WorldWideScience

Sample records for hydrocarbon synthesis conditions

  1. Substrate-free microwave synthesis of graphene: experimental conditions and hydrocarbon precursors

    Energy Technology Data Exchange (ETDEWEB)

    Dato, Albert [Applied Science and Technology Graduate Group, University of California, Berkeley, CA 94720 (United States); Frenklach, Michael, E-mail: amdato@me.berkeley.edu, E-mail: myf@me.berkeley.edu [Department of Mechanical Engineering, University of California, Berkeley, CA 94720-1740 (United States)

    2010-12-15

    The effects of applied microwave power, gas flow rate and precursor composition on the substrate-free gas-phase synthesis of graphene were investigated. Graphene was produced through the delivery of ethanol droplets into argon plasmas, and a decrease in the flow rate of the gas used to generate the plasmas resulted in the formation of graphitic particles and bulk graphite structures. Carbonaceous soot particles were created by delivering isopropyl alcohol into the reactor, while no solid matter was created from methanol. Increasing the applied microwave power was found to have no effect on the structures of the synthesized materials. These findings indicated that the synthesis of graphene in the gas phase was the result of the slow inception and extremely fast growth of aromatic nuclei in the plasma afterglows.

  2. Biotransformation of monoaromatic hydrocarbons under anoxic conditions

    International Nuclear Information System (INIS)

    Ball, H.A.; Reinhard, M.; McCarty, P.L.

    1991-01-01

    Aromatic hydrocarbons contained in gasoline are environmental pollutants of particular concern since they are relatively soluble in water, many are toxic, and some are confirmed carcinogens, (e.g., benzene). Although most gasoline constituents are readily degraded in aerobic surface water systems, the groundwater environment associated with hydrocarbon spills is typically anaerobic, thus precluding aerobic degradation pathways. In the absence of oxygen, degradation of gasoline components can take place only with the utilization of alternate electron acceptors such as nitrate, sulfate, carbon dioxide, and possibly ferric iron or other metal oxides. Benzene, toluene, and xylene isomers were completely degraded by aquifer- or sewage sludge-derived microorganisms under dentrifying and methanogenic conditions. Recently, a pure culture was found to degrade toluene and m-xylene nitrate or nitrous oxide as an electron acceptor. This paper presents initial results of ongoing study to develop and characterize microbial consortia capable of transforming aromatic hydrocarbons under nitrate-reducing conditions, and understand the effect of environmental factors on the biotransformation processes

  3. PREBIOTIC HYDROCARBON SYNTHESIS IN IMPACTING REDUCED ASTROPHYSICAL ICY MIXTURES

    International Nuclear Information System (INIS)

    Koziol, Lucas; Goldman, Nir

    2015-01-01

    We present results of prebiotic organic synthesis in shock-compressed reducing mixtures of simple ices from quantum molecular dynamics simulations extended to close to chemical equilibrium timescales. Given the relative abundance of carbon in reduced forms in astrophysical ices as well as the tendency of these mixtures to form complex hydrocarbons under the presence of external stimuli, it is possible that cometary impacts on a planetary surface could have yielded a larger array of prebiotic organic compounds than previously investigated. We find that the high pressures and temperatures due to shock compression yield a large assortment of carbon- and nitrogen-bonded extended structures that are highly reactive with short molecular lifetimes. Expansion and cooling causes these materials to break apart and form a wide variety of stable, potentially life-building compounds, including long-chain linear and branched hydrocarbons, large heterocyclic compounds, and a variety of different amines and exotic amino acids. Our results help provide a bottom-up understanding of hydrocarbon impact synthesis on the early Earth and its role in producing life-building molecules from simple starting materials

  4. PREBIOTIC HYDROCARBON SYNTHESIS IN IMPACTING REDUCED ASTROPHYSICAL ICY MIXTURES

    Energy Technology Data Exchange (ETDEWEB)

    Koziol, Lucas; Goldman, Nir, E-mail: lucas.koziol@exxonmobil.com, E-mail: ngoldman@llnl.gov [Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States)

    2015-04-20

    We present results of prebiotic organic synthesis in shock-compressed reducing mixtures of simple ices from quantum molecular dynamics simulations extended to close to chemical equilibrium timescales. Given the relative abundance of carbon in reduced forms in astrophysical ices as well as the tendency of these mixtures to form complex hydrocarbons under the presence of external stimuli, it is possible that cometary impacts on a planetary surface could have yielded a larger array of prebiotic organic compounds than previously investigated. We find that the high pressures and temperatures due to shock compression yield a large assortment of carbon- and nitrogen-bonded extended structures that are highly reactive with short molecular lifetimes. Expansion and cooling causes these materials to break apart and form a wide variety of stable, potentially life-building compounds, including long-chain linear and branched hydrocarbons, large heterocyclic compounds, and a variety of different amines and exotic amino acids. Our results help provide a bottom-up understanding of hydrocarbon impact synthesis on the early Earth and its role in producing life-building molecules from simple starting materials.

  5. Sulfur Tolerance of Carbide Catalysts Under Hydrocarbon Reforming Conditions

    National Research Council Canada - National Science Library

    Thomson, William

    2004-01-01

    .... These conditions are all related to lowering gas-solid mass transfer rate has also been determined that tedious TPR catalyst synthesis techniques are not necessary to achieve either catalyst activity or stability...

  6. Synthesis of Novel Hydrocarbon Soluble Multifunctional Anionic Initiators: Tools for Synthesis of Novel Dendrimer and Molecular Brush Polymer Architectures

    Science.gov (United States)

    2015-02-09

    Synthesis of Novel Dendrimer and Molecular Brush Polymer Architectures. Research Area:7.4 The views, opinions and/or findings contained in this report...journals: Final Report: Synthesis of Novel Hydrocarbon Soluble Multifunctional Anionic Initiators: Tools for Synthesis of Novel Dendrimer and Molecular

  7. Cobalt catalysts for the conversion of methanol and for Fischer-tropsch synthesis to produce hydrocarbons

    International Nuclear Information System (INIS)

    Mauldin, C.H.; Davis, S.M.; Arcuri, K.B.

    1987-01-01

    A regeneration stable catalyst is described for the conversion at reaction conditions of methanol or synthesis gas to liquid hydrocarbons which consists essentially of from about 2 percent to about 25 percent cobalt, based on the weight of the catalyst composition, composited with titania, or a titania-containing support, to which is added sufficient of a zirconium, hafnium, cerium, or uranium promoter to provide a weight ratio of the zirconium, hafnium, cerium, or uranium metal:cobalt greater than about 0.101:1

  8. Sedimentary facies and lithologic characters as main factors controlling hydrocarbon accumulations and their critical conditions

    Directory of Open Access Journals (Sweden)

    Jun-Qing Chen

    2015-10-01

    Full Text Available Taking more than 1000 clastic hydrocarbon reservoirs of Bohai Bay Basin, Tarim Basin and Junggar Basin, China as examples, the paper has studied the main controlling factors of hydrocarbon reservoirs and their critical conditions to reveal the hydrocarbon distribution and to optimize the search for favorable targets. The results indicated that the various sedimentary facies and lithologic characters control the critical conditions of hydrocarbon accumulations, which shows that hydrocarbon is distributed mainly in sedimentary facies formed under conditions of a long-lived and relatively strong hydrodynamic environment; 95% of the hydrocarbon reservoirs and reserves in the three basins is distributed in siltstones, fine sandstones, lithified gravels and pebble-bearing sandstones; moreover, the probability of discovering conventional hydrocarbon reservoirs decreases with the grain size of the clastic rock. The main reason is that the low relative porosity and permeability of fine-grained reservoirs lead to small differences in capillary force compared with surrounding rocks small and insufficiency of dynamic force for hydrocarbon accumulation; the critical condition for hydrocarbon entering reservoir is that the interfacial potential in the surrounding rock (Φn must be more than twice of that in the reservoir (Φs; the probability of hydrocarbon reservoirs distribution decreases in cases where the hydrodynamic force is too high or too low and when the rocks have too coarse or too fine grains.

  9. The photochemical reaction of hydrocarbons under extreme thermobaric conditions

    Science.gov (United States)

    Serovaiskii, Aleksandr; Kolesnikov, Anton; Mukhina, Elena; Kutcherov, Vladimir

    2017-10-01

    The photochemical reaction of hydrocarbons was found to play an important role in the experiments with the synthetic petroleum conducted in Diamond Anvil Cell (DAC). Raman spectroscopy with a green laser (514.5 nm) was used for in situ sample analysis. This photochemical effect was investigated in the pressure range of 0.7-5 GPa, in the temperature interval from the ambient conditions to 450°C. The power of laser used in these experiment series was from 0.05 W to 0.6 W. The chemical transformation was observed when the necessary threshold pressure (~2.8 GPa) was reached. This transformation correlated with the luminescence appearance on the Raman spectra and a black opaque spot in the sample was observed in the place where the laser focus was forwarded. The exposure time and laser power (at least in the 0.1-0.5 W range) did not play a role in the 0.1-0.5 GPa range.

  10. Hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    1927-02-22

    Coal tar, mineral oils, bitumens, coal extraction products, hydrogenation products of coal, oil schists can be atomized and heated with steam to decompose pyrogenetically and form gases rich in olefins which may be heated with or without pressure and with or without catalysts to produce liquid hydrocarbons of low boiling point, some of which may be aromatic. The apparatus should be lined with copper, silica, or ferrosilicon to prevent contact of the bases with iron which causes deposition of soot. Catalysts used may be metal oxides, silica, graphite, active charcoal, mica, pumice, porcelain, barium carbonate, copper, silver, gold, chromium, boron, or their compounds. At temperatures from 300 to 400/sup 0/C, olefins are produced. At higher temperatures, naphthenes and benzene hydrocarbons are produced.

  11. Oil-shale gasification for obtaining of gas for synthesis of aliphatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Strizhakova, Yu. [Samara State Univ. (Russian Federation); Avakyan, T.; Lapidus, A.L. [I.M. Gubkin Russian State Univ. of Oil and Gas, Moscow (Russian Federation)

    2011-07-01

    Nowadays, the problem of qualified usage of solid fossil fuels as raw materials for obtaining of motor fuels and chemical products is becoming increasingly important. Gasification with further processing of gaseous products is a one of possible ways of their use. Production of synthesis gas with H{sub 2}/CO ratio equal 2 is possible by gasification of oil-shale. This gas is converted into the mixture of hydrocarbons over cobalt catalyst at temperature from 160 to 210 C at atmospheric pressure. The hydrocarbons can be used as motor, including diesel, or reactive fuel. (orig.)

  12. Synthesis of hydrocarbons using coal and nuclear process heat

    International Nuclear Information System (INIS)

    Eickhoff, H.G.; Kugeler, K.

    1975-01-01

    An analysis of the global petroleum resources and demand shows that the amount of mineral oil products is sufficient to meet the requirements of the next decades. The geographical resources, however, could lead to problems of distribution and foreign exchange. The production of hydrocarbons with coal as basis using high temperature nuclear process heat has advantages compared to the conventional techniques. Next to the conservation of reserve fossil primary energy carriers there are advantages as regards prices, which at high coal costs are especially pronounced. (orig.) [de

  13. SHS-produced intermetallides as catalysts for hydrocarbons synthesis from CO and H{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Eliseev, O.L.; Kazantsev, R.V.; Davydov, P.E.; Lapidus, A.L. [Russian Academy of Sciences, Moscow (Russian Federation). N.D. Zelinsky Institute of Organic Chemistry; Borshch, V.N.; Pugacheva, E.V. [Russian Academy of Sciences, Chernogolovka (Russian Federation). Inst. of Structural Macrokinetics and Materials Science

    2012-07-01

    Raney-type polymetallic alloys were prepared by Self-Propagating High-Temperature Synthesis followed by alkaline treating. Surface morphology and composition of were studied using XRD, BET, SEM and EMPA techniques. The samples were tested in Fischer-Tropsch synthesis demonstrated rather high activity and very high selectivity to heavy paraffins. High selectivity to C{sub 5+} hydrocarbons is attributed to high thermal conductivity of alloys which prevents hot spots formation and therefore suppresses formation of methane and light hydrocarbons. Selectivity can be further improved by adding some d-metals in catalyst composition. Promotion with La seems to be particularly suitable for lowering methane formation while doping with Ni enhances methane yield greatly. (orig.)

  14. On the Synthesis of Carbon Nanotubes from Waste Solid Hydrocarbons

    Science.gov (United States)

    Zhuo, Chuanwei

    Carbon nanotubes (CNTs) are allotropes of carbon with a cylindrical nanostructure. They consist of coaxial tubular graphene sheets, with diameters in the order of nanometers (1 x 10-9 m) and lengths in the order of micrometers (1 x 10-6 m). The latter can now be extended into the order of meters. Carbon nanotubes (CNTs) have been studied for more than 20 years. CNTs possess superior electrical, mechanical, thermal, chemical, and structural properties, which make their potential applications nowadays overwhelmingly widespread. Now entering into the growth phase of product life cycle, increasing usage of CNTs in commercial products is part of the beginning of the nano-technological revolution. Expanding markets for CNTs' large volume applications place ever-increasing demands on lowering their production costs to the level acceptable by the end-user applications. It is estimated that the mass application of CNTs will be facilitated only when the price of CNTs approaches that of conductive carbon black. The synthesis of CNTs involves three elements: the carbonaceous feedstocks (raw materials), the catalysts, and the necessary process power consumption. Therefore, they jointly contribute to the major operation expenditures in CNT synthesis/production. Current technologies for large-scale production of CNTs (either chemical vapor deposition, CVD, or combustion synthesis) require intensive consumption of premium feedstocks and catalysts, and the CVD process requires high energy consumption. Therefore, there is a pressing need for resource-benign and energy-benign, cost-effective nano-manufacturing processes. In the search for sustainable alternatives, it would be prudent to explore renewable and/or replenishable low-cost feedstocks, such as those found in municipal, industrial, and agricultural recycling streams. In the search for low cost catalysts, stainless steels have been proposed as cost-effective dual purpose substrates and catalysts, as they contain transition

  15. Microfibrous Matrices: Optimization of Synthesis Conditions

    Directory of Open Access Journals (Sweden)

    Amogh N. Karwa

    2012-01-01

    Full Text Available This study focuses on the process of optimization for carbon nanofiber synthesis at the exterior and the interior of 3-dimensional sintered nickel microfibrous networks. Synthesis of carbon nanofibers (CNF by catalytic decomposition of acetylene (ethyne was conducted at atmospheric pressure and short reaction times (10 min. Two factors evaluated during the study were (a CNF quality (observed by SEM and Raman spectroscopy and (b rate of reaction (gravimetrically measured carbon yield. Independent optimization variables included redox faceting pretreatment of nickel, synthesis temperature, and gas composition. Faceting resulted in an 8-fold increase in the carbon yield compared to an untreated substrate. Synthesis with varying levels of hydrogen maximized the carbon yield (9.31 mg C/cm2 catalyst. The quality of CNF was enhanced via a reduction in amorphous carbon that resulted from the addition of 20% ammonia. Optimized growth conditions that led to high rates of CNF deposition preferentially deposited this carbon at the exterior layer of the nickel microfibrous networks (570°C, 78% H2, 20% NH3, 2% C2H2, faceted Ni.. CNF growth within the 3-dimensional nickel networks was accomplished at the conditions selected to lower the gravimetric reaction rate (470°C, 10% H2, 88% N2, 2% C2H2, nonfaceted Ni.

  16. THE GEOLOGICAL CONDITIONING OF HYDROCARBON EMISSIONS RESULTING FROM SOIL CONTAMINATION

    Directory of Open Access Journals (Sweden)

    Ewa J. Lipińska

    2014-12-01

    Full Text Available Synchronization economy of oil mining and mineral waters is associated with planning the functions of spa treatment. Environmental protection of the spa areas also applies to preserve their technical and cultural heritage. This article attempts to determine the places of natural and anthropogenic hydrocarbon pollution substances. Their presence in the soil affects the quality of the environment. As a result, maps are produced showing directions of research: (1 the natural background of biodiversity, and (2 potential anthropogenic pollution. They are assessed in the context of the health and human life, protection of the environment and the possibility of damage to the environment. Research is conducted in communes of the status of the spa – for special protection.

  17. Processes in petroleum chemistry. Technical and economical characteristics Vol. 1. Synthesis gas and derivatives. Main hydrocarbon intermediaries (2 ed. )

    Energy Technology Data Exchange (ETDEWEB)

    Chauvel, A.; Lefebvre, G.; Castex, L.

    1985-01-01

    The aim of this book is to give rudiments for a preliminary study to outline petrochemical operation and cost estimation. Basic operations are examined: Steam reforming or partial oxidation, steam or thermal cracking and catalytic reforming. The main topics examined include: hydrogen purification, hydrogen fabrication from hydrocarbons, carbonaceous materials or water, production of carbon monoxide, ammoniac synthesis methanol synthesis from synthesis gas, preparation of formol, urea, acetylene and monomers for the preparation of plastics.

  18. Geophysical Responses of Hydrocarbon-impacted Zones at the Various Contamination Conditions

    Science.gov (United States)

    Kim, C.; Ko, K.; Son, J.; Kim, J.

    2008-12-01

    One controlled experiment and two field surveys were conducted to investigate the geoelectrical responses of hydrocarbon-contaminated zones, so called smeared zone, on the geophysical data at the hydrocarbon- contaminated sites with various conditions. One controlled physical model experiment with GPR using fresh gasoline and two different 3-D electrical resistivity investigations at the aged sites. One field site (former military facilities for arms maintenance) was mainly contaminated with lubricating oils and the other (former gas station) was contaminated with gasoline and diesel, respectively. The results from the physical model experiment show that GPR signals were enhanced when LNAPL was present as a residual saturation in the water-saturated system due to less attenuation of the electromagnetic energy through the soil medium of the hydrocarbon-impacted zone (no biodegradation), compared to when the medium was saturated with only water (no hydrocarbon impaction). In the former gas station site, 3-D resistivity results demonstrate that the highly contaminated zones were imaged with low resistivity anomalies since the biodegradation of petroleum hydrocarbons has been undergone for many years, causing the drastic increase in the TDS at the hydrocarbon-impacted zones. Finally, 3-D resistivity data obtained from the former military maintenance site show that the hydrocarbon-contaminated zones show high resistivity anomalies since the hydrocarbons such as lubricating oils at the contaminated soils were not greatly influenced by microbial degradation and has relatively well kept their original physical properties of high electrical resistivity. The results of the study illustrated that the hydrocarbon-impacted zones under various contamination conditions yielded various geophysical responses which include (1) enhanced GPR amplitudes at the fresh LNAPL (Gasoline to middle distillates) spill sites, (2) low electrical resistivity anomalies due to biodegradation at the

  19. Synthesis of polycyclic aromatic hydrocarbon-protein conjugates for preparation and immunoassay of antibodies.

    Science.gov (United States)

    Glushkov, Andrey N; Kostyanko, Mikhail V; Cherno, Sergey V; Vasilchenko, Ilya L

    2002-04-01

    The method is described dealing with the synthesis of conjugates protein-polycyclic aromatic hydrocarbons (PAHs), highly soluble in water, stable without special stabilizers and containing the minimum quantity of cross-linked products. The reaction of protein with PAH containing an aldehyde group, has been carried out in an alkaline solution, and stabilization of the conjugate has been achieved by reduction with sodium borohydride in the presence of a compound blocking the formation of an insoluble polymeric fraction. The efficiency of synthesized conjugates for the induction and immunoassay of Abs to PAH for benzo[a]pyrene is shown.

  20. Stability of hydrocarbon systems at thermobaric conditions corresponding to depth down to 50 km

    Science.gov (United States)

    Kutcherov, V.; Kolesnikov, A.; Mukhina, E.; Serovaiskii, A.

    2017-12-01

    Most of the theoretical models show that crude oil stability is limited by the depth of 6-8 km (`oil window'). Commercial discovery of crude oil deposits on the depth more than 10 km in the different petroleum basins worldwide casts doubt on the validity of the above-mentioned theoretical calculations. Therefore, the question at which depth complex hydrocarbon systems could be stable is important not only from fundamental research point of view but has a great practical application. To answer this question a hydrocarbon mixture was investigated under thermobaric conditions corresponding to the conditions of the Earth's lower crust. Experiments were conducted by means of Raman Mössbauer spectroscopy. The results obtained show that the complex hydrocarbon systems could be stable and remain their qualitative and quantitative composition at temperature 320-450 °C and pressure 0.7-1.4 GPa. The oxidizing resistance of hydrocarbon system was tested in the modelled the Earth's crust surrounding. The hydrocarbon system stability at the presence of Fe2O3 strongly confirms that the Earth's crust oxygen fugacity does not influence on petroleum composition. The data obtained broaden our knowledge about the possible range of depths for crude oil and natural gas deposits in the Earth's crust and give us the possibility to revise the depth of petroleum deposits occurrence.

  1. Accelerated methanogenesis from aliphatic and aromatic hydrocarbons under iron- and sulfate-reducing conditions.

    Science.gov (United States)

    Siegert, Michael; Cichocka, Danuta; Herrmann, Steffi; Gründger, Friederike; Feisthauer, Stefan; Richnow, Hans-Hermann; Springael, Dirk; Krüger, Martin

    2011-02-01

    The impact of four electron acceptors on hydrocarbon-induced methanogenesis was studied. Methanogenesis from residual hydrocarbons may enhance the exploitation of oil reservoirs and may improve bioremediation. The conditions to drive the rate-limiting first hydrocarbon-oxidizing steps for the conversion of hydrocarbons into methanogenic substrates are crucial. Thus, the electron acceptors ferrihydrite, manganese dioxide, nitrate or sulfate were added to sediment microcosms acquired from two brackish water locations. Hexadecane, ethylbenzene or 1-(13)C-naphthalene were used as model hydrocarbons. Methane was released most rapidly from incubations amended with ferrihydrite and hexadecane. Ferrihydrite enhanced only hexadecane-dependent methanogenesis. The rates of methanogenesis were negatively affected by sulfate and nitrate at concentrations of more than 5 and 1 mM, respectively. Metal-reducing Geobacteraceae and potential sulfate reducers as well as Methanosarcina were present in situ and in vitro. Ferrihydrite addition triggered the growth of Methanosarcina-related methanogens. Additionally, methane was removed concomitantly by anaerobic methanotrophy. ANME-1 and -2 methyl coenzyme M reductase genes were detected, indicating anaerobic methanotrophy as an accompanying process [Correction added 16 December after online publication: 'methyl coenzyme A' changed to 'methyl coenzyme M' in this sentence]. The experiments presented here demonstrate the feasibility of enhancing methanogenic alkane degradation by ferrihydrite or sulfate addition in different geological settings. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  2. Petroleum hydrocarbon biodegradation under mixed denitrifying/microaerophilic conditions

    International Nuclear Information System (INIS)

    Miller, D.E.; Hutchins, S.R.

    1995-01-01

    Data are presented for aqueous-flow, soil-column microcosms in which removal of benzene, toluene, ethylbenzene, and xylenes (BTEX) is observed for two operating conditions: (1) nitrate, 25 to 26 mg(N)/L, as the single electron acceptor and (2) nitrate, 27 to 28 mg(N)/L combined with low levels of oxygen, 0.8 to 1.2 mg O 2 /L. Soils used in this study include aquifer material from Traverse City, Michigan; Park City, Kansas; and Eglin Air Force Base (AFB), Florida. BTEX compounds are introduced at concentrations ranging from 2.5 to 5 mg/L, with total BTEX loading from 20 to 22 mg/L Complete removal of toluene and partial removal of ethylbenzene, m-xylene, and o-xylene were observed for all soils during trials in which nitrate was the only electron acceptor. Combining low levels of oxygen with nitrate produced varying effects on BTEX removal, nitrate utilization, and nitrite production. Benzene proved recalcitrant throughout all operating trials

  3. Experimental investigation of hydrocarbon mixtures to replace HFC-134a in an automotive air conditioning system

    International Nuclear Information System (INIS)

    Wongwises, Somchai; Kamboon, Amnouy; Orachon, Banchob

    2006-01-01

    This paper presents an experimental study on the application of hydrocarbon mixtures to replace HFC-134a in automotive air conditioners. The hydrocarbons investigated are propane (R290), butane (R600) and isobutane (R600a). The measured data are obtained from an automotive air conditioning test facility utilizing HFC-134a as the refrigerant. The air conditioner, with a capacity of 3.5 kW driven by a Diesel engine, is charged and tested with four different ratios of hydrocarbon mixtures. The experiments are conducted at the same surrounding conditions. The temperature and pressure of the refrigerant at every major position in the refrigerant loop, the temperature, flow rate and humidity of air, torque and engine speed are recorded and analyzed. The parameters investigated are the refrigeration capacity, the compressor power and the coefficient of performance (COP). The results show that propane/butane/isobutane: 50%/40%/10% is the most appropriate alternative refrigerant to replace HFC-134a, having the best performance of all the hydrocarbon mixtures investigated

  4. Calculation of Interfacial Tensions of Hydrocarbon-water Systems under Reservoir Conditions

    DEFF Research Database (Denmark)

    Zuo, You-Xiang; Stenby, Erling Halfdan

    1998-01-01

    Assuming that the number densities of each component in a mixture are linearly distributed across the interface between the coexisting vapor-liquid or liquid-liquid phases, we developed in this research work a linear-gradient-theory (LGT) model for computing the interfacial tension of hydrocarbon......-brine systems. The new model was tested on a number of hydrocarbon-water/brine mixtures and two crude oil-water systems under reservoir conditions. The results show good agreement between the predicted and the experimental interfacial tension data.......Assuming that the number densities of each component in a mixture are linearly distributed across the interface between the coexisting vapor-liquid or liquid-liquid phases, we developed in this research work a linear-gradient-theory (LGT) model for computing the interfacial tension of hydrocarbon-water...... mixtures on the basis of the SRK equation of state. With this model, it is unnecessary to solve the time-consuming density-profile equations of the gradient-theory model. In addition, a correlation was developed for representing the effect of electrolytes on the interfacial tension of hydrocarbon...

  5. Hydrocarbon preservation conditions in Mesozoic–Paleozoic marine strata in the South Yellow Sea Basin

    Directory of Open Access Journals (Sweden)

    Jie Liang

    2017-11-01

    Full Text Available In the South Yellow Sea Basin, Mesozoic–Paleozoic marine strata are generally well developed with large thickness, and they are characterized by multi-source and multi-stage hydrocarbon accumulation, providing a material basis for the formation of large-scale oil and gas fields. However, no substantial breakthrough has been made in this area. Based on previous research results, the complex tectonic pattern of this superimposed basin was formed by multi-stage tectonic movements and the favorable static conditions for hydrocarbon preservation were reworked or destroyed by later superimposition. Therefore, hydrocarbon preservation conditions are the key factors for restricting the breakthrough of marine oil and gas exploration in this area. In this paper, hydrocarbon preservation conditions of marine strata in the South Yellow Sea Basin were comprehensively analyzed from many aspects, such as tectonic movement, source conditions, caprock characteristics, magmatic activities, and hydrogeological and hydrogeochemical characteristics. It is indicated that the complex tectonic pattern of the South Yellow Sea Basin is resulted from tectonic events in multiple stages, and the development and evolution of regional source rocks are mainly controlled by two stages (i.e., the stable evolution stage of Mesozoic–Paleozoic marine basin and the Mesozoic–Cenozoic tectonic pattern transformation and basin formation stage, so the characteristics of differential oil and gas preservation are presented. Besides, better marine hydrocarbon preservation preconditions in this area are weaker tectonic reworking, development of high-quality thick source rocks, good vertical sealing capacity of caprocks, weaker magmatic activity and confined hydrogeological conditions. It is concluded that the Laoshan Uplift in the central part of the South Yellow Sea Basin is structurally stable with weaker faulting and magmatic activities, so it is better in oil and gas preservation

  6. Using hydrocarbon as a carbon source for synthesis of carbon nanotube by electric field induced needle-pulsed plasma

    International Nuclear Information System (INIS)

    Kazemi Kia, Kaveh; Bonabi, Fahimeh

    2013-01-01

    In this work different hydrocarbons are used as the carbon source, in the production of carbon nanotubes (CNTs) and nano onions. An electric field induced needle pulse arc-discharge reactor is used. The influence of starting carbon on the synthesis of CNTs is investigated. The production efficiency is compared for Acetone, Isopropanol and Naphthalene as simple hydrocarbons. The hydrocarbons are preheated and then pretreated by electric field before being exposed to plasma. The hydrocarbon vapor is injected into plasma through a graphite spout in the cathode assembly. The pulsed plasma takes place between two graphite rods while a strong electric field has been already established alongside the electrodes. The pulse width is 0.3 μs. Mechanism of precursor decomposition is discussed by describing three forms of energy that are utilized to disintegrate the precursor molecules: thermal energy, electric field and kinetic energy of plasma. Molecular polarity of a hydrocarbon is one of the reasons for choosing carbon raw material as a precursor in an electric field induced low power pulsed-plasma. The results show that in order to obtain high quality carbon nanotubes, Acetone is preferred to Isopropanol and Naphthalene. Scanning probe microscopy techniques are used to investigate the products. - Highlights: • We synthesized CNTs (carbon nano tubes) by needle pulsed plasma. • We use different hydrocarbons as carbon source in the production of CNTs. • We investigated the influence of starting carbon on the synthesis of CNTs. • Thermal energy, electric field and kinetic energy are used to break carbon bonds. • Polar hydrocarbon molecules are more efficient than nonpolar ones in production

  7. CO- and HCl-free synthesis of acid chlorides from unsaturated hydrocarbons via shuttle catalysis

    Science.gov (United States)

    Fang, Xianjie; Cacherat, Bastien; Morandi, Bill

    2017-11-01

    The synthesis of carboxylic acid derivatives from unsaturated hydrocarbons is an important process for the preparation of polymers, pharmaceuticals, cosmetics and agrochemicals. Despite its industrial relevance, the traditional Reppe-type carbonylation reaction using pressurized CO is of limited applicability to laboratory-scale synthesis because of: (1) the safety hazards associated with the use of CO, (2) the need for special equipment to handle pressurized gas, (3) the low reactivity of several relevant nucleophiles and (4) the necessity to employ different, often tailor-made, catalytic systems for each nucleophile. Herein we demonstrate that a shuttle-catalysis approach enables a CO- and HCl-free transfer process between an inexpensive reagent, butyryl chloride, and a wide range of unsaturated substrates to access the corresponding acid chlorides in good yields. This new transformation provides access to a broad range of carbonyl-containing products through the in situ transformation of the reactive acid chloride intermediate. In a broader context, this work demonstrates that isodesmic shuttle-catalysis reactions can unlock elusive catalytic reactions.

  8. Multi-metallic oxides as catalysts for light alcohols and hydrocarbons from synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Miguel [Instituto Mexicano del Petroleo, Mexico, D.F. (Mexico); Diaz, L; Galindo, H de J; Dominguez, J. M; Salmon, Manuel [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)

    1999-08-01

    A series of Cu-Co-Cr oxides doped with alkaline metals (M), were prepared by the coprecipitation method with metal nitrates (Cu{sup I}I, CO{sup I}I, CR{sup I}II) and (M{sub 2})CO{sub 3} in aqueous solution. The calcined products were used as catalysts for the Fisher-Tropsch synthesis in a stainless-steel fixed bed microreactor. The material was characterized by x-ray diffraction, and the specific surface area, pore size and nitrogen adsorption-desorption properties were also determined. The alkaline metals favored the methanol synthesis and prevent the dehydration reactions whereas the hydrocarbon formation is independent to these metals. [Spanish] Una serie de oxidos Cu-Co-Cr soportados con metales alcalinos (M), fueron preparados por el metodo con nitratos metalicos (Cu{sup I}I, CO{sup I}I, CR{sup I}II) y (M{sub 2})CO{sub 3} en soluciones acuosas. Los productos calcinados fueron usados como catalizadores para la sintesis de Fisher-tropsch en la superficie fija de un microreactor de acero inoxidable. El material fue caracterizado por difraccion de rayos X y el area de superficie especifica, el tamano de poro y propiedades de absorcion-desorcion de nitrogeno fueron determinadas. Los metales alcalinos favorecieron la sintesis de metanol y previnieron las reacciones de deshidratacion, mientras que la formacion de hidrocarburos es independiente de estos metales.

  9. Synthesis and Characterization of Quaternary Metal Chalcogenide Aerogels for Gas Separation and Volatile Hydrocarbon Adsorption

    KAUST Repository

    Edhaim, Fatimah A.

    2017-11-01

    In this dissertation, the metathesis route of metal chalcogenide aerogel synthesis was expanded by conducting systematic studies between polysulfide building blocks and the 1st-row transition metal linkers. Resulting materials were screened as sorbents for selective gas separation and volatile organic compounds adsorption. They showed preferential adsorption of polarizable gases (CO2) and organic compounds (toluene). Ion exchange and heavy metal remediation properties have also been demonstrated. The effect of the presence of different counter-ion within chalcogel frameworks on the adsorption capacity of the chalcogels was studied on AFe3Zn3S17 (A= K, Na, and Rb) chalcogels. The highest adsorption capacity toward hydrocarbons and gases was observed on Rb based chalcogels. Adopting a new building block [BiTe3]3- with the 1st-row transition metal ions results in the formation of three high BET surface area chalcogels, KCrBiTe3, KZnBiTe3, and KFeBiTe3. The resulting chalcogels showed preferential adsorption of toluene vapor, and remarkable selectivity of CO2, indicating the potential future use of chalcogels in adsorption-based gas or hydrocarbon separation processes. The synthesis and characterization of the rare earth chalcogels NaYSnS4, NaGdSnS4, and NaTbSnS4 are also reported. Rare earth metal ions react with the thiostannate clusters in formamide solution forming extended polymeric networks by gelation. Obtained chalcogels have high BET surface areas, and showed notable adsorption capacity toward CO2 and toluene vapor. These chalcogels have also been engaged in the absorption of different organic molecules. The results reveal the ability of the chalcogels to distinguish among organic molecules on their electronic structures; hence, they could be used as sensors. Furthermore, the synthesis of metal chalcogenide aerogels Co0.5Sb0.33MoS4 and Co0.5Y0.33MoS4 by the sol-gel method is reported. In this system, the building blocks [MoS4]2- chelated with Co2+ and (Sb3

  10. Synthesis Under 'Greener' Conditions: Role of Sustainable Nano-Catalysts

    Science.gov (United States)

    The presentation summarizes our recent activity in chemical synthesis involving benign alternatives, such as the use of supported reagents, and greener reaction medium in aqueous or solvent-free conditions.1 The synthesis of heterocyclic compounds, coupling reactions, and a varie...

  11. A new HYSYS model for underground gasification of hydrocarbons under hydrothermal conditions

    KAUST Repository

    Alshammari, Y.M.

    2014-08-01

    A new subsurface process model was developed using the ASPEN HYSYS simulation environment to analyse the process energy and gasification efficiency at steady-state equilibrium conditions. Injection and production wells were simulated using the HYSYS pipe flow utilities which makes use of the Beggs and Brill flow correlation applicable for vertical pipes. The downhole reservoir hydrothermal reactions were assumed to be in equilibrium, and hence, the Gibbs reactor was used. It was found that high W/C ratios and low O/C ratios are required to maximise gasification efficiency at a constant hydrocarbon feed flowrate, while the opposite is true for the energy efficiency. This occurs due to the dependence of process energy efficiency on the gas pressure and temperature at surface, while the gasification efficiency depends on the gas composition which is determined by the reservoir reaction conditions which affects production distribution. Another effect of paramount importance is the increase in reservoir production rate which was found to directly enhance both energy and gasification efficiency showing conditions where the both efficiencies are theoretically maximised. Results open new routes for techno-economic assessment of commercial implementation of underground gasification of hydrocarbons. © 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  12. Interaction of oxides of nitrogen and aromatic hydrocarbons under simulated atmospheric conditions

    International Nuclear Information System (INIS)

    Obrien, R.J.; Green, P.J.; Doty, R.A.; Vanderzanden, J.W.; Easton, R.R.; Irwin, R.P.

    1979-01-01

    The reactions of nitrogen oxides with aromatic hydrocarbons under simulated atmospheric conditions are investigated. Gaseous reaction products formed when toluene is irradiated under simulated atmospheric conditions in the presence of nitrogen oxides were analyzed by gas chromatography. Reaction products detected include acetylene, water, acetaldehyde, acetone, toluene, benzaldehyde, ortho-, meta- and para-cresol, benzyl nitrate and meta- and para-nitrotoluene. Reaction mechanisms yielding the various products are illustrated. The assumption that all the nitrogen oxides observed to be lost from the reaction products can be accounted for by nitric acid formation in the absence of ozone formation is verified by a model in which the hydroxyl radical is assumed to be the only means of removing toluene. Under conditions in which ozone is formed, nitrogen oxide loss is accounted for by ozone formation in addition to nitric acid formation

  13. Bioremediation and phytoremediation of total petroleum hydrocarbons (TPH) under various conditions.

    Science.gov (United States)

    McIntosh, Patrick; Schulthess, Cristian P; Kuzovkina, Yulia A; Guillard, Karl

    2017-08-03

    Remediation of contaminated soils is often studied using fine-textured soils rather than low-fertility sandy soils, and few studies focus on recontamination events. This study compared aerobic and anaerobic treatments for remediation of freshly introduced used motor oil on a sandy soil previously phytoremediated and bioacclimated (microorganisms already adapted in the soil environment) with some residual total petroleum hydrocarbon (TPH) contamination. Vegetated and unvegetated conditions to remediate anthropogenic fill containing residual TPH that was spiked with nonaqueous phase liquids (NAPLs) were evaluated in a 90-day greenhouse pot study. Vegetated treatments used switchgrass (Panicum virgatum). The concentration of aerobic bacteria were orders of magnitude higher in vegetated treatments compared to unvegetated. Nevertheless, final TPH concentrations were low in all saturated soil treatments, and high in the presence of switchgrass. Concentrations were also low in unvegetated pots with fertilizer. Acclimated indigenous microbial communities were shown to be more effective in breaking down hydrocarbons than introducing microbes from the addition of plant treatments in sandy soils. Remediation of fresh introduced NAPLs on pre-phytoremediated and bioacclimated soil was most efficient in saturated, anaerobic environments, probably due to the already pre-established microbial associations, easily bioavailable contaminants, and optimized soil conditions for microbial establishment and survival.

  14. Application of numerical modeling of selective NOx reduction by hydrocarbon under diesel transient conditions in consideration of hydrocarbon adsorption and desorption process

    International Nuclear Information System (INIS)

    Watanabe, Y.; Asano, A.; Banno, K.; Yokota, K.; Sugiura, M.

    2001-01-01

    A model of NO x selective reduction by hydrocarbon (HC) was developed, which takes into account the adsorption and desorption of HC. The model was applied for predicting the performance of a De-NO x catalytic reactor, working under transient conditions such as a legislative driving cycle. Diesel fuel was used as a supplemental reductant. The behavior of HC and NO x reactions and HC adsorption and desorption has been simulated successfully by our numerical approach under the transient conditions of the simulated Japanese 10-15 driving cycle. Our model is expected to optimize the design of selective diesel NO x reduction systems using a diesel fuel as a supplemental reductant

  15. Photochemical synthesis of biomolecules under anoxic conditions

    Science.gov (United States)

    Folsome, C.; Brittain, A.; Zelko, M.

    1983-01-01

    The long-wavelength UV anoxic photosynthesis of uracil, various sugars (including deoxyribose and glycoaldehyde), amino acids, and other organic photoproducts is reported. The reactions were conducted in a mixture of water, calcium carbonate, hydrazine, and formaldehyde which were subjected to 24 hr or 72 hr radiation. Product yields were greatest when the hydrazine/formaldehyde ratio was one, and when the reactant concentrations were low. These data suggest that organic products can be formed in variety from those amounts of formaldehyde and hydazine precursors which are themselves formed under anoxic UV photochemical conditions.

  16. An efficient synthesis of quinolines under solvent-free conditions

    Indian Academy of Sciences (India)

    Unknown

    An efficient synthesis of quinolines under solvent-free conditions. 201 was then irradiated with microwaves in a microwave oven (Samsung model# CE118KF) at 1050W (70% of total power) for 5 minutes (3 + 2 with an inter- mission of 5 minutes). The reaction mixture was cooled at room temperature and rendered basic (pH.

  17. The application of hydrocarbon refrigerant mixtures in a hermetic reciprocating compressor for high back pressure conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.M.; Pak, H.Y. [Hanyang University, Seoul (Korea)

    1999-03-01

    The application of hydrocarbon refrigerant mixtures in a hermetic reciprocating compressor for dehumidifier is investigated. The selected refrigerants are R12, R134a, HC-Blend(R290/R600a), CX(R152a/R600a) and OS-12a. Both theoretical and experimental investigations have been performed for the selected refrigerants. The test results of hydrocarbon refrigerants have been compared to traditional refrigerant(R12) and R134a. The results show that hydrocarbon refrigerant mixtures(HC-Blend, CX and OS-12a) are very good alternatives in the refrigeration system for R12 and R134a. 11 refs., 3 fig., 12 tabs.

  18. Influence of traffic conditions on polycyclic aromatic hydrocarbon abundance in street dust.

    Science.gov (United States)

    Xiang, Li; Li, Yingxia; Yang, Zhifeng; Shi, Jianghong

    2010-01-01

    Polycyclic aromatic hydrocarbon (PAH) concentrations were quantified in sieved street dusts from eight sampling sites with different traffic conditions in Beijing. The parent diagnostic ratio test and multi-regression analysis were used to identify the different PAH pollution sources. Results showed that more than 93% of the cumulative 16 priority pollutant PAHs (Sigma 16EPA-PAH) load was present in street dust with a diameter less than 300 microm across all the sampling sites. The concentration of Sigma 4-6 ring PAHs was 93 to 284% higher than that of Sigma 2-3 ring PAHs for most of the sites except the cycle lane site, indicating the dominance of pyrogenic inputs in street dusts at these sites. Cooking oil is an important PAH source in street dusts for all the sampling sites. Tire debris and vehicle emissions were also identified as significant contributors to the PAH loading in the heavy traffic zone, vehicle parking areas, the frequent brake usage zone, and the construction area.

  19. Dynamic characteristics of hydrocarbon fuel within the channel at supercritical and pyrolysis condition

    Science.gov (United States)

    Yu, Bin; Zhou, Weixing; Qin, Jiang; Bao, Wen

    2017-12-01

    Regenerative cooling with fuel as the coolant is used in the scramjet engine. In order to grasp the dynamic characteristics of engine fuel supply processes, this article studies the dynamic characteristics of hydrocarbon fuel within the channel. A one-dimensional dynamic model was proved, the thermal energy storage effect, fuel volume effect and chemical dynamic effect have been considered in the model, the ordinary differential equations were solved using a 4th order Runge-Kutta method. The precision of the model was validated by three groups of experimental data. The effects of input signal, working condition, tube size on the dynamic characteristics of pressure, flow rate, temperature have been simulated. It is found that cracking reaction increased the compressibility of the fuel pyrolysis mixture and lead to longer responding time of outlet flow. The responding time of outlet flow can reach 3s when tube is 5m long which will greatly influence the control performance of the engine thrust system. Meanwhile, when the inlet flow rate appears the step change, the inlet pressure leads to overshoot, the overshoot can reach as much as 100%, such highly transient impulse will result in detrimental effect on fuel pump.

  20. Optimization of operating conditions in oxidation of dibenzothiophene in the light hydrocarbon model

    Directory of Open Access Journals (Sweden)

    Akbari Azam

    2014-01-01

    Full Text Available In this research, the effects of process variables on the efficiency and mechanism of dibenzothiophene oxidation in formicacid/H2O2 system for deep desulfurization of a light hydrocarbon model were systematically studied by statistical modelling and optimization using response surface methodology and implementing the central composite design. A quadratic regression model was developed to predict the yield of sulfur oxidation as the model response. The model indicated that temperature was the most significant effective factor and suggested an important interaction between temperature and H2O2/sulfur ratio; at temperatures above 56°C, more excess oxidant was necessary because of instability of active peroxo intermediates and loss of H2O2 due to thermal decomposition. In contrast, the water hindrance effect of H2O2 aqueous solution in desulfurization progress was more significant at temperatures bellow 56°C. In the optimization process, minimizing H2O2/sulfur ratio and catalyst consumption for maximum yield of desulfurization was economically considerable. The optimal condition was obtained at temperature of 57 °C, H2O2/sulfur ratio of 2.5 mol/mol and catalyst dosage of 0.82 mL in 50 mL solution of DBT in n-hexane leading to a maximum oxidation yield of 95% after 1 hour reaction. Good agreement between predicted and experimental results (less than 4% error was found.

  1. Degradation of polynuclear aromatic hydrocarbons under bench-scale compost conditions

    Energy Technology Data Exchange (ETDEWEB)

    Potter, C.L.; Glaser, J.A.; Chang, L.W.; Meier, J.R.; Dosani, M.A.; Herrmann, R.F. [US Environmental Protection Agency, Cincinnati, OH (United States). National Risk Management Research Lab.

    1999-05-15

    Polycyclic aromatic hydrocarbons are a concern at many sites, including wood-treating facilities and manufactured gas plants. This research sought to evaluate the relationship between aerobic biomass development and removal of 19 individual PAHs and toxicity from field soil during the composting process in in-vessel reactors located at the US Environmental Protection Agency (EPA) Test & Evaluation (T & E) Facility in Cincinnati, OH. Five compost amendment conditions were formulated from different nutrients or amendments to the reactor mixtures. Operating parameters of interest included aeration, moisture dynamics, and heat production. Toxicity tests were conducted to evaluate the effect of composting on soil toxicity. Seed germination and root elongation tests were evaluated in lettuce and oats, and genotoxicity (mitotic abberations) testing was performed on Allium cepa (onion). Composting of PAH contaminated soil decreased toxicity to earthworms and oat roots but had no significant effect on lettuce root toxicity. Untreated soil evoked genotoxicity in the Allium assay. After composting, no significant genotoxicity was observed in Reilly soil. 35 refs., 5 figs., 7 tabs.

  2. Removal of polycyclic aromatic hydrocarbons (PAHs) from industrial sludges in the ambient air conditions: automotive industry.

    Science.gov (United States)

    Karaca, Gizem; Tasdemir, Yucel

    2013-01-01

    Removal of polycyclic aromatic hydrocarbons (PAHs) existed in automotive industry treatment sludge was examined by considering the effects of temperature, UV, titanium dioxide (TiO2) and diethyl amine (DEA) in different dosages (i.e., 5% and 20%) in this study. Application of TiO2 and DEA to the sludge samples in ambient environment was studied. Ten PAH (Σ10 PAH) compounds were targeted and their average value in the sludge was found to be 4480 ± 1450 ng/g dry matter (DM). Total PAH content of the sludge was reduced by 25% in the ambient air environment. Meteorological conditions, atmospheric deposition, evaporation and sunlight irradiation played an effective role in the variations in PAH levels during the tests carried out in ambient air environment. Moreover, it was observed that when the ring numbers of PAHs increased, their removal rates also increased. Total PAH level did not change with the addition of 5% DEA and only 10% decreased with 5% TiO2 addition. PAH removal ratios were 8% and 32% when DEA (20%) and TiO2 (20%) were added, respectively. It was concluded that DEA was a weak photo-sensitizer yet TiO2 was effective only at 20% dosage.

  3. Isolation and characterization of Halomonas sp. strain C2SS100, a hydrocarbon-degrading bacterium under hypersaline conditions.

    Science.gov (United States)

    Mnif, S; Chamkha, M; Sayadi, S

    2009-09-01

    To isolate and characterize an efficient hydrocarbon-degrading bacterium under hypersaline conditions, from a Tunisian off-shore oil field. Production water collected from 'Sercina' petroleum reservoir, located near the Kerkennah island, Tunisia, was used for the screening of halotolerant or halophilic bacteria able to degrade crude oil. Bacterial strain C2SS100 was isolated after enrichment on crude oil, in the presence of 100 g l(-1) NaCl and at 37 degrees C. This strain was aerobic, Gram-negative, rod-shaped, motile, oxidase + and catalase +. Phenotypic characters and phylogenetic analysis based on the 16S rRNA gene of the isolate C2SS100 showed that it was related to members of the Halomonas genus. The degradation of several compounds present in crude oil was confirmed by GC-MS analysis. The use of refined petroleum products such as diesel fuel and lubricating oil as sole carbon source, under the same conditions of temperature and salinity, showed that significant amounts of these heterogenic compounds could be degraded. Strain C2SS100 was able to degrade hexadecane (C16). During growth on hexadecane, cells surface hydrophobicity and emulsifying activity increased indicating the production of biosurfactant by strain C2SS100. A halotolerant bacterial strain Halomonas sp. C2SS100 was isolated from production water of an oil field, after enrichment on crude oil. This strain is able to degrade hydrocarbons efficiently. The mode of hydrocarbon uptake is realized by the production of a biosurfactant which enhances the solubility of hydrocarbons and renders them more accessible for biodegradation. The biodegradation potential of the Halomonas sp. strain C2SS100 gives it an advantage for possibly application on bioremediation of water, hydrocarbon-contaminated sites under high-salinity level.

  4. Selective Synthesis of Gasoline-Ranged Hydrocarbons from Syngas over Hybrid Catalyst Consisting of Metal-Loaded ZSM-5 Coupled with Copper-Zinc Oxide

    Directory of Open Access Journals (Sweden)

    Ting Ma

    2014-04-01

    Full Text Available The conversion of syngas (CO + H2 to gasoline-ranged hydrocarbons was carried out using a hybrid catalyst consisting of metal-loaded ZSM-5 coupled with Cu-ZnO in a near-critical n-hexane solvent. Methanol was synthesized from syngas over Cu-ZnO; subsequently, was converted to hydrocarbons through the formation of dimethyl ether (DME over the metal-loaded ZSM-5. When 0.5 wt% Pd/ZSM-5 and 5 wt% Cu/ZSM-5 among the metal-loaded ZSM-5 catalysts with Pd, Co, Fe or Cu were employed as a portion of the hybrid catalyst, the gasoline-ranged hydrocarbons were selectively produced (the gasoline-ranged hydrocarbons in all hydrocarbons: 59% for the hybrid catalyst with Pd/ZSM-5 and 64% for that with Cu/ZSM-5 with a similar CO conversion during the reaction. An increase in the Cu loading on ZSM-5 resulted in increasing the yield of the gasoline-ranged hydrocarbons, and in decreasing the yield of DME. Furthermore, the hybrid catalyst with Cu/ZSM-5 exhibited no deactivation for 30 h of the reaction. It was revealed that a hybrid catalyst containing Cu/ZSM-5 was efficient in the selective synthesis of gasoline-ranged hydrocarbons from syngas via methanol in the near-critical n-hexane fluid.

  5. Multiwalled Carbon Nanotube Synthesis Using Arc Discharge with Hydrocarbon as Feedstock

    Directory of Open Access Journals (Sweden)

    K. T. Chaudhary

    2013-01-01

    Full Text Available Synthesis of multiwalled carbon nanotube (MWCNT by arc discharge process is investigated with methane (CH4 as background and feedstock gas. The arc discharge is carried out between two graphite electrodes for ambient pressures 100, 300, and 500 torr and arc currents 50, 70, and 90 A. Plasma kinetics such as the density and temperature for arc discharge carbon plasma is determined to find out the contribution of physical parameters as arc current and ambient pressure on the plasma dynamics and growth of MWCNT. With increase in applied arc current and ambient pressure, an increase in plasma temperature and density is observed. The synthesized samples of MWCNT at different experimental conditions are characterized by transmission electron microscopy, scanning electron microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. A decrease in the diameter and improvement in structure quality and growth of MWCNT are observed with increase in CH4 ambient pressure and arc current. For CH4 ambient pressure 500 torr and arc current 90 A, the well-aligned and straight MWCNT along with graphene stakes are detected.

  6. Tightness and suitability evaluation of abandoned salt caverns served as hydrocarbon energies storage under adverse geological conditions (AGC)

    International Nuclear Information System (INIS)

    Wei, Liu; Jie, Chen; Deyi, Jiang; Xilin, Shi; Yinping, Li; Daemen, J.J.K.; Chunhe, Yang

    2016-01-01

    Highlights: • Tightness conditions are set to assess use of old caverns for hydrocarbons storage. • Gas seepage and tightness around caverns are numerically simulated under AGC. • κ of interlayers act as a key factor to affect the tightness and use of salt cavern. • The threshold upper permeability of interlayers is proposed for storing oil and gas. • Three types of real application are introduced by using the tightness conditions. - Abstract: In China, the storage of hydrocarbon energies is extremely insufficient partially due to the lack of storage space, but on the other side the existence of a large number of abandoned salt caverns poses a serious threat to safety and geological environments. Some of these caverns, defined as abandoned caverns under adverse geological conditions (AGC), are expected to store hydrocarbon energies (natural gas or crude oil) to reduce the risk of potential disasters and simultaneously support the national strategic energy reserve of China. Herein, a series of investigations primarily related to the tightness and suitability of the caverns under AGC is performed. Laboratory measurements to determine the physical and mechanical properties as well as porosity and permeability of bedded salt cores from a near target cavern are implemented to determine the petro-mechanical properties and basic parameters for further study. The results show that the mechanical properties of the bedded rock salts are satisfactory for the stability of caverns. The interface between the salt and interlayers exhibits mechanical properties that are between those of rock salt and interlayers and in particular is not a weak zone. The silty mudstone interlayers have relatively high porosity and permeability, likely due to their low content of clay minerals and the presence of halite-filled cracks. The conditions for evaluating the tightness and suitability of a cavern for storing hydrocarbons are proposed, including “No tensile stress,”

  7. Synthesis of Biokerosene through Electrochemical Hydrogenation of Terpene Hydrocarbons from Turpentine Oil

    Directory of Open Access Journals (Sweden)

    Tedi Hudaya

    2016-12-01

    Full Text Available Indonesia possesses great potential for developing renewable resources as alternative fuels. For example, turpentine oil obtained from Pinus merkusii, which contains mostly monoterpene hydrocarbons (C10H16. The oil is highly suitable to be processed for biokerosene or even jet biofuel. It consists of hydrocarbons within the range of C10 to C15. However, it contains insufficient H and thus needs to be upgraded. In the present work, electrochemical hydrogenation was used for upgrading. In the electrochemical cell, stainless steel, silver, and carbon were used alternately for the anode, while copper and silver Raschig rings were used for the cathode. An electrolyte solution of cuprous ammonium formate was utilized not only as a source of H but also to draw the unsaturated hydrocarbons into the aqueous phase. The electrolyte : oil ratio (up to 2:1, electrolyte concentration (between 0.4 and 2 M and reaction time were varied throughout the experiments. The bromine number (unsaturation level of the turpentine oil, which was initially 1,86 (mole Br2/mole, was lowered significantly to 0.69-0.90. Promising increase of smoke point values were observed from 11 mm to 16-24 mm, indicating a higher H content of the processed oil, thus making it suitable as a substitute for petroleum kerosene.

  8. The reduction of petroleum hydrocarbons in soil under saline conditions using ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    McMillan, D. [SNC-Lavallin, Vancouver, BC (Canada); Northern British Columbia Univ., Prince George, BC (Canada)

    2010-07-01

    Petroleum hydrocarbons (PHCs) and salts are two of the most common soil contaminants found at oil and gas extraction sites. High concentrations of salt from brine spills may amplify the challenges of soil remediation by reducing bioavailability for remediation. This PowerPoint presentation described an ultrasonic soil flushing technology that used sonic cavitation to break down contaminants. Long chain and aromatic hydrocarbons with complex structures were broken down by the direct oxidation under high temperature and pressure environments created by the sonic cavitation process. The cavitation waves broke up the aggregates of solid particles and increased the turbulence and transportation of the contaminants. A laboratory study evaluated the ability of the treatment process to remediate salt and hydrocarbon contaminated soil samples. The adsorption isotherms of the samples were analyzed. Sand, clay, and muskeg samples were treated. Results of the study suggested that the treatment is more effective when treating granular soils with high hydraulic conductivity. Even small amounts of salt were found to have a negative impact on the reduction of hydrocarbon contaminants. tabs., figs.

  9. DEGRADATION OF POLYNUCLEAR AROMATIC HYDROCARBONS UNDER BENCH-SCALE COMPOST CONDITIONS

    Science.gov (United States)

    The relationship between biomass growth and degradation of polynuclear aromatic hydrocarbons (PAHs) in soil, and subsequent toxicity reduction, was evaluated in 10 in-vessel, bench-scale compost units. Field soil was aquired from the Reilly Tar and Chemical Company Superfund site...

  10. Synthesis of extended polycyclic aromatic hydrocarbons by oxidative tandem spirocyclization and 1,2-aryl migration

    Science.gov (United States)

    Zhang, Xuan; Xu, Zhanqiang; Si, Weili; Oniwa, Kazuaki; Bao, Ming; Yamamoto, Yoshinori; Jin, Tienan

    2017-04-01

    The extended polycyclic aromatic hydrocarbons (PAHs) have received significant interdisciplinary attention due to their semiconducting applications in diverse organic electronics as well as intriguing structural interests of well-defined graphene segments. Herein, a highly efficient oxidative spirocyclization and 1,2-aryl migration tandem synthetic method for the construction of extended polyaromatic hydrocarbons (PAHs) has been developed. The CuCl-catalyst/PhCO3 tBu or DDQ oxidation system in the presence of trifluoroacetic acid enables the selective single-electron oxidation to take place preferentially at the more electron-rich alkene moiety of o-biphenylyl-substituted methylenefluorenes, giving rise to the subsequent tandem process. A variety of structurally diverse extended PAHs including functionalized dibenzo[g,p]chrysenes, benzo[f]naphtho[1,2-s]picene, hexabenzo[a,c,fg,j,l,op]tetracene, tetrabenzo[a,c,f,m]phenanthro[9,10-k]tetraphene, tetrabenzo[a,c,f,k]phenanthro[9,10-m]tetraphene, tetrabenzo[a,c,f,o]phenanthro[9,10-m]picene and S-type helicene have been readily synthesized.

  11. The effect and role of environmental conditions on magnetosome synthesis

    Directory of Open Access Journals (Sweden)

    Cristina eMoisescu

    2014-02-01

    Full Text Available Magnetotactic bacteria (MTB are considered the model species for the controlled biomineralization of magnetic Fe oxide (magnetite, Fe3O4 or Fe sulfide (greigite, Fe3S4 nanocrystals in living organisms. In MTB, magnetic minerals form as membrane-bound, single-magnetic domain crystals known as magnetosomes and the synthesis of magnetosomes by MTB is a highly controlled process at the genetic level. Magnetosome crystals reveal highest purity and highest quality magnetic properties and are therefore increasingly sought after as novel nanoparticulate biomaterials for industrial and medical applications. In addition, magnetofossils, have been used as both past terrestrial and potential Martian life biosignature. However, until recently, the general belief was that the morphology of mature magnetite crystals formed by MTB was largely unaffected by environmental conditions. Here we review a series of studies that showed how changes in environmental factors such as temperature, pH, external Fe concentration, external magnetic fields, static or dynamic fluid conditions, and nutrient availability or concentrations can all affect the biomineralization of magnetite magnetosomes in MTB. The resulting variations in magnetic nanocrystals characteristics can have consequence both for their commercial value but also for their use as indicators for ancient life.In this paper we will review the recent findings regarding the influence of variable chemical and physical environmental control factors on the synthesis of magnetosome by MTB, and address the role of MTB in the global biogeochemical cycling of iron.

  12. Modeling of composite synthesis in conditions of controlled thermal explosion

    Science.gov (United States)

    Kukta, Yaroslav; Knyazeva, Anna

    2017-12-01

    The paper proposes the model for the titanium-based composite synthesis from powders of titanium and carbon of non-stoichiometric composition. The model takes into account the mixture heating from chamber walls, the dependence of liquidus and solidus temperatures on the composition of reacting mixture and the formation of possible irreversible phases. The reaction retardation by the reaction product is taken into consideration in kinetic laws. As an example, the results of temperature and conversion level calculation are presented for the system Ti-C with the summary reaction for different temperatures of chamber walls heating. It was revealed that the reaction retardation being the reaction product can be the cause of incomplete conversion in the thermal explosion conditions. Non-stoichiometric composition leads to the conditions of degenerated mode when some additional heating is necessary to complete the reaction.

  13. Methane synthesis under mild conditions for decentralized applications

    International Nuclear Information System (INIS)

    Schlueter, Michael; Roensch, Stefan

    2016-01-01

    It is a central aim of the German government to significantly reduce the emission of greenhouse gases in the next years. One possibility to reach this aim is the substitution of fossil fuels, especially natural gas, by fuels from biogenic sources (Bio-SNG). However, it is a drawback of Bio-SNG that the production costs are considerably higher than those of fossil natural gas. This work provides an approach to reduce the production costs of Bio-SNG. It is the aim to reduce the process parameters of the methane synthesis. At the same time, it has to be ensured that high methane yields are achieved even at those mild conditions. A procedure for the optimization of the methanation catalyst activity will be presented. If the catalyst is as active as possible even at mild conditions, it will be possible to produce Bio-SNG cost efficient even in small, decentralized scale.

  14. Hydrate dissociation conditions for gas mixtures containing carbon dioxide, hydrogen, hydrogen sulfide, nitrogen, and hydrocarbons using SAFT

    International Nuclear Information System (INIS)

    Li Xiaosen; Wu Huijie; Li Yigui; Feng Ziping; Tang Liangguang; Fan Shuanshi

    2007-01-01

    A new method, a molecular thermodynamic model based on statistical mechanics, is employed to predict the hydrate dissociation conditions for binary gas mixtures with carbon dioxide, hydrogen, hydrogen sulfide, nitrogen, and hydrocarbons in the presence of aqueous solutions. The statistical associating fluid theory (SAFT) equation of state is employed to characterize the vapor and liquid phases and the statistical model of van der Waals and Platteeuw for the hydrate phase. The predictions of the proposed model were found to be in satisfactory to excellent agreement with the experimental data

  15. Prospects of Fe/MCM-41 as a Catalyst for Hydrocarbon Synthesis

    International Nuclear Information System (INIS)

    Cagnoli, Maria V.; Gallegos, Norma G.; Bengoa, Jose F.; Alvarez, Ana M.; Marchetti, Sergio G.; Moreno, Sergio M. J.; Roig, Anna; Mercader, Roberto C.

    2005-01-01

    We report the synthesis of cylindrical nanoparticles of metallic Fe entirely included in MCM-41 pores. Their dimensions are approx.3 nm diameter and approx. 3.8 nm length. We show that a coherent analysis of the results yielded by the various techniques is essential to obtain a catalyst supported on an MCM-41 matrix of ≅ 3 nm average pore diameter, which is active and selective toward olefins. The solids were characterized by low-angle x-ray diffraction, high-resolution transmission electron microscopy, high-resolution scanning transmission electron microscopy equipped with a high-angle annular dark-field, CO chemisorption, volumetric oxidation, and Moessbauer spectroscopy (in controlled atmosphere for the reduced catalysts). Catalytic results in the Fischer-Tropsch synthesis, as well as some unexpected results --like the inhomogeneous pore filling and discontinuous Fe particles-- are also discussed

  16. Cobalt catalysts, and use thereof for the conversion of methanol and for fischer-tropsch synthesis, to produce hydrocarbons

    International Nuclear Information System (INIS)

    Mauldin, C.H.; Davis, S.M.; Arcuri, K.B.

    1988-01-01

    This patent describes a process useful for the conversion of methanol to hydrocarbons which comprises contacting the methanol at reaction conditions with a catalyst which comprises from about 2 percent to about 25 percent cobalt, based on the weight of the catalyst composition, composited with titania, or a titania-containing support, to which is added a zirconium, hafnium, cerium, or uranium promoter, the weight ratio of the zirconium, hafnium, cerium, or uranium metal:cobalt being greater than about 0.010:1; the reaction conditions being defined within ranges as follows: Methanol:H/sub 2/ ratio: greater than about 4:1, Space Velocities, Hr/sup -1/:about 0.1 to 10, Temperatures, 0 C.:about 150 to 350, Methanol Partial Pressure, psia: about 100 to 1000

  17. Microbial Degradation of Phenols and Aromatic Hydrocarbons in Creosote-contaminated Groundwater Under Nitrate-reducing Conditions

    DEFF Research Database (Denmark)

    Flyvbjerg, John; Arvin, Erik; Jensen, Bjørn K.

    1993-01-01

    of toluene, 2,4-DMP, 3,4-DMP and p-cresol depended on nitrate or nitrite as electron acceptors. 40–80% of the nitrate consumed during degradation of the aromatic compounds was recovered as nitrite, and the consumption of nitrate was accompanied by a production of ATP. Stoichiometric calculations indicated......Batch experiments were carried out to investigate the biodegradation of phenols and aromatic hydrocarbons under anaerobic, nitrate-reducing conditions in groundwater from a creosote-contaminated site at Fredensborg, Denmark. The bacteria in the creosote-contaminated groundwater degraded a mixture...... that in addition to the phenols are toluene other carbon sources present in the groundwater contributed to the consumption of nitrate. If the groundwater was incubated under anaerobic conditions without nitrate, sulphate-reducing conditions evolved after ∼ 1 month at 20°C and ∼2 months at 10°C. In the sulphate...

  18. Growth and biosurfactant synthesis by Nigerian hydrocarbon-degrading estuarine bacteria

    Directory of Open Access Journals (Sweden)

    Sunday A Adebusoye

    2008-12-01

    Full Text Available The ability of microorganisms to degrade petroleum hydrocarbons is important for finding an environmentally-friendly method to restoring contaminated environmental matrices. Screening of hydrocarbon-utilizing and biosurfactant-producing abilities of organisms from an estuarine ecosystem in Nigeria, Africa, resulted in the isolation of five microbial strains identified as Corynebacterium sp. DDv1, Flavobacterium sp. DDv2, Micrococcus roseus DDv3, Pseudomonas aeruginosa DDv4 and Saccharomyces cerevisae DDv5. These isolates grew readily on several hydrocarbons including hexadecane, dodecane, crude oil and petroleum fractions. Axenic cultures of the organisms utilized diesel oil (1.0 % v/v with generation times that ranged significantly (t-test, P La capacidad de los microorganismos para degradar hidrocarburos del petróleo es de gran importancia para hallar un método aceptable y ambientalmente amigable para la restauración de terrenos ambientalmente contaminados. Al investigar las capacidades de los organismos de un ecosistema de estuario que utilizan hidrocarburos y producen biosurfactantes, se produjo como resultado el aislamiento de cinco cepas microbianas identificadas como Corynebacterium sp. DDv1, Flavobacterium sp. DDv2, Micrococcus roseus DDv3, Pseudomonas aeruginosa y DDv4 Saccharomyces cerevisiae DDv5. Estas cepas crecieron fácilmente en varios hidrocarburos incluyendo hexadecanos, dodecanos, petróleo crudo y fracciones de petróleo. Los cultivos axénicos de organismos utilizaron diesel (1.0% v/v con períodos por generación con ámbitos significativos (t-test, P <0.05 de entre 3.25 y 3.88 días, con la consiguiente producción de bio-surfactantes. La cinética del crecimiento indica que la síntesis de bio-surfactante se produjo principalmente durante la fase de crecimiento exponencial, lo que sugiere que las moléculas bioactivas son metabolitos primarios. Las cepas DDv1 y DDv4 fueron evidentemente las más metab

  19. A strategy for aromatic hydrocarbon bioremediation under anaerobic conditions and the impacts of ethanol: A microcosm study

    Science.gov (United States)

    Chen, Yu Dao; Barker, James F.; Gui, Lai

    2008-02-01

    Increased use of ethanol-blended gasoline (gasohol) and its potential release into the subsurface have spurred interest in studying the biodegradation of and interactions between ethanol and gasoline components such as benzene, toluene, ethylbenzene and xylene isomers (BTEX) in groundwater plumes. The preferred substrate status and the high biological oxygen demand (BOD) posed by ethanol and its biodegradation products suggests that anaerobic electron acceptors (EAs) will be required to support in situ bioremediation of BTEX. To develop a strategy for aromatic hydrocarbon bioremediation and to understand the impacts of ethanol on BTEX biodegradation under strictly anaerobic conditions, a microcosm experiment was conducted using pristine aquifer sand and groundwater obtained from Canadian Forces Base Borden, Canada. The initial electron accepter pool included nitrate, sulfate and/or ferric iron. The microcosms typically contained 400 g of sediment, 600˜800 ml of groundwater, and with differing EAs added, and were run under anaerobic conditions. Ethanol was added to some at concentrations of 500 and 5000 mg/L. Trends for biodegradation of aromatic hydrocarbons for the Borden aquifer material were first developed in the absence of ethanol, The results showed that indigenous microorganisms could degrade all aromatic hydrocarbons (BTEX and trimethylbenzene isomers-TMB) under nitrate- and ferric iron-combined conditions, but not under sulfate-reducing conditions. Toluene, ethylbenzene and m/p-xylene were biodegraded under denitrifying conditions. However, the persistence of benzene indicated that enhancing denitrification alone was insufficient. Both benzene and o-xylene biodegraded significantly under iron-reducing conditions, but only after denitrification had removed other aromatics. For the trimethylbenzene isomers, 1,3,5-TMB biodegradation was found under denitrifying and then iron-reducing conditions. Biodegradation of 1,2,3-TMB or 1,2,4-TMB was slower under iron

  20. Dissipation of polycyclic aromatic hydrocarbons (PAHs) in the rhizosphere: Synthesis through meta-analysis

    International Nuclear Information System (INIS)

    Ma Bin; He Yan; Chen Huaihai; Xu Jianming; Rengel, Zed

    2010-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are widespread and persistent organic pollutants with high carcinogenic effect and toxicity; their behavior and fate in the soil-plant system have been widely investigated. In the present paper, meta-analysis was used to explore the interaction between plant growth and dissipation of PAHs in soil based on the large body of published literature. Plants have a promoting effect on PAH dissipation in soils. There was no difference in PAH dissipation between soils contaminated with single and mixed PAHs. However, plants had a more obvious effect on PAH dissipation in freshly-spiked soils than in long-term field-polluted soils. Additionally, a positive effect of the number of microbial populations capable of degrading PAHs was observed in the rhizosphere compared with the bulk soil. Our meta-analysis established the importance of the rhizosphere effect on PAH dissipation in variety of the soil-plant systems. - The meta-analysis provides the first quantitative evidence of the positive effect of rhizosphere processes on PAH dissipation.

  1. Synthesis and structural characteristics of polycyclic aromatic hydrocarbon-containing phenol formaldehyde resites

    Energy Technology Data Exchange (ETDEWEB)

    Sirkecioglu, O.; Andresen, J.M.; McRae, C.; Snape, C.E. [University of Strathclyde, Glasgow (United Kingdom). Dept. of Pure and Applied Chemistry

    1997-10-24

    Nonsoftening phenol-formaldehyde (PF) co-resites can be used to probe the formation of polycyclic aromatic hydrocarbons (PAHs) during the carbonization, gasification, and liquefaction of coals and other solids fuels as they facilitate the incorporation of individual PAHs into a highly crosslinked matrix. A series of PAH and diphenylalkane-containing phenolic co-resites were prepared using phenol, with, as the second component, 2-naphthol, 4-hydroxy 9-diphenylmethane, 4, 4`-dihydroxydiphenylethane, 1-4(4-hydroxybenzyl)naphthalene, 9-(4-hydroxybenzyl) anthracene, and 9-(4-hydroxybenzyl) phenanthrene. A mole ratio of 3:1 (phenol:second phenolic constituent) was used. The virtually complete elimination of ether and methyl functions from the resoles by curing at 200{degree}C was monitored by solid-state {sup 13}C-NMR. The resites were also characterized by Fourier transform infrared spectroscopy. The volatile-matter contents of the PAH-containing resites were all higher than that of the normal resite. The carbonization of the 9-(4-hydroxybenzyl) anthracene-containing resite in a fluidized-bed reactor is used to illustrate the potential applications of the PAH-containing resites in fuel science.

  2. Gamma irradiation of hydrocarbon-liquid nitrogen systems and the synthesis of ammonia

    International Nuclear Information System (INIS)

    Fleming, H.L.

    1982-01-01

    The 60 Co-gamma radiolysis of hydrocarbons (HC)-liquid N 2 mixtures at 77 0 K and 1.8 atm of pressure was investigated. Batch irradiation studies of methane, ethane, and ethylene and semibatch studies of methane were made in the presence and absence of transition metal oxide catalysts. In noncatalyzed systems, the effects of varying the radiation dose, total dose, solute feed rate and concentration and liquid N 2 volume were investigated. NH 3 was found to be the major N-containing product in the alkane solute system. N 2 and HC radical addition was found to be the predominate initial reaction for nitrogeneous product formation. Results of scavenger studies indicate that excited N 2 played a lesser role in precursor formation. All product yields were found to be dependent upon the H-containing species availability in the liquid N 2 solution. Production rates were limited by HC solubility. The use of the transition metal oxide supported catalyst greatly increased product formation in all systems. Product yields were found to be dependent upon the available catalyst surface area, metal loading, and reduction techniques for each metal examined. As evidenced by the radiation lag time studies, the stability of the N 2 precursors on the catalyst surface was believed to be a significant factor in reaction enhancement. Energy transfer from the catalyst to the absorbates was examined and could not be ruled out

  3. Formation of combustible hydrocarbons and H2 during photocatalytic decomposition of various organic compounds under aerated and deaerated conditions.

    Science.gov (United States)

    Mozia, Sylwia; Kułagowska, Aleksandra; Morawski, Antoni W

    2014-11-26

    A possibility of photocatalytic production of useful aliphatic hydrocarbons and H2 from various organic compounds, including acetic acid, methanol, ethanol and glucose, over Fe-modified TiO2 is discussed. In particular, the influence of the reaction atmosphere (N2, air) was investigated. Different gases were identified in the headspace volume of the reactor depending on the substrate. In general, the evolution of the gases was more effective in air compared to a N2 atmosphere. In the presence of air, the gaseous phase contained CO2, CH4 and H2, regardless of the substrate used. Moreover, formation of C2H6 and C3H8 in the case of acetic acid and C2H6 in the case of ethanol was observed. In case of acetic acid and methanol an increase in H2 evolution under aerated conditions was observed. It was concluded that the photocatalytic decomposition of organic compounds with simultaneous generation of combustible hydrocarbons and hydrogen could be a promising method of "green energy" production.

  4. Degradation of polycyclic aromatic hydrocarbons (PAHs) in an aged coal tar contaminated soil under in-vessel composting conditions

    International Nuclear Information System (INIS)

    Antizar-Ladislao, Blanca; Lopez-Real, Joe; Beck, Angus James

    2006-01-01

    In-vessel composting of polycyclic aromatic hydrocarbons (PAHs) present in contaminated soil from a manufactured gas plant site was investigated over 98 days using laboratory-scale in-vessel composting reactors. The composting reactors were operated at 18 different operational conditions using a 3-factor factorial design with three temperatures (T, 38 deg. C, 55 deg. C and 70 deg. C), four soil to green waste ratios (S:GW, 0.6:1, 0.7:1, 0.8:1 and 0.9:1 on a dry weight basis) and three moisture contents (MC, 40%, 60% and 80%). PAH losses followed first order kinetics reaching 0.015 day -1 at optimal operational conditions. A factor analysis of the 18 different operational conditions under investigation indicated that the optimal operational conditions for degradation of PAHs occurred at MC 60%, S:GW 0.8:1 and T 38 deg. C. Thus, it is recommended to maintain operational conditions during in-vessel composting of PAH-solid waste close to these values. - Maximum degradation of PAHs in an aged coal tar contaminated soil can be achieved using optimal operational conditions during composting

  5. Contribution of incense burning to indoor PM10 and particle-bound polycyclic aromatic hydrocarbons under two ventilation conditions.

    Science.gov (United States)

    Lung, S-C C; Kao, M-C; Hu, S-C

    2003-06-01

    Burning incense to worship Gods and ancestors is a traditional practice prevalent in Asian societies. This work investigated indoor PM10 concentrations resulting from incense burning in household environments under two conditions: closed and ventilated. The exposure concentrations of particle-bound polycyclic aromatic hydrocarbons (PAHs) were estimated. The factors of potential exposure were also evaluated. Under both conditions, samples were taken at three locations: 0.3, 3.5 and 7 m away from the altar during three periods: incense burning, the first 3 h, and the 4-6 h after cessation of combustion. PAH concentrations of incense smoke were assessed in the laboratory. Personal environment monitors were used as sampling instruments. The results showed a significant contribution of incense burning to indoor PM10 and particulate PAH concentrations. PM10 concentrations near the altar during incense burning were 723 and 178 microg/m3, more than nine and 1.6 times background levels, under closed and ventilated conditions, respectively. Exposure concentrations of particle-bound PAHs were 0.088-0.45 microg/m3 during incense burning. On average, PM10 and associated PAH concentrations were about 371 and 0.23 microg/m3 lower, respectively, in ventilated environments compared with closed conditions. Concentrations were elevated for at least 6 h under closed conditions.

  6. Mineral-assisted production of benzene under hydrothermal conditions: Insights from experimental studies on C6 cyclic hydrocarbons

    Science.gov (United States)

    Venturi, Stefania; Tassi, Franco; Gould, Ian R.; Shock, Everett L.; Hartnett, Hilairy E.; Lorance, Edward D.; Bockisch, Christiana; Fecteau, Kristopher M.; Capecchiacci, Francesco; Vaselli, Orlando

    2017-10-01

    Volatile Organic Compounds (VOCs) are ubiquitously present at low but detectable concentrations in hydrothermal fluids from volcanic and geothermal systems. Although their behavior is strictly controlled by physical and chemical parameters, the mechanisms responsible for the production of most VOCs in natural environments are poorly understood. Among them, benzene, whose abundances were found to be relatively high in hydrothermal gases, can theoretically be originated from reversible catalytic reforming processes, i.e. multi-step dehydrogenation reactions, involving saturated hydrocarbons. However, this hypothesis and other hypotheses are difficult to definitively prove on the basis of compositional data obtained by natural gas discharges only. In this study, therefore, laboratory experiments were carried out to investigate the production of benzene from cyclic hydrocarbons at hydrothermal conditions, specifically 300 °C and 85 bar. The results of experiments carried out in the presence of water and selected powdered minerals, suggest that cyclohexane undergoes dehydrogenation to form benzene, with cyclohexene and cyclohexadiene as by-products, and also as likely reaction intermediates. This reaction is slow when carried out in water alone and competes with isomerization and hydration pathways. However, benzene formation was increased compared to these competing reactions in the presence of sulfide (sphalerite and pyrite) and iron oxide (magnetite and hematite) minerals, whereas no enhancement of any reaction products was observed in the presence of quartz. The production of thiols was observed in experiments involving sphalerite and pyrite, suggesting that sulfide minerals may act both to enhance reactivity and also as reactants after dissolution. These experiments demonstrate that benzene can be effectively produced at hydrothermal conditions through dehydrogenation of saturated cyclic organic structures and highlight the crucial role played by minerals in this

  7. Synthesis of a basket-shaped C56H38 hydrocarbon as a precursor toward an end-cap template for carbon [6,6]nanotubes.

    Science.gov (United States)

    Cui, Hu; Akhmedov, Novruz G; Petersen, Jeffrey L; Wang, Kung K

    2010-03-19

    A basket-shaped C(56)H(38) hydrocarbon (3) possessing a 30-carbon difluorenonaphthacenyl core that can be mapped onto the surface of C(78) was synthesized from 4-bromo-1-indanone. The first stage of the synthesis involved the preparation of tetraketone 10 as a key intermediate. The use of cascade cyclization reactions of benzannulated enyne-allenes as key features in the next stage of the synthetic sequence provides an efficient route to 3 from 4-bromo-1-indanone in 12 steps. The all-cis relationship among the methyl groups and the methine hydrogens causes the two benzofluorenyl units in 3 to be in an essentially perpendicular orientation to each other. Hydrocarbon 3 and its derivatives could serve as attractive precursors leading to a geodesic C(68)H(26) end-cap template for carbon [6,6]nanotubes.

  8. A new HYSYS model for underground gasification of hydrocarbons under hydrothermal conditions

    KAUST Repository

    Alshammari, Y.M.; Hellgardt, K.

    2014-01-01

    A new subsurface process model was developed using the ASPEN HYSYS simulation environment to analyse the process energy and gasification efficiency at steady-state equilibrium conditions. Injection and production wells were simulated using the HYSYS

  9. Bi-reforming of methane from any source with steam and carbon dioxide exclusively to metgas (CO-2H2) for methanol and hydrocarbon synthesis.

    Science.gov (United States)

    Olah, George A; Goeppert, Alain; Czaun, Miklos; Prakash, G K Surya

    2013-01-16

    A catalyst based on nickel oxide on magnesium oxide (NiO/MgO) thermally activated under hydrogen is effective for the bi-reforming with steam and CO(2) (combined steam and dry reforming) of methane as well as natural gas in a tubular flow reactor at elevated pressures (5-30 atm) and temperatures (800-950 °C). By adjusting the CO(2)-to-steam ratio in the gas feed, the H(2)/CO ratio in the produced syn-gas could be easily adjusted in a single step to the desired value of 2 for methanol and hydrocarbon synthesis.

  10. Renewable synthesis-gas-production. Do hydrocarbons in the reactant flow of the reverse water-gas shift reaction cause coke formation?

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, A.; Kern, C.; Jess, A. [Bayreuth Univ. (Germany). Dept. of Chemical Engineering

    2013-11-01

    In a two-step synthetic fuel production process based on carbon dioxide and renewable hydrogen, the best possible selectivity towards liquid hydrocarbons (Hc) shall be implemented. The process consists of a combination of the Reverse Water-Gas Shift reaction and the Fischer-Tropsch synthesis. To achieve this goal, gaseous short-chained Hc from the FTS reactor are recycled in the RWGS unit. In this paper, challenges coming up with the implementation of a recycle loop are discussed. First of all, it has to be examined whether Hc are converted under conditions present in the RWGS reactor. The coking caused by the recycle of Hc is regarded, including thermal coking in the heating zone of the reactor and catalytic coking in the catalyst bed. Coking of course is unwanted, as it deactivates the catalyst. The scope of this work is to find out to which extent and under which conditions gaseous Hc can be recycled. Therefore, experiments were carried out in both, a quartz glass reactor using a commercial Ni-catalyst at ambient pressure and in a pressurized steel reactor (without catalyst) to examine coking during the thermal decomposition of Hc. The catalytic experiments at atmospheric pressure showed that a recycle of CH{sub 4} did not cause coking up to a ratio of CH{sub 4}/CO{sub 2} below one. For these conditions, long term stability was proved. The reaction rates of the CH{sub 4} conversion were below those of the RWGS reaction. However, replacing CH{sub 4} by C{sub 3}H{sub 8} leads to thermal and catalytic coking. Catalytic coking hits the maximum level at about 700 C and decreases for higher temperatures and, thus is not regarded as a problem for the RWGS reactor. In contrast to that, thermal coking raises with higher temperatures, but it can be supressed efficiently with additional injection of H{sub 2}O, which of course shifts the equilibrium towards the undesired reactant side. (orig.)

  11. Organic synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, S.E.

    1991-01-01

    This paper reports on reactions of organoboranes. Organoboron routes to unsaturated hydrocarbons. Boronic ester homologation. Properties of organosilicon compounds. Alkene synthesis (Peterson olefination). Allylsilanes and acylsilanes.

  12. Reactivity of hydrocarbons in response to injection of a CO2/O2 mixture under depleted reservoir conditions: experimental and numerical modeling

    International Nuclear Information System (INIS)

    Pacini-Petitjean, Claire

    2015-01-01

    The geological storage of CO 2 (CO 2 Capture-Storage - CCS) and the Enhanced Oil Recovery (EOR) by CO 2 injection into petroleum reservoirs could limit CO 2 atmospheric accumulation. However, CO 2 can be associated with oxygen. To predict the hydrocarbon evolution under these conditions involves the study of oxidation mechanisms. Oxidation experiment and kinetic detailed modeling were carried out with pure compounds. The comparison between experimental and modeling results led to the construction of a hydrocarbon oxidation kinetic model and emphasized the parameters leading to auto ignition. The good agreement between our experiments and modeling are promising for the development of a tool predicting the critical temperature leading to auto-ignition and the evolution of hydrocarbon composition, to estimate the stability of a petroleum system in CO 2 injection context. (author) [fr

  13. Modeling flows of heterogeneous media in pipelines when substantiating operating conditions of hydrocarbon field transportation systems

    Science.gov (United States)

    Dudin, S. M.; Novitskiy, D. V.

    2018-05-01

    The works of researchers at VNIIgaz, Giprovostokneft, Kuibyshev NIINP, Grozny Petroleum Institute, etc., are devoted to modeling heterogeneous medium flows in pipelines under laboratory conditions. In objective consideration, the empirical relationships obtained and the calculation procedures for pipelines transporting multiphase products are a bank of experimental data on the problem of pipeline transportation of multiphase systems. Based on the analysis of the published works, the main design requirements for experimental installations designed to study the flow regimes of gas-liquid flows in pipelines were formulated, which were taken into account by the authors when creating the experimental stand. The article describes the results of experimental studies of the flow regimes of a gas-liquid mixture in a pipeline, and also gives a methodological description of the experimental installation. Also the article describes the software of the experimental scientific and educational stand developed with the participation of the authors.

  14. Rapid Synthesis of Silver Nanoparticles from Fusarium oxysporum by Optimizing Physicocultural Conditions

    Directory of Open Access Journals (Sweden)

    Sonal S. Birla

    2013-01-01

    Full Text Available Synthesis of silver nanoparticles (SNPs by fungi is emerging as an important branch of nanotechnology due to its ecofriendly, safe, and cost-effective nature. In order to increase the yield of biosynthesized SNPs of desired shape and size, it is necessary to control the cultural and physical parameters during the synthesis. We report optimum synthesis of SNPs on malt extract glucose yeast extract peptone (MGYP medium at pH 9–11, 40–60°C, and 190.7 Lux and in sun light. The salt concentrations, volume of filtrate and biomass quantity were found to be directly proportional to the yield. The optimized conditions for the stable and rapid synthesis will help in large scale synthesis of monodispersed SNPs. The main aim of the present study was to optimize different media, temperature, pH, light intensity, salt concentration, volume of filtrate, and biomass quantity for the synthesis of SNPs by Fusarium oxysporum.

  15. Dense plasma chemistry of hydrocarbons at conditions relevant to planetary interiors and inertial confinement fusion

    Science.gov (United States)

    Kraus, Dominik

    2017-10-01

    Carbon-hydrogen demixing and subsequent diamond precipitation has been predicted to strongly participate in shaping the internal structure and evolution of icy giant planets like Neptune and Uranus. The very same dense plasma chemistry is also a potential concern for CH plastic ablator materials in inertial confinement fusion (ICF) experiments where similar conditions are present during the first compression stage of the imploding capsule. Here, carbon-hydrogen demixing may enhance the hydrodynamic instabilities occurring in the following compression stages. First experiments applying dynamic compression and ultrafast in situ X-ray diffraction at SLAC's Linac Coherent Light Source demonstrated diamond formation from polystyrene (CH) at 150 GPa and 5000 K. Very recent experiments have now investigated the influence of oxygen, which is highly abundant in icy giant planets on the phase separation process. Compressing PET (C5H4O2) and PMMA(C5H8O2), we find again diamond formation at pressures above 150 GPa and temperatures of several thousand kelvins, showing no strong effect due to the presence of oxygen. Thus, diamond precipitation deep inside icy giant planets seems very likely. Moreover, small-angle X-ray scattering (SAXS) was added to the platform, which determines an upper limit for the diamond particle size, while the width of the diffraction features provides a lower limit. We find that diamond particles of several nanometers in size are formed on a nanosecond timescale. Finally, spectrally resolved X-ray scattering is used to scale amorphous diffraction signals and allows for determining the amount of carbon-hydrogen demixing inside the compressed samples even if no crystalline diamond is formed. This whole set of diagnostics provides unprecedented insights into the nanosecond kinetics of dense plasma chemistry.

  16. DISAL glycosyl donors for the synthesis of a linear hexasaccharide under mild conditions

    DEFF Research Database (Denmark)

    Petersen, Lars; Laursen, Jane B.; Larsen, K.

    2003-01-01

    The new class of glycosyl donors with a methyl 3,5-dinitrosalicylate (DISAL) anomeric leaving group has proved efficient for glycosylation under strictly neutral, mildly basic, or mildly acidic conditions. Here, we report the synthesis of novel DISAL disaccharide glycosyl donors prepared by easy...... nucleophilic aromatic substitution. These DISAL donors proved efficient in the synthesis of a starch-related hexasaccharide under very mild conditions. Glycosylations proceeded with alpha-selectivity and were compatible with Trt protecting groups....

  17. Aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Roder, M.

    1985-01-01

    Papers dealing with radiolysis of aromatic hydrocarbons of different composition (from benzene to terphenyls and hydrocarbons with condensed rings) as well as their mixtures (with alkanes, alkenes, other aromatic hydrocarbons) are reviewed. High radiation stability of aromatic hydrocarbons in condensed phases associated with peculiarities of molecular structure of compounds is underlined. Mechanisms of radiolytic processes, vaues of product yields are considered

  18. Synthesis of All-carbon Chains and Nanoparticles by Chemical Transformation of Halogenated Hydrocarbons at Low Temperatures

    Czech Academy of Sciences Publication Activity Database

    Kavan, Ladislav

    č. 196 (2001), s. 22-38 ISSN 0371-5345 R&D Projects: GA ČR GA203/98/1168; GA ČR GA203/99/1015; GA ČR GA203/00/0634 Institutional research plan: CEZ:AV0Z4040901 Keywords : halogenated hydrocarbon * electrochemical carbon * fullerenes Subject RIV: CG - Electrochemistry

  19. An efficient protocol for the synthesis of highly sensitive indole imines utilizing green chemistry: optimization of reaction conditions.

    Science.gov (United States)

    Nisar, Bushra; Rubab, Syeda Laila; Raza, Abdul Rauf; Tariq, Sobia; Sultan, Ayesha; Tahir, Muhammad Nawaz

    2018-04-11

    Novel and highly sensitive indole-based imines have been synthesized. Their synthesis has been compared employing a variety of protocols. Ultimately, a convenient, economical and high yielding set of conditions employing green chemistry have been designed for their synthesis.

  20. Synthesis of metal-adeninate frameworks with high separation capacity on C{sub 2}/C{sub 1} hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    He, Yan-Ping, E-mail: hyp041@163.com [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Zhou, Nan [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Hunan GuangYi Experimental Middle School, Changsha, Hunan 410014 (China); Tan, Yan-Xi; Wang, Fei; Zhang, Jian [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China)

    2016-06-15

    By introducing isophthalic acid or 2,5-thiophenedicarboxylic acid to assemble with adenine and cadmium salt, two isostructural and anionic porous metal-organic frameworks (1 and 2) possessing the novel (4,8)-connected sqc topology are presented here. 1 shows permanent porosity with Langmuir surface area of 770.1 m{sup 2}/g and exhibits high separation capacity on C{sub 2}/C{sub 1} hydrocarbons. - Graphical abstract: The assembly between isophthalic acid, adenine ligands and Cd{sup 2+} ions leads to an anionic porous metal-organic frameworks, which shows permanent porosity and exhibits high C{sub 2}/C{sub 1} hydrocarbons separation capacity. Display Omitted.

  1. Synthesis of zirconia-immobilized copper chelates for catalytic decomposition of hydrogen peroxide and the oxidation of polycyclic aromatic hydrocarbons

    Czech Academy of Sciences Publication Activity Database

    Baldrian, Petr; Merhautová, Věra; Cajthaml, Tomáš; Nerud, František; Stopka, Pavel; Gorbacheva, O.; Hrubý, Martin; Beneš, Milan J.

    2008-01-01

    Roč. 72, č. 11 (2008), s. 1721-1726 ISSN 0045-6535 R&D Projects: GA AV ČR IBS5020306 Institutional research plan: CEZ:AV0Z50200510; CEZ:AV0Z40320502; CEZ:AV0Z40500505 Keywords : degradation * polycyclic aromatic hydrocarbons * hydrogen peroxide Subject RIV: EE - Microbiology, Virology Impact factor: 3.054, year: 2008

  2. Co-Transport of Polycyclic Aromatic Hydrocarbons by Motile Microorganisms Leads to Enhanced Mass Transfer under Diffusive Conditions

    DEFF Research Database (Denmark)

    Gilbert, Dorthea; Jakobsen, Hans H.; Winding, Anne

    2014-01-01

    as sink and source for polycyclic aromatic hydrocarbons (PAHs). This resulted in stable concentration gradients in water (>24 h). Adding the model organism Tetrahymena pyriformis to the experimental system enhanced PAH mass transfer up to hundred-fold (benzo[a]pyrene). Increasing mass transfer enhancement...

  3. Synthesis of polydopamine-functionalized magnetic graphene and carbon nanotubes hybrid nanocomposites as an adsorbent for the fast determination of 16 priority polycyclic aromatic hydrocarbons in aqueous samples.

    Science.gov (United States)

    Chen, Kun; Jin, Rongrong; Luo, Chen; Song, Guoxin; Hu, Yaoming; Cheng, Hefa

    2018-04-01

    A novel adsorbent made of polydopamine-functionalized magnetic graphene and carbon nanotubes hybrid nanocomposite was synthesized and applied to determine 16 priority polycyclic aromatic hydrocarbons by magnetic solid phase extraction in water samples. FTIR spectroscopy, transmission electron microscopy, scanning electron microscopy, and Raman spectroscopy consistently indicate that the synthesized adsorbents are made of core-shell nanoparticles well dispersed on the surface of graphene and carbon nanotubes. The major factors affecting the extraction efficiency, including the pH value of samples, the amount of adsorbent, adsorption time and desorption time, type and volume of desorption solvent, were systematically optimized. Under the optimum extraction conditions, a linear response was obtained for polycyclic aromatic hydrocarbons between concentrations of 10 and 500 ng/L with the correlation coefficients ranging from 0.9958 to 0.9989, and the limits of detection (S/N = 3) were between 0.1 and 3.0 ng/L. Satisfactory results were also obtained when applying these magnetic graphene/carbon nanotubes/polydopamine hybrid nanocomposites to detect polycyclic aromatic hydrocarbons in several environmental aqueous samples. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Analysing chemical equilibrium conditions when studying butyl acetate synthesis

    OpenAIRE

    Álvaro Orjuela Londoño; Fernando Leiva Lenis; Luis Alejandro Boyacá Mendivelso; Gerardo Rodríguez Niño; Luis María Carballo Suárez

    2010-01-01

    This work studied the liquid phase of acetic acid and butyl alcohol esterification reaction (P atm = 560 mmHg),using an ion exchange resin (Lewatit K-2431) as catalyst. A set of assays were carried out for determining the effect of catalyst load, temperature and molar ratio (acid/alcohol) on chemical equilibrium constant. Components’ selective sorption on the resin matrix was noticed; its effect on equilibrium conditions was verified, by using different acid/alcohol starting ratios. A non-ide...

  5. Synthesis of Hydrocarbons from H2-Deficient Syngas in Fischer-Tropsch Synthesis over Co-Based Catalyst Coupled with Fe-Based Catalyst as Water-Gas Shift Reaction

    Directory of Open Access Journals (Sweden)

    Ting Ma

    2015-01-01

    Full Text Available The effects of metal species in an Fe-based catalyst on structural properties were investigated through the synthesis of Fe-based catalysts containing various metal species such, as Mn, Zr, and Ce. The addition of the metal species to the Fe-based catalyst resulted in high dispersions of the Fe species and high surface areas due to the formation of mesoporous voids about 2–4 nm surrounded by the catalyst particles. The metal-added Fe-based catalysts were employed together with Co-loaded beta zeolite for the synthesis of hydrocarbons from syngas with a lower H2/CO ratio of 1 than the stoichiometric H2/CO ratio of 2 for the Fischer-Tropsch synthesis (FTS. Among the catalysts, the Mn-added Fe-based catalyst exhibited a high activity for the water-gas shift (WGS reaction with a comparative durability, leading to the enhancement of the CO hydrogenation in the FTS in comparison with Co-loaded beta zeolite alone. Furthermore, the loading of Pd on the Mn-added Fe-based catalyst enhanced the catalytic durability due to the hydrogenation of carbonaceous species by the hydrogen activated over Pd.

  6. Captive solvent [11C]acetate synthesis in GMP conditions

    International Nuclear Information System (INIS)

    Soloviev, Dmitri; Tamburella, Claire

    2006-01-01

    Reliable procedure for the production of 1-[ 11 C]acetate in GMP conditions was developed based on a combination of the captive-solvent Grignard reaction conducted in the sterile catheter followed by the convenient solid-phase extraction purification on a series of ion-exchange cartridges. The described procedure proved to be reliable in more than 30 patient productions. The process provides stable radiochemical yields (65% EOB) of sodium acetate (1-[ 11 C]) of the Ph.Eur. quality (radiochemical purity better than 95%) in a short time (5 min)

  7. Characterization and optimization of cathodic conditions for H2O2 synthesis in microbial electrochemical cells

    Science.gov (United States)

    Cathode potential and O2 supply methods were investigated to improve H2O2 synthesis in an electrochemical cell, and optimal cathode conditions were applied for microbial electrochemical cells (MECs). Using aqueous O2 for the cathode significantly improved current density, but H2...

  8. Acquisition, consolidation, reconsolidation, and extinction of eyelid conditioning responses require de novo protein synthesis.

    Science.gov (United States)

    Inda, Mari Carmen; Delgado-García, José María; Carrión, Angel Manuel

    2005-02-23

    Memory, as measured by changes in an animal's behavior some time after learning, is a reflection of many processes. Here, using a trace paradigm, in mice we show that de novo protein synthesis is required for acquisition, consolidation, reconsolidation, and extinction of classically conditioned eyelid responses. Two critical periods of protein synthesis have been found: the first, during training, the blocking of which impaired acquisition; and the second, lasting the first 4 h after training, the blocking of which impaired consolidation. The process of reconsolidation was sensitive to protein synthesis inhibition if anisomycin was injected before or just after the reactivation session. Furthermore, extinction was also dependent on protein synthesis, following the same temporal course as that followed during acquisition and consolidation. This last fact reinforces the idea that extinction is an active learning process rather than a passive event of forgetting. Together, these findings demonstrate that all of the different stages of memory formation involved in the classical conditioning of eyelid responses are dependent on protein synthesis.

  9. Experimental design for the optimization of the extraction conditions of polycyclic aromatic hydrocarbons in milk with a novel diethoxydiphenylsilane solid-phase microextraction fiber.

    Science.gov (United States)

    Bianchi, F; Careri, M; Mangia, A; Mattarozzi, M; Musci, M

    2008-07-04

    An innovative solid-phase microextraction coating based on the use of diethoxydiphenylsilane synthesized by sol-gel technology was used for the determination of polycyclic aromatic hydrocarbons at trace levels in milk. The effects of time and temperature of extraction and acetone addition were investigated by experimental design. Regression models and desirability functions were applied to find the experimental conditions providing the highest global extraction response. The capabilities of the developed fiber were proved obtaining limit of quantitation values in the low microg/l range, enabling the direct analysis of complex matrices like milk and a complete desorption of high-boiling compounds without carryover effects.

  10. Bioassay of polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Van Kirk, E.A.

    1980-08-01

    A positive relationship was found between the photodynamic activity of 24 polycyclic aromatic hydrocarbons versus published results on the mutagenicity, carcinogenicity, and initiation of unscheduled DNA synthesis. Metabolic activation of benzo(a)pyrene resulted in detection of increased mutagenesis in Paramecium tetraurelia as found also in the Ames Salmonella assay. The utility of P. tetraurelia as a biological detector of hazardous polycyclic aromatic hydrocarbons is discussed.

  11. Rapid Induction of Aldosterone Synthesis in Cultured Neonatal Rat Cardiomyocytes under High Glucose Conditions

    Directory of Open Access Journals (Sweden)

    Masami Fujisaki

    2013-01-01

    Full Text Available In addition to classical adrenal cortical biosynthetic pathway, there is increasing evidence that aldosterone is produced in extra-adrenal tissues. Although we previously reported aldosterone production in the heart, the concept of cardiac aldosterone synthesis remains controversial. This is partly due to lack of established experimental models representing aldosterone synthase (CYP11B2 expression in robustly reproducible fashion. We herein investigated suitable conditions in neonatal rat cardiomyocytes (NRCMs culture system producing CYP11B2 with considerable efficacy. NRCMs were cultured with various glucose doses for 2–24 hours. CYP11B2 mRNA expression and aldosterone concentrations secreted from NRCMs were determined using real-time PCR and enzyme immunoassay, respectively. We found that suitable conditions for CYP11B2 induction included four-hour incubation with high glucose conditions. Under these particular conditions, CYP11B2 expression, in accordance with aldosterone secretion, was significantly increased compared to those observed in the cells cultured under standard-glucose condition. Angiotensin II receptor blocker partially inhibited this CYP11B2 induction, suggesting that there is local renin-angiotensin-aldosterone system activation under high glucose conditions. The suitable conditions for CYP11B2 induction in NRCMs culture system are now clarified: high-glucose conditions with relatively brief period of culture promote CYP11B2 expression in cardiomyocytes. The current system will help to accelerate further progress in research on cardiac tissue aldosterone synthesis.

  12. Petroleum hydrocarbons

    International Nuclear Information System (INIS)

    Farrington, J.W.; Teal, J.M.; Parker, P.L.

    1976-01-01

    Methods for analysis of petroleum hydrocarbons in marine samples are presented. Types of hydrocarbons present and their origins are discussed. Principles and methods of analysis are outlined. Infrared spectrometry, uv spectrometry, gas chromatography, mass spectroscopy, and carbon 14 measurements are described

  13. Fragile X Mental Retardation Protein Is Required to Maintain Visual Conditioning-Induced Behavioral Plasticity by Limiting Local Protein Synthesis.

    Science.gov (United States)

    Liu, Han-Hsuan; Cline, Hollis T

    2016-07-06

    Fragile X mental retardation protein (FMRP) is thought to regulate neuronal plasticity by limiting dendritic protein synthesis, but direct demonstration of a requirement for FMRP control of local protein synthesis during behavioral plasticity is lacking. Here we tested whether FMRP knockdown in Xenopus optic tectum affects local protein synthesis in vivo and whether FMRP knockdown affects protein synthesis-dependent visual avoidance behavioral plasticity. We tagged newly synthesized proteins by incorporation of the noncanonical amino acid azidohomoalanine and visualized them with fluorescent noncanonical amino acid tagging (FUNCAT). Visual conditioning and FMRP knockdown produce similar increases in FUNCAT in tectal neuropil. Induction of visual conditioning-dependent behavioral plasticity occurs normally in FMRP knockdown animals, but plasticity degrades over 24 h. These results indicate that FMRP affects visual conditioning-induced local protein synthesis and is required to maintain the visual conditioning-induced behavioral plasticity. Fragile X syndrome (FXS) is the most common form of inherited intellectual disability. Exaggerated dendritic protein synthesis resulting from loss of fragile X mental retardation protein (FMRP) is thought to underlie cognitive deficits in FXS, but no direct evidence has demonstrated that FMRP-regulated dendritic protein synthesis affects behavioral plasticity in intact animals. Xenopus tadpoles exhibit a visual avoidance behavior that improves with visual conditioning in a protein synthesis-dependent manner. We showed that FMRP knockdown and visual conditioning dramatically increase protein synthesis in neuronal processes. Furthermore, induction of visual conditioning-dependent behavioral plasticity occurs normally after FMRP knockdown, but performance rapidly deteriorated in the absence of FMRP. These studies show that FMRP negatively regulates local protein synthesis and is required to maintain visual conditioning

  14. Synthesis of single- and double-chain fluorocarbon and hydrocarbon galactosyl amphiphiles and their anti-HIV-1 activity.

    Science.gov (United States)

    Faroux-Corlay, B; Clary, L; Gadras, C; Hammache, D; Greiner, J; Santaella, C; Aubertin, A M; Vierling, P; Fantini, J

    2000-07-24

    Galactosylceramide (GalCer) is an alternative receptor allowing HIV-1 entry into CD4(-)/GalCer(+) cells. This glycosphingolipid recognizes the V3 loop of HIV gp120, which plays a key role in the fusion of the HIV envelope and cellular membrane. To inhibit HIV uptake and infection, we designed and synthesized analogs of GalCer. These amphiphiles and bolaamphiphiles consist of single and double hydrocarbon and/or fluorocarbon chain beta-linked to galactose and galactosamine. They derive from serine (GalSer), cysteine (GalCys), and ethanolamine (GalAE). The anti-HIV activity and cytotoxicity of these galactolipids were evaluated in vitro on CEM-SS (a CD4(+) cell line), HT-29, a CD4(-) cell line expressing high levels of GalCer receptor, and/or HT29 genetically modified to express CD4. GalSer and GalAE derivatives, tested in aqueous medium or as part of liposome preparation, showed moderate anti-HIV-1 activities (IC50 in the 20-220 microM range), whereas none of the GalCys derivatives was found to be active. Moreover, only some of these anti-HIV active analogs inhibited the binding of [3H]suramin (a polysulfonyl compound which displays a high affinity for the V3 loop) to SPC3, a synthetic peptide which contains the conserved GPGRAF region of the V3 loop. Our results most likely indicate that the neutralization of the virion through masking of this conserved V3 loop region is not the only mechanism involved in the HIV-1 antiviral activity of our GalCer analogs.

  15. Ionic liquid catalyzed convenient synthesis of imidazo[1,2-a]quinoline under sonic condition

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Devji S.; Avalani, Jemin R.; Raval, Dipak K., E-mail: dipanalka@yahoo.com [Department of Chemistry, Sardar Patel University Gujarat (India)

    2012-10-15

    An efficient protocol for the synthesis of imidazo[1,2-a]quinoline from aldehydes, enaminones, and malononitrile using 1,8-diazabicyclo[5.4.0]-undec-7-en-8-ium acetate ([DBU][Ac]) as a catalyst under ultrasound irradiation is described. Compared with other methods, this new method has the advantages of easier work-up, milder reaction conditions, high yields and environmentally benign procedure. (author)

  16. Hydrodeoxygenation of the angelica lactone dimer, a cellulose-based feedstock: simple, high-yield synthesis of branched C7 -C10 gasoline-like hydrocarbons.

    Science.gov (United States)

    Mascal, Mark; Dutta, Saikat; Gandarias, Inaki

    2014-02-10

    Dehydration of biomass-derived levulinic acid under solid acid catalysis and treatment of the resulting angelica lactone with catalytic K2 CO3 produces the angelica lactone dimer in excellent yield. This dimer serves as a novel feedstock for hydrodeoxygenation, which proceeds under relatively mild conditions with a combination of oxophilic metal and noble metal catalysts to yield branched C7 -C10 hydrocarbons in the gasoline volatility range. Considering that levulinic acid is available in >80 % conversion from raw biomass, a field-to-tank yield of drop-in, cellulosic gasoline of >60 % is possible. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Historical records of polycyclic aromatic hydrocarbon deposition in a shallow eutrophic lake: Impacts of sources and sedimentological conditions.

    Science.gov (United States)

    Li, Chaocan; Huo, Shouliang; Yu, Zhiqiang; Guo, Wei; Xi, Beidou; He, Zhuoshi; Zeng, Xiangying; Wu, Fengchang

    2016-03-01

    Sediment core samples collected from Lake Chaohu were analyzed for 15 priority polycyclic aromatic hydrocarbons (PAHs) to assess the spatial and temporal distributions of the PAHs during lacustrine sedimentary processes and regional economic development. Assessing the PAH sedimentary records over an approximately 100-year time span, we identified two stages in the PAH inputs and sources (before the 1970s and after the 1970s) in the eastern lake region near a village, whereas three stages (before the 1950s, 1950s-1990s and after the 1990s) were identified in the western lake region near urban and industrial areas. Rapid increases in the PAH depositional fluxes occurred during the second stage due to increased human activities in the Lake Chaohu basin. The composition and isomeric ratios of the PAHs revealed that pyrolysis is the main source of PAHs in this lake. Strong positive relationships between PAH concentration and the total organic carbon concentration, sediment grain size (energy consumption and the levels of urban industrialization and civilization, affect both the composition and abundance of the PAHs. Copyright © 2015. Published by Elsevier B.V.

  18. BIOREMEDIATION OF A PETROLEUM-HYDROCARBON

    African Journals Online (AJOL)

    ES OBE

    under field conditions in the bioremediation of a petroleum- hydrocarbon polluted ... an accelerated biodegradation of petroleum hydrocarbons in a polluted agricultural soil ..... 12) Jackson, M.L. Soil chemical analysis. ... biological assay. 3 rd.

  19. Synthetic crystalline ferroborosilicate compositions, the preparation thereof and their use in the conversion of synthesis gas to low molecular weight hydrocarbons

    International Nuclear Information System (INIS)

    Hinnenkamp, J.A.; Walatka, V.V.

    1987-01-01

    A method for the conversion of synthesis gas is described comprising: contacting synthesis gas which comprises hydrogen and carbon monoxide with a catalytically effective amount of a crystalline ferroborosilicate composition, under conversion conditions effective to provide ethane selectivity of at least 40%. The borosilicate composition is represented in terms of mole ratios as follows: (0.2 to 15) M/sub 2/m/O:(0.2 to 10) Z/sub 2/ O /sub 3/: (5 to 1000) SiO/sub 2/: Fe/sub 2/n/O: (0 to 2000) H/sub 2/O wherein M comprises a cation of a quaternary ammonium, metal, ammonium, hydrogen and mixtures thereof, m is the valence of the cation, n is the valence of the iron cation, and Z is boron. The composition contains ion-exchanged palladium or palladium impregnated onto the composition

  20. Photocatalytic Properties of Nb/MCM-41 Molecular Sieves: Effect of the Synthesis Conditions

    Directory of Open Access Journals (Sweden)

    Caterine Daza Gomez

    2015-08-01

    Full Text Available The effect of synthesis conditions and niobium incorporation levels on the photocatalytic properties of Nb/MCM-41 molecular sieves was assessed. Niobium pentoxide supported on MCM-41 mesoporous silica was obtained using two methods: sol-gel and incipient impregnation, in each case also varying the percentage of niobium incorporation. The synthesized Nb-MCM-41 ceramic powders were characterized using the spectroscopic techniques of infrared spectroscopy (IR, Raman spectroscopy, X-ray diffraction (XRD, and transmission electron microscopy (TEM. The photodegradation capacity of the powders was studied using the organic molecule, methylene blue. The effect of both the method of synthesis and the percentage of niobium present in the sample on the photodegradation action of the solids was determined. The mesoporous Nb-MCM-41 that produced the greatest photodegradation response was obtained using the sol-gel method and 20% niobium incorporation.

  1. Controlled synthesis of quantum confined CsPbBr3 perovskite nanocrystals under ambient conditions

    Science.gov (United States)

    He, Huimei; Tang, Bing; Ma, Ying

    2018-02-01

    Room temperature recrystallization is a simple and convenient method for synthesis of all-inorganic perovskite nanomaterials with excellent luminescent properties. However, the fast crystallization usually brings the colloidal stability and uncontrollable synthesis issues in the formation of all-inorganic perovskite. In the present study, we present a new strategy to prepare the quantum confined CsPbBr3 nanocrystals with controlled morphology under ambient condition. With the assist of fatty acid-capped precursor, the crystallization and the following growth rate can be retarded. Thanks to the retarded reaction, the morphology can be varied from nanowires to nanoplates and the thickness can be controlled from 5-7 monolayers by simply adjusting the amount of octylammonium cations and oleic acid. The nanoplates exhibit a higher photoluminescence quantum yield than the nanowires possibly due to fewer defects in the nanoplates.

  2. Controlled Synthesis of Quantum Confined CsPbBr3 perovskite Nanocrystals under Ambient Condition.

    Science.gov (United States)

    He, Huimei; Tang, Bing; Ma, Ying

    2017-11-21

    Room temperature recrystallization is a simple and convenient method for synthesis of all-inorganic perovskite nanomaterials with excellent luminescent properties. However, the fast crystallization usually brings the colloidal stability and uncontrollable synthesis issues in the formation of all-inorganic perovskite. In the present study, we present a new strategy to prepare the quantum confined CsPbBr3 nanocrystals with controlled morphology under ambient condition. With the assist of fatty acid-capped precursor, the crystallization and the following growth rate can be retarded. Thanks to the retarded reaction, the morphology can be varied from nanowires to nanoplates and the thickness can be controlled from 5 to 7 monolayers by simply adjusting the amount of octylammonium cations and oleic acid. The nanoplates exhibit a higher photoluminescence quantum yield than the nanowires possibly due to fewer defects in the nanoplates. © 2017 IOP Publishing Ltd.

  3. Solid state synthesis and sintering of monazite-type ceramics: application to minor actinides conditioning

    International Nuclear Information System (INIS)

    Bregiroux, D.

    2005-11-01

    In the framework of the French law of 1991 concerning the nuclear waste management, several studies are undertaken to develop specific crystalline conditioning matrices. Monazite, a rare earth (TR 3+ ) orthophosphate with a general formula TR 3+ PO 4 , is a natural mineral containing significant amount of thorium and uranium. Monazite has been proposed as a host matrix for the minor actinides (Np, Am and Cm) specific conditioning, thanks to its high resistance to self irradiation and its low solubility. Its is now of prime importance to check the conservation of these properties on synthesized materials, which implies to master all the stages of the elaboration process, from the powder synthesis to the sintering of controlled microstructure pellets. This work can be divided into two main parts: The first part deals with the synthesis by high temperature solid state route of TR 3+ PO 4 powders (with TR 3+ = La 3+ to Gd 3+ , Pu 3+ and Am 3+ ). The chemical reactions occurring during the firing of starting reagents are described in the case of monazite with only one or several cations. From these results, a protocol of synthesis is described. The incorporation of tetravalent cations (Ce 4+ , U 4+ , Pu 4+ ) in the monazite structure was also studied. The second part of the present work deals with the elaboration of controlled density and microstructure monazite pellets and their related mechanical and thermal properties. The study of crushing and sintering is presented. For the first time, experimental results are confronted with theoretical models in order to deduce the densification and grain growth mechanisms. By the comprehension of the various physicochemical phenomena occurring during the various stages of the monazite pellets elaboration process (powder synthesis, crushing, sintering...), this work allowed the development of a protocol of elaboration of controlled microstructure monazite TR 3+ PO 4 pellets. The determination of some mechanical and thermal

  4. Integrated enhanced bioremediation and vacuum extraction for remediation of a hydrocarbon release in response to oscillating hydrologic conditions 'Traverse Co-Bio-Vac'

    International Nuclear Information System (INIS)

    Korreck, W.M.; Armstrong, J.M.; Douglass, R.H.

    1992-01-01

    The use of enhanced in-situ biological treatment and vacuum extraction has been demonstrated to be successful in the remediation of ground water and soil contaminated with hydrocarbons. Seasonal fluctuations in the ground water causes the zone of contamination to be in the either saturated or unsaturated zone of the aquifer. In order to address these conditions, an integrated engineering design approach is being taken for the full scale remediation of an aviation of an aviation gasoline spill at the US Coast Guard Air Station at Traverse City, Township, Michigan. Enhanced aerobic biodegradation will be utilized during the periods of high water table whereby most of the contaminated interval is saturated. Carbon treated water will be utilized from the existing ground water plume. Oxygen will be injected via an oxygen generator to saturate the process stream prior to discharge to the aquifer. During low water table conditions, the same infrastructure will be utilized as a modified vacuum extraction system. The same injection wells used during the high water table would then be used during the low table condition as vapor extraction wells. The vapors will be routed to an above-ground catalytic incinerator for compound destruction. This integrated approach, entitled 'Traverse Co-Bio-Vac,' should reduce the capital costs of installing a full scale remedial system as well allowing the system to operate efficiently depending on water table conditions. The system is expected to be constructed in 1992

  5. Carbon Isotope Characterization of Organic Intermediaries in Hydrothermal Hydrocarbon Synthesis by Pyrolysis-GC-MS-C-IRMS

    Science.gov (United States)

    Socki, Richard A.; Fu, Qi; Niles, Paul B.

    2010-01-01

    We report results of experiments designed to characterize the carbon isotope composition of intermediate organic compounds produced as a result of mineral surface catalyzed reactions. The impetus for this work stems from recently reported detection of methane in the Martian atmosphere coupled with evidence showing extensive water-rock interaction during Martian history. Abiotic formation by Fischer-Tropsch-type (FTT) synthesis during serpentinization reactions may be one possible process responsible for methane generation on Mars, and measurement of carbon and hydrogen isotopes of intermediary organic compounds can help constrain the origin of this methane. Of particular interest within the context of this work is the isotopic composition of organic intermediaries produced on the surfaces of mineral catalysts (i.e. magnetite) during hydrothermal experiments, and the ability to make meaningful and reproducible isotope measurements. Our isotope measurements utilize a unique analytical technique combining Pyrolysis-Gas Chromatograph-Mass Spectrometry-Combustion-Isotope Ratio Mass Specrometry (Py-GC-MS-C-IRMS). Others have conducted similar pyrolysis-IRMS experiments on low molecular weight organic acids (Dias, et al, Organic Geochemistry, 33 [2002]). Our technique differs in that it carries a split of the pyrolyzed GC-separated product to a Thermo DSQ-II quadrupole mass spectrometer as a means of making qualitative and semi-quantitative compositional measurements of the organic compounds. A sample of carboxylic acid (mixture of C1 through C6) was pyrolyzed at 100 XC and passed through the GC-MS-C-IRMS (combusted at 940 XC). In order to test the reliability of our technique we compared the _13C composition of different molecular weight organic acids (from C1 through C6) extracted individually by the traditional sealed-tube cupric oxide combustion (940 XC) method with the _13C produced by our pyrolysis technique. Our data indicate that an average 4.3. +/-0.5. (V

  6. Optimum conditions of the synthesis of zeolite A by the direct hydrolysis of ethyl orthosilicate

    Energy Technology Data Exchange (ETDEWEB)

    Hino, R; Toki, K

    1975-11-01

    Synthesis of various types of zeolites has been reported using as a starting material silica sols, gels, silicates or silicate minerals, all of which are polymers of silicic acid. In this study Zeolite A was synthesized from ethyl orthosilicate which was probably a monomer at the beginning of hydrolysis. Optimum conditions of synthesis and factors which influence the formation of Zeolite A were examined. Ethyl orthosilicate was directly hydrolyzed by sodium aluminate solution in the presence of excess sodium hydroxide. After ultrasonic and mechanical stirring for an hour at 70/sup 0/C, the solution was kept in the air bath at 70/sup 0/C under atmospheric pressure for 48 approximately 120 hours. Zeolite A with high purity and crystallinity was obtained in a good yield from the starting mixture with the composition of 2 approximately 4.5 Na/sub 2/O . Al/sub 2/O/sub 3/ . 0.5 approximately 2 SiO/sub 2/ . 200 approximately 400 H/sub 2/O. Present method was effective for the synthesis of Zeolite A in the lower molar ratios of SiO/sub 2//Al/sub 2/O/sub 3/ as compared with the ordinary methods using silica or silicates. The species formed were also investigated by the optical, x-ray diffraction, DTA, TGA, IR and chemical methods.

  7. Effect of reducing conditions of synthesis on the character of the crystallization of phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Alekseeva, I.P.; Karapetyan, G.O.; Milyukov, E.M.; Rusan, V.V.

    1986-03-01

    The authors investigate the effect of synthesis conditions on the properties of phosphate glasses with a high concentration of rare-earth elements (REE) which are promising materials for quantum electronics. Particular attention was paid to the character of the crystallization of the glasses. A model glass of the composition La/sub 2/O/sub 3/ X 3P/sub 2/O/sub 5/ was studied which is transparent in the visible and near-IR regions of the spectrum and produced commercially.

  8. Conditions for reduction of ironmolybdenum-tungsten catalyst for ammonia synthesis

    International Nuclear Information System (INIS)

    Simulina, N.A.; Karibdzhanyan, N.A.; Lachinov, S.S.; Anfimov, V.A.; Shumlyakovskij, Ts.I.

    1977-01-01

    The reduction of Fe-Mo-W catalyst MB-5, used for synthesis of ammonia, has been studied in the reactor of extracolumn reduction. The results obtained have been compared with similar results for the catalyst CA-1. It has been shown that reduction of the catalyst MB-5 proceeds more intensive and is completed at lower temperature and for a shorter period of time. The samples of the catalyst MB-5 discharged from different layers in the reactor are more active than CA-1 reduced under identical conditions

  9. The effect of magnetite nanoparticles synthesis conditions on their ability to separate heavy metal ions

    Directory of Open Access Journals (Sweden)

    Bobik Magdalena

    2017-06-01

    Full Text Available Magnetite nanoparticles have become a promising material for scientific research. Among numerous technologies of their synthesis, co-precipitation seems to be the most convenient, less time-consuming and cheap method which produces fine and pure iron oxide particles applicable to environmental issues. The aim of the work was to investigate how the co-precipitation synthesis parameters, such as temperature and base volume, influence the magnetite nanoparticles ability to separate heavy metal ions. The synthesis were conducted at nine combinations of different ammonia volumes - 8 cm3, 10 cm3, 15 cm3 and temperatures - 30°C, 60°C, 90°C for each ammonia volume. Iron oxides synthesized at each combination were examined as an adsorbent of seven heavy metals: Cr(VI, Pb(II, Cr(III, Cu(II, Zn(II, Ni(II and Cd(II. The representative sample of magnetite was characterized using XRD, SEM and BET methods. It was observed that more effective sorbent for majority of ions was produced at 30°C using 10 cm3 of ammonia. The characterization of the sample produced at these reaction conditions indicate that pure magnetite with an average crystallite size of 23.2 nm was obtained (XRD, the nanosized crystallites in the sample were agglomerated (SEM and the specific surface area of the aggregates was estimated to be 55.64 m2·g-1 (BET. The general conclusion of the work is the evidence that magnetite nanoparticles have the ability to adsorb heavy metal ions from the aqueous solutions. The effectiveness of the process depends on many factors such as kind of heavy metal ion or the synthesis parameters of the sorbent.

  10. Purifying hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Demoulins, H D; Garner, F H

    1923-02-07

    Hydrocarbon distillates, including natural gases and vapors produced by cracking hydrocarbon oils, are desulfurized etc. by treating the vapor with an aqueous alkaline solution of an oxidizing agent. The hydrocarbons may be previously purified by sulfuric acid. In examples aqueous solutions of sodium or calcium hydrochlorite containing 1.5 to 5.0 grams per liter of available chlorine and sufficient alkali to give an excess of 0.1 percent in the spent reagent are preheated to the temperature of the vapor, and either sprayed or atomized into the vapors near the outlet of the dephlegmator or fractionating tower, or passed in countercurrent to the vapors through one or a series of scrubbers.

  11. Study of the pluronic-silica interaction in synthesis of mesoporous silica under mild acidic conditions.

    Science.gov (United States)

    Sundblom, Andreas; Palmqvist, Anders E C; Holmberg, Krister

    2010-02-02

    The interaction between silica and poly(ethylene oxide) (PEO) in water may appear trivial and it is generally stated that hydrogen bonding is responsible for the attraction. However, a literature search shows that there is not a consensus with respect to the mechanism behind the attractive interaction. Several papers claim that only hydrogen bonding is not sufficient to explain the binding. The silica-PEO interaction is interesting from an academic perspective and it is also exploited in the preparation of mesoporous silica, a material of considerable current interest. This study concerns the very early stage of synthesis of mesoporous silica under mild acidic conditions, pH 2-5, and the aim is to shed light on the interaction between silica and the PEO-containing structure directing agent. The synthesis comprises two steps. An organic silica source, tetraethylorthosilicate (TEOS), is first hydrolyzed and Pluronic P123, a poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymer, is subsequently added at different time periods following the hydrolysis of TEOS. It is shown that the interaction between the silica and the Pluronic is dependent both on the temperature and on the time between onset of TEOS hydrolysis and addition of the copolymer. The results show that the interaction is mainly driven by entropy. The effect of the synthesis temperature and of the time between hydrolysis and addition of the copolymer on the final material is also studied. The material with the highest degree of mesoorder was obtained when the reaction was performed at 20 degrees C and the copolymer was added 40 h after the start of TEOS hydrolysis. It is claimed that the reason for the good ordering of the silica is that whereas particle formation under these conditions is fast, the rate of silica condensation is relatively low.

  12. Process for desulfurizing hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    1937-04-12

    A process is described for the desulfurization of a mixture of hydrocarbons, and in particular hydrocarbons containing less than 7 atoms of carbon and sulfur compounds of the type of sulfur carbonyl, characterized by the fact that the mixture, preferably in the liquid phase, is brought in contact with a solution of caustic alkali, essentially anhydrous or preferably with a solution of alkali hydroxide in an organic hydroxy nonacid solvent, for example, an alcohol, or with an alkaline alcoholate, under conditions suitable to the formation of hydrogen sulfide which produces a hydrocarbon mixture free from sulfur compounds of the sulfur carbonyl type but containing hydrogen sulfide, and that it is treated, following mixing, having beem submitted to the first treatment, by means of aqueous alkaline hydroxide to eliminate the hydrogen sulfide.

  13. Region-specific involvement of BDNF secretion and synthesis in conditioned taste aversion memory formation.

    Science.gov (United States)

    Ma, Ling; Wang, Dong-Dong; Zhang, Tian-Yi; Yu, Hui; Wang, Yue; Huang, Shu-Hong; Lee, Francis S; Chen, Zhe-Yu

    2011-02-09

    Brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin-related kinase receptor B (TrkB), play a critical role in activity-dependent plasticity processes such as long-term potentiation, learning, and memory. It has been shown that BDNF exerts different or even opposite effects on behavior depending on the neural circuit. However, the detailed role of BDNF in memory process on the basis of its location has not been fully understood. Here, we aim to investigate the regional specific involvement of BDNF/TrkB in hippocampal-independent conditioned taste aversion (CTA) memory processes. We found region-specific changes in BDNF expression during CTA learning. CTA conditioning induced increased BDNF levels in the central nuclei of amygdala (CeA) and insular cortex, but not in the basolateral amygdala (BLA) and ventromedial prefrontal cortex. Interestingly, we found that the enhanced TrkB phosphorylation occurred at the time point before the increased BDNF expression, suggesting rapid induction of activity-dependent BDNF secretion by CTA learning. Moreover, targeted infusion of BDNF antibodies or BDNF antisense oligonucleotides revealed that activity-dependent BDNF secretion and synthesis in the CeA, but not the BLA, was respectively involved in the short- and long-term memory formation of CTA. Finally, we found that infusion of exogenous BDNF into the CeA could enhance CTA learning. These data suggest that region-specific BDNF release and synthesis temporally regulate different CTA memory phases through activation of TrkB receptors.

  14. Abiotic synthesis of organic compounds from carbon disulfide under hydrothermal conditions.

    Science.gov (United States)

    Rushdi, Ahmed I; Simoneit, Bernd R T

    2005-12-01

    Abiotic formation of organic compounds under hydrothermal conditions is of interest to bio, geo-, and cosmochemists. Oceanic sulfur-rich hydrothermal systems have been proposed as settings for the abiotic synthesis of organic compounds. Carbon disulfide is a common component of magmatic and hot spring gases, and is present in marine and terrestrial hydrothermal systems. Thus, its reactivity should be considered as another carbon source in addition to carbon dioxide in reductive aqueous thermosynthesis. We have examined the formation of organic compounds in aqueous solutions of carbon disulfide and oxalic acid at 175 degrees C for 5 and 72 h. The synthesis products from carbon disulfide in acidic aqueous solutions yielded a series of organic sulfur compounds. The major compounds after 5 h of reaction included dimethyl polysulfides (54.5%), methyl perthioacetate (27.6%), dimethyl trithiocarbonate (6.8%), trithianes (2.7%), hexathiepane (1.4%), trithiolanes (0.8%), and trithiacycloheptanes (0.3%). The main compounds after 72 h of reaction consisted of trithiacycloheptanes (39.4%), pentathiepane (11.6%), tetrathiocyclooctanes (11.5%), trithiolanes (10.6%), tetrathianes (4.4%), trithianes (1.2%), dimethyl trisulfide (1.1%), and numerous minor compounds. It is concluded that the abiotic formation of aliphatic straight-chain and cyclic polysulfides is possible under hydrothermal conditions and warrants further studies.

  15. Solution-chemical route to generalized synthesis of metal germanate nanowires with room-temperature, light-driven hydrogenation activity of CO2 into renewable hydrocarbon fuels.

    Science.gov (United States)

    Liu, Qi; Zhou, Yong; Tu, Wenguang; Yan, Shicheng; Zou, Zhigang

    2014-01-06

    A facile solution-chemical route was developed for the generalized preparation of a family of highly uniform metal germanate nanowires on a large scale. This route is based on the use of hydrazine monohydrate/H2O as a mixed solvent under solvothermal conditions. Hydrazine has multiple effects on the generation of the nanowires: as an alkali solvent, a coordination agent, and crystal anisotropic growth director. Different-percentage cobalt-doped Cd2Ge2O6 nanowires were also successfully obtained through the addition of Co(OAc)2·4H2O to the initial reaction mixture for future investigation of the magnetic properties of these nanowires. The considerably negative conduction band level of the Cd2Ge2O6 nanowire offers a high driving force for photogenerated electron transfer to CO2 under UV-vis illumination, which facilitates CO2 photocatalytic reduction to a renewable hydrocarbon fuel in the presence of water vapor at room temperature.

  16. Methane synthesis under mild conditions for decentralized applications; Methansynthese unter milden Bedingungen fuer dezentrale Anwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Schlueter, Michael [DBFZ Deutsches Biomasseforschungszentrum gGmbH, Leipzig (Germany); Roensch, Stefan

    2016-08-01

    It is a central aim of the German government to significantly reduce the emission of greenhouse gases in the next years. One possibility to reach this aim is the substitution of fossil fuels, especially natural gas, by fuels from biogenic sources (Bio-SNG). However, it is a drawback of Bio-SNG that the production costs are considerably higher than those of fossil natural gas. This work provides an approach to reduce the production costs of Bio-SNG. It is the aim to reduce the process parameters of the methane synthesis. At the same time, it has to be ensured that high methane yields are achieved even at those mild conditions. A procedure for the optimization of the methanation catalyst activity will be presented. If the catalyst is as active as possible even at mild conditions, it will be possible to produce Bio-SNG cost efficient even in small, decentralized scale.

  17. Purifying hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Dunstan, A E

    1918-06-03

    Ligroin, kerosene, and other distillates from petroleum and shale oil, are purified by treatment with a solution of a hypochlorite containing an excess of alkali. The hydrocarbon may be poured into brine, the mixture stirred, and an electric current passed through. Heat may be applied.

  18. Enhanced natural attenuation of heterocyclic hydrocarbons: biodegradation under anaerobic conditions and in the presence of H2O2

    International Nuclear Information System (INIS)

    Sagner, A.; Tiehm, A.

    2005-01-01

    Heterocyclic aromatic compounds containing nitrogen, sulfur, or oxygen (NSO-HET) are highly mobile due to their high water solubility and low anaerobic degradation rates. In addition some of them are highly toxic and also carcinogenic. However, this class of pollutants is not included in standard risk assessment protocols. In our study, NSO-HET were analyzed in tar oil polluted groundwater plumes originating from (i) a small landfill and (ii) an abandoned manufactured gas plant site. A similar composition of the NSO-HET benzofuran, dibenzo-furan, benzo-thiophene, dibenzo-thiophene, quinoline, and carbazole was found at the two sites. In the polluted groundwater plume, the two ring NSO-HET decreased more rapidly as compared to the three ring NSO-HET. In anaerobic microcosm studies, only benzofuran was degraded under sulfate reducing conditions. In the presence of Fe(III) or nitrate, benzo-thiophene and dibenzo-thiophene were degraded within 400 days. Under aerobic conditions, the degradation of all NSO-HET was observed. In conclusion, the addition of oxygen or hydrogen peroxide is a suitable measure to stimulate biodegradation of hetero-aromatic compounds. (authors)

  19. Prebiotic Peptide (Amide) Bond Synthesis Accelerated by Glycerol and Bicarbonate Under Neutral to Alkaline Dry-Down Conditions

    Science.gov (United States)

    Forsythe, J. G.; Weber, A. L.

    2017-01-01

    Past studies of prebiotic peptide bond synthesis have generally been carried out in the acidic to neutral pH range [1, 2]. Here we report a new process for peptide bond (amide) synthesis in the neutral to alkaline pH range that involves simple dry-down heating of amino acids in the presence of glycerol and bicarbonate. Glycerol was included in the reaction mixture as a solvent and to provide hydroxyl groups for possible formation of ester intermediates previously implicated in peptide bond synthesis under acidic to neutral conditions [1]. Bicarbonate was added to raise the reaction pH to 8-9.

  20. Evaluation of solid-phase microextraction conditions for the determination of polycyclic aromatic hydrocarbons in aquatic species using gas chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Aguinaga, N.; Campillo, N.; Vinas, P.; Hernandez-Cordoba, M. [University of Murcia, Department of Analytical Chemistry, Faculty of Chemistry, Murcia (Spain)

    2008-06-15

    This paper describes a headspace solid-phase microextraction (HS-SPME) procedure coupled to gas chromatography with mass spectrometric detection (GC-MS) for the determination of eight PAHs in aquatic species. The influence of various parameters on the PAH extraction efficiency was carefully examined. At 75 C and for an extraction time of 60 min, a polydimethylsiloxane-divinylbenzene (PDMS/DVB) fiber coating was found to be most suitable. Under the optimized conditions, detection limits ranged from 8 to 450 pg g{sup -1}, depending on the compound and the sample matrix. The repeatability varied between 7 and 15% (RSD). Accuracy was tested using the NIST SRM 1974b reference material. The method was successfully applied to different samples, and the studied PAHs were detected in several of the samples. (orig.)

  1. Preliminary study of the influence of CO2 extraction conditions on the ester, aldehyde, ketone and hydrocarbon content of grape bagasses from jam production

    Directory of Open Access Journals (Sweden)

    J. Santos

    2007-12-01

    Full Text Available The main objective of this work was to assess the influence of temperature and pressure on the chemical characteristics of the essential oil obtained from CO2 extraction of grape bagasses in the production of jam. The experiments were performed in a laboratory-scale unit, where the effect of temperature (290 and 303 K and pressure (15 and 25 Mpa was investigated in terms of liquid yield and chemical composition of the extracts. The CO2 mass flow rate was kept within a range of 2.5 to 3.0 g/min. The instrumental analysis was performed by gas chromatography with a mass spectrometer detector (GC-MS. The extraction conditions investigated in this work had no significant influence on the mass of essencial oil extracted. The main compounds identified in the extracts by the GC-MS spectra library (match quality higher tan 90% were octadecane, dihydroxy ergostene-dione and phenylethyl n-decanoate when the temperature was increased from 290 to 303 K. Heptanal, ethyl ester of decosonoic acid and hexatriacontane were the individual compounds with the greatest increase in the chromatographic peak area when the pressure was increased from 15 to 25 Mpa. The most important class of compounds were hydrocarbons at 303 K and 15 MPa and were ketones and aldehydes at 25 Mpa and 290 K.

  2. Defect induced tuning of photoluminescence property in graphitic carbon nitride nanosheets through synthesis conditions

    Energy Technology Data Exchange (ETDEWEB)

    Das, D. [School of Materials Science and Nanotechnology, Jadavpur University, Kolkata 700032 (India); Banerjee, D., E-mail: nilju82@gmail.com [School of Materials Science Engineering Indian Institute of Engineering Science and Technology, Shibpur, Howrah (India); Pahari, D. [School of Materials Science Engineering Indian Institute of Engineering Science and Technology, Shibpur, Howrah (India); Ghorai, U.K. [Department of Industrial Chemistry & Swami Vivekananda Research centre, Ramakrishna Mission Vidyamandira, Belur Math, Howrah 711202 (India); Sarkar, S.; Das, N.S. [School of Materials Science and Nanotechnology, Jadavpur University, Kolkata 700032 (India); Chattopadhyay, K.K., E-mail: kalyan_chattopadhyay@yahoo.com [School of Materials Science and Nanotechnology, Jadavpur University, Kolkata 700032 (India); Thin Film and Nanoscience Laboratory, Department of Physics, Jadavpur University, Kolkata 700032 (India)

    2017-05-15

    Synthesis of layered sheet like graphitic carbon nitride by pyrolysis of urea at different temperatures has been reported. The proper phase formation has been confirmed by X-ray diffraction study whereas field emission scanning and transmission electron microscope characterized the morphology of the material. Fourier transform infrared and Raman spectroscopy revealed the presence of different bonds in the sample. Thermal gravimetric analysis has been used to study the thermal stability of the material. Energy dispersive X-ray analysis further revealed the elemental composition of carbon and nitrogen in a proper stoichiometric ratio. Excitation dependent photoluminescence spectra of the as prepared samples have been studied in detail. It has been shown that synthesis condition can tailor the amount of defects present in the synthesized samples that in turn can change the photoluminescence properties of the material. The fluorescence spectra of the as prepared samples have been used to detect copper ions present in the sample. It has also been shown that the presence of defects which is mainly N-H functional groups can change the decay characteristics of the carrier in these samples which in turn changes the PL spectra.

  3. Photoinduced catalytic synthesis of biologically important metabolites from formaldehyde and ammonia under plausible "prebiotic" conditions

    Science.gov (United States)

    Delidovich, I. V.; Taran, O. P.; Simonov, A. N.; Matvienko, L. G.; Parmon, V. N.

    2011-08-01

    The article analyzes new and previously reported data on several catalytic and photochemical processes yielding biologically important molecules. UV-irradiation of formaldehyde aqueous solution yields acetaldehyde, glyoxal, glycolaldehyde and glyceraldehyde, which can serve as precursors of more complex biochemically relevant compounds. Photolysis of aqueous solution of acetaldehyde and ammonium nitrate results in formation of alanine and pyruvic acid. Dehydration of glyceraldehyde catalyzed by zeolite HZSM-5-17 yields pyruvaldehyde. Monosaccharides are formed in the course of the phosphate-catalyzed aldol condensation reactions of glycolaldehyde, glyceraldehyde and formaldehyde. The possibility of the direct synthesis of tetroses, keto- and aldo-pentoses from pure formaldehyde due to the combination of the photochemical production of glycolahyde and phosphate-catalyzed carbohydrate chain growth is demonstrated. Erythrulose and 3-pentulose are the main products of such combined synthesis with selectivity up to 10%. Biologically relevant aldotetroses, aldo- and ketopentoses are more resistant to the photochemical destruction owing to the stabilization in hemiacetal cyclic forms. They are formed as products of isomerization of erythrulose and 3-pentulose. The conjugation of the concerned reactions results in a plausible route to the formation of sugars, amino and organic acids from formaldehyde and ammonia under presumed 'prebiotic' conditions.

  4. Mesoporous Structure Control of Silica in Room-Temperature Synthesis under Basic Conditions

    Directory of Open Access Journals (Sweden)

    Jeong Wook Seo

    2015-01-01

    Full Text Available Various types of mesoporous silica, such as continuous cubic-phase MCM-48, hexagonal-phase MCM-41, and layer-phase spherical silica particles, have been synthesized at room temperature using cetyltrimethylammonium bromide as a surfactant, ethanol as a cosurfactant, tetraethyl orthosilicate as a silica precursor, and ammonia as a condensation agent. Special care must be taken both in the filtering of the resultant solid products and in the drying process. In the drying process, further condensation of the silica after filtering was induced. As the surfactant and cosurfactant concentrations in the reaction mixture increased and the NH3 concentration decreased, under given conditions, continuous cubic MCM-48 and layered silica became the dominant phases. A cooperative synthesis mechanism, in which both the surfactant and silica were involved in the formation of mesoporous structures, provided a good explanation of the experimental results.

  5. Rapid, labile, and protein synthesis-independent short-term memory in conditioned taste aversion.

    Science.gov (United States)

    Houpt, T A; Berlin, R

    1999-01-01

    Short-term memory is a rapid, labile, and protein-synthesis-independent phase of memory. The existence of short-term memory in conditioned taste aversion (CTA) learning has not been demonstrated formally. To determine the earliest time at which a CTA is expressed, we measured intraoral intake of sucrose at 15 min, 1 hr, 6 hr, or 48 h after contingent pairing of an intraoral infusion of 5% sucrose (6.6 ml over 6 min) and toxic lithium chloride injection (76 mg/kg). Rats were implanted with intraoral catheters to allow presentation of taste solutions at arbitrary times. Intraoral intake was measured under conditions of long-delay, single-trial learning typical of CTA. Rats decreased intraoral intake of sucrose at 15 min after contingent pairing of sucrose and LiCl, but not after noncontingent LiCl or sucrose. Thus CTA learning can be expressed rapidly. To determine if short-term CTA memory is labile and decays in the absence of long-term memory, we measured intraoral intake of sucrose after pairing sucrose with low doses of LiCl. Rats received an intraoral infusion of 5% sucrose (6 ml/6 min); 30 min later LiCl was injected at three different doses (19, 38, or 76 mg/kg). A second intraoral infusion of sucrose was administered 15 min, 1 hr, 3 hr, 4.5 hr, 6 hr, or 48 hr later. The formation of long-term CTA memory was dependent on the dose of LiCl paired with sucrose during acquisition. Low doses of LiCl induced a CTA that decayed within 6 hr after pairing. Central administration of the protein synthesis inhibitor cycloheximide prior to LiCl injection blocked long-term CTA expression at 6 and 48 hr, but not short-term CTA expression at 1 hr. Thus, short-term memory for CTA learning exists that is acquired rapidly and independent of protein synthesis, but labile in the absence of long-term memory formation.

  6. Abiotic condensation synthesis of glyceride lipids and wax esters under simulated hydrothermal conditions.

    Science.gov (United States)

    Rushdi, Ahmed I; Simoneit, Bernd R T

    2006-04-01

    Precursor compounds for abiotic proto cellular membranes are necessary for the origin of life. Amphipathic compounds such as fatty acids and acyl glycerols are important candidates for micelle/bilayer/vesicle formation. Two sets of experiments were conducted to study dehydration reactions of model lipid precursors in aqueous media to form acyl polyols and wax esters, and to evaluate the stability and reactions of the products at elevated temperatures. In the first set, mixtures of n-nonadecanoic acid and ethylene glycol in water, with and without oxalic acid, were heated at discrete temperatures from 150 ( composite function)C to 300 ( composite function)C for 72 h. The products were typically alkyl alkanoates, ethylene glycolyl alkanoates, ethylene glycolyl bis-alkanoates and alkanols. The condensation products had maximum yields between 150 ( composite function)C and 250 ( composite function)C, and were detectable and thus stable under hydrothermal conditions to temperatures acid and glycerol were heated using the same experimental conditions, with and without oxalic acid, between 100 ( composite function)C and 250 ( composite function)C. The main condensation products were two isomers each of monoacylglycerols and diacylglycerols at all temperatures, as well as minor amounts of the fatty acid anhydride and methyl ester. The yield of glyceryl monoheptanoates generally increased with increasing temperature and glyceryl diheptanoates decreased noticeably with increasing temperature. The results indicate that condensation reactions and abiotic synthesis of organic lipid compounds under hydrothermal conditions occur easily, provided precursor concentrations are sufficiently high.

  7. Synthesis of Aminofuran-Linked Benzimidazoles and Cyanopyrrole-Fused Benzimidazoles by Condition-Based Skeletal Divergence.

    Science.gov (United States)

    Hsu, Wei-Shun; Tsai, Min-Huan; Barve, Indrajeet J; Yellol, Gorakh S; Sun, Chung-Ming

    2017-07-10

    A condition-based skeletal divergent synthesis was explored to achieve skeletal diversity in two component condensation reaction. Cyanomethyl benzimidazole was reacted with α-bromoketone under thermal conditions to furnish 2-aminofuranyl-benzimidazoles, while the same reaction afforded 3-cyano-benzopyrrolo-imidazoles under microwave irradiation. Two nonequivalent nucleophilic centers on benzimidazole moiety were manipulated elegantly by different reaction conditions to achieve the skeletal diversity.

  8. Effects of Synthesis and Spark Plasma Sintering Conditions on the Thermoelectric Properties of Ca3Co4O9+δ

    DEFF Research Database (Denmark)

    Wu, NingYu; Holgate, Tim; Van Nong, Ngo

    2013-01-01

    Ca3Co4O9+δ samples were synthesized by solid-state (SS) and sol–gel (SG) reactions, followed by spark plasma sintering under different processing conditions. The synthesis process was optimized and the resulting materials characterized with respect to their microstructure, bulk density, and therm......Ca3Co4O9+δ samples were synthesized by solid-state (SS) and sol–gel (SG) reactions, followed by spark plasma sintering under different processing conditions. The synthesis process was optimized and the resulting materials characterized with respect to their microstructure, bulk density...

  9. An Efficient Synthesis of Nitriles from Aldoximes Using Diethyl Phosphorocyanidate under Mild Conditions

    International Nuclear Information System (INIS)

    Lee, Kieseung; An, Hyeonseong; Hwang, Chanyeon

    2012-01-01

    Nitriles are valuable intermediates in organic synthesis not only because they serve as the appropriate precursors to various functional groups, but also because they are widely used as the key intermediates for pharmaceuticals, agrochemicals and various N-heterocyclic compounds. The cyano group itself is also frequently found in many biologically important molecules. Therefore, a variety of synthetic routes to nitriles from diverse chemical precursors have been developed. Among these routes, nitrile synthesis from aldoximes using an appropriate dehydrating agent has been a general and clean method. For this purpose, numerous reagents such as chlorosulfonyl isocyanate, di-2-pyridyl sulfite, Burgess reagent, [RuCl 2 (p-cymene)] 2 /MS, 4A, BOP, Pd(OAc) 2 /PPh 3 , Cu(OAc) 2 /ultrasound have been developed. These reagents, however, may have limitations in some respects such as harsh reaction conditions, use of expensive or less readily available reagents, low yields, and lack of generality. Therefore, there is still a need to develop mild and general method for this conversion. Diethyl phosphorocyanidate (DEPC) was initially introduced as an efficient peptide coupling reagent, and has been utilized for useful organic reactions. Previously, we reported that 2-chloro-1-methylpyridinium iodide is an efficient and mild reagent for the dehydration of aldoximes to nitriles under mild conditions. In continuation of our interest in developing mild method for the conversion of aldoximes to nitriles, we herein wish to report the first application of DEPC to the efficient synthesis of nitriles from aldoximes under mild conditions (Scheme 1). In order to obtain the information regarding the optimum reaction conditions, 4-pyridine aldoxime (1a) was reacted with DEPC without base, and in presence of various base in CH 2 Cl 2 at rt for a prolonged reaction time (20 h) (Table 1). CH 2 CI 2 was chosen as reaction medium in this reaction due to the good solubility for both 1 and 3 in CH

  10. An Efficient Synthesis of Nitriles from Aldoximes Using Diethyl Phosphorocyanidate under Mild Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kieseung; An, Hyeonseong; Hwang, Chanyeon [Woosuk Univ.,Wanju (Korea, Republic of)

    2012-10-15

    Nitriles are valuable intermediates in organic synthesis not only because they serve as the appropriate precursors to various functional groups, but also because they are widely used as the key intermediates for pharmaceuticals, agrochemicals and various N-heterocyclic compounds. The cyano group itself is also frequently found in many biologically important molecules. Therefore, a variety of synthetic routes to nitriles from diverse chemical precursors have been developed. Among these routes, nitrile synthesis from aldoximes using an appropriate dehydrating agent has been a general and clean method. For this purpose, numerous reagents such as chlorosulfonyl isocyanate, di-2-pyridyl sulfite, Burgess reagent, [RuCl{sub 2}(p-cymene)]{sub 2}/MS, 4A, BOP, Pd(OAc){sub 2}/PPh{sub 3}, Cu(OAc){sub 2}/ultrasound have been developed. These reagents, however, may have limitations in some respects such as harsh reaction conditions, use of expensive or less readily available reagents, low yields, and lack of generality. Therefore, there is still a need to develop mild and general method for this conversion. Diethyl phosphorocyanidate (DEPC) was initially introduced as an efficient peptide coupling reagent, and has been utilized for useful organic reactions. Previously, we reported that 2-chloro-1-methylpyridinium iodide is an efficient and mild reagent for the dehydration of aldoximes to nitriles under mild conditions. In continuation of our interest in developing mild method for the conversion of aldoximes to nitriles, we herein wish to report the first application of DEPC to the efficient synthesis of nitriles from aldoximes under mild conditions (Scheme 1). In order to obtain the information regarding the optimum reaction conditions, 4-pyridine aldoxime (1a) was reacted with DEPC without base, and in presence of various base in CH{sub 2}Cl{sub 2} at rt for a prolonged reaction time (20 h) (Table 1). CH{sub 2}CI{sub 2} was chosen as reaction medium in this reaction due to the

  11. Optrode for sensing hydrocarbons

    Science.gov (United States)

    Miller, H.; Milanovich, F.P.; Hirschfeld, T.B.; Miller, F.S.

    1988-09-13

    A two-phase system employing the Fujiwara reaction is provided for the fluorometric detection of halogenated hydrocarbons. A fiber optic is utilized to illuminate a column of pyridine trapped in a capillary tube coaxially attached at one end to the illuminating end of the fiber optic. A strongly alkaline condition necessary for the reaction is maintained by providing a reservoir of alkali in contact with the column of pyridine, the surface of contact being adjacent to the illuminating end of the fiber optic. A semipermeable membrane caps the other end of the capillary tube, the membrane being preferentially permeable to the halogenated hydrocarbon and but preferentially impermeable to water and pyridine. As the halogenated hydrocarbon diffuses through the membrane and into the column of pyridine, fluorescent reaction products are formed. Light propagated by the fiber optic from a light source, excites the fluorescent products. Light from the fluorescence emission is also collected by the same fiber optic and transmitted to a detector. The intensity of the fluorescence gives a measure of the concentration of the halogenated hydrocarbons. 5 figs.

  12. Cracking hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Forwood, G F; Lane, M; Taplay, J G

    1921-10-07

    In cracking and hydrogenating hydrocarbon oils by passing their vapors together with steam over heated carbon derived from shale, wood, peat or other vegetable or animal matter, the gases from the condenser are freed from sulfuretted hydrogen, and preferably also from carbon dioxide, and passed together with oil vapors and steam through the retort. Carbon dioxide may be removed by passage through slaked lime, and sulfuretted hydrogen by means of hydrated oxide of iron. Vapors from high-boiling oils and those from low-boiling oils are passed alternately through the retort, so that carbon deposited from the high-boiling oils is used up during treatment of low-boiling oils.

  13. Distilling hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Bataafsche, N V; de Brey, J H.C.

    1918-10-30

    Hydrocarbons containing a very volatile constituent and less volatile constituents, such as casing-head gases, still gases from the distillation of crude petroleum and bituminous shale are separated into their constituents by rectification under pressure; a pressure of 20 atmospheres and limiting temperatures of 150/sup 0/C and 40/sup 0/C are mentioned as suitable. The mixture may be subjected to a preliminary treatment consisting in heating to a temperature below the maximum rectification temperature at a pressure greater than that proposed to be used in the rectification.

  14. Formation of hydrocarbons by bacteria and algae

    Energy Technology Data Exchange (ETDEWEB)

    Tornabene, T.G.

    1980-12-01

    A literature review has been performed summarizing studies on hydrocarbon synthesis by microorganisms. Certain algal and bacterial species produce hydrocarbons in large quantities, 70 to 80% of dry cell mass, when in a controlled environment. The nutritional requirements of these organisms are simple: CO/sub 2/ and mineral salts. The studies were initiated to determine whether or not microorganisms played a role in petroleum formation. 90 references. (DMC)

  15. Synthesis and characterization of a molecularly imprinted polymer for the isolation of the 16 US-EPA priority polycyclic aromatic hydrocarbons (PAHs) in solution.

    Science.gov (United States)

    Ncube, Somandla; Kunene, Phumlile; Tavengwa, Nikita T; Tutu, Hlanganani; Richards, Heidi; Cukrowska, Ewa; Chimuka, Luke

    2017-09-01

    A smart sorbent consisting of benzo[k]fluoranthene-imprinted and indeno[1 2 3-cd]pyrene-imprinted polymers mixed at 1:1 (w/w) was successfully screened from several cavity-tuning experiments and used in the isolation of polycyclic aromatic hydrocarbons from spiked solution. The polymer mixture showed high cross selectivity and affinity towards all the 16 US-EPA priority polycyclic aromatic hydrocarbons. The average extraction efficiency from a cyclohexane solution was 65 ± 13.3% (n = 16, SD). Batch adsorption and kinetic studies confirmed that the binding of polycyclic aromatic hydrocarbons onto the polymer particles resulted in formation of a monolayer and that the binding process was the rate limiting step. The imprinted polymer performance studies confirmed that the synthesized polymer had an imprinting efficiency of 103.9 ± 3.91% (n = 3, SD). A comparison of the theoretical number of cavities and the experimental binding capacity showed that the overall extent of occupation of the imprinted cavities in the presence of excess polycyclic aromatic hydrocarbons was 128 ± 6.45% (n = 3, SD). The loss of selectivity was estimated at 2.9% with every elution cycle indicating that the polymer can be re-used several times with limited loss of selectivity and sensitivity. The polymer combination has shown to be an effective adsorbent that can be used to isolate all the 16 US-EPA priority polycyclic aromatic hydrocarbons in solution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Bulk and surface structure of a NixFe/Al2O3 catalyst for Fischer-Tropsch synthesis studied by Moessbauer, infrared spectroscopy and magnetic methods

    International Nuclear Information System (INIS)

    Boellaard, E.; Kraan, A.M. van der; Geus, J.W.

    1992-01-01

    Deposition precipitation of a stoichiometric nickel-ironcyanide complex onto a alumina support and subsequent calcination and reduction has resulted in the formation of a homogeneous metallic alloy which exhibits activity for Fischer-Tropsch synthesis. During hydrocarbon synthesis conditions only a fraction of the metallic phase is converted in a phase which is most likely a thermally unstable (nickel-)iron carbide. (orig.)

  17. THE APPLICABILITY OF EXISTING COMPUTER TECHNOLOGY TO AUTOMATE FUZZY SYNTHESIS OF TRAFFIC LIGHT UAV IN ADVERSE WEATHER CONDITIONS

    Directory of Open Access Journals (Sweden)

    L. N. Lysenko

    2014-01-01

    Full Text Available The results of the analysis of the applicability of known application software systems for automated synthesis of fuzzy control traffic light UAV during its flight in adverse weather conditions. The solution is based on a previously formulated and put into consideration the principle of permissible limited a priori estimation of the uncertainty of aerodynamic characteristics of UAVs.

  18. Three Component Synthesis of Substituted 4H-[1,3]Dioxin Derivatives Under Solvent-Free Conditions

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Hosseini-Tabatabaei

    2012-01-01

    Full Text Available Reaction between aryl aldehydes, acetylacetone and alkyl isocyanides in solvent-free conditions provided a simple and efficient one-pot route for the synthesis of 1-(2-alkylamino-6-methyl-4-aryl-4H-[1,3]dioxin-5-ylethanone derivatives in excellent yields.

  19. Synthesis of 2-Alkenylquinoline by Reductive Olefination of Quinoline N-Oxide under Metal-Free Conditions.

    Science.gov (United States)

    Xia, Hong; Liu, Yuanhong; Zhao, Peng; Gou, Shaohua; Wang, Jun

    2016-04-15

    Synthesis of 2-alkenylquinoline by reductive olefination of quinoline N-oxide under metal-free conditions is disclosed. Practically, the reaction could be performed with quinoline as starting material via a one-pot, two-step process. A possible mechanism is proposed that involves a sequential 1,3-dipolar cycloaddition and acid-assisted ring opening followed by a dehydration process.

  20. Synthesis of amino ester-embedded benzimidazoles: a one-pot sequential protocol under metal-free neutral conditions.

    Science.gov (United States)

    Roy, Priyabrata; Bodhak, Chandan; Pramanik, Animesh

    2017-02-01

    A one-pot three-component protocol has been developed for the synthesis of amino ester-embedded benzimidazoles under metal-free neutral conditions. Sequentially, the methodology involves coupling of an amino ester with 1-fluoro-2-nitrobenzene, reduction of the coupled nitroarene by sodium dithionite, and cyclization of the corresponding diamine with an aldehyde.

  1. Considering the Specific Impact of Harsh Conditions and Oil Weathering on Diversity, Adaptation, and Activity of Hydrocarbon-Degrading Bacteria in Strategies of Bioremediation of Harsh Oily-Polluted Soils

    Science.gov (United States)

    Al Disi, Zulfa; Jaoua, Samir; Al-Thani, Dhabia; Al-Meer, Saeed

    2017-01-01

    Weathering processes change properties and composition of spilled oil, representing the main reason of failure of bioaugmentation strategies. Our purpose was to investigate the metabolic adaptation of hydrocarbon-degrading bacteria at harsh conditions to be considered to overcome the limitations of bioaugmentation strategies at harsh conditions. Polluted soils, exposed for prolonged periods to weathered oil in harsh soils and weather conditions, were used. Two types of enrichment cultures were employed using 5% and 10% oil or diesel as sole carbon sources with varying the mineral nitrogen sources and C/N ratios. The most effective isolates were obtained based on growth, tolerance to toxicity, and removal efficiency of diesel hydrocarbons. Activities of the newly isolated bacteria, in relation to the microenvironment from where they were isoalted and their interaction with the weathered oil, showed individual specific ability to adapt when exposed to such factors, to acquire metabolic potentialities. Among 39 isolates, ten identified ones by 16S rDNA genes similarities, including special two Pseudomonas isolates and one Citrobacter isolate, showed particularity of shifting hydrocarbon-degrading ability from short chain n-alkanes (n-C12–n-C16) to longer chain n-alkanes (n-C21–n-C25) and vice versa by alternating nitrogen source compositions and C/N ratios. This is shown for the first time. PMID:28243605

  2. Considering the Specific Impact of Harsh Conditions and Oil Weathering on Diversity, Adaptation, and Activity of Hydrocarbon-Degrading Bacteria in Strategies of Bioremediation of Harsh Oily-Polluted Soils

    Directory of Open Access Journals (Sweden)

    Zulfa Al Disi

    2017-01-01

    Full Text Available Weathering processes change properties and composition of spilled oil, representing the main reason of failure of bioaugmentation strategies. Our purpose was to investigate the metabolic adaptation of hydrocarbon-degrading bacteria at harsh conditions to be considered to overcome the limitations of bioaugmentation strategies at harsh conditions. Polluted soils, exposed for prolonged periods to weathered oil in harsh soils and weather conditions, were used. Two types of enrichment cultures were employed using 5% and 10% oil or diesel as sole carbon sources with varying the mineral nitrogen sources and C/N ratios. The most effective isolates were obtained based on growth, tolerance to toxicity, and removal efficiency of diesel hydrocarbons. Activities of the newly isolated bacteria, in relation to the microenvironment from where they were isoalted and their interaction with the weathered oil, showed individual specific ability to adapt when exposed to such factors, to acquire metabolic potentialities. Among 39 isolates, ten identified ones by 16S rDNA genes similarities, including special two Pseudomonas isolates and one Citrobacter isolate, showed particularity of shifting hydrocarbon-degrading ability from short chain n-alkanes (n-C12–n-C16 to longer chain n-alkanes (n-C21–n-C25 and vice versa by alternating nitrogen source compositions and C/N ratios. This is shown for the first time.

  3. Chemoselective Synthesis of Dithioacetals from Bio-aldehydes with Zeolites under Ambient and Solvent-free Conditions

    DEFF Research Database (Denmark)

    Li, Hu; Yang, Tingting; Riisager, Anders

    2017-01-01

    of commercial and modified zeolites are excellent catalysts for thioacetalization of different thiols with carbonyl compounds, including biomass-derived aldehydes, at room temperature under solvent-free conditions. A near quantitative yield of dithioacetal was obtained over H-beta(19) at room temperature......Dithioacetals are an important class of versatile compounds extensively applied in pharmaceuticals, separations, electrochemistry, and organic synthesis, but few heterogeneous catalytic systems are reported to be generally applicable for their synthesis from a wide range of substrates. A series...

  4. Process for treating hydrocarbons, etc

    Energy Technology Data Exchange (ETDEWEB)

    1933-09-15

    A process is described for treating simultaneously bituminous substances and hydrocarbon oils for the production of low-boiling hydrocarbons and volatilization of the bituminous substances, characterized by the fact that it consists of heating a current of charge constituted by a mixture of the bituminous substances and hydrocarbon oils, to a high temperature, passing the heated current into a zone of extended reaction where the vapors are separated from the liquid or solid residue to favor transformation of the liquid hydrocarbons and volatilization of the bituminous substances, owing to the utilization of a heating agent carried to a high temperature being brought in contact with the heated charge in order to communicate its heat to the charge, while this later presents itself as relatively fine pellet or in the condition of distinct particles, particularly separated from one another.

  5. Characterization and optimization of cathodic conditions for H2O2 synthesis in microbial electrochemical cells.

    Science.gov (United States)

    Sim, Junyoung; An, Junyeong; Elbeshbishy, Elsayed; Ryu, Hodon; Lee, Hyung-Sool

    2015-11-01

    Cathode potential and O2 supply methods were investigated to improve H2O2 synthesis in an electrochemical cell, and optimal cathode conditions were applied for microbial electrochemical cells (MECs). Using aqueous O2 for the cathode significantly improved current density, but H2O2 conversion efficiency was negligible at 0.3-12%. Current density decreased for passive O2 diffusion to the cathode, but H2O2 conversion efficiency increased by 65%. An MEC equipped with a gas diffusion cathode was operated with acetate medium and domestic wastewater, which presented relatively high H2O2 conversion efficiency from 36% to 47%, although cathode overpotential was fluctuated. Due to different current densities, the maximum H2O2 production rate was 141 mg H2O2/L-h in the MEC fed with acetate medium, but it became low at 6 mg H2O2/L-h in the MEC fed with the wastewater. Our study clearly indicates that improving anodic current density and mitigating membrane fouling would be key parameters for large-scale H2O2-MECs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Clay catalyzed RNA synthesis under Martian conditions: Application for Mars return samples.

    Science.gov (United States)

    Joshi, Prakash C; Dubey, Krishna; Aldersley, Michael F; Sausville, Meaghen

    2015-06-26

    Catalysis by montmorillonites clay minerals is regarded as a feasible mechanism for the abiotic production and polymerization of key biomolecules on early Earth. We have investigated a montmorillonite-catalyzed reaction of the 5'-phosphorimidazolide of nucleosides as a model to probe prebiotic synthesis of RNA-type oligomers. Here we show that this model is specific for the generation of RNA oligomers despite deoxy-mononucleotides adsorbing equally well onto the montmorillonite catalytic surfaces. Optimum catalytic activity was observed over a range of pH (6-9) and salinity (1 ± 0.2 M NaCl). When the weathering steps of early Earth that generated catalytic montmorillonite were modified to meet Martian soil conditions, the catalytic activity remained intact without altering the surface layer charge. Additionally, the formation of oligomers up to tetramer was detected using as little as 0.1 mg of Na⁺-montmorillonite, suggesting that the catalytic activity of a Martian clay return sample can be investigated with sub-milligram scale samples. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Plasma-catalytic reforming of liquid hydrocarbons

    International Nuclear Information System (INIS)

    Nedybaliuk, O.A.; Chernyak, V.Ya; Kolgan, V.V.; Iukhymenko, V.V.; Solomenko, O.V.; Fedirchyk, I.I.; Martysh, E.V.; Demchina, V.P.; Klochok, N.V.; Dragnev, S.V.

    2015-01-01

    The series of experiments studying the plasma-catalytic reforming of liquid hydrocarbons was carried out. The dynamic plasma-liquid system based on a low-power rotating gliding arc with solid electrodes was used for the investigation of liquid hydrocarbons reforming process. Conversion was done via partial oxidation. A part of oxidant flow was activated by the discharge. Synthesis-gas composition was analysed by means of mass-spectrometry and gas-chromatography. A standard boiler, which operates on natural gas and LPG, was used for the burning of synthesis-gas

  8. Hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    Foorwood, G F; Taplay, J G

    1916-12-12

    Hydrocarbon oils are hydrogenated, cracked, or treated for the removal of sulfur by bringing their vapors mixed with steam at temperatures between 450 and 600/sup 0/C into contact with a form of carbon that is capable of decomposing steam with the production of nascent hydrogen at those temperatures. The forms of carbon used include lamp-black, soot, charcoals derived from wood, cellulose, and lignite, and carbons obtained by carbonizing oil residues and other organic bodies at temperatures below 600/sup 0/C. The process is applied to the treatment of coal oil, shale oil, petroleum, and lignite oil. In examples, kerosene is cracked at 570/sup 0/C, cracked spirit is hydrogenated at 500/sup 0/C, and shale spirit is desulfurized at 530/sup 0/C. The products are led to a condenser and thence to a scrubber, where they are washed with creosote oil. After desulfurization, the products are washed with dilute caustic soda to remove sulfurretted hydrogen.

  9. Hydrocarbon exploration

    Energy Technology Data Exchange (ETDEWEB)

    Lerche, I. (South Carolina Univ., Columbia, SC (United States). Dept. of Geological Sciences)

    1993-01-01

    This special issue of the journal examines various aspects of the on-going search for hydrocarbons, ranging from frontier basins where little data are available, to more mature areas where considerable data are available. The incentives underlying the search for oil are roughly: the social, economic and industrial needs of a nation; the incentive of a corporation to be profitable; and the personal incentives of individuals in the oil industry and governments, which range from financial wealth to power and which are as diverse as the individuals who are involved. From a geopolitical perspective, the needs, requirements, goals, strategies, and philosophies of nations, and groups of nations, also impact on the oil exploration game. Strategies that have been employed have ranged from boycott to austerity and rationing, to physical intervention, to global ''flooding'' with oil by over-production. (author)

  10. Large influence of the synthesis conditions on the physico-chemical properties of nanostructured Fe3O4

    International Nuclear Information System (INIS)

    Franger, S.; Berthet, P.; Dragos, O.; Baddour-Hadjean, R.; Bonville, P.; Berthon, J.

    2007-01-01

    Magnetite synthesized via three different synthesis routes (coprecipitation process in aqueous media, electrochemical synthesis in presence of complexing agents and solid state reaction at high temperature) has been characterized by X-Ray diffraction, scanning electron microscopy, thermal analysis (TGA), FT-IR and Moessbauer spectroscopies. Although each procedure gave homogeneous magnetite powders, many differences could be seen in the physico-chemical properties of the samples mostly depending on the synthesis conditions. For instance, at least two factors seem to have a huge impact onto the Fe 3 O 4 behaviour: the presence of hydration water molecules and the particle size of the powders since a superparamagnetic behaviour was observed with the thinnest particles, at room temperature, on the Moessbauer spectra via the appearance of line broadening and a pronounced central doublet

  11. Evidence for the involvement of a labile protein in stimulation of adrenal steroidogenesis under conditions not inhibitory to protein synthesis

    International Nuclear Information System (INIS)

    Krueger, R.J.; Orme-Johnson, N.R.

    1988-01-01

    Evidence is presented to support the hypothesis that synthesis of a labile protein is required for stimulation of steroidogenesis in rat adrenocortical cells. Amino acids L-canavanine and L-S-aminoethylcysteine, at concentrations as high as 5 mM, each inhibited steroidogenesis to a much greater extent than they inhibited protein synthesis. S-Aminoethylcysteine caused a 50% decrease in the stimulated rate of corticosterone production under conditions where incorporation of [35S]methionine into protein was unchanged. Both amino acids block stimulation of steroid synthesis at a step subsequent to the formation of cAMP and before the synthesis of progesterone. The onset of this effect, after the addition of the amino acids, on corticosterone production is quite rapid. These results provide support, that is not dependent on inhibition of protein synthesis, for the hypothesis that a labile protein mediates stimulation of steroidogenesis. Reversal of canavanine and S-aminoethylcysteine inhibition of steroidogenesis by arginine and lysine, respectively, suggests that the inhibitors are functioning as amino acid analogs. S-Aminoethylcysteine inhibits the incorporation of [3H]lysine into protein as well as inhibits steroidogenesis; further, [3H]S-aminoethylcysteine is incorporated into protein that is nonstimulatory. These results suggest that lysine residues play an essential role in the function of the labile protein or that the labile protein contains a large number of lysine residues

  12. Effect of preparation conditions on fractal structure and phase transformations in the synthesis of nanoscale M-type barium hexaferrite

    Energy Technology Data Exchange (ETDEWEB)

    Pashkova, E.V. [V.I. Vernadskii Institute of General and Inorganic Chemistry, 32/34 Prospect Palladina, Kyiv-142, 03680 (Ukraine); Solovyova, E.D., E-mail: solovyovak@mail.ru [V.I. Vernadskii Institute of General and Inorganic Chemistry, 32/34 Prospect Palladina, Kyiv-142, 03680 (Ukraine); Kotenko, I.E., E-mail: Hab2420@yahoo.com [National Technical University of Ukraine ' KPI' , Pr. Pobedy, 37, Kyiv-57 (Ukraine); Kolodiazhnyi, T.V., E-mail: kolodiazhnyi.taras@nims.go.jp [National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Belous, A.G., E-mail: belous@ionc.kar.net [V.I. Vernadskii Institute of General and Inorganic Chemistry, 32/34 Prospect Palladina, Kyiv-142, 03680 (Ukraine)

    2011-10-15

    The conditions of the synthesis of carbonate-hydroxide precursors (pH of FeOOH precipitation and heat treatment regimes) were studied in terms of their effect on the fractal structure and physical-chemical properties of precursors. Phase transformations which occur during the synthesis of nanosize M-type barium hexaferrite (BHF) were studied as well. The first structural level of precursors' aggregation for mass fractals, the correlation between fractal dimension and precursors' activity during the synthesis of BHF were determined. Synthesis parameters for the precursors with the optimal fractal structure were determined. These data permit an enhancement of the filtration coefficient of the precipitates by a factor of 4-5, obtaining substantial decrease in the temperature required for synthesis of a single-phase BHF, and monodispersed plate-like nanoparticles (60 nm diameter) with the shape anisotropy and good magnetic characteristics (saturation magnetization (M{sub s})=68,7 emu/g and coercitivity (H{sub c})=5440 Oe). - Highlights: > The nanosize M-type BHF obtained by precipitation of hydroxicarbonates technique. > Optimal fractal structure of a precursor for nanosize M-type BHF has been determined. > The precursor precipitated at pH 4.3 allows getting monodisperse particles of BHF.

  13. Synthesis of g-C3N4/Fe3O4 nanocomposites and application as a new sorbent for solid phase extraction of polycyclic aromatic hydrocarbons in water samples.

    Science.gov (United States)

    Wang, Man; Cui, Shihai; Yang, Xiaodi; Bi, Wentao

    2015-01-01

    An easy preparation of g-C3N4/Fe3O4 nanocomposites by chemical co-precipitation has been demonstrated. The as-prepared materials were characterized by X-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy and thermogravimetric analysis. The high affinity of g-C3N4 toward polycyclic aromatic hydrocarbons and the magnetic behavior of Fe3O4 were combined to provide an efficient and simple magnetic solid phase extraction (MSPE). The adsorption and desorption of polycyclic aromatic hydrocarbons on g-C3N4/Fe3O4 were examined. Different factors affecting the magnetic solid phase extraction of polycyclic aromatic hydrocarbons were assessed in terms of adsorption, desorption, and recovery. Under the optimized conditions, the proposed method showed good limits of detection (LOD, S/N=3) in the range of 0.05-0.1 ng mL(-1) and precision in the range of 1.8-5.3% (RSDs, n=3). This method was also successfully applied to the analysis of real water samples; good spiked recoveries over the range of 80.0-99.8% were obtained. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Optimal conditions in direct dimethyl ether synthesis from syngas utilizing a dual-type fluidized bed reactor

    International Nuclear Information System (INIS)

    Yousefi, Ahmad; Eslamloueyan, Reza; Kazerooni, Nooshin Moradi

    2017-01-01

    Concerns over environmental pollution and ever-increasing energy demand have urged the global community to tap clean-burning fuels among which dimethyl ether is a promising candidate for contribution in the transportation sector. Direct dimethyl ether synthesis from syngas, in which methanol production and dehydration take place simultaneously, is arguably the preferred route for large scale production. In this study, direct dimethyl ether synthesis is proposed in an industrial dual-type fluidized bed reactor. This configuration involves two fluidized bed reactors operating in different conditions. In the first catalytic reactor (water-cooled reactor), the synthesis gas is partly converted to methanol after being preheated by the reaction heat in the second reactor (gas-cooled reactor). A two-phase generalized comprehensive reactor model, comprised of the flow in three different regimes is applied and a smooth transition between flow regimes is provided based on the probabilistic averaging approach. The optimal operating conditions are sought by employing differential evolution algorithm as a robust optimization strategy. The dimethyl ether mole fraction is considered as the objective function during the optimization. The results show considerable dimethyl ether enhancement by 16% and 14% compared to the conventional direct dimethyl ether synthesis reactor and dual-type fixed bed dimethyl ether reactor arrangements, respectively. - Highlights: • Dual-type catalytic fluidized bed reactors for dimethyl ether synthesis is studied. • A two-phase comprehensive model comprised of flow in three regimes is used. • Probabilistic averaging approach is applied for smooth transitions between regimes. • Differential evolution method is employed to determine optimal operating conditions. • Production capacity is remarkably enhanced compared to conventional reactor.

  15. Investigation of plutonium-239 conditioning in monazite and brabantite matrices: Synthesis and characterization

    International Nuclear Information System (INIS)

    Glorieux, B.; Jorion, F.; Montel, J.M.; Matecki, M.; Deschanels, X.; Coutures, JP.

    2004-01-01

    In response to the 1991 French radioactive waste management act, a research program was set up between the CNRS, the CEA and French universities to propose effective minor actinide disposal matrices capable of loading 10 wt% of actinide oxides and ensuring a hundred-fold better leaching performance than 'R7T7' glass. The lanthanide ortho-phosphates LaPO 4 could constitute an excellent matrix for this purpose. In this type of structure, the (PO 4 ) 3- negative entity is compensated by trivalent cations such as La, Ce, Gd, Pu, Am (monazite) or equal fractions of divalent and tetravalent cations such as Ca 2+ Th 4+ , Ca 2+ U 4+ , Ca 2+ Np 4+ (brabantite). Previous leach tests and geological discoveries have shown that these materials are highly resistant to leaching and conserve their crystalline state even in aqueous media. These points led us to investigate the incorporation of 10 wt% PuO 2 in monazite and brabantite materials and to study the effects of self-irradiation on their structural states. Prior to plutonium conditioning tests, experiments were performed in the laboratory using cerium and thorium oxides according to the following reactions: (1-3x)LaPO 4 + 2xCe 4+ O 2 + xLa(PO 3 ) 3 → La 1-2x Ce 2x 3+ PO 4 + x/2O 2 ; (1-3x)LaPO 4 + xTh 4+ O 2 + xCaO + xLa(PO 3 ) 3 → La 1-2x Ca x Th x 4+ PO 4 . Cerium oxide was used to study the reduction of a tetravalent cation to a trivalent state in a phosphate structure and to prepare for Pu 3+ conditioning. Thorium was used to study the conditioning of tetravalent cations such as Pu 4+ . The parameters and sintering reaction of the final product were optimized. In a radioactive laboratory, PuO 2 was then substituted for CeO 2 and ThO 2 in the first and second reactions mentioned above, respectively. The synthesis and sintering procedures were unchanged. X-ray diffraction analysis of the powder before and after sintering showed promising results that are discussed. (authors)

  16. Investigation of plutonium-239 conditioning in monazite and brabantite matrices: Synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Glorieux, B.; Jorion, F.; Montel, J.M.; Matecki, M.; Deschanels, X.; Coutures, JP

    2004-07-01

    In response to the 1991 French radioactive waste management act, a research program was set up between the CNRS, the CEA and French universities to propose effective minor actinide disposal matrices capable of loading 10 wt% of actinide oxides and ensuring a hundred-fold better leaching performance than 'R7T7' glass. The lanthanide ortho-phosphates LaPO{sub 4} could constitute an excellent matrix for this purpose. In this type of structure, the (PO{sub 4}){sup 3-} negative entity is compensated by trivalent cations such as La, Ce, Gd, Pu, Am (monazite) or equal fractions of divalent and tetravalent cations such as Ca{sup 2+}Th{sup 4+}, Ca{sup 2+}U{sup 4+}, Ca{sup 2+}Np{sup 4+} (brabantite). Previous leach tests and geological discoveries have shown that these materials are highly resistant to leaching and conserve their crystalline state even in aqueous media. These points led us to investigate the incorporation of 10 wt% PuO{sub 2} in monazite and brabantite materials and to study the effects of self-irradiation on their structural states. Prior to plutonium conditioning tests, experiments were performed in the laboratory using cerium and thorium oxides according to the following reactions: (1-3x)LaPO{sub 4} + 2xCe{sup 4+}O{sub 2} + xLa(PO{sub 3}){sub 3} {yields} La{sub 1-2x}Ce{sub 2x}{sup 3+}PO{sub 4} + x/2O{sub 2}; (1-3x)LaPO{sub 4} + xTh{sup 4+}O{sub 2} + xCaO + xLa(PO{sub 3}){sub 3} {yields} La{sub 1-2x}Ca{sub x}Th{sub x}{sup 4+}PO{sub 4}. Cerium oxide was used to study the reduction of a tetravalent cation to a trivalent state in a phosphate structure and to prepare for Pu{sup 3+} conditioning. Thorium was used to study the conditioning of tetravalent cations such as Pu{sup 4+}. The parameters and sintering reaction of the final product were optimized. In a radioactive laboratory, PuO{sub 2} was then substituted for CeO{sub 2} and ThO{sub 2} in the first and second reactions mentioned above, respectively. The synthesis and sintering procedures were

  17. Synthesis on power electronics for large fuel cells: From power conditioning to potentiodynamic analysis technique

    International Nuclear Information System (INIS)

    De Bernardinis, Alexandre

    2014-01-01

    Highlights: • Active load for fuel cell managing electrical drive constraints: frequency and current ripple can be adjusted independently. • Multi-port resonant soft-switched topology for power management of a thirty kilowatt segmented PEM fuel cell. • Splitting current control strategy for power segmented PEM fuel cell in case of a segment is under fault. • Reversible Buck topology for large fuel cell with control of the fuel cell potential linked to current density nonlinearity. - Abstract: The work addressed in this paper deals with a synthesis on power electronic converters used for fuel cells. The knowledge gap concerns conceptually different electronic converter architectures for PEM (Proton Exchange Membrane) fuel cells able to perform three types of functionalities: The first one is the capacity of emulating an active load representative of electrical drive constraints. In that case, frequency and fuel cell current ripple can be set independently to investigate the dynamic behavior of the fuel cell. The second one is power conditioning applied to large high power and segmented fuel cell systems (“Large” represents several tens of cells and multi-kilowatt stacks), which is a non trivial consideration regarding the topological choices to be made for improving efficiency, compactness and ensure operation under faulty condition. A multi-port resonant isolated boost topology is analyzed enabling soft switching over a large operating range for a thirty kilowatt segmented fuel cell. A splitting current control strategy in case of a segment is under fault is proposed. Each considered converter topologies meet specific constraints regarding fuel cell stack design and power level. The third functionality is the ability for the power electronics to perform analysis and diagnosis techniques, like the cyclic voltammetry on large PEM fuel cell assemblies. The latter technique is an uncommon process for large fuel cell stacks since it is rather performed on

  18. Nanocrystalline copper(II oxide-catalyzed one-pot four- component synthesis of polyhydroquinoline derivativesunder solvent-free conditions

    Directory of Open Access Journals (Sweden)

    J. Safaei-Ghomi

    2011-07-01

    Full Text Available The efficient and environmentally friendly method for the one-pot synthesis of polyhydroquinolines has been developed in the presence of CuO nanoparticles. The multi-component reactions of aldehydes, dimedone, ethyl acetoacetate andammonium acetate were carried out under solvent-free conditions to afford some polyhydroquinoline derivatives. This method provides several advantages including high yields, low reaction times and little catalyst loading.

  19. Syngas Conversion to Gasoline-Range Hydrocarbons over Pd/ZnO/Al2O3 and ZSM-5 Composite Catalyst System

    Energy Technology Data Exchange (ETDEWEB)

    Dagle, Robert A.; Lizarazo Adarme, Jair A.; Lebarbier, Vanessa MC; Gray, Michel J.; White, James F.; King, David L.; Palo, Daniel R.

    2014-07-01

    A composite Pd/ZnO/Al2O3-HZSM-5 (Si/Al=40) catalytic system was evaluated for the synthesis of gasoline-range hydrocarbons directly from synthesis gas. Bifunctional catalyst comprising PdZn metal and acid sites present the required catalytically active sites necessary for the methanol synthesis, methanol dehydration, and methanol-to-gasoline reactions. This system provides a unique catalytic pathway for the production of liquid hydrocarbons directly from syngas. However, selectivity control is difficult and poses many challenges. The composite catalytic system was evaluated under various process conditions. Investigated were the effects of temperature (310-375oC), pressure (300-1000 psig), time-on-stream (50 hrs), and gas-hour space velocity (740-2970 hr-1), using a H2/CO molar syngas ratio of 2.0. By operating at the lower end of the temperature range investigated, liquid hydrocarbon formation was favored, as was decreased amounts of undesirable light hydrocarbons. However, lower operating temperatures also facilitated undesirable CO2 formation via the water-gas shift reaction. Higher operating pressures slightly favored liquid synthesis. Operating at relatively low pressures (e.g. 300 psig) was made possible, whereas for methanol synthesis alone higher pressure are usually required to achieve similar conversion levels (e.g. 1000 psig). Thermodynamic constraints on methanol synthesis are eased by pushing the equilibrium through hydrocarbon formation. Catalytic performance was also evaluated by altering Pd and Zn composition of the Pd/ZnO/Al2O3 catalyst. Of the catalysts and conditions tested, selectivity toward liquid hydrocarbon was highest when using a 5% Pd metal loading and Pd/Zn molar ratio of 0.25 and mixed with HZMS-5, operating at 310oC and 300 psig, CO conversion was 43 % and selectivity (carbon weight basis) to hydrocarbons was 49 wt. %. Of the hydrocarbon fraction, 44wt. % was in the C5-C12 liquid product range and consisted primarily of aromatic

  20. Synthesis of Renewable Diesel Range Alkanes by Hydrodeoxygenation of Palmitic Acid over 5% Ni/CNTs under Mild Conditions

    Directory of Open Access Journals (Sweden)

    Yanan Duan

    2017-03-01

    Full Text Available Recently, the catalytic upgrading of bio-oil to renewable diesel has been attracting more and more attention. In the current paper, carbon nanotube (CNT-supported nickel catalysts, namely, 5% Ni/CNTs, were prepared for liquid hydrocarbon production through the deoxygenation of palmitic acid, the model compound of bio-oil under a mild condition of 240 °C reaction temperature and 2 MPa H2 pressure. The experimental results revealed that the main reaction product was pentadecane (yield of 89.64% at an optimum palmitic acid conversion of 97.25% via the hydrodecarbonylation (HDC process. The deoxygenation mechanism for palmitic acid conversion was also investigated. This study provides technical parameters and a theoretical basis for further industrialization in the bio-oil upgrading process.

  1. Facile synthesis of hierarchical nanocrystalline ZSM-5 zeolite under mild conditions and its catalytic performance.

    Science.gov (United States)

    Ni, Youming; Sun, Aiming; Wu, Xiaoling; Hai, Guoliang; Hu, Jianglin; Li, Tao; Li, Guangxing

    2011-09-15

    Hierarchical nanocrystalline ZSM-5 zeolite (NZ5) was synthesized at 100 °C under atmospheric pressure using methylamine as a mineralizing agent. The crystallization process of NZ5 was characterized by dynamic light scattering (DLS), X-ray diffraction (XRD), and infrared spectroscopy (FTIR). The results of contrastive experiments showed that evaporation of the solvent promoted the aggregation of primary particles, and the addition of methylamine accelerated the crystallization process. The NZ5 aggregate consisted of 20 nm individual particles, as shown in scanning electron microscope (SEM). The lattice fringes in the transmission electron microscope (TEM) images and the XRD results indicated that individual particles of NZ5 were highly crystalline. N(2) adsorption-desorption isotherms showed that NZ5 had high BET surface areas with mesopores having a mean diameter of about 9 nm. NZ5 exhibited a long lifetime, a stable and high yield of liquid hydrocarbons, and a high anti-coking performance in methanol-to-hydrocarbons reaction. Catalytic testing and TGA results showed that the lifetime of NZ5 was about ten times longer than that of micro-sized ZSM-5 zeolite (MZ5), and the average coking rate with NZ5 was one fifth over that of MZ5. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Green synthesis of noble nanometals (Au, Pt, Pd) using glycerol under microwave irradiation conditions

    Science.gov (United States)

    A newer application of glycerol in the field of nanomaterials synthesis has been developed from both the economic and environmental points of view. Glycerol can act as a reducing agent for the fabrication of noble nanometals, such as Au, Pt, and Pd, under microwave irradiation. T...

  3. Lipid synthesis under hydrothermal conditions by Fischer-Tropsch-type reactions.

    Science.gov (United States)

    McCollom, T M; Ritter, G; Simoneit, B R

    1999-03-01

    Ever since their discovery in the late 1970's, mid-ocean-ridge hydrothermal systems have received a great deal of attention as a possible site for the origin of life on Earth (and environments analogous to mid-ocean-ridge hydrothermal systems are postulated to have been sites where life could have originated or Mars and elsewhere as well). Because no modern-day terrestrial hydrothermal systems are free from the influence of organic compounds derived from biologic processes, laboratory experiments provide the best opportunity for confirmation of the potential for organic synthesis in hydrothermal systems. Here we report on the formation of lipid compounds during Fischer-Tropsch-type synthesis from aqueous solutions of formic acid or oxalic acid. Optimum synthesis occurs in stainless steel vessels by heating at 175 degrees C for 2-3 days and produces lipid compounds ranging from C2 to > C35 which consist of n-alkanols, n-alkanoic acids, n-alkenes, n-alkanes and alkanones. The precursor carbon sources used are either formic acid or oxalic acid, which disproportionate to H2, CO2 and probably CO. Both carbon sources yield the same lipid classes with essentially the same ranges of compounds. The synthesis reactions were confirmed by using 13C labeled precursor acids.

  4. The role of zeolite in the Fischer–Tropsch synthesis over cobalt–zeolite catalysts

    International Nuclear Information System (INIS)

    Sineva, L V; Mordkovich, V Z; Asalieva, E Yu

    2015-01-01

    The review deals with the specifics of the Fischer–Tropsch synthesis for the one-stage syncrude production from CO and H 2 in the presence of cobalt–zeolite catalytic systems. Different types of bifunctional catalysts (hybrid, composite) combining a Fischer–Tropsch catalyst and zeolite are reviewed. Special attention focuses on the mechanisms of transformations of hydrocarbons produced in the Fischer–Tropsch process on zeolite acid sites under the synthesis conditions. The bibliography includes 142 references

  5. Syntrophic biodegradation of hydrocarbon contaminants.

    Science.gov (United States)

    Gieg, Lisa M; Fowler, S Jane; Berdugo-Clavijo, Carolina

    2014-06-01

    Anaerobic environments are crucial to global carbon cycling wherein the microbial metabolism of organic matter occurs under a variety of redox conditions. In many anaerobic ecosystems, syntrophy plays a key role wherein microbial species must cooperate, essentially as a single catalytic unit, to metabolize substrates in a mutually beneficial manner. Hydrocarbon-contaminated environments such as groundwater aquifers are typically anaerobic, and often methanogenic. Syntrophic processes are needed to biodegrade hydrocarbons to methane, and recent studies suggest that syntrophic hydrocarbon metabolism can also occur in the presence of electron acceptors. The elucidation of key features of syntrophic processes in defined co-cultures has benefited greatly from advances in 'omics' based tools. Such tools, along with approaches like stable isotope probing, are now being used to monitor carbon flow within an increasing number of hydrocarbon-degrading consortia to pinpoint the key microbial players involved in the degradative pathways. The metagenomic sequencing of hydrocarbon-utilizing consortia should help to further identify key syntrophic features and define microbial interactions in these complex communities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Converting high boiling hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Terrisse, H; DuFour, L

    1929-02-12

    A process is given for converting high boiling hydrocarbons into low boiling hydrocarbons, characterized in that the high boiling hydrocarbons are heated to 200 to 500/sup 0/C in the presence of ferrous chloride and of such gases as hydrogen, water gas, and the like gases under a pressure of from 5 to 40 kilograms per square centimeter. The desulfurization of the hydrocarbons occurs simultaneously.

  7. Facile solid-state synthesis of oxidation-resistant metal nanoparticles at ambient conditions

    Science.gov (United States)

    Lee, Kyu Hyung; Jung, Hyuk Joon; Lee, Ju Hee; Kim, Kyungtae; Lee, Byeongno; Nam, Dohyun; Kim, Chung Man; Jung, Myung-Hwa; Hur, Nam Hwi

    2018-05-01

    A simple and scalable method for the synthesis of metal nanoparticles in the solid-state was developed, which can produce nanoparticles in the absence of solvents. Nanoparticles of coinage metals were synthesized by grinding solid hydrazine and the metal precursors in their acetates and oxides at 25 °C. The silver and gold acetates converted completely within 6 min into Ag and Au nanoparticles, respectively, while complete conversion of the copper acetate to the Cu sub-micrometer particles took about 2 h. Metal oxide precursors were also converted into metal nanoparticles by grinding alone. The resulting particles exhibit distinctive crystalline lattice fringes, indicating the formation of highly crystalline phases. The Cu sub-micrometer particles are better resistant to oxidation and exhibit higher conductivity compared to conventional Cu nanoparticles. This solid-state method was also applied for the synthesis of platinum group metals and intermetallic Cu3Au, which can be further extended to synthesize other metal nanoparticles.

  8. Changing vacancy balance in ZnO by tuning synthesis between zinc/oxygen lean conditions

    Science.gov (United States)

    Venkatachalapathy, Vishnukanthan; Galeckas, Augustinas; Zubiaga, Asier; Tuomisto, Filip; Kuznetsov, Andrej Yu.

    2010-08-01

    The nature of intrinsic defects in ZnO films grown by metal organic vapor phase epitaxy was studied by positron annihilation and photoluminescence spectroscopy techniques. The supply of Zn and O during the film synthesis was varied by applying different growth temperatures (325-485 °C), affecting decomposition of the metal organic precursors. The microscopic identification of vacancy complexes was derived from a systematic variation in the defect balance in accordance with Zn/O supply trends.

  9. Synthesis of different-sized silver nanoparticles by simply varying reaction conditions with leaf extracts of Bauhinia variegata L.

    Science.gov (United States)

    Kumar, V; Yadav, S K

    2012-03-01

    Green synthesis of nanoparticles is one of the crucial requirements in today's climate change scenario all over the world. In view of this, leaf extract (LE) of Bauhinia variegata L. possessing strong antidiabetic and antibacterial properties has been used to synthesise silver nanoparticles (SNP) in a controlled manner. Various-sized SNP (20-120 nm) were synthesised by varying incubation temperature, silver nitrate and LE concentrations. The rate of SNP synthesis and their size increased with increase in AgNO(3) concentration up to 4 mM. With increase in LE concentration, size and aggregation of SNP was increased. The size and aggregation of SNP were also increased at temperatures above and below 40°C. This has suggested that size and dispersion of SNP can be controlled by varying reaction components and conditions. Polarity-based fractionation of B. variegata LE has suggested that only water-soluble fraction is responsible for SNP synthesis. Fourier transform infrared spectroscopy analysis revealed the attachment of polyphenolic and carbohydrate moieties to SNP. The synthesised SNPs were found stable in double distilled water, BSA and phosphate buffer (pH 7.4). On the contrary, incubation of SNP with NaCl induced aggregation. This suggests the safe use of SNP for various in vivo applications.

  10. Facile synthesis of magnetic carbon nitride nanosheets and its application in magnetic solid phase extraction for polycyclic aromatic hydrocarbons in edible oil samples.

    Science.gov (United States)

    Zheng, Hao-Bo; Ding, Jun; Zheng, Shu-Jian; Zhu, Gang-Tian; Yuan, Bi-Feng; Feng, Yu-Qi

    2016-01-01

    In this study, we proposed a method to fabricate magnetic carbon nitride (CN) nanosheets by simple physical blending. Low-cost CN nanosheets prepared by urea possessed a highly π-conjugated structure; therefore the obtained composites were employed as magnetic solid-phase extraction (MSPE) sorbent for extraction of polycyclic aromatic hydrocarbons (PAHs) in edible oil samples. Moreover, sample pre-treatment time could be carried out within 10 min. Thus, a simple and cheap method for the analysis of PAHs in edible oil samples was established by coupling magnetic CN nanosheets-based MSPE with gas chromatography-mass spectrometry (GC/MS) analysis. Limits of quantitation (LOQs) for eight PAHs ranged from 0.4 to 0.9 ng/g. The intra- and inter-day relative standard deviations (RSDs) were less than 15.0%. The recoveries of PAHs for spiked soybean oil samples ranged from 91.0% to 124.1%, with RSDs of less than 10.2%. Taken together, the proposed method offers a simple and cost-effective option for the convenient analysis of PAHs in oil samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Mild Conditions for Deuteration of Primary and Secondary Arylamines for the Synthesis of Deuterated Optoelectronic Organic Molecules

    Directory of Open Access Journals (Sweden)

    Anwen M. Krause-Heuer

    2014-11-01

    Full Text Available Deuterated arylamines demonstrate great potential for use in optoelectronic devices, but their widespread utility requires a method for large-scale synthesis. The incorporation of these deuterated materials into optoelectronic devices also provides the opportunity for studies of the functioning device using neutron reflectometry based on the difference in the scattering length density between protonated and deuterated compounds. Here we report mild deuteration conditions utilising standard laboratory glassware for the deuteration of: diphenylamine, N-phenylnaphthylamine, N-phenyl-o-phenylenediamine and 1-naphthylamine (via H/D exchange in D2O at 80 °C, catalysed by Pt/C and Pd/C. These conditions were not successful in the deuteration of triphenylamine or N,N-dimethylaniline, suggesting that these mild conditions are not suitable for the deuteration of tertiary arylamines, but are likely to be applicable for the deuteration of other primary and secondary arylamines. The deuterated arylamines can then be used for synthesis of larger organic molecules or polymers with optoelectronic applications.

  12. Ascorbic acid as a bifunctional hydrogen bond donor for the synthesis of cyclic carbonates from CO2 under ambient conditions

    KAUST Repository

    Arayachukiat, Sunatda

    2017-07-14

    Readily available ascorbic acid was discovered as an environmentally benign hydrogen bond donor (HBD) for the synthe-sis of cyclic organic carbonates from CO2 and epoxides in the presence of nucleophilic co-catalysts. The ascorbic acid/TBAI (TBAI: tetrabutylammonium iodide) binary system could be applied for the cycloaddition of CO2 to various epoxides under ambient or mild conditions. DFT calculations and catalysis experiments revealed an intriguing bifunctional mechanism in the step of CO2 insertion involving different hydroxyl moieties (enediol, ethyldiol) of the ascorbic acid scaffold.

  13. Ascorbic acid as a bifunctional hydrogen bond donor for the synthesis of cyclic carbonates from CO2 under ambient conditions

    KAUST Repository

    Arayachukiat, Sunatda; Kongtes, Chutima; Barthel, Alexander; Vummaleti, Sai V. C.; Poater, Albert; Wannakao, Sippakorn; Cavallo, Luigi; D'Elia, Valerio

    2017-01-01

    Readily available ascorbic acid was discovered as an environmentally benign hydrogen bond donor (HBD) for the synthe-sis of cyclic organic carbonates from CO2 and epoxides in the presence of nucleophilic co-catalysts. The ascorbic acid/TBAI (TBAI: tetrabutylammonium iodide) binary system could be applied for the cycloaddition of CO2 to various epoxides under ambient or mild conditions. DFT calculations and catalysis experiments revealed an intriguing bifunctional mechanism in the step of CO2 insertion involving different hydroxyl moieties (enediol, ethyldiol) of the ascorbic acid scaffold.

  14. Long-Term Condition Self-Management Support in Online Communities: A Meta-Synthesis of Qualitative Papers

    Science.gov (United States)

    Vassilev, Ivaylo; Kennedy, Anne; Rogers, Anne

    2016-01-01

    Background Recent years have seen an exponential increase in people with long-term conditions using the Internet for information and support. Prior research has examined support for long-term condition self-management through the provision of illness, everyday, and emotional work in the context of traditional offline communities. However, less is known about how communities hosted in digital spaces contribute through the creation of social ties and the mobilization of an online illness “workforce.” Objective The aim was to understand the negotiation of long-term condition illness work in patient online communities and how such work may assist the self-management of long-term conditions in daily life. Methods A systematic search of qualitative papers was undertaken using various online databases for articles published since 2004. A total of 21 papers met the inclusion criteria of using qualitative methods and examined the use of peer-led online communities for those with a long-term condition. A qualitative meta-synthesis was undertaken and the review followed a line of argument synthesis. Results The main themes identified in relation to the negotiation of self-management support were (1) redressing offline experiential information and knowledge deficits, (2) the influence of modeling and learning behaviors from others on self-management, (3) engagement that validates illness and negates offline frustrations, (4) tie formation and community building, (5) narrative expression and cathartic release, and (6) dissociative anonymity and invisibility. These translated into a line of argument synthesis in which four network mechanisms for self-management support in patient online communities were identified. These were (1) collective knowledge and identification through lived experience; (2) support, information, and engagement through readily accessible gifting relationships; (3) sociability that extends beyond illness; and (4) online disinhibition as a facilitator

  15. Statistical optimization of ultraviolet irradiate conditions for vitamin D₂ synthesis in oyster mushrooms (Pleurotus ostreatus using response surface methodology.

    Directory of Open Access Journals (Sweden)

    Wei-Jie Wu

    Full Text Available Response surface methodology (RSM was used to determine the optimum vitamin D2 synthesis conditions in oyster mushrooms (Pleurotus ostreatus. Ultraviolet B (UV-B was selected as the most efficient irradiation source for the preliminary experiment, in addition to the levels of three independent variables, which included ambient temperature (25-45°C, exposure time (40-120 min, and irradiation intensity (0.6-1.2 W/m2. The statistical analysis indicated that, for the range which was studied, irradiation intensity was the most critical factor that affected vitamin D2 synthesis in oyster mushrooms. Under optimal conditions (ambient temperature of 28.16°C, UV-B intensity of 1.14 W/m2, and exposure time of 94.28 min, the experimental vitamin D2 content of 239.67 µg/g (dry weight was in very good agreement with the predicted value of 245.49 µg/g, which verified the practicability of this strategy. Compared to fresh mushrooms, the lyophilized mushroom powder can synthesize remarkably higher level of vitamin D2 (498.10 µg/g within much shorter UV-B exposure time (10 min, and thus should receive attention from the food processing industry.

  16. Influence of different synthesis conditions on properties of oleic acid-coated-Fe3O4 nanoparticles

    Directory of Open Access Journals (Sweden)

    Aliakbari Atieh

    2015-03-01

    Full Text Available In the present paper, iron oxide nanoparticles coated by oleic acid have been synthesized in different conditions by coprecipitation method. For investigating the effect of time spent on adding the oleic acid to the precursor solution, two different processes have been considered. The as synthesized samples were characterized by X-ray diffraction (XRD, transmission electron microscopy (TEM and Fourier transform infrared spectroscopy (FT-IR. Magnetic measurement was carried out at room temperature using a vibrating sample magnetometer (VSM. The results show that the magnetic nanoparticles decorated with oleic acid decreased the saturation of magnetization. From the data, it can also be concluded that the magnetization of Fe3O4/oleic acid nanoparticles depends on synthesis conditions.

  17. Characterization of hydrocarbon utilizing fungi from hydrocarbon ...

    African Journals Online (AJOL)

    Prof. Ogunji

    isolated fungi could be useful in the bioremediation of hydrocarbon polluted sites. Keywords: ... Technologies such as mechanical force, burying, evaporation, dispersant application, and ..... The effects of drilling fluids on marine bacteria from a.

  18. Catalytic conversion of alcohols to hydrocarbons with low benzene content

    Energy Technology Data Exchange (ETDEWEB)

    Narula, Chaitanya K.; Davison, Brian H.; Keller, Martin

    2016-03-08

    A method for converting an alcohol to a hydrocarbon fraction having a lowered benzene content, the method comprising: converting said alcohol to a hydrocarbon fraction by contacting said alcohol, under conditions suitable for converting said alcohol to said hydrocarbon fraction, with a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon fraction, and contacting said hydrocarbon fraction with a benzene alkylation catalyst, under conditions suitable for alkylating benzene, to form alkylated benzene product in said hydrocarbon fraction. Also described is a catalyst composition useful in the method, comprising a mixture of (i) a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon, and (ii) a benzene alkylation catalyst, in which (i) and (ii) may be in a mixed or separated state. A reactor for housing the catalyst and conducting the reaction is also described.

  19. Catalytic conversion of alcohols to hydrocarbons with low benzene content

    Energy Technology Data Exchange (ETDEWEB)

    Narula, Chaitanya K.; Davison, Brian H.; Keller, Martin

    2016-09-06

    A method for converting an alcohol to a hydrocarbon fraction having a lowered benzene content, the method comprising: converting said alcohol to a hydrocarbon fraction by contacting said alcohol, under conditions suitable for converting said alcohol to said hydrocarbon fraction, with a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon fraction, and contacting said hydrocarbon fraction with a benzene alkylation catalyst, under conditions suitable for alkylating benzene, to form alkylated benzene product in said hydrocarbon fraction. Also described is a catalyst composition useful in the method, comprising a mixture of (i) a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon, and (ii) a benzene alkylation catalyst, in which (i) and (ii) may be in a mixed or separated state. A reactor for housing the catalyst and conducting the reaction is also described.

  20. Hydrogen storage in graphite nanofibers: effect of synthesis catalyst and pretreatment conditions.

    Science.gov (United States)

    Lueking, Angela D; Yang, Ralph T; Rodriguez, Nelly M; Baker, R Terry K

    2004-02-03

    A series of graphite nanofibers (GNFs) that were subjected to various pretreatments were used to determine how modifications in the carbon structure formed during either synthesis or pretreatment steps results in active or inactive materials for hydrogen storage. The nanofibers possessing a herringbone structure and a high degree of defects were found to exhibit the best performance for hydrogen storage. These materials were exposed to several pretreatment procedures, including oxidative, reductive, and inert environments. Significant hydrogen storage levels were found for several in situ pretreatments. Examination of the nanofibers by high-resolution transmission electron microscopy (TEM) after pretreatment and subsequent hydrogen storage revealed the existence of edge attack and an enhancement in the generation of structural defects. These findings suggest that pretreatment in certain environments results in the creation of catalytic sites that are favorable toward hydrogen storage. The best pretreatment resulted in a 3.8% hydrogen release after exposure at 69 bar and room temperature.

  1. Synthesis of nano-sized hydroxyapatite powders through solution combustion route under different reaction conditions

    International Nuclear Information System (INIS)

    Ghosh, Samir Kumar; Roy, Sujit Kumar; Kundu, Biswanath; Datta, Someswar; Basu, Debabrata

    2011-01-01

    Calcium hydroxyapatite, Ca 10 (PO 4 ) 6 (OH) 2 (HAp) was synthesized by combustion in the aqueous system containing calcium nitrate-diammonium hydrogen orthophosphate with urea and glycine as fuels. These ceramics are important materials for biomedical applications. Thermo-gravimetric and differential thermal analysis were employed to understand the nature of synthesis process during combustion. Effects of different process parameters namely, nature of fuel (urea and glycine), fuel to oxidizer ratio (0.6-4.0) and initial furnace temperature (300-700 o C) on the combustion behavior as well as physical properties of as-formed powders were investigated. A series of combustion reactions were carried out to optimize the reaction parameters for synthesis of nano-sized HAp powders. The combustion temperature (T f ) for the oxidant and fuels were calculated to be 896 deg. C and 1035 deg. C for the stoichiometric system of urea and glycine respectively. The stoichiometric glycine-calcium nitrate produced higher flame temperature (both calculated and measured) and powder with lower specific surface area (8.75 m 2 /g) compared to the stoichiometric urea-calcium nitrate system (10.50 m 2 /g). Fuel excess combustion in both glycine and urea produced powders with higher surface area. Nanocrystalline HAp powder could be synthesized in situ with a large span of fuel to oxidizer ratio (φ) in case of urea system (0.8 < φ < 4) and (0.6 < φ < 1.5) for the glycine system. Calcium hydroxyapatite particles having diameters ranging between 20 nm and 120 nm could be successfully synthesized through optimized process variable.

  2. Conversion of hydrocarbon oils into motor fuels

    Energy Technology Data Exchange (ETDEWEB)

    1937-11-09

    The abstract describes a process for producing lower boiling hydrocarbon motor fuels with a starting material of wide boiling range composed primarily of hydrocarbon oils boiling substantially above the boiling range of the desired product. Separate catalytic and pyrolytic conversion zones are simultaneously maintained in an interdependent relationship. Higher boiling constituents are separated from residual constituents by fractionation while desirable reaction conditions are maintained. All or at least a portion of the products from the catalytic and pyrolytic conversion zones are blended to yield the desired lower boiling hydrocarbons or motor fuels.

  3. Hydrocarbons and air pollution

    International Nuclear Information System (INIS)

    Herz, O.

    1992-01-01

    This paper shows the influence of hydrocarbons vapors, emitted by transports or by volatile solvents using, on air pollution. Hydrocarbons are the principal precursors of photochemical pollution. After a brief introduction on atmospheric chemistry and photochemical reactions, the author describes the french prevention program against hydrocarbons emissions. In the last chapter, informations on international or european community programs for photochemical pollution study are given. 5 figs., 10 tabs

  4. Production of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Day, D T; Day, R E

    1920-04-27

    A process is disclosed of converting hydro-carbon oils having high boiling points to hydro-carbon oils having low boiling points, which process comprises adding the oil to be treated to a mass of hydro-carbon oil bearing shale, passing the shale with the oil through a conveyor retort and subjecting the material while in the retort to a heat treatment involving a temperature of at least 500/sup 0/F.

  5. Influence of oxalate ligand functionalization on Co/ZSM-5 activity in Fischer Tropsch synthesis and hydrodeoxygenation of oleic acid into hydrocarbon fuels.

    Science.gov (United States)

    Ayodele, Olumide Bolarinwa

    2017-08-30

    Achieving high degree of active metal dispersions at the highest possible metal loading and high reducibility of the metal remains a challenge in Fischer Tropsch synthesis (FTS) as well as in hydrogeoxygenation (HDO).This study therefore reports the influence of oxalic acid (OxA) functionalization on the metal dispersion, reducibility and activity of Co supported ZSM-5 catalyst in FTS and HDO of oleic acid into paraffin biofuel. The Brunauer-Emmett-Teller (BET) results showed that cobalt oxalate supported ZSM-5 catalyst (CoOx/ZSM-5) synthesized from the incorporation of freshly prepared cobalt oxalate complex into ZSM-5 displayed increase in surface area, pore volume and average pore size while the nonfunctionalized cobalt supported on ZSM-5 (Co/ZSM-5) catalyst showed reduction in those properties. Furthermore, both XRD and XPS confirmed the presence of Co° formed from the decomposition of CoOx during calcination of CoOx/ZSM-5 under inert atmosphere. The HRTEM showed that Co species average particle sizes were smaller in CoOx/ZSM-5 than in Co/ZSM-5, and in addition, CoOx/ZSM-5 shows a clear higher degree of active metal dispersion. The FTS result showed that at CO conversion over Co/ZSM-5 and CoOx/ZSM-5 catalysts were 74.28% and 94.23% and their selectivity to C 5+ HC production were 63.15% and 75.4%, respectively at 4 h TOS. The HDO result also showed that the CoOx/ZSM-5 has higher OA conversion of 92% compared to 59% over Co/ZSM-5. In addition CoOx/ZSM-5 showed higher HDO and isomerization activities compared to Co/ZSM-5.

  6. Effect of synthesis conditions on the nanopowder properties of Ce{sub 0.9}Zr{sub 0.1}O{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Zimicz, M.G.; Fabregas, I.O.; Lamas, D.G. [CINSO (Centro de Investigaciones en Solidos) CONICET-CITEFA J.B. de La Salle 4397, 1603 Villa Martelli, Pcia. de Buenos Aires (Argentina); Larrondo, S.A., E-mail: susana@di.fcen.uba.ar [Laboratorio de Procesos Cataliticos, Departamento de Ingenieria Quimica, Facultad de Ingenieria, Universidad de Buenos Aires, Pabellon de Industrias, Ciudad Universitaria, 1428 Buenos Aires (Argentina)

    2011-06-15

    Graphical abstract: . The synthesis of nanocrystalline Ce{sub 0.9}Zr{sub 0.1}O{sub 2} powders via the gel-combustion method, using different fuels, and following either stoichiometric or non-stoichiometric pH-controlled routes is investigated. Research highlights: {yields} All samples exhibited the fluorite-type crystal structure, nanometric average crystallite size and negligible carbon content. {yields} Synthesis conditions strongly affect the average crystallite size, the degree of agglomeration, the specific surface area and the pore volume. {yields} Our results indicate that, by controlling the synthesis conditions it is possible to obtain solids with custom-made morphological properties. -- Abstract: In this work, the synthesis of nanocrystalline Ce{sub 0.9}Zr{sub 0.1}O{sub 2} powders via the gel-combustion method, using different fuels, and following either stoichiometric or non-stoichiometric pH-controlled routes is investigated. The objective is to evaluate the effect of synthesis conditions on the textural and morphological properties, and the crystal structure of the synthesized materials. The solids were characterized by nitrogen physisorption, Scanning Electron Microscopy (SEM), X-ray powder diffraction (XPD), and Carbon-Hydrogen-Nitrogen Elemental Analysis (CHN). All the powders exhibited nanometric crystallite size, fluorite-type structure and negligible carbon content. Synthesis conditions strongly affect the average crystallite size, the degree of agglomeration, the specific surface area and the pore volume. Our results indicate that, by controlling the synthesis conditions it is possible to obtain solids with custom-made morphological properties.

  7. Multicomponent One-Pot Synthesis of Substituted Hantzsch Thiazole Derivatives Under Solvent Free Conditions

    Directory of Open Access Journals (Sweden)

    Bhaskar S. Dawane

    2009-01-01

    Full Text Available Thiazole derivatives were prepared by one-pot procedure by the reaction of α-haloketones, thiourea and substituted o-hydroxybenzaldehyde under environmentally solvent free conditions.

  8. Effect of synthesis conditions on the preparation of YIG powders via co-precipitation method

    International Nuclear Information System (INIS)

    Rashad, M.M.; Hessien, M.M.; El-Midany, A.; Ibrahim, I.A.

    2009-01-01

    Yttrium iron garnet (YIG) (Y 3 Fe 5 O 12 ) powders have been synthesized through a co-precipitation method in the presence of sodium bis(2-ethylhexylsulfosuccinate), AOT as an anionic surfactant. The garnet precursors produced were obtained from aqueous iron and yttrium nitrates mixtures using 5 M sodium hydroxide at pH 10. A statistical Box-Behnken experimental design was used to investigate the effect of the main parameters (i.e. AOT surfactant concentration, annealing time and temperature) on YIG powder formation, crystallite size, morphology and magnetic properties. YIG particles were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), and vibrating sample magnetometer. XRD revealed that the formation of single cubic phase of YIG was temperature dependent and increased by increasing the annealing temperature from 800 to 1200 o C. SEM micrographs showed that the addition of AOT surfactant promoted the microstructure of YIG in crystalline cubic-like structure. The magnetic properties were sensitive to the synthesis variables of annealing temperature, time and AOT surfactant concentration. The maximum saturation magnetization (28.13 emu/g), remanence magnetization (21.57 emu/g) and coercive force (703 Oe) were achieved at an annealing temperature of 1200 o C, time 2 h and 500 ppm of AOT surfactant concentration.

  9. Influence of the synthesis conditions of gold nanoparticles on the structure and architectonics of dipeptide composites

    Energy Technology Data Exchange (ETDEWEB)

    Loskutov, Alexander I., E-mail: ailoskutov@yandex.ru [Moscow State Technological University STANKIN (Russian Federation); Guskova, Olga A. [Leibniz Institute of Polymer Research Dresden (Germany); Grigoriev, Sergey N.; Oshurko, Vadim B. [Moscow State Technological University STANKIN (Russian Federation); Tarasiuk, Aleksei V. [Russian Academy of Medical Sciences, FSBI “Zakusov Institute of Pharmacology” (Russian Federation); Uryupina, Olga Ya. [Russian Academy of Sciences, Frumkin Institute of Physical Chemistry and Electrochemistry (Russian Federation)

    2016-08-15

    A wide variety of peptides and their natural ability to self-assemble makes them very promising candidates for the fabrication of solid-state devices based on nano- and mesocrystals. In this work, we demonstrate an approach to form peptide composite layers with gold nanoparticles through in situ reduction of chloroauric acid trihydrate by dipeptide and/or dipeptide/formaldehyde mixture in the presence of potassium carbonate at different ratios of components. Appropriate composition of components for the synthesis of highly stable gold colloidal dispersion with particle size of 34–36 nm in dipeptide/formaldehyde solution is formulated. Infrared spectroscopy results indicate that dipeptide participates in the reduction process, conjugation with gold nanoparticles and the self-assembly in 2D, which accompanied by changing peptide chain conformations. The structure and morphology of the peptide composite solid layers with gold nanoparticles on gold, mica and silica surfaces are characterized by atomic force microscopy. In these experiments, the flat particles, dendrites, chains, mesocrystals and Janus particles are observed depending on the solution composition and the substrate/interface used. The latter aspect is studied on the molecular level using computer simulations of individual peptide chains on gold, mica and silica surfaces.

  10. Synthesis, characterization and catalytic application of silica supported tin oxide nanoparticles for synthesis of 2,4,5-tri and 1,2,4,5-tetrasubstituted imidazoles under solvent-free conditions

    Directory of Open Access Journals (Sweden)

    Ashok V. Borhade

    2017-02-01

    Full Text Available Highly efficient and eco-friendly, one pot synthesis of 1,2,4,5-tetra substituted imidazoles and 2,4,5-trisubstituted imidazoles was reported under solvent free conditions using nanocrystalline silica supported tin oxide (SiO2:SnO2 as a catalyst with excellent yield. The present methodology offers several advantages such as mild reaction conditions, short reaction time, good yield, high purity of product, recyclable catalyst without a noticeable decrease in catalytic activity and can be used for large scale synthesis. The synthesized SiO2:SnO2 nanocrystalline catalyst was characterized by XRD, BET surface area and TEM techniques.

  11. A green synthetic approach toward the synthesis of structurally diverse spirooxindole derivative libraries under catalyst-free conditions.

    Science.gov (United States)

    Kausar, Nazia; Masum, Abdulla Al; Islam, Md Maidul; Das, Asish R

    2017-05-01

    A catalyst-free green methodology for the synthesis of pharmacologically important spirooxindole derivatives has been developed by a three-component domino reaction between isatin, various amino compounds, and 1,3-dicarbonyl or 3-phenylisoxazolone compounds in ethyl L-lactate medium at room temperature. This new efficient synthetic method facilitated the formation of a wide range of biologically significant spirooxindole derivatives (including 17 new spirooxindoles) under very mild conditions. The cytotoxic activity of one of the isoxazole-fused spirooxindoles was evaluated in MDA-MB 468 breast cancer cell line. It was found that cell survivability decreases with increasing concentration of the selected compound in MDA-MB 468 breast cancer cells.

  12. Fischer-Tropsch Synthesis over Iron Manganese Catalysts: Effect of Preparation and Operating Conditions on Catalyst Performance

    Directory of Open Access Journals (Sweden)

    Ali A. Mirzaei

    2009-01-01

    molar basis which is the most active catalyst for the conversion of synthesis gas to light olefins. The effects of different promoters and supports with loading of optimum support on the catalytic performance of catalysts are also studied. It was found that the catalyst containing 50%Fe/50%Mn/5 wt.%Al2O3 is an optimum-modified catalyst. The catalytic performance of optimal catalyst has been studied in operation conditions such as a range of reaction temperatures, H2/CO molar feed ratios and a range of total pressures. Characterization of both precursors and calcined catalysts is carried out by powder X-ray diffraction (XRD, scanning electron microscopy (SEM, BET specific surface area and thermal analysis methods such as TGA and DSC.

  13. Facile synthesis of 1-naphthol azo dyes with nano SiO2/HIO4 under solvent-free conditions

    Directory of Open Access Journals (Sweden)

    A.R. Pourali

    2013-09-01

    Full Text Available Nano-silica supported periodic acid (nano-SPIA has been utilized as a heterogeneous reagent for a highly efficient and one pot synthesis of azo dyes based on 1-naphthol under solvent-free conditions at room temperature. This method has some advantages, the reaction workup is very easy and the catalyst can be easily separated from the reaction mixture and one-pot procedure. The related products have been obtained in good to excellent yields, high purity and short reaction times. The structures of the products have been characterized by several techniques using UV-Vis, FT-IR, 1H NMR, 13C NMR and mass spectra.DOI: http://dx.doi.org/10.4314/bcse.v27i3.13

  14. Does therapeutic writing help people with long-term conditions? Systematic review, realist synthesis and economic considerations.

    Science.gov (United States)

    Nyssen, Olga P; Taylor, Stephanie J C; Wong, Geoff; Steed, Elizabeth; Bourke, Liam; Lord, Joanne; Ross, Carol A; Hayman, Sheila; Field, Victoria; Higgins, Ailish; Greenhalgh, Trisha; Meads, Catherine

    2016-04-01

    Writing therapy to improve physical or mental health can take many forms. The most researched model of therapeutic writing (TW) is unfacilitated, individual expressive writing (written emotional disclosure). Facilitated writing activities are less widely researched. Databases, including MEDLINE, EMBASE, PsycINFO, Linguistics and Language Behaviour Abstracts, Allied and Complementary Medicine Database and Cumulative Index to Nursing and Allied Health Literature, were searched from inception to March 2013 (updated January 2015). Four TW practitioners provided expert advice. Study procedures were conducted by one reviewer and checked by a second. Randomised controlled trials (RCTs) and non-randomised comparative studies were included. Quality was appraised using the Cochrane risk-of-bias tool. Unfacilitated and facilitated TW studies were analysed separately under International Classification of Diseases, Tenth Revision chapter headings. Meta-analyses were performed where possible using RevMan version 5.2.6 (RevMan 2012, The Cochrane Collaboration, The Nordic Cochrane Centre, Copenhagen, Denmark). Costs were estimated from a UK NHS perspective and three cost-consequence case studies were prepared. Realist synthesis followed Realist and Meta-narrative Evidence Synthesis: Evolving Standards guidelines. To review the clinical effectiveness and cost-effectiveness of TW for people with long-term conditions (LTCs) compared with no writing, or other controls, reporting any relevant clinical outcomes. To conduct a realist synthesis to understand how TW might work, and for whom. From 14,658 unique citations, 284 full-text papers were reviewed and 64 studies (59 RCTs) were included in the final effectiveness reviews. Five studies examined facilitated TW; these were extremely heterogeneous with unclear or high risk of bias but suggested that facilitated TW interventions may be beneficial in individual LTCs. Unfacilitated expressive writing was examined in 59 studies of variable

  15. Plasma devices for hydrocarbon reformation

    KAUST Repository

    Cha, Min

    2017-01-01

    Plasma devices for hydrocarbon reformation are provided. Methods of using the devices for hydrocarbon reformation are also provided. The devices can include a liquid container to receive a hydrocarbon source, and a plasma torch configured

  16. Sustainable Synthesis of Oxalic and Succinic Acid through Aerobic Oxidation of C6 Polyols Under Mild Conditions.

    Science.gov (United States)

    Ventura, Maria; Williamson, David; Lobefaro, Francesco; Jones, Matthew D; Mattia, Davide; Nocito, Francesco; Aresta, Michele; Dibenedetto, Angela

    2018-03-22

    The sustainable chemical industry encompasses a shift from the use of fossil carbon to renewable carbon. The synthesis of chemicals from nonedible biomass (cellulosic or oil) represents one of the key steps for "greening" the chemical industry. In this paper, we report the aerobic oxidative cleavage of C6 polyols (5-HMF, glucose, fructose and sucrose) to oxalic acid (OA) and succinic acid (SA) in water under mild conditions using M@CNT and M@NCNT (M=Fe, V; CNT=carbon nanotubes; NCNT=N-doped CNT), which, under suitable conditions, were recoverable and reusable without any loss of efficiency. The influence of the temperature, O 2 pressure (PO2 ), reaction time and stirring rate are discussed and the best reaction conditions are determined for an almost complete conversion of the starting material and a good OA yield of 48 %. SA and formic acid were the only co-products. The former could be further converted into OA by oxidation in the presence of formic acid, resulting in an overall OA yield of >62 %. This process was clean and did not produce organic waste nor gas emissions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Thermodynamic model for predicting equilibrium conditions of clathrate hydrates of noble gases + light hydrocarbons: Combination of Van der Waals–Platteeuw model and sPC-SAFT EoS

    International Nuclear Information System (INIS)

    Abolala, Mostafa; Varaminian, Farshad

    2015-01-01

    Highlights: • Applying sPC-SAFT for phase equilibrium calculations. • Determining Kihara potential parameters for hydrate formers. • Successful usage of the model for systems with hydrate azeotropes. - Abstract: In this communication, equilibrium conditions of clathrate hydrates containing mixtures of noble gases (Argon, Krypton and Xenon) and light hydrocarbons (C 1 –C 3 ), which form structure I and II, are modeled. The thermodynamic model is based on the solid solution theory of Van der Waals–Platteeuw combined with the simplified Perturbed-Chain Statistical Association Fluid Theory equation of state (sPC-SAFT EoS). In dispersion term of sPC-SAFT EoS, the temperature dependent binary interaction parameters (k ij ) are adjusted; taking advantage of the well described (vapor + liquid) phase equilibria. Furthermore, the Kihara potential parameters are optimized based on the P–T data of pure hydrate former. Subsequently, these obtained parameters are used to predict the binary gas hydrate dissociation conditions. The equilibrium conditions of the binary gas hydrates predicted by this model agree well with experimental data (overall AAD P ∼ 2.17)

  18. Optimization of Synthesis Condition for Nanoscale Zero Valent Iron Immobilization on Granular Activated Carbon

    DEFF Research Database (Denmark)

    Mines, Paul D.; Andersen, Henrik Rasmus; Hwang, Yuhoon

    2016-01-01

    economical loss, but also potential risk to human health and environment. Thus, the immobilization onto coarse or structured support is essential. In this study, two representative processes for nZVI immobilization on granular activated carbon (GAC) were evaluated, and optimized conditions for synthesizing...

  19. Plasma devices for hydrocarbon reformation

    KAUST Repository

    Cha, Min Suk

    2017-02-16

    Plasma devices for hydrocarbon reformation are provided. Methods of using the devices for hydrocarbon reformation are also provided. The devices can include a liquid container to receive a hydrocarbon source, and a plasma torch configured to be submerged in the liquid. The plasma plume from the plasma torch can cause reformation of the hydrocarbon. The device can use a variety of plasma torches that can be arranged in a variety of positions in the liquid container. The devices can be used for the reformation of gaseous hydrocarbons and/or liquid hydrocarbons. The reformation can produce methane, lower hydrocarbons, higher hydrocarbons, hydrogen gas, water, carbon dioxide, carbon monoxide, or a combination thereof.

  20. Influence of Different Growth Conditions on the Kefir Grains Production, used in the Kefiran Synthesis

    Directory of Open Access Journals (Sweden)

    Carmen Rodica Pop

    2014-11-01

    Full Text Available The purpose of this study was to optimize the kefir grains biomass production, using milk as culture media. The kefir grains were cultured at different changed conditions (temperature, time, shaker rotating speed, culture media supplemented to evaluate their effects. Results showed that optimal culture conditions were using the organic skim milk, incubated at 25°C for 24 hours with a rotation rate of 125 rpm. According to results, the growth rate was 38.9 g/L for 24 h, at 25°C using the organic milk - OSM, 36.87 g/L during 24 hours, optimal time for propagation process gave 37.93 g/L kefir grains biomass when the effect of temperature level was tested. The homogenization of medium with shaker rotating induced a greater growth rate, it was obtained 38.9 g/L for 24 h, at 25°C using rotation rate at 125 rpm. The growing medium (conventional milk supplemented with different minerals and vitamins may lead to improve the growth conditions of kefir grains biomass. The optimization of the growth environment is very important for achieving the maximum production of kefir grains biomass, substrate necessary to obtain the polysaccharide kefiran

  1. Microbial production of gaseous hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Hideo

    1987-10-20

    Microbial production of ethylene, isobutane and a saturated gaseous hydrocarbon mixture was described. Microbial ethylene production was studied with Penicillium digitatum IFO 9372 and a novel pathway of the ethylene biosynthesis through alpha-ketoglutarate was proposed. Rhodotorula minuta IFO 1102 was selected for the microbial production of isobutane and the interesting actions of L-leucine and L-phenylalanine for the isobutane production were found. It was finally presented about the microbial production of a saturated gaseous hydrocarbon mixture with Rhizopus japonicus IFO 4758 was described. A gas mixture was produced through a chemical reaction of SH compounds and some cellular component such as squalene under aerobic conditions. (4 figs, 7 tabs, 41 refs)

  2. Method for the conversion of hydrocarbon charges

    Energy Technology Data Exchange (ETDEWEB)

    Whittam, T V

    1976-11-11

    The basis of the invention is the application of defined zeolites as catalysts to hydrocarbon conversion processes such as reformation, isomerization, dehydrocyclization, and cracking. By charging the zeolite carrier masses with 0.001 to 5% metal of the 8th group of the periodic system, preferably noble metals, a wide region of applications for the catalysts is achieved. A method for the isomerization of an alkyl benzene (or mixture of alkyl benzenes) in the liquid or gas phase under suitable temperature, pressure and flow-rate conditions, as well as in the presence of a cyclic hydrocarbon, is described as preferential model form of the invention; furthermore, a method for the reformation of a hydrocarbon fraction boiling in the gasoline or benzene boiling region and a method for the hydrocracking of hydrocarbon charge (e.g. naphtha, kerosine, gas oils) are given. Types of performance of the methods are explained using various examples.

  3. Volatilisation of aromatic hydrocarbons from soil

    DEFF Research Database (Denmark)

    Lindhardt, B.; Christensen, T.H.

    1996-01-01

    The non-steady-state fluxes of aromatic hydrocarbons were measured in the laboratory from the surface of soils contaminated with coal tar Four soil samples from a former gasworks site were used for the experiments. The fluxes were quantified for 11 selected compounds, 4 mono- and 7 polycyclic...... aromatic hydrocarbons, for a period of up to 8 or 16 days. The concentrations of the selected compounds in the soils were between 0.2 and 3,100 mu g/g. The study included the experimental determination of the distribution coefficient of the aromatic hydrocarbons between the sorbed phase and the water under...... saturated conditions. The determined distribution coefficients showed that the aromatic hydrocarbons were more strongly sorbed to the total organic carbon including the coal tar pitch - by a factor of 8 to 25 - than expected for natural organic matter. The fluxes were also estimated using an analytical...

  4. Recovering low-boiling hydrocarbons, etc

    Energy Technology Data Exchange (ETDEWEB)

    Pier, M

    1934-10-03

    A process is described for the recovery of low-boiling hydrocarbons of the nature of benzine through treatment of liquid carbonaceous materials with hydrogen under pressure at raised temperature, suitably in the presence of catalysts. Middle oils (practically saturated with hydrogen) or higher boiling oils at a temperature above 500/sup 0/ (with or without the addition of hydrogen) containing cyclic hydrocarbons not saturated with hydrogen are changed into low boiling hydrocarbons of the nature of benzine. The cracking takes place under strongly hydrogenating conditions (with the use of a strongly active hydrogenating catalyst or high pressure) at temperatures below 500/sup 0/. If necessary, the constituents boiling below 200/sup 0/ can be reconverted into cyclic hydrocarbons partially saturated with hydrogen. (BLM)

  5. Production of hydrogen from hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Lohmueller, R

    1984-03-01

    Hydrocarbons are the preferred starting materials for the industrial production of hydrogen. Most hydrogen is produced by steam reforming of light hydrocarbons. Partial oxidation of heavy oil and residue is used for the production of H/sub 2/ and synthesis gas in large plants. In both cases gas purification was improved. Hydrogen-rich gases like coke oven gas, refinery-offgas, and offgases from the chemical and petrochemical industry have high potential for becoming a major source of hydrogen. Processes for recovering H/sub 2/ (and by-products) are condensation and rectification at low temperatures and, most attractive and versatile for the production of very pure H/sub 2/, adsorption (PSA). The environmental impact of H/sub 2/ production lies mainly in the emission of CO/sub 2/ and heat. Other forms of pollution can be considerably reduced by conventional methods. The economy of H/sub 2/ production depends essentially on price and availability of the raw materials.

  6. Effects of synthesis conditions on ion exchange properties of α-zirconium phosphate for Eu and Am

    Energy Technology Data Exchange (ETDEWEB)

    Wiikinkoski, Elmo W.; Harjula, Risto O.; Lehto, Jukka K.; Koivula, Risto T. [Helsinki Univ. (Finland). Lab. of Radiochemistry; Kemell, Marianna L. [Helsinki Univ. (Finland). Lab. of Inorganic Chemistry

    2017-07-01

    interdependencies between acidity of the product, unit cell volume, IR absorption, K{sub D}, k{sub M/H} and k{sub M}. Finally, it can be concluded that the ion exchange properties of α-ZrP products can be modified considerably by varying their synthesis conditions, perhaps to tailor specific actinide/lanthanide separations.

  7. Piper-betle-shaped nano-S-catalyzed synthesis of 1-amidoalkyl-2-naphthols under solvent-free reaction condition: a greener "nanoparticle-catalyzed organic synthesis enhancement" approach.

    Science.gov (United States)

    Das, Vijay K; Borah, Madhurjya; Thakur, Ashim J

    2013-04-05

    Nano-S prepared by an annealing process showed excellent catalytic activity for the synthesis of 1-amidoalkyl-2-naphthols under solvent-free reaction condition at 50 °C. The catalyst could be reused up to the fifth cycle without loss in its action. The green-ness of the present protocol was also measured using green metrics drawing its superiority.

  8. Photocatalyzed synthesis of isochromanones and isobenzofuranones under batch and flow conditions

    Directory of Open Access Journals (Sweden)

    Manuel Anselmo

    2017-07-01

    Full Text Available Photocatalyzed reactions of 2-(alkoxycarbonylbenzenediazonium tetrafluoroborates with various alkenes afforded isochromanones in good yields, according to a mechanism that was investigated. The advantage of using highly soluble esters rather than carboxylic acids as starting compounds became evident when the reactions were performed under flow conditions. On the other hand, when 2-vinylbenzoic acid derivatives were employed as reagents, isobenzofuranones were obtained together with unprecedented benzo[e][1,3]oxazepin-1(5H-ones, with the latter derived from incorporation of the solvent (acetonitrile.

  9. Genomic and transcriptomic analysis of aroma synthesis in two hybrids between Saccharomyces cerevisiae and S. kudriavzevii in winemaking conditions.

    Science.gov (United States)

    Gamero, Amparo; Belloch, Carmela; Querol, Amparo

    2015-09-04

    Aroma is one of the most important attributes defining wine quality in which yeasts play a crucial role, synthesizing aromatic compounds or releasing odourless conjugates. A present-day trend in winemaking consists of lowering fermentation temperature to achieve higher aroma production and retention. S. cerevisiae × S. kudriavzevii hybrids seem to have inherited beneficial traits from their parental species, like fermenting efficiently at low temperature or producing higher amounts of certain aromatic compounds. In this study, allelic composition and gene expression of the genes related to aroma synthesis in two genetically and phenotypically different S. cerevisiae × S. kudriavzevii hybrids, Lalvin W27 and VIN7, were compared and related to aroma production in microvinifications at 12 and 28 °C. In addition, the contribution of the allele coming from each parental to the overall expression was explored by RT-PCR. The results indicated large differences in allele composition, gene expression and the contribution of each parental to the overall expression at the fermentation temperatures tested. Results obtained by RT-PCR showed that in ARO1 and ATF2 genes the S. kudriavzevii allele was more expressed than that of S. cerevisiae particularly at 12 °C. This study revealed high differences regarding allele composition and gene expression in two S. cerevisiae × S. kudriavzevii hybrids, which may have led to different aroma profiles in winemaking conditions. The contribution of the alleles coming from each parental to the overall expression has proved to differently influence aroma synthesis. Besides, the quantitative contribution to the overall gene expression of the alleles coming from one parental strain or the other was clearly determined by the fermentation temperature for some genes.

  10. Sterol synthesis and cell size distribution under oscillatory growth conditions in Saccharomyces cerevisiae scale-down cultivations.

    Science.gov (United States)

    Marbà-Ardébol, Anna-Maria; Bockisch, Anika; Neubauer, Peter; Junne, Stefan

    2018-02-01

    Physiological responses of yeast to oscillatory environments as they appear in the liquid phase in large-scale bioreactors have been the subject of past studies. So far, however, the impact on the sterol content and intracellular regulation remains to be investigated. Since oxygen is a cofactor in several reaction steps within sterol metabolism, changes in oxygen availability, as occurs in production-scale aerated bioreactors, might have an influence on the regulation and incorporation of free sterols into the cell lipid layer. Therefore, sterol and fatty acid synthesis in two- and three-compartment scale-down Saccharomyces cerevisiae cultivation were studied and compared with typical values obtained in homogeneous lab-scale cultivations. While cells were exposed to oscillating substrate and oxygen availability in the scale-down cultivations, growth was reduced and accumulation of carboxylic acids was increased. Sterol synthesis was elevated to ergosterol at the same time. The higher fluxes led to increased concentrations of esterified sterols. The cells thus seem to utilize the increased availability of precursors to fill their sterol reservoirs; however, this seems to be limited in the three-compartment reactor cultivation due to a prolonged exposure to oxygen limitation. Besides, a larger heterogeneity within the single-cell size distribution was observed under oscillatory growth conditions with three-dimensional holographic microscopy. Hence the impact of gradients is also observable at the morphological level. The consideration of such a single-cell-based analysis provides useful information about the homogeneity of responses among the population. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Comparative Genomics of the Ubiquitous, Hydrocarbon-degrading Genus Marinobacter

    Science.gov (United States)

    Singer, E.; Webb, E.; Edwards, K. J.

    2012-12-01

    The genus Marinobacter is amongst the most ubiquitous in the global oceans and strains have been isolated from a wide variety of marine environments, including offshore oil-well heads, coastal thermal springs, Antarctic sea water, saline soils and associations with diatoms and dinoflagellates. Many strains have been recognized to be important hydrocarbon degraders in various marine habitats presenting sometimes extreme pH or salinity conditions. Analysis of the genome of M. aquaeolei revealed enormous adaptation versatility with an assortment of strategies for carbon and energy acquisition, sensation, and defense. In an effort to elucidate the ecological and biogeochemical significance of the Marinobacters, seven Marinobacter strains from diverse environments were included in a comparative genomics study. Genomes were screened for metabolic and adaptation potential to elucidate the strategies responsible for the omnipresence of the Marinobacter genus and their remedial action potential in hydrocarbon-polluted waters. The core genome predominantly encodes for key genes involved in hydrocarbon degradation, biofilm-relevant processes, including utilization of external DNA, halotolerance, as well as defense mechanisms against heavy metals, antibiotics, and toxins. All Marinobacter strains were observed to degrade a wide spectrum of hydrocarbon species, including aliphatic, polycyclic aromatic as well as acyclic isoprenoid compounds. Various genes predicted to facilitate hydrocarbon degradation, e.g. alkane 1-monooxygenase, appear to have originated from lateral gene transfer as they are located on gene clusters of 10-20% lower GC-content compared to genome averages and are flanked by transposases. Top ortholog hits are found in other hydrocarbon degrading organisms, e.g. Alcanivorax borkumensis. Strategies for hydrocarbon uptake encoded by various Marinobacter strains include cell surface hydrophobicity adaptation via capsular polysaccharide biosynthesis and attachment

  12. Sol-gel synthesis of lithium metatitanate as tritium breeding material under different sintering conditions

    Science.gov (United States)

    Lu, Wei; Wang, Jing; Pu, Wenjing; Li, Kaiping; Ma, Shubing; Wang, Weihua

    2018-04-01

    Lithium metatitanate (Li2TiO3) is a promising tritium breeding material candidate for solid blanket of D-T fusion reactors, due to its high mechanical strength, chemical stability, and tritium release rate. In this paper, Li2TiO3 powder with homogeneous crystal structure is synthesized by sol-gel method. The chemical reactions in gel thermal cracking and sintering process are studied by thermo gravimetric/differential scanning calorimetry (TG-DSC). The relationship between the sintering condition and the particle/grain size is characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Results show that below 673 K the gel precursor is completely decomposed and Li2TiO3 phase initially forms. The LiTiO2 by-product formed under the reductive atmosphere in muffle furnace, could be oxidized continually to Li2TiO3 at higher sintering temperature (≥1273 K) for longer sintering time (≥10 h). Both grain and particle sizes rely on a linear growth with the increase of sintering time at 1273 K. Over 1473 K, significant agglomerations exist among particles. The optimal sintering condition is selected as 1273 K for 10 h, for the purer Li2TiO3 phase (>99%), smaller grain and particle size.

  13. The Influence of Conditions on Synthesis Hydroxyapatite By Chemical Precipitation Method

    Science.gov (United States)

    Zhu, Jianping; Kong, Deshuang; Zhang, Yin; Yao, Nengjian; Tao, Yaqiu; Qiu, Tai

    2011-10-01

    Particles of Hydroxyapatite (HAp) were synthesized by means of chemical precipitation method, under atmosphere pressure. The starting solution with the Ca/P ratio of 1.67 was prepared by mixing 0.167 mol·dm-3 Ca(NO3)2·4H2O, 0.100 mol·dm-3 (NH4)2HPO4, 0.500 mol·dm-3 (NH2)2CO and 0.10 mol·dm-3 HNO3 aqueous solutions. The hydroxyapatite were prepared by heating the solution at 80 °C for 24 hour and then at 90°C for 72 hour. Then followed, the dry powers were heat treatment at 660°C temperatures for 8 hour. The obtained powder was analyzed using XRD, XRF, FT-IR, SEM, TG-DTA. The results showed that obtained HAp powers were greatly influenced by synthetic conditions. HAp powders with various morphologies, such as sphere, rod, layered, dumbbell, fibre, scaly, were obtained by controlling the synthetic conditions.

  14. The Influence of Conditions on Synthesis Hydroxyapatite By Chemical Precipitation Method

    International Nuclear Information System (INIS)

    Zhu Jianping; Zhang Yin; Yao Nengjian; Tao Yaqiu; Qiu Tai; Kong Deshuang

    2011-01-01

    Particles of Hydroxyapatite (HAp) were synthesized by means of chemical precipitation method, under atmosphere pressure. The starting solution with the Ca/P ratio of 1.67 was prepared by mixing 0.167 mol·dm −3 Ca(NO 3 ) 2 ·4H 2 O, 0.100 mol·dm −3 (NH 4 ) 2 HPO 4 , 0.500 mol·dm −3 (NH 2 ) 2 CO and 0.10 mol·dm −3 HNO3 aqueous solutions. The hydroxyapatite were prepared by heating the solution at 80 °C for 24 hour and then at 90°C for 72 hour. Then followed, the dry powers were heat treatment at 660°C temperatures for 8 hour. The obtained powder was analyzed using XRD, XRF, FT-IR, SEM, TG-DTA. The results showed that obtained HAp powers were greatly influenced by synthetic conditions. HAp powders with various morphologies, such as sphere, rod, layered, dumbbell, fibre, scaly, were obtained by controlling the synthetic conditions.

  15. The experience of facilitators and participants of long term condition self-management group programmes: A qualitative synthesis.

    Science.gov (United States)

    Hughes, Stephen; Lewis, Sophie; Willis, Karen; Rogers, Anne; Wyke, Sally; Smith, Lorraine

    2017-12-01

    Our aim was to systematically review the qualitative literature about the experiences of both facilitators and participants in a range of group-based programmes to support the self-management of long-term conditions. We searched 7 databases using the terms 'self-management', 'group' and 'qualitative'. Full text articles meeting the inclusion criteria were retrieved for review. A thematic synthesis approach was used to analyse the studies. 2126 articles were identified and 24 were included for review. Group participants valued being with similar others and perceived peer support benefits. Facilitators (HCP and lay) had limited group specific training, were uncertain of purpose and prioritised education and medical conformity over supportive group processes and the promotion of self-management agency and engagement. Overall, studies prioritised positive descriptions. Group programmes' medical self-management focus may reduce their ability to contribute to patient-valued outcomes. Further research is needed to explore this disconnect. This review supports broadening the scope of group-based programmes to foreground shared learning, social support and development of agency. It is of relevance to developers and facilitators of group self-management programmes and their ability to address the burden of long-term conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Limit strains for severe accident conditions. Synthesis report of the EU-project LISSAC

    International Nuclear Information System (INIS)

    Krieg, R.; Seidenfuss, M.

    2003-10-01

    The local failure strains of essential reactor vessel components are investigated. The size influence of the components is of special interest. Typical severe accident conditions including elevated temperatures and dynamic loads are considered. The main part of work consists of test families with specimens under uniaxial and biaxial static and dynamic loads. Within one test family the specimen geometry and the load conditions are similar, the temperature is the same; but the size is varied up to reactor dimensions. Special attention is given to geometries with a hole or a notch causing non-uniform stress and strain distributions typical for reactor components. To manufacture all specimens sufficient material was available from the unused reactor pressure vessel Biblis C. Thus variations of the mechanical material properties, which could impair the interpretation of the test results, are rather small. This has been confirmed by an adequate number of additional quality assurance tests. A key problem was to determine the local strain at failure. Here suitable methods had to be developed including the so-called ''vanishing gap method'' and the ''forging die method''. They are based on post test geometrical measurements of the fracture surfaces and reconstructions of the related strain fields using finite element calculations, for instance. To deepen the understanding of structural degradation and fracture and to allow extrapolations, advanced computational methods including damage models have been developed and validated. Several approaches were tried in parallel including so-called non-local concepts and descriptions of stochastic properties at grain size level. The experimental results indicate that stresses versus dimensionless deformations are approximately size independent up to failure for specimens of similar geometry under similar load conditions. Also the maximum stress is approximately size independent, if failure occurs after the maximum stress is reached

  17. Synthesis and characterization of cellulose acetate from rice husk: eco-friendly condition.

    Science.gov (United States)

    Das, Archana M; Ali, Abdul A; Hazarika, Manash P

    2014-11-04

    Cellulose acetate was synthesized from rice husk by using a simple, efficient, cost-effective and solvent-free method. Cellulose was isolated from rice husk (RH) using standard pretreatment method with dilute alkaline and acid solutions and bleaching with 2% H2O2. Cellulose acetate (CA) was synthesized successfully with the yield of 66% in presence of acetic anhydride and iodine as a catalyst in eco-friendly solvent-free conditions. The reaction parameters were standardized at 80 °C for 300 min and the optimum results were taken for further study. The extent of acetylation was evaluated from % yield and the degree of substitution (DS), which was determined by (1)H NMR and titrimetrically. The synthesized products were characterized with the help modern analytical techniques like FT-IR, (1)H NMR, XRD, etc. and the thermal behavior was evaluated by TGA and DSC thermograms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Facile synthesis of water-soluble carbon nano-onions under alkaline conditions

    Directory of Open Access Journals (Sweden)

    Gaber Hashem Gaber Ahmed

    2016-05-01

    Full Text Available Carbonization of tomatoes at 240 °C using 30% (w/v NaOH as catalyst produced carbon onions (C-onions, while solely carbon dots (C-dots were obtained at the same temperature in the absence of the catalyst. Other natural materials, such as carrots and tree leaves (acer saccharum, under the same temperature and alkaline conditions did not produce carbon onions. XRD, FTIR, HRTEM, UV–vis spectroscopy, and photoluminescence analyses were performed to characterize the as-synthesized carbon nanomaterials. Preliminary tests demonstrate a capability of the versatile materials for chemical sensing of metal ions. The high content of lycopene in tomatoes may explain the formation of C-onions in alkaline media and a possible formation mechanism for such structures was outlined.

  19. The effect of synthesis conditions on the formation of titanate nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Qamar, M.; Yoon, C. R.; Oh, H. J.; Kim, S. J. [Sejong University, Seoul (Korea, Republic of); Kim, D. H.; Lee, K. S. [Hanyang University, Seoul (Korea, Republic of); Lee, H. G. [Korea Polytechnic University, Siheung (Korea, Republic of)

    2006-10-15

    The TiO{sub 2} sol was prepared hydrothermally in an autoclave from aqueous TiOCl{sub 2} solutions as a starting precursor. Hollow fibers were obtained when the sol-gel-derived TiO{sub 2} sol was treated chemically with a NaOH solution and subsequently heated in the autoclave under various conditions. A systematic analysis of the influence of different NaOH concentrations on the formation of nanotubes was carried out. The details of the nanotubular structure were investigated by using transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), Brauner-Emmett-Teller (BET) surface area, and photoluminescence (PL) measurements. From the TEM images, the outer and the inner diameters of the tubes were measured to be about 8 and 4 nm, respectively, the lengths were measured to be several hundreds of nanometers.

  20. Requirement for the eIF4E binding proteins for the synergistic down-regulation of protein synthesis by hypertonic conditions and mTOR inhibition.

    Science.gov (United States)

    Clemens, Michael J; Elia, Androulla; Morley, Simon J

    2013-01-01

    The protein kinase mammalian target of rapamycin (mTOR) regulates the phosphorylation and activity of several proteins that have the potential to control translation, including p70S6 kinase and the eIF4E binding proteins 4E-BP1 and 4E-BP2. In spite of this, in exponentially growing cells overall protein synthesis is often resistant to mTOR inhibitors. We report here that sensitivity of wild-type mouse embryonic fibroblasts (MEFs) to mTOR inhibitors can be greatly increased when the cells are subjected to the physiological stress imposed by hypertonic conditions. In contrast, protein synthesis in MEFs with a double knockout of 4E-BP1 and 4E-BP2 remains resistant to mTOR inhibitors under these conditions. Phosphorylation of p70S6 kinase and protein kinase B (Akt) is blocked by the mTOR inhibitor Ku0063794 equally well in both wild-type and 4E-BP knockout cells, under both normal and hypertonic conditions. The response of protein synthesis to hypertonic stress itself does not require the 4E-BPs. These data suggest that under certain stress conditions: (i) translation has a greater requirement for mTOR activity and (ii) there is an absolute requirement for the 4E-BPs for regulation by mTOR. Importantly, dephosphorylation of p70S6 kinase and Akt is not sufficient to affect protein synthesis acutely.

  1. Highly Efficient Catalytic Synthesis of α-Amino Acids under Phase-Transfer Conditions with a Novel Catalyst/Substrate Pair

    NARCIS (Netherlands)

    Belokon, Yuri N.; Kochetkov, Konstantin A.; Churkina, Tatiana D.; Ikonnikov, Nikolai S.; Larionov, Oleg V.; Harutyunyan, Syuzanna R.; Vyskočil, Štepán; North, Michael; Kagan, Henri B.

    2001-01-01

    A facile and fast enantioselective synthesis of α-amino acids with high ee values was achieved by the asymmetric alkylation of the glycine derivative under phase-transfer conditions with (R)- or (S)-2-amino-2'-hydroxy-1,1'-binaphthyl (NOBIN). The ee value of the catalyst can be as little as 40 %

  2. CATALYST-FREE REACTIONS UNDER SOLVENT-FEE CONDITIONS: MICROWAVE-ASSISTED SYNTHESIS OF HETEROCYCLIC HYDRAZONES BELOW THE MELTING POINT OF NEAT REACTANTS: JOURNAL ARTICLE

    Science.gov (United States)

    NRMRL-CIN-1437 Jeselnik, M., Varma*, R.S., Polanc, S., and Kocevar, M. Catalyst-free Reactions under Solvent-fee Conditions: Microwave-assisted Synthesis of Heterocyclic Hydrazones below the Melting Point of Neat Reactants. Published in: Chemical Communications 18:1716-1717 (200...

  3. Persistent chlorinated hydrocarbons (PHC) - end products and intermediate products of technical synthesis processes in surface water of the Rhine region. Vol. 5: Site profiles of persistent chlorinated hydrocarbons - source-oriented monitoring in aquatic media; Persistente chlorierte Kohlenwasserstoffe (PCKW) - End- und Zwischenprodukte technischer Synthesen in Gewaessern der Rheinregion. Band 5 der Reihe: Standortprofile persistenter chlorierter Kohlenwasserstoffe - ursachenorientiertes Monitoring in aquatischen Medien

    Energy Technology Data Exchange (ETDEWEB)

    Heinisch, E.; Kettrup, A.; Bergheim, W.; Wenzel, S.

    2003-07-01

    By evaluating the primary data from 20 regional institutions in the period 1984-2002 about persistent chlorinated hydrocarbons (PCHC) in fishes (eels, Anguilla anguilla; breams, Abramis brama; barbs, Barbus barbus and reaches, Rutilus rutilus), sediment and suspended matter it was tried to mark the burdens and substance profiles for sampling sites on the river Rhine and rivers in BW, Hess, RP and NRW. The compounds investigated were the isomere di-, tri- and tetrachlorobenzenes, penta- and hexachlorobenzene, octachlorostyrene (OCS), hexachlorobutadiene (HCBD) as well as the 6 DIN (IUPAC, Ballschmiter) congeners of the PCB, substances which were - as to the REACH - described as PBT, partly as vPvB substances and regarded as ''priority harmful substances'' (PCBz; HCB, HCBD), respectively. The statistically elaborated single data were summarized in distance profiles and time series, aiming at marking local and regional immissions as well as hints to their origin and current importance. The background of these efforts is the lack of specialized publications about technical synthesis or compulsory yield of the compounds concerning kind, amount and period. Especially tetrachlorobenzene (mainly 1,2,4,5-TeCBz) and HCBD could be defined as indicator substances for past and recent technical synthesis of chloroorganic compounds. The higher chlorinated PCB congeners no. 138, 153 and 180 (HPCB) proved very persistent. The sites of chemical industry in the vicinity of the sampling points Rheinfelden, Grenzach, Lampertheimer Altrhein, Biebesheimer Rhein, Muendung Schwarzbach, Bischofsheim and Griesheim (Main), Hitdorf, Duisburg-Homberg und Huels (Lippe) could be made transparent by maxima and special substance patterns. (orig.) [German] Durch Auswertung von Primaerdaten ueber persistente chlorierte Kohlenwasserstoffe (PCKW) in Fischen (Aale, Anguilla anguilla; Brachsen, Abramis brama; Barben, Barbus barbus und Rotaugen, Rutilus rutilus), Sediment und

  4. Synthesis and characterization of conditioned carbon with iron nanoparticles for the arsenic removal in aqueous phase

    International Nuclear Information System (INIS)

    Flores C, D. O.

    2012-01-01

    Using pineapple husks conditioned with carboxymethylcellulose, hexamine and ferric nitrate, a carbonaceous material was obtained with nanoparticles of Fe (C Fe), which was characterized and tested for arsenic removal in the aqueous phase. The microscopic study showed spheres 4 microns and filaments 100 nm wide, so as iron particles whose diameter decreases to an average of 38.81 nm, when pyrolysis time was increased to 180 min. their distribution in the carbonaceous matrix is homogeneous. According to energy dispersive X-ray spectroscopy, C Fe contains C (82.29%), O (7.23%), K (0.68%), Ca (3.77%) and Fe (6.25%) and its diffraction pattern shows the characteristic peak of Fe (0), which is not observed in the coal without iron. By neutron activation analysis were quantified Al, Br, Ce, Co, Cr, Cs, Eu, Hf, K, Mg, Mn, Na, Rb, Sb, Sc and Zn, they can be involved in the process of sorption of As (v) forming surface active sites. For C Fe and C B characterized by Fourier transform infrared spectrometry, groups C-H, C=O, C=C, -Nh, NH 2 , isocyanate and isonitrile were found, the last two were formed by the present hexamine. X-ray photoelectron spectroscopy showed energy states of C 1 and O 1 in pineapple shell washed, shell conditioned with iron, C Fe at different times and the pyrolysis coal without iron (C B). The material C Fe 180 presented a specific area of 167 m 2 /g and 7.12 ± 1 sites/nm 2 isoelectric point while pH i = 11.1 C B is 98.80 m 2 /g specific area and 1.5 ± 1 sites/nm 2 and pH i = 10.6, being favorable to the sorption process. The highest removal of As(v) for both materials was at ph = 2, fitting the kinetic data to pseudo-second order model. The isotherms as a function of concentration were adjusted to Freundlich model indicating multilayer chemisorption at specific sites of a heterogeneous medium. Characterization by scanning electron microscopy after the sample sorption Fe nanoparticles remain in the carbonaceous matrix being not affected by the

  5. Controlling the synthesis conditions for silica nanosphere from semi-burned rice straw

    International Nuclear Information System (INIS)

    Hessien, M.M.; Rashad, M.M.; Zaky, R.R.; Abdel-Aal, E.A.; El-Barawy, K.A.

    2009-01-01

    Silica nanoparticles have been prepared through dissolution-precipitation process from rice straw ash (RSA) for different electronic applications. The dissolution of silica from RSA was carried out using alkali leaching process by sodium hydroxide. The precipitation of silica from the produced sodium silicate solution was carried out using sulphuric acid at pH 7. The factors affecting the precipitation process of the sodium silicate solution of dissociated RSA; such as; sodium silicate concentration, sulfuric acid concentration and addition of anionic surfactant (sodium dodecyl sulfate, SDS) on the particle size of the precipitated silica were studied. X-ray diffraction (XRD), X-ray fluorescence (XRF), specific surface area S BET and transmission electron microscope (TEM) have been used for the characterization of the produced nano-silica. The results showed that the optimum conditions of the dissolution efficiency of the silica of about 99% was achieved at 100 deg. C for 4 h, and NaOH/SiO 2 molar ratio three. The particle size of the precipitated silica gel was decreased with increasing Na 2 SiO 3 and SDS concentrations, while H 2 SO 4 concentration had insignificant effect. Particle size of about 16 nm can be achieved at 30% Na 2 SiO 3 , 4% H 2 SO 4 and 200 ppm SDS. The produced silica had 99.93% purity, amorphous and nanosphere particles with narrow size distribution. The produced silica can be used in many applications especially for chemical mechanical polishing (CMP) slurries for semiconductors industries.

  6. Synthesis of iron oxide nanorods via chemical scavenging and phase transformations of intermediates at ambient conditions

    Energy Technology Data Exchange (ETDEWEB)

    Deshmukh, Ruchi; Mehra, Anurag; Thaokar, Rochish, E-mail: rochish@che.iitb.ac.in [Indian Institute of Technology-Bombay, Department of Chemical Engineering (India)

    2017-01-15

    Chemically induced shape transformations of isotropic seeds, comprised of iron oxyhydroxides and iron oxide borate into nanorods, is reported. Transient growth studies show that the nanorods are formed via phase transformation and aggregation of various metastable species. Addition of tetra-methyl-ammonium hydroxide (TMAH) to the in situ synthesized seeds ensures a typical reaction pathway that favors formation of magnetite (Fe {sub 3}O{sub 4}) via the steps of chemical etching, phase transformation of intermediates, and crystal consolidation. Whereas, with addition of sodium hydroxide (NaOH), either magnetite (Fe {sub 3}O{sub 4}) or a mixture of (γ-Fe {sub 2}O{sub 3} + α-FeOOH) is obtained. The shape with both the additives is always that of nanorods. When the seeds treated with TMAH were aged in an ultrasonication bath, rods with almost twice the length and diameter (length = 2800 nm, diameter = 345 nm) are obtained as compared to the sample aged without ultrasonication (length = 1535 nm, diameter = 172 nm). The morphology of nanostructures depending upon other experimental conditions such as, aging the sample at 60 {sup ∘}C, seeds synthesized under ultrasonication/ stirring or externally added are also examined and discussed in detail. All the samples show high coercivity and strong ferromagnetic behavior at room temperature and should be promising candidates as ferro-fluids for various applications.

  7. Effects of flame conditions on the synthesis of germanium oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ifeacho, P.; Simanzhenkhov, V.; Wiggers, H.; Roth, P.; Schulz, C. [Duisburg-Essen Univ., Duisburg (Germany). Inst. fuer Verbrennung und Gasdynamik

    2005-07-01

    A low pressure premixed H{sub 2}/O{sub 2}/Ar flat flame doped with tetramethyl germanium Ge(CH{sub 3}){sub 4} (TMG) was used to investigate the influence of the variation of experimental parameters on GeO/GeO{sub 2} nanoparticle formation. GeO as well as GeO{sub 2} are thermodynamically stable, and their appearance and is appearance respectively provides valuable information on oxidizing and reducing conditions in the flame. The reactor was fed with different concentrations of TMG and operated for H{sub 2}/O{sub 2} ratios between 0.6 - 1.3. The pressure was varied between 25 - 55 mbar, while the gas velocity was varied between 0.69 - 1.95 m/s. It was found that, increasing pressure results in a reduction in mean particle diameter. An increase in oxygen concentration accelerates particle growth. For H{sub 2}/O{sub 2} < 1.0, the color of the GeO{sub x}, powders is while indicating the preferential formation of GeO{sub 2}. If the oxygen concentration decreases, the stoichiometry shifts towards GeO represented by a color transformation starting from while over grey to black. Transmission electron microscopy (TEM) and particle mass spectrometry (PMS) indicate the formation of particles with spherical morphology and mean diameters of 1.5 nm - 10 nm. (orig.)

  8. Asymmetric Hollow Fiber Membranes for Separation of CO 2 from Hydrocarbons and Fluorocarbons at High-Pressure Conditions Relevant to C 2 F 4 Polymerization

    KAUST Repository

    Kosuri, Madhava R.

    2009-12-02

    Separation of high-pressure carbon dioxide from fluorocarbons is important for the production of fluoropolymers such as poly(tetrafluoroethylene). Typical polymeric membranes plasticize under high CO2 partial pressure conditions and fail to provide adequate selective separations. Torlon, a polyamide-imide polymer, with the ability to form interchain hydrogen bonding, is shown to provide stability against aggressive CO2 plasticization. Torlon membranes in the form of asymmetric hollow fibers (the most productive form of membranes) are considered for an intended separation of CO 2/C2F4. To avoid safety issues with tetrafluoroethylene (C2F4), which could detonate under testing conditions, safer surrogate mixtures (C2H2F 2 and C2H4) are considered in this paper. Permeation measurements (at 35 °C) indicate that the Torlon membranes are not plasticized even up to 1250 psi of CO2. The membranes provide mixed gas CO2/C2H2F2 and CO 2/C2H4 selectivities of 100 and 30, respectively, at 1250 psi partial pressures of CO2. On the basis of the measured separation performances of CO2/C2H 2F2 and CO2/C2H4 mixtures, the selectivity of the CO2/C2F4 mixture is expected to be greater than 100. Long-term stability studies indicate that the membranes provide stable separations over a period of 5 days at 1250 psi partial pressures of CO2, thereby making the membrane approach attractive. © 2009 American Chemical Society.

  9. Asymmetric Hollow Fiber Membranes for Separation of CO 2 from Hydrocarbons and Fluorocarbons at High-Pressure Conditions Relevant to C 2 F 4 Polymerization

    KAUST Repository

    Kosuri, Madhava R.; Koros, William J.

    2009-01-01

    Separation of high-pressure carbon dioxide from fluorocarbons is important for the production of fluoropolymers such as poly(tetrafluoroethylene). Typical polymeric membranes plasticize under high CO2 partial pressure conditions and fail to provide adequate selective separations. Torlon, a polyamide-imide polymer, with the ability to form interchain hydrogen bonding, is shown to provide stability against aggressive CO2 plasticization. Torlon membranes in the form of asymmetric hollow fibers (the most productive form of membranes) are considered for an intended separation of CO 2/C2F4. To avoid safety issues with tetrafluoroethylene (C2F4), which could detonate under testing conditions, safer surrogate mixtures (C2H2F 2 and C2H4) are considered in this paper. Permeation measurements (at 35 °C) indicate that the Torlon membranes are not plasticized even up to 1250 psi of CO2. The membranes provide mixed gas CO2/C2H2F2 and CO 2/C2H4 selectivities of 100 and 30, respectively, at 1250 psi partial pressures of CO2. On the basis of the measured separation performances of CO2/C2H 2F2 and CO2/C2H4 mixtures, the selectivity of the CO2/C2F4 mixture is expected to be greater than 100. Long-term stability studies indicate that the membranes provide stable separations over a period of 5 days at 1250 psi partial pressures of CO2, thereby making the membrane approach attractive. © 2009 American Chemical Society.

  10. Thraustochytrid protists degrade hydrocarbons

    Digital Repository Service at National Institute of Oceanography (India)

    Raikar, M.T.; Raghukumar, S.; Vani, V.; David, J.J.; Chandramohan, D.

    isolation tubes with crude oil. Three isolates tested showed positive hydrophobicity of cell walls as judged by the Microbial Adhesion to Hydrocarbons (MATH) assay. Addition of Bombay High crude oil to nutrient broth slightly enhanced growth of the protists...

  11. In situ ligand synthesis with the UO22+ cation under hydrothermal conditions

    International Nuclear Information System (INIS)

    Frisch, Mark; Cahill, Christopher L.

    2007-01-01

    A novel uranium (VI) coordination polymer, (UO 2 ) 2 (C 2 O 4 )(C 5 H 6 NO 3 ) 2 (1), has been prepared under the hydrothermal reaction of uranium nitrate hexahydrate and L-pyroglutamic acid. Compound 1 (monoclinic, C2/c, a=22.541(6) A, b=5.7428(15) A, c=15.815(4) A, β=119.112(4) o , Z=4, R 1 =0.0237, wR 2 =0.0367) consists of uranium pentagonal bipyramids linked via L-pyroglutamate and oxalate anions to form an overall two-dimensional (2D) structure. With the absence of oxalic acid within the starting materials, the oxalate anions are hypothesized to form in situ whereby decarboxylation of L-pyroglutamic acid occurs followed by coupling of CO 2 to form the oxalate linkages as observed in the crystal structure. Addition of copper (II) to this system appears to promote oxalate formation in that synthetic moolooite (Cu(C 2 O 4 ).nH 2 O; 0≤n≤1) and a known uranyl oxalate [(UO 2 ) 2 (C 2 O 4 )(OH) 2 (H 2 O) 2 .H 2 O], co-crystallize in significant quantity. Compound 1 exhibits the characteristic uranyl emission spectrum upon either direct uranyl excitation or ligand excitation, the latter of which shows an increase in relative intensity. This subsequent increase in the intensity indicates an energy transfer from the ligand to the uranyl cations thus illustrating an example of the antenna effect in the solid state. - Graphical abstract: A novel homometallic coordination polymer (UO 2 ) 2 (C 2 O 4 )(C 5 H 6 NO 3 ) 2 , in the uranium-L-pyroglutamic acid system has been synthesized under hydrothermal conditions. The title compound consists of uranium pentagonal bipyramids bridged through both L-pyroglutamate and oxalate linkages to produce a 3D crystal structure. The oxalate anions are theorized to result from decarboxylation of L-pyroglutamic acid followed by subsequent coupling of CO 2

  12. Effect of field exposure to 38-year-old residual petroleum hydrocarbons on growth, condition index, and filtration rate of the ribbed mussel, Geukensia demissa

    International Nuclear Information System (INIS)

    Culbertson, Jennifer B.; Valiela, Ivan; Olsen, Ylva S.; Reddy, Christopher M.

    2008-01-01

    In September 1969, the Florida barge spilled 700,000 L of No. 2 fuel oil into the salt marsh sediments of Wild Harbor, MA. Today a substantial amount, approximately 100 kg, of moderately degraded petroleum remains within the sediment and along eroding creek banks. The ribbed mussels, Geukensia demissa, which inhabit the salt marsh creek bank, are exposed to the spilled oil. Examination of short-term exposure was done with transplantation of G. demissa from a control site, Great Sippewissett marsh, into Wild Harbor. We also examined the effects of long-term exposure with transplantation of mussels from Wild Harbor into Great Sippewissett. Both the short- and long-term exposure transplants exhibited slower growth rates, shorter mean shell lengths, lower condition indices, and decreased filtration rates. The results add new knowledge about long-term consequences of spilled oil, a dimension that should be included when assessing oil-impacted areas and developing management plans designed to restore, rehabilitate, or replace impacted areas. - Mussels exposed to petroleum in transplant and field experiments exhibited significant long-term effects

  13. Biofilm population dynamics in a trickle-bed bioreactor used for the biodegradation of aromatic hydrocarbons from waste gas under transient conditions.

    Science.gov (United States)

    Hekmat, D; Feuchtinger, A; Stephan, M; Vortmeyer, D

    2004-04-01

    The dynamics of a multispecies biofilm population in a laboratory-scale trickle-bed bioreactor for the treatment of waste gas was examined. The model pollutant was a VOC-mixture of polyalkylated benzenes called Solvesso 100. Fluorescence in-situ hybridization (FISH) was applied in order to characterise the population composition. The bioreactor was operated under transient conditions by applying pollutant concentration shifts and a starvation phase. Only about 10% of the biofilm mass were cells, the rest consisted of extracellular polymeric substances (EPS). The average fraction of Solvesso 100-degrading cells during pollutant supply periods was less than 10%. About 60% of the cells were saprophytes and about 30% were inactive cells. During pollutant concentration shift experiments, the bioreactor performance adapted within a few hours. The biofilm population exhibited a dependency upon the direction of the shifts. The population reacted within days after a shift-down and within weeks after a shift-up. The pollutant-degraders reacted significantly faster compared to the other cells. During the long-term starvation phase, a shift of the population composition took place. However, this change of composition as well as the degree of metabolic activity was completely reversible. A direct correlation between the biodegradation rate of the bioreactor and the number of pollutant-degrading cells present in the biofilm could not be obtained due to insufficient experimental evidence.

  14. Assessing impediments to hydrocarbon biodegradation in weathered contaminated soils.

    Science.gov (United States)

    Adetutu, Eric; Weber, John; Aleer, Sam; Dandie, Catherine E; Aburto-Medina, Arturo; Ball, Andrew S; Juhasz, Albert L

    2013-10-15

    In this study, impediments to hydrocarbon biodegradation in contaminated soils were assessed using chemical and molecular methodologies. Two long-term hydrocarbon contaminated soils were utilised which were similar in physico-chemical properties but differed in the extent of hydrocarbon (C10-C40) contamination (S1: 16.5 g kg(-1); S2: 68.9 g kg(-1)). Under enhanced natural attenuation (ENA) conditions, hydrocarbon biodegradation was observed in S1 microcosms (26.4% reduction in C10-C40 hydrocarbons), however, ENA was unable to stimulate degradation in S2. Although eubacterial communities (PCR-DGGE analysis) were similar for both soils, the alkB bacterial community was less diverse in S2 presumably due to impacts associated with elevated hydrocarbons. When hydrocarbon bioaccessibility was assessed using HP-β-CD extraction, large residual concentrations remained in the soil following the extraction procedure. However, when linear regression models were used to predict the endpoints of hydrocarbon degradation, there was no significant difference (P>0.05) between HP-β-CD predicted and microcosm measured biodegradation endpoints. This data suggested that the lack of hydrocarbon degradation in S2 resulted primarily from limited hydrocarbon bioavailability. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Purifying hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    Rostin, H

    1938-08-11

    A process is described for continuously purifying hydrocarbon oils consisting in conducting the vapors of the same at a temperature of 300 to 400/sup 0/C over the oelitic ore minette together with reducing gases in presence of steam the proportion of the reducing gases and steam being such that the sulfur of the hydrocarbons escapes from the reaction chamber in the form of sulfuretted hydrogen without permanent sulfide of iron being formed.

  16. Process for refining hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Risenfeld, E H

    1924-11-26

    A process is disclosed for the refining of hydrocarbons or other mixtures through treatment in vapor form with metal catalysts, characterized by such metals being used as catalysts, which are obtained by reduction of the oxide of minerals containing the iron group, and by the vapors of the hydrocarbons, in the presence of the water vapor, being led over these catalysts at temperatures from 200 to 300/sup 0/C.

  17. Microwave-assisted one-pot synthesis of ring-fused aminals under catalyst- and solvent-free conditions

    Science.gov (United States)

    Heterocyclic compounds hold a special place in drug discovery and variety of techniques such as combinatorial synthesis, parallel synthesis, and automated library production to increase the output of these entities has been developed. Although most of these techniques are rapid a...

  18. Investigation of sodalites for conditioning halide salts (NaCl and NaI): Comparison of two synthesis routes

    Energy Technology Data Exchange (ETDEWEB)

    Bardez, Isabelle; Campayo, Lionel; Rigaud, Danielle; Chartier, Myriam; Calvet, Aurelie [CEA, Laboratoire d' Etudes des Materiaux Ceramiques pour le Conditionnement, Site de Marcoule, Batiment 208, B.P. 17171, 30207 Bagnols sur Ceze cedex (France)

    2008-07-01

    Sodalites with the general formula Na{sub 8}Al{sub 6}Si{sub 6}O{sub 24}X{sub 2} (where X = Cl or I) were investigated for ceramic conditioning of halide salts (NaCl and NaI). Because of the tendency of halides to volatilize at high temperature, two synthesis routes were tested to optimize the halide content in the sodalite phase. The first is based on heating at high temperature of a [nepheline NaAlSiO{sub 4} + salt] mixture prepared by a dry process. The second, performed at low temperature, consists of the reaction in aqueous media between kaolinite (Al{sub 2}Si{sub 2}O{sub 5}(OH){sub 4}), sodium hydroxide (NaOH) and the salt. The present study compares these two syntheses and examines differences between chloro-sodalite and iodo-sodalite based on X-ray diffraction and infrared spectroscopy. The next step will consist in sintering the resulting powder samples to obtain dense ceramics. (authors)

  19. Polycyclic Aromatic Hydrocarbons

    Science.gov (United States)

    Salama, Farid

    2010-01-01

    Carbonaceous materials play an important role in space. Polycyclic Aromatic Hydrocarbons (PAHs) are a ubiquitous component of the carbonaceous materials. PAHs are the best-known candidates to account for the IR emission bands. They are also thought to be among the carriers of the diffuse interstellar absorption bands (DIBs). PAH ionization states reflect the ionization balance of the medium while PAH size, composition, and structure reflect the energetic and chemical history of the medium. A major challenge is to reproduce in the laboratory the physical conditions that exist in the emission and absorption interstellar zones. The harsh physical conditions of the ISM -low temperature, collisionless, strong UV radiation fields- are simulated in the laboratory by associating a molecular beam with an ionizing discharge to generate a cold plasma expansion. PAH ions and radicals are formed from the neutral precursors in an isolated environment at low temperature and probed with high-sensitivity cavity ringdown spectroscopy in the NUV-NIR range. Carbon nanoparticles are also formed during the short residence time of the precursors in the plasma and are characterized with time-offlight mass spectrometry. These experiments provide unique information on the spectra of large carbonaceous molecules and ions in the gas phase that can now be directly compared to interstellar and circumstellar observations (IR emission bands, DIBs, extinction curve). These findings also hold great potential for understanding the formation process of interstellar carbonaceous grains. We will review recent progress in the experimental and theoretical studies of PAHs, compare the laboratory data with astronomical observations and discuss the global implications.

  20. Optimization of synthesis conditions of PbS thin films grown by chemical bath deposition using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Yücel, Ersin, E-mail: dr.ersinyucel@gmail.com [Department of Physics, Faculty of Arts and Sciences, Mustafa Kemal University, 31034 Hatay (Turkey); Yücel, Yasin; Beleli, Buse [Department of Chemistry, Faculty of Arts and Sciences, Mustafa Kemal University, 31034 Hatay (Turkey)

    2015-09-05

    Highlights: • For the first time, RSM and CCD used for optimization of PbS thin film. • Tri-sodium citrate, deposition time and temperature were independent variables. • PbS thin film band gap value was 2.20 eV under the optimum conditions. • Quality of the film was improved after chemometrics optimization. - Abstract: In this study, PbS thin films were synthesized by chemical bath deposition (CBD) under different deposition parameters. Response surface methodology (RSM) was used to optimize synthesis parameters including amount of tri-sodium citrate (0.2–0.8 mL), deposition time (14–34 h) and deposition temperature (26.6–43.4 °C) for deposition of the films. 5-level-3-factor central composite design (CCD) was employed to evaluate effects of the deposition parameters on the response (optical band gap of the films). The significant level of both the main effects and the interaction are investigated by analysis of variance (ANOVA). The film structures were characterized by X-ray diffractometer (XRD). Morphological properties of the films were studied with a scanning electron microscopy (SEM). The optical properties of the films were investigated using a UV–visible spectrophotometer. The optimum amount of tri-sodium citrate, deposition time and deposition temperature were found to be 0.7 mL, 18.07 h and 30 °C respectively. Under these conditions, the experimental band gap of PbS was 2.20 eV, which is quite good correlation with value (1.98 eV) predicted by the model.

  1. Optimization of synthesis conditions of PbS thin films grown by chemical bath deposition using response surface methodology

    International Nuclear Information System (INIS)

    Yücel, Ersin; Yücel, Yasin; Beleli, Buse

    2015-01-01

    Highlights: • For the first time, RSM and CCD used for optimization of PbS thin film. • Tri-sodium citrate, deposition time and temperature were independent variables. • PbS thin film band gap value was 2.20 eV under the optimum conditions. • Quality of the film was improved after chemometrics optimization. - Abstract: In this study, PbS thin films were synthesized by chemical bath deposition (CBD) under different deposition parameters. Response surface methodology (RSM) was used to optimize synthesis parameters including amount of tri-sodium citrate (0.2–0.8 mL), deposition time (14–34 h) and deposition temperature (26.6–43.4 °C) for deposition of the films. 5-level-3-factor central composite design (CCD) was employed to evaluate effects of the deposition parameters on the response (optical band gap of the films). The significant level of both the main effects and the interaction are investigated by analysis of variance (ANOVA). The film structures were characterized by X-ray diffractometer (XRD). Morphological properties of the films were studied with a scanning electron microscopy (SEM). The optical properties of the films were investigated using a UV–visible spectrophotometer. The optimum amount of tri-sodium citrate, deposition time and deposition temperature were found to be 0.7 mL, 18.07 h and 30 °C respectively. Under these conditions, the experimental band gap of PbS was 2.20 eV, which is quite good correlation with value (1.98 eV) predicted by the model

  2. Increased heme synthesis in yeast induces a metabolic switch from fermentation to respiration even under conditions of glucose repression.

    Science.gov (United States)

    Zhang, Tiantian; Bu, Pengli; Zeng, Joey; Vancura, Ales

    2017-10-13

    Regulation of mitochondrial biogenesis and respiration is a complex process that involves several signaling pathways and transcription factors as well as communication between the nuclear and mitochondrial genomes. Under aerobic conditions, the budding yeast Saccharomyces cerevisiae metabolizes glucose predominantly by glycolysis and fermentation. We have recently shown that altered chromatin structure in yeast induces respiration by a mechanism that requires transport and metabolism of pyruvate in mitochondria. However, how pyruvate controls the transcriptional responses underlying the metabolic switch from fermentation to respiration is unknown. Here, we report that this pyruvate effect involves heme. We found that heme induces transcription of HAP4 , the transcriptional activation subunit of the Hap2/3/4/5p complex, required for growth on nonfermentable carbon sources, in a Hap1p- and Hap2/3/4/5p-dependent manner. Increasing cellular heme levels by inactivating ROX1 , which encodes a repressor of many hypoxic genes, or by overexpressing HEM3 or HEM12 induced respiration and elevated ATP levels. Increased heme synthesis, even under conditions of glucose repression, activated Hap1p and the Hap2/3/4/5p complex and induced transcription of HAP4 and genes required for the tricarboxylic acid (TCA) cycle, electron transport chain, and oxidative phosphorylation, leading to a switch from fermentation to respiration. Conversely, inhibiting metabolic flux into the TCA cycle reduced cellular heme levels and HAP4 transcription. Together, our results indicate that the glucose-mediated repression of respiration in budding yeast is at least partly due to the low cellular heme level. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Air-drying of cells, the novel conditions for stimulated synthesis of triacylglycerol in a Green Alga, Chlorella kessleri.

    Directory of Open Access Journals (Sweden)

    Takuma Shiratake

    Full Text Available Triacylglycerol is used for the production of commodities including food oils and biodiesel fuel. Microalgae can accumulate triacylglycerol under adverse environmental conditions such as nitrogen-starvation. This study explored the possibility of air-drying of green algal cells as a novel and simple protocol for enhancement of their triacylglycerol content. Chlorella kessleri cells were fixed on the surface of a glass fibre filter and then subjected to air-drying with light illumination. The dry cell weight, on a filter, increased by 2.7-fold in 96 h, the corresponding chlorophyll content ranging from 1.0 to 1.3-fold the initial one. Concomitantly, the triacylglycerol content remarkably increased to 70.3 mole% of fatty acids and 15.9% (w/w, relative to total fatty acids and dry cell weight, respectively, like in cells starved of nitrogen. Reduction of the stress of air-drying by placing the glass filter on a filter paper soaked in H2O lowered the fatty acid content of triacylglycerol to 26.4 mole% as to total fatty acids. Moreover, replacement of the H2O with culture medium further decreased the fatty acid content of triacylglycerol to 12.2 mole%. It thus seemed that severe dehydration is required for full induction of triacylglycerol synthesis, and that nutritional depletion as well as dehydration are crucial environmental factors. Meanwhile, air-drying of Chlamydomonas reinhardtii cells increased the triacylglycerol content to only 37.9 mole% of fatty acids and 4.8% (w/w, relative to total fatty acids and dry cell weight, respectively, and a marked decrease in the chlorophyll content, on a filter, of 33%. Air-drying thus has an impact on triacylglycerol synthesis in C. reinhardtii also, however, the effect is considerably limited, owing probably to instability of the photosynthetic machinery. This air-drying protocol could be useful for the development of a system for industrial production of triacylglycerol with appropriate selection of the

  4. [The process of heme synthesis in bone marrow mesenchymal stem cells cultured under fibroblast growth factor bFGF and hypoxic conditions].

    Science.gov (United States)

    Poleshko, A G; Lobanok, E S; Mezhevikina, L M; Fesenko, E E; Volotkovskiĭ, I D

    2014-01-01

    It was demonstrated that fibroblast growth factor bFGF influences the process of heme synthesis, the proliferation activity and viability of bone marrow mesenchymal stem cells in culture under hypoxic conditions. The addition of fibroblast growth factor bFGF (7 ng/ml) to the medium under above conditions led to the accumulation of aminolevulinic acid--an early porphyrin and heme precursor, an increase in CD 71 expression--a transferrin receptor, and also a decrease in porphyrin pigments and heme contents--a late precursor and end products of heme synthesis, respectively. It was found that cultivation of the cells under hypoxic conditions and bFGF is an optimum to maintain high viability and proliferation capacity of the mesenchymal stem cells.

  5. Metabotropic glutamate receptor I (mGluR1) antagonism impairs cocaine-induced conditioned place preference via inhibition of protein synthesis.

    Science.gov (United States)

    Yu, Fei; Zhong, Peng; Liu, Xiaojie; Sun, Dalong; Gao, Hai-Qing; Liu, Qing-Song

    2013-06-01

    Antagonism of group I metabotropic glutamate receptors (mGluR1 and mGluR5) reduces behavioral effects of drugs of abuse, including cocaine. However, the underlying mechanisms remain poorly understood. Activation of mGluR5 increases protein synthesis at synapses. Although mGluR5-induced excessive protein synthesis has been implicated in the pathology of fragile X syndrome, it remains unknown whether group I mGluR-mediated protein synthesis is involved in any behavioral effects of drugs of abuse. We report that group I mGluR agonist DHPG induced more pronounced initial depression of inhibitory postsynaptic currents (IPSCs) followed by modest long-term depression (I-LTD) in dopamine neurons of rat ventral tegmental area (VTA) through the activation of mGluR1. The early component of DHPG-induced depression of IPSCs was mediated by the cannabinoid CB1 receptors, while DHPG-induced I-LTD was dependent on protein synthesis. Western blotting analysis indicates that mGluR1 was coupled to extracellular signal-regulated kinase (ERK) and mammalian target of rapamycin (mTOR) signaling pathways to increase translation. We also show that cocaine conditioning activated translation machinery in the VTA via an mGluR1-dependent mechanism. Furthermore, intra-VTA microinjections of mGluR1 antagonist JNJ16259685 and protein synthesis inhibitor cycloheximide significantly attenuated or blocked the acquisition of cocaine-induced conditioned place preference (CPP) and activation of translation elongation factors. Taken together, these results suggest that mGluR1 antagonism inhibits de novo protein synthesis; this effect may block the formation of cocaine-cue associations and thus provide a mechanism for the reduction in CPP to cocaine.

  6. Thermophilic slurry-phase treatment of petroleum hydrocarbon waste sludges

    International Nuclear Information System (INIS)

    Castaldi, F.J.; Bombaugh, K.J.; McFarland, B.

    1995-01-01

    Chemoheterotrophic thermophilic bacteria were used to achieve enhanced hydrocarbon degradation during slurry-phase treatment of oily waste sludges from petroleum refinery operations. Aerobic and anaerobic bacterial cultures were examined under thermophilic conditions to assess the effects of mode of metabolism on the potential for petroleum hydrocarbon degradation. The study determined that both aerobic and anaerobic thermophilic bacteria are capable of growth on petroleum hydrocarbons. Thermophilic methanogenesis is feasible during the degradation of hydrocarbons when a strict anaerobic condition is achieved in a slurry bioreactor. Aerobic thermophilic bacteria achieved the largest apparent reduction in chemical oxygen demand, freon extractable oil, total and volatile solid,s and polycyclic aromatic hydrocarbons (PAHs) when treating oily waste sludges. The observed shift with time in the molecular weight distribution of hydrocarbon material was more pronounced under aerobic metabolic conditions than under strict anaerobic conditions. The changes in the hydrocarbon molecular weight distribution, infrared spectra, and PAH concentrations during slurry-phase treatment indicate that the aerobic thermophilic bioslurry achieved a higher degree of hydrocarbon degradation than the anaerobic thermophilic bioslurry during the same time period

  7. Investigation Status of Heat Exchange while Boiling Hydrocarbon Fuel

    Directory of Open Access Journals (Sweden)

    D. S. Obukhov

    2006-01-01

    Full Text Available The paper contains analysis of heat exchange investigations while boiling hydrocarbon fuel. The obtained data are within the limits of the S.S. Kutateladze dependence proposed in 1939. Heat exchange at non-stationary heat release has not been investigated. The data for hydrocarbon fuel with respect to critical density of heat flow are not available even for stationary conditions.

  8. Hydrocarbon Plume Dynamics in the Worldś Most Spectacular Hydrocarbon Seeps, Santa Barbara Channel, California

    Science.gov (United States)

    Mau, S.; Reed, J.; Clark, J.; Valentine, D.

    2006-12-01

    Large quantities of natural gas are emitted from the seafloor into the coastal ocean near Coal Oil Point, Santa Barbara Channel (SBC), California. Methane, ethane, and propane were quantified in the surface water at 79 stations in a 270 km2 area in order to map the surficial hydrocarbon plume and to quantify air-sea exchange of these gases. A time series was initiated for 14 stations to identify the variability of the mapped plume, and biologically-mediated oxidation rates of methane were measured to quantify the loss of methane in surface water. The hydrocarbon plume was found to comprise ~70 km2 and extended beyond study area. The plume width narrowed from 3 km near the source to 0.7 km further from the source, and then expanded to 6.7 km at the edge of the study area. This pattern matches the cyclonic gyre which is the normal current flow in this part of the Santa Barbara Channel - pushing water to the shore near the seep field and then broadening the plume while the water turns offshore further from the source. Concentrations of gaseous hydrocarbons decrease as the plume migrates. Time series sampling shows similar plume width and hydrocarbon concentrations when normal current conditions prevail. In contrast, smaller plume width and low hydrocarbon concentrations were observed when an additional anticyclonic eddy reversed the normal current flow, and a much broader plume with higher hydrocarbon concentrations was observed during a time of diminished speed within the current gyre. These results demonstrate that surface currents control hydrocarbon plume dynamics in the SBC, though hydrocarbon flux to the atmosphere is likely less dependent on currents. Estimates of air- sea hydrocarbon flux and biological oxidation rates will also be presented.

  9. Nestmate recognition in social insects and the role of hydrocarbons

    DEFF Research Database (Denmark)

    van Zweden, Jelle Stijn; D'Ettorre, Patrizia

    2010-01-01

    A unique and critical analysis of the wealth of research conducted on the biology, biochemistry and chemical ecology of the rapidly growing field of insect cuticular hydrocarbons. Authored by leading experts in their respective fields, the twenty chapters show the complexity that has been...... discovered in the nature and role of hydrocarbons in entomology. Covers, in great depth, aspects of chemistry (structures, qualitative and quantitative analysis), biochemistry (biosynthesis, molecular biology, genetics, evolution), physiology, taxonomy, and ecology. Clearly presents to the reader the array...... of data, ideas, insights and historical disagreements that have been accumulated during the past half century. An emphasis is placed on the role of insect hydrocarbons in chemical communication, especially among the social insects. Includes the first review on the chemical synthesis of insect hydrocarbons...

  10. Development of an Innovative XRD-DRIFTS Prototype Allowing Operando Characterizations during Fischer-Tropsch Synthesis over Cobalt-Based Catalysts under Representative Conditions

    Directory of Open Access Journals (Sweden)

    Scalbert Julien

    2015-03-01

    Full Text Available An original system combining both X-Ray Diffraction and diffuse reflectance infrared Fourier transform spectroscopy was developed with the aim to characterize Fischer-Tropsch catalysts in relevant reaction conditions. The catalytic properties of a model PtCo/silica catalyst tested with this prototype have shown to be in the same range of those obtained in similar conditions with classical fixed-bed reactors. No bulk cobalt oxidation nor sintering were observed on operando XRD patterns. The formation of linear carbonyls and adsorbed hydrocarbons species at the surface of the catalyst was observed on operando DRIFT spectra. The surface of the catalyst was also suspected to be covered with carbon species inducing unfavorable changes in selectivity.

  11. High Temperature Chemistry of Aromatic Hydrocarbons. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Lawrence T. [Boston College, Chestnut Hill, MA (United States). Merkert Chemistry Center, Dept. of Chemistry

    2017-05-15

    The primary goal of this research was to uncover the principal reaction channels available to polycyclic aromatic hydrocarbons (PAHs) at high temperatures in the gas phase and to establish the factors that determine which channels will be followed in varying circumstances. New structure-property relationships for PAHs were also studied. The efficient production of clean energy from fossil fuels will remain a major component of the DOE mission until alternative sources of energy eventually displace coal and petroleum. Hydrocarbons constitute the most basic class of compounds in all of organic chemistry, and as the dominant species in fossil fuels, they figure prominently into the programs of the DOE. Much is already known about the normal chemistry of hydrocarbons under ambient conditions, but far less is known about their intrinsic chemistry at temperatures close to those reached during combustion. An understanding of the fundamental molecular transformations, rearrangements, and interconversions of PAHs at high temperatures in the gas phase, as revealed by careful studies on small, well-designed, molecular systems, provides insights into the underlying chemistry of many important processes that are more complex, such as the generation of energy by the combustion of fossil fuels, the uncatalyzed gasification and liquefaction of coal, the production of fullerenes in fuel-rich flames, and the formation of soot and carcinogenic pollutants in smoke (e.g., benzo[a]pyrene). The rational control of any of these processes, whether it be the optimization of a desirable process or the minimization of an undesirable one, requires a clear knowledge of the basic chemistry that governs the fate of the species involved. Advances in chemistry at the most fundamental level come about primarily from the discovery of new reactions and from new insights into how reactions occur. Harnessing that knowledge is the key to new technologies. The recent commercialization of a combustion

  12. Green synthesis of silver nanoparticles using Beta vulgaris: Role of process conditions on size distribution and surface structure

    Energy Technology Data Exchange (ETDEWEB)

    Parameshwaran, R., E-mail: parameshviews@gmail.com [Department of Mechanical Engineering, Anna University, Chennai 600 025 (India); Centre for Nanoscience and Technology, Anna University, Chennai 600 025 (India); Kalaiselvam, S., E-mail: kalai@annauniv.edu [Centre for Nanoscience and Technology, Anna University, Chennai 600 025 (India); Department of Applied Science and Technology, Anna University, Chennai 600 025 (India); Jayavel, R., E-mail: rjvel@annauniv.edu [Centre for Nanoscience and Technology, Anna University, Chennai 600 025 (India)

    2013-06-15

    The present work reports the green synthesis of silver nanoparticles, using Beta vulgaris peel extract with a subsequent investigation on the size distribution and surface structure of nanoparticles formed under various process conditions. The green-chemical reduction mechanism of silver ions to nanoparticles by the active organic functional groups present in the extract was characterized, using the respective spectroscopic techniques. The effects of various process parameters, including induced intraparticle ripening, were attributed to the controlled formation of anisotropic silver nanoparticles within the supporting matrix of the extract. The plasmon absorption and resonance scattering properties were expected to be favourable for small and larger size nanoparticles (below 25 nm and above 75 nm) respectively, which was considered to be an indicative aspect for synthesizing nanoparticles of narrow size distribution. The zeta potential and dynamic light scattering (DLS) results suggest the good stability and mono-dispersed size distribution of the silver nanoparticles. The transmission electron microscope, selective area electron diffraction (SAED) and X-ray diffraction studies infer that the nanoparticles formed were spherical/quasi-spherical in shape, which primarily exhibited a face centred cubic crystal (FCC) structure. The green-chemical reduction of organic phases in the extract (especially amine (NH{sub 2}) groups) as reflected through shifts observed in the Fourier-transform infra red (FTIR) peaks, reveal the possible interaction of the organic molecules with the silver ions in the effective formation, surface modification and stabilization of the silver nanoparticles. - Highlights: • Functionally stable and crystalline silver nanoparticles were green synthesized. • Beta vulgaris peel extract was used as potential reducing and stabilizing agent. • Amine groups in extract were expected to reduce Ag{sup +} and stabilize nanoparticles. • Induced

  13. Green synthesis of silver nanoparticles using Beta vulgaris: Role of process conditions on size distribution and surface structure

    International Nuclear Information System (INIS)

    Parameshwaran, R.; Kalaiselvam, S.; Jayavel, R.

    2013-01-01

    The present work reports the green synthesis of silver nanoparticles, using Beta vulgaris peel extract with a subsequent investigation on the size distribution and surface structure of nanoparticles formed under various process conditions. The green-chemical reduction mechanism of silver ions to nanoparticles by the active organic functional groups present in the extract was characterized, using the respective spectroscopic techniques. The effects of various process parameters, including induced intraparticle ripening, were attributed to the controlled formation of anisotropic silver nanoparticles within the supporting matrix of the extract. The plasmon absorption and resonance scattering properties were expected to be favourable for small and larger size nanoparticles (below 25 nm and above 75 nm) respectively, which was considered to be an indicative aspect for synthesizing nanoparticles of narrow size distribution. The zeta potential and dynamic light scattering (DLS) results suggest the good stability and mono-dispersed size distribution of the silver nanoparticles. The transmission electron microscope, selective area electron diffraction (SAED) and X-ray diffraction studies infer that the nanoparticles formed were spherical/quasi-spherical in shape, which primarily exhibited a face centred cubic crystal (FCC) structure. The green-chemical reduction of organic phases in the extract (especially amine (NH 2 ) groups) as reflected through shifts observed in the Fourier-transform infra red (FTIR) peaks, reveal the possible interaction of the organic molecules with the silver ions in the effective formation, surface modification and stabilization of the silver nanoparticles. - Highlights: • Functionally stable and crystalline silver nanoparticles were green synthesized. • Beta vulgaris peel extract was used as potential reducing and stabilizing agent. • Amine groups in extract were expected to reduce Ag + and stabilize nanoparticles. • Induced intraparticle

  14. Toward Singlet-Triplet Bistable Nonalternant Kekulé Hydrocarbons: Azulene-to-Naphthalene Rearrangement.

    Science.gov (United States)

    Das, Soumyajit; Wu, Jishan

    2015-12-04

    Recent developments of open-shell singlet diradicaloids motivated the search for stable singlet-triplet bistable nonalternant polycyclic hydrocarbons. During the synthesis of this type of molecule, such as the dibenzo-cyclohepta[def]fluorene 3, an unexpected azulene-to-naphthalene rearrangement was observed at room temperature, which resulted in new nonalternant hydrocarbons 8a/8b with a closed-shell singlet ground state. These studies provided insight into the unique chemistry of azulene and challenges for the synthesis of singlet-triplet bistable polycyclic hydrocarbons.

  15. Motor fuels by hydrogenation of liquid hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    1938-05-07

    A process is disclosed for the production of knock-stable low-boiling motor fuels by conversion of liquid hydrocarbons which are vaporizable under the reaction conditions, which comprises passing the initial material at a temperature above 380/sup 0/C in a true vapor phase under pressure of more than 40 atmospheres together with hydrogen and gaseous hydrocarbons containing more than 1 carbon atom in the molecule in an amount by volume larger than that of the hydrogen over catalysts stable to poisoning stationarily confined in the reaction vessel.

  16. An efficient method for synthesis of bis(indolylmethane and di-bis(indolylmethane derivatives in environmentally benign conditions using TBAHS

    Directory of Open Access Journals (Sweden)

    Seyed Hossein Siyadatifard

    2016-05-01

    Full Text Available An efficient procedure for the synthesis of bisindolylmethanes (BIMs from condensation of indole and aromatic aldehydes or ketones is described. The aromatic electrophilic substitution reactions of indole with aromatic aldehydes and ketones are achieved in the presence of tetrabutylammonium hydrogen sulfate (TBAHS as a mild and efficient solid acid catalyst. This methodology offers several advantages such as good yields, simple procedure, mild and environmentally benign conditions.

  17. Synthesis and HNO Donating Properties of the Piloty's Acid Analogue Trifluoromethanesulphonylhydroxamic acid: Evidence for Quantitative Release of HNO at Neutral pH Conditions.

    Science.gov (United States)

    Adas, Sonya K; Bharadwaj, Vinay; Zhou, Yang; Zhang, Jiuhong; Seed, Alexander J; Brasch, Nicola Elizabeth; Sampson, Paul

    2018-03-11

    Trifluoromethanesulphonylhydroxamic acid, CF3SO2NHOH, is shown to release HNO under physiological pH conditions. A two-step synthesis is presented with the first complete characterization of CF3SO2NHOH. This molecule rapidly decomposes in neutral aqueous solution to cleanly release HNO and CF3SO2-, demonstrated using the HNO traps TXPTS and HOCbl, and by 19F NMR spectroscopy. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Recovery of hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    1941-02-10

    A process is disclosed for recovery of hydrocarbon oils, especially lubricating oils or diesel oils, through pressure hydrogenation of distillation, extraction of hydrogenation products from coal or coaly materials or from oils such as mineral oils or tars in liquid phase by use in a reaction vessel of fixed-bed catalysts, characterized in that as starting material is employed material which has been freed of asphaltic and resinous material by hydrogenation refining, vacuum-steam distillation, treatment with hydrogen-rich hydrocarbons (hydroforming), or sulfuric acid.

  19. HYDROCARBON FORMATION ON POLYMER-SUPPORTED COBALT

    Energy Technology Data Exchange (ETDEWEB)

    Benner, Linda S.; Perkins, Patrick; Vollhardt, K.Peter C.

    1980-10-01

    In this report we detail the synthesis catalytic chemistry of polystyrene supported {eta}{sup 5} ~cyclopentadienyl- dicarbonyl cobalt, CpCo(CO){sub 2}. This material is active in the hydrogenation of CO to saturated linear hydrocarbons and appears to retain its "homogeneous", mononuclear character during the course of its catalysis, During ·the course of our work 18% and 20% crosslinked analogs of polystyrene supported CpCo(CO){sub 2} were shown to exhibit limited catalytic activity and no CO activation.

  20. Emissions of hydrocarbons from combustion of biofuels

    International Nuclear Information System (INIS)

    Olsson, Mona; Persson, Eva Marie.

    1991-10-01

    Evaluations and measurements of emissions of hydrocarbons from power plants with a capacity exceeding 1 MW using biofuels (wood fuels and peat) have been studied in order to identify and quantify the emissions of incompletely combusted hydrocarbons. The influence of the type of fuel and the combustion technology applied were also studied, using literature references. The report summarizes monitoring results from a number of plants using biofuels. The reported emissions from the different plants can not be compared as they are relatively few and the test results have been obtained under various conditions using different methods of testing and analysis. The methods used are often poorly documented in the studied reports. Few investigations of emissions of hydrocarbons from plants in the range of 1 to 10 MW have been carried out. The plant and the technology used are important factors determining the amount and type of emissions of hydrocarbons. Larger temporary emissions can occur during start up, operational disturbances or when using fuel of inhomogeneous quality. In order to minimize the emissions the combustion process must be efficiently controlled, and a fuel of a hohogeneous quality must be used. The report also summarizes sampling and analysis methods used for monitoring emissions of hydrocarbons. (29 refs., 17 figs.)

  1. Direct electroreduction of CO2 into hydrocarbon

    International Nuclear Information System (INIS)

    Winea, Gauthier; Ledoux, Marc-Jacques; Pham-Huu, Cuong; Gangeri, Miriam; Perathoner, Siglinda; Centi, Gabriele

    2006-01-01

    A lot of methods exist to directly reduce carbon dioxide into hydrocarbons: the photoelectrochemical process is certainly the most interesting, essentially due to the similarities with photosynthesis. As the human activities produce a great quantity of CO 2 , this one can then be considered as an infinite source of carbon. The products of this reaction are identical to those obtained during a Fischer-Tropsch reaction, that is to say hydrocarbons, alcohols and carboxylic acids. These works deal with the electrochemical reduction of CO 2 in standard conditions of temperature and pressure. The photochemical part has been replaced by a current generator as electrons source and a KHCO 3 aqueous solution as protons source. The first catalytic results clearly show that it is possible to reduce CO 2 into light hydrocarbons, typically from C1 to C9. (O.M.)

  2. The role of polyhalogenated aromatic hydrocarbons on thyroid hormone disruption and cognitive function: a review.

    Science.gov (United States)

    Builee, T L; Hatherill, J R

    2004-11-01

    Thyroid hormones (TH) are essential to normal brain development, influencing behavior and cognitive function in both adult and children. It is suggested that conditions found in TH abnormalities such as hypothyroidism, hyperthyroidism and generalized resistance to thyroid hormone (GRTH) share symptomatic behavioral impulses found in cases of attention deficit hyperactivity disorder (ADHD) and other cognitive disorders. Disrupters of TH are various and prevalent in the environment. This paper reviews the mechanisms of TH disruption caused by the general class of polyhalogenated aromatic hydrocarbons (PHAH)'s acting as thyroid disrupters (TD). PHAHs influence the hypothalamus-pituitary-thyroid (HPT) axis, as mimicry agents affecting synthesis and secretion of TH. Exposure to PHAH induces liver microsomal enzymes UDP-glucuronosyltransferase (UGT) resulting in accelerated clearance of TH. PHAHs can compromise function of transport and receptor binding proteins such as transthyretin and aryl hydrocarbon receptors (Ahr). Glucose metabolism and catecholamine synthesis are disrupted in the brain by the presence of PHAH. Further, PHAH can alter brain growth and development by perturbing cytoskeletal formation, thereby affecting neuronal migration, elongation and branching. The complex relationships between PHAH and cognitive function are examined in regard to the disruption of T4 regulation in the hypothalamus-pituitary-thyroid axis, blood, brain, neurons, liver and pre and postnatal development.

  3. Catalyst for hydrocarbon conversion

    International Nuclear Information System (INIS)

    Duhaut, P.; Miquel, J.

    1975-01-01

    A description is given for a catalyst and process for hydrocarbon conversions, e.g., reforming. The catalyst contains an alumina carrier, platinum, iridium, at least one metal selected from uranium, vanadium, and gallium, and optionally halogen in the form of metal halide of one of the aforesaid components. (U.S.)

  4. Mid-IR Absorption Cross-Section Measurements of Hydrocarbons

    KAUST Repository

    Alrefae, Majed Abdullah

    2013-01-01

    -known at combustion-relevant conditions. Absorption cross-section is an important spectroscopic quantity and has direct relation to the species concentration. In this work, the absorption cross-sections of basic hydrocarbons are measured using Fourier Transform

  5. Chemical reactivity of precursor materials during synthesis of glasses used for conditioning high-level radioactive waste: Experiments and models

    International Nuclear Information System (INIS)

    Monteiro, A.

    2012-01-01

    The glass used to store high-level radioactive waste is produced by reaction of a solid waste residue and a glassy precursor (glass frit). The waste residue is first dried and calcined (to lose water and nitrogen respectively), then mixed with the glass frit to enable vitrification at high temperature. In order to obtain a good quality glass of constant composition upon cooling, the chemical reactions between the solid precursors must be complete while in the liquid state, to enable incorporation of the radioactive elements into the glassy matrix. The physical and chemical conditions during glass synthesis (e.g. temperature, relative proportions of frit and calcine, amount of radioactive charge) are typically empirically adjusted to obtain a satisfactory final product. The aim of this work is to provide new insights into the chemical and physical interactions that take place during vitrification and to provide data for a mathematical model that has been developed to simulate the chemical reactions. The consequences of the different chemical reactions that involve solid, liquid and gaseous phases are described (thermal effects, changes in crystal morphology and composition, variations in melt properties and structure). In a first series of experiments, a simplified analogue of the calcine (NaNO 3 -Al 2 O 3 ± MoO 3 /Nd 2 O 3 ) has been studied. In a second series of experiments, the simplified calcines have been reacted with a simplified glass frit (SiO 2 -Na 2 O-B 2 O 3 -Al 2 O 3 ) at high temperature. The results show that crystallization of the calcine may take place before interaction with the glass frit, but that the reactivity with the glass at high temperature is a function of the nature and stoichiometry of the crystalline phases which form at low temperature. The results also highlight how the mixing of the starting materials, the physical properties of the frit (viscosity, glass transition temperature) and the Na 2 O/Al 2 O 3 of the calcine but also its

  6. Microbial Hydrocarbon and ToxicPollutant Degradation Method

    Energy Technology Data Exchange (ETDEWEB)

    Schlueter, Dietrich [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Janabi, Mustafa [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); O' Neil, James [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Budinger, Thomas [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2011-08-16

    The goal of this project is to determine optimum conditions for bacterial oxidation of hydrocarbons and long-chain alkanes that are representative of petroleum contamination of the environment. Polycyclic Aromatic Hydrocarbons (PAHs) are of concern because of their toxicity, low volatility, and resistance to microbial degradation, especially under anaerobic conditions. The uniqueness of our approach is to use carbon-11 in lieu of the traditional use of carbon-14.

  7. Unsaturated medium hydrocarbons pollution evaluation

    International Nuclear Information System (INIS)

    Di Luise, G.

    1991-01-01

    When the so called porous unsaturated medium, that's the vertical subsoil section between both the ground and water-table level, is interested by a hydrocarbons spill, the problem to evaluate the pollution becomes difficult: considering, essentially, the natural coexistence in it of two fluids, air and water, and the interactions between them. This paper reports that the problems tend to increase when a third fluid, the pollutant, immiscible with water, is introduced into the medium: a three-phases flow, which presents several analogies with the flow conditions present in an oil-reservoir, will be established. In such a situation, it would be very useful to handle the matter by the commonly used parameters in the oil reservoirs studies such as: residual saturation, relative permeability, phases mobility, to derive a first semiquantitative estimation of the pollution. The subsoil pollution form hydrocarbons agents is one of the worldwide more diffused causes of contamination: such events are generally referable to two main effects: accidental (oil pipeline breakdowns, e.g.), and continuous (underground tanks breaks, industrial plants leakages, e.g.)

  8. Sol–gel one-pot synthesis in soft conditions of mesoporous silica materials ready for drug delivery system

    NARCIS (Netherlands)

    Tourne-Peteilh, C.; Begu, S.; Lerner, D.A.; Galarneau, A.; Lafont, U.; Devoiselle, J.M.

    2011-01-01

    The present work reveals a new and simple strategy, a one-step sol–gel procedure, to encapsulate a low water-soluble drug in silica mesostructured microparticles and to improve its release in physiological media. The synthesis of these new materials is based on the efficient solubilisation of a

  9. Prebiotic Peptide (Amide) Bond Synthesis Accelerated by Glycerol and Bicarbonate Under Neutral to Alkaline Dry-Down Conditions

    Science.gov (United States)

    Forsythe, J. G.; Weber, A. L.

    2017-07-01

    We report a new process for robust peptide bond synthesis in the pH 6–10 range that involves dry-down heating of amino acids in the presence of glycerol and bicarbonate (substrates: L-alanine, L-2-aminobutyric acid, β-alanine, isoserine).

  10. Microwave-assisted clean synthesis of amides via aza-wittig reaction under solvent-free condition

    Energy Technology Data Exchange (ETDEWEB)

    Sathishkumar, Murugan; Nagarajan, Sangaraiah; Velan, Poovan Shanmuga; Dinesh, Murugan; Ponnuswamy, Alagusundaram [Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Tamilnadu (India)

    2011-09-15

    A solvent-free microwave-assisted coupling of phosphazenes with acyl chlorides or carboxylic anhydrides in presence of triethylphosphite has been accomplished resulting in a clean synthesis of amides in good yields. Unlike the prevailing time-consuming solution phase methodologies employing chlorinated solvents, benzene (carcinogenic), etc, the present protocol is an eco friendly, rapid and simple approach. (author)

  11. Aspects of petroleum hydrocarbon metabolism in marine animals

    Science.gov (United States)

    Mironov, O. G.

    1980-03-01

    Studies on hydrocarbon composition of Black Sea mussels Mytilus galloprovincialis sampled from different habitats indicate that the quantity and composition of hydrocarbons distributed in the molluscs depend on season and sea-water quality. The data obtained under experimental conditions testify to the possibility of hydrocarbon concentration in mussel tissues after death. During filtration in sea water containing oil and oil products, these pollutants are bound into faeces and pseudofaeces which contain a greater percentage of aromatic compounds than the oil initially present in sea water. Quantitative data are presented on hydrocarbon changes in mussel excretory products during transfer from oil-polluted to clean sea water. When Black Sea crabs Eriphia verrucosa are fed with mussels containing fuel-oil components accumulated from sea water, the pollutants concentrate in the whole body of the crab. This is in contrast to parenteral oil uptake, which leads to a concentration of most of the hydrocarbon in the muscles.

  12. Degradation of petroleum hydrocarbons in a laboratory aquifer column

    International Nuclear Information System (INIS)

    Billowits, M.; Whyte, L.; Greer, C.; Ramsay, J.

    1998-01-01

    One of the primary mechanisms for eliminating hydrocarbon pollutants from the environment is degradation of hydrocarbons by indigenous microorganisms. This report describes a study in which samples from a petroleum polluted shallow aquifer in the Yukon were used which contained a hundred times greater concentration of psychrotropic bacteria than mesophilic bacteria. Results showed a maximum degradation of 47 per cent of the total petroleum hydrocarbon in columns which simulated the aquifer conditions and to which nutrients were added. It was concluded that although in this case bioaugmentation of the columns with a psychrotropic hydrocarbon-degrading consortium increased microbial numbers, total petroleum hydrocarbon degradation was not much greater than could be achieved by remediation with nutrients alone

  13. Efficient assessment of modified nucleoside stability under conditions of automated oligonucleotide synthesis: characterization of the oxidation and oxidative desulfurization of 2-thiouridine.

    Science.gov (United States)

    Sochacka, E

    2001-01-01

    In order to efficiently assess the chemical stability of modified nucleosides to the reagents and conditions of automated oligonucleotide synthesis, we designed, developed and tested a scheme in which the modified nucleoside, directly attached to a solid support, is exposed to the cyclic chemistry of the instrument. Stability of 2-thiouridine against different oxidizers was investigated. Tertbutyl hydroperoxide (1 M) in anhydrous acetonitrile was a more effective oxidizer for the incorporation of 2-thiouridine into oligonucleotide chains than the same oxidizer in methylene chloride. Carbon tetrachloride/water in the presence of a basic catalyst was superior in maintaining the thiocarbonyl function, but its utility for RNA synthesis has yet to be fully tested, whereas 2-phenylsulfonyloxaziridine was a very efficient reagent for oxidative desulfurization of 2-thiouridine.

  14. Bioremediation of Petroleum Hydrocarbon Contaminated Sites

    Energy Technology Data Exchange (ETDEWEB)

    Fallgren, Paul

    2009-03-30

    Bioremediation has been widely applied in the restoration of petroleum hydrocarbon-contaminated. Parameters that may affect the rate and efficiency of biodegradation include temperature, moisture, salinity, nutrient availability, microbial species, and type and concentration of contaminants. Other factors can also affect the success of the bioremediation treatment of contaminants, such as climatic conditions, soil type, soil permeability, contaminant distribution and concentration, and drainage. Western Research Institute in conjunction with TechLink Environmental, Inc. and the U.S. Department of Energy conducted laboratory studies to evaluate major parameters that contribute to the bioremediation of petroleum-contaminated drill cuttings using land farming and to develop a biotreatment cell to expedite biodegradation of hydrocarbons. Physical characteristics such as soil texture, hydraulic conductivity, and water retention were determined for the petroleum hydrocarbon contaminated soil. Soil texture was determined to be loamy sand to sand, and high hydraulic conductivity and low water retention was observed. Temperature appeared to have the greatest influence on biodegradation rates where high temperatures (>50 C) favored biodegradation. High nitrogen content in the form of ammonium enhanced biodegradation as well did the presence of water near field water holding capacity. Urea was not a good source of nitrogen and has detrimental effects for bioremediation for this site soil. Artificial sea water had little effect on biodegradation rates, but biodegradation rates decreased after increasing the concentrations of salts. Biotreatment cell (biocell) tests demonstrated hydrocarbon biodegradation can be enhanced substantially when utilizing a leachate recirculation design where a 72% reduction of hydrocarbon concentration was observed with a 72-h period at a treatment temperature of 50 C. Overall, this study demonstrates the investigation of the effects of

  15. Aliphatic hydrocarbon and polycyclic aromatic hydrocarbon geochemistry of twelve major rivers in the Northwest Territories

    International Nuclear Information System (INIS)

    Backus, S.; Swyripa, M.; Peddle, J.; Jeffries, D.S.

    1995-01-01

    Suspended sediment and water samples collected from twelve major rivers in the Northwest Territories were analyzed for aliphatic hydrocarbons and polycyclic aromatic hydrocarbons (PAHs) to assess the sources and transport of hydrocarbons entering the Arctic Ocean. Three stations on the Mackenzie River and one station near the mouth of eleven other northern rivers were selected for sampling. Samples were collected on the Mackenzie River on four occasions to characterize spring, summer and fall flow conditions and once on the remaining eleven rivers during high flow conditions. The Mackenzie River is distinctively different then the other eleven rivers. Naturally occurring hydrocarbons predominate in the river. These hydrocarbons include biogenic alkanes, diagenic PAHs, petrogenic alkanes, and PAHs from oil seeps and/or bitumens. Anthropogenic inputs of PAHs are low as indicated by low concentrations of combustion PAHs. Alkyl PAH distributions indicate that a significant component of the lower molecular weight PAH fraction is petrogenic. The majority of the high molecular weight PAHs, together with the petrogenic PAHs have a principal source in the Mackenzie River

  16. Elastin hydrolysate derived from fish enhances proliferation of human skin fibroblasts and elastin synthesis in human skin fibroblasts and improves the skin conditions.

    Science.gov (United States)

    Shiratsuchi, Eri; Nakaba, Misako; Yamada, Michio

    2016-03-30

    Recent studies have shown that certain peptides significantly improve skin conditions, such as skin elasticity and the moisture content of the skin of healthy woman. This study aimed to investigate the effects of elastin hydrolysate on human skin. Proliferation and elastin synthesis were evaluated in human skin fibroblasts exposed to elastin hydrolysate and proryl-glycine (Pro-Gly), which is present in human blood after elastin hydrolysate ingestion. We also performed an ingestion test with elastin hydrolysate in humans and evaluated skin condition. Elastin hydrolysate and Pro-Gly enhanced the proliferation of fibroblasts and elastin synthesis. Maximal proliferation response was observed at 25 ng mL(-1) Pro-Gly. Ingestion of elastin hydrolysate improved skin condition, such as elasticity, number of wrinkles, and blood flow. Elasticity improved by 4% in the elastin hydrolysate group compared with 2% in the placebo group. Therefore, elastin hydrolysate activates human skin fibroblasts and has beneficial effects on skin conditions. © 2015 Society of Chemical Industry.

  17. In-situ hydrocarbon delineation using laser-induced fluorescence

    International Nuclear Information System (INIS)

    Taer, A.D.; Hastings, R.W.; Brown, A.Y.; Frend, R.

    1996-01-01

    An investigation of hydrocarbons in soils was conducted at an active Shell Oil Company petroleum products terminal, located in Carson, California. An investigation approach involving Laser-Induced Fluorescence (LIF) and Cone Penetrometer Testing (CPT) technologies was implemented to provide real-time, in-situ characterization of site stratigraphy, hydrocarbon distribution and importantly, hydrocarbon product differentiation. The area of investigation is located along a property boundary, where a plume of separate phase hydrocarbons has been actively recovered for several years. CPT/LIF technology was selected for the investigation since previous delineation efforts using hydrocarbon fingerprinting methods proved inconclusive. Additionally, the CPT/LIF technology had the potential to provide a cost effective solution to accomplish project objectives. Based on the information obtained during this investigation, it was determined that the plume of separate phase hydrocarbons along the northern property boundary is from a source distinctly different than any identified hydrocarbons known to be from on-site sources. In addition, the plume was determined to not be connected with any other known on-site hydrocarbon plumes. The results of this CPT/LIF investigation were consistent with the known hydrogeologic conditions. This evaluation determined that CPT/LIF technology was very effective in addressing project objectives and resulted in a significant cost savings

  18. Distilling hydrocarbons, etc

    Energy Technology Data Exchange (ETDEWEB)

    Turner, C

    1917-11-23

    In the fractional or destructive distillation of hydrocarbon oils or other liquids, the pressure in the still is raised and lowered alternately. The still is closed to raise the pressure, and is opened to lower the pressure rapidly solely by expansion of the vapors. The operation is effected without intermittent cooling, except such as may occur during the lowering of the pressure. In distilling hydrocarbon oil, pressure steam is blown into the oil until the pressure reaches 5 lb/in./sup 2/. The vapor outlet is then opened until the pressure falls to 2 lb/in./sup 2/, whereupon the vapor outlet is closed and steam is again admitted. The operation is continued until the steam, which is of 20 lb pressure, no longer effects distillation; after this stage, superheated steam is used.

  19. Distilling hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    Tausz, J

    1924-07-16

    Hydrocarbon oils such as petroleum, shale oils, lignite or coal tar oils are purified by distilling them and collecting the distillate in fractions within narrow limits so that all the impurities are contained in one or more of the narrow fractions. In distilling ligroin obtained by destructive distillation of brown coal, it is found that the coloring and resin-forming constituents are contained in the fractions distilling over at 62 to 86/sup 0/C and 108/sup 0/C. The ligroin is purified, therefore, by distillating in an apparatus provided with an efficient dephlegmotor and removing these two fractions. The distillation may be carried out wholly or in part under reduced pressure, and fractions separated under ordinary pressure may be subsequently distilled under reduced pressure. The hydrocarbons may be first separated into fractions over wider limits and the separate fractions be subjected to a further fractional distillation.

  20. Nuclear explosives and hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, P

    1971-10-01

    A nuclear explosive 12 in. in diam and producing very little tritium is feasible in France. Such a device would be well adapted for contained nuclear explosions set off for the purpose of hydrocarbon storage or stimulation. The different aspects of setting off the explosive are reviewed. In the particular case of gas storage in a nuclear cavity in granite, it is demonstrated that the dose of irradiation received is extremely small. (18 refs.)

  1. Treatment of hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    1936-02-22

    A process is described for refining a mixture of liquid hydrocarbons containing harmful substances, this process permitting the operation, which consists in treating the liquid mixture at a temperature higher than 200/sup 0/C with a solid catalyst of phosphoric acid, consisting of phosphoric acid deposited on a solid support of the type of metallurgical coke, for a time sufficient to convert the harmful components to inoffensive substances.

  2. Biogeochemistry of Halogenated Hydrocarbons

    Science.gov (United States)

    Adriaens, P.; Gruden, C.; McCormick, M. L.

    2003-12-01

    Halogenated hydrocarbons originate from both natural and industrial sources. Whereas direct anthropogenic emissions to the atmosphere and biosphere are often easy to assess, particularly when they are tied to major industrial activities, the attribution of emissions to other human activities (e.g., biomass burning), diffuse sources (e.g., atmospheric discharge, run off), and natural production (e.g., soils, fungi, algae, microorganisms) are difficult to quantify. The widespread occurrence of both alkyl and aryl halides in groundwater, surface water, soils, and various trophic food chains, even those not affected by known point sources, suggests a substantial biogeochemical cycling of these compounds (Wania and Mackay, 1996; Adriaens et al., 1999; Gruden et al., 2003). The transport and reactive fate mechanisms controlling their reactivity are compounded by the differences in sources of alkyl-, aryl-, and complex organic halides, and the largely unknown impact of biogenic processes, such as enzymatically mediated halogenation of organic matter, fungal production of halogenated hydrocarbons, and microbial or abiotic transformation reactions (e.g., Asplund and Grimvall, 1991; Gribble, 1996; Watling and Harper, 1998; Oberg, 2002). The largest source may be the natural halogenation processes in the terrestrial environment, as the quantities detected often exceed the amount that can be explained by human activities in the surrounding areas ( Oberg, 1998). Since biogeochemical processes result in the distribution of a wide range of halogenated hydrocarbon profiles, altered chemical structures, and isomer distributions in natural systems, source apportionment (or environmental forensics) can often only be resolved using multivariate statistical methods (e.g., Goovaerts, 1998; Barabas et al., 2003; Murphy and Morrison, 2002).This chapter will describe the widespread occurrence of halogenated hydrocarbons, interpret their distribution and biogeochemical cycling in light of

  3. Cracking hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    Seigle, A A.F.M.

    1922-12-20

    Hydrocarbon oils such as petroleum, peat, shale, or lignite oils, heavy tars, resin oils, naphthalene oils, etc., are vaporized by being fed from a tank through a preheater to the lower part of a vertical annular retort heated by a flame projected down the central cavity from a burner. The oil vapors rise through annular passages formed by disks, on which are placed chips of copper, iron, aluminum, etc., to act as catalysts.

  4. High boiling point hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Pier, M

    1929-04-29

    A process is given for the production of hydrocarbons of high boiling point, such as lubricating oils, from bituminous substances, such as varieties of coal, shale, or other solid distillable carbonaceous materials. The process consists of treating the initial materials with organic solvents and then subjecting the products extracted from the initial materials, preferably directly, to a reducing treatment in respect to temperature, pressure, and time. The reduction treatment is performed by means of hydrogen under pressure.

  5. Direct hydrocarbon fuel cells

    Science.gov (United States)

    Barnett, Scott A.; Lai, Tammy; Liu, Jiang

    2010-05-04

    The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

  6. Optimization of the procedure for the synthesis of calcium lactate pentahydrate in laboratory and semi-industrial conditions

    Directory of Open Access Journals (Sweden)

    Ušćumlić Gordana S.

    2009-01-01

    Full Text Available This paper is concerned on the development of the optimal laboratory procedure for the synthesis of calcium lactate pentahydrate and the application of obtained results in a project for a semi-industrial installation for its production. Calcium lactate is used as an additive in numerous food and pharmaceutical products. Basically, it has to satisfy quality requirements. That was the reason why the procedure for its synthesis had to be optimized in aspects of selection of reactants, their molar ratio, necessary laboratory equipment, reactant addition order, working temperature, isolation of final product from the reaction mixture, yield and product quality. A semi-industrial installation for the production of calcium lactate pentahydrate is projected on the basis of the results of this investigation. The importance of this investigation arises from the fact that this salt is not produced in Serbia and the complete quantity (about 20 t per year is imported.

  7. Direct Synthesis of Co-doped Graphene on Dielectric Substrates Using Solid Carbon Sources

    Institute of Scientific and Technical Information of China (English)

    Qi Wang; Pingping Zhang; Qiqi Zhuo; Xiaoxin Lv; Jiwei Wang; Xuhui Sun

    2015-01-01

    Direct synthesis of high-quality doped graphene on dielectric substrates without transfer is highly desired for simplified device processing in electronic applications.However,graphene synthesis directly on substrates suitable for device applications,though highly demanded,remains unattainable and challenging.Here,a simple and transfer-free synthesis of high-quality doped graphene on the dielectric substrate has been developed using a thin Cu layer as the top catalyst and polycyclic aromatic hydrocarbons as both carbon precursors and doping sources.N-doped and N,F-co-doped graphene have been achieved using TPB and F16Cu Pc as solid carbon sources,respectively.The growth conditions were systematically optimized and the as-grown doped graphene were well characterized.The growth strategy provides a controllable transfer-free route for high-quality doped graphene synthesis,which will facilitate the practical applications of graphene.

  8. Determining the microwave coupling and operational efficiencies of a microwave plasma assisted chemical vapor deposition reactor under high pressure diamond synthesis operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Nad, Shreya [Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824 (United States); Gu, Yajun; Asmussen, Jes [Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824 (United States)

    2015-07-15

    The microwave coupling efficiency of the 2.45 GHz, microwave plasma assisted diamond synthesis process is investigated by experimentally measuring the performance of a specific single mode excited, internally tuned microwave plasma reactor. Plasma reactor coupling efficiencies (η) > 90% are achieved over the entire 100–260 Torr pressure range and 1.5–2.4 kW input power diamond synthesis regime. When operating at a specific experimental operating condition, small additional internal tuning adjustments can be made to achieve η > 98%. When the plasma reactor has low empty cavity losses, i.e., the empty cavity quality factor is >1500, then overall microwave discharge coupling efficiencies (η{sub coup}) of >94% can be achieved. A large, safe, and efficient experimental operating regime is identified. Both substrate hot spots and the formation of microwave plasmoids are eliminated when operating within this regime. This investigation suggests that both the reactor design and the reactor process operation must be considered when attempting to lower diamond synthesis electrical energy costs while still enabling a very versatile and flexible operation performance.

  9. Phorbol ester tumor promoter induced the synthesis of two major cytoplasmic proteins: identity with two proteins induced under heat-shocked and glucose-starved conditions

    International Nuclear Information System (INIS)

    Zhang, H.; Chen, K.Y.; Liu, A.Y.C.

    1987-01-01

    The regulation of specific protein synthesis by the phorbol ester tumor promoter, 12-O-tetradecanoyl-phorbol-13-acetate (TPA), was evaluated using the L-8 and C-2 myoblast and the 3T3-L1 fibroblast cell cultures. TPA increased, by 2-4 fold, the synthesis rates of two cytoplasmic proteins with apparent molecular weights of 89,000 and 74,000 as determined by SDS-polyacrylamide gel electrophoresis and autoradiography. The concentration of TPA and the time of incubation needed to elicit this induction was determined to be 10 μg/ml and 20 hrs, respectively. Increasing the concentration of TPA to 100, 200, and 500 ng/ml did not result in a greater magnitude of induction. The possibility that these two TPA-induced proteins may be identical to proteins with similar molecular weights induced under heat-shocked or glucose-starved conditions was evaluated by 1-D and 2-D gel electrophoresis and autoradiography. Results provided evidence that the TPA-induced 89,000- and 74,000-dalton proteins were identical to hsp 89 and hsp 74, 2 out of a set of 8-9 proteins induced under heat shocked conditions. Furthermore, they are identical to two of the set of glucose-regulated proteins induced under a glucose-starved condition

  10. Solvent-Free Synthesis of Quaternary Metal Sulfide Nanoparticles Derived from Thiourea

    KAUST Repository

    Bhunia, Manas Kumar; Abou-Hamad, Edy; Anjum, Dalaver H.; Gurinov, Andrei; Takanabe, Kazuhiro

    2017-01-01

    The synthesis of metal sulfide (MS) materials with sizes in the sub-10 nm regime often requires capping agents with long hydrocarbon chains that affect their structures and properties. Herein, this study presents a molten-state synthesis method

  11. Hydrocarbon composition products of the catalytic recycling plastics waste

    Directory of Open Access Journals (Sweden)

    Zhaksyntay Kairbekov

    2013-09-01

    Full Text Available The paper represents the IR spectroscopy results of the hydrocarbon composition of products, which is obtained from catalytic processing of plastic wastes. The optimal conditions for the hydrogenation with to producny liquid of products are identified.  These liquid products are enriched with aromatics, paraffinic- naphthenic and unsaturated hydrocarbons. The main characteristics of the distillates received by hydrogenation of plastics (as density, refractive index, iodine number, pour point, cloud point, filtering, sulfur content,  fractional and composition of the hydrocarbon group.

  12. Measuring Trace Hydrocarbons in Silanes

    Science.gov (United States)

    Lesser, L. A.

    1984-01-01

    Technique rapid and uses standard analytical equipment. Silane gas containing traces of hydrocarbons injected into carrier gas of moist nitrogen having about 0.2 percent water vapor. Carrier, water and silane pass through short column packed with powdered sodium hydroxide which combines moisture and silane to form nonvolatile sodium silicate. Carrier gas free of silane but containing nonreactive hydrocarbons, pass to silica-gel column where chromatographic separation takes place. Hydrocarbons measured by FID.

  13. Extreme conditions synthesis, processing and characterization of metal-nitrides and alloys of mechanical and optoelectronic importance

    International Nuclear Information System (INIS)

    Serghiou, G; McGaff, A J; Russell, N; Morniroli, J P; Frost, D J; Odling, N; Boehler, R; Troadec, D; Lathe, C

    2010-01-01

    High density nitrides and group IV alloys are of growing importance for both ceramic and optoelectronic applications. We present here new data and processes in our ongoing preparation of alkaline earth and transition metal nitrides as well as group IV alloys, here, up to 25 GPa and 2300 K. We employ large volume and laser-heated diamond anvil cell techniques for synthesis, processing tools including focused ion beam, and synchrotron X-ray diffraction, transmission electron microscopy and scanning electron microscopy for characterization.

  14. Efficient FeCl3/SiO2 as heterogeneous nanocatalysis for the synthesis of benzimidazoles under mild conditions

    Science.gov (United States)

    Taher, Mohammad Ali; Karami, Changiz; Arabi, Mehdi Sheikh; Ahmadian, Hossein; Karami, Yasaman

    2016-11-01

    Iron(III) supported on nano silica as a new catalyst has been synthesized. Structural properties of this complex have been studied by TEM, SEM and EDX. The average crystalline size of Iron(III) supported on nano silica is 30-50 nm. Catalytic activity of this catalyst has been investigated by synthesis of benzimidazoles from 1, 2-diaminobenzene and aromatic aldehydes, and also the other variables investigated such as the amount of catalyst, reaction temperature and the effect of various solvents are also studied. The present procedure offers several advantages such as short reaction time, simple workup, recovery and reusability of the catalyst.

  15. Fractional separation of hydrocarbon vapours

    Energy Technology Data Exchange (ETDEWEB)

    1937-07-10

    A process is described for converting higher boiling hydrocarbons to lower boiling hydrocarbons by subjecting them at elevated temperatures to a conversion operation, then separating the higher and lower boiling fractions. The separation takes place while the reaction products are maintained in the vapor phase by contact with a mass of solid porous material which has little or no catalytic activity but does have a preferential absorption property for higher boiling hydrocarbons so that the lower boiling part of the reaction products pass through the separation zone while the heavier hydrocarbons are retained. The separation is accomplished without substantial loss of heat of these reaction products.

  16. Process for preparing hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Krauch, C; Anther, E; Pier, M

    1926-04-07

    A process is described for the conversion of coal of all kinds, wood, oil, shale, as well as other carbonaceous materials into liquid hydrocarbons in two steps, characterized by treatment of the coal and so forth with a stream of hydrogen or hydrogen-containing gases at raised temperatures and raised pressures and producing a tarry product which, after separation of the ashlike residue, is converted by a further treatment, in the presence of catalysts, with hydrogen or hydrogen-containing gases at raised temperature and pressure, largely into low-boiling products.

  17. Recovering valuable liquid hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Pier, M

    1931-06-11

    A process for recovering valuable liquid hydrocarbons from coking coal, mineral coal, or oil shale through treatment with hydrogen under pressure at elevated temperature is described. Catalysts and grinding oil may be used in the process if necessary. The process provides for deashing the coal prior to hydrogenation and for preventing the coking and swelling of the deashed material. During the treatment with hydrogen, the coal is either mixed with coal low in bituminous material, such as lean coal or active coal, as a diluent or the bituminous constituents which cause the coking and swelling are removed by extraction with solvents. (BLM)

  18. Hydrogen production from hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Docekal, J

    1986-01-01

    Hydrogen is an important feed stock for chemical and petroleum industries, in addition to being considered as the energy carrier of the future. At the present time the feed stock hydrogen is mainly manufactured from hydrocarbons using steam reforming. In steam reforming two processes are employed, the conventional process and PSA (pressure swing adsorption) process. These two processes are described and compared. The results show that the total costs and the maintenance costs are lower for the PSA process, the capital outlay is lower for the conventional process, and the operating costs are similar for the two processes.

  19. Synthesis of Tetrahydropyran from Tetrahydrofurfuryl Alcohol over Cu–Zno/Al2O3 under a Gaseous-Phase Condition

    Directory of Open Access Journals (Sweden)

    Fengyuan Zhang

    2018-03-01

    Full Text Available Tetrahydropyran (THP represents an O-containing hetero-cyclic compound that can be used as a promising solvent or monomer for polymer synthesis. In this work, Cu–ZnO/Al2O3 catalysts have been prepared by a facile precipitation–extrusion method and used for the synthesis of THP through gaseous-phase hydrogenolysis of tetrahydrofurfuryl alcohol (THFA. The effect of the molar ratio of Cu/Zn/Al, reaction temperature, and hydrogen pressure was investigated. An 89.4% selectivity of THP was achieved at 270 °C and 1.0 MPa H2. Meanwhile, the optimum molar ratio of Cu/Zn/Al was determined to be 4:1:10. The Cu–ZnO/Al2O3 catalyst exhibited high catalytic activity and stability for 205 h on-stream. A possible reaction mechanism involving several consecutive reactions was proposed: THFA was firstly rearranged to 2-hydroxytetrahydropyran (2-HTHP, followed by the dehydration of 2-HTHP to 3,4-2H-dihydropyran (DHP over acid sites; finally, the DHP was hydrogenated to THP. The synergy of acid sites and metal sites of Cu–ZnO/Al2O3 played an important role during the production of THP.

  20. Long-term olfactory memories are stabilised via protein synthesis in Camponotus fellah ants

    DEFF Research Database (Denmark)

    Guerrieri, Fernando Javier; D'Ettorre, Patrizia; Deveaud, J-M.

    2011-01-01

    -chain hydrocarbons, one paired with sucrose and the other with quinine solution. Differential conditioning leads to the formation of a long-term memory retrievable at least 72¿h after training. Long-term memory consolidation was impaired by the ingestion of cycloheximide, a protein synthesis blocker, prior...... to conditioning. Cycloheximide did not impair acquisition of either short-term memory (10¿min) or early and late mid-term memories (1 or 12¿h). These results show that, upon olfactory learning, ants form different memories with variable molecular bases. While short- and mid-term memories do not require protein...... synthesis, long-term memories are stabilised via protein synthesis. Our behavioural protocol opens interesting research avenues to explore the cellular and molecular bases of olfactory learning and memory in ants....

  1. Fischer-Tropsch synthesis : catalysts and chemistry

    NARCIS (Netherlands)

    Loosdrecht, van de J.; Botes, F.G.; Ciobica, I.M.; Ferreira, A.C.; Gibson, P.; Moodley, D.J.; Saib, A.M.; Visagie, J.L.; Weststrate, C.J.; Niemantsverdriet, J.W.; Reedijk, J.; Poeppelmeier, K.

    2013-01-01

    The Fischer–Tropsch synthesis represents a time-tested and fully proven technology for the conversion of synthesis gas (CO + H2) into paraffins, olefins, and oxygenated hydrocarbons. Depending on the origin of the syngas, one speaks of gas-to-liquids, coal-to-liquids, biomass-to-liquids, or

  2. Tailoring Colors by O Annulation of Polycyclic Aromatic Hydrocarbons.

    Science.gov (United States)

    Miletić, Tanja; Fermi, Andrea; Orfanos, Ioannis; Avramopoulos, Aggelos; De Leo, Federica; Demitri, Nicola; Bergamini, Giacomo; Ceroni, Paola; Papadopoulos, Manthos G; Couris, Stelios; Bonifazi, Davide

    2017-02-16

    The synthesis of O-doped polyaromatic hydro- carbons in which two polycyclic aromatic hydrocarbon sub units are bridged through one or two O atoms has been achieved. This includes high-yield ring-closure key steps that, depending on the reaction conditions, result in the formation of furanyl or pyranopyranyl linkages through intramolecular C-O bond formation. Comprehensive photophysical measurements in solution showed that these compounds have exceptionally high emission yields and tunable absorption properties throughout the UV/Vis spectral region. Electrochemical investigations showed that in all cases O annulation increases the electron-donor capabilities by raising the HOMO energy level, whereas the LUMO energy level is less affected. Moreover, third-order nonlinear optical (NLO) measurements on solutions or thin films containing the dyes showed very good values of the second hyperpolarizability. Importantly, poly(methyl methacrylate) films containing the pyranopyranyl derivatives exhibited weak linear absorption and NLO absorption compared to the nonlinearity and NLO refraction, respectively, and thus revealed them to be exceptional organic materials for photonic devices. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  3. Analysis of hydrocarbons generated in coalbeds

    Science.gov (United States)

    Butala, Steven John M.

    This dissertation describes kinetic calculations using literature data to predict formation rates and product yields of oil and gas at typical low-temperature conditions in coalbeds. These data indicate that gas formation rates from hydrocarbon thermolysis are too low to have generated commercial quantities of natural gas, assuming bulk first-order kinetics. Acid-mineral-catalyzed cracking, transition-metal-catalyzed hydrogenolysis of liquid hydrocarbons, and catalyzed CO2 hydrogenation form gas at high rates. The gaseous product compositions for these reactions are nearly the same as those for typical natural coalbed gases, while those from thermal and catalytic cracking are more representative of atypical coalbed gases. Three Argonne Premium Coals (Upper-Freeport, Pittsburgh #8 and Lewiston-Stockton) were extracted with benzene in both Soxhlet and elevated pressure extraction (EPE) systems. The extracts were compared on the basis of dry mass yield and hydrocarbon profiles obtained by gas chromatography/mass spectrometry. The dry mass yields for the Upper-Freeport coal gave consistent results by both methods, while the yields from the Pittsburgh #8 and Lewiston-Stockton coals were greater by the EPE method. EPE required ˜90 vol. % less solvent compared to Soxhlet extraction. Single-ion-chromatograms of the Soxhlet extracts all exhibited bimodal distributions, while those of the EPE extracts did not. Hydrocarbons analyzed from Greater Green River Basin samples indicate that the natural oils in the basin originated from the coal seams. Analysis of artificially produced oil indicates that hydrous pyrolysis mimics generation of C15+ n-alkanes, but significant variations were found in the branched alkane, low-molecular-weight n-alkanes, and high-molecular-weight aromatic hydrocarbon distributions.

  4. Silica sulfuric acid: a reusable solid catalyst for one pot synthesis of densely substituted pyrrole-fused isocoumarins under solvent-free conditions

    Directory of Open Access Journals (Sweden)

    Sudipta Pathak

    2013-11-01

    Full Text Available A convenient and efficient methodology for the synthesis of densely substituted pyrrole-fused isocoumarins, which employs solid-supported silica sulfuric acid (SSA as catalyst, has been developed. When the mixture of ninhydrin adducts of acetylacetone/ethyl acetoacetate and primary amines was heated on the solid surface of SSA under solvent-free conditions, the pyrrole-fused isocoumarins were formed in good yields. This synthetic method has several advantages such as the employment of solvent-free reaction conditions without the use of any toxic reagents and metal catalysts, the ease of product isolation, the use of a recyclable catalyst, the low cost, the easy availability of the starting materials, and the excellent yields of products.

  5. MANTLE SOURCES OF GENERATION OF HYDROCARBONS: GEOLOGY-PHYSICAL SIGNS AND FORECAST-SEARCHING CRITERIONS OF MAPPING; REGULARITY OF AN OIL-AND-GAS-BEARING CAPACITY AS UNLOADING REFLEX OF MANTLE HYDROCARBON-SYSTEMS IN THE CRUST OF THE EARTH

    OpenAIRE

    Тімурзіїв, А.І.

    2017-01-01

    In the conditions of the developed uncertainty concerning the nature of primary sources (donors) and the generation focal (reactionary chambers) of deep hydrocarbons, questions of the nature of donors and the sources of generation of deep hydrocarbons systems, the mechanism and ways of generation and in-source mobilization of hydrocarbons in the top mantle of the Earth and evacuation (vertical migration) of hydrocarbon-systems from the generation sources in the mantle of the Earth into the ac...

  6. Determination of polynuclear hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Lodge, Jr, J P

    1963-01-01

    At the present time, the method of choice for the determination of polynuclear hydrocarbons appears to be the following, (a) extraction of the benzene-soluble fraction from the gross collected particulate matter, (b) one pass through a chromatographic column of partially deactivated alumina, (c) spectral examination of the fractions and (d) the application of appropriate chemical tests as indicated by the previous step. Using this method, the presence of pyrene, fluoranthene, one of the benzofluorenes, chrysens, benz(a)anthracene, benzo(a)pyrene, benzo(e)pyrene, benzo(k)fluoranthene, anthanthrene, and coronene was demonstrated in the air of numerous American cities, and benzo(a)pyrene was measured at some 130 sites. Invaluable as such accurate determinations may be for research purposes, they are still too costly and time-consuming for routine survey purposes. While studies on the subject are by no means complete, they indicate the validity of piperonal chloride test as a general index of polycyclic hydrocarbons. This procedure is described in this paper. 7 references.

  7. Hydrocarbons: source of energy

    International Nuclear Information System (INIS)

    Imarisio, G.; Frias, M.; Bemtgen, J.M.

    1989-01-01

    Hydrocarbons are at present the single most important source of energy, since they are the most versatile and widely used. It is expected that their importance will extend well into the next century and therefore it is essential to provide for all those improvements which will extend their availability and usefulness. The sub-programme ''Optimization of the production and utilization of hydrocarbons'' (within the Non-Nuclear Energy R and D Programme of the European Communities) is pursuing a number of R and D topics aimed at the above-mentioned results. It is implemented by means of shared-cost R and D contracts. At this first Seminar held in Lyon (France) from 21-23 September, 1988, all contractors of the sub-programme presented the state of progress of their R and D projects. These proceedings comprise all the papers presented at the Seminar. The section on oilfield exploration includes a report of work on the interpretation of nuclear logs by means of mathematical models. (author)

  8. [Pattern of growth and metabolism of thermotolerant microorganisms on media containing carbohydrates and hydrocarbons].

    Science.gov (United States)

    Kvasnikov, E I; Isakova, D M; Eliseeva, G S; Loiko, Z I

    1977-01-01

    Experiments were carried out to examine the growth and metabolism of thermotolerant yeast Candida tropicalis K-41 and bacteria Micrococcus freudenreichii that do not have a single temperature point but instead have an optimal temperature plateau at which the growth rate and biosynthetic activity remain unaltered or change insignificantly. Upon transition from the carbohydrate to the hydrocarbon pattern of nutrition these microorganisms show significant changes in metabolic processes: optimal concentration of biotin in the medium decreases significantly; the synthesis of riboflavin, nicotinic and pantothenic acids increases in yeast; the synthesis of nicotinic acid, biotin and vitamin B12 increases in bacteria. During microbial cultivation on hydrocarbons the content of cell lipids grows; yeast accumulate actively phospholipids and free fatty acids; bacteria build up intensively waxes and phospholipids. With the near-maximal growth rate the total synthesis of lipids decreases on carbohydrates and increases drastically on hydrocarbons, primarily at the expense of the above fractions.

  9. Synthesis and Magnetic Properties of Nearly Monodisperse CoFe2O4Nanoparticles Through a Simple Hydrothermal Condition

    Directory of Open Access Journals (Sweden)

    Li Xing-Hua

    2010-01-01

    Full Text Available Abstract Nearly monodisperse cobalt ferrite (CoFe2O4 nanoparticles without any size-selection process have been prepared through an alluring method in an oleylamine/ethanol/water system. Well-defined nanospheres with an average size of 5.5 nm have been synthesized using metal chloride as the law materials and oleic amine as the capping agent, through a general liquid–solid-solution (LSS process. Magnetic measurement indicates that the particles exhibit a very high coercivity at 10 K and perform superparamagnetism at room temperature which is further illuminated by ZFC/FC curves. These superparamagnetic cobalt ferrite nanomaterials are considered to have potential application in the fields of biomedicine. The synthesis method is possible to be a general approach for the preparation of other pure binary and ternary compounds.

  10. Fitting Analysis using Differential evolution Optimization (FADO):. Spectral population synthesis through genetic optimization under self-consistency boundary conditions

    Science.gov (United States)

    Gomes, J. M.; Papaderos, P.

    2017-07-01

    The goal of population spectral synthesis (pss; also referred to as inverse, semi-empirical evolutionary- or fossil record approach) is to decipher from the spectrum of a galaxy the mass, age and metallicity of its constituent stellar populations. This technique, which is the reverse of but complementary to evolutionary synthesis, has been established as fundamental tool in extragalactic research. It has been extensively applied to large spectroscopic data sets, notably the SDSS, leading to important insights into the galaxy assembly history. However, despite significant improvements over the past decade, all current pss codes suffer from two major deficiencies that inhibit us from gaining sharp insights into the star-formation history (SFH) of galaxies and potentially introduce substantial biases in studies of their physical properties (e.g., stellar mass, mass-weighted stellar age and specific star formation rate). These are I) the neglect of nebular emission in spectral fits, consequently; II) the lack of a mechanism that ensures consistency between the best-fitting SFH and the observed nebular emission characteristics of a star-forming (SF) galaxy (e.g., hydrogen Balmer-line luminosities and equivalent widths-EWs, shape of the continuum in the region around the Balmer and Paschen jump). In this article, we present fado (Fitting Analysis using Differential evolution Optimization) - a conceptually novel, publicly available pss tool with the distinctive capability of permitting identification of the SFH that reproduces the observed nebular characteristics of a SF galaxy. This so-far unique self-consistency concept allows us to significantly alleviate degeneracies in current spectral synthesis, thereby opening a new avenue to the exploration of the assembly history of galaxies. The innovative character of fado is further augmented by its mathematical foundation: fado is the first pss code employing genetic differential evolution optimization. This, in conjunction

  11. Steam hydrocarbon cracking and reforming

    NARCIS (Netherlands)

    Golombok, M.

    2004-01-01

    Many industrial chemical processes are taught as distinct contrasting reactions when in fact the unifying comparisons are greater than the contrasts. We examine steam hydrocarbon reforming and steam hydrocarbon cracking as an example of two processes that operate under different chemical reactivity

  12. Enabling the synthesis of medium chain alkanes and 1-alkenes in yeast

    DEFF Research Database (Denmark)

    Zhu, Zhiwei; Zhou, Yongjin J.; Kang, Min Kyoung

    2017-01-01

    Microbial synthesis of medium chain aliphatic hydrocarbons, attractive drop-in molecules to gasoline and jet fuels, is a promising way to reduce our reliance on petroleum-based fuels. In this study, we enabled the synthesis of straight chain hydrocarbons (C7–C13) by yeast Saccharomyces cerevisiae...

  13. Hydrocarbon productivities in different Botryococcus strains: comparative methods in product quantification.

    Science.gov (United States)

    Eroglu, Ela; Okada, Shigeru; Melis, Anastasios

    2011-08-01

    Six different strains of the green microalgae Botryococcus belonging to the A-race or B-race, accumulating alkadiene or botryococcene hydrocarbons, respectively, were compared for biomass and hydrocarbon productivities. Biomass productivity was assessed gravimetrically upon strain growth in the laboratory under defined conditions. Hydrocarbon productivities were measured by three different and independent experimental approaches, including density equilibrium of the intact cells and micro-colonies, spectrophotometric analysis of hydrocarbon extracts, and gravimetric quantitation of eluted hydrocarbons. All three hydrocarbon-quantitation methods yielded similar results for each of the strains examined. The B-race microalgae Botryococcus braunii var. Showa and Kawaguchi-1 constitutively accumulated botryococcene hydrocarbons equivalent to 30% and 20%, respectively, of their overall biomass. The A-race microalgae Botryococcus braunii, varieties Yamanaka, UTEX 2441 and UTEX LB572 constitutively accumulated alkadiene hydrocarbons ranging from 14% to 13% and 10% of their overall biomass, respectively. Botryococcus sudeticus (UTEX 2629), a morphologically different green microalga, had the lowest hydrocarbon accumulation, equal to about 3% of its overall biomass. Results validate the density equilibrium and spectrophotometric analysis methods in the quantitation of botryococcene-type hydrocarbons. These analytical advances will serve in the screening and selection of B. braunii and of other microalgae in efforts to identify those having a high hydrocarbon content for use in commercial applications.

  14. Experimental investigation of aminoacetonitrile formation through the Strecker synthesis in astrophysical-like conditions: reactivity of methanimine (CH2NH), ammonia (NH3), and hydrogen cyanide (HCN)

    Science.gov (United States)

    Danger, G.; Borget, F.; Chomat, M.; Duvernay, F.; Theulé, P.; Guillemin, J.-C.; Le Sergeant D'Hendecourt, L.; Chiavassa, T.

    2011-11-01

    Context. Studing chemical reactivity in astrophysical environments is an important means for improving our understanding of the origin of the organic matter in molecular clouds, in protoplanetary disks, and possibly, as a final destination, in our solar system. Laboratory simulations of the reactivity of ice analogs provide important insight into the reactivity in these environments. Here, we use these experimental simulations to investigate the Strecker synthesis leading to the formation of aminoacetonitrile in astrophysical-like conditions. The aminoacetonitrile is an interesting compound because it was detected in SgrB2, hence could be a precursor of the smallest amino acid molecule, glycine, in astrophysical environments. Aims: We present the first experimental investigation of the formation of aminoacetonitrile NH2CH2CN from the thermal processing of ices including methanimine (CH2NH), ammonia (NH3), and hydrogen cyanide (HCN) in interstellar-like conditions without VUV photons or particules. Methods: We use Fourier Transform InfraRed (FTIR) spectroscopy to monitor the ice evolution during its warming. Infrared spectroscopy and mass spectroscopy are then used to identify the aminoacetonitrile formation. Results: We demonstrate that methanimine can react with -CN during the warming of ice analogs containing at 20 K methanimine, ammonia, and [NH4+ -CN] salt. During the ice warming, this reaction leads to the formation of poly(methylene-imine) polymers. The polymer length depend on the initial ratio of mass contained in methanimine to that in the [NH4+ -CN] salt. In a methanimine excess, long polymers are formed. As the methanimine is progressively diluted in the [NH4+ -CN] salt, the polymer length decreases until the aminoacetonitrile formation at 135 K. Therefore, these results demonstrate that aminoacetonitrile can be formed through the second step of the Strecker synthesis in astrophysical-like conditions.

  15. CHARACTERISTICS OF HYDROCARBON EXPLOITATION IN ARCTIC CIRCLE

    Directory of Open Access Journals (Sweden)

    Vanja Lež

    2013-12-01

    Full Text Available The existence of large quantities of hydrocarbons is supposed within the Arctic Circle. Assumed quantities are 25% of the total undiscovered hydrocarbon reserves on Earth, mostly natural gas. Over 500 major and minor gas accumulations within the Arctic Circle were discovered so far, but apart from Snøhvit gas field, there is no commercial exploitation of natural gas from these fields. Arctic gas projects are complicated, technically hard to accomplish, and pose a great threat to the return of investment, safety of people and equipment and for the ecosystem. Russia is a country that is closest to the realization of the Arctic gas projects that are based on the giant gas fields. The most extreme weather conditions in the seas around Greenland are the reason why this Arctic region is the least explored and furthest from the realization of any gas project (the paper is published in Croatian .

  16. Characterization of hydrocarbon utilizing fungi from hydrocarbon ...

    African Journals Online (AJOL)

    Prof. Ogunji

    mineral salt) medium supplemented with 0.05% (v/v) of ... both plants and animals due to disruption in food chain, and death of plants and animal ... to grow under stressed environmental conditions (low nutrient, pH, and water activity), extension in.

  17. Similarities in the induction of synthesis of a cell-surface polypeptide in Arthrobacter sp. by near-UV irradiation and photodynamic conditions

    International Nuclear Information System (INIS)

    Hoober, J.K.; Franzi, J.

    1983-01-01

    Irradiation of aerobic suspensions of Arthrobacter sp. with near-UV light (310-400 nm) induced synthesis of a 21 000 dalton, cell-surface polypeptide. Synthesis of this polypeptide also was induced by visible light in the presence of photodynamic dyes. Induction of the polypeptide in ear-UV light and with visible light plus dyes was inhibited by histidine. Hemin inhibited induction in near-UV light and in visible light with methylene blue, neutral red and acriflavin, which are cationic dyes, but failed to inhibit induction in visible light with rose bengal, an anionic dye. These results suggested that inhibition by hemin required electrostatically favored interaction between the anionic porphyrin and the sensitizer, and that the near-UV light effect was mediated by a cationic or neutral endogenous sensitizer. The similarities in the responses of the cells to near-UV irradiation and visible light plus dyes suggested that the mechanism of induction under the two conditions was the same. (author)

  18. Protocol for an HTA report: Does therapeutic writing help people with long-term conditions? Systematic review, realist synthesis and economic modelling.

    Science.gov (United States)

    Meads, C; Nyssen, O P; Wong, G; Steed, L; Bourke, L; Ross, C A; Hayman, S; Field, V; Lord, J; Greenhalgh, T; Taylor, S J C

    2014-02-18

    Long-term medical conditions (LTCs) cause reduced health-related quality of life and considerable health service expenditure. Writing therapy has potential to improve physical and mental health in people with LTCs, but its effectiveness is not established. This project aims to establish the clinical and cost-effectiveness of therapeutic writing in LTCs by systematic review and economic evaluation, and to evaluate context and mechanisms by which it might work, through realist synthesis. Included are any comparative study of therapeutic writing compared with no writing, waiting list, attention control or placebo writing in patients with any diagnosed LTCs that report at least one of the following: relevant clinical outcomes; quality of life; health service use; psychological, behavioural or social functioning; adherence or adverse events. Searches will be conducted in the main medical databases including MEDLINE, EMBASE, PsycINFO, The Cochrane Library and Science Citation Index. For the realist review, further purposive and iterative searches through snowballing techniques will be undertaken. Inclusions, data extraction and quality assessment will be in duplicate with disagreements resolved through discussion. Quality assessment will include using Grading of Recommendations Assessment, Development and Evaluation (GRADE) criteria. Data synthesis will be narrative and tabular with meta-analysis where appropriate. De novo economic modelling will be attempted in one clinical area if sufficient evidence is available and performed according to the National Institute for Health and Care Excellence (NICE) reference case.

  19. Protocol for an HTA report: Does therapeutic writing help people with long-term conditions? Systematic review, realist synthesis and economic modelling

    Science.gov (United States)

    Meads, C; Nyssen, O P; Wong, G; Steed, L; Bourke, L; Ross, C A; Hayman, S; Field, V; Lord, J; Greenhalgh, T; Taylor, S J C

    2014-01-01

    Introduction Long-term medical conditions (LTCs) cause reduced health-related quality of life and considerable health service expenditure. Writing therapy has potential to improve physical and mental health in people with LTCs, but its effectiveness is not established. This project aims to establish the clinical and cost-effectiveness of therapeutic writing in LTCs by systematic review and economic evaluation, and to evaluate context and mechanisms by which it might work, through realist synthesis. Methods Included are any comparative study of therapeutic writing compared with no writing, waiting list, attention control or placebo writing in patients with any diagnosed LTCs that report at least one of the following: relevant clinical outcomes; quality of life; health service use; psychological, behavioural or social functioning; adherence or adverse events. Searches will be conducted in the main medical databases including MEDLINE, EMBASE, PsycINFO, The Cochrane Library and Science Citation Index. For the realist review, further purposive and iterative searches through snowballing techniques will be undertaken. Inclusions, data extraction and quality assessment will be in duplicate with disagreements resolved through discussion. Quality assessment will include using Grading of Recommendations Assessment, Development and Evaluation (GRADE) criteria. Data synthesis will be narrative and tabular with meta-analysis where appropriate. De novo economic modelling will be attempted in one clinical area if sufficient evidence is available and performed according to the National Institute for Health and Care Excellence (NICE) reference case. PMID:24549165

  20. Numerical Analysis of The Effect of Hydrodynamics and Operating Conditions on Biodiesel Synthesis in a Rotor-Stator Spinning Disk Reactor

    Directory of Open Access Journals (Sweden)

    Wen Zhuqing

    2017-06-01

    Full Text Available A rotor-stator spinning disk reactor for intensified biodiesel synthesis is described and numerically simulated in the present research. The reactor consists of two flat disks, located coaxially and parallel to each other with a gap ranging from 0.1 mm to 0.2 mm between the disks. The upper disk is located on a rotating shaft while the lower disk is stationary. The feed liquids, triglycerides (TG and methanol are injected into the reactor from centres of rotating disk and stationary disk, respectively. Fluid hydrodynamics in the reactor for synthesis of biodiesel from TG and methanol in the presence of a sodium hydroxide catalyst are simulated, using convection-diffusion-reaction multicomponent transport model with the CFD software ANSYS©Fluent v. 13.0. Effect of operating conditions on TG conversion is particularly investigated. Simulation results indicate that there is occurrence of back flow close to the stator at the outlet zone. Small gap size and fast rotational speed generally help to intensify mixing among reagents, and consequently enhance TG conversion. However, increasing rotational speed of spinning disk leads to more backflow, which decreases TG conversion. Large flow rate of TG at inlet is not recommended as well because of the short mean residence time of reactants inside the reactor.

  1. Solo Mycoremediation Impacted by Waste Hydrocarbons

    Directory of Open Access Journals (Sweden)

    Franklin Santos Freire

    2015-06-01

    Full Text Available Oil and its derivatives are the principal means of energy generation for vehicles that transport raw materials and goods produced in developed and developing regions accentuating the risk of accidents by spills in stockpiling, transport, use or discarding. The contamination by total hydrocarbons suggests the elevated propension to mutations and to the formation of carcinogenic tumors, as a consequence of the exposure to human contamination by these products. This work had as aims: a To investigate, in a laboratorial scale, the degrading capacity of autochthonous microbiota in the presence of differing concentrations of hydrocarbons (0%, 2,5%, 5% e 7,5%; b To isolate fungi tolerant to the contaminant; c To quantify and analyze the biodegradation capacity of soil through the microbial biomass and metabolic quotient; and d To set, in laboratory, ideal conditions of biodegradation of the xenobiotic compound. Some parameters of microbial activity have been evaluated, such as: biological (Carbon of microbial biomass, CO2 , qCO2 emission, and fungi growth, chemical (pH, electrical conductivity –EC –, analysis of fertility and total hydrocarbons and physical (physical composition of the soil for analysis and comparisons. The obtained results suggest that the adding of 5% of waste oil in the ground provided ideal condition for the biodegradation of he   contaminant in the environment. From the evaluated parameters, the emission of CO2 and microbial C were considered more indicative of changes in soil microbial activity subject to the addition of hydrocarbons, confirming the possibility of microremediation use.

  2. In vitro toxicity of polycyclic aromatic hydrocarbons and halogenated aromatic hydrocarbons to cetacean cells and tissues

    Energy Technology Data Exchange (ETDEWEB)

    Carvan, M.J. III.

    1993-01-01

    Cetaceans bioaccumulate high aromatic hydrocarbon tissue residues, and elevated levels of PCB residues in tissues are proposed to have occurred concurrently with recent epizootic deaths of dolphins. The objectives of this study were: (1) to develop and characterize an epithelial cell line derived from dolphin tissues, (2) to investigate the effects of hydrocarbon pollutants on those cells, and (3) to analyze the toxicity of hydrocarbon pollutants on cetacean tissues in vitro. An epithelial cell line, Carvan dolphin kidney (CDK), isolated from a spontaneously aborted female bottlenose dolphin, Tursiops truncatus, grew rapidly. These cells were neither transformed nor immortal. Velocity sedimentation analysis showed CDK cells contained nuclear aryl hydrocarbon receptor, suggestive of cytochrome P450 inducibility. BaP inhibited mitosis in CDK cells in a dose-dependent manner. Data indicate that CDK cells metabolize BaP, that BaP metabolites bind to cellular DNA initiating unscheduled DNA synthesis, and that the inhibition of cytochrome P450 metabolism decrease the BaP-associated inhibition of mitosis in dolphin cells. The data also suggest that TCDD acts synergistically to increase the levels of DNA damage by the procarcinogen BaP. Cetacean liver microsomes was isolated and evaluated for the presence of cytochrome P450 proteins by SDS-PAGE, apparent minimum molecular weight determination, and immunoblot analysis. P450 activity was induced in cetacean tissue samples and CDK cells by exposure in vitro to one of several cytochrome P450-inducing chemicals. The data suggest that cetacean tissues and cells can be utilized to study the in vitro induction of cytochrome P450, resultant metabolism of xenobiotic contaminants, and the subsequent cellular and molecular responses. However, the identity of specific P450 isozymes involved in this process will remain undetermined until monoclonal antibodies that recognize cetacean P450s can be generated.

  3. Petroleum investment conditions in Peru

    International Nuclear Information System (INIS)

    Garcia Schreck, M.

    1996-01-01

    This report focuses on the current petroleum investment conditions in Peru, and Peru's hydrocarbon potential. Investment conditions are examined, and political risk, internal security, the economic environment, and the legal framework for investment are considered. (UK)

  4. Canada's hydrocarbon processing evolution

    International Nuclear Information System (INIS)

    Wise, T.H.; Horton, R.

    2000-01-01

    The development of petroleum refining, petrochemicals and natural gas industries in Canada are discussed together with future issues and prospects. Figures give data on (a) refined products trade 1998; (b) refining capacity; (c) product demand 1980-1999; (d) refinery crude runs and capacity; (e) refining and marketing, historical returns 1993-1999; (f) processing power index for Canada and USA; (g) ethylene capacity; (eye) Montreal petrochemical capacities; (j) Sarnia petrochemical capacities in 2000; (k) Alberta petrochemicals capacities 2001; (l) ethylene net equivalent trade; (m) ethylene costs 1999 for W. Canada and other countries. It was concluded that the hydrocarbon processing business continues to expand in Canada and natural gas processing is likely to increase. Petrochemicals may expand in W. Canada, possibly using feed stock from the Far North. Offshore developments may stimulate new processing on the E. Coast

  5. Hydrogenating gaseous hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Nicolardot, P L.F.

    1930-08-06

    Gaseous hydrocarbons obtained by the destructive distillation of carbonaceous materials are simultaneously desulfurized and hydrogenated by passing them at 350 to 500/sup 0/C, mixed with carbon monoxide and water vapor over lime mixed with metallic oxides present in sufficient amount to absorb the carbon dioxide as it is formed. Oxides of iron, copper, silver, cobalt, and metals of the rare earths may be used and are mixed with the lime to form a filling material of small pieces filling the reaction vessel which may have walls metallized with copper and zinc dust. The products are condensed and fixed with absorbents, e.g. oils, activated carbon, silica gels. The metallic masses may be regenerated by a hot air stream and by heating in inert gases.

  6. Treating hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    Scott, R; MacIvor, W

    1869-09-01

    The treatment of hydrocarbon oils, such as coal or shale oils, paraffin oils, and petroleum, either in the crude or more or less refined state has the object of reducing the specific gravity and otherwise improving the qualities of such oils. The oil to be treated is put into any ordinary still and distilled. The vapor escaping during the distillation is passed through one or more heating vessels or chambers and exposed to the heat necessary to produce the change. The heating vessels or chambers may be made of metal, clay, or any other material adapted to endure heat, and they may be made of any desired form, or they may be constituted of a coil of metal pipes or a series of tubes such as are used for heating air for blast furnaces.

  7. Hydrocarbons (aliphatic and aromatic) in the snow-ice cover in the Arctic

    International Nuclear Information System (INIS)

    Nemirovskaya, I.A.; Novigatsky, A.N.; Kluvitkin, A.A.

    2002-01-01

    This paper presented the concentration and composition of aliphatic hydrocarbons and polycyclic aromatic hydrocarbons (PAHs) in snow and ice-infested waters in the France-Victoria trough in the northern Barents Sea and in the Mendeleev ridge in the Amerasian basin of the Arctic Ocean. Extreme conditions such as low temperatures, ice sheets and the polar nights render the arctic environment susceptible to oil spills. Hydrocarbons found in these northern seas experience significant transformations. In order to determine the sources, pathways and transformations of the pollutants, it is necessary to know their origin. Hydrocarbon distributions is determined mostly by natural hydrobiological and geochemical conditions. The regularity of migration is determined by natural factors such as formation and circulation of air and ice drift. There is evidence suggesting that the hydrocarbons come from pyrogenic sources. It was noted that hydrocarbons could be degraded even at low temperatures. 17 refs., 1 tab

  8. Ultrasound-assisted catalytic synthesis of acyclic imides in the presence of p-toluenesulfonic acid under solvent free conditions

    Directory of Open Access Journals (Sweden)

    Nasr-Esfahani Masoud

    2012-01-01

    Full Text Available A rapid and convenient preparation of acyclic imides by the reaction of aliphatic and aromatic nitriles with acyclic carboxylic anhydride in the presence of catalytic amounts of p-toluenesulfonic acid under thermal or ultrasonic conditions is reported. The advantages of this procedure are moderate reaction times, good to excellent yields, use of inexpensive and ecofriendly catalyst. The reaction of nitriles with aliphatic anhydrides proceeds in thermal conditions, while by the use of ultrasound irradiations these reactions get accelerated.

  9. Nanocomposites of cellulose/iron oxide: influence of synthesis conditions on their morphological behavior and thermal stability

    International Nuclear Information System (INIS)

    Ma Mingguo; Zhu Jiefang; Li Shuming; Jia Ning; Sun Runcang

    2012-01-01

    Nanocomposites of cellulose/iron oxide have been successfully prepared by hydrothermal method using cellulose solution and Fe(NO 3 ) 3 ·9H 2 O at 180 °C. The cellulose solution was obtained by the dissolution of microcrystalline cellulose in NaOH/urea aqueous solution, which is a good system to dissolve cellulose and favors the synthesis of iron oxide without needing any template or other reagents. The phases, microstructure, and morphologies of nanocomposites were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectra (EDS). The effects of the heating time, heating temperature, cellulose concentration, and ferric nitrate concentration on the morphological behavior of products were investigated. The experimental results indicated that the cellulose concentration played an important role in both the phase and shape of iron oxide in nanocomposites. Moreover, the nanocomposites synthesized by using different cellulose concentrations displayed different thermal stabilities. - Highlights: ► Nanocomposites of cellulose/iron oxide have been prepared by hydrothermal method. ► The cellulose concentration played an important role in the phase of iron oxide. ► The cellulose concentration played an important role in the shape of iron oxide. ► The samples displayed different thermal stabilities.

  10. Fission product release under severe accidental conditions: general presentation of the program and synthesis of VERCORS 1-6 results

    International Nuclear Information System (INIS)

    Ducros, G.; Malgouyres, P.P.; Kissane, M.; Boulaud, D.; Durin, M.

    2001-01-01

    The French Nuclear Protection and Safety Institute (IPSN) launched the HEVA-VERCORS program in 1983, in collaboration with Electricite de France (EDF). This program is devoted to the source term of fission products (FP) released from PWR fuel samples during a sequence representative of a severe accident. The analytical experiments are conducted in a shielded hot cell of the LAMA facility of the Grenoble center of CEA (Commissariat a l'Energie Atomique); as simplified tests addressing a limited number of phenomena, they give results complementary to those of the more global in-pile PHEBUS experiments. Six VERCORS tests have been conducted from 1989-1994 with higher fuel temperatures (up to 2600 K) compared with the earlier HEVA tests in order, in particular, to quantify better the release of lower volatile FPs. This paper gives an overview of the experimental facility, a synthesis of FP release from these tests and exhibits, as an example, some specific results of the VERCORS 6 test, performed with high burn-up fuel (60 GWd tU -1 ). The on-going VERCORS HT-RT program, designed to reach fuel liquefaction temperatures, is described before conclusions are drawn

  11. Effect of the synthesis conditions on the magnetic and electrical properties of the BaFeO3-x oxide: A metamagnetic behavior

    International Nuclear Information System (INIS)

    Gil de Muro, Izaskun; Insausti, Maite; Lezama, Luis; Rojo, Teofilo

    2005-01-01

    The BaFeO 2.95 oxide has been obtained from thermal decomposition of the [BaFe(C 3 H 2 O 4 ) 2 (H 2 O) 4 ] metallo-organic precursor at 800 deg. C under atmospheric oxygen pressure as small and homogeneous particles. From electronic paramagnetic resonance data, a metallic behavior in the 230-130K temperature range has been observed. Magnetic measurements confirm the existence of a ferro-antiferromagnetic transition at 178K. The magnetic properties of the BaFeO 2.95 oxide are strongly dependent on both temperature and magnetic field with a metamagnetic behavior. The synthesis conditions play an important role on the morphology and the electrical and magnetic properties. The syntherization of the sample produces a dramatic change in the transport properties and the existence of conductivity disappears

  12. Filamentous fungi remove weathered hydrocarbons from polluted soil of tropical Mexico

    OpenAIRE

    PÉREZ-ARMENDÁRIZ, Beatriz; MARTÍNEZ-CARRERA, Daniel; CALIXTO-MOSQUEDA, María; ALBA, Joel; RODRÍGUEZ-VÁZQUEZ, Refugio

    2010-01-01

    Weathered hydrocarbons from worldwide petrolic activities become more recalcitrant over time. The removal of petroleum hydrocarbons from a polluted soil [65,000 mg total petroleum hydrocarbons (TPH)/kg soil], which had been exposed to tropical environmental conditions for more than 20 years in southeast Mexico, was studied using filamentous fungi. Experiments were carried out in batch reactors (60 mL) containing a substrate consisting of polluted soil and sugar cane bagasse pith as bulk agent...

  13. High Pressure Preignition Chemistry of Hydrocarbons and Hydrocarbon Mixtures

    National Research Council Canada - National Science Library

    Cernansky, N.P

    1998-01-01

    .... The research program entailed mechanistic studies examining the oxidation chemistry of single-component hydrocarbons and ignition studies examining the overall ignition of pure single component fuels and fuel blends...

  14. Controlling Structural Characteristics of Single-Walled Carbon Nanotubes (SWNT) by Tailoring Catalyst Composition and Synthesis Conditions

    International Nuclear Information System (INIS)

    Resasco, Daniel E.

    2010-01-01

    This report shows the extensive research on the mechanism responsible for the formation of single walled carbon nanotubes in order to get control over their structural parameters (diameter and chirality). Catalyst formulations, pre-treatment conditions, and reaction conditions are described in detail as well as mechanisms to produce nanotubes structures of specific arrays (vertical forest, nanotube pillars). Applications of SWNT in different fields are also described in this report. In relation to this project five students have graduated (3 PhD and 2 MS) and 35 papers have been published.

  15. Selective N-alkylation of amines using nitriles under hydrogenation conditions: facile synthesis of secondary and tertiary amines.

    Science.gov (United States)

    Ikawa, Takashi; Fujita, Yuki; Mizusaki, Tomoteru; Betsuin, Sae; Takamatsu, Haruki; Maegawa, Tomohiro; Monguchi, Yasunari; Sajiki, Hironao

    2012-01-14

    Nitriles were found to be highly effective alkylating reagents for the selective N-alkylation of amines under catalytic hydrogenation conditions. For the aromatic primary amines, the corresponding secondary amines were selectively obtained under Pd/C-catalyzed hydrogenation conditions. Although the use of electron poor aromatic amines or bulky nitriles showed a lower reactivity toward the reductive alkylation, the addition of NH(4)OAc enhanced the reactivity to give secondary aromatic amines in good to excellent yields. Under the same reaction conditions, aromatic nitro compounds instead of the aromatic primary amines could be directly transformed into secondary amines via a domino reaction involving the one-pot hydrogenation of the nitro group and the reductive alkylation of the amines. While aliphatic amines were effectively converted to the corresponding tertiary amines under Pd/C-catalyzed conditions, Rh/C was a highly effective catalyst for the N-monoalkylation of aliphatic primary amines without over-alkylation to the tertiary amines. Furthermore, the combination of the Rh/C-catalyzed N-monoalkylation of the aliphatic primary amines and additional Pd/C-catalyzed alkylation of the resulting secondary aliphatic amines could selectively prepare aliphatic tertiary amines possessing three different alkyl groups. According to the mechanistic studies, it seems reasonable to conclude that nitriles were reduced to aldimines before the nucleophilic attack of the amine during the first step of the reaction.

  16. Are all prey created equal? A review and synthesis of differential predation on prey in substandard condition

    Science.gov (United States)

    Mesa, Matthew G.; Poe, Thomas P.; Gadomski, Dena M.; Petersen, James H.

    1994-01-01

    Our understanding of predator-prey interactions in fishes has been influenced largely by research assuming that the condition of the participants is normal. However, fish populations today often reside in anthropogenically altered environments and are subjected to many kinds of stressors, which may reduce their ecological performance by adversely affecting their morphology, physiology, or behaviour. One consequence is that either the predator or prey, or both, may be in a substandard condition at the time of an interaction. We reviewed the literature on predator-prey interactions in fishes where substandard prey were used as experimental groups. Although most of this research indicates that such prey are significantly more vulnerable to predation, prey condition has rarely been considered in ecological theory regarding predator-prey interactions. The causal mechanisms for increased vulnerability of substandard prey to predation include a failure to detect predators, lapses in decision-making, poor fast-start performance, inability to shoal effectively, and increased prey conspicuousness. Despite some problems associated with empirical predator-prey studies using substandard prey, their results can have theoretical and applied uses, such as in ecological modelling or justification of corrective measures to be implemented in the wild. There is a need for more corroborative field experimentation, a better understanding of the causal mechanisms behind differential predation, and increased incorporation of prey condition into the research of predator-prey modellers and theoreticians. If the concept of prey condition is considered in predator-prey interactions, our understanding of how such interactions influence the structure and dynamics of fish communities is likely to change, which should prove beneficial to aquatic ecosystems.

  17. Seawater-cultured Botryococcus braunii for efficient hydrocarbon extraction.

    Directory of Open Access Journals (Sweden)

    Kenichi Furuhashi

    Full Text Available As a potential source of biofuel, the green colonial microalga Botryococcus braunii produces large amounts of hydrocarbons that are accumulated in the extracellular matrix. Generally, pretreatment such as drying or heating of wet algae is needed for sufficient recoveries of hydrocarbons from B. braunii using organic solvents. In this study, the Showa strain of B. braunii was cultured in media derived from the modified Chu13 medium by supplying artificial seawater, natural seawater, or NaCl. After a certain period of culture in the media with an osmotic pressure corresponding to 1/4-seawater, hydrocarbon recovery rates exceeding 90% were obtained by simply mixing intact wet algae with n-hexane without any pretreatments and the results using the present culture conditions indicate the potential for hydrocarbon milking.Seawater was used for efficient hydrocarbon extraction from Botryococcus braunii. The alga was cultured in media prepared with seawater or NaCl. Hydrocarbon recovery rate exceeding 90% was obtained without any pretreatment.

  18. Enumeration of petroleum hydrocarbon utilizing bacteria

    International Nuclear Information System (INIS)

    Mukherjee, S.; Barot, M.; Levine, A.D.

    1996-01-01

    In-situ biological treatment is one among a number of emerging technologies that may be applied to the remediation of contaminated soils and groundwater. In 1985, a surface spill of 1,500 gallons of dielectric transformer oil at the Sandia National Laboratories (HERMES II facility) resulted in contamination of soil up to depths of 160 feet. The extent of contamination and site characteristics favored the application of in-situ bioremediation as a potential remedial technology. The purpose of this research was to enumerate indigenous microbial populations capable of degrading petroleum hydrocarbons. Microbial enumeration and characterization methods suitably adapted for hydrocarbon utilizing bacteria were used as an indicator of the presence of viable microbial consortia in excavated oil samples with hydrocarbon (TPH) concentrations ranging from 300 to 26,850 ppm. Microbial activity was quantified by direct and streak plating soil samples on silica gel media. Effects of toxicity and temperature were studied using batch cultures of hydrocarbon utilizing bacteria (selectively isolated in an enrichment medium), at temperatures of 20 and 35 C. It was concluded from this study that it is possible to isolate native microorganisms from contaminated soils from depths of 60 to 160 feet, and with oil concentration ranging from 300 to 26,850 ppm. About 62% of the microorganisms isolated form the contaminated soil were capable of using contaminant oil as a substrate for growth and metabolism under aerobic conditions. Growth rates were observed to be 50% higher for the highest contaminant concentration at 20 C. Resistance to toxicity to contaminant oil was also observed to be greater at 20 C than at 35 C

  19. National Gas Survey. Synthesized gaseous hydrocarbon fuels

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-06-01

    The supply-Technical Advisory Task Force-Synthesized Gaseous Hydrocarbon Fuels considered coal, hydrocarbon liquids, oil shales, tar sands, and bioconvertible materials as potential feedstocks for gaseous fuels. Current status of process technology for each feedstock was reviewed, economic evaluations including sensitivity analysis were made, and constraints for establishment of a synthesized gaseous hydrocarbon fuels industry considered. Process technology is presently available to manufacture gaseous hydrocarbon fuels from each of the feedstocks. In 1975 there were eleven liquid feedstock SNG plants in the United States having a capacity of 1.1 billion SCFD. There can be no contribution of SNG before 1982 from plants using feedstocks other than liquids because there are no plants in operation or under construction as of 1977. Costs for SNG are higher than current regulated prices for U.S. natural gas. Because of large reserves, coal is a prime feedstock candidate although there are major constraints in the area of coal leases, mining and water permits, and others. Commercial technology is available and several new gasification processes are under development. Oil shale is also a feedstock in large supply and commercial process technology is available. There are siting and permit constraints, and water availability may limit the ultimate size of an oil shale processing industry. Under projected conditions, bioconvertible materials are not expected to support the production of large quantities of pipeline quality gas during the next decade. Production of low or medium Btu gas from municipal solid wastes can be expected to be developed in urban areas in conjunction with savings in disposal costs. In the economic evaluations presented, the most significant factor for liquid feedstock plants is the anticipated cost of feedstock and fuel. The economic viability of plants using other feedstocks is primarily dependent upon capital requirements.

  20. Geophysical monitoring in a hydrocarbon reservoir

    Science.gov (United States)

    Caffagni, Enrico; Bokelmann, Goetz

    2016-04-01

    Extraction of hydrocarbons from reservoirs demands ever-increasing technological effort, and there is need for geophysical monitoring to better understand phenomena occurring within the reservoir. Significant deformation processes happen when man-made stimulation is performed, in combination with effects deriving from the existing natural conditions such as stress regime in situ or pre-existing fracturing. Keeping track of such changes in the reservoir is important, on one hand for improving recovery of hydrocarbons, and on the other hand to assure a safe and proper mode of operation. Monitoring becomes particularly important when hydraulic-fracturing (HF) is used, especially in the form of the much-discussed "fracking". HF is a sophisticated technique that is widely applied in low-porosity geological formations to enhance the production of natural hydrocarbons. In principle, similar HF techniques have been applied in Europe for a long time in conventional reservoirs, and they will probably be intensified in the near future; this suggests an increasing demand in technological development, also for updating and adapting the existing monitoring techniques in applied geophysics. We review currently available geophysical techniques for reservoir monitoring, which appear in the different fields of analysis in reservoirs. First, the properties of the hydrocarbon reservoir are identified; here we consider geophysical monitoring exclusively. The second step is to define the quantities that can be monitored, associated to the properties. We then describe the geophysical monitoring techniques including the oldest ones, namely those in practical usage from 40-50 years ago, and the most recent developments in technology, within distinct groups, according to the application field of analysis in reservoir. This work is performed as part of the FracRisk consortium (www.fracrisk.eu); this project, funded by the Horizon2020 research programme, aims at helping minimize the

  1. The Attribute for Hydrocarbon Prediction Based on Attenuation

    International Nuclear Information System (INIS)

    Hermana, Maman; Harith, Z Z T; Sum, C W; Ghosh, D P

    2014-01-01

    Hydrocarbon prediction is a crucial issue in the oil and gas industry. Currently, the prediction of pore fluid and lithology are based on amplitude interpretation which has the potential to produce pitfalls in certain conditions of reservoir. Motivated by this fact, this work is directed to find out other attributes that can be used to reduce the pitfalls in the amplitude interpretation. Some seismic attributes were examined and studies showed that the attenuation attribute is a better attribute for hydrocarbon prediction. Theoretically, the attenuation mechanism of wave propagation is associated with the movement of fluid in the pore; hence the existence of hydrocarbon in the pore will be represented by attenuation attribute directly. In this paper we evaluated the feasibility of the quality factor ratio of P-wave and S-wave (Qp/Qs) as hydrocarbon indicator using well data and also we developed a new attribute based on attenuation for hydrocarbon prediction -- Normalized Energy Reduction Stack (NERS). To achieve these goals, this work was divided into 3 main parts; estimating the Qp/Qs on well log data, testing the new attribute in the synthetic data and applying the new attribute on real data in Malay Basin data. The result show that the Qp/Qs is better than Poisson's ratio and Lamda over Mu as hydrocarbon indicator. The curve, trend analysis and contrast of Qp/Qs is more powerful at distinguishing pore fluid than Poisson ratio and Lamda over Mu. The NERS attribute was successful in distinguishing the hydrocarbon from brine on synthetic data. Applying this attribute on real data on Malay basin, the NERS attribute is qualitatively conformable with the structure and location where the gas is predicted. The quantitative interpretation of this attribute for hydrocarbon prediction needs to be investigated further

  2. Growth of hydrocarbon utilizing microorganisms

    Digital Repository Service at National Institute of Oceanography (India)

    Bhosle, N.B.; Mavinkurve, S.

    Two isolates from marine mud having broad spectrum hydrocarbon utilizing profile were identified as Arthrobacter simplex and Candida tropicalis.Both the organisms grew exponentially on crude oil. The cell yield of the organisms was influenced...

  3. Two-stage Catalytic Reduction of NOx with Hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Umit S. Ozkan; Erik M. Holmgreen; Matthew M. Yung; Jonathan Halter; Joel Hiltner

    2005-12-21

    oxidation catalyst. At every stage, catalyst synthesis was guided by the insights gained through detailed characterization of the catalysts using many surface and bulk analysis techniques such as X-ray diffraction, X-ray photoelectron spectroscopy, Temperature-programmed Reduction, Temperature programmed Desorption, and Diffuse Reflectance InfraRed Fourier Transform Spectroscopy as well as steady state reaction experiments. Once active catalysts for each stage had been developed, a physical mixture of the two catalysts was tested for the reduction of NO with methane in lean conditions. These experiments using a mixture of the catalysts produced N2 yields as high as 90%. In the presence of 10% water, the catalyst mixture produced 75% N{sub 2} yield, without any optimization. The dual catalyst system developed has the potential to be implemented in lean-burn natural gas engines for reducing NOx in lean exhaust as well as eliminating CO and unburned hydrocarbons without any fuel penalty or any system modifications. If funding continues, future work will focus on improving the hydrothermal stability of the system to bring the technology closer to application.

  4. Predicting hydrocarbon release from soil

    International Nuclear Information System (INIS)

    Poppendieck, D.; Loehr, R.C.

    2002-01-01

    'Full text:' The remediation of hazardous chemicals from soils can be a lengthy and costly process. As a result, recent regulatory initiatives have focused on risk-based corrective action (RBCA) approaches. Such approaches attempt to identify the amount of chemical that can be left at a site with contaminated soil and still be protective of human health and the environment. For hydrocarbons in soils to pose risk to human heath and the environment, the hydrocarbons must be released from the soil and accessible to microorganisms, earthworms, or other higher level organisms. The sorption of hydrocarbons to soil can reduce the availability of the hydrocarbon to receptors. Typically in soils and sediments, there is an initial fast release of a hydrocarbon from the soil to the aqueous phase followed by a slower release of the remaining hydrocarbon to the aqueous phase. The rate and extent of slow release can influence aqueous hydrocarbon concentrations and the fate and transport of hydrocarbons in the subsurface. Once the fast fraction of the chemical has been removed from the soil, the remaining fraction of a chemical may desorb at a rate that natural mechanisms can attenuate the released hydrocarbon. Hence, active remediation may be needed only until the fast fraction has been removed. However, the fast fraction is a soil and chemical specific parameter. This presentation will present a tier I type protocol that has been developed to quickly estimate the fraction of hydrocarbons that are readily released from the soil matrix to the aqueous phase. Previous research in our laboratory and elsewhere has used long-term desorption (four months) studies to determine the readily released fraction. This research shows that a single short-term (less than two weeks) batch extraction procedure provides a good estimate of the fast released fraction derived from long-term experiments. This procedure can be used as a tool to rapidly evaluate the release and bioavailability of

  5. Hydrocarbon removal with constructed wetlands

    OpenAIRE

    Eke, Paul Emeka

    2008-01-01

    Wetlands have long played a significant role as natural purification systems, and have been effectively used to treat domestic, agricultural and industrial wastewater. However, very little is known about the biochemical processes involved, and the use of constructed treatment wetlands in the removal of petroleum aromatic hydrocarbons from produced and/or processed water. Wastewaters from the oil industry contain aromatic hydrocarbons such as benzene, toluene, ethylbenzene and x...

  6. Catalytic pyrolysis of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Vail' eva, N A; Buyanov, R A

    1979-01-01

    Catalytic pyrolysis of petroleum fractions (undecane) was performed with the object of clarifying such questions as the mechanism of action of the catalyst, the concepts of activity and selectivity of the catalyst, the role of transport processes, the temperature ranges and limitations of the catalytic process, the effect of the catalyst on secondary processes, and others. Catalysts such as quartz, MgO, Al/sub 2/O/sub 3/, were used. Analysis of the experimental findings and the fact that the distribution of products is independent of the nature of the surface, demonstrate that the pyrolysis of hydrocarbons in the presence of catalysts is based on the heterogeneous-homogeneous radical-chain mechanism of action, and that the role of the catalysts reduces to increasing the concentration of free radicals. The concept of selectivity cannot be applied to catalysts here, since they do not affect the mechanism of the unfolding of the process of pyrolysis and their role consists solely in initiating the process. In catalytic pyrolysis the concepts of kinetic and diffusive domains of unfolding of the catalytic reaction do not apply, and only the outer surface of the catalyst is engaged, whereas the inner surface merely promotes deletorious secondary processes reducing the selectivity of the process and the activity of the catalyst. 6 references, 2 figures.

  7. Electrostatically atomised hydrocarbon sprays

    Energy Technology Data Exchange (ETDEWEB)

    Yule, A.J.; Shrimpton, J.S.; Watkins, A.P.; Balachandran, W.; Hu, D. [UMIST, Manchester (United Kingdom). Thermofluids Division, Dept. of Mechanical Engineering

    1995-07-01

    A burner using an electrostatic method to produce and control a fuel spray is investigated for non-burning sprays. The burner has a charge injection nozzle and the liquid flow rate and charge injection rate are varied using hydrocarbon liquids of differing viscosities, surface tensions and electrical conductivities (kerosene, white spirit and diesel oil). Droplet size distributions are measured and it is shown how the dropsize, spray pattern, breakup mechanism and breakup length depend on the above variables, and in particular on the specific charge achieved in the spray. The data are valuable for validating two computer models under development. One predicts the electric field and flow field inside the nozzle as a function of emitter potential, geometry and flow rate. The other predicts the effect of charge on spray dispersion, with a view to optimizing spray combustion. It is shown that electrostatic disruptive forces can be used to atomize oils at flow rates commensurate with practical combustion systems and that the charge injection technique is particularly suitable for highly resistive liquids. Possible limitations requiring further research include the need to control the wide spray angle, which may provide fuel-air mixtures too lean near the nozzle, and the need to design for maximum charge injection rate, which is thought to be limited by corona breakdown in the gas near the nozzle orifice. 30 refs., 15 figs., 1 tab.

  8. HYDROCARBONS RESERVES IN VENEZUELA

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Cruz, D.J.

    2007-07-01

    Venezuela is an important player in the energy world, because of its hydrocarbons reserves. The process for calculating oil and associated gas reserves is described bearing in mind that 90% of the gas reserves of Venezuela are associated to oil. Likewise, an analysis is made of the oil reserves figures from 1975 to 2003. Reference is also made to inconsistencies found by international experts and the explanations offered in this respect by the Ministry of Energy and Petroleum (MENPET) and Petroleos de Venezuela (PDVSA) regarding the changes that took place in the 1980s. In turn, Hubbert's Law is explained to determine peak production of conventional oil that a reservoir or field will reach, as well as its relationship with remaining reserves. Emphasis is placed on the interest of the United Nations on this topic. The reserves of associated gas are presented along with their relationship with the different crude oils that are produced and with injected gas, as well as with respect to the possible changes that would take place in the latter if oil reserves are revised. Some recommendations are submitted so that the MENPET starts preparing the pertinent policies ruling reserves. (auth)

  9. Evaluation of hydrocarbon potential

    International Nuclear Information System (INIS)

    Cashman, P.H.; Trexler, J.H. Jr.

    1992-01-01

    Task 8 is responsible for assessing the hydrocarbon potential of the Yucca Mountain vincinity. Our main focus is source rock stratigraphy in the NTS area in southern Nevada. (In addition, Trexler continues to work on a parallel study of source rock stratigraphy in the oil-producing region of east central Nevada, but this work is not funded by Task 8.) As a supplement to the stratigraphic studies, we are studying the geometry and kinematics of deformation at NTS, particularly as these pertain to reconstructing Paleozoic stratigraphy and to predicting the nature of the Late Paleozoic rocks under Yucca Mountain. Our stratigraphic studies continue to support the interpretation that rocks mapped as the open-quotes Eleana Formationclose quotes are in fact parts of two different Mississippian units. We have made significant progress in determining the basin histories of both units. These place important constraints on regional paleogeographic and tectonic reconstructions. In addition to continued work on the Eleana, we plan to look at the overlying Tippipah Limestone. Preliminary TOC and maturation data indicate that this may be another potential source rock

  10. Method of Generating Hydrocarbon Reagents from Diesel, Natural Gas and Other Logistical Fuels

    Science.gov (United States)

    Herling, Darrell R [Richland, WA; Aardahl, Chris L [Richland, WA; Rozmiarek, Robert T [Middleton, WI; Rappe, Kenneth G [Richland, WA; Wang, Yong [Richland, WA; Holladay, Jamelyn D [Kennewick, WA

    2008-10-14

    The present invention provides a process for producing reagents for a chemical reaction by introducing a fuel containing hydrocarbons into a flash distillation process wherein the fuel is separated into a first component having a lower average molecular weight and a second component having a higher average molecular weight. The first component is then reformed to produce synthesis gas wherein the synthesis gas is reacted catalytically to produce the desire reagent.

  11. Synthesis of [Zn-Al-CO 3] layered double hydroxides by a coprecipitation method under steady-state conditions

    Science.gov (United States)

    Chang, Z.; Evans, D. G.; Duan, X.; Vial, C.; Ghanbaja, J.; Prevot, V.; de Roy, M.; Forano, C.

    2005-09-01

    A continuous co-precipitation method under steady-state conditions has been investigated for the preparation of nanometer-size layered double hydroxide (LDH) particles using Zn 2Al(OH) 6(CO 3) 0.5·2H 2O as a prototype. The objective was to shorten the preparation time by working without an aging step, using a short and controlled residence time in order to maintain a constant supersaturation level in the reactor and constant particle properties in the exit stream over time. The effects of varying the operating conditions on the structural and textural properties of the LDHs have been studied, including total cation concentration, solvent, residence time, pH and intercalation anion. The products have been characterized using ICP, XRD, FTIR, BET, SEM and TEM. The LDHs prepared by the continuous coprecipitation method have a poorer crystallinity and lower crystallite sizes than those synthesized by the conventional batch method. The results have shown that increasing either cation concentration or the fraction of monoethylene glycol (MEG) in MEG/H 2O mixtures up to 80% (v/v) affect salt solubility and supersaturation, which gives rise to smaller crystallites, larger surface areas and more amorphous compounds. This increase is however limited by the precipitation of zinc and aluminum hydroxides occurring around a total cation concentration of 3.0×10 -1 M in pure water and 3.0×10 -2 M in H 2O/EtOH mixtures. Crystallite size increases with residence time, suggesting a precipitation process controlled by growth. Finally, the continuous coprecipitation method under steady-state conditions has been shown to be a promising alternative to the traditional coprecipitation technique in either pure water or mixed H 2O/MEG solvents.

  12. On synthesis of LiCe(SO4)2xH2O double salt in hydrothermal conditions

    International Nuclear Information System (INIS)

    Bondar', S.A.; Belokoskov, V.I.; Popova, R.A.; Nikitina, S.D.; Trofimov, G.V.; Korobejnikov, L.S.

    1986-01-01

    Conditions for LiCe(SO 4 ) 2 xH 2 O double sulfate crystallization are determined by investigation of Li 2 SO 4 -Ce 4 (SO 4 ) 3 -H 2 SO 4 -H 2 O system using the method of isothermal solubility at 150 and 200 deg C in the 35-85 mass % concentration range of sulfuric acid and ratios at mixture charge of Li 2 SO 4 :Ce(SO 4 ) 3 equal to 2:1 and 5:1 (g/mole). Derivatograms, infrared spectra and crystal optical characteristics of double lithium and cerium (3) sulphate are presented

  13. Cyclopentadienyl molybdenum(II/VI) N-heterocyclic carbene complexes: Synthesis, structure, and reactivity under oxidative conditions

    KAUST Repository

    Li, Shenyu

    2010-04-26

    A series of N-heterocyclic carbene (NHC) complexes CpMo(CO) 2(NHC)X (NHC = IMe = 1,3-dimethylimidazol-2-ylidene, X = Br, 1; NHC = 1,3-dipropylimidazol-2-ylidene, X = Br, 2; NHC = IMes = 1,3-bis(2,4,6- trimethylphenyl)imidazol-2-ylidene, X = Br, 3; NHC = IBz = 1,3-dibenzylimidazol- 2-ylidene, X = Br, 4a, and X = Cl, 4b; NHC = 1-methyl-3-propylimidazol-2- ylidene, X = Br, 5) and [CpMo(CO)2(IMes)(CH3CN)][BF 4] (6) have been synthesized and fully characterized. The stability of metal-NHC ligand bonds in these compounds under oxidative conditions has been investigated. The thermally stable Mo(VI) dioxo NHC complex [CpMoO 2(IMes)][BF4] (9) has been isolated by the oxidation of the ionic complex 6 by TBHP (tert-butyl hydrogen peroxide). Complex 6 can be applied as a very active (TOFs up to 3400 h-1) and selective olefin epoxidation catalyst. While under oxidative conditions (in the presence of TBHP), compounds 1-5 decompose into imidazolium bromide and imidazolium polyoxomolybdate. The formation of polyoxomolybdate as oxidation products had not been observed in a similar epoxidation catalyzed by Mo(II) and Mo(VI) complexes. DFT studies suggest that the presence of Br- destabilizes the CpMo(VI) oxo NHC carbene species, consistent with the experimental observations. © 2010 American Chemical Society.

  14. Switchable Synthesis of 4,5-Functionalized 1,2,3-Thiadiazoles and 1,2,3-Triazoles from 2-Cyanothioacetamides under Diazo Group Transfer Conditions.

    Science.gov (United States)

    Filimonov, Valeriy O; Dianova, Lidia N; Galata, Kristina A; Beryozkina, Tetyana V; Novikov, Mikhail S; Berseneva, Vera S; Eltsov, Oleg S; Lebedev, Albert T; Slepukhin, Pavel A; Bakulev, Vasiliy A

    2017-04-21

    High yield solvent-base-controlled, transition metal-free synthesis of 4,5-functionalized 1,2,3-thiadiazoles and 1,2,3-triazoles from 2-cyanothioacetamides and sulfonyl azides is described. Under diazo transfer conditions in the presence of a base in an aprotic solvent 2-cyanothioacetamides operating as C-C-S building blocks produce 5-amino-4-cyano-1,2,3-thiadiazoles exclusively. The use of alkoxide/alcohol system completely switches the reaction course due to the change of one of the reaction centers in the 2-cyanothioacetamide (C-C-N building block) resulting in the formation of 5-sulfonamido-1,2,3-triazole-4-carbothioamide sodium salts as the only products. The latter serve as good precursors for 5-amino-1,2,3-thiadiazole-4-carboximidamides, the products of Cornforth-type rearrangement occurring in neutral protic medium or under acid conditions. According to DFT calculations (B3LYP/6-311+G(d,p)) the rearrangement proceeds via intermediate formation of a diazo compound, and can be catalyzed by acids via the protonation of oxygen atom of the sulfonamide group.

  15. Modifiable workplace risk factors contributing to workplace absence across health conditions: A stakeholder-centered best-evidence synthesis of systematic reviews.

    Science.gov (United States)

    White, Marc; Wagner, Shannon; Schultz, Izabela Z; Murray, Eleanor; Bradley, Susan M; Hsu, Vernita; McGuire, Lisa; Schulz, Werner

    2013-01-01

    A challenge facing stakeholders is the identification and translation of relevant high quality research to inform policy and practice. This study engaged academic and community stakeholders in conducting a best evidence-synthesis to enhance knowledge use. To identify modifiable workplace disability risk and protective factors across common health conditions impacting work-related absence. We searched MEDLINE, Embase, CINHAL, The Cochrane Library, PsycINFO, BusinessSourceComplete, and ABI/Inform from 2000 to 2011. Systematic reviews that employed quantitative, qualitative, or mixed methods of work-focused population were considered for inclusion. Two or more independent reviewers reviewed titles only, titles and abstracts, and/or full articles when assessing eligibility for inclusion. Selected articles underwent methodological screening. The search strategy, expert input and grey literature identified 2,467 unique records from which 142 full text articles underwent comprehensive review. Twenty-seven systematic reviews met eligibility criteria. Modifiable work factors found to have consistent evidence across two or more health conditions included lack of social support, increased physical demands at work, job strain, lack of supervisory support, increased psychological demands, low job satisfaction, low worker control of job, and poor leadership quality. The active engagement of stakeholders led to greater understanding of relevance of the study findings for community stakeholders and appreciation of the mutual benefits of collaboration.

  16. pH dependent green synthesis of gold nanoparticles by completely C6-carboxylated curdlan under high temperature and various pH conditions.

    Science.gov (United States)

    Qiu, Wen-Yi; Wang, Kai; Wang, Yao-Yao; Ding, Zhi-Chao; Wu, Li-Xia; Cai, Wu-Dan; Yan, Jing-Kun

    2018-01-01

    A C6-carboxylated curdlan (C6-Cc) obtained from 4-acetamido-TEMPO-mediated oxidation of curdlan was used both as a reducing and stabilizing agent for green synthesis of pH-responsive AuNPs, which was carried out by controlling the pH of the C6-Cc solution at a high temperature (100°C). C6-Cc presented a semi-flexible random coil chain in the aqueous medium at pH 5.5 and became more expanded and rigid in alkaline conditions (pH 7.1-12.0), though the primary chemical structure of C6-Cc was virtually unchanged with the pH variation. The AuNPs prepared with C6-Cc at various pHs were characterized by various instrumental measurements. The shapes and sizes of AuNPs were found to be strongly dependent on the pH of the C6-Cc solution. The C6-Cc-decorated AuNPs exhibited a more well-dispersed spherical morphology with smaller particle sizes under alkaline conditions (pH 7.1-12.0). Through this study, a facile, simple, and green method has been demonstrated for preparation of stimuli-sensitive AuNPs using biocompatible polyanionic polysaccharides. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Effects of H2S and process conditions in the synthesis of mixed alcohols from syngas over alkali promoted cobalt-molybdenum sulfide

    DEFF Research Database (Denmark)

    Christensen, Jakob Munkholt; Mortensen, Peter Mølgaard; Trane, Rasmus

    2009-01-01

    pressures of H2 and CO are also investigated. With or without H2S in the feed the pre-sulfided catalyst requires an initiation period to reach a stabilized behavior, but the duration of this period depends upon the H2S level. Operation with a feed containing more than 103 ppmv H2S leads to a fairly rapid...... coverage and low hydrogen coverage. Hydrogen sulfide in the syngas feed generally promotes chain growth for both alcohols and hydrocarbons, but lowers the alcohol selectivity by enhancing the hydrocarbon formation. The highest alcohol productivity reached in these investigations was 0.276 g/g cat...

  18. Polycyclic aromatic hydrocarbons in stellar medium

    Science.gov (United States)

    Rastogi, Shantanu

    2005-06-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are an important com- ponent of the Interstellar Medium (ISM). They are being used as probes for understanding of process and conditions of different astrophysical environments. The understanding of their IR spectra and its variations with PAH size and ionization state is useful in characterizing the ISM. Spectral features of model graphene sheets and also that of smaller PAH molecules are reported. The variation of intensity with charge state of the molecule shows that cations give a better correlation with observations. The relationship between changes in charge distribution with intensity changes upon ionization has been probed.

  19. Petroleum hydrocarbon toxicity to corals: A review.

    Science.gov (United States)

    Turner, Nicholas R; Renegar, D Abigail

    2017-06-30

    The proximity of coral reefs to coastal urban areas and shipping lanes predisposes corals to petroleum pollution from multiple sources. Previous research has evaluated petroleum toxicity to coral using a variety of methodology, including monitoring effects of acute and chronic spills, in situ exposures, and ex situ exposures with both adult and larval stage corals. Variability in toxicant, bioassay conditions, species and other methodological disparities between studies prevents comprehensive conclusions regarding the toxicity of hydrocarbons to corals. Following standardized protocols and quantifying the concentration and composition of toxicant will aid in comparison of results between studies and extrapolation to actual spills. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. A case study of the intrinsic bioremediation of petroleum hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Barker, G.W.; Raterman, K.T.; Fisher, J.B.; Corgan, J.M. [and others

    1995-12-31

    Condensate liquids have been found to contaminate soil and groundwater at two gas production sites in the Denver Basin operated by Amoco Production Co. These sites have been closely monitored since July 1993 to determine whether intrinsic aerobic or anaerobic bioremediation of hydrocarbons occurs at a sufficient rate and to an adequate endpoint to support a no-intervention decision. Groundwater monitoring and analysis of soil cores suggest that intrinsic bioremediation is occurring at these sites by multiple pathways including aerobic oxidation, Fe{sup 3+} reduction, and sulfate reduction. In laboratory experiments the addition of gas condensate hydrocarbons to saturated soil from the gas production site stimulated sulfate reduction under anaerobic and oxygen-limiting conditions, and nitrate and Fe{sup 3+} reduction under oxygen-limiting conditions, compared to biotic controls that lacked hydrocarbon and sterile controls. The sulfate reduction corresponded to a reduction in the amount of toluene relative to other hydrocarbons. These results confirmed that subsurface soils at the gas production site have the potential for intrinsic bioremediation of hydrocarbons.

  1. Hydrocarbons as Refrigerants―A Review

    Directory of Open Access Journals (Sweden)

    J. H. KOH

    2017-08-01

    Full Text Available Refrigerants used in air conditioning and refrigeration (AC&R indusries have come full circle since the beginning of the industrialrevolution. With concern on issues relating to the environment such as the global warming and climate change issues, we should finda better alternative than to continue using these refrigerants that cause global warming and ozone depletion. AC&R industryplayers have blended in by introducing some new equipment and components that are specificallydesigned for hydrocarbon (HC use. Mostnew refrigerators sold in Malaysia are already equipped with isobutane [a hydrocarbon designated as R-600a by the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE standards]as refrigerants. Malaysia has ratifiedthe Montreal Protocol and targetted a 10% reduction in hydrochlorofluorocarbon(HCFC consumption, beginning 2016 with the banning of 2.5 horsepower (hp and below in air-conditioning (AC equipment to be used. Instead,hydrofluorocarbon(HFC R-410a was introduced as a replacement for HCFC- 22, whereas in other countries this HFC has been phased down. This article was initiated  because of the difficultin findinga replacement for HCFC. Also, the possibilities of using HC as an alternative to replace HCFC insteadof using HFC as a transitional refrigerant in place of HCFC is reviewed in this article. The performance of HC is very similar to HCFC and flmmability issues could be easily overcome with the use of an effectivedesign. Their use could be facilitated with the adaptation of specific standards and properly enacted legislatio

  2. Two-step processing of oil shale to linear hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Eliseev, O.L.; Ryzhov, A.N.; Latypova, D.Zh.; Lapidus, A.L. [Russian Academy of Sciences, Moscow (Russian Federation). N.D. Zelinsky Institute of Organic Chemistry; Avakyan, T.A. [Gubkin Russian State University of Oil and Gas, Moscow (Russian Federation)

    2013-11-01

    Thermal and catalytic steam reforming of oil shale mined from Leningrad and Kashpir deposits was studied. Experiments were performed in fixed bed reactor by varying temperature and steam flow rate. Data obtained were approximated by empirical formulas containing some parameters calculated by least-squares method. Thus predicting amount of hydrogen, carbon monoxide and methane in producer gas is possible for given particular kind of oil shale, temperature and steam flow rate. Adding Ni catalyst enriches hydrogen and depletes CO content in effluent gas at low gasification temperatures. Modeling gas simulating steam reforming gases (H{sub 2}, CO, CO{sub 2}, and N{sub 2} mixture) was tested in hydrocarbon synthesis over Co-containing supported catalyst. Selectivity of CO conversion into C{sub 5+} hydrocarbons reaches 84% while selectivity to methane is 7%. Molecular weight distribution of synthesized alkanes obeys Anderson-Schulz-Flory equation and chain growth probability 0.84. (orig.)

  3. Size-controlled synthesis and formation mechanism of manganese oxide OMS-2 nanowires under reflux conditions with KMnO4 and inorganic acids

    Science.gov (United States)

    Zhang, Qin; Cheng, Xiaodi; Qiu, Guohong; Liu, Fan; Feng, Xionghan

    2016-05-01

    This study presents a simplified approach for size-controlled synthesis of manganese oxide octahedral molecular sieve (OMS-2) nanowires using potassium permanganate (KMnO4) and different inorganic acids (HCl, HNO3, and H2SO4) under reflux conditions. The morphology and nanostructure of the synthesized products are characterized by X-ray diffraction, Ar adsorption, and electron microscopy analysis, in order to elucidate the controlling effects of acid concentration and type as well as the formation mechanism of OMS-2 nanowires. The concentration of inorganic acid is a crucial factor controlling the phase of the synthesized products. OMS-2 nanowires are obtained with HCl at the concentration ≥0.96 mol/L or with HNO3 and H2SO4 at the concentrations ≥0.72 mol/L. Differently, the type of inorganic acid effectively determines the particle size of OMS-2 nanowires. When the acid is changed from HCl to HNO3 and H2SO4 in the reflux system, the average length of OMS-2 declines significantly by 60-70% (1104-442 and 339 nm), with minor decreased in the average width (43-39 and 34 nm). The formation of OMS-2 nanowires under reflux conditions with KMnO4 and inorganic acids involves a two-step process, i.e., the initial formation of layered manganese oxides, and subsequent transformation to OMS-2 via a dissolution-recrystallization process under acidic conditions. The proposed reflux route provides an alternative approach for synthesizing OMS-2 nanowires as well as other porous nano-crystalline OMS materials.

  4. Structural Diversity of Streptococcal Mutans Synthesized under Different Culture and Environmental Conditions and Its Effect on Mutanase Synthesis

    Directory of Open Access Journals (Sweden)

    Katarzyna Próchniak

    2012-10-01

    Full Text Available Streptococcal mutans synthesized under different conditions by growing cultures or by their glucosyltransferases were shown to exhibit a great structural and property diversity. Culturing and environmental factors causing structural differences in mutans were specified. All of the obtained biopolymers (76 samples were water-insoluble and most of them (72 had a structure with a predominance of α-(1→3-linked glucose (i.e., the content of α-(1→3-linkages in the glucan was always higher than 50%, but did not exceed 76%. An exception were four glucans containing more than 50% of α-(1→6-sequences. In these structurally unique mutans, the ratio of α-(1→3- to α-(1→6-bonds ranged from 0.75 to 0.97. Aside from one polymer, all others had a heavily branched structures and differed in the number of α-(1→3, α-(1→6, and α-(1→3,6 linkages and their mutual proportion. The induction of mutanase production in shaken flask cultures of Trichoderma harzianum by the structurally diverse mutans resulted in enzyme activities ranging from 0.144 to 1.051 U/mL. No statistical correlation was found between the total percentage content of α-(1→3-linkages in the α-glucan and mutanase activity. Thus, despite biosynthetic differences causing structural variation in the mutans, it did not matter which mutan structures were used to induce mutanase production.

  5. Synthesis of MnV{sup 2}O{sup 6} under autogenous hydrothermal conditions and its anodic performance

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, Michio; Morishita, Takahiro; Hirano, Masanori; Gupta, Vinay; Nakajima, Tsuyoshi [Faculty of Engineering, Aichi Institute of Technology, Yakusa, Toyota 470-0392 (Japan)

    2003-01-01

    Anhydrous crystalline powders of MnV{sub 2}O{sub 6} (brannerite) were successfully precipitated from mixed aqueous solution of Mn(CH{sub 3}COO){sub 2} and V{sub 2}O{sub 5} with a metal ion concentration of 0.01-1.0 mol/l at 135-200 C under autogenous hydrothermal condition in a closed vessel. The characterization of MnV{sub 2}O{sub 6} synthesized was carried out by XRD, TG, TEM and anodic performance measurement. In case of mixtures with a concentration of 0.1-1.0 mol/l, single phase anhydrous crystalline MnV{sub 2}O{sub 6} with homogeneous thin rod-like particles were synthesized by autogenous hydrothermal process, though starting reagent V{sub 2}O{sub 5} was not fully dissolved. They showed high anodic performance in lithium ion batteries; high charge capacity as 600 mA h/g even after the 10th cycle and stable cyclic performance. MnV{sub 2}O{sub 6} powders synthesized from relatively high concentration of metal ions showed an abrupt increase in charge capacity after third or fourth discharge/charge cycles, though the first cycle showed rather high irreversible capacity.

  6. Synthesis of 2-Substituted Benzofurans from o-Iodophenols and Terminal Alkynes with a Recyclable Palladium Catalyst Supported on Nano-sized Carbon Balls under Copper- and Ligand-Free Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Yum, Eul Kgun; Yang, Okkyung; Kim, Jieun; Park, Hee Jank [Chungnam National Univ., Daejeon (Korea, Republic of)

    2013-09-15

    We have developed a one-step synthesis of benzofurans from o-iodophenol and various terminal alkynes, by using Pd catalyst supported on nano-sized carbon balls (NCB) under copper- and ligand free conditions. This recyclable catalyst could be reused more than 5 times in the same heteroannulation reaction. The results have demonstrated that diverse 2-substituted benzofurans with tolerant functional groups can be prepared simply and conveniently under these conditions.

  7. Synthesis of 2-Substituted Benzofurans from o-Iodophenols and Terminal Alkynes with a Recyclable Palladium Catalyst Supported on Nano-sized Carbon Balls under Copper- and Ligand-Free Conditions

    International Nuclear Information System (INIS)

    Yum, Eul Kgun; Yang, Okkyung; Kim, Jieun; Park, Hee Jank

    2013-01-01

    We have developed a one-step synthesis of benzofurans from o-iodophenol and various terminal alkynes, by using Pd catalyst supported on nano-sized carbon balls (NCB) under copper- and ligand free conditions. This recyclable catalyst could be reused more than 5 times in the same heteroannulation reaction. The results have demonstrated that diverse 2-substituted benzofurans with tolerant functional groups can be prepared simply and conveniently under these conditions

  8. Optimization of technological conditions for one-pot synthesis of (S)-alpha-cyano-3-phenoxybenzyl acetate in organic media.

    Science.gov (United States)

    Zhang, Ting-Zhou; Yang, Li-Rong; Zhu, Zi-Qiang

    2005-03-01

    Optically active form of alpha-cyano-3-phenoxybenzyl (CPB) alcohol, building block of pyrethroid insecticides, was synthesized as its acetate by the combination of anion-exchange resin (D301)-catalyzed transcyanation between m-phenoxybenzaldehyde (m-PBA) and acetone cyanohydrin (AC), and lipase (from Alcaligenes sp.)-catalyzed enantioselective transesterification of the resulting cyanohydrin with vinyl acetate. Through optimizing technological conditions, the catalyzing efficiency was improved considerably compared to methods previously reported. Concentrations of CPB acetate were determined by gas chromatograph. The enantio excess (e.e.) values of CPB acetate were measured by NMR (nuclear magnetic resonance) method. Effects of solvents and temperatures on this reaction were studied. Cyclohexane was shown to be the best solvent among the three tested solvents. 55 degrees C was the optimal temperature for higher degree of conversion. External diffusion limitation was excluded by raising the rotational speed to 220 r/min. However, internal diffusion could not be ignored, since the catalyst (lipase) was an immobilized enzyme and its particle dimension was not made small enough. The reaction rate was substantially accelerated when the reactant (m-PBA) concentration was as high as 249 mmol/L, but decreased when the initial concentration of m-PBA reached to 277 mmol/L. It was also found that the catalyzing capability of recovered lipase was high enough to use several batches. Study of the mole ratio of AC to m-PBA showed that 2:1 was the best choice. The strategy of adding base catalyst D301 was found to be an important factor in improving the degree of conversion of the reaction from 20% to 80%. The highest degree of conversion of the reaction has reached up to 80%.

  9. Synthesis, Structure, Characterization, and Decomposition of Nickel Dithiocarbamates: Effect of Precursor Structure and Processing Conditions on Solid-State Products

    Science.gov (United States)

    Hepp, Aloysius F.; Kulis, Michael J.; McNatt, Jeremiah S.; Duffy, Norman V.; Hoops, Michael D.; Gorse, Elizabeth; Fanwick, Philip E.; Masnovi, John; Cowen, Jonathan E.; Dominey, Raymond N.

    2016-01-01

    Single-crystal X-ray structures of four nickel dithiocarbamate complexes, the homoleptic mixed-organic bis-dithiocarbamates Ni[S2CN(isopropyl)(benzyl)]2, Ni[S2CN(ethyl)(n-butyl)]2, and Ni[S2CN(phenyl)(benzyl)]2, as well as the heteroleptic mixed-ligand complex NiCl[P(phenyl)3][(S2CN(phenyl)(benzyl)], were determined. Synthetic, spectroscopic, structural, thermal, and sulfide materials studies are discussed in light of prior literature. The spectroscopic results are routine. A slightly distorted square-planar nickel coordination environment was observed for all four complexes. The organic residues adopt conformations to minimize steric interactions. Steric effects also may determine puckering, if any, about the nickel and nitrogen atoms, both of which are planar or nearly so. A trans-influence affects the Ni-S bond distances. Nitrogen atoms interact with the CS2 carbons with a bond order of about 1.5, and the other substituents on nitrogen display transoid conformations. There are no strong intermolecular interactions, consistent with prior observations of the volatility of nickel dithiocarbamate complexes. Thermogravimetric analysis of the homoleptic species under inert atmosphere is consistent with production of 1:1 nickel sulfide phases. Thermolysis of nickel dithiocarbamates under flowing nitrogen produced hexagonal or -NiS as the major phase; thermolysis under flowing forming gas produced millerite (-NiS) at 300 C, godlevskite (Ni9S8) at 325 and 350 C, and heazlewoodite (Ni3S2) at 400 and 450 C. Failure to exclude oxygen results in production of nickel oxide. Nickel sulfide phases produced seem to be primarily influenced by processing conditions, in agreement with prior literature. Nickel dithiocarbamate complexes demonstrate significant promise to serve as single-source precursors to nickel sulfides, a quite interesting family of materials with numerous potential applications.

  10. Production of light hydrocarbons, etc. [from heavy hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    1937-10-07

    A process is given for the production of light hydrocarbons of the gasoline type and, if desired, of the middle-oil type, from liquid or fusible heavy or medium heavy hydrocarbon materials. The process comprises subjecting the said initial materials in the first stage to catalytic hydrofining, separating the lower boiling constituents and the hydrogenating gas from the resulting products and then subjecting the higher boiling constituents in a second stage to a splitting destructive hydrogenation and then recycling substantially the entire reaction mixture obtained in the second stage to the frst stage.

  11. Bioremediation of a Petroleum-Hydrocarbon Polluted Agricultural ...

    African Journals Online (AJOL)

    A combination of field cells involving a control and five treatment cells were evaluated under field conditions in the bioremediation of a petroleum- hydrocarbon polluted agricultural soil over a six-week period. Previous works have indicated that crude oil contamination of soils depletes oxygen reserves in the soils and slows ...

  12. Alternative Fuel Research in Fischer-Tropsch Synthesis

    Science.gov (United States)

    Surgenor, Angela D.; Klettlinger, Jennifer L.; Yen, Chia H.; Nakley, Leah M.

    2011-01-01

    NASA Glenn Research Center has recently constructed an Alternative Fuels Laboratory which is solely being used to perform Fischer-Tropsch (F-T) reactor studies, novel catalyst development and thermal stability experiments. Facility systems have demonstrated reliability and consistency for continuous and safe operations in Fischer-Tropsch synthesis. The purpose of this test facility is to conduct bench scale Fischer-Tropsch (F-T) catalyst screening experiments while focusing on reducing energy inputs, reducing CO2 emissions and increasing product yields within the F-T process. Fischer-Tropsch synthesis is considered a gas to liquid process which reacts syn-gas (a gaseous mixture of hydrogen and carbon monoxide), over the surface of a catalyst material which is then converted into liquids of various hydrocarbon chain length and product distributions1. These hydrocarbons can then be further processed into higher quality liquid fuels such as gasoline and diesel. The experiments performed in this laboratory will enable the investigation of F-T reaction kinetics to focus on newly formulated catalysts, improved process conditions and enhanced catalyst activation methods. Currently the facility has the capability of performing three simultaneous reactor screening tests, along with a fourth fixed-bed reactor used solely for cobalt catalyst activation.

  13. Effects of calcination and activation conditions on ordered mesoporous carbon supported iron catalysts for production of lower olefins from synthesis gas

    NARCIS (Netherlands)

    Oschatz, M; van Deelen, T W; Weber, J L; Lamme, W S; Wang, G; Goderis, B; Verkinderen, O; Dugulan, A I; de Jong, K P

    2016-01-01

    Lower C2–C4 olefins are important commodity chemicals usually produced by steam cracking of naphtha or fluid catalytic cracking of vacuum gas oil. The Fischer–Tropsch synthesis of lower olefins (FTO) with iron-based catalysts uses synthesis gas as an alternative feedstock. Nanostructured carbon

  14. Production of hydrocarbons, especially ethylene

    Energy Technology Data Exchange (ETDEWEB)

    1952-01-17

    The invention has for its object a process for the production of gaseous nonsaturated hydrocarbons, particularly ethylene and aromatic hydrocarbons, by starting with hydrocarbon oils entirely of paraffinic nature or their fractions, which consists in putting the separated products in contact with solid inert material especially with porous nonmetallic inert material or of heavy metals or their alloys, maybe in a finely divided state or in the form, of pieces or chips, at a temperature above 500/sup 0/C, or better between 600 and 700/sup 0/C at a velocity per hour of 0.6 to 3.0, and preferably 0.75 to 1.5 parts per volume of products per each part of space volume of catalyst.

  15. Enrichment of light hydrocarbon mixture

    Science.gov (United States)

    Yang,; Dali, [Los Alamos, NM; Devlin, David [Santa Fe, NM; Barbero, Robert S [Santa Cruz, NM; Carrera, Martin E [Naperville, IL; Colling, Craig W [Warrenville, IL

    2010-08-10

    Light hydrocarbon enrichment is accomplished using a vertically oriented distillation column having a plurality of vertically oriented, nonselective micro/mesoporous hollow fibers. Vapor having, for example, both propylene and propane is sent upward through the distillation column in between the hollow fibers. Vapor exits neat the top of the column and is condensed to form a liquid phase that is directed back downward through the lumen of the hollow fibers. As vapor continues to ascend and liquid continues to countercurrently descend, the liquid at the bottom of the column becomes enriched in a higher boiling point, light hydrocarbon (propane, for example) and the vapor at the top becomes enriched in a lower boiling point light hydrocarbon (propylene, for example). The hollow fiber becomes wetted with liquid during the process.

  16. Production of hydrocarbons of value

    Energy Technology Data Exchange (ETDEWEB)

    1931-06-16

    A process is described for the production of hydrocarbons of great value by treating with heat and pressure carbonaceous materials such as coals, tars, mineral oils, and products of distillation and transformation of these materials, also for the refining with heat and pressure of mixed liquid hydrocarbons by means of hydrogen gas, preferably in the presence of catalysts, consisting in using as the hydrogenating gas that obtained by gasification of combustible solids after partial or complete cleaning at atmospheric or elevated pressures, by means of solid adsorbents, chemical agents or catalysts, or mixtures of these agents, the hydrocarbons being characterized by strong unsaturation, and the presence of oxygen, sulfur compounds, and oxides of nitrogen.

  17. Process of distilling heavy hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    1929-12-03

    This invention has for its object the distillation of heavy liquid hydrocarbons for the purpose of obtaining lighter hydrocarbons stable and immediately salable for fuels in combustion motors. The process is distinguished by the fact that the heavy hydrocarbon is distilled by means of heating to a temperature in keeping with the nature of the material to be treated up to 350/sup 0/C under pressure or without pressure the distillation being carried out on catalysts containing successively nickel, copper, and iron (3 parts of nickel, 1 part of copper, and 1 part of iron), the vapors produced by this distillation being exposed in turn to the action of catalysts of the same nature and in the same proportion.

  18. Managing of gas sensing characteristic of a reduced graphene oxide based gas sensor by the change in synthesis condition: A new approach for electronic nose design

    Energy Technology Data Exchange (ETDEWEB)

    Alizadeh, Taher, E-mail: talizadeh@ut.ac.ir [Department of Analytical Chemistry, Faculty of Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran (Iran, Islamic Republic of); Hamedsoltani, Leyla [Department of Applied Chemistry, Faculty of Science, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of)

    2016-11-01

    Natural graphite was oxidized and exfoliated via two different methods, leading to two types of graphene oxide (GO) materials. The obtained materials were reduced by three different reducing agents including: hydrazine hydrate, ascorbic acid and sodium borohydride, giving thus six kinds of reduced graphene oxide (RGO) materials. The obtained materials were characterized using Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. The RGOs were then used to fabricate different gas sensors and their electrical resistances were recorded upon exposing to various volatile organic compounds vapors (VOCs). Gas sensing selectivity of each RGO was significantly affected by the synthesis condition. The RGO-based sensor array was fabricated and its capability for discrimination of seven kinds of VOCs was evaluated, utilizing principal component analysis and cluster analysis methods. Loading plot indicated that the presence of five RGO-based sensors could effectively discriminate the aimed vapors. The electronic nose, containing five kinds of RGOs, was used for the classification of seven kinds of VOCs at their different concentrations. - Highlights: • Two oxidation procedures and three reducing agents were utilized to produce six kinds of RGOs. • The synthesized different RGOs exhibited significantly different sensing behaviors. • Seven kinds of organic vapors were chosen for the evaluation of discrimination power of EN. • Using PCA, it was found that seven of six RFGOs were appropriate number to use in final EN. • The developed EN was capable of properly discrimination of tested vapors.

  19. Impact of High-Temperature, High-Pressure Synthesis Conditions on the Formation of the Grain Structure and Strength Properties of Intermetallic Ni3Al

    Science.gov (United States)

    Ovcharenko, V. E.; Ivanov, K. V.; Boyangin, E. N.; Krylova, T. A.; Pshenichnikov, A. P.

    2018-01-01

    The impact of the preliminary load on 3Ni+Al powder mixture and the impact of the duration of the delay in application of compacting pressure to synthesis product under the conditions of continuous heating of the mixture up to its self-ignition on the grain size and strength properties of the synthesized Ni3Al intermetallide material have been studied. The grain structure of the intermetallide synthesized under pressure was studied by means of metallography, transmission electron microscopy and EBSD analysis, with the dependence of ultimate tensile strength on the grain size in the synthesized intermetallide having been investigated at room temperature and at temperatures up to 1000°C. It is shown that an increase in the pressure preliminarily applied to the initial mixture compact results in reduced grain size of the final intermetallide, whereas an increase in pre-compaction time makes the grain size increased. A decrease in the grain size increases the ultimate tensile strength of the intermetallide. The maximum value of the ultimate tensile strength in the observed anomalous temperature dependence of this strength exhibits a shift by 200°C toward higher temperatures, and the ultimate strength of the synthesized intermetallide at 1000°C increases roughly two-fold.

  20. Structural and compositional optimization of the LiNi{sub 0.8}Co{sub 0.2}O{sub 2} electrode by new synthesis conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mosqueda L, Y.; Milian P, C. R.; Pomares A, M.; Rodriguez H, J.; Perez C, E., E-mail: yodalgis@imre.oc.uh.cu [Havana University, Institute of Materials Science and Technology, Zapata y G, Plaza de la Revolucion, Vedado, 10400 Havana (Cuba)

    2012-07-01

    The optimization of citrate precursor method to obtain the LiNi{sub 0.8}Co{sub 0.2}O{sub 2} oxide from the thermal decomposition of the citrate precursor (NH{sub 4}){sub 3}LiNi{sub 0.8}Co{sub 0.2}(C{sub 6}H{sub 5}O{sub 7}) is presented. The optimization procedure consists of both the lithium atmosphere and the reaction time control during the decomposition of the citrate precursor. Were obtained and characterized two kind of the (Li{sub l-x}Ni{sub x})(Ni{sub 0.8}Co{sub 0.2})O{sub 2} oxides, with and without optimized synthesis conditions, identified as A and B oxides, respectively. The A and B oxides are characterized by compositional, structural and electrochemical studies. The results showed that is possible to reach the ordered oxide phase at smaller reaction time if the lithium atmosphere is controlled. From the combination of the chemical analysis by Icp and the DRX Rietveld structural refinement it is possible to establish the Li, Ni(II), Ni(III) and Co(III) composition with great accuracy. The resulted structural and compositional transformations have a close relation with technological parameters of the rechargeable lithium battery using Li Ni{sub 0.8}Co{sub 0.2}O{sub 2} oxide as cathode. (Author)

  1. Structural and compositional optimization of the LiNi0.8Co0.2O2 electrode by new synthesis conditions

    International Nuclear Information System (INIS)

    Mosqueda L, Y.; Milian P, C. R.; Pomares A, M.; Rodriguez H, J.; Perez C, E.

    2012-01-01

    The optimization of citrate precursor method to obtain the LiNi 0.8 Co 0.2 O 2 oxide from the thermal decomposition of the citrate precursor (NH 4 ) 3 LiNi 0.8 Co 0.2 (C 6 H 5 O 7 ) is presented. The optimization procedure consists of both the lithium atmosphere and the reaction time control during the decomposition of the citrate precursor. Were obtained and characterized two kind of the (Li l-x Ni x )(Ni 0.8 Co 0.2 )O 2 oxides, with and without optimized synthesis conditions, identified as A and B oxides, respectively. The A and B oxides are characterized by compositional, structural and electrochemical studies. The results showed that is possible to reach the ordered oxide phase at smaller reaction time if the lithium atmosphere is controlled. From the combination of the chemical analysis by Icp and the DRX Rietveld structural refinement it is possible to establish the Li, Ni(II), Ni(III) and Co(III) composition with great accuracy. The resulted structural and compositional transformations have a close relation with technological parameters of the rechargeable lithium battery using Li Ni 0.8 Co 0.2 O 2 oxide as cathode. (Author)

  2. Alkanes as Components of Soil Hydrocarbon Status: Behavior and Indication Significance

    Science.gov (United States)

    Gennadiev, A. N.; Zavgorodnyaya, Yu. A.; Pikovskii, Yu. I.; Smirnova, M. A.

    2018-01-01

    Studies of soils on three key plots with different climatic conditions and technogenic impacts in Volgograd, Moscow, and Arkhangelsk oblasts have showed that alkanes in the soil exchange complex have some indication potential for the identification of soil processes. The following combinations of soil-forming factors and processes have been studied: (a) self-purification of soil after oil pollution; (b) accumulation of hydrocarbons coming from the atmosphere to soils of different land use patterns; and (c) changes in the soil hydrocarbon complex beyond the zone of technogenic impact due to the input of free hydrocarbon-containing gases. At the injection input of hydrocarbon pollutants, changes in the composition and proportions of alkanes allow tracing the degradation trend of pollutants in the soil from their initial content to the final stage of soil self-purification, when the background concentrations of hydrocarbons are reached. Upon atmospheric deposition of hydrocarbons onto the soil, from the composition and mass distribution of alkanes, conclusions can be drawn about the effect of toxicants on biogeochemical processes in the soil, including their manifestation under different land uses. Composition analysis of soil alkanes in natural landscapes can reveal signs of hydrocarbon emanation fluxes in soils. The indication potentials of alkanes in combination with polycyclic aromatic hydrocarbons and other components of soil hydrocarbon complex can also be used for the solution of other soil-geochemical problems.

  3. Synthesis of organolanthanides by metal addition on insaturated substrates in ether and reactivity

    International Nuclear Information System (INIS)

    Olivier, H.

    1988-01-01

    The aim of the study is the extension to rare earths of the synthesis, well known for alkaline or alkaline earth metals, by direct metal addition to insaturated substrates in ether and where the metal is directly bound to carbon. A definition of formation conditions and affinity rules is attempled, both with substrates (essentially aromatic hydrocarbons and ketones) and with metals: Yb, Sm, Ce, Nd and others. The nature of obtained products by reaction of electrophiles on synthetised organometallics, allows investigations specific reactivity and structure. Potential catalytic transformation of olefins is precised [fr

  4. Preparing valuable hydrocarbons by hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Pier, M

    1930-08-22

    A process is described for the preparation of valuable hydrocarbons by treatment of carbonaceous materials, like coal, tars, minerals oils, and their distillation and conversion products, and for refining of liquid hydrocarbon mixture obtained at raised temperature and under pressure, preferably in the presence of catalysts, by the use of hydrogen-containing gases, purified and obtained by distilling solid combustibles, characterized by the purification of the hydrogen-containing gases being accomplished for the purpose of practically complete removal of the oxygen by heating at ordinary or higher pressure in the presence of a catalyst containing silver and oxides of metals of group VI of the periodic system.

  5. Purifying and regenerating hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    1931-11-19

    Hydrocarbons are freed from sulfur-containing compounds, colloidal asphaltic bodies and unstable unsaturated substances by treatment with a small amount of dilute sulfuric acid and a salt of a trivalent cation, such as ferric chloride or sulfate. Hydrocarbons specified are petroleum, crude benzol, low temperature tars, shale oil or vapor-phase cracked spirit. Motor spirit or lubricating oil distillates are refined and finally distilled. The acid reagent may be regenerated by filtering through sand or asbestos. Used lubricating oils may be treated similarly and after removal of refining agent, the oil is heated with an adsorbent and decolorizing material and then filtered.

  6. Hydrocarbons cocktails of the future

    International Nuclear Information System (INIS)

    Anon.

    2004-01-01

    This publication of the Areva Group, a world nuclear industry leader, provides information on the energy in many domains. This issue deals with the CO 2 pollution exchange, the carbon sinks to compensate the CO 2 , the green coal as an innovative solution, an outsize dam in China, the solar energy progresses in France and the french medicine academy in favor of Nuclear. A special chapter is devoted to the hydrocarbons of the future, artificial chemical combination created from constituents of hydrocarbons and derived from various sources. (A.L.B.)

  7. “Stereoscopic” 2D super-microporous phosphazene-based covalent organic framework: Design, synthesis and selective sorption towards uranium at high acidic condition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shuang; Zhao, Xiaosheng; Li, Bo; Bai, Chiyao; Li, Yang; Wang, Lei; Wen, Rui; Zhang, Meicheng; Ma, Lijian; Li, Shoujian, E-mail: sjli000616@scu.edu.cn

    2016-08-15

    Highlights: • Phosphorus element was first introduced into covalent organic frameworks (COFs). • Monomer in C{sub 3}-like spatial configuration was first used to construct COF materials. • A new 2D super-microporous phosphazene-based sorbent (MPCOF) was synthesized. • Separation of U (VI) by MPCOF at high acidic media (up to 1M HNO{sub 3}) was achieved. • Selectivity for U (VI) separation from multi-ion solution can reach unreported 92%. - Abstract: So far, only five primary elements (C, H, O, N and B) and two types of spatial configuration (C{sub 2}–C{sub 4}, C{sub 6} and T{sub d}) are reported to build the monomers for synthesis of covalent organic frameworks (COFs), which have partially limited the route selection for accessing COFs with new topological structure and novel properties. Here, we reported the design and synthesis of a new “stereoscopic” 2D super-microporous phosphazene-based covalent organic framework (MPCOF) by using hexachorocyclotriphosphazene (a P-containing monomer in a C{sub 3}-like spatial configuration) and p-phenylenediamine (a linker). The as-synthesized MPCOF shows high crystallinity, relatively high heat and acid stability and distinctive super-microporous structure with narrow pore-size distributions ranging from 1.0–2.1 nm. The results of batch sorption experiments with a multi-ion solution containing 12 co-existing cations show that in the pH range of 1–2.5, MPCOF exhibits excellent separation efficiency for uranium with adsorption capacity more than 71 mg/g and selectivity up to record-breaking 92%, and furthermore, an unreported sorption capacity (>50 mg/g) and selectivity (>60%) were obtained under strong acidic condition (1 M HNO{sub 3}). Studies on sorption mechanism indicate that the uranium separation by MPCOF in acidic solution is realized mainly through both intra-particle diffusion and size-sieving effect.

  8. Sand amendment enhances bioelectrochemical remediation of petroleum hydrocarbon contaminated soil.

    Science.gov (United States)

    Li, Xiaojing; Wang, Xin; Ren, Zhiyong Jason; Zhang, Yueyong; Li, Nan; Zhou, Qixing

    2015-12-01

    Bioelectrochemical system is an emerging technology for the remediation of soils contaminated by petroleum hydrocarbons. However, performance of such systems can be limited by the inefficient mass transport in soil. Here we report a new method of sand amendment, which significantly increases both oxygen and proton transports, resulting to increased soil porosity (from 44.5% to 51.3%), decreased Ohmic resistance (by 46%), and increased charge output (from 2.5 to 3.5Cg(-1)soil). The degradation rates of petroleum hydrocarbons increased by up to 268% in 135d. The degradation of n-alkanes and polycyclic aromatic hydrocarbons with high molecular weight was accelerated, and denaturing gradient gel electrophoresis showed that the microbial community close to the air-cathode was substantially stimulated by the induced current, especially the hydrocarbon degrading bacteria Alcanivorax. The bioelectrochemical stimulation imposed a selective pressure on the microbial community of anodes, including that far from the cathode. These results suggested that sand amendment can be an effective approach for soil conditioning that will enhances the bioelectrochemical removal of hydrocarbons in contaminated soils. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Total Petroleum Hydrocarbons (TPH): ToxFAQs

    Science.gov (United States)

    ... a state: This map displays locations where Total Petroleum Hydrocarbons (TPH) is known to be present. On ... I get more information? ToxFAQs TM for Total Petroleum Hydrocarbons (TPH) ( Hidrocarburos Totales de Petróleo (TPH) ) August ...

  10. Carbon-14 studies on the role of oxygen-containing compounds in the reaction mechanism of the Fischer-Tropsch synthesis

    International Nuclear Information System (INIS)

    Aksoy, H.A.

    1975-01-01

    In this work the behaviour of organic oxygen compounds has been studied in the reaction mechanism of Fischer-Tropsch synthesis using the tracer method. As an oxygen carrying tracer materials i-propanole (2- 14 C), acetone (2- 14 C) and ethanole (1- 14 C) have been added to the synthesis gas. The synthesis experiments are performed under standard conditions: The synthesis products are separated in suitable fractions and then studied by gas- and radio-gaschromatography. As a result the C-number distributions of the synthesis products are obtained as a function of concentration (weight %, mol %) and radioactivity (activity %). On this basis the relative molar activities have been calculated for certain compounds and fractions. Adding i-propanole- 14 C a great part of the tracer compound is transformed to acetone- 14 C, however adding acetone- 14 C to the synthesis gas a large amount of i-propanole- 14 C is produced. The main hydrocarbon reaction product from i-propanol and acetone is propane. Besides propane also propene is produced with equal molar radioactivity. This indicates that the formation of adsorbed oxygen compounds, as they may also be produced by chemisorption from alcohols or carbonyle compounds, is the first step in the formation of hydrocarbons by hydrogenolytic separation of oxygen. Comparing the results obtained with ethanole- 14 C and i-propanole- 14 C as a tacer material, for ethane an essentially lower molar activity is obtained when adding ethanole- 14 C compared with propane when adding i-propanole- 14 C. This corresponds with a particularly low desorption probability at the C 2 -hydrocarbon level. (orig./HK) [de

  11. Applications of density functional theory calculations to selected problems in hydrocarbon processing

    Science.gov (United States)

    Nabar, Rahul

    Recent advances in theoretical techniques and computational hardware have made it possible to apply Density Functional Theory (DFT) methods to realistic problems in heterogeneous catalysis. Hydrocarbon processing is economically, and strategically, a very important industrial sector in today's world. In this thesis, we employ DFT methods to examine several important problems in hydrocarbon processing. Fischer Tropsch Synthesis (FTS) is a mature technology to convert synthesis gas derived from coal, natural-gas or biomass into liquid fuels, specifically diesel. Iron is an active FTS catalyst, but the absence of detailed reaction mechanisms make it difficult to maximize activity and optimize product distribution. We evaluate thermochemistry, kinetics and Rate Determining Steps (RDS) for Fischer Tropsch Synthesis on several models of Fe catalysts: Fe(110), Fe(211) and Pt promoted Fe(110). Our studies indicated that CO-dissociation is likely to be the RDS under most reaction conditions, but the DFT-calculated activation energy ( Ea) for direct CO dissociation was too large to explain the observed catalyst activity. Consequently we demonstrate that H-assisted CO-dissociation pathways are competitive with direct CO dissociation on both Co and Fe catalysts and could be responsible for a major fraction of the reaction flux (especially at high CO coverages). We then extend this alternative mechanistic model to closed-packed facets of nine transition metal catalysts (Fe, Co, Ni, Ru, Rh, Pd, Os, Ir and Pt). H-assisted CO dissociation offers a kinetically easier route on each of the metals studied. DFT methods are also applied to another problem from the petroleum industry: discovery of poison-resistant, bimetallic, alloy catalysts (poisons: C, S, CI, P). Our systematic screening studies identify several Near Surface Alloys (NSAs) that are expected to be highly poison-resistant yet stable and avoiding adsorbate induced reconstruction. Adsorption trends are also correlated with

  12. Biofilm comprising phototrophic, diazotrophic, and hydrocarbon-utilizing bacteria: a promising consortium in the bioremediation of aquatic hydrocarbon pollutants.

    Science.gov (United States)

    Al-Bader, Dhia; Kansour, Mayada K; Rayan, Rehab; Radwan, Samir S

    2013-05-01

    Biofilms harboring simultaneously anoxygenic and oxygenic phototrophic bacteria, diazotrophic bacteria, and hydrocarbon-utilizing bacteria were established on glass slides suspended in pristine and oily seawater. Via denaturing gradient gel electrophoresis analysis on PCR-amplified rRNA gene sequence fragments from the extracted DNA from biofilms, followed by band amplification, biofilm composition was determined. The biofilms contained anoxygenic phototrophs belonging to alphaproteobacteria; pico- and filamentous cyanobacteria (oxygenic phototrophs); two species of the diazotroph Azospirillum; and two hydrocarbon-utilizing gammaproteobacterial genera, Cycloclasticus and Oleibacter. The coexistence of all these microbial taxa with different physiologies in the biofilm makes the whole community nutritionally self-sufficient and adequately aerated, a condition quite suitable for the microbial biodegradation of aquatic pollutant hydrocarbons.

  13. Metabotropic Glutamate Receptor I (mGluR1) Antagonism Impairs Cocaine-Induced Conditioned Place Preference via Inhibition of Protein Synthesis

    OpenAIRE

    Yu, Fei; Zhong, Peng; Liu, Xiaojie; Sun, Dalong; Gao, Hai-qing; Liu, Qing-song

    2013-01-01

    Antagonism of group I metabotropic glutamate receptors (mGluR1 and mGluR5) reduces behavioral effects of drugs of abuse, including cocaine. However, the underlying mechanisms remain poorly understood. Activation of mGluR5 increases protein synthesis at synapses. Although mGluR5-induced excessive protein synthesis has been implicated in the pathology of fragile X syndrome, it remains unknown whether group I mGluR-mediated protein synthesis is involved in any behavioral effects of drugs of abus...

  14. Thermodynamic models to predict gas-liquid solubilities in the methanol synthesis, the methanol-higher alcohol synthesis, and the Fischer-Tropsch synthesis via gas-slurry processes

    NARCIS (Netherlands)

    Breman, B.B; Beenackers, A.A C M

    1996-01-01

    Various thermodynamic models were tested concerning their applicability to predict gas-liquid solubilities, relevant for synthesis gas conversion to methanol, higher alcohols, and hydrocarbons via gas-slurry processes. Without any parameter optimization the group contribution equation of state

  15. Effective viscosity of confined hydrocarbons

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Samoilov, V.N.; Persson, B.N.J.

    2012-01-01

    We present molecular dynamics friction calculations for confined hydrocarbon films with molecular lengths from 20 to 1400 carbon atoms. We find that the logarithm of the effective viscosity ηeff for nanometer-thin films depends linearly on the logarithm of the shear rate: log ηeff=C-nlog γ̇, where...

  16. Reactor network synthesis for isothermal conditions = Síntese de redes de reatores para condições isotérmicas

    Directory of Open Access Journals (Sweden)

    Lincoln Kotsuka da Silva

    2008-07-01

    Full Text Available In the present paper, a computational systematic procedure for isothermal Reactor Network Synthesis (RNS is presented. A superstructure of ideal CSTR and PFR reactors is proposed and the model is formulated as a constrained Nonlinear Programming (NLP problem. Complex reactions (series/parallel reactions are considered. The objective function is based on yield or selectivity, depending on the desired product, subject to different operational conditions. The problem constraints are mass balances in the reactorsand in the considered reactor network superstructure. A systematic computational procedure is proposed and a Genetic Algorithm (GA is developed to obtain the optimal reactor arrangement with the maximum yield or selectivity and minimum reactor volume. Results are as good as or better than those reported in the literature.No presentetrabalho apresenta-se um procedimento computacional para síntese de redes de reatores (SRR operando em condições isotérmicas. Uma superestrutura de rede de reatores formada por reatores ideais CSTR e PFR é proposta e o problema apresenta uma formulação de programação não linear (PNL. São consideradas reações complexas (série/paralelas. A função objetivo é baseada no rendimento ou na seletividade em relação ao produto desejado, sujeito a diferentes condições de operação. As restrições ao problema são provenientes dos balanços de massa e da configuração da superestrutura considerada.No procedimento computacional é proposto um Algoritmo Genético (AG para obtenção do arranjo ótimo de reatores com máximo rendimento ou seletividade com menor volume reacional. Os resultados obtidos são condizentes com os obtidos na literatura.

  17. Polycyclic aromatic hydrocarbons in Saccoglossus kowalewskyi (Agassiz)

    Science.gov (United States)

    Carey, D. A.; Farrington, J. W.

    1989-08-01

    Hydrocarbon extracts were analyzed from Saccoglossus kowalewskyi, a deposit-feeding enteropneust worm, and from surface sediments from Cape Cod, MA. Worms were held in experimental aquaria in sieved sediments and flowing seawater for four months and then fed sediments mixed with creosote, lampblack or clean sediment for two weeks as analogues of sediments containing degraded oil and pyrogenic compounds. Worms from all treatments contained polyaromatic hydrocarbons (PAHs) in amounts and composition that indicate that the worms were contaminated with weathered No. 2 fuel oil before our experimental treatment and that the contamination persisted for four months in clean conditions. The contamination was not detected in the clean sediments used in the experiment. The worms accumulated steroid transformation products in greater abundance than the odd chain n-alkanes that dominated the sediment extractions. This may indicate selective assimilation of algal detritus and microbial products over salt marsh detritus. Worms, actively feeding during the experiment, contained 1-3 × 10 -6 g g -1 dry weight of unknown brominated compounds which were not detected in the sediments. These compounds are similar to bromopyrroles found elsewhere in enteropneusts, polychaetes and bacteria and may cause substantial interference in analyses for some industrial pollutants.

  18. Experimental study of hydrocarbon mixtures to replace HFC-134a in a domestic refrigerator

    International Nuclear Information System (INIS)

    Wongwises, Somchai; Chimres, Nares

    2005-01-01

    This work presents an experimental study on the application of hydrocarbon mixtures to replace HFC-134a in a domestic refrigerator. The hydrocarbons investigated are propane (R290), butane (R600) and isobutane (R600a). A refrigerator designed to work with HFC-134a with a gross capacity of 239 l is used in the experiment. The consumed energy, compressor power and refrigerant temperature and pressure at the inlet and outlet of the compressor are recorded and analysed as well as the distributions of temperature at various positions in the refrigerator. The refrigerant mixtures used are divided into three groups: the mixture of three hydrocarbons, the mixture of two hydrocarbons and the mixture of two hydrocarbons and HFC-134a. The experiments are conducted with the refrigerants under the same no load condition at a surrounding temperature of 25 deg. C. The results show that propane/butane 60%/40% is the most appropriate alternative refrigerant to HFC-134a

  19. Photoacoustic spectroscopic studies of polycyclic aromatic hydrocarbons

    Science.gov (United States)

    Zaidi, Zahid H.; Kumar, Pardeep; Garg, R. K.

    1999-02-01

    Because of their involvement in environmental pollutants, in carcinogenic activity, plastics, pharmaceuticals, synthesis of some laser dyes and presence in interstellar space etc., Polycyclic aromatic hydrocarbons (PAHs) are important. As their structure and properties can be varied systematically, they form a beautiful class of molecules for experimental and quantum chemical investigations. These molecules are being studied for last several years by using conventional spectroscopy. In recent years, Photoacoustic (PA) spectroscopy has emerged as a new non-destructive technique with unique capability and sensitivity. The PA effect is the process of generation of acoustic waves in a sample resulting from the absorption of photons. This technique not only reveals non- radiative transitions but also provides information about forbidden singlet-triplet transitions which are not observed normally by the conventional spectroscopy. The present paper deals with the spectroscopic studies of some PAH molecules by PA spectroscopy in the region 250 - 400 nm. The CNDO/S-CI method is used to calculate the electronic transitions with the optimized geometries. A good agreement is found between the experimental and calculated results.

  20. Biodegradation of petroleum hydrocarbons in hypersaline environments

    Directory of Open Access Journals (Sweden)

    Luiz Fernando Martins

    2012-09-01

    Full Text Available Literature on hydrocarbon degradation in extreme hypersaline media presents studies that point to a negative effect of salinity increase on hydrocarbonoclastic activity, while several others report an opposite tendency. Based on information available in the literature, we present a discussion on the reasons that justify these contrary results. Despite the fact that microbial ability to metabolize hydrocarbons is found in extreme hypersaline media, indeed some factors are critical for the occurrence of hydrocarbon degradation in such environments. How these factors affect hydrocarbon degradation and their implications for the assessment of hydrocarbon biodegradation in hypersaline environments are presented in this review.

  1. Process for separating liquid hydrocarbons from waxes

    Energy Technology Data Exchange (ETDEWEB)

    Sowa, F J

    1948-03-08

    A process is described for the separation of liquid hydrocarbons from waxes comprising adding to a mixture of liquid hydrocarbons and waxes a sufficient quantity of an organo-silicon compound to cause the separation of the hydrocarbon and wax. The organo-silicon compounds are selected from the class of organic silicanes and their hydrolysis products and polymers. The silicanes have the formula R/sub y/SiX/sub z/, in which R is a saturated or unsaturated hydrocarbon radical, X is a halogen or another hydrocarbon radical or an -OR group, y has a value 1, 2, or 3 and z has a value 1, 2, or 3.

  2. Magnetic Nanoparticle Immobilized N-Propylsulfamic Acid as a Recyclable and Efficient Nanocatalyst for the Synthesis of 2H-indazolo[2,1-b]phthalazine-triones in Solvent-Free Conditions: Comparison with Sulfamic Acid

    Energy Technology Data Exchange (ETDEWEB)

    Rostami, Amin; Tahmasbi, Bahman; Yari, Ako [Univ. of Kurdistan, Sanandaj (Iran, Islamic Republic of)

    2013-05-15

    N-Propylsulfamic acid supported onto magnetic Fe{sub 3}O{sub 4} nanoparticles (MNPs-PSA) was used as an efficient and magnetically recoverable catalyst for synthesis of 2H-Indazolo[2,1-b]phthalazine-1,6,11(13H)-trione derivatives from the three-component, one-pot condensation reaction of phthalhydrazide, aromatic aldehydes and cyclic 1,3-diones, in good to excellent yields at 100 .deg. C under solvent-free conditions. The catalyst was easily separated with the assistance of an external magnetic field from the reaction mixture and reused for several consecutive runs without significant loss of its catalytic efficiency. In order to compare, the synthesis of 2H-Indazolo[2,1-b]phthalazine-1,6,11(13H)-trione derivatives in the presence of catalytic amount of sulfamic acid (SA) under same reaction condition was also reported.

  3. Nano crystalline ZnO catalyzed one pot three-component synthesis of 7-alkyl-6H,7H- naphtho[1',2':5,6]pyrano[3,2-c] chromen-6-ones under solvent-free conditions

    Directory of Open Access Journals (Sweden)

    M. J. Piltan

    2016-08-01

    Full Text Available In the present paper, an efficient one-pot synthesis of 7-alkyl-6H,7H-naphtho[1',2':5,6]pyrano[3,2-c]chromen-6-ones is described by three-component reaction of β-naphthol, aromatic aldehydes and 4-hydroxycoumarin using ZnO nanoparticles under solvent-free conditions. The present method provides a novel and efficient procedure for the synthesis of chromene derivatives with some advantageous such as short reaction times, easy workup, high yields, wide range of products, reusability of the catalyst, little catalyst loading and green conditions in the presence of ZnO nanoparticles (7 mol% at 110 ºC.

  4. KINETICS OF SLURRY PHASE FISCHER-TROPSCH SYNTHESIS. FOURTH ANNUAL TECHNICAL PROGRESS REPORT

    International Nuclear Information System (INIS)

    Bukur, Dragomir B.; Froment, Gilbert F.; Olewski, Tomasz

    2006-01-01

    This report covers the fourth year of a research project conducted under the University Coal Research Program. The overall objective of this project is to develop a comprehensive kinetic model for slurry-phase Fischer-Tropsch synthesis (FTS) employing iron-based catalysts. This model will be validated with experimental data obtained in a stirred-tank slurry reactor (STSR) over a wide range of process conditions. The model will be able to predict molar flow rates and concentrations of all reactants and major product species (water, carbon dioxide, linear 1- and 2-olefins, and linear paraffins) as a function of reaction conditions in the STSR. During the fourth year of the project, an analysis of experimental data collected during the second year of this project was performed. Kinetic parameters were estimated utilizing product distributions from 27 mass balances. During the reporting period two kinetic models were employed: a comprehensive kinetic model of Dr. Li and co-workers (Yang et al., 2003) and a hydrocarbon selectivity model of Van der Laan and Beenackers (1998, 1999) The kinetic model of Yang et al. (2003) has 24 parameters (20 parameters for hydrocarbon formation, and 4 parameters for the water-gas-shift (WGS) reaction). Kinetic parameters for the WGS reaction and FTS synthesis were estimated first separately, and then simultaneously. The estimation of these kinetic parameters employed the Levenberg-Marquardt (LM) method and the trust-region reflective Newton large-scale (LS) method. A genetic algorithm (GA) was incorporated into estimation of parameters for FTS reaction to provide initial estimates of model parameters. All reaction rate constants and activation energies were found to be positive, but at the 95% confidence level the intervals were large. Agreement between predicted and experimental reaction rates has been fair to good. Light hydrocarbons are predicted fairly accurately, whereas the model underpredicts values of higher molecular weight

  5. Effect of different physicochemical conditions on the synthesis of silver nanoparticles using fungal cell filtrate of Aspergillus oryzae (MTCC No. 1846) and their antibacterial effect

    Science.gov (United States)

    Phanjom, Probin; Ahmed, Giasuddin

    2017-12-01

    Synthesis of silver nanoparticles (AgNPs) under different physicochemical conditions like concentration of silver nitrate (AgNO3), pH and temperature, using fungal cell filtrate of Aspergillus oryzae (MTCC No. 1846) and its antibacterial properties were demonstrated. When fungal cell filtrate having neutral pH was exposed to different concentrations of aqueous solution AgNO3 (1-10 mM), formation of stable AgNPs of different sizes was observed. The size of the AgNPs decreased with the increase of AgNO3 concentration from 1 mM to 8 mM, however, the particles size increased with the increase of AgNO3 concentration from 9 mM to 10 mM. When fungal cell filtrate exposed to aqueous solution of 1 mM AgNO3 at different pH (4-10), the silver ions (Ag+) were reduced leading to the formation of stable AgNPs of different sizes. The size of the AgNPs decreased with the increase of alkaline conditions. When aqueous solution of 1mM AgNO3 with fungal cell filtrate, having neutral pH, was exposed to different temperatures (10, 30, 50, 70 and 90 °С), formation of stable AgNPs having different sizes were obtained. The size of the AgNPs decreased with the increase of temperature. Synergetic effect with antibiotics and size dependent antibacterial activities were also demonstrated against Escherichia coli (MTCC 1687), Staphylococcus aureus (MTCC 737), Bacillus subtilis (MTCC 441) and Klebseilla pneumoniae (MTCC 4030). The formation AgNPs was characterized by UV-vis spectrophotometer. Transmission electron microscope (TEM) confirmed the sizes of the obtained nanoparticles. X-ray diffractometer (XRD) spectrum confirmed the formation of metallic silver. The Fourier transform infrared spectroscopy (FTIR) confirmed the presence of protein as stabilizing agent around AgNPs. Scanning electron microscope (TEM) confirmed the morphological changes in the treated bacterial organisms.

  6. Hydrocarbons biodegradation in unsaturated porous medium

    International Nuclear Information System (INIS)

    Gautier, C.

    2007-12-01

    Biological processes are expected to play an important role in the degradation of petroleum hydrocarbons in contaminated soils. However, factors influencing the kinetics of biodegradation are still not well known, especially in the unsaturated zone. To address these biodegradation questions in the unsaturated zone an innovative experimental set up based on a physical column model was developed. This experimental set up appeared to be an excellent tool for elaboration of a structured porous medium, with well defined porous network and adjusted water/oil saturations. Homogeneous repartition of both liquid phases (i.e., aqueous and non aqueous) in the soil pores, which also contain air, was achieved using ceramic membranes placed at the bottom of the soil column. Reproducible interfaces (and connectivity) are developed between gas, and both non mobile water and NAPL phases, depending on the above-defined characteristics of the porous media and on the partial saturations of these three phases (NAPL, water and gas). A respirometric apparatus was coupled to the column. Such experimental set up have been validated with hexadecane in dilution in an HMN phase. This approach allowed detailed information concerning n-hexadecane biodegradation, in aerobic condition, through the profile of the oxygen consumption rate. We have taken benefit of this technique, varying experimental conditions, to determine the main parameters influencing the biodegradation kinetics and compositional evolution of hydrocarbons, under steady state unsaturated conditions and with respect to aerobic metabolism. Impacts of the nitrogen quantity and of three different grain sizes have been examined. Biodegradation of petroleum cut, as diesel cut and middle distillate without aromatic fraction, were, also studied. (author)

  7. Tolerance of Antarctic soil fungi to hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Kevin A.; Bridge, Paul; Clark, Melody S. [British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET (United Kingdom)

    2007-01-01

    Little is known about the effects of hydrocarbons and fuel oil on Antarctic filamentous fungi in the terrestrial Antarctic environment. Growth of fungi and bacteria from soils around Rothera Research Station (Adelaide Island, Antarctic Peninsula) was assessed in the presence of ten separate aromatic and aliphatic hydrocarbons [marine gas oil (MGO), dodecane, hexadecane, benzoic acid, p-hydroxybenzoic acid, toluene, phenol, biphenyl, naphthalene and m- and p-xylenes with ethylbenzene]. Aromatic hydrocarbons inhibited soil microbial growth more than aliphatic hydrocarbons. Soil microorganisms from a moss patch, where little previous impact or hydrocarbon contamination had occurred, were less tolerant of hydrocarbons than those from high impact sites. Fungal growth rates of Mollisia sp., Penicillium commune, Mortierella sp., Trichoderma koningii, Trichoderma sp. and Phoma herbarum were assessed in the presence of hydrocarbons. Generally, aromatic hydrocarbons inhibited or stopped hyphal extension, though growth rates increased with some aliphatic hydrocarbons. Hyphal dry weight measurements suggested that Mortierella sp. may be able to use dodecane as sole carbon and energy source. Hydrocarbon-degrading Antarctic fungi may have use in future hydrocarbon spill bioremediation. (author)

  8. A search for direct hydrocarbon indicators in the Formby area

    International Nuclear Information System (INIS)

    Busby, J.P.; Peart, R.J.; Green, C.A.; Ogilvy, R.D.; Williamson, J.P.

    1991-01-01

    It has been proposed that the high- frequency, low-amplitude magnetic anomalies found over some hydrocarbon deposits are due to long-term microseepage of hydrocarbons into iron-rich sedimentary roof rocks, with subsequent precipitation of diagenetic magnetite or pyrrhotite at or near the water-table. Aerogeophysical data sets, comprising both magnetic and gamma-ray spectrometer measurements, over the Formby, oil-field, Lancashire, U.K., have been analyzed for hydrocarbon-related anomalies. Detailed ground magnetic traverses were also made to investigate some of the aeromagnetic anomalies. No hydrocarbon-induced magnetic anomalies were detected. The majority of the high-frequency events occurring in the aeromagnetic data correlated with cultural features, others were attributed to artifacts of the data processing. In particular there were no extensive areas of high-frequency, low-amplitude anomalies as might be expected from authigenic magnetic minerals. Borehole chippings from inside and outside the oil-field were examined. Anomalies were found to be related to hydrological conditions and to the distribution of surficial deposits. Attempts to suppress the influence of the drift geology had only limited success. In this paper, it is concluded that the effectiveness of high-resolution aeromagnetic onshore surveys for direct hydrocarbon detection has yet to be established. In particular, the anomaly found over the Formby oil-field was caused by the cumulative effect of borehole casing. Similar cultural contamination by oil- field equipment may explain some of the anomalies discovered over hydrocarbon deposits in North America. It is also unlikely that the spectromagnetic method can be applied diagnostically in any but the most simple and drift-free geological environments

  9. Features of nanomodifiers synthesis based on trifunctional oxyphenyls for mineral suspensions

    Directory of Open Access Journals (Sweden)

    Shapovalov Nikolay Afanasyevich

    2016-10-01

    Full Text Available The focused influence on the rheological characteristics of highly-concentrated mineral suspensions used in the building industry is possible due to the directed synthesis of nano-sized macromolecules that have the certain structure and high adsorbing capacity on the surface of mineral particles and that are able to modify the boundary layer composition. The adsorbing capacity of organic compounds depends mostly on the hydrocarbon chain length and the molecular weight of the compound. The result of the condensate interaction of phenol and its derivatives with aldehydes is oligomers and polymers whose structure depends on the phenol functionality, the kind of aldehyde, molecular ration of reagents, the Ph medium of the reaction. So, changing the type or the functionality of initial monomers or the synthesis conditions one can produce linear thermoplastic oligomers (novolacs or highly branched thermosetting oligomers (resols. It has been found that the resole production takes place under softer conditions, and there is no necessity to neutralize reaction products as with novolac production that usually requires acid environment. A number of thermosetting oligomers based on trifunctional polyatomic phenols have been synthesized. The theoretical and practical characteristics of resole oligomer synthesis have been studied, synthesis optimal conditions have been determined, the composition and structure of macromolecules were revealed by the methods of infrared spectroscopy, proton magnetic resonance spectroscopy, liquid chromatography and conductivity measurement, the length of the enlarged oligomer molecule was calculated. Obtained compounds can be qualified as nanoscaled modifiers of mineral dispersions.

  10. Field desorption mass spectroscopy monitoring of changes in hydrocarbon type composition during petroleum biodegradation

    International Nuclear Information System (INIS)

    Huesemann, M.H.

    1995-01-01

    A comprehensive petroleum hydrocarbon characterization procedure involving group type separation, boiling point distribution, and hydrocarbon typing by field desorption mass spectroscopy (FDMS) has been developed to quantify changes in hydrocarbon type composition during bioremediation of petroleum-contaminated soils. FDMS is able to quantify the concentration of hundreds of specific hydrocarbon types based on their respective hydrogen deficiency (z-number) and molecular weight (carbon number). Analytical results from two bioremediation experiments involving soil contaminated with crude oil and motor oil indicate that alkanes and two-ring saturates (naphthenes) were readily biodegradable. In addition, low-molecular-weight hydrocarbons generally were biodegraded to a larger extent than those of high molecular weight. More importantly, it was found that the extent of biodegradation of specific hydrocarbon types was comparable between treatments and appeared to be unaffected by the petroleum contaminant source, soil type, or experimental conditions. It was therefore concluded that in these studies the extent of total petroleum hydrocarbon (TPH) biodegradation is primarily affected by the molecular composition of the petroleum hydrocarbons present in the contaminated soil

  11. Hydrocarbon Rocket Technology Impact Forecasting

    Science.gov (United States)

    Stuber, Eric; Prasadh, Nishant; Edwards, Stephen; Mavris, Dimitri N.

    2012-01-01

    Ever since the Apollo program ended, the development of launch propulsion systems in the US has fallen drastically, with only two new booster engine developments, the SSME and the RS-68, occurring in the past few decades.1 In recent years, however, there has been an increased interest in pursuing more effective launch propulsion technologies in the U.S., exemplified by the NASA Office of the Chief Technologist s inclusion of Launch Propulsion Systems as the first technological area in the Space Technology Roadmaps2. One area of particular interest to both government agencies and commercial entities has been the development of hydrocarbon engines; NASA and the Air Force Research Lab3 have expressed interest in the use of hydrocarbon fuels for their respective SLS Booster and Reusable Booster System concepts, and two major commercially-developed launch vehicles SpaceX s Falcon 9 and Orbital Sciences Antares feature engines that use RP-1 kerosene fuel. Compared to engines powered by liquid hydrogen, hydrocarbon-fueled engines have a greater propellant density (usually resulting in a lighter overall engine), produce greater propulsive force, possess easier fuel handling and loading, and for reusable vehicle concepts can provide a shorter turnaround time between launches. These benefits suggest that a hydrocarbon-fueled launch vehicle would allow for a cheap and frequent means of access to space.1 However, the time and money required for the development of a new engine still presents a major challenge. Long and costly design, development, testing and evaluation (DDT&E) programs underscore the importance of identifying critical technologies and prioritizing investment efforts. Trade studies must be performed on engine concepts examining the affordability, operability, and reliability of each concept, and quantifying the impacts of proposed technologies. These studies can be performed through use of the Technology Impact Forecasting (TIF) method. The Technology Impact

  12. Scottish hydrocarbons: Borders and bounty

    International Nuclear Information System (INIS)

    Roberts, John

    1999-01-01

    On 6 May, the people of Scotland will vote for the country's first parliament in almost three centuries. One issue is expected to arouse particularly strong views: the question of North Sea oil and gas, and who benefits from its production and taxation. Most of these hydrocarbons lie in the northern half of the British Isles, but drawing boundaries to settle contentious issues such as oil and gas fields is not an easy task. And, if boundaries were to be drawn, then a scarcely less contentious subject arises: just how much cash might an independent Scotland expect to receive? Reading between the lines it's clear that in hard cash terms, were Scotland to be independent whilst still retaining the vast bulk of North Sea oilfields, depressed prices would ensure that hydrocarbon tax revenues would be unlikely to constitute a particularly impressive addition to the Scottish Treasury. (UK)

  13. Treatment of hydrocarbon oil vapours

    Energy Technology Data Exchange (ETDEWEB)

    Lamplough, F

    1923-03-01

    An apparatus for treating hydrocarbon vapors for the purpose of preventing dehydrogenation is disclosed which comprises in combination a cooling tower having a vapor inlet at the bottom and a vapor outlet at the top, means to direct the entering vapors laterally in a plurality of jets against an interior side wall or walls of the tower and means to constrain the condensate to gravitate down the tower in the interior wall or walls against which the encountering vapor is forced to impinge.

  14. Deep desulfurization of hydrocarbon fuels

    Science.gov (United States)

    Song, Chunshan [State College, PA; Ma, Xiaoliang [State College, PA; Sprague, Michael J [Calgary, CA; Subramani, Velu [State College, PA

    2012-04-17

    The invention relates to processes for reducing the sulfur content in hydrocarbon fuels such as gasoline, diesel fuel and jet fuel. The invention provides a method and materials for producing ultra low sulfur content transportation fuels for motor vehicles as well as for applications such as fuel cells. The materials and method of the invention may be used at ambient or elevated temperatures and at ambient or elevated pressures without the need for hydrogen.

  15. Synthesis and properties of butadiene-alpha-methylstyrene thermoplastic elastomer

    Directory of Open Access Journals (Sweden)

    A. V. Firsova

    2016-01-01

    Full Text Available Butadiene-α-methylstyrene block – copolymer – a thermoplastic elastomer (TPE-R DMST occupies a special place among the ethylene – vinyl aromatic block copolymers. TPE-R DMST comprising as plastic – poly-α-methylstyrene unit and elastic – polybutadiene block. TPE-R DMST has high heat resistance, flexibility, abrasion resistance compared to butadiene-styrene thermoplastic elastomer (TPE DST. The synthesis of block copolymers of butadiene and α-methylstyrene was carried out. The process of polymerization the α-methylstyrene characterized the high speed of polymerization in polar medium and low reaction speed in hydrocarbon solvents. Anionic catalyst nbutyllithium (n-BuLi and high concentration – 60–80% α-methylstyrene in the mixture influenced by synthesis of the 1st block of TPE-R DMST, it’s technologically difficult. Found that the low temperature of polymerization α-methylstyrene (+61 o C, the reversibility of these reactions and the high concentration of residual monomer are very importance. It was revealed that a high polymerization rate α-methylstyrene can be achieved by conducting the reaction in a hydrocarbon solvent with polar additives compounds such as tetrahydrofuran (THF and methyl tert-butyl ether (MTBE. The conditions for the synthesis of P-DMST were developed. The kinetics of polymerization for the first DMST-P unit was obtained. Analysis of physical and mechanical properties DMST-P samples was conducted. The optimum content of bound α-methylstyrene block copolymer provides a good combination of properties in a relatively wide temperature range. The tensile strength at normal and elevated temperatures, the hardness and the stiffness of the polymer increased by increasing the content of bound α-methylstyrene. The elongation and the elasticity reduced by increasing the content of bound α-methylstyrene.

  16. Source rock hydrocarbons. Present status

    International Nuclear Information System (INIS)

    Vially, R.; Maisonnier, G.; Rouaud, T.

    2013-01-01

    This report first presents the characteristics of conventional oil and gas system, and the classification of liquid and gaseous non conventional hydrocarbons, with the peculiar case of coal-bed methane. The authors then describe how source rock hydrocarbons are produced: production of shale oils and gases (horizontal drilling, hydraulic fracturing, exploitation) and of coal-bed methane and coal mine methane. In the next part, they address and discuss the environmental impact of source rock hydrocarbon production: installation footprint, water resource management, drilling fluids, fracturing fluids composition, toxicity and recycling, air pollution, induced seismicity, pollutions from other exploitation and production activities. They propose an overview of the exploitation and production of source rock gas, coal-bed gas and other non conventional gases in the world. They describe the current development and discuss their economic impacts: world oil context and trends in the USA, in Canada and other countries, impacts on the North American market, on the world oil industry, on refining industries, on the world oil balance. They analyse the economic impacts of non conventional gases: development potential, stakes for the world gas trade, consequence for gas prices, development opportunities for oil companies and for the transport sector, impact on CO 2 emissions, macro-economic impact in the case of the USA

  17. Hydrocarbon fermentation: kinetics of microbial cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Goma, G [Institut National des Sciences Appliquees, Toulouse; Ribot, D

    1978-11-01

    Modeling of microbial growth using nonmiscible substrate is studied when kinetics of substrate dissolution is rate limiting. When the substrate concentration is low, the growth rate is described by an analytical relation that can be identified as a Contois relationship. If the substrate concentration is greater than a critical value S/sub crit/, the potentially useful hydrocarbon S* concentration is described by S* = S/sub crit//(1 + S/sub crit//S). A relationship was found between S/sub crit/ and the biomass concentration X. When X increased, S/sub crit/ decreased. The cell growth rate is related to a relation ..mu.. = ..mu../sub m/(A(X/S/sub crit/)(1 + S/sub crit//S) + 1)/sup -1/. This model describes the evolution of the growth rate when exponential or linear growth occurs, which is related to physico-chemical properties and hydrodynamic fermentation conditions. Experimental data to support the model are presented.

  18. Hydroprocessing using regenerated spent heavy hydrocarbon catalyst

    International Nuclear Information System (INIS)

    Clark, F.T.; Hensley, A.L. Jr.

    1992-01-01

    This patent describes a process for hydroprocessing a hydrocarbon feedstock. It comprises: contacting the feedstock with hydrogen under hydroprocessing conditions with a hydroprocessing catalyst wherein the hydroprocessing catalyst contains a total contaminant metals build-up of greater than about 4 wt. % nickel plus vanadium, a hydrogenation component selected from the group consisting of Group VIB metals and Group VIII metals and is regenerated spent hydroprocessing catalyst regenerated by a process comprising the steps: partially decoking the spent catalyst in an initial coke-burning step; impregnating the partially decoked catalyst with a Group IIA metal-containing impregnation solution; and decoking the impregnated catalyst in a final coke-burning step wherein the impregnated catalyst is contacted with an oxygen-containing gas at a temperature of about 600 degrees F to about 1400 degrees F

  19. Click synthesis of PET radiopharmaceuticals

    International Nuclear Information System (INIS)

    Xu Mei; Kuang Chunxiang

    2009-01-01

    Increasing attention has been focused on synthesis radiopharmaceuticals for positron emission tomography (PET). The recent years witnessed applications of click chemistry to PET radiopharmaceutical synthesis,because of its distinctive advantages including high speed,yield and stereospecificity under mild conditions. Synthesis of 18 F-labeled and 11 C-labeled radiopharmaceuticals and intermediates via click chemistry are reviewed. The future trend of click chemistry for the synthesis of PET radiopharmaceutical is prospected. (authors)

  20. Solvent-Free Synthesis of Quaternary Metal Sulfide Nanoparticles Derived from Thiourea

    KAUST Repository

    Bhunia, Manas Kumar

    2017-08-09

    The synthesis of metal sulfide (MS) materials with sizes in the sub-10 nm regime often requires capping agents with long hydrocarbon chains that affect their structures and properties. Herein, this study presents a molten-state synthesis method for a series of transition-MS nanoparticles using thiourea as a reactive precursor without capping agents. This study also reports the synthesis of MS with single metals (Fe, Co, Ni, Cu, and Zn) and quaternary CuGa2In3S8 using the same synthesis protocol. Thiourea first melts to form a molten-state condition to serve as the reaction medium at a relatively low temperature (<200 °C), followed by its thermal decomposition to induce a reaction with the metal precursor to form different MS. This synthesis protocol, owing to its dynamic characteristics, involves the formation of a variety of organic carbon nitride polymeric complexes around the MS particles. Dynamic nuclear polarization surface-enhanced nuclear magnetic resonance spectroscopy is effective to identify the polymeric compositions and structures as well as their interactions with the MS. These results provided thorough structural descriptions of the MS nanoparticles surrounded by the carbon nitride species derived from thiourea, which may find various applications, including photocatalytic water splitting.

  1. Potential impact of soil microbial heterogeneity on the persistence of hydrocarbons in contaminated subsurface soils.

    Science.gov (United States)

    Aleer, Sam; Adetutu, Eric M; Weber, John; Ball, Andrew S; Juhasz, Albert L

    2014-04-01

    In situ bioremediation is potentially a cost effective treatment strategy for subsurface soils contaminated with petroleum hydrocarbons, however, limited information is available regarding the impact of soil spatial heterogeneity on bioremediation efficacy. In this study, we assessed issues associated with hydrocarbon biodegradation and soil spatial heterogeneity (samples designated as FTF 1, 5 and 8) from a site in which in situ bioremediation was proposed for hydrocarbon removal. Test pit activities showed similarities in FTF soil profiles with elevated hydrocarbon concentrations detected in all soils at 2 m below ground surface. However, PCR-DGGE-based cluster analysis showed that the bacterial community in FTF 5 (at 2 m) was substantially different (53% dissimilar) and 2-3 fold more diverse than communities in FTF 1 and 8 (with 80% similarity). When hydrocarbon degrading potential was assessed, differences were observed in the extent of (14)C-benzene mineralisation under aerobic conditions with FTF 5 exhibiting the highest hydrocarbon removal potential compared to FTF 1 and 8. Further analysis indicated that the FTF 5 microbial community was substantially different from other FTF samples and dominated by putative hydrocarbon degraders belonging to Pseudomonads, Xanthomonads and Enterobacteria. However, hydrocarbon removal in FTF 5 under anaerobic conditions with nitrate and sulphate electron acceptors was limited suggesting that aerobic conditions were crucial for hydrocarbon removal. This study highlights the importance of assessing available microbial capacity prior to bioremediation and shows that the site's spatial heterogeneity can adversely affect the success of in situ bioremediation unless area-specific optimizations are performed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. A Simple, Rapid and Mild One Pot Synthesis of Benzene Ring Acylated and Demethylated Analogues of Harmine under Solvent-free Conditions

    Directory of Open Access Journals (Sweden)

    Bina S. Siddiqui

    2008-08-01

    Full Text Available A simple, rapid, solvent-free, room temperature one pot synthesis of benzene ring acylated and demethylated analogues of harmine using acyl halides/acid anhydrides and AlCl3 has been developed. Eight different acyl halides/acid anhydrides were used in the synthesis. The resulting mixture of products was separated by column chromatography to afford 10- and 12-monoacyl analogues, along with 10,12-diacyl-11-hydroxy products. In five cases the corresponding 10-acyl-11-hydroxy analogues were also obtained. Yields from the eight syntheses (29 products in total were in the 6-34% range and all compounds were fully characterized.

  3. High Production of 2,3-Butanediol (2,3-BD by Raoultella ornithinolytica B6 via Optimizing Fermentation Conditions and Overexpressing 2,3-BD Synthesis Genes.

    Directory of Open Access Journals (Sweden)

    Taeyeon Kim

    Full Text Available Biological production of 2,3-butandiol (2,3-BD has received great attention as an alternative to the petroleum-based 2,3-BD production. In this study, a high production of 2,3-BD in fed-batch fermentation was investigated with a newly isolated bacterium designated as Raoultella ornithinolytica B6. The isolate produced 2,3-BD as the main product using hexoses (glucose, galactose, and fructose, pentose (xylose and disaccharide (sucrose. The effects of temperature, pH-control schemes, and agitation speeds on 2,3-BD production were explored to optimize the fermentation conditions. Notably, cell growth and 2,3-BD production by R. ornithinolytica B6 were higher at 25°C than at 30°C. When three pH control schemes (no pH control, pH control at 7, and pH control at 5.5 after the pH was decreased to 5.5 during fermentation were tested, the best 2,3-BD titer and productivity along with reduced by-product formation were achieved with pH control at 5.5. Among different agitation speeds (300, 400, and 500 rpm, the optimum agitation speed was 400 rpm with 2,3-BD titer of 68.27 g/L, but acetic acid was accumulated up to 23.32 g/L. Further enhancement of the 2,3-BD titer (112.19 g/L, yield (0.38 g/g, and productivity (1.35 g/L/h as well as a significant reduction of acetic acid accumulation (9.71 g/L was achieved by the overexpression of homologous budABC genes, the 2,3-BD-synthesis genes involved in the conversion of pyruvate to 2,3-BD. This is the first report presenting a high 2,3-BD production by R.ornithinolytica which has attracted little attention with respect to 2,3-BD production, extending the microbial spectrum of 2,3-BD producers.

  4. Hydrocarbon Reserves: Abundance or Scarcity

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    IFP and the OAPEC jointly organize a regular international seminar dealing with world oil-related problems appearing in the news. For the first time, this seminar has been opened to oil and gas company specialists, service companies, research centers and independents. This year's theme concerns oil and gas reserves: are they abundant or are we headed towards the shortages announced by some experts? This theme is especially topical in that: oil and gas currently meet two thirds of world energy needs and almost completely dominate the transport sector; the reserves declared by the OAPEC countries account for nearly half of world reserves; the price of a barrel of oil went through the roof in 2004; world energy demand is growing fast and alternative sources of energy are far from ready to take over from oil and gas in the next few decades. Since the reserves correspond to the volume it is technically and economically viable to produce, the seminar has, of course, dealt with the technical and economic questions that arise in connection with exploration and production, but it has also considered changes in the geopolitical context. Presentations by the leading companies of the OAPEC countries and by the IFP group were completed by presentation from the International Energy Agency (IEA), the United States Geological Survey (USGS), the IHS Energy Group, Total and Gaz de France. This document gathers the transparencies of the following presentations: Hydrocarbon reserves in OAPEC members countries: current and future (M. Al-Lababidi); Non OAPEC liquid reserves and production forecasts (Y. Mathieu); World oil and gas resources and production outlook (K. Chew); Global investments in the upstream (F. Birol); Total's policy in the oil and gas sector (C. de Margerie); Gaz de France's policy in the oil and gas sector (J. Abiteboul); NOC/IOC's opportunities in OPEC countries (I. Sandrea); Relationships between companies, countries and investors: How they may impact on the growth

  5. Hydrocarbon Reserves: Abundance or Scarcity

    International Nuclear Information System (INIS)

    2005-01-01

    IFP and the OAPEC jointly organize a regular international seminar dealing with world oil-related problems appearing in the news. For the first time, this seminar has been opened to oil and gas company specialists, service companies, research centers and independents. This year's theme concerns oil and gas reserves: are they abundant or are we headed towards the shortages announced by some experts? This theme is especially topical in that: oil and gas currently meet two thirds of world energy needs and almost completely dominate the transport sector; the reserves declared by the OAPEC countries account for nearly half of world reserves; the price of a barrel of oil went through the roof in 2004; world energy demand is growing fast and alternative sources of energy are far from ready to take over from oil and gas in the next few decades. Since the reserves correspond to the volume it is technically and economically viable to produce, the seminar has, of course, dealt with the technical and economic questions that arise in connection with exploration and production, but it has also considered changes in the geopolitical context. Presentations by the leading companies of the OAPEC countries and by the IFP group were completed by presentation from the International Energy Agency (IEA), the United States Geological Survey (USGS), the IHS Energy Group, Total and Gaz de France. This document gathers the transparencies of the following presentations: Hydrocarbon reserves in OAPEC members countries: current and future (M. Al-Lababidi); Non OAPEC liquid reserves and production forecasts (Y. Mathieu); World oil and gas resources and production outlook (K. Chew); Global investments in the upstream (F. Birol); Total's policy in the oil and gas sector (C. de Margerie); Gaz de France's policy in the oil and gas sector (J. Abiteboul); NOC/IOC's opportunities in OPEC countries (I. Sandrea); Relationships between companies, countries and investors: How they may impact on the growth

  6. Hydrocarbon Reserves: Abundance or Scarcity

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    IFP and the OAPEC jointly organize a regular international seminar dealing with world oil-related problems appearing in the news. For the first time, this seminar has been opened to oil and gas company specialists, service companies, research centers and independents. This year's theme concerns oil and gas reserves: are they abundant or are we headed towards the shortages announced by some experts? This theme is especially topical in that: oil and gas currently meet two thirds of world energy needs and almost completely dominate the transport sector; the reserves declared by the OAPEC countries account for nearly half of world reserves; the price of a barrel of oil went through the roof in 2004; world energy demand is growing fast and alternative sources of energy are far from ready to take over from oil and gas in the next few decades. Since the reserves correspond to the volume it is technically and economically viable to produce, the seminar has, of course, dealt with the technical and economic questions that arise in connection with exploration and production, but it has also considered changes in the geopolitical context. Presentations by the leading companies of the OAPEC countries and by the IFP group were completed by presentation from the International Energy Agency (IEA), the United States Geological Survey (USGS), the IHS Energy Group, Total and Gaz de France. This document gathers the transparencies of the following presentations: Hydrocarbon reserves in OAPEC members countries: current and future (M. Al-Lababidi); Non OAPEC liquid reserves and production forecasts (Y. Mathieu); World oil and gas resources and production outlook (K. Chew); Global investments in the upstream (F. Birol); Total's policy in the oil and gas sector (C. de Margerie); Gaz de France's policy in the oil and gas sector (J. Abiteboul); NOC/IOC's opportunities in OPEC countries (I. Sandrea); Relationships between companies, countries and investors: How they may

  7. A field experiment for the anaerobic biotransformation of aromatic hydrocarbon compounds at Seal Beach, California

    International Nuclear Information System (INIS)

    Reinhard, M.; Wills, L.E.; Ball, H.A.; Harmon, T.

    1991-01-01

    Biotransformation of aromatic hydrocarbons under anaerobic conditions is of interest because dissolved oxygen is rapidly consumed in groundwater contaminant plumes of hydrocarbon fuel. Anaerobic biotransformation of aromatic hydrocarbons has been demonstrated under different redox regimes including nitrate-reducing iron-reducing and fermentative-methanogenic conditions. Recently, laboratory evidence has been obtained for the degradation of alkylbenzenes including toluene under sulfate-reducing conditions. The long-term objective of this study is to determine transformation rates under the conditions of the Seal Beach site, and second to explore the feasibility of inducing nitrate- and sulfate-reducing conditions and fermentative-methanogenic conditions in field bioreactors. Both laboratory studies and field studies in bioreactors are being conducted. This paper reports on the experimental design of the bioreactors and initial results

  8. Model Titan atmospheric hydrocarbon analysis by Ion Mobility Spectrometry in dry helium

    International Nuclear Information System (INIS)

    Kojiro, D.R.; Stimac, R.M.; Wernlund, R.F.; Cohen, M.J.

    1990-01-01

    Ion Mobility Spectrometry (IMS) is one analytical technique being investigated for the in situ analysis of the atmosphere of Titan. Any hydrocarbon ions that may form react immediately, in microseconds, with the high concentration of water vapor normally present in conventional IMS. By reducing the water concentration to the parts-per-billion range, the lifetime of the hydrocarbon ions may be increased to the milliseconds required for measurement. At low water level concentrations, other species may become the reactant ion. This study focuses on IMS analysis of expected Titan atmospheric hydrocarbons under very dry, low water concentration conditions

  9. Isoprenoid hydrocarbons produced by thermal alteration of Nostoc muscorum and Rhodopseudomonas spheroides

    Science.gov (United States)

    Philp, R. P.; Brown, S.; Calvin, M.

    1978-01-01

    The potential of algae and photosynthetic bacteria to serve as precursors of kerogen was studied to determine what factors affect the relative rates of formation of precursor hydrocarbons. Cells of Nostoc muscorum and Rhodopseudomonas spheroides were subjected to thermal alteration (by heating samples in glass tubes sealed under nitrogen) for two, four, and twelve weeks. Both unextracted and extracted cells in the absence and presence of montmorillonite were investigated, and the isoprenoid hydrocarbons produced in these experiments were determined. Phytane and five isomeric phytenes were the main hydrocarbons observed; their relative rates of formation in the different experimental conditions are described. No phytadienes, pristane, or pristenes were detected.

  10. Mechanics of vacuum-enhanced recovery of hydrocarbons

    International Nuclear Information System (INIS)

    Barnes, D.L.; McWhorter, D.B.

    1995-01-01

    A growing body of field data demonstrates the enhancement of product recovery that can be achieved by applying a partial vacuum to recovery wells. Typical explanations for the observed improvement in performance invoke an increased slope of the cone of depression created in the water-table surface. Explanations related to water-table slope do not consider the gradient induced in the hydrocarbon by virtue of the airflow. Also, the airflow may induce a gradient in the aqueous phase that is not reflected in a water-table drawdown. The equations for steady-state flow of three immiscible fluids elucidate the fundamental mechanics of vacuum-enhanced recovery or bioslurping. Airflow to the recovery well causes hydrocarbon to migrate toward the well, independent of any gravity effects that may be created. Also, the relative permeability to hydrocarbon is affected by both water and airflow in the vicinity of the recovery well. Two critical airflow rates delineate the conditions for which only air is recovered, air and hydrocarbon are recovered, and all three phases are recovered

  11. Direct hydrocarbon exploration and gas reservoir development technology

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Young Hoon; Oh, Jae Ho; Jeong, Tae Jin [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of); and others

    1995-12-01

    In order to enhance the capability of petroleum exploration and development techniques, three year project (1994 - 1997) was initiated on the research of direct hydrocarbon exploration and gas reservoir development. This project consists of four sub-projects. (1) Oil(Gas) - source rock correlation technique: The overview of bio-marker parameters which are applicable to hydrocarbon exploration has been illustrated. Experimental analysis of saturated hydrocarbon and bio-markers of the Pohang E and F core samples has been carried out. (2) Study on surface geochemistry and microbiology for hydrocarbon exploration: the test results of the experimental device for extraction of dissolved gases from water show that the device can be utilized for the gas geochemistry of water. (3) Development of gas and gas condensate reservoirs: There are two types of reservoir characterization. For the reservoir formation characterization, calculation of conditional simulation was compared with that of unconditional simulation. In the reservoir fluid characterization, phase behavior calculations revealed that the component grouping is more important than the increase of number of components. (4) Numerical modeling of seismic wave propagation and full waveform inversion: Three individual sections are presented. The first one is devoted to the inversion theory in general sense. The second and the third sections deal with the frequency domain pseudo waveform inversion of seismic reflection data and refraction data respectively. (author). 180 refs., 91 figs., 60 tabs.

  12. Transpeptidase activity of penicillin-binding protein SpoVD in peptidoglycan synthesis conditionally depends on the disulfide reductase StoA.

    Science.gov (United States)

    Bukowska-Faniband, Ewa; Hederstedt, Lars

    2017-07-01

    Endospore cortex peptidoglycan synthesis is not required for bacterial growth but essential for endospore heat resistance. It therefore constitutes an amenable system for research on peptidoglycan biogenesis. The Bacillus subtilis sporulation-specific class B penicillin-binding protein (PBP) SpoVD and many homologous PBPs contain two conserved cysteine residues of unknown function in the transpeptidase domain - one as residue x in the SxN catalytic site motif and the other in a flexible loop near the catalytic site. A disulfide bond between these residues blocks the function of SpoVD in cortex synthesis. With a combination of experiments with purified proteins and B. subtilis mutant cells, it was shown that in active SpoVD the two cysteine residues most probably interact by hydrogen bonding and that this is important for peptidoglycan synthesis in vivo. It was furthermore demonstrated that the sporulation-specific thiol-disulfide oxidoreductase StoA reduces SpoVD and that requirement of StoA for cortex synthesis can be suppressed by two completely different types of structural alterations in SpoVD. It is concluded that StoA plays a critical role mainly during maturation of SpoVD in the forespore outer membrane. The findings advance our understanding of essential PBPs and redox control of extra-cytoplasmic protein disulfides in bacterial cells. © 2017 The Authors. Molecular Microbiology Published by John Wiley & Sons Ltd.

  13. Kinematics and physical conditions of H I in nearby radio sources. The last survey of the old Westerbork Synthesis Radio Telescope

    NARCIS (Netherlands)

    Maccagni, F. M.; Morganti, R.; Oosterloo, T. A.; Geréb, K.; Maddox, N.

    2017-01-01

    We present an analysis of the properties of neutral hydrogen (H I) in 248 nearby (0.02 30 mJy and for which optical spectroscopy is available. The observations were carried out with the Westerbork Synthesis Radio Telescope as the last large project before the

  14. Microwave-Enhanced Sulphated Zirconia and SZ/MCM-41 Catalyzed Regioselective Synthesis of β-Amino Alcohols Under Solvent-Free Conditions

    Directory of Open Access Journals (Sweden)

    Eduardo González-Zamora

    2008-04-01

    Full Text Available A solvent-free approach for the regioselective synthesis of β-amino alcohols inshorter reaction times and higher yields, compared to conventional heating is described. Itinvolves microwave (MW exposure of undiluted reactants in the presence of sulphatedzirconia (SZ or sulphated zirconia over MCM-41 (SZM as catalyst. Both acid materialscan be easily recovered and reused.

  15. Formation of diamonds out of hydrocarbon gas in the earth's mantle

    International Nuclear Information System (INIS)

    Krason, J.; Szymanski, A.; Savkevitch, S.S.

    1991-01-01

    This paper discusses the concept of formation of polycrystalline diamonds being discussed dint he context of a very rapid, dynamic decomposition of the hydrocarbon gas, initially biogenic or thermogenic condensed in gas hydrates, naturally locked and highly compressed in the hosting rocks. Gas hydrates are of solid, ice-like composition, mostly of hydrocarbon. Gas hydrates, composed of polyhedral cages, may have two types of structural forms: the body-centered structure or Structure I (small molecules) and diamond lattice or Structure II (large molecules). The crystal structure of the gas hydrate depends on the geometry of gas molecules. The thermodynamic conditions required for stabilization and preservation of the gas hydrates can be changed. Thus, in this concept, the principal source for at least some diamond deposits can originally be highly condensed hydrocarbons. In this case, if all the above indicated thermodynamic conditions and processes are met, naturally precondensed hydrocarbons can be directly converted into polycrystalline, extremely coherent diamonds

  16. Spatial Distribution of Zeolite ZSM-5 within Catalyst Bodies Affects Selectivity and Stability of Methanol-to-Hydrocarbons Conversion

    NARCIS (Netherlands)

    Castaño, P.; Ruiz-Martinez, J.; Epelde, E.; Gayubo, A.G.; Weckhuysen, B.M.

    2013-01-01

    Solid acids, such as zeolites, are used as catalyst materials in a wide variety of important crude oil refinery, bulk chemical synthesis, and green processes. Examples include fluid catalytic cracking (FCC),[1] methanol-to-hydrocarbons (MTH) conversion,[ 2] plastic waste valorization,[3] and biomass

  17. Total Synthesis of Marine Cyclic Enol-Phosphotriester Salinipostin Compounds

    Science.gov (United States)

    Zhao, Mingliang; Wei, Xianfeng; Liu, Xuemeng; Dong, Xueyang; Yu, Rilei; Wan, Shengbiao; Jiang, Tao

    2018-06-01

    Due to their structural diversity and variety of biological activities, marine natural products have been the subject of extensive study. These compounds, especially phospholipid polycyclic aromatic hydrocarbons, have a wide range of pharmacological applications, including embedded DNA and central nervous system, anti-tumor, anti-virus, anti-parasite, anti-bacterial, and antithrombotic effects. Unfortunately, the insufficient drug sources have limited the development of these compounds. In this study, we isolated salinpostin compounds from a fermentation solution of marine-derived Salinospora sp., which has a common bicyclic enol-phosphotriester core framework, as well as potent and selective antimalarial activities against P. falciparum with EC50 = 50 nmol L-1. The chemical synthesis of these compounds in greater quantities is necessary for their use in bioactivity studies. Thus we explored a short route with high yields and mild reaction conditions, which can generate combinatorial libraries for drug discovery and lead optimization. We developed a new total synthesis method for six cyclic enol-phosphotriester salinipotin compounds and their diastereomers. For the total synthesis of cyclipostin P, we prepared cyclic enol-phosphotriester salinipostin compounds in 10 steps from a readily accessible starting material, 1,3-dihydroxyacetone, and obtained an overall yield of 1.29%. We fully characterized these compounds by proton nuclear magnetic resonance (1H-NMR), carbon-13 NMR (13C-NMR), and high-resolution mass spectrometry (HRMS) analyses, and found they coincide absolutely with the same compounds reported previously.

  18. Ignition behavior of aviation fuels and some hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Koerber, F.

    1975-01-01

    Air relighting of jet engines is an important contribution to the operation safety of aircraft engines. Reignition is influenced by fuel properties in addition to the engine design. A survey is presented on the problems, considering the specific fuel properties. Investigations were made on the ignition behavior of aviation fuels and hydrocarbons in a simplified model combustion chamber. Air inlet conditions were 200 to 800 mbar and 300 to 500 K. Correlation between physical and chemical properties and ignitability is discussed.

  19. Natural elimination of volatile halogenated hydrocarbons from the environment

    Energy Technology Data Exchange (ETDEWEB)

    Harress, H.M.; Grathwohl, P.; Torunski, H.

    1987-01-01

    Recently carried out field investigations of groundwater contaminations with volatile halogenated hydrocarbons have shown evidence of natural elimination of these hazardous substances. This elimination effects is rare and observed in connection with special geological conditions. With regard to some contaminated sites, the following mechanisms for this behaviour are discussed: 1. Stripping by naturally ascending gases. 2. Sorption on soil organic matter. 3. Biodegradation. The so far compiled knowledge allowed to develop further research programmes, which are pursued in various projects.

  20. Detection of hydrocarbons in irradiated foods

    International Nuclear Information System (INIS)

    Miyahara, Makoto; Maitani, Tamio; Saito, Akiko; Kamimura, Tomomi; Nagasawa, Taeko; Kobayashi, Yasuo; Ito, Hitoshi

    2003-01-01

    The hydrocarbon method for the detection of irradiated foods is now recognized as the international technique. This method is based on radiolysis of fatty acids in food to give hydrocarbons. In order to expand this technique's application, ten foods (butter, cheese, chicken, pork, beef, tuna, dry shrimp, avocado, papaya, and mango) were irradiated in the range from 0.5 to 10 kGy and the hydrocarbons in them were detected. Recoveries of the hydrocarbons from most foods were acceptable (38-128%). Some hydrocarbons were found in non-irradiated foods, particularly, in butter, cheese, tuna, and shrimp. Seven irradiated foods, butter, cheese, chicken, beef, pork, tuna, dry shrimp, and avocado were detectable at their practical doses by measuring the appropriate marker hydrocarbons. In most case, marker hydrocarbon will be 1,7-hexadecadiene. However, the marker hydrocarbons produced only in irradiated foods varied from food to food; therefore, it is necessary to check a specific irradiated food for marker hydrocarbons. On the other hand, two irradiated foods (papaya and mango which were irradiated at their practical doses) were difficult to distinguish from non-irradiated foods using this method. (author)

  1. Detection of hydrocarbons in irradiated foods

    Energy Technology Data Exchange (ETDEWEB)

    Miyahara, Makoto; Maitani, Tamio [National Inst. of Health Sciences, Tokyo (Japan); Saito, Akiko; Kamimura, Tomomi; Nagasawa, Taeko [Kitasato Univ., Sagamihara, Kanagawa (Japan). School of Allied Health Sciences; Kobayashi, Yasuo; Ito, Hitoshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Establishment

    2003-06-01

    The hydrocarbon method for the detection of irradiated foods is now recognized as the international technique. This method is based on radiolysis of fatty acids in food to give hydrocarbons. In order to expand this technique's application, ten foods (butter, cheese, chicken, pork, beef, tuna, dry shrimp, avocado, papaya, and mango) were irradiated in the range from 0.5 to 10 kGy and the hydrocarbons in them were detected. Recoveries of the hydrocarbons from most foods were acceptable (38-128%). Some hydrocarbons were found in non-irradiated foods, particularly, in butter, cheese, tuna, and shrimp. Seven irradiated foods, butter, cheese, chicken, beef, pork, tuna, dry shrimp, and avocado were detectable at their practical doses by measuring the appropriate marker hydrocarbons. In most case, marker hydrocarbon will be 1,7-hexadecadiene. However, the marker hydrocarbons produced only in irradiated foods varied from food to food; therefore, it is necessary to check a specific irradiated food for marker hydrocarbons. On the other hand, two irradiated foods (papaya and mango which were irradiated at their practical doses) were difficult to distinguish from non-irradiated foods using this method. (author)

  2. Recycling Carbon Dioxide into Sustainable Hydrocarbon Fuels: Electrolysis of Carbon Dioxide and Water

    Science.gov (United States)

    Graves, Christopher Ronald

    -electrolysis of CO2 and H2O to produce syngas (CO/H2 mixture) is identified as a promising method. High temperature electrolysis makes very efficient use of electricity and heat (near-100% electricity-to-syngas efficiency), provides high reaction rates, and the syngas produced can be catalytically converted to hydrocarbons in well-known fuel synthesis reactors (e.g. Fischer-Tropsch). The experimental studies of high temperature electrolysis are made at different scales -- at the cell level, electrode level, and in materials and microstructure development. The results include cell performance and durability, insight into electrode reaction mechanisms, and new high-performance electrode materials. The experimental studies make extensive use of electrochemical impedance spectroscopy and systematic variation of test conditions to examine the electrochemical phenomena. Variation of the material composition itself within families of related materials was an additional parameter used in the electrode level and materials studies that revealed more information than studying a single material would have. Using full cells, the performance and durability of a solid oxide cell applied for co-electrolysis of CO2 and H2O was investigated. High initial performance was observed but the long-term durability needs to be improved. Based on these results, an analysis of the energy balance and economics of an electrolysis-based synthetic fuel production process, including CO2 air capture and Fischer-Tropsch fuel synthesis, determined that the system can feasibly operate at 70% electricity-to-liquid fuel efficiency (higher heating value basis) and that the price of electricity needed to produce competitive synthetic gasoline (at USD2/gal, or 0.53/L, wholesale) is 2-3 U.S. cents per kWh. For 3/gal (0.78/L) gasoline, 4-5 cents per kWh is needed. Fuel production may already be economical in some regions that have inexpensive renewable electricity, such as Iceland. The dominant costs of the process are the

  3. Hydrocarbon-degrading sulfate-reducing bacteria in marine hydrocarbon seep sediments

    OpenAIRE

    Kleindienst, Sara

    2012-01-01

    Microorganisms are key players in our biosphere because of their ability to degrade various organic compounds including a wide range of hydrocarbons. At marine hydrocarbon seeps, more than 90% of sulfate reduction (SR) is potentially coupled to non-methane hydrocarbon oxidation. Several hydrocarbon-degrading sulfate-reducing bacteria (SRB) were enriched or isolated from marine sediments. However, in situ active SRB remained largely unknown. In the present thesis, the global distribution and a...

  4. Halogenated hydrocarbons - an environmental problem

    Energy Technology Data Exchange (ETDEWEB)

    Schoeler, H F; Thofern, E

    1984-01-01

    The paper provides a survey of the incidence of highly volatile halogenated hydrocarbons in ground, surface and drinking water as well as in the snows of Western Germany. Almost the entire production of chlorinated solvents is released into the environment. The absorption media are mostly soil, water and atmosphere. Whereas in the atmosphere elimination reactions take place, solvents that have passed the soil get into the ground water owing to their persistence and can cause considerable pollutions of drinking water. Moreover haloforms may occur in drinking water, which are produced during chlorine disinfection of pre-treated water.

  5. Catalytic treatment of hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    1940-02-23

    A process is described for increasing the octane number of a hydrocarbon oil. The substance is subjected under pressure to a temperature between 800 and 1100/sup 0/C. Catalysts include metal compounds of Groups IV, V, Vi, or VIII (Group VI is perferred). Experiments are performed under a hydrogen atmosphere. Reaction time, temperature, pressure, and partial pressure of the hydrogen are adjusted so that there will be no net hydrogen consumption. The reaction gases (including the products) are recycled in whole or in part to supply the hydrogen gas required.

  6. Catalytic cracking of hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    1940-09-12

    A process is described for the vapor phase catalytic cracking of hydrocarbon oils boiling substantially in the gas oil range. The reaction takes place in the presence of a solid catalyst between 700 to 900/sup 0/F under pressure between atmospheric and 400 psi. A gas containing between 20 and 90 mol % of free hydrogen is used. The reaction is allowed to proceed until consumption of the free begins. The reaction is discontinued at that point and the catalyst is regenerated for further use.

  7. Performance of a Throttle Cycle Refrigerator with Nitrogen-Hydrocarbon and Argon-Hydrocarbon Mixtures

    Science.gov (United States)

    Venkatarathnam, G.; Senthil Kumar, P.; Srinivasa Murthy, S.

    2004-06-01

    Throttle cycle refrigerators are a class of vapor compression refrigerators that can provide refrigeration at cryogenic temperatures and operate with refrigerant mixtures. The performance of our prototype refrigerators with nitrogen-hydrocarbon, nitrogen-hydrocarbon-helium and argon-hydrocarbon refrigerant mixtures is presented in this paper.

  8. Site-dependent atomic and molecular affinities of hydrocarbons, amines and thiols on diamond nanoparticles

    Science.gov (United States)

    Lai, Lin; Barnard, Amanda S.

    2016-04-01

    Like many of the useful nanomaterials being produced on the industrial scale, the surface of diamond nanoparticles includes a complicated mixture of various atomic and molecular adsorbates, attaching to the facets following synthesis. Some of these adsorbates may be functional, and adsorption is encouraged to promote applications in biotechnology and nanomedicine, but others are purely adventurous and must be removed prior to use. In order to devise more effective treatments it is advantageous to know the relative strength of the interactions of the adsorbates with the surface, and ideally how abundant they are likely to be under different conditions. In this paper we use a series of explicit electronic structure simulations to map the distribution of small hydrocarbons, amines and thiols on a 2.9 nm diamond nanoparticle, with atomic level resolution, in 3-D. We find a clear relationship between surface reconstructions, facet orientation, and the distribution of the different adsorbates; with a greater concentration expected on the (100) and (110) facets, particularly when the supersaturation in the reservoir is high. Adsorption on the (111) facets is highly unlikely, suggesting that controlled graphitization may be a useful stage in the cleaning and treatment of nanodiamonds, prior to the deliberate coating with functional adsorbates needed for drug delivery applications.

  9. Decontamination of hydrocarbon contaminated soil

    International Nuclear Information System (INIS)

    Smith, A.J.

    1991-01-01

    This patent describes the method of treating hydrocarbon contaminated soil. It comprises forming the soil into a flowing particulate stream, forming an aqueous liquid mixture of water and treating substance that reacts with hydrocarbon to form CO 2 and water, dispersing the liquid mixture into the particulate soil stream to wet the particulate, allowing the substance to react with the wetted soil particulate to thereby form CO 2 and water, thereby the resultant soil is beneficially treated, the stream being freely projected to dwell at a level and then fall, and the dispersing includes spraying the liquid mixture into the projected stream at the dwell, the substance consisting of natural bacteria, and at a concentration level in the mixture of between 100 to 3,000 PPM of bacteria to water, the soil forming step including impacting the soil to reduce it to particles less than about 1 inches in cross dimension, and including forming the wetting particulate into a first layer on a surface to allow the substance to react

  10. Hydrocarbon production with nuclear explosives

    International Nuclear Information System (INIS)

    Wade Watkins, J.

    1970-01-01

    The tremendous energy of nuclear explosives and the small dimensions of the explosive package make an ideal combination for drill-hole explosive emplacement in deep, thick hydrocarbon deposits. Potential applications exist in fracturing low permeability natural-gas and petroleum formations for stimulating production, fracturing oil shale to permit in situ retorting, and creating storage chimneys for natural gas, liquefied petroleum gas, petroleum, petroleum products, helium, and other fluids. Calculations show, for example, that less than 100 shots per year would be needed to stabilize the natural gas reserves to production ratio. Under the Government-industry Plowshare program, two experiments, Projects Gasbuggy and Rulison, were conducted to stimulate natural gas production from low-permeability formations. Incomplete information indicates that both were technically successful. Potential problems associated with the use of nuclear explosives for underground engineering applications are radioactive contamination, maximum yield limitations, high costs of detonating contained nuclear explosives, and adverse public opinion. Results at Project Gasbuggy and other considerations indicated that the problem of radioactive contamination was about as predicted and not an insurmountable one. Also, it was demonstrated that shots at adequate depths could be detonated without appreciable damage to existing surface and subsurface buildings, natural features, and equipment. However, costs must be reduced and the public must be better informed before these techniques can be widely used in field operations. On the basis of present knowledge, the potential of nuclear-explosive stimulation of hydrocarbon production appears good. Additional field experiments will be required to adequately explore that potential. (author)

  11. Hydrocarbon production with nuclear explosives

    Energy Technology Data Exchange (ETDEWEB)

    Wade Watkins, J [Petroleum Research, Bureau of Mines, U.S. Department of the Interior, Washington, DC (United States)

    1970-05-01

    The tremendous energy of nuclear explosives and the small dimensions of the explosive package make an ideal combination for drill-hole explosive emplacement in deep, thick hydrocarbon deposits. Potential applications exist in fracturing low permeability natural-gas and petroleum formations for stimulating production, fracturing oil shale to permit in situ retorting, and creating storage chimneys for natural gas, liquefied petroleum gas, petroleum, petroleum products, helium, and other fluids. Calculations show, for example, that less than 100 shots per year would be needed to stabilize the natural gas reserves to production ratio. Under the Government-industry Plowshare program, two experiments, Projects Gasbuggy and Rulison, were conducted to stimulate natural gas production from low-permeability formations. Incomplete information indicates that both were technically successful. Potential problems associated with the use of nuclear explosives for underground engineering applications are radioactive contamination, maximum yield limitations, high costs of detonating contained nuclear explosives, and adverse public opinion. Results at Project Gasbuggy and other considerations indicated that the problem of radioactive contamination was about as predicted and not an insurmountable one. Also, it was demonstrated that shots at adequate depths could be detonated without appreciable damage to existing surface and subsurface buildings, natural features, and equipment. However, costs must be reduced and the public must be better informed before these techniques can be widely used in field operations. On the basis of present knowledge, the potential of nuclear-explosive stimulation of hydrocarbon production appears good. Additional field experiments will be required to adequately explore that potential. (author)

  12. The electrostatic atomization of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, A J

    1984-06-01

    Exploitation of the unique and potentially beneficial characteristics of electrostatic atomization in combustion systems has foundered upon the inability of two element, diode devices to operate at flow rates that are larger than a fraction of a millilitre per second. This restriction has been attributed to the high innate electrical resistivity of hydrocarbon fuels. A discussion of proposed electrostatic fuel atomizers and their limitations is presented from the vantage of a recently developed theory of electrostatic spraying. Comparison of theory and experiment reveals the existence of a 'constant of spraying' and the presence of an operational regime in which low charge density droplet development is possible. Operation with hydrocarbons in this regime occurs when the mean droplet size is greater than or equal to 10 ..mu..m and fluid viscosity is below about 250 cp. The resulting spray has a mean droplet size that is functionally dependent only upon the free charge density level of the fluid. Consequently there is no theoretical impediment to the attainment of high flow rate electrostatic atomization with fluids of arbitrary conductivity. Implementation is achieved by a general class of electrostatic spray devices which employ direct charge injection. The Spray Triode, a submerged field-emission electron gun, represents a particularly simple member of this new class of atomizer. Among the Spray Triode operational characteristics to be discussed is insensitivity to spray fluid properties and flow rate.

  13. Synthesis and characterization of cyclic polystyrene using copper-catalyzed alkyne-azide cycloaddition coupling - evaluation of physical properties and optimization of cyclization conditions

    Science.gov (United States)

    Elupula, Ravinder

    Polymers with a cyclic topology exhibit a range of unique and potentially useful physical properties, including reduced rates of degradation and increased rates of diffusion in bulk relative to linear analogs. However the synthesis of high purity cyclic polymers, and verification of their structural purity remains challenging. The copper-catalyzed azide-alkyne "click" cyclization route toward cyclic polymers has been used widely, due to its synthetic ease and its compatibility with diverse polymer backbones. Yet unoptimized click cyclization conditions have been observed to generate oligomeric byproducts. In order to optimize these cyclization conditions, and to better understand the structure of the higher molecular weight oligomers, these impurities have been isolated by size exclusion chromatography (SEC) and characterized by mass spectrometry (MS). Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry (MALDI-ToF) MS is a particularly valuable characterization tool and was used to determine that the high molecular weight impurities are predominantly cyclic oligomers. It should also be noted that the rapid analysis and small analyte requirements of this MS technique make it particularly attractive as a general tool for elucidating polymer architecture. Ability to tailor the physical properties of polymers by changing the architecture alone has garnered a lot of attention over the past few decades. Compared to their linear analogues, these novel polymer architectures behave completely different in nanoscale regime. Cyclic polymers are especially intriguing since we can compare the differences in the physical properties with that of the linear chains. One of the major physical property changes are T g-confinement effect. Using ATRP and "click chemistry" we have produced highly pure cyclic PS (c-PS) with number-average molecular weight (MW) of 3.4 kg/mol and 9.1 kg/mol. Bulk glass transition temperatures for c-PS were weakly depended on MWs

  14. Novel Aryne Chemistry in Organic Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhijian [Iowa State Univ., Ames, IA (United States)

    2006-12-12

    Arynes are among the most intensively studied systems in chemistry. However, many aspects of the chemistry of these reactive intermediates are not well understood yet and their use as reagents in synthetic organic chemistry has been somewhat limited, due to the harsh conditions needed to generate arynes and the often uncontrolled reactivity exhibited by these species. Recently, o-silylaryl triflates, which can generate the corresponding arynes under very mild reaction conditions, have been found very useful in organic synthesis. This thesis describes several novel and useful methodologies by employing arynes, which generate from o-silylaryl triflates, in organic synthesis. An efficient, reliable method for the N-arylation of amines, sulfonamides and carbamates, and the O-arylation of phenols and carboxylic acids is described in Chapter 1. Amines, sulfonamides, phenols, and carboxylic acids are good nucleophiles, which can react with arynes generated from a-silylaryl triflates to afford the corresponding N- and O-arylated products in very high yields. The regioselectivity of unsymmetrical arynes has also been studied. A lot of useful, functional groups can tolerate our reaction conditions. Carbazoles and dibenzofurans are important heteroaromatic compounds, which have a variety of biological activities. A variety of substituted carbazoles and dibenzofwans are readily prepared in good to excellent yields starting with the corresponding o-iodoanilines or o-iodophenols and o-silylaryl triflates by a treatment with CsF, followed by a Pd-catalyzed cyclization, which overall provides a one-pot, two-step process. By using this methodology, the carbazole alkaloid mukonine has been concisely synthesized in a very good yield. Insertion of an aryne into a σ-bond between a nucleophile and an electrophile (Nu-E) should potentially be a very beneficial process from the standpoint of organic synthesis. A variety of substituted ketones and sulfoxides have been synthesized in good

  15. B2O3/Al2O3 as a new, highly efficient and reusable heterogeneous catalyst for the selective synthesis of β-enamino ketones and esters under solvent-free conditions

    International Nuclear Information System (INIS)

    Chen, Jiu-Xi; Gao, Wen-Xia; Jin, Hui-Le; Ding, Jin-Chang; Wu, Hua-Yue

    2010-01-01

    Boron oxide adsorbed on alumina (B 2 O 3 /Al 2 O 3 ) has been found to be a new and highly efficient heterogeneous catalyst for the synthesis of β-enamino ketones and esters by the enamination of various primary and secondary amines with β-dicarbonyl compounds under solvent-free conditions. The important features of this methodology are broad substrate scope, high yield, no requirement of metal catalysts, high regio- and chemoselectivity and environmental friendliness. In addition, the catalyst could be recovered easily after the reactions and reused without evident loss of reactivity. (author)

  16. Primary biodegradation of petroleum hydrocarbons in seawater

    Energy Technology Data Exchange (ETDEWEB)

    Comber, M.I.H.; Den Haan, K.H.; Djemel, N.; Eadsforth, C.V.; King, D.; Paumen, M.L.; Parkerton, T.; Dmytrasz, B.

    2012-12-15

    This report describes primary biodegradation experiments performed to determine the persistence of higher molecular weight petroleum hydrocarbons in seawater. Results from the biodegradation experiments show that the majority of tested petroleum hydrocarbons have half-lives in seawater less than 60 days.

  17. Mechanistic model for microbial growth on hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Mallee, F M; Blanch, H W

    1977-12-01

    Based on available information describing the transport and consumption of insoluble alkanes, a mechanistic model is proposed for microbial growth on hydrocarbons. The model describes the atypical growth kinetics observed, and has implications in the design of large scale equipment for single cell protein (SCP) manufacture from hydrocarbons. The model presents a framework for comparison of the previously published experimental kinetic data.

  18. Identification and Characterisation of Major Hydrocarbons in ...

    African Journals Online (AJOL)

    Identification and Characterisation of Major Hydrocarbons in Thermally Degraded Low Density Polyethylene Films. ... There were alkanes, alkenes, halogenated alkanes, and very few aromatics in the liquid product and, the hydrocarbons were observed to range between C10 - C27. The FTIR and GC-MS results show the ...

  19. Molecular characterization of autochthonous hydrocarbon utilizing ...

    African Journals Online (AJOL)

    Prof. Ogunji

    Materials and Methods ... culturable hydrocarbon utilizing bacteria (HUB) were enumerated by vapour phase ... hydrocarbon utilizing bacterial isolates by boiling method according to ... obtained in this investigation are consistent with past field studies (Kostka et ... Microbial and other related changes in a Niger sediment.

  20. Versatility of hydrocarbon production in cyanobacteria.

    Science.gov (United States)

    Xie, Min; Wang, Weihua; Zhang, Weiwen; Chen, Lei; Lu, Xuefeng

    2017-02-01

    Cyanobacteria are photosynthetic microorganisms using solar energy, H 2 O, and CO 2 as the primary inputs. Compared to plants and eukaryotic microalgae, cyanobacteria are easier to be genetically engineered and possess higher growth rate. Extensive genomic information and well-established genetic platform make cyanobacteria good candidates to build efficient biosynthetic pathways for biofuels and chemicals by genetic engineering. Hydrocarbons are a family of compounds consisting entirely of hydrogen and carbon. Structural diversity of the hydrocarbon family is enabled by variation in chain length, degree of saturation, and rearrangements of the carbon skeleton. The diversified hydrocarbons can be used as valuable chemicals in the field of food, fuels, pharmaceuticals, nutrition, and cosmetics. Hydrocarbon biosynthesis is ubiquitous in bacteria, yeasts, fungi, plants, and insects. A wide variety of pathways for the hydrocarbon biosynthesis have been identified in recent years. Cyanobacteria may be superior chassis for hydrocabon production in a photosynthetic manner. A diversity of hydrocarbons including ethylene, alkanes, alkenes, and terpenes can be produced by cyanobacteria. Metabolic engineering and synthetic biology strategies can be employed to improve hydrocarbon production in cyanobacteria. This review mainly summarizes versatility and perspectives of hydrocarbon production in cyanobacteria.

  1. 33 CFR 157.166 - Hydrocarbon emissions.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Hydrocarbon emissions. 157.166 Section 157.166 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... Crude Oil Washing (COW) System on Tank Vessels Cow Operations § 157.166 Hydrocarbon emissions. If the...

  2. Hydrocarbon formation mechanism during uranium monocarbide hydrolysis

    International Nuclear Information System (INIS)

    Ermolaev, M.I.; Tishchenko, G.V.

    1979-01-01

    The hydrolysis of uranium monocarbide in oxidative media and in the presence of excessive hydrogen in statu nascendi has been investigated. It was found that oxydants promote the formation of elementary carbon, while in the presence of hydrogen the yield of light C-C hydrocarbons increases. EPR data confirm the radical mechanism of hydrocarbons formation during the decomposition of uranium monocarbide

  3. George A. Olah, Carbocation and Hydrocarbon Chemistry

    Science.gov (United States)

    dropdown arrow Site Map A-Z Index Menu Synopsis George A. Olah, Carbocation and Hydrocarbon Chemistry George Olah received the 1994 Nobel Prize in Chemistry "for his contribution to carbocation chemistry" and his 'role in the chemistry of hydrocarbons. In particular, he developed superacids

  4. A Free-Radical Pathway to Hydrogenated Phenanthrene in Molecular Clouds-Low Temperature Growth of Polycyclic Aromatic Hydrocarbons.

    Science.gov (United States)

    Thomas, Aaron M; Lucas, Michael; Yang, Tao; Kaiser, Ralf I; Fuentes, Luis; Belisario-Lara, Daniel; Mebel, Alexander M

    2017-08-05

    The hydrogen-abstraction/acetylene-addition mechanism has been fundamental to unravelling the synthesis of polycyclic aromatic hydrocarbons (PAHs) detected in combustion flames and carbonaceous meteorites like Orgueil and Murchison. However, the fundamental reaction pathways accounting for the synthesis of complex PAHs, such as the tricyclic anthracene and phenanthrene along with their dihydrogenated counterparts, remain elusive to date. By investigating the hitherto unknown chemistry of the 1-naphthyl radical with 1,3-butadiene, we reveal a facile barrierless synthesis of dihydrophenanthrene adaptable to low temperatures. These aryl-type radical additions to conjugated hydrocarbons via resonantly stabilized free-radical intermediates defy conventional wisdom that PAH growth is predominantly a high-temperature phenomenon and thus may represent an overlooked path to PAHs as complex as coronene and corannulene in cold regions of the interstellar medium like in the Taurus Molecular Cloud. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Synthesis and characterization of carbon fibers obtained through plasma techniques

    International Nuclear Information System (INIS)

    Valdivia B, M.

    2005-01-01

    The study of carbon, particularly the nano technology is a recent field, the one which has important implications in the science of new materials. It investigation is of great interest for industries producers of ceramic, metallurgy, electronic, energy storage, biomedicine, among others. The diverse application fields are a reason at national as international level, so that many works are focused in the production of nano fibers of carbon. The Thermal plasma applications laboratory (LAPT) of the National Institute of Nuclear Research (ININ), it is carrying out works about carbon nano technology. The present work has as purpose to carry out the synthesis and characterization of the carbon nano fibers which are obtained by electric arch of alternating current (CA) to high frequencies and by a plasma gun of non transferred arch, where are used hydrocarbons like benzene, methane, acetylene like carbon source and ferrocene, nickel, yttrium and cerium oxide like catalysts. For both techniques its were thought about a relationship among hydrocarbon-catalyst that it favored to the nano fibers production. The obtained product of each experiment outlined it was analyzed by transmission electron microscopy (TEM), scanning electron microscopy (SEM) and X-ray diffraction (XRD), analysis with those were obtained pictures and diffraction graphs, which were observed to arrive to one conclusion on the operation conditions, same analysis with those were characterized the tests carried out according to the nano structures formation of carbon. (Author)

  6. Porphyrins Fused with Unactivated Polycyclic Aromatic Hydrocarbons

    KAUST Repository

    Diev, Vyacheslav V.; Schlenker, Cody W.; Hanson, Kenneth; Zhong, Qiwen; Zimmerman, Jeramy D.; Forrest, Stephen R.; Thompson, Mark E.

    2012-01-01

    A systematic study of the preparation of porphyrins with extended conjugation by meso,β-fusion with polycyclic aromatic hydrocarbons (PAHs) is reported. The meso-positions of 5,15-unsubstituted porphyrins were readily functionalized with PAHs. Ring fusion using standard Scholl reaction conditions (FeCl 3, dichloromethane) occurs for perylene-substituted porphyrins to give a porphyrin β,meso annulated with perylene rings (0.7:1 ratio of syn and anti isomers). The naphthalene, pyrene, and coronene derivatives do not react under Scholl conditions but are fused using thermal cyclodehydrogenation at high temperatures, giving mixtures of syn and anti isomers of the meso,β-fused porphyrins. For pyrenyl-substituted porphyrins, a thermal method gives synthetically acceptable yields (>30%). Absorption spectra of the fused porphyrins undergo a progressive bathochromic shift in a series of naphthyl (λ max = 730 nm), coronenyl (λ max = 780 nm), pyrenyl (λ max = 815 nm), and perylenyl (λ max = 900 nm) annulated porphyrins. Despite being conjugated with unsubstituted fused PAHs, the β,meso-fused porphyrins are more soluble and processable than the parent nonfused precursors. Pyrenyl-fused porphyrins exhibit strong fluorescence in the near-infrared (NIR) spectral region, with a progressive improvement in luminescent efficiency (up to 13% with λ max = 829 nm) with increasing degree of fusion. Fused pyrenyl-porphyrins have been used as broadband absorption donor materials in photovoltaic cells, leading to devices that show comparatively high photovoltaic efficiencies. © 2011 American Chemical Society.

  7. Porphyrins Fused with Unactivated Polycyclic Aromatic Hydrocarbons

    KAUST Repository

    Diev, Vyacheslav V.

    2012-01-06

    A systematic study of the preparation of porphyrins with extended conjugation by meso,β-fusion with polycyclic aromatic hydrocarbons (PAHs) is reported. The meso-positions of 5,15-unsubstituted porphyrins were readily functionalized with PAHs. Ring fusion using standard Scholl reaction conditions (FeCl 3, dichloromethane) occurs for perylene-substituted porphyrins to give a porphyrin β,meso annulated with perylene rings (0.7:1 ratio of syn and anti isomers). The naphthalene, pyrene, and coronene derivatives do not react under Scholl conditions but are fused using thermal cyclodehydrogenation at high temperatures, giving mixtures of syn and anti isomers of the meso,β-fused porphyrins. For pyrenyl-substituted porphyrins, a thermal method gives synthetically acceptable yields (>30%). Absorption spectra of the fused porphyrins undergo a progressive bathochromic shift in a series of naphthyl (λ max = 730 nm), coronenyl (λ max = 780 nm), pyrenyl (λ max = 815 nm), and perylenyl (λ max = 900 nm) annulated porphyrins. Despite being conjugated with unsubstituted fused PAHs, the β,meso-fused porphyrins are more soluble and processable than the parent nonfused precursors. Pyrenyl-fused porphyrins exhibit strong fluorescence in the near-infrared (NIR) spectral region, with a progressive improvement in luminescent efficiency (up to 13% with λ max = 829 nm) with increasing degree of fusion. Fused pyrenyl-porphyrins have been used as broadband absorption donor materials in photovoltaic cells, leading to devices that show comparatively high photovoltaic efficiencies. © 2011 American Chemical Society.

  8. High bacterial biodiversity increases degradation performance of hydrocarbons during bioremediation of contaminated harbor marine sediments

    International Nuclear Information System (INIS)

    Dell'Anno, Antonio; Beolchini, Francesca; Rocchetti, Laura; Luna, Gian Marco; Danovaro, Roberto

    2012-01-01

    We investigated changes of bacterial abundance and biodiversity during bioremediation experiments carried out on oxic and anoxic marine harbor sediments contaminated with hydrocarbons. Oxic sediments, supplied with inorganic nutrients, were incubated in aerobic conditions at 20 °C and 35 °C for 30 days, whereas anoxic sediments, amended with organic substrates, were incubated in anaerobic conditions at the same temperatures for 60 days. Results reported here indicate that temperature exerted the main effect on bacterial abundance, diversity and assemblage composition. At higher temperature bacterial diversity and evenness increased significantly in aerobic conditions, whilst decreased in anaerobic conditions. In both aerobic and anaerobic conditions, biodegradation efficiencies of hydrocarbons were significantly and positively related with bacterial richness and evenness. Overall results presented here suggest that bioremediation strategies, which can sustain high levels of bacterial diversity rather than the selection of specific taxa, may significantly increase the efficiency of hydrocarbon degradation in contaminated marine sediments. - Highlights: ► Bioremediation performance was investigated on hydrocarbon contaminated sediments. ► Major changes in bacterial diversity and assemblage composition were observed. ► Temperature exerted the major effect on bacterial assemblages. ► High bacterial diversity increased significantly biodegradation performance. ► This should be considered for sediment remediation by bio-treatments. - Bioremediation strategies which can sustain high levels of bacterial diversity may significantly increase the biodegradation of hydrocarbons in contaminated marine sediments.

  9. Hydrocarbon analysis using desorption atmospheric pressure chemical ionization

    KAUST Repository

    Jjunju, Fred Paul Mark; Badu-Tawiah, Abraham K.; Li, Anyin; Soparawalla, Santosh; Roqan, Iman S.; Cooks, Robert Graham

    2013-01-01

    Characterization of the various petroleum constituents (hydronaphthalenes, thiophenes, alkyl substituted benzenes, pyridines, fluorenes, and polycyclic aromatic hydrocarbons) was achieved under ambient conditions without sample preparation by desorption atmospheric pressure chemical ionization (DAPCI). Conditions were chosen for the DAPCI experiments to control whether ionization was by proton or electron transfer. The protonated molecule [M+H]+ and the hydride abstracted [MH]+ form were observed when using an inert gas, typically nitrogen, to direct a lightly ionized plasma generated by corona discharge onto the sample surface in air. The abundant water cluster ions generated in this experiment react with condensed-phase functionalized hydrocarbon model compounds and their mixtures at or near the sample surface. On the other hand, when naphthalene was doped into the DAPCI gas stream, its radical cation served as a charge exchange reagent, yielding molecular radical cations (M+) of the hydrocarbons. This mode of sample ionization provided mass spectra with better signal/noise ratios and without unwanted side-products. It also extended the applicability of DAPCI to petroleum constituents which could not be analyzed through proton transfer (e.g., higher molecular PAHs such as chrysene). The thermochemistry governing the individual ionization processes is discussed and a desorption/ionization mechanism is inferred. © 2012 Elsevier B.V.

  10. Hydrocarbon analysis using desorption atmospheric pressure chemical ionization

    KAUST Repository

    Jjunju, Fred Paul Mark

    2013-07-01

    Characterization of the various petroleum constituents (hydronaphthalenes, thiophenes, alkyl substituted benzenes, pyridines, fluorenes, and polycyclic aromatic hydrocarbons) was achieved under ambient conditions without sample preparation by desorption atmospheric pressure chemical ionization (DAPCI). Conditions were chosen for the DAPCI experiments to control whether ionization was by proton or electron transfer. The protonated molecule [M+H]+ and the hydride abstracted [MH]+ form were observed when using an inert gas, typically nitrogen, to direct a lightly ionized plasma generated by corona discharge onto the sample surface in air. The abundant water cluster ions generated in this experiment react with condensed-phase functionalized hydrocarbon model compounds and their mixtures at or near the sample surface. On the other hand, when naphthalene was doped into the DAPCI gas stream, its radical cation served as a charge exchange reagent, yielding molecular radical cations (M+) of the hydrocarbons. This mode of sample ionization provided mass spectra with better signal/noise ratios and without unwanted side-products. It also extended the applicability of DAPCI to petroleum constituents which could not be analyzed through proton transfer (e.g., higher molecular PAHs such as chrysene). The thermochemistry governing the individual ionization processes is discussed and a desorption/ionization mechanism is inferred. © 2012 Elsevier B.V.

  11. Gas condensate--raw material for producing liquid paraffin hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Aliyeva, R.B.; Alikishi-Zade, G.Yu.; Kuliyev, A.M.; Leonidov, A.N.; Pereverzev, A.N.

    1980-01-01

    The problem of efficient utilization of gas condensates as raw material for removal of a valuable product, liquid paraffins, is examined. A classification of gas condensates is given which is used as raw material for removing these hydrocarbons: gas condensate with high content of n-alkanes (25-40 mass percent), with average content (18-25 mass percent), with low content (12-18 mass percent), light weight fractions compositions, which do not contain fractions up to 200/sup 0/, and also, content ofless than 12% n-alkanes. Gas condensate I-III groups are 30% of the total reserve of gas condensate. Liquid paraffins hydrocarbons, produced from fractions of diesel fuel, which has been removed from Shatlyk gas condensate under conditions which simulate virtual processes of caramide deparaffinization meet all requirements without additional refining.

  12. Acute hydrocarbon pneumonia after white spirit aspiration: sequential HRCT findings

    Energy Technology Data Exchange (ETDEWEB)

    Facon, David; Coumbaras, Jean; Bigot, Emmanuelle; Bahlouli, Fouad; Bellin, Marie-France [Universite Paris 11, Department of Radiology, Hopital Paul-Brousse, AP-HP, Villejuif Cedex (France); Boissonnas, Alain [Universite Paris 11, Department of Internal Medicine, Hopital Paul-Brousse, AP-HP, Villejuif Cedex (France)

    2005-01-01

    Hydrocarbon pneumonia is a very uncommon condition resulting from aspiration of mineral oil into the lung. We report the first description of early and sequential high-resolution computed tomographic (HRCT) findings of hydrocarbon pneumonia following attempted suicide by white spirit aspiration. Initial HRCT showed patchy opacities of coalescing masses with well-defined walls. They were visible in the middle lobe, lingula and lower lobes. Follow-up CT showed regression of the alveolar opacities, the presence of pneumatoceles and right asymptomatic pneumothorax. After 23 months of follow-up, the patient remained asymptomatic, and the follow-up CT scan was considered normal. The radiological features and a review of the relevant literature are briefly discussed. (orig.)

  13. Potential use of hydrocarbons for aging Lucilia sericata blowfly larvae to establish the postmortem interval.

    Science.gov (United States)

    Moore, Hannah E; Adam, Craig D; Drijfhout, Falko P

    2013-03-01

    Previous studies on Diptera have shown the potential for the use of cuticular hydrocarbons' analysis in the determination of larval age and hence the postmortem interval (PMI) for an associated cadaver. In this work, hydrocarbon compounds, extracted daily until pupation from the cuticle of the blowfly Lucilia sericata (Diptera: Calliphoridae), have been analyzed using gas chromatography-mass spectrometry (GC-MS). The results show distinguishing features within the hydrocarbon profile over the period of the larvae life cycle, with significant chemical changes occurring from the younger larvae to the postfeeding larvae. Further interpretation of the chromatograms using principal component analysis revealed a strong correlation between the magnitudes of particular principal components and time. This outcome suggests that, under the conditions of this study, the cuticular hydrocarbons evolve in a systematic fashion with time, thus supporting the potential for GC-MS analysis as a tool for establishing PMI where such a species is present. © 2012 American Academy of Forensic Sciences.

  14. Magnetic graphene oxide as adsorbent for the determination of polycyclic aromatic hydrocarbon metabolites in human urine.

    Science.gov (United States)

    Zhu, Linli; Xu, Hui

    2014-09-01

    Detection of monohydroxy polycyclic aromatic hydrocarbons metabolites in urine is an advisable and valid method to assess human environmental exposure to polycyclic aromatic hydrocarbons. In this work, novel Fe3O4/graphene oxide composites were prepared and their application in the magnetic solid-phase extraction of monohydroxy polycyclic aromatic hydrocarbons in urine was investigated by coupling with liquid chromatography and mass spectrometry. In the hybrid material, superparamagnetic Fe3O4 nanoparticles provide fast separation to simplify the analytical process and graphene oxide provides a large functional surface for the adsorption. The prepared magnetic nanocomposites were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and vibrating sample magnetometry. The experimental conditions were optimized systematically. Under the optimal conditions, the recoveries of these compounds were in the range of 98.3-125.2%, the relative standard deviations ranged between 6.8 and 15.5%, and the limits of detection were in the range of 0.01-0.15 ng/mL. The simple, quick, and affordable method was successfully used in the analysis of human urinary monohydroxy polycyclic aromatic hydrocarbons in two different cities. The results indicated that the monohydroxy polycyclic aromatic hydrocarbons level in human urine can provide useful information for environmental exposure to polycyclic aromatic hydrocarbons. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Statistical evaluation of variables affecting occurrence of hydrocarbons in aquifers used for public supply, California

    Science.gov (United States)

    Landon, Matthew K.; Burton, Carmen A.; Davis, Tracy A.; Belitz, Kenneth; Johnson, Tyler D.

    2014-01-01

    The variables affecting the occurrence of hydrocarbons in aquifers used for public supply in California were assessed based on statistical evaluation of three large statewide datasets; gasoline oxygenates also were analyzed for comparison with hydrocarbons. Benzene is the most frequently detected (1.7%) compound among 17 hydrocarbons analyzed at generally low concentrations (median detected concentration 0.024 μg/l) in groundwater used for public supply in California; methyl tert-butyl ether (MTBE) is the most frequently detected (5.8%) compound among seven oxygenates analyzed (median detected concentration 0.1 μg/l). At aquifer depths used for public supply, hydrocarbons and MTBE rarely co-occur and are generally related to different variables; in shallower groundwater, co-occurrence is more frequent and there are similar relations to the density or proximity of potential sources. Benzene concentrations are most strongly correlated with reducing conditions, regardless of groundwater age and depth. Multiple lines of evidence indicate that benzene and other hydrocarbons detected in old, deep, and/or brackish groundwater result from geogenic sources of oil and gas. However, in recently recharged (since ~1950), generally shallower groundwater, higher concentrations and detection frequencies of benzene and hydrocarbons were associated with a greater proportion of commercial land use surrounding the well, likely reflecting effects of anthropogenic sources, particularly in combination with reducing conditions.

  16. Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons

    Science.gov (United States)

    Zecevic, Jovana; Vanbutsele, Gina; de Jong, Krijn P.; Martens, Johan A.

    2015-12-01

    The ability to control nanoscale features precisely is increasingly being exploited to develop and improve monofunctional catalysts. Striking effects might also be expected in the case of bifunctional catalysts, which are important in the hydrocracking of fossil and renewable hydrocarbon sources to provide high-quality diesel fuel. Such bifunctional hydrocracking catalysts contain metal sites and acid sites, and for more than 50 years the so-called intimacy criterion has dictated the maximum distance between the two types of site, beyond which catalytic activity decreases. A lack of synthesis and material-characterization methods with nanometre precision has long prevented in-depth exploration of the intimacy criterion, which has often been interpreted simply as ‘the closer the better’ for positioning metal and acid sites. Here we show for a bifunctional catalyst—comprising an intimate mixture of zeolite Y and alumina binder, and with platinum metal controllably deposited on either the zeolite or the binder—that closest proximity between metal and zeolite acid sites can be detrimental. Specifically, the selectivity when cracking large hydrocarbon feedstock molecules for high-quality diesel production is optimized with the catalyst that contains platinum on the binder, that is, with a nanoscale rather than closest intimacy of the metal and acid sites. Thus, cracking of the large and complex hydrocarbon molecules that are typically derived from alternative sources, such as gas-to-liquid technology, vegetable oil or algal oil, should benefit especially from bifunctional catalysts that avoid locating platinum on the zeolite (the traditionally assumed optimal location). More generally, we anticipate that the ability demonstrated here to spatially organize different active sites at the nanoscale will benefit the further development and optimization of the emerging generation of multifunctional catalysts.

  17. Investigation of Unanticipated Alkylation at the N(π) Position of a Histidyl Residue Under Mitsunobu Conditions and Synthesis of Orthogonally Protected Histidine Analogues

    Science.gov (United States)

    Qian, Wenjian; Liu, Fa; Burke, Terrence R.

    2011-01-01

    We had previously reported that Mitsunobu-based introduction of alkyl substituents onto the imidazole N(π)-position of a key histidine residue in phosphothreonine-containing peptides can impart high binding affinity against the polo box domain of polo like kinase 1. Our current paper investigates the mechanism leading to this N(π)-alkylation and provides synthetic methodologies that permit the facile synthesis of histidine N(π)-modified peptides. These agents represent new and potentially important tools for biological studies. PMID:21950469

  18. PILOT-SCALE SUBCRITICAL WATER REMEDIATION OF POLYCYCLIC AROMATIC HYDROCARBON- AND PESTICIDE-CONTAMINATED SOIL. (R825394)

    Science.gov (United States)

    Subcritical water (hot water under enough pressure to maintain the liquid state) was used to remove polycyclic aromatic hydrocarbons (PAHs) and pesticides from highly contaminated soils. Laboratory-scale (8 g of soil) experiments were used to determine conditions f...

  19. Pyrochlore-type catalysts for the reforming of hydrocarbon fuels

    Science.gov (United States)

    Berry, David A [Morgantown, WV; Shekhawat, Dushyant [Morgantown, WV; Haynes, Daniel [Morgantown, WV; Smith, Mark [Morgantown, WV; Spivey, James J [Baton Rouge, LA

    2012-03-13

    A method of catalytically reforming a reactant gas mixture using a pyrochlore catalyst material comprised of one or more pyrochlores having the composition A.sub.2-w-xA'.sub.wA''.sub.xB.sub.2-y-zB'.sub.yB''.sub.zO.sub.7-.DELTA.. Distribution of catalytically active metals throughout the structure at the B site creates an active and well dispersed metal locked into place in the crystal structure. This greatly reduces the metal sintering that typically occurs on supported catalysts used in reforming reactions, and reduces deactivation by sulfur and carbon. Further, oxygen mobility may also be enhanced by elemental exchange of promoters at sites in the pyrochlore. The pyrochlore catalyst material may be utilized in catalytic reforming reactions for the conversion of hydrocarbon fuels into synthesis gas (H.sub.2+CO) for fuel cells, among other uses.

  20. Controlled soft-template synthesis of ultrathin C@FeS nanosheets with high-Li-storage performance.

    Science.gov (United States)

    Xu, Chen; Zeng, Yi; Rui, Xianhong; Xiao, Ni; Zhu, Jixin; Zhang, Wenyu; Chen, Jing; Liu, Weiling; Tan, Huiteng; Hng, Huey Hoon; Yan, Qingyu

    2012-06-26

    We report a facile approach to prepare carbon-coated troilite FeS (C@FeS) nanosheets via surfactant-assisted solution-based synthesis. 1-Dodecanethiol is used as both the sulfur source and the surfactant, which may form different-shaped micelles to direct the growth of nanostructures. Under appropriate growth conditions, the iron and sulfur atoms react to form thin layers of FeS while the hydrocarbon tails of 1-dodecanethiol separate the thin FeS layers, which turn to carbon after annealing in Ar. Such an approach can be extended to grow C@FeS nanospheres and nanoplates by modifying the synthesis parameters. The C@FeS nanosheets display excellent Li storage properties with high specific capacities and stable charge/discharge cyclability, especially at fast charge/discharge rates.

  1. Effect of Ce2O3, La2O3 and ZnO additives on the oxygenates conversion into liquid hydrocarbons

    Science.gov (United States)

    Kachalov, V. V.; Lavrenov, V. A.; Lishchiner, I. I.; Malova, O. V.; Tarasov, A. L.; Zaichenko, V. M.

    2018-01-01

    A selective modifying effect of cerium, magnesium and zinc oxide additives on the activity and the selectivity of a pentasil group zeolite catalyst in the reaction of conversion of oxygenates (methanol and dimethyl ether) to liquid hydrocarbons was found. It was found that zinc oxide contributes to the stable operation of the zeolite catalyst in the conversion of oxygenates in the synthesis gas stream and leads to the production of gasolines with low durene content (not more than 6.1 wt%). The obtained results demonstrate the rationale for producing hydrocarbons from synthesis gas without the stage of oxygenate separation with their subsequent conversion to synthetic gasoline.

  2. A kinetically blocked 1,14:11,12-dibenzopentacene: A persistent triplet diradical of a non-Kekulé polycyclic benzenoid hydrocarbon

    KAUST Repository

    Li, Yuan; Huang, Kuo-Wei; Sun, Zhe; Webster, Richard D.; Zeng, Zebing; Zeng, Wangdong; Chi, Chunyan; Furukawa, Ko; Wu, Jishan

    2014-01-01

    The synthesis of high-spin polycyclic hydrocarbons is very challenging due to their extremely high reactivity. Herein, we report the synthesis and characterization of a kinetically blocked 1,14:11,12-dibenzopentacene, DP-Mes, which represents a rare persistent triplet diradical of a non-Kekulé polycyclic benzenoid hydrocarbon. In contrast to its structural isomer 1,14:7,8-dibenzopentacene (heptazethrene) with a singlet biradical ground state, DP-Mes is a triplet diradical as confirmed by ESR and ESTN measurements and density functional theory calculations. DP-Mes also displays intermolecular antiferromagnetic spin interactions in solution at low temperature. © 2014 the Partner Organisations.

  3. Adsorption of volatile hydrocarbons in iron polysulfide chalcogels

    KAUST Repository

    Ahmed, Ejaz

    2014-11-01

    We report the synthesis, characterization and possible applications of three new metal-chalcogenide aerogels KFe3Co3S 21, KFe3Y3S22 and KFe 3Eu3S22. Metal acetates react with the alkali metal polychalcogenides in formamide/water mixture to form extended polymeric frameworks that exhibit gelation phenomena. Amorphous aerogels obtained after supercritical CO2 drying have BET surface area from 461 to 573 m 2/g. Electron microscopy images and nitrogen adsorption measurements showed that pore sizes are found in micro (below 2 nm), meso (2-50 nm), and macro (above 50 nm) porous regions. These chalcogels possess optical bandgaps in the range of 1.55-2.70 eV. These aerogels have been studied for the adsorption of volatile hydrocarbons and gases. A much higher adsorption of toluene in comparison with cyclohexane and cyclopentane vapors have been observed. The adsorption capacities of the three volatile hydrocarbons are found in the following order: toluene > cyclohexane > cyclopentane. It has been observed that high selectivity in adsorption is feasible with high-surface-area metal chalcogenides. Similarly, almost an eight to ten times increase in adsorption selectivity towards CO2 over H2/CH4 was observed in the aerogels. Moreover, reversible ion-exchange properties for K+/Cs+ ions have also been demonstrated. © 2014 Elsevier Inc. All rights reserved.

  4. Catalytic autothermal reforming of hydrocarbon fuels for fuel cells

    International Nuclear Information System (INIS)

    Krumpelt, M.; Krause, T.; Kopasz, J.; Carter, D.; Ahmed, S.

    2002-01-01

    Fuel cell development has seen remarkable progress in the past decade because of an increasing need to improve energy efficiency as well as to address concerns about the environmental consequences of using fossil fuel for producing electricity and for propulsion of vehicles[1]. The lack of an infrastructure for producing and distributing H(sub 2) has led to a research effort to develop on-board fuel processing technology for reforming hydrocarbon fuels to generate H(sub 2)[2]. The primary focus is on reforming gasoline, because a production and distribution infrastructure for gasoline already exists to supply internal combustion engines[3]. Existing reforming technology for the production of H(sub 2) from hydrocarbon feedstocks used in large-scale manufacturing processes, such as ammonia synthesis, is cost prohibitive when scaled down to the size of the fuel processor required for transportation applications (50-80 kWe) nor is it designed to meet the varying power demands and frequent shutoffs and restarts that will be experienced during normal drive cycles. To meet the performance targets required of a fuel processor for transportation applications will require new reforming reactor technology developed to meet the volume, weight, cost, and operational characteristics for transportation applications and the development of new reforming catalysts that exhibit a higher activity and better thermal and mechanical stability than reforming catalysts currently used in the production of H(sub 2) for large-scale manufacturing processes

  5. Permeable bio-reactive barriers for hydrocarbon remediation in Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Mumford, K.A.; Stevens, G.W.; Gore, D.B. [Melbourne Univ., Victoria (Australia). Dept. of Chemical and Biomoleculuar Engineering, Particulate Fluids Processing Centre; Snape, I.; Rayner, J.L. [Australian Antarctic Div., Kingston, Tasmania (Australia); Gore, D.B. [Macquarie Univ., Sydney, NSW (Australia). Dept. of Environmental Science

    2010-07-01

    This study assessed the performance of a permeable bio-reactive barrier designed to treat contaminated water. The bio-reactive barrier was installed at a fuel spill site located in the Windmill Islands, Antarctica. A funnel and gate design was used to prevent contaminant migration beyond the barrier location as well as to ensure controlled nutrient delivery. The study also investigated the performance of the bio-reactive barrier in regions with freeze-thaw conditions. The 4-year project was also conducted to assess optimal conditions for enhancing the barrier's ability to degrade hydrocarbons.

  6. Photodynamic activity of polycyclic hydrocarbon

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, S S

    1963-01-01

    Exposure of Paramecium caudatum to suspensions of 3,4-benzopyrene, followed by long wave ultraviolet irradiation, results in cell death at times related, inter alia, to carcinogen concentration. Prior to death, the cells exhibit progressive immobilization and blebbing. This photodynamic response is a sensitized photo-oxidation, as it is oxygen-dependent and inhibited by anti-oxidants, such as butylated hydroxy anisole and ..cap alpha..-tocopherol. Protection is also afforded by other agents, including Tweens, tryptophan and certain fractions of plasma proteins. No evidence was found for the involvement of peroxides or sulfhydryl groups. The correlations between photodynamic toxicity and carcinogenicity in a large series of polycyclic hydrocarbons is under investigation. Assays of air extracts for photodynamic toxicity are in progress. Significant toxicity has been found in oxygenated besides aromatic fractions.

  7. Engineering isoprene synthesis in cyanobacteria.

    Science.gov (United States)

    Chaves, Julie E; Melis, Anastasios

    2018-04-24

    The renewable production of isoprene (Isp) hydrocarbons, to serve as fuel and synthetic chemistry feedstock, has attracted interest in the field recently. Isp (C 5 H 8 ) is naturally produced from sunlight, CO 2 and H 2 O photosynthetically in terrestrial plant chloroplasts via the terpenoid biosynthetic pathway and emitted in the atmosphere as a response to heat stress. Efforts to institute a high capacity continuous and renewable process have included heterologous expression of the Isp synthesis pathway in photosynthetic microorganisms. This review examines the premise and promise emanating from this relatively new research effort. Also examined are the metabolic engineering approaches applied in the quest of renewable Isp hydrocarbons production, the progress achieved so far, and barriers encountered along the way. © 2018 Federation of European Biochemical Societies.

  8. Synthesis of sulfates and sulfate derivates of selected metals under harsh conditions; Synthese von Sulfaten und Sulfatderivaten ausgewaehlter Metalle unter drastischen Bedingungen

    Energy Technology Data Exchange (ETDEWEB)

    Neuschulz, Kai

    2015-03-24

    In the course of this work sulfates und sulfate derivates of selected metals were synthesized under harsh conditions. The obtained compounds, in which the metal ions often reveal unusual oxidation states, have been characterized. Two mixed valent vanadium(IV/V) oxide sulfates (VO){sub 4}(SO{sub 4}){sub 5}, and (VO){sub 3}(SO{sub 4}){sub 4} and a vanadium(V) oxide sulfate (VO){sub 2}(SO{sub 4}){sub 3} as well as a complex anionic vanadium(V) oxide sulfate (NO)[VO(SO{sub 4}){sub 2}] have been obtained starting from vanadium or vanadium(V) oxide and oleum. All vanadium oxide sulfates reveal a similar thermal behavior. The decomposition residues are either pure vanadium(V) oxide or vanadium(IV) oxide or a mixture of both residues in different ratios. It was possible to synthesize binary tantalum(V) sulfate Ta{sub 2}(SO{sub 4}){sub 5} for the first time by reaction of pure sulfur(VI) oxide and tantalum(V) oxide at 150 C and to characterize. The complete absence of any oxide ligands at the metal center is of special interest in this compound. The reaction of tin(II) sulfate with oleum lead to the formation of tin(IV) sulfate Sn(SO{sub 4}){sub 2}. Using IR spectroscopy, the oxidation state +IV was confirmed for tin, due to the absence of OH-band in the IR-spectra, which would have meant the oxidation state +II. Using methanesulfonic acid as solvent and reactant on different synthetic routes the anhydrous methanesulfonates Mn(CH{sub 3}SO{sub 3}){sub 2}, and Fe(CH{sub 3}SO{sub 3}){sub 2}, Ga(CH{sub 3}SO{sub 3}){sub 3}, In(CH{sub 3}SO{sub 3}){sub 3}, and Tl(CH{sub 3}SO{sub 3}){sub 3}, as well as VO(CH{sub 3}SO{sub 3}){sub 2} and SnCl{sub 2}(CH{sub 3}SO{sub 3}){sub 2} were obtained. For the element thallium it was possible to obtain two mixed anionic compounds with the composition TlX{sub 2}(CH{sub 3}SO{sub 3}) (X = Cl or Br). All methanesulfonates show a similar thermal decomposition behavior forming the metal oxide as decomposition product. The thallium compounds represent

  9. Distribution of hydrocarbon-utilizing microorganisms and hydrocarbon biodegradation potentials in Alaskan continental shelf areas

    International Nuclear Information System (INIS)

    Roubal, G.; Atlas, R.M.

    1978-01-01

    Hydrocarbon-utilizing microogranisms were enumerated from Alaskan continental shelf areas by using plate counts and a new most-probable-number procedure based on mineralization of 14 C-labeled hydrocarbons. Hydrocarbon utilizers were ubiquitously distributed, with no significant overall concentration differences between sampling regions or between surface water and sediment samples. There were, however, significant seasonal differences in numbers of hydrocarbon utilizers. Distribution of hydrocarbon utilizers within Cook Inlet was positively correlated with occurrence of hydrocarbons in the environment. Hydrocarbon biodegradation potentials were measured by using 14 C-radiolabeled hydrocarbon-spiked crude oil. There was no significant correlation between numbers of hydrocarbon utilizers and hydrocarbon biodegradation potentials. The biodegradation potentials showed large seasonal variations in the Beaufort Sea, probably due to seasonal depletion of available nutrients. Non-nutrient-limited biodegradation potentials followed the order hexadecane > naphthalene >> pristane > benzanthracene. In Cook Inlet, biodegradation potentials for hexadecane and naphthalene were dependent on availability of inorganic nutrients. Biodegradation potentials for pristane and benzanthracene were restricted, probably by resistance to attack by available enzymes in the indigenous population

  10. Hydrocarbon pollution from marinas in estuarine sediments

    Science.gov (United States)

    Voudrias, Evangelos A.; Smith, Craig L.

    1986-03-01

    A measure of the impact of marinas on three Eastern Virginia estuarine creeks was obtained by a study of hydrocarbons in their sediments. Two of the creeks support considerable marine activity, including pleasure boat marinas, boat repair facilities, and commercial fishing operations. The third creek, which served as a control, is seldom used by boats, and is surrounded by marsh and woodland. Sediments from the creeks with marinas contained significantly higher levels of both aromatic and aliphatic hydrocarbons than did the control. Differences in the concentrations of certain oil-pollution indicators, such as the 17α,21β-hopane homologs and phytane, and low molecular weight aromatic hydrocarbons, are indicative of light petroleum fractions. Most of the aromatic hydrocarbons from all creeks, however, appear to have a pyrogenic origin. Although hydrocarbons from three probable origins (petroleum, pyrogenesis, and recent biosynthesis) were detected in all locations, the petroleum-derived and pyrogenic hydrocarbons were of only minor importance relative to the biogenic hydrocarbons in the control creek.

  11. On the deactivation of cobalt-based Fischer-Tropsch synthesis catalysts

    NARCIS (Netherlands)

    Moodley, D.J.

    2008-01-01

    The catalytic conversion of synthesis gas, derived from natural gas, into liquid hydrocarbon fuel via the Fischer–Tropsch synthesis (FTS), is currently receiving much attention due to the demand for environmentally friendly liquid fuel and the rising costs of crude oil. From an industrial

  12. Detection of irradiated meats by hydrocarbon method

    International Nuclear Information System (INIS)

    Goto, Michiko; Miyakawa, Hiroyuki; Fujinuma, Kenji; Ozawa, Hideki

    2005-01-01

    Meats, for example, lamb, razorback, wild duck and turkey were irradiated by gamma ray, and the amounts of hydrocarbons formed from fatty acids were measured. Since C 20:0 was found from wild duck and turkey. C 1-18:1 was recommended for internal standard. Good correlation was found between the amount of hydrocarbons and the doses of gamma irradiation. This study shows that such hydrocarbons induced after radiation procedure as C 1,7-16:2 , C 8-17:1 , C 1-14:1 , and C 15:0 may make it possible to detect irradiated lamb, razorback, wild duck and turkey. (author)

  13. Process for recovery of liquid hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Millar, J.F.; Cockshott, J.E.

    1978-04-11

    Methane is recovered as a gas for discharge to a pipeline from a gas stream containing methane and heavier hydrocarbons, principally ethane and propane. Separation is accomplished by condensing the heavier hydrocarbons and distilling the methane therefrom. A liquid product (LPG) comprising the heavier hydrocarbons is subsequently recovered and transferred to storage. Prior to being discharged to a pipeline, the recovered methane gas is compressed and in undergoing compression the gas is heated. The heat content of the gas is employed to reboil the refrigerant in an absorption refrigeration unit. The refrigeration unit is used to cool the LPG prior to its storage.

  14. Method of recovering hydrocarbons from oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Walton, D.K.; Slusser, M.S.

    1970-11-24

    A method is described for recovering hydrocarbons from an oil-shale formation by in situ retorting. A well penetrating the formation is heated and gas is injected until a pressure buildup within the well is reached, due to a decrease in the conductivity of naturally occurring fissures within the formation. The well is then vented, in order to produce spalling of the walls. This results in the formation of an enlarged cavity containing rubberized oil shale. A hot gas then is passed through the rubberized oil shale in order to retort hydrocarbons and these hydrocarbons are recovered from the well. (11 claims)

  15. The offshore hydrocarbon releases (HCR) database

    International Nuclear Information System (INIS)

    Bruce, R.A.P.

    1995-01-01

    Following Cullen Recommendation 39 which states that: ''The regulatory body should be responsible for maintaining a database with regard to hydrocarbon leaks, spills, and ignitions in the Industry and for the benefit of Industry'', HSE Offshore Safety Division (HSE-OSD) has now been operating the Hydrocarbon Releases (HCR) Database for approximately 3 years. This paper deals with the reporting of Offshore Hydrocarbon Releases, the setting up of the HCR Database, the collection of associated equipment population data, and the main features and benefits of the database, including discussion on the latest output information. (author)

  16. Waste Plastic Converting into Hydrocarbon Fuel Materials

    Energy Technology Data Exchange (ETDEWEB)

    Sarker, Moinuddin; Mamunor Rashid, Mohammad; Molla, Mohammad

    2010-09-15

    The increased demand and high prices for energy sources are driving efforts to convert organic compounds into useful hydrocarbon fuels. Although much of this work has focused on biomass, there are strong benefits to deriving fuels from waste plastic material. Natural State Research Inc. (NSR) has invented a simple and economically viable process to decompose the hydrocarbon polymers of waste plastic into the shorter chain hydrocarbon of liquid fuel (patent pending). The method and principle of the production / process will be discussed. Initial tests with several widely used polymers indicate a high potential for commercialization.

  17. Reactivity of organic compounds in catalytic synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Minachev, Kh M; Bragin, O V

    1978-01-01

    A comprehensive review of 1976 Soviet research on catalysis delivered to the 1977 annual session of the USSR Academy of Science Council on Catalysis (Baku 6/16-20/77) covers hydrocarbon reactions, including hydrogenation and hydrogenolysis, dehydrogenation, olefin dimerization and disproportionation, and cyclization and dehydrocyclization (e.g., piperylene cyclization and ethylene cyclotrimerization); catalytic and physicochemical properties of zeolites, including cracking, dehydrogenation, and hydroisomerization catalytic syntheses and conversion of heterocyclic and functional hydrocarbon derivatives, including partial and total oxidation (e.g., of o-xylene to phthalic anhydride); syntheses of thiophenes from alkanes and hydrogen sulfide over certain dehydrogenation catalysts; catalytic syntheses involving carbon oxides ( e.g., the development of a new heterogeneous catalyst for hydroformylation of olefins), and of Co-MgO zeolitic catalysts for synthesis of aliphatic hydrocarbons from carbon dioxide and hydrogen, and fabrication of high-viscosity lubricating oils over bifunctional aluminosilicate catalysts.

  18. Solid state synthesis and sintering of monazite-type ceramics: application to minor actinides conditioning; Synthese par voie solide et frittage de ceramiques a structure monazite. Application au conditionnement des actinides mineurs

    Energy Technology Data Exchange (ETDEWEB)

    Bregiroux, D

    2005-11-15

    In the framework of the French law of 1991 concerning the nuclear waste management, several studies are undertaken to develop specific crystalline conditioning matrices. Monazite, a rare earth (TR{sup 3+}) orthophosphate with a general formula TR{sup 3+}PO{sub 4}, is a natural mineral containing significant amount of thorium and uranium. Monazite has been proposed as a host matrix for the minor actinides (Np, Am and Cm) specific conditioning, thanks to its high resistance to self irradiation and its low solubility. Its is now of prime importance to check the conservation of these properties on synthesized materials, which implies to master all the stages of the elaboration process, from the powder synthesis to the sintering of controlled microstructure pellets. This work can be divided into two main parts: The first part deals with the synthesis by high temperature solid state route of TR{sup 3+}PO{sub 4} powders (with TR{sup 3+} = La{sup 3+} to Gd{sup 3+}, Pu{sup 3+} and Am{sup 3+}). The chemical reactions occurring during the firing of starting reagents are described in the case of monazite with only one or several cations. From these results, a protocol of synthesis is described. The incorporation of tetravalent cations (Ce{sup 4+}, U{sup 4+}, Pu{sup 4+}) in the monazite structure was also studied. The second part of the present work deals with the elaboration of controlled density and microstructure monazite pellets and their related mechanical and thermal properties. The study of crushing and sintering is presented. For the first time, experimental results are confronted with theoretical models in order to deduce the densification and grain growth mechanisms. By the comprehension of the various physicochemical phenomena occurring during the various stages of the monazite pellets elaboration process (powder synthesis, crushing, sintering...), this work allowed the development of a protocol of elaboration of controlled microstructure monazite TR{sup 3+}PO{sub 4

  19. Effect of substrate temperature on the structure of amorphous oxygenated hydrocarbon films grown with a pulsed supersonic methane plasma flow

    Energy Technology Data Exchange (ETDEWEB)

    Fedoseeva, Yu. V., E-mail: fedoseeva@niic.nsc.ru [Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Pozdnyakov, G.A. [Khristianovich Institute of Theoretical and Applied Mechanics, SB RAS, Novosibirsk 630090 (Russian Federation); Okotrub, A.V.; Kanygin, M.A. [Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Nastaushev, Yu. V. [Rzhanov Institute of Semiconductor Physics SB RAS, Novosibirsk 630090 (Russian Federation); Vilkov, O.Y. [St. Petersburg State University, St. Petersburg 198504 (Russian Federation); Bulusheva, L.G. [Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation)

    2016-11-01

    Highlights: • A deposition of supersonic methane plasma flow on silicon substrate produces amorphous oxygenated hydrocarbon (CO{sub x}H{sub y}) film. • The thickness, composition, and wettability of the film depend on the substrate temperature. • A rise of the substrate temperature from 500 to 700 °C promotes the sp{sup 3}-hybridization carbon formation. - Abstract: Since amorphous oxygenated hydrocarbon (CO{sub x}H{sub y}) films are promising engineering materials a study of the structure and composition of the films depending on the conditions of synthesis is important for controlling of their physicochemical properties. Here, we used the methods of scanning and transmission electron microscopy, X-ray photoelectron, near-edge X-ray absorption fine structure, Fourier transform infrared and Raman spectroscopy to reveal changes in the chemical connectivity of CO{sub x}H{sub y} films grown on silicon substrates heated to 300, 500, and 700 °C using a supersonic flow of methane plasma. It was found that the CO{sub x}H{sub y} films, deposited at 300 and 500 °C, were mainly composed of the sp{sup 2}-hybridized carbon areas with various oxygen species. A rise of the substrate temperature caused an increase of the portion of tetrahedral carbon atoms as well as carboxyl and hydroxyl groups. With growth of the substrate temperature, the film thickness reduced monotonically from 400 to 180 nm, while the film adhesion improved substantially. The films, deposited at lower temperatures, showed high hydrophilicity due to porosity and presence of oxygenated groups both at the surface and in the bulk.

  20. Factors affecting hydrocarbon removal by air stripping

    International Nuclear Information System (INIS)

    McFarland, W.E.

    1992-01-01

    This paper includes an overview of the theory of air stripping design considerations and the factors affecting stripper performance. Effects of temperature, contaminant characteristics, stripping tower geometry and air/water ratios on removal performance are discussed. The discussion includes treatment of groundwater contaminated with petroleum hydrocarbons and chlorinated solvents such as TCE and PCE. Control of VOC emissions from air strippers has become a major concern in recent years, due to more stringent restrictions on air quality in many areas. This paper includes an overview of available technology to control air emissions (including activated carbon adsorption, catalytic oxidation and steam stripping) and the effects of air emission control on overall efficiency of the treatment process. The paper includes an overview of the relative performance of various packing materials for air strippers and explains the relative advantages and disadvantages of comparative packing materials. Field conditions affecting selection of packing materials are also discussed. Practical guidelines for the design of air stripping systems are presented, as well as actual case studies of full-scale air stripping projects