be constructed by 3D printing. The array elements and combiner network can be constructed by conducting wire. Different parameters of the antenna, like the gain and directivity, can be controlled by selection of the appropriate design, and by electrical steering. Phased array antennas may be used for radio occultation measurements.

  3. Geology and potential hydrocarbon play system of Lower Karoo Group in the Maamba Coalfield Basin, southern Zambia

    Science.gov (United States)

    Phiri, Cryton; Wang, Pujun; Nyambe, Imasiku Anayawa

    2016-06-01

    This study attempts to augment geology and potential hydrocarbon play system database not only in the Maamba Coalfield basin of southern Zambia but in other similar continental non-marine Karoo rift basins in the region as well. Geological analyses were conducted through extensive outcrops and exposures and subsurface boreholes. Six (6) major lithofacies (diamictites, conglomerates, sandstones, siltstones, coal and mudstones) represents Lower Karoo Group sequence. Four (4) mudstone core samples were prepared for thin section petrography. In addition, six (6) samples of sandstones obtained from outcrops, exposures and cores were impregnated with blue epoxy before thin sectioning in order to facilitate easy recognition of porosity. Quantification of framework grain composition and porosity was achieved by point counting a total of 300 points per thin section. The identification of diagenetic constituents and pore types was made possible by the use of scanning electron microscopy (SEM). Rock-Eval pyrolysis analyses utilised 35 core samples of mudstones and coal. According to results of the analyses, three (3) deposition settings which include; alluvial, fluvial-lacustrine and lacustrine setting are envisaged. . Fluvial-lacustrine deposits are host to mudstones and coal source rocks and sandstone reservoir rocks. Mudstones and coal source rocks gave the total organic carbon (TOC) that is well above the recommended thresholds of 0.5 wt % and 2.5 wt % of gas and oil generation respectively. The hydrogen index (HI) values are mostly below 200 mg HC/g TOC, indicating fair quantities of type III kerogen. The thermal maturity readings measured by temperature Tmax range from 440 to 485 °C in agreement with calculated vitrinite reflectance (Rocalc) range of 0.76-1.57% indicating mature to post mature stages. This maturation is attributed to the burial temperatures and near-surface heat flows by faults. Production Index (PI) values are less than 0.1 suggesting some hydrocarbon

  4. SPS phase control system performance via analytical simulation

    Science.gov (United States)

    Lindsey, W. C.; Kantak, A. V.; Chie, C. M.; Booth, R. W. D.

    1979-01-01

    A solar power satellite transmission system which incorporates automatic beam forming, steering, and phase control is discussed. The phase control concept centers around the notation of an active retrodirective phased array as a means of pointing the beam to the appropriate spot on Earth. The transmitting antenna (spacetenna) directs the high power beam so that it focuses on the ground-based receiving antenna (rectenna). A combination of analysis and computerized simulation was conducted to determine the far field performance of the reference distribution system, and the beam forming and microwave power generating systems.

  5. Superfluid phase transition in two-dimensional excitonic systems

    Energy Technology Data Exchange (ETDEWEB)

    Apinyan, V.; Kopeć, T.K., E-mail: kopec@int.pan.wroc.pl

    2014-03-01

    We study the superfluid phase transition in the two-dimensional (2D) excitonic system. Employing the extended Falicov–Kimball model (EFKM) and considering the local quantum correlations in the system composed of conduction band electrons and valence band holes we demonstrate the existence of the excitonic insulator (EI) state in the system. We show that at very low temperatures, the particle phase stiffness in the pure-2D excitonic system, governed by the non-local cross correlations, is responsible for the vortex–antivortex binding phase-field state, known as the Berezinskii–Kosterlitz–Thouless (BKT) superfluid state. We demonstrate that the existence of excitonic insulator phase is a necessary prerequisite, leading to quasi-long-range order in the 2D excitonic system.

  6. Single-to-three phase induction motor sensorless drive system

    Directory of Open Access Journals (Sweden)

    Z.M.S. El-Barbary

    2012-06-01

    Full Text Available This paper presented a single to three-phase induction motor drive system to provide variable output voltage and frequency. The proposed drive system employs only six IGBT switches, which form the front-end rectifier and the output inverter for the one step conversion from single-phase supply to output three-phase supply. The front-end rectifier permits bidirectional power flow and provides excellent regulation against fluctuations in source voltage. Moreover, it incorporates active input current shaping feature. The control strategy of the proposed drive system of three-phase induction motor is based on speed sensorless vector control technique. A low cost of motor drive and much more advantages can be achieved using the proposed drive system. Simulation and experimental results are carried out to analysis and explore the characteristics of the proposed drive system.

  7. Technology verification phase. Dynamic isotope power system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Halsey, D.G.

    1982-03-10

    The Phase I requirements of the Kilowatt Isotope Power System (KIPS) program were to make a detailed Flight System Conceptual Design (FSCD) for an isotope fueled organic Rankine cycle power system and to build and test a Ground Demonstration System (GDS) which simulated as closely as possible the operational characteristics of the FSCD. The activities and results of Phase II, the Technology Verification Phase, of the program are reported. The objectives of this phase were to increase system efficiency to 18.1% by component development, to demonstrate system reliability by a 5000 h endurance test and to update the flight system design. During Phase II, system performance was improved from 15.1% to 16.6%, an endurance test of 2000 h was performed while the flight design analysis was limited to a study of the General Purpose Heat Source, a study of the regenerator manufacturing technique and analysis of the hardness of the system to a laser threat. It was concluded from these tests that the GDS is basically prototypic of a flight design; all components necessary for satisfactory operation were demonstrated successfully at the system level; over 11,000 total h of operation without any component failure attested to the inherent reliability of this type of system; and some further development is required, specifically in the area of performance. (LCL)

  8. Phase Relationship in Phenol-Insulin Crystal Growth System

    Institute of Scientific and Technical Information of China (English)

    梁栋材; 宋浪舟; 万柱礼; 常文瑞

    1994-01-01

    Based on the crystal growth system of rhombohedral 2Zn-insulin,the phase transition ofinsulin crystals has been investigated with the phenol concentration as an independent component.The dia-gram of the phase relationship in this crystal growth system was established,and two points of phase transi-tion were found.The transition point Ⅰ indicates the phase transition between rhombohedral 2Zn-insulin crys-tal and rhombohedral 4Zn-insulin crystal,and these two phases coexist within a narrow region of phenol con-centration (0.028%-0.029% (g/ml)).Point Ⅱ at 0.76%-0.77% (g/ml) of phenol concentration showsthe phase transition between rhombohcdral crystal and monoclinic crystals,and a new phase of monocliniccrystal (B-form monoclinic insulin crystal) has been observed.This paper reports the diagram of phase rela-tionship obtained from our experiments,and analyses and discusses the dependence of phase transition of in-sulin crystals on phenol concentration in crystal growth system.

  9. Traffic management system: Phase 2. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-30

    This report, conducted by Louis Berger International, Inc., was funded by the US Trade and Development Agency. This report identifies the primary and secondary air traffic networks inside and outside Buenos Aires Metropolitan Area where particular safety and traffic problems exist. The Consortium Louis Berger International, Inc.-IBI Group-UBATEC provides recommendations divided into two groups: one based on engineering aspects for each identified deficiency in the selected routes; and a second group that is based on the results of the evaluation of needs. This is Volume 3, Phase 2 Final Report, and it consists of the following: (1) Introduction; (2) Existing Conditions and Deficiencies; (3) Recommendations; and (4) Appendix: Definition of the Primary Network of the Metropolitan Area.

  10. Phase stability in nanoscale material systems: extension from bulk phase diagrams.

    Science.gov (United States)

    Bajaj, Saurabh; Haverty, Michael G; Arróyave, Raymundo; Goddard, William A; Shankar, Sadasivan

    2015-06-07

    Phase diagrams of multi-component systems are critical for the development and engineering of material alloys for all technological applications. At nano dimensions, surfaces (and interfaces) play a significant role in changing equilibrium thermodynamics and phase stability. In this work, it is shown that these surfaces at small dimensions affect the relative equilibrium thermodynamics of the different phases. The CALPHAD approach for material surfaces (also termed "nano-CALPHAD") is employed to investigate these changes in three binary systems by calculating their phase diagrams at nano dimensions and comparing them with their bulk counterparts. The surface energy contribution, which is the dominant factor in causing these changes, is evaluated using the spherical particle approximation. It is first validated with the Au-Si system for which experimental data on phase stability of spherical nano-sized particles is available, and then extended to calculate phase diagrams of similarly sized particles of Ge-Si and Al-Cu. Additionally, the surface energies of the associated compounds are calculated using DFT, and integrated into the thermodynamic model of the respective binary systems. In this work we found changes in miscibilities, reaction compositions of about 5 at%, and solubility temperatures ranging from 100-200 K for particles of sizes 5 nm, indicating the importance of phase equilibrium analysis at nano dimensions.

  11. General Motors Phase II Catalyst System

    Energy Technology Data Exchange (ETDEWEB)

    Canale, R.P.; Winegarden, S.R.; Carlson, C.R.; Miles, D.L.

    1978-01-01

    Three-way catalysts provide a means of catalytically achieving lower NOx emission levels while maintaining good control of HC and CO emissions. However, very accurate control of air-fuel ratio is necessary. The precise air-fuel ratio control required is accomplished by employing a closed loop fuel metering system in conjunction with an exhaust gas sensor and an electronic control unit. To gain production experience with this type of system, General Motors is introducing it on two 1978 engine families sold in California. One is a 2.5 liter L-4 engine and the other is a 3.8 liter V-6 engine. Closed loop controlled carburetors are used on both systems. The components used on both systems are described and emission and fuel economy results are reviewed.

  12. Flexible manufacturing system (FMS): The investigative phase

    Energy Technology Data Exchange (ETDEWEB)

    Setter, D.L.

    1992-02-01

    An investigation has been conducted into the feasibility of using flexible manufacturing system (FMS) technology to machine and inspect a family of stainless steel and aluminum parts for electrical components. The investigation was conducted by a user-oriented team of KCD personnel with the help of an outside consultant. The investigation showed that FMS was appropriate and justifiable for the KCD application. A project was initiated to purchase and implement an FMS system. 1 ref.

  13. Design of Training Systems Phase I Summary Report.

    Science.gov (United States)

    Lindahl, William H.; And Others

    A summary is provided of the status of Phase I of the three-stage project, "Design of Training Systems" (DOTS). The purpose of the overall project is described as being to introduce the technologies of education, psychology, management and operations research into the management of Navy training. Phase I of the effort is designed to…

  14. A regressed phase analysis for coupled joint systems.

    Science.gov (United States)

    Wininger, Michael

    2011-01-01

    This study aims to address shortcomings of the relative phase analysis, a widely used method for assessment of coupling among joints of the lower limb. Goniometric data from 15 individuals with spastic diplegic cerebral palsy were recorded from the hip and knee joints during ambulation on a flat surface, and from a single healthy individual with no known motor impairment, over at least 10 gait cycles. The minimum relative phase (MRP) revealed substantial disparity in the timing and severity of the instance of maximum coupling, depending on which reference frame was selected: MRP(knee-hip) differed from MRP(hip-knee) by 16.1±14% of gait cycle and 50.6±77% difference in scale. Additionally, several relative phase portraits contained discontinuities which may contribute to error in phase feature extraction. These vagaries can be attributed to the predication of relative phase analysis on a transformation into the velocity-position phase plane, and the extraction of phase angle by the discontinuous arc-tangent operator. Here, an alternative phase analysis is proposed, wherein kinematic data is transformed into a profile of joint coupling across the entire gait cycle. By comparing joint velocities directly via a standard linear regression in the velocity-velocity phase plane, this regressed phase analysis provides several key advantages over relative phase analysis including continuity, commutativity between reference frames, and generalizability to many-joint systems.

  15. Phase behaviors and self-assembly properties of two catanionic surfactant systems: C(8)F(17)COOH/TTAOH/H(2)O and C(8)H(17)COOH/TTAOH/H(2)O.

    Science.gov (United States)

    Zhang, Juan; Song, Aixin; Li, Zhibo; Xu, Guiying; Hao, Jingcheng

    2010-10-21

    Two fatty acids, perfluorononanoic acid (C(8)F(17)COOH) and nonanoic acid (C(8)H(17)COOH), were mixed with a cationic hydrocarbon surfactant, tetradecyltrimethylammonium hydroxide (TTAOH), in aqueous solutions for comparative investigation. Phase behaviors of the two systems are quite different because of the special properties of the fluorocarbon chains. For the C(8)H(17)COOH/TTAOH/H(2)O system, a single L(α) phase region with phase transition from planar lamellar phase (L(αl) phase) to vesicle phase (L(αv) phase) was observed. For the C(8)F(17)COOH/TTAOH/H(2)O system, two single phases consisting of vesicles were obtained at room temperature. One is a high viscoelastic gel phase consisting of vesicles with crystalline state bialyers at the C(8)F(17)COOH-rich side, which was confirmed by freeze-fracture transmission electron microscope (FF-TEM) and differential scanning calorimetry (DSC) measurements. With the increase of TTAOH proportion, another vesicle phase consisting of liquid state bilayers was observed after the two-phase region. The fluorosurfactant systems prefer to form vesicle bilayers than the corresponding hydrocarbon ones because of the rigid structure, the stronger hydrophobicity, and the larger volume of fluorocarbon chains.

  16. Road Transportable Analytical Laboratory system. Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Finger, S.M.; Keith, V.F.; Spertzel, R.O.; De Avila, J.C.; O`Donnell, M.; Vann, R.L.

    1993-09-01

    This developmental effort clearly shows that a Road Transportable Analytical Laboratory System is a worthwhile and achievable goal. The RTAL is designed to fully analyze (radioanalytes, and organic and inorganic chemical analytes) 20 samples per day at the highest levels of quality assurance and quality control. It dramatically reduces the turnaround time for environmental sample analysis from 45 days (at a central commercial laboratory) to 1 day. At the same time each RTAL system will save the DOE over $12 million per year in sample analysis costs compared to the costs at a central commercial laboratory. If RTAL systems were used at the eight largest DOE facilities (at Hanford, Savannah River, Fernald, Oak Ridge, Idaho, Rocky Flats, Los Alamos, and the Nevada Test Site), the annual savings would be $96,589,000. The DOE`s internal study of sample analysis needs projects 130,000 environmental samples requiring analysis in FY 1994, clearly supporting the need for the RTAL system. The cost and time savings achievable with the RTAL system will accelerate and improve the efficiency of cleanup and remediation operations throughout the DOE complex.

  17. The hydrocarbon sphere

    Energy Technology Data Exchange (ETDEWEB)

    Mandev, P.

    1984-01-01

    The hydrocarbon sphere is understood to be the area in which hydrocarbon compounds are available. It is believed that the lower boundary on the hydrocarbon sphere is most probably located at a depth where the predominant temperatures aid in the destruction of hydrocarbons (300 to 400 degrees centigrade). The upper limit on the hydrocarbon sphere obviously occurs at the earth's surface, where hydrocarbons oxidize to H20 and CO2. Within these ranges, the occurrence of the hydrocarbon sphere may vary from the first few hundred meters to 15 kilometers or more. The hydrocarbon sphere is divided into the external (mantle) sphere in which the primary gas, oil and solid hydrocarbon fields are located, and the internal (metamorphic) sphere containing primarily noncommercial accumulations of hydrocarbon gases and solid carbon containing compounds (anthraxilite, shungite, graphite, etc.) based on the nature and scale of hydrocarbon compound concentrations (natural gas, oil, maltha, asphalt, asphaltite, etc.).

  18. WDM Phase-Modulated Millimeter-Wave Fiber Systems

    DEFF Research Database (Denmark)

    Yu, Xianbin; Prince, Kamau; Gibbon, Timothy Braidwood

    2012-01-01

    This chapter presents a computer simulation case study of two typical WDM phase-modulated millimeter-wave systems. The phase-modulated 60 GHz fiber multi-channel transmission systems employ single sideband (SSB) and double sideband subcarrier modulation (DSB-SC) schemes and present one of the lat......This chapter presents a computer simulation case study of two typical WDM phase-modulated millimeter-wave systems. The phase-modulated 60 GHz fiber multi-channel transmission systems employ single sideband (SSB) and double sideband subcarrier modulation (DSB-SC) schemes and present one...... of the latest research efforts in the rapidly emerging Radio-over-Fiber (RoF) application space for in-house access networks....

  19. Phase Space Structures of k-threshold Sequential Dynamical Systems

    CERN Document Server

    Rani, Raffaele

    2011-01-01

    Sequential dynamical systems (SDS) are used to model a wide range of processes occurring on graphs or networks. The dynamics of such discrete dynamical systems is completely encoded by their phase space, a directed graph whose vertices and edges represent all possible system configurations and transitions between configurations respectively. Direct calculation of the phase space is in most cases a computationally demanding task. However, for some classes of SDS one can extract information on the connected component structure of phase space from the constituent elements of the SDS, such as its base graph and vertex functions. We present a number of novel results about the connected component structure of the phase space for k-threshold dynamical system with binary state spaces. We establish relations between the structure of the components, the threshold value, and the update sequence. Also fixed-point reachability from garden of eden configurations is investigated and upper bounds for the length of paths in t...

  20. Berry phase in a generalized nonlinear two-level system

    Institute of Scientific and Technical Information of China (English)

    Liu Ji-Bing; Li Jia-Hua; Song Pei-Jun; Li Wei-Bin

    2008-01-01

    In this paper,we investigate the behaviour of the geometric phase of a more generalized nonlinear system composed of an effective two-level system interacting with a single-mode quantized cavity field.Both the field nonlinearity and the atom-field coupling nonlinearity are considered.We find that the geometric phase depends on whether the index k is an odd number or an even number in the resonant case.In addition,we also find that the geometric phase may be easily observed when the field nonlinearity is not considered.The fractional statistical phenomenon appears in this system if the strong nonlinear atom-field coupling is considered.We have also investigated the geometric phase of an effective two-level system interacting with a two-mode quantized cavity field.

  1. Scaling of Two-Phase Systems Across Gravity Levels Project

    Data.gov (United States)

    National Aeronautics and Space Administration — There is a defined need for long term earth based testing for the development and deployment of two-phase flow systems in reduced-gravity, including lunar gravity,...

  2. Toward Understanding the Role of Aryl Hydrocarbon Receptor in the Immune System: Current Progress and Future Trends

    Directory of Open Access Journals (Sweden)

    Hamza Hanieh

    2014-01-01

    Full Text Available The immune system is regulated by distinct signaling pathways that control the development and function of the immune cells. Accumulating evidence suggest that ligation of aryl hydrocarbon receptor (Ahr, an environmentally responsive transcription factor, results in multiple cross talks that are capable of modulating these pathways and their downstream responsive genes. Most of the immune cells respond to such modulation, and many inflammatory response-related genes contain multiple xenobiotic-responsive elements (XREs boxes upstream. Active research efforts have investigated the physiological role of Ahr in inflammation and autoimmunity using different animal models. Recently formed paradigm has shown that activation of Ahr by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD or 3,3′-diindolylmethane (DIM prompts the differentiation of CD4+Foxp3+ regulatory T cells (Tregs and inhibits T helper (Th-17 suggesting that Ahr is an innovative therapeutic strategy for autoimmune inflammation. These promising findings generate a basis for future clinical practices in humans. This review addresses the current knowledge on the role of Ahr in different immune cell compartments, with a particular focus on inflammation and autoimmunity.

  3. [Dynamics of polycyclic aromatic hydrocarbons (PAHs) in the paddy-soil system during the crop rotation process].

    Science.gov (United States)

    Jiao, Xing-chun; Ye, Chuan-yong; Chen, Su-hua; Yang, Yong-liang; Wu, Zhen-yan

    2010-07-01

    The concentrations of polycyclic aromatic hydrocarbons (PAHs) in the paddy root-soil system were determined to study the dynamic and the influencing factors during crop rotation period. It showed that the dynamic of PAHs in paddy roots was most correlative with the factor of root surface area, but less correlated with PAHs in air and particles, which indicates that the physiological characters rather than the environment media are the main factors influencing the PAHs accumulation in paddy roots. According to the EPA risk standard about BaP and sigma PAHs, the PAHs accumulation in the paddy seeds won't decrease the food security to human being. The PAHs concentrations in paddy soil showed a declined trend during the period of paddy growth, which was affected not only by the processes of water elution and microbe degradation, but also depended on the absorption rate of paddy roots. When the crop rotation begins and paddy planting rolls into the next growing period, the PAHs in the paddy soil will again increase into a higher level which is correlated with the TOC content in the soil.

  4. Products of biotransformation of polycyclic aromatic hydrocarbons in fishes of the Athabasca/Slave river system, Canada.

    Science.gov (United States)

    Ohiozebau, Ehimai; Tendler, Brett; Hill, Allison; Codling, Garry; Kelly, Erin; Giesy, John P; Jones, Paul D

    2016-04-01

    Concentrations of products of biotransformation of polycyclic aromatic hydrocarbons (PBPAH) were measured in bile of five fishes of nutritional, cultural and ecological relevance from the Athabasca/Slave river system. Samples were collected in Alberta and the Northwest Territories, Canada, during three seasons. As a measure of concentrations of PBPAHs to which fishes are exposed and to gain information on the nature and extent of potential exposures of people or piscivorous wildlife, concentrations of biotransformation products of two- and three-ringed, four-ringed and five-ringed PAHs were measured using synchronous fluorescence spectroscopy. Spatial and seasonal differences were observed with greater concentrations of PBPAHs in samples of bile of fish collected from Fort McKay as well as greater concentrations of PBPAHs in bile of fish collected during summer compared to those collected in other seasons. Overall, PBPAHs were greater in fishes of lower trophic levels and fishes more closely associated with sediments. In particular, goldeye (Hiodon alosoides), consistently contained greater concentrations of all the PBPAHs studied.

  5. Space law information system design, phase 2

    Science.gov (United States)

    Morenoff, J.; Roth, D. L.; Singleton, J. W.

    1973-01-01

    Design alternatives were defined for the implementation of a Space Law Information System for the Office of the General Counsel, NASA. A thesaurus of space law terms was developed and a selected document sample indexed on the basis of that thesaurus. Abstracts were also prepared for the sample document set.

  6. Phase structure rewrite systems in information retrieval

    Science.gov (United States)

    Klingbiel, P. H.

    1985-01-01

    Operational level automatic indexing requires an efficient means of normalizing natural language phrases. Subject switching requires an efficient means of translating one set of authorized terms to another. A phrase structure rewrite system called a Lexical Dictionary is explained that performs these functions. Background, operational use, other applications and ongoing research are explained.

  7. Dispersive liquid-liquid microextraction coupled with dispersive micro-solid-phase extraction for the fast determination of polycyclic aromatic hydrocarbons in environmental water samples.

    Science.gov (United States)

    Shi, Zhi-Guo; Lee, Hian Kee

    2010-02-15

    A new two-step microextraction technique, combining dispersive liquid-liquid microextraction (DLLME) and dispersive microsolid-phase extraction (D-micro-SPE), was developed for the fast gas chromatographic-mass spectrometric determination of polycyclic aromatic hydrocarbons (PAHs) in environmental samples. A feature of the new procedure lies in that any organic solvent immiscible with water can be used as extractant in DLLME. A special apparatus, such as conical-bottom test tubes, and tedious procedures of centrifugation, refrigeration of the solvent, and then thawing it, associated with classical DLLME or similar techniques are not necessary in the new procedure, which potentially lends itself to possible automation. In the present D-micro-SPE approach, hydrophobic magnetic nanoparticles were used to retrieve the extractant of 1-octanol in the DLLME step. It is noteworthy that the target of D-micro-SPE was the 1-octanol rather than the PAHs. Because of the rapid mass transfer associated with the DLLME and the D-micro-SPE steps, fast extraction could be achieved. Parameters affecting the extraction efficiency were investigated in detail. The optimal conditions were as follows: vortex at 3200 rpm in the DLLME step for 2 min and in D-micro-SPE for 1 min and then desorption by sonication for 4 min with acetonitrile as the solvent. The results demonstrated that enrichment factors ranging from 110- to 186-fold were obtained for the analytes. The limits of detection and the limits of quantification were in the range of 11.7-61.4 pg/mL and 0.04-0.21 ng/mL, respectively. The linearities were 0.5-50, 1-50, or 2-50 ng/mL for different PAHs. Finally, the two-step extraction method was successfully used for the fast determination of PAHs in river water samples. This two-step method, combining two different and efficient miniaturized techniques, provides a fast means of sample pretreatment for environmental water samples.

  8. Phenyl-functionalization of titanium dioxide-nanosheets coating fabricated on a titanium wire for selective solid-phase microextraction of polycyclic aromatic hydrocarbons from environment water samples.

    Science.gov (United States)

    Guo, Mei; Song, Wenlan; Wang, Tiane; Li, Yi; Wang, Xuemei; Du, Xinzhen

    2015-11-01

    A novel titanium dioxide-nanosheets coating on a titanium wire (TiO2NS-Ti) was in situ fabricated by one-step electrochemical anodization in ethylene glycol with ammonium fluoride and followed by phenyl-functionalization for selective solid-phase microextraction (SPME). The fabricated TiO2NS coating exhibits higher specific surface area and more active sites, it also provides an ideal nanostructure and a robust substrate for subsequent surface modification. These characteristics were useful for efficient extraction. The SPME performance of phenyl-functionalized TiO2NS-Ti (ph-TiO2NS-Ti) fiber was evaluated by using ultraviolet filters, polychlorinated biphenyls and polycyclic aromatic hydrocarbons (PAHs) as model compounds coupled to high performance liquid chromatography with UV detection (HPLC-UV). It was found that the ph-TiO2NS-Ti fiber exhibited high extraction capability, good selectivity and rapid mass transfer for PAHs. The main parameters affecting extraction performance were investigated and optimized. Under optimized conditions, the proposed fiber showed good extraction efficiency comparable to those of commercial polydimethylsiloxane and polyacrylate fibers toward PAHs. The calibration graphs were linear over the range of 0.05-300 µg L(-1). The limits of detection of the proposed method were 0.008-0.043 µg L(-1) (S/N=3). Single fiber repeatability varied from 3.51% to 5.23% and fiber-to-fiber reproducibility ranged from 4.43% to 7.65% for the extraction of water spiked with 25 µg L(-1) each analyte (n=5). The established SPME-HPLC-UV method was successfully applied to selective concentration and sensitive determination of target PAHs from real environmental water samples with recoveries from 86.2% to 112% at the spiking level of 10 µg L(-1) and 50 µg L(-1). The relative standard deviations were below 9.45%. Furthermore, the ph-TiO2NS-Ti fiber can be fabricated in a reproducible manner, and has high stability and long service lifetime.

  9. Polydopamine-reinforced magnetization of zeolitic imidazolate framework ZIF-7 for magnetic solid-phase extraction of polycyclic aromatic hydrocarbons from the air-water environment.

    Science.gov (United States)

    Zhang, Suling; Yao, Weixuan; Ying, Jianbo; Zhao, Hongting

    2016-06-24

    Zeolitic imidazolate frameworks (ZIFs) consist of metal nodes connected to imidazolate linkers, having both the properties of metal-organic frameworks (MOFs) and inorganic zeolites, such as controllable pore sizes, high porosity and surface areas, as well as exceptional thermal and chemical stability, thereby making them a class of attractive materials for diverse analytical applications. In this study, we reported a facile magnetization process of ZIF-7 (zinc benzimidazolate) for simultaneous magnetic extraction of polycyclic aromatic hydrocarbons (PAHs) by simply mixing ZIF-7 and polydopamine (PDA)-coated Fe3O4 nanoparticles (PDA@Fe3O4) in solutions. Functional groups (-OH and -NH2), provided by PDA as a highly efficient molecular linker, could attract and anchor ZIF-7 through noncovalent adsorption and covalent cross-link interactions, thereby promoting the complete magnetization of ZIFs and enhancing their stability and reusability. The bridging ligand benzimidazolate, could be bonded with PAHs because of its high surface area, large pores, accessible coordinative unsaturated sites (π-complexation), and π-π stacking action. This ZIF-based magnetic solid-phase extraction (SPE), coupled with gas chromatography/tandem mass spectrometry (GC/MS), was further evaluated for analysis of PAHs from rainwater and air samples of particulate matter less than 2.5μm in diameter (PM2.5). The main effective parameters, including ionic strength, solution pH, extraction time, desorption solvent and desorption time, were investigated, respectively. Under optimized conditions, the developed method based on Fe3O4@PDA/ZIF-7 gave detection limits of 0.71-5.79ng/L, and quantification limits of 2.50-19.2ng/L for PAHs, respectively. The relative standard deviations for intra-day and inter-day analyses were in the range of 3.1-9.1% and 6.1-12.7%, respectively. The PAHs founded in PM2.5 were in the range of 0.40-6.79ng/m(3). Good recoveries (>82%) with low relative standard deviations

  10. Crusader Automated Docking System Phase 3 report

    Energy Technology Data Exchange (ETDEWEB)

    Jatko, W.B.; Goddard, J.S.; Ferrell, R.K.; Gleason, S.S.; Hicks, J.S.; Varma, V.K.

    1996-03-01

    The US Army is developing the next generation of battlefield artillery vehicles, including an advanced, self-propelled howitzer and a companion resupply vehicle. The resupply vehicle is intended to rendezvous with the howitzer near the battlefront and to upload ammunition to the howitzer. The Army has recommended that the vehicles incorporate robotics to increase safety, by allowing the crew to remain inside their vehicles during resupply operations. Oak Ridge National Laboratory has developed an autonomous docking system for a 6-D.F. robotic, ammunition transfer arm. The docking system augments the operator`s abilities by determining the position and orientation (pose) of a docking port. The pose is the location of the x, y, and z reference axes in 3-D space; and the orientation is the rotations--roll, pitch, and yaw--about those axes. Bye precisely determining the pose of the docking port, the robot can be instructed to move to the docking position without operator intervention. The system uses a video camera and frame grabber to digitize images of the special docking port. Custom algorithms were developed to recognize the port in the camera image, to determine the pose from its image features, and to distribute the results to the robot control computer. The system is loosely coupled to the robot and can be easily adapted to different mechanical configurations. The system has successfully demonstrated autonomous docking on a 24-in. tabletop robot and a 12-ft ammunition resupply robot. The update rate, measurement accuracy, continuous operation, and accuracy with obstructed view have been determined experimentally.

  11. Integrated thermal treatment system study -- Phase 2 results. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Feizollahi, F.; Quapp, W.J.

    1996-02-01

    This report presents the second phase of a study on thermal treatment technologies. The study consists of a systematic assessment of nineteen thermal treatment alternatives for the contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. The treatment alternatives consist of widely varying technologies for safely destroying the hazardous organic components, reducing the volume, and preparing for final disposal of the MLLW. The alternatives considered in Phase 2 were innovative thermal treatments with nine types of primary processing units. Other variations in the study examined the effect of combustion gas, air pollution control system design, and stabilization technology for the treatment residues. The Phase 1 study examined ten initial thermal treatment alternatives. The Phase 2 systems were evaluated in essentially the same manner as the Phase 1 systems. The alternatives evaluated were: rotary kiln, slagging kiln, plasma furnace, plasma gasification, molten salt oxidation, molten metal waste destruction, steam gasification, Joule-heated vitrification, thermal desorption and mediated electrochemical oxidation, and thermal desorption and supercritical water oxidation. The quantities, and physical and chemical compositions, of the input waste used in the Phase 2 systems differ from those in the Phase 1 systems, which were based on a preliminary waste input database developed at the onset of the Integrated Thermal Treatment System study. The inventory database used in the Phase 2 study incorporates the latest US Department of Energy information. All systems, both primary treatment systems and subsystem inputs, have now been evaluated using the same waste input (2,927 lb/hr). 28 refs., 88 figs., 41 tabs.

  12. Decryption of a random-phase multiplexing recording system

    Science.gov (United States)

    Chang, Chi-Ching; Liu, Jung-Ping; Lee, Hsiao-Yi; Lin, Ching-Yang; Chang, Tsung-Chien; Yau, Hon-Fai

    2006-03-01

    In practice, decrypting a random-phase encrypted volume holographic data storage system is impossible unless the original random-phase plate for the encryption is available. However, this study demonstrates that under certain conditions, ways are available that can decrypt an encrypted photorefractive LiNbO3 crystal holographic storage system. In addition to presenting experimental results that show the efficacy of this decryption approach, problems and difficulties in the experiments are discussed.

  13. Multi-Phase Galaxy Formation and Quasar Absorption Systems

    OpenAIRE

    Maller, Ariyeh H.

    2005-01-01

    The central problem of galaxy formation is understanding the cooling and condensation of gas in dark matter halos. It is now clear that to match observations this requires further physics than the simple assumptions of single phase gas cooling. A model of multi-phase cooling (Maller & Bullock 2004) can successfully account for the upper cutoff in the masses of galaxies and provides a natural explanation of many types of absorption systems (Mo & Miralda-Escude 1996). Absorption systems are our...

  14. Compost bioremediation of hydrocarbon-contaminated soil ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-05-16

    May 16, 2008 ... Total petroleum hydrocarbons (TPH) was reduced by 17% in the .... Identification of bacterial isolates was done by biochemical tests. Atagana 1517 ..... control the prolonged thermophilic period in two-phase olive oil mill.

  15. Observability of Airborne Passive Location System with Phase Difference Measurements

    Institute of Scientific and Technical Information of China (English)

    Deng Xinpu; Wang Qiang; Zhong Danxing

    2008-01-01

    With a pair of antennas spaced apart, an airborne passive location system measures phase differences of emitting signals. Regarded as cyclic ambiguities, the moduli of the measurements traditionally are resolved by adding more antenna elements. This paper models the cyclic ambiguity as a component of the system state, of which the observability is analyzed and compared to that of the bear- ings-only passive location system. It is shown that the necessary and sufficient observability condition for the bearings-only passive location system is only the necessary observability condition for the passive location system with phase difference measurements, and that when the system state is observable, the cyclic ambiguities can be estimated by accumulating the phase difference measurements, thereby making the observer able to locate the emitter with high-precision.

  16. Aromatic hydrocarbons in a controlled ecological life support system during a 4-person-180-day integrated experiment.

    Science.gov (United States)

    Dai, Kun; Yu, Qingni; Zhang, Zhou; Wang, Yuan; Wang, Xinming

    2017-08-19

    Indoor air quality is vital to the health and comfort of people who live inside a controlled ecological life support system (CELSS) built for long-term space explorations. Here we measured aromatic hydrocarbons to assess their sources and health risks during a 4-person-180-day integrated experiment inside a CELSS with four cabins for growing crops, vegetables and fruits and other two cabins for working, accommodations and resources management. During the experiment, the average concentrations of benzene, ethylbenzene, m,p-xylenes and o-xylene were found to decrease exponentially from 7.91±3.72, 37.2±35.2, 100.8±111.7 and 46.8±44.1μg/m(3) to 0.39±0.34, 1.4±0.5, 2.8±0.7 and 2.1±0.9μg/m(3), with half-lives of 25.3, 44.8, 44.7 and 69.3days, respectively. Toluene to benzene ratios indicated emission from construction materials or furniture to be a dominant source for toluene, and concentrations of toluene fluctuated during the experiment largely due to the changing sorption by growing plants. The cancer and no-cancer risks based on exposure pattern of the crews were insignificant in the end of the experiment. This study also suggested that using low-emitting materials/furniture, growing plants and purifying air actively would all help to lower hazardous air pollutants inside CELSS. Broadly, the results would benefit not only the development of safe and comfort life support systems for space exploration but also the understanding of interactions between human and the total environment in closed systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Phase diagram studies on the Na-Mo-O system

    Science.gov (United States)

    Gnanasekaran, T.; Mahendran, K. H.; Kutty, K. V. G.; Mathews, C. K.

    1989-06-01

    The phase diagram of the Na-Mo-O ternary system is of interest in interpreting the behaviour of structural materials in the sodium circuits of fast breeder reactors and sodium-filled heat pipes. Experiments involving heating of sodium oxide with molybdenum metal under vacuum, selective removal of oxygen from polymolybdates by reducing them under hydrogen and confirmation of the coexistence of various phase mixtures were conducted in the temperature range of 673 to 923 K. Phase fields involving molybdenum metal, dioxide of molybdenum and ternary compounds were derived from these results. The ternary phase diagram of the Na-Mo-O system was constructed and isothermal cross sections of the phase diagram are presented.

  18. Random shortcuts induce phase synchronization in complex Chua systems

    Institute of Scientific and Technical Information of China (English)

    Wei Du-Qu; Luo Xiao-Shu; Qin Ying-Hua

    2009-01-01

    This paper studies how phase synchronization in complex networks depends on random shortcuts, using the piecewise-continuous chaotic Chua system as the nodes of the networks. It is found that for a given coupling strength,when the number of random shortcuts is greater than a threshold the phase synchronization is induced. Phase synchronization becomes evident and reaches its maximum as the number of random shortcuts is further increased. These phenomena imply that random shortcuts can induce and enhance the phase synchronization in complex Chua systems.Furthermore, the paper also investigates the effects of the coupling strength and it is found that stronger coupling makes it easier to obtain the complete phase synchronization.

  19. VARIANCE OF NONLINEAR PHASE NOISE IN FIBER-OPTIC SYSTEM

    Directory of Open Access Journals (Sweden)

    RANJU KANWAR

    2013-04-01

    Full Text Available In communication system, the noise process must be known, in order to compute the system performance. The nonlinear effects act as strong perturbation in long- haul system. This perturbation effects the signal, when interact with amplitude noise, and results in random motion of the phase of the signal. Based on the perturbation theory, the variance of nonlinear phase noise contaminated by both self- and cross-phase modulation, is derived analytically for phase-shift- keying system. Through this work, it is investigated that for longer transmission distance, 40-Gb/s systems are more sensitive to nonlinear phase noise as compared to 50-Gb/s systems. Also, when transmitting the data through the fiber optic link, bit errors are produced due to various effects such as noise from optical amplifiers and nonlinearity occurring in fiber. On the basis of the simulation results , we have compared the bit error rate based on 8-PSK with theoretical results, and result shows that in real time approach, the bit error rate is high for the same signal to noise ratio. MATLAB software is used to validate the analytical expressions for the variance of nonlinear phase noise.

  20. Intelligent Robotic Systems Study (IRSS), phase 2

    Science.gov (United States)

    1990-01-01

    Under the Intelligent Robotics System Study (IRSS) contract, a generalized robotic control architecture was developed for use with the ProtoFlight Manipulator Arm (PFMA). The controller built for the PFMA provides localized position based force control, teleoperation and advanced path recording and playback capabilities. Various hand controllers can be used with the system in conjunction with a synthetic time delay capability to provide a realistic test bed for typical satellite servicing tasks. The configuration of the IRSS system is illustrated and discussed. The PFMA has six computer controllable degrees of freedom (DOF) plus a seventh manually indexable DOF, making the manipulator a pseudo 7 DOF mechanism. Because the PFMA was not developed to operate in a gravity field, but rather in space, it is counter balanced at the shoulder, elbow and wrist and a spring counterbalance has been added near the wrist to provide additional support. Built with long slender intra-joint linkages, the PFMA has a workspace nearly 2 meters deep and possesses sufficient dexterity to perform numerous satellite servicing tasks. The manipulator is arranged in a shoulder-yaw, pitch, elbow-pitch, and wrist-pitch, yaw, roll configuration, with an indexable shoulder roll joint. Digital control of the PFMA is implemented using a variety of single board computers developed by Heurikon Corporation and other manufacturers. The IRSS controller is designed to be a multi-rate, multi-tasking system. Independent joint servos run at a 134 Hz rate and position based impedance control functions at 67 Hz. Autonomous path generation and hand controller inputs are processed at a 33 Hz.

  1. The Phase 2 Upgrade of the LHCb Muon System

    CERN Document Server

    Bencivenni, Giovanni; Cardini, Alessandro; Maev, Oleg; Passaleva, Giovanni; Pinci, Davide

    2013-01-01

    To deal with upgrade luminosities, the muon group is currently planning a muon system upgrade in two phases. In the first phase the muon system will be modified by replacing the off-detector electronics with new electronics compliant with the 40 MHz readout rate through TELL40. Then, in a second phase, higher readout granularity detectors will be installed in the central regions of the first muon stations, to overcome the efficiency losses due to the increase of detector dead-time caused by the higher luminosities and to use detector technologies that can operate reliably in these highly irradiated regions, where detectors' aging will become an issue.

  2. Superradiant phase transitions with three-level systems

    Science.gov (United States)

    Baksic, Alexandre; Nataf, Pierre; Ciuti, Cristiano

    2013-02-01

    We determine the phase diagram of N identical three-level systems interacting with a single photonic mode in the thermodynamical limit (N→∞) by accounting for the so-called diamagnetic term and the inequalities imposed by the Thomas-Reich-Kuhn (TRK) oscillator strength sum rule. The key role of transitions between excited levels and the occurrence of first-order phase transitions is discussed. We show that, in contrast to two-level systems, in the three-level case the TRK inequalities do not always prevent a superradiant phase transition in the presence of a diamagnetic term.

  3. Superradiant phase transitions with three-level systems

    CERN Document Server

    Baksic, Alexandre; Ciuti, Cristiano

    2013-01-01

    We determine the phase diagram of $N$ identical three-level systems interacting with a single photonic mode in the thermodynamical limit ($N \\to \\infty$) by accounting for the so-called diamagnetic term and the inequalities imposed by the Thomas-Reich-Kuhn (TRK) oscillator strength sum rule. The key role of transitions between excited levels and the occurrence of first-order phase transitions is discussed. We show that, in contrast to two-level systems, in the three-level case the TRK inequalities do not always prevent a superradiant phase transition in presence of a diamagnetic term.

  4. Effect of phase noise in an OFDM/OQAM system

    Institute of Scientific and Technical Information of China (English)

    ChenQifan; WuBingyang; ChengShixin

    2003-01-01

    The performance of an OFDM/OQAM system under phase noise is analyzed. The analysis helps to direct the design of low cost tuners through specifying the required phase noise characteristics. Discrete time formulation of OFDM/OQAM is first derived with the square root raised cosine (SRRC) filter as the pulse-shaping filter. Then the effect of multiplicative phase noise is equivalently represented as additive white Gaussian noise (AWGN), the variance of which is given analytically. We can observe that the same result as OFDM/QAM system is derived. Lastly, all the analytical results are verified by the bit error rate (BER) degradation through Monte Carlo simulation.

  5. Phase Noise Monitor and Reduction by Parametric Saturation Approach in Phase Modulation Systems

    Institute of Scientific and Technical Information of China (English)

    XU Ming; ZHOU Zhen; PU Xiao; JI Jian-Hua; YANG Shu-Wen

    2011-01-01

    Nonlinear phase noise (NLPN) is investigated theoretically and numerically to be mitigated by parametric saturation approach in DPSK systems.The nonlinear propagation equation that incorporates the phase of linear and nonlinear is analyzed with parametric saturation processing (PSP).The NLPN is picked and monitored with the power change factors in the DPSK system.This process can be realized by an optical PSP limiter and a novel apparatus with feedback MZI.The monitor range of phase noise is 0°-90°, which may be reduced to 0°-45°if the monitor factor is about the Stockes wave but not an anti-Stockes wave.It is shown that DPSK signal performance can be improved based on the parametric saturation approach.%@@ Nonlinear phase noise (NLPN) is investigated theoretically and numerically to be mitigated by parametric saturation approach in DPSK systems.The nonlinear propagation equation that incorporates the phase of linear and nonlinear is analyzed with parametric saturation processing (PSP).The NLPN is picked and monitored with the power change factors in the DPSK system.This process can be realized by an optical PSP limiter and a novel apparatus with feedback MZI.The monitor range of phase noise is 0°-90°, which may be reduced to 0°-45° if the monitor factor is about the Stockes wave but not an anti-Stockes wave.It is shown that DPSK signal performance can be improved based on the parametric saturation approach.

  6. Quantitative Assessment of Hydrocarbon Expulsion of Petroleum Systems in the Niuzhuang Sag,Bohai Bay Basin,East China

    Institute of Scientific and Technical Information of China (English)

    PANG Xiongqi; LI Sumei; JIN Zhijun; BAI Guoping

    2004-01-01

    Based on a detailed survey of the distribution and organic geochemical characteristics of potential source rocks in the South Slope of the Niuzhuang Sag, Bohai Bay Basin, eastern China, a new approach to assess the amount of hydrocarbons generated and expelled has been developed. The approach is applicable to evaluate hydrocarbons with different genetic mechanisms. The results show that the models for hydrocarbon generation and expulsion vary with potential source rocks, depending on thermal maturity, types of organic matter and paleoenvironment. Hydrocarbons are mostly generated and expelled from source rocks within the normal oil window. It was calculated that the special interval (algal-rich shales of the Es4 member formed in brackish environments) in the South Slope of the Niuzhuang Sag has a much higher potential of immature oil generation than the other intervals in the area. This suggests that hydrocarbons can definitely be generated in early diagenesis, especially under certain special geological settings. The proportion of hydrocarbons generated and expelled from the Es4 shales in the early diagenetic stage is up to 26.75% and 17.36%,respectively. It was also observed that laminated shales have a much higher expulsion efficiency than massive mudstones.In contrast, the special interval of the Es4 shales proposed from previous studies is probably not the whole rock for oil in the South Slope of the Niuzhuang Sag because of the small proportion of the gross volume and corresponding low percentage of hydrocarbons generated and expelled. A much lower expulsion efficiency of the source rock during the early stage relative to that within the normal oil window has been calculated. Our results indicate that the Es4 mudstones rather than the shales deposited in the Niuzhuang and Guangli Sag are the main source rocks for the oil discovered.

  7. Nonlinear phase noise mitigation in phase-sensitive amplified transmission systems.

    Science.gov (United States)

    Olsson, Samuel L I; Karlsson, Magnus; Andrekson, Peter A

    2015-05-04

    We investigate the impact of in-line amplifier noise in transmission systems amplified by two-mode phase-sensitive amplifiers (PSAs) and present the first experimental demonstration of nonlinear phase noise (NLPN) mitigation in a modulation format independent PSA-amplified transmission system. The NLPN mitigation capability is attributed to the correlated noise on the signal and idler waves at the input of the transmission span. We study a single-span system with noise loading in the transmitter but the results are expected to be applicable also in multi-span systems. The experimental investigation is supported by numerical simulations showing excellent agreement with the experiments. In addition to demonstrating NLPN mitigation we also present a record high sensitivity receiver, enabled by low-noise PSA-amplification, requiring only 4.1 photons per bit to obtain a bit error ratio (BER) of 1 × 10(-3) with 10 GBd quadrature phase-shift keying (QPSK) data.

  8. Topological phases in condensed matter systems: A study of symmetries, quasiparticles and phase transitions

    NARCIS (Netherlands)

    Haaker, S.M.

    2014-01-01

    The research described in this thesis focuses on topological phases in condensed matter systems. It can be roughly divided into two parts. In the first part noninteracting systems are studied. The symmetry algebra of a charged spin-1/2 particle coupled to a non-Abelian magnetic field is determined,

  9. Vapor-hydrate phases equilibrium of (CH4+C2H6)and (CH4+C2H4) systems

    Institute of Scientific and Technical Information of China (English)

    Ma Qinglan; Chen Guangjin; Zhang Lingwei

    2008-01-01

    Separation of the (C1 + C2) hydrocarbon system is of importance in natural gas processing and ethylene production. However it is the bottleneck because of its high refrigeration energy consumption,and needs to be urgently addressed. The technology of separating gas mixtures by forming hydrate could be used to separate (C1 + C2) gas mixtures at around 0 ℃ and has attracted increasing attention worldwide. In this paper, investigation of vapor-hydrate two-phase equilibrium was carried out for (C1+ C2) systems with and without tetrahydrofuran (THF). The compositions of vapor and hydrate phases under phase equilibrium were studied with model algorithm when structure Ⅰ and structure Ⅱ hydrates coexisted for the (methane + ethane) system. The average deviation between the modeled and actual mole fractions of ethane in hydrate and vapor phases was 0.55%, and that of ethylene was 5.7% when THF was not added. The average deviation of the mole fraction of ethane in vapor phase was 11.46% and ethylene was 7.38% when THF was added. The test results showed that the proposed algorithm is practicable.

  10. Macroporous polymer foams by hydrocarbon templating

    OpenAIRE

    Shastri, Venkatram Prasad; Martin, Ivan; Langer, Robert

    2000-01-01

    Porous polymeric media (polymer foams) are utilized in a wide range of applications, such as thermal and mechanical insulators, solid supports for catalysis, and medical devices. A process for the production of polymer foams has been developed. This process, which is applicable to a wide range of polymers, uses a hydrocarbon particulate phase as a template for the precipitation of the polymer phase and subsequent pore formation. The use of a hydrocarbon template allows for enhanced control ov...

  11. Study on low-phase-noise optoelectronic oscillator and high-sensitivity phase noise measurement system.

    Science.gov (United States)

    Hong, Jun; Liu, An-min; Guo, Jian

    2013-08-01

    An analytic model for an injection-locked dual-loop optoelectronic oscillator (OEO) is proposed and verified by experiments in this paper. Based on this theoretical model, the effect of injection power on the single-sideband phase noise of the OEO is analyzed, and results suggest that moderate injection is one key factor for a balance between phase noise and spur for OEO. In order to measure superlow phase noise of OEOs, a cross-correlation measurement system based on the fiber delay line is built, in which high linear photodetector and low-phase-noise amplifier are used to improve systematic sensitivity. The cross-correlation measurement system is validated by experiments, and its noise floor for the X band is about -130 dBc/Hz at 1 kHz and -168 dBc/Hz at 10 kHz after a cross correlation of 200 times.

  12. Design of Phase Feed Forward System in CTF3 and Performance of Fast Beam Phase Monitors

    CERN Document Server

    Skowronski, P K; Ghigo, A; Marcellini, F; Burrows, PN; Christian, GB; Perry, C; Gerbershagen, A; Roberts, J; Ikarios, E

    2013-01-01

    The CLIC two beam acceleration technology requires a drive beam phase stability better than 0.3 deg rms at 12 GHz, corresponding to a timing stability below 50 fs rms. For this reason the CLIC design includes a phase stabilization feed-forward system. It relies on precise beam phase measurements and their subsequent correction in a chicane with the help of fast kickers. A prototype of such a system is being installed in the CLIC Test Facility CTF3. In this paper its design and implementation is described in detail. Additionally, the performance of the precision phase monitor prototypes installed at the end of the CTF3 linac, as measured with the drive beam, is presented.

  13. A TWO-PHASE APPROACH TO FUZZY SYSTEM IDENTIFICATION

    Institute of Scientific and Technical Information of China (English)

    Ta-Wei HUNG; Shu-Cherng FANG; Henry L.W.NUTTLE

    2003-01-01

    A two-phase approach to fuzzy system identification is proposed. The first phase produces a baseline design to identify a prototype fuzzy system for a target system from a coIlection of input-output data pairs. It uses two easily implemented clustering techniques: the subtractive clustering method and the fuzzy c-means (FCM) clustering algorithm. The second phase (fine tuning)is executed to adjust the parameters identified in the baseline design. This phase uses the steepest descent and recursive least-squares estimation methods. The proposed approach is validated by applying it to both a function approximation type of problem and a classification type of problem. An analysis of the learning behavior of the proposed approach for the two test problems is conducted for further confirmation.

  14. PHASE EQUILIBRIA INVESTIGATION OF BINARY, TERNARY, AND HIGHER ORDER SYSTEMS. PART 9. CALCULATION OF THERMODYNAMIC QUANTITIES FROM PHASE DIAGRAMS

    Science.gov (United States)

    The thermodynamic fundamentals relating phase equilibria in binary and ternary systems to the thermodynamic properties of the phases are reviewed and...system demonstrate the application of the equations for extracting thermodynamic data from phase diagrams and also for the prediction of phase equilibria .

  15. Solubility and sorption of petroleum hydrocarbons in water and cosolvent systems

    Institute of Scientific and Technical Information of China (English)

    CHEN Hong; CHEN Shuo; QUAN Xie; ZHAO Yazhi; ZHAO Huimin

    2008-01-01

    The solubility and sorption of oil by uncontaminated clay loam and silt loam soils were studied from water and cosolvent/watersolutions using batch techniques. The data obtained from the dissolution and sorption experinaents were used to evaluate theapplicability of the cosolvent theory to oil as a complex mixture. Aqueous solubility and soil-water distribution coefficients (Kd,w,L/kg) were estimated by extrapolating from cosolvent data, with a log-linear cosolvency model, to the volume fraction of cosolvent(fc) 0, and were compared with direct aqueous measurements. The extrapolated water solubility was 3.16 mg/L, in good agreementwith the directly measured value of 3.83 mg/L. Extrapolated values of Kd,w for the two soils were close to each other but consistentlyhigher than the values from direct aqueous measurements, because of the presence of dissolved organic carbon (DOC). The partitioncoefficient (KDOC) between the DOC and the reely dissolved phase and the OC-normalized sorption coefficient (KOC) were determined.The average values of logKDOC and logKoc were estimated as 4.34 and 3.32, respectively, giving insight into the possibility of oilbecoming mobilized and/or of the soil being remedied. This study revealed that the cosolvency model can be applied to a broader rangeof hydrophobic organic chemicals (HOCs) than has been previously thought. The results aided in a reliable determination of watersolubility and sorption coefficients and provide information about the fate of oil in solvent-contaminated environment.

  16. A multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Huang Xiaodong; El-Alawi, Yousef; Penrose, Donna M.; Glick, Bernard R.; Greenberg, Bruce M

    2004-08-01

    To improve phytoremediation processes, multiple techniques that comprise different aspects of contaminant removal from soils have been combined. Using creosote as a test contaminant, a multi-process phytoremediation system composed of physical (volatilization), photochemical (photooxidation) and microbial remediation, and phytoremediation (plant-assisted remediation) processes was developed. The techniques applied to realize these processes were land-farming (aeration and light exposure), introduction of contaminant degrading bacteria, plant growth promoting rhizobacteria (PGPR), and plant growth of contaminant-tolerant tall fescue (Festuca arundinacea). Over a 4-month period, the average efficiency of removal of 16 priority PAHs by the multi-process remediation system was twice that of land-farming, 50% more than bioremediation alone, and 45% more than phytoremediation by itself. Importantly, the multi-process system was capable of removing most of the highly hydrophobic, soil-bound PAHs from soil. The key elements for successful phytoremediation were the use of plant species that have the ability to proliferate in the presence of high levels of contaminants and strains of PGPR that increase plant tolerance to contaminants and accelerate plant growth in heavily contaminated soils. The synergistic use of these approaches resulted in rapid and massive biomass accumulation of plant tissue in contaminated soil, putatively providing more active metabolic processes, leading to more rapid and more complete removal of PAHs. - Persistent PAH contaminants in soils can be removed more completely and rapidly by using multiple remediation processes.

  17. Dry and wet deposition of polycyclic aromatic hydrocarbons and comparison with typical media in urban system of Shanghai, China

    Science.gov (United States)

    Wang, Qing; Liu, Min; Li, Ye; Liu, Yankun; Li, Shuwen; Ge, Rongrong

    2016-11-01

    Polycyclic aromatic hydrocarbons (PAHs) were studied in dry and wet deposition samples collected at urban and suburban sites of Shanghai, China from April 2014 to April 2015. Average wet deposition fluxes of PAHs were higher than dry deposition (62.6 ± 41.5 vs. 26.9 ± 14.4 μg/m2/day). However, dry deposition removed more PAHs than wet deposition (69% vs. 31%) due to much shorter durations of wet deposition. The highest dry and wet deposition fluxes were in fall and winter, respectively. The highest amount of dry deposition was in fall and the highest of wet deposition was in summer. The contribution of wet deposition to total deposited PAHs in Shanghai, East China was higher than that in northern China and lower than that in southern China. The difference can be explained by both precipitation amount and removal efficiency (washout ratio). Average dry deposition velocity and washout ratio of particle-associated PAHs were 5.2 cm/s and 5.8 × 104, respectively. Four sources of deposited PAHs were unraveled by positive matrix factorization (PMF) model: traffic, coal combustion, coking and volatilization, contributing 28.7%, 24.6%, 23.7% and 23.0%, respectively. More contribution of traffic and less coal combustion and volatilization were found at urban than at suburban site. As the connection between aerosol and surface soil, deposition had a different PAH composition from those in the two sides, containing more low MW PAHs. That arose the concern that dry deposition velocity and particle washout ratio could be overestimated if coarse particulate matter was excluded from the calculation. Although deposition has been considered as the predominant pathway of PAHs to urban surface system, the PAH composition in street dust differed drastically from that in deposition. This indicated that other sources (e.g. traffic) in urban system could have a greater contribution to PAHs than it had been identified in deposition samples.

  18. Oxygenated, nitrated, methyl and parent polycyclic aromatic hydrocarbons in rivers of Haihe River System, China: occurrence, possible formation, and source and fate in a water-shortage area.

    Science.gov (United States)

    Qiao, Meng; Qi, Weixiao; Liu, Huijuan; Qu, Jiuhui

    2014-05-15

    Substituted polycyclic aromatic hydrocarbons (SPAHs) occur ubiquitously in the whole global environment as a result of their persistence and widely-spread sources. Some SPAHs show higher toxicities and levels than the corresponding PAHs. Three types of most frequently existing SPAHs, oxygenated-PAHs (OPAHs), nitrated-PAHs (NPAHs), and methyl-PAHs (MPAHs), as well as the 16 priority PAHs were investigated in this study. The purpose was to identify the occurrence, possible transformation, and source and fate of these target compounds in a water shortage area of North China. We took a river system in the water-shortage area in China, the Haihe River System (HRS), as a typical case. The rivers are used for irrigating the farmland in the North of China, which probably introduce these pollutants to the farmland of this area. The MPAHs (0.02-0.40 μg/L in dissolved phase; 0.32-16.54 μg/g in particulate phase), OPAHs (0.06-0.19 μg/L; 0.41-17.98 μg/g), and PAHs (0.16-1.20 μg/L; 1.56-79.38 μg/g) were found in the water samples, but no NPAHs were detected. The concentrations of OPAHs were higher than that of the corresponding PAHs. Seasonal comparison results indicated that the OPAHs, such as anthraquinone and 2-methylanthraquinone, were possibly transformed from the PAHs, particularly at higher temperature. Wastewater treatment plant (WWTP) effluent was deemed to be the major source for the MPAHs (contributing 62.3% and 87.6% to the receiving river in the two seasons), PAHs (68.5% and 89.4%), and especially OPAHs (80.3% and 93.2%) in the rivers. Additionally, the majority of MPAHs (12.4 kg, 80.0% of the total input), OPAHs (16.2 kg, 83.5%), and PAHs (65.9 kg, 93.3%) in the studied months entered the farmland through irrigation. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Phase Equilibria and Magnetic Phases in the Ce-Fe-Co-B System

    Directory of Open Access Journals (Sweden)

    Tian Wang

    2016-12-01

    Full Text Available Ce-Fe-Co-B is a promising system for permanent magnets. A high-throughput screening method combining diffusion couples, key alloys, Scanning Electron Microscope/Wavelength Dispersive X-ray Spectroscope (SEM/WDS, and Magnetic Force Microscope (MFM is used in this research to understand the phase equilibria and to explore promising magnetic phases in this system. Three magnetic phases were detected and their homogeneity ranges were determined at 900 °C, which were presented by the formulae: Ce2Fe14−xCoxB (0 ≤ x ≤ 4.76, CeCo4−xFexB (0 ≤ x ≤ 3.18, and Ce3Co11−x FexB4 (0 ≤ x ≤ 6.66. The phase relations among the magnetic phases in this system have been studied. Ce2(Fe, Co14B appears to have stronger magnetization than Ce(Co, Fe4B and Ce3(Co, Fe11B4 from MFM analysis when comparing the magnetic interactions of selected key alloys. Also, a non-magnetic CeCo12−xFexB6 (0 ≤ x ≤ 8.74 phase was detected in this system. A boron-rich solid solution with Ce13FexCoyB45 (32 ≤ x ≤ 39, 3 ≤ y ≤ 10 chemical composition was also observed. However, the crystal structure of this phase could not be found in the literature. Moreover, ternary solid solutions ε1 (Ce2Fe17−xCox (0 ≤ x ≤ 12.35 and ε2 (Ce2Co17−xFex (0 ≤ x ≤ 3.57 were found to form between Ce2Fe17 and Ce2Co17 in the Ce-Fe-Co ternary system at 900 °C.

  20. Phase Equilibria and Magnetic Phases in the Ce-Fe-Co-B System.

    Science.gov (United States)

    Wang, Tian; Kevorkov, Dmytro; Medraj, Mamoun

    2016-12-28

    Ce-Fe-Co-B is a promising system for permanent magnets. A high-throughput screening method combining diffusion couples, key alloys, Scanning Electron Microscope/Wavelength Dispersive X-ray Spectroscope (SEM/WDS), and Magnetic Force Microscope (MFM) is used in this research to understand the phase equilibria and to explore promising magnetic phases in this system. Three magnetic phases were detected and their homogeneity ranges were determined at 900 °C, which were presented by the formulae: Ce₂Fe14-xCoxB (0 ≤ x ≤ 4.76), CeCo4-xFexB (0 ≤ x ≤ 3.18), and Ce₃Co11-x FexB₄ (0 ≤ x ≤ 6.66). The phase relations among the magnetic phases in this system have been studied. Ce₂(Fe, Co)14B appears to have stronger magnetization than Ce(Co, Fe)₄B and Ce₃(Co, Fe)11B₄ from MFM analysis when comparing the magnetic interactions of selected key alloys. Also, a non-magnetic CeCo12-xFexB₆ (0 ≤ x ≤ 8.74) phase was detected in this system. A boron-rich solid solution with Ce13FexCoyB45 (32 ≤ x ≤ 39, 3 ≤ y ≤ 10) chemical composition was also observed. However, the crystal structure of this phase could not be found in the literature. Moreover, ternary solid solutions ε₁ (Ce₂Fe17-xCox (0 ≤ x ≤ 12.35)) and ε₂ (Ce₂Co17-xFex (0 ≤ x ≤ 3.57)) were found to form between Ce₂Fe17 and Ce₂Co17 in the Ce-Fe-Co ternary system at 900 °C.

  1. Insect Adhesion Secretions: Similarities and Dissimilarities in Hydrocarbon Profiles of Tarsi and Corresponding Tibiae.

    Science.gov (United States)

    Gerhardt, Heike; Betz, Oliver; Albert, Klaus; Lämmerhofer, Michael

    2016-08-01

    Spatially controlled in vivo sampling by contact solid phase microextraction with a non-coated silica fiber combined with gas chromatography-mass spectrometry (GC-MS) was utilized for hydrocarbon profiling in tarsal adhesion secretions of four insect species (Nicrophorus vespilloides, Nicrophorus nepalensis, Sagra femorata, and Gromphadorhina portentosa) by using distinct adhesion systems, viz. hairy or smooth tarsi. For comparison, corresponding samples from tibiae, representing the general cuticular hydrocarbon profile, were analyzed to enable the statistical inference of active molecular adhesion principles in tarsal secretions possibly contributed by specific hydrocarbons. n-Alkanes, monomethyl and dimethyl alkanes, alkenes, alkadienes, and one aldehyde were detected. Multivariate statistical analysis (principal component and orthogonal partial least square discriminant analyses) gave insights into distinctive molecular features among the various insect species and between tarsus and tibia samples. In general, corresponding hydrocarbon profiles in tarsus and tibia samples largely resembled each other, both qualitatively and in relative abundances as well. However, several specific hydrocarbons showed significantly different relative abundances between corresponding tarsus and tibia samples, thus indicating that such differences of specific hydrocarbons in the complex mixtures might constitute a delicate mechanism for fine-tuning the reversible attachment performances in tarsal adhesive fluids that are composed of substances originating from the same pool as cuticular hydrocarbons. Caused by melting point depression, the multicomponent tarsal adhesion secretion, made up of straight chain alkanes, methyl alkanes, and alkenes will have a semi-solid, grease-like consistency, which might provide the basis for a good reversible attachment performance.

  2. The vapour-liquid equilibria of several binary systems of fluorocarbons and hydrocarbons. Pt. 2

    Energy Technology Data Exchange (ETDEWEB)

    Kramp, S. [Inst. fuer Physikalische Chemie, Univ. Goettingen (Germany); Wagner, H.G. [Inst. fuer Physikalische Chemie, Univ. Goettingen (Germany)

    1995-06-01

    The vapour-liquid equilibria of the binary systems perfluoromethylcyclohexane-pentafluorobenzene, benzene-pentafluorobenzene, benzene-methylperfluorobutanoate and perfluoromethylcyclohexane-methylperfluorobutanoate have been measured at 333.07 K and 343.12 K using a dynamic circulation still of the Sieg-Roeck type. The thermodynamic consistency of the measurements was tested by two different methods. New UNIFAC interaction parameters [1] were calculated for the following groups: ACH-ACF, ACF-CF{sub 2}, CF{sub 2}-COO, ACCH{sub 2}-ACF, ACH-CF{sub 2}. The abbreviations stand for the following increments: ACH = aromatic CH group, ACF = aromatic CF group, CF{sub 2} = aliphatic CF{sub 2} group, COO = ester group and ACCH{sub 2} = side chain CH group. (orig.)

  3. Characterization of phases in the Fe-Nb system

    Science.gov (United States)

    Raposo, M. T.; Ardisson, J. D.; Persiano, A. I. C.; Mansur, R. A.

    1994-12-01

    The Fe-Nb system was investigated by means of X-ray diffraction and Mössbauer spectroscopy (at 300 and 77 K), in the range from 1 to 66.7 at%. We have found that the limit of solubility of Fe in Nb at 1100°C is between 3 and 4 at% Fe, and observed the coexistence of the Nb solid solution (Nbss) phase and Fe21Nb19 in the range from 4 to 40 at% Fe. The Mössbauer parameters of all the single phases are reported. The lattice parameters of Nbss phase present no significant variation with the Nb content. The X-ray pattern for the Fe21Nb19 phase could not be solved. The Laves phase Fe2Nb presents Mössbauer and X-ray parameters that agree with the literature.

  4. Implementation of concurrent engineering to Phase B space system design

    Science.gov (United States)

    Findlay, R.; Braukhane, A.; Schubert, D.; Pedersen, J. F.; Müller, H.; Essmann, O.

    2011-12-01

    Concurrent engineering (CE) has been in use within the space industry since the mid-1990s for the development of robust, effective design solutions within a reduced period of time; to date, however, such applications have focussed on Phase 0/A feasibility studies, with the potential for application in later phases not yet demonstrated. Applications at the DLR Institute of Space Systems have addressed this gap with practical attempts made on three satellite projects. The use of Phase 0/A CE techniques, such as dedicated CE sessions, online trade-offs, and design iterations and consolidation, was taken and augmented with more novel practices such as online requirements engineering. Underlying these practices was a suite of tools coming from both external and internal sources. While it is noted that the traditional time and cost benefits expected from Phase 0/A use are less likely to be achieved for Phase B applications, the resulting solutions demonstrated an increased robustness and performance.

  5. Enrichment of light hydrocarbon mixture

    Science.gov (United States)

    Yang; Dali; Devlin, David; Barbero, Robert S.; Carrera, Martin E.; Colling, Craig W.

    2010-08-10

    Light hydrocarbon enrichment is accomplished using a vertically oriented distillation column having a plurality of vertically oriented, nonselective micro/mesoporous hollow fibers. Vapor having, for example, both propylene and propane is sent upward through the distillation column in between the hollow fibers. Vapor exits neat the top of the column and is condensed to form a liquid phase that is directed back downward through the lumen of the hollow fibers. As vapor continues to ascend and liquid continues to countercurrently descend, the liquid at the bottom of the column becomes enriched in a higher boiling point, light hydrocarbon (propane, for example) and the vapor at the top becomes enriched in a lower boiling point light hydrocarbon (propylene, for example). The hollow fiber becomes wetted with liquid during the process.

  6. Design of IR EDM System with a DSP Phase Detector①

    Institute of Scientific and Technical Information of China (English)

    LIUJianguo; WEIQingnong

    1997-01-01

    The design and realization of a new generation of infra-red electronic distance measurement(IR EDM)system are presented.A DSP(Digital Signal Process)phase detector based on high speed analog-to-digital converter and DSP technique has been designed,in order to improve the precision and reliability of IR EDM system.As a result,the EDM system developed with a DSP phase detector has a precision of 3mm in the measuring range of 2 km.

  7. Performance of the beam phase measurement system for LEDA

    Science.gov (United States)

    Power, J. F.; Barr, D.; Gilpatrick, J. D.; Kasemir, K.; Shurter, R. B.; Stettler, M.

    2000-11-01

    The Low Energy Demonstration Accelerator (LEDA) facility diagnostics include beam phase measurements [1]. Beam signals at 350 MHz from capacitive probes are down-converted to 2 MHz for processing. The phase measurement process includes amplitude leveling, digital sampling of the I and Q vectors, DSP filtering and calibration, and serving of the data to the network. All hardware is fielded in the VXI format and controlled with a PC. Running under Windows NT, a LabVIEW® program controls the operation of the system and serves the data, via channel access, to the EPICS control system. The design and operational performance to date of the system is described.

  8. Energy-dissipation-model for metallurgical multi-phase-systems

    Energy Technology Data Exchange (ETDEWEB)

    Mavrommatis, K.T. [Rheinisch-Westfaelische Technische Hochschule Aachen, Aachen (Germany)

    1996-12-31

    Entropy production in real processes is directly associated with the dissipation of energy. Both are potential measures for the proceed of irreversible processes taking place in metallurgical systems. Many of these processes in multi-phase-systems could then be modelled on the basis of the energy-dissipation associated with. As this entity can often be estimated using very simple assumptions from first principles, the evolution of an overall measure of systems behaviour can be studied constructing an energy-dissipation -based model of the system. In this work a formulation of this concept, the Energy-Dissipation-Model (EDM), for metallurgical multi-phase-systems is given. Special examples are studied to illustrate the concept, and benefits as well as the range of validity are shown. This concept might be understood as complement to usual CFD-modelling of complex systems on a more abstract level but reproducing essential attributes of complex metallurgical systems. (author)

  9. Interfacial properties and phase behaviour of an ionic microemulsion system

    NARCIS (Netherlands)

    Kegel, W.K.

    1993-01-01

    This thesis reports a study of a microemulsion model system composed of the ionic surfactant SDS (Sodium Dodecyl Sulfate), the cosurfactant pentanol and/or hexanol, water, salt and cyclohexane. Depending on the concentrations of the constituent parts, this system may form microemulsion phases and

  10. Phase diagram of a system of hard ellipsoids

    NARCIS (Netherlands)

    Frenkel, D.; Mulder, B.M.; McTaque, J.P.

    1984-01-01

    The phase diagram of a system of hard ellipsoids of revolution was investigated by means of constant-pressure Monte Carlo simulation. Prolate as well as oblate ellipsoids were considered. The results for the isotherms of the system at several different values of the length-to-breadth ratio are prese

  11. EOS状态下基于多相流有规栅格理论的水-碳氢化合物两相体系的临界轨迹关系%Correlation of Critical Loci for Water-Hydrocarbon Binary Systems by EOS Based on the Multi-Fluid Nonrandom Lattice Theory

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Quantitative representation of complicated behavior of fluid mixtures in the critical region by any of equation-of-state theories re-mains as a difficult thermodynamic topics to date. In the present work, a computational efforts were made for representing various types ofcritical loci of binary water with hydrocarbon systems showing Type Ⅱ and Type Ⅲ phase behavior by an elementary equation of state [calledmulti-fluid nonrandom lattice fluid EOS (MF-NLF EOS)] based on the lattice statistical mechanical theory. The model EOS requires two mo-lecular parameters which representing molecular size and interaction energy for a pure component end single adjustable interaction energyparameter for binary mixtures. Critical temperature and pressure data were used to obtain molecular size parameter and vapor pressure datawere used to obtain interaction energy parameter. The MF-NLF EOS model adapted in the present study correlated quantitatively well the criti-cal loci of various binary water with hydrocarbon systems.

  12. Combustion performance and heat transfer characterization of LOX/hydrocarbon type propellants. Task 3: Data dump

    Science.gov (United States)

    Hart, S. W.

    1982-01-01

    A preliminary characterization of Orbital Maneuvering System (OMS) and Reaction Control System (RCS) engine point designs over a range of thrust and chamber pressure for several hydrocarbon fuels is reported. OMS and RCS engine point designs were established in two phases comprising baseline and parametric designs. Interface pressures, performance and operating parameters, combustion chamber cooling and turboprop requirements, component weights and envelopes, and propellant conditioning requirements for liquid to vapor phase engine operation are defined.

  13. Raman characteristics of hydrocarbon and hydrocarbon inclusions

    Institute of Scientific and Technical Information of China (English)

    ZHANG Nai; TIAN ZuoJi; LENG YingYing; WANG HuiTong; SONG FuQing; MENG JianHua

    2007-01-01

    The Raman spectrograms of hydrocarbon standard samples show that: (1) the Raman spectrogram of normal paraffin has very strong peaks of methyl and methylene (from 2700 cm-1 to 2970 cm-1); (2)branch methyl has the particular peak of 748 cm-1±; (3) six cyclic has the particular peak of 804 cm-1±; (4)phenyl has two particular peaks of 988 cm-1± and 3058 cm-1± and the 988 cm-1± peak is stronger than the 3058 cm-1± peak; and (5) hexene has three alkenyl spectrum peaks of 1294 cm-1±, 1635 cm-1± and 2996 cm-1±, with the 1635 cm-1± peak being the strongest, showing that the number of carbon in hydrocarbon does not affect its Raman spectrogram, and the hydrocarbon molecular structure and base groups affect its Raman spectrogram, the same hydrocarbons (such as normal paraffin) have the same Raman spectrogram; the types (such as CH4, C2H6, C3H8) and the content of hydrocarbon in oil inclusions are not estimated by their characteristic Raman peaks. According to the Raman spectrograms of hydrocarbon compositions, the Raman spectrogram of hydrocarbon inclusion can be divided into five types: saturated hydrocarbon Raman spectrogram, fluoresce Raman spectrogram, saturated hydrocarbon bitumen Raman spectrogram, bitumen Raman spectrogram, and ethane Raman spectrogram.And according to the characteristics of Raman spectrogram, hydrocarbon inclusions can be divided into five types: saturated hydrocarbon inclusion, less saturated hydrocarbon (oil or gas) inclusion,saturated hydrocarbon bitumen inclusion, bitumen inclusion, and methane water inclusion.

  14. Raman characteristics of hydrocarbon and hydrocarbon inclusions

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The Raman spectrograms of hydrocarbon standard samples show that: (1) the Raman spectrogram of normal paraffin has very strong peaks of methyl and methylene (from 2700 cm-1 to 2970 cm-1); (2) branch methyl has the particular peak of 748 cm-1±; (3) six cyclic has the particular peak of 804 cm-1±; (4) phenyl has two particular peaks of 988 cm-1± and 3058 cm-1± and the 988 cm-1± peak is stronger than the 3058 cm-1± peak; and (5) hexene has three alkenyl spectrum peaks of 1294 cm-1±, 1635 cm-1± and 2996 cm-1±, with the 1635 cm-1± peak being the strongest, showing that the number of carbon in hy-drocarbon does not affect its Raman spectrogram, and the hydrocarbon molecular structure and base groups affect its Raman spectrogram, the same hydrocarbons (such as normal paraffin) have the same Raman spectrogram; the types (such as CH4, C2H6, C3H8) and the content of hydrocarbon in oil inclu-sions are not estimated by their characteristic Raman peaks. According to the Raman spectrograms of hydrocarbon compositions, the Raman spectrogram of hydrocarbon inclusion can be divided into five types: saturated hydrocarbon Raman spectrogram, fluoresce Raman spectrogram, saturated hydro-carbon bitumen Raman spectrogram, bitumen Raman spectrogram, and ethane Raman spectrogram. And according to the characteristics of Raman spectrogram, hydrocarbon inclusions can be divided into five types: saturated hydrocarbon inclusion, less saturated hydrocarbon (oil or gas) inclusion, saturated hydrocarbon bitumen inclusion, bitumen inclusion, and methane water inclusion.

  15. Theory of interfacial phase transitions in surfactant systems

    Science.gov (United States)

    Shukla, K. P.; Payandeh, B.; Robert, M.

    1991-06-01

    The spin-1 Ising model, which is equivalent to the three-component lattice gas model, is used to study wetting transitions in three-component surfactant systems consisting of an oil, water, and a nonionic surfactant. Phase equilibria, interfacial profiles, and interfacial tensions for three-phase equilibrium are determined in mean field approximation, for a wide range of temperature and interaction parameters. Surfactant interaction parameters are found to strongly influence interfacial tensions, reducing them in some cases to ultralow values. Interfacial tensions are used to determine whether the middle phase, rich in surfactant, wets or does not wet the interface between the oil-rich and water-rich phases. By varying temperature and interaction parameters, a wetting transition is located and found to be of the first order. Comparison is made with recent experimental results on wetting transitions in ternary surfactant systems.

  16. Three-Phase Load Flow for Unbalanced Systems.

    Science.gov (United States)

    Chang, Yih-Ping

    Traditionally, transmission systems are assumed to be balanced in power system analysis. A single phase positive sequence circuit is used in transmission system load flow analysis to simplify the study. However, when untransposed transmission lines are used in a power system due to economic considerations, space limitation; or when large unbalanced load is on the system; or when an unbalance contingency occurs on the system, this assumption may not hold true. The unbalance condition in some isolated systems are so precarious that disaster can result. One such incident occurred on a generator unit of the third nuclear power plant of Taipower in 1985. In that particular case, the turbine blades were broken and a spark ignited the liquid hydrogen when the blade vibration resonated with the 120.5 Hz rotor current. One cause of this rotor current generation is system unbalance. The unbalanced three-phase load flow program is needed in today's power system analysis. An advanced three-phase unbalanced transmission load flow program, capable of locating the unbalanced problem of large electric network systems, was proposed to be developed and tested in this research. Features of this program include simultaneous power flow of multiple voltage levels on an individual phase basis; PV bus generator, cogenerator, transformer simulation, and load modeling. It is found that delta-grounded wye step-up transformer reduces the convergence speed greatly. When too many delta-grounded wye step-up transformers exist in a large scale system and a quick approximate result of the unbalance conditions is needed, these step-up transformers can be substituted by grounded-wye to grounded-wye type transformers. This is tested on a Taipower system case which included 345KV, 161KV and 69KV feeders, network transformers, 34 PV bus generators and 188 three-phase buses. Impending unbalance problems in Taipower system were located. When not too many delta-grounded wye type transformers are in the

  17. Hydrocarbon-Seeded Ignition System for Small Spacecraft Thrusters Using Ionic Liquid Propellants

    Science.gov (United States)

    Whitmore, Stephen A.; Merkley, Daniel P.; Eilers, Shannon D.; Taylor, Terry L.

    2013-01-01

    "Green" propellants based on Ionic-liquids (ILs) like Ammonium DiNitramide and Hydroxyl Ammonium Nitrate have recently been developed as reduced-hazard replacements for hydrazine. Compared to hydrazine, ILs offer up to a 50% improvement in available density-specific impulse. These materials present minimal vapor hazard at room temperature, and this property makes IL's potentially advantageous for "ride-share" launch opportunities where hazards introduced by hydrazine servicing are cost-prohibitive. Even though ILs present a reduced hazard compared to hydrazine, in crystalline form they are potentially explosive and are mixed in aqueous solutions to buffer against explosion. Unfortunately, the high water content makes IL-propellants difficult to ignite and currently a reliable "coldstart" capability does not exist. For reliable ignition, IL-propellants catalyst beds must be pre-heated to greater than 350 C before firing. The required preheat power source is substantial and presents a significant disadvantage for SmallSats where power budgets are extremely limited. Design and development of a "micro-hybrid" igniter designed to act as a "drop-in" replacement for existing IL catalyst beds is presented. The design requires significantly lower input energy and offers a smaller overall form factor. Unlike single-use "squib" pyrotechnic igniters, the system allows the gas generation cycle to be terminated and reinitiated on demand.

  18. Assessment of hydrocarbon degradation potentials in plant-microbe interaction system with oil sludge contamination: A sustainable solution.

    Science.gov (United States)

    Dhote, Monika; Kumar, Anil; Jajoo, Anjana; Juwarkar, Asha

    2017-05-25

    A pot culture experiment was conducted for 90 days for evaluation of oil and total petroleum hydrocarbon (TPH) degradation in vegetated and non-vegetated treatments of real field oil sludge contaminated soil. Five different treatments include, (T1) control, 2% oil sludge contaminated soil; (T2), augmentation of microbial consortium; (T3), Vertiver zizanioide; (T4), bio-augmentation along with Vertiver zizanioide and (T5), bio-augmentation with Vertiver zizanioide and bulking agent. During the study, oil reduction, TPH and degradation of its fractions was determined. Physic-chemical and microbiological parameters of soil were also monitored simultaneously. At the end of the experimental period, oil content (85%) was reduced maximally in bio-augmented rhizospheric treatments (T4 and T5) as compared to control (27%). TPH reduction was observed to be 88% and 89% in bio-augmented rhizospheric soil (T4 and T5 treatments), whereas in non-rhizospheric and control (T2 and T1) TPH reduction was 78% and 37% respectively. Degradation of aromatic fraction after 90 days in bio-augmented rhizosphere of treatment T4 and T5 was found to 91% and 92%. In microbial (T2) and Vertiver treatment (T3) degradation of aromatic fraction was 83% and 68% respectively. A threefold increase in soil dehydrogenase activity and noticeable changes in organic carbon content, water holding capacity were also observed which indicated maximum degradation of oil and its fractions in combined treatment of plants and microbes. It is concluded that plant-microbe-soil system helps to restore soil quality and can be used as an effective tool for remediation of oil sludge contaminated sites.

  19. A novel forward osmosis system in landfill leachate treatment for removing polycyclic aromatic hydrocarbons and for direct fertigation.

    Science.gov (United States)

    Li, Jing; Niu, Aping; Lu, Chun-Jiao; Zhang, Jing-Hui; Junaid, Muhammad; Strauss, Phyllis R; Xiao, Ping; Wang, Xiao; Ren, Yi-Wei; Pei, De-Sheng

    2017-02-01

    Landfill leachate (LL) is harmful to aquatic environment because it contains high concentrations of dissolved organic matter, inorganic components, heavy metals, and other xenobiotics. Thus, the remediation of LL is crucial for environmental conservation. Here, a potential application of the forward osmosis (FO) filtration process with ammonium bicarbonate (NH4HCO3) as a draw solution (DS) was investigated to remediate membrane bioreactor-treated LL (M-LL). After the leachate treatment, the toxicity and removal efficiencies of polycyclic aromatic hydrocarbons (PAHs) were evaluated using zebrafish and cultured human cells. The water recovery rate was improved using the current protocol up to 86.6% and 91.6% by both the pressure retarded osmosis (PRO) mode and the forward osmosis (FO) mode. Water flux increased with the increasing DS concentrations, but solution velocities decreased with the operation time. Toxicity tests revealed that the M-LL treated by NH4HCO3 had no toxic effect on zebrafish and human cells. Moreover, green fluorescent protein (GFP) expression in the transgenic zebrafish Tg(cyp1a:gfp) induced by PAHs was very weak compared to the effects induced by untreated M-LL. Since the diluted DS met local safety requirements of liquid fertilizer, it could be directly applied as the liquid fertilizer for fertigation. In conclusion, this novel FO system using NH4HCO3 as the DS provides a cheap and efficient protocol to effectively remove PAHs and other pollutants in LL, and the diluted DS can be directly applied to crops as a liquid fertilizer, indicating that this technique is effective and eco-friendly for the treatment of different types of LL.

  20. Phase equilibria in polydisperse nonadditive hard-sphere systems.

    Science.gov (United States)

    Paricaud, Patrice

    2008-08-01

    Colloidal particles naturally exhibit a size polydispersity that can greatly influence their phase behavior in solution. Nonadditive hard-sphere (NAHS) mixtures are simple and well-suited model systems to represent phase transitions in colloid systems. Here, we propose an analytical equation of state (EOS) for NAHS fluid mixtures, which can be straightforwardly applied to polydisperse systems. For positive values of the nonadditivity parameter Delta the model gives accurate predictions of the simulated fluid-fluid coexistence curves and compressibility factors. NPT Monte Carlo simulations of the mixing properties of the NAHS symmetric binary mixture with Delta>0 are reported. It is shown that the enthalpy of mixing is largely positive and overcomes the positive entropy of mixing when the pressure is increased, leading to a fluid-fluid phase transition with a lower critical solution pressure. Phase equilibria in polydisperse systems are predicted with the model by using the density moment formalism [P. Sollich, Adv. Chem. Phys. 116, 265 (2001)]. We present predictions of the cloud and shadow curves for polydisperse NAHS systems composed of monodisperse spheres and polydisperse colloid particles. A fixed nonadditivity parameter Delta > 0 is assumed between the monodisperse and polydisperse spheres, and a Schulz distribution is used to represent the size polydispersity. Polydispersity is found to increase the extent of the immiscibility region. The predicted cloud and shadow curves depend dramatically on the upper cutoff diameter sigmac of the Schulz distribution, and three-phase equilibria can occur for large values of sigmac.

  1. An automated two-phase system for hydrogel microbead production.

    Science.gov (United States)

    Coutinho, Daniela F; Ahari, Amir F; Kachouie, Nezamoddin N; Gomes, Manuela E; Neves, Nuno M; Reis, Rui L; Khademhosseini, Ali

    2012-09-01

    Polymeric beads have been used for protection and delivery of bioactive materials, such as drugs and cells, for different biomedical applications. Here, we present a generic two-phase system for the production of polymeric microbeads of gellan gum or alginate, based on a combination of in situ polymerization and phase separation. Polymer droplets, dispensed using a syringe pump, formed polymeric microbeads while passing through a hydrophobic phase. These were then crosslinked, and thus stabilized, in a hydrophilic phase as they crossed through the hydrophobic-hydrophilic interface. The system can be adapted to different applications by replacing the bioactive material and the hydrophobic and/or the hydrophilic phases. The size of the microbeads was dependent on the system parameters, such as needle size and solution flow rate. The size and morphology of the microbeads produced by the proposed system were uniform, when parameters were kept constant. This system was successfully used for generating polymeric microbeads with encapsulated fluorescent beads, cell suspensions and cell aggregates proving its ability for generating bioactive carriers that can potentially be used for drug delivery and cell therapy.

  2. Nonadiabatic Geometric Phase in Composite Systems and Its Subsystem

    Institute of Scientific and Technical Information of China (English)

    LI Xin

    2008-01-01

    We point out that the time-dependent gauge transformation technique may be effective in investigating the nonadiabatic geometric phase of a subsystem in a composite system. As an example, we consider two uniaxially coupled spin -1/2 particles with one of particles driven by rotating magnetic field. The influences of coupling and precession frequency of the magnetic field on geometric phase are also discussed in detail.

  3. Polarization-dependent phase locking in stimulated Brillouin scattering systems.

    Science.gov (United States)

    Hua, X; Falk, J

    1993-10-20

    Measurements of the mutual coherence of the output beams from a seeded, two-pump-beam, stimulated Brillouin scattering system are reported. Mutual coherence depends on the relative polarizations of the pump beams and the seed beam. A seed beam can phase-lock the Stokes outputs even if the pump beams are orthogonally polarized. Four-wave mixing is responsible for this phase locking.

  4. PHASE NOISE COMPARISON OF SHORT PULSE LASER SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Shukui Zhang; Stephen Benson; John Hansknecht; David Hardy; George Neil; Michelle D. Shinn

    2006-08-27

    This paper describes phase noise measurements of several different laser systems that have completely different gain media and configurations including a multi-kW free-electron laser. We will focus on state-of-the-art short pulse lasers, especially drive lasers for photocathode injectors. Phase noise comparison of the FEL drive laser, electron beam and FEL laser output also will be presented.

  5. Phase Noise Comparision of Short Pulse Laser Systems

    Energy Technology Data Exchange (ETDEWEB)

    S. Zhang; S. V. Benson; J. Hansknecht; D. Hardy; G. Neil; Michelle D. Shinn

    2006-12-01

    This paper describes the phase noise measurement on several different mode-locked laser systems that have completely different gain media and configurations including a multi-kW free-electron laser. We will focus on the state of the art short pulse lasers, especially the drive lasers for photocathode injectors. A comparison between the phase noise of the drive laser pulses, electron bunches and FEL pulses will also be presented.

  6. Quantum phase transitions in Bose-Fermi systems

    CERN Document Server

    Petrellis, D; Iachello, F

    2011-01-01

    Quantum phase transitions in a system of N bosons with angular momentum L=0,2 (s,d) and a single fermion with angular momentum j are investigated both classically and quantum mechanically. It is shown that the presence of the odd fermion strongly influences the location and nature of the phase transition, especially the critical value of the control parameter at which the phase transition occurs. Experimental evidence for the U(5)-SU(3) (spherical to axially-deformed) transition in odd-even nuclei is presented.

  7. Modeling transport effects of perfluorinated and hydrocarbon surfactants in groundwater by using micellar liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Rashad N. [Department of Chemistry and Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824-1322 (United States); McGuffin, Victoria L. [Department of Chemistry and Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824-1322 (United States)], E-mail: jgshabus@aol.com

    2007-11-05

    The effects of hydrocarbon and perfluorinated surfactants, above their critical micelle concentration (CMC), on the transport of neutral environmental pollutants are compared. Reversed-phase micellar liquid chromatography is used to model the groundwater system. The octadecylsilica stationary phase serves to simulate soil particles containing organic matter, whereas the aqueous surfactant mobile phases serve to simulate groundwater containing a surfactant at varying concentrations. Sodium dodecyl sulfate and lithium perfluorooctane sulfonate are used as representatives of the hydrocarbon and perfluorinated surfactants, respectively. Benzene, mono- and perhalogenated benzenes, and polycyclic aromatic hydrocarbons are used as models for environmental pollutants. Transport effects were elucidated from the retention factor, k, and the equilibrium constant per micelle, K{sub eq}, of the model pollutants in the individual surfactants. Based on k values, the transport of the model pollutants increased in both surfactant solutions in comparison to pure water. As the concentration of the surfactants increased, the transport of the pollutants increased as well. Notably, the K{sub eq} values of the pollutants in the perfluorinated surfactant were at least an order of magnitude less than those in the hydrocarbon surfactant. Overall, these results suggest that the presence of a perfluorinated surfactant, above its CMC, increases the transport of pollutants in a groundwater system. However, the perfluorinated surfactant exhibits a lesser transport effect than the hydrocarbon surfactant.

  8. AC propulsion system for an electric vehicle, phase 2

    Science.gov (United States)

    Slicker, J. M.

    1983-01-01

    A second-generation prototype ac propulsion system for a passenger electric vehicle was designed, fabricated, tested, installed in a modified Mercury Lynx vehicle and track tested at the Contractor's site. The system consisted of a Phase 2, 18.7 kw rated ac induction traction motor, a 192-volt, battery powered, pulse-width-modulated, transistorized inverter packaged for under rear seat installation, a 2-axis, 2-speed, automatically-shifted mechanical transaxle and a microprocessor-based powertrain/vehicle controller. A diagnostics computer to assist tuning and fault finding was fabricated. Dc-to-mechanical-system efficiency varied from 78% to 82% as axle speed/torque ranged from 159 rpm/788 nm to 65 rpm/328 nm. Track test efficiency results suggest that the ac system will be equal or superior to dc systems when driving urban cycles. Additional short-term work is being performed under a third contract phase (AC-3) to raise transaxle efficiency to predicted levels, and to improve starting and shifting characteristics. However, the long-term challenge to the system's viability remains inverter cost. A final report on the Phase 2 system, describing Phase 3 modifications, will be issued at the conclusion of AC-3.

  9. DSPI system based on spatial carrier phase shifting technique

    Science.gov (United States)

    Wang, Yonghong; Li, Junrui; Sun, Jianfei; Yang, Lianxiang

    2013-10-01

    Digital Speckle Pattern Interferometry (DSPI) is an optical method for measuring small displacement and deformation. It allows whole field, non-contacting measurement of micro deformation. Traditional Temporal phase shifting has been used for quantitative analyses in DSPI. The technique requires the recording of at least three phase-shifted interferograms, which must be taken sequentially. This can lead to disturbances by thermal and mechanical fluctuations during the required recording time. In addition, fast object deformations cannot be detected. In this paper a DSPI system using Spatial Carrier Phase Shifting (SCPS) technique is introduced, which is useful for extracting quantitative displacement data from the system with only two interferograms. The sensitive direction of this system refers to the illumination direction and observation direction. The frequencies of the spatial carrier relates to the angle between reference light and observation direction. Fourier transform is adopted in the digital evaluation to filter out the frequencies links to the deformation of testing object. The phase is obtained from the complex matrix formed by inverse Fourier transform, and the phase difference and deformation are calculated subsequently. Comparing with conventional temporal phase shifting, the technique can achieve measuring the vibration and transient deformation of testing object. Experiment set-ups and results are presented in this paper, and the experiment results have shown the effectiveness and advantages of the SCPS technique.

  10. Wall quench and flammability limit effects on exhaust hydrocarbon emissions. Final technical report, Phase 5: 1 August 1980-30 September 1980

    Energy Technology Data Exchange (ETDEWEB)

    Fendell, F.

    1980-10-01

    Progress is reported in a project concerned with simple modeling and laboratory experiments to elucidate the mechanisms whereby trace amounts of unburned hydrocarbons may persist after the combustion event in Otto-cycle-type internal-combustion-engine cylinders, and the fate of these residual hydrocarbons during the power-stroke and exhaust-event portions of the cycle. The motivation for the research is that a highly fuel-lean fast-burn design for the spark-ignition homogeneous-charge, four-stroke engine may permit exceptionally fuel-efficient operation of this highly driveable, relatively well-understood automotive engine. Work during this period concentrated on the mathematical modelling of wall quenching and turbulent flame propagation. (LCL)

  11. Noise-enhanced phase synchronization in time-delayed systems.

    Science.gov (United States)

    Senthilkumar, D V; Shrii, M Manju; Kurths, J

    2012-02-01

    We investigate the phenomenon of noise-enhanced phase synchronization (PS) in coupled time-delay systems, which usually exhibit non-phase-coherent attractors with complex topological properties. As a delay system is essentially an infinite dimensional in nature with multiple characteristic time scales, it is interesting and crucial to understand the interplay of noise and the time scales in achieving PS. In unidirectionally coupled systems, the response system adjust all its time scales to that of the drive, whereas both subsystems adjust their rhythms to a single (main time scale of the uncoupled system) time scale in bidirectionally coupled systems. We find similar effects for both a common and an independent additive Gaussian noise.

  12. The Application of Phase Type Distributions for Modelling Queuing Systems

    Directory of Open Access Journals (Sweden)

    EIMUTIS VALAKEVICIUS

    2007-12-01

    Full Text Available Queuing models are important tools for studying the performance of complex systems, but despite the substantial queuing theory literature, it is often necessary to use approximations in the case the system is nonmarkovian. Phase type distribution is by now indispensable tool in creation of queuing system models. The purpose of this paper is to suggest a method and software for evaluating queuing approximations. A numerical queuing model with priorities is used to explore the behaviour of exponential phase-type approximation of service-time distribution. The performance of queuing systems described in the event language is used for generating the set of states and transition matrix between them. Two examples of numerical models are presented – a queuing system model with priorities and a queuing system model with quality control.

  13. Distribution, partitioning and sources of polycyclic aromatic hydrocarbons in the water-SPM-sediment system of Lake Chaohu, China

    DEFF Research Database (Denmark)

    Qin, Ning; He, Wei; Kong, Xiang-Zhen

    2014-01-01

    The residual levels of polycyclic aromatic hydrocarbons (PAHs) in the water, suspended particular matter (SPM) and sediment from Lake Chaohu were measured with a gas chromatograph-mass spectrometer (GC-MS). The spatial-temporal distributions and the SPM-water partition of PAHs and their influenci...

  14. Complete Phase Diagrams for a Holographic Superconductor/Insulator System

    CERN Document Server

    Horowitz, Gary T

    2010-01-01

    The gravitational dual of an insulator/superconductor transition driven by increasing the chemical potential has recently been constructed. However, the system was studied in a probe limit and only a part of the phase diagram was obtained. We include the backreaction and construct the complete phase diagram for this system. For fixed chemical potential there are typically two phase transitions as the temperature is lowered. Surprisingly, for a certain range of parameters, the system first becomes a superconductor and then becomes an insulator as the temperature approaches zero. As a byproduct of our analysis, we also construct the gravitational dual of a Bose-Einstein condensate of glueballs in a confining gauge theory.

  15. The minimization of ac phase noise in interferometric systems

    DEFF Research Database (Denmark)

    Filinski, Ignacy; Gordon, R A

    1994-01-01

    A simple step-by-step procedure, including several novel techniques discussed in the Appendices, is given for minimizing ac phase noise in typical interferometric systems such as two-beam interferometers, holographic setups, four-wave mixers, etc. Special attention is given to index of refraction...... fluctuations, direct mechanical coupling, and acoustic coupling, whose importance in determining ac phase noise in interferometric systems has not been adequately treated. The minimization procedure must be carried out while continuously monitoring the phase noise which can be done very simply by using...... with the optical table will also have to be carefully carried out regardless of the type of interferometric system employed.It is recommended that this be followed by a simple, inexpensive change to a novel type of interferometer discussed in Appendix A which is inherently less sensitive to mechanical vibration...

  16. Gas phase metal cluster model systems for heterogeneous catalysis.

    Science.gov (United States)

    Lang, Sandra M; Bernhardt, Thorsten M

    2012-07-14

    Since the advent of intense cluster sources, physical and chemical properties of isolated metal clusters are an active field of research. In particular, gas phase metal clusters represent ideal model systems to gain molecular level insight into the energetics and kinetics of metal-mediated catalytic reactions. Here we summarize experimental reactivity studies as well as investigations of thermal catalytic reaction cycles on small gas phase metal clusters, mostly in relation to the surprising catalytic activity of nanoscale gold particles. A particular emphasis is put on the importance of conceptual insights gained through the study of gas phase model systems. Based on these concepts future perspectives are formulated in terms of variation and optimization of catalytic materials e.g. by utilization of bimetals and metal oxides. Furthermore, the future potential of bio-inspired catalytic material systems are highlighted and technical developments are discussed.

  17. Low bitrate system design in the presence of phase noise

    Science.gov (United States)

    Haugli, Hans-Christian

    1995-01-01

    There are a number of interesting mobile satellite applications that require the transmission of short packets of data. In the design of such systems one of the challenges is often to minimize the transmitted power to reduce cost, which implies using power efficient low bit-rate modulation and coding methods. PSK systems can be very power efficient, but at low bit-rates the carrier recovery circuits can be sensitive to oscillator phase noise. In this paper we address the problem of determining the lowest bit-rate that can be supported using PSK for a given level of system phase noise. The classical formulas are reviewed, and a method is derived to calculate the minimum C/N(sub 0) required to recover the carrier for CW, BPSK and QPSK signals for a given phase noise level.

  18. Integrated monitoring and surveillance system demonstration project: Phase I accomplishments

    Energy Technology Data Exchange (ETDEWEB)

    Aumeier, S.E.; Walters, B.G.; Crawford, D.C. [and others

    1997-01-15

    The authors present the results of the Integrated Monitoring and Surveillance System (IMSS) demonstration project Phase I efforts. The rationale behind IMSS development is reviewed and progress in each of the 5 basic tasks is detailed. Significant results include decisions to use Echelon LonWorks networking protocol and Microsoft Access for the data system needs, a preliminary design for the plutonium canning system glovebox, identification of facilities and materials available for the demonstration, determination of possibly affected facility documentation, and a preliminary list of available sensor technologies. Recently imposed changes in the overall project schedule and scope are also discussed and budgetary requirements for competition of Phase II presented. The results show that the IMSS demonstration project team has met and in many cases exceeded the commitments made for Phase I deliverables.

  19. Studies in Three Phase Gas-Liquid Fluidised Systems

    Science.gov (United States)

    Awofisayo, Joyce Ololade

    1992-01-01

    Available from UMI in association with The British Library. The work is a logical continuation of research started at Aston some years ago when studies were conducted on fermentations in bubble columns. The present work highlights typical design and operating problems that could arise in such systems as waste water, chemical, biochemical and petroleum operations involving three-phase, gas-liquid -solid fluidisation; such systems are in increasing use. It is believed that this is one of few studies concerned with "true" three-phase, gas-liquid-solid fluidised systems, and that this work will contribute significantly to closing some of the gaps in knowledge in this area. The research work was experimentally based and involved studies of the hydrodynamic parameters, phase holdups (gas and solid), particle mixing and segregation, and phase flow dynamics (flow regime and circulation patterns). The studies have focused particularly on the solid behaviour and the influence of properties of solids present on the above parameters in three-phase, gas-liquid-solid fluidised systems containing single particle components and those containing binary and ternary mixtures of particles. All particles were near spherical in shape and two particle sizes and total concentration levels were used. Experiments were carried out in two- and three-dimensional bubble columns. Quantitative results are presented in graphical form and are supported by qualitative results from visual studies which are also shown as schematic diagrams and in photographic form. Gas and solid holdup results are compared for air-water containing single, binary and ternary component particle mixtures. It should be noted that the criteria for selection of the materials used are very important if true three-phase fluidisation is to be achieved: this is very evident when comparing the results with those in the literature. The fluid flow and circulation patterns observed were assessed for validation of the generally

  20. Zipf's law emerges asymptotically during phase transitions in communicative systems

    CERN Document Server

    Khomtchouk, Bohdan B

    2016-01-01

    Zipf's law predicts a power-law relationship between word rank and frequency in language communication systems, and is widely reported in texts yet remains enigmatic as to its origins. Computer simulations have shown that language communication systems emerge at an abrupt phase transition in the fidelity of mappings between symbols and objects. Since the phase transition approximates the Heaviside or step function, we show that Zipfian scaling emerges asymptotically at high rank based on the Laplace transform which yields $(1/r)(1-e^{-r})$, where $r$ denotes rank. We thereby demonstrate that Zipf's law gradually emerges from the moment of phase transition in communicative systems. We show that this power-law scaling behavior explains the emergence of natural languages at phase transitions. We find that the emergence of Zipf's law during language communication suggests that the use of rare words in a lexicon (i.e., high $r$) is critical for the construction of an effective communicative system at the phase tra...

  1. Pwm Control Strategy For Controlling Of Parallel Rectifiers In Single Phase To Three Phase Drive System

    Directory of Open Access Journals (Sweden)

    Ramakrishna Manohar Anaparthi

    2014-12-01

    Full Text Available This paper explains that how to develop and design, control of single phase to three phase drive system. The proposed topology of drive system consisting of two parallel connected rectifiers, inverter and induction motor, connected through inductor and capacitor, where used to produce balanced output to the motor drive. The main objective of this proposed method is to reduce the circulating currents and harmonic distortions at the converter input side, here the control strategy of drive system is PWM (pulse width modulations techniques control strategy, the proposed topology also provides fault compensation in the case of short circuit faults and failure of switches for uninterrupted Power supplies. We also develop and simulate the MATLAB models for proposed drive system, by using MATLAB/ Simulink the output results simulate and observed.

  2. Vector Modulator for Phase Shifting in Passive Beamforming Wireless Systems

    Directory of Open Access Journals (Sweden)

    P.Sampath,

    2010-05-01

    Full Text Available This paper proposes vector modulator for changing the phase of a signal in passive beamforming system. Vector modulator is used to perform a phase shift function with added benefit of amplitude control. It is used to improve the directivity of RF waves in Wireless systems. Vector modulator is implemented for a center frequency of 902.5 MHz. The simulation is performed for individual blocks of the vector modulator and for vector modulator with JFET and MOSFET as controlling device in the variable attenuator of the vector modulator.

  3. IMPROVEMENT TO PIPELINE COMPRESSOR ENGINE RELIABILITY THROUGH RETROFIT MICRO-PILOT IGNITION SYSTEM-PHASE I

    Energy Technology Data Exchange (ETDEWEB)

    Ted Bestor

    2003-03-04

    This report documents the first year's effort towards a 3-year program to develop micropilot ignition systems for existing pipeline compressor engines. In essence, all Phase I goals and objectives were met. We intend to proceed with the Phase II research plan, as set forth by the applicable Research Management Plan. The objective for Phase I was to demonstrate the feasibility of micropilot ignition for large bore, slow speed engines operating at low compression ratios. The primary elements of Micropilot Phase I were to develop a single-cylinder test chamber to study the injection of pilot fuel into a combustion cylinder and to develop, install and test a multi-cylinder micropilot ignition system for a 4-cylinder, natural gas test engine. In all, there were twelve (12) tasks defined and executed to support these two (2) primarily elements in a stepwise fashion. Task-specific approaches and results are documented in this report. Research activities for Micropilot Phase I were conducted with the understanding that the efforts are expected to result in a commercial product to capture and disseminate the efficiency and environmental benefits of this new technology. An extensive state-of-art review was conducted to leverage the existing body of knowledge of micropilot ignition with respect to retrofit applications. Additionally, commercially-available fuel injection products were identified and applied to the program where appropriate. This approach will minimize the overall time-to-market requirements, while meeting performance and cost criteria. The four-cylinder prototype data was encouraging for the micro-pilot ignition technology when compared to spark ignition. Initial testing results showed: (1) Brake specific fuel consumption of natural gas was improved from standard spark ignition across the map, 1% at full load and 5% at 70% load. (2) 0% misfires for all points on micropilot ignition. Fuel savings were most likely due to this percent misfire improvement

  4. Phase and Complete Synchronizations in Time-Delay Systems

    Science.gov (United States)

    Senthilkumar, D. V.; Manju Shrii, M.; Kurths, J.

    2013-01-01

    Synchronization is a fundamental nonlinear phenomenon that has been intensively investigated during a couple of decades. Recently, synchronization of time-delay systems with or without delay coupling and even synchronization of low-dimensional dynamical systems described by ordinary differential equations and maps with delay coupling have become an active area of research in view of its potential applications. In this article, we provide an overview of our recent results on phase synchronization in time-delay systems, which usually exhibits hyperchaotic attractors with complex topological properties, noise-enhanced phase and noise-induced complete synchronizations in time-delay systems. Further, we demonstrate the phenomena of delay-enhanced and delay-induced stable synchronous chaos in a delay coupled network of time continuous dynamical system using the framework of master stability formalism (MSF) for the first time.

  5. Interstitially stabilized phases in the zirconium-nickel system

    Energy Technology Data Exchange (ETDEWEB)

    MacKay, R.A.

    1993-07-01

    Addition of nonmetal interstitial atoms to Zr-Ni compounds has resulted in several new phases. A single-crystal x-ray study was carried out for Zr{sub 3}NiO. Zr{sub 4}Ni{sub 2}O is a high- temperature phase, forming in samples annealed at 1250 C. Huekel band calculations led to prediction and confirmation of additional phases in more electron rich systems. Other phases studied by XRD are Zr{sub 6}Ni{sub 4}Ti{sub 2}O{sub 0.6}, Nb{sub 6}Ni{sub 6}O, and Nb{sub 6}Ni{sub 4}Ta{sub 2}O{sub 2}. Phases identified by powder diffraction are Nb{sub 4}Ni{sub 2}O, Zr{sub 4}Cu{sub 2}O, and Zr{sub 6}Co{sub 4}Ti{sub 2}O. New Zr kappa phases in space group P6s{sub 3}/mmc were found: Zr{sub 9}Mo{sub 4}SO{sub x} and Zr{sub 9}W{sub 4}(S,Ni)O{sub 3}. A new structure type was discovered with Zr{sub 6}Ni{sub 6}TiSiO{sub 1.8}. In all these interstitially stabilized phases, O is coordinated in Zr octahedral; there are no Ni-O interactions.

  6. Biochar as a sorbent for chlorinated hydrocarbons - sorption and extraction experiments in single and bi-solute systems

    Science.gov (United States)

    Schreiter, Inga J.; Wefer-Roehl, Annette; Graber, Ellen R.; Schüth, Christoph

    2017-04-01

    Biochar (BC) is increasingly deemed a potential sorbent for contaminants in soil and water remediation, and brownfield restoration. In this study, sorption and extraction experiments were performed to assess the potential of three different BCs to sorb and retain the chlorinated hydrocarbons trichloroethylene (TCE) and tetrachloroethylene (PCE). BCs studied were produced from wood chips, grain husk, and cattle manure at 450 °C. A commercially available activated carbon (AC) served as a reference. The sorption behaviour was studied in batch experiments in single solute and bi-solute systems. Resulting isotherms were fitted to the Freundlich model. To assess the desorption behaviour, a five-step extraction scheme (water at 40°C, water at 80°C, methanol at 50°C, toluene at 50°C, and n-hexane at 50°) was developed, utilizing Accelerated Solvent Extraction. Isotherms revealed distinct differences in sorption behaviour depending on BC feedstock. Sorption capacity ranked as follows: wood chip BC > grain husk BC > cattle manure BC for both contaminants. This sequence could be attributable to an increasing specific surface area, an increasing amount of carbon, and a decreasing ash content of the sorbents. It is noteworthy that all three BCs were more effective in adsorbing TCE, which is surprising, given the higher logKow of PCE. The reverse was observed for the AC. Here, sorption is purely driven by the hydrophobicity of the compound rather than sorbent properties. In bi-solute experiments, PCE sorbed as good as or stronger than TCE, yet the total mass of sorbed compounds increased slightly. In contrast, AC showed a significant decrease of TCE sorption and no significant changes in the total mass sorbed. Extraction experiments revealed that for all BCs a large fraction of the contaminants could not be readily desorbed. In all cases, water remobilized < 5 % of the total contaminant mass and up to 70 % could not be extracted by any of the solvents. The findings suggest

  7. Quantum Phase Transitions in Conventional Matrix Product Systems

    Science.gov (United States)

    Zhu, Jing-Min; Huang, Fei; Chang, Yan

    2017-02-01

    For matrix product states(MPSs) of one-dimensional spin-1/2 chains, we investigate a new kind of conventional quantum phase transition(QPT). We find that the system has two different ferromagnetic phases; on the line of the two ferromagnetic phases coexisting equally, the system in the thermodynamic limit is in an isolated mediate-coupling state described by a paramagnetic state and is in the same state as the renormalization group fixed point state, the expectation values of the physical quantities are discontinuous, and any two spin blocks of the system have the same geometry quantum discord(GQD) within the range of open interval (0,0.25) and the same classical correlation(CC) within the range of open interval (0,0.75) compared to any phase having no any kind of correlation. We not only realize the control of QPTs but also realize the control of quantum correlation of quantum many-body systems on the critical line by adjusting the environment parameters, which may have potential application in quantum information fields and is helpful to comprehensively and deeply understand the quantum correlation, and the organization and structure of quantum correlation especially for long-range quantum correlation of quantum many-body systems.

  8. Garlic attenuates chrysotile-mediated pulmonary toxicity in rats by altering the phase I and phase II drug metabolizing enzyme system.

    Science.gov (United States)

    Ameen, Mohamed; Musthapa, M Syed; Abidi, Parveen; Ahmad, Iqbal; Rahman, Qamar

    2003-01-01

    Asbestos and its carcinogenic properties have been extensively documented. Asbestos exposure induces diverse cellular events associated with lung injury. Previously, we have shown that treatment with chrysotile shows significant alteration in phase I and phase II drug metabolizing enzyme system. In this study we have examined some potential mechanisms by which garlic treatment attenuates chrysotile-mediated pulmonary toxicity in rat. Female Wistar rats received an intratracheal instillation of 5 mg chrysotile (0.5 mL saline) as well as intragastric garlic treatment (1% body weight (v/w); 6 days per week). Effect of garlic treatment was evaluated after 1, 15, 30, 90, and 180 days by assaying aryl hydrocarbon hydroxylase (AHH), glutathione (GSH), glutathione S-transferase (GST), and production of thiobarbituric acid reactive substances (TBARS) in rat lung microsome. The results showed that AHH and TBARS formation were significantly reduced at day 90 and day 180 in chrysotile treated garlic cofed rats; GSH recovered 15 days later to the near normal level and GST elevated significantly after treatment of garlic as compared to chrysotile alone treated rat lung microsome. The data obtained shows that inhibition of AHH activity and induction of GST activity could be contributing factor in chrysotile-mediated pulmonary toxicity in garlic cofed rats. However, recovery of GSH and inhibition of TBARS formation by garlic and its constituent(s) showed that garlic may give protection by altering the drug metabolizing enzyme system.

  9. Accurate parameter estimation for unbalanced three-phase system.

    Science.gov (United States)

    Chen, Yuan; So, Hing Cheung

    2014-01-01

    Smart grid is an intelligent power generation and control console in modern electricity networks, where the unbalanced three-phase power system is the commonly used model. Here, parameter estimation for this system is addressed. After converting the three-phase waveforms into a pair of orthogonal signals via the α β-transformation, the nonlinear least squares (NLS) estimator is developed for accurately finding the frequency, phase, and voltage parameters. The estimator is realized by the Newton-Raphson scheme, whose global convergence is studied in this paper. Computer simulations show that the mean square error performance of NLS method can attain the Cramér-Rao lower bound. Moreover, our proposal provides more accurate frequency estimation when compared with the complex least mean square (CLMS) and augmented CLMS.

  10. Three-phase multilevel solar inverter for motor drive system

    Science.gov (United States)

    Bhasagare, Mayuresh P.

    This thesis deals with three phase inverters and the different control strategies that can be associated with an inverter being used together. The first part of this thesis discusses the present research in the fields of PV panels, motor drive systems and three phase inverters along with their control. This control includes various strategies like MPPT, Volts-Hertz and modulation index compensation. Incorporating these techniques together is the goal of this thesis. A new topology for operating an open end motor drive system has also been discusses, where a boost converter and a flyback converter have been used in cascade to run a three phase motor. The main advantage of this is increasing the number of levels and improving the quality of the output voltage, not to mention a few other benefits of having the proposed circuit. A new algorithm has also been designed for starting and stopping the motor, which controls the current drawn from the power source during starting.

  11. Feedstock Supply System Design and Economics for Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Conversion Pathway: Biological Conversion of Sugars to Hydrocarbons The 2017 Design Case

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Kenney; Kara G. Cafferty; Jacob J. Jacobson; Ian J Bonner; Garold L. Gresham; William A. Smith; David N. Thompson; Vicki S. Thompson; Jaya Shankar Tumuluru; Neal Yancey

    2013-09-01

    The U.S. Department of Energy promotes the production of a range of liquid fuels and fuel blendstocks from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass collection, conversion, and sustainability. As part of its involvement in this program, the Idaho National Laboratory (INL) investigates the feedstock logistics economics and sustainability of these fuels. Between 2000 and 2012, INL conducted a campaign to quantify the economics and sustainability of moving biomass from standing in the field or stand to the throat of the biomass conversion process. The goal of this program was to establish the current costs based on conventional equipment and processes, design improvements to the current system, and to mark annual improvements based on higher efficiencies or better designs. The 2012 programmatic target was to demonstrate a delivered biomass logistics cost of $35/dry ton. This goal was successfully achieved in 2012 by implementing field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model. Looking forward to 2017, the programmatic target is to supply biomass to the conversion facilities at a total cost of $80/dry ton and on specification with in-feed requirements. The goal of the 2017 Design Case is to enable expansion of biofuels production beyond highly productive resource areas by breaking the reliance of cost-competitive biofuel production on a single, abundant, low-cost feedstock. If this goal is not achieved, biofuel plants are destined to be small and/or clustered in select regions of the country that have a lock on low-cost feedstock. To put the 2017 cost target into perspective of past accomplishments of the cellulosic ethanol pathway, the $80 target encompasses total delivered feedstock cost, including both grower payment and logistics costs, while meeting all

  12. Response of phase Doppler anemometer systems to nonspherical droplets.

    Science.gov (United States)

    Damaschke, N; Gouesbet, G; Gréhan, G; Mignon, H; Tropea, C

    1998-04-01

    The Phase Doppler Anemometer (PDA) technique measures particle diameter assuming sphericity. A means for detecting nonsphericity has usually been implemented in commercial PDA systems to avoid sizing errors if the sphericity assumption is not valid. In the present research the response of standard and planar PDA systems is examined experimentally in more detail by passing nonspherical droplets of known shape through the measurement volume. The effectiveness of nonsphericity detection schemes can be evaluated, and furthermore the influence of the droplet oscillations on the frequency and phase evolution of individual signals can be quantified. The light scattering from such particles has been simulated by using geometric optics, and the computed response of standard and planar PDA systems agrees well with the experimental observations. We conclude with some remarks concerning the possibilities of characterizing the nonsphericity with PDA systems.

  13. A Model of Secondary Hydrocarbon Migration As a Buoyancy-Driven Separate Phase Flow Un modèle de migration secondaire des hydrocarbures considéré comme un écoulement en phases séparées régi par la poussée d'Archimède

    Directory of Open Access Journals (Sweden)

    Lehner F. K.

    2006-11-01

    Full Text Available A mathematical model of secondary migration is described which permits the prediction of hydrocarbon migration and accumulation patterns in a sedimentary basin, if source rock expulsion rates and geometrical and hydraulic properties of major carrier systems are known through geological time. In this model, secondary migration is treated as buoyancy-driven, segregated flow of hydrocarbons in hydrostatic aquifers. Lateral, updip migration is conceived as a Boussinesq-type, free-surface flow, with source and sink terms representing supply from source rocks and leakage through cap rocks and faults. This permits a two-dimensional, map-view mathematical description of a three-dimensional, time-dependent secondary migration system. A nine-point finite difference approximation has been developed to minimize numerical dispersion, and upstream-weighting is used to obtain stable solutions. Example computations for simple, single carrier bed structures are presented. L'article décrit un modèle mathématique de migration secondaire prédisant la migration des hydrocarbures et leur accumulation dans un bassin sédimentaire, lorsque les taux d'expulsion des roches mères et les propriétés géométriques et hydrauliques des principaux systèmes de drainage sont connus à l'échelle du temps géologique. Dans ce modèle, la migration secondaire est traitée comme un écoulement des hydrocarbures en phase séparée, contrôlé par la poussée d'Archimède, dans des aquifères hydrostatiques. La migration latérale est considérée comme un écoulement de type Boussinesq, à surface libre, avec des termes sources et puits représentant les apports venant des roches mères et les fuites à travers les couvertures et les failles. Ceci permet une description mathématique bidimensionnelle cartographiable d'un système de migration secondaire tridimensionnel et dépendant du temps. On utilise une approximation type différences finies à neuf points pour minimiser

  14. Nanoscale effects on thermodynamics and phase equilibria in oxide systems.

    Science.gov (United States)

    Navrotsky, Alexandra

    2011-08-22

    Because different solid materials (phases) have different surface energies, equilibria among them will be significantly affected by particle size. This Minireview summarizes experimental (calorimetric) data for the surface energies of oxides and discusses shifts in the stability of polymorphs, the thermodynamics of hydration, and oxidation-reduction reactions in nanoscale oxide systems.

  15. Phase-contrast microfocus X-ray system

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Henrique S.; Pereira, Gabriela R.; Oliveira, Davi F.; Lopes, Ricardo T. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Lab. de Instrumentacao Nuclear]. E-mails: henrique@lin.ufrj.br; gabriela@lin.ufrj.br; davi@lin.ufrj.br; ricardo@lin.ufrj.br

    2007-07-01

    A phase-contrast X-ray system was developed using a microfocus source. This system uses a highly coherent cone-beam with ten micrometers of minimal focal spot size in a free-space propagation method to obtain phase contrast imaging (PCI). The phase contrast technique relies on its ability to record intensity data which contains information on the X-ray's phase shift. In this technique, the contrast is obtained through refraction, differing from the conventional techniques that use the X-ray attenuation. The system was developed at the Nuclear Instrumentation Laboratory (LIN), COPPE/UFRJ, and it utilizes a high-resolution image plate as a detector. This image plate has a high energy-efficiency in low energy. The results showed that the system allows obtaining high contrast images with less than fifty micrometers of resolution for low density samples and it can be used in several areas, mainly in biology, medical physics and in applications with composites materials. (author)

  16. Phase Change Permeation Technology For Environmental Control Life Support Systems

    Science.gov (United States)

    Wheeler, Raymond M.

    2014-01-01

    Use of a phase change permeation membrane (Dutyion [Trademark]) to passively and selectively mobilize water in microgravity to enable improved water recovery from urine/brine for Environment Control and Life Support Systems (ECLSS) and water delivery to plans for potential use in microgravity.

  17. Wigner Functions for the Bateman System on Noncommutative Phase Space

    Institute of Scientific and Technical Information of China (English)

    HENG Tai-Hua; LIN Bing-Sheng; JING Si-Cong

    2010-01-01

    @@ We study an important dissipation system,I.e.the Bateman model on noncommutative phase space.Using the method of deformation quantization,we calculate the Exp functions,and then derive the Wigner functions and the corresponding energy spectra.

  18. Solidification of ternary systems with a nonlinear phase diagram

    Science.gov (United States)

    Alexandrov, D. V.; Dubovoi, G. Yu.; Malygin, A. P.; Nizovtseva, I. G.; Toropova, L. V.

    2017-02-01

    The directional solidification of a ternary system with an extended phase transition region is theoretically studied. A mathematical model is developed to describe quasi-stationary solidification, and its analytical solution is constructed with allowance for a nonlinear liquidus line equation. A deviation of the liquidus equation from a linear function is shown to result in a substantial change in the solidification parameters.

  19. Phase-modulation transmission system for quantum cryptography.

    Science.gov (United States)

    Mérolla, J M; Mazurenko, Y; Goedgebuer, J P; Porte, H; Rhodes, W T

    1999-01-15

    We describe a new method for quantum key distribution that utilizes phase modulation of sidebands of modulation by use of integrated electro-optic modulators at the transmitting and receiving modules. The system is shown to produce constructive or destructive interference with unity visibility, which should allow quantum cryptography to be carried out with high flexibility by use of conventional devices.

  20. Advanced Turbine System Program: Phase 2 cycle selection

    Energy Technology Data Exchange (ETDEWEB)

    Latcovich, J.A. Jr. [ABB Power Generation, Inc., Midlothian, VA (United States)

    1995-10-01

    The objectives of the Advanced Turbine System (ATS) Phase 2 Program were to define a commercially attractive ATS cycle and to develop the necessary technologies required to meet the ATS Program goals with this cycle. This program is part of an eight-year Department of Energy, Fossil Energy sponsored ATS Program to make a significant improvement in natural gas-fired power generation plant efficiency while providing an environmentally superior and cost-effective system.

  1. Phase Transition of Spin-Peierls Systems with Impurities

    Institute of Scientific and Technical Information of China (English)

    XU Bo-Wei; DING Guo-Hui; YE Fei

    2000-01-01

    The quasi-one-dimensional spin-Peierls(SP) systems with impurities are studied in their bosonized form. The spins of the dimerized state are bounded into singlets with an SP gap, while the impurities of doped systems will induce fluctuations of the coupling strength between the spins at different sites and break some pairs of spin singlets. The doping suppresses the dimerized SP state and induces a Kosterlitz-Thouless phase transition from the dimerized state into the undimerized one.

  2. Noether-Mei Symmetry of Mechanical System in Phase Space

    Institute of Scientific and Technical Information of China (English)

    FANG Jian-Hui; WANG Peng; DING Ning

    2006-01-01

    In this paper, a new kind of symmetry and its conserved quantities of a mechanical system in phase space are studied. The definition of this new symmetry, i.e., a Noether-Mei symmetry, is presented, and the criterion of this symmetry is also given. The Noether conserved quantity and the Mei conserved quantity deduced from the Noether-Mei symmetry of the system are obtained. Finally, two examples are given to illustrate the application of the results.

  3. Data acquisition system for phase-2 KGF proton decay experiment

    Science.gov (United States)

    Krishnaswamy, M. R.; Menon, M. G. K.; Mondal, N. K.; Narasimham, V. S.; Sreekantan, B. V.; Hayashi, Y.; Ito, N.; Kawakami, S.; Miyake, S.

    1985-01-01

    Phase-2 of KGF proton decay experiment using 4000 proportional counters will start operating from middle of 1985. The detection systems, in addition to measuring the time information to an accuracy of 200 n see, also records ionization in the hit counters. It also monitors different characteristics of the counters like pulse height spectrum, pulse width spectrum and counting rate. The acquisition system is discussed.

  4. Optimization of isothermal low-energy nanoemulsion formation: hydrocarbon oil, non-ionic surfactant, and water systems.

    Science.gov (United States)

    Komaiko, Jennifer; McClements, David Julian

    2014-07-01

    Nanoemulsions can be fabricated using either high-energy or low-energy methods, with the latter being advantageous because of ease of implementation, lower equipment and operation costs, and higher energy efficiency. In this study, isothermal low-energy methods were used to spontaneously produce nanoemulsions using a model system consisting of oil (hexadecane), non-ionic surfactant (Brij 30) and water. Rate and order of addition of surfactant, oil and water into the final mixture were investigated to identify optimal conditions for producing small droplets. The emulsion phase inversion (EPI) and spontaneous emulsion (SE) methods were found to be the most successful, which both require the surfactant to be mixed with the oil phase prior to production. Order of addition and surfactant-to-oil ratio (SOR) influenced the particle size distribution, while addition rate and stirring speed had a minimal effect. Emulsion stability was strongly influenced by storage temperature, with droplet size increasing rapidly at higher temperatures, which was attributed to coalescence near the phase inversion temperature. Nanoemulsions with a mean particle diameter of approximately 60 nm could be produced using both EPI and SE methods at a final composition of 5% hexadecane and 1.9% Brij 30, and were relatively stable to droplet growth at temperatures <25 °C.

  5. A unified model-free controller for switching minimum phase, non-minimum phase and time-delay systems

    CERN Document Server

    Michel, Loïc

    2012-01-01

    This preliminary work presents a simple derivation of the standard model-free control in order to control switching minimum phase, non-minimum phase and time-delay systems. The robustness of the proposed method is studied in simulation.

  6. Phase Diagrams of Instabilities in Compressed Film-Substrate Systems.

    Science.gov (United States)

    Wang, Qiming; Zhao, Xuanhe

    2014-05-01

    Subject to a compressive membrane stress, an elastic film bonded on a substrate can become unstable, forming wrinkles, creases or delaminated buckles. Further increasing the compressive stress can induce advanced modes of instabilities including period-doubles, folds, localized ridges, delamination, and coexistent instabilities. While various instabilities in film-substrate systems under compression have been analyzed separately, a systematic and quantitative understanding of these instabilities is still elusive. Here we present a joint experimental and theoretical study to systematically explore the instabilities in elastic film-substrate systems under uniaxial compression. We use the Maxwell stability criterion to analyze the occurrence and evolution of instabilities analogous to phase transitions in thermodynamic systems. We show that the moduli of the film and the substrate, the film-substrate adhesion strength, the film thickness, and the prestretch in the substrate determine various modes of instabilities. Defects in the film-substrate system can facilitate it to overcome energy barriers during occurrence and evolution of instabilities. We provide a set of phase diagrams to predict both initial and advanced modes of instabilities in compressed film-substrate systems. The phase diagrams can be used to guide the design of film-substrate systems to achieve desired modes of instabilities.

  7. Abnormal organic-matter maturation in the Yinggehai Basin, South China Sea: Implications for hydrocarbon expulsion and fluid migration from overpressured systems

    Science.gov (United States)

    Hao, F.; Li, S.; Dong, W.; Hu, Z.; Huang, B.

    1998-01-01

    Three superimposed pressure systems are present in the Yinggehai Basin, South China Sea. A number of commercial, thermogenic gas accumulations have been found in an area in which shale diapirs occur. Because the reservoir intervals are shallow and very young, they must have filled with gas rapidly. The thick (up to 17 km) Tertiary and Quaternary sedimentary succession is dominated by shales, and is not disrupted by major faulting in the study area, a factor which seems to have had an important effect on both hydrocarbon generation and fluid migration. Organic-matter maturation in the deepest, most overpressured compartment has been significantly retarded as a result of the combined effects of excess pressure, the presence of large volumes of water, and the retention of generated hydrocarbons. This retardation is indicated by both kerogen-related parameters (vitrinite reflectance and Rock-Eval T(max)); and also by parameters based on the analysis of soluble organic matter (such as the C15+ hydrocarbon content, and the concentration of isoprenoid hydrocarbons relative to adjacent normal alkanes). In contrast to this, organic-matter maturation in shallow, normally-pressured strata in the diapiric area has been enhanced by hydrothermal fluid flow, which is clearly not topography-driven in origin. As a result, the hydrocarbon generation 'window' in the basin is considerably wider than could be expected from traditional geochemical modelling. These two unusual and contrasting anomalies in organic-matter maturation, together with other lines of evidence, suggest that there was a closed fluid system in the overpressured compartment until shale diapirs developed. The diapirs developed as a result of the intense overpressuring, and their growth was triggered by regional extensional stresses. They served as conduits through which fluids (both water and hydrocarbons) retained in the closed system could rapidly migrate. Fluid migration led to the modification of the thermal

  8. Code-modulated interferometric imaging system using phased arrays

    Science.gov (United States)

    Chauhan, Vikas; Greene, Kevin; Floyd, Brian

    2016-05-01

    Millimeter-wave (mm-wave) imaging provides compelling capabilities for security screening, navigation, and bio- medical applications. Traditional scanned or focal-plane mm-wave imagers are bulky and costly. In contrast, phased-array hardware developed for mass-market wireless communications and automotive radar promise to be extremely low cost. In this work, we present techniques which can allow low-cost phased-array receivers to be reconfigured or re-purposed as interferometric imagers, removing the need for custom hardware and thereby reducing cost. Since traditional phased arrays power combine incoming signals prior to digitization, orthogonal code-modulation is applied to each incoming signal using phase shifters within each front-end and two-bit codes. These code-modulated signals can then be combined and processed coherently through a shared hardware path. Once digitized, visibility functions can be recovered through squaring and code-demultiplexing operations. Pro- vided that codes are selected such that the product of two orthogonal codes is a third unique and orthogonal code, it is possible to demultiplex complex visibility functions directly. As such, the proposed system modulates incoming signals but demodulates desired correlations. In this work, we present the operation of the system, a validation of its operation using behavioral models of a traditional phased array, and a benchmarking of the code-modulated interferometer against traditional interferometer and focal-plane arrays.

  9. Berry Phase Physics in Free and Interacting Fermionic Systems

    CERN Document Server

    Chen, Jing-Yuan

    2016-01-01

    Berry phase plays an important role in many non-trivial phenomena over a broad range of many-body systems. In this thesis we focus on the Berry phase due to the change of the particles' momenta, and study its effects in free and interacting fermionic systems. We start with reviewing the semi-classical kinetic theory with Berry phase for a non-interacting ensemble of fermions -- a Berry Fermi gas -- which might be far-from-equilibrium. We particularly review the famous Berry phase contribution to the anomalous Hall current. We then provide a concrete and general path integral derivation for the semi-classical theory. Then we turn to the specific example of Weyl fermion, which exhibits the profound quantum phenomenon of chiral anomaly; we review how this quantum effect, and its closely related chiral magnetic effect and chiral vortical effect, arise from Berry phase in the semi-classical kinetic theory. We also discuss how Lorentz symmetry in the kinetic theory of Weyl fermion, seemly violated by the Berry phas...

  10. Phase fronts and synchronization patterns in forced oscillatory systems

    Directory of Open Access Journals (Sweden)

    Ehud Meron

    2000-01-01

    Full Text Available This is a review of recent studies of extended oscillatory systems that are subjected to periodic temporal forcing. The periodic forcing breaks the continuous time translation symmetry and leaves a discrete set of stable uniform phase states. The multiplicity of phase states allows for front structures that shift the oscillation phase by π/n where n=1,2,…, hereafter π/n-fronts. The main concern here is with front instabilities and their implications on pattern formation. Most theoretical studies have focused on the 2:1 resonance where the system oscillates at half the driving frequency. All front solutions in this case are π-fronts. At high forcing strengths only stationary fronts exist. Upon decreasing the forcing strength the stationary fronts lose stability to pairs of counter-propagating fronts. The coexistence of counter-propagating fronts allows for traveling domains and spiral waves. In the 4:1 resonance stationary π-fronts coexist with π/2-fronts. At high forcing strengths the stationary π-fronts are stable and standing two-phase waves, consisting of successive oscillatory domains whose phases differ by π,, prevail. Upon decreasing the forcing strength the stationary π-fronts lose stability and decompose into pairs of propagating π/2-fronts. The instability designates a transition from standing two-phase waves to traveling four-phase waves. Analogous decomposition instabilities have been found numerically in higher 2n:1 resonances. The available theory is used to account for a few experimental observations made on the photosensitive Belousov–Zhabotinsky reaction subjected to periodic illumination. Observations not accounted for by the theory are pointed out.

  11. Screening of mixed surfactant systems: Phase behavior studies and CT imaging of surfactant-enhanced oil recovery experiments

    Energy Technology Data Exchange (ETDEWEB)

    Llave, F.M.; Gall, B.L.; Lorenz, P.B.; Cook, I.M.; Scott, L.J.

    1993-11-01

    A systematic chemical screening study was conducted on selected anionic-nonionic and nonionic-nonionic systems. The objective of the study was to evaluate and determine combinations of these surfactants that would exhibit favorable phase behavior and solubilization capacity. The effects of different parameters including (a) salinity, (b) temperature, (c) alkane carbon number, (c) hydrophilic/lipophilic balance (HLB) of nonionic component, and (d) type of surfactant on the behavior of the overall chemical system were evaluated. The current work was conducted using a series of ethoxylated nonionic surfactants in combinations of several anionic systems with various hydrocarbons. Efforts to correlate the behavior of these mixed systems led to the development of several models for the chemical systems tested. The models were used to compare the different systems and provided some guidelines for formulating them to account for variations in salinity, oil hydrocarbon number, and temperature. The models were also evaluated to determine conformance with the results from experimental measurements. The models provided good agreement with experimental results. X-ray computed tomography (CT) was used to study fluid distributions during chemical enhanced oil recovery experiments. CT-monitored corefloods were conducted to examine the effect of changing surfactant slug size injection on oil bank formation and propagation. Reducing surfactant slug size resulted in lower total oil production. Oil recovery results, however, did not correlate with slug size for the low-concentration, alkaline, mixed surfactant system used in these tests. The CT measurements showed that polymer mobility control and core features also affected the overall oil recovery results.

  12. Two-phase flow instability in a parallel multichannel system

    Institute of Scientific and Technical Information of China (English)

    HOU Suxia

    2009-01-01

    The two-phase flow instabilities observed in through parallel multichannel can be classified into three types, of which only one is intrinsic to parallel multichannel systems. The intrinsic instabilities observed in parallel multichannel system have been studied experimentally. The stable boundary of the flow in such a parallel-channel system are sought, and the nature of inlet flow oscillation in the unstable region has been examined experimentally under various conditions of inlet velocity, heat flux, liquid temperature, cross section of channel and entrance throttling. The results show that parallel multichannel system possess a characteristic oscillation that is quite independent of the magnitude and duration of the initial disturbance, and the stable boundary is influenced by the characteristic frequency of the system as well as by the exit quality when this is low, and upon raising the exit quality and reducing the characteristic frequency, the system increases its instability, and entrance throttling effectively contributes to stabilization of the system.

  13. Collectivity, Phase Transitions and Exceptional Points in Open Quantum Systems

    CERN Document Server

    Heiss, W D; Rotter, I

    1998-01-01

    Phase transitions in open quantum systems, which are associated with the formation of collective states of a large width and of trapped states with rather small widths, are related to exceptional points of the Hamiltonian. Exceptional points are the singularities of the spectrum and eigenfunctions, when they are considered as functions of a coupling parameter. In the present paper this parameter is the coupling strength to the continuum. It is shown that the positions of the exceptional points (their accumulation point in the thermodynamical limit) depend on the particular type and energy dependence of the coupling to the continuum in the same way as the transition point of the corresponding phase transition.

  14. Phase reconstruction from intensity measurements in linear systems.

    Science.gov (United States)

    Bastiaans, Martin J; Wolf, Kurt Bernardo

    2003-06-01

    The phase of a signal at a plane is reconstructed from the intensity profiles at two close parallel screens connected by a small abcd canonical transform; this applies to propagation along harmonic and repulsive fibers and in free media. We analyze the relationship between the local spatial frequency (the signal phase derivative) and the derivative of the squared modulus of the signal under a one-parameter canonical transform with respect to the parameter. We thus generalize to all linear systems the results that have been obtained separately for Fresnel and fractional Fourier transforms.

  15. A Novel Single Phase Hybrid Switched Reluctance Motor Drive System

    DEFF Research Database (Denmark)

    Liang, Jianing; Xu, Guoqing; Jian, Linni;

    2011-01-01

    phase boost converter is applied to improve the performance of this motor. It is easy to generate a double dclink voltage and dc-link voltage and switch both of them. The voltage of boost capacitor is self balance, so the protective circuit is not need to consider. The fast excitation mode helps hybrid...... SRM reduce the negative torque before zero-crossing point of torque curve, and build desired phase current to generate more power. Some experimental results are done to verify the performance of proposed hybrid SRM drive system....

  16. High Pressure Preignition Chemistry of Hydrocarbons and Hydrocarbon Mixtures

    Science.gov (United States)

    2007-11-02

    and hydrocarbon blends in our various combustion systems, with emphasis on the effects of elevated pressure using our pressurized flow reactor ( PFR ...facility. Detailed experimental data were generated from the PFR for use in associated kinetic modeling work. We continued to develop and extend both

  17. FGD systems: What utilities chose in phase 1 and what they might choose in phase 2

    Energy Technology Data Exchange (ETDEWEB)

    South, D.W.; Bailey, K.A.

    1995-07-01

    Title IV (acid rain) of the Clean Air Act Amendments of 1990 is imposing new limitations on the emission of sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) from electric power plants. The Act requires utilities to develop compliance plans to reduce these emissions, and indications are that these plans will dramatically alter traditional operating procedures. A key provision of the SO{sub 2} control program defined in Title IV is the creation of a system of emission allowances, with utilities having, the option of complying by adjusting system emissions and allowance holdings. The central focus of this paper is the identification of sulfur dioxide (SO{sub 2}) control options being implemented by the electric utility industry, current compliance trends, synergistic control issues and a discussion of the implications of Phase I decisions for Phase II.

  18. The Relationship Between the Color Characteristics of the RGB Colorimetric System and the Physicochemical Properties of Petroleums and high Boiling Hydrocarbon Distillates

    Science.gov (United States)

    Dolomatov, M. Yu.; Yarmuhametova, G. U.

    2016-09-01

    An interrelation was established between physicochemical properties of oils and high boiling hydrocarbon distillates and their solutions' color characteristics defi ned in the RGB colorimetric system using a standard radiation source CIE D65. It was shown that by using color characteristics of solutions of the specifi ed objects, it was possible to determine their relative density, molecular mass, activation energy of viscous fl ow, and the coking value. Research results were confi rmed by statistical data processing using the methods of multivariate regression and correlation analysis.

  19. Brayton isotope power system, phase I. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1978-07-28

    The Phase I program resulted in the development and ground demonstration of a dynamic power conversion system. The two key contractual objectives of 25% conversion efficiency and 1000 h of endurance testing were successfully met. As a result of the Phase I effort, the BIPS is a viable candidate for further development into a flight system capable of sustained operation in space. It represents the only known dynamic space power system to demonstrate the performance and endurance coupled with the simplicity necessary for reliable operation. This final report follows thirty-five monthly reports. For expediency, it makes liberal use of referenced documents which have been submitted to DOE during the course of the program.

  20. Determination of the aromatic hydrocarbon to total hydrocarbon ratio of mineral oil in commercial lubricants.

    Science.gov (United States)

    Uematsu, Yoko; Suzuki, Kumi; Ogimoto, Mami

    2016-01-01

    A method was developed to determine the aromatic hydrocarbon to total hydrocarbon ratio of mineral oil in commercial lubricants; a survey was also conducted of commercial lubricants. Hydrocarbons in lubricants were separated from the matrix components of lubricants using a silica gel solid phase extraction (SPE) column. Normal-phase liquid chromatography (NPLC) coupled with an evaporative light-scattering detector (ELSD) was used to determine the aromatic hydrocarbon to total hydrocarbon ratio. Size exclusion chromatography (SEC) coupled with a diode array detector (DAD) and a refractive index detector (RID) was used to estimate carbon numbers and the presence of aromatic hydrocarbons, which supplemented the results obtained by NPLC/ELSD. Aromatic hydrocarbons were not detected in 12 lubricants specified for use for incidental food contact, but were detected in 13 out of 22 lubricants non-specified for incidental food contact at a ratio up to 18%. They were also detected in 10 out of 12 lubricants collected at food factories at a ratio up to 13%. The centre carbon numbers of hydrocarbons in commercial lubricants were estimated to be between C16 and C50.

  1. Enantiomeric 3-chloromandelic acid system: binary melting point phase diagram, ternary solubility phase diagrams and polymorphism.

    Science.gov (United States)

    Le Minh, Tam; von Langermann, Jan; Lorenz, Heike; Seidel-Morgenstern, Andreas

    2010-09-01

    A systematic study of binary melting point and ternary solubility phase diagrams of the enantiomeric 3-chloromandelic acid (3-ClMA) system was performed under consideration of polymorphism. The melting point phase diagram was measured by means of thermal analysis, that is, using heat-flux differential scanning calorimetry (DSC). The results reveal that 3-ClMA belongs to the racemic compound-forming systems. Polymorphism was found for both the enantiomer and the racemate as confirmed by X-ray powder diffraction analysis. The ternary solubility phase diagram of 3-ClMA in water was determined between 5 and 50 degrees C by the classical isothermal technique. The solubilities of the pure enantiomers are extremely temperature-dependent. The solid-liquid equilibria of racemic 3-ClMA are not trivial due to the existence of polymorphism. The eutectic composition in the chiral system changes as a function of temperature. Further, solubility data in the alternative solvent toluene are also presented.

  2. Analysis of SDFT based phase detection system for grid synchronization of distributed generation systems

    Directory of Open Access Journals (Sweden)

    B. Chitti Babu

    2014-12-01

    Full Text Available A fast and exact detection of phase and fundamental frequency of grid voltage/current is essential for calculating accurate reference signal in order to implement the control algorithm of inverter-interfaced distributed generation (DG system and realize precise harmonic compensation. However, the methods adapted in the literature based on phase locked loop (PLL exhibits large phase error, be difficult to implement, and their performance is also indistinct under conditions where the grid frequency varies or the supply is distorted with low frequency harmonics. This paper explores an improved phase detection system for DG system based on Sliding Discrete Fourier Transform (SDFT. The proposed SDFT based phase detection shows a robust phase tracking capability with fast transient response under adverse situation of the grid. Moreover, SDFT phase detection system is more efficient as it requires small number of operations to extract a single frequency component, thereby reducing computational complexity and simpler than DFT. The superior performance of proposed SDFT phase detection system is analyzed and the obtained results are compared with Discrete Fourier Transform (DFT filtering to confirm the feasibility of the study under different grid environment such as high frequency harmonic injection, frequency deviation, and phase variation etc.

  3. Dissipation-driven quantum phase transitions in collective spin systems

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, S [Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck (Austria); Parkins, A S [Department of Physics, University of Auckland, Private Bag 92019, Auckland (New Zealand)], E-mail: smor161@aucklanduni.ac.nz

    2008-10-14

    We consider two different collective spin systems subjected to strong dissipation-on the same scale as interaction strengths and external fields-and show that either continuous or discontinuous dissipative quantum phase transitions can occur as the dissipation strength is varied. First, we consider a well-known model of cooperative resonance fluorescence that can exhibit a second-order quantum phase transition, and analyse the entanglement properties near the critical point. Next, we examine a dissipative version of the Lipkin-Meshkov-Glick interacting collective spin model, where we find that either first- or second-order quantum phase transitions can occur, depending only on the ratio of the interaction and external field parameters. We give detailed results and interpretation for the steady-state entanglement in the vicinity of the critical point, where it reaches a maximum. For the first-order transition we find that the semiclassical steady states exhibit a region of bistability. (fast track communication)

  4. Phase space view of quantum mechanical systems and Fisher information

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, Á., E-mail: anagy@madget.atomki.hu

    2016-06-17

    Highlights: • Phase-space Fisher information coming from the canonical distribution is derived for the ground state of quantum mechanical systems. • Quantum mechanical phase-space Fisher information contains an extra term due to the position dependence of the temperature. • A complete analogy to the classical case is demonstrated for the linear harmonic oscillator. - Abstract: Pennini and Plastino showed that the form of the Fisher information generated by the canonical distribution function reflects the intrinsic structure of classical mechanics. Now, a quantum mechanical generalization of the Pennini–Plastino theory is presented based on the thermodynamical transcription of the density functional theory. Comparing to the classical case, the phase-space Fisher information contains an extra term due to the position dependence of the temperature. However, for the special case of constant temperature, the expression derived bears resemblance to the classical one. A complete analogy to the classical case is demonstrated for the linear harmonic oscillator.

  5. Study on phase synchronization of stochastic chaotic system

    Institute of Scientific and Technical Information of China (English)

    Yang Xiao-Li; Xu Wei

    2008-01-01

    This paper detects and characterizes the diverse roles played by bounded noise in chaotic phase synchronization (CPS) of weakly coupled nonlinear stochastic systems. Analysis of a paradigmatic model of two bidirectional coupled three-level food chains is carried out by various statistical measures such as Shannon entropy and mutual information. The results indicate that inside the synchronous regime, CPS is considerably reduced under the influence of bounded noise; near the onset of phase synchronization, temporal phase locking is diversely changed with the increase of noise, i.e., either weak or strong noise also degrades the degree of CPS, while intermediate noise enhances CPS remarkably, and an optimal noise intensity is detected that maximizes the enhancement.

  6. Facile and tunable fabrication of Fe3O4/graphene oxide nanocomposites and their application in the magnetic solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water samples.

    Science.gov (United States)

    Han, Qiang; Wang, Zonghua; Xia, Jianfei; Chen, Sha; Zhang, Xiaoqiong; Ding, Mingyu

    2012-11-15

    An electrostatic self-assembly approach was employed to prepare Fe(3)O(4)/graphene oxide nanocomposites, and their application in the magnetic solid-phase extraction of polycyclic aromatic hydrocarbons from environmental samples was investigated. With the highly hydrophilic graphene oxide sheets and positively charged surface of the Fe(3)O(4) nanoparticles, the nanocomposites were synthesized through electrostatic interaction in aqueous solution. Simultaneously, the different loading amounts of Fe(3)O(4) onto the graphene oxide were easily controlled by changing the proportion of the initial precursors. The identity of the hybrid materials was confirmed using transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and a vibrating sample magnetometer. Five polycyclic aromatic hydrocarbons were selected as model analytes to validate the extraction performance of the Fe(3)O(4)/GO nanocomposite as a MSPE sorbent. The excellent adsorption property was attributed to the dominant roles of π-π stacking interaction and hydrophobic interaction. After optimizing the conditions, the results indicated that the recoveries of these compounds were in the range of 76.8-103.2%, with relative standard deviations ranging between 1.7% and 11.7%; the limits of detection were in the range of 0.09-0.19 ng mL(-1).

  7. Intelligent System for Diagnosis of a Three-Phase Separator

    Directory of Open Access Journals (Sweden)

    Irina Ioniţă

    2016-03-01

    Full Text Available Intelligent systems for diagnosis have been used in a variety of domains: financial evaluation, credit scoring problem, identification of software and hardware problems of mechanical and electronic equipment, medical diagnosis, fault detection in gas-oil production plants etc. The goal of diagnosis systems is to classify the observed symptoms as being caused by some diagnosis class while advising systems perform such a classification and offer corrective remedies (recommendations. The current paper discuss the opportunity to combine more intelligent techniques and methodologies (intelligent agents, data mining and expert systems to increase the accuracy of results obtained from the diagnosis of a three-phase separator. The results indicate that the diagnosis hybrid system benefits from the advantages of each module component: intelligent agent module, data mining module and expert system module.

  8. Intelligent System for Diagnosis of a Three-Phase Separator

    Directory of Open Access Journals (Sweden)

    Irina Ioniţă

    2016-03-01

    Full Text Available Intelligent systems for diagnosis have been used in a variety of domains: financial evaluation, credit scoring problem, identification of software and hardware problems of mechanical and electronic equipment, medical diagnosis, fault detection in gas-oil production plants etc. The goal of diagnosis systems is to classify the observed symptoms as being caused by some diagnosis class while advising systems perform such a classification and offer corrective remedies (recommendations. The current paper discuss the opportunity to combine more intelligent techniques and methodologies (intelligent agents, data mining and expert systems to increase the accuracy of results obtained from the diagnosis of a three-phase separator. The results indicate that the diagnosis hybrid system benefits from the advantages of each module component: intelligent agent module, data mining module and expert system module.

  9. Forest Resource Information System. Phase 3: System transfer report

    Science.gov (United States)

    Mroczynski, R. P. (Principal Investigator)

    1981-01-01

    Transfer of the forest reserve information system (FRIS) from the Laboratory for Applications of Remote Sensing to St. Regis Paper Company is described. Modifications required for the transfer of the LARYS image processing software are discussed. The reformatting, geometric correction, image registration, and documentation performed for preprocessing transfer are described. Data turnaround was improved and geometrically corrected and ground-registered CCT LANDSAT 3 data provided to the user. The technology transfer activities are summarized. An application test performed in order to assess a Florida land acquisition is described. A benefit/cost analysis of FRIS is presented.

  10. Functional Analysis in Long-Term Operation of High Power UV-LEDs in Continuous Fluoro-Sensing Systems for Hydrocarbon Pollution.

    Science.gov (United States)

    Arques-Orobon, Francisco Jose; Nuñez, Neftali; Vazquez, Manuel; Gonzalez-Posadas, Vicente

    2016-02-26

    This work analyzes the long-term functionality of HP (High-power) UV-LEDs (Ultraviolet Light Emitting Diodes) as the exciting light source in non-contact, continuous 24/7 real-time fluoro-sensing pollutant identification in inland water. Fluorescence is an effective alternative in the detection and identification of hydrocarbons. The HP UV-LEDs are more advantageous than classical light sources (xenon and mercury lamps) and helps in the development of a low cost, non-contact, and compact system for continuous real-time fieldwork. This work analyzes the wavelength, output optical power, and the effects of viscosity, temperature of the water pollutants, and the functional consistency for long-term HP UV-LED working operation. To accomplish the latter, an analysis of the influence of two types 365 nm HP UV-LEDs degradation under two continuous real-system working mode conditions was done, by temperature Accelerated Life Tests (ALTs). These tests estimate the mean life under continuous working conditions of 6200 h and for cycled working conditions (30 s ON & 30 s OFF) of 66,000 h, over 7 years of 24/7 operating life of hydrocarbon pollution monitoring. In addition, the durability in the face of the internal and external parameter system variations is evaluated.

  11. Phase change energy storage for solar dynamic power systems

    Science.gov (United States)

    Chiaramonte, F. P.; Taylor, J. D.

    1992-01-01

    This paper presents the results of a transient computer simulation that was developed to study phase change energy storage techniques for Space Station Freedom (SSF) solar dynamic (SD) power systems. Such SD systems may be used in future growth SSF configurations. Two solar dynamic options are considered in this paper: Brayton and Rankine. Model elements consist of a single node receiver and concentrator, and takes into account overall heat engine efficiency and power distribution characteristics. The simulation not only computes the energy stored in the receiver phase change material (PCM), but also the amount of the PCM required for various combinations of load demands and power system mission constraints. For a solar dynamic power system in low earth orbit, the amount of stored PCM energy is calculated by balancing the solar energy input and the energy consumed by the loads corrected by an overall system efficiency. The model assumes an average 75 kW SD power system load profile which is connected to user loads via dedicated power distribution channels. The model then calculates the stored energy in the receiver and subsequently estimates the quantity of PCM necessary to meet peaking and contingency requirements. The model can also be used to conduct trade studies on the performance of SD power systems using different storage materials.

  12. A Review of Common Problems in Design and Installation of Water Spray Cooling and Low Expansion Foam System to Protect Storage Tanks Containing Hydrocarbons Against Fires

    Directory of Open Access Journals (Sweden)

    Iraj Alimohammadi

    2015-12-01

    Full Text Available Tank fires are rare but carry significant potential risk to life and property. For this reason fire protection of tanks is critical. Fixed Low expansion foam and water spray cooling systems are one of the most effective and economical ways to reduce damages to a tank from fire. Such systems are currently installed in many companies but are not effective enough and require involvement of firefighters which in turn threaten their lives. This paper studies in a systematic way the problems of foam and cooling systems currently installed in a few domestic companies which operate storage tanks with focus on floating and fixed roof atmospheric tanks containing hydrocarbons and offers possible solutions for more efficient installation, design and operation of such systems.

  13. A Review of Common Problems in Design and Installation of Water Spray Cooling and Low Expansion Foam System to Protect Storage Tanks Containing Hydrocarbons Against Fires

    Directory of Open Access Journals (Sweden)

    I. Alimohammadi

    2015-11-01

    Full Text Available Tank fires are rare but carry significant potential risk to life and property. For this reason fire protection of tanks is critical. Fixed Low expansion foam and water spray cooling systems are one of the most effective and economical ways to reduce damages to a tank from fire. Such systems are currently installed in many companies but are not effective enough and require involvement of firefighters which in turn threaten their lives. This paper studies in a systematic way the problems of foam and cooling systems currently installed in a few domestic companies which operate storage tanks with focus on floating and fixed roof atmospheric tanks containing hydrocarbons and offers possible solutions for more efficient installation, design and operation of such systems.

  14. A general thermodynamic analysis and treatment of phases and components in the analysis of phase assemblages in multicomponent systems

    Institute of Scientific and Technical Information of China (English)

    HU JiaWen

    2012-01-01

    Systematic thermodynamic analysis reveals that an essential condition for the thermodynamically valid chemographic projections proposed by Greenwood is completely excessive.In other words,the phases or components from which the projection is made need not be pure,nor have their chemical potentials fixed over the whole chemographic diagram.To facilitate the analysis of phase assemblages in multicomponent systems,all phases and components in the system are divided into internal and external ones in terms of their thermodynamic features and roles,where the external phases are those common to all assemblages in the system,and the external components include excess components and the components whose chemical potentials (or relevant intensive properties of components) are used to define the thermodynamic conditions of the system.This general classification overcomes the difficulties and defects in the previous classifications,and is easier to use than the previous ones.According to the above classification,the phase rule is transformed into a new form.This leads to two findings:(1) the degree of freedom of the system under the given conditions is only determined by the internal components and phases; (2) different external phases can be identified conveniently according to the conditions of the system before knowing the real phase relations.Based on the above results,a simple but general approach is proposed for the treatment of phases and components:all external phases and components can be eliminated from the system without affecting the phase relations,where the external components can be eliminated by appropriate chemographic projections.The projections have no restriction on the states of the phases or the chemical potentials of components from which the projections are made.Th e present work can give a unified explanation of the previous treatments of phases and components in the analysis of phase assemblages under various specific conditions.It helps to avoid

  15. Phase transformations and phase equilibria in the Co-Sn-Ti system in the crystallization interval

    Science.gov (United States)

    Fartushna, Iu.; Bulanova, M.; Ayral, R. M.; Tedenac, J. C.; Meleshevich, K.

    2016-12-01

    The Co-Sn-Ti system was studied in the crystallization interval (below 50 at% Sn) by the methods of Scanning Electron Microscopy, microprobe analysis, Differential Thermal Analysis, X-ray diffraction. The liquidus and solidus projections and the melting diagram were constructed. Only Co2TiSn(τ1) ternary compound (Heusler phase-L12) was found in equilibria with the liquid in the concentration interval studied. Taking into account our recent data, the liquidus projection is characterized by the fields of primary crystallization of (βTi), (Co), binary-based phases Ti3Sn, Ti2Sn, Ti5Sn3, Ti6Sn5, Ti2Co, TiCo, TiCo2 (c), TiCo2 (h), TiCo3, βCo3Sn2, CoSn and ternary τ1. The solidus projection is characterized by thirteen three-phase fields, which result from invariant four-phase equilibria, five are of eutectic type (E) and eight of transition type (U) and the existence of one more region Ti2Sn3+βCoSn3+(Sn) in the solidus projection is discussed.

  16. 鄂尔多斯盆地富县—正宁地区延长组油气成藏期次%Classification of hydrocarbon accumulation phases of the Yanchang Formation in the Fuxian-Zhengning area, Ordos Basin

    Institute of Scientific and Technical Information of China (English)

    梁宇; 任战利; 史政; 赵筱燕; 于强; 吴晓青

    2011-01-01

    鄂尔多斯盆地富县—正宁地区延长组砂岩储层主要成岩作用有压实作用、胶结作用、溶蚀作用和裂隙作用,成岩自生矿物以绿泥石、自生石英和方解石为主.根据油气包裹体寄主成岩矿物的形成时间序列,识别出两期油气包裹体:第1期油气包裹体主要分布在石英、长石粒内愈合的、未切穿次生加大边的微裂隙及石英次生加大边内侧;第2期油气包裹体分布在晚期微裂隙和晚期亮晶方解石胶结物中.油气包裹体均一温度分布呈双峰型:早期峰值温度为110~120℃;晚期峰值温度为140~150℃.对油气包裹体均一温度、盐度、密度分析表明,研究区延长组油气为“一期两幕”成藏,且具有“边致密,边成藏”的特点.结合研究区延长组热演化史及储层伊利石K-Ar同位素定年结果研究表明,研究区主要油气成藏期为早白垩世(距今95~120Ma).%The main diagenesis of the Yanchang Formation sandstone reservoirs in the Fuxian-Zhengning area, Ordos Basin, includes compaction, cementation, corrosion and fracturation, and diagenetic authigenic minerals in these reservoirs are dominated by chlorite, authigenetic quartz and calcite. Two phases of hydrocarbon inclusions have been identified according to the time sequence of the formation of host diagenetic minerals, the earlier one composed of mostly brine inclusions that contain gaseous or liquid hydrocarbons either occurs along healed microfractures wrapped up by secondary growth edges of quartz or feldspar, or is trapped at the bottom of secondary growth edges of quartz or feldspar, while the later one mostly consisting of gas-liquid or liquid hydrocarbon inclusions occurs along the late-formed microfractures or in sparry calcite cements. Homogenization temperatures measured from brine inclusions associated with hydrocarbon ones show a bimodal distribution in the ranges with 110~120'C and 140~150'C as peak temperatures

  17. Particle phase distribution of polycyclic aromatic hydrocarbons in stormwater — Using humic acid and iron nano-sized colloids as test particles

    DEFF Research Database (Denmark)

    Nielsen, Katrine; Kalmykova, Yuliya; Strömvall, Ann-Margret

    2015-01-01

    The distribution of polycyclic aromatic hydrocarbons (PAHs) in different particulate fractions in stormwater: Total, Particulate, Filtrated, Colloidal and Dissolved fractions, were examined and compared to synthetic suspensions of humic acid colloids and iron nano-sized particles. The distribution...... to a higher extent in the Filtrated fractions. The highest concentrations of PAHs were present in the stormwater with the highest total suspended solids (TSS); the relative amount of the HMWPAHs was highest in the Particulate fractions (particles N 0.7 μm). The highest concentration of PAHs in the Colloidal...... fraction was found in the sample with occurrence of small nano-sized particles (b10 nm). The results show the importance of developing technologies that both can manage particulate matter and effectively remove PAHs present in the Colloidal and Dissolved fractions in stormwater. © 2015 Elsevier B.V. All...

  18. Particle phase distribution of polycyclic aromatic hydrocarbons in stormwater — Using humic acid and iron nano-sized colloids as test particles

    DEFF Research Database (Denmark)

    Nielsen, Katrine; Kalmykova, Yuliya; Strömvall, Ann-Margret;

    2015-01-01

    The distribution of polycyclic aromatic hydrocarbons (PAHs) in different particulate fractions in stormwater: Total, Particulate, Filtrated, Colloidal and Dissolved fractions, were examined and compared to synthetic suspensions of humic acid colloids and iron nano-sized particles. The distribution...... to a higher extent in the Filtrated fractions. The highest concentrations of PAHs were present in the stormwater with the highest total suspended solids (TSS); the relative amount of the HMWPAHs was highest in the Particulate fractions (particles N 0.7 μm). The highest concentration of PAHs in the Colloidal...... fraction was found in the sample with occurrence of small nano-sized particles (b10 nm). The results show the importance of developing technologies that both can manage particulate matter and effectively remove PAHs present in the Colloidal and Dissolved fractions in stormwater. © 2015 Elsevier B.V. All...

  19. Phase Diagrams for the PEO-LiX Electrolyte System.

    Science.gov (United States)

    1987-01-01

    rather flat, in sharp contrast to previous results. 3.2c PEO- LiBF4 System Pure PEO forms complexes with LiBF , and the subsequent phase diagram for...study; 0 ----NMR(15); 0 -DSC or DTA(7, 10,12); A ---a.c.conductivity(6,10,12); 4- optical microscopy(6). is 350 - (PEO) n- LiBF4 300 (PEO) n-LiCF 3SO 3...the PEO- LiBF4 system IS" , " ATOM RATIO O/Li 50 25 8 4 2 1 250 200 150 1 00 -50I 0 0 0.1 0.2 0.3 0.4 0.5 XLiPF6 -’+’ Figure 6. Phase diagram of the

  20. Phase behavior, formation, and rheology of cubic phase and related gel emulsion in Tween 80/water/oil systems.

    Science.gov (United States)

    Alam, Mohammad Mydul; Ushiyama, Kousuke; Aramaki, Kenji

    2009-01-01

    We investigated the phase behavior, formation, and rheology of the cubic phase (I(1)) and related O/I(1) gel emulsion in water/Tween 80/oil systems using squalane, liquid paraffin (LP), and decane as oil components. In the phase behavior study, the phase sequences were similar for squalane and LP systems, while a lamellar liquid crystal (L(alpha)) was observed for decane system. In all the systems the addition of oil to W(m) or H(1) phase induced the I(1) phase, which can solubilize some amounts of oil followed by the appearance of I(1)+O phase. The formation of the O/I(1) gel emulsion has been studied at a fixed w/s (50/50) and we found that 30 wt% decane, 70 wt% squalane, and 60 wt% LP can form the gel emulsion. The water/Tween 80/squalane system has been taken as a model system to study viscoelastic properties of the I(1) phase and O/I(1) gel emulsion. The I(1) phase shows a typical hard gel cubic structure under the frequency and the values of the complex viscosity, /eta*/ and the elastic modulus, G ' increase with the addition of squalane, which could be due to the neighboring micellar interaction. On the other hand, the decreasing values of the viscoelastic parameters in the O/I(1) gel emulsion simply relate to the volume fraction of the I(1) phase in the system.