WorldWideScience

Sample records for hydrocarbon reservoir formation

  1. Optimizing and Quantifying CO2 Storage Resource in Saline Formations and Hydrocarbon Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Bosshart, Nicholas W. [Univ. of North Dakota, Grand Folks, ND (United States). Energy & Environmental Research Center; Ayash, Scott C. [Univ. of North Dakota, Grand Folks, ND (United States). Energy & Environmental Research Center; Azzolina, Nicholas A. [Univ. of North Dakota, Grand Folks, ND (United States). Energy & Environmental Research Center; Peck, Wesley D. [Univ. of North Dakota, Grand Folks, ND (United States). Energy & Environmental Research Center; Gorecki, Charles D. [Univ. of North Dakota, Grand Folks, ND (United States). Energy & Environmental Research Center; Ge, Jun [Univ. of North Dakota, Grand Folks, ND (United States). Energy & Environmental Research Center; Jiang, Tao [Univ. of North Dakota, Grand Folks, ND (United States). Energy & Environmental Research Center; Burton-Kelly, Matthew E. [Univ. of North Dakota, Grand Folks, ND (United States). Energy & Environmental Research Center; Anderson, Parker W. [Univ. of North Dakota, Grand Folks, ND (United States). Energy & Environmental Research Center; Dotzenrod, Neil W. [Univ. of North Dakota, Grand Folks, ND (United States). Energy & Environmental Research Center; Gorz, Andrew J. [Univ. of North Dakota, Grand Folks, ND (United States). Energy & Environmental Research Center

    2017-06-30

    In an effort to reduce carbon dioxide (CO2) emissions from large stationary sources, carbon capture and storage (CCS) is being investigated as one approach. This work assesses CO2 storage resource estimation methods for deep saline formations (DSFs) and hydrocarbon reservoirs undergoing CO2 enhanced oil recovery (EOR). Project activities were conducted using geologic modeling and simulation to investigate CO2 storage efficiency. CO2 storage rates and efficiencies in DSFs classified by interpreted depositional environment were evaluated at the regional scale over a 100-year time frame. A focus was placed on developing results applicable to future widespread commercial-scale CO2 storage operations in which an array of injection wells may be used to optimize storage in saline formations. The results of this work suggest future investigations of prospective storage resource in closed or semiclosed formations need not have a detailed understanding of the depositional environment of the reservoir to generate meaningful estimates. However, the results of this work also illustrate the relative importance of depositional environment, formation depth, structural geometry, and boundary conditions on the rate of CO2 storage in these types of systems. CO2 EOR occupies an important place in the realm of geologic storage of CO2, as it is likely to be the primary means of geologic CO2 storage during the early stages of commercial implementation, given the lack of a national policy and the viability of the current business case. This work estimates CO2 storage efficiency factors using a unique industry database of CO2 EOR sites and 18 different reservoir simulation models capturing fluvial clastic and shallow shelf carbonate depositional environments for reservoir depths of 1219 and 2438 meters (4000 and 8000 feet) and 7.6-, 20-, and 64-meter (25-, 66

  2. Reservoir petrophysics and hydrocarbon occurrences of the Bahariya Formation, Alamein-Yidma fields, Western Desert of Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Aziz Younes, Mohamed [Alexandria Univ. (Egypt). Geology Dept.

    2012-12-15

    The Bahariya Formation of Cenomanian age is considered to be one of the main oil and gas accumulations in most of the fields of the Western Desert basins. The lithostratigraphic succession of the Bahariya Formation is classified into two main sand units (Unit I and Unit III) separated by shalesiltstone (Unit II). The sandstone of unit-I and III is characterized by being highly enriched in shale content especially glauconite in all wells of the Alamein Field, that has an obvious negative effect on the porosity and oil saturation, where the glauconite increases the grain density of sandstone reservoirs from 2.65 g/cm{sup 3} up to 2.71 g/cm{sup 3}. The well logging data and petrophysical characteristics conducted on Alamein well-28 involving analysis of 30 core samples, were used to evaluate the reservoir characterization and hydrocarbon potentialities. The petrophysical parameters indicate that the primary porosity values are between 8.7 and 29.1%. Decreasing porosity is related to the increase of shale content from 9 to 13%, which occurs as a dispersed habitat. The water saturation changes from 43 to 80%, while the hydrocarbon saturation ranges from 12.1 to 37%. Promising hydrocarbon accumulations are displayed by the sandstone of unit-III due to increased hydrocarbon saturation and effective porosity, thus reflecting the high quality reservoir of this unit. The irreducible and movable hydrocarbon distribution shows a general increase at the eastern and western flanks of the faulted anticline in the Alamein-Yidma fields. The biomarker characteristics and stable carbonisotopic composition of the Bahariya crude oils recovered from the Alamein Field show no obvious variations among them. These oils are paraffinic, containing little branched or cyclic materials waxy n-alkanes(C{sub 25}-C{sub 31}) and characterized by high API gravity, low sulfur content, oleanane index < 2% and moderately high pristane/phytaneratio > 1 and CPI > 1 and the canonical variable parameter is

  3. Reservoir attributes of a hydrocarbon-prone sandstone complex: case of the Pab Formation (Late Cretaceous) of Southwest Pakistan

    DEFF Research Database (Denmark)

    Umar, Muhammad; Khan, Abdul Salam; Kelling, Gilbert

    2016-01-01

    Links between the architectural elements of major sand bodies and reservoir attributes have been explored in a field study of the hydrocarbon-yielding Late Cretaceous Pab Formation of southwest Pakistan. The lithofacies and facies associations represented in the Pab Formation are the main...... determinants of its reservoir properties. Thus, thick, vertically connected and laterally continuous sand packets have moderate-to-high mean porosities (10–13 %) in fluviodeltaic, shoreface, shelf delta, submarine channel, and fan-lobe facies associations while deeper shelf and basin floor sand bodies yield...... significantly lower porosities (4–6 %). Overall, in the Pab arenites, porosity values increase with increasing grain size and better sorting. The varying sand-shale ratios encountered in different sectors of the Pab outcrop are also petrophysically important: Sequences displaying high ratios yield higher bulk...

  4. The genetic source and timing of hydrocarbon formation in gas hydrate reservoirs in Green Canyon, Block GC955

    Science.gov (United States)

    Moore, M. T.; Darrah, T.; Cook, A.; Sawyer, D.; Phillips, S.; Whyte, C. J.; Lary, B. A.

    2017-12-01

    Although large volumes of gas hydrates are known to exist along continental slopes and below permafrost, their role in the energy sector and the global carbon cycle remains uncertain. Investigations regarding the genetic source(s) (i.e., biogenic, thermogenic, mixed sources of hydrocarbon gases), the location of hydrocarbon generation, (whether hydrocarbons formed within the current reservoir formations or underwent migration), rates of clathrate formation, and the timing of natural gas formation/accumulation within clathrates are vital to evaluate economic potential and enhance our understanding of geologic processes. Previous studies addressed some of these questions through analysis of conventional hydrocarbon molecular (C1/C2+) and stable isotopic (e.g., δ13C-CH4, δ2H-CH4, δ13C-CO2) composition of gases, water chemistry and isotopes (e.g., major and trace elements, δ2H-H2O, δ18O-H2O), and dissolved inorganic carbon (δ13C-DIC) of natural gas hydrate systems to determine proportions of biogenic and thermogenic gas. However, the effects from contributions of mixing, transport/migration, methanogenesis, and oxidation in the subsurface can complicate the first-order application of these techniques. Because the original noble gas composition of a fluid is preserved independent of microbial activity, chemical reactions, or changes in oxygen fugacity, the integration of noble gas data can provide both a geochemical fingerprint for sources of fluids and an additional insight as to the uncertainty between effects of mixing versus post-genetic modification. Here, we integrate inert noble gases (He, Ne, Ar, and associated isotopes) with these conventional approaches to better constrain the source of gas hydrate formation and the residence time of fluids (porewaters and natural gases) using radiogenic 4He ingrowth techniques in cores from two boreholes collected as part of the University of Texas led UT-GOM2-01 drilling project. Pressurized cores were extracted from

  5. Lithofacies Architecturing and Hydrocarbon Reservoir Potential of Lumshiwal Formation: Surghar Range, Trans-Indus Ranges, North Pakistan

    Directory of Open Access Journals (Sweden)

    Iftikhar Alam

    2015-12-01

    directed Paleo-current system prevailed during deposition of Lumshiwal Formation. Diagenetic and tectonically induced fractures make the formation exceedingly porous and permeable as suitable reservoir horizon for the accumulation of hydrocarbon in the Trans-Indus ranges. The same formation has already been proven as potential reservoir horizon for hydrocarbon in the Kohat Plateau of northwest Pakistan. Secondly, the formation is dominantly comprised of silica/quartz sandstone (quartzarenite which can be used as silica sand, one of the essential raw materials for glass industries. The formation is also comprised of local coal seams which can be mined for production of coal in the region.

  6. Geophysical monitoring in a hydrocarbon reservoir

    Science.gov (United States)

    Caffagni, Enrico; Bokelmann, Goetz

    2016-04-01

    Extraction of hydrocarbons from reservoirs demands ever-increasing technological effort, and there is need for geophysical monitoring to better understand phenomena occurring within the reservoir. Significant deformation processes happen when man-made stimulation is performed, in combination with effects deriving from the existing natural conditions such as stress regime in situ or pre-existing fracturing. Keeping track of such changes in the reservoir is important, on one hand for improving recovery of hydrocarbons, and on the other hand to assure a safe and proper mode of operation. Monitoring becomes particularly important when hydraulic-fracturing (HF) is used, especially in the form of the much-discussed "fracking". HF is a sophisticated technique that is widely applied in low-porosity geological formations to enhance the production of natural hydrocarbons. In principle, similar HF techniques have been applied in Europe for a long time in conventional reservoirs, and they will probably be intensified in the near future; this suggests an increasing demand in technological development, also for updating and adapting the existing monitoring techniques in applied geophysics. We review currently available geophysical techniques for reservoir monitoring, which appear in the different fields of analysis in reservoirs. First, the properties of the hydrocarbon reservoir are identified; here we consider geophysical monitoring exclusively. The second step is to define the quantities that can be monitored, associated to the properties. We then describe the geophysical monitoring techniques including the oldest ones, namely those in practical usage from 40-50 years ago, and the most recent developments in technology, within distinct groups, according to the application field of analysis in reservoir. This work is performed as part of the FracRisk consortium (www.fracrisk.eu); this project, funded by the Horizon2020 research programme, aims at helping minimize the

  7. Geochemical characteristics of natural gas in the hydrocarbon accumulation history, and its difference among gas reservoirs in the Upper Triassic formation of Sichuan Basin, China

    Directory of Open Access Journals (Sweden)

    Peng Wang

    2016-08-01

    Full Text Available The analysis of hydrocarbon generation, trap formation, inclusion homogenization temperature, authigenic illite dating, and ESR dating were used to understand the history of hydrocarbon accumulation and its difference among gas reservoirs in the Upper Triassic formation of Sichuan Basin. The results show the hydrocarbon accumulation mainly occurred during the Jurassic and Cretaceous periods; they could also be classified into three stages: (1 early hydrocarbon generation accumulation stage, (2 mass hydrocarbon generation accumulation stage before the Himalayan Epoch, (3 and parts of hydrocarbon adjustment and re-accumulation during Himalayan Epoch. The second stage is more important than the other two. The Hydrocarbon accumulation histories are obviously dissimilar in different regions. In western Sichuan Basin, the gas accumulation began at the deposition period of member 5 of Xujiahe Formation, and mass accumulation occurred during the early Middle Jurassic up to the end of the Late Cretaceous. In central Sichuan Basin, the accumulation began at the early Late Jurassic, and the mass accumulation occurred from the middle Early Cretaceous till the end of the Late Cretaceous. In southern Sichuan Basin, the accumulation began at the middle Late Jurassic, and the mass accumulation occurred from the middle of the Late Cretaceous to the end of the Later Cretaceous. The accumulation history of the western Sichuan Basin is the earliest, and the southern Sichuan Basin is the latest. This paper will help to understand the accumulation process, accumulation mechanism, and gas reservoir distribution of the Triassic gas reservoirs in the Sichuan Basin better. Meanwhile, it is found that the authigenic illite in the Upper Triassic formation of Sichuan Basin origin of deep-burial and its dating is a record of the later accumulation. This suggests that the illite dating needs to fully consider illite origin; otherwise the dating results may not accurately

  8. Adsorption of hydrocarbons in chalk reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Madsen, L.

    1996-12-31

    The present work is a study on the wettability of hydrocarbon bearing chalk reservoirs. Wettability is a major factor that influences flow, location and distribution of oil and water in the reservoir. The wettability of the hydrocarbon reservoirs depends on how and to what extent the organic compounds are adsorbed onto the surfaces of calcite, quartz and clay. Organic compounds such as carboxylic acids are found in formation waters from various hydrocarbon reservoirs and in crude oils. In the present investigation the wetting behaviour of chalk is studied by the adsorption of the carboxylic acids onto synthetic calcite, kaolinite, quartz, {alpha}-alumina, and chalk dispersed in an aqueous phase and an organic phase. In the aqueous phase the results clearly demonstrate the differences between the adsorption behaviour of benzoic acid and hexanoic acid onto the surfaces of oxide minerals and carbonates. With NaCl concentration of 0.1 M and with pH {approx_equal} 6 the maximum adsorption of benzoic acid decreases in the order: quartz, {alpha}-alumina, kaolinite. For synthetic calcite and chalk no detectable adsorption was obtaind. In the organic phase the order is reversed. The maximum adsorption of benzoic acid onto the different surfaces decreases in the order: synthetic calcite, chalk, kaolinite and quartz. Also a marked difference in adsorption behaviour between probes with different functional groups onto synthetic calcite from organic phase is observed. The maximum adsorption decreases in the order: benzoic acid, benzyl alcohol and benzylamine. (au) 54 refs.

  9. Formation of organic solid phases in hydrocarbon reservoir fluids. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, S.I.; Lindeloff, N.; Stenby, E.H.

    1998-12-31

    The occurrence of solid phases during oil recovery is a potential problem. The present work has mainly been concerned with wax formation due to cooling of oils with a large paraffin content. 8 oils have been included in this project, although only a few of these have till now been subject to all the experimental techniques applied. The oils and wax fractions from these have been characterized using techniques such as GC-MS and Ftir. The goal has in part been to get a detailed description of the oil composition for use in model evaluation and development and in part to get a fundamental understanding of waxy oil properties and behaviour. A high pressure (200 bar) equipment has been developed for automatic detection of wax appearance using a filtration technique and laser light turbidimetry. The latter was found to be far superior to the filtration. The filtration was used to sample the incipient solid phase for characterization. However entrapment of liquid in the filters currently used have hampered this part. A number of model systems and one gas condensate have been investigated. The GC-MS procedure was found only to been able to detect molecules up to n-C45 and the group type analysis was not accurate enough for modelling purposes. Using Ftir it was obvious that incipient phases may contain very complex molecules (asphaltenes) which are not captured by GC-MS especially when fractionation is done using the acetone precipitation at elevated temperature. The latter fractionation procedure has been investigated thoroughly as a tool for understanding wax distribution etc. Within thermodynamic modelling a delta lattice parameter model has been developed which incorporates the non-ideality of the solid phases into the calculation of SLE. The non-ideality is estimated from pure component properties. A new algorithm for phase equilibria involving gas-liquid-solid has been developed. Currently both the model work and the experimental works are continued. (au)

  10. Direct hydrocarbon exploration and gas reservoir development technology

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Young Hoon; Oh, Jae Ho; Jeong, Tae Jin [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of); and others

    1995-12-01

    In order to enhance the capability of petroleum exploration and development techniques, three year project (1994 - 1997) was initiated on the research of direct hydrocarbon exploration and gas reservoir development. This project consists of four sub-projects. (1) Oil(Gas) - source rock correlation technique: The overview of bio-marker parameters which are applicable to hydrocarbon exploration has been illustrated. Experimental analysis of saturated hydrocarbon and bio-markers of the Pohang E and F core samples has been carried out. (2) Study on surface geochemistry and microbiology for hydrocarbon exploration: the test results of the experimental device for extraction of dissolved gases from water show that the device can be utilized for the gas geochemistry of water. (3) Development of gas and gas condensate reservoirs: There are two types of reservoir characterization. For the reservoir formation characterization, calculation of conditional simulation was compared with that of unconditional simulation. In the reservoir fluid characterization, phase behavior calculations revealed that the component grouping is more important than the increase of number of components. (4) Numerical modeling of seismic wave propagation and full waveform inversion: Three individual sections are presented. The first one is devoted to the inversion theory in general sense. The second and the third sections deal with the frequency domain pseudo waveform inversion of seismic reflection data and refraction data respectively. (author). 180 refs., 91 figs., 60 tabs.

  11. Enhanced characterization of reservoir hydrocarbon components using electromagnetic data attributes

    KAUST Repository

    Katterbauer, Klemens

    2015-12-23

    Advances in electromagnetic imaging techniques have led to the growing utilization of this technology for reservoir monitoring and exploration. These exploit the strong conductivity contrast between the hydrocarbon and water phases and have been used for mapping water front propagation in hydrocarbon reservoirs and enhancing the characterization of the reservoir formation. The conventional approach for the integration of electromagnetic data is to invert the data for saturation properties and then subsequently use the inverted properties as constraints in the history matching process. The non-uniqueness and measurement errors may however make this electromagnetic inversion problem strongly ill-posed, leading to potentially inaccurate saturation profiles. Another limitation of this approach is the uncertainty of Archie\\'s parameters in relating rock conductivity to water saturation, which may vary in the reservoir and are generally poorly known. We present an Ensemble Kalman Filter framework for efficiently integrating electromagnetic data into the history matching process and for simultaneously estimating the Archie\\'s parameters and the variance of the observation error of the electromagnetic data. We apply the proposed framework to a compositional reservoir model. We aim at assessing the relevance of EM data for estimating the different hydrocarbon components of the reservoir. The experimental results demonstrate that the individual hydrocarbon components are generally well matched, with nitrogen exhibiting the strongest improvement. The estimated observation error standard deviations are also within expected levels (between 5 and 10%), significantly contributing to the robustness of the proposed EM history matching framework. Archie\\'s parameter estimates approximate well the reference profile and assist in the accurate description of the electrical conductivity properties of the reservoir formation, hence leading to estimation accuracy improvements of around

  12. Enhanced characterization of reservoir hydrocarbon components using electromagnetic data attributes

    KAUST Repository

    Katterbauer, Klemens; Arango, Santiago; Sun, Shuyu; Hoteit, Ibrahim

    2015-01-01

    Advances in electromagnetic imaging techniques have led to the growing utilization of this technology for reservoir monitoring and exploration. These exploit the strong conductivity contrast between the hydrocarbon and water phases and have been used for mapping water front propagation in hydrocarbon reservoirs and enhancing the characterization of the reservoir formation. The conventional approach for the integration of electromagnetic data is to invert the data for saturation properties and then subsequently use the inverted properties as constraints in the history matching process. The non-uniqueness and measurement errors may however make this electromagnetic inversion problem strongly ill-posed, leading to potentially inaccurate saturation profiles. Another limitation of this approach is the uncertainty of Archie's parameters in relating rock conductivity to water saturation, which may vary in the reservoir and are generally poorly known. We present an Ensemble Kalman Filter framework for efficiently integrating electromagnetic data into the history matching process and for simultaneously estimating the Archie's parameters and the variance of the observation error of the electromagnetic data. We apply the proposed framework to a compositional reservoir model. We aim at assessing the relevance of EM data for estimating the different hydrocarbon components of the reservoir. The experimental results demonstrate that the individual hydrocarbon components are generally well matched, with nitrogen exhibiting the strongest improvement. The estimated observation error standard deviations are also within expected levels (between 5 and 10%), significantly contributing to the robustness of the proposed EM history matching framework. Archie's parameter estimates approximate well the reference profile and assist in the accurate description of the electrical conductivity properties of the reservoir formation, hence leading to estimation accuracy improvements of around 15%.

  13. Imaging fluid/solid interactions in hydrocarbon reservoir rocks.

    Science.gov (United States)

    Uwins, P J; Baker, J C; Mackinnon, I D

    1993-08-01

    The environmental scanning electron microscope (ESEM) has been used to image liquid hydrocarbons in sandstones and oil shales. Additionally, the fluid sensitivity of selected clay minerals in hydrocarbon reservoirs was assessed via three case studies: HCl acid sensitivity of authigenic chlorite in sandstone reservoirs, freshwater sensitivity of authigenic illite/smectite in sandstone reservoirs, and bleach sensitivity of a volcanic reservoir containing abundant secondary chlorite/corrensite. The results showed the suitability of using ESEM for imaging liquid hydrocarbon films in hydrocarbon reservoirs and the importance of simulating in situ fluid-rock interactions for hydrocarbon production programmes. In each case, results of the ESEM studies greatly enhanced prediction of reservoir/borehole reactions and, in some cases, contradicted conventional wisdom regarding the outcome of potential engineering solutions.

  14. Noble gas and hydrocarbon tracers in multiphase unconventional hydrocarbon systems: Toward integrated advanced reservoir simulators

    Science.gov (United States)

    Darrah, T.; Moortgat, J.; Poreda, R. J.; Muehlenbachs, K.; Whyte, C. J.

    2015-12-01

    Although hydrocarbon production from unconventional energy resources has increased dramatically in the last decade, total unconventional oil and gas recovery from black shales is still less than 25% and 9% of the totals in place, respectively. Further, the majority of increased hydrocarbon production results from increasing the lengths of laterals, the number of hydraulic fracturing stages, and the volume of consumptive water usage. These strategies all reduce the economic efficiency of hydrocarbon extraction. The poor recovery statistics result from an insufficient understanding of some of the key physical processes in complex, organic-rich, low porosity formations (e.g., phase behavior, fluid-rock interactions, and flow mechanisms at nano-scale confinement and the role of natural fractures and faults as conduits for flow). Noble gases and other hydrocarbon tracers are capably of recording subsurface fluid-rock interactions on a variety of geological scales (micro-, meso-, to macro-scale) and provide analogs for the movement of hydrocarbons in the subsurface. As such geochemical data enrich the input for the numerical modeling of multi-phase (e.g., oil, gas, and brine) fluid flow in highly heterogeneous, low permeability formations Herein we will present a combination of noble gas (He, Ne, Ar, Kr, and Xe abundances and isotope ratios) and molecular and isotopic hydrocarbon data from a geographically and geologically diverse set of unconventional hydrocarbon reservoirs in North America. Specifically, we will include data from the Marcellus, Utica, Barnett, Eagle Ford, formations and the Illinois basin. Our presentation will include geochemical and geological interpretation and our perspective on the first steps toward building an advanced reservoir simulator for tracer transport in multicomponent multiphase compositional flow (presented separately, in Moortgat et al., 2015).

  15. Condensation Mechanism of Hydrocarbon Field Formation.

    Science.gov (United States)

    Batalin, Oleg; Vafina, Nailya

    2017-08-31

    Petroleum geology explains how hydrocarbon fluids are generated, but there is a lack of understanding regarding how oil is expelled from source rocks and migrates to a reservoir. To clarify the process, the multi-layer Urengoy field in Western Siberia was investigated. Based on this example, we have identified an alternative mechanism of hydrocarbon field formation, in which oil and gas accumulations result from the phase separation of an upward hydrocarbon flow. There is evidence that the flow is generated by the gases released by secondary kerogen destruction. This study demonstrates that oil components are carried by the gas flow and that when the flow reaches a low-pressure zone, it condenses into a liquid with real oil properties. The transportation of oil components in the gas flow provides a natural explanation for the unresolved issues of petroleum geology concerning the migration process. The condensation mechanism can be considered as the main process of oil field formation.

  16. Reservoir characterization of the Smackover Formation in southwest Alabama

    Energy Technology Data Exchange (ETDEWEB)

    Kopaska-Merkel, D.C.; Hall, D.R.; Mann, S.D.; Tew, B.H.

    1993-02-01

    The Upper Jurassic Smackover Formation is found in an arcuate belt in the subsurface from south Texas to panhandle Florida. The Smackover is the most prolific hydrocarbon-producing formation in Alabama and is an important hydrocarbon reservoir from Florida to Texas. In this report Smackover hydrocarbon reservoirs in southwest Alabama are described. Also, the nine enhanced- and improved-recovery projects that have been undertaken in the Smackover of Alabama are evaluated. The report concludes with recommendations about potential future enhanced- and improved-recovery projects in Smackover reservoirs in Alabama and an estimate of the potential volume of liquid hydrocarbons recoverable by enhanced- and improved-recovery methods from the Smackover of Alabama.

  17. Phenomenology of tremor-like signals observed over hydrocarbon reservoirs

    NARCIS (Netherlands)

    Dangel, S.; Schaepman, M.E.; Stoll, E.P.; Carniel, R.; Barzandji, O.; Rode, E.D.; Singer, J.M.

    2003-01-01

    We have observed narrow-band, low-frequency (1.5-4 Hz, amplitude 0.01-10 mum/s) tremor signals on the surface over hydrocarbon reservoirs (oil, gas and water multiphase fluid systems in porous media) at currently 15 sites worldwide. These 'hydrocarbon tremors' possess remarkably similar spectral and

  18. Potential Development of Hydrocarbon in Basement Reservoirs In Indonesia

    Directory of Open Access Journals (Sweden)

    D. Sunarjanto

    2014-07-01

    Full Text Available DOI: 10.17014/ijog.v8i3.165Basement rocks, in particular igneous and metamorphic rocks are known to have porosity and permeability which should not be ignored. Primary porosity of basement rocks occurs as the result of rock formation. The porosity increases by the presence of cracks occurring as the result of tectonic processes (secondary porosity. Various efforts have been carried out to explore hydrocarbon in basement rocks. Some oil and gas fields proved that the basement rocks are as reservoirs which so far have provided oil and gas in significant amount. A review using previous research data, new data, and observation of igneous rocks in some fields has been done to see the development of exploration and basement reservoirs in Indonesia. A review on terminology of basement rock up till the identification of oil and gas exploration in basement rocks need to be based on the latest technology. An environmental approach is suggested to be applied as an alternative in analyzing the policy on oil and gas exploration development, especially in basement reservoirs.

  19. Data Compression of Hydrocarbon Reservoir Simulation Grids

    KAUST Repository

    Chavez, Gustavo Ivan

    2015-05-28

    A dense volumetric grid coming from an oil/gas reservoir simulation output is translated into a compact representation that supports desired features such as interactive visualization, geometric continuity, color mapping and quad representation. A set of four control curves per layer results from processing the grid data, and a complete set of these 3-dimensional surfaces represents the complete volume data and can map reservoir properties of interest to analysts. The processing results yield a representation of reservoir simulation results which has reduced data storage requirements and permits quick performance interaction between reservoir analysts and the simulation data. The degree of reservoir grid compression can be selected according to the quality required, by adjusting for different thresholds, such as approximation error and level of detail. The processions results are of potential benefit in applications such as interactive rendering, data compression, and in-situ visualization of large-scale oil/gas reservoir simulations.

  20. Data Compression of Hydrocarbon Reservoir Simulation Grids

    KAUST Repository

    Chavez, Gustavo Ivan; Harbi, Badr M.

    2015-01-01

    A dense volumetric grid coming from an oil/gas reservoir simulation output is translated into a compact representation that supports desired features such as interactive visualization, geometric continuity, color mapping and quad representation. A

  1. On the water saturation calculation in hydrocarbon sandstone reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Stalheim, Stein Ottar

    2002-07-01

    The main goal of this work was to identify the most important uncertainty sources in water saturation calculation and examine the possibility for developing new S{sub w} - equations or possibility to develop methods to remove weaknesses and uncertainties in existing S{sub w} - equations. Due to the need for industrial applicability of the equations we aimed for results with the following properties: The accuracy in S{sub w} should increase compared with existing S{sub w} - equations. The equations should be simple to use in petrophysical evaluations. The equations should be based on conventional logs and use as few as possible input parameters. The equations should be numerical stable. This thesis includes an uncertainty and sensitivity analysis of the most common S{sub w} equations. The results are addressed in chapter 3 and were intended to find the most important uncertainty sources in water saturation calculation. To increase the knowledge of the relationship between R{sub t} and S{sub w} in hydrocarbon sandstone reservoirs and to understand how the pore geometry affects the conductivity (n and m) of the rock a theoretical study was done. It was also an aim to examine the possibility for developing new S{sub w} - equations (or investigation an effective medium model) valid inhydrocarbon sandstone reservoirs. The results are presented in paper 1. A new equation for water saturation calculation in clean sandstone oil reservoirs is addressed in paper 2. A recommendation for best practice of water saturation calculation in non water wet formation is addressed in paper 3. Finally a new equation for water saturation calculation in thinly interbedded sandstone/mudstone reservoirs is presented in paper 4. The papers are titled: 1) Is the saturation exponent n a constant. 2) A New Model for Calculating Water Saturation In 3) Influence of wettability on water saturation modeling. 4) Water Saturation Calculations in Thinly Interbedded Sandstone/mudstone Reservoirs. A

  2. Anomalous dispersion due to hydrocarbons: The secret of reservoir geophysics?

    Science.gov (United States)

    Brown, R.L.

    2009-01-01

    When P- and S-waves travel through porous sandstone saturated with hydrocarbons, a bit of magic happens to make the velocities of these waves more frequency-dependent (dispersive) than when the formation is saturated with brine. This article explores the utility of the anomalous dispersion in finding more oil and gas, as well as giving a possible explanation about the effect of hydrocarbons upon the capillary forces in the formation. ?? 2009 Society of Exploration Geophysicists.

  3. Hydrocarbon formation mechanism during uranium monocarbide hydrolysis

    International Nuclear Information System (INIS)

    Ermolaev, M.I.; Tishchenko, G.V.

    1979-01-01

    The hydrolysis of uranium monocarbide in oxidative media and in the presence of excessive hydrogen in statu nascendi has been investigated. It was found that oxydants promote the formation of elementary carbon, while in the presence of hydrogen the yield of light C-C hydrocarbons increases. EPR data confirm the radical mechanism of hydrocarbons formation during the decomposition of uranium monocarbide

  4. Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Michael Batzle

    2006-04-30

    During this last period of the ''Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs'' project (Grant/Cooperative Agreement DE-FC26-02NT15342), we finalized integration of rock physics, well log analysis, seismic processing, and forward modeling techniques. Most of the last quarter was spent combining the results from the principal investigators and come to some final conclusions about the project. Also much of the effort was directed towards technology transfer through the Direct Hydrocarbon Indicators mini-symposium at UH and through publications. As a result we have: (1) Tested a new method to directly invert reservoir properties, water saturation, Sw, and porosity from seismic AVO attributes; (2) Constrained the seismic response based on fluid and rock property correlations; (3) Reprocessed seismic data from Ursa field; (4) Compared thin layer property distributions and averaging on AVO response; (5) Related pressures and sorting effects on porosity and their influence on DHI's; (6) Examined and compared gas saturation effects for deep and shallow reservoirs; (7) Performed forward modeling using geobodies from deepwater outcrops; (8) Documented velocities for deepwater sediments; (9) Continued incorporating outcrop descriptive models in seismic forward models; (10) Held an open DHI symposium to present the final results of the project; (11) Relations between Sw, porosity, and AVO attributes; (12) Models of Complex, Layered Reservoirs; and (14) Technology transfer Several factors can contribute to limit our ability to extract accurate hydrocarbon saturations in deep water environments. Rock and fluid properties are one factor, since, for example, hydrocarbon properties will be considerably different with great depths (high pressure) when compared to shallow properties. Significant over pressure, on the other hand will make the rocks behave as if they were shallower. In addition to the physical properties, the scale and

  5. Hydrocarbon Potential in Sandstone Reservoir Isolated inside Low Permeability Shale Rock (Case Study: Beruk Field, Central Sumatra Basin)

    Science.gov (United States)

    Diria, Shidqi A.; Musu, Junita T.; Hasan, Meutia F.; Permono, Widyo; Anwari, Jakson; Purba, Humbang; Rahmi, Shafa; Sadjati, Ory; Sopandi, Iyep; Ruzi, Fadli

    2018-03-01

    Upper Red Bed, Menggala Formation, Bangko Formation, Bekasap Formation and Duri Formationare considered as the major reservoirs in Central Sumatra Basin (CSB). However, Telisa Formation which is well-known as seal within CSB also has potential as reservoir rock. Field study discovered that lenses and layers which has low to high permeability sandstone enclosed inside low permeability shale of Telisa Formation. This matter is very distinctive and giving a new perspective and information related to the invention of hydrocarbon potential in reservoir sandstone that isolated inside low permeability shale. This study has been conducted by integrating seismic data, well logs, and petrophysical data throughly. Facies and static model are constructed to estimate hydrocarbon potential resource. Facies model shows that Telisa Formation was deposited in deltaic system while the potential reservoir was deposited in distributary mouth bar sandstone but would be discontinued bedding among shale mud-flat. Besides, well log data shows crossover between RHOB and NPHI, indicated that distributary mouth bar sandstone is potentially saturated by hydrocarbon. Target area has permeability ranging from 0.01-1000 mD, whereas porosity varies from 1-30% and water saturation varies from 30-70%. The hydrocarbon resource calculation approximates 36.723 MSTB.

  6. Reservoir characterization of the Smackover Formation in southwest Alabama. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kopaska-Merkel, D.C.; Hall, D.R.; Mann, S.D.; Tew, B.H.

    1993-02-01

    The Upper Jurassic Smackover Formation is found in an arcuate belt in the subsurface from south Texas to panhandle Florida. The Smackover is the most prolific hydrocarbon-producing formation in Alabama and is an important hydrocarbon reservoir from Florida to Texas. In this report Smackover hydrocarbon reservoirs in southwest Alabama are described. Also, the nine enhanced- and improved-recovery projects that have been undertaken in the Smackover of Alabama are evaluated. The report concludes with recommendations about potential future enhanced- and improved-recovery projects in Smackover reservoirs in Alabama and an estimate of the potential volume of liquid hydrocarbons recoverable by enhanced- and improved-recovery methods from the Smackover of Alabama.

  7. Prediction of Hydrocarbon Reservoirs Permeability Using Support Vector Machine

    Directory of Open Access Journals (Sweden)

    R. Gholami

    2012-01-01

    Full Text Available Permeability is a key parameter associated with the characterization of any hydrocarbon reservoir. In fact, it is not possible to have accurate solutions to many petroleum engineering problems without having accurate permeability value. The conventional methods for permeability determination are core analysis and well test techniques. These methods are very expensive and time consuming. Therefore, attempts have usually been carried out to use artificial neural network for identification of the relationship between the well log data and core permeability. In this way, recent works on artificial intelligence techniques have led to introduce a robust machine learning methodology called support vector machine. This paper aims to utilize the SVM for predicting the permeability of three gas wells in the Southern Pars field. Obtained results of SVM showed that the correlation coefficient between core and predicted permeability is 0.97 for testing dataset. Comparing the result of SVM with that of a general regression neural network (GRNN revealed that the SVM approach is faster and more accurate than the GRNN in prediction of hydrocarbon reservoirs permeability.

  8. EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA

    Energy Technology Data Exchange (ETDEWEB)

    Mohan Kelkar

    2005-02-01

    Hunton formation in Oklahoma has displayed some unique production characteristics. These include high initial water-oil and gas-oil ratios, decline in those ratios over time and temporary increase in gas-oil ratio during pressure build up. The formation also displays highly complex geology, but surprising hydrodynamic continuity. This report addresses three key issues related specifically to West Carney Hunton field and, in general, to any other Hunton formation exhibiting similar behavior: (1) What is the primary mechanism by which oil and gas is produced from the field? (2) How can the knowledge gained from studying the existing fields can be extended to other fields which have the potential to produce? (3) What can be done to improve the performance of this reservoir? We have developed a comprehensive model to explain the behavior of the reservoir. By using available production, geological, core and log data, we are able to develop a reservoir model which explains the production behavior in the reservoir. Using easily available information, such as log data, we have established the parameters needed for a field to be economically successful. We provide guidelines in terms of what to look for in a new field and how to develop it. Finally, through laboratory experiments, we show that surfactants can be used to improve the hydrocarbons recovery from the field. In addition, injection of CO{sub 2} or natural gas also will help us recover additional oil from the field.

  9. The coupling of dynamics and permeability in the hydrocarbon accumulation period controls the oil-bearing potential of low permeability reservoirs: a case study of the low permeability turbidite reservoirs in the middle part of the third member of Shahejie Formation in Dongying Sag

    DEFF Research Database (Denmark)

    Yang, Tian; Cao, Ying-Chang; Wang, Yan-Zhong

    2016-01-01

    The relationships between permeability and dynamics in hydrocarbon accumulation determine oilbearing potential (the potential oil charge) of low permeability reservoirs. The evolution of porosity and permeability of low permeability turbidite reservoirs of the middle part of the third member...... facies A and diagenetic facies B do not develop accumulation conditions with low accumulation dynamics in the late accumulation period for very low permeability. At more than 3000 m burial depth, a larger proportion of turbidite reservoirs are oil charged due to the proximity to the source rock. Also...

  10. Formation of hydrocarbons by bacteria and algae

    Energy Technology Data Exchange (ETDEWEB)

    Tornabene, T.G.

    1980-12-01

    A literature review has been performed summarizing studies on hydrocarbon synthesis by microorganisms. Certain algal and bacterial species produce hydrocarbons in large quantities, 70 to 80% of dry cell mass, when in a controlled environment. The nutritional requirements of these organisms are simple: CO/sub 2/ and mineral salts. The studies were initiated to determine whether or not microorganisms played a role in petroleum formation. 90 references. (DMC)

  11. Ephemeral-fluvial sediments as potential hydrocarbon reservoirs. Vol. 1: Sedimentology

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, K.S.

    1994-12-31

    Although reservoirs formed from ephemeral-fluvial sandstones have previously been considered relatively simple, unresolved problems of sandbody correlation and production anomalies demonstrate the need for improved understanding of their internal complexity. Outcropping ephemeral-fluvial systems have been studied in order to determine the main features and processes occurring in sand-rich ephemeral systems and to identify which features will be of importance in a hydrocarbon reservoir. The Lower Jurassic Upper Moenave and Kayenta Formations of south-eastern Utah and northern Arizona comprise series of stacked, sand-dominated sheet-like palaeochannels suggestive of low sinuosity, braided systems. Low subsidence rates and rapid lateral migration rates enabled channels to significantly modify their widths during high discharge. (author)

  12. Study on the enhancement of hydrocarbon recovery by characterization of the reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Young Hoon; Son, Jin Dam; Oh, Jae Ho [Korea Institute of Geology Mining and Materials, Taejon (Korea)] [and others

    1998-12-01

    Three year project is being carried out on the enhancement of hydrocarbon recovery by the reservoir characterization. This report describes the results of the second year's work. This project deals with characterization of fluids, bitumen ad rock matrix in the reservoir. New equipment and analytical solutions for naturally fractured reservoir were also included in this study. Main purpose of the reservoir geochemistry is to understand the origin of fluids (gas, petroleum and water) and distribution of the bitumens within the reservoir and to use them not only for exploration but development of the petroleum. For the theme of reservoir geochemistry, methods and principles of the reservoir gas and bitumen characterization, which is applicable to the petroleum development, are studied. and case study was carried out on the gas, water and bitumen samples in the reservoir taken form Haenam area and Ulleung Basin offshore Korea. Gases taken form the two different wells indicate the different origin. Formation water analyses show the absence of barrier within the tested interval. With the sidewall core samples from a well offshore Korea, the analysis using polarizing microscope, scanning electron microscope with EDX and cathodoluminoscope was performed for the study on sandstone diagenesis. The I/S changes were examined on the cuttings samples from a well, offshore Korea to estimate burial temperature. Oxygen stable isotope is used to study geothermal history in sedimentary basin. Study in the field is rare in Korea and basic data are urgently needed especially in continental basins to determine the value of formation water. In the test analyses, three samples from marine basins indicate final temperature from 55 deg.C to 83 deg.C and one marine sample indicate the initial temperature of 36 deg.C. One sample from continental basin represented the final temperature from 53 and 80 deg.C. These temperatures will be corrected because these values were based on assumed

  13. Lacustrine Environment Reservoir Properties on Sandstone Minerals and Hydrocarbon Content: A Case Study on Doba Basin, Southern Chad

    Science.gov (United States)

    Sumery, N. F. Mohd; Lo, S. Z.; Salim, A. M. A.

    2017-10-01

    The contribution of lacustrine environment as the hydrocarbon reservoir has been widely known. However, despite its growing importance, the lacustrine petroleum geology has received far less attention than marine due to its sedimentological complexity. This study therefore aims in developing an understanding of the unique aspects of lacustrine reservoirs which eventually impacts the future exploration decisions. Hydrocarbon production in Doba Basin, particularly the northern boundary, for instance, has not yet succeeded due to the unawareness of its depositional environment. The drilling results show that the problems were due to the: radioactive sand and waxy oil/formation damage, which all are related to the lacustrine depositional environment. Detailed study of geological and petrophysical integration on wireline logs and petrographic thin sections analysis of this environment helps in distinguishing reservoir and non-reservoir areas and determining the possible mechanism causing the failed DST results. The interpretations show that the correlation of all types> of logs and rho matrix analysis are capable in identifying sand and shale bed despite of the radioactive sand present. The failure of DST results were due to the presence of arkose in sand and waxy oil in reservoir bed. This had been confirmed by the petrographic thin section analysis where the arkose has mineral twinning effect indicate feldspar and waxy oil showing bright colour under fluorescent light. Understanding these special lacustrine environment characteristics and features will lead to a better interpretation of hydrocarbon prospectivity for future exploration.

  14. Application of magnetic techniques to lateral hydrocarbon migration - Lower Tertiary reservoir systems, UK North Sea

    Science.gov (United States)

    Badejo, S. A.; Muxworthy, A. R.; Fraser, A.

    2017-12-01

    Pyrolysis experiments show that magnetic minerals can be produced inorganically during oil formation in the `oil-kitchen'. Here we try to identify a magnetic proxy that can be used to trace hydrocarbon migration pathways by determining the morphology, abundance, mineralogy and size of the magnetic minerals present in reservoirs. We address this by examining the Tay formation in the Western Central Graben in the North Sea. The Tertiary sandstones are undeformed and laterally continuous in the form of an east-west trending channel, facilitating long distance updip migration of oil and gas to the west. We have collected 179 samples from 20 oil-stained wells and 15 samples from three dry wells from the British Geological Survey Core Repository. Samples were selected based on geological observations (water-wet sandstone, oil-stained sandstone, siltstones and shale). The magnetic properties of the samples were determined using room-temperature measurements on a Vibrating Sample Magnetometer (VSM), low-temperature (0-300K) measurements on a Magnetic Property Measurement System (MPMS) and high-temperature (300-973K) measurements on a Kappabridge susceptibility meter. We identified magnetite, pyrrhotite, pyrite and siderite in the samples. An increasing presence of ferrimagnetic iron sulphides is noticed along the known hydrocarbon migration pathway. Our initial results suggest mineralogy coupled with changes in grain size are possible proxies for hydrocarbon migration.

  15. Pre-drilling prediction techniques on the high-temperature high-pressure hydrocarbon reservoirs offshore Hainan Island, China

    Science.gov (United States)

    Zhang, Hanyu; Liu, Huaishan; Wu, Shiguo; Sun, Jin; Yang, Chaoqun; Xie, Yangbing; Chen, Chuanxu; Gao, Jinwei; Wang, Jiliang

    2018-02-01

    Decreasing the risks and geohazards associated with drilling engineering in high-temperature high-pressure (HTHP) geologic settings begins with the implementation of pre-drilling prediction techniques (PPTs). To improve the accuracy of geopressure prediction in HTHP hydrocarbon reservoirs offshore Hainan Island, we made a comprehensive summary of current PPTs to identify existing problems and challenges by analyzing the global distribution of HTHP hydrocarbon reservoirs, the research status of PPTs, and the geologic setting and its HTHP formation mechanism. Our research results indicate that the HTHP formation mechanism in the study area is caused by multiple factors, including rapid loading, diapir intrusions, hydrocarbon generation, and the thermal expansion of pore fluids. Due to this multi-factor interaction, a cloud of HTHP hydrocarbon reservoirs has developed in the Ying-Qiong Basin, but only traditional PPTs have been implemented, based on the assumption of conditions that do not conform to the actual geologic environment, e.g., Bellotti's law and Eaton's law. In this paper, we focus on these issues, identify some challenges and solutions, and call for further PPT research to address the drawbacks of previous works and meet the challenges associated with the deepwater technology gap. In this way, we hope to contribute to the improved accuracy of geopressure prediction prior to drilling and provide support for future HTHP drilling offshore Hainan Island.

  16. Low permeability Neogene lithofacies in Northern Croatia as potential unconventional hydrocarbon reservoirs

    Science.gov (United States)

    Malvić, Tomislav; Sučić, Antonija; Cvetković, Marko; Resanović, Filip; Velić, Josipa

    2014-06-01

    We present two examples of describing low permeability Neogene clastic lithofacies to outline unconventional hydrocarbon lithofacies. Both examples were selected from the Drava Depression, the largest macrostructure of the Pannonian Basin System located in Croatia. The first example is the Beničanci Field, the largest Croatian hydrocarbon reservoir discovered in Badenian coarse-grained clastics that consists mostly of breccia. The definition of low permeability lithofacies is related to the margins of the existing reservoir, where the reservoir lithology changed into a transitional one, which is mainly depicted by the marlitic sandstones. However, calculation of the POS (probability of success of new hydrocarbons) shows critical geological categories where probabilities are lower than those in the viable reservoir with proven reserves. Potential new hydrocarbon volumes are located in the structural margins, along the oil-water contact, with a POS of 9.375%. These potential reserves in those areas can be classified as probable. A second example was the Cremušina Structure, where a hydrocarbon reservoir was not proven, but where the entire structure has been transferred onto regional migration pathways. The Lower Pontian lithology is described from well logs as fine-grained sandstones with large sections of silty or marly clastics. As a result, the average porosity is low for conventional reservoir classification (10.57%). However, it is still an interesting case for consideration as a potentially unconventional reservoir, such as the "tight" sandstones.

  17. Modeling Tools for Drilling, Reservoir Navigation, and Formation Evaluation

    Directory of Open Access Journals (Sweden)

    Sushant Dutta

    2012-06-01

    Full Text Available The oil and gas industry routinely uses borehole tools for measuring or logging rock and fluid properties of geologic formations to locate hydrocarbons and maximize their production. Pore fluids in formations of interest are usually hydrocarbons or water. Resistivity logging is based on the fact that oil and gas have a substantially higher resistivity than water. The first resistivity log was acquired in 1927, and resistivity logging is still the foremost measurement used for drilling and evaluation. However, the acquisition and interpretation of resistivity logging data has grown in complexity over the years. Resistivity logging tools operate in a wide range of frequencies (from DC to GHz and encounter extremely high (several orders of magnitude conductivity contrast between the metal mandrel of the tool and the geologic formation. Typical challenges include arbitrary angles of tool inclination, full tensor electric and magnetic field measurements, and interpretation of complicated anisotropic formation properties. These challenges combine to form some of the most intractable computational electromagnetic problems in the world. Reliable, fast, and convenient numerical modeling of logging tool responses is critical for tool design, sensor optimization, virtual prototyping, and log data inversion. This spectrum of applications necessitates both depth and breadth of modeling software—from blazing fast one-dimensional (1-D modeling codes to advanced threedimensional (3-D modeling software, and from in-house developed codes to commercial modeling packages. In this paper, with the help of several examples, we demonstrate our approach for using different modeling software to address different drilling and evaluation applications. In one example, fast 1-D modeling provides proactive geosteering information from a deep-reading azimuthal propagation resistivity measurement. In the second example, a 3-D model with multiple vertical resistive fractures

  18. Hydrocarbon accumulation characteristics and enrichment laws of multi-layered reservoirs in the Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Guang Yang

    2017-03-01

    Full Text Available The Sichuan Basin represents the earliest area where natural gas is explored, developed and comprehensively utilized in China. After over 50 years of oil and gas exploration, oil and gas reservoirs have been discovered in 24 gas-dominant layers in this basin. For the purpose of predicting natural gas exploration direction and target of each layer in the Sichuan Basin, the sedimentary characteristics of marine and continental strata in this basin were summarized and the forms of multi-cycled tectonic movement and their controlling effect on sedimentation, diagenesis and hydrocarbon accumulation were analyzed. Based on the analysis, the following characteristics were identified. First, the Sichuan Basin has experienced the transformation from marine sedimentation to continental sedimentation since the Sinian with the former being dominant. Second, multiple source–reservoir assemblages are formed based on multi-rhythmed deposition, and multi-layered reservoir hydrocarbon accumulation characteristics are vertically presented. And third, multi-cycled tectonic movement appears in many forms and has a significant controlling effect on sedimentation, diagenesis and hydrocarbon accumulation. Then, oil and gas reservoir characteristics and enrichment laws were investigated. It is indicated that the Sichuan Basin is characterized by coexistence of conventional and unconventional oil and gas reservoirs, multi-layered reservoir hydrocarbon supply, multiple reservoir types, multiple trap types, multi-staged hydrocarbon accumulation and multiple hydrocarbon accumulation models. Besides, its natural gas enrichment is affected by hydrocarbon source intensity, large paleo-uplift, favorable sedimentary facies belt, sedimentary–structural discontinuity plane and structural fracture development. Finally, the natural gas exploration and research targets of each layer in the Sichuan Basin were predicted according to the basic petroleum geologic conditions

  19. Impact of rock salt creep law choice on subsidence calculations for hydrocarbon reservoirs overlain by evaporite caprocks

    NARCIS (Netherlands)

    Marketos, G.; Spiers, C.J.; Govers, R.

    2016-01-01

    Accurate forward modeling of surface subsidence above producing hydrocarbons reservoirs requires an understanding of the mechanisms determining how ground deformation and subsidence evolve. Here we focus entirely on rock salt, which overlies a large number of reservoirs worldwide, and specifically

  20. Hydrocarbon potential assessment of Ngimbang formation, Rihen field of Northeast Java Basin

    Science.gov (United States)

    Pandito, R. H.; Haris, A.; Zainal, R. M.; Riyanto, A.

    2017-07-01

    The assessment of Ngimbang formation at Rihen field of Northeast Java Basin has been conducted to identify the hydrocarbon potential by analyzing the response of passive seismic on the proven reservoir zone and proposing a tectonic evolution model. In the case of petroleum exploration in Northeast Java basin, the Ngimbang formation cannot be simply overemphasized. East Java Basin has been well known as one of the mature basins producing hydrocarbons in Indonesia. This basin was stratigraphically composed of several formations from the old to the young i.e., the basement, Ngimbang, Kujung, Tuban, Ngerayong, Wonocolo, Kawengan and Lidah formation. All of these formations have proven to become hydrocarbon producer. The Ngrayong formation, which is geologically dominated by channels, has become a production formation. The Kujung formation that has been known with the reef build up has produced more than 102 million barrel of oil. The Ngimbang formation so far has not been comprehensively assessed in term its role as a source rock and a reservoir. In 2013, one exploratory well has been drilled at Ngimbang formation and shown a gas discovery, which is indicated on Drill Stem Test (DST) reading for more than 22 MMSCFD of gas. This discovery opens new prospect in exploring the Ngimbang formation.

  1. Origin of late pleistocene formation water in Mexican oil reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Birkle, P. [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    2004-07-01

    . For wellhead samples, a 20 liter-sampling-reagent was previously filled with N{sub 2}-gas for the collection and phase separation of the pressurized gas-water-crude oil mixture. No differences in {sup 14}C-concentrations were detected applying, both, conventional and AMS-techniques. In contradiction to the expected 'fossil age' of reservoir water as part of a stagnant hydraulic system, measured {sup 14}C-concentrations between 0.89 pmC and 31.86 pmC indicate a late Pleistocene-early Holocene, regional event for the infiltration of surface water into the reservoir. The variety in water mineralization from meteoric (TDS{sub max} = 0.5 g/l) to hyper-saline composition (TDS{sub max} = 338 g/l) is not caused by halite dissolution from adjacent salt domes, as shown by elevated Br/Cl ratios. In contrary, the linear correlation between {sup 18}O and Cl values reflect varying mixing proportions of two components - meteoric water and evaporated seawater. Instead of water/rock-interaction, evaporation of seawater at the surface prior to infiltration represents the principal process for fluid enrichment in {sup 18}O and chlorine, with maximum values of 17.2 %o and 228 g/l, respectively. The young residence time of formation water in Mexican oil reservoirs implies following: - The common assumption of 'hydraulically-frozen' reservoirs is not correct, as main descending fluid migration occurred during glacial period. Probably, major infiltration processes are related to periods with climatic changes and increased humidity - as observed for the adjacent Yucatan region in SE-Mexico during early-mid Holocene (6,000 yr BP) (Metcalfe et al. 2000) - with the probable transgression of Mexican Gulf seawater into the recent Mexican coastal plain. - The common hypothesis of hydrocarbon maturation within Jurassic organic-rich layers, and its subsequent expulsion and migration into Cretaceous/Tertiary sedimentary units must be expanded by a last-step-process: As glacial

  2. A sedimentological approach to refining reservoir architecture in a mature hydrocarbon province: the Brent Province, UK North Sea

    Energy Technology Data Exchange (ETDEWEB)

    Hampson, G.J.; Sixsmith, P.J.; Johnson, H.D. [Imperial College, London (United Kingdom). Dept. of Earth Science and Engineering

    2004-04-01

    Improved reservoir characterisation in the mature Brent Province of the North Sea, aimed at maximising both in-field and near-field hydrocarbon potential, requires a clearer understanding of sub-seismic stratigraphy and facies distributions. In this context, we present a regional, high-resolution sequence stratigraphic framework for the Brent Group, UK North Sea based on extensive sedimentological re-interpretation of core and wireline-log data, combined with palynostratigraphy and published literature. This framework is used to place individual reservoirs in an appropriate regional context, thus resulting in the identification of subtle sedimentological and tectono-stratigraphic features of reservoir architecture that have been previously overlooked. We emphasise the following insights gained from our regional, high-resolution sequence stratigraphic synthesis: (1) improved definition of temporal and spatial trends in deposition both within and between individual reservoirs, (2) development of regionally consistent, predictive sedimentological models for two enigmatic reservoir intervals (the Broom and Tarbert Formations), and (3) recognition of subtle local tectono-stratigraphic controls on reservoir architecture, and their links to the regional, Middle Jurassic structural evolution of the northern North Sea. We discuss the potential applications of these insights to the identification of additional exploration potential and to improved ultimate recovery. (author)

  3. Isotopic and geochemical tools to assess the feasibility of methanogenesis as a way to enhance hydrocarbon recovery in oil reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, N.; Morris, B.E.L.; Richnow, H.H. [Helmholtz-Zentrum fuer Umweltforschung (UFZ), Leipzig (Germany). Abt. Isotopenbiogeochemie; Cai, M.; Yao, Jun [Helmholtz-Zentrum fuer Umweltforschung (UFZ), Leipzig (Germany). Abt. Isotopenbiogeochemie; University of Sicence and Technology, Beijing (China). School of Civil and Environment Engineering; Straaten, N.; Krueger, M. [Bundesanstalt fuer Geowissenschaften und Rohstoffe (BGR), Hannover (Germany). Fachbereich Geochemie

    2013-08-01

    In situ biotransformation of oil to methane was investigated in a thermophilic reservoir in Dagang, China using isotopic analyzes, chemical fingerprinting and molecular and biological methods. Our first results, which were already published, demonstrated that anaerobic oil degradation concomitant with methane production was occurring. The reservoir was highly methanogenic and the oil exhibited varying degrees of degradation between different parts of the reservoir, although it was mainly highly weathered, and nearly devoid of nalkanes, alkylbenzenes, alkyltoluenes, and light PAHs. In addition, the isotopic data from reservoir oil, water and gas was used to elucidate the origin of the methane. The average {delta}{sup 13}C for methane was around -47 permille and CO{sub 2} was highly enriched in {sup 13}C. The bulk isotopic discrimination ({Delta}{delta}{sup 13}C) between methane and CO{sub 2} was between 32 and 65 permille, in accordance with previously reported results for methane formation during hydrocarbon degradation. Subsequent microcosm experiments revealed that autochthonous microbiota are capable of degrading oil under methanogenic conditions and of producing methane and/or CO{sub 2} from {sup 13}C-labelled n-hexadecane, 2-methylnaphthalene or toluene ({delta}{sup 13}C values up to 550 permille). These results demonstrate that methanogenesis is linked to aliphatic and aromatic hydrocarbon degradation. Further experiments will elucidate the activation mechanisms for the different compounds. (orig.)

  4. Gamma ray spectrometry logs as a hydrocarbon indicator for clastic reservoir rocks in Egypt

    International Nuclear Information System (INIS)

    Al-Alfy, I.M.; Nabih, M.A.; Eysa, E.A.

    2013-01-01

    Petroleum oil is an important source for the energy in the world. The Gulf of Suez, Nile Delta and South Valley are important regions for studying hydrocarbon potential in Egypt. A thorium normalization technique was applied on the sandstone reservoirs in the three regions to determine the hydrocarbon potentialities zones using the three spectrometric radioactive gamma ray-logs (eU, eTh and K% logs). The conventional well logs (gamma-ray, deep resistivity, shallow resistivity, neutron, density and sonic logs) are analyzed to determine the net pay zones in these wells. Indices derived from thorium normalized spectral logs indicate the hydrocarbon zones in petroleum reservoirs. The results of this technique in the three regions (Gulf of Suez, Nile Delta and South Valley) are in agreement with the results of the conventional well log analyses by ratios of 82%, 78% and 71% respectively. - Highlights: ► The positive DRAD values indicate the hydrocarbon zones in petroleum reservoirs. ► Thorium normalization was applied to determine the hydrocarbon potentialities. ► The conventional well logs are analyzed to determine the net pay zones in wells. ► Determining hydrocarbon potentialities zones using spectrometric gamma-ray logs

  5. 3D Seismic Reflection Amplitude and Instantaneous Frequency Attributes in Mapping Thin Hydrocarbon Reservoir Lithofacies: Morrison NE Field and Morrison Field, Clark County, KS

    Science.gov (United States)

    Raef, Abdelmoneam; Totten, Matthew; Vohs, Andrew; Linares, Aria

    2017-12-01

    Thin hydrocarbon reservoir facies pose resolution challenges and waveform-signature opportunities in seismic reservoir characterization and prospect identification. In this study, we present a case study, where instantaneous frequency variation in response to a thin hydrocarbon pay zone is analyzed and integrated with other independent information to explain drilling results and optimize future drilling decisions. In Morrison NE Field, some wells with poor economics have resulted from well-placement incognizant of reservoir heterogeneities. The study area in Clark County, Kanas, USA, has been covered by a surface 3D seismic reflection survey in 2010. The target horizon is the Viola limestone, which continues to produce from 7 of the 12 wells drilled within the survey area. Seismic attributes extraction and analyses were conducted with emphasis on instantaneous attributes and amplitude anomalies to better understand and predict reservoir heterogeneities and their control on hydrocarbon entrapment settings. We have identified a higher instantaneous frequency, lower amplitude seismic facies that is in good agreement with distinct lithofacies that exhibit better (higher porosity) reservoir properties, as inferred from well-log analysis and petrographic inspection of well cuttings. This study presents a pre-drilling, data-driven approach of identifying sub-resolution reservoir seismic facies in a carbonate formation. This workflow will assist in placing new development wells in other locations within the area. Our low amplitude high instantaneous frequency seismic reservoir facies have been corroborated by findings based on well logs, petrographic analysis data, and drilling results.

  6. Polycyclic aromatic hydrocarbons in soils around Guanting Reservoir, Beijing, China

    NARCIS (Netherlands)

    Jiao, W.T.; Lu, Y.L.; Wang, T.Y.; Li, J.; Han, Jingyi; Wang, G.; Hu, W.Y.

    2009-01-01

    The concentrations of 16 polycyclic aromatic hydrocarbons ( 16PAHs) were measured by gas chromatography equipped with a mass spectrometry detector (GC-MS) in 56 topsoil samples around Guanting Reservior (GTR), which is an important water source for Beijing. Low to medium levels of PAH contamination

  7. Gamma ray spectrometry logs as a hydrocarbon indicator for clastic reservoir rocks in Egypt.

    Science.gov (United States)

    Al-Alfy, I M; Nabih, M A; Eysa, E A

    2013-03-01

    Petroleum oil is an important source for the energy in the world. The Gulf of Suez, Nile Delta and South Valley are important regions for studying hydrocarbon potential in Egypt. A thorium normalization technique was applied on the sandstone reservoirs in the three regions to determine the hydrocarbon potentialities zones using the three spectrometric radioactive gamma ray-logs (eU, eTh and K% logs). The conventional well logs (gamma-ray, deep resistivity, shallow resistivity, neutron, density and sonic logs) are analyzed to determine the net pay zones in these wells. Indices derived from thorium normalized spectral logs indicate the hydrocarbon zones in petroleum reservoirs. The results of this technique in the three regions (Gulf of Suez, Nile Delta and South Valley) are in agreement with the results of the conventional well log analyses by ratios of 82%, 78% and 71% respectively. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  8. New Hydrocarbon Degradation Pathways in the Microbial Metagenome from Brazilian Petroleum Reservoirs

    Science.gov (United States)

    Sierra-García, Isabel Natalia; Correa Alvarez, Javier; Pantaroto de Vasconcellos, Suzan; Pereira de Souza, Anete; dos Santos Neto, Eugenio Vaz; de Oliveira, Valéria Maia

    2014-01-01

    Current knowledge of the microbial diversity and metabolic pathways involved in hydrocarbon degradation in petroleum reservoirs is still limited, mostly due to the difficulty in recovering the complex community from such an extreme environment. Metagenomics is a valuable tool to investigate the genetic and functional diversity of previously uncultured microorganisms in natural environments. Using a function-driven metagenomic approach, we investigated the metabolic abilities of microbial communities in oil reservoirs. Here, we describe novel functional metabolic pathways involved in the biodegradation of aromatic compounds in a metagenomic library obtained from an oil reservoir. Although many of the deduced proteins shared homology with known enzymes of different well-described aerobic and anaerobic catabolic pathways, the metagenomic fragments did not contain the complete clusters known to be involved in hydrocarbon degradation. Instead, the metagenomic fragments comprised genes belonging to different pathways, showing novel gene arrangements. These results reinforce the potential of the metagenomic approach for the identification and elucidation of new genes and pathways in poorly studied environments and contribute to a broader perspective on the hydrocarbon degradation processes in petroleum reservoirs. PMID:24587220

  9. Microbial conversion of higher hydrocarbons to methane in oil and coal reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Martin; Beckmaann, Sabrina; Siegert, Michael; Grundger, Friederike; Richnow, Hans [Geomicrobiology Group, Federal Institute for Geosciences and Natural Resources (Germany)

    2011-07-01

    In recent years, oil production has increased enormously but almost half of the oil now remaining is heavy/biodegraded and cannot be put into production. There is therefore a need for new technology and for diversification of energy sources. This paper discusses the microbial conversion of higher hydrocarbons to methane in oil and coal reservoirs. The objective of the study is to identify microbial and geochemical controls on methanogenesis in reservoirs. A graph shows the utilization of methane for various purposes in Germany from 1998 to 2007. A degradation process to convert coal to methane is shown using a flow chart. The process for converting oil to methane is also given. Controlling factors include elements such as Fe, nitrogen and sulfur. Atmospheric temperature and reservoir pressure and temperature also play an important role. From the study it can be concluded that isotopes of methane provide exploration tools for reservoir selection and alkanes and aromatic compounds provide enrichment cultures.

  10. Hydrocarbon migration and accumulation in the Upper Cretaceous Qingshankou Formation, Changling Sag, southern Songliao Basin: Insights from integrated analyses of fluid inclusion, oil source correlation and basin modelling

    Science.gov (United States)

    Dong, Tian; He, Sheng; Wang, Dexi; Hou, Yuguang

    2014-08-01

    The Upper Cretaceous Qingshankou Formation acts as both the source and reservoir sequence in the Changling Sag, situated in the southern end of the Songliao Basin, northeast China. An integrated approach involving determination of hydrocarbon charging history, oil source correlation and hydrocarbon generation dynamic modeling was used to investigate hydrocarbon migration processes and further predict the favorable targets of hydrocarbon accumulations in the Qingshankou Formation. The hydrocarbon generation and charge history was investigated using fluid inclusion analysis, in combination with stratigraphic burial and thermal modeling. The source rocks began to generate hydrocarbons at around 82 Ma and the hydrocarbon charge event occurred from approximately 78 Ma to the end of Cretaceous (65.5 Ma) when a large tectonic uplift took place. Correlation of stable carbon isotopes of oils and extracts of source rocks indicates that oil was generated mainly from the first member of Qingshankou Formation (K2qn1), suggesting that hydrocarbon may have migrated vertically. Three dimensional (3D) petroleum system modeling was used to evaluate the processes of secondary hydrocarbon migration in the Qingshankou Formation since the latest Cretaceous. During the Late Cretaceous, hydrocarbon, mainly originated from the Qianan depression, migrated laterally to adjacent structural highs. Subsequent tectonic inversion, defined as the late Yanshan Orogeny, significantly changed hydrocarbon migration patterns, probably causing redistribution of primary hydrocarbon reservoirs. In the Tertiary, the Heidimiao depression was buried much deeper than the Qianan depression and became the main source kitchen. Hydrocarbon migration was primarily controlled by fluid potential and generally migrated from relatively high potential areas to low potential areas. Structural highs and lithologic transitions are potential traps for current oil and gas exploration. Finally, several preferred hydrocarbon

  11. Physical simulation of gas reservoir formation in the Liwan 3-1 deep-water gas field in the Baiyun sag, Pearl River Mouth Basin

    Directory of Open Access Journals (Sweden)

    Gang Gao

    2015-01-01

    Full Text Available To figure out the process and controlling factors of gas reservoir formation in deep-waters, based on an analysis of geological features, source of natural gas and process of reservoir formation in the Liwan 3-1 gas field, physical simulation experiment of the gas reservoir formation process has been performed, consequently, pattern and features of gas reservoir formation in the Baiyun sag has been found out. The results of the experiment show that: ① the formation of the Liwan 3-1 faulted anticline gas field is closely related to the longstanding active large faults, where natural gas is composed of a high proportion of hydrocarbons, a small amount of non-hydrocarbons, and the wet gas generated during highly mature stage shows obvious vertical migration signs; ② liquid hydrocarbons associated with natural gas there are derived from source rock of the Enping & Zhuhai Formation, whereas natural gas comes mainly from source rock of the Enping Formation, and source rock of the Wenchang Formation made a little contribution during the early Eocene period as well; ③ although there was gas migration and accumulation, yet most of the natural gas mainly scattered and dispersed due to the stronger activity of faults in the early period; later as fault activity gradually weakened, gas started to accumulate into reservoirs in the Baiyun sag; ④ there is stronger vertical migration of oil and gas than lateral migration, and the places where fault links effective source rocks with reservoirs are most likely for gas accumulation; ⑤ effective temporal-spatial coupling of source-fault-reservoir in late stage is the key to gas reservoir formation in the Baiyun sag; ⑥ the nearer the distance from a trap to a large-scale fault and hydrocarbon source kitchen, the more likely gas may accumulate in the trap in late stage, therefore gas accumulation efficiency is much lower for the traps which are far away from large-scale faults and hydrocarbon source

  12. Tectonic controls on preservation of Middle Triassic Halfway reservoir facies, Peejay Field, northeastern British Columbia: a new hydrocarbon exploration model

    Energy Technology Data Exchange (ETDEWEB)

    Caplan, M. L. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Geological Sciences; Moslow, T. F. [Calgary Univ., AB (Canada). Dept. of Geology and Geophysics

    1997-12-01

    The Peejay Field in northeastern British Columbia was chosen as the site of a detailed study to establish the paleogeography, geological history and genesis of reservoir facies of Middle Triassic strata. A total of 132 cores and well logs from 345 wells were examined to establish the depositional model, to identify the origin of all reservoir facies and to construct an exploration model to improve the prediction of reservoir facies. Results show that the Middle Triassic Halfway Formation of northeastern British Columbia is comprised of at least four west-southwest prograding paleoshorelines. The Lithofacies Succession One quartz-arenites paleoshore faces have less porosity and permeability and are laterally discontinuous. For these reasons shoreface facies have minimal reservoir quality. The tidal inlet fill successions were found to have the greatest observed porosity, permeability and lateral continuity in the Peejay Field. The geometry and orientation of these tidal inlet fill deposits are controlled by tectonic processes. It was suggested that the success of hydrocarbon exploration in this structurally complex area of northeastern British Columbia and west-central Alberta depends on further stratigraphic and sedimentological examination of Middle Triassic strata on a regional scale to obtain a complete understanding of the geological history of the area. 39 refs., 13 refs.

  13. Hydrocarbon Reservoir Identification in Volcanic Zone by using Magnetotelluric and Geochemistry Information

    Science.gov (United States)

    Firda, S. I.; Permadi, A. N.; Supriyanto; Suwardi, B. N.

    2018-03-01

    The resistivity of Magnetotelluric (MT) data show the resistivity mapping in the volcanic reservoir zone and the geochemistry information for confirm the reservoir and source rock formation. In this research, we used 132 data points divided with two line at exploration area. We used several steps to make the resistivity mapping. There are time series correction, crosspower correction, then inversion of Magnetotelluric (MT) data. Line-2 and line-3 show anomaly geological condition with Gabon fault. The geology structure from the resistivity mapping show the fault and the geological formation with the geological rock data mapping distribution. The geochemistry information show the maturity of source rock formation. According to core sample analysis information, we get the visual porosity for reservoir rock formation in several geological structure. Based on that, we make the geological modelling where the potential reservoir and the source rock around our interest area.

  14. Method for thermal recovery of hydrocarbons from an underground formation

    Energy Technology Data Exchange (ETDEWEB)

    1962-11-13

    In a thermal recovery procedure for hydrocarbons from an underground formation, an oxygen-containing gas is injected through at least one input well into the formation. A part of the hydrocarbons in the formation is then ignited and an oxidation front is created. This front moves under the influence of the injected gas to at least one production well in the formation. The temperature in the burning front is higher than approximately 200/sup 0/C but lower than approximately 350/sup 0/C. (4 claims)

  15. Mercury-free PVT apparatus for thermophysical property analyses of hydrocarbon reservoir fluids

    Energy Technology Data Exchange (ETDEWEB)

    Lansangan, R.M.; Lievois, J.S.

    1992-08-31

    Typical reservoir fluid analyses of complex, multicomponent hydrocarbon mixtures include the volumetric properties, isothermal compressibility, thermal expansivity, equilibrium ratios, saturation pressure, viscosities, etc. These parameters are collectively referred to as PVT properties, an acronym for the primary state variables; pressure, volume, and temperature. The reservoir engineer incorporates this information together with the porous media description in performing material balance calculations. These calculations lead to the determination (estimation) of the initial hydrocarbon in-place, the future reservoir performance, the optimal production scheme, and the ultimate hydrocarbon recovery. About four years ago, Ruska Instrument Corporation embarked on a project to develop an apparatus designed to measure PVT properties that operates free of mercury. The result of this endeavor is the 2370 Hg-Free PVT system which has been in the market for the last three years. The 2370 has evolved from the prototype unit to its present configuration which is described briefly in this report. The 2370 system, although developed as a system-engineered apparatus based on existing technology, has not been exempt from this burden-of-proof Namely, the performance of the apparatus under routine test conditions with real reservoir fluids. This report summarizes the results of the performance and applications testing of the 2370 Hg-Free PVT system. Density measurements were conducted on a pure fluid. The results were compared against literature values and the prediction of an equation of state. Routine reservoir fluid analyses were conducted with a black oil and a retrograde condensate gas mixtures. Limited comparison of the results were performed based on the same tests performed on a conventional mercury-based PVT apparatus. The results of these tests are included in this report.

  16. Marine controlled source electromagnetic (mCSEM) detects hydrocarbon reservoirs in the Santos Basin - Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Buonora, Marco Polo Pereira; Rodrigues, Luiz Felipe [PETROBRAS, Rio de Janeiro, RJ (Brazil); Zerilli, Andrea; Labruzzo, Tiziano [WesternGeco, Houston, TX (United States)

    2008-07-01

    In recent years marine Controlled Source Electromagnetic (mCSEM) has driven the attention of an increasing number of operators due to its sensitivity to map resistive structures, such as hydrocarbon reservoirs beneath the ocean floor and successful case histories have been reported. The Santos basin mCSEM survey was performed as part of a technical co-operation project between PETROBRAS and Schlumberger to assess the integration of selected deep reading electromagnetic technologies into the full cycle of oil field exploration and development. The survey design was based on an in-depth sensitivity study, built on known reservoirs parameters, such as thickness, lateral extent, overburden and resistivities derived from seismic and well data. In this context, the mCSEM data were acquired to calibrate the technology over the area's known reservoirs, quantify the resistivity anomalies associated with those reservoirs, with the expectation that new prospective locations could be found. We show that the mCSEM response of the known reservoirs yields signatures that can be clearly imaged and accurately quantified and there are evident correlations between the mCSEM anomalies and the reservoirs. (author)

  17. Seismic Response of Deep Hydrocarbon Bearing Reservoirs: examples from Oso Field and implications for Future Opportunities

    International Nuclear Information System (INIS)

    Oluwasusi, A. B.; Hussey, V.; Goulding, F. J.

    2002-01-01

    The Oso Field (OML 70) produces approximately 100 TBD of condensate from Miocene age shelfal sand reservoirs at approximately 10,000 feet below sea level. The field was discovered in 1967 while testing a deeply buried fault closure. Reservoirs are normally pressured, exceed 1 Darcy in permeability and range from 50 to 600 feet in thickness.There are seismic amplitudes associated with the shallower reservoirs on the existing conventional 3D dataset; however there are no anomalies associated with the deeper, condensate accumulations.The paper explores the physical rock and fluid properties associated with the Oso reservoirs and the resulting seismic responses. Modelled results have been calibrated with the actual seismic signatures for the water and hydrocarbon bearing zones. Results indicate that the deeper reservoirs exhibit a classic Class II AVG seismic response and that the use of longer offset and angle stack data can help predict the occurrence of these types of reservoirs. Examples of similar accumulations will be shared.Mobil Producing Nigeria is conducting a full reprocessing effort of the existing 3D dataset over the Joint Venture acreage with a goal of identifying and exploiting additional accumulations with Class II AVG seismic response. Preliminary results of the reprocessing over known accumulations will be presented

  18. HYDROCARBON FORMATION ON POLYMER-SUPPORTED COBALT

    Energy Technology Data Exchange (ETDEWEB)

    Benner, Linda S.; Perkins, Patrick; Vollhardt, K.Peter C.

    1980-10-01

    In this report we detail the synthesis catalytic chemistry of polystyrene supported {eta}{sup 5} ~cyclopentadienyl- dicarbonyl cobalt, CpCo(CO){sub 2}. This material is active in the hydrogenation of CO to saturated linear hydrocarbons and appears to retain its "homogeneous", mononuclear character during the course of its catalysis, During ·the course of our work 18% and 20% crosslinked analogs of polystyrene supported CpCo(CO){sub 2} were shown to exhibit limited catalytic activity and no CO activation.

  19. Paragenetic evolution of reservoir facies, Middle Triassic Halfway Formation, PeeJay Field, northeastern British Columbia: controls on reservoir quality

    Energy Technology Data Exchange (ETDEWEB)

    Caplan, M. L. [Alberta Univ., Dept. of Earth and Atmospheric Sciences, Edmonton, AB (Canada); Moslow, T. F. [Ulster Petroleum Ltd., Calgary, AB (Canada)

    1998-09-01

    Because of the obvious importance of reservoir quality to reservoir performance, diagenetic controls on reservoir quality of Middle Triassic reservoir facies are investigated by comparing two reservoir lithofacies. The implications of porosity structure on the efficiency of primary and secondary hydrocarbon recovery are also assessed. Halfway reservoir facies are composed of bioclastic grainstones (lithofacies G) and litharenites/sublitharenites (lithofacies H), both of which are interpreted as tidal inlet fills. Although paragenetic evolution was similar for the two reservoir facies, subtle differences in reservoir quality are discernible. These are controlled by sedimentary structures, porosity type, grain constituents, and degree of cementation. Reservoir quality in lithofacies G is a function of connectivity of the pore network. In lithofacies H, secondary granular porosity creates a more homogeneous interconnected pore system, wide pore throats and low aspect ratios. The high porosity and low permeability values of the bioclastic grainstones are suspected to cause inefficient flushing of hydrocarbons during waterflooding. However, it is suggested that recovery may be enhanced by induced hydraulic fracturing and acidization of lower permeability calcareous cemented zones. 52 refs., 15 figs.

  20. Method and apparatus for production of subsea hydrocarbon formations

    Energy Technology Data Exchange (ETDEWEB)

    Bladford, J.

    1996-07-18

    A system for controlling, separating, processing and exporting well fluids produced from subsea hydrocarbon formations is disclosed. The subsea well tender system includes a surface buoy supporting one or more decks above the water surface for accommodating equipment to process oil, gas and water recovered from the subsea hydrocarbon formation. The surface buoy includes a surface-piercing central flotation column connected to one or more external flotation tanks located below the water surface. The surface buoy is secured to the seabed by one or more tendons which are anchored to a foundation with piles imbedded in the seabed. The system accommodates multiple versions on the surface buoy configuration. (author) figs.

  1. Calculation of Interfacial Tensions of Hydrocarbon-water Systems under Reservoir Conditions

    DEFF Research Database (Denmark)

    Zuo, You-Xiang; Stenby, Erling Halfdan

    1998-01-01

    Assuming that the number densities of each component in a mixture are linearly distributed across the interface between the coexisting vapor-liquid or liquid-liquid phases, we developed in this research work a linear-gradient-theory (LGT) model for computing the interfacial tension of hydrocarbon......-brine systems. The new model was tested on a number of hydrocarbon-water/brine mixtures and two crude oil-water systems under reservoir conditions. The results show good agreement between the predicted and the experimental interfacial tension data.......Assuming that the number densities of each component in a mixture are linearly distributed across the interface between the coexisting vapor-liquid or liquid-liquid phases, we developed in this research work a linear-gradient-theory (LGT) model for computing the interfacial tension of hydrocarbon-water...... mixtures on the basis of the SRK equation of state. With this model, it is unnecessary to solve the time-consuming density-profile equations of the gradient-theory model. In addition, a correlation was developed for representing the effect of electrolytes on the interfacial tension of hydrocarbon...

  2. Depleted Hydrocarbon Reservoirs Present a Safe and Practical Burial Solution for Graphite Waste

    International Nuclear Information System (INIS)

    Rahmani, L.

    2016-01-01

    A solution for graphite waste is proposed that combines reliance on thick impermeable host rock that is needed to confine the long-life radioactivity content of most irradiated graphite with low capitalistic and operational unit volume costs that are required to render this bulky waste form manageable. The solution, uniquely applicable to irradiated graphite due to its low dose rates, moderate mechanical strength and light density, consists in three steps: first, graphite is fine-crushed under water; second, it is made in an aqueous suspension; third, the suspension is injected into a deep, disused hydrocarbon reservoir. Each of these steps only involves well mastered techniques. Regulatory changes that may allow this solution to be added to the gamut of available waste routes, geochemical issues, availability of depleted reservoirs and cost projections are presented. (author)

  3. DEPLETED HYDROCARBON RESERVOIRS AND CO2 INJECTION WELLS –CO2 LEAKAGE ASSESSMENT

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    2017-03-01

    Full Text Available Migration risk assessment of the injected CO2 is one of the fi rst and indispensable steps in determining locations for the implementation of projects for carbon dioxide permanent disposal in depleted hydrocarbon reservoirs. Within the phase of potential storage characterization and assessment, it is necessary to conduct a quantitative risk assessment, based on dynamic reservoir models that predict the behaviour of the injected CO2, which requires good knowledge of the reservoir conditions. A preliminary risk assessment proposed in this paper can be used to identify risks of CO2 leakage from the injection zone and through wells by quantifying hazard probability (likelihood and severity, in order to establish a risk-mitigation plan and to engage prevention programs. Here, the proposed risk assessment for the injection well is based on a quantitative risk matrix. The proposed assessment for the injection zone is based on methodology used to determine a reservoir probability in exploration and development of oil and gas (Probability of Success, abbr. POS, and modifi ed by taking into account hazards that may lead to CO2 leakage through the cap rock in the atmosphere or groundwater. Such an assessment can eliminate locations that do not meet the basic criteria in regard to short-term and long-term safety and the integrity of the site

  4. Caprock Integrity during Hydrocarbon Production and CO2 Injection in the Goldeneye Reservoir

    Science.gov (United States)

    Salimzadeh, Saeed; Paluszny, Adriana; Zimmerman, Robert

    2016-04-01

    Carbon Capture and Storage (CCS) is a key technology for addressing climate change and maintaining security of energy supplies, while potentially offering important economic benefits. UK offshore, depleted hydrocarbon reservoirs have the potential capacity to store significant quantities of carbon dioxide, produced during power generation from fossil fuels. The Goldeneye depleted gas condensate field, located offshore in the UK North Sea at a depth of ~ 2600 m, is a candidate for the storage of at least 10 million tons of CO2. In this research, a fully coupled, full-scale model (50×20×8 km), based on the Goldeneye reservoir, is built and used for hydro-carbon production and CO2 injection simulations. The model accounts for fluid flow, heat transfer, and deformation of the fractured reservoir. Flow through fractures is defined as two-dimensional laminar flow within the three-dimensional poroelastic medium. The local thermal non-equilibrium between injected CO2 and host reservoir has been considered with convective (conduction and advection) heat transfer. The numerical model has been developed using standard finite element method with Galerkin spatial discretisation, and finite difference temporal discretisation. The geomechanical model has been implemented into the object-oriented Imperial College Geomechanics Toolkit, in close interaction with the Complex Systems Modelling Platform (CSMP), and validated with several benchmark examples. Fifteen major faults are mapped from the Goldeneye field into the model. Modal stress intensity factors, for the three modes of fracture opening during hydrocarbon production and CO2 injection phases, are computed at the tips of the faults by computing the I-Integral over a virtual disk. Contact stresses -normal and shear- on the fault surfaces are iteratively computed using a gap-based augmented Lagrangian-Uzawa method. Results show fault activation during the production phase that may affect the fault's hydraulic conductivity

  5. Formation evaluation in liquid-dominated geothermal reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Ershaghi, I.; Dougherty, E.E.; Handy, L.L.

    1981-04-01

    Studies relative to some formation evaluation aspects of geothermal reservoirs are reported. The particular reservoirs considered were the liquid dominated type with a lithology of the sedimentary nature. Specific problems of interest included the resistivity behavior of brines and rocks at elevated temperatures and studies on the feasibility of using the well log resistivity data to obtain estimates of reservoir permeability. Several papers summarizing the results of these studies were presented at various technical meetings for rapid dissemination of the results to potential users. These papers together with a summary of data most recently generated are included. A brief review of the research findings precedes the technical papers. Separate abstracts were prepared for four papers. Five papers were abstracted previously for EDB.

  6. INTELLIGENT COMPUTING SYSTEM FOR RESERVOIR ANALYSIS AND RISK ASSESSMENT OF THE RED RIVER FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Mark A. Sippel; William C. Carrigan; Kenneth D. Luff; Lyn Canter

    2003-11-12

    Integrated software has been written that comprises the tool kit for the Intelligent Computing System (ICS). The software tools in ICS have been developed for characterization of reservoir properties and evaluation of hydrocarbon potential using a combination of inter-disciplinary data sources such as geophysical, geologic and engineering variables. The ICS tools provide a means for logical and consistent reservoir characterization and oil reserve estimates. The tools can be broadly characterized as (1) clustering tools, (2) neural solvers, (3) multiple-linear regression, (4) entrapment-potential calculator and (5) file utility tools. ICS tools are extremely flexible in their approach and use, and applicable to most geologic settings. The tools are primarily designed to correlate relationships between seismic information and engineering and geologic data obtained from wells, and to convert or translate seismic information into engineering and geologic terms or units. It is also possible to apply ICS in a simple framework that may include reservoir characterization using only engineering, seismic, or geologic data in the analysis. ICS tools were developed and tested using geophysical, geologic and engineering data obtained from an exploitation and development project involving the Red River Formation in Bowman County, North Dakota and Harding County, South Dakota. Data obtained from 3D seismic surveys, and 2D seismic lines encompassing nine prospective field areas were used in the analysis. The geologic setting of the Red River Formation in Bowman and Harding counties is that of a shallow-shelf, carbonate system. Present-day depth of the Red River formation is approximately 8000 to 10,000 ft below ground surface. This report summarizes production results from well demonstration activity, results of reservoir characterization of the Red River Formation at demonstration sites, descriptions of ICS tools and strategies for their application.

  7. Insights into hydrocarbon formation by nitrogenase cofactor homologs.

    Science.gov (United States)

    Lee, Chi Chung; Hu, Yilin; Ribbe, Markus W

    2015-04-14

    The L-cluster is an all-iron homolog of nitrogenase cofactors. Driven by europium(II) diethylenetriaminepentaacetate [Eu(II)-DTPA], the isolated L-cluster is capable of ATP-independent reduction of CO and CN(-) to C1 to C4 and C1 to C6 hydrocarbons, respectively. Compared to its cofactor homologs, the L-cluster generates considerably more CH4 from the reduction of CO and CN(-), which could be explained by the presence of a "free" Fe atom that is "unmasked" by homocitrate as an additional site for methanation. Moreover, the elevated CH4 formation is accompanied by a decrease in the amount of longer hydrocarbons and/or the lengths of the hydrocarbon products, illustrating a competition between CH4 formation/release and C-C coupling/chain extension. These observations suggest the possibility of designing simpler synthetic clusters for hydrocarbon formation while establishing the L-cluster as a platform for mechanistic investigations of CO and CN(-) reduction without complications originating from the heterometal and homocitrate components. Nitrogenase is a metalloenzyme that is highly complex in structure and uniquely versatile in function. It catalyzes two reactions that parallel two important industrial processes: the reduction of nitrogen to ammonia, which parallels the Haber-Bosch process in ammonia production, and the reduction of carbon monoxide to hydrocarbons, which parallels the Fischer-Tropsch process in fuel production. Thus, the significance of nitrogenase can be appreciated from the perspective of the useful products it generates: (i) ammonia, the "fixed" nitrogen that is essential for the existence of the entire human population; and (ii) hydrocarbons, the "recycled" carbon fuel that could be used to directly address the worldwide energy shortage. This article provides initial insights into the catalytic characteristics of various nitrogenase cofactors in hydrocarbon formation. The reported assay system provides a useful tool for mechanistic

  8. Improve The Efficiency Of The Study Of Complex Reservoirs And Hydrocarbon Deposits - East Baghdad Field

    Directory of Open Access Journals (Sweden)

    Sudad H. Al-Obaidi

    2015-08-01

    Full Text Available Practical value of this work consists in increasing the efficiency of exploration for oil and gas fields in Eastern Baghdad by optimizing and reducing the complex of well logging coring sampling and well testing of the formation beds and computerizing the data of interpretation to ensure the required accuracy and reliability of the determination of petrophysical parameters that will clarify and increase proven reserves of hydrocarbon fields in Eastern Baghdad. In order to calculate the most accurate water saturation values for each interval of Zubair formation a specific modified form of Archie equation corresponding to this formation was developed.

  9. Maximization of wave motion within a hydrocarbon reservoir for wave-based enhanced oil recovery

    KAUST Repository

    Jeong, C.

    2015-05-01

    © 2015 Elsevier B.V. We discuss a systematic methodology for investigating the feasibility of mobilizing oil droplets trapped within the pore space of a target reservoir region by optimally directing wave energy to the region of interest. The motivation stems from field and laboratory observations, which have provided sufficient evidence suggesting that wave-based reservoir stimulation could lead to economically viable oil recovery.Using controlled active surface wave sources, we first describe the mathematical framework necessary for identifying optimal wave source signals that can maximize a desired motion metric (kinetic energy, particle acceleration, etc.) at the target region of interest. We use the apparatus of partial-differential-equation (PDE)-constrained optimization to formulate the associated inverse-source problem, and deploy state-of-the-art numerical wave simulation tools to resolve numerically the associated discrete inverse problem.Numerical experiments with a synthetic subsurface model featuring a shallow reservoir show that the optimizer converges to wave source signals capable of maximizing the motion within the reservoir. The spectra of the wave sources are dominated by the amplification frequencies of the formation. We also show that wave energy could be focused within the target reservoir area, while simultaneously minimizing the disturbance to neighboring formations - a concept that can also be exploited in fracking operations.Lastly, we compare the results of our numerical experiments conducted at the reservoir scale, with results obtained from semi-analytical studies at the granular level, to conclude that, in the case of shallow targets, the optimized wave sources are likely to mobilize trapped oil droplets, and thus enhance oil recovery.

  10. Solution mining systems and methods for treating hydrocarbon containing formations

    Science.gov (United States)

    Vinegar, Harold J [Bellaire, TX; de Rouffignac, Eric Pierre [Rijswijk, NL; Schoeling, Lanny Gene [Katy, TX

    2009-07-14

    A method for treating an oil shale formation comprising nahcolite is disclosed. The method includes providing a first fluid to a portion of the formation through at least two injection wells. A second fluid is produced from the portion through at least one injection well until at least two injection wells are interconnected such that fluid can flow between the two injection wells. The second fluid includes at least some nahcolite dissolved in the first fluid. The first fluid is injected through one of the interconnected injection wells. The second fluid is produced from at least one of the interconnected injection wells. Heat is provided from one or more heaters to the formation to heat the formation. Hydrocarbon fluids are produced from the formation.

  11. Heating hydrocarbon containing formations in a spiral startup staged sequence

    Science.gov (United States)

    Vinegar, Harold J [Bellaire, TX; Miller, David Scott [Katy, TX

    2009-12-15

    Methods for treating a hydrocarbon containing formation are described herein. Methods may include treating a first zone of the formation. Treatment of a plurality of zones of the formation may be begun at selected times after the treatment of the first zone begins. The treatment of at least two successively treated zones may begin at a selected time after treatment of the previous zone begins. At least two of the successively treated zones may be adjacent to the zone treated previously. The successive treatment of the zones proceeds in an outward, substantially spiral sequence from the first zone so that the treatment of the zones may move substantially spirally outwards towards a boundary of the treatment area.

  12. Predicting hydrocarbon potential of an earth formation underlying water

    International Nuclear Information System (INIS)

    Damaison, G.J.; Kaplan, I.R.

    1981-01-01

    A method for the on-site collection and examination of small concentrations of a carbonaceous gas, e.g. methane, dissolved in a body of water overlying an earth formation to predict hydrocarbon potential of the earth formation under the body of water, the formation being a source of carbonaceous gas, comprises at a known geographic location sampling the water at a selected flow rate and at a selected depth; continuously vacuum separating the water into liquid and gas phases; separating a selected carbonaceous gas from interfering gas species in the presence of an air carrier vented to atmosphere at a known flow rate; and quantitatively oxidizing the selected gas and then cryogenically trapping an oxidant thereof in the presence of said air carrier to provide for an accurate isotopic examination. (author)

  13. Reservoir simulation with the cubic plus (cross-) association equation of state for water, CO2, hydrocarbons, and tracers

    Science.gov (United States)

    Moortgat, Joachim

    2018-04-01

    This work presents an efficient reservoir simulation framework for multicomponent, multiphase, compressible flow, based on the cubic-plus-association (CPA) equation of state (EOS). CPA is an accurate EOS for mixtures that contain non-polar hydrocarbons, self-associating polar water, and cross-associating molecules like methane, ethane, unsaturated hydrocarbons, CO2, and H2S. While CPA is accurate, its mathematical formulation is highly non-linear, resulting in excessive computational costs that have made the EOS unfeasible for large scale reservoir simulations. This work presents algorithms that overcome these bottlenecks and achieve an efficiency comparable to the much simpler cubic EOS approach. The main applications that require such accurate phase behavior modeling are 1) the study of methane leakage from high-pressure production wells and its potential impact on groundwater resources, 2) modeling of geological CO2 sequestration in brine aquifers when one is interested in more than the CO2 and H2O components, e.g. methane, other light hydrocarbons, and various tracers, and 3) enhanced oil recovery by CO2 injection in reservoirs that have previously been waterflooded or contain connate water. We present numerical examples of all those scenarios, extensive validation of the CPA EOS with experimental data, and analyses of the efficiency of our proposed numerical schemes. The accuracy, efficiency, and robustness of the presented phase split computations pave the way to more widespread adoption of CPA in reservoir simulators.

  14. Identification of dissolved organic matter in raw water supply from reservoirs and canals as precursors to trihalomethanes formation.

    Science.gov (United States)

    Musikavong, Charongpun; Wattanachira, Suraphong

    2013-01-01

    The characteristic and quantity of dissolved organic matter (DOM) as trihalomethanes precursors in water from the U-Tapao Basin, Songkhla, Thailand was investigated. The sources of water in the basin consisted of two reservoirs and the U-Tapao canal. The canal receives water discharge from reservoirs, treated and untreated wastewater from agricultural processes, communities and industries. Water downstream of the canal is utilized as a raw water supply. Water samples were collected from two reservoirs, upstream and midstream of the canal, and the raw water supply in the rainy season and summer. The DOM level in the canal water was higher than that of the reservoir water. The highest trihalomethane formation potential (THMFP) was formed in the raw water supply. Fourier-transform infrared peaks of the humic acid were detected in the reservoir and canal waters. Aliphatic hydrocarbon and organic nitrogen were the major chemical classes in the reservoir and canal water characterized by a pyrolysis gas chromatography mass spectrometer. The optimal condition of the poly aluminum chloride (PACl) coagulation was obtained at a dosage of 40 mg/L at pH 7. This condition could reduce the average UV-254 to 57%, DOC to 64%, and THMFP to 42%. In the coagulated water, peaks of O-H groups or H-bonded NH, C˭O of cyclic and acyclic compounds, ketones and quinines, aromatic C˭C, C-O of alcohols, ethers, and carbohydrates, deformation of COOH, and carboxylic acid salts were detected. The aliphatic hydrocarbon, organic nitrogen and aldehydes and ketones were the major chemical classes. These DOM could be considered as the prominent DOM for the water supply plant that utilized PACl as a coagulant.

  15. Polycyclic aromatic hydrocarbons' formation and occurrence in processed food.

    Science.gov (United States)

    Singh, Lochan; Varshney, Jay G; Agarwal, Tripti

    2016-05-15

    Polycyclic aromatic hydrocarbons (PAHs) emerged as an important contaminant group in a gamut of processed food groups like dairy, nuts, herbs, beverages, meat products etc. Different cooking processes and processing techniques like roasting, barbecuing, grilling, smoking, heating, drying, baking, ohmic-infrared cooking etc. contribute towards its formation. The level of PAHs depends on factors like distance from heat source, fuel used, level of processing, cooking durations and methods, whereas processes like reuse, conching, concentration, crushing and storage enhance the amount of PAHs in some food items. This review paper provides insight into the impact of dietary intake of PAHs, its levels and formation mechanism in processed food items and possible interventions for prevention and reduction of the PAHs contamination. The gaps and future prospects have also been assessed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Diagenesis and reservoir quality of the Lower Cretaceous Quantou Formation tight sandstones in the southern Songliao Basin, China

    Science.gov (United States)

    Xi, Kelai; Cao, Yingchang; Jahren, Jens; Zhu, Rukai; Bjørlykke, Knut; Haile, Beyene Girma; Zheng, Lijing; Hellevang, Helge

    2015-12-01

    later than the tight rock formation (with the porosity close to 10%). However, thicker sandstone bodies (more than 2 m) constitute potential hydrocarbon reservoirs.

  17. Reservoir Characterization of the Lower Green River Formation, Southwest Uinta Basin, Utah

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Craig D.; Chidsey, Jr., Thomas C.; McClure, Kevin P.; Bereskin, S. Robert; Deo, Milind D.

    2002-12-02

    The objectives of the study were to increase both primary and secondary hydrocarbon recovery through improved characterization (at the regional, unit, interwell, well, and microscopic scale) of fluvial-deltaic lacustrine reservoirs, thereby preventing premature abandonment of producing wells. The study will encourage exploration and establishment of additional water-flood units throughout the southwest region of the Uinta Basin, and other areas with production from fluvial-deltaic reservoirs.

  18. Formation of polycyclic aromatic hydrocarbons in circumstellar envelopes

    International Nuclear Information System (INIS)

    Frenklach, M.; Feigelson, E.D.

    1989-01-01

    Production of polycyclic aromatic hydrocarbons in carbon-rich circumstellar envelopes was investigated using a kinetic approach. A detailed chemical reaction mechanism of gas-phase PAH formation and growth, containing approximately 100 reactions of 40 species, was numerically solved under the physical conditions expected in cool stellar winds. The chemistry is based on studies of soot production in hydrocarbon pyrolysis and combustion. Several first-ring and second-ring cyclization processes were considered. A linear lumping algorithm was used to describe PAH growth beyond the second aromatic ring. PAH production using this mechanism was examined with respect to a grid of idealized constant velocity stellar winds as well as several published astrophysical models. The basic result is that the onset of PAH production in the interstellar envelopes is predicted to occur within the temperature interval of 1100 to 900 K. The absolute amounts of the PAHs formed, however, are very sensitive to a number of parameters, both chemical and astrophysical, whose values are not accurately known. Astrophysically meaningful quantities of PAHs require particularly dense and slow stellar winds and high initial acetylene abundance. It is suggested that most of the PAHs may be produced in a relatively small fraction of carbon-rich red giants. 87 refs

  19. Research of hard-to-recovery and unconventional oil-bearing formations according to the principle «in-situ reservoir fabric»

    Directory of Open Access Journals (Sweden)

    А. Д. Алексеев

    2017-12-01

    Full Text Available Currently in Russia and the world due to the depletion of old highly productive deposits, the role of hard-to-recover and unconventional hydrocarbons is increasing. Thanks to scientific and technical progress, it became possible to involve in the development very low permeable reservoirs and even synthesize oil and gas in-situ. Today, wells serve not only for the production of hydrocarbons, but also are important elements of stimulation technology, through which the technogenic effect on the formation is carried out in order to intensify inflows. In this context, the reservoir itself can be considered as a raw material for the application of stimulation technologies, and the set of wells through which it is technologically affected is a plant or a fabric whose intermediate product is the stimulated zone of the formation and the final product is reservoir hydrocarbons. Well-established methods for studying hydrocarbon deposits are limited to the definition of standard geological parameters, which are commonly used for reserves calculations (net pay, porosity, permeability, oil and gas saturation coefficient, area, but they are clearly insufficient to characterize the development possibilities using modern stimulation technologies. To study objects that are promising for the production of hydrocarbons, it is necessary to develop fundamentally new approaches that make it possible to assess the availability of resources depending on the technologies used, and to improve the methods for forecasting and evaluating the properties of the stimulated zone of the formation. «In-situ reservoir fabric» is a collective term that combines a combination of technologies, research and methodological approaches aimed at creating and evaluating a stimulated zone of the formation by applying modern methods of technogenic impact on objects containing hard-to-recover and «unconventional» hydrocarbons in order to intensify inflows from them hydrocarbons. In 2015

  20. Geochemical characteristics of crude oil from a tight oil reservoir in the Lucaogou Formation, Jimusar Sag, Junggar Basin

    Science.gov (United States)

    Cao, Z.

    2015-12-01

    Jimusar Sag, which lies in the Junggar Basin,is one of the most typical tight oil study areas in China. However, the properties and origin of the crude oil and the geochemical characteristics of the tight oil from the Lucaogou Formation have not yet been studied. In the present study, 23 crude oilsfrom the Lucaogou Formation were collected for analysis, such as physical properties, bulk composition, saturated hydrocarbon gas chromatography-mass spectrometry (GC-MS), and the calculation of various biomarker parameters. In addition,source rock evaluation and porosity permeability analysis were applied to the mudstones and siltstones. Biomarkers of suitable source rocks (TOC>1, S1+S2>6mg/g, 0.7%hydrocarbon generation history of the Lucaogou source rock, 1D basin modeling was performed. The oil-filling history was also defined by means of basin modeling and microthermometry. The results indicated the presence of low maturity to mature crude oils originating from the burial of terrigenous organic matter beneath a saline lake in the source rocks of mainly type II1kerogen. In addition, a higher proportion of bacteria and algae was shown to contribute to the formation of crude oil in the lower section when compared with the upper section of the Lucaogou Formation. Oil-source correlations demonstrated that not all mudstones within the Lucaogou Formation contributed to oil accumulation.Crude oil from the upper and lower sections originated from thin-bedded mudstones interbedded within sweet spot sand bodies. A good coincidence of filling history and hydrocarbon generation history indicated that the Lucaogou reservoir is a typical in situ reservoir. The mudstones over or beneath the sweet spot bodies consisted of natural caprocks and prevented the vertical movement of oil by capillary forces. Despite being thicker, the thick-bedded mudstone between the upper and lower sweet spots had no obvious contribution to

  1. Compound-specific radiocarbon analysis of polycyclic aromatic hydrocarbons (PAHs) in sediments from an urban reservoir

    International Nuclear Information System (INIS)

    Kanke, Hirohide; Uchida, Masao; Okuda, Tomoaki; Yoneda, Minoru; Takada, Hideshige; Shibata, Yasuyuki; Morita, Masatoshi

    2004-01-01

    A quantitative apportionment of polycyclic aromatic hydrocarbons (PAHs) derived from fossil fuel combustion ( 14 C-free) and biomass burning (contemporary 14 C) was carried out using a recently developed compound-specific radiocarbon analysis (CSRA) method for a sediment core from an urban reservoir located in the central Tokyo metropolitan area, Japan. The 14 C abundance of PAHs in the sediments was measured by accelerator mass spectrometry (AMS) after extraction and purification by three types of column chromatography, by high performance liquid chromatography (HPLC), and, subsequently, by a preparative capillary gas chromatography (PCGC) system. This method yielded a sufficient quantity of pure compounds and allowed a high degree of confidence in the determination of 14 C. The fraction modern values (f M ) of individual PAHs (phenanthrene, alkylphenanthrenes, fluoranthene, pyrene and benz[a]anthracene) in the sediments ranged from 0.06 to 0.21. These results suggest that sedimentary PAHs (those compounds mentioned above) were derived mostly from fossil fuel combustion. Three sectioned-downcore profiles (∼40 cm) of the 14 C abundance in phenanthrene and alkylphenanthrenes showed a decreasing trend with depth, that was anti-correlated with the trend of ΣPAHs concentration. The f M values of phenanthrene were also larger than those of alkylphenanthrenes in each section of the core. This result indicates that phenanthrene received a greater contribution from biomass burning than alkylphenanthrenes throughout the core. This finding highlights the method used here as an useful approach to elucidate the source and origin of PAHs in the environment

  2. Subcontinuum mass transport of hydrocarbons in nanoporous media and long-time kinetics of recovery from unconventional reservoirs

    Science.gov (United States)

    Bocquet, Lyderic

    2015-11-01

    In this talk I will discuss the transport of hydrocarbons across nanoporous media and analyze how this transport impacts at larger scales the long-time kinetics of hydrocarbon recovery from unconventional reservoirs (the so-called shale gas). First I will establish, using molecular simulation and statistical mechanics, that the continuum description - the so-called Darcy law - fails to predict transport within a nanoscale organic matrix. The non-Darcy behavior arises from the strong adsorption of the alkanes in the nanoporous material and the breakdown of hydrodynamics at the nanoscale, which contradicts the assumption of viscous flow. Despite this complexity, all permeances collapse on a master curve with an unexpected dependence on alkane length, which can be described theoretically by a scaling law for the permeance. Then I will show that alkane recovery from such nanoporous reservoirs is dynamically retarded due to interfacial effects occuring at the material's interface. This occurs especially in the hydraulic fracking situation in which water is used to open fractures to reach the hydrocarbon reservoirs. Despite the pressure gradient used to trigger desorption, the alkanes remain trapped for long times until water desorbs from the external surface. The free energy barrier can be predicted in terms of an effective contact angle on the composite nanoporous surface. Using a statistical description of the alkane recovery, I will then demonstrate that this retarded dynamics leads to an overall slow - algebraic - decay of the hydrocarbon flux. Such a behavior is consistent with algebraic decays of shale gas flux from various wells reported in the literature. This work was performed in collaboration with B. Coasne, K. Falk, T. Lee, R. Pellenq and F. Ulm, at the UMI CNRS-MIT, Massachusetts Institute of Technology, Cambridge, USA.

  3. Time-Lapse Seismic Monitoring and Performance Assessment of CO2 Sequestration in Hydrocarbon Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Datta-Gupta, Akhil [Texas Engineering Experiment Station, College Station, TX (United States)

    2017-06-15

    Carbon dioxide sequestration remains an important and challenging research topic as a potentially viable approach for mitigating the effects of greenhouse gases on global warming (e.g., Chu and Majumdar, 2012; Bryant, 2007; Orr, 2004; Hepple and Benson, 2005; Bachu, 2003; Grimston et al., 2001). While CO2 can be sequestered in oceanic or terrestrial biomass, the most mature and effective technology currently available is sequestration in geologic formations, especially in known hydrocarbon reservoirs (Barrufet et al., 2010; Hepple and Benson, 2005). However, challenges in the design and implementation of sequestration projects remain, especially over long time scales. One problem is that the tendency for gravity override caused by the low density and viscosity of CO2. In the presence of subsurface heterogeneity, fractures and faults, there is a significant risk of CO2 leakage from the sequestration site into overlying rock compared to other liquid wastes (Hesse and Woods, 2010; Ennis-King and Patterson, 2002; Tsang et al., 2002). Furthermore, the CO2 will likely interact chemically with the rock in which it is stored, so that understanding and predicting its transport behavior during sequestration can be complex and difficult (Mandalaparty et al., 2011; Pruess et al., 2003). Leakage of CO2 can lead to such problems as acidification of ground water and killing of plant life, in addition to contamination of the atmosphere (Ha-Duong, 2003; Gasda et al., 2004). The development of adequate policies and regulatory systems to govern sequestration therefore requires improved characterization of the media in which CO2 is stored and the development of advanced methods for detecting and monitoring its flow and transport in the subsurface (Bachu, 2003).

  4. The potential for hydrocarbon biodegradation and production of extracellular polymeric substances by aerobic bacteria isolated from a Brazilian petroleum reservoir.

    Science.gov (United States)

    Vasconcellos, S P; Dellagnezze, B M; Wieland, A; Klock, J-H; Santos Neto, E V; Marsaioli, A J; Oliveira, V M; Michaelis, W

    2011-06-01

    Extracellular polymeric substances (EPS) can contribute to the cellular degradation of hydrocarbons and have a huge potential for application in biotechnological processes, such as bioremediation and microbial enhanced oil recovery (MEOR). Four bacterial strains from a Brazilian petroleum reservoir were investigated for EPS production, emulsification ability and biodegradation activity when hydrocarbons were supplied as substrates for microbial growth. Two strains of Bacillus species had the highest EPS production when phenanthrene and n-octadecane were offered as carbon sources, either individually or in a mixture. While Pseudomonas sp. and Dietzia sp., the other two evaluated strains, had the highest hydrocarbon biodegradation indices, EPS production was not detected. Low EPS production may not necessarily be indicative of an absence of emulsifier activity, as indicated by the results of a surface tension reduction assay and emulsification indices for the strain of Dietzia sp. The combined results gathered in this work suggest that a microbial consortium consisting of bacteria with interdependent metabolisms could thrive in petroleum reservoirs, thus overcoming the limitations imposed on each individual species by the harsh conditions found in such environments.

  5. Methane clumped isotopes in the Songliao Basin (China): New insights into abiotic vs. biotic hydrocarbon formation

    Science.gov (United States)

    Shuai, Yanhua; Etiope, Giuseppe; Zhang, Shuichang; Douglas, Peter M. J.; Huang, Ling; Eiler, John M.

    2018-01-01

    Abiotic hydrocarbon gas, typically generated in serpentinized ultramafic rocks and crystalline shields, has important implications for the deep biosphere, petroleum systems, the carbon cycle and astrobiology. Distinguishing abiotic gas (produced by chemical reactions like Sabatier synthesis) from biotic gas (produced from degradation of organic matter or microbial activity) is sometimes challenging because their isotopic and molecular composition may overlap. Abiotic gas has been recognized in numerous locations on the Earth, although there are no confirmed instances where it is the dominant source of commercially valuable quantities in reservoir rocks. The deep hydrocarbon reservoirs of the Xujiaweizi Depression in the Songliao Basin (China) have been considered to host significant amounts of abiotic methane. Here we report methane clumped-isotope values (Δ18) and the isotopic composition of C1-C3 alkanes, CO2 and helium of five gas samples collected from those Xujiaweizi deep reservoirs. Some geochemical features of these samples resemble previously suggested identifiers of abiotic gas (13C-enriched CH4; decrease in 13C/12C ratio with increasing carbon number for the C1-C4 alkanes; abundant, apparently non-biogenic CO2; and mantle-derived helium). However, combining these constraints with new measurements of the clumped-isotope composition of methane and careful consideration of the geological context, suggests that the Xujiaweizi depression gas is dominantly, if not exclusively, thermogenic and derived from over-mature source rocks, i.e., from catagenesis of buried organic matter at high temperatures. Methane formation temperatures suggested by clumped-isotopes (167-213 °C) are lower than magmatic gas generation processes and consistent with the maturity of local source rocks. Also, there are no geological conditions (e.g., serpentinized ultramafic rocks) that may lead to high production of H2 and thus abiotic production of CH4 via CO2 reduction. We propose

  6. Geologic and petrophysic analysis of a travertine block as hydrocarbon reservoir analogue

    International Nuclear Information System (INIS)

    Basso, Mateus; Kuroda, Michelle Chaves; Vidal, Alexandre Campane

    2017-01-01

    Microbialitic limestones are gaining space in petroleum geology due to the existence of many reservoirs composed of these lithologies in the pre-salt producing fields. Travertine, calcareous tufa and stromatolites figure among the rocks proposed as analogous for the microbialitic rocks. This work conduces the study of geological, petrophysical and geophysical parameters of a travertine block measuring 1,60 x 1,60 x 2,70 m, weighing 21,2 tons and available in the Centro de Estudo do Petroleo (CEPETRO) at the Universidade Estadual de Campinas. The Italian block, named T-block, corresponds to the representative elementary volume of its original formation and allows the study in an intermediate scale between the hand sample and the outcrop scale. Permeability tests and gamma ray spectrometry measurements were conducted and the porosity was calculated by image analysis. Models were generated from the obtained data and then associated with descriptive geology of the block. A reduction in permeability, porosity and concentration of elements potassium (K), uranium (U) and thorium (Th) was recorded, following a gradient towards the top of the T-block accompanying the reduction in the degree of development of the rock fabric. (author)

  7. Solution mining dawsonite from hydrocarbon containing formations with a chelating agent

    Science.gov (United States)

    Vinegar, Harold J [Bellaire, TX

    2009-07-07

    A method for treating an oil shale formation comprising dawsonite includes providing heat from one or more heaters to the formation to heat the formation. Hydrocarbon fluids are produced from the formation. At least some dawsonite in the formation is decomposed with the provided heat. A chelating agent is provided to the formation to dissolve at least some dawsonite decomposition products. The dissolved dawsonite decomposition products are produced from the formation.

  8. Solution mining and heating by oxidation for treating hydrocarbon containing formations

    Science.gov (United States)

    Vinegar, Harold J.; Stegemeier, George Leo

    2009-06-23

    A method for treating an oil shale formation comprising nahcolite includes providing a first fluid to a portion of the formation. A second fluid is produced from the portion. The second fluid includes at least some nahcolite dissolved in the first fluid. A controlled amount of oxidant is provided to the portion of the formation. Hydrocarbon fluids are produced from the formation.

  9. Timing of Hydrocarbon Fluid Emplacement in Sandstone Reservoirs in Neogene in Huizhou Sag, Southern China Sea, by Authigenic Illite 40Ar- 39Ar Laser Stepwise Heating

    Science.gov (United States)

    Hesheng, Shi; Junzhang, Zhu; Huaning, Qiu; yu, Shu; Jianyao, Wu; Zulie, Long

    Timing of oil or gas emplacements is a new subject in isotopic geochronology and petroleum geology. Hamilton et al. expounded the principle of the illite K-Ar age: Illite is often the last or one of the latest mineral cements to form prior to hydrocarbon accumulation. Since the displacement of formation water by hydrocarbons will cause silicate diagenesis to cease, K-Ar ages for illite will constrain the timing of this event, and also constrain the maximum age of formation of the trap structure. In this study, the possibility of authigenic illites 40Ar- 39Ar dating has been investigated. The illite samples were separated from the Tertiary sandstones in three rich oil reservoir belts within the Huizhou sag by cleaning, fracturing by cycled cooling-heating, soxhlet-extraction with solvents of benzene and methanol and separating with centrifugal machine. If oil is present in the separated samples, ionized organic fragments with m/e ratios of 36 to 40 covering the argon isotopes will be yielded by the ion source of a mass spectrometer, resulting in wrong argon isotopic analyses and wrong 40Ar- 39Ar ages. The preliminary experiments of illite by heating did show the presence of ionized organic fragments with m/e ratios of 36 to 44. In order to clean up the organic gases completely and obtain reliable analysis results, a special purification apparatus has been established by Qiu et al. and proved valid by the sequent illite analyses. All the illite samples by 40Ar- 39Ar IR-laser stepwise heating yield stair-up age spectra in lower laser steps and plateaux in higher laser steps. The youngest apparent ages corresponding to the beginning steps are reasonable to be interpreted for the hydrocarbon accumulation ages. The weighted mean ages of the illites from the Zhuhai and Zhujiang Formations are (12.1 ± 1.1) Ma and (9.9 ± 1.2) Ma, respectively. Therefore, the critical emplacement of petroleum accumulation in Zhujiang Formation in Huizhou sag took place in ca 10 Ma. Late

  10. Genesis and distribution pattern of carbonate cements in lacustrine deep-water gravity-flow sandstone reservoirs in the third member of the Shahejie Formation in the Dongying Sag, Jiyang Depression, Eastern China

    DEFF Research Database (Denmark)

    Yang, Tian; Cao, Yingchang; Friis, Henrik

    2018-01-01

    The lacustrine deep-water gravity-flow sandstone reservoirs in the third member of the Shahejie Formation are the main exploration target for hydrocarbons in the Dongying Sag, Eastern China. Carbonate cementation is responsible for much of the porosity and permeability reduction in the lacustrine...

  11. Formation of polycyclic aromatic hydrocarbons by ionizing radiations

    International Nuclear Information System (INIS)

    Perez, G.; Lilia, E.; Cristalli, A.

    1986-01-01

    Gaseous 0-terphenyl, 1-phenylnaphthalene, and 9-phenylanthracene were submitted to gamma rays. The yields of cyclization products, polycyclic aromatic hydrocarbons, show that at least one twentieth of the intermediates formed undergo intramolecular reaction. (author)

  12. EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA

    Energy Technology Data Exchange (ETDEWEB)

    Mohan Kelkar

    2002-03-31

    The West Carney Field in Lincoln County, Oklahoma is one of few newly discovered oil fields in Oklahoma. Although profitable, the field exhibits several unusual characteristics. These include decreasing water-oil ratios, decreasing gas-oil ratios, decreasing bottomhole pressures during shut-ins in some wells, and transient behavior for water production in many wells. This report explains the unusual characteristics of West Carney Field based on detailed geological and engineering analyses. We propose a geological history that explains the presence of mobile water and oil in the reservoir. The combination of matrix and fractures in the reservoir explains the reservoir's flow behavior. We confirm our hypothesis by matching observed performance with a simulated model and develop procedures for correlating core data to log data so that the analysis can be extended to other, similar fields where the core coverage may be limited.

  13. Effects of Formation Damage on Productivity of Underground Gas Storage Reservoirs

    Directory of Open Access Journals (Sweden)

    C.I.C. Anyadiegwu

    2013-12-01

    Full Text Available Analysis of the effects of formation damage on the productivity of gas storage reservoirs was performed with depleted oil reservoir (OB-02, located onshore, Niger Delta, Nigeria. Information on the reservoir and the fluids from OB-02 were collected and used to evaluate the deliverabilities of the gas storage reservoir over a 10-year period of operation. The results obtained were used to plot graphs of deliverability against permeability and skin respectively. The graphs revealed that as the permeability decreased, the skin increased, and hence a decrease in deliverability of gas from the reservoir during gas withdrawal. Over the ten years of operating the reservoir for gas storage, the deliverability and permeability which were initially 2.7 MMscf/d and 50 mD, with a skin of 0.2, changed to new values of 0.88 MMscf/d and 24 mD with the skin as 4.1 at the tenth year.

  14. Study on the enhancement of hydrocarbon recovery by characterization of the reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Tae-Jin; Kwak, Young-Hoon; Huh, Dae-Gee [Korea Institute of Geology Mining and Materials, Taejon (KR)] (and others)

    1999-12-01

    The reservoir geochemistry is to understand the origin of these heterogeneities and distributions of the bitumens within the reservoir and to use them not only for exploration but for the development of the petroleums. Methods and principles of the reservoir geochemistry, which are applicable to the petroleum exploration and development, are reviewed in the study. In addition, a case study was carried out on the gas, condensate, water and bitumen samples in the reservoir, taken from the Haenam, Pohang areas and the Ulleung Basin offshore Korea. Mineral geothermometers were studied to estimate the thermal history in sedimentary basins and successfully applied to the Korean onshore and offshore basins. The opal silica-to-quartz transformation was investigated in the Pohang basin as a geothermometer. In Korean basins, the smectite-to-illite changes indicate that smectite and illite can act as the geothermometer to estimate the thermal history of the basins. The albitization reaction was also considered as a temperature indicator. Naturally fractured reservoir is an important source of oil and gas throughout the world. The properties of matrix and fracture are the key parameters in predicting the performances of naturally fractured reservoirs. A new laboratory equipment has been designed and constructed by pressure pulse method to determine the properties, which are (1) the porosity of matrix, (2) the permeability of matrix, (3) the effective width of the fractures, and the permeability of the fractures. (author). 97 refs.

  15. EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA

    Energy Technology Data Exchange (ETDEWEB)

    Mohan Kelkar

    2004-10-01

    West Carney field--one of the newest fields discovered in Oklahoma--exhibits many unique production characteristics. These characteristics include: (1) decreasing water-oil ratio; (2) decreasing gas-oil ratio followed by an increase; (3) poor prediction capability of the reserves based on the log data; and (4) low geological connectivity but high hydrodynamic connectivity. The purpose of this investigation is to understand the principal mechanisms affecting the production, and propose methods by which we can extend the phenomenon to other fields with similar characteristics. In our experimental investigation section, we present the data on surfactant injection in near well bore region. We demonstrate that by injecting the surfactant, the relative permeability of water could be decreased, and that of gas could be increased. This should result in improved gas recovery from the reservoir. Our geological analysis of the reservoir develops the detailed stratigraphic description of the reservoir. Two new stratigraphic units, previously unrecognized, are identified. Additional lithofacies are recognized in new core descriptions. Our engineering analysis has determined that well density is an important parameter in optimally producing Hunton reservoirs. It appears that 160 acre is an optimal spacing. The reservoir pressure appears to decline over time; however, recovery per well is only weakly influenced by the pressure. This indicates that additional opportunity to drill wells exists in relatively depleted fields. A simple material balance technique is developed to validate the recovery of gas, oil and water. This technique can be used to further extrapolate recoveries from other fields with similar field characteristics.

  16. Reservoir evaluation of thin-bedded turbidites and hydrocarbon pore thickness estimation for an accurate quantification of resource

    Science.gov (United States)

    Omoniyi, Bayonle; Stow, Dorrik

    2016-04-01

    One of the major challenges in the assessment of and production from turbidite reservoirs is to take full account of thin and medium-bedded turbidites (succession, they can go unnoticed by conventional analysis and so negatively impact on reserve estimation, particularly in fields producing from prolific thick-bedded turbidite reservoirs. Field development plans often take little note of such thin beds, which are therefore bypassed by mainstream production. In fact, the trapped and bypassed fluids can be vital where maximising field value and optimising production are key business drivers. We have studied in detail, a succession of thin-bedded turbidites associated with thicker-bedded reservoir facies in the North Brae Field, UKCS, using a combination of conventional logs and cores to assess the significance of thin-bedded turbidites in computing hydrocarbon pore thickness (HPT). This quantity, being an indirect measure of thickness, is critical for an accurate estimation of original-oil-in-place (OOIP). By using a combination of conventional and unconventional logging analysis techniques, we obtain three different results for the reservoir intervals studied. These results include estimated net sand thickness, average sand thickness, and their distribution trend within a 3D structural grid. The net sand thickness varies from 205 to 380 ft, and HPT ranges from 21.53 to 39.90 ft. We observe that an integrated approach (neutron-density cross plots conditioned to cores) to HPT quantification reduces the associated uncertainties significantly, resulting in estimation of 96% of actual HPT. Further work will focus on assessing the 3D dynamic connectivity of the low-pay sands with the surrounding thick-bedded turbidite facies.

  17. Facies and porosity origin of reservoirs: Case studies from the Cambrian Longwangmiao Formation of Sichuan Basin, China, and their implications on reservoir prediction

    Directory of Open Access Journals (Sweden)

    Anjiang Shen

    2018-02-01

    Full Text Available The dolostone of the Cambrian Longwangmiao Formation has been a significant gas exploration area in Sichuan Basin. In Gaoshiti-Moxi regions, a giant gas pool with thousands of billion cubic meters' reserve has been discovered. However, the origin of the reservoir and the distribution patterns are still disputed, eventually constraining the dolostone exploration of the Longwangmiao Formation. This paper focuses on the characteristics, origin, and distribution patterns of the dolostone reservoir in the Longwangmiao Formation based on: the outcrop geological survey, cores, thin-sections observation, reservoir geochemical characteristics study, and reservoir simulation experiments. As a result, two realizations were acquired: (1 The Cambrian Longwangmiao Formation could be divided into upper and lower part in Sichuan Basin. Based on the two parts of the Longwangmiao Formation, two lithofacies paleogeographic maps were generated. In addition, the carbonate slope sedimentary models were established. The grainstone shoals are mainly distributed in the shallow slope of the upper part in the Longwangmiao Formation. (2 The grainstone shoals are the developing basis of the dolostone reservoir in the Longwangmiao Formation. Moreover, the contemporaneous dissolution was a critical factor of grainstone shoal reservoir development in the Longwangmiao Formation. Controlled by the exposure surface, the dissolution vugs are not only extensively distributed, but also successively developed along the contemporaneous pore zones. Hence, the distribution patterns could be predicted. The geological understandings of the origin of dolostone reservoir in the Longwangmiao Formation show that the reservoir distributed in the areas of karstification in the Gaoshiti-Moxi regions, as well as the widespread grainstone shoals in the whole basin, are the potential exploration targets. Keywords: Sichuan Basin, Longwangmiao Formation, Carbonate slope, Dolograinstone shoal

  18. Further insight into the mechanism of hydrocarbon layer formation below the divertor of ASDEX Upgrade

    International Nuclear Information System (INIS)

    Mayer, M; Rohde, V

    2006-01-01

    The surface loss probability of hydrocarbon radicals was measured below the roof baffle of the ASDEX Upgrade divertor using the cavity technique. Hydrocarbon layers are mainly formed by sticking of hydrocarbon radicals with high surface loss probabilities of about 0.2 and close to unity. In addition to sticking, re-erosion by atomic hydrogen plays an important role in layer formation. The temperature dependence of layer formation was measured with heated and cooled long term samples from 77 to 475 K. The layer growth rate is larger by a factor of about 40 at 77 K compared with room temperature, while it is lower by a factor of about 70 at 475 K than at room temperature due to enhanced re-erosion. Implications of the results for predictions of tritium retention in future fusion devices and hydrocarbon layer formation on mirror surfaces are discussed

  19. Polycyclic aromatic hydrocarbons as a tracer of star formation?

    NARCIS (Netherlands)

    Peeters, E; Spoon, HWW; Tielens, AGGM

    2004-01-01

    Infrared (IR) emission features at 3.3, 6.2, 7.7, 8.6, and 11.3 mum are generally attributed to IR fluorescence from ( mainly) far-ultraviolet (FUV) pumped large polycyclic aromatic hydrocarbon (PAH) molecules. As such, these features trace the FUV stellar flux and are thus a measure of star

  20. Aryl hydrocarbon receptor (AhR) inducers and estrogen receptor (ER) activities in surface sediments of Three Gorges Reservoir, China evaluated with in vitro cell bioassays

    NARCIS (Netherlands)

    Wang, J.; Bovee, T.F.H.; Bi, Y.; Bernhöft, S.; Schramm, K.W.

    2014-01-01

    Two types of biological tests were employed for monitoring the toxicological profile of sediment cores in the Three Gorges Reservoir (TGR), China. In the present study, sediments collected in June 2010 from TGR were analyzed for estrogen receptor (ER)- and aryl hydrocarbon receptor (AhR)-mediated

  1. Jurassic and Cretaceous clays of the northern and central North Sea hydrocarbon reservoirs reviewed

    Energy Technology Data Exchange (ETDEWEB)

    Wilkinson, M.; Haszeldine, R.S.; Fallick, A.E.

    2006-03-15

    illite occurs almost ubiquitously within the clastic sediments of the North Sea. An early pore-lining phase has been interpreted as both infiltrated clastic clay, and as an early diagenetic phase. Early clays may have been quite smectite-rich illites, or even discrete smectites. Later, fibrous illite is undoubtedly neoformed, and can degrade reservoir quality significantly. Both within sandstones and shales, there is an apparent increase in the K content deeper than 4 km of burial, which could be due to dilution of the early smectite-rich phase by new growth illite, or to the progressive illitization of existing I-S. Much of the 'illite' that has been dated by the K-Ar method may therefore actually be I-S. The factors that control the formation of fibrous illite are only poorly known, though temperature must play a role. Illite growth has been proposed for almost the entire range of diagenetic temperatures (e.g. 15-20{sup o}C, Brent Group; 35-40{sup o}C, Oxfordian Sand, Inner Moray Firth; 50-90{sup o}C, Brae formation; 100-110{sup o}C, Brent Group; 130-140{sup o}C, Haltenbanken). It seems unlikely that there is a threshold temperature below which illite growth is impossible (or too slow to be significant), though this is a recurring hypothesis in the literature. Instead, illite growth seems to be an event, commonly triggered by oil emplacement or another change in the physiochemical conditions within the sandstone, such as an episode of overpressure release. Hence fibrous illite can grow at any temperature encountered during diagenesis. Although there is an extensive dataset of K-Ar ages of authigenic illites from the Jurassic of the North Sea, there is no consensus as to whether the data are meaningful, or whether the purified illite samples prepared for analysis are so contaminated with detrital phases as to render the age data meaningless. At present it is unclear about how to resolve this problem, though there is some indication that chemical micro

  2. The impact of pressure-dependent interfacial tension and buoyancy forces upon pressure depletion in virgin hydrocarbon reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    McDougall, S.R.; Mackay, E.J. [Heriot-Watt University, Edinburgh (United Kingdom). Dept. of Petroleum Engineering

    1998-07-01

    This paper describes a combined experimental and theoretical study of the microscopic pore-scale physics characterizing gas and liquid production from hydrocarbon reservoirs during pressure depletion. The primary focus of the study was to examine the complex interactions between interfacial tension and buoyancy forces during gas evolution within a porous medium containing oil, water and gas. A specialized 2-dimensional glass micromodel, capable of operating at pressure in excess of 35 MPa was used to visualize the physical mechanisms governing such microscopic processes. In addition, a 3-dimensional, 3-phase numerical pore-scale simulator was developed that can be used to examine gas evolution over a range of different lengthscales and for a wide range of fluid and rock properties. The model incorporates all of the important physics observed in associated laboratory micromodel experiments, including: embryonic nucleation, supersaturation effects, multiphase diffusion, bubble growth-migration-fragmentation, and three-phase spreading coefficients. The precise pore-scale mechanisms governing gas evolution were found to be far more subtle than earlier models would suggest because of the large variation of gas/oil interfacial tension with pressure. This has a profound effect upon the migration of gas structures during depletion and, in models pertaining to reservoir rock, the process of gas migration is consequently much slower than previously thought. This is the first time that such a phenomena has been modelled at the pore-scale and the implications for production forecasting are thought to be significant. (author)

  3. Petrophysics Features of the Hydrocarbon Reservoirs in the Precambrian Crystalline Basement

    Science.gov (United States)

    Plotnikova, Irina

    2014-05-01

    A prerequisite for determining the distribution patterns of reservoir zones on the section of crystalline basement (CB) is the solution of a number of problems connected with the study of the nature and structure of empty spaces of reservoirs with crystalline basement (CB) and the impact of petrological, and tectonic factors and the intensity of the secondary transformation of rocks. We decided to choose the Novoelhovskaya well # 20009 as an object of our research because of the following factors. Firstly, the depth of the drilling of the Precambrian crystalline rocks was 4077 m ( advance heading - 5881 m) and it is a maximum for the Volga-Urals region. Secondly, petrographic cut of the well is made on core and waste water, and the latter was sampled regularly and studied macroscopically. Thirdly, a wide range of geophysical studies were performed for this well, which allowed to identify promising areas of collector with high probability. Fourth, along with geological and technical studies that were carried out continuously (including washing and bore hole redressing periods), the studies of the gaseous component of deep samples of clay wash were also carried out, which indirectly helped us estimate reservoir properties and fluid saturation permeable zones. As a result of comprehensive analysis of the stone material and the results of the geophysical studies we could confidently distinguish 5 with strata different composition and structure in the cut of the well. The dominating role in each of them is performed by rocks belonging to one of the structural-material complexes of Archean, and local variations in composition and properties are caused by later processes of granitization on different stages and high temperature diaphthoresis imposed on them. Total capacity of reservoir zones identified according to geophysical studies reached 1034.2 m, which corresponds to 25.8% of the total capacity of 5 rock masses. However, the distribution of reservoirs within the cut

  4. Multi Data Reservoir History Matching using the Ensemble Kalman Filter

    KAUST Repository

    Katterbauer, Klemens

    2015-01-01

    Reservoir history matching is becoming increasingly important with the growing demand for higher quality formation characterization and forecasting and the increased complexity and expenses for modern hydrocarbon exploration projects. History

  5. Hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    1927-02-22

    Coal tar, mineral oils, bitumens, coal extraction products, hydrogenation products of coal, oil schists can be atomized and heated with steam to decompose pyrogenetically and form gases rich in olefins which may be heated with or without pressure and with or without catalysts to produce liquid hydrocarbons of low boiling point, some of which may be aromatic. The apparatus should be lined with copper, silica, or ferrosilicon to prevent contact of the bases with iron which causes deposition of soot. Catalysts used may be metal oxides, silica, graphite, active charcoal, mica, pumice, porcelain, barium carbonate, copper, silver, gold, chromium, boron, or their compounds. At temperatures from 300 to 400/sup 0/C, olefins are produced. At higher temperatures, naphthenes and benzene hydrocarbons are produced.

  6. Preliminary formation analysis for compressed air energy storage in depleted natural gas reservoirs :

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, William Payton

    2013-06-01

    The purpose of this study is to develop an engineering and operational understanding of CAES performance for a depleted natural gas reservoir by evaluation of relative permeability effects of air, water and natural gas in depleted natural gas reservoirs as a reservoir is initially depleted, an air bubble is created, and as air is initially cycled. The composition of produced gases will be evaluated as the three phase flow of methane, nitrogen and brine are modeled. The effects of a methane gas phase on the relative permeability of air in a formation are investigated and the composition of the produced fluid, which consists primarily of the amount of natural gas in the produced air are determined. Simulations of compressed air energy storage (CAES) in depleted natural gas reservoirs were carried out to assess the effect of formation permeability on the design of a simple CAES system. The injection of N2 (as a proxy to air), and the extraction of the resulting gas mixture in a depleted natural gas reservoir were modeled using the TOUGH2 reservoir simulator with the EOS7c equation of state. The optimal borehole spacing was determined as a function of the formation scale intrinsic permeability. Natural gas reservoir results are similar to those for an aquifer. Borehole spacing is dependent upon the intrinsic permeability of the formation. Higher permeability allows increased injection and extraction rates which is equivalent to more power per borehole for a given screen length. The number of boreholes per 100 MW for a given intrinsic permeability in a depleted natural gas reservoir is essentially identical to that determined for a simple aquifer of identical properties. During bubble formation methane is displaced and a sharp N2methane boundary is formed with an almost pure N2 gas phase in the bubble near the borehole. During cycling mixing of methane and air occurs along the boundary as the air bubble boundary moves. The extracted gas mixture changes as a

  7. A Geochemical Model of Fluids and Mineral Interactions for Deep Hydrocarbon Reservoirs

    Directory of Open Access Journals (Sweden)

    Jun Li

    2017-01-01

    Full Text Available A mutual solubility model for CO2-CH4-brine systems is constructed in this work as a fundamental research for applications of deep hydrocarbon exploration and production. The model is validated to be accurate for wide ranges of temperature (0–250°C, pressure (1–1500 bar, and salinity (NaCl molality from 0 to more than 6 mole/KgW. Combining this model with PHREEQC functionalities, CO2-CH4-brine-carbonate-sulfate equilibrium is calculated. From the calculations, we conclude that, for CO2-CH4-brine-carbonate systems, at deeper positions, magnesium is more likely to be dissolved in aqueous phase and calcite can be more stable than dolomite and, for CO2-CH4-brine-sulfate systems, with a presence of CH4, sulfate ions are likely to be reduced to S2− and H2S in gas phase could be released after S2− saturated in the solution. The hydrocarbon “souring” process could be reproduced from geochemical calculations in this work.

  8. Sedimentology and Reservoir Characteristics of Early Cretaceous Fluvio-Deltaic and Lacustrine Deposits, Upper Abu Gabra Formation, Sufyan Sub-basin, Muglad Rift Basin, Sudan

    Science.gov (United States)

    Yassin, Mohamed; Abdullatif, Osman; Hariri, Mustafa

    2017-04-01

    during the diagenetic process increase it. The estimated porosity in Abu Gabra Formation ranges from 10 to 21% with an average of 15%; while permeability varies from 200 to 400 md. The results of this study might contribute to better understanding of reservoir heterogeneities and help in reservoir quality prediction, therefore enhancing the hydrocarbon productivity.

  9. ANALYSIS OF OIL-BEARING CRETACEOUS SANDSTONE HYDROCARBON RESERVOIRS, EXCLUSIVE OF THE DAKOTA SANDSTONE, ON THE JICARILLA APACHE INDIAN RESERVATION, NEW MEXICO

    International Nuclear Information System (INIS)

    Jennie Ridgley

    2000-01-01

    A goal of the Mesaverde project was to better define the depositional system of the Mesaverde in hopes that it would provide insight to new or by-passed targets for oil exploration. The new, detailed studies of the Mesaverde give us a better understanding of the lateral variability in depositional environments and facies. Recognition of this lateral variability and establishment of the criteria for separating deltaic, strandplain-barrier, and estuarine deposits from each other permit development of better hydrocarbon exploration models, because the sandstone geometry differs in each depositional system. Although these insights will provide better exploration models for gas exploration, it does not appear that they will be instrumental in finding more oil. Oil in the Mesaverde Group is produced from isolated fields on the Chaco slope; only a few wells define each field. Production is from sandstone beds in the upper part of the Point Lookout Sandstone or from individual fluvial channel sandstones in the Menefee. Stratigraphic traps rather than structural traps are more important. Source of the oil in the Menefee and Point Lookout may be from interbedded organic-rich mudstones or coals rather than from the Lewis Shale. The Lewis Shale appears to contain more type III organic matter and, hence, should produce mainly gas. Outcrop studies have not documented oil staining that might point to past oil migration through the sandstones of the Mesaverde. The lack of oil production may be related to the following: (1) lack of abundant organic matter of the type I or II variety in the Lewis Shale needed to produce oil, (2) ineffective migration pathways due to discontinuities in sandstone reservoir geometries, (3) cementation or early formation of gas prior to oil generation that reduced effective permeabilities and served as barriers to updip migration of oil, or (4) erosion of oilbearing reservoirs from the southern part of the basin. Any new production should mimic that of

  10. Exploitation and Optimization of Reservoir Performance in Hunton Formation, Oklahoma

    Energy Technology Data Exchange (ETDEWEB)

    Kelkar, Mohan

    2001-05-08

    This report presents the work done so far on Hunton Formation in West Carney Field in Lincoln County, Oklahoma. West Carney Field produces oil and gas from the Hunton Formation. The field was developed starting in 1995. Some of the unique characteristics of the field include decreasing water oil and ratio over time, decreasing gas-oil ratio at the beginning of production, inability to calculate oil reserves in the field based on long data, and sustained oil rates over long periods of time.

  11. Formation of diamonds out of hydrocarbon gas in the earth's mantle

    International Nuclear Information System (INIS)

    Krason, J.; Szymanski, A.; Savkevitch, S.S.

    1991-01-01

    This paper discusses the concept of formation of polycrystalline diamonds being discussed dint he context of a very rapid, dynamic decomposition of the hydrocarbon gas, initially biogenic or thermogenic condensed in gas hydrates, naturally locked and highly compressed in the hosting rocks. Gas hydrates are of solid, ice-like composition, mostly of hydrocarbon. Gas hydrates, composed of polyhedral cages, may have two types of structural forms: the body-centered structure or Structure I (small molecules) and diamond lattice or Structure II (large molecules). The crystal structure of the gas hydrate depends on the geometry of gas molecules. The thermodynamic conditions required for stabilization and preservation of the gas hydrates can be changed. Thus, in this concept, the principal source for at least some diamond deposits can originally be highly condensed hydrocarbons. In this case, if all the above indicated thermodynamic conditions and processes are met, naturally precondensed hydrocarbons can be directly converted into polycrystalline, extremely coherent diamonds

  12. Porosity and reservoir potentiality of the Cherahil Formation limestone (middle-upper Eocene) in the Gulf of Gabes (Tunisia)

    Science.gov (United States)

    Njahi, Zahra; Kassabi, Nadhem; Touir, Jamel

    2017-07-01

    During the middle and upper Eocene, the deposits in the Gulf of Gabes correspond to the Cherahil Formation, which is sub-divided into three units, which are as follows from base to top: the Lower Cherahil A, the Siouf and the Upper Cherahil B members. The Siouf member has a lateral equivalent in the Souar Formation named Reineche member. The Cherahil Formation has never been considered by oil companies as a particular drilling target in the Gulf of Gabes (offshore east Tunisia) despite the presence of hydrocarbon at the bottom of Cherahil Formation in Sidi Behara and Sidi Litayem oil fields in Sfax Area (onshore east Tunisia) and in its equivalent carbonate beds in Jebel Trozza (Central Tunisia). Therefore, the evaluation of porosity in the carbonate levels of Cherahil Formation in 20 drilling wells were performed on well logging by applying Wyllie method. The obtained results show that the studied carbonates are characterized by an economically important total porosity average ranging between 5% and 55%, and both vertical and lateral variations. The vertical porosity variation was controlled by the sea-level fluctuation that, in turn, controlled the evolution of carbonate sedimentary environments and relative facies. The lateral porosity variation followed the Tunisian middle-upper Eocene paleogeography changes controlled by NW-SE synsedimentary tectonic trends. Considering the important features of the Cherahil Formation and the coexistence of components of an oil system in the Gulf of Gabes, this formation can be an important potential reservoir and subsequently a new petroleum exploration target in the Gulf of Gabes.

  13. N2Vision technology application for direct identification of commercial hydrocarbons in Trenton-Black River Formations of Ontario

    Energy Technology Data Exchange (ETDEWEB)

    Agou, S. [Productive Geoscience Exploration Inc., Whitby, ON (Canada)

    2006-07-01

    N2Vision seismic signal interpretation technology has been used to evaluate the petroleum and natural gas potential in the Trenton-Black River (TBR) formations of Ontario. The technology was developed in Russia in the 1980s to solve complex problems in frontier exploration. The N2Vision neural networks algorithm is a multilayer feed-forward neural network (MFFN) for pattern recognition and is based on data from existing wells collected over 20 years of method application. The algorithm recognizes hydrocarbons by establishing relationships between all attributes of the seismic field and data from existing wells. In Ontario, the algorithm was trained on data from many productive and non-productive wells from the researched and adjacent fields, as well as on seismic patterns of geological features obtained from the Yurubchen-Tokhom oil field in easter Siberia. The 2D seismic data was collected by different companies. It targeted shallower horizons and had non-consistent quality. The results of N2Vision were shown to be well correlated with the objective data. The common geological features of southern Ontario, Yurubchen field and the Baltic Syneclise were presented in this paper. All 3 regions are found in specific geodynamically prestressed and heated up zones that are represented primarily by shallow carbonates, leaching dolomites and highly permeable reservoirs with vertical fracturing. This paper demonstrated that the technology can greatly reduce the risk of selecting drilling locations, while significantly decreasing the cost of hydrocarbon exploration. tabs., figs.

  14. Exploitation and Optimization of Reservoir Performance in Hunton Formation, Oklahoma

    Energy Technology Data Exchange (ETDEWEB)

    Mohan Kelkar

    2007-06-30

    Hunton formation in Oklahoma has been the subject of attention for the last ten years. The new interest started with the drilling of the West Carney field in 1995 in Lincoln County. Subsequently, many other operators have expanded the search for oil and gas in Hunton formation in other parts of Oklahoma. These fields exhibit many unique production characteristics, including: (1) decreasing water-oil or water-gas ratio over time; (2) decreasing gas-oil ratio followed by an increase; (3) poor prediction capability of the reserves based on the log data; and (4) low geological connectivity but high hydrodynamic connectivity. The purpose of this investigation is to understand the principal mechanisms affecting the production, and propose methods by which we can optimize the production from fields with similar characteristics.

  15. Reservoir diagenesis research of Silurian Longmaxi Formation in Sichuan Basin, China

    Directory of Open Access Journals (Sweden)

    Lingming Kong

    2016-06-01

    Full Text Available The reservoir diagenesis of Silurian Longmaxi Formation in Sichuan Basin was studied based on a large number of thin section identification, scanning electron microscopy analysis, X-ray diffraction tests, and some other experiments. Seven diagenetic processes were identified, including compaction, cementation, clay mineral transformation, replacement, dissolution, organic matter thermal maturation, and tectonic disruption. Three kinds of cements (quartz, carbonate and sulfide were recognized, while the source material of quartz cements and the main factor of forming abundant carbonate cements were summed up. According to the single well analysis of the Well N3, it shows that the best, the suboptimal and the none shale reservoir sections were subjected to different diagenetic transformations. As to best shale reservoir, except for compaction, all the main inorganic diagenesis were significantly related to organic matter maturation. Through comprehensive analysis of diagenetic indicators, it is observed that the reservoir has already been in period B of middle diagenetic stage to late diagenetic stage. The inorganic diagenesis has a significant impact on shale reservoir, because it not only controls the conservation, development, and evolution of porosity, but also the mechanical property and the adsorption capacity of rocks. The organic diagenesis is the source material of shale gas, and it generates a large number of nanoporosity in organic matter, which increases the total porosity and the adsorption capacity of the reservoir.

  16. POLYCYCLIC AROMATIC HYDROCARBON FORMATION IN OPPOSED FLOW DIFFUSION FLAMES OF ETHANE. (R825412)

    Science.gov (United States)

    AbstractThe effect of fuel-side carbon density on the levels of polycyclic aromatic hydrocarbon (PAH) formation in atmospheric pressure, opposed flow, ethane diffusion flames has been studied using heated micro-probe sampling and gas chromatography/mass spectrometry (...

  17. Water exposure assessment of aryl hydrocarbon receptor agonists in Three Gorges Reservoir, China using SPMD-based virtual organisms.

    Science.gov (United States)

    Wang, Jingxian; Bernhöft, Silke; Pfister, Gerd; Schramm, Karl-Werner

    2014-10-15

    SPMD-based virtual organisms (VOs) were deployed at five to eight sites in the Three Gorges Reservoir (TGR), China for five periods in 2008, 2009 and 2011. The water exposure of aryl hydrocarbon receptor (AhR) agonists was assessed by the VOs. The chosen bioassay response for the extracts of the VOs, the induction of 7-ethoxyresorufin-O-deethylase (EROD) was assayed using a rat hepatoma cell line (H4IIE). The results show that the extracts from the VOs could induce AhR activity significantly, whereas the chemically derived 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) equivalent (TEQcal) accounted for water level reached a maximum of 175 m. Although the aqueous concentration of AhR agonists of 0.8-4.8 pg TCDDL(-1) in TGR was not alarming, the tendency of accumulating high concentration of AhR agonists in VO lipid and existence of possible synergism or antagonism in the water may exhibit a potential hazard to local biota being exposed to AhR agonists. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Integrated Modeling and Carbonate Reservoir Analysis, Upper Jurassic Smackover Formation, Fishpond Field, Southwest Alabama

    Science.gov (United States)

    Owen, Alexander Emory

    This field case study focuses on Upper Jurassic (Oxfordian) Smackover hydrocarbon reservoir characterization, modeling and evaluation at Fishpond Field, Escambia County, Alabama, eastern Gulf Coastal Plain of North America. The field is located in the Conecuh Embayment area, south of the Little Cedar Creek Field in Conecuh County and east of Appleton Field in Escambia County. In the Conecuh Embayment, Smackover microbial buildups commonly developed on Paleozoic basement paleohighs in an inner to middle carbonate ramp setting. The microbial and associated facies identified in Fishpond Field are: (F-1) peloidal wackestone, (F-2) peloidal packstone, (F-3) peloidal grainstone, (F-4) peloidal grainstone/packstone, (F-5) microbially-influenced wackestone, (F-6) microbially-influenced packstone, (F-7) microbial boundstone, (F-8) oolitic grainstone, (F-9) shale, and (F-10) dolomitized wackestone/packstone. The Smackover section consists of an alternation of carbonate facies, including F-1 through F-8. The repetitive vertical trend in facies indicates variations in depositional conditions in the area as a result of changes in water depth, energy conditions, salinity, and/or water chemistry due to temporal variations or changes in relative sea level. Accommodation for sediment accumulation also was produced by a change in base level due to differential movement of basement rocks as a result of faulting and/or subsidence due to burial compaction and extension. These changes in base level contributed to the development of a microbial buildup that ranges between 130-165 ft in thickness. The Fishpond Field carbonate reservoir includes a lower microbial buildup interval, a middle grainstone/packstone interval and an upper microbial buildup interval. The Fishpond Field has sedimentary and petroleum system characteristics similar to the neighboring Appleton and Little Cedar Creek Fields, but also has distinct differences from these Smackover fields. The characteristics of the

  19. Integrated petrophysical and sedimentological study of the Middle Miocene Nullipore Formation (Ras Fanar Field, Gulf of Suez, Egypt): An approach to volumetric analysis of reservoirs

    Science.gov (United States)

    Afife, Mohamed M.; Sallam, Emad S.; Faris, Mohamed

    2017-10-01

    This study aims to integrate sedimentological, log and core analyses data of the Middle Miocene Nullipore Formation at the Ras Fanar Field (west central Gulf of Suez, Egypt) to evaluate and reconstruct a robust petrophysical model for this reservoir. The Nullipore Formation attains a thickness ranging from 400 to 980 ft and represents a syn-rift succession of the Middle Miocene marine facies. It consists of coralline-algal-reefal limestone, dolomitic limestone and dolostone facies, with few clay and anhydrite intercalations. Petrographically, seven microfacies types (MF1 to MF7) have been recognized and assembled genetically into three related facies associations (FA1 to FA3). These associations accumulated in three depositional environments: 1) peritidal flat, 2) restricted lagoon, and 3) back-shoal environments situated on a shallow inner ramp (homoclinal) setting. The studied rocks have been influenced by different diagenetic processes (dolomitization, cementation, compaction, authigenesis and dissolution), which led to diminishing and/or enhancing the reservoir quality. Three superimposed 3rd-order depositional sequences are included in the Nullipore succession displaying both retrogradational and aggradational packages of facies. Given the hydrocarbon potential of the Nullipore Formation, conventional well logs of six boreholes and core analyses data from one of these wells (RF-B12) are used to identify electrofacies zones of the Nullipore Formation. The Nullipore Formation has been subdivided into three electrofacies zones (the Nullipore-I, Nullipore-II, and Nullipore-III) that are well-correlated with the three depositional sequences. Results of petrographical studies and log analyses data have been employed in volumetric calculations to estimate the amount of hydrocarbon-in-place and then the ultimate recovery of the Nullipore reservoir. The volumetric calculations indicate that the total volume of oil-in-place is 371 MMSTB at 50% probability (P50), whereas

  20. Mercury-free PVT apparatus for thermophysical property analyses of hydrocarbon reservoir fluids. Final report, August 16, 1990--July 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Lansangan, R.M.; Lievois, J.S.

    1992-08-31

    Typical reservoir fluid analyses of complex, multicomponent hydrocarbon mixtures include the volumetric properties, isothermal compressibility, thermal expansivity, equilibrium ratios, saturation pressure, viscosities, etc. These parameters are collectively referred to as PVT properties, an acronym for the primary state variables; pressure, volume, and temperature. The reservoir engineer incorporates this information together with the porous media description in performing material balance calculations. These calculations lead to the determination (estimation) of the initial hydrocarbon in-place, the future reservoir performance, the optimal production scheme, and the ultimate hydrocarbon recovery. About four years ago, Ruska Instrument Corporation embarked on a project to develop an apparatus designed to measure PVT properties that operates free of mercury. The result of this endeavor is the 2370 Hg-Free PVT system which has been in the market for the last three years. The 2370 has evolved from the prototype unit to its present configuration which is described briefly in this report. The 2370 system, although developed as a system-engineered apparatus based on existing technology, has not been exempt from this burden-of-proof Namely, the performance of the apparatus under routine test conditions with real reservoir fluids. This report summarizes the results of the performance and applications testing of the 2370 Hg-Free PVT system. Density measurements were conducted on a pure fluid. The results were compared against literature values and the prediction of an equation of state. Routine reservoir fluid analyses were conducted with a black oil and a retrograde condensate gas mixtures. Limited comparison of the results were performed based on the same tests performed on a conventional mercury-based PVT apparatus. The results of these tests are included in this report.

  1. Kinetics of Hydrocarbon formation in a- C:H Film deposition plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Cal, E de la; Tabares, F L

    1993-07-01

    The formation of C2 and Cp hydrocarbons during the PACVD of a-C:H films from admixtures of methane with H2 and He has been investigated by mass spectrometry under several deposition condition. The time evolution of the observed species indicates that the formation mechanisms of ethylene and acetylene are sensitive to the conditions of the wall during the growing of the film. Acetylene are sensitive to the conditions of the wall during the growing of the film. Acetylene formation was found to be directly related to the formation of the film on top of the carburized metal. (Author) 12 refs.

  2. Kinetics of Hydrocarbon formation in a-C:H Film deposition plasmas

    International Nuclear Information System (INIS)

    Cal, E. de la; Tabares, F. L.

    1993-01-01

    The formation of C2 and Cp hydrocarbons during the PACVD of a-C:H films from admixtures of methane with H2 and He has been investigated by mass spectrometry under several deposition condition. The time evolution of the observed species indicates that the formation mechanisms of ethylene and acetylene are sensitive to the conditions of the wall during the growing of the film. Acetylene are sensitive to the conditions of the wall during the growing of the film. Acetylene formation was found to be directly related to the formation of the film on top of the carburized metal. (Author) 12 refs

  3. Reactivity of hydrocarbons in response to injection of a CO2/O2 mixture under depleted reservoir conditions: experimental and numerical modeling

    International Nuclear Information System (INIS)

    Pacini-Petitjean, Claire

    2015-01-01

    The geological storage of CO 2 (CO 2 Capture-Storage - CCS) and the Enhanced Oil Recovery (EOR) by CO 2 injection into petroleum reservoirs could limit CO 2 atmospheric accumulation. However, CO 2 can be associated with oxygen. To predict the hydrocarbon evolution under these conditions involves the study of oxidation mechanisms. Oxidation experiment and kinetic detailed modeling were carried out with pure compounds. The comparison between experimental and modeling results led to the construction of a hydrocarbon oxidation kinetic model and emphasized the parameters leading to auto ignition. The good agreement between our experiments and modeling are promising for the development of a tool predicting the critical temperature leading to auto-ignition and the evolution of hydrocarbon composition, to estimate the stability of a petroleum system in CO 2 injection context. (author) [fr

  4. Zeolite-Catalyzed Hydrocarbon Formation from Methanol: Density Functional Simulations

    Directory of Open Access Journals (Sweden)

    George Fitzgerald

    2002-04-01

    Full Text Available Abstract: We report detailed density functional theory (DFT calculations of important mechanisms in the methanol to gasoline (MTG process in a zeolite catalyst. Various reaction paths and energy barriers involving C-O bond cleavage and the first C-C bond formation are investigated in detail using all-electron periodic supercell calculations and recently developed geometry optimization and transition state search algorithms. We have further investigated the formation of ethanol and have identified a different mechanism than previously reported [1], a reaction where water does not play any visible role. Contrary to recent cluster calculations, we were not able to find a stable surface ylide structure. However, a stable ylide structure built into the zeolite framework was found to be possible, albeit a very high reaction barrier.

  5. Outcrop analogue study of Permocarboniferous geothermal sandstone reservoir formations (northern Upper Rhine Graben, Germany): impact of mineral content, depositional environment and diagenesis on petrophysical properties

    Science.gov (United States)

    Aretz, Achim; Bär, Kristian; Götz, Annette E.; Sass, Ingo

    2016-07-01

    The Permocarboniferous siliciclastic formations represent the largest hydrothermal reservoir in the northern Upper Rhine Graben in SW Germany and have so far been investigated in large-scale studies only. The Cenozoic Upper Rhine Graben crosses the Permocarboniferous Saar-Nahe Basin, a Variscan intramontane molasse basin. Due to the subsidence in this graben structure, the top of the up to 2-km-thick Permocarboniferous is located at a depth of 600-2900 m and is overlain by Tertiary and Quaternary sediments. At this depth, the reservoir temperatures exceed 150 °C, which are sufficient for geothermal electricity generation with binary power plants. To further assess the potential of this geothermal reservoir, detailed information on thermophysical and hydraulic properties of the different lithostratigraphical units and their depositional environment is essential. Here, we present an integrated study of outcrop analogues and drill core material. In total, 850 outcrop samples were analyzed, measuring porosity, permeability, thermal conductivity and thermal diffusivity. Furthermore, 62 plugs were taken from drillings that encountered or intersected the Permocarboniferous at depths between 1800 and 2900 m. Petrographic analysis of 155 thin sections of outcrop samples and samples taken from reservoir depth was conducted to quantify the mineral composition, sorting and rounding of grains and the kind of cementation. Its influence on porosity, permeability, the degree of compaction and illitization was quantified. Three parameters influencing the reservoir properties of the Permocarboniferous were detected. The strongest and most destructive influence on reservoir quality is related to late diagenetic processes. An illitic and kaolinitic cementation and impregnation of bitumina document CO2- and CH4-rich acidic pore water conditions, which are interpreted as fluids that migrated along a hydraulic contact from an underlying Carboniferous hydrocarbon source rock. Migrating

  6. Invasion of geothermal fluids into hydrocarbon reservoirs; La invasion de fluidos geotermicos en yacimientos de hidrocarburos

    Energy Technology Data Exchange (ETDEWEB)

    Suarez Arriaga, Mario Cesar [Universidad Michoacana, Facultad de Ciencias, Morelia, Michoacan (Mexico)]. E-mail: msuarez@umich.mx

    2009-01-15

    Oil reservoirs beneath the coast of the Gulf of Mexico contain geothermal brine at 150 degrees Celsius and produce a mixture of hot brine and oil. Water from an aquifer 6000 m deep flows vertically through conductive faults. These nonisothermal conditions affect the effective saturations and the relative permeability of the immiscible phases. Dynamic viscosities of oil and water diminish, affecting the displacement of both fluids. Studied wells produce from the oil-saturated zone above the aquifer, yet the total volume of produced water can equal or exceed the volume of oil. The presence of water is a severe problem. We produced an original numerical model able to predict the critical production when the wells start to be invaded by geothermal brine. The model has a single equation in partial derivatives, of a parabolic and nonlineal type, which is a function of water saturation, three-dimension space and time. A gas phase can be included in the model. This equation is a generalization of the classic isothermal result of Buckley-Leverett, in a single dimension. The model is solved numerically by using the Finite Element method on a nonstructured network. The historic effect of water invasion observed in some critical cases is reproduced. After production with both phases stable, a sudden brine invasion can occur with a sharp reduction of the oil volume produced. The immediate objective is to optimize the production so the well will be able to produce a stable water-oil mix where oil always prevails. [Spanish] Se reportan reservorios de aceite situados en la costa del Golfo de Mexico que son invadidos por salmuera geotermica con una temperatura de 150 grados centigrados, produciendo una mezcla variable de agua caliente y aceite. El agua de un acuifero, a 6000 metros de profundidad, fluye verticalmente por fallas conductivas. Estas condiciones no isotermicas afectan las saturaciones efectivas y las permeabilidades relativas de las fases inmiscibles. Las viscosidades

  7. Methanogenic degradation of petroleum hydrocarbons in subsurface environments remediation, heavy oil formation, and energy recovery.

    Science.gov (United States)

    Gray, N D; Sherry, A; Hubert, C; Dolfing, J; Head, I M

    2010-01-01

    Hydrocarbons are common constituents of surface, shallow, and deep-subsurface environments. Under anaerobic conditions, hydrocarbons can be degraded to methane by methanogenic microbial consortia. This degradation process is widespread in the geosphere. In comparison with other anaerobic processes, methanogenic hydrocarbon degradation is more sustainable over geological time scales because replenishment of an exogenous electron acceptor is not required. As a consequence, this process has been responsible for the formation of the world's vast deposits of heavy oil, which far exceed conventional oil assets such as those found in the Middle East. Methanogenic degradation is also a potentially important component of attenuation in hydrocarbon contamination plumes. Studies of the organisms, syntrophic partnerships, mechanisms, and geochemical signatures associated with methanogenic hydrocarbon degradation have identified common themes and diagnostic markers for this process in the subsurface. These studies have also identified the potential to engineer methanogenic processes to enhance the recovery of energy assets as biogenic methane from residual oils stranded in petroleum systems. Copyright 2010 Elsevier Inc. All rights reserved.

  8. Some studies on the formation of excited states of aromatic solutes in hydrocarbons and other solvents

    Energy Technology Data Exchange (ETDEWEB)

    Salmon, G A [Leeds Univ. (UK). Cookridge High Energy Radiation Research Centre

    1976-01-01

    This paper reviews the work of the author and his co-workers on the radiation-induced formation of excited states of aromatic compounds in solution. The experimental methods used are surveyed and in particular the method of measuring the yields of triplet and singlet excited states of the solute are described. The problems discussed are: (1) the effect of solvent on the yields of excited states, (2) formation of excited states in cyclohexane and other alicyclic hydrocarbons, (3) the formation of excited states in benzene and (4) the identification of T-T absorption spectra.

  9. Study of shale reservoir nanometer-sized pores in Member 1 of Shahejie Formation in JX area, Liaozhong sag

    Science.gov (United States)

    Cheng, Yong; Zhang, Yu; Wen, Yiming

    2018-02-01

    The microscopic pore structure is the key of the shale reservoir study; however, traditional Scanning Electron Microscopy (SEM) methods cannot identify the irregular morphology caused by mechanical polishing. In this work, Scanning Electron Microscopy combined argon ion polishing technology was taken to study the characteristics of shale reservoir pores of Member 1 of Shahejie Formation (E3s1) located in JX1-1 area of Liaozhong Sag. The results show that pores between clay platelets, intraplatelet pores within clay aggregates and organic-matter pores are very rich in the area and with good pore connectivity, so these types of pores are of great significance for oil-gas exporation. Pores between clay platelets are formed by directional or semi-directional contact between edge and surface, edge and edge or surface and surface of laminated clay minerals, whose shapes are linear, mesh, and irregular with the size of 500 nm to 5 μm. The intraplatelet pores within clay aggregates are formed in the process of the transformation and compaction of clay minerals, whose shapes are usually linear with the width of 30 to 500 nm and the length of 2 to 50 μm. The organic-matter pores are from the process of the conversion from organic matters to the hydrocarbon under thermal evolution, whose shapes are gneissic, irregular, pitted and elliptical with the size of 100 nm to 2 μm. This study is of certain guiding significance to selecting target zones, evaluating resource potential and exploring & developing of shale gas in this region.

  10. Chemical kinetic models for combustion of hydrocarbons and formation of nitric oxide

    Science.gov (United States)

    Jachimowski, C. J.; Wilson, C. H.

    1980-01-01

    The formation of nitrogen oxides NOx during combustion of methane, propane, and a jet fuel, JP-4, was investigated in a jet stirred combustor. The results of the experiments were interpreted using reaction models in which the nitric oxide (NO) forming reactions were coupled to the appropriate hydrocarbon combustion reaction mechanisms. Comparison between the experimental data and the model predictions reveals that the CH + N2 reaction process has a significant effect on NO formation especially in stoichiometric and fuel rich mixtures. Reaction models were assembled that predicted nitric oxide levels that were in reasonable agreement with the jet stirred combustor data and with data obtained from a high pressure (5.9 atm (0.6 MPa)), prevaporized, premixed, flame tube type combustor. The results also suggested that the behavior of hydrocarbon mixtures, like JP-4, may not be significantly different from that of pure hydrocarbons. Application of the propane combustion and nitric oxide formation model to the analysis of NOx emission data reported for various aircraft gas turbines showed the contribution of the various nitric oxide forming processes to the total NOx formed.

  11. Time-lapse cased hole reservoir evaluation based on the dual-detector neutron lifetime log: the CHES II approach

    International Nuclear Information System (INIS)

    DeVries, M.R.; Fertl, W.

    1977-01-01

    A newly developed cased hole analysis technique provides detailed information on (1) reservoir rock properties, such as porosity, shaliness, and formation permeability, (2) reservoir fluid saturation, (3) distinction of oil and gas pays, (4) state of reservoir depletion, such as cumulative hydrocarbon-feet at present time and cumulative hydrocarbon-feet already depleted (e.g., the sum of both values then giving the cumulative hydrocarbon-feet originally present), and (5) monitoring of hydrocarbon/water and gas/oil contacts behind pipe. The basic well log data required for this type of analysis include the Dual-Detector Neutron Lifetime Log, run in casing at any particular time in the life of a reservoir, and the initial open-hole resistivity log. In addition, porosity information from open-hole porosity log(s) or core data is necessary. Field examples from several areas are presented and discussed in the light of formation reservoir and hydrocarbon production characteristics

  12. Optimizing geologic CO2 sequestration by injection in deep saline formations below oil reservoirs

    International Nuclear Information System (INIS)

    Han, Weon Shik; McPherson, Brian J.

    2009-01-01

    The purpose of this research is to present a best-case paradigm for geologic CO 2 storage: CO 2 injection and sequestration in saline formations below oil reservoirs. This includes the saline-only section below the oil-water contact (OWC) in oil reservoirs, a storage target neglected in many current storage capacity assessments. This also includes saline aquifers (high porosity and permeability formations) immediately below oil-bearing formations. While this is a very specific injection target, we contend that most, if not all, oil-bearing basins in the US contain a great volume of such strata, and represent a rather large CO 2 storage capacity option. We hypothesize that these are the best storage targets in those basins. The purpose of this research is to evaluate this hypothesis. We quantitatively compared CO 2 behavior in oil reservoirs and brine formations by examining the thermophysical properties of CO 2 , CO 2 -brine, and CO 2 -oil in various pressure, temperature, and salinity conditions. In addition, we compared the distribution of gravity number (N), which characterizes a tendency towards buoyancy-driven CO 2 migration, and mobility ratio (M), which characterizes the impeded CO 2 migration, in oil reservoirs and brine formations. Our research suggests competing advantages and disadvantages of CO 2 injection in oil reservoirs vs. brine formations: (1) CO 2 solubility in oil is significantly greater than in brine (over 30 times); (2) the tendency of buoyancy-driven CO 2 migration is smaller in oil reservoirs because density contrast between oil and CO 2 is smaller than it between brine and oil (the approximate density contrast between CO 2 and crude oil is ∼100 kg/m 3 and between CO 2 and brine is ∼350 kg/m 3 ); (3) the increased density of oil and brine due to the CO 2 dissolution is not significant (about 7-15 kg/m 3 ); (4) the viscosity reduction of oil due to CO 2 dissolution is significant (from 5790 to 98 mPa s). We compared these competing

  13. Predicting hydrocarbon potential of an earth formation underlying a body of water

    International Nuclear Information System (INIS)

    Kaplan, I.R.; Demaison, G.J.

    1983-01-01

    A method for the on-site collection and examination of small concentrations of methane dissolved in water so as to predict hydrocarbon potential of an earth formation underlying a body of water, said formation being a source of said methane, comprises: (i) sampling the water; (ii) continuously vacuum separating said water into liquid and gas phases; (iii) quantitatively separating interfering gas species from methane; (iv) quantitatively oxidising said methane; (v) cryogenically trapping the resulting gaseous carbon dioxide and water vapor at a trapping station, and (vi) isotopically examining said trapped carbon dioxide and water vapour for carbon and deuterium distribution. (author)

  14. Kinetics of Hydrocarbon formation in a-C:H film deposition plasmas

    International Nuclear Information System (INIS)

    De la Cal, E.; Tabares, F.L.

    1993-01-01

    The formation of C 2 and C 3 hydrocarbons during the PACVD of a-C-H films from admixtures of methane with H 2 and He has been investigated by mass spectrometry under several deposition condition. The time evolution of the observed species indicates that the formation mechanism of ethylene and acetylene are sensitive to the conditions of the wall during the growing of the film. Acetylene are sensitive to the conditions of the wall during the growing of the carburized metal. (Author)

  15. Modern Processes of Hydrocarbon Migration and Re-Formation of Oil and Gas Fields (Based on the Results of Monitoring and Geochemical Studies)

    Science.gov (United States)

    Plotnikova, Irina; Salakhidinova, Gulmira; Nosova, Fidania; Pronin, Nikita; Ostroukhov, Sergey

    2015-04-01

    Special geochemical studies of oils allowed to allocate a movable migration component of oils in the industrial oil deposits. In the field the migration component of oils varies in different parts of the field. The largest percentage of the light migration component (gas condensate of the oil) was detected in the central part of the Kama-Kinel troughs system. Monitoring of the composition of water, oil and gas (condensate light oil component) in the sedimentary cover and ni crystalline basement led to the conclusion of modern migration of hydrocarbons in sedimentary cover. This proves the existence of the modern processes of formation and reformation of oil and gas fields. This presentation is dedicated to the problem of definition of geochemical criteria of selection of hydrocarbons deposit reformation zone in the sample wells of Minibaevskaya area of Romashkinskoye field. While carrying out this work we examined 11 samples of oil from the Upper Devonian Pashiysky horizon. Four oil samples were collected from wells reckoned among the "anomalous" zones that were marked out according to the results of geophysical, oil field and geological research. Geochemical studies of oils were conducted in the laboratory of geochemistry of the Kazan (Volga-region) Federal University. The wells where the signs of hydrocarbons influx from the deep zones of the crust were recorded are considered to be "anomalous". A number of scientists connect this fact to the hypothesis about periodic influx of deep hydrocarbons to the oil deposits of Romashkinskoye field. Other researchers believe that the source rocks of the adjacent valleys sedimentary cover generate gases when entering the main zone of gas formation, which then migrate up the section and passing through the previously formed deposits of oil, change and "lighten" their composition. Regardless of the point of view on the source of the hydrocarbons, the study of the process of deposits refilling with light hydrocarbons is an

  16. THE EFFECTS OF EQUIVALENCE RATIO ON THE FORMATION OF POLYCYCLIC AROMATIC HYDROCARBONS AND SOOT IN PREMIXED ETHANE FLAMES. (R825412)

    Science.gov (United States)

    AbstractThe formation of polycyclic aromatic hydrocarbons (PAH) and soot has been investigated in atmospheric-pressure, laminar, ethane/oxygen/argon premixed flames as a function of mixture equivalence ratio. Mole fraction profiles of major products, trace aromatics, ...

  17. From axiomatics of quantum probability to modelling geological uncertainty and management of intelligent hydrocarbon reservoirs with the theory of open quantum systems

    Science.gov (United States)

    Lozada Aguilar, Miguel Ángel; Khrennikov, Andrei; Oleschko, Klaudia

    2018-04-01

    As was recently shown by the authors, quantum probability theory can be used for the modelling of the process of decision-making (e.g. probabilistic risk analysis) for macroscopic geophysical structures such as hydrocarbon reservoirs. This approach can be considered as a geophysical realization of Hilbert's programme on axiomatization of statistical models in physics (the famous sixth Hilbert problem). In this conceptual paper, we continue development of this approach to decision-making under uncertainty which is generated by complexity, variability, heterogeneity, anisotropy, as well as the restrictions to accessibility of subsurface structures. The belief state of a geological expert about the potential of exploring a hydrocarbon reservoir is continuously updated by outputs of measurements, and selection of mathematical models and scales of numerical simulation. These outputs can be treated as signals from the information environment E. The dynamics of the belief state can be modelled with the aid of the theory of open quantum systems: a quantum state (representing uncertainty in beliefs) is dynamically modified through coupling with E; stabilization to a steady state determines a decision strategy. In this paper, the process of decision-making about hydrocarbon reservoirs (e.g. `explore or not?'; `open new well or not?'; `contaminated by water or not?'; `double or triple porosity medium?') is modelled by using the Gorini-Kossakowski-Sudarshan-Lindblad equation. In our model, this equation describes the evolution of experts' predictions about a geophysical structure. We proceed with the information approach to quantum theory and the subjective interpretation of quantum probabilities (due to quantum Bayesianism). This article is part of the theme issue `Hilbert's sixth problem'.

  18. From axiomatics of quantum probability to modelling geological uncertainty and management of intelligent hydrocarbon reservoirs with the theory of open quantum systems.

    Science.gov (United States)

    Lozada Aguilar, Miguel Ángel; Khrennikov, Andrei; Oleschko, Klaudia

    2018-04-28

    As was recently shown by the authors, quantum probability theory can be used for the modelling of the process of decision-making (e.g. probabilistic risk analysis) for macroscopic geophysical structures such as hydrocarbon reservoirs. This approach can be considered as a geophysical realization of Hilbert's programme on axiomatization of statistical models in physics (the famous sixth Hilbert problem). In this conceptual paper , we continue development of this approach to decision-making under uncertainty which is generated by complexity, variability, heterogeneity, anisotropy, as well as the restrictions to accessibility of subsurface structures. The belief state of a geological expert about the potential of exploring a hydrocarbon reservoir is continuously updated by outputs of measurements, and selection of mathematical models and scales of numerical simulation. These outputs can be treated as signals from the information environment E The dynamics of the belief state can be modelled with the aid of the theory of open quantum systems: a quantum state (representing uncertainty in beliefs) is dynamically modified through coupling with E ; stabilization to a steady state determines a decision strategy. In this paper, the process of decision-making about hydrocarbon reservoirs (e.g. 'explore or not?'; 'open new well or not?'; 'contaminated by water or not?'; 'double or triple porosity medium?') is modelled by using the Gorini-Kossakowski-Sudarshan-Lindblad equation. In our model, this equation describes the evolution of experts' predictions about a geophysical structure. We proceed with the information approach to quantum theory and the subjective interpretation of quantum probabilities (due to quantum Bayesianism).This article is part of the theme issue 'Hilbert's sixth problem'. © 2018 The Author(s).

  19. Unraveling the Timing of Fluid Migration and Trap Formation in the Brooks Range Foothills: A Key to Discovering Hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Catherine L. Hanks

    2008-12-31

    Naturally occurring fractures can play a key role in the evolution and producibility of a hydrocarbon accumulation. Understanding the evolution of fractures in the Brooks Range/Colville basin system of northern Alaska is critical to developing a better working model of the hydrocarbon potential of the region. This study addressed this problem by collecting detailed and regional data on fracture distribution and character, structural geometry, temperature, the timing of deformation along the Brooks Range rangefront and adjacent parts of the Colville basin, and the in situ stress distribution within the Colville basin. This new and existing data then were used to develop a model of how fractures evolved in northern Alaska, both spatially and temporally. The results of the study indicate that fractures formed episodically throughout the evolution of northern Alaska, due to a variety of mechanisms. Four distinct fracture sets were observed. The earliest fractures formed in deep parts of the Colville basin and in the underlying Ellesmerian sequence rocks as these rocks experienced compression associated with the growing Brooks Range fold-and-thrust belt. The orientation of these deep basin fractures was controlled by the maximum in situ horizontal stress in the basin at the time of their formation, which was perpendicular to the active Brooks Range thrust front. This orientation stayed consistently NS-striking for most of the early history of the Brooks Range and Colville basin, but changed to NW-striking with the development of the northeastern Brooks Range during the early Tertiary. Subsequent incorporation of these rocks into the fold-and-thrust belt resulted in overprinting of these deep basin fractures by fractures caused by thrusting and related folding. The youngest fractures developed as rocks were uplifted and exposed. While this general order of fracturing remains consistent across the Brooks Range and adjacent Colville basin, the absolute age at any one

  20. Formation of hydrocarbons in irradiated Brazilian beans: gas chromatographic analysis to detect radiation processing

    International Nuclear Information System (INIS)

    Villavicencio, A.L.C.H.; Mancini-Filho, J.; Hartmann, M.; Ammon, J.; Delincee, H.

    1997-01-01

    Radiation processing of beans, which are a major source of dietary protein in Brazil, is a valuable alternative to chemical fumigation to combat postharvest losses due to insect infestation. To ensure free consumer choice, irradiated food will be labeled as such, and to enforce labeling, analytical methods to detect the irradiation treatment in the food product itself are desirable. In two varieties of Brazilian beans, Carioca and Macacar beans, the radiolytic formation of hydrocarbons formed after alpha and beta cleavage, with regard to the carbonyl group in triglycerides, have been studied. Using gas chromatographic analysis of these radiolytic hydrocarbons, different yields per precursor fatty acid are observed for the two types of beans. However, the typical degradation pattern allows the identification of the irradiation treatment in both bean varieties, even after 6 months of storage

  1. Approaches to identifying reservoir heterogeneity and reserve growth opportunities from subsurface data: The Oficina Formation, Budare field, Venezuela

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, D.S.; Raeuchle, S.K.; Holtz, M.H. [Bureau of Economic Geology, Austin, TX (United States)] [and others

    1997-08-01

    We applied an integrated geologic, geophysical, and engineering approach devised to identify heterogeneities in the subsurface that might lead to reserve growth opportunities in our analysis of the Oficina Formation at Budare field, Venezuela. The approach involves 4 key steps: (1) Determine geologic reservoir architecture; (2) Investigate trends in reservoir fluid flow; (3) Integrate fluid flow trends with reservoir architecture; and (4) Estimate original oil-in-place, residual oil saturation, and remaining mobile oil, to identify opportunities for reserve growth. There are three main oil-producing reservoirs in the Oficina Formation that were deposited in a bed-load fluvial system, an incised valley-fill, and a barrier-strandplain system. Reservoir continuity is complex because, in addition to lateral facies variability, the major Oficina depositional systems were internally subdivided by high-frequency stratigraphic surfaces. These surfaces define times of intermittent lacustrine and marine flooding events that punctuated the fluvial and marginal marine sedimentation, respectively. Syn and post depositional faulting further disrupted reservoir continuity. Trends in fluid flow established from initial fluid levels, response to recompletion workovers, and pressure depletion data demonstrated barriers to lateral and vertical fluid flow caused by a combination of reservoir facies pinchout, flooding shale markers, and the faults. Considerable reserve growth potential exists at Budare field because the reservoir units are highly compartment by the depositional heterogeneity and structural complexity. Numerous reserve growth opportunities were identified in attics updip of existing production, in untapped or incompletely drained compartments, and in field extensions.

  2. Formation of H{sub 2} from internally heated polycyclic aromatic hydrocarbons: Excitation energy dependence

    Energy Technology Data Exchange (ETDEWEB)

    Chen, T., E-mail: tao.chen@fysik.su.se, E-mail: henning@fysik.su.se; Gatchell, M.; Stockett, M. H.; Schmidt, H. T.; Cederquist, H.; Zettergren, H., E-mail: tao.chen@fysik.su.se, E-mail: henning@fysik.su.se [Department of Physics, Stockholm University, S-106 91 Stockholm (Sweden); Delaunay, R.; Rousseau, P.; Adoui, L. [CIMAP, UMR 6252, CEA/CNRS/ENSICAEN/Université de Caen Basse-Normandie, bd Henri Becquerel, BP 5133, F-14070 Caen cedex 05 (France); Université de Caen Basse-Normandie, Esplanade de la Paix, F-14032 Caen (France); Domaracka, A.; Huber, B. A. [CIMAP, UMR 6252, CEA/CNRS/ENSICAEN/Université de Caen Basse-Normandie, bd Henri Becquerel, BP 5133, F-14070 Caen cedex 05 (France); Micelotta, E. R. [Université Paris Sud, Institut d’Astrophysique Spatiale, UMR 8617, 91405 Orsay (France); Tielens, A. G. G. M. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands)

    2015-04-14

    We have investigated the effectiveness of molecular hydrogen (H{sub 2}) formation from Polycyclic Aromatic Hydrocarbons (PAHs) which are internally heated by collisions with keV ions. The present and earlier experimental results are analyzed in view of molecular structure calculations and a simple collision model. We estimate that H{sub 2} formation becomes important for internal PAH temperatures exceeding about 2200 K, regardless of the PAH size and the excitation agent. This suggests that keV ions may effectively induce such reactions, while they are unlikely due to, e.g., absorption of single photons with energies below the Lyman limit. The present analysis also suggests that H{sub 2} emission is correlated with multi-fragmentation processes, which means that the [PAH-2H]{sup +} peak intensities in the mass spectra may not be used for estimating H{sub 2}-formation rates.

  3. Production of a New Emulsifier Material for the Formation Heavy Hydrocarbon/Water Emulsion

    Directory of Open Access Journals (Sweden)

    Afshin Farahbakhsh

    2011-04-01

    Full Text Available Emulsifiers are a unique class of compounds that have proved to have a variety of potential applications in formation of hydrocarbon in water emulsion, in enhancement of oil recovery and in the reduction of heavy oil viscosity. In this paper, a bio emulsifier was synthesized by a strain of Bacillus licheniformis and was separated by an autoclave and centrifugal process; the purification of bio emulsifier and the increase quality of product was done by adding sulfuric acid (H2SO4 (98% to the solution and centrifuging this compound again. This bio emulsifier has the property of emulsification to a wide range of heavy hydrocarbon to form a stable hydrocarbon-water emulsion. This bio emulsifier could reduce Iranian Nuroze high viscosity oil of about 10000 cP down to 250 cP. This means about 97% decreases in the viscosity. The emulsion stable this condition for 48 hr and the viscosity slowly increases to 4000cp until 192 hr. The stability of the oil in water emulsion during 48hr allows the heavy oil to be transported practically over lengthy distances or remain stable for long periods of time prior to utilization.

  4. Formation of microspheres under the action of femtosecond laser radiation on titanium samples in hydrocarbons

    Science.gov (United States)

    Kochuev, D. A.; Khorkov, K. S.; Ivashchenko, A. V.; Prokoshev, V. G.; Arakelian, S. M.

    2018-01-01

    This work describes the original method of laser synthesis of microspheres which contain titanium carbide. The formation of microspheres is carried out by the action of femtosecond laser radiation on the surface of titanium in the reaction medium - the ultimate hydrocarbon. The resulting microspheres have a high surface smoothness, a narrow particle size distribution, an average size of 1-3 μm. They can be used in applications of additive engineering, powder metallurgy as the main raw material, or as an alloying additive.

  5. Integrated 3D Reservoir/Fault Property Modelling Aided Well Planning and Improved Hydrocarbon Recovery in a Niger Delta Field

    International Nuclear Information System (INIS)

    Onyeagoro, U. O.; Ebong, U. E.; Nworie, E. A.

    2002-01-01

    The large and varied portfolio of assets managed by oil companies requires quick decision-making and the deployment of best in class technologies in asset management. Timely decision making and the application of the best technologies in reservoir management are however sometimes in conflict due to large time requirements of the latter.Optimizing the location of development wells is critical to account for variable fluid contact movements and pressure interference effects between wells, which can be significant because of the high permeability (Darcy range) of Niger Delta reservoirs. With relatively high drilling costs, the optimization of well locations necessitates a good realistic static and dynamic 3D reservoir description, especially in the recovery of remaining oil and oil rim type of reservoirs.A detailed 3D reservoir model with fault properties was constructed for a Niger delta producing field. This involved the integration of high quality 3D seismic, core, petrophysics, reservoir engineering, production and structural geology data to construct a realistic 3D reservoir/fault property model for the field. The key parameters considered during the construction of the internal architecture of the model were the vertical and horizontal reservoir heterogeneities-this controls the fluid flow within the reservoir. In the production realm, the fault thickness and fault permeabilities are factors that control the impedance of fluid flow across the fault-fault transmissibility. These key internal and external reservoir/structural variables were explicitly modeled in a 3D modeling software to produce different realizations and manage the uncertainties.The resulting 3D reservoir/fault property model was upscaled for simulation purpose such that grid blocks along the fault planes have realistic transmissibility multipliers of 0 to 1 attached to them. The model was also used in the well planner to optimize the positioning of a high angle deviated well that penetrated

  6. Disinfection byproduct formation in drinking water sources: A case study of Yuqiao reservoir.

    Science.gov (United States)

    Zhai, Hongyan; He, Xizhen; Zhang, Yan; Du, Tingting; Adeleye, Adeyemi S; Li, Yao

    2017-08-01

    This study investigated the potential formation of disinfection byproducts (DBPs) during chlorination and chloramination of 20 water samples collected from different points of Yuqiao reservoir in Tianjin, China. The concentrations of dissolved organic matter and ammonia decreased downstream the reservoir, while the specific UV absorbance (SUVA: the ratio of UV 254 to dissolved organic carbon) increased [from 0.67 L/(mg*m) upstream to 3.58 L/(mg*m) downstream]. The raw water quality played an important role in the formation of DBPs. During chlorination, haloacetic acids (HAAs) were the major DBPs formed in most of the water samples, followed by trihalomethanes (THMs). CHCl 3 and CHCl 2 Br were the major THM species, while trichloroacetic acid (TCAA) and dichloroacetic acid (DCAA) were the major HAA species. Chloramination, on the other hand, generally resulted in lower concentrations of THMs (CHCl 3 ), HAAs (TCAA and DCAA), and haloacetonitriles (HANs). All the species of DBPs formed had positive correlations with the SUVA values, and HANs had the highest one (R 2  = 0.8). The correlation coefficients between the analogous DBP yields and the SUVA values in chlorinated samples were close to those in chloraminated samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Unlocking the hydrocarbon potential of the eastern Black Sea basin. Prospectivity of middle Miocene submarine fan reservoirs by seismic sequence stratigraphy

    International Nuclear Information System (INIS)

    Gundogan, Coskun; Galip, Ozbek; Ali, Demirer

    2002-01-01

    Full text : The objective of this paper is to present present depositional characteristics and hydrocarbon prospectivity of the middle Miocene submarine basin floor fan deposits from the exploration stand point of view by using seismic data available in the offshore eastern Black Sea basin. This basin is a Tertiary trough formed as a continuation of the Mesozoic oceanic basin. The hydrocarbon potential of the basin is believed to be high in the Tertiary section because of the existence of the elements necessary for generation, migration and entrapment of hydrocarbon. A sequence stratigraphic study has been carried out by using 2-d seismic data in the Turkish portion of the eastern Black Sea basin. The objective of the study was to determine periods of major clastic sediment influxes which might lead to identify good reservoir intervals and their spatial distribution in this basin. All basic seismic sequence stratigraphic interpretation techniques and seismic facies analysis were used to identify times of these sand rich deposition periods. Sequence stratigraphy and seismic facies analysis indicate that the basinal areas of the middle Miocene sequences were dominated mainly by submarine fan complexes introduced in the lowstand stages and pelagic sediments deposited during the transgressive and highstand stages. It was proposed that Turkish portion of this basin which is one of the best frontier exploration area with its high potential left in the world, is glimpsing to those looking for good future exploration opportunities.

  8. Hydrocarbon Source Rock Potential of the Sinamar Formation, Muara Bungo, Jambi

    Directory of Open Access Journals (Sweden)

    Moh. Heri Hermiyanto Zajuli

    2014-07-01

    Full Text Available DOI: 10.17014/ijog.v1i1.175The Oligocene Sinamar Formation consists of shale, claystone, mudstone, sandstone, conglomeratic sandstone, and intercalation of coal seams. The objective of study was to identify the hydrocarbon source rock potential of the Sinamar Formation based on geochemichal characteristics. The analyses were focused on fine sediments of the Sinamar Formation comprising shale, claystone, and mudstone. Primary data collected from the Sinamar Formation well and outcrops were analyzed according to TOC, pyrolisis analysis, and gas chromatography - mass spectometry of normal alkanes that include isoprenoids and sterane. The TOC value indicates a very well category. Based on TOC versus Pyrolysis Yields (PY diagram, the shales of Sinamar Formation are included into oil prone source rock potential with good to excellent categories. Fine sediments of the Sinamar Formation tend to produce oil and gas originated from kerogen types I and III. The shales tend to generate oil than claystone and mudstone and therefore they are included into a potential source rock. 

  9. Depositional environments and porosity distribution in regressive limestone reservoirs of the Mishrif Formation, Southern Iraq

    International Nuclear Information System (INIS)

    AlDabbas, Moutaz; AlJassim Jassim; AlJumaily Saad

    2010-01-01

    Eight subsurface sections and a large number of thin sections of the Mishrif Limestone were studied to unravel the depositional facies and environments. The allochems in the Mishrif Formation are dominated by bioclasts, whereas peloids, ooids, and intraclasts are less abundant. The sedimentary microfacies of the Mishrif Formation includes mudstone, wackestone, packstone, grainstone, floatstone, and rudstone, which have been deposited in basinal, outer shelf, slop followed by shoal reef and lagoonal environments. The formation displays various extents of dolomitization and is cemented by calcite and dolomite. The formation has gradational contact with the underlying Rumaila Formation but is unconformably overlain by the Khasib Formation. The unconformity is recognized because the skeletal grains are dominated by Chaophyta (algae), which denotes the change of environment from fully marine to lacustrine environment. Thus, the vertical bioclast analysis indicates that the Mishrif Formation is characterized by two regressive cycles, which control the distribution of reservoir quality as well as the patterns of calcite and dolomite cement distribution. Mishrif Formation gradationally overlies Rumaila Formation. This was indicated by the presence of the green parts of Chaophyta (algae) as main skeletal grains at the uppermost part of well Zb-47, which refer to lacustrine or fresh water environment. Petrographical study shows that the fossils, peloids, oolitis, and intraclasts represent the main allochem. Calcite and dolomite (as diagenetic products) are the predominant mineral components of Mishrif Formation. Fossils were studied as an environmental age and facial boundaries indicators, which are located in a chart using personal computer programs depending on their distributions on the first appearance of species. Fifteen principal sedimentary microfacies have been identified in the Mishrif Formation, which includes lime mudstone, mudstone-wackestone, wackestone

  10. The Springhill Formation (Jurassic-Cretaceous) as a potential low enthalpy geothermal reservoir in the Cerro Sombrero area, Magallanes Basin, Chile.

    Science.gov (United States)

    Lagarrigue, S. C.; Elgueta, S.; Arancibia, G.; Morata, D.; Sanchez, J.; Rojas, L.

    2017-12-01

    Low enthalpy geothermal energy technologies are being developed around the world as part of policies to replace the use of conventional sources of energy by renewable ones. The reuse of abandoned oil and gas wells in sedimentary basins, whose reservoirs are saturated with water at temperatures above 120°C, is of increasing interest due to the low initial cost.In Chile, interest in applying this technology is focused on the Magallanes Basin (Austral Basin in Argentina) in the extreme south of the country, where important hydrocarbon deposits have been exploited for more than six decades with more than 3,500 wells drilled to depths of over 4,000m. Hydrocarbons have been extracted mainly from the Upper Jurassic to lowermost Cretaceous Springhill Formation, which includes sandstone lithofacies with porosities of 12% to 19% and permeability of 10mD and 1100mD. This formation has been drilled mainly at depths of 1500m to 3000m, the estimated geothermal gradient in the zone is 4.9 °C/100m with well bottom temperature measurements oscillating between 60° and 170°C, sufficient for district heating, and even, electricity generation by means of ORC technologies.To understand in detail the behavior and distribution of the different lithofacies of the Springhill Formation in the Sombrero Oil and Gas Field, sedimentological and geological 3D models have been generated from existing well logs and seismic data. To comprehend the quality of the reservoirs on the other hand, many petrophysical studies of drill core samples representative of the different lithofacies, complemented by electric well log interpretations, were carried out. Results confirm the existence of at least two quartz-rich sandstone lithofacies as potential geothermal reservoirs. In the principal settlement in this area, Cerro Sombrero township (1,800 population), the annual average temperature is 6.4°C, requiring constant domestic heating which, at present comes exclusively from natural gas. The study shows

  11. Monohydroxylated polycyclic aromatic hydrocarbons influence spicule formation in the early development of sea urchins (Hemicentrotus pulcherrimus).

    Science.gov (United States)

    Suzuki, Nobuo; Ogiso, Shouzo; Yachiguchi, Koji; Kawabe, Kimi; Makino, Fumiya; Toriba, Akira; Kiyomoto, Masato; Sekiguchi, Toshio; Tabuchi, Yoshiaki; Kondo, Takashi; Kitamura, Kei-ichiro; Hong, Chun-Sang; Srivastav, Ajai K; Oshima, Yuji; Hattori, Atsuhiko; Hayakawa, Kazuichi

    2015-05-01

    We previously demonstrated that monohydroxylated polycyclic aromatic hydrocarbons (OHPAHs), which are metabolites of polycyclic aromatic hydrocarbons (PAHs), act on calcified tissue and suppress osteoblastic and osteoclastic activity in the scales of teleost fish. The compounds may possibly influence other calcified tissues. Thus, the present study noted the calcified spicules in sea urchins and examined the effect of both PAHs and OHPAHs on spicule formation during the embryogenesis of sea urchins. After fertilization, benz[a]anthracene (BaA) and 4-hydroxybenz[a]anthracene (4-OHBaA) were added to seawater at concentrations of 10(-8) and 10(-7) M and kept at 18 °C. The influence of the compound was given at the time of the pluteus larva. At this stage, the length of the spicule was significantly suppressed by 4-OHBaA (10(-8) and 10(-7) M). BaA (10(-7) M) decreased the length of the spicule significantly, while the length did not change with BaA (10(-8) M). The expression of mRNAs (spicule matrix protein and transcription factors) in the 4-OHBaA (10(-7) M)-treated embryos was more strongly inhibited than were those in the BaA (10(-7) M)-treated embryos. This is the first study to demonstrate that OHPAHs suppress spicule formation in sea urchins. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Apparatus for use in predicting hydrocarbon potential of an earth formation underlying a body of water

    International Nuclear Information System (INIS)

    Demaison, G.J.; Kaplan, I.R.

    1984-01-01

    In a relatively quick, convenient and highly accurate technique for the determination of a carbonaceous gas, normally methane, contained in water samples collected at depth from a body of water overlying an earth formation to predict the hydrocarbon-containing potential of the earth formation, carbonaceous gaseous constituents liberated from the water are carried via an air stream to flow into and through an isotope trapping network where collection in microlitre amounts occurs. The isotope capture apparatus comprises a box-like structure formed from a series of panel members, front panel member intersecting the bottom panel member near the centre of the latter and carrying interconnected gas trapping and stripping sections, the structure also comprising a detachable lid connectable by means, for protection of sections. (author)

  13. Formation of undesired by-products in deNO{sub x} catalysis by hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Radtke, Frank; Koeppel, Rene A; Baiker, Alfons [Department of Chemical Engineering and Industrial Chemistry, Swiss Federal Institute of Technology, ETH-Zentrum, Zuerich (Switzerland)

    1995-11-20

    The catalytic performance of Cu/ZSM-5 and {gamma}-alumina in the selective catalytic reduction of nitrogen oxides by alkenes in excess oxygen and the formation of potentially harmful by-products such as hydrogen cyanide, cyanic acid, ammonia, nitrous oxide and carbon monoxide have been studied by means of FT-IR-gas phase analysis. Over Cu/ZSM-5 the reduction activity was strongly influenced by the type of hydrocarbon, while there was no significant difference when starting from NO or NO{sub 2}. In contrast, with {gamma}-alumina NO{sub 2} was reduced more efficiently than NO with both reductants. Water addition strongly suppressed the catalytic activity of {gamma}-alumina. Regarding the formation of undesired by-products, substantial amounts of carbon monoxide were observed in all experiments, independently of the feed composition. The type of catalyst, the use of either NO or NO{sub 2}, the alkene used as a reductant and water strongly influenced the formation of other by-products. With alumina ethene showed a lower tendency to form HCN as compared to propene and water addition further suppressed by-product formation. This contrasts the findings with Cu/ZSM-5, where HCN production was not significantly altered by the presence of water. On this catalyst HNCO was found additionally for dry feeds, whereas ammonia appeared in the presence of water in the same temperature range. Under special feed gas compositions further by-products, formaldehyde and hydrocarbons, were found over Cu/ZSM-5, whereas none of these compounds were observed over {gamma}-alumina

  14. Reservoir characterization of the Upper Jurassic geothermal target formations (Molasse Basin, Germany): role of thermofacies as exploration tool

    Science.gov (United States)

    Homuth, S.; Götz, A. E.; Sass, I.

    2015-06-01

    The Upper Jurassic carbonates of the southern German Molasse Basin are the target of numerous geothermal combined heat and power production projects since the year 2000. A production-orientated reservoir characterization is therefore of high economic interest. Outcrop analogue studies enable reservoir property prediction by determination and correlation of lithofacies-related thermo- and petrophysical parameters. A thermofacies classification of the carbonate formations serves to identify heterogeneities and production zones. The hydraulic conductivity is mainly controlled by tectonic structures and karstification, whilst the type and grade of karstification is facies related. The rock permeability has only a minor effect on the reservoir's sustainability. Physical parameters determined on oven-dried samples have to be corrected, applying reservoir transfer models to water-saturated reservoir conditions. To validate these calculated parameters, a Thermo-Triaxial-Cell simulating the temperature and pressure conditions of the reservoir is used and calorimetric and thermal conductivity measurements under elevated temperature conditions are performed. Additionally, core and cutting material from a 1600 m deep research drilling and a 4850 m (total vertical depth, measured depth: 6020 m) deep well is used to validate the reservoir property predictions. Under reservoir conditions a decrease in permeability of 2-3 magnitudes is observed due to the thermal expansion of the rock matrix. For tight carbonates the matrix permeability is temperature-controlled; the thermophysical matrix parameters are density-controlled. Density increases typically with depth and especially with higher dolomite content. Therefore, thermal conductivity increases; however the dominant factor temperature also decreases the thermal conductivity. Specific heat capacity typically increases with increasing depth and temperature. The lithofacies-related characterization and prediction of reservoir

  15. Seismic fracture detection of shale gas reservoir in Longmaxi formation, Sichuan Basin, China

    Science.gov (United States)

    Lu, Yujia; Cao, Junxing; Jiang, Xudong

    2017-11-01

    In the shale reservoirs, fractures play an important role, which not only provide space for the oil and gas, but also offer favorable petroleum migration channel. Therefore, it is of great significance to study the fractures characteristics in shale reservoirs for the exploration and development of shale gas. In this paper, four analysis technologies involving coherence, curvature attribute, structural stress field simulation and pre-stack P-wave azimuthal anisotropy have been applied to predict the fractures distribution in the Longmaxi formation, Silurian, southeast of Sichuan Basin, China. By using the coherence and curvature attribute, we got the spatial distribution characteristics of fractures in the study area. Structural stress field simulation can help us obtain distribution characteristics of structural fractures. And using the azimuth P-wave fracture detection technology, we got the characteristics about the fracture orientation and density of this region. Application results show that there are NW and NE fractures in the study block, which is basically consistent with the result of log interpretation. The results also provide reliable geological basis for shale gas sweet spots prediction.

  16. Microbial diversity in methanogenic hydrocarbon-degrading enrichment cultures isolated from a water-flooded oil reservoir (Dagang oil field, China)

    Science.gov (United States)

    Jiménez, Núria; Cai, Minmin; Straaten, Nontje; Yao, Jun; Richnow, Hans H.; Krüger, Martin

    2015-04-01

    Microbial transformation of oil to methane is one of the main degradation processes taking place in oil reservoirs, and it has important consequences as it negatively affects the quality and economic value of the oil. Nevertheless, methane could constitute a recovery method of carbon from exhausted reservoirs. Previous studies combining geochemical and isotopic analysis with molecular methods showed evidence for in situ methanogenic oil degradation in the Dagang oil field, China (Jiménez et al., 2012). However, the main key microbial players and the underlying mechanisms are still relatively unknown. In order to better characterize these processes and identify the main microorganisms involved, laboratory biodegradation experiments under methanogenic conditions were performed. Microcosms were inoculated with production and injection waters from the reservoir, and oil or 13C-labelled single hydrocarbons (e.g. n-hexadecane or 2-methylnaphthalene) were added as sole substrates. Indigenous microbiota were able to extensively degrade oil within months, depleting most of the n-alkanes in 200 days, and producing methane at a rate of 76 ± 6 µmol day-1 g-1 oil added. They could also produce heavy methane from 13C-labeled 2-methylnaphthalene, suggesting that further methanogenesis may occur from the aromatic and polyaromatic fractions of Dagang reservoir fluids. Microbial communities from oil and 2-methyl-naphthalene enrichment cultures were slightly different. Although, in both cases Deltaproteobacteria, mainly belonging to Syntrophobacterales (e.g. Syntrophobacter, Smithella or Syntrophus) and Clostridia, mostly Clostridiales, were among the most represented taxa, Gammaproteobacteria could be only identified in oil-degrading cultures. The proportion of Chloroflexi, exclusively belonging to Anaerolineales (e.g. Leptolinea, Bellilinea) was considerably higher in 2-methyl-naphthalene degrading cultures. Archaeal communities consisted almost exclusively of representatives of

  17. Hydrocarbon Seeps Formations: a Study Using 3-D Seismic Attributes in Combination with Satellite Data

    Science.gov (United States)

    Garcia-Pineda, O. G.; MacDonald, I. R.; Shedd, W.

    2011-12-01

    Analyzing the magnitude of oil discharges from natural hydrocarbon seeps is important in improving our understanding of carbon contribution as oil migrates from deeper sediments to the water column, and then eventually to the atmosphere. Liquid hydrocarbon seepage in the deep water of the Gulf of Mexico (GOM) is associated with deep cutting faults, associated with vertical salt movement, that provide conduits for the upward migration of oil and gas. Seeps transform surface geology and generate prominent geophysical targets that can be identified on 3-D seismic data as seafloor amplitude anomalies maps that correlate with the underlying deep fault systems. Using 3D seismic data, detailed mapping of the northern GOM has identified more than 21,000 geophysical anomalies across the basin. In addition to seismic data, Synthetic Aperture Radar (SAR) images have proven to be a reliable tool for localizing natural seepage of oil. We used a Texture Classifier Neural Network Algorithm (TCNNA) to process more than 1200 SAR images collected over the GOM. We quantified more than 900 individual seep formations distributed along the continental shelf and in deep water. Comparison of the geophysical anomalies with the SAR oil slick targets shows good general agreement between the distributions of the two indicators. However, there are far fewer active oil slicks than geophysical anomalies, most of which are probably associated with gas seepage. By examining several sites where the location of active venting can be determined by submersibles observations, we found that the active oily vents are often spatially offset from the most intense geophysical targets (i.e. GC600, GC767, GC204, etc). In addition to the displacement of the oil by deep sea currents, we propose that during the 100K years of activity, the location of the vents on the seafloor probably migrate as carbonate cementation reduces the permeability of the upper sediment. Many of the geophysical targets may represent

  18. Research of hard-to-recovery and unconventional oil-bearing formations according to the principle «in-situ reservoir fabric»

    OpenAIRE

    А. Д. Алексеев; В. В. Жуков; К. В. Стрижнев; С. А. Черевко

    2017-01-01

    Currently in Russia and the world due to the depletion of old highly productive deposits, the role of hard-to-recover and unconventional hydrocarbons is increasing. Thanks to scientific and technical progress, it became possible to involve in the development very low permeable reservoirs and even synthesize oil and gas in-situ. Today, wells serve not only for the production of hydrocarbons, but also are important elements of stimulation technology, through which the technogenic effect on the ...

  19. Effects of Large Polycyclic Aromatic Hydrocarbons on the Soot Formation in Ethylene-Air Nonpremixed Flames

    KAUST Repository

    Prabhu, S.; Arias, P.G.; Wang, Y.; Gao, Y.; Park, S.; Im, Hong G.; Sarathy, Mani; Chung, Suk-Ho; Lu, T.

    2015-01-01

    This study presents updated comprehensive gas-phase kinetic mechanism and aerosol models to predict soot formation characteristics in ethylene-air nonpremixed flames. A main objective is to investigate the sensitivity of the soot formation rate to various chemical pathways for large polycyclic aromatic hydrocarbons (PAH). In this study, the detailed chemical mechanism was reduced from 397 to 99 species using directed relation graph (DRG) and sensitivity analysis. The method of moments with interpolative closure (MOMIC) was employed for the soot aerosol model. Counterflow nonpremixed flames of pure ethylene at low strain rate sooting conditions are considered, for which the sensitivity of soot formation characteristics with respect to hetrogeneous nucleation is investigated. Results show that higher PAH concentrations result in higher soot nucleation rate, and that the average size of the particles are in good agreement with experimental results. It is found that the nucleation processes (i.e., soot inception) from higher PAH precursors, coronene in particular, is critical for accurate prediction of the overall soot formation.

  20. Effects of Large Polycyclic Aromatic Hydrocarbons on the Soot Formation in Ethylene-Air Nonpremixed Flames

    KAUST Repository

    Prabhu, S.

    2015-03-30

    This study presents updated comprehensive gas-phase kinetic mechanism and aerosol models to predict soot formation characteristics in ethylene-air nonpremixed flames. A main objective is to investigate the sensitivity of the soot formation rate to various chemical pathways for large polycyclic aromatic hydrocarbons (PAH). In this study, the detailed chemical mechanism was reduced from 397 to 99 species using directed relation graph (DRG) and sensitivity analysis. The method of moments with interpolative closure (MOMIC) was employed for the soot aerosol model. Counterflow nonpremixed flames of pure ethylene at low strain rate sooting conditions are considered, for which the sensitivity of soot formation characteristics with respect to hetrogeneous nucleation is investigated. Results show that higher PAH concentrations result in higher soot nucleation rate, and that the average size of the particles are in good agreement with experimental results. It is found that the nucleation processes (i.e., soot inception) from higher PAH precursors, coronene in particular, is critical for accurate prediction of the overall soot formation.

  1. Kinetic particularities of strained alicyclic compounds formation in catalytic methanol to hydrocarbon transformation process

    OpenAIRE

    Doluda V.; Brovko R.; Giniatullina N.; Sulman M.

    2017-01-01

    The catalytic transformation of methanol into hydrocarbons is a complex chemical process, accompanied by chain parallel chemical transformation reactions. The most valuable products of the methanol to hydrocarbons catalytic transformation reaction are the strained hydrocarbons — cyclopropane derivatives. These compounds can be used as a high-energy fuel, and also as a valuable chemical raw material. However, the yield of strained compounds in methanol to hydrocarbons catalytic transformation ...

  2. Understanding the fracture role on hydrocarbon accumulation and distribution using seismic data: A case study on a carbonate reservoir from Iran

    Science.gov (United States)

    Karimpouli, Sadegh; Hassani, Hossein; Malehmir, Alireza; Nabi-Bidhendi, Majid; Khoshdel, Hossein

    2013-09-01

    The South Pars, the largest gas field in the world, is located in the Persian Gulf. Structurally, the field is part of the Qatar-South Pars arch which is a regional anticline considered as a basement-cored structure with long lasting passive folding induced by salt withdrawal. The gas-bearing reservoir belongs to Kangan and Dalan formations dominated by carbonate rocks. The fracture role is still unknown in gas accumulation and distribution in this reservoir. In this paper, the Scattering Index (SI) and the semblance methods based on scattered waves and diffraction signal studies, respectively, were used to delineate the fracture locations. To find the relation between fractures and gas distribution, desired facies containing the gas, were defined and predicted using a method based on Bayesian facies estimation. The analysis and combination of these results suggest that preference of fractures and/or fractured zones are negligible (about 1% of the total volume studied in this paper) and, therefore, it is hard to conceive that they play an important role in this reservoir. Moreover, fractures have no considerable role in gas distribution (less than 30%). It can be concluded from this study that sedimentary processes such as digenetic, primary porosities and secondary porosities are responsible for the gas accumulation and distribution in this reservoir.

  3. Formation of polycyclic aromatic hydrocarbons and soot in fuel-rich oxidation of methane in a laminar flow reactor

    DEFF Research Database (Denmark)

    Skjøth-Rasmussen, Martin Skov; Glarborg, Peter; Østberg, M.

    2004-01-01

    Conversion of methane to higher hydrocarbons, polycyclic aromatic hydrocarbons (PAHs), and soot was investigated under fuel-rich conditions in a laminar flow reactor. The effects of stoichiometry, dilution, and water vapor addition were studied at temperatures between 1073 and 1823 K. A chemical...... kinetic mechanism was established for methane oxidation, with emphasis on formation of higher hydrocarbons and PAH. A submodel for soot formation was adopted from the work of Frenklach and co-workers without changes. Modeling predictions showed good agreement with experimental results. Reactants, stable...... decrease with increasing addition of water vapor. The effect is described qualitatively by the reaction mechanism. The enhanced oxidation of acetylene is attributed to higher levels of hydroxyl radicals, formed from the reaction between the water vapor and hydrogen atoms....

  4. Chalk as a reservoir

    DEFF Research Database (Denmark)

    Fabricius, Ida Lykke

    , and the best reservoir properties are typically found in mudstone intervals. Chalk mudstones vary a lot though. The best mudstones are purely calcitic, well sorted and may have been redeposited by traction currents. Other mudstones are rich in very fine grained silica, which takes up pore space and thus...... basin, so stylolite formation in the chalk is controlled by effective burial stress. The stylolites are zones of calcite dissolution and probably are the source of calcite for porefilling cementation which is typical in water zone chalk and also affect the reservoirs to different extent. The relatively...... have hardly any stylolites and can have porosity above 40% or even 50% and thus also have relatively high permeability. Such intervals have the problem though, that increasing effective stress caused by hydrocarbon production results in mechanical compaction and overall subsidence. Most other chalk...

  5. Characterization and 3D reservoir modelling of fluvial sandstones of the Williams Fork Formation, Rulison Field, Piceance Basin, Colorado, USA

    International Nuclear Information System (INIS)

    Pranter, Matthew J; Vargas, Marielis F; Davis, Thomas L

    2008-01-01

    This study describes the stratigraphic characteristics and distribution of fluvial deposits of the Upper Cretaceous Williams Fork Formation in a portion of Rulison Field and addresses 3D geologic modelling of reservoir sand bodies and their associated connectivity. Fluvial deposits include isolated and stacked point-bar deposits, crevasse splays and overbank (floodplain) mudrock. Within the Williams Fork Formation, the distribution and connectivity of fluvial sandstones significantly impact reservoir productivity and ultimate recovery. The reservoir sandstones are primarily fluvial point-bar deposits interbedded with shales and coals. Because of the lenticular geometry and limited lateral extent of the reservoir sandstones (common apparent widths of ∼500–1000 ft; ∼150–300 m), relatively high well densities (e.g. 10 acre (660 ft; 200 m) spacing) are often required to deplete the reservoir. Heterogeneity of these fluvial deposits includes larger scale stratigraphic variability associated with vertical stacking patterns and structural heterogeneities associated with faults that exhibit lateral and reverse offsets. The discontinuous character of the fluvial sandstones and lack of distinct marker beds in the middle and upper parts of the Williams Fork Formation make correlation between wells tenuous, even at a 10 acre well spacing. Some intervals of thicker and amalgamated sandstones within the middle and upper Williams Fork Formation can be correlated across greater distances. To aid correlation and for 3D reservoir modelling, vertical lithology proportion curves were used to estimate stratigraphic trends and define the stratigraphic zonation within the reservoir interval. Object-based and indicator-based modelling methods have been applied to the same data and results from the models were compared. Results from the 3D modelling indicate that sandstone connectivity increases with net-to-gross ratio and, at lower net-to-gross ratios (<30%), differences exist in

  6. On the Formation of Nanobubbles in Vycor Porous Glass during the Desorption of Halogenated Hydrocarbons

    Science.gov (United States)

    Mitropoulos, A. C.; Stefanopoulos, K. L.; Favvas, E. P.; Vansant, E.; Hankins, N. P.

    2015-06-01

    Vycor porous glass has long served as a model mesoporous material. During the physical adsorption of halogenated hydrocarbon vapours, such as dibromomethane, the adsorption isotherm exhibits an hysteresis loop; a gradual ascent is observed at higher pressures during adsorption, and a sharp drop is observed at lower pressures during desorption. For fully wetting fluids, an early hypothesis attributed the hysteresis to mechanistic differences between capillary condensation (adsorption) and evaporation (desorption) processes occurring in the wide bodies and narrow necks, respectively, of ‘ink-bottle’ pores. This was later recognized as oversimplified when the role of network percolation was included. For the first time, we present in-situ small angle x-ray scattering measurements on the hysteresis effect which indicate nanobubble formation during desorption, and support an extended picture of network percolation. The desorption pattern can indeed result from network percolation; but this can sometimes be initiated by a local cavitation process without pore blocking, which is preceded by the temporary, heterogeneous formation of nanobubbles involving a change in wetting states. The capacity of the system to sustain such metastable states is governed by the steepness of the desorption boundary.

  7. Exploitation and Optimization of Reservoir Performance in Hunton Formation, Oklahoma, Budget Period I, Class Revisit

    Energy Technology Data Exchange (ETDEWEB)

    Kelkar, Mohan

    2002-04-02

    This report explains the unusual characteristics of West Carney Field based on detailed geological and engineering analyses. A geological history that explains the presence of mobile water and oil in the reservoir was proposed. The combination of matrix and fractures in the reservoir explains the reservoir?s flow behavior. We confirm our hypothesis by matching observed performance with a simulated model and develop procedures for correlating core data to log data so that the analysis can be extended to other, similar fields where the core coverage may be limited.

  8. Lowering of the critical concentration for micelle formation in aqueous soap solutions by action of truly dissolved hydrocarbon at various temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Markina, Z.N.; Kostova, N.Z.; Rebinder, P.A.

    1970-03-01

    The effect of dissolved hydrocarbons (octane, benzene, and ethylbenzene) on critical micelle concentration of aqueous solutions of sodium salts of fatty acids from caproate to sodium myristate at various temperatures was studied. Experimental results showed that formation of micelles is promoted by presence of hydrocarbons dissolved in the water phase. Such solutions have below normal critical micelle concentration. The change in critical micelle concentration decreases with increase in length of hydrocarbon chain in the soap molecule and with decrease of hydrocarbon solubility in pure water. The nature of the hydrocarbon also affects the forms and dimension of the micelle. Aromatic hydrocarbons increase micelle volume and greatly decrease C.M.C., while aliphatic hydrocarbons decrease C.M.C. slightly. (12 refs.)

  9. Magma reservoirs and neutral buoyancy zones on Venus - Implications for the formation and evolution of volcanic landforms

    Science.gov (United States)

    Head, James W.; Wilson, Lionel

    1992-01-01

    The production of magma reservoirs and neutral buoyancy zones (NBZs) on Venus and the implications of their development for the formation and evolution of volcanic landforms are examined. The high atmospheric pressure on Venus reduces volatile exsolution and generally serves to inhibit the formation of NBZs and shallow magma reservoirs. For a range of common terrestrial magma-volatile contents, magma ascending and erupting near or below mean planetary radius (MPR) should not stall at shallow magma reservoirs; such eruptions are characterized by relatively high total volumes and effusion rates. For the same range of volatile contents at 2 km above MPR, about half of the cases result in the direct ascent of magma to the surface and half in the production of neutral buoyancy zones. NBZs and shallow magma reservoirs begin to appear as gas content increases and are nominally shallower on Venus than on earth. For a fixed volatile content, NBZs become deeper with increasing elevation: over the range of elevations treated in this study (-1 km to +4.4 km) depths differ by a factor of 2-4. Factors that may account for the low height of volcanoes on Venus are discussed.

  10. Polycyclic aromatic hydrocarbons (PAH) formation from the pyrolysis of different municipal solid waste fractions.

    Science.gov (United States)

    Zhou, Hui; Wu, Chunfei; Onwudili, Jude A; Meng, Aihong; Zhang, Yanguo; Williams, Paul T

    2015-02-01

    The formation of 2-4 ring polycyclic aromatic hydrocarbons (PAH) from the pyrolysis of nine different municipal solid waste fractions (xylan, cellulose, lignin, pectin, starch, polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC), and polyethylene terephthalate (PET)) were investigated in a fixed bed furnace at 800 °C. The mass distribution of pyrolysis was also reported. The results showed that PS generated the most total PAH, followed by PVC, PET, and lignin. More PAH were detected from the pyrolysis of plastics than the pyrolysis of biomass. In the biomass group, lignin generated more PAH than others. Naphthalene was the most abundant PAH, and the amount of 1-methynaphthalene and 2-methynaphthalene was also notable. Phenanthrene and fluorene were the most abundant 3-ring PAH, while benzo[a]anthracene and chrysene were notable in the tar of PS, PVC, and PET. 2-ring PAH dominated all tar samples, and varied from 40 wt.% to 70 wt.%. For PS, PET and lignin, PAH may be generated directly from the aromatic structure of the feedstock. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Polycyclic aromatic hydrocarbons (PAH) formation from the pyrolysis of different municipal solid waste fractions

    International Nuclear Information System (INIS)

    Zhou, Hui; Wu, Chunfei; Onwudili, Jude A.; Meng, Aihong; Zhang, Yanguo; Williams, Paul T.

    2015-01-01

    Highlights: • PAH from pyrolysis of 9 MSW fractions was investigated. • Pyrolysis of plastics released more PAH than that of biomass. • Naphthalene was the most abundant PAH in the tar. • The mechanism of PAH release from biomass and plastics was proposed. - Abstract: The formation of 2–4 ring polycyclic aromatic hydrocarbons (PAH) from the pyrolysis of nine different municipal solid waste fractions (xylan, cellulose, lignin, pectin, starch, polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC), and polyethylene terephthalate (PET)) were investigated in a fixed bed furnace at 800 °C. The mass distribution of pyrolysis was also reported. The results showed that PS generated the most total PAH, followed by PVC, PET, and lignin. More PAH were detected from the pyrolysis of plastics than the pyrolysis of biomass. In the biomass group, lignin generated more PAH than others. Naphthalene was the most abundant PAH, and the amount of 1-methynaphthalene and 2-methynaphthalene was also notable. Phenanthrene and fluorene were the most abundant 3-ring PAH, while benzo[a]anthracene and chrysene were notable in the tar of PS, PVC, and PET. 2-ring PAH dominated all tar samples, and varied from 40 wt.% to 70 wt.%. For PS, PET and lignin, PAH may be generated directly from the aromatic structure of the feedstock

  12. Polycyclic aromatic hydrocarbons (PAH) formation from the pyrolysis of different municipal solid waste fractions

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hui [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Energy Research Institute, University of Leeds, Leeds LS2 9JT (United Kingdom); Wu, Chunfei, E-mail: c.wu@leeds.ac.uk [Energy Research Institute, University of Leeds, Leeds LS2 9JT (United Kingdom); Onwudili, Jude A. [Energy Research Institute, University of Leeds, Leeds LS2 9JT (United Kingdom); Meng, Aihong [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Zhang, Yanguo, E-mail: zhangyg@tsinghua.edu.cn [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Williams, Paul T., E-mail: p.t.williams@leeds.ac.uk [Energy Research Institute, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2015-02-15

    Highlights: • PAH from pyrolysis of 9 MSW fractions was investigated. • Pyrolysis of plastics released more PAH than that of biomass. • Naphthalene was the most abundant PAH in the tar. • The mechanism of PAH release from biomass and plastics was proposed. - Abstract: The formation of 2–4 ring polycyclic aromatic hydrocarbons (PAH) from the pyrolysis of nine different municipal solid waste fractions (xylan, cellulose, lignin, pectin, starch, polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC), and polyethylene terephthalate (PET)) were investigated in a fixed bed furnace at 800 °C. The mass distribution of pyrolysis was also reported. The results showed that PS generated the most total PAH, followed by PVC, PET, and lignin. More PAH were detected from the pyrolysis of plastics than the pyrolysis of biomass. In the biomass group, lignin generated more PAH than others. Naphthalene was the most abundant PAH, and the amount of 1-methynaphthalene and 2-methynaphthalene was also notable. Phenanthrene and fluorene were the most abundant 3-ring PAH, while benzo[a]anthracene and chrysene were notable in the tar of PS, PVC, and PET. 2-ring PAH dominated all tar samples, and varied from 40 wt.% to 70 wt.%. For PS, PET and lignin, PAH may be generated directly from the aromatic structure of the feedstock.

  13. Interface formation between hydrocarbon ring molecules and III-V semiconductor surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Passmann, Regina

    2008-08-15

    In this work a systematical study to investigate the adsorption structures of small hydrocarbon ring shaped molecules on III-V semiconductor surfaces with Photo-Emission Spectroscopy (PES), Reflectance Anisotropy Spectroscopy (RAS), Scanning Tunneling Microscopy (STM) as well as Low Electron Energy Diffraction (LEED) was performed. To investigate the influence of the surface structure in detail the surface dimer configuration to the adsorption process of organic molecules GaAs(001) surfaces, the c(4 x 4), the (2 x 4) and the (4 x 2) have been investigated as well as the adsorption of cyclopentene on the InP(001)(2 x 4) reconstructed surface. In the direct comparison it is shown that cyclopentene bonds to the InP(001)(2 x 4) surface via a cycloaddition like reaction. During this adsorption the double bond splits which is in contrast to the adsorption of cyclopentene on the GaAs(001) surfaces. Therefrom it is concluded that the surface geometry has an influence on the resulting adsorption structure. In order to investigate the influence of the intra-molecular double bonds, cyclopentene (one double bond), 1,4-cyclohexadiene (two double bonds) and benzene (three double bonds) were used for the characterization of the interface formation. With the investigations on the GaAs(001) reconstructed surfaces it was shown that a dependency of the bonding configuration on the intra-molecular double bonds exists. During the adsorption of cyclopentene no evidence was found that the double bond has to be involved in the interface formation while during the adsorption of 1,4-cyclohexadiene and benzene the double bonds are involved. Furthermore it was found that a bonding to As atoms of the surface is more likely than a bonding to Ga atoms. (orig.)

  14. Interface formation between hydrocarbon ring molecules and III-V semiconductor surfaces

    International Nuclear Information System (INIS)

    Passmann, Regina

    2008-01-01

    In this work a systematical study to investigate the adsorption structures of small hydrocarbon ring shaped molecules on III-V semiconductor surfaces with Photo-Emission Spectroscopy (PES), Reflectance Anisotropy Spectroscopy (RAS), Scanning Tunneling Microscopy (STM) as well as Low Electron Energy Diffraction (LEED) was performed. To investigate the influence of the surface structure in detail the surface dimer configuration to the adsorption process of organic molecules GaAs(001) surfaces, the c(4 x 4), the (2 x 4) and the (4 x 2) have been investigated as well as the adsorption of cyclopentene on the InP(001)(2 x 4) reconstructed surface. In the direct comparison it is shown that cyclopentene bonds to the InP(001)(2 x 4) surface via a cycloaddition like reaction. During this adsorption the double bond splits which is in contrast to the adsorption of cyclopentene on the GaAs(001) surfaces. Therefrom it is concluded that the surface geometry has an influence on the resulting adsorption structure. In order to investigate the influence of the intra-molecular double bonds, cyclopentene (one double bond), 1,4-cyclohexadiene (two double bonds) and benzene (three double bonds) were used for the characterization of the interface formation. With the investigations on the GaAs(001) reconstructed surfaces it was shown that a dependency of the bonding configuration on the intra-molecular double bonds exists. During the adsorption of cyclopentene no evidence was found that the double bond has to be involved in the interface formation while during the adsorption of 1,4-cyclohexadiene and benzene the double bonds are involved. Furthermore it was found that a bonding to As atoms of the surface is more likely than a bonding to Ga atoms. (orig.)

  15. GPU-Based Computation of Formation Pressure for Multistage Hydraulically Fractured Horizontal Wells in Tight Oil and Gas Reservoirs

    Directory of Open Access Journals (Sweden)

    Rongwang Yin

    2018-01-01

    Full Text Available A mathematical model for multistage hydraulically fractured horizontal wells (MFHWs in tight oil and gas reservoirs was derived by considering the variations in the permeability and porosity of tight oil and gas reservoirs that depend on formation pressure and mixed fluid properties and introducing the pseudo-pressure; analytical solutions were presented using the Newman superposition principle. The CPU-GPU asynchronous computing model was designed based on the CUDA platform, and the analytic solution was decomposed into infinite summation and integral forms for parallel computation. Implementation of this algorithm on an Intel i5 4590 CPU and NVIDIA GT 730 GPU demonstrates that computation speed increased by almost 80 times, which meets the requirement for real-time calculation of the formation pressure of MFHWs.

  16. A Percolation Study of Wettability Effect on the Electrical Properties of Reservoir Rocks

    DEFF Research Database (Denmark)

    Zhou, Dengen; Arbabi, Sepehr; Stenby, Erling Halfdan

    1997-01-01

    Measurements of the electrical resistivity of oil reservoirs are commonly used to estimate other properties of reservoirs, such as porosity and hydrocarbon reserves. However, the interpretation of the measurements is based on empirical correlations, because the underlying mechanisms that control...... the electrical properties of oil bearing rocks have not been well understood. In this paper, we employ percolation concepts to investigate the effect of wettability on the electrical conductivity of a reservoir formation. A three-dimensional simple cubic network is used to represent an ideal reservoir formation...

  17. Formation and migration of Natural Gases: gas composition and isotopes as monitors between source, reservoir and seep

    Science.gov (United States)

    Schoell, M.; Etiope, G.

    2015-12-01

    Natural gases form in tight source rocks at temperatures between 120ºC up to 200ºC over a time of 40 to 50my depending on the heating rate of the gas kitchen. Inferring from pyrolysis experiments, gases after primary migration, a pressure driven process, are rich in C2+ hydrocarbons (C2 to C5). This is consistent with gas compositions of oil-associated gases such as in the Bakken Shale which occur in immediate vicinity of the source with little migration distances. However, migration of gases along porous rocks over long distances (up to 200km in the case of the Troll field offshore Norway) changes the gas composition drastically as C2+ hydrocarbons tend to be retained/sequestered during migration of gas as case histories from Virginia and the North Sea will demonstrate. Similar "molecular fractionation" is observed between reservoirs and surface seeps. In contrast to gas composition, stable isotopes in gases are, in general, not affected by the migration process suggesting that gas migration is a steady state process. Changes in isotopic composition, from source to reservoir to surface seeps, is often the result of mixing of gases of different origins. Examples from various gas provinces will support this notion. Natural gas basins provide little opportunity of tracking and identifying gas phase separation. Future research on experimental phase separation and monitoring of gas composition and gas ratio changes e.g. various C2+ compound ratios over C1 or isomer ratios such as iso/n ratios in butane and pentane may be an avenue to develop tracers for phase separation that could possibly be applied to natural systems of retrograde natural condensate fields.

  18. Mercury deposition and methylmercury formation in Narraguinnep Reservoir, southwestern Colorado, USA

    Science.gov (United States)

    Gray, John E.; Hines, Mark E.; Goldstein, Harland L.; Reynolds, Richard L.

    2014-01-01

    Narraguinnep Reservoir in southwestern Colorado is one of several water bodies in Colorado with a mercury (Hg) advisory as Hg in fish tissue exceed the 0.3 μg/g guideline to protect human health recommended by the State of Colorado. Concentrations of Hg and methyl-Hg were measured in reservoir bottom sediment and pore water extracted from this sediment. Rates of Hg methylation and methyl-Hg demethylation were also measured in reservoir bottom sediment. The objective of this study was to evaluate potential sources of Hg in the region and evaluate the potential of reservoir sediment to generate methyl-Hg, a human neurotoxin and the dominant form of Hg in fish. Concentrations of Hg (ranged from 1.1 to 5.8 ng/L, n = 15) and methyl-Hg (ranged from 0.05 to 0.14 ng/L, n = 15) in pore water generally were highest at the sediment/water interface, and overall, Hg correlated with methyl-Hg in pore water (R2 = 0.60, p = 0007, n = 15). Net Hg methylation flux in the top 3 cm of reservoir bottom sediment varied from 0.08 to 0.56 ng/m2/day (mean = 0.28 ng/m2/day, n = 5), which corresponded to an overall methyl-Hg production for the entire reservoir of 0.53 g/year. No significant point sources of Hg contamination are known to this reservoir or its supply waters, although several coal-fired power plants in the region emit Hg-bearing particulates. Narraguinnep Reservoir is located about 80 km downwind from two of the largest power plants, which together emit about 950 kg-Hg/year. Magnetic minerals separated from reservoir sediment contained spherical magnetite-bearing particles characteristic of coal-fired electric power plant fly ash. The presence of fly-ash magnetite in post-1970 sediment from Narraguinnep Reservoir indicates that the likely source of Hg to the catchment basin for this reservoir has been from airborne emissions from power plants, most of which began operation in the late-1960s and early 1970s in this region.

  19. Extracellular Trap Formation in Response to Trypanosoma cruzi Infection in Granulocytes Isolated From Dogs and Common Opossums, Natural Reservoir Hosts

    Directory of Open Access Journals (Sweden)

    Nicole de Buhr

    2018-05-01

    Full Text Available Granulocytes mediate the first line of defense against infectious diseases in humans as well as animals and they are well known as multitasking cells. They can mediate antimicrobial activity by different strategies depending on the pathogen they encounter. Besides phagocytosis, a key strategy against extracellular pathogens is the formation of extracellular traps (ETs. Those ETs mainly consist of DNA decorated with antimicrobial components and mediate entrapment of various pathogens. In the last years, various studies described ET formation as response to bacteria, viruses and parasites e.g., Trypanosma (T. cruzi. Nevertheless, it is not fully understood, if ET formation helps the immune system to eliminate intracellular parasites. The goal of this study was to analyze ET formation in response to the intracellular parasite Trypanosma (T. cruzi by granulocytes derived from animals that serve as natural reservoir. Thus, we investigated the ET formation in two T. cruzi reservoirs, namely dogs as domestic animal and common opossums (Didelphis marsupialis as wild animal. Granulocytes were harvested from fresh blood by density gradient centrifugation and afterwards incubated with T. cruzi. We conducted the analysis by determination of free DNA and immunofluorescence microscopy. Using both methods, we show that T. cruzi efficiently induces ET formation in granulocytes derived from common opossum as well as dog blood. Most ETs from both animal species as response to T. cruzi are decorated with the protease neutrophil elastase. Since T. cruzi is well known to circulate over years in both analyzed animals as reservoirs, it may be assumed that T. cruzi efficiently evades ET-mediated killing in those animals. Therefore, ETs may not play a major role in efficient elimination of the pathogen from the blood of dogs or common opossums as T. cruzi survives in niches of their body. The characterization of granulocytes in various animals and humans may be helpful

  20. Method for inverting reflection trace data from 3-D and 4-D seismic surveys and identifying subsurface fluid and pathways in and among hydrocarbon reservoirs based on impedance models

    Science.gov (United States)

    He, W.; Anderson, R.N.

    1998-08-25

    A method is disclosed for inverting 3-D seismic reflection data obtained from seismic surveys to derive impedance models for a subsurface region, and for inversion of multiple 3-D seismic surveys (i.e., 4-D seismic surveys) of the same subsurface volume, separated in time to allow for dynamic fluid migration, such that small scale structure and regions of fluid and dynamic fluid flow within the subsurface volume being studied can be identified. The method allows for the mapping and quantification of available hydrocarbons within a reservoir and is thus useful for hydrocarbon prospecting and reservoir management. An iterative seismic inversion scheme constrained by actual well log data which uses a time/depth dependent seismic source function is employed to derive impedance models from 3-D and 4-D seismic datasets. The impedance values can be region grown to better isolate the low impedance hydrocarbon bearing regions. Impedance data derived from multiple 3-D seismic surveys of the same volume can be compared to identify regions of dynamic evolution and bypassed pay. Effective Oil Saturation or net oil thickness can also be derived from the impedance data and used for quantitative assessment of prospective drilling targets and reservoir management. 20 figs.

  1. On the role of resonantly stabilized radicals in polycyclic aromatic hydrocarbon (PAH) formation: pyrene and fluoranthene formation from benzyl-indenyl addition.

    Science.gov (United States)

    Sinha, Sourab; Rahman, Ramees K; Raj, Abhijeet

    2017-07-26

    Resonantly stabilized radicals, such as propargyl, cyclopentadienyl, benzyl, and indenyl, play a vital role in the formation and growth of polycyclic aromatic hydrocarbons (PAHs) that are soot precursors in engines and flames. Pyrene is considered to be an important PAH, as it is thought to nucleate soot particles, but its formation pathways are not well known. This paper presents a reaction mechanism for the formation of four-ring aromatics, pyrene and fluoranthene, through the combination of benzyl and indenyl radicals. The intermediate species and transition structures involved in the elementary reactions of the mechanism were studied using density functional theory, and the reaction kinetics were evaluated using transition state theory. The barrierless addition of benzyl and indenyl to form the adduct, 1-benzyl-1H-indene, was found to be exothermic with a reaction energy of 204.2 kJ mol -1 . The decomposition of this adduct through H-abstraction and H 2 -loss was studied to determine the possible products. The rate-of-production analysis was conducted to determine the most favourable reactions for pyrene and fluoranthene formation. The premixed laminar flames of toluene, ethylbenzene, and benzene were simulated using a well-validated hydrocarbon fuel mechanism with detailed PAH chemistry after adding the proposed reactions to it. The computed and experimentally observed species profiles were compared to determine the effect of the new reactions for pyrene and fluoranthene formation on their concentration profiles. The role of benzyl and indenyl combination in PAH formation and growth is highlighted.

  2. Photochemically consumed hydrocarbons and their relationship with ozone formation in two megacities of China

    Science.gov (United States)

    Chang, C.; Wang, J.; Liu, S.; Shao, M.; Zhang, Y.; Zhu, T.; Shiu, C.; Lai, C.

    2010-12-01

    Two on-site continuous measurements of ozone and its precursors in two megacities of China were carried out in an urban site of Beijing and a suburban site near Guangzhou in the Pearl River Delta (PRD) to estimate precursor consumption and to assess its relationship with oxidant (O3+NO2) formation level. An observation-based method (OBM) with the precursor consumption concept was adopted to assess the relationship between oxidant production and amounts of photochemically consumed non-methane hydrocarbons (NMHCs). In this approach, the ratio of ethylbenzene to m,p-xylenes was used to estimate the degree of photochemical processing, as well as the amounts of photochemically consumed NMHCs by reacting with OH. By trying to correlate the observed oxidant with the observed NMHC concentration, the two areas both revealed nearly no to low correlation between them. However, it existed fair to good correlations (R2=0.68 for Beijing, 0.53 for PRD) between the observed oxidant level and the degree of photochemical processing (ethylbenzene/m,p-xylenes). Furthermore, after taking the approach of consumption to estimate the consumed amounts of NMHCs, an interesting finding reveals that the definite correlation existed between the observed oxidant level and the total consumed NMHCs. The good correlations (R2=0.83 for Beijing, 0.81 for PRD) implies that the ambient oxidant level correlated to the amount of consumed NMHCs. The results of the two megacities in China by using the OBM with the precursor consumption concept can provide another pathway to explore the relationship between photochemically produced oxidant and consumed precursors, and will be helpful to validate model results and to reduce uncertainty of model predictions. However, the method has some room for uncertainty, as injection of fresh precursor emissions and additional boundary ozone involved, etc. could affect the estimation of consumed NMHCs and observed oxidant levels. Assistance of approaches in assessing the

  3. Multi-data reservoir history matching for enhanced reservoir forecasting and uncertainty quantification

    KAUST Repository

    Katterbauer, Klemens

    2015-04-01

    Reservoir simulations and history matching are critical for fine-tuning reservoir production strategies, improving understanding of the subsurface formation, and forecasting remaining reserves. Production data have long been incorporated for adjusting reservoir parameters. However, the sparse spatial sampling of this data set has posed a significant challenge for efficiently reducing uncertainty of reservoir parameters. Seismic, electromagnetic, gravity and InSAR techniques have found widespread applications in enhancing exploration for oil and gas and monitoring reservoirs. These data have however been interpreted and analyzed mostly separately, rarely exploiting the synergy effects that could result from combining them. We present a multi-data ensemble Kalman filter-based history matching framework for the simultaneous incorporation of various reservoir data such as seismic, electromagnetics, gravimetry and InSAR for best possible characterization of the reservoir formation. We apply an ensemble-based sensitivity method to evaluate the impact of each observation on the estimated reservoir parameters. Numerical experiments for different test cases demonstrate considerable matching enhancements when integrating all data sets in the history matching process. Results from the sensitivity analysis further suggest that electromagnetic data exhibit the strongest impact on the matching enhancements due to their strong differentiation between water fronts and hydrocarbons in the test cases.

  4. Stratigraphic and structural compartmentalization observed within a model turbidite reservoir, Pennsylvanian Upper Jackfork Formation, Hollywood Quarry, Arkansas

    Energy Technology Data Exchange (ETDEWEB)

    Slatt, R. [Colorado School of Mines, Golden, CO (United States); Jordan, D. [Arco International Oil and Gas Co., Plano, TX (United States); Stone, C. [Arkansas Geological Commission, Little Rock, AR (United States)] [and others

    1995-08-01

    Hollywood Quarry is a 600 x 375 x 150 ft. (200 x 125 x 50m) excavation which provides a window into lower Pennsylvanian Jackfork Formation turbidite stratal architecture along the crest of a faulted anticlinal fold. A variety of turbidite facies are present, including: (a) lenticular, channelized sandstones, pebbly sandstones, and conglomerates within shale, (b) laterally continuous, interbedded thin sandstones and shales, and (c) thicker, laterally continuous shales. The sandstone and shale layers we broken by several strike-slip and reverse faults, with vertical displacements of up to several feet. This combination of facies and structural elements has resulted in a highly compartmentalized stratigraphic interval, both horizontally and vertically, along the anticlinal flexure. The quarry can be considered analogous to a scaled-down turbidite reservoir. Outcrop gamma-ray logs, measured sections, a fault map, and cross sections provide a database which is analogous to what would be available for a subsurface reservoir. Thus, the quarry provides an ideal outdoor geologic and engineering {open_quote}workshop{close_quote} venue for visualizing the potential complexities of a combination structural-stratigraphic (turbidite) reservoir. Since all forms of compartmentalization are readily visible in the quarry, problems related to management of compartmentalized reservoirs can be discussed and analyzed first-hand while standing in the quarry, within this {open_quote}model reservoir{close_quotes}. These problems include: (a) the high degree of stratigraphic and structural complexity that may be encountered, even at close well spacings, (b) uncertainty in well log correlations and log-shape interpretations, (c) variations in volumetric calculations as a function of amount of data available, and (d) potential production problems associated with specific {open_quote}field{close_quote} development plans.

  5. Establishing 3d numerical reservoir analogues : Modelling the formation of sand bodies in deltaic environments

    NARCIS (Netherlands)

    van der Vegt, H.; Storms, J.E.A.; Walstra, D.J.R.

    2014-01-01

    The assessment and production of hydrocarbon resources incorporates geological models created from core and wireline well data, as well as seismic data. This data is spatially discrete but is used create a spatially continuous model. However, the heterogeneity within depositional environments is on

  6. Volcanic settings and their reservoir potential: An outcrop analog study on the Miocene Tepoztlán Formation, Central Mexico

    Science.gov (United States)

    Lenhardt, Nils; Götz, Annette E.

    2011-07-01

    The reservoir potential of volcanic and associated sedimentary rocks is less documented in regard to groundwater resources, and oil and gas storage compared to siliciclastic and carbonate systems. Outcrop analog studies within a volcanic setting enable to identify spatio-temporal architectural elements and geometric features of different rock units and their petrophysical properties such as porosity and permeability, which are important information for reservoir characterization. Despite the wide distribution of volcanic rocks in Mexico, their reservoir potential has been little studied in the past. In the Valley of Mexico, situated 4000 m above the Neogene volcanic rocks, groundwater is a matter of major importance as more than 20 million people and 42% of the industrial capacity of the Mexican nation depend on it for most of their water supply. Here, we present porosity and permeability data of 108 rock samples representing five different lithofacies types of the Miocene Tepoztlán Formation. This 800 m thick formation mainly consists of pyroclastic rocks, mass flow and fluvial deposits and is part of the southern Transmexican Volcanic Belt, cropping out south of the Valley of Mexico and within the two states of Morelos and Mexico State. Porosities range from 1.4% to 56.7%; average porosity is 24.8%. Generally, permeabilities are low to median (0.2-933.3 mD) with an average permeability of 88.5 mD. The lavas are characterized by the highest porosity values followed by tuffs, conglomerates, sandstones and tuffaceous breccias. On the contrary, the highest permeabilities can be found in the conglomerates, followed by tuffs, tuffaceous breccias, sandstones and lavas. The knowledge of these petrophysical rock properties provides important information on the reservoir potential of volcanic settings to be integrated to 3D subsurface models.

  7. Variations of the petrophysical properties of rocks with increasing hydrocarbons content and their implications at larger scale: insights from the Majella reservoir (Italy)

    Science.gov (United States)

    Trippetta, Fabio; Ruggieri, Roberta; Lipparini, Lorenzo

    2016-04-01

    Crustal processes such as deformations or faulting are strictly related to the petrophysical properties of involved rocks. These properties depend on mineral composition, fabric, pores and any secondary features such as cracks or infilling material that may have been introduced during the whole diagenetic and tectonic history of the rock. In this work we investigate the role of hydrocarbons (HC) in changing the petrophysical properties of rock by merging laboratory experiments, well data and static models focusing on the carbonate-bearing Majella reservoir. This reservoir represent an interesting analogue for the several oil fields discovered in the subsurface in the region, allowing a comparison of a wide range of geological and geophysical data at different scale. The investigated lithology is made of high porosity ramp calcarenites, structurally slightly affected by a superimposed fracture system and displaced by few major normal faults, with some minor strike-slip movements. Sets of rock specimens were selected in the field and in particular two groups were investigated: 1. clean rocks (without oil) and 2. HC bearing rocks (with different saturations). For both groups, density, porosity, P and S wave velocity, permeability and elastic moduli measurements at increasing confining pressure were conducted on cylindrical specimens at the HP-HT Laboratory of the Istituto Nazionale di Geofisica e Vulcanologia (INGV) in Rome, Italy. For clean samples at ambient pressure, laboratory porosity varies from 10 % up to 26 % and P wave velocity (Vp) spans from 4,1 km/s to 4,9 km/s and a very good correlation between Vp, Vs and porosity is observed. The P wave velocity at 100 MPa of confining pressure, ranges between 4,5 km/s and 5,2 km/s with a pressure independent Vp/Vs ratio of about 1,9. The presence of HC within the samples affects both Vp and Vs. In particular velocities increase with the presence of hydrocarbons proportionally respect to the amount of the filled

  8. Multi Data Reservoir History Matching using the Ensemble Kalman Filter

    KAUST Repository

    Katterbauer, Klemens

    2015-05-01

    Reservoir history matching is becoming increasingly important with the growing demand for higher quality formation characterization and forecasting and the increased complexity and expenses for modern hydrocarbon exploration projects. History matching has long been dominated by adjusting reservoir parameters based solely on well data whose spatial sparse sampling has been a challenge for characterizing the flow properties in areas away from the wells. Geophysical data are widely collected nowadays for reservoir monitoring purposes, but has not yet been fully integrated into history matching and forecasting fluid flow. In this thesis, I present a pioneering approach towards incorporating different time-lapse geophysical data together for enhancing reservoir history matching and uncertainty quantification. The thesis provides several approaches to efficiently integrate multiple geophysical data, analyze the sensitivity of the history matches to observation noise, and examine the framework’s performance in several settings, such as the Norne field in Norway. The results demonstrate the significant improvements in reservoir forecasting and characterization and the synergy effects encountered between the different geophysical data. In particular, the joint use of electromagnetic and seismic data improves the accuracy of forecasting fluid properties, and the usage of electromagnetic data has led to considerably better estimates of hydrocarbon fluid components. For volatile oil and gas reservoirs the joint integration of gravimetric and InSAR data has shown to be beneficial in detecting the influx of water and thereby improving the recovery rate. Summarizing, this thesis makes an important contribution towards integrated reservoir management and multiphysics integration for reservoir history matching.

  9. Delineating gas bearing reservoir by using spectral decomposition attribute: Case study of Steenkool formation, Bintuni Basin

    Science.gov (United States)

    Haris, A.; Pradana, G. S.; Riyanto, A.

    2017-07-01

    Tectonic setting of the Bird Head Papua Island becomes an important model for petroleum system in Eastern part of Indonesia. The current exploration has been started since the oil seepage finding in Bintuni and Salawati Basin. The biogenic gas in shallow layer turns out to become an interesting issue in the hydrocarbon exploration. The hydrocarbon accumulation appearance in a shallow layer with dry gas type, appeal biogenic gas for further research. This paper aims at delineating the sweet spot hydrocarbon potential in shallow layer by applying the spectral decomposition technique. The spectral decomposition is decomposing the seismic signal into an individual frequency, which has significant geological meaning. One of spectral decomposition methods is Continuous Wavelet Transform (CWT), which transforms the seismic signal into individual time and frequency simultaneously. This method is able to make easier time-frequency map analysis. When time resolution increases, the frequency resolution will be decreased, and vice versa. In this study, we perform low-frequency shadow zone analysis in which the amplitude anomaly at a low frequency of 15 Hz was observed and we then compare it to the amplitude at the mid (20 Hz) and the high-frequency (30 Hz). The appearance of the amplitude anomaly at a low frequency was disappeared at high frequency, this anomaly disappears. The spectral decomposition by using CWT algorithm has been successfully applied to delineate the sweet spot zone.

  10. Sexual reproduction of Daphnia in a deep temperate reservoir: the phenology and genetics of male formation

    Czech Academy of Sciences Publication Activity Database

    Macháček, Jiří; Vaníčková, Ivana; Seďa, Jaromír; Cordellier, M.; Schwenk, K.

    2013-01-01

    Roč. 715, č. 1 (2013), s. 113-123 ISSN 0018-8158. [International Symposium on Cladocera /9./. Verbania-Palanza, 02.10.2011-08.10.2011] R&D Projects: GA ČR(CZ) GA206/09/1325 Institutional support: RVO:60077344 Keywords : Daphnia * reservoir population * male induction * clonal structure * microsatellite Subject RIV: DA - Hydrology ; Limnology Impact factor: 2.212, year: 2013

  11. Reservoir characterization of the Ordovician Red River Formation in southwest Williston Basin Bowman County, ND and Harding County, SD

    Energy Technology Data Exchange (ETDEWEB)

    Sippel, M.A.; Luff, K.D.; Hendricks, M.L.; Eby, D.E.

    1998-07-01

    This topical report is a compilation of characterizations by different disciplines of the Red River Formation in the southwest portion of the Williston Basin and the oil reservoirs which it contains in an area which straddles the state line between North Dakota and South Dakota. Goals of the report are to increase understanding of the reservoir rocks, oil-in-place, heterogeneity, and methods for improved recovery. The report is divided by discipline into five major sections: (1) geology, (2) petrography-petrophysical, (3) engineering, (4) case studies and (5) geophysical. Interwoven in these sections are results from demonstration wells which were drilled or selected for special testing to evaluate important concepts for field development and enhanced recovery. The Red River study area has been successfully explored with two-dimensional (2D) seismic. Improved reservoir characterization utilizing 3-dimensional (3D) and has been investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterization tools are integrated with geological and engineering studies. Targeted drilling from predictions using 3D seismic for porosity development were successful in developing significant reserves at close distances to old wells. Short-lateral and horizontal drilling technologies were tested for improved completion efficiency. Lateral completions should improve economics for both primary and secondary recovery where low permeability is a problem and higher density drilling is limited by drilling cost. Low water injectivity and widely spaced wells have restricted the application of waterflooding in the past. Water injection tests were performed in both a vertical and a horizontal well. Data from these tests were used to predict long-term injection and oil recovery.

  12. The rudist buildup depositional model, reservoir architecture and development strategy of the cretaceous Sarvak formation of Southwest Iran

    Directory of Open Access Journals (Sweden)

    Yang Du

    2015-03-01

    Full Text Available This paper studies the lithofacies, sedimentary facies, depositional models and reservoir architecture of the rudist-bearing Sar-3 zone of Cretaceous Sarvak in the Southwest of Iran by utilizing coring, thin section, XRD data of five coring wells and 3D seismic data. Research results include the following: According to lithofacies features and their association, the rudist-mound and tidal flat are the main microfacies in the Sar-3 depositional time. By investigating the regional tectonic setting and seismic interpretation, a depositional model was built for the Sar-3 zone, which highlights four key points: 1 The distribution of the rudist-buildup is controlled by the paleo-high. 2 The build-up outside of the wide colonize stage but reached the wave-base level in a short time by regression and formation uplift, and was destroyed by the high energy current, then forming the moundy allochthonous deposition after being dispersed and redeposited. 3 The tidal flat develops widely in the upper Sar-3, and the deposition thickness depends on the paleo-structure. The tidal channel develops in the valley and fringe of the Paleo-structure. 4 The exposure within the leaching effect by the meteoric water of the top of Sar-3 is the main controlling factor of the reservoir vertical architecture. The Sar-3 zone featured as the dualistic architecture consists of two regions: the lower is the rudist reef limestone reservoir and the upper is the tidal condense limestone interlayer. The thickness of each is controlled by the paleo-structure. The Paleo-high zone is the preferential development zone. Based on reservoir characteristics of the different zones, a targeted development strategy has been proposed. Keeping the trajectory in the middle of the oil-layer in the paleo-high, and in the paleo-low, make the trajectory crossing the oil-zone and then keep it in the lower.

  13. Hydrocarbons in the Hauptsalz formation of the Gorleben salt dome. Content, distribution and origin

    Energy Technology Data Exchange (ETDEWEB)

    Pusch, Maximilian; Hammer, Joerg; Ostertag-Henning, Christian [Federal Institute for Geosciences and Natural Resources (BGR), Hannover (Germany)

    2015-07-01

    In the frame of the geological exploration of the Gorleben salt dome (November 2010 to November 2012) concentrations and compositions of hydrocarbons occuring in the main rock salt (Hauptsalz, Stassfurt series, z2) have been investigated. These exploration works followed former investigations of Gerling et al. (2002) and Bornemann et al. (2008). In order to get fresh, unaltered and representative samples beyond the EDZ (excavation damaged zone) for mineralogical and geochemical analyses, about 45 boreholes have been drilled at the 840 m level of the Gorleben exploration mine. These boreholes have been arranged in equal distances (depending on the mine structure) alongside crosscut 1 west (each 6 m long) and crosscut 1 east (each 9 m long). In addition 20 packer boreholes (10 packer boreholes per crosscut) for pressure build-up recording and hydrocarbon sampling have also been established. Immediately after drilling, core samples from the Hauptsalz for organic geochemical analyses have been retrieved and were dissolved in deionised and degased water. The results of analyses of about 210 samples scattered over all 45 boreholes reveal a total background concentration of hydrocarbons (C{sub 1} to C{sub 40}) of 0,24 mg/kg. 70 samples have concentrations between 1 mg/kg and 50 mg/kg (average 2,66 mg/kg) with 5 outliers up to 442 mg/kg in crosscut 1 west (Hammer et al. 2012, 2013). The drill cores have been investigated and documented by using ultraviolet light (l = 254 nm) in respect of visible indications of the existence of fluorescing aromatic hydrocarbons. Analyses revealed a high level of heterogeneous hydrocarbon distribution in the shape of isolated, irregular streaks, clusters, clouds and occasionally layers mainly located in recrystallized zones of the Hauptsalz. Thin sections and thick sections showed that hydrocarbons in z2HS1 (Knaeuelsalz) and z2HS2 (Streifensalz) samples are either located as black to brownish dendritical fluid inclusions alongside the grain

  14. Use of natural geochemical tracers to improve reservoir simulation models

    Energy Technology Data Exchange (ETDEWEB)

    Huseby, O.; Chatzichristos, C.; Sagen, J.; Muller, J.; Kleven, R.; Bennett, B.; Larter, S.; Stubos, A.K.; Adler, P.M.

    2005-01-01

    This article introduces a methodology for integrating geochemical data in reservoir simulations to improve hydrocarbon reservoir models. The method exploits routine measurements of naturally existing inorganic ion concentration in hydrocarbon reservoir production wells, and uses the ions as non-partitioning water tracers. The methodology is demonstrated on a North Sea field case, using the field's reservoir model, together with geochemical information (SO{sub 4}{sup 2}, Mg{sup 2+} K{sup +}, Ba{sup 2+}, Sr{sup 2+}, Ca{sup 2+}, Cl{sup -} concentrations) from the field's producers. From the data-set we show that some of the ions behave almost as ideal sea-water tracers, i.e. without sorption to the matrix, ion-exchange with the matrix or scale-formation with other ions in the formation water. Moreover, the dataset shows that ion concentrations in pure formation-water vary according to formation. This information can be used to allocate produced water to specific water-producing zones in commingled production. Based on an evaluation of the applicability of the available data, one inorganic component, SO{sub 4}{sup 2}, is used as a natural seawater tracer. Introducing SO{sub 4}{sup 2} as a natural tracer in a tracer simulation has revealed a potential for improvements of the reservoir model. By tracking the injected seawater it was possible to identify underestimated fault lengths in the reservoir model. The demonstration confirms that geochemical data are valuable additional information for reservoir characterization, and shows that integration of geochemical data into reservoir simulation procedures can improve reservoir simulation models. (author)

  15. The natural chlorine cycle - Formation of the carcinogenic and greenhouse gas compound chloroform in drinking water reservoirs.

    Science.gov (United States)

    Forczek, Sándor T; Pavlík, Milan; Holík, Josef; Rederer, Luděk; Ferenčík, Martin

    2016-08-01

    Chlorine cycle in natural ecosystems involves formation of low and high molecular weight organic compounds of living organisms, soil organic matter and atmospherically deposited chloride. Chloroform (CHCl3) and adsorbable organohalogens (AOX) are part of the chlorine cycle. We attempted to characterize the dynamical changes in the levels of total organic carbon (TOC), AOX, chlorine and CHCl3 in a drinking water reservoir and in its tributaries, mainly at its spring, and attempt to relate the presence of AOX and CHCl3 with meteorological, chemical or biological factors. Water temperature and pH influence the formation and accumulation of CHCl3 and affect the conditions for biological processes, which are demonstrated by the correlation between CHCl3 and ΣAOX/Cl(-) ratio, and also by CHCl3/ΣAOX, CHCl3/AOXLMW, CHCl3/ΣTOC, CHCl3/TOCLMW and CHCl3/Cl(-) ratios in different microecosystems (e.g. old spruce forest, stagnant acidic water, humid and warm conditions with high biological activity). These processes start with the biotransformation of AOX from TOC, continue via degradation of AOX to smaller molecules and further chlorination, and finish with the formation of small chlorinated molecules, and their subsequent volatilization and mineralization. The determined concentrations of chloroform result from a dynamic equilibrium between its formation and degradation in the water; in the Hamry water reservoir, this results in a total amount of 0.1-0.7 kg chloroform and 5.2-15.4 t chloride. The formation of chloroform is affected by Cl(-) concentration, by concentrations and ratios of biogenic substrates (TOC and AOX), and by the ratios of the substrates and the product (feedback control by chloroform itself). Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. LOW TEMPERATURE FORMATION OF NITROGEN-SUBSTITUTED POLYCYCLIC AROMATIC HYDROCARBONS (PANHs)—BARRIERLESS ROUTES TO DIHYDRO(iso)QUINOLINES

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Dorian S. N.; Yang, Tao; Dangi, Beni B.; Kaiser, Ralf I. [Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Bera, Partha P.; Lee, Timothy J., E-mail: ralfk@hawaii.edu, E-mail: Timothy.J.Lee@nasa.gov [Space Science and Astrobiology Division, NASA Ames Research Center, Moffett Field, Mountain View, CA 94035 (United States)

    2015-12-20

    Meteorites contain bio-relevant molecules such as vitamins and nucleobases, which consist of aromatic structures with embedded nitrogen atoms. Questions remain over the chemical mechanisms responsible for the formation of nitrogen-substituted polycyclic aromatic hydrocarbons (PANHs) in extraterrestrial environments. By exploiting single collision conditions, we show that a radical mediated bimolecular collision between pyridyl radicals and 1,3-butadiene in the gas phase forms nitrogen-substituted polycyclic aromatic hydrocarbons (PANHs) 1,4-dihydroquinoline and to a minor amount 1,4-dihydroisoquinoline. The reaction proceeds through the formation of a van der Waals complex, which circumnavigates the entrance barrier implying it can operate at very low kinetic energy and therefore at low temperatures of 10 K as present in cold molecular clouds such as TMC-1. The discovery of facile de facto barrierless exoergic reaction mechanisms leading to PANH formation could play an important role in providing a population of aromatic structures upon which further photo-processing of ice condensates could occur to form nucleobases.

  17. Effect of retrograde gas condensate in low permeability natural gas reservoir; Efeito da condensacao retrograda em reservatorios de gas natural com baixa permeabilidade

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Paulo Lee K.C. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Faculdade de Engenharia Mecanica; Ligero, Eliana L.; Schiozer, Denis J. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Engenharia de Petroleo

    2008-07-01

    Most of Brazilian gas fields are low-permeability or tight sandstone reservoirs and some of them should be gas condensate reservoir. In this type of natural gas reservoir, part of the gaseous hydrocarbon mixture is condensate and the liquid hydrocarbon accumulates near the well bore that causes the loss of productivity. The liquid hydrocarbon formation inside the reservoir should be well understood such as the knowledge of the variables that causes the condensate formation and its importance in the natural gas production. This work had as goal to better understanding the effect of condensate accumulation near a producer well. The influence of the porosity and the absolute permeability in the gas production was studied in three distinct gas reservoirs: a dry gas reservoir and two gas condensate reservoirs. The refinement of the simulation grid near the producer well was also investigated. The choice of simulation model was shown to be very important in the simulation of gas condensate reservoirs. The porosity was the little relevance in the gas production and in the liquid hydrocarbon formation; otherwise the permeability was very relevant. (author)

  18. Formation of radical cations in a model for the metabolism of aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Lehner, Andreas F.; Horn, Jamie; Flesher, James W.

    2004-01-01

    To test the hypothesis that electrophilic radical cations are the major ultimate electrophilic and carcinogenic forms of benz[a]anthracene (BA), dibenz[a,h]anthracene (DBA), and benzo[a]pyrene (BP), we have focused on a chemical model of metabolism which parallels and duplicates known or potential metabolites of some polycyclic hydrocarbons formed in cells. Studies of this model system show that radical cations are hardly formed, if at all, in the case of BA or DBA but are definitely formed in the cases of the carcinogen BP as well as the non-carcinogenic hydrocarbons, pyrene and perylene. We conclude that the carcinogenicities of BA, DBA, BP, pyrene, and perylene are independent of one-electron oxidation to radical cation intermediates

  19. Carbon structures formation in low current high voltage electrical discharge in hydrocarbon vapours

    International Nuclear Information System (INIS)

    Sobczyk, A T; Jaworek, A

    2011-01-01

    The properties of carbon fibers and other carbon structures produced from hydrocarbon vapours decomposed in electrically generated plasma at atmospheric pressure are studied in this paper. The electrical discharge was generated between a stainless steel needle and a plate made of nickel alloy. The carbon fiber has grown at the tip of the needle electrode, while other microflower-like deposits were built at the plate. The physical properties of carbon fibers were investigated by SEM, Raman spectroscopy, XRD, and EDS methods.

  20. Factors affecting THMs, HAAs and HNMs formation of Jin Lan Reservoir water exposed to chlorine and monochloramine.

    Science.gov (United States)

    Hong, Huachang; Xiong, Yujing; Ruan, Mengyong; Liao, Fanglei; Lin, Hongjun; Liang, Yan

    2013-02-01

    The formations of THMs, HAAs, and HNMs from chlorination and chloramination of water from Jinlan Reservoir were investigated in this study. Results showed that monochloramine rather than chlorine generally resulted in lower concentration of DBPs, and the DBPs formation varied greatly as the treatment conditions changed. Specifically, the yields of THMs, HAAs and HNMs all increased with the high bromide level and high disinfectant dose both during chlorination and chloramination. The longer reaction time had a positive effect on the formation of THMs, HAAs and HNMs during chlorination and HNMs during chloramination. However, no time effect was observed on the formation of THMs and HAAs during chloramination. An increase in pH enhanced the levels of THMs and HNMs upon chlorination but reduced levels of HNMs upon chloramination. As for the THMs in chloramination and HAAs in chlorination and chloramination, no obvious pH effect was observed. The elevated temperature significantly increased the yields of THMs during chlorination and HNMs during chloramination, but has no effect on THMs and HAAs yields during chloramination. In the same temperature range, the formation of HAAs and HNMs in chlorination showed a first increasing and then a decreasing trend. In chloramination study, addition of nitrite markedly increased the formation of HNMs but had little impact on the formation of THMs and HAAs. While in chlorination study, the presence of high nitrite levels significantly reduced the yields of THMs, HAAs and HNMs. Range analysis revealed that the bromide and disinfectant levels were the major factors affecting THMs, HAAs and HNMs formation, in both chlorination and chloramination. Finally, comparisons of the speciation of mono-halogenated, di-halogenated, tri-halogenated HAAs and HNMs between chlorination and monochloramination were also conducted, and factors influencing the speciation pattern were identified. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Geologic and petrophysic analysis of a travertine block as hydrocarbon reservoir analogue; Analise geologica e petrofisica de um bloco de travertino como analogo de reservatorio de hidrocarbonetos

    Energy Technology Data Exchange (ETDEWEB)

    Basso, Mateus; Kuroda, Michelle Chaves; Vidal, Alexandre Campane, E-mail: mbstraik@gmail.com, E-mail: ckuroda@ige.unicamp.br, E-mail: vidal@ige.unicamp.br [Universidade Estadual de Campinas (CEPETRO/UNICAMP), SP (Brazil). Centro de Estudos do Petroleo

    2017-04-15

    Microbialitic limestones are gaining space in petroleum geology due to the existence of many reservoirs composed of these lithologies in the pre-salt producing fields. Travertine, calcareous tufa and stromatolites figure among the rocks proposed as analogous for the microbialitic rocks. This work conduces the study of geological, petrophysical and geophysical parameters of a travertine block measuring 1,60 x 1,60 x 2,70 m, weighing 21,2 tons and available in the Centro de Estudo do Petroleo (CEPETRO) at the Universidade Estadual de Campinas. The Italian block, named T-block, corresponds to the representative elementary volume of its original formation and allows the study in an intermediate scale between the hand sample and the outcrop scale. Permeability tests and gamma ray spectrometry measurements were conducted and the porosity was calculated by image analysis. Models were generated from the obtained data and then associated with descriptive geology of the block. A reduction in permeability, porosity and concentration of elements potassium (K), uranium (U) and thorium (Th) was recorded, following a gradient towards the top of the T-block accompanying the reduction in the degree of development of the rock fabric. (author)

  2. Development of the first coal seam gas exploration program in Indonesia: Reservoir properties of the Muaraenim Formation, south Sumatra

    Energy Technology Data Exchange (ETDEWEB)

    Sosrowidjojo, I.B. [R and D Centre for Oil and Gas Technology, LEMIGAS, Jakarta (Indonesia); Saghafi, A. [CSIRO Energy Technology, P O Box 330, Newcastle, NSW, 2300 (Australia)

    2009-09-01

    The Late Miocene Muaraenim Formation in southern Sumatra contains thick coal sequences, mostly of low rank ranging from lignite to sub-bituminous, and it is believed that these thick low rank coals are the most prospective for the production of coal seam gas (CSG), otherwise known as coalbed methane (CBM), in Indonesia. As part of a major CSG exploration project, gas exploration drilling operations are being undertaken in Rambutan Gasfields in the Muaraenim Formation to characterize the CSG potential of the coals. The first stage of the project, which is described here, was designed to examine the gas reservoir properties with a focus on coal gas storage capacity and compositional properties. Some five CSG exploration boreholes were drilled in the Rambutan Gasfield, south of Palembang. The exploration boreholes were drilled to depths of {proportional_to} 1000 m into the Muaraenim Formation. Five major coal seams were intersected by these holes between the depths of 450 and 1000 m. The petrography of coal samples collected from these seams showed that they are vitrinite rich, with vitrinite contents of more than 75% (on a mineral and moisture free basis). Gas contents of up to 5.8 m{sup 3}/t were measured for the coal samples. The gas desorbed from coal samples contain mainly methane (CH{sub 4}) ranging from 80 to 93% and carbon dioxide (CO{sub 2}) ranging from 6 to 19%. The composition of the gas released into the production borehole/well is, however, much richer in CH{sub 4} with about 94 to 98% CH{sub 4} and less than 5% CO{sub 2}. The initial results of drilling and reservoir characterization studies indicate suitable gas recovery parameters for three of the five coal seams with a total thickness of more than 30 m. (author)

  3. Modelling Formation of a Drug Reservoir in the Stratum Corneum and Its Impact on Drug Monitoring Using Reverse Iontophoresis

    Directory of Open Access Journals (Sweden)

    Yvonne Paulley

    2010-01-01

    Full Text Available Reverse iontophoresis is a relatively new technique for non-invasive drug monitoring in the body. It involves a small electrical current being passed through the skin to facilitate the movement of small charged ions and polar molecules on the skin's surface where the amount of drug can then be measured and hence an accurate estimate of the blood concentration can be made. In vivo studies for several molecules show that initially large amounts of drug are extracted from the body, which are unrelated to the magnitude of the blood concentration; over time the fluxes of extraction decrease to a level proportional to the steady state blood concentration. This suggests that, at first, the drug is being extracted from some source other than the blood; one such candidate for this source is the dead cells which form the stratum corneum. In this paper, we construct two related mathematical models; the first describes the formation of the drug reservoir in the stratum corneum as a consequence of repeated drug intake and natural death of skin cells in the body. The output from this model provides initial conditions for the model of reverse iontophoresis in which charged ions from both the blood and the stratum corneum reservoir compete for the electric current. Model parameters are estimated from data collected for lithium monitoring. Our models will improve interpretation of reverse iontophoretic data by discriminating the subdermal from the skin contribution to the fluxes of extraction. They also suggest that analysis of the skin reservoir might be a valuable tool to investigate patients' exposure to chemicals including therapeutic drugs.

  4. Sedimentology, Sequence Stratigraphy and Reservoir Characterization of Samana Suk Formation Exposed in Namal Gorge Section, Salt Range, Mianwali, Punjab, Pakistan

    Directory of Open Access Journals (Sweden)

    Muhammad Hayat

    2016-06-01

    Full Text Available Samana Suk Formation of Bathonian-callovain age, exposed in Nammal Gorge Salt Range, has been studied for microfacies and sequence stratigraphic investigation. The formation is mainly composed of limestone, with minor beds of sandstone and marl. The limestone is grey, yellowish and purple in color. Limestone is fine grained, thin to medium bedded and inter-bedded with algal laminations. The sandstone is light yellowish brown, brick red in color, calcareous and quartzose. Within Samana Suk Formation one 2ndorder sequence and two 3rdorder sequences have been identified. Their regional correlation through fine-tuned dating helped to develop basin fill model and to understand facies dynamics. A facie belt comprising a wide belt of carbonate facies characterized by Peloidal Packstone microfacies represents inner ramp setting and Pelletal/ Peloidal Wackstone, Mud-Wackstone and Mudstone microfacies represent the low energy lagoonal environment. The sandstone lithofacies represents high energy beach environment which indicates aggrading to pro-grading pattern. The porosity analysis has been done on different samples of limestone and sandstone. For the porosity analysis the Image J software is used. In limestone the porosity ranges up to 6% while in sandstone the porosity ranging up to 18%. From the field and porosity analysis it is concluded that Samana Suk Formation in study area is good reservoir.

  5. Estimation of subsurface formation temperature in the Tarim Basin, northwest China: implications for hydrocarbon generation and preservation

    Science.gov (United States)

    Liu, Shaowen; Lei, Xiao; Feng, Changge; Hao, Chunyan

    2016-07-01

    Subsurface formation temperature in the Tarim Basin, northwest China, is vital for assessment of hydrocarbon generation and preservation, and of geothermal energy potential. However, it has not previously been well understood, due to poor data coverage and a lack of highly accurate temperature data. Here, we combined recently acquired steady-state temperature logging data with drill stem test temperature data and measured rock thermal properties, to investigate the geothermal regime and estimate the subsurface formation temperature at depth in the range of 1000-5000 m, together with temperatures at the lower boundary of each of four major Lower Paleozoic marine source rocks buried in this basin. Results show that heat flow of the Tarim Basin ranges between 26.2 and 66.1 mW/m2, with a mean of 42.5 ± 7.6 mW/m2; the geothermal gradient at depth of 3000 m varies from 14.9 to 30.2 °C/km, with a mean of 20.7 ± 2.9 °C/km. Formation temperature estimated at the depth of 1000 m is between 29 and 41 °C, with a mean of 35 °C, while 63-100 °C is for the temperature at the depth of 3000 m with a mean of 82 °C. Temperature at 5000 m ranges from 97 to 160 °C, with a mean of 129 °C. Generally spatial patterns of the subsurface formation temperature at depth are basically similar, characterized by higher temperatures in the uplift areas and lower temperatures in the sags, which indicates the influence of basement structure and lateral variations in thermal properties on the geotemperature field. Using temperature to identify the oil window in the source rocks, most of the uplifted areas in the basin are under favorable condition for oil generation and/or preservation, whereas the sags with thick sediments are favorable for gas generation and/or preservation. We conclude that relatively low present-day geothermal regime and large burial depth of the source rocks in the Tarim Basin are favorable for hydrocarbon generation and preservation. In addition, it is found that the

  6. Paraselectivity and Formation of Aromatic Hydrocarbons over ZSM-5 Type Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Unneberg, E

    1997-12-31

    The zeolite ZSM-5, patented by Mobil Oil Corporation in 1972, is able to convert methanol to gasoline (MTG) and water. Due to the size of the channels, undesired hydrocarbons larger than C{sub 11} are not present in the mixture, and a high octane gasoline is obtained. This has aroused a great deal of interest in the ZSM-5. Rather than being concerned with energy considerations, this doctoral thesis describes syntheses of ZSM-5 and discusses the ZSM-5 as such and studies the possible paraselectivities in various reactions over the catalyst ZSM-5. 774 refs., 113 figs., 54 tabs.

  7. Paraselectivity and Formation of Aromatic Hydrocarbons over ZSM-5 Type Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Unneberg, E.

    1996-12-31

    The zeolite ZSM-5, patented by Mobil Oil Corporation in 1972, is able to convert methanol to gasoline (MTG) and water. Due to the size of the channels, undesired hydrocarbons larger than C{sub 11} are not present in the mixture, and a high octane gasoline is obtained. This has aroused a great deal of interest in the ZSM-5. Rather than being concerned with energy considerations, this doctoral thesis describes syntheses of ZSM-5 and discusses the ZSM-5 as such and studies the possible paraselectivities in various reactions over the catalyst ZSM-5. 774 refs., 113 figs., 54 tabs.

  8. Investigating Superhydrogenated Polycyclic Aromatic Hydrocarbons as catalysts for Interstellar H2 formation

    DEFF Research Database (Denmark)

    Simonsen, Frederik Doktor Skødt

    2016-01-01

    Temperature programmed desorption has been used to investigate adsorption and abstraction of hydrogen atoms on the polycyclic aromatic hydrocarbon, coronene. The coronene molecules were exposed to different hydrogen fluences at a dosing temperature of 1000K. Large fluences of hydrogen leave...... large abundances, alongside H2[2]. To investigate the the abstraction and adsoption patterns of hydrogen/deuterium on coronene, C24H12 (a PAH), we used temperature programmed desorption (TPD). Coronene monolayers were prepared on graphite and exposed to different fluences of 1000 K H or D atoms...

  9. Formation of Polycyclic Aromatic Hydrocarbons and Nitrogen Containing Polycyclic Aromatic Compounds in Titan's Atmosphere, the Interstellar Medium and Combustion

    Science.gov (United States)

    Landera, Alexander

    2013-12-01

    Several different mechanisms leading to the formation of (substituted) naphthalene and azanaphthalenes were examined using theoretical quantum chemical calculations. As a result, a series of novel synthetic routes to Polycyclic Aromatic Hydrocarbons (PAHs) and Nitrogen Containing Polycyclic Aromatic Compounds (N-PACs) have been proposed. On Earth, these aromatic compounds originate from incomplete combustion and are released into our environment, where they are known to be major pollutants, often with carcinogenic properties. In the atmosphere of a Saturn's moon Titan, these PAH and N-PACs are believed to play a critical role in organic haze formation, as well as acting as chemical precursors to biologically relevant molecules. The theoretical calculations were performed by employing the ab initio G3(MP2,CC)/B3LYP/6-311G** method to effectively probe the Potential Energy Surfaces (PES) relevant to the PAH and N-PAC formation. Following the construction of the PES, Rice-Ramsperger-Kassel-Markus (RRKM) theory was used to evaluate all unimolecular rate constants as a function of collision energy under single-collision conditions. Branching ratios were then evaluated by solving phenomenological rate expressions for the various product concentrations. The most viable pathways to PAH and N-PAC formation were found to be those where the initial attack by the ethynyl (C2H) or cyano (CN) radical toward a unsaturated hydrocarbon molecule led to the formation of an intermediate which could not effectively lose a hydrogen atom. It is not until ring cyclization has occurred, that hydrogen elimination leads to a closed shell product. By quenching the possibility of the initial hydrogen atom elimination, one of the most competitive processes preventing the PAH or N-PAC formation was avoided, and the PAH or N-PAC formation was allowed to proceed. It is concluded that these considerations should be taken into account when attempting to explore any other potential routes towards

  10. The Cook Formation Reservoir Architecture, Stratigraphy and Paleogeography in the Tampen Spur Area

    OpenAIRE

    Kvalvåg, Silje Dahle

    2017-01-01

    Master's thesis in Petroleum geosciences engineering This thesis describes the development of the prograding and aggrading, Lower Jurassic Cook Formation across Knarr Field and Garantiana discovery located in the Tampen Spur area in the Northern North Sea. 11 facies, 5 depositional element and 7 facies association has been combined to established three correlation. The Cook Formation has been divided into three higher order sequences lower middle and upper Cook member. The Lower and Middle...

  11. Low-maturity Kulthieth Formation coal : a possible source of polycyclic aromatic hydrocarbons in benthic sediment of the Northern Gulf of Alaska

    International Nuclear Information System (INIS)

    Van Kooten, G.K.; Short, J.W.; Kolak, J.J.

    2002-01-01

    This study addressed the issue of sources of hydrocarbons for benthic sediments in the Gulf of Alaska (GOA) with particular reference to the application of forensic geology to identify end members and to explain the geologic setting and processes affecting the system. Native coals and natural seep oils have been questioned in the past decade as possible sources of background hydrocarbons because the pattern of relative polycyclic aromatic hydrocarbon (PAH) abundance characteristic of benthic GOA sediments is inconsistent with patterns typical of weathered seep oils. Native coal has also been dismissed as a pollution source because ratios of labile hydrocarbons to total organic carbon for Bering River coal field (BRCF) sources are too low to be consistent with GOA sediments. The authors present evidence that perhaps native coal has been prematurely dismissed as a pollution source because BRCF coals do not represent adequately the geochemical signatures of coals elsewhere in the Kulthieth Formation which have much higher PAH:TOC ratios. The patterns of labile hydrocarbons in these low thermal maturity coals indicate a genetic relationship between Kulthieth Formation coals and nearby oil seeps on the Sullivan anticline. Analysis of the coal suggests it is a significant source of PAH, and it was cautioned that source models that do not include this source will underestimate the contribution of native coals to the background hydrocarbon signature in the Gulf of Alaska. 32 refs., 2 tabs., 8 figs

  12. Atmospheric electrical field measurements near a fresh water reservoir and the formation of the lake breeze

    Directory of Open Access Journals (Sweden)

    Francisco Lopes

    2016-06-01

    Full Text Available In order to access the effect of the lakes in the atmospheric electrical field, measurements have been carried out near a large man-made lake in southern Portugal, the Alqueva reservoir, during the ALqueva hydro-meteorological EXperiment 2014. The purpose of these conjoint experiments was to study the impact of the Alqueva reservoir on the atmosphere, in particular on the local atmospheric electric environment by comparing measurements taken in the proximity of the lake. Two stations 10 km apart were used, as they were located up- and down-wind of the lake (Amieira and Parque Solar, respectively, in reference to the dominant northwestern wind direction. The up-wind station shows lower atmospheric electric potential gradient (PG values than the ones observed in the down-wind station between 12 and 20 UTC. The difference in the atmospheric electric PG between the up-wind and the down-wind station is ~30 V/m during the day. This differential occurs mainly during the development of a lake breeze, between 10 and 18 UTC, as a consequence of the surface temperature gradient between the surrounding land and the lake water. In the analysis presented, a correlation is found between the atmospheric electric PG differences and both wind speed and temperature gradients over the lake, thus supporting the influence of the lake breeze over the observed PG variation in the two stations. Two hypotheses are provided to explain this observation: (1 The air that flows from the lake into the land station is likely to increase the local electric conductivity through the removal of ground dust and the transport of cleaner air from higher altitudes with significant light ion concentrations. With such an increase in conductivity, it is expected to see a reduction of the atmospheric electric PG; (2 the resulting air flow over the land station carries negative ions formed by wave splashing in the lake's water surface, as a result of the so-called balloelectric effect

  13. Molecular mechanisms in the pyrolysis of unsaturated chlorinated hydrocarbons: formation of benzene rings. 1. Quantum chemical studies.

    Science.gov (United States)

    McIntosh, Grant J; Russell, Douglas K

    2013-05-23

    Analogues of important aromatic growth mechanisms in hydrocarbon pyrolysis and combustion systems are extended to chlorinated systems. We consider the addition of C2Cl2 to both C4Cl3 and C4Cl5 radicals at the M06-2X/6-311+G(3df,3p)//B3LYP/6-31G(d) level of theory, and we demonstrate that these reaction systems have much in common with those of nonchlorinated species. In particular, we find that these radicals appear to lead preferentially to fulvenes, and not to the observed aromatic products, as is found in nonchlorinated systems. We have therefore also considered nonradical C4/C2 channels by way of Diels-Alder cyclization of C4Cl4/C2Cl2 and C4H2Cl2/C2HCl pairs to describe aromatic formation. While the latter pair readily leads to the formation of partially chlorinated benzenes, the fully chlorinated congeners are sterically prohibited from ring closing directly; this leads to a series of novel rearrangement processes which predict the formation of hexachloro-1,5-diene-3-yne, in addition to hexachlorobenzene, in good agreement with experiment. This suggests, for the first time, that facile nonradical routes to aromatic formation are operative in partially and fully chlorinated pyrolysis and combustion systems.

  14. Formation of combustible hydrocarbons and H2 during photocatalytic decomposition of various organic compounds under aerated and deaerated conditions.

    Science.gov (United States)

    Mozia, Sylwia; Kułagowska, Aleksandra; Morawski, Antoni W

    2014-11-26

    A possibility of photocatalytic production of useful aliphatic hydrocarbons and H2 from various organic compounds, including acetic acid, methanol, ethanol and glucose, over Fe-modified TiO2 is discussed. In particular, the influence of the reaction atmosphere (N2, air) was investigated. Different gases were identified in the headspace volume of the reactor depending on the substrate. In general, the evolution of the gases was more effective in air compared to a N2 atmosphere. In the presence of air, the gaseous phase contained CO2, CH4 and H2, regardless of the substrate used. Moreover, formation of C2H6 and C3H8 in the case of acetic acid and C2H6 in the case of ethanol was observed. In case of acetic acid and methanol an increase in H2 evolution under aerated conditions was observed. It was concluded that the photocatalytic decomposition of organic compounds with simultaneous generation of combustible hydrocarbons and hydrogen could be a promising method of "green energy" production.

  15. Predicting Formation Damage in Aquifer Thermal Energy Storage Systems Utilizing a Coupled Hydraulic-Thermal-Chemical Reservoir Model

    Science.gov (United States)

    Müller, Daniel; Regenspurg, Simona; Milsch, Harald; Blöcher, Guido; Kranz, Stefan; Saadat, Ali

    2014-05-01

    In aquifer thermal energy storage (ATES) systems, large amounts of energy can be stored by injecting hot water into deep or intermediate aquifers. In a seasonal production-injection cycle, water is circulated through a system comprising the porous aquifer, a production well, a heat exchanger and an injection well. This process involves large temperature and pressure differences, which shift chemical equilibria and introduce or amplify mechanical processes. Rock-fluid interaction such as dissolution and precipitation or migration and deposition of fine particles will affect the hydraulic properties of the porous medium and may lead to irreversible formation damage. In consequence, these processes determine the long-term performance of the ATES system and need to be predicted to ensure the reliability of the system. However, high temperature and pressure gradients and dynamic feedback cycles pose challenges on predicting the influence of the relevant processes. Within this study, a reservoir model comprising a coupled hydraulic-thermal-chemical simulation was developed based on an ATES demonstration project located in the city of Berlin, Germany. The structural model was created with Petrel, based on data available from seismic cross-sections and wellbores. The reservoir simulation was realized by combining the capabilities of multiple simulation tools. For the reactive transport model, COMSOL Multiphysics (hydraulic-thermal) and PHREEQC (chemical) were combined using the novel interface COMSOL_PHREEQC, developed by Wissmeier & Barry (2011). It provides a MATLAB-based coupling interface between both programs. Compared to using COMSOL's built-in reactive transport simulator, PHREEQC additionally calculates adsorption and reaction kinetics and allows the selection of different activity coefficient models in the database. The presented simulation tool will be able to predict the most important aspects of hydraulic, thermal and chemical transport processes relevant to

  16. Glove material, reservoir formation, and dose affect glove permeation and subsequent skin penetration.

    Science.gov (United States)

    Nielsen, Jesper Bo; Sørensen, Jens Ahm

    2012-02-15

    Protective gloves are used to reduce dermal exposure when managing chemical exposures at the work place. Different glove materials may offer different degrees of protection. The present study combined the traditional ASTM (American Society for Testing and Materials) model with the Franz diffusion cell to evaluate overall penetration through glove and skin as well as the deposition in the different reservoirs. Benzoic acid was applied on latex or nitrile gloves placed on top of human skin. The amounts of chemical were quantified in the glove material, between glove and skin, within the skin, and in the receptor chamber. Both glove materials reduce total penetration of benzoic acid, but nitrile gloves offer a significantly better protection than latex gloves. This difference was less pronounced at the higher of the two concentrations of benzoic acid applied. Thus, glove types that offer relevant protection at low concentrations does not necessarily give appropriate protection at high concentrations. Significant amounts of benzoic acid could be extracted from the glove materials after exposure. If a chemical is accumulated in the glove material, reuse of single-use gloves should be cautioned. The reuse of gloves is generally not to be recommended without effective decontamination. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Investigating Superhydrogenated Polycyclic Aromatic Hydrocarbons on HOPG and their catalytic abilities of H2 formation

    DEFF Research Database (Denmark)

    Simonsen, Frederik Doktor Skødt

    Scanning tunneling microscopy and temperature programmed desorption techniques have been used to investigate adsorption and abstraction of hydrogen atoms on the polycyclic aromatic hydrocarbon, coronene. The coronene molecules were exposed to different hydrogen fluences at a dosing temperature......). Both scanning tunneling microscopy (STM) and temperature programmed desorption (TPD) techniques have been used. Coronene monolayers were prepared on graphite and exposed to different fluences of 1000K H or D atoms. STM images show brigth spots on the coronene monolayers after hydrogenation indicating...... calcutions have also been made on desorption of H from a fully hydrogenated coronene molecule. The desorption DFT calculation reveals a favourable desorption route and stable configurations consistent with our TPD measurements[5]. References [1] Tielens, A., Reviews of Modern Physics, 85 (2013) 1021-1081 [2...

  18. Arbuscular mycorrhizal fungi (AMF on a sandbank plant formation: ecology and potential for hydrocarbon oil mycorrhizoremediation

    Directory of Open Access Journals (Sweden)

    Ocimar Ferreira de Andrade

    2016-04-01

    Full Text Available The sources of contamination related to the exploration, production, storage, transport, distribution and disposal of petroleum, and its products, carry risks that threaten fragile coastal environments, little studied and, thus, in need of attention from the scientific community. On the other hand, symbiont mechanisms essential for the very existence of many plant species, and their relation to contaminated soils, remain unknown. Despite the identification of several species of AMF halophytes soil communities in sandbanks, one can infer their bioremediation potential from studies in other types of soil, which, however, report the same genera of fungi as participants in mycorrhizoremediation processes of polluted soil. This study focuses on the application of biotechnology using Arbuscular Mycorrhizal Fungi (AMF in soils impacted by petroleum hydrocarbons.

  19. Hydrocarbon-Rich Groundwater above Shale-Gas Formations: A Karoo Basin Case Study.

    Science.gov (United States)

    Eymold, William K; Swana, Kelley; Moore, Myles T; Whyte, Colin J; Harkness, Jennifer S; Talma, Siep; Murray, Ricky; Moortgat, Joachim B; Miller, Jodie; Vengosh, Avner; Darrah, Thomas H

    2018-03-01

    Horizontal drilling and hydraulic fracturing have enhanced unconventional hydrocarbon recovery but raised environmental concerns related to water quality. Because most basins targeted for shale-gas development in the USA have histories of both active and legacy petroleum extraction, confusion about the hydrogeological context of naturally occurring methane in shallow aquifers overlying shales remains. The Karoo Basin, located in South Africa, provides a near-pristine setting to evaluate these processes, without a history of conventional or unconventional energy extraction. We conducted a comprehensive pre-industrial evaluation of water quality and gas geochemistry in 22 groundwater samples across the Karoo Basin, including dissolved ions, water isotopes, hydrocarbon molecular and isotopic composition, and noble gases. Methane-rich samples were associated with high-salinity, NaCl-type groundwater and elevated levels of ethane, 4 He, and other noble gases produced by radioactive decay. This endmember displayed less negative δ 13 C-CH 4 and evidence of mixing between thermogenic natural gases and hydrogenotrophic methane. Atmospheric noble gases in the methane-rich samples record a history of fractionation during gas-phase migration from source rocks to shallow aquifers. Conversely, methane-poor samples have a paucity of ethane and 4 He, near saturation levels of atmospheric noble gases, and more negative δ 13 C-CH 4 ; methane in these samples is biogenic and produced by a mixture of hydrogenotrophic and acetoclastic sources. These geochemical observations are consistent with other basins targeted for unconventional energy extraction in the USA and contribute to a growing data base of naturally occurring methane in shallow aquifers globally, which provide a framework for evaluating environmental concerns related to unconventional energy development (e.g., stray gas). © 2018, National Ground Water Association.

  20. Forms of polycyclic aromatic hydrocarbon in the formation of sewage sludge toxicity to Heterocypris incongruens

    International Nuclear Information System (INIS)

    Oleszczuk, Patryk

    2008-01-01

    The aim of the present study was to evaluate to what degree polycyclic aromatic hydrocarbon (PAH) determines sewage sludge toxicity in relation to Heterocypris incongruens. Six differing sewage sludges with increasing contents of polycyclic aromatic hydrocarbons were selected for the present study. As well as total PAH content, the content of the potentially bioavailable fraction was also determined in the sewage sludges using a method of mild-solvent extraction (with n-butanol). The PAH content was also calculated in the sewage sludge pore water by the equilibrium partitioning method. The total PAH content in the sewage sludges studied were in the range 3.60 to 27.95 mg kg -1 . The contribution of the n-butanol extracted fraction was in the range 38.7 to 75.4%. In the group of individual PAHs, 4- and 5-ring compounds had the highest content in the potentially bioavailable group. H. incongruens mortality in the range 6.7 to 100%, depending both on the sewage sludge and the dose applied. An increase of the sewage sludge dose usually resulted in an increase in toxicity. At the highest dose, a 100% mortality of H. incongruens was found in half of the sludges. The lowest dose, irrespective of the sludge type, caused over 40% growth inhibition. However, the results obtained did not allow for the establishing of an unambiguous relationship between various sludge toxicity levels and the content of potentially bio-available PAHs. In some cases only, the extraction using n-butanol explained the high difference in toxicity despite a slight differentiation in the PAH content

  1. Investigating Superhydrogenated Polycyclic Aromatic Hydrocarbons as catalysts for Interstellar H2 formation

    DEFF Research Database (Denmark)

    Simonsen, Frederik Doktor Skødt

    , are observed. Because of relatively high H2 destruction rates in these regions, the presently accepted formation routes on dust grains cannot exclusively account for the observed abundances [1]. Therefore, new formation routes are needed and lately attention has been drawn towards molecules called polycyclic...

  2. Formation of Nitriles in the Interstellar Medium via Reactions of Cyano Radicals, CN(X2Σ+), with Unsaturated Hydrocarbons

    Science.gov (United States)

    Balucani, N.; Asvany, O.; Huang, L. C. L.; Lee, Y. T.; Kaiser, R. I.; Osamura, Y.; Bettinger, H. F.

    2000-12-01

    Crossed molecular beam experiments of cyano radicals, CN(X2Σ+, ν=0), in their electronic and vibrational ground state reacting with unsaturated hydrocarbons acetylene, C2H2(X1Σ+g), ethylene, C2H4(X1Ag), methylacetylene, CH3CCH(X1A1), allene, H2CCCH2(X1A1), dimethylacetylene, CH3CCCH3(X1A1'), and benzene, C6H6 (X1A1g), were performed at relative collision energies between 13.3 and 36.4 kJ mol-1 to unravel the formation of unsaturated nitriles in the outflows of late-type AGB carbon stars and molecular clouds. In all reactions, the CN radical was found to attack the π electron density of the hydrocarbon molecule with the radical center located at the carbon atom; the formation of an initial addition complex is a prevalent pathway on all the involved potential energy surfaces. A subsequent carbon-hydrogen bond rupture yields the nitriles cyanoacetylene, HCCCN (X1Σ+), vinylcyanide, C2H3CN (X1A'), 1-methylcyanoacetylene, CH3CCCN (X1A1), cyanoallene, H2CCCH(CN) (X1A'), 3-methylcyanoacetylene, HCCCH2CN(X1A'), 1,1-cyanomethylallene, H2CCC(CN)(CH3) (X1A'), and cyanobenzene, C6H5CN (X1A1). In case of acetylene and ethylene, a second reaction channel involves a [1, 2]-H atom shift in the initial HCCHCN and H2CCH2CN collision complexes prior to a hydrogen atom release to form cyanoacetylene, HCCCN (X1Σ+), and vinylcyanide, C2H3CN (X1A'). Since all these radical-neutral reactions show no entrance barriers, have exit barriers well below the energy of the reactant molecules, and are exothermic, the explicit identification of this CN versus H atom exchange pathway under single collision conditions makes this reaction class a compelling candidate to synthesize unsaturated nitriles in interstellar environments holding temperatures as low as 10 K. This general concept makes it even feasible to predict the formation of nitriles once the corresponding unsaturated hydrocarbons are identified in the interstellar medium. Here HCCCN, C2H3CN, and CH3CCCN have been already observed

  3. Volcano geodesy: The search for magma reservoirs and the formation of eruptive vents

    Science.gov (United States)

    Dvorak, J.J.; Dzurisin, D.

    1997-01-01

    Routine geodetic measurements are made at only a few dozen of the world's 600 or so active volcanoes, even though these measurements have proven to be a reliable precursor of eruptions. The pattern and rate of surface displacement reveal the depth and rate of pressure increase within shallow magma reservoirs. This process has been demonstrated clearly at Kilauea and Mauna Loa, Hawaii; Long Valley caldera, California; Campi Flegrei caldera, Italy; Rabaul caldera, Papua New Guinea; and Aira caldera and nearby Sakurajima, Japan. Slower and lesser amounts of surface displacement at Yellowstone caldera, Wyoming, are attributed to changes in a hydrothermal system that overlies a crustal magma body. The vertical and horizontal dimensions of eruptive fissures, as well as the amount of widening, have been determined at Kilauea, Hawaii; Etna, Italy; Tolbachik, Kamchatka; Krafla, Iceland; and Asal-Ghoubbet, Djibouti, the last a segment of the East Africa Rift Zone. Continuously recording instruments, such as tiltmeters, extensometers, and dilatometers, have recorded horizontal and upward growth of eruptive fissures, which grew at rates of hundreds of meters per hour, at Kilauea; Izu-Oshima, Japan; Teishi Knoll seamount, Japan; and Piton de la Fournaise, Re??union Island. In addition, such instruments have recorded the hour or less of slight ground movement that preceded small explosive eruptions at Sakurajima and presumed sudden gas emissions at Galeras, Colombia. The use of satellite geodesy, in particular the Global Positioning System, offers the possibility of revealing changes in surface strain both local to a volcano and over a broad region that includes the volcano.

  4. The presence of hydrocarbons in southeast Norway

    DEFF Research Database (Denmark)

    Hanken, Niels Martin; Hansen, Malene Dolberg; Kresten Nielsen, Jesper

    Hydrocarbons, mostly found as solid pyrobitumen, are known from more than 30 localities in southeast Norway. They occur as inclusions in a wide range of "reservoir rocks" spanning from Permo-Carboniferous breccias to veins (vein quartz and calcite veins) in Precambrian granites, gneisses and amph......Hydrocarbons, mostly found as solid pyrobitumen, are known from more than 30 localities in southeast Norway. They occur as inclusions in a wide range of "reservoir rocks" spanning from Permo-Carboniferous breccias to veins (vein quartz and calcite veins) in Precambrian granites, gneisses......, indicating that Alum Shale was the most important source rock. Petrographic investigations combined with stable isotope analyses (d13C and d18O) of the cement containing pyrobitumen indicate two phases of hydrocarbon migration. The first phase probably took place in Upper Silurian to Lower Devonian time......, when the Alum Shale entered the oil window. These hydrocarbons are mostly found as pyrobitumen in primary voids and calcite cemented veins in Cambro-Silurian sedimentary deposits. The second phase is probably of Late Carboniferous/Permian age and was due to the increased heat flow during the formation...

  5. The Eocene Rusayl Formation, Oman, carbonaceous rocks in calcareous shelf sediments: Environment of deposition, alteration and hydrocarbon potential

    Energy Technology Data Exchange (ETDEWEB)

    Dill, H.G.; Wehner, H.; Kus, J. [Federal Institute for Geosciences and Natural Resources, P.O. Box 510163, D-30631 Hannover (Germany); Botz, R. [University Kiel, Geological-Paleontological Department, Olshausenstrasse 40-60, D-24118 Kiel (Germany); Berner, Z.; Stueben, D. [Technical University Karlsruhe, Institute for Mineralogy and Geochemistry, Fritz-Haber-Weg 2, D-76131 Karlsruhe (Germany); Al-Sayigh, A. [Sultan Qaboos University, Geological Dept. PO Box 36, Al-Khod (Oman)

    2007-10-01

    incursions make up a greater deal of the sedimentary record than mangrove swamps. Terra rossa paleosols mark the end of accumulation of organic material (OM) and herald supratidal conditions at the passage of Rusayl Formation into the overlying Seeb Formation. In the subtidal-supratidal cycles of lithofacies unit VIII the terra rossa horizons are thining upwards and become gradually substituted for by deep-water middle ramp sediments of lithofacies unit IX. Framboidal pyrite, (ferroan) dolomite with very little siderite are indicative of an early diagenetic alteration stage I under rather moderate temperatures of formation. During a subsequent stage II, an increase in the temperature of alteration was partly induced by burial and a high heat flow from the underlying Semail Ophiolite. Type-III kerogen originating from higher plants and, in addition, some marine biota gave rise to the generation of small amounts of soluble organic matter during this stage of diagenesis. The average reflectance of humic particles marks the beginning of the oil window and the production index reveals the existence of free hydrocarbons. Further uplift of the Eocene strata and oxidation during stage IIII caused veins of satin spar to form from organic sulfur and pyrite in the carbonaceous material. Lowering of the pH value of the pore fluid led to the precipitation of jarosite and a set of hydrated aluminum sulfates dependant upon the cations present in the wall rocks. AMD minerals (= acid mine drainage) are not very widespread in this carbonaceous series intercalated among calcareous rocks owing to the buffering effect of carbonate minerals. These carbonate-hosted carbonaceous rocks are below an economic level as far as the mining of coal is concerned, but deserves particular attention as source rocks for hydrocarbons in the Middle East, provided a higher stage of maturity is reached. (author)

  6. Low-maturity Kulthieth Formation coal: A possible source of polycyclic aromatic hydrocarbons in benthic sediment of the northern Gulf of Alaska

    Science.gov (United States)

    Van Kooten, G. K.; Short, J.W.; Kolak, J.J.

    2002-01-01

    The successful application of forensic geology to contamination studies involving natural systems requires identification of appropriate endmembers and an understanding of the geologic setting and processes affecting the systems. Studies attempting to delineate the background, or natural, source for hydrocarbon contamination in Gulf of Alaska (GOA) benthic sediments have invoked a number of potential sources, including seep oils, source rocks, and coal. Oil seeps have subsequently been questioned as significant sources of hydrocarbons present in benthic sediments of the GOA in part because the pattern of relative polycyclic aromatic hydrocarbon (PAH) abundance characteristic of benthic GOA sediments is inconsistent with patterns typical of weathered seep oils. Likewise, native coal has been dismissed in part because ratios of labile hydrocarbons to total organic carbon (e.g. PAH:TOC) for Bering River coal field (BRCF) sources are too low - i.e. the coals are over mature - to be consistent with GOA sediments. We present evidence here that native coal may have been prematurely dismissed, because BRCF coals do not adequately represent the geochemical signatures of coals elsewhere in the Kulthieth Formation. Contrary to previous thought, Kulthieth Formation coals east of the BRCF have much higher PAH: TOC ratios, and the patterns of labile hydrocarbons in these low thermal maturity coals suggest a possible genetic relationship between Kulthieth Formation coals and nearby oil seeps on the Sullivan anticline. Analyses of low-maturity Kulthieth Formation coal indicate the low maturity coal is a significant source of PAH. Source apportionment models that neglect this source will underestimate the contribution of native coals to the regional background hydrocarbon signature. ?? Published by Elsevier Science Ltd. on behalf of AEHS.

  7. Provenance, diagenesis, tectonic setting and reservoir quality of the sandstones of the Kareem Formation, Gulf of Suez, Egypt

    Science.gov (United States)

    Zaid, Samir M.

    2013-09-01

    The Middle Miocene Kareem sandstones are important oil reservoirs in the southwestern part of the Gulf of Suez basin, Egypt. However, their diagenesis and provenance and their impact on reservoir quality, are virtually unknown. Samples from the Zeit Bay Oil Field, and the East Zeit Oil Field represent the Lower Kareem (Rahmi Member) and the Upper Kareem (Shagar Member), were studied using a combination of petrographic, mineralogical and geochemical techniques. The Lower Rahmi sandstones have an average framework composition of Q95F3.4R1.6, and 90% of the quartz grains are monocrystalline. By contrast, the Upper Shagar sandstones are only slightly less quartzose with an average framework composition of Q76F21R3 and 82% of the quartz grains are monocrystalline. The Kareem sandstones are mostly quartzarenite with subordinate subarkose and arkose. Petrographical and geochemical data of sandstones indicate that they were derived from granitic and metamorphic terrains as the main source rock with a subordinate quartzose recycled sedimentary rocks and deposited in a passive continental margin of a syn rift basin. The sandstones of the Kareem Formation show upward decrease in maturity. Petrographic study revealed that dolomite is the dominant cement and generally occurs as fine to medium rhombs pore occluding phase and locally as a grain replacive phase. Authigenic quartz occurs as small euhedral crystals, locally as large pyramidal crystals in the primary pores. Authigenic anhydrites typically occur as poikilotopic rhombs or elongate laths infilling pores but also as vein filling cement. The kaolinite is a by-product of feldspar leaching in the presence of acidic fluid produced during the maturation of organic matter in the adjacent Miocene rocks. Diagenetic features include compaction; dolomite, silica and anhydrite cementation with minor iron-oxide, illite, kaolinite and pyrite cements; dissolution of feldspars, rock fragments. Silica dissolution, grain replacement and

  8. Liquid hydrocarbon generation potential from Tertiary Nyalau Formation coals in the onshore Sarawak, Eastern Malaysia

    Science.gov (United States)

    Hakimi, Mohammed Hail; Abdullah, Wan Hasiah

    2013-01-01

    Tertiary coals exposed in the north-central part of onshore Sarawak are evaluated, and their depositional environments are interpreted. Total organic carbon contents (TOC) of the coals range from 58.1 to 80.9 wt. % and yield hydrogen index values ranging from 282 to 510 mg HC/g TOC with low oxygen index values, consistent with Type II and mixed Type II-III kerogens. The coal samples have vitrinite reflectance values in the range of 0.47-0.67 Ro %, indicating immature to early mature (initial oil window). T max values range from 428 to 436 °C, which are good in agreement with vitrinite reflectance data. The Tertiary coals are humic and generally dominated by vitrinite, with significant amounts of liptinite and low amounts of inertinite macerals. Good liquid hydrocarbons generation potential can be expected from the coals with rich liptinitic content (>35 %). This is supported by their high hydrogen index of up to 300 mg HC/g TOC and Py-GC ( S 2) pyrograms with n-alkane/alkene doublets extending beyond C30. The Tertiary coals are characterised by dominant odd carbon numbered n-alkanes ( n-C23 to n-C33), high Pr/Ph ratio (6-8), high T m / T s ratio (8-16), and predominant regular sterane C29. All biomarkers parameters clearly indicate that the organic matter was derived from terrestrial inputs and the deposited under oxic condition.

  9. Modeling unburned hydrocarbon formation due to absorption/desorption processes into the wall oil film

    International Nuclear Information System (INIS)

    Shih, L.K.; Assanis, D.N.

    1992-01-01

    This paper reports that as a result of continuing air pollution problems, very stringent regulations are being enforced to control emissions of unburned hydrocarbons (HC) from premixed-charge, spark-ignition engines. A number of attempts have been reported on modeling sources of HC emissions using various analytical tools. Over the past decade, the development of multi-dimensional reacting flow codes has advanced considerably. Perhaps the most widely used multi-dimensional engine simulation code is KIVA-II, which was developed at Lost Alamos National Laboratory. The ability to deal with moving boundary conditions caused by the piston movement is built in this code. This code also includes models for turbulent fluid flow, turbulent interaction between spray drops and gas, heat transfer, chemical reaction, and fuel spray. A standard k-ε turbulence model is used for gas flow. The fuel spray model is based on the stochastic particle technique, and includes sub-models for droplet injection, breakup, collision and coalescence, and evaporation

  10. Static reservoir modeling of the Bahariya reservoirs for the oilfields development in South Umbarka area, Western Desert, Egypt

    Science.gov (United States)

    Abdel-Fattah, Mohamed I.; Metwalli, Farouk I.; Mesilhi, El Sayed I.

    2018-02-01

    3D static reservoir modeling of the Bahariya reservoirs using seismic and wells data can be a relevant part of an overall strategy for the oilfields development in South Umbarka area (Western Desert, Egypt). The seismic data is used to build the 3D grid, including fault sticks for the fault modeling, and horizon interpretations and surfaces for horizon modeling. The 3D grid is the digital representation of the structural geology of Bahariya Formation. When we got a reasonably accurate representation, we fill the 3D grid with facies and petrophysical properties to simulate it, to gain a more precise understanding of the reservoir properties behavior. Sequential Indicator Simulation (SIS) and Sequential Gaussian Simulation (SGS) techniques are the stochastic algorithms used to spatially distribute discrete reservoir properties (facies) and continuous reservoir properties (shale volume, porosity, and water saturation) respectively within the created 3D grid throughout property modeling. The structural model of Bahariya Formation exhibits the trapping mechanism which is a fault assisted anticlinal closure trending NW-SE. This major fault breaks the reservoirs into two major fault blocks (North Block and South Block). Petrophysical models classified Lower Bahariya reservoir as a moderate to good reservoir rather than Upper Bahariya reservoir in terms of facies, with good porosity and permeability, low water saturation, and moderate net to gross. The Original Oil In Place (OOIP) values of modeled Bahariya reservoirs show hydrocarbon accumulation in economic quantity, considering the high structural dips at the central part of South Umbarka area. The powerful of 3D static modeling technique has provided a considerable insight into the future prediction of Bahariya reservoirs performance and production behavior.

  11. Paleoweathering features in the Sergi Formation (Jurassic-Cretaceous), northeastern Brazil, and implications for hydrocarbon exploration

    Science.gov (United States)

    Pierini, Cristina; Mizusaki, Ana M.; Pimentel, Nuno; Faccini, Ubiratan F.; Scherer, Claiton M. S.

    2010-03-01

    Paleoweathering in the Sergi Formation has been classified and analyzed to ascertain its origin and relationship with stratigraphic evolution. The Sergi Formation belongs to the pre-rift sequence of the Recôncavo Basin (northeastern Brazil) and comprises a complex association of eolian and fluvial sandstones and lacustrine mudstones. This formation can be subdivided into three depositional sequences bounded by regional unconformities. Four paleoweathering types, each one related to a distinct origin, have been described in the Sergi Formation: (1) textural mottling, which is distinguished by alternating rock colors as a result of the iron oxide mobilization within mineral phases that evolved under alternating oxidation (yellowish, brownish and reddish shades) and reduction (grayish or greenish hues) conditions; (2) non-textural mottling, which displays a discoloration pattern that is independent of the original rock texture; (3) carbonate concentrations, usually related to carbonate nodule formation, which display a massive internal structure that reveals their origin through continuous growth or crystallization; and (4) banded carbonates (silicified), associated with the beginning of regular surface formation due to the chemical precipitation of carbonates within lacustrine environments. Both mottling color motifs and carbonate accumulation usually represent groundwater oscillation rather than pedogenesis. Only carbonate intraclasts and banded carbonate (silicified) have their origin ascribed to pedogenesis sensu stricto, although the carbonate intraclasts do not represent soil deposits in situ, but calcretes eroded from areas close to channels, and the banded carbonates (silicified) have strong diagenetic modifications. Therefore, it is reasonable to assume that fluvial and meteoric water have controlled paleoweathering evolution as well as deposition, yet both aspects are ruled by the same mechanisms (relief, sedimentation rate and, above all, climate).

  12. Petrography and mineralgy of gachsaran formation in west of ...

    African Journals Online (AJOL)

    Gachsaran Formation is the most important cap rock of hydrocarbon reservoir in Iran and has important deposits of salt, sulfur and gypsum. A section of Gachsaran formation (Early to Middle Miocene) in south- east of zagros area, west of Bandar- e- Abbas province, was studied from sedimentary geology view. Gachsaran ...

  13. The effect of gas-phase polycyclic aromatic hydrocarbons on the formation and properties of biogenic secondary organic aerosol particles

    Energy Technology Data Exchange (ETDEWEB)

    Zelenyuk, Alla [Pacific Northwest National Laboratory; USA; Imre, Dan G. [Imre Consulting; USA; Wilson, Jacqueline [Pacific Northwest National Laboratory; USA; Bell, David M. [Pacific Northwest National Laboratory; USA; Suski, Kaitlyn J. [Pacific Northwest National Laboratory; USA; Shrivastava, Manish [Pacific Northwest National Laboratory; USA; Beránek, Josef [Pacific Northwest National Laboratory; USA; Alexander, M. Lizabeth [Pacific Northwest National Laboratory; USA; Kramer, Amber L. [Department of Chemistry; Oregon State University; USA; Massey Simonich, Staci L. [Department of Chemistry; Oregon State University; USA; Environmental and Molecular Toxicology; Oregon State University

    2017-01-01

    When secondary organic aerosol (SOA) particles are formed by ozonolysis in the presence of gas-phase polycyclic aromatic hydrocarbons (PAHs), their formation and properties are significantly different from SOA particles formed without PAHs. For all SOA precursors and all PAHs, discussed in this study, the presence of the gas-phase PAHs during SOA formation significantly affects particle mass loadings, composition, growth, evaporation kinetics, and viscosity. SOA particles formed in the presence of PAHs have, as part of their compositions, trapped unreacted PAHs and products of heterogeneous reactions between PAHs and ozone. Compared to ‘pure’ SOA particles, these particles exhibit slower evaporation kinetics, have higher fractions of non-volatile components, like oligomers, and higher viscosities, assuring their longer atmospheric lifetimes. In turn, the increased viscosity and decreased volatility provide a shield that protects PAHs from chemical degradation and evaporation, allowing for the long-range transport of these toxic pollutants. The magnitude of the effect of PAHs on SOA formation is surprisingly large. The presence of PAHs during SOA formation increases mass loadings by factors of two to five, and particle number concentrations, in some cases, by more than a factor of 100. Increases in SOA mass, particle number concentrations, and lifetime have important implications to many atmospheric processes related to climate, weather, visibility, and human health, all of which relate to the interactions between biogenic SOA and anthropogenic PAHs. The synergistic relationship between SOA and PAHs presented here are clearly complex and call for future research to elucidate further the underlying processes and their exact atmospheric implications.

  14. Major factors controlling fracture development in the Middle Permian Lucaogou Formation tight oil reservoir, Junggar Basin, NW China

    Science.gov (United States)

    Zhang, Chen; Zhu, Deyu; Luo, Qun; Liu, Luofu; Liu, Dongdong; Yan, Lin; Zhang, Yunzhao

    2017-09-01

    Natural fractures in seven wells from the Middle Permian Lucaogou Formation in the Junggar Basin were evaluated in light of regional structural evolution, tight reservoir geochemistry (including TOC and mineral composition), carbon and oxygen isotopes of calcite-filled fractures, and acoustic emission (AE). Factors controlling the development of natural fractures were analyzed using qualitative and/or semi-quantitative techniques, with results showing that tectonic factors are the primary control on fracture development in the Middle Permian Lucaogou Formation of the Junggar Basin. Analyses of calcite, dolomite, and TOC show positive correlations with the number of fractures, while deltaic lithofacies appear to be the most favorable for fracture development. Mineral content was found to be a major control on tectonic fracture development, while TOC content and sedimentary facies mainly control bedding fractures. Carbon and oxygen isotopes vary greatly in calcite-filled fractures (δ13C ranges from 0.87‰ to 7.98‰, while δ18O ranges from -12.63‰ to -5.65‰), indicating that fracture development increases with intensified tectonic activity or enhanced diagenetic alteration. By analyzing the cross-cutting relationships of fractures in core, as well as four Kaiser Effect points in the acoustic emission curve, we observed four stages of tectonic fracture development. First-stage fractures are extensional, and were generated in the late Triassic, with calcite fracture fills formed between 36.51 °C and 56.89 °C. Second-stage fractures are shear fractures caused by extrusion stress from the southwest to the northeast, generated by the rapid uplift of the Tianshan in the Middle and Late Jurassic; calcite fracture fills formed between 62.91 °C and 69.88 °C. Third-stage fractures are NNW-trending shear fractures that resulted from north-south extrusion and thrusting in a foreland depression along the front of the Early Cretaceous Bogda Mountains. Calcite fracture

  15. Production Characteristics and Reservoir Quality at the Ivanić Oil Field (Croatia) Predicted by Machine Learning System

    OpenAIRE

    Hernitz, Zvonimir; Đureković, Miro; Crnički, Josip

    1996-01-01

    At the Ivanić oil field, hydrocarbons are accumulated in fine tomedium grained litharenits of the Ivanić-Grad Formation (Iva-sandstones member) of Upper Miocene age. Reservoir rocks are dividedinlo eight depositional (production) units (i1- i8). Deposits of eachunit are characterized by their own reservoir quality parameters(porosity, horizontal permeability, net pay ... ). Production characteristicsof 30 wells have been studied by a simple slatistical method. Twomajor production well ca...

  16. Nagylengyel: an interesting reservoir. [Yugoslovia

    Energy Technology Data Exchange (ETDEWEB)

    Dedinszky, J

    1971-04-01

    The Nagylengyel oil field, discovered in 1951, has oil-producing formations mostly in the Upper-Triassic dolomites, in the Norian-Ractian transition formations, in the Upper-Cretaceous limestones and shales, and in the Miocene. The formation of the reservoir space occurred in many stages. A porous, cavernous fractured reservoir is developed in the Norian principal dolomite. A cavernous fractured reservoir exists in the Cretaceous limestone and in the Cretaceous shale and porous fractured reservoir is developed in the Miocene. The derivation of the model of the reservoir, and the conservative evaluation of the volume of the reservoir made it possible to use secondary recovery.

  17. Measuring Star-Formation Rates of AGNs and QSOs using a new calibration from Polycyclic Aromatic Hydrocarbon Emission

    Science.gov (United States)

    Papovich, Casey

    Understanding the coevolution of star-formation and supermassive black hole accretion is one of the key questions in galaxy formation theory. This relation is important for understanding why at present the mass in galaxy bulges (on scales of kpc) correlates so tightly with the mass of galaxy central supermassive blackholes (on scales of AU). Feedback from supermassive black hole accretion may also be responsible for heating or expelling cold gas from galaxies, shutting off the fuel for star-formation and additional black hole growth. Did bulges proceed the formation of black holes, or vice versa, or are they contemporaneous? Therefore, understanding the exact rates of star-formation and supermassive black hole growth, and how they evolve with time and galaxy mass has deep implications for how galaxies form. It has previously been nearly impossible to study simultaneously both star-formation and accretion onto supermassive black holes in galaxies because the emission from black hole accretion contaminates nearly all diagnostics of star-formation. The "standard" diagnostics for the star-formation rate (the emission from hydrogen, UV emission, midIR emission, far-IR emission, etc) are not suitable for measuring star-formation rates in galaxies with actively accreting supermassive blackholes. In this proposal, the researchers request NASA/ADP funding for an archival study using spectroscopy with the Spitzer Space Telescope to measure simultaneously the star-formation rate (SFR) and bolometric emission from accreting supermassive blackholes to understand the complex relation between both processes. The key to this study is that they will develop a new calibrator for SFRs in galaxies with active supermassive black holes based on the molecular emission from polycyclic aromatic hydrocarbons (PAHs), which emit strongly in the mid-IR (3 - 20 micron) and are very strong in spectra from the Spitzer Space Telescope. The PAH molecules exist near photo-dissociation regions, and

  18. Types and characteristics of carbonate reservoirs and their implication on hydrocarbon exploration: A case study from the eastern Tarim Basin, NW China

    Directory of Open Access Journals (Sweden)

    Shiwei Huang

    2017-02-01

    Full Text Available Carbonate rocks are deposited in the Ordovician, Cambrian, and Sinian of eastern Tarim Basin with a cumulative maximum thickness exceeding 2000 m. They are the main carriers of oil and gas, and a great deal of natural gas has been found there in the past five years. Based on lithofacies and reservoir differences, natural gas exploration domains of eastern Tarim Basin can be classified into five types: Ordovician platform limestone; Ordovician platform dolomite; Cambrian platform margin mound shoal; Cambrian slope gravity flow deposits, and; Sinian dolomite. Carbonate reservoir characteristics of all the types were synthetically analyzed through observation on drilling core and thin sections, porosity and permeability measurement, and logging data of over 10 drilling wells. We find distribution of part of good fracture and cave reservoir in carbonate platform limestone of Ordovician. In the Ordovician, platform facies dolomite is better than limestone, and in the Cambrian, platform margin mound shoal dolomite has large stacking thickness. Good quality and significantly thick carbonate gravity deposit flow can be found in the Cambrian slope, and effective reservoir has also been found in Sinian dolomite. Commercial gas has been found in the limestone and dolomite of Ordovician in Shunnan and Gucheng areas. Exploration experiences from these two areas are instructive, enabling a deeper understanding of this scene.

  19. Permian-Triassic maturation and multistage migration of hydrocarbons in the Assistência Formation (Irati Subgroup, Paraná Basin, Brazil: implications for the exploration model

    Directory of Open Access Journals (Sweden)

    António Mateus

    Full Text Available New lines of geological evidence strongly suggest that the main period of hydrocarbon maturation within Assistência Formation should be Permian-Triassic, stimulated by a high geothermal gradient that also sustained various manifestations of hydrothermal activity. Three main stages of fluid/hydrocarbon migration can also be inferred on the basis of multiscale observations: confined flow in late Permian to Triassic times, depending on the local build-up of fluid pressures; heterogeneous flow in Lower Cretaceous, triggered by a rejuvenated temperature gradient assisted by the early developed permeability conditions; and a late flow possibly driven by local pressure gradients, after complete cooling of dolerite dykes/sills. The early maturation and multistage migration of hydrocarbons have significant consequences in the design of exploration models to be applied in Paraná Basin.

  20. The Importance of Water-Hydrocarbon Phase Equilibria During Reservoir Production and Drilling Operations Nouveaux défis liés à la présence d'équilibres eau-hydrocarbures lors des opérations de production et de forage

    Directory of Open Access Journals (Sweden)

    Zhou H.

    2006-12-01

    Full Text Available The inevitable presence of water in high pressure-high temperature reservoirs leads to a number of new challenges for petroleum engineers. A brief state of the art on water-hydrocarbon phase equilibria is presented. It appears that large amounts of water may be present in the hydrocarbon phase (up to 10% molar, and non negligible amounts of gas can dissolve in water. Based on experimental data, a large number of models have been developed. However, concerning the limitations of the data, caution is expressed about the correctness of some models. Recent studies have proven the usefulness of Henry's constants to predict hydrocarbon solubilities in water. The new challenges that are raised by this problem are discussed based on a number of recent publications. The water present in the hydrocarbon may lead to salt deposits downwell, and it must be taken into account in order to estimate the amount of gas in place. It can also result in modifications of the saturation pressure. Due to the presence of water, additional treatment is needed for pipe transport. On the other hand, the large amount of hydrocarbons dissolved in the water phase may result in a modification of the hydrocarbon composition, especially when reservoir pressure becomes very low. The increased toxicity of the water, containing either H2S or aromatics, can become a real burden for gas reservoirs in contact with aquifers or when disposing of production water. During drilling, large amounts of dissolved gas can become very hazardous, increasing the risk of eruption. A particular attention must be paid to acid gas injection in reservoirs, as the true effect of the injected gas may not be straightforward to predict. In conclusion, in light of the industrial importance of this information, some general guidelines are provided concerning additional data to be gathered and ideas for improving current models. La présence inévitable d'eau dans les réservoirs à hautes pression et temp

  1. Global modeling of secondary organic aerosol formation from aromatic hydrocarbons: high- vs. low-yield pathways

    Directory of Open Access Journals (Sweden)

    D. K. Henze

    2008-05-01

    Full Text Available Formation of SOA from the aromatic species toluene, xylene, and, for the first time, benzene, is added to a global chemical transport model. A simple mechanism is presented that accounts for competition between low and high-yield pathways of SOA formation, wherein secondary gas-phase products react further with either nitric oxide (NO or hydroperoxy radical (HO2 to yield semi- or non-volatile products, respectively. Aromatic species yield more SOA when they react with OH in regions where the [NO]/[HO2] ratios are lower. The SOA yield thus depends upon the distribution of aromatic emissions, with biomass burning emissions being in areas with lower [NO]/[HO2] ratios, and the reactivity of the aromatic with respect to OH, as a lower initial reactivity allows transport away from industrial source regions, where [NO]/[HO2] ratios are higher, to more remote regions, where this ratio is lower and, hence, the ultimate yield of SOA is higher. As a result, benzene is estimated to be the most important aromatic species with regards to global formation of SOA, with a total production nearly equal that of toluene and xylene combined. Global production of SOA from aromatic sources via the mechanisms identified here is estimated at 3.5 Tg/yr, resulting in a global burden of 0.08 Tg, twice as large as previous estimates. The contribution of these largely anthropogenic sources to global SOA is still small relative to biogenic sources, which are estimated to comprise 90% of the global SOA burden, about half of which comes from isoprene. Uncertainty in these estimates owing to factors ranging from the atmospheric relevance of chamber conditions to model deficiencies result in an estimated range of SOA production from aromatics of 2–12 Tg/yr. Though this uncertainty range affords a significant anthropogenic contribution to global SOA, it is evident from comparisons to recent observations that additional pathways for

  2. An experimental investigation into the formation of polycyclic-aromatic hydrocarbons (PAH) from pyrolysis of biomass materials

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, T.; Sharma, R.; Hajaligol, M. [Philip Morris USA, Richmond, VA (United States). Research Center

    2001-10-09

    The formation of polycyclic-aromatic hydrocarbons (PAH) from the pyrolysis of cellulose, pectin and chlorogenic acid was studied. The primary product, mostly primary volatile tar, was exposed to a higher thermal severity i.e. high temperatures and long residence times. The reactor setup consisted of a quartz tube with two zones, zone I and II, each heated and controlled separately. Zone I was used to first pyrolyse the substrate at 300{degree}C to produce a low temperature tar (LTT) as well as to pyrolyse the product char at 600{degree}C to produce a high temperature tar (HTT). The LTT and HTT were then subjected to a high thermal severity in the second zone (zone II) where the temperature was varied between 700 and 850{degree}C. The residence time of the volatiles in zone II was varied between ca. 90 and 1400 ms (calculated at 800{degree}C). The results show that the yield of most PAHs increased with temperature, except in a few cases where the yield of two- and three-ring PAHs exhibited a maximum. PAHs yields also generally increased as the residence time was increased from 90 to 1400 ms at 800{degree}C. 19 refs., 9 figs., 2 tabs.

  3. Influence of infrared final cooking on polycyclic aromatic hydrocarbon formation in ohmically pre-cooked beef meatballs.

    Science.gov (United States)

    Kendirci, Perihan; Icier, Filiz; Kor, Gamze; Onogur, Tomris Altug

    2014-06-01

    Effects of infrared cooking on polycyclic aromatic hydrocarbon (PAH) formation in ohmically pre-cooked beef meatballs were investigated. Samples were pre-cooked in a specially designed-continuous type ohmic cooking at a voltage gradient of 15.26V/cm for 92s. Infrared cooking was applied as a final cooking method at different combinations of heat fluxes (3.706, 5.678, 8.475kW/m(2)), application distances (10.5, 13.5, 16.5cm) and application durations (4, 8, 12min). PAHs were analyzed by using high performance liquid chromatography (HPLC) equipped with a fluorescence detector. The total PAH levels were detected to be between 4.47 and 64μg/kg. Benzo[a] pyrene (B[a]P) and PAH4 (sum of B[a]P, chrysene (Chr), benzo[a]anthracene (B[a]A) and benzo[b]fluoranthene (B[b]F)) levels detected in meatballs were below the EC limits. Ohmic pre-cooking followed by infrared cooking may be regarded as a safe cooking procedure of meatballs from a PAH contamination point of view. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Distribution of some hydrocarbons in ambient air near Delft and the influence on the formation of secondary air pollutants

    NARCIS (Netherlands)

    Bos, R.; Guicherit, R.; Hoogeveen, A.

    1977-01-01

    The relative concentrations of hydrocarbons in the atmosphere may provide information concerning their origin. It appears that the hydrocarbon composition measured in Delft (The Netherlands) is entirely different for northern and southern wind directions. This points to different sources. The most

  5. CHARACTERIZATION OF SANDSTONE RESERVOIRS FOR ENHANCED OIL RECOVERY: THE PERMIAN UPPER MINNELUSA FORMATION, POWDER RIVER BASIN, WYOMING.

    Science.gov (United States)

    Schenk, C.J.; Schmoker, J.W.; Scheffler, J.M.

    1986-01-01

    Upper Minnelusa sandstones form a complex group of reservoirs because of variations in regional setting, sedimentology, and diagenetic alteration. Structural lineaments separate the reservoirs into northern and southern zones. Production in the north is from a single pay sand, and in the south from multi-pay sands due to differential erosion on top of the Upper Minnelusa. The intercalation of eolian dune, interdune, and sabkha sandstones with marine sandstones, carbonates, and anhydrites results in significant reservoir heterogeneity. Diagenetic alterations further enhance heterogeneity, because the degree of cementation and dissolution is partly facies-related.

  6. Method of approximate electric modeling of oil reservoir operation with formation of a gas cap during mixed exploitation regime

    Energy Technology Data Exchange (ETDEWEB)

    Bragin, V A; Lyadkin, V Ya

    1969-01-01

    A potentiometric model is used to simulate the behavior of a reservoir in which pressure was dropped rapidly and solution gas migrated to the top of the structure forming a gas cap. Behavior of the system was represented by a differential equation, which was solved by an electrointegrator. The potentiometric model was found to closely represent past history of the reservoir, and to predict its future behavior. When this method is used in reservoirs where large pressure drops occur, repeated determination should be made at various time intervals, so that changes in relative permeability are taken into account.

  7. Structural segregation of petroleum and prospective hydrocarbon regions in Azerbaijan

    International Nuclear Information System (INIS)

    Kerimov, K.M.; Huseynov, A.N.; Hajiyev, F.M.

    2002-01-01

    Full text : Structural segregation allows identify the earth crust blocks according to their geological setting and structural history conductive for hydrocarbon generation and their entrapment in the sedimentary fill reservoirs. Since then there has been a need to design a new tectonic map of petroleum and hydrocarbons potential systems in Azerbaijan embracing both on- and offshore areas. Map's legend designed upon above mentioned concepts and principles has made it possible to evaluate the role of individual stratigraphic units in hydrocarbon generation and its entrapment, as well as in recognition of regional structural criteria of the hydrocarbon bearing potential of different structural patterns. Tectonic map of petroleum and prospective hydrocarbon bearing on and offshore areas in Azerbaijan for the first time contained a wide range of information related to structural criteria of hydrocarbon bearing potential, sedimentary fill's structural architecture, its thickness, both timing of their formation stages and basement consolidation, its subsidence depth, as well as hydrocarbon deposit areal and vertical distribution across individual regions. This map was considered to be of important implication both for the petroleum geoscience and petroleum industry endeavors.

  8. Facies-controlled reservoir properties in ramp-fan and slope-apron deposits, Miocene Puente Formation, Los Angeles basin

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, K.T.; Geving, R.L.; Suchecki, R.K.

    1989-03-01

    The Miocene Puente Formation in outcrops of the eastern Los Angeles basin is interpreted as a succession of slope-apron and ramp-fan deposits that accumulated in a prism-rise wedge. The principal depositional components of this dominantly base-of-slope and ramp system are ramp-fan channels and lobes, and slope-channel and slope-apron channel/interchannel deposits. Facies-specific textural, compositional, and diagenetic attributes observed in thin section assist in the classification of depositional facies. Specifically, occurrence of carbonate cement, clay mineralogy, and abundance of organic material vary as a function of component facies architecture of the depositional system. Slope and ramp-fan channel-fill sandstones are characterized by pervasive carbonate cements, including poikilotopic and fine-grained calcite, fine-grained and baroque dolomite, and minor siderite. Diagenetic clays predate carbonate cements, and dolomite predates coarser, void-filling calcite. Ramp-fan lobe and interchannel deposits are carbonate free but are rich in detrital clay and organic matter. Diagenetic clays include mixed-layer illite/smectite and kaolinite. Sediments deposited in slope-apron channel fill are virtually cement free except for small amounts of authigenic illite/smectite. Slope-apron interchannel deposits are characterized by high content of organic matter and clay-rich matrix. Potential reservoir characteristics, such as grain size, sorting, and abundance of depositional clay matrix, are related to the primary sedimentary properties of depositional architectural components in the ramp-fan and slope-apron system. Additional diagenetic modifications, without consideration of compaction, were controlled by precipitation reactions associated with fluid flow along pathways related to the depositional architectural framework.

  9. Direct formation of gasoline hydrocarbons from cellulose by hydrothermal conversion with in situ hydrogen

    International Nuclear Information System (INIS)

    Yin, Sudong; Mehrotra, Anil Kumar; Tan, Zhongchao

    2012-01-01

    A new process based on aqueous-phase dehydration/hydrogenation (APD/H) has been developed to directly produce liquid alkanes (C 7–9 ), which are the main components of fossil gasoline, from cellulose in one single batch reactor without the consumption of external hydrogen (H 2 ). In this new process, part of the cellulose is first converted to in situ H 2 by steam reforming (SR) in the steam gas phase mainly; and, in the liquid water phase, cellulose is converted to an alkane precursor, such as 5-(hydroxymethyl)furfural (HMF). In the final reaction step, in situ H 2 reacts with HMF to form liquid alkanes through APD/H. Accordingly, this new process has been named SR(H 2 )-APD/H. Experimental results show that the volumetric ratio of the reactor headspace to the reactor (H/R) and an initial weakly alkaline condition are the two key parameters for SR(H 2 )-APD/H. With proper H/R ratios (e.g., 0.84) and initial weakly alkaline conditions (e.g., pH = 7.5), liquid alkanes are directly formed from the SR(H 2 )-APD/H of cellulose using in situ H 2 instead of external H 2 . In this study, compared with pyrolysis and hydrothermal liquefaction of cellulose at the same temperatures with same retetion time, SR(H 2 )-APD/H greatly increased the liquid alkane yields, by approximately 700 times and 35 times, respectively. Based on this process, direct formation of fossil gasoline from renewable biomass resources without using external H 2 becomes possible. -- Highlights: ► A process of producing gasoline alkanes from cellulose was proposed and studied. ► Alkane precursors and in situ H 2 were formed simultaneously in a single reactor. ► Alkanes subsequently formed by reactions between in situ H 2 and alkane precursors. ► The yields were 700 and 35 times higher than pyrolysis and hydrothermal conversion.

  10. Underground disposal of tanks containing liquid and inflammable hydrocarbons; Mise sous talus ou sous terre des reservoirs contenant des hydrocarbures liquides inflammables

    Energy Technology Data Exchange (ETDEWEB)

    Kukuczka, P.; Giovannini, B.; Caumont, M.; Varin, F

    2001-09-15

    The protection from thermal and mechanical stresses, of hazardous products tanks, by earth covering, is often used since many years in France and in many countries of Europe. In the case of hydrocarbons tanks, only small capacity tanks are covering. The aim of this report is to evaluate the feasibility of this technique for big capacity tanks as refinery tanks. It details the different typologies of tanks containing inflammable liquids and the associated systems, examines if the covering technique presents some special difficulties and precises the specifications needed for the new tanks being covering. (A.L.B.)

  11. Transport of reservoir fines

    DEFF Research Database (Denmark)

    Yuan, Hao; Shapiro, Alexander; Stenby, Erling Halfdan

    Modeling transport of reservoir fines is of great importance for evaluating the damage of production wells and infectivity decline. The conventional methodology accounts for neither the formation heterogeneity around the wells nor the reservoir fines’ heterogeneity. We have developed an integral...... dispersion equation in modeling the transport and the deposition of reservoir fines. It successfully predicts the unsymmetrical concentration profiles and the hyperexponential deposition in experiments....

  12. Non-methane hydrocarbons (NMHCs) and their contribution to ozone formation potential in a petrochemical industrialized city, Northwest China

    Science.gov (United States)

    Jia, Chenhui; Mao, Xiaoxuan; Huang, Tao; Liang, Xiaoxue; Wang, Yanan; Shen, Yanjie; Jiang, Wanyanhan; Wang, Huiqin; Bai, Zhilin; Ma, Minquan; Yu, Zhousuo; Ma, Jianmin; Gao, Hong

    2016-03-01

    Hourly air concentrations of fifty-three non-methane hydrocarbons (NMHCs) were measured at downtown and suburb of Lanzhou, a petrochemical industrialized city, Northwest China in 2013. The measured data were used to investigate the seasonal characteristics of NMHCs air pollution and their contributions to the ozone formation in Lanzhou. Annually averaged NMHCs concentration was 38.29 ppbv in downtown Lanzhou. Among 53 NMHCs, alkanes, alkenes, and aromatics accounted for 57%, 23% and 20% of the total NMHCs air concentration, respectively. The atmospheric levels of toluene and propane with mean values of 4.62 and 4.56 ppbv were higher than other NMHCs, respectively. The ambient levels of NMHCs in downtown Lanzhou were compared with measured NMHCs data collected at a suburban site of Lanzhou, located near a large-scale petrochemical industry. Results show that the levels of alkanes, alkenes, and aromatics in downtown Lanzhou were lower by factors of 3-11 than that in west suburb of the city. O3-isopleth plots show that ozone was formed in VOCs control area in downtown Lanzhou and NOx control area at the west suburban site during the summertime. Propylene-equivalent (Prop-Equiv) concentration and the maximum incremental reactivity (MIR) in downtown Lanzhou indicate that cis-2-butene, propylene, and m/p-xylene were the first three compounds contributing to ozone formation potentials whereas in the petrochemical industrialized west suburb, ethane, propene, and trans-2-Butene played more important role in the summertime ozone formation. Principal component analysis (PCA) and multiple linear regression (MLR) were further applied to identify the dominant emission sources and examine their fractions in total NMHCs. Results suggest that vehicle emission, solvent usage, and industrial activities were major sources of NMHCs in the city, accounting for 58.34%, 22.19%, and 19.47% of the total monitored NMHCs in downtown Lanzhou, respectively. In the west suburb of the city

  13. RECENT ADVANCES IN NATURALLY FRACTURED RESERVOIR MODELING

    OpenAIRE

    ORDOÑEZ, A; PEÑUELA, G; IDROBO, E. A; MEDINA, C. E

    2001-01-01

    Large amounts of oil reserves are contained in naturally fractured reservoirs. Most of these hydrocarbon volumes have been left behind because of the poor knowledge and/or description methodology of those reservoirs. This lack of knowledge has lead to the nonexistence of good quantitative models for this complicated type of reservoirs. The complexity of naturally fractured reservoirs causes the need for integration of all existing information at all scales (drilling, well logging, seismic, we...

  14. Influence of in situ steam formation by radio frequency heating on thermodesorption of hydrocarbons from contaminated soil.

    Science.gov (United States)

    Roland, Ulf; Bergmann, Sabine; Holzer, Frank; Kopinke, Frank-Dieter

    2010-12-15

    Thermal desorption of a wide spectrum of organic contaminants, initiated by radio frequency (RF) heating, was studied at laboratory and pilot-plant scales for an artificially contaminated soil and for an originally contaminated soil from an industrial site. Up to 100 °C, moderate desorption rates were observed for light aromatics such as toluene, chlorobenzene, and ethylbenzene. Desorption of the less volatile contaminants was greatly enhanced above 100 °C, when fast evaporation of soil-water produced steam for hydrocarbon stripping (steam-distillation, desorption rates increased by more than 1 order of magnitude). For hydrocarbons with low water solubility (e.g., aliphatic hydrocarbons), the temperature increase above 100 °C after desiccation of soil again led to a significant increase of the removal rates, thus showing the impact of hydrocarbon partial pressure. RF heating was shown to be an appropriate option for thermally enhanced soil vapor extraction, leading to efficient cleaning of contaminated soils.

  15. Origin and evolution of formation water at the Jujo-Tecominoacan oil reservoir, Gulf of Mexico. Part 2: Isotopic and field-production evidence for fluid connectivity

    Energy Technology Data Exchange (ETDEWEB)

    Birkle, Peter, E-mail: birkle@iie.org.mx [Instituto de Investigaciones Electricas (IIE), Gerencia de Geotermia, Cuernavaca 62490, Morelos (Mexico); Garcia, Bernardo Martinez; Milland Padron, Carlos M. [PEMEX Exploracion y Produccion, Region Sur, Activo Integral Bellota-Jujo, Diseno de Explotacion, Cardenas, Tabasco (Mexico); Eglington, Bruce M. [Saskatchewan Isotope Laboratory, University of Saskatchewan, Saskatoon, Canada SK S7N 5E2 (Canada)

    2009-04-15

    The chemical and isotopic characterization of formation water from 18 oil production wells, extracted from 5200 to 6100 m b.s.l. at the Jujo-Tecominoacan carbonate reservoir in SE-Mexico, and interpretations of historical production records, were undertaken to determine the origin and hydraulic behavior of deep groundwater systems. The infiltration of surface water during Late Pleistocene to Early Holocene time is suggested by {sup 14}C-concentrations from 2.15 to 31.86 pmC, and by {sup 87}Sr/{sup 86}Sr-ratios for high-salinity formation water (0.70923-0.70927) that are close to the composition of Holocene to modern seawater. Prior to infiltration, the super-evaporation of seawater reached maximum TDS concentrations of 385 g/L, with lowest {delta}{sup 18}O values characterizing the most hypersaline samples. Minor deviations of formation water and dolomite host rocks from modern and Jurassic {sup 87}Sr/{sup 86}Sr-seawater composition, respectively, suggest ongoing water-rock interaction, and partial isotopic equilibration between both phases. The abundance of {sup 14}C in all sampled formation water, {sup 87}Sr/{sup 86}Sr-ratios for high-salinity water close to Holocene - present seawater composition, a water salinity distribution that is independent of historic water-cut, and a total water extraction volume of 2.037 MMm{sup 3} (1/83-4/07) excludes a connate, oil-leg origin for the produced water of the Jurassic-Cretaceous mudstone-dolomite sequence. Temporal fluctuations of water chemistry in production intervals, the accelerated migration of water fronts from the reservoir flanks, and isotopic mixing trends between sampled wells confirms the existence of free aquifer water below oil horizons. Vertical and lateral hydraulic mobility has probably been accelerated by petroleum extraction. The combination of interpreting historical fluctuations of salinity and water percentage in production wells with chemical-isotopic analysis of formation water resulted in a

  16. Origin and evolution of formation water at the Jujo-Tecominoacan oil reservoir, Gulf of Mexico. Part 2: Isotopic and field-production evidence for fluid connectivity

    International Nuclear Information System (INIS)

    Birkle, Peter; Garcia, Bernardo Martinez; Milland Padron, Carlos M.; Eglington, Bruce M.

    2009-01-01

    The chemical and isotopic characterization of formation water from 18 oil production wells, extracted from 5200 to 6100 m b.s.l. at the Jujo-Tecominoacan carbonate reservoir in SE-Mexico, and interpretations of historical production records, were undertaken to determine the origin and hydraulic behavior of deep groundwater systems. The infiltration of surface water during Late Pleistocene to Early Holocene time is suggested by 14 C-concentrations from 2.15 to 31.86 pmC, and by 87 Sr/ 86 Sr-ratios for high-salinity formation water (0.70923-0.70927) that are close to the composition of Holocene to modern seawater. Prior to infiltration, the super-evaporation of seawater reached maximum TDS concentrations of 385 g/L, with lowest δ 18 O values characterizing the most hypersaline samples. Minor deviations of formation water and dolomite host rocks from modern and Jurassic 87 Sr/ 86 Sr-seawater composition, respectively, suggest ongoing water-rock interaction, and partial isotopic equilibration between both phases. The abundance of 14 C in all sampled formation water, 87 Sr/ 86 Sr-ratios for high-salinity water close to Holocene - present seawater composition, a water salinity distribution that is independent of historic water-cut, and a total water extraction volume of 2.037 MMm 3 (1/83-4/07) excludes a connate, oil-leg origin for the produced water of the Jurassic-Cretaceous mudstone-dolomite sequence. Temporal fluctuations of water chemistry in production intervals, the accelerated migration of water fronts from the reservoir flanks, and isotopic mixing trends between sampled wells confirms the existence of free aquifer water below oil horizons. Vertical and lateral hydraulic mobility has probably been accelerated by petroleum extraction. The combination of interpreting historical fluctuations of salinity and water percentage in production wells with chemical-isotopic analysis of formation water resulted in a successful method to distinguish four groundwater bodies

  17. Formate-Dependent Microbial Conversion of CO2 and the Dominant Pathways of methanogenesis in production water of high-temperature oil reservoirs amended with bicarbonate

    Directory of Open Access Journals (Sweden)

    Guang-Chao eYang

    2016-03-01

    Full Text Available CO2 sequestration in deep-subsurface formations including oil reservoirs is a potential measure to reduce the CO2 concentration in the atmosphere. However, the fate of the CO2 and the ecological influences in Carbon Dioxide Capture and Storage (CDCS facilities is not understood clearly. In the current study, the fate of CO2 (in bicarbonate form (0~90 mM with 10 mM of formate as electron donor and carbon source was investigated with high-temperature production water from oilfield in China. The isotope data showed that bicarbonate could be reduced to methane by methanogens and major pathway of methanogenesis could be syntrophic formate oxidation coupled with CO2 reduction and formate methanogenesis under the anaerobic conditions. The bicarbonate addition induced the shift of microbial community. Addition of bicarbonate and formate was associated with a decrease of Methanosarcinales, but promotion of Methanobacteriales in all treatments. Thermodesulfovibrio was the major group in all the samples and Thermacetogenium dominated in the high bicarbonate treatments. The results indicated that CO2 from CDCS could be transformed to methane and the possibility of microbial CO2 conversion for enhanced microbial energy recovery in oil reservoirs.

  18. 3D Sedimentological and geophysical studies of clastic reservoir analogs: Facies architecture, reservoir properties, and flow behavior within delta front facies elements of the Cretaceous Wall Creek Member, Frontier Formation, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Christopher D. White

    2009-12-21

    Significant volumes of oil and gas occur in reservoirs formed by ancient river deltas. This has implications for the spatial distribution of rock types and the variation of transport properties. A between mudstones and sandstones may form baffles that influence productivity and recovery efficiency. Diagenetic processes such as compaction, dissolution, and cementation can also alter flow properties. A better understanding of these properties and improved methods will allow improved reservoir development planning and increased recovery of oil and gas from deltaic reservoirs. Surface exposures of ancient deltaic rocks provide a high-resolution view of variability. Insights gleaned from these exposures can be used to model analogous reservoirs, for which data is sparser. The Frontier Formation in central Wyoming provides an opportunity for high-resolution models. The same rocks exposed in the Tisdale anticline are productive in nearby oil fields. Kilometers of exposure are accessible, and bedding-plane exposures allow use of high-resolution ground-penetrating radar. This study combined geologic interpretations, maps, vertical sections, core data, and ground-penetrating radar to construct geostatistical and flow models. Strata-conforming grids were use to reproduce the observed geometries. A new Bayesian method integrates outcrop, core, and radar amplitude and phase data. The proposed method propagates measurement uncertainty and yields an ensemble of plausible models for calcite concretions. These concretions affect flow significantly. Models which integrate more have different flow responses from simpler models, as demonstrated an exhaustive two-dimensional reference image and in three dimensions. This method is simple to implement within widely available geostatistics packages. Significant volumes of oil and gas occur in reservoirs that are inferred to have been formed by ancient river deltas. This geologic setting has implications for the spatial distribution of

  19. Mathematical approaches in deriving hydrocarbons expressions from seismic data

    Energy Technology Data Exchange (ETDEWEB)

    Farfour, Mohammed; Yoon, Wang Jung; Yoon-Geun [Geophysical Prospecting Lab, Energy & Resources Eng., Dept., Chonnam National University, Gwangju (Korea, Republic of); Lee, Jeong-Hwan [Petroleum Engineering & Reservoir Simulation Lab, Energy & Resources Eng., Dept., Chonnam National University, Gwangju (Korea, Republic of)

    2016-06-08

    Defining and understanding hydrocarbon expressions in seismic expression is main concern of geoscientists in oil and gas exploration and production. Over the last decades several mathematical approaches have been developed in this regard. Most of approaches have addressed information in amplitude of seismic data. Recently, more attention has been drawn towards frequency related information in order to extract frequency behaviors of hydrocarbons bearing sediments. Spectrally decomposing seismic data into individual frequencies found to be an excellent tool for investigating geological formations and their pore fluids. To accomplish this, several mathematical approaches have been invoked. Continuous wavelet transform and Short Time Window Fourier transform are widely used techniques for this purpose. This paper gives an overview of some widely used mathematical technique in hydrocarbon reservoir detection and mapping. This is followed by an application on real data from Boonsville field.

  20. Origin and evolution of formation water at the Jujo-Tecominoacan oil reservoir, Gulf of Mexico. Part 1: Chemical evolution and water-rock interaction

    Energy Technology Data Exchange (ETDEWEB)

    Birkle, Peter, E-mail: birkle@iie.org.mx [Instituto de Investigaciones Electricas (IIE), Gerencia de Geotermia, Av. Reforma 113, Cuernavaca, Morelos 62490 (Mexico); Garcia, Bernardo Martinez; Milland Padron, Carlos M. [PEMEX Exploracion y Produccion, Region Sur, Activo Integral Bellota-Jujo, Diseno de Explotacion, Cardenas, Tabasco (Mexico)

    2009-04-15

    The origin and evolution of formation water from Upper Jurassic to Upper Cretaceous mudstone-packstone-dolomite host rocks at the Jujo-Tecominoacan oil reservoir, located onshore in SE-Mexico at a depth from 5200 to 6200 m.b.s.l., have been investigated, using detailed water geochemistry from 12 producer wells and six closed wells, and related host rock mineralogy. Saline waters of Cl-Na type with total dissolved solids from 10 to 23 g/L are chemically distinct from hypersaline Cl-Ca-Na and Cl-Na-Ca type waters with TDS between 181 and 385 g/L. Bromine/Cl and Br/Na ratios suggest the subaerial evaporation of seawater beyond halite precipitation to explain the extreme hypersaline components, while less saline samples were formed by mixing of high salinity end members with surface-derived, low salinity water components. The dissolution of evaporites from adjacent salt domes has little impact on present formation water composition. Geochemical simulations with Harvie-M{phi}ller-Weare and PHRQPITZ thermodynamic data sets suggest secondary fluid enrichment in Ca, HCO{sub 3} and Sr by water-rock interaction. The volumetric mass balance between Ca enrichment and Mg depletion confirms dolomitization as the major alteration process. Potassium/Cl ratios below evaporation trajectory are attributed to minor precipitation of K feldspar and illitization without evidence for albitization at the Jujo-Tecominoacan reservoir. The abundance of secondary dolomite, illite and pyrite in drilling cores from reservoir host rock reconfirms the observed water-rock exchange processes. Sulfate concentrations are controlled by anhydrite solubility as indicated by positive SI-values, although anhydrite deposition is limited throughout the lithological reservoir column. The chemical variety of produced water at the Jujo-Tecominoacan oil field is related to a sequence of primary and secondary processes, including infiltration of evaporated seawater and original meteoric fluids, the subsequent

  1. Origin and evolution of formation water at the Jujo-Tecominoacan oil reservoir, Gulf of Mexico. Part 1: Chemical evolution and water-rock interaction

    International Nuclear Information System (INIS)

    Birkle, Peter; Garcia, Bernardo Martinez; Milland Padron, Carlos M.

    2009-01-01

    The origin and evolution of formation water from Upper Jurassic to Upper Cretaceous mudstone-packstone-dolomite host rocks at the Jujo-Tecominoacan oil reservoir, located onshore in SE-Mexico at a depth from 5200 to 6200 m.b.s.l., have been investigated, using detailed water geochemistry from 12 producer wells and six closed wells, and related host rock mineralogy. Saline waters of Cl-Na type with total dissolved solids from 10 to 23 g/L are chemically distinct from hypersaline Cl-Ca-Na and Cl-Na-Ca type waters with TDS between 181 and 385 g/L. Bromine/Cl and Br/Na ratios suggest the subaerial evaporation of seawater beyond halite precipitation to explain the extreme hypersaline components, while less saline samples were formed by mixing of high salinity end members with surface-derived, low salinity water components. The dissolution of evaporites from adjacent salt domes has little impact on present formation water composition. Geochemical simulations with Harvie-Mφller-Weare and PHRQPITZ thermodynamic data sets suggest secondary fluid enrichment in Ca, HCO 3 and Sr by water-rock interaction. The volumetric mass balance between Ca enrichment and Mg depletion confirms dolomitization as the major alteration process. Potassium/Cl ratios below evaporation trajectory are attributed to minor precipitation of K feldspar and illitization without evidence for albitization at the Jujo-Tecominoacan reservoir. The abundance of secondary dolomite, illite and pyrite in drilling cores from reservoir host rock reconfirms the observed water-rock exchange processes. Sulfate concentrations are controlled by anhydrite solubility as indicated by positive SI-values, although anhydrite deposition is limited throughout the lithological reservoir column. The chemical variety of produced water at the Jujo-Tecominoacan oil field is related to a sequence of primary and secondary processes, including infiltration of evaporated seawater and original meteoric fluids, the subsequent mixing of

  2. Basin Analysis of the Mississippi Interior Salt Basin and Petroleum System Modeling of the Jurassic Smackover Formation, Eastern Gulf Coastal Plain, Final Report and Topical Reports 5-8 on Smackover Petroleum system and Underdevelopment Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Mancini, Ernest A.; Puckett, T. Markham; Parcell, William C.; Llinas, Juan Carlos; Kopaska-Merkel, David C.; Townsend, Roger N.

    2002-03-05

    The Smackover Formation, a major hydrocarbon-producing horizon in the Mississippi Interior Salt Basin (MISB), conformably overlies the Norphlet Formation and is conformably overlain by the Buckner Anhydrite Member of the Haynesville Formation. The Norphlet-Smackover contact can be either gradational or abrupt. The thickness and lithofacies distribution of the Smackover Formation were controlled by the configuration of incipient paleotopography. The Smackover Formation has been subdivided into three informal members, referred to as the lower, middle and upper members.

  3. Advances in complex reservoir evaluation based on geophysical well logs

    Energy Technology Data Exchange (ETDEWEB)

    Fertl, W.H.; Sinha, A.K. (Western Atlas International, Inc., Houston, TX (USA)); McDougall, J.G. (Western Atlas Canada Ltd., Calgary, AB (Canada))

    1988-09-01

    The matrix of reservoirs having complex lithologies, cause different density, neutron, and acoustic responses. Therefore the lithologies and effective porosity of reservoirs can be determined by using various crossplot techniques on data collected from two of these logs. The Complex Reservoir Analysis program (CRA) computes lithology, porosity, water saturation and relative permeabilities in formations with interbedded limestone, dolomite, and anhydrite. Porosity options include crossplot and individual log response techniques. Corrections for light hydrocarbons were applied. In solving for porosity and mineral volumes, sand, limestone, dolomite, and anhydrite lines were defined on either density/neutron or neutron/acoustic crossplots. Four additional mineral lines were specified. Incorporation of Pe data from the Z-Densilog provided a significant advance in evaluating complex reservoirs via the Z-CRA analysis. The classic reservoir evaluation program CLASS, was used to perform both minerals and shaly evaluation based on density, neutron, resistivity, and natural gamma ray spectral measurements. Computations included total and effective porosities, fluid saturation distribution based on the Wasman-Smits model, productivity indices, and volume and distribution of clay minerals. Additional computed formation parameters included log-derived cation exchange capacity and hydrogen index of dry clay matrix to determine the type and amount of smectite, illite and chlorite/kaolinite present. Canadian field experiences was used to illustrate and support the techniques described. 11 refs., 11 figs., 6 tabs.

  4. Asphalt features and gas accumulation mechanism of Sinian reservoirs in the Tongwan Palaeo-uplift, Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Wei Li

    2015-10-01

    Full Text Available Breakthroughs have been made in natural gas exploration in Sinian reservoirs in the Tongwan Palaeo-uplift, Sichuan Basin, recently. However, there are disputes with regard to the genetic mechanisms of natural gas reservoirs. The development law of asphalts in the Sinian reservoirs may play an extremely important role in the study of the relationships between palaeo oil and gas reservoirs. Accordingly, researches were conducted on the features and development patterns of asphalts in the Sinian reservoirs in this area. The following research results were obtained. (1 Asphalts in the Sinian reservoirs were developed after the important hydrothermal event in the Sichuan Basin, namely the well-known Emei Taphrogeny in the mid-late Permian Period. (2 Distribution of asphalts is related to palaeo oil reservoirs under the control of palaeo-structures of Indosinian-Yanshanian Period, when the palaeo-structures contained high content of asphalts in the high positions of the palaeo-uplift. (3 Large-scale oil and gas accumulations in the Sinian reservoirs occurred in the Indosinian-Yanshanian Period to generate the Leshan-Ziyang and Gaoshiti-Moxi-Guang'an palaeo oil reservoirs. Cracking of crude oil in the major parts of these palaeo oil reservoirs controlled the development of the present natural gas reservoirs. (4 The development of asphalts in the Sinian reservoirs indicates that hydrocarbons in the Dengying Formation originated from Cambrian source rocks and natural gas accumulated in the Sinian reservoirs are products of late-stage cracking of the Sinian reservoirs. (5 The Sinian palaeo-structures of Indosinian-Yanshanian Period in the Sichuan Basin are favorable regions for the development of the Sinian reservoirs, where discoveries and exploration practices will play an important role in the era of Sinian natural gas development in China.

  5. Petrophysical characterization of the Dolomitic Member of the Boñar Formation (Upper Cretaceous; Duero Basin, Spain) as a potential CO2 reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Suarez-Gonzalez, A.; Kovacs, C.; Herrero-Hernandez, A.; Gomez-Fernandez, F.

    2016-07-01

    Boñar Formation (Upper Cretaceous) is a mainly carbonate succession, which outcrops in the North of Duero Basin (Spain). According to the existing data, the Dolomitic Member of this formation appears to be the most suitable for geological storage of CO2. The main objective of this study is to find evidence to support, clarify and specify –at an initial level– the potential of the Dolomitic Member of the Boñar Formation as a geological reservoir. The study covers density, porosity and permeability tests on samples obtained from the outcrop of the succession near the village of Boñar (León). According to the analysis and interpretation of the mentioned petrophysical properties, the porosity of the Dolomitic Member is within the acceptable range for CO2 geological storage, but the permeability values are far too low. This minimizes the possibilities of the Dolomitic Member –and probably of the whole Boñar Formation– to become an appropriate CO2 reservoir. (Author)

  6. Aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Roder, M.

    1985-01-01

    Papers dealing with radiolysis of aromatic hydrocarbons of different composition (from benzene to terphenyls and hydrocarbons with condensed rings) as well as their mixtures (with alkanes, alkenes, other aromatic hydrocarbons) are reviewed. High radiation stability of aromatic hydrocarbons in condensed phases associated with peculiarities of molecular structure of compounds is underlined. Mechanisms of radiolytic processes, vaues of product yields are considered

  7. Geomechanical production optimization in faulted and fractured reservoirs

    NARCIS (Netherlands)

    Heege, J.H. ter; Pizzocolo, F.; Osinga, S.; Veer, E.F. van der

    2016-01-01

    Faults and fractures in hydrocarbon reservoirs are key to some major production issues including (1) varying productivity of different well sections due to intersection of preferential flow paths with the wellbore, (2) varying hydrocarbon column heights in different reservoir compartments due to

  8. Structure of formations on the NaCl monocrystal surface following simultaneous irradiation of it by hydrocarbon molecule flow and Ne/sup +/ ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Derevyanchenko, A S; Palatnik, L S; Martynov, I S; Seryugin, A L; Gritsyna, V V; Koval' , A G; Kiyan, T S; Fogel' , Ya M [Khar' kovskii Gosudarstvennyi Univ. (Ukrainian SSR)

    1975-07-01

    The structure of a film growing on the surface of NaCl crystal with a simultaneous irradiation of the film with molecules of hydrocarbons and Ne ions has been investigated. At the first stage of formation the film has a net structure of graphite with an abnormally large internet distance. At the subsequent stage of growing hollow spherulites are formed in the film, their walls having the structure of the third phase of carbon - carbine and dendrites - crystals with the structure of NaCl forming inside of the growing film.

  9. Flow units classification for geostatisitical three-dimensional modeling of a non-marine sandstone reservoir: A case study from the Paleocene Funing Formation of the Gaoji Oilfield, east China

    Science.gov (United States)

    Zhang, Penghui; Zhang, Jinliang; Wang, Jinkai; Li, Ming; Liang, Jie; Wu, Yingli

    2018-05-01

    Flow units classification can be used in reservoir characterization. In addition, characterizing the reservoir interval into flow units is an effective way to simulate the reservoir. Paraflow units (PFUs), the second level of flow units, are used to estimate the spatial distribution of continental clastic reservoirs at the detailed reservoir description stage. In this study, we investigate a nonroutine methodology to predict the external and internal distribution of PFUs. The methodology outlined enables the classification of PFUs using sandstone core samples and log data. The relationships obtained between porosity, permeability and pore throat aperture radii (r35) values were established for core and log data obtained from 26 wells from the Funing Formation, Gaoji Oilfield, Subei Basin, China. The present study refines predicted PFUs at logged (0.125-m) intervals, whose scale is much smaller than routine methods. Meanwhile, three-dimensional models are built using sequential indicator simulation to characterize PFUs in wells. Four distinct PFUs are classified and located based on the statistical methodology of cluster analysis, and each PFU has different seepage ability. The results of this study demonstrate the obtained models are able to quantify reservoir heterogeneity. Due to different petrophysical characteristics and seepage ability, PFUs have a significant impact on the distribution of the remaining oil. Considering these allows a more accurate understanding of reservoir quality, especially within non-marine sandstone reservoirs.

  10. Petrophysics and hydrocarbon potential of Paleozoic rocks in Kuwait

    Science.gov (United States)

    Abdullah, Fowzia; Shaaban, Fouad; Khalaf, Fikry; Bahaman, Fatma; Akbar, Bibi; Al-Khamiss, Awatif

    2017-10-01

    Well logs from nine deep exploratory and development wells in Kuwaiti oil fields have been used to study petrophysical characteristics and their effect on the reservoir quality of the subsurface Paleozoic Khuff and Unayzah formations. Petrophysical log data have been calibrated with core analysis available at some intervals. The study indicates a complex lithological facies of the Khuff Formation that is composed mainly of dolomite and anhydrite interbeds with dispersed argillaceous materials and few limestone intercalations. This facies greatly lowered the formation matrix porosity and permeability index. The porosity is fully saturated with water, which is reflected by the low resistivity logs responses, except at some intervals where few hydrocarbon shows are recorded. The impermeable anhydrites, massive (low-permeability) carbonate rock and shale at the lower part of the formation combine to form intraformational seals for the clastic reservoirs of the underlying Unayzah Formation. By contrast, the log interpretation revealed clastic lithological nature of the Unayzah Formation with cycles of conglomerate, sandstone, siltstone, mudstone and shales. The recorded argillaceous materials are mainly of disseminated habit, which control, for some extent, the matrix porosity, that ranges from 2% to 15% with water saturation ranges from 65% to 100%. Cementation, dissolution, compaction and clay mineral authigenesis are the most significant diagenetic processes affecting the reservoir quality. Calibration with the available core analysis at some intervals of the formation indicates that the siliciclastic sequence is a fluvial with more than one climatic cycle changes from humid, semi-arid to arid condition and displays the impact of both physical and chemical diagenesis. In general, the study revealed that the Unyazah Formation has a better reservoir quality than the Khuff Formation and possible gas bearing zones.

  11. The marine bacterium Marinobacter hydrocarbonoclasticus SP17 degrades a wide range of lipids and hydrocarbons through the formation of oleolytic biofilms with distinct gene expression profiles.

    Science.gov (United States)

    Mounier, Julie; Camus, Arantxa; Mitteau, Isabelle; Vaysse, Pierre-Joseph; Goulas, Philippe; Grimaud, Régis; Sivadon, Pierre

    2014-12-01

    Hydrophobic organic compounds (mainly lipids and hydrocarbons) represent a significant part of the organic matter in marine waters, and their degradation has an important impact in the carbon fluxes within oceans. However, because they are nearly insoluble in the water phase, their degradation by microorganisms occurs at the interface with water and thus requires specific adaptations such as biofilm formation. We show that Marinobacter hydrocarbonoclasticus SP17 develops biofilms, referred to as oleolytic biofilms, on a large variety of hydrophobic substrates, including hydrocarbons, fatty alcohols, fatty acids, triglycerides, and wax esters. Microarray analysis revealed that biofilm growth on n-hexadecane or triolein involved distinct genetic responses, together with a core of common genes that might concern general mechanisms of biofilm formation. Biofilm growth on triolein modulated the expression of hundreds of genes in comparison with n-hexadecane. The processes related to primary metabolism and genetic information processing were downregulated. Most of the genes that were overexpressed on triolein had unknown functions. Surprisingly, their genome localization was restricted to a few regions identified as putative genomic islands or mobile elements. These results are discussed with regard to the adaptive responses triggered by M. hydrocarbonoclasticus SP17 to occupy a specific niche in marine ecosystems. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  12. Reservoir Engineering Management Program

    Energy Technology Data Exchange (ETDEWEB)

    Howard, J.H.; Schwarz, W.J.

    1977-12-14

    The Reservoir Engineering Management Program being conducted at Lawrence Berkeley Laboratory includes two major tasks: 1) the continuation of support to geothermal reservoir engineering related work, started under the NSF-RANN program and transferred to ERDA at the time of its formation; 2) the development and subsequent implementation of a broad plan for support of research in topics related to the exploitation of geothermal reservoirs. This plan is now known as the GREMP plan. Both the NSF-RANN legacies and GREMP are in direct support of the DOE/DGE mission in general and the goals of the Resource and Technology/Resource Exploitation and Assessment Branch in particular. These goals are to determine the magnitude and distribution of geothermal resources and reduce risk in their exploitation through improved understanding of generically different reservoir types. These goals are to be accomplished by: 1) the creation of a large data base about geothermal reservoirs, 2) improved tools and methods for gathering data on geothermal reservoirs, and 3) modeling of reservoirs and utilization options. The NSF legacies are more research and training oriented, and the GREMP is geared primarily to the practical development of the geothermal reservoirs. 2 tabs., 3 figs.

  13. Longitudinal processes in Salto Grande reservoir (Americana, SP, Brazil and its influence in the formation of compartment system

    Directory of Open Access Journals (Sweden)

    L. H. ZANATA

    Full Text Available Studies on the longitudinal processes in reservoirs, involving physical, chemical and biological processes have been thoroughly appraised, suggesting the existence of a longitudinal organization controlled by the entrance and circulation of water which inserts modifications in the structuring of the system. To evaluate this effect, the Salto Grande reservoir (Americana, SP was analyzed in 11 sampling stations in its longitudinal axis, in the rainy and dry seasons of 1997 considering the physical chemical and biological variables. Analyzing the results in agreement with the declining concentration degree of the river--barrage direction, a more significant correlation was verified in the dry period for total phosphorus (r² = 0.86, dissolved total phosphate (r² = 0.83, nitrite (r² = 0.93, inorganic phosphate (r² = 0.89, ammonium (r² = 0.84 and suspended material (r² = 0.85. In the rainy period, only nitrite (r² = 0.90 and conductivity (r² = 0.89 presented correlation with the distance of the dam, which demonstrates the effects of precipitation and the operational mechanism of the dam, as well as the distinction among the physical (sedimentation, chemical (oxidation and biological (decomposition processes in spatial heterogeneity of the system. These factors were decisive in the organization of these communities, with higher occurrence of rotifers and copepods in relation to cladocerans, the first ones being more abundant in the entrance of the Atibaia river, decreasing towards the dam direction, while copepods presented an inverse pattern. A distribution pattern similar to Copepoda was also verified for the Cladocera, evidencing a tendency to increase the density of organisms in the stations distant to the entrance of the Atibaia river, not being registered, however, a distribution gradient in the longitudinal axis, as observed for rotifers and copepods. In relation to the trophic degree a longitudinal gradient was also verified from

  14. Reservoir management

    International Nuclear Information System (INIS)

    Satter, A.; Varnon, J.E.; Hoang, M.T.

    1992-01-01

    A reservoir's life begins with exploration leading to discovery followed by delineation of the reservoir, development of the field, production by primary, secondary and tertiary means, and finally to abandonment. Sound reservoir management is the key to maximizing economic operation of the reservoir throughout its entire life. Technological advances and rapidly increasing computer power are providing tools to better manage reservoirs and are increasing the gap between good and neural reservoir management. The modern reservoir management process involves goal setting, planning, implementing, monitoring, evaluating, and revising plans. Setting a reservoir management strategy requires knowledge of the reservoir, availability of technology, and knowledge of the business, political, and environmental climate. Formulating a comprehensive management plan involves depletion and development strategies, data acquisition and analyses, geological and numerical model studies, production and reserves forecasts, facilities requirements, economic optimization, and management approval. This paper provides management, engineers, geologists, geophysicists, and field operations staff with a better understanding of the practical approach to reservoir management using a multidisciplinary, integrated team approach

  15. Reservoir management

    International Nuclear Information System (INIS)

    Satter, A.; Varnon, J.E.; Hoang, M.T.

    1992-01-01

    A reservoir's life begins with exploration leading to discovery followed by delineation of the reservoir, development of the field, production by primary, secondary and tertiary means, and finally to abandonment. Sound reservoir management is the key to maximizing economic operation of the reservoir throughout its entire life. Technological advances and rapidly increasing computer power are providing tools to better manage reservoirs and are increasing the gap between good and neutral reservoir management. The modern reservoir management process involves goal setting, planning, implementing, monitoring, evaluating, and revising plans. Setting a reservoir management strategy requires knowledge of the reservoir, availability of technology, and knowledge of the business, political, and environmental climate. Formulating a comprehensive management plan involves depletion and development strategies, data acquisition and analyses, geological and numerical model studies, production and reserves forecasts, facilities requirements, economic optimization, and management approval. This paper provides management, engineers geologists, geophysicists, and field operations staff with a better understanding of the practical approach to reservoir management using a multidisciplinary, integrated team approach

  16. Structure dynamics of a fish community over ten years of formation in the reservoir of the hydroelectric power plant in upper Uruguay River.

    Science.gov (United States)

    Schork, G; Zaniboni-Filho, E

    2017-11-01

    The objective of this study was to evaluate the structure of the fish assemblage in the ten years following the closing of the lake of the Itá Hydroelectric Power Plant. Seasonal collections were conducted from 2001 to 2010. During this period, 44,834 fish were captured, totaling 3,818.01 kg, among 8 orders, 24 families and 84 species. In general, profound changes were not observed in the fish assemblage in the ten years after the formation of the Itá lake. Few species changed in dominance over time, while many were rare in the environment. The ichthyofauna in the reservoir was dominated by small and medium size opportunist species that conduct short or no migratory movements. Among the most abundant, six species were responsible for more than 50% of the numeric representation: Steindachnerina brevipinna, Astyanax fasciatus, Apareiodon affinis, Hypostomus isbrueckeri, Iheringichthys labrosus and Loricariichthys anus. The increase in the representation of the later species stood out. The biomass was dominated by Steindachneridion scriptum, Prochilodus lineatus, I. laborsus, Schizodon nasutus, Hoplias malabaricus, Acestrorhynchus pantaneiro, Hoplias lacerdae, H. isbrueckeri and L. anus. Despite the presence of large migrators in the region of the reservoir, their vulnerability was revealed by the low numeric abundance and accidental capture. The k-dominance curve of numerical abundance and biomass indicates a moderately disturbed community, in which the representation of small species was also important to the amounts of biomass.

  17. Gas sealing efficiency of cap rocks. Pt. 1: Experimental investigations in pelitic sediment rocks. - Pt. 2: Geochemical investigations on redistribution of volatile hydrocarbons in the overburden of natural gas reservoirs; Gas sealing efficiency of cap rocks. T. 1: Experimentelle Untersuchungen in pelitischen Sedimentgesteinen. - T.2: Geochemische Untersuchungen zur Umverteilung leichtfluechtiger Kohlenwasserstoffe in den Deckschichten von Erdgaslagerstaetten. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Leythaeuser; Konstanty, J.; Pankalla, F.; Schwark, L.; Krooss, B.M.; Ehrlich, R.; Schloemer, S.

    1997-09-01

    New methods and concepts for the assessment of sealing properties of cap rocks above natural gas reservoirs and of the migration behaviour of low molecular-weight hydrocarbons in sedimentary basins were developed and tested. The experimental work comprised the systematic assesment of gas transport parameters on representative samples of pelitic rocks at elevated pressure and temperature conditions, and the characterization of their sealing efficiency as cap rocks overlying hydrocarbon accumulations. Geochemical case histories were carried out to analyse the distribution of low molecular-weight hydrocarbons in the overburden of known natural gas reservoirs in NW Germany. The results were interpreted with respect to the sealing efficiency of individual cap rock lithologies and the type and extent of gas losses. (orig.) [Deutsch] Zur Beurteilung der Abdichtungseigenschaften von Caprocks ueber Gaslagerstaetten und des Migrationsverhaltens niedrigmolekularer Kohlenwasserstoffe in Sedimentbecken wurden neue Methoden und Konzepte entwickelt und angewendet. In experimentellen Arbeiten erfolgte die systematische Bestimmung von Gas-Transportparametern an repraesentativen Proben pelitischer Gesteine unter erhoehten Druck- und Temperaturbedingungen und die Charakterisierung ihrer Abdichtungseffizienz als Deckschicht ueber Kohlenwasserstofflagerstaetten. In geochemischen Fallstudien wurde die Verteilung niedrigmolekularer Kohlenwasserstoffe in den Deckschichten ueber bekannten Erdgaslagerstaetten in NW-Deutschland analysiert und im Hinblick auf die Abdichtungseffizienz einzelner Caprock-Lithologien bzw. Art und Ausmass von Gasverlusten interpretiert. (orig.)

  18. An interpretation of core and wireline logs for the Petrophysical evaluation of Upper Shallow Marine sandstone reservoirs of the Bredasdorp Basin, offshore South Africa

    Science.gov (United States)

    Magoba, Moses; Opuwari, Mimonitu

    2017-04-01

    This paper embodies a study carried out to assess the Petrophysical evaluation of upper shallow marine sandstone reservoir of 10 selected wells in the Bredasdorp basin, offshore, South Africa. The studied wells were selected randomly across the upper shallow marine formation with the purpose of conducting a regional study to assess the difference in reservoir properties across the formation. The data sets used in this study were geophysical wireline logs, Conventional core analysis and geological well completion report. The physical rock properties, for example, lithology, fluid type, and hydrocarbon bearing zone were qualitatively characterized while different parameters such as volume of clay, porosity, permeability, water saturation ,hydrocarbon saturation, storage and flow capacity were quantitatively estimated. The quantitative results were calibrated with the core data. The upper shallow marine reservoirs were penetrated at different depth ranging from shallow depth of about 2442m to 3715m. The average volume of clay, average effective porosity, average water saturation, hydrocarbon saturation and permeability range from 8.6%- 43%, 9%- 16%, 12%- 68% , 32%- 87.8% and 0.093mD -151.8mD respectively. The estimated rock properties indicate a good reservoir quality. Storage and flow capacity results presented a fair to good distribution of hydrocarbon flow.

  19. Fortescue reservoir development and reservoir studies

    Energy Technology Data Exchange (ETDEWEB)

    Henzell, S.T.; Hicks, G.J.; Horden, M.J.; Irrgang, H.R.; Janssen, E.J.; Kable, C.W.; Mitchell, R.A.H.; Morrell, N.W.; Palmer, I.D.; Seage, N.W.

    1985-03-01

    The Fortescue field in the Gippsland Basin, offshore southeastern Australia is being developed from two platforms (Fortescue A and Cobia A) by Esso Australia Ltd. (operator) and BHP Petroleum. The Fortescue reservoir is a stratigraphic trap at the top of the Latrobe Group of sediments. It overlies the western flank of the Halibut and Cobia fields and is separated from them by a non-net sequence of shales and coals which form a hydraulic barrier between the two systems. Development drilling into the Fortescue reservoir commenced in April 1983 with production coming onstream in May 1983. Fortescue, with booked reserves of 44 stock tank gigalitres (280 million stock tank barrels) of 43/sup 0/ API oil, is the seventh major oil reservoir to be developed in the offshore Gippsland Basin by Esso/BHP. In mid-1984, after drilling a total of 20 exploration and development wells, and after approximately one year of production, a detailed three-dimensional, two-phase reservoir simulation study was performed to examine the recovery efficiency, drainage patterns, pressure performance and production rate potential of the reservoir. The model was validated by history matching an extensive suite of Repeat Formation Test (RFT) pressure data. The results confirmed the reserves basis, and demonstrated that the ultimate oil recovery from the reservoir is not sensitive to production rate. This result is consistent with studies on other high quality Latrobe Group reservoirs in the Gippsland Basin which contain undersaturated crudes and receive very strong water drive from the Basin-wide aquifer system. With the development of the simulation model during the development phase, it has been possible to more accurately define the optimal well pattern for the remainder of the development.

  20. Model of mechanical representation of the formation of natural fractures inside a petroleum reservoir; Modele de representation mecanique de la formation des fractures naturelles d'un reservoir petrolier

    Energy Technology Data Exchange (ETDEWEB)

    Picard, D.

    2005-09-15

    The optimisation of the oil production requires a better characterisation of naturally fractured reservoirs. We consider and analyse two spatial distributions. One with systematic joints is arranged in an homogeneous way; joint spacing is linked to individual bedding thickness with propagation frequently interrupted by stratigraphic interfaces (single layer jointing). The second, so-called fracture swarms, consists in fractures clustering, where stratigraphic interfaces seem to play a minor role. The analysis is based on the singularity theory and matched asymptotic expansions method with a fine scale for local perturbations and a global one for general trends. We examine the conditions of fracture propagation that are determined herein using simultaneously two fracture criteria an energy and a stress condition. We consider two modes of loading. Usually, the joint (crack opening mode) and fracture swarm growths are explained by a first order phenomenon involving effective traction orthogonal to fracture plane. Although commonly used, this hypothesis seems unrealistic in many circumstances and may conflict with geological observations. Then, we try to describe fracture growth as a second order phenomena resulting from crack parallel compression. As far as propagation across layer interfaces is concerned, the effect of loading and geometry has been summarised in maps of fracture mechanisms, describing areas of 'step-over', 'straight through propagation' and 'crack arrest'. Fracture criteria, relative size of heterogeneities, contrast of mechanical properties between bed and layer are parameters of the problem. For fracture swarms, we present a discussion bringing out what is reasonable as a loading to justify their morphology. In particular, horizontal effective tension is unable to explain neighbouring joints. Simultaneous propagation of parallel near cracks is explained by finite width cracks growing under the influence of vertical

  1. Synergizing Crosswell Seismic and Electromagnetic Techniques for Enhancing Reservoir Characterization

    KAUST Repository

    Katterbauer, Klemens

    2015-11-18

    Increasing complexity of hydrocarbon projects and the request for higher recovery rates have driven the oil-and-gas industry to look for a more-detailed understanding of the subsurface formation to optimize recovery of oil and profitability. Despite the significant successes of geophysical techniques in determining changes within the reservoir, the benefits from individually mapping the information are limited. Although seismic techniques have been the main approach for imaging the subsurface, the weak density contrast between water and oil has made electromagnetic (EM) technology an attractive complement to improve fluid distinction, especially for high-saline water. This crosswell technology assumes greater importance for obtaining higher-resolution images of the interwell regions to more accurately characterize the reservoir and track fluid-front developments. In this study, an ensemble-Kalman-based history-matching framework is proposed for directly incorporating crosswell time-lapse seismic and EM data into the history-matching process. The direct incorporation of the time-lapse seismic and EM data into the history-matching process exploits the complementarity of these data to enhance subsurface characterization, to incorporate interwell information, and to avoid biases that may be incurred from separate inversions of the geophysical data for attributes. An extensive analysis with 2D and realistic 3D reservoirs illustrates the robustness and enhanced forecastability of critical reservoir variables. The 2D reservoir provides a better understanding of the connection between fluid discrimination and enhanced history matches, and the 3D reservoir demonstrates its applicability to a realistic reservoir. History-matching enhancements (in terms of reduction in the history-matching error) when incorporating both seismic and EM data averaged approximately 50% for the 2D case, and approximately 30% for the 3D case, and permeability estimates were approximately 25

  2. Quantifying the clay content with borehole depth and impact on reservoir flow

    Science.gov (United States)

    Sarath Kumar, Aaraellu D.; Chattopadhyay, Pallavi B.

    2017-04-01

    This study focuses on the application of reservoir well log data and 3D transient numerical model for proper optimization of flow dynamics and hydrocarbon potential. Fluid flow through porous media depends on clay content that controls porosity, permeability and pore pressure. The pressure dependence of permeability is more pronounced in tight formations. Therefore, preliminary clay concentration analysis and geo-mechanical characterizations have been done by using wells logs. The assumption of a constant permeability for a reservoir is inappropriate and therefore the study deals with impact of permeability variation for pressure-sensitive formation. The study started with obtaining field data from available well logs. Then, the mathematical models are developed to understand the efficient extraction of oil in terms of reservoir architecture, porosity and permeability. The fluid flow simulations have been done using COMSOL Multiphysics Software by choosing time dependent subsurface flow module that is governed by Darcy's law. This study suggests that the reservoir should not be treated as a single homogeneous structure with unique porosity and permeability. The reservoir parameters change with varying clay content and it should be considered for effective planning and extraction of oil. There is an optimum drawdown for maximum production with varying permeability in a reservoir.

  3. A new method for calculating gas content of coal reservoirs with consideration of a micro-pore overpressure environment

    Directory of Open Access Journals (Sweden)

    Jinxing Song

    2017-05-01

    Full Text Available When the gas content of a coal reservoir is calculated, the reservoir pressure measured by well logging and well testing is generally used for inversion calculation instead of gas pressure. However, the calculation result is not accurate because the reservoir pressure is not equal to the gas pressure in overpressure environments. In this paper, coal samples of different ranks in Shanxi and Henan are collected for testing the capillary pressure of coal pores. Based on the formation process of CBM reservoirs and the hydrocarbon generation and expulsion history of coal beds, the forming mechanisms of micro-pore overpressure environments in coal reservoirs were analyzed. Accordingly, a new method for calculating the gas content of coal reservoirs with consideration of a micro-pore overpressure environment was developed. And it was used to calculate the gas content of No. 1 coal bed of the 2nd member of Lower Permian Shanxi Fm in the Zhongmacun Coal Mine in Jiaozuo, Henan. It is indicated that during the formation and evolution of coals, some solid organic matters were converted into gas and water, and gas–water contact is surely formed in pores. In the end, capillary pressure is generated, so the gas pressure in micro-pores is much higher than the hydrostatic column pressure, which results in a micro-pore overpressure environment. Under such an environment, gas pressure is higher than reservoir pressure, so the gas content of coal reservoirs calculated previously based on the conventional reservoir pressure evaluation are usually underestimated. It is also found that the micro-pore overpressure environment exerts a dominating effect on the CBM content calculation of 3–100 nm pores, especially that of 3–10 nm pores, but a little effect on that of pores >100 nm. In conclusion, this new method clarifies the pressure environment of CBM gas reservoirs, thereby ensuring the calculation accuracy of gas content of coal reservoirs.

  4. Carbon-oxygen log applications in complex reservoir evaluation by neutron interactions from (D,T) accelerators

    International Nuclear Information System (INIS)

    Lochmann, M.J.; Berg, L.O.; Ivey, R.C.

    1983-01-01

    Granite Wash reservoirs in Oklahoma, Texas, Colorado and New Mexico have proven to be effective commercial producers of hydrocarbons. Substantial drilling activity continues to penetrate this formation either as a primary or secondary objective. A new technique to provide additional lithologic data to engineers and geologists will yield significant benefits in the evaluation and treatment of these reservoirs. This information can be obtained by data available from spectrum analysis through the use of tools such as the Carbon/Oxygen Log, Spectralog and NGS

  5. The Gothic shale of the Pennsylvanian Paradox Formation Greater Aneth Field (Aneth Unit) Southeastern Utah U.S.A.: Seal for Hydrocarbons and Carbon Dioxide Storage.

    Energy Technology Data Exchange (ETDEWEB)

    Heath, Jason E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dewers, Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Chidsey, Thomas C. [Utah Geoglogical Survey, Salt Lake City, UT (United States); Carney, Stephanie M. [Utah Geoglogical Survey, Salt Lake City, UT (United States); Bereskin, S. R. [Bereskin and Associates, Salt Lake City (United States)

    2017-05-01

    Greater Aneth oil field, Utah’s largest oil producer, was discovered in 1956 and has produced over 483 million barrels of oil. Located in the Paradox Basin of southeastern Utah, Greater Aneth is a stratigraphic trap producing from the Pennsylvanian (Desmoinesian) Paradox Formation. Because Greater Aneth is a mature, major oil field in the western U.S., and has a large carbonate reservoir, it was selected to demonstrate combined enhanced oil recovery and carbon dioxide storage. The Aneth Unit in the northwestern part of the field has produced over 160 million barrels of the estimated 386 million barrels of original oil in place—a 42% recovery rate. The large amount of remaining oil made the Aneth Unit ideal to enhance oil recovery by carbon dioxide flooding and demonstrate carbon dioxide storage capacity.

  6. Novel CO2 Foam Concepts and Injection Schemes for Improving CO2 Sweep Efficiency in Sandstone and Carbonate Hydrocarbon Formations

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Quoc [Univ. of Texas, Austin, TX (United States). Department of Petroleum & Geosystems Engineering; Hirasaki, George [Rice Univ., Houston, TX (United States). Department of Chemical Engineering; Johnston, Keith [Univ. of Texas, Austin, TX (United States). Department of Chemical Engineering

    2015-02-05

    We explored cationic, nonionic and zwitterionic surfactants to identify candidates that have the potential to satisfy all the key requirements for CO2 foams in EOR. We have examined the formation, texture, rheology and stability of CO2 foams as a function of the surfactant structure and formulation variables including temperature, pressure, water/CO2 ratio, surfactant concentration, salinity and concentration of oil. Furthermore, the partitioning of surfactants between oil and water as well as CO2 and water was examined in conjunction with adsorption measurements on limestone by the Hirasaki lab to develop strategies to optimize the transport of surfactants in reservoirs.

  7. Reservoir core porosity in the Resende formation using 3D high-resolution X-ray computed microtomography

    International Nuclear Information System (INIS)

    Oliveira, Milena F.S.; Lima, Inaya; Lopes, Ricardo T.; Rocha, Paula Lucia F. da

    2009-01-01

    The storage capacity and production of oil are influenced, among other things, by rocks and fluids characteristics. Porosity is one of the most important characteristics to be analyzed in oil industry, mainly in oil prospection because it represents the direct capacity of storage fluids in the rocks. By definition, porosity is the ratio of pore volume to the total bulk volume of the formation, expressed in percentage, being able to be absolute or effective. The aim of this study was to calculate porosity by 3D High-Resolution X-ray Computed Microtomography using core plugs from Resende Formation which were collected in Porto Real, Rio de Janeiro State. This formation is characterized by sandstones and fine conglomerates with associated fine siliciclastic sediments, and the paleoenviroment is interpreted as a braided fluvial system. For acquisitions data, it was used a 3D high resolution microtomography system which has a microfocus X-ray tube (spot size < 5μm) and a 12-bit cooled X-ray camera (CCD fiber-optically coupled to a scintillator) operated at 100 kV and 100 μA. Twenty-two samples taken at different depths from two boreholes were analyzed. A total of 961 slices were performed with a resolution of 14.9 μm. The results demonstrated that μ-CT is a reliable and effective technique. Through the images and data it was possible to quantify the porosity and to view the size and shape of porous. (author)

  8. New Insight into the Kinetics of Deep Liquid Hydrocarbon Cracking and Its Significance

    Directory of Open Access Journals (Sweden)

    Wenzhi Zhao

    2017-01-01

    Full Text Available The deep marine natural gas accumulations in China are mainly derived from the cracking of liquid hydrocarbons with different occurrence states. Besides accumulated oil in reservoir, the dispersed liquid hydrocarbon in and outside source also is important source for cracking gas generation or relayed gas generation in deep formations. In this study, nonisothermal gold tube pyrolysis and numerical calculations as well as geochemical analysis were conducted to ascertain the expulsion efficiency of source rocks and the kinetics for oil cracking. By determination of light liquid hydrocarbons and numerical calculations, it is concluded that the residual bitumen or hydrocarbons within source rocks can occupy about 50 wt.% of total oil generated at oil generation peak. This implies that considerable amounts of natural gas can be derived from residual hydrocarbon cracking and contribute significantly to the accumulation of shale gas. Based on pyrolysis experiments and kinetic calculations, we established a model for the cracking of oil and its different components. In addition, a quantitative gas generation model was also established to address the contribution of the cracking of residual oil and expulsed oil for natural gas accumulations in deep formations. These models may provide us with guidance for gas resource evaluation and future gas exploration in deep formations.

  9. Formation evaluation of fractured basement, Cambay Basin, India

    International Nuclear Information System (INIS)

    Gupta, Saurabh Datta; Farooqui, M Y; Chatterjee, Rima

    2012-01-01

    Unconventional reservoirs such as fractured basalts, shale gas and tight sand are currently playing an important role in producing a significant amount of hydrocarbon. The Deccan Trap basaltic rocks form the basement of the Cambay Basin, India, and hold commercially producible hydrocarbon. In this study two wells drilled through fractured basalts are chosen for evaluating the lithology, porosity and oil saturation of the reservoir sections. Well logs, such as gamma ray, high resolution resistivity, litho density, compensated neutron and elemental capture spectroscopy, have been used in cross-plotting techniques for lithology and mineral identification. Formation micro imagery log data have been analysed to quantify the fractures and porosity in the fractured reservoirs for a well in the south Ahmedabad block of the Cambay Basin. The results of the analysis of two wells are presented and discussed and they are found to be in good agreement with geological and production data. (paper)

  10. Optrode for sensing hydrocarbons

    Science.gov (United States)

    Miller, H.; Milanovich, F.P.; Hirschfeld, T.B.; Miller, F.S.

    1988-09-13

    A two-phase system employing the Fujiwara reaction is provided for the fluorometric detection of halogenated hydrocarbons. A fiber optic is utilized to illuminate a column of pyridine trapped in a capillary tube coaxially attached at one end to the illuminating end of the fiber optic. A strongly alkaline condition necessary for the reaction is maintained by providing a reservoir of alkali in contact with the column of pyridine, the surface of contact being adjacent to the illuminating end of the fiber optic. A semipermeable membrane caps the other end of the capillary tube, the membrane being preferentially permeable to the halogenated hydrocarbon and but preferentially impermeable to water and pyridine. As the halogenated hydrocarbon diffuses through the membrane and into the column of pyridine, fluorescent reaction products are formed. Light propagated by the fiber optic from a light source, excites the fluorescent products. Light from the fluorescence emission is also collected by the same fiber optic and transmitted to a detector. The intensity of the fluorescence gives a measure of the concentration of the halogenated hydrocarbons. 5 figs.

  11. Sedimentary facies and lithologic characters as main factors controlling hydrocarbon accumulations and their critical conditions

    Directory of Open Access Journals (Sweden)

    Jun-Qing Chen

    2015-10-01

    Full Text Available Taking more than 1000 clastic hydrocarbon reservoirs of Bohai Bay Basin, Tarim Basin and Junggar Basin, China as examples, the paper has studied the main controlling factors of hydrocarbon reservoirs and their critical conditions to reveal the hydrocarbon distribution and to optimize the search for favorable targets. The results indicated that the various sedimentary facies and lithologic characters control the critical conditions of hydrocarbon accumulations, which shows that hydrocarbon is distributed mainly in sedimentary facies formed under conditions of a long-lived and relatively strong hydrodynamic environment; 95% of the hydrocarbon reservoirs and reserves in the three basins is distributed in siltstones, fine sandstones, lithified gravels and pebble-bearing sandstones; moreover, the probability of discovering conventional hydrocarbon reservoirs decreases with the grain size of the clastic rock. The main reason is that the low relative porosity and permeability of fine-grained reservoirs lead to small differences in capillary force compared with surrounding rocks small and insufficiency of dynamic force for hydrocarbon accumulation; the critical condition for hydrocarbon entering reservoir is that the interfacial potential in the surrounding rock (Φn must be more than twice of that in the reservoir (Φs; the probability of hydrocarbon reservoirs distribution decreases in cases where the hydrodynamic force is too high or too low and when the rocks have too coarse or too fine grains.

  12. Ice Lens Formation, Frost Heave, Thin Films, and the Importance of the Polar H2O Reservoir at High Obliquity

    Science.gov (United States)

    Zent, A. P.; Sizemore, H. G.; Rempel, A. W.

    2011-01-01

    Several lines of evidence indicate that the volume of shallow ground ice in the martian high latitudes exceeds the pore volume of the host regolith. Boynton et al. found an optimal fit to the Mars Odyssey Gamma Ray Spectrometer (GRS) data at the Phoenix landing site by modeling a buried layer of 50-75% ice by mass (up to 90% ice by volume). Thermal and optical observations of recent impact craters in the northern hemisphere have revealed nearly pure ice. Ice deposits containing only 1-2% soil by volume were excavaged by Phoenix. One hypothesis for the origin of this excess ice is that it developed in situ by a mechanism analogous to the formation of terrestrial ice lenses and needle ice. Problematically, terrestrial soil-ice segregation is driven by freeze/thaw cycling and the movement of bulk water, neither of which are expected to have occurred in the geologically recent past on Mars. If however ice lens formation is possible at temperatures less than 273 K, there are possible implications for the habitability of Mars permafrost, since the same thin films of unfrozen water that lead to ice segregation are used by terrestrial psychrophiles to metaboluze and grow down to temperatures of at least 258 K.

  13. Shale gas reservoir characterization using LWD in real time

    Energy Technology Data Exchange (ETDEWEB)

    Han, S.Y.; Kok, J.C.L.; Tollefsen, E.M.; Baihly, J.D.; Malpani, R.; Alford, J. [Schlumberger Canada Ltd., Calgary, AB (Canada)

    2010-07-01

    Wireline logging programs are frequently used to evaluate vertical boreholes in shale gas plays. Data logged from the vertical hole are used to define reservoir profiles for the horizontal target window. The horizontal wells are then steered based on gamma ray measurements obtained using correlations against the vertical pilot wells. Logging-while-drilling tools are used in bottom hole assemblies (BHA) to ensure accurate well placement and to perform detailed reservoir characterizations across the target structure. The LWD measurements are also used to avoid hazards and enhance rates of penetration. LWD can also be used to enhance trajectory placement and provide an improved understanding of reservoirs. In this study, LWD measurements were conducted at a shale gas play in order to obtain accurate well placement, formation evaluation, and completion optimization processes. The study showed how LWD measurements can be used to optimize well completion and stimulation plans by considering well positions in relation to geological targets, reservoir property changes, hydrocarbon saturation disparity, and variations in geomechanical properties. 21 refs., 13 figs.

  14. SECONDARY ORGANIC AEROSOL FORMATION FROM THE OXIDATION OF AROMATIC HYDROCARBONS IN THE PRESENCE OF DRY SUBMICRON AMMONIUM SULFATE AEROSOL

    Science.gov (United States)

    A laboratory study was conducted to examine formation of secondary organic aerosols. A smog chamber system was developed for studying gas-aerosol interactions in a dynamic flow reactor. These experiments were conducted to investigate the fate of gas and aerosol phase compounds ...

  15. Modeling the formation, decay, and partitioning of semivolatile nitro-polycyclic aromatic hydrocarbons (nitronaphthalenes) in the atmosphere

    DEFF Research Database (Denmark)

    Feilberg, A.; Kamens, R.M.; Strommen, M.R.

    1999-01-01

    A nitronaphthalene kinetics mechanism has been implemented and added to the photochemical smog mechanism, Carbon Bond-4. This mechanism was used to simulate the formation, decay, and partitioning of 1- and 2-nitronaphthalene and compare it to outdoor smog chamber data. The results suggest that th...

  16. Petroleum hydrocarbons

    International Nuclear Information System (INIS)

    Farrington, J.W.; Teal, J.M.; Parker, P.L.

    1976-01-01

    Methods for analysis of petroleum hydrocarbons in marine samples are presented. Types of hydrocarbons present and their origins are discussed. Principles and methods of analysis are outlined. Infrared spectrometry, uv spectrometry, gas chromatography, mass spectroscopy, and carbon 14 measurements are described

  17. Key seismic exploration technology for the Longwangmiao Fm gas reservoir in Gaoshiti–Moxi area, Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Guangrong Zhang

    2016-10-01

    Full Text Available The dolomite reservoirs of the Lower Cambrian Longwangmiao Fm in the Gaoshiti–Moxi area, Sichuan Basin, are deeply buried (generally 4400–4900 m, with high heterogeneity, making reservoir prediction difficult. In this regard, key seismic exploration technologies were developed through researches. Firstly, through in-depth analysis on the existing geologic, drilling, seismic data and available research findings, basic surface and subsurface structures and geologic conditions within the study area were clarified. Secondly, digital seismic data acquisition technologies with wide azimuth, wide frequency band and minor bins were adopted to ensure even distribution of coverage of target formations through optimization of the 3D seismic geometry. In this way, high-accuracy 3D seismic data can be acquired through shallow, middle and deep formations. Thirdly, well-control seismic data processing technologies were applied to enhance the signal-to-noise ratio (SNR of seismic data for deep formations. Fourthly, a seismic response model was established specifically for the Longwangmiao Fm reservoir. Quantitative prediction of the reservoir was performed through pre-stack geo-statistics. In this way, plan distribution of reservoir thicknesses was mapped. Fifthly, core tests and logging data analysis were conducted to determine gas-sensitive elastic parameters, which were then used in pre-stack hydrocarbon detection to eliminate the multiple solutions in seismic data interpretation. It is concluded that application of the above-mentioned key technologies effectively promote the discovery of largescale marine carbonate gas reservoirs of the Longwangmiao Fm.

  18. PHYSICS OF A PARTIALLY IONIZED GAS RELEVANT TO GALAXY FORMATION SIMULATIONS-THE IONIZATION POTENTIAL ENERGY RESERVOIR

    Energy Technology Data Exchange (ETDEWEB)

    Vandenbroucke, B.; De Rijcke, S.; Schroyen, J. [Department of Physics and Astronomy, Ghent University, Krijgslaan 281, S9, B-9000 Gent (Belgium); Jachowicz, N. [Department of Physics and Astronomy, Ghent University, Proeftuinstraat 86, B-9000 Gent (Belgium)

    2013-07-01

    Simulation codes for galaxy formation and evolution take on board as many physical processes as possible beyond the standard gravitational and hydrodynamical physics. Most of this extra physics takes place below the resolution level of the simulations and is added in a ''sub-grid'' fashion. However, these sub-grid processes affect the macroscopic hydrodynamical properties of the gas and thus couple to the ''on-grid'' physics that is explicitly integrated during the simulation. In this paper, we focus on the link between partial ionization and the hydrodynamical equations. We show that the energy stored in ions and free electrons constitutes a potential energy term which breaks the linear dependence of the internal energy on temperature. Correctly taking into account ionization hence requires modifying both the equation of state and the energy-temperature relation. We implemented these changes in the cosmological simulation code GADGET2. As an example of the effects of these changes, we study the propagation of Sedov-Taylor shock waves through an ionizing medium. This serves as a proxy for the absorption of supernova feedback energy by the interstellar medium. Depending on the density and temperature of the surrounding gas, we find that up to 50% of the feedback energy is spent ionizing the gas rather than heating it. Thus, it can be expected that properly taking into account ionization effects in galaxy evolution simulations will drastically reduce the effects of thermal feedback. To the best of our knowledge, this potential energy term is not used in current simulations of galaxy formation and evolution.

  19. PHYSICS OF A PARTIALLY IONIZED GAS RELEVANT TO GALAXY FORMATION SIMULATIONS—THE IONIZATION POTENTIAL ENERGY RESERVOIR

    International Nuclear Information System (INIS)

    Vandenbroucke, B.; De Rijcke, S.; Schroyen, J.; Jachowicz, N.

    2013-01-01

    Simulation codes for galaxy formation and evolution take on board as many physical processes as possible beyond the standard gravitational and hydrodynamical physics. Most of this extra physics takes place below the resolution level of the simulations and is added in a ''sub-grid'' fashion. However, these sub-grid processes affect the macroscopic hydrodynamical properties of the gas and thus couple to the ''on-grid'' physics that is explicitly integrated during the simulation. In this paper, we focus on the link between partial ionization and the hydrodynamical equations. We show that the energy stored in ions and free electrons constitutes a potential energy term which breaks the linear dependence of the internal energy on temperature. Correctly taking into account ionization hence requires modifying both the equation of state and the energy-temperature relation. We implemented these changes in the cosmological simulation code GADGET2. As an example of the effects of these changes, we study the propagation of Sedov-Taylor shock waves through an ionizing medium. This serves as a proxy for the absorption of supernova feedback energy by the interstellar medium. Depending on the density and temperature of the surrounding gas, we find that up to 50% of the feedback energy is spent ionizing the gas rather than heating it. Thus, it can be expected that properly taking into account ionization effects in galaxy evolution simulations will drastically reduce the effects of thermal feedback. To the best of our knowledge, this potential energy term is not used in current simulations of galaxy formation and evolution.

  20. The experimental modeling of gas percolation mechanisms in a coal-measure tight sandstone reservoir: A case study on the coal-measure tight sandstone gas in the Upper Triassic Xujiahe Formation, Sichuan Basin, China

    Directory of Open Access Journals (Sweden)

    Shizhen Tao

    2016-12-01

    Full Text Available Tight sandstone gas from coal-measure source rock is widespread in China, and it is represented by the Xujiahe Formation of the Sichuan Basin and the Upper Paleozoic of the Ordos Basin. It is affected by planar evaporative hydrocarbon expulsion of coal-measure source rock and the gentle structural background; hydrodynamics and buoyancy play a limited role in the gas migration-accumulation in tight sandstone. Under the conditions of low permeability and speed, non-Darcy flow is quite apparent, it gives rise to gas-water mixed gas zone. In the gas displacing water experiment, the shape of percolation flow curve is mainly influenced by core permeability. The lower the permeability, the higher the starting pressure gradient as well as the more evident the non-Darcy phenomenon will be. In the gas displacing water experiment of tight sandstone, the maximum gas saturation of the core is generally less than 50% (ranging from 30% to 40% and averaging at 38%; it is similar to the actual gas saturation of the gas zone in the subsurface core. The gas saturation and permeability of the core have a logarithm correlation with a correlation coefficient of 0.8915. In the single-phase flow of tight sandstone gas, low-velocity non-Darcy percolation is apparent; the initial flow velocity (Vd exists due to the slippage effect of gas flow. The shape of percolation flow curve of a single-phase gas is primarily controlled by core permeability and confining pressure; the lower the permeability or the higher the confining pressure, the higher the starting pressure (0.02–0.08 MPa/cm, whereas, the higher the quasi-initial flow speed, the longer the nonlinear section and the more obvious the non-Darcy flow will be. The tight sandstone gas seepage mechanism study shows that the lower the reservoir permeability, the higher the starting pressure and the slower the flow velocity will be, this results in the low efficiency of natural gas migration and accumulation as well as

  1. Structural analysis of a fractured basement reservoir, central Yemen

    Science.gov (United States)

    Veeningen, Resi; Rice, Hugh; Schneider, Dave; Grasemann, Bernhard; Decker, Kurt

    2013-04-01

    The Pan-African Arabian-Nubian Shield (ANS), within which Yemen lies, formed as a result of Neoproterozoic collisional events between c. 870-550 Ma. Several subsequent phases of extension occurred, from the Mesozoic (due to the breakup of Gondwana) to the Recent (forming the Gulf of Aden and the Red Sea). These resulted in the formation of numerous horst- and-graben structures and the development of fractured basement reservoirs in the southeast part of the ANS. Two drill cores from the Mesozoic Marib-Shabwa Basin, central Yemen, penetrated the upper part of the Pan-African basement. The cores show both a lithological and structural inhomogeneity, with variations in extension-related deformation structures such as dilatational breccias, open fractures and closed veins. At least three deformation events have been recognized: D1) Ductile to brittle NW-SE directed faulting during cooling of a granitic pluton. U-Pb zircon ages revealed an upper age limit for granite emplacement at 627±3.5 Ma. As these structures show evidence for ductile deformation, this event must have occurred during the Ediacaran, shortly after intrusion, since Rb/Sr and (U-Th)/He analyses show that subsequent re-heating of the basement did not take place. D2) The development of shallow dipping, NNE-SSW striking extensional faults that formed during the Upper Jurassic, simultaneously with the formation of the Marib-Shabwa Basin. These fractures are regularly cross-cut by D3. D3) Steeply dipping NNE-SSW to ENE-WSW veins that are consistent with the orientation of the opening of the Gulf of Aden. These faults are the youngest structures recognized. The formation of ductile to brittle faults in the granite (D1) resulted in a hydrothermally altered zone ca. 30 cm wide replacing (mainly) plagioclase with predominantly chlorite, as well as kaolinite and heavy element minerals such as pyrite. The alteration- induced porosity has an average value of 20%, indicating that the altered zone is potentially a

  2. Effect of hydrocarbons and nitrogen oxides on ozone formation in smog chambers exposed to solar irradiance of Mexico City

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval F, J; Marroquin de la R, O; Jaimes L, J. L; Zuniga L, V. A; Gonzalez O, E; Guzman Lopez-Figueroa, F [Instituto Mexicano del Petroleo, Mexico, D.F. (Mexico)

    2001-01-01

    Outdoor smog chambers experiments were performed on air to determine the answer of maximum ozone levels, to changes in the initial hydrocarbons, HC, and nitrogen oxide NO{sub x}. These captive-air experiments under natural irradiation were carried out. Typically, eight chambers were filled with Mexico city air in the morning. In some of those chambers, the initial HC and/or Nox concentrations were varied by {+-}25% to {+-}50% by adding various combinations of a mixture of HC, clean air, or NO{sub x} (perturbed chambers). The O{sub 3} and NO{sub x} concentration in each chamber was monitored throughout the day to determine O{sub 3} (max). The initial HC and NO{sub x} concentration effects were determined by comparing the maximum ozone concentrations measured in the perturbed and unperturbed chambers. Ozone isopleths were constructed from the empirical model obtained of measurements of the eight chambers and plotted in a graph whose axe were the initial HC and NO{sub x} values. For the average initial conditions that were measured in Mexico City, it was found that the most efficient strategy to reduce the maximum concentration of O{sub 3} is the one that reduces NO{sub x}. [Spanish] Se realizaron experimentos de camaras de esmog con el aire de la ciudad de Mexico para determinar las respuestas de los niveles maximos de ozono a los cambios en las concentraciones iniciales de hidrocarburos, HC y oxido de nitrogeno, NO{sub x}. Por lo general, se llenaron 8 bolsas con aire matutino de la Ciudad de Mexico. En algunas camaras, las concentraciones iniciales fueron cambiadas de 25% a 50%, anadiendo varias concentraciones de una mezcla de HC, aire limpio y/o NO{sub x}. La concentracion de O{sub 3} y NO{sub x}, en cada camara, fueron monitoreadas a lo largo del dia para determinar el maximo de O{sub 3}. El efecto de los HC y el NO{sub x} fue determinado por comparacion del maximo de ozono formado en las camaras, que fueron perturbadas por adicion o reduccion de HC y/o Nox

  3. Multi-data reservoir history matching for enhanced reservoir forecasting and uncertainty quantification

    KAUST Repository

    Katterbauer, Klemens; Arango, Santiago; Sun, Shuyu; Hoteit, Ibrahim

    2015-01-01

    Reservoir simulations and history matching are critical for fine-tuning reservoir production strategies, improving understanding of the subsurface formation, and forecasting remaining reserves. Production data have long been incorporated

  4. EXPERIMENTAL EVIDENCE FOR THE FORMATION OF HIGHLY SUPERHYDROGENATED POLYCYCLIC AROMATIC HYDROCARBONS THROUGH H ATOM ADDITION AND THEIR CATALYTIC ROLE IN H2 FORMATION

    DEFF Research Database (Denmark)

    Thrower, John; Jørgensen, Bjarke; Friis, Emil Enderup

    2012-01-01

    , in agreement with recent IR measurements. Complementary density functional theory calculations confirm the stability of the observed superhydrogenated species toward spontaneous H and H2 loss indicating that abstraction reactions may be the dominant route to H2 formation involving neutral polycyclic aromatic...

  5. Advanced Reservoir Characterization in the Antelope Shale to Establish the Viability of CO2 Enhanced Oil Recovery in California's Monterey Formation Siliceous Shales

    International Nuclear Information System (INIS)

    Morea, Michael F.

    1999-01-01

    The primary objective of this research is to conduct advanced reservoir characterization and modeling studies in the Antelope Shale reservoir. Characterization studies will be used to determine the technical feasibility of implementing a CO2 enhanced oil recovery project in the Antelope Shale in Buena Vista Hills Field. The Buena Vista Hills pilot CO2 project will demonstrate the economic viability and widespread applicability of CO2 flooding in fractured siliceous shale reservoirs of the San Joaquin Valley. The research consists of four primary work processes: (1) Reservoir Matrix and Fluid Characterization; (2) Fracture characterization; (3) reservoir Modeling and Simulation; and (4) CO2 Pilot Flood and Evaluation. Work done in these areas is subdivided into two phases or budget periods. The first phase of the project will focus on the application of a variety of advanced reservoir characterization techniques to determine the production characteristics of the Antelope Shale reservoir. Reservoir models based on the results of the characterization work will be used to evaluate how the reservoir will respond to secondary recovery and EOR processes. The second phase of the project will include the implementation and evaluation of an advanced enhanced oil recovery (EOR) pilot in the United Anticline (West Dome) of the Buena Vista Hills Field

  6. Acoustic Impedance Inversion To Identify Oligo-Miocene Carbonate Facies As Reservoir At Kangean Offshore Area

    Science.gov (United States)

    Zuli Purnama, Arif; Ariyani Machmud, Pritta; Eka Nurcahya, Budi; Yusro, Miftahul; Gunawan, Agung; Rahmadi, Dicky

    2018-03-01

    Model based inversion was applied to inversion process of 2D seismic data in Kangean Offshore Area. Integration acoustic impedance from wells and seismic data was expected showing physical property, facies separation and reservoir quality of carbonate rock, particularly in Kangean Offshore Area. Quantitative and qualitative analysis has been conducted on the inversion results to characterize the carbonate reservoir part of Kujung and correlate it to depositional facies type. Main target exploration in Kangean Offshore Area is Kujung Formation (Oligo-Miocene Carbonate). The type of reservoir in this area generate from reef growing on the platform. Carbonate rock is a reservoir which has various type and scale of porosity. Facies determination is required to to predict reservoir quality, because each facies has its own porosity value. Acoustic impedance is used to identify and characterize Kujung carbonate facies, also could be used to predict the distribution of porosity. Low acoustic impedance correlated with packstone facies that has acoustic impedance value below 7400 gr/cc*m/s. In other situation, high acoustic impedance characterized by wackestone facies above 7400 gr/cc*m/s. The interpretation result indicated that Kujung carbonate rock dominated by packstone facies in the upper part of build-up and it has ideal porosity for hydrocarbon reservoir.

  7. Coke Formation During Hydrocarbons Pyrolysis. Part One: Steam Cracking Formation de coke pendant la pyrolise des hydrocarbures. Première partie : vapocraquage

    Directory of Open Access Journals (Sweden)

    Weill J.

    2006-11-01

    Full Text Available Thermal cracking is always accompanied by coke formation, which becomes deposited on the wall and limits heat transfers in the reactor while increasing pressure drops and possibly even plugging up the reactor. This review article covers undesirable coking operations in steam craking reactors. These coking reactions may take place in the gas phase and/or on the surface of the reactor, with coke being produced during pyrolysis by a complex mechanism that breaks down into a catalytic sequence and a noncatalytic sequence. After a brief description of different experimental set-ups used to measure the coke deposition, on the basis of research described in the literature, the different factors and their importance for coke formation are listed. In particular, we describe the effects of surface properties of stainless-steel and quartz reactors as well as the influence of the cracked feedstock, of temperature, of dilution, of residence time and of the conversion on coke deposition. Some findings about the morphology of coke are described and linked to formation mechanisms. To illustrate this review, some particularly interesting research is referred to concerning models developed to assess coke formation during propane steam cracking. Le craquage thermique est toujours accompagné de la formation de coke qui, en se déposant à la paroi, limite les transferts de chaleur au réacteur, augmente les pertes de charges et même peut boucher celui-ci. Cet article fait le point sur les réactions indésirables de cokage dans les réacteurs de vapocraquage. Ces réactions de cokage peuvent avoir lieu en phase gazeuse et/ou sur la surface du réacteur, le coke étant produit pendant la pyrolyse par un mécanisme complexe qui se décompose en une séquence catalytique et une séquence non catalytique. Après une brève présentation des différents montages expérimentaux utilisés pour mesurer le dépôt de coke, il est mentionné, à partir de travaux de la

  8. INTEGRATED GEOLOGIC-ENGINEERING MODEL FOR REEF AND CARBONATE SHOAL RESERVOIRS ASSOCIATED WITH PALEOHIGHS: UPPER JURASSIC SMACKOVER FORMATION, NORTHEASTERN GULF OF MEXICO

    Energy Technology Data Exchange (ETDEWEB)

    Ernest A. Mancini

    2002-09-25

    The University of Alabama in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company are undertaking an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling which utilizes geologic reservoir characterization and modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary objective of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. The principal research effort for Year 2 of the project has been reservoir characterization, 3-D modeling and technology transfer. This effort has included six tasks: (1) the study of rockfluid interactions, (2) petrophysical and engineering characterization, (3) data integration, (4) 3-D geologic modeling, (5) 3-D reservoir simulation and (6) technology transfer. This work was scheduled for completion in Year 2. Overall, the project work is on schedule. Geoscientific reservoir characterization is essentially completed. The architecture, porosity types and heterogeneity of the reef and shoal reservoirs at Appleton and Vocation Fields have been characterized using geological and geophysical data. The study of rock-fluid interactions is near completion. Observations regarding the diagenetic processes influencing pore system development and

  9. A Comparison between Model Base Hardconstrain, Bandlimited, and Sparse-Spike Seismic Inversion: New Insights for CBM Reservoir Modelling on Muara Enim Formation, South Sumatra

    Science.gov (United States)

    Mohamad Noor, Faris; Adipta, Agra

    2018-03-01

    Coal Bed Methane (CBM) as a newly developed resource in Indonesia is one of the alternatives to relieve Indonesia’s dependencies on conventional energies. Coal resource of Muara Enim Formation is known as one of the prolific reservoirs in South Sumatra Basin. Seismic inversion and well analysis are done to determine the coal seam characteristics of Muara Enim Formation. This research uses three inversion methods, which are: model base hard- constrain, bandlimited, and sparse-spike inversion. Each type of seismic inversion has its own advantages to display the coal seam and its characteristic. Interpretation result from the analysis data shows that the Muara Enim coal seam has 20 (API) gamma ray value, 1 (gr/cc) – 1.4 (gr/cc) from density log, and low AI cutoff value range between 5000-6400 (m/s)*(g/cc). The distribution of coal seam is laterally thinning northwest to southeast. Coal seam is seen biasedly on model base hard constraint inversion and discontinued on band-limited inversion which isn’t similar to the geological model. The appropriate AI inversion is sparse spike inversion which has 0.884757 value from cross plot inversion as the best correlation value among the chosen inversion methods. Sparse Spike inversion its self-has high amplitude as a proper tool to identify coal seam continuity which commonly appears as a thin layer. Cross-sectional sparse spike inversion shows that there are possible new boreholes in CDP 3662-3722, CDP 3586-3622, and CDP 4004-4148 which is seen in seismic data as a thick coal seam.

  10. Reservoir resistivity characterization incorporating flow dynamics

    KAUST Repository

    Arango, Santiago; Sun, Shuyu; Hoteit, Ibrahim; Katterbauer, Klemens

    2016-01-01

    Systems and methods for reservoir resistivity characterization are provided, in various aspects, an integrated framework for the estimation of Archie's parameters for a strongly heterogeneous reservoir utilizing the dynamics of the reservoir are provided. The framework can encompass a Bayesian estimation/inversion method for estimating the reservoir parameters, integrating production and time lapse formation conductivity data to achieve a better understanding of the subsurface rock conductivity properties and hence improve water saturation imaging.

  11. Reservoir resistivity characterization incorporating flow dynamics

    KAUST Repository

    Arango, Santiago

    2016-04-07

    Systems and methods for reservoir resistivity characterization are provided, in various aspects, an integrated framework for the estimation of Archie\\'s parameters for a strongly heterogeneous reservoir utilizing the dynamics of the reservoir are provided. The framework can encompass a Bayesian estimation/inversion method for estimating the reservoir parameters, integrating production and time lapse formation conductivity data to achieve a better understanding of the subsurface rock conductivity properties and hence improve water saturation imaging.

  12. INTEGRATED GEOLOGIC-ENGINEERING MODEL FOR REEF AND CARBONATE SHOAL RESERVOIRS ASSOCIATED WITH PALEOHIGHS: UPPER JURASSIC SMACKOVER FORMATION, NORTHEASTERN GULF OF MEXICO

    Energy Technology Data Exchange (ETDEWEB)

    Ernest A. Mancini

    2001-09-14

    The University of Alabama in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company are undertaking an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling which utilizes geologic reservoir characterization and modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary objective of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. The principal research effort for Year 1 of the project has been reservoir description and characterization. This effort has included four tasks: (1) geoscientific reservoir characterization, (2) the study of rock-fluid interactions, (3) petrophysical and engineering characterization and (4) data integration. This work was scheduled for completion in Year 1. Overall, the project work is on schedule. Geoscientific reservoir characterization is essentially completed. The architecture, porosity types and heterogeneity of the reef and shoal reservoirs at Appleton and Vocation Fields have been characterized using geological and geophysical data. The study of rock-fluid interactions has been initiated. Observations regarding the diagenetic processes influencing pore system development and heterogeneity in these reef and shoal reservoirs have been

  13. On the origin of calcite-cemented sandstones in the clearwater formation oil-sands, Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Colquhoun, I.M.

    1999-01-01

    This thesis examined the formation of calcite-cemented sandstones in the Clearwater Formation within the Cold Lake and southern Primrose areas of the Alberta oil sands. Three stages of diagenesis have been recognized, both in the calcite-cemented sandstones and reservoir sands. Diagenesis of the Clearwater Formation in the Cold Lake and southern Primrose areas ended once the reservoir filled with hydrocarbons, but in the Cold Lake area, diagenesis of water-saturated sands likely continued after hydrocarbon emplacement. The reservoir sands in the formation contain a diverse clay mineral assemblage. In general, 0.7 nm clays dominate the diagenetic clay mineralogy of the Clearwater sands. Reservoir sands that contain large amounts of detrital clays and early diagenetic, grain-coating chlorite/smectite have significantly reduced bitumen-saturation. The presence of detrital and diagenetic smectitic clays complicates the removal of bitumen from the Clearwater formation using cyclic steam stimulation techniques because they swell during steam stimulation and reduce porosity and permeability of reservoir sands. Reservoir sands that contain kaolinite, feldspar and calcite react to form smectitic clays, which swell upon cyclic steam stimulation and further reduce porosity and permeability of reservoir sands. However, in the Cold Lake and Primrose areas, the dominant clay mineral is berthierine, which is associated with high calcite, which help to preserve porosity, permeability and bitumen saturation. The porous nature of bitumen-saturated, calcite-cemented sandstones that are laterally extensive could possibly provide a preferential path for steam to initiate calcite dissolution and produce significant concentrations of dissolved carbon dioxide in injected fluids. It was noted that this may then precipitate as carbonate scale within the reservoir and could cause formation damage or affect production equipment. 207 refs., 9 tabs., 58 figs., 3 appendices.

  14. Process for desulfurizing hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    1937-04-12

    A process is described for the desulfurization of a mixture of hydrocarbons, and in particular hydrocarbons containing less than 7 atoms of carbon and sulfur compounds of the type of sulfur carbonyl, characterized by the fact that the mixture, preferably in the liquid phase, is brought in contact with a solution of caustic alkali, essentially anhydrous or preferably with a solution of alkali hydroxide in an organic hydroxy nonacid solvent, for example, an alcohol, or with an alkaline alcoholate, under conditions suitable to the formation of hydrogen sulfide which produces a hydrocarbon mixture free from sulfur compounds of the sulfur carbonyl type but containing hydrogen sulfide, and that it is treated, following mixing, having beem submitted to the first treatment, by means of aqueous alkaline hydroxide to eliminate the hydrogen sulfide.

  15. Electrical resistivity and induced polarization tomography in identifying the plume of chlorinated hydrocarbons in sedimentary formation: a case study in Rho (Milan - Italy).

    Science.gov (United States)

    Cardarelli, Ettore; Di Filippo, Gerardina

    2009-09-01

    Resistivity and induced polarization surveying were originally developed for mineral exploration but are now finding new applications in the field of environmental and engineering geophysics. The present article reports the results of a geophysical survey performed with the aim of identifying a plume of chlorinated hydrocarbons in sedimentary formations of the Pandania plain. The tested site is characterized by three sand and gravel aquifers containing a quantity of clay particles which influence the overall bulk resistivity and chargeability. According to data obtained using shallow boreholes, mainly dense non-aqueous phase liquids were found as contaminants in the first and second aquifer. The aforementioned geo-electrical methods were applied in both two- and three-dimensional approaches. Steel and copper electrodes were used in the process of field data acquisition and the results of the survey were compared. The geophysical survey revealed some anomalies that could be explained by the presence of dense non-aqueous phase liquids in the soil medium. The concept of normalized chargeability facilitates the interpretation of detected induced polarization anomalies. The shape of the plume was inferred from maps of resistivity and chargeability to a depth of 25 m below the surface of the ground.

  16. Analysis of real-time reservoir monitoring : reservoirs, strategies, & modeling.

    Energy Technology Data Exchange (ETDEWEB)

    Mani, Seethambal S.; van Bloemen Waanders, Bart Gustaaf; Cooper, Scott Patrick; Jakaboski, Blake Elaine; Normann, Randy Allen; Jennings, Jim (University of Texas at Austin, Austin, TX); Gilbert, Bob (University of Texas at Austin, Austin, TX); Lake, Larry W. (University of Texas at Austin, Austin, TX); Weiss, Chester Joseph; Lorenz, John Clay; Elbring, Gregory Jay; Wheeler, Mary Fanett (University of Texas at Austin, Austin, TX); Thomas, Sunil G. (University of Texas at Austin, Austin, TX); Rightley, Michael J.; Rodriguez, Adolfo (University of Texas at Austin, Austin, TX); Klie, Hector (University of Texas at Austin, Austin, TX); Banchs, Rafael (University of Texas at Austin, Austin, TX); Nunez, Emilio J. (University of Texas at Austin, Austin, TX); Jablonowski, Chris (University of Texas at Austin, Austin, TX)

    2006-11-01

    The project objective was to detail better ways to assess and exploit intelligent oil and gas field information through improved modeling, sensor technology, and process control to increase ultimate recovery of domestic hydrocarbons. To meet this objective we investigated the use of permanent downhole sensors systems (Smart Wells) whose data is fed real-time into computational reservoir models that are integrated with optimized production control systems. The project utilized a three-pronged approach (1) a value of information analysis to address the economic advantages, (2) reservoir simulation modeling and control optimization to prove the capability, and (3) evaluation of new generation sensor packaging to survive the borehole environment for long periods of time. The Value of Information (VOI) decision tree method was developed and used to assess the economic advantage of using the proposed technology; the VOI demonstrated the increased subsurface resolution through additional sensor data. Our findings show that the VOI studies are a practical means of ascertaining the value associated with a technology, in this case application of sensors to production. The procedure acknowledges the uncertainty in predictions but nevertheless assigns monetary value to the predictions. The best aspect of the procedure is that it builds consensus within interdisciplinary teams The reservoir simulation and modeling aspect of the project was developed to show the capability of exploiting sensor information both for reservoir characterization and to optimize control of the production system. Our findings indicate history matching is improved as more information is added to the objective function, clearly indicating that sensor information can help in reducing the uncertainty associated with reservoir characterization. Additional findings and approaches used are described in detail within the report. The next generation sensors aspect of the project evaluated sensors and packaging

  17. Radiolysis of hydrocarbons in liquid phase (Modern state of problem)

    International Nuclear Information System (INIS)

    Saraeva, V.V.

    1986-01-01

    Problems of ionizing radiation effect on hydrocarbons and hydrocarbon systems in a liquid phase are considered. Modern representations on the mechanism of hydrocarbon radiolysis are presented. Electron moderation and ion-electron pair formation, behaviour of charged particles, excited states, radical formation and their reactions are discussed. Behaviour of certain hydrocarbon classes: alkanes, cyclic hydrocarbons, olefines, aromatic hydrocarbons as well as different hydrocarbon mixtures is considered in detail. Radiation-chemical changes in organic coolants and ways of increasing radiation resistance are considered. Polyphenyl compounds are noted to be most perspective here

  18. Computerized X-ray Microtomography Observations and Fluid Flow Measurements of the Effect of Effective Stress on Fractured Reservoir Seal Shale

    Science.gov (United States)

    Welch, N.; Crawshaw, J.; Boek, E.

    2014-12-01

    The successful storage of carbon dioxide in geologic formations requires an in-depth understanding of all reservoir characteristics and morphologies. An intact and substantial seal formation above a storage reservoir is required for a significant portion of the initial sealing mechanisms believed to occur during carbon dioxide storage operations. Shales are a common seal formation rock types found above numerous hydrocarbon reservoirs, as well as potential saline aquifer storage locations. Shales commonly have very low permeability, however they also have the tendency to be quite fissile, and the formation of fractures within these seals can have a significant detrimental effect on the sealing potential of a reservoir and amount to large areas of high permeability and low capillary pressures compared to the surrounding intact rock. Fractured shales also have an increased current interest due to the increasing development of shale gas reservoirs using hydraulic fracturing techniques. This work shows the observed changes that occur within fractured pieces of reservoir seal shale samples, along with quarry analogues, using an in-situ micro-CT fluid flow imaging apparatus with a Hassler type core holder. Changes within the preferential flow path under different stress regimes as well as physical changes to the fracture geometry are reported. Lattice Boltzmann flow simulations were then performed on the extracted flow paths and compared to experiment permeability measurements. The preferential flow path of carbon dioxide through the fracture network is also observed and compared to the results two-phase Lattice Boltzmann fluid flow simulations.

  19. Adhesion, biofilm formation, cell surface hydrophobicity, and antifungal planktonic susceptibility: relationship among Candida spp.

    OpenAIRE

    Silva-Dias, Ana; Miranda, Isabel M.; Branco, Joana; Monteiro-Soares, Matilde; Pina-Vaz, Cid?lia; Rodrigues, Ac?cio G.

    2015-01-01

    We have performed the characterization of the adhesion profile, biofilm formation, cell surface hydrophobicity (CSH) and antifungal susceptibility of 184 Candida clinical isolates obtained from different human reservoirs. Adhesion was quantified using a flow cytometric assay and biofilm formation was evaluated using two methodologies: XTT and crystal violet assay. CSH was quantified with the microbial adhesion to hydrocarbons test while planktonic susceptibility was assessed accordingly the C...

  20. Fault features and enrichment laws of narrow-channel distal tight sandstone gas reservoirs: A case study of the Jurassic Shaximiao Fm gas reservoir in the Zhongjiang Gas Field, Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Zhongping Li

    2016-11-01

    Full Text Available The Jurassic Shaximiao Fm gas reservoir in the Zhongjiang Gas Field, Sichuan Basin, is the main base of Sinopec Southwest Oil & Gas Company for gas reserves and production increase during the 12th Five-Year Plan. However, its natural gas exploration and development process was restricted severely, since the exploration wells cannot be deployed effectively in this area based on the previous gas accumulation and enrichment pattern of “hydrocarbon source fault + channel sand body + local structure”. In this paper, the regional fault features and the gas accumulation and enrichment laws were discussed by analyzing the factors like fault evolution, fault elements, fault-sand body configuration (the configuration relationship between hydrocarbon source faults and channel sand bodies, trap types, and reservoir anatomy. It is concluded that the accumulation and enrichment of the Shaximiao Fm gas reservoir in this area is controlled by three factors, i.e., hydrocarbon source, sedimentary facies and structural position. It follows the accumulation laws of source controlling region, facies controlling zone and position controlling reservoir, which means deep source and shallow accumulation, fault-sand body conductivity, multiphase channel, differential accumulation, adjusted enrichment and gas enrichment at sweet spots. A good configuration relationship between hydrocarbon source faults and channel sand bodies is the basic condition for the formation of gas reservoirs. Natural gas accumulated preferentially in the structures or positions with good fault-sand body configuration. Gas reservoirs can also be formed in the monoclinal structures which were formed after the late structural adjustment. In the zones supported by multiple faults or near the crush zones, no gas accumulation occurs, but water is dominantly produced. The gas-bearing potential is low in the area with undeveloped faults or being 30 km away from the hydrocarbon source faults. So

  1. Analysis of structural heterogeneities on drilled cores: a reservoir modeling oriented methodology; Analyse des heterogeneites structurales sur carottes: une methodologie axee vers la modelisation des reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Cortes, P.; Petit, J.P. [Montpellier-2 Univ., Lab. de Geophysique, Tectonique et Sedimentologie, UMR CNRS 5573, 34 (France); Guy, L. [ELF Aquitaine Production, 64 - Pau (France); Thiry-Bastien, Ph. [Lyon-1 Univ., 69 (France)

    1999-07-01

    The characterization of structural heterogeneities of reservoirs is of prime importance for hydrocarbons recovery. A methodology is presented which allows to compare the dynamic behaviour of fractured reservoirs and the observation of microstructures on drilled cores or surface reservoir analogues. (J.S.)

  2. Sedimentary features and exploration targets of Middle Permian reservoirs in the SW Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Guoming Xu

    2015-11-01

    Full Text Available The exploration direction and targets for the large-scale Middle Permian gas reservoirs in the Sichuan Basin are hot spots and challenges in current exploration researches. The exploration successes of large gas field of Cambrian Longwangmiao Formation in Gaoshiti-Moxi region, Central Sichuan Basin, indicated that prospective sedimentary facies belt was the basis for the formation of large gas fields. In this paper, based on seismic data, outcrop data and drilling data, the tectonic framework and sedimentary features of the Middle Permian in the SW Sichuan Basin were comprehensively studied. The following conclusions were reached from the perspective of sedimentary facies control: (1 during the Middle Permian, this region was in shallow water gentle slope belts with high energy, where thick reef flat facies were deposited; (2 the basement was uplifted during Middle Permian, resulting in the unconformity weathering crust at the top of Maokou Formation due to erosion; the SW Sichuan Basin was located in the karst slope belt, where epigenic karstification was intense; and (3 reef flat deposits superimposed by karst weathering crust was favorable for the formation of large-scale reef flat karst reservoirs. Based on the combination of the resources conditions and hydrocarbon accumulation conditions in this region, it was pointed out that the Middle Permian has great potential of large-scale reef flat karst gas reservoir due to its advantageous geological conditions; the Middle Permian traps with good hydrocarbon accumulation conditions were developed in the Longmen Mountain front closed structural belt in the SW Sichuan Basin and Western Sichuan Basin depression slope belt, which are favorable targets for large-scale reef flat karst reservoirs.

  3. Review of current results in computational studies of hydrocarbon phase and transport properties in nanoporous structures

    Science.gov (United States)

    Stroev, N.; Myasnikov, A.

    2017-12-01

    This article provides a general overview of the main simulation results on the behavior of gas/liquids under confinement conditions, namely hydrocarbons in shale formations, and current understanding of such phenomena. In addition to the key effects, which different research groups obtained and which have to be taken into account during the creation of reservoir simulation software, a list of methods is briefly covered. Comprehensive understanding of both fluid phase equilibrium and transport properties in nanoscale structures is of great importance for many scientific and technical disciplines, especially for petroleum engineering considering the hydrocarbon behavior in complex shale formations, the development of which increases with time. Recent estimations show that a significant amount of resources are trapped inside organic matter and clays, which has extremely low permeability and yet great economic potential. The issue is not only of practical importance, as the existing conventional approaches by definition are unable to capture complicated physics phenomena for effective results, but it is also of fundamental value. The research of the processes connected with such deposits is necessary for both evaluations of petroleum reservoir deposits and hydrodynamic simulators. That is why the review is divided into two major parts—equilibrium states of hydrocarbons and their transport properties in highly confined conditions.

  4. Sweet spot identification in underexplored shales using multidisciplinary reservoir characterization and key performance indicators : Example of the Posidonia Shale Formation in the Netherlands

    NARCIS (Netherlands)

    Ter Heege, Jan; Zijp, Mart; Nelskamp, Susanne; Douma, Lisanne; Verreussel, Roel; Ten Veen, Johan; de Bruin, Geert; Peters, Rene

    2015-01-01

    Sweet spot identification in underexplored shale gas basins needs to be based on a limited amount of data on shale properties in combination with upfront geological characterization and modelling, because actual production data is usually absent. Multidisciplinary reservoir characterization and

  5. Sweet spot identification in underexplored shales using multidisciplinary reservoir characterization and key performance indicators: example of the Posidonia Shale Formation in the Netherlands

    NARCIS (Netherlands)

    Heege, J.H. ter; Zijp, M.H.A.A.; Nelskamp, S.; Douma, L.A.N.R.; Verreussel, R.M.C.H.; Veen, J.H. ten; Bruin, G. de; Peters, M.C.A.M.

    2015-01-01

    Sweet spot identification in underexplored shale gas basins needs to be based on a limited amount of data on shale properties in combination with upfront geological characterization and modelling, because actual production data is usually absent. Multidisciplinary reservoir characterization and

  6. INTEGRATED GEOLOGIC-ENGINEERING MODEL FOR REEF AND CARBONATE SHOAL RESERVOIRS ASSOCIATED WITH PALEOHIGHS: UPPER JURASSIC SMACKOVER FORMATION, NORTHEASTERN GULF OF MEXICO

    Energy Technology Data Exchange (ETDEWEB)

    Ernest A. Mancini

    2003-09-25

    The University of Alabama in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company are undertaking an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling that utilizes geologic reservoir characterization and modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary objective of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. The principal research effort for Year 3 of the project has been reservoir characterization, 3-D modeling, testing of the geologic-engineering model, and technology transfer. This effort has included six tasks: (1) the study of seismic attributes, (2) petrophysical characterization, (3) data integration, (4) the building of the geologic-engineering model, (5) the testing of the geologic-engineering model and (6) technology transfer. This work was scheduled for completion in Year 3. Progress on the project is as follows: geoscientific reservoir characterization is completed. The architecture, porosity types and heterogeneity of the reef and shoal reservoirs at Appleton and Vocation Fields have been characterized using geological and geophysical data. The study of rock-fluid interactions has been completed. Observations regarding the diagenetic

  7. Aryl hydrocarbon receptors in urogenital sinus mesenchyme mediate the inhibition of prostatic epithelial bud formation by 2,3,7,8-tetrachlorodibenzo-p-dioxin

    International Nuclear Information System (INIS)

    Ko, Kinarm; Moore, Robert W.; Peterson, Richard E.

    2004-01-01

    In utero exposure of male C57BL/6 mice to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) prevents prostatic epithelial buds from forming in the ventral region of the urogenital sinus (UGS) and reduces the number of buds that form in the dorsolateral region. This inhibition of budding is aryl hydrocarbon receptor (AHR) dependent and appears to be the primary cause of lobe-specific prostate abnormalities in TCDD-exposed mice. TCDD can inhibit prostatic epithelial bud formation by acting directly on the UGS in vitro, but whether it does so via AHR in UGS mesenchyme, epithelium, or both was unknown. To address this issue, UGS mesenchyme and epithelium from gestation day (GD) 15 wild-type C57BL/6J male mice were isolated, recombined, and cultured in vitro for 5 days with 10 -8 M 5α-dihydrotestosterone (DHT) and either 10 -9 M TCDD or vehicle. Prostatic epithelial buds were viewed by light microscopy after removal of mesenchyme. Effects depended greatly on which portions of the mesenchyme were used: TCDD had little if any effect when whole UGS epithelium (UGE) was recombined with ventral plus dorsolateral mesenchyme, tended to reduce bud numbers in recombinants made with UGE and dorsolateral mesenchyme, and severely reduced bud numbers in recombinants made with UGE and ventral mesenchyme (VM). [VM + UGE] recombinants prepared from wild-type and AHR knockout (Ahr -/- ) mice were then cultured with DHT to determine the site of action of TCDD. AHR null mutation alone had no effect on budding. TCDD severely inhibited prostatic epithelial bud formation in recombinants that contained mesenchymal AHR, whereas bud formation was not inhibited by TCDD in recombinants lacking mesenchymal AHR, regardless of epithelial AHR status. These results demonstrate that UGS mesenchyme and not UGS epithelium is the site of action of TCDD. Therefore, the initial events responsible for abnormal UGS (and ultimately prostate) development occur within the UGS mesenchyme, and changes in gene expression

  8. Hydrocarbon Migration from the Micro to Macro Scale in the Gulf of Mexico

    Science.gov (United States)

    Johansen, C.; Marty, E.; Silva, M.; Natter, M.; Shedd, W. W.; Hill, J. C.; Viso, R. F.; Lobodin, V.; Krajewski, L.; Abrams, M.; MacDonald, I. R.

    2016-02-01

    In the Northern Gulf of Mexico (GoM) at GC600, ECOGIG has been investigating the processes involved in hydrocarbon migration from deep reservoirs to sea surface. We studied two individual vents, Birthday Candles (BC) and Mega-Plume (MP), which are separated by 1km on a salt supported ridge trending from NW-SE. Seismic data depicts two faults, also separated by 1km, feeding into the surface gas hydrate region. BC and MP comprise the range between oily, mixed, and gaseous-type vents. In both cases bubbles are observed escaping from gas hydrate out crops at the sea floor and supporting chemosynthetic communities. Fluid flow is indicated by features on the sea floor such as hydrate mounds, authigenic carbonates, brine pools, mud volcanoes, and biology. We propose a model to describe the upward flow of hydrocarbons from three vertical scales, each dominated by different factors: 1) macro (capillary failure in overlying cap rocks causing reservoir leakage), 2) meso (buoyancy driven fault migration), and 3) micro (hydrate formation and chemosynthetic activity). At the macro scale we use high reflectivity in seismic data and sediment pore throat radii to determine the formation of fractures in leaky reservoirs. Once oil and gas leave the reservoir through fractures in the cap rock they migrate in separate phases. At the meso scale we use seismic data to locate faults and salt diapirs that form conduits for buoyant hydrocarbons follow. This connects the path to the micro scale where we used video data to observe bubble release from individual vents for extended periods of time (3h-26d), and developed an image processing program to quantify bubble release rates. At mixed vents gaseous bubbles are observed escaping hydrate outcrops with a coating of oil varying in thickness. Bubble oil and gas ratios are estimated using average bubble size and release rates. The relative vent age can be described by carbonate hard ground cover, biological activity, and hydrate mound formation

  9. Purifying hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Demoulins, H D; Garner, F H

    1923-02-07

    Hydrocarbon distillates, including natural gases and vapors produced by cracking hydrocarbon oils, are desulfurized etc. by treating the vapor with an aqueous alkaline solution of an oxidizing agent. The hydrocarbons may be previously purified by sulfuric acid. In examples aqueous solutions of sodium or calcium hydrochlorite containing 1.5 to 5.0 grams per liter of available chlorine and sufficient alkali to give an excess of 0.1 percent in the spent reagent are preheated to the temperature of the vapor, and either sprayed or atomized into the vapors near the outlet of the dephlegmator or fractionating tower, or passed in countercurrent to the vapors through one or a series of scrubbers.

  10. Multiple intersecting cohesive discontinuities in 3D reservoir geomechanics

    OpenAIRE

    Das, K. C.; Sandha, S.S.; Carol, Ignacio; Vargas, P.E.; Gonzalez, Nubia Aurora; Rodrigues, E.; Segura Segarra, José María; Lakshmikantha, Ramasesha Mookanahallipatna; Mello,, U.

    2013-01-01

    Reservoir Geomechanics is playing an increasingly important role in developing and producing hydrocarbon reserves. One of the main challenges in reservoir modeling is accurate and efficient simulation of arbitrary intersecting faults. In this paper, we propose a new formulation to model multiple intersecting cohesive discontinuities (faults) in reservoirs using the XFEM framework. This formulation involves construction of enrichment functions and computation of stiffness sub-matrices for bulk...

  11. Subduction zone earthquake probably triggered submarine hydrocarbon seepage offshore Pakistan

    Science.gov (United States)

    Fischer, David; José M., Mogollón; Michael, Strasser; Thomas, Pape; Gerhard, Bohrmann; Noemi, Fekete; Volkhard, Spiess; Sabine, Kasten

    2014-05-01

    Seepage of methane-dominated hydrocarbons is heterogeneous in space and time, and trigger mechanisms of episodic seep events are not well constrained. It is generally found that free hydrocarbon gas entering the local gas hydrate stability field in marine sediments is sequestered in gas hydrates. In this manner, gas hydrates can act as a buffer for carbon transport from the sediment into the ocean. However, the efficiency of gas hydrate-bearing sediments for retaining hydrocarbons may be corrupted: Hypothesized mechanisms include critical gas/fluid pressures beneath gas hydrate-bearing sediments, implying that these are susceptible to mechanical failure and subsequent gas release. Although gas hydrates often occur in seismically active regions, e.g., subduction zones, the role of earthquakes as potential triggers of hydrocarbon transport through gas hydrate-bearing sediments has hardly been explored. Based on a recent publication (Fischer et al., 2013), we present geochemical and transport/reaction-modelling data suggesting a substantial increase in upward gas flux and hydrocarbon emission into the water column following a major earthquake that occurred near the study sites in 1945. Calculating the formation time of authigenic barite enrichments identified in two sediment cores obtained from an anticlinal structure called "Nascent Ridge", we find they formed 38-91 years before sampling, which corresponds well to the time elapsed since the earthquake (62 years). Furthermore, applying a numerical model, we show that the local sulfate/methane transition zone shifted upward by several meters due to the increased methane flux and simulated sulfate profiles very closely match measured ones in a comparable time frame of 50-70 years. We thus propose a causal relation between the earthquake and the amplified gas flux and present reflection seismic data supporting our hypothesis that co-seismic ground shaking induced mechanical fracturing of gas hydrate-bearing sediments

  12. Formation of the oil composition of the Yu0 Bazhenov formation, Salym oil field

    Directory of Open Access Journals (Sweden)

    E.V. Soboleva

    2017-05-01

    Full Text Available The Bazhenov horizon of Western Siberia has been studied in considerable detail from different perspectives and different methods, a large number of studies have been devoted to a wide range of issues related to the lithological composition of rocks, their reservoir properties, the study of organic matter, properties and composition of oil at various analytical levels, and many others. This work is devoted to restoring conditions for the formation of oil properties and composition of the Yu0 Salym oil field, based mainly on the geochemical aspects of the study of oil changes both in area and in the section within the productive layer of Salym structure, using some geological data, such as structural plan for the reflecting horizon B (the roof of the Bazhenov formation, having a complex configuration, reservoir temperatures and pressure, well flow rates, and others. There is no single reservoir at the Salym field in the Yu0 formation. For the conclusions of the geological-geochemical interpretation, a sampling of 61 samples of oil from exploration, appraisal and production wells of the initial stages of production was used, since in the future when oil is extracted, the ecology in the deposits changes, and 21 samples of oil from other fields in the West Siberian oil and gas basin. Conventionally, three types of oils are distinguished, differing in their physicochemical parameters, group hydrocarbon and molecular composition. It was suggested that in addition to the own organic matter of the Bazhenov formation, hydrocarbon fluids of the Vasyugan, Tyumen formations and possibly Paleozoic rocks were involved in the formation of the oil composition. The flow of light liquid hydrocarbons and gases occurred along the zones of faults of different genesis and duration of existence.

  13. Oxycline formation induced by Fe(II) oxidation in a water reservoir affected by acid mine drainage modeled using a 2D hydrodynamic and water quality model - CE-QUAL-W2.

    Science.gov (United States)

    Torres, Ester; Galván, Laura; Cánovas, Carlos Ruiz; Soria-Píriz, Sara; Arbat-Bofill, Marina; Nardi, Albert; Papaspyrou, Sokratis; Ayora, Carlos

    2016-08-15

    The Sancho reservoir is an acid mine drainage (AMD)-contaminated reservoir located in the Huelva province (SW Spain) with a pH close to 3.5. The water is only used for a refrigeration system of a paper mill. The Sancho reservoir is holomictic with one mixing period per year in the winter. During this mixing period, oxygenated water reaches the sediment, while under stratified conditions (the rest of the year) hypoxic conditions develop at the hypolimnion. A CE-QUAL-W2 model was calibrated for the Sancho Reservoir to predict the thermocline and oxycline formation, as well as the salinity, ammonium, nitrate, phosphorous, algal, chlorophyll-a, and iron concentrations. The version 3.7 of the model does not allow simulating the oxidation of Fe(II) in the water column, which limits the oxygen consumption of the organic matter oxidation. However, to evaluate the impact of Fe(II) oxidation on the oxycline formation, Fe(II) has been introduced into the model based on its relationship with labile dissolved organic matter (LDOM). The results show that Fe oxidation is the main factor responsible for the oxygen depletion in the hypolimnion of the Sancho Reservoir. The limiting factors for green algal growth have also been studied. The model predicted that ammonium, nitrate, and phosphate were not limiting factors for green algal growth. Light appeared to be one of the limiting factors for algal growth, while chlorophyll-a and dissolved oxygen concentrations could not be fully described. We hypothesize that dissolved CO2 is one of the limiting nutrients due to losses by the high acidity of the water column. The sensitivity tests carried out support this hypothesis. Two different remediation scenarios have been tested with the calibrated model: 1) an AMD passive treatment plant installed at the river, which removes completely Fe, and 2) different depth water extractions. If no Fe was introduced into the reservoir, water quality would significantly improve in only two years

  14. Nitro-polycyclic aromatic hydrocarbons - gas-particle partitioning, mass size distribution, and formation along transport in marine and continental background air

    Science.gov (United States)

    Lammel, Gerhard; Mulder, Marie D.; Shahpoury, Pourya; Kukučka, Petr; Lišková, Hana; Přibylová, Petra; Prokeš, Roman; Wotawa, Gerhard

    2017-05-01

    Nitro-polycyclic aromatic hydrocarbons (NPAH) are ubiquitous in polluted air but little is known about their abundance in background air. NPAHs were studied at one marine and one continental background site, i.e. a coastal site in the southern Aegean Sea (summer 2012) and a site in the central Great Hungarian Plain (summer 2013), together with the parent compounds, PAHs. A Lagrangian particle dispersion model was used to track air mass history. Based on Lagrangian particle statistics, the urban influence on samples was quantified for the first time as a fractional dose to which the collected volume of air had been exposed. At the remote marine site, the 3-4-ring NPAH (sum of 11 targeted species) concentration was 23.7 pg m-3 while the concentration of 4-ring PAHs (6 species) was 426 pg m-3. The most abundant NPAHs were 2-nitrofluoranthene (2NFLT) and 3-nitrophenanthrene. Urban fractional doses in the range of air are the lowest ever reported and remarkably lower, by more than 1 order of magnitude, than 1 decade before. Day-night variation of NPAHs at the continental site reflected shorter lifetime during the day, possibly because of photolysis of some NPAHs. The yields of formation of 2NFLT and 2-nitropyrene (2NPYR) in marine air seem to be close to the yields for OH-initiated photochemistry observed in laboratory experiments under high NOx conditions. Good agreement is found for the prediction of NPAH gas-particle partitioning using a multi-phase poly-parameter linear free-energy relationship. Sorption to soot is found to be less significant for gas-particle partitioning of NPAHs than for PAHs. The NPAH levels determined in the south-eastern outflow of Europe confirm intercontinental transport potential.

  15. Mechanistic Processes Controlling Gas Sorption in Shale Reservoirs

    Science.gov (United States)

    Schaef, T.; Loring, J.; Ilton, E. S.; Davidson, C. L.; Owen, T.; Hoyt, D.; Glezakou, V. A.; McGrail, B. P.; Thompson, C.

    2014-12-01

    Utilization of CO2 to stimulate natural gas production in previously fractured shale-dominated reservoirs where CO2 remains in place for long-term storage may be an attractive new strategy for reducing the cost of managing anthropogenic CO2. A preliminary analysis of capacities and potential revenues in US shale plays suggests nearly 390 tcf in additional gas recovery may be possible via CO2 driven enhanced gas recovery. However, reservoir transmissivity properties, optimum gas recovery rates, and ultimate fate of CO2 vary among reservoirs, potentially increasing operational costs and environmental risks. In this paper, we identify key mechanisms controlling the sorption of CH4 and CO2 onto phyllosilicates and processes occurring in mixed gas systems that have the potential of impacting fluid transfer and CO2 storage in shale dominated formations. Through a unique set of in situ experimental techniques coupled with molecular-level simulations, we identify structural transformations occurring to clay minerals, optimal CO2/CH4 gas exchange conditions, and distinguish between adsorbed and intercalated gases in a mixed gas system. For example, based on in situ measurements with magic angle spinning NMR, intercalation of CO2 within the montmorillonite structure occurs in CH4/CO2 gas mixtures containing low concentrations (hydrocarbon recovery processes.

  16. INTEGRATED GEOLOGIC-ENGINEERING MODEL FOR REEF AND CARBONATE SHOAL RESERVOIRS ASSOCIATED WITH PALEOHIGHS: UPPER JURASSIC SMACKOVER FORMATION, NORTHEASTERN GULF OF MEXICO

    Energy Technology Data Exchange (ETDEWEB)

    Ernest A. Mancini

    2004-02-25

    The University of Alabama, in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company, has undertaken an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling which utilizes geologic reservoir characterization and modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary goal of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. Geoscientific reservoir property, geophysical seismic attribute, petrophysical property, and engineering property characterization has shown that reef (thrombolite) and shoal reservoir lithofacies developed on the flanks of high-relief crystalline basement paleohighs (Vocation Field example) and on the crest and flanks of low-relief crystalline basement paleohighs (Appleton Field example). The reef thrombolite lithofacies have higher reservoir quality than the shoal lithofacies due to overall higher permeabilities and greater interconnectivity. Thrombolite dolostone flow units, which are dominated by dolomite intercrystalline and vuggy pores, are characterized by a pore system comprised of a higher percentage of large-sized pores and larger pore throats. Rock-fluid interactions (diagenesis) studies have shown that although the primary control on

  17. Purifying hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Dunstan, A E

    1918-06-03

    Ligroin, kerosene, and other distillates from petroleum and shale oil, are purified by treatment with a solution of a hypochlorite containing an excess of alkali. The hydrocarbon may be poured into brine, the mixture stirred, and an electric current passed through. Heat may be applied.

  18. Seismic reservoir characterization: how can multicomponent data help?

    International Nuclear Information System (INIS)

    Li, Xiang-Yang; Zhang, Yong-Gang

    2011-01-01

    This paper discusses the concepts of multicomponent seismology and how it can be applied to characterize hydrocarbon reservoirs, illustrated using a 3D three-component real-data example from southwest China. Hydrocarbon reservoirs formed from subtle lithological changes, such as stratigraphic traps, may be delineated from changes in P- and S-wave velocities and impedances, whilst hydrocarbon reservoirs containing aligned fractures are anisotropic. Examination of the resultant split shear waves can give us a better definition of their internal structures. Furthermore, frequency-dependent variations in seismic attributes derived from multicomponent data can provide us with vital information about fluid type and distribution. Current practice and various examples have demonstrated the undoubted potential of multicomponent seismic in reservoir characterization. Despite all this, there are still substantial challenges ahead. In particular, the improvement and interpretation of converted-wave imaging are major hurdles that need to be overcome before multicomponent seismic becomes a mainstream technology

  19. Seismic reservoir characterization: how can multicomponent data help?

    Science.gov (United States)

    Li, Xiang-Yang; Zhang, Yong-Gang

    2011-06-01

    This paper discusses the concepts of multicomponent seismology and how it can be applied to characterize hydrocarbon reservoirs, illustrated using a 3D three-component real-data example from southwest China. Hydrocarbon reservoirs formed from subtle lithological changes, such as stratigraphic traps, may be delineated from changes in P- and S-wave velocities and impedances, whilst hydrocarbon reservoirs containing aligned fractures are anisotropic. Examination of the resultant split shear waves can give us a better definition of their internal structures. Furthermore, frequency-dependent variations in seismic attributes derived from multicomponent data can provide us with vital information about fluid type and distribution. Current practice and various examples have demonstrated the undoubted potential of multicomponent seismic in reservoir characterization. Despite all this, there are still substantial challenges ahead. In particular, the improvement and interpretation of converted-wave imaging are major hurdles that need to be overcome before multicomponent seismic becomes a mainstream technology.

  20. Method of recovering hydrocarbons from oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Walton, D.K.; Slusser, M.S.

    1970-11-24

    A method is described for recovering hydrocarbons from an oil-shale formation by in situ retorting. A well penetrating the formation is heated and gas is injected until a pressure buildup within the well is reached, due to a decrease in the conductivity of naturally occurring fissures within the formation. The well is then vented, in order to produce spalling of the walls. This results in the formation of an enlarged cavity containing rubberized oil shale. A hot gas then is passed through the rubberized oil shale in order to retort hydrocarbons and these hydrocarbons are recovered from the well. (11 claims)

  1. Geochemistry of formation waters from the Wolfcamp and “Cline” shales: Insights into brine origin, reservoir connectivity, and fluid flow in the Permian Basin, USA

    Science.gov (United States)

    Engle, Mark A.; Reyes, Francisco R.; Varonka, Matthew S.; Orem, William H.; Lin, Ma; Ianno, Adam J.; Westphal, Tiffani M.; Xu, Pei; Carroll, Kenneth C.

    2016-01-01

    Despite being one of the most important oil producing provinces in the United States, information on basinal hydrogeology and fluid flow in the Permian Basin of Texas and New Mexico is lacking. The source and geochemistry of brines from the basin were investigated (Ordovician- to Guadalupian-age reservoirs) by combining previously published data from conventional reservoirs with geochemical results for 39 new produced water samples, with a focus on those from shales. Salinity of the Ca–Cl-type brines in the basin generally increases with depth reaching a maximum in Devonian (median = 154 g/L) reservoirs, followed by decreases in salinity in the Silurian (median = 77 g/L) and Ordovician (median = 70 g/L) reservoirs. Isotopic data for B, O, H, and Sr and ion chemistry indicate three major types of water. Lower salinity fluids (100 g/L), isotopically heavy (O and H) water in Leonardian [Permian] to Pennsylvanian reservoirs (2–3.2 km depth) is evaporated, Late Permian seawater. Water from the Permian Wolfcamp and Pennsylvanian “Cline” shales, which are isotopically similar but lower in salinity and enriched in alkalis, appear to have developed their composition due to post-illitization diffusion into the shales. Samples from the “Cline” shale are further enriched with NH4, Br, I and isotopically light B, sourced from the breakdown of marine kerogen in the unit. Lower salinity waters (3 km depth), which plot near the modern local meteoric water line, are distinct from the water in overlying reservoirs. We propose that these deep meteoric waters are part of a newly identified hydrogeologic unit: the Deep Basin Meteoric Aquifer System. Chemical, isotopic, and pressure data suggest that despite over-pressuring in the Wolfcamp shale, there is little potential for vertical fluid migration to the surface environment via natural conduits.

  2. Prospect evaluation of shallow I-35 reservoir of NE Malay Basin offshore, Terengganu, Malaysia

    International Nuclear Information System (INIS)

    Janjua, Osama Akhtar; Wahid, Ali; Salim, Ahmed Mohamed Ahmed; Rahman, M. Nasir B. A.

    2016-01-01

    A potential accumulation of hydrocarbon that describes significant and conceivable drilling target is related to prospect. Possibility of success estimation, assuming discovery of hydrocarbons and the potential recoverable quantities range under a commercial development program are the basis of Prospect evaluation activities. The objective was to find the new shallow prospects in reservoir sandstone of I –Formation in Malay basin. The prospects in the study area are mostly consisting of faulted structures and stratigraphic channels. The methodology follows seismic interpretation and mapping, attribute analysis, evaluation of nearby well data i.e., based on well – log correlation. The petrophysical parameters analogue to nearby wells was used as an input parameter for volumetric assessment. Based on analysis of presence and effectiveness, the prospect has a complete petroleum system. Two wells have been proposed to be drilled near the major fault and stratigraphic channel in I-35 reservoir that is O-1 and O-2 prospects respectively. The probability of geological success of prospect O-1 is at 35% while for O-2 is 24%. Finally, for hydrocarbon in place volumes were calculated which concluded the best estimate volume for oil in O-1 prospect is 4.99 MMSTB and O-2 prospect is 28.70 MMSTB while for gas is 29.27 BSCF and 25.59 BSCF respectively

  3. Prospect evaluation of shallow I-35 reservoir of NE Malay Basin offshore, Terengganu, Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Janjua, Osama Akhtar, E-mail: janjua945@hotmail.com; Wahid, Ali, E-mail: ali.wahid@live.com; Salim, Ahmed Mohamed Ahmed, E-mail: mohamed.salim@petronas.com.my [Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610 Tronoh, Perak (Malaysia); Rahman, M. Nasir B. A., E-mail: nasirr@petronas.com.my [Petroleum Engineering Division, PETRONAS Carigali Sdn Bhd, Kuala Lumpur (Malaysia)

    2016-02-01

    A potential accumulation of hydrocarbon that describes significant and conceivable drilling target is related to prospect. Possibility of success estimation, assuming discovery of hydrocarbons and the potential recoverable quantities range under a commercial development program are the basis of Prospect evaluation activities. The objective was to find the new shallow prospects in reservoir sandstone of I –Formation in Malay basin. The prospects in the study area are mostly consisting of faulted structures and stratigraphic channels. The methodology follows seismic interpretation and mapping, attribute analysis, evaluation of nearby well data i.e., based on well – log correlation. The petrophysical parameters analogue to nearby wells was used as an input parameter for volumetric assessment. Based on analysis of presence and effectiveness, the prospect has a complete petroleum system. Two wells have been proposed to be drilled near the major fault and stratigraphic channel in I-35 reservoir that is O-1 and O-2 prospects respectively. The probability of geological success of prospect O-1 is at 35% while for O-2 is 24%. Finally, for hydrocarbon in place volumes were calculated which concluded the best estimate volume for oil in O-1 prospect is 4.99 MMSTB and O-2 prospect is 28.70 MMSTB while for gas is 29.27 BSCF and 25.59 BSCF respectively.

  4. Measurement of ion species produced due to bombardment of 450 eV N{sub 2}{sup +} ions with hydrocarbons-covered surface of tungsten: Formation of tungsten nitride

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S. [Atomic Physics Laboratory, Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005 (India); Bhatt, P. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Kumar, A. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India); Singh, B.K.; Singh, B.; Prajapati, S. [Atomic Physics Laboratory, Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005 (India); Shanker, R., E-mail: shankerorama@gmail.com [Atomic Physics Laboratory, Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005 (India)

    2016-08-01

    A laboratory experiment has been performed to study the ions that are produced due to collisions of 450 eV N{sub 2}{sup +} ions with a hydrocarbons-covered surface of polycrystalline tungsten at room temperature. Using a TOF mass spectrometry technique, the product ions formed in these collisions have been detected, identified and analyzed. Different ion–surface reaction processes, namely, neutralization, reflection, surface induced dissociation, surface induced chemical reactions and desorption are observed and discussed. Apart from the presence of desorbed aliphatic hydrocarbon and other ions, the mass spectra obtained from the considered collisions show the formation and sputtering of tungsten nitride (WN). A layer of WN on tungsten surface is known to decrease the sputtering of bulk tungsten in fusion devices more effectively than when the tungsten is bombarded with other seeding gases (He, Ar). It is further noted that there is a negligible diffusion of N in the bulk tungsten at room temperature.

  5. Micro- and macro-scale petrophysical characterization of potential reservoir units from the Northern Israel

    Science.gov (United States)

    Haruzi, Peleg; Halisch, Matthias; Katsman, Regina; Waldmann, Nicolas

    2016-04-01

    Lower Cretaceous sandstone serves as hydrocarbon reservoir in some places over the world, and potentially in Hatira formation in the Golan Heights, northern Israel. The purpose of the current research is to characterize the petrophysical properties of these sandstone units. The study is carried out by two alternative methods: using conventional macroscopic lab measurements, and using CT-scanning, image processing and subsequent fluid mechanics simulations at a microscale, followed by upscaling to the conventional macroscopic rock parameters (porosity and permeability). Comparison between the upscaled and measured in the lab properties will be conducted. The best way to upscale the microscopic rock characteristics will be analyzed based the models suggested in the literature. Proper characterization of the potential reservoir will provide necessary analytical parameters for the future experimenting and modeling of the macroscopic fluid flow behavior in the Lower Cretaceous sandstone.

  6. Fracture corridors as seal-bypass systems in siliciclastic reservoir-cap rock successions: Field-based insights from the Jurassic Entrada Formation (SE Utah, USA)

    NARCIS (Netherlands)

    Ogata, Kei; Senger, Kim; Braathen, Alvar; Tveranger, Jan

    2014-01-01

    Closely spaced, sub-parallel fracture networks contained within localized tabular zones that are fracture corridors may compromise top seal integrity and form pathways for vertical fluid flow between reservoirs at different stratigraphic levels. This geometry is exemplified by fracture corridors

  7. Predicting permeability of low enthalpy geothermal reservoirs: A case study from the Upper Triassic − Lower Jurassic Gassum Formation, Norwegian–Danish Basin

    DEFF Research Database (Denmark)

    Weibel, Rikke; Olivarius, Mette; Kristensen, Lars

    2017-01-01

    This paper aims at improving the predictability of permeability in low enthalpy geothermal reser-voirs by investigating the effect of diagenesis on sandstone permeability. Applying the best fittedporosity–permeability trend lines, obtained from conventional core analysis, to log-interpreted poros...

  8. Coke Formation During Hydrocarbons Pyrolysis. Part Two: Methane Thermal Cracking Formation de coke pendant la pyrolyse des hydrocarbures. Deuxième partie : pyrolyse du méthane

    Directory of Open Access Journals (Sweden)

    Billaud F.

    2006-11-01

    Full Text Available Part one of this article dealt with coking in a steam cracking furnace. In this process, coke deposition is a very complex phenomenon due to the number of parameters involved. Nevertheless, for this process, coke deposition is a secondary reaction which does not affect steam cracking yields. It is completely different for methane thermal cracking. Coke is one of the main products of this reaction. Part two of this article deals with coke deposition on the walls of the reactors used for methane thermal cracking. After a brief description of the different set-ups used to study coke deposition, the main parameters involved are listed. The importance of temperature, conversion, type of diluent, and hydrocarbon partial pressure will be enhanced. To conclude, two approaches to the mechanism are proposed to explain coke formation during methane thermal cracking. La première partie de cet article faisait le point sur les réactions indésirables de cokage dans les réacteurs de vapocraquage : dans le cadre de ce procédé, la formation de coke est un phénomène complexe du fait du nombre important de paramètres mis en jeu. Toutefois, pour ce procédé, la réaction de formation du coke à la paroi des réacteurs est une réaction secondaire qui n'affecte pas les rendements de vapocraquage. Ceci est complètement différent dans le cas de la pyrolyse thermique du méthane, procédé pour lequel le coke est un produit principal et indésirable de la réaction. La seconde partie de cet article est consacrée plus particulièrement à la formation du coke, lors de la pyrolyse du méthane et présente les principaux résultats expérimentaux décrits dans la littérature. Parmi les différents montages expérimentaux utilisés pour mesurer le dépôt de coke, il est mentionné, à partir des travaux de la littérature, les 2 techniques suivantes : - la technique de la paroi chaude, - la technique du fil chaud. Pour la première technique, les montages exp

  9. Investigations of material balance and the formation of metabolites on white rot in clamps in soil loaded with polycyclic aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Zarth, M.

    1993-01-01

    One examines from a concrete case to what extent the potential danger of white rot in bio-beds caused by polycyclic aromatic hydrocarbons (PAH's) is reduced. The potential danger is mainly determined by the remainder of the PAH's. The remainder paths to be considered (micro-biological decomposition, transport and abiotic processes) are shown. (orig.) [de

  10. Heterogeneous reactions between ions NH3+and NH+andhydrocarbons adsorbed on a tungsten surface.Formation of HCN+in NH+-surface hydrocarbon collisions

    Czech Academy of Sciences Publication Activity Database

    Harnisch, M.; Scheier, P.; Herman, Zdeněk

    2015-01-01

    Roč. 392, DEC 2015 (2015), s. 139-144 ISSN 1387-3806 Institutional support: RVO:61388955 Keywords : ion-surface collisions * NH3+ and NH+projectiles * surface hydrocarbons Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.183, year: 2015

  11. An Effective Reservoir Parameter for Seismic Characterization of Organic Shale Reservoir

    Science.gov (United States)

    Zhao, Luanxiao; Qin, Xuan; Zhang, Jinqiang; Liu, Xiwu; Han, De-hua; Geng, Jianhua; Xiong, Yineng

    2017-12-01

    Sweet spots identification for unconventional shale reservoirs involves detection of organic-rich zones with abundant porosity. However, commonly used elastic attributes, such as P- and S-impedances, often show poor correlations with porosity and organic matter content separately and thus make the seismic characterization of sweet spots challenging. Based on an extensive analysis of worldwide laboratory database of core measurements, we find that P- and S-impedances exhibit much improved linear correlations with the sum of volume fraction of organic matter and porosity than the single parameter of organic matter volume fraction or porosity. Importantly, from the geological perspective, porosity in conjunction with organic matter content is also directly indicative of the total hydrocarbon content of shale resources plays. Consequently, we propose an effective reservoir parameter (ERP), the sum of volume fraction of organic matter and porosity, to bridge the gap between hydrocarbon accumulation and seismic measurements in organic shale reservoirs. ERP acts as the first-order factor in controlling the elastic properties as well as characterizing the hydrocarbon storage capacity of organic shale reservoirs. We also use rock physics modeling to demonstrate why there exists an improved linear correlation between elastic impedances and ERP. A case study in a shale gas reservoir illustrates that seismic-derived ERP can be effectively used to characterize the total gas content in place, which is also confirmed by the production well.

  12. Reservoir characteristics of middle pliocene deposits and their role in the formation of oil gas deposits of Azerbaijan shelf of the south Caspian

    International Nuclear Information System (INIS)

    Veliyeva, V.A.; Kabulova, A. Ya.

    2002-01-01

    Full text :Lithology-stratigraphical peculiarities of deposits of lower stage of productive series (P S) of Middle Pliocene their reservoir properties, correlation of individual horizons within the uplifts of the south Caspian was studied. Analysis of arenosity of lower stage of PS was studied. Azerbaijan shelf of South Caspian is located within depression zone of sedimentation basin generally, of Pliocene and post-Pliocene period of time, when sedimentation was mostly intensive and occurred in conditions of more deep sea basin. Azerbaijan shelf of south Caspian covers mainly two oil-gasp-bearing region as Absheron archipelago (north, north-eastern part of region) and Baku archipelago (southern part). Analysis of arenosity along the areas of the studied region showed, that in south-eastern direction and on the south eastern subsidence of each fold, as well as on the north-eastern wing their sand percent considerably increase whereas reservoir properties of sandy interbeds are improved

  13. Multiscale properties of unconventional reservoir rocks

    Science.gov (United States)

    Woodruff, W. F.

    A multidisciplinary study of unconventional reservoir rocks is presented, providing the theory, forward modeling and Bayesian inverse modeling approaches, and laboratory protocols to characterize clay-rich, low porosity and permeability shales and mudstones within an anisotropic framework. Several physical models characterizing oil and gas shales are developed across multiple length scales, ranging from microscale phenomena, e.g. the effect of the cation exchange capacity of reactive clay mineral surfaces on water adsorption isotherms, and the effects of infinitesimal porosity compaction on elastic and electrical properties, to meso-scale phenomena, e.g. the role of mineral foliations, tortuosity of conduction pathways and the effects of organic matter (kerogen and hydrocarbon fractions) on complex conductivity and their connections to intrinsic electrical anisotropy, as well as the macro-scale electrical and elastic properties including formulations for the complex conductivity tensor and undrained stiffness tensor within the context of effective stress and poroelasticity. Detailed laboratory protocols are described for sample preparation and measurement of these properties using spectral induced polarization (SIP) and ultrasonics for the anisotropic characterization of shales for both unjacketed samples under benchtop conditions and jacketed samples under differential loading. An ongoing study of the effects of kerogen maturation through hydrous pyrolysis on the complex conductivity is also provided in review. Experimental results are catalogued and presented for various unconventional formations in North America including the Haynesville, Bakken, and Woodford shales.

  14. Cracking hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Forwood, G F; Lane, M; Taplay, J G

    1921-10-07

    In cracking and hydrogenating hydrocarbon oils by passing their vapors together with steam over heated carbon derived from shale, wood, peat or other vegetable or animal matter, the gases from the condenser are freed from sulfuretted hydrogen, and preferably also from carbon dioxide, and passed together with oil vapors and steam through the retort. Carbon dioxide may be removed by passage through slaked lime, and sulfuretted hydrogen by means of hydrated oxide of iron. Vapors from high-boiling oils and those from low-boiling oils are passed alternately through the retort, so that carbon deposited from the high-boiling oils is used up during treatment of low-boiling oils.

  15. Distilling hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Bataafsche, N V; de Brey, J H.C.

    1918-10-30

    Hydrocarbons containing a very volatile constituent and less volatile constituents, such as casing-head gases, still gases from the distillation of crude petroleum and bituminous shale are separated into their constituents by rectification under pressure; a pressure of 20 atmospheres and limiting temperatures of 150/sup 0/C and 40/sup 0/C are mentioned as suitable. The mixture may be subjected to a preliminary treatment consisting in heating to a temperature below the maximum rectification temperature at a pressure greater than that proposed to be used in the rectification.

  16. An overview of hydraulic fracturing and other formation stimulation technologies for shale gas production

    OpenAIRE

    GANDOSSI Luca

    2013-01-01

    The technology of hydraulic fracturing for hydrocarbon well stimulation is not new, but only fairly recently has become a very common and widespread technique, especially in North America, due to technological advances that have allowed extracting natural gas from so-called unconventional reservoirs (tight sands, coal beds and shale formations). The conjunction of techniques such as directional drilling, high volume fracturing, micro-seismic monitoring, etc. with the development of multi-well...

  17. An overview of hydraulic fracturing and other formation stimulation technologies for shale gas production - Update 2015

    OpenAIRE

    GANDOSSI Luca; VON ESTORFF Ulrik

    2015-01-01

    The technology of hydraulic fracturing for hydrocarbon well stimulation is not new, but only fairly recently has become a very common and widespread technique, especially in North America, due to technological advances that have allowed extracting natural gas from so-called unconventional reservoirs (tight sands, coal beds and shale formations). The conjunction of techniques such as directional drilling, high volume fracturing, micro-seismic monitoring, etc. with the development of multi-well...

  18. MULTIDISCIPLINARY IMAGING OF ROCK PROPERTIES IN CARBONATE RESERVOIRS FOR FLOW-UNIT TARGETING

    Energy Technology Data Exchange (ETDEWEB)

    Stephen C. Ruppel

    2005-02-01

    Despite declining production rates, existing reservoirs in the US contain large quantities of remaining oil and gas that constitute a huge target for improved diagnosis and imaging of reservoir properties. The resource target is especially large in carbonate reservoirs, where conventional data and methodologies are normally insufficient to resolve critical scales of reservoir heterogeneity. The objectives of the research described in this report were to develop and test such methodologies for improved imaging, measurement, modeling, and prediction of reservoir properties in carbonate hydrocarbon reservoirs. The focus of the study is the Permian-age Fullerton Clear Fork reservoir of the Permian Basin of West Texas. This reservoir is an especially appropriate choice considering (a) the Permian Basin is the largest oil-bearing basin in the US, and (b) as a play, Clear Fork reservoirs have exhibited the lowest recovery efficiencies of all carbonate reservoirs in the Permian Basin.

  19. Estimation of reservoir fluid volumes through 4-D seismic analysis on Gullfaks

    Energy Technology Data Exchange (ETDEWEB)

    Veire, H.S.; Reymond, S.B.; Signer, C.; Tenneboe, P.O.; Soenneland, L.; Schlumberger, Geco-Prakla

    1998-12-31

    4-D seismic has the potential to monitor hydrocarbon movement in reservoirs during production, and could thereby supplement the predictions of reservoir parameters offered by the reservoir simulator. However 4-D seismic is often more band limited than the vertical resolution required in the reservoir model. As a consequence the seismic data holds a composite response from reservoir parameter changes during production so that the inversion becomes non-unique. A procedure where data from the reservoir model are integrated with seismic data will be presented. The potential of such a procedure is demonstrated through a case study from a recent 4-D survey over the Gullfaks field. 2 figs.

  20. Benthic Bioprocessing of Hydrocarbons in the Natural Deep-Sea Environment

    Science.gov (United States)

    Sultan, N.; MacDonald, I. R.; Bohrmann, G.; Schubotz, F.; Johansen, C.

    2017-12-01

    Science is accustomed to quantifying ecosystem processes that consume carbon from primary production as it drifts downward through the photic zone. Comparably efficient processes operate in reverse, as living and non-living components sequester and re-mineralize a large fraction of hydrocarbons that migrate out of traps and reservoirs to the seafloor interface. Together, they comprise a sink that prevents these hydrocarbons from escaping upward into the water column. Although quantification of the local or regional magnitude of this sink poses steep challenges, we can make progress by classifying and mapping the biological communities and geological intrusions that are generated from hydrocarbons in the deep sea. Gulf of Mexico examples discussed in this presentation extend across a broad range of depths (550, 1200, and 3200 m) and include major differences in hydrocarbon composition (from gas to liquid oil to asphaltene-dominated solids). Formation of gas hydrate is a dynamic process in each depth zone. At upper depths, gas hydrate is unstable at a timescale of months to years and serves as a substrate for microbial consortia and mussel symbiosis. At extreme depths, gas hydrate supports large and dense tubeworm colonies that conserve the material from decomposition. Timescales for biogeochemical weathering of oil and asphalts are decadal or longer, as shown by sequential alterations and changing biological colonization. Understanding these processes is crucial as we prepare for wider and deeper energy exploitation in the Gulf of Mexico and beyond.

  1. Formation of hydrocarbon compounds during the hydrocracking of non-edible vegetable oils with cobalt-nickel supported on hierarchical HZSM-5 catalyst

    Science.gov (United States)

    Marlinda, L.; Al-Muttaqii, M.; Roesyadi, A.; Prajitno, D. H.

    2017-05-01

    The hierarchical Co-Ni/HZSM-5 catalyst with hierarchical pore structure was prepared by desilication and incipient wetness impregnation. Hydrocracking of non-edible vegetable oils at temperature of 400 °C, 20±5 bar for 2 h was performed in the presence of this type of catalyst under hydrogen initial pressure in pressured batch reactor. Non-edible vegetable oils, such as Reutealis trisperma (Blanco) airy shaw (sunan candlenut) and Hevea brasiliensis (rubber seed) were chosen to study the effect of the degree of saturation and lateral chain length on hydrocarbon compounds obtained through hydrocracking. Cerbera manghas oil was also tested for comparison because the composition of fatty acid was different with the other oils The hydrocracking test indicated that liquid product produced has a similar hydrocarbon compounds with petroleum diesel. The most abundant hydrocarbon is pentadecane (n-C15) and heptadecane (n-C17). The high aromatic compounds were found in liquid product produced in hydrocracking of Sunan candlenut oil.

  2. Development of gas and gas condensate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    In the study of gas reservoir development, the first year topics are restricted on reservoir characterization. There are two types of reservoir characterization. One is the reservoir formation characterization and the other is the reservoir fluid characterization. For the reservoir formation characterization, calculation of conditional simulation was compared with that of unconditional simulation. The results of conditional simulation has higher confidence level than the unconditional simulation because conditional simulation considers the sample location as well as distance correlation. In the reservoir fluid characterization, phase behavior calculations revealed that the component grouping is more important than the increase of number of components. From the liquid volume fraction with pressure drop, the phase behavior of reservoir fluid can be estimated. The calculation results of fluid recombination, constant composition expansion, and constant volume depletion are matched very well with the experimental data. In swelling test of the reservoir fluid with lean gas, the accuracy of dew point pressure forecast depends on the component characterization. (author). 28 figs., 10 tabs.

  3. Geological significance of paleo-aulacogen and exploration potential of reef flat gas reservoirs in the Western Sichuan Depression

    Directory of Open Access Journals (Sweden)

    Shu Liu

    2015-11-01

    Full Text Available Confirming thick hydrocarbon generation center and discovering thick porous reservoirs are two key factors to start the Permian gas exploration of the Western Sichuan Depression. In this paper, the Sinian-Cambrian structures of this area were studied by adopting the layer-flattening technology and the Lower Paleozoic thickness map was prepared in order to describe the Permian hydrocarbon generation center. Then, combined with seismic facies analysis and field outcrop bioherm discovery, the distribution of Middle Permian reef flat reservoirs were predicted. Finally, the favorable conditions for reef flat reservoir dolomitization were analyzed based on fault features. The study indicates that: (1 Sinian top represents a huge depression in the profile flatted by the reflecting interface of Permian bottom, with normal faults filled by thick Lower Paleozoic sediments at both sides, revealing that a aulacogen formed during the Khanka taphrogeny exists in the Western Sichuan Depression, where very thick Cambrian strata may contain hydrocarbon generation center, making Permian strata have the material conditions for the formation of large gas pools; (2 the Middle Permian strata in the Western Sichuan Depression exhibit obvious abnormal response in reef flat facies, where three large abnormal bands are developed, which are predicted as bioherm complex combined with the Middle Permian bioherm outcrop discoveries in surface; and (3 deep and large extensional faults are developed in reef flat margin, manifesting as favorable conditions for the development of dolomite reservoirs. The results show that the Middle Permian traps in the Western Sichuan Depression contain resources up to 7400 × 108 m3, showing significant natural gas exploration prospects. By far, one risk exploration well has been deployed.

  4. Distribution and Thermal Maturity of Devonian Carbonate Reservoir Solid Bitumen in Desheng Area of Guizhong Depression, South China

    Directory of Open Access Journals (Sweden)

    Yuguang Hou

    2017-01-01

    Full Text Available The distribution of solid bitumen in the Devonian carbonate reservoir from well Desheng 1, Guizhong Depression, was investigated by optical microscope and hydrocarbon inclusions analysis. Vb and chemical structure indexes measured by bitumen reflectance, laser Raman microprobe (LRM, and Fourier transform infrared spectroscopy (FTIR were carried out to determine the thermal maturity of solid bitumen. Based on the solid bitumen thermal maturity, the burial and thermal maturity history of Devonian carbonate reservoir were reconstructed by basin modeling. The results indicate that the fractures and fracture-related dissolution pores are the main storage space for the solid bitumen. The equivalent vitrinite reflectance of solid bitumen ranges from 3.42% to 4.43% converted by Vb (% and LRM. The infrared spectroscopy analysis suggests that there are no aliphatic chains detected in the solid bitumen which is rich in aromatics C=C chains (1431–1440 cm−1. The results of Vb (%, LRM, and FTIR analysis demonstrate that the solid bitumen has experienced high temperature and evolved to the residual carbonaceous stage. The thermal evolution of Devonian reservoirs had experienced four stages. The Devonian reservoirs reached the highest reservoir temperature 210–260°C during the second rapid burial-warming stage, which is the main period for the solid bitumen formation.

  5. Hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    Foorwood, G F; Taplay, J G

    1916-12-12

    Hydrocarbon oils are hydrogenated, cracked, or treated for the removal of sulfur by bringing their vapors mixed with steam at temperatures between 450 and 600/sup 0/C into contact with a form of carbon that is capable of decomposing steam with the production of nascent hydrogen at those temperatures. The forms of carbon used include lamp-black, soot, charcoals derived from wood, cellulose, and lignite, and carbons obtained by carbonizing oil residues and other organic bodies at temperatures below 600/sup 0/C. The process is applied to the treatment of coal oil, shale oil, petroleum, and lignite oil. In examples, kerosene is cracked at 570/sup 0/C, cracked spirit is hydrogenated at 500/sup 0/C, and shale spirit is desulfurized at 530/sup 0/C. The products are led to a condenser and thence to a scrubber, where they are washed with creosote oil. After desulfurization, the products are washed with dilute caustic soda to remove sulfurretted hydrogen.

  6. Hydrocarbon exploration

    Energy Technology Data Exchange (ETDEWEB)

    Lerche, I. (South Carolina Univ., Columbia, SC (United States). Dept. of Geological Sciences)

    1993-01-01

    This special issue of the journal examines various aspects of the on-going search for hydrocarbons, ranging from frontier basins where little data are available, to more mature areas where considerable data are available. The incentives underlying the search for oil are roughly: the social, economic and industrial needs of a nation; the incentive of a corporation to be profitable; and the personal incentives of individuals in the oil industry and governments, which range from financial wealth to power and which are as diverse as the individuals who are involved. From a geopolitical perspective, the needs, requirements, goals, strategies, and philosophies of nations, and groups of nations, also impact on the oil exploration game. Strategies that have been employed have ranged from boycott to austerity and rationing, to physical intervention, to global ''flooding'' with oil by over-production. (author)

  7. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Joel Walls; M.T. Taner; Naum Derzhi; Gary Mavko; Jack Dvorkin

    2003-12-01

    We have developed and tested technology for a new type of direct hydrocarbon detection. The method uses inelastic rock properties to greatly enhance the sensitivity of surface seismic methods to the presence of oil and gas saturation. These methods include use of energy absorption, dispersion, and attenuation (Q) along with traditional seismic attributes like velocity, impedance, and AVO. Our approach is to combine three elements: (1) a synthesis of the latest rock physics understanding of how rock inelasticity is related to rock type, pore fluid types, and pore microstructure, (2) synthetic seismic modeling that will help identify the relative contributions of scattering and intrinsic inelasticity to apparent Q attributes, and (3) robust algorithms that extract relative wave attenuation attributes from seismic data. This project provides: (1) Additional petrophysical insight from acquired data; (2) Increased understanding of rock and fluid properties; (3) New techniques to measure reservoir properties that are not currently available; and (4) Provide tools to more accurately describe the reservoir and predict oil location and volumes. These methodologies will improve the industry's ability to predict and quantify oil and gas saturation distribution, and to apply this information through geologic models to enhance reservoir simulation. We have applied for two separate patents relating to work that was completed as part of this project.

  8. Thermochemical sulfate reduction in deep petroleum reservoirs: a molecular approach; Thermoreduction des sulfates dans les reservoirs petroliers: approche moleculaire

    Energy Technology Data Exchange (ETDEWEB)

    Hanin, S.

    2002-11-01

    The thermochemical sulfate reduction (TSR) is a set of chemical reactions leading to hydrocarbon oxidation and production of carbon dioxide and sour gas (H{sub 2}S) which is observed in deep petroleum reservoirs enriched in anhydrites (calcium sulfate). Molecular and isotopic studies have been conducted on several crude oil samples to determine which types of compounds could have been produced during TSR. Actually, we have shown that the main molecules formed by TSR were organo-sulfur compounds. Indeed, sulfur isotopic measurements. of alkyl-di-benzothiophenes, di-aryl-disulfides and thia-diamondoids (identified by NMR or synthesis of standards) shows that they are formed during TSR as their value approach that of the sulfur of the anhydrite. Moreover, thia-diamondoids are apparently exclusively formed during this phenomenon and can thus be considered as true molecular markers of TSR. In a second part, we have investigated with laboratory experiments the formation mechanism of the molecules produced during TSR. A first model has shown that sulfur incorporation into the organic matter occurred with mineral sulfur species of low oxidation degree. The use of {sup 34}S allowed to show that the sulfates reduction occurred during these simulations. At least, some experiments on polycyclic hydrocarbons, sulfurized or not, allowed to establish that thia-diamondoids could be formed by acid-catalysed rearrangements at high temperatures in a similar way as the diamondoids. (author)

  9. APPLICATION OF WELL LOG ANALYSIS IN ASSESSMENT OF PETROPHYSICAL PARAMETERS AND RESERVOIR CHARACTERIZATION OF WELLS IN THE “OTH” FIELD, ANAMBRA BASIN, SOUTHERN NIGERIA

    Directory of Open Access Journals (Sweden)

    Eugene URORO

    2014-12-01

    Full Text Available Over the past years, the Anambra basin one of Nigeria’s inland basins has recorded significant level of hydrocarbon exploration activities. The basin has been confirmed by several authors from source rock analyses to have the potential for generating hydrocarbon. For the hydrocarbon to be exploited, it is imperative to have a thorough understanding of the reservoir. Computer-assisted log analyses were employed to effectively evaluate the petrophysical parameters such as the shale volume (Vsh, total porosity (TP, effective porosity (EP, water saturation (Sw, and hydrocarbon saturation (Sh. Cross-plots of the petrophysical parameters versus depth were illustrated. Five hydrocarbon bearing reservoirs were delineated in well 1, four in well 2. The reservoirs in well 3 do not contain hydrocarbon. The estimated reservoir porosity varies from 10% to 21% while their permeability values range from 20md to 1400md. The porosity and permeability values suggest that reservoirs are good enough to store and also permit free flow of fluid. The volume of shale (0.05% to 0.35% analysis reveals that the reservoirs range from shaly sand to slightly shaly sand to clean sand reservoir. On the basis of petrophysics data, the reservoirs are interpreted a good quality reservoir rocks which has been confirmed with high effective porosity range between 20% and high hydrocarbon saturation exceeding 55% water saturation in well 1 and well 2. Water saturation 3 is nearly 100% although the reservoir properties are good.  

  10. Frequency–amplitude range of hydrocarbon microtremors and a discussion on their source

    International Nuclear Information System (INIS)

    Gerivani, H; Hafezi Moghaddas, N; Ghafoori, M; Lashkaripour, G R; Haghshenas, E

    2012-01-01

    Recently, some studies have suggested using ambient noise as a tool for hydrocarbon reservoir investigation. This new passive seismic technique, named HyMas, is based on the positive energy anomaly in data spectra between 1 to 6 Hz for microtremor measurements over reservoirs, which are called hydrocarbon microtremors. Despite the acceptable results obtained by the HyMas technique, there are many unknowns, especially concerning the source and generation mechanism of hydrocarbon microtremors and the relations between reservoir characteristics and the attributes of hydrocarbon microtremors. In this study we tried to find the relations between reservoir characteristics, including fluid content and depth, for 12 sites around the world with hydrocarbon microtremor attributes, including peak amplitude and frequency. Based on the power spectral density curves of these 12 reservoirs, a frequency–amplitude range is also proposed as a criterion for separating hydrocarbon microtremors from local noise not related to reservoirs. Finally, the source of the hydrocarbon microtremors is discussed and tidal displacement is suggested as a probable agent for the generation of these anomalies. (paper)

  11. Unsaturated medium hydrocarbons pollution evaluation

    International Nuclear Information System (INIS)

    Di Luise, G.

    1991-01-01

    When the so called porous unsaturated medium, that's the vertical subsoil section between both the ground and water-table level, is interested by a hydrocarbons spill, the problem to evaluate the pollution becomes difficult: considering, essentially, the natural coexistence in it of two fluids, air and water, and the interactions between them. This paper reports that the problems tend to increase when a third fluid, the pollutant, immiscible with water, is introduced into the medium: a three-phases flow, which presents several analogies with the flow conditions present in an oil-reservoir, will be established. In such a situation, it would be very useful to handle the matter by the commonly used parameters in the oil reservoirs studies such as: residual saturation, relative permeability, phases mobility, to derive a first semiquantitative estimation of the pollution. The subsoil pollution form hydrocarbons agents is one of the worldwide more diffused causes of contamination: such events are generally referable to two main effects: accidental (oil pipeline breakdowns, e.g.), and continuous (underground tanks breaks, industrial plants leakages, e.g.)

  12. Petroleum systems and hydrocarbon accumulation models in the Santos Basin, SP, Brazil; Sistemas petroliferos e modelos de acumulacao de hidrocarbonetos na Bacia de Santos

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Hung Kiang; Assine, Mario Luis; Correa, Fernando Santos; Tinen, Julio Setsuo [Universidade Estadual Paulista (UNESP), Rio Claro, SP (Brazil). Lab. de Estudos de Bacias]. E-mails: chang@rc.unesp.br; assine@rc.unesp.br; fscorrea@rc.unesp.br; jstinen@rc.unesp.br; Vidal, Alexandre Campane; Koike, Luzia [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Centro de Estudos de Petroleo]. E-mails: vidal@ige.unicamp.br; luzia@iqm.unicamp.br

    2008-07-01

    The Santos Basin was formed by rifting process during Mesozoic Afro-American separation. Sediment accumulation initiated with fluvial-lacustrine deposits, passing to evaporitic stage until reaching marginal basin stages. The analysis of hydrocarbon potential of Santos Basin identified two petroleum systems: Guaratiba-Guaruja and Itajai-Acu-Ilhabela. The Guaratiba Formation is less known in the Santos Basin because of small number of wells that have penetrated the rift section. By comparison with Campos Basin, hydrocarbons are of saline lacustrine origin deposited in Aptian age. Analogous to Campos Basin the major source rock is of saline-lacustrine origin, which has been confirmed from geochemical analyses of oil samples recovered from the various fields. These analyses also identified marine source rock contribution, indicating the Itajai-Acu source rock went through oil-window, particularly in structural lows generated by halokynesis. Models of hydrocarbon accumulation consider Guaratiba Formacao as the major source rock for shallow carbonate reservoirs of Guaruja Formacao and for late Albian to Miocene turbidites, as well as siliciclastic and carbonate reservoirs of the rift phase. Migration occurs along salt window and through carrier-beds. The seal rock is composed of shales and limestones intercalated with reservoir facies of the post-rift section and by thick evaporites overlying rift section, especially in the deeper water. In the shallow portion, shale inter-tongued with reservoir rocks is the main seal rock. The hydrocarbon generation and expulsion in the central-north portion of the basin is caused by overburden of a thick Senonian section. Traps can be structural (rollovers and turtle), stratigraphic (pinch-outs) and mixed origins (pinch-outs of turbidites against salt domes). (author)

  13. ADVANCED RESERVOIR CHARACTERIZATION IN THE ANTELOPE SHALE TO ESTABLISH THE VIABILITY OF CO2 ENHANCED OIL RECOVERY IN CALIFORNIA'S MONTEREY FORMATION SILICEOUS SHALES

    Energy Technology Data Exchange (ETDEWEB)

    Pasquale R. Perri

    2003-05-15

    This report describes the evaluation, design, and implementation of a DOE funded CO{sub 2} pilot project in the Lost Hills Field, Kern County, California. The pilot consists of four inverted (injector-centered) 5-spot patterns covering approximately 10 acres, and is located in a portion of the field, which has been under waterflood since early 1992. The target reservoir for the CO{sub 2} pilot is the Belridge Diatomite. The pilot location was selected based on geologic considerations, reservoir quality and reservoir performance during the waterflood. A CO{sub 2} pilot was chosen, rather than full-field implementation, to investigate uncertainties associated with CO{sub 2} utilization rate and premature CO{sub 2} breakthrough, and overall uncertainty in the unproven CO{sub 2} flood process in the San Joaquin Valley. A summary of the design and objectives of the CO{sub 2} pilot are included along with an overview of the Lost Hills geology, discussion of pilot injection and production facilities, and discussion of new wells drilled and remedial work completed prior to commencing injection. Actual CO{sub 2} injection began on August 31, 2000 and a comprehensive pilot monitoring and surveillance program has been implemented. Since the initiation of CO{sub 2} injection, the pilot has been hampered by excessive sand production in the pilot producers due to casing damage related to subsidence and exacerbated by the injected CO{sub 2}. Therefore CO{sub 2} injection was very sporadic in 2001 and 2002 and we experienced long periods of time with no CO{sub 2} injection. As a result of the continued mechanical problems, the pilot project was terminated on January 30, 2003. This report summarizes the injection and production performance and the monitoring results through December 31, 2002 including oil geochemistry, CO{sub 2} injection tracers, crosswell electromagnetic surveys, crosswell seismic, CO{sub 2} injection profiling, cased hole resistivity, tiltmetering results, and

  14. Characterization of nanometer-scale porosity in reservoir carbonate rock by focused ion beam-scanning electron microscopy.

    Science.gov (United States)

    Bera, Bijoyendra; Gunda, Naga Siva Kumar; Mitra, Sushanta K; Vick, Douglas

    2012-02-01

    Sedimentary carbonate rocks are one of the principal porous structures in natural reservoirs of hydrocarbons such as crude oil and natural gas. Efficient hydrocarbon recovery requires an understanding of the carbonate pore structure, but the nature of sedimentary carbonate rock formation and the toughness of the material make proper analysis difficult. In this study, a novel preparation method was used on a dolomitic carbonate sample, and selected regions were then serially sectioned and imaged by focused ion beam-scanning electron microscopy. The resulting series of images were used to construct detailed three-dimensional representations of the microscopic pore spaces and analyze them quantitatively. We show for the first time the presence of nanometer-scale pores (50-300 nm) inside the solid dolomite matrix. We also show the degree of connectivity of these pores with micron-scale pores (2-5 μm) that were observed to further link with bulk pores outside the matrix.

  15. Importance of water Influx and waterflooding in Gas condensate reservoir

    OpenAIRE

    Ali, Faizan

    2014-01-01

    The possibility of losing valuable liquid and lower gas well deliverability have made gas condensate reservoirs very important and extra emphasizes are made to optimize hydrocarbon recovery from a gas condensate reservoir. Methods like methanol treatments, wettability alteration and hydraulic fracturing are done to restore the well deliverability by removing or by passing the condensate blockage region. The above mentioned methods are applied in the near wellbore region and only improve the w...

  16. Delta 37Cl and Characterisation of Petroleum-gas Reservoirs

    Science.gov (United States)

    Woulé Ebongué, V.; Jendrzejewski, N.; Walgenwitz, F.; Pineau, F.; Javoy, M.

    2003-04-01

    The geochemical characterisation of formation waters from oil/gas fields is used to detect fluid-flow barriers in reservoirs and to reconstruct the system dynamic. During the progression of the reservoir filling, the aquifer waters are pushed by hydrocarbons toward the reservoir bottom and their compositions evolve due to several parameters such as water-rock interactions, mixing with oil-associated waters, physical processes etc. The chemical and isotopic evolution of these waters is recorded in irreducible waters that have been progressively "fossilised" in the oil/gas column. Residual salts precipitated from these waters were recovered. Chloride being the most important dissolved anion in these waters and not involved in diagenetic reactions, its investigation should give insights into the different transport or mixing processes taking place in the sedimentary basin and point out to the formation waters origins. The first aim of our study was to test the Cl-RSA technique (Chlorine Residual Salts Analysis) based on the well-established Sr-RSA technique. The main studied area is a turbiditic sandstone reservoir located in the Lower Congo basin in Angola. Present-day aquifer waters, irreducible waters from sandstone and shale layers as well as drilling mud and salt dome samples were analysed. Formation waters (aquifer and irreducible trapped in shale) show an overall increase of chlorinity with depth. Their δ37Cl values range from -1.11 ppm to +2.30 ppm ± 0.05 ppm/ SMOC. Most Cl-RSA data as well as the δ37Cl obtained on a set of water samples (from different aquifers in the same area) are lower than -0.13 ppm with lower δ37Cl values at shallower depths. In a δ37Cl versus chlorinity diagram, they are distributed along a large range of chlorinity: 21 to 139 g/l, in two distinct groups. (1) Irreducible waters from one of the wells display a positive correlation between chlorinity and the δ37Cl values. (2) In contrary, the majority of δ37Cl measured on aquifers

  17. Characterization of reservoir fractures using conventional geophysical logging

    Directory of Open Access Journals (Sweden)

    Paitoon Laongsakul

    2011-04-01

    Full Text Available In hydrocarbon exploration fractures play an important role as possible pathways for the hydrocarbon flow and bythis enhancing the overall formation’s permeability. Advanced logging methods for fracture analysis, like the boreholeacoustic televiewer and Formation Microscanner (FMS are available, but these are additional and expensive tools. However,open and with water or hydrocarbon filled fractures are also sensitive to electrical and other conventional logging methods.For this study conventional logging data (electric, seismic, etc were available plus additional fracture information from FMS.Taking into account the borehole environment the results show that the micro-spherically focused log indicates fractures byshowing low resistivity spikes opposite open fractures, and high resistivity spikes opposite sealed ones. Compressional andshear wave velocities are reduced when passing trough the fracture zone, which are assumed to be more or less perpendicularto borehole axis. The photoelectric absorption curve exhibit a very sharp peak in front of a fracture filled with bariteloaded mud cake. The density log shows low density spikes that are not seen by the neutron log, usually where fractures,large vugs, or caverns exist. Borehole breakouts can cause a similar effect on the logging response than fractures, but fracturesare often present when this occurs. The fracture index calculation by using threshold and input weight was calculatedand there was in general a good agreement with the fracture data from FMS especially in fracture zones, which mainlycontribute to the hydraulic system of the reservoir. Finally, the overall results from this study using one well are promising,however further research in the combination of different tools for fracture identification is recommended as well as the useof core for further validation.

  18. Syn-Rift Systems of East Godavari Sub Basin: Its Evolution and Hydrocarbon Prospectivity

    Science.gov (United States)

    Dash, J., Jr.; Zaman, B.

    2014-12-01

    Krishna Godavari (K.G.) basin is a passive margin basin developed along the Eastern coast of India. This basin has a polyhistoric evolution with multiple rift systems. Rift basin exploration has provided the oil and gas industry with almost one third of discovered global hydrocarbon resources. Understanding synrift sequences, their evolution, depositional styles and hydrocarbon prospectivity has become important with recent discovery of the wells, G-4-6,YS-AF and KG-8 in the K.G. offshore basin. The East Godavari subbasin is a hydrocarbon producing basin from synrift and pre-rift sediments, and hence this was selected as the study area for this research. The study has been carried out by utilizing data of around 58 wells (w1-w58) drilled in the study area 25 of which are hydrocarbon bearing with organic thickness varying from 200 m to 600 m. Age data generated by palaentology and palynology studies have been utilized for calibration of key well logs to differentiate between formations within prerift and synrift sediments. The electrologs of wells like resistivity, gamma ray, neutron, density and sonic logs have been utilized for correlation of different formations in all the drilled wells. The individual thicknesses of sand, shale and coal in the formations have been calculated and tabulated. For Golapalli formation, the isopach and isolith maps were generated which revealed that there were four depocentres with input from the north direction. Schematic geological cross sections were prepared using the well data and seismic data to understand the facies variation across the basin. The sedimentological and petrophysical analysis reports and electro log suites were referred to decipher the environment of deposition, the reservoir characteristics, and play types. The geochemical reports [w4 (Tmax)= 455-468 °C; w1 (Tmax) = 467-514 °C; w4(VRO)= 0.65-0.85; w1(VRO)= 0.83-1.13] revealed the source facies, its maturation and migration timings i.e. the petroleum systems

  19. HYDROCARBONS RESERVES IN VENEZUELA

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Cruz, D.J.

    2007-07-01

    Venezuela is an important player in the energy world, because of its hydrocarbons reserves. The process for calculating oil and associated gas reserves is described bearing in mind that 90% of the gas reserves of Venezuela are associated to oil. Likewise, an analysis is made of the oil reserves figures from 1975 to 2003. Reference is also made to inconsistencies found by international experts and the explanations offered in this respect by the Ministry of Energy and Petroleum (MENPET) and Petroleos de Venezuela (PDVSA) regarding the changes that took place in the 1980s. In turn, Hubbert's Law is explained to determine peak production of conventional oil that a reservoir or field will reach, as well as its relationship with remaining reserves. Emphasis is placed on the interest of the United Nations on this topic. The reserves of associated gas are presented along with their relationship with the different crude oils that are produced and with injected gas, as well as with respect to the possible changes that would take place in the latter if oil reserves are revised. Some recommendations are submitted so that the MENPET starts preparing the pertinent policies ruling reserves. (auth)

  20. Characterisation of unresolved complex mixtures of hydrocarbons

    OpenAIRE

    Gough, Mark Adrian

    1989-01-01

    Metadata merged with duplicate record (http://hdl.handle.net/10026.1/666) on 20.12.2016 by CS (TIS). This is a digitised version of a thesis that was deposited in the University Library. If you are the author please contact PEARL Admin () to discuss options. The hydrocarbons of Recent Polluted.., sediments, in-reservoir and laboratory biodegraded crude oils, and certain petroleum products (e. g. lubricating oils) often display "humps" or Unresolved Complex...

  1. Methods to evaluate some reservoir characterization by means of the geophysical data in the strata of limestone and marl

    Directory of Open Access Journals (Sweden)

    V. M. Seidov

    2017-12-01

    Full Text Available As we know, the main goal of interpreting the materials of well logging, including the allocation of collectors and assessment of their saturation, are successfully achieved when the process of interpretation has a strong methodological support. This means, that it is justified by the necessary interpretational models and effective instructional techniques are used. They are based on structural and petrophysical models of reservoirs of the section investigated. The problem of studying the marl rocks with the help of the geophysical methods is not worked out properly. Many years of experience of studying limestone and marl rocks has made it possible to justify the optimal method of data interpretation of geophysical research wells in carbonate sections, which was represented by limestone and marl formations. A new method was developed to study marl rocks. It includes the following main studies: detection of reservoirs in the carbonate section according to the materials of geophysical studies of wells; determination of the geophysical parameters of each reservoir; assessment of the quality of well logging curves; introduction of amendments; selection of reference layers; the calculation of the relative double differencing parameters; the involvement of core data; identifying the lithological rock composition; the rationale for structural models of reservoirs; the definition of the block and of the total porosity; determination of argillaceous carbonate rocks; determination of the coefficient of water saturation of formations based on the type of the collector; setting a critical value for effective porosity, etc. This method was applied in the Eocene deposits of the Interfluve of the Kura and Iori, which is a promising object of hydrocarbons in Azerbaijan. The following conclusions have been made: this methodology successfully solves the problem of petrophysical characteristics of marl rocks; bad connection is observed between some of the

  2. Comparison of the diagenetic and reservoir quality evolution between the anticline crest and flank of an Upper Jurassic carbonate gas reservoir, Abu Dhabi, United Arab Emirates

    Science.gov (United States)

    Morad, Daniel; Nader, Fadi H.; Gasparrini, Marta; Morad, Sadoon; Rossi, Carlos; Marchionda, Elisabetta; Al Darmaki, Fatima; Martines, Marco; Hellevang, Helge

    2018-05-01

    This petrographic, stable isotopic and fluid inclusion microthermometric study of the Upper Jurassic limestones of an onshore field, Abu Dhabi, United Arab Emirates (UAE) compares diagenesis in flanks and crest of the anticline. The results revealed that the diagenetic and related reservoir quality evolution occurred during three phases, including: (i) eogenesis to mesogenesis 1, during which reservoir quality across the field was either deteriorated or preserved by calcite cementation presumably derived from marine or evolved marine pore waters. Improvement of reservoir quality was due to the formation of micropores by micritization of allochems and creation of moldic/intragranular pores by dissolution of peloids and skeletal fragments. (ii) Obduction of Oman ophiolites and formation of the anticline of the studied field was accompanied by cementation by saddle dolomite and blocky calcite. High homogenization temperatures (125-175 °C) and high salinity (19-26 wt% NaCl eq) of the fluid inclusions, negative δ18OVPDB values (-7.7 to -2.9‰), saddle shape of dolomite, and the presence of exotic cements (i.e. fluorite and sphalerite) suggest that these carbonates were formed by flux of hot basinal brines, probably related to this tectonic compression event. (iii) Mesogenesis 2 during subsidence subsequent to the obduction event, which resulted in extensive stylolitization and cementation by calcite. This calcite cement occluded most of the remaining moldic and inter-/intragranular pores of the flank limestones (water zone) whereas porosity was preserved in the crest. This study contributes to: (1) our understanding of differences in the impact of diagenesis on reservoir quality evolution in flanks and crests of anticlines, i.e. impact of hydrocarbon emplacement on diagenesis, and (2) relating various diagenetic processes to burial history and tectonic events of foreland basins in the Arabian Gulf area and elsewhere.

  3. Crossed-beam reaction of carbon atoms with hydrocarbon molecules. IV. Chemical dynamics of methylpropargyl radical formation, C4H5, from reaction of C(3Pj) with propylene, C3H6 (X1A)

    International Nuclear Information System (INIS)

    Kaiser, R.I.; Stranges, D.; Bevsek, H.M.; Lee, Y.T.; Suits, A.G.

    1997-01-01

    The reaction between ground state carbon atoms and propylene, C 3 H 6 , was studied at average collision energies of 23.3 and 45.0 kJmol -1 using the crossed molecular beam technique. Product angular distributions and time-of-flight spectra of C 4 H 5 at m/e=53 were recorded. Forward-convolution fitting of the data yields a maximum energy release as well as angular distributions consistent with the formation of methylpropargyl radicals. Reaction dynamics inferred from the experimental results suggest that the reaction proceeds on the lowest 3 A surface via an initial addition of the carbon atom to the π-orbital to form a triplet methylcyclopropylidene collision complex followed by ring opening to triplet 1,2-butadiene. Within 0.3 endash 0.6 ps, 1,2-butadiene decomposes through carbon endash hydrogen bond rupture to atomic hydrogen and methylpropargyl radicals. The explicit identification of C 4 H 5 under single collision conditions represents a further example of a carbon endash hydrogen exchange in reactions of ground state carbon with unsaturated hydrocarbons. This versatile machine represents an alternative pathway to build up unsaturated hydrocarbon chains in combustion processes, chemical vapor deposition, and in the interstellar medium. copyright 1997 American Institute of Physics

  4. Chemical stimulation in unconventional hydrocarbons extraction in the USA: a preliminary environmental risk assessment.

    Science.gov (United States)

    Sutra, Emilie; Spada, Matteo; Burgherr, Peter

    2016-04-01

    While the exploitation of unconventional resources recently shows an extensive development, the stimulation techniques in use in this domain arouse growing public concerns. Often in the shadow of the disputed hydraulic fracturing process, the matrix acidizing is however a complementary or alternative procedure to enhance the reservoir connectivity. Although acidizing processes are widespread within the traditional hydrocarbons sources exploration, the matrix acidizing does not appear to be commonly used in unconventional hydrocarbons formations due to their low permeability. Nonetheless, this process has been recently applied to the Monterey formation, a shale oil play in California. These stimulation fluids are composed by various chemicals, what represents a matter of concern for public as well as for authorities. As a consequence, a risk assessment implying an exposure and toxicity analysis is needed. Focusing on site surface accidents, e.g., leak of a chemical from a storage tank, we develop in this study concentration scenarios for different exposure pathways to estimate the potential environmental risk associated with the use of specific hazardous substances in the matrix acidizing process for unconventional hydrocarbon reservoirs in the USA. Primary, information about the usage of different hazardous substances have been collected in order to extract the most frequently used chemicals. Afterwards, a probabilistic estimation of the environmental risk associated with the use of these chemicals is carried out by comparing the Predicted Environmental Concentrations (PEC) distribution with the Predicted No Effect Concentrations (PNEC) value. The latter is collected from a literature review, whereas the PEC is estimated as probability distribution concentrations in different environmental compartments (e.g., soil) built upon various predefined accident scenarios. By applying a probabilistic methodology for the concentrations, the level at which the used chemicals

  5. Sedimentary tectonic evolution and reservoir-forming conditions of the Dazhou–Kaijiang paleo-uplift, Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Yueming Yang

    2016-12-01

    Full Text Available Great breakthrough recently achieved in the Sinian–Lower Paleozoic gas exploration in the Leshan–Longnüsi paleo-uplift, Sichuan Basin, has also made a common view reached, i.e., large-scale paleo-uplifts will be the most potential gas exploration target in the deep strata of this basin. Apart from the above-mentioned one, the other huge paleo-uplifts are all considered to be the ones formed in the post-Caledonian period, the impact of which, however, has rarely ever been discussed on the Sinian–Lower Paleozoic oil and gas reservoir formation. In view of this, based on outcrops, drilling and geophysical data, we analyzed the Sinian–Lower Paleozoic tectonic setting and sedimentary background in the East Sichuan Basin, studied the distribution rules of reservoirs and source rocks under the control of paleo-uplifts, and finally discussed, on the basis of structural evolution analysis, the conditions for the formation of Sinian–Lower Paleozoic gas reservoirs in this study area. The following findings were achieved. (1 The Dazhou–Kaijiang inherited uplift in NE Sichuan Basin which was developed before the Middle Cambrian controlled a large area of Sinian and Cambrian beach-facies development. (2 Beach-facies reservoirs were developed in the upper part of the paleo-uplift, while in the peripheral depression belts thick source rocks were developed like the Upper Sinian Doushantuo Fm and Lower Cambrian Qiongzhusi Fm, so there is a good source–reservoir assemblage. (3 Since the Permian epoch, the Dazhou–Kaijiang paleo-uplift had gradually become elevated from the slope zone, where the Permian oil generation peak occurred in the slope or lower and gentle uplift belts, while the Triassic gas generation peak occurred in the higher uplift belts, both with a favorable condition for hydrocarbon accumulation. (4 The lower structural layers, including the Lower Cambrian and its underlying strata, in the East Sichuan Basin, are now equipped with a

  6. FORMATION OF THE SHORT-LIVED RADIONUCLIDE 36Cl IN THE PROTOPLANETARY DISK DURING LATE-STAGE IRRADIATION OF A VOLATILE-RICH RESERVOIR

    International Nuclear Information System (INIS)

    Jacobsen, Benjamin; Yin Qingzhu; Matzel, Jennifer; Hutcheon, Ian D.; Ramon, Erick C.; Weber, Peter K.; Krot, Alexander N.; Nagashima, Kazuhide; Ishii, Hope A.; Ciesla, Fred J.

    2011-01-01

    Short-lived radionuclides (SLRs) in the early solar system provide fundamental insight into protoplanetary disk evolution. We measured the 36 Cl- 36 S-isotope abundance in wadalite ( 36 Cl (τ 1/2 ∼ 3 x 10 5 yr) in the early solar system. Its presence, initial abundance, and the noticeable decoupling from 26 Al raise serious questions about the origin of SLRs. The inferred initial 36 Cl abundance for wadalite, corresponding to a 36 Cl/ 35 Cl ratio of (1.81 ± 0.13) x 10 -5 , is the highest 36 Cl abundance ever reported in any early solar system material. The high level of 36 Cl in wadalite and the absence of 26 Al ( 26 Al/ 27 Al ≤ 3.9 x 10 -6 ) in co-existing grossular (1) unequivocally support the production of 36 Cl by late-stage solar energetic particle irradiation in the protoplanetary disk and (2) indicates that the production of 36 Cl, recorded by wadalite, is unrelated to the origin of 26 Al and other SLRs ( 10 Be, 53 Mn) recorded by primary minerals of CAIs and chondrules. We infer that 36 Cl was largely produced by irradiation of a volatile-rich reservoir in an optically thin protoplanetary disk adjacent to the region in which the CV chondrite parent asteroid accreted while the Sun was a weak T Tauri star. Subsequently, 36 Cl accreted into the Allende CV chondrite together with condensed water ices.

  7. Towards an understanding of the role of clay minerals in crude oil formation, migration and accumulation

    Science.gov (United States)

    Wu, Lin Mei; Zhou, Chun Hui; Keeling, John; Tong, Dong Shen; Yu, Wei Hua

    2012-12-01

    This article reviews progress in the understanding of the role of clay minerals in crude oil formation, migration and accumulation. Clay minerals are involved in the formation of kerogen, catalytic cracking of kerogen into petroleum hydrocarbon, the migration of crude oil, and the continued change to hydrocarbon composition in underground petroleum reservoirs. In kerogen formation, clay minerals act as catalysts and sorbents to immobilize organic matter through ligand exchange, hydrophobic interactions and cation bridges by the mechanisms of Maillard reactions, polyphenol theory, selective preservation and sorptive protection. Clay minerals also serve as catalysts in acid-catalyzed cracking of kerogen into petroleum hydrocarbon through Lewis and Brønsted acid sites on the clay surface. The amount and type of clay mineral affect the composition of the petroleum. Brønsted acidity of clay minerals is affected by the presence and state of interlayer water, and displacement of this water is a probable driver in crude oil migration from source rocks. During crude oil migration and accumulation in reservoirs, the composition of petroleum is continually modified by interaction with clay minerals. The clays continue to function as sorbents and catalysts even while they are being transformed by diagenetic processes. The detail of chemical interactions and reaction mechanisms between clay minerals and crude oil formation remains to be fully explained but promises to provide insights with broader application, including catalytic conversion of biomass as a source of sustainable energy into the future.

  8. SILTATION IN RESERVOIRS

    African Journals Online (AJOL)

    Keywords: reservoir model, siltation, sediment, catchment, sediment transport. 1. Introduction. Sediment ... rendered water storage structures useless in less than 25 years. ... reservoir, thus reducing the space available for water storage and ...

  9. Reservoir fisheries of Asia

    International Nuclear Information System (INIS)

    Silva, S.S. De.

    1990-01-01

    At a workshop on reservoir fisheries research, papers were presented on the limnology of reservoirs, the changes that follow impoundment, fisheries management and modelling, and fish culture techniques. Separate abstracts have been prepared for three papers from this workshop

  10. Large reservoirs: Chapter 17

    Science.gov (United States)

    Miranda, Leandro E.; Bettoli, Phillip William

    2010-01-01

    Large impoundments, defined as those with surface area of 200 ha or greater, are relatively new aquatic ecosystems in the global landscape. They represent important economic and environmental resources that provide benefits such as flood control, hydropower generation, navigation, water supply, commercial and recreational fisheries, and various other recreational and esthetic values. Construction of large impoundments was initially driven by economic needs, and ecological consequences received little consideration. However, in recent decades environmental issues have come to the forefront. In the closing decades of the 20th century societal values began to shift, especially in the developed world. Society is no longer willing to accept environmental damage as an inevitable consequence of human development, and it is now recognized that continued environmental degradation is unsustainable. Consequently, construction of large reservoirs has virtually stopped in North America. Nevertheless, in other parts of the world construction of large reservoirs continues. The emergence of systematic reservoir management in the early 20th century was guided by concepts developed for natural lakes (Miranda 1996). However, we now recognize that reservoirs are different and that reservoirs are not independent aquatic systems inasmuch as they are connected to upstream rivers and streams, the downstream river, other reservoirs in the basin, and the watershed. Reservoir systems exhibit longitudinal patterns both within and among reservoirs. Reservoirs are typically arranged sequentially as elements of an interacting network, filter water collected throughout their watersheds, and form a mosaic of predictable patterns. Traditional approaches to fisheries management such as stocking, regulating harvest, and in-lake habitat management do not always produce desired effects in reservoirs. As a result, managers may expend resources with little benefit to either fish or fishing. Some locally

  11. Study of the processes of ion pairs formation by the method of ion-ion coincidence: I2 and chlorine-containing hydrocarbons

    International Nuclear Information System (INIS)

    Golovin, A.V.

    1991-01-01

    A method of ion-ion coincidences was suggested to study the process of ion pairs formation during molecule photoionization. The principle of action of ion-ion coincidence method is based on recording of only the negative and positive ions that formed as a result of a molecule decomposition. The flowsheet of the facility of ion-ion coincidences was presented. The processes of ion pairs formation in iodine, chloroform, propyl-, n-propenyl-, tert.butyl- and benzyl-chlorides were studied. A simple model permitting to evaluate the dependence of quantum yield of ion pair formation on excitation energy was suggested

  12. Controlled-Source Electromagnetics for Reservoir Monitoring on Land

    NARCIS (Netherlands)

    Wirianto, M.

    2012-01-01

    The main goal of exploration geophysics is to obtain information about the subsurface that is not directly available from surface geological observations. The results are primarily used for finding potential reservoirs that contain commercial quantities of hydrocarbons. A number of possible

  13. Characterization of shale gas enrichment in the Wufeng Formation–Longmaxi Formation in the Sichuan Basin of China and evaluation of its geological construction–transformation evolution sequence

    Directory of Open Access Journals (Sweden)

    Zhiliang He

    2017-02-01

    Full Text Available Shale gas in Upper Ordovician Wufeng Formation–Lower Silurian Longmaxi Formation in the Sichuan Basin is one of the key strata being explored and developed in China, where shale gas reservoirs have been found in Fuling, Weiyuan, Changning and Zhaotong. Characteristics of shale gas enrichment in the formation shown by detailed profiling and analysis are summarized as “high, handsome and rich”. “High” mainly refers to the high quality of original materials for the formation of shale with excellent key parameters, including the good type and high abundance of organic matters, high content of brittle minerals and moderate thermal evolution. “Handsome” means late and weak deformation, favorable deformation mode and structure, and appropriate uplift and current burial depth. “Rich” includes high gas content, high formation pressure coefficient, good reservoir property, favorable reservoir scale transformation and high initial and final output, with relative ease of development and obvious economic benefit. For shale gas enrichment and high yield, it is important that the combination of shale was deposited and formed in excellent conditions (geological construction, and then underwent appropriate tectonic deformation, uplift, and erosion (geological transformation. Evaluation based on geological construction (evolution sequence from formation to the reservoir includes sequence stratigraphy and sediment, hydrocarbon generation and formation of reservoir pores. Based on geological transformation (evolution sequence from the reservoir to preservation, the strata should be evaluated for structural deformation, the formation of reservoir fracture and preservation of shale gas. The evaluation of the “construction - transformation” sequence is to cover the whole process of shale gas formation and preservation. This way, both positive and negative effects of the formation-transformation sequence on shale gas are assessed. The evaluation

  14. Just scratching the surface: If recent experiments are any indication, the real hydrocarbon bonanza could lie ten times deeper than our deepest wells

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.

    2004-11-01

    A recent report from the Lawrence Livermore National Laboratory suggests that methane could be formed in the Earth's searing upper mantle, at depths ten times deeper than the deepest wells ever drilled, containing virtually inexhaustible reserves of energy for future generations to exploit. While the findings are not expected to set off any immediate drilling rush, they do give rise to intriguing questions as to where future drilling will take place and the ultimate volumes of methane that might be found. Various scenarios have been advanced as to the portions of the mantle where conditions for methane formation are met. The most intriguing scenario would be if the mantle-derived hydrocarbons slowly replenished current reservoirs, since it is very difficult to imagine technologies that could significantly extend the currently reachable depths. There are also questions about the origin of these hydrocarbon deposits, and there is lively debate between adherents of biological and abiogenic formation theories. Indeed, there is substantial experimental evidence that hydrocarbons can form and be stable at the high pressures and temperatures of the Earth's mantle. Studies with a diamond anvil cell at temperatures from 500 to 1,500 degrees C and pressures between five and eleven gigapascals (50,000 to 110,000 times atmospheric pressure) demonstrate the existence of abiogenetic pathways for the formation of hydrocarbons and suggest that the hydrocarbon budget of the Earth may be larger than conventionally assumed. These experimental results confirm earlier findings by the late Cornell astronomer Thomas Gold and American physicists John Kenney and Russian researchers Kutcherov, Bendeliani and Aleksev in 2002. Notwithstanding the possibility that hydrocarbons may exist 100 km or deeper underground, it is most unlikely that they could be reached anytime soon. Even if the requisite technology were available, the economics would be prohibitive.

  15. Polycyclic Aromatic Hydrocarbons (PAHs) produced in the combustion of fatty acid alkyl esters from different feedstocks: Quantification, statistical analysis and mechanisms of formation.

    Science.gov (United States)

    Llamas, Alberto; Al-Lal, Ana-María; García-Martínez, María-Jesús; Ortega, Marcelo F; Llamas, Juan F; Lapuerta, Magín; Canoira, Laureano

    2017-05-15

    Polycyclic Aromatic Hydrocarbons (PAHs) are pollutants of concern due to their carcinogenic and mutagenic activity. Their emissions are mainly related with the combustion or pyrolysis of the organic matter, such as in fossil fuels combustion. It is important to characterize PAHs in the combustions of biofuels due to their increasing importance in the actual energetic setting. There is a lot of research focused in PAHs emission due to the combustion in diesel engines; but only few of them have analyzed the effect of raw material and type of alcohol used in the transesterification process. Different raw materials (i.e. animal fat, palm, rapeseed, linseed, peanut, coconut, and soybean oils) have been used for obtaining FAME and FAEE. A method for measuring PAHs generated during combustion in a bomb calorimeter has been developed. Combustion was made at different oxygen pressures and the samples were taken from the bomb after each combustion. Samples were extracted and the PAHs amounts formed during combustion were analyzed by GC-MS. This research shows the statistical relationships among the 16 PAHs of concern, biodiesel composition and oxygen pressure during combustion. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Detailed facies analyses within the Bluell and Sherwood Members, Mission Canyon Formation, North Dakota, USA - Facies stacking patterns, sequence stratigraphy and porosity relationship, consequences for reservoir distribution

    OpenAIRE

    Sjöstedt, Tony

    2017-01-01

    Detailed core analysis from seven wells with cores cut within the overall carbonate succession that makes up the Bluell and Sherwood Members of the Mission Canyon Formation located in Renville County, North Dakota, resulted in the identification of eleven depositional facies. These facies that reflect a range in depositional conditions from inner to back ramp, that is shallow fair-weather to uppermost intertidal and supratidal conditions. Systematic core analysis using a highly detailed digit...

  17. Heavy oil reservoir evaluation : performing an injection test using DST tools in the marine region of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Loaiza, J.; Ruiz, P. [Halliburton, Mexico City (Mexico); Barrera, D.; Gutierrez, F. [Pemex, Mexico City (Mexico)

    2010-07-01

    This paper described an injection test conducted to evaluate heavy oil reserves in an offshore area of Mexico. The drill-stem testing (DST) evaluation used a fluid injection technique in order to eliminate the need for artificial lift and coiled tubing. A pressure transient analysis method was used to determine the static pressure of the reservoir, effective hydrocarbon permeability, and formation damage. Boundary effects were also characterized. The total volume of the fluid injection was determined by analyzing various reservoir parameters. The timing of the shut-in procedure was determined by characterizing rock characteristics and fluids within the reservoir. The mobility and diffusivity relationships between the zones with the injection fluids and reservoir fluids were used to defined sweep fluids. A productivity analysis was used to predict various production scenarios. DST tools were then used to conduct a pressure-production assessment. Case histories were used to demonstrate the method. The studies showed that the method provides a cost-effective means of providing high quality data for productivity analyses. 4 refs., 2 tabs., 15 figs.

  18. Application of microbiological methods for secondary oil recovery from the Carpathian crude oil reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Karaskiewicz, J

    1974-01-01

    The investigation made it possible to isolate from different ecologic environmental (soil, crude oil, formation water, industrial wastes) bacteria cultures of the genus Arthrobacter, Clostridium, Mycobacterium, Peptococcus, and Pseudomonas. These heterotrophic bacteria are characterized by a high metabolic and biogeochemical activity hydrocarbon transformation. Experiments on a technical scale were conducted from 1961 to 1971 in 20 wells; in this study, only the 16 most typical examples are discussed. The experiments were conducted in Carpathian crude oil reservoirs. To each well, a 500:1 mixture of the so-called bacteria vaccine (containing an active biomass of cultures obtained by a specific cultivation method and holding 6 x 10/sup 5/ bacteria cells in 1 ml of fluid, 2,000 kg of molasses, and 50 cu m of water originating from the reservoir submitted to treatment) was injected at 500 to 1,200 m. The intensification of the microbiological processes in the reservoir was observed. This phenomenon occurred not only in the wells to which the bacteria vaccine was injected, but also in the surrounding producing wells. At the same time, an increase in the crude oil production occurred on the average within the range from 20 to 200% and the surpluses of crude oil production continued for 2 to 8 yr. (92 refs.)

  19. Converting high boiling hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Terrisse, H; DuFour, L

    1929-02-12

    A process is given for converting high boiling hydrocarbons into low boiling hydrocarbons, characterized in that the high boiling hydrocarbons are heated to 200 to 500/sup 0/C in the presence of ferrous chloride and of such gases as hydrogen, water gas, and the like gases under a pressure of from 5 to 40 kilograms per square centimeter. The desulfurization of the hydrocarbons occurs simultaneously.

  20. FRACTURED PETROLEUM RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Abbas Firoozabadi

    1999-06-11

    The four chapters that are described in this report cover a variety of subjects that not only give insight into the understanding of multiphase flow in fractured porous media, but they provide also major contribution towards the understanding of flow processes with in-situ phase formation. In the following, a summary of all the chapters will be provided. Chapter I addresses issues related to water injection in water-wet fractured porous media. There are two parts in this chapter. Part I covers extensive set of measurements for water injection in water-wet fractured porous media. Both single matrix block and multiple matrix blocks tests are covered. There are two major findings from these experiments: (1) co-current imbibition can be more efficient than counter-current imbibition due to lower residual oil saturation and higher oil mobility, and (2) tight fractured porous media can be more efficient than a permeable porous media when subjected to water injection. These findings are directly related to the type of tests one can perform in the laboratory and to decide on the fate of water injection in fractured reservoirs. Part II of Chapter I presents modeling of water injection in water-wet fractured media by modifying the Buckley-Leverett Theory. A major element of the new model is the multiplication of the transfer flux by the fractured saturation with a power of 1/2. This simple model can account for both co-current and counter-current imbibition and computationally it is very efficient. It can be orders of magnitude faster than a conventional dual-porosity model. Part II also presents the results of water injection tests in very tight rocks of some 0.01 md permeability. Oil recovery from water imbibition tests from such at tight rock can be as high as 25 percent. Chapter II discusses solution gas-drive for cold production from heavy-oil reservoirs. The impetus for this work is the study of new gas phase formation from in-situ process which can be significantly

  1. Climate modeling - a tool for the assessment of the paleodistribution of source and reservoir rocks

    Energy Technology Data Exchange (ETDEWEB)

    Roscher, M.; Schneider, J.W. [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Geologie; Berner, U. [Bundesanstalt fuer Geowissenschaften und Rohstoffe, Hannover (Germany). Referat Organische Geochemie/Kohlenwasserstoff-Forschung

    2008-10-23

    In an on-going project of BGR and TU Bergakademie Freiberg, numeric paleo-climate modeling is used as a tool for the assessment of the paleo-distribution of organic rich deposits as well as of reservoir rocks. This modeling approach is based on new ideas concerning the formation of the Pangea supercontinent. The new plate tectonic concept is supported by paleo- magnetic data as it fits the 95% confidence interval of published data. Six Permocarboniferous time slices (340, 320, 300, 290, 270, 255 Ma) were chosen within a first paleo-climate modeling approach as they represent the most important changes of the Late Paleozoic climate development. The digital maps have a resolution of 2.8 x 2.8 (T42), suitable for high-resolution climate modeling, using the PLASIM model. CO{sub 2} concentrations of the paleo-atmosphere and paleo-insolation values have been estimated by published methods. For the purpose of validation, quantitative model output, had to be transformed into qualitative parameters in order to be able to compare digital data with qualitative data of geologic indicators. The model output of surface temperatures and precipitation was therefore converted into climate zones. The reconstructed occurrences of geological indicators like aeolian sands, evaporites, reefs, coals, oil source rocks, tillites, phosphorites and cherts were then compared to the computed paleo-climate zones. Examples of the Permian Pangea show a very good agreement between model results and geological indicators. From the modeling approach we are able to identify climatic processes which lead to the deposition of hydrocarbon source and reservoir rocks. The regional assessment of such atmospheric processes may be used for the identification of the paleo-distribution of organic rich deposits or rock types suitable to form hydrocarbon reservoirs. (orig.)

  2. Petroleum geochemical responses to reservoir rock properties

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, B.; Larter, S.R. [Calgary Univ., AB (Canada)

    2008-07-01

    Reservoir geochemistry is used to study petroleum basin development, petroleum mixing, and alterations. In this study, polar non-hydrocarbons were used as proxies for describing reservoir properties sensitive to fluid-rock interactions. A core flood experiment was conducted on a Carboniferous siltstone core obtained from a site in the United Kingdom. Core samples were then obtained from a typical upper shoreface in a North Sea oilfield. The samples were extracted with a dichloromethane and methanol mixture. Alkylcarbazoles and alkylfluorenones were then isolated from the samples. Compositional changes along the core were also investigated. Polar non hydrocarbons were studied using a wireline gamma ray log. The strongest deflections were observed in the basal coarsening upwards unit. The study demonstrated the correlations between molecular markers, and indicated that molecular parameters can be used to differentiate between clean sand units and adjacent coarsening upward muddy sand sequences. It was concluded that reservoir geochemical parameters can provide an independent response to properties defined by petrophysical methods. 6 refs., 2 figs.

  3. ECOLOGICAL BASES OF FORMATION OF THE LAND USE OF THE TERRITORIES OF THE NATURAL RESERVOIR FUND IN THE COMPOSITION OF ECOLOGICAL NETWORK OF UKRAINE

    Directory of Open Access Journals (Sweden)

    Hetmanchik I.

    2017-11-01

    Full Text Available The article highlights ecological and economic measures on the formation of land use territories of the nature reserve fund within the ecological network of Ukraine, its current state and problems, as well as directions of improvement. These measures are directed towards the balanced provision of the needs of the population and sectors of the economy with land resources, rational use and protection of lands, preservation of landscape and biodiversity, creation of environmentally safe living conditions of the population and economic activity and protection of land from depletion, degradation and pollution.

  4. Adsorption of polar aromatic hydrocarbons on synthetic calcite

    DEFF Research Database (Denmark)

    Madsen, Lene; Grahl-Madsen, Laila; Grøn, Christian

    1996-01-01

    The wettability of hydrocarbon reservoirs depends on how and to what extent the organic compounds are adsorbed onto the surfaces of calcite, quartz and clay. A model system of synthetic call cite, cyclohexane and the three probe molecules: benzoic acid, benzyl alcohol and benzylamine, have been...

  5. Analytical determination of low velocity layer in 4-D hydrocarbon ...

    African Journals Online (AJOL)

    Generally, Seismic reflection surveys are done in the oil sectors to determine commercially viable hydrocarbon reservoirs but in most cases reflection records are obscured by wave behaviours in weathering layer. Hence, Up-hole refraction surveys are carried out in 3-D and 4-D prospects with a view to delineating the ...

  6. On-line monitoring of trace compounds in the flue gas of an incineration pilot plant: Formation of polycyclic aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Heger, H. J.; Zimmermann, R.; Dorfner, R.; Kettrup, A.; Boesl, U.

    1998-01-01

    Laser mass spectrometry is applied for on-line analysis of PAHs from a complex flue gas matrix in the combustion chamber of an incineration plant. Process monitoring of industrial processes can be performed. New insights into the formation of toxic combustion byproducts are possible

  7. Modelling of Salt Solubilities for Smart Water flooding in Carbonate Reservoirs using Extended UNIQUAC Model

    DEFF Research Database (Denmark)

    Chakravarty, Krishna Hara

    recovery can increase that capture up to 25-30% of original oil in place (OOIP). But cost effective Enhanced Oil Recovery (EOR) techniques if implemented correctly canbe used to produce another 10-15% of the initially available hydrocarbons. Advanced water flooding (i.e. altering injection brine...... compositions by varying concentration of selected ions) is an enhanced oil recovery method which in alow cost, non-toxic manner increases oil recovery from various carbonate reservoirs. Dan and Halfdan are chalk reservoirs from the Danish North Sea, which are matured oil fields that have been flooded......For most oil reservoirs which were drilled with conventional methods, the expected initial recovery of available hydrocarbons maybe as low as 15% – thusleaving 85+% of hydrocarbons in the reservoir. Implementation of mechanical methods including pump jacks and initial gas injection or thermal...

  8. Seismic data interpretation for hydrocarbon potential, for Safwa/Sabbar field, East Ghazalat onshore area, Abu Gharadig basin, Western Desert, Egypt

    Directory of Open Access Journals (Sweden)

    Naser A. Hameed El Redini

    2017-12-01

    Full Text Available Safwa/Sabbar oil field located in the East Ghazalat Concession in the proven and prolific Abu Gharadig basin, Western Desert, Egypt, and about 250 km to the southwest of Cairo, it’s located in the vicinity of several producing oil fields ranging from small to large size hydrocarbon accumulation, adjacent to the NW-SE trending major Abu Gharadig fault which is throwing to the Southwest.All the geological, “structure and stratigraphic” elements, have been identified after interpreting the recent high quality 3D seismic survey for prospect generation, evaluation and their relation to the hydrocarbon exploration.Synthetic seismograms have been carried out for all available wells to tie horizons to seismic data and to define the lateral variation characters of the beds.The analysis has been done using the suitable seismic attributes to understand the characteristics of different types of the reservoir formations, type of trap system, identify channels and faults, and delineating the stratigraphic plays of good reservoirs such as Eocene Apollonia Limestone, AR “F”, AR “G” members, Upper Bahariya, Jurassic Khatatba Sandstone, upper Safa and Lower Safa Sandstone.The top Cenomanian Bahariya level is the main oil reservoir in the Study area, which consist of Sandstone, Siltstone and Shale, the thickness is varying from 1 to 50 ft along the study area.In addition to Upper-Bahariya there are a good accessibility of hydrocarbon potential within the Jurassic Khatatba Sandstone and the Eocene Apollonia Limestone. More exploring of these reservoirs are important to increase productivity of Oil and/or Gas in the study area.

  9. Reservoir Identification: Parameter Characterization or Feature Classification

    Science.gov (United States)

    Cao, J.

    2017-12-01

    The ultimate goal of oil and gas exploration is to find the oil or gas reservoirs with industrial mining value. Therefore, the core task of modern oil and gas exploration is to identify oil or gas reservoirs on the seismic profiles. Traditionally, the reservoir is identify by seismic inversion of a series of physical parameters such as porosity, saturation, permeability, formation pressure, and so on. Due to the heterogeneity of the geological medium, the approximation of the inversion model and the incompleteness and noisy of the data, the inversion results are highly uncertain and must be calibrated or corrected with well data. In areas where there are few wells or no well, reservoir identification based on seismic inversion is high-risk. Reservoir identification is essentially a classification issue. In the identification process, the underground rocks are divided into reservoirs with industrial mining value and host rocks with non-industrial mining value. In addition to the traditional physical parameters classification, the classification may be achieved using one or a few comprehensive features. By introducing the concept of seismic-print, we have developed a new reservoir identification method based on seismic-print analysis. Furthermore, we explore the possibility to use deep leaning to discover the seismic-print characteristics of oil and gas reservoirs. Preliminary experiments have shown that the deep learning of seismic data could distinguish gas reservoirs from host rocks. The combination of both seismic-print analysis and seismic deep learning is expected to be a more robust reservoir identification method. The work was supported by NSFC under grant No. 41430323 and No. U1562219, and the National Key Research and Development Program under Grant No. 2016YFC0601

  10. Provenance of the Lower Triassic Bunter Sandstone Formation: implications for distribution and architecture of aeolian vs. fluvial reservoirs in the North German Basin

    DEFF Research Database (Denmark)

    Olivarius, Mette; Weibel, Rikke; Friis, Henrik

    2017-01-01

    Zircon U–Pb geochronometry, heavy mineral analyses and conventional seismic reflection data were used to interpret the provenance of the Lower Triassic Bunter Sandstone Formation. The succession was sampled in five Danish wells in the northern part of the North German Basin. The results show...... Shield did not supply much sediment to the basin as opposed to what was previously believed. Sediment from the Variscan belt was transported by wind activity across the North German Basin when it was dried out during deposition of the aeolian part of the Volpriehausen Member (lower Bunter Sandstone......). Fluvial sand was supplied from the Ringkøbing-Fyn High to the basin during precipitation events which occurred most frequently when the Solling Member was deposited (upper Bunter Sandstone). Late Neoproterozoic to Carboniferous zircon ages predominate in the Volpriehausen Member where the dominant age...

  11. Renewable synthesis-gas-production. Do hydrocarbons in the reactant flow of the reverse water-gas shift reaction cause coke formation?

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, A.; Kern, C.; Jess, A. [Bayreuth Univ. (Germany). Dept. of Chemical Engineering

    2013-11-01

    In a two-step synthetic fuel production process based on carbon dioxide and renewable hydrogen, the best possible selectivity towards liquid hydrocarbons (Hc) shall be implemented. The process consists of a combination of the Reverse Water-Gas Shift reaction and the Fischer-Tropsch synthesis. To achieve this goal, gaseous short-chained Hc from the FTS reactor are recycled in the RWGS unit. In this paper, challenges coming up with the implementation of a recycle loop are discussed. First of all, it has to be examined whether Hc are converted under conditions present in the RWGS reactor. The coking caused by the recycle of Hc is regarded, including thermal coking in the heating zone of the reactor and catalytic coking in the catalyst bed. Coking of course is unwanted, as it deactivates the catalyst. The scope of this work is to find out to which extent and under which conditions gaseous Hc can be recycled. Therefore, experiments were carried out in both, a quartz glass reactor using a commercial Ni-catalyst at ambient pressure and in a pressurized steel reactor (without catalyst) to examine coking during the thermal decomposition of Hc. The catalytic experiments at atmospheric pressure showed that a recycle of CH{sub 4} did not cause coking up to a ratio of CH{sub 4}/CO{sub 2} below one. For these conditions, long term stability was proved. The reaction rates of the CH{sub 4} conversion were below those of the RWGS reaction. However, replacing CH{sub 4} by C{sub 3}H{sub 8} leads to thermal and catalytic coking. Catalytic coking hits the maximum level at about 700 C and decreases for higher temperatures and, thus is not regarded as a problem for the RWGS reactor. In contrast to that, thermal coking raises with higher temperatures, but it can be supressed efficiently with additional injection of H{sub 2}O, which of course shifts the equilibrium towards the undesired reactant side. (orig.)

  12. Hydrocarbon-degradation by Isolate Pseudomonas lundensis UTAR FPE2

    Directory of Open Access Journals (Sweden)

    Adeline, S. Y. Ting

    2009-01-01

    Full Text Available In this study, the potential of isolate Pseudomonas lundensis UTAR FPE2 as a hydrocarbon degrader was established. Their biodegradation activity was first detected with the formation of clearing zones on Bushnell-Hass agar plates, with the largest diameter observed on plates supplemented with paraffin, followed by mineral oil and petrol. Utilization of hydrocarbon sources were again detected in broth cultures supplemented with similar hydrocarbon substrates, where the mean viable cell count recovered from hydrocarbon-supplemented broth cultures were higher than the initial inoculum except for napthalene. In both tests, the isolate showed higher degradability towards aliphatic hydrocarbon sources, and the least activity towards the aromatic hydrocarbon naphthalene. The isolate P. lundensis UTAR FPE2 (8 log10 cfu/mL also degraded crude diesel sample, with 69% degradation during the first three days. To conclude, this study suggests the potential use of this isolate for bioremediation of hydrocarbon-contaminated environments.

  13. Hydrodynamic modeling of petroleum reservoirs using simulator MUFITS

    Science.gov (United States)

    Afanasyev, Andrey

    2015-04-01

    MUFITS is new noncommercial software for numerical modeling of subsurface processes in various applications (www.mufits.imec.msu.ru). To this point, the simulator was used for modeling nonisothermal flows in geothermal reservoirs and for modeling underground carbon dioxide storage. In this work, we present recent extension of the code to petroleum reservoirs. The simulator can be applied in conventional black oil modeling, but it also utilizes a more complicated models for volatile oil and gas condensate reservoirs as well as for oil rim fields. We give a brief overview of the code by providing the description of internal representation of reservoir models, which are constructed of grid blocks, interfaces, stock tanks as well as of pipe segments and pipe junctions for modeling wells and surface networks. For conventional black oil approach, we present the simulation results for SPE comparative tests. We propose an accelerated compositional modeling method for sub- and supercritical flows subjected to various phase equilibria, particularly to three-phase equilibria of vapour-liquid-liquid type. The method is based on the calculation of the thermodynamic potential of reservoir fluid as a function of pressure, total enthalpy and total composition and storing its values as a spline table, which is used in hydrodynamic simulation for accelerated PVT properties prediction. We provide the description of both the spline calculation procedure and the flashing algorithm. We evaluate the thermodynamic potential for a mixture of two pseudo-components modeling the heavy and light hydrocarbon fractions. We develop a technique for converting black oil PVT tables to the potential, which can be used for in-situ hydrocarbons multiphase equilibria prediction under sub- and supercritical conditions, particularly, in gas condensate and volatile oil reservoirs. We simulate recovery from a reservoir subject to near-critical initial conditions for hydrocarbon mixture. We acknowledge

  14. DEVELOPMENT OF RESERVOIR CHARACTERIZATION TECHNIQUES AND PRODUCTION MODELS FOR EXPLOITING NATURALLY FRACTURED RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Michael L. Wiggins; Raymon L. Brown; Faruk Civan; Richard G. Hughes

    2002-12-31

    For many years, geoscientists and engineers have undertaken research to characterize naturally fractured reservoirs. Geoscientists have focused on understanding the process of fracturing and the subsequent measurement and description of fracture characteristics. Engineers have concentrated on the fluid flow behavior in the fracture-porous media system and the development of models to predict the hydrocarbon production from these complex systems. This research attempts to integrate these two complementary views to develop a quantitative reservoir characterization methodology and flow performance model for naturally fractured reservoirs. The research has focused on estimating naturally fractured reservoir properties from seismic data, predicting fracture characteristics from well logs, and developing a naturally fractured reservoir simulator. It is important to develop techniques that can be applied to estimate the important parameters in predicting the performance of naturally fractured reservoirs. This project proposes a method to relate seismic properties to the elastic compliance and permeability of the reservoir based upon a sugar cube model. In addition, methods are presented to use conventional well logs to estimate localized fracture information for reservoir characterization purposes. The ability to estimate fracture information from conventional well logs is very important in older wells where data are often limited. Finally, a desktop naturally fractured reservoir simulator has been developed for the purpose of predicting the performance of these complex reservoirs. The simulator incorporates vertical and horizontal wellbore models, methods to handle matrix to fracture fluid transfer, and fracture permeability tensors. This research project has developed methods to characterize and study the performance of naturally fractured reservoirs that integrate geoscience and engineering data. This is an important step in developing exploitation strategies for

  15. Characterization of hydrocarbon utilizing fungi from hydrocarbon ...

    African Journals Online (AJOL)

    Prof. Ogunji

    isolated fungi could be useful in the bioremediation of hydrocarbon polluted sites. Keywords: ... Technologies such as mechanical force, burying, evaporation, dispersant application, and ..... The effects of drilling fluids on marine bacteria from a.

  16. Strontium isotopes as natural tracers in reservoir oilfield and in groundwater systems

    International Nuclear Information System (INIS)

    Santos, Marcos E.; Palmieri, Helena E.L.; Moreira, Rubens M.

    2009-01-01

    The radioactive beta (β - ) decay of 87 Rb to 87 Sr is an important isotope system that has been widely applied for geochronological purposes and in identifying ground water sources, aquifer interactions and as a tracer for a secondary recovery process in offshore oilfields via seawater injection. The 87 Sr/ 86 Sr ratio of present seawater is constant worldwide, while formation waters in hydrocarbon reservoirs have various values are in most cases higher than modern seawater. This can be the basis for a natural tracer technique aiming at evaluating the performance of seawater injection processes by evaluating the 87 Sr/ 86 Sr ratio and the total Sr content of formation waters in the reservoir prior to injection, followed by monitoring these values in the produced water as injection proceeds. Inductively Couple Plasma Mass Spectrometry ICP-MS is a technique that has potential to be used in studies with tracers in the environment in the determination of isotope ratios and element traces in a sample. This work describes the methodology that will be used for the determination of variations in the isotopic composition of Sr and presents the preliminary results obtained determination of the strontium isotope ratios ( 87 Sr/ 86 Sr) using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). (author)

  17. Mineral Dissolution and Precipitation due to Carbon Dioxide-Water-Rock Interactions: The Significance of Accessory Minerals in Carbonate Reservoirs (Invited)

    Science.gov (United States)

    Kaszuba, J. P.; Marcon, V.; Chopping, C.

    2013-12-01

    Accessory minerals in carbonate reservoirs, and in the caprocks that seal these reservoirs, can provide insight into multiphase fluid (CO2 + H2O)-rock interactions and the behavior of CO2 that resides in these water-rock systems. Our program integrates field data, hydrothermal experiments, and geochemical modeling to evaluate CO2-water-rock reactions and processes in a variety of carbonate reservoirs in the Rocky Mountain region of the US. These studies provide insights into a wide range of geologic environments, including natural CO2 reservoirs, geologic carbon sequestration, engineered geothermal systems, enhanced oil and gas recovery, and unconventional hydrocarbon resources. One suite of experiments evaluates the Madison Limestone on the Moxa Arch, Southwest Wyoming, a sulfur-rich natural CO2 reservoir. Mineral textures and geochemical features developed in the experiments suggest that carbonate minerals which constitute the natural reservoir will initially dissolve in response to emplacement of CO2. Euhedral, bladed anhydrite concomitantly precipitates in response to injected CO2. Analogous anhydrite is observed in drill core, suggesting that secondary anhydrite in the natural reservoir may be related to emplacement of CO2 into the Madison Limestone. Carbonate minerals ultimately re-precipitate, and anhydrite dissolves, as the rock buffers the acidity and reasserts geochemical control. Another suite of experiments emulates injection of CO2 for enhanced oil recovery in the Desert Creek Limestone (Paradox Formation), Paradox Basin, Southeast Utah. Euhedral iron oxyhydroxides (hematite) precipitate at pH 4.5 to 5 and low Eh (approximately -0.1 V) as a consequence of water-rock reaction. Injection of CO2 decreases pH to approximately 3.5 and increases Eh by approximately 0.1 V, yielding secondary mineralization of euhedral pyrite instead of iron oxyhydroxides. Carbonate minerals also dissolve and ultimately re-precipitate, as determined by experiments in the

  18. Radar Mapping of Fractures and Fluids in Hydrocarbon Reservoirs

    Science.gov (United States)

    Stolarczyk, L. G.; Wattley, G. G.; Caffey, T. W.

    2001-05-01

    A stepped-frequency radar has been developed for mapping of fractures and fluids within 20 meters of the wellbore. The operating range has been achieved by using a radiating magnetic dipole operating in the low- and medium-frequency bands. Jim Wait has shown that the electromagnetic (EM) wave impedance in an electrically conductive media is largely imaginary, enabling energy to be stored in the near field instead of dissipated, as in the case for an electric dipole. This fact, combined with the low attenuation rate of a low-frequency band EM wave, enables radiation to penetrate deeply into the geology surrounding the wellbore. The radiation pattern features a vertical electric field for optimum electric current induction into vertical fractures. Current is also induced in sedimentary rock creating secondary waves that propagate back to the wellbore. The radiation pattern is electrically driven in azimuth around the wellbore. The receiving antenna is located in the null field of the radiating antenna so that the primary wave is below the thermal noise of the receiver input. By stepping the frequency through the low- and medium-frequency bands, the depth of investigation is varied, and enables electrical conductivity profiling away from the wellbore. Interpretation software has been developed for reconstructive imaging in dipping sedimentary layers. Because electrical conductivity can be related to oil/water saturation, both fractures and fluids can be mapped. Modeling suggests that swarms of fractures can be imaged and fluid type determined. This information will be useful in smart fracking and sealing. Conductivity tomography images will indicate bed dip, oil/water saturation, and map fluids. This paper will provide an overview of the technology development program.

  19. The role of fluid migration system in hydrocarbon accumulation in Maichen Sag, Beibuwan Basin

    Science.gov (United States)

    Liu, Hongyu; Yang, Jinxiu; Wu, Feng; Chen, Wei; Liu, Qianqian

    2018-02-01

    Fluid migration system is of great significance for hydrocarbon accumulation, including the primary migration and secondary migration. In this paper, the fluid migration system is analysed in Maichen Sag using seismic, well logging and core data. Results show that many factors control the hydrocarbon migration process, including hydrocarbon generation and expulsion period from source rocks, microfractures developed in the source rocks, the connected permeable sand bodies, the vertical faults cutting into/through the source rocks and related fault activity period. The spatial and temporal combination of these factors formed an effective network for hydrocarbon expulsion and accumulation, leading to the hydrocarbon reservoir distribution at present. Generally, a better understanding of the hydrocarbon migration system can explain the present status of hydrocarbon distribution, and help select future target zones for oil and gas exploration.

  20. Electrochemical removal of NOx and hydrocarbons

    DEFF Research Database (Denmark)

    Friedberg, Anja Zarah

    on the electrodes during polarisation, probably because of strong adsorption of the hydrocarbon relative to NO. On LSF/CGO electrode the impregnation of ionic conducting material increased the oxidation of NO to NO2 which is an important step before nitrogen formation. The propene inhibited this reaction because....... This could only be done if the electrode was impregnated with BaO. The nitrate formation did not seem to be inhibited by the presence of the hydrocarbon. However, the oxidation of propene was inhibited by the BaO because the active sites for oxidations were partially covered by the BaO nanoparticles...

  1. Characterizing gas shaly sandstone reservoirs using the magnetic resonance technology in the Anaco area, East Venezuela

    Energy Technology Data Exchange (ETDEWEB)

    Fam, Maged; August, Howard [Halliburton, Houston, TX (United States); Zambrano, Carlos; Rivero, Fidel [PDVSA Gas (Venezuela)

    2008-07-01

    With demand for natural gas on the rise every day, accounting for and booking every cubic foot of gas is becoming very important to operators exploiting natural gas reservoirs. The initial estimates of gas reserves are usually established through the use of petrophysical parameters normally based on wireline and/or LWD logs. Conventional logs, such as gamma ray, density, neutron, resistivity and sonic, are traditionally used to calculate these parameters. Sometimes, however, the use of such conventional logs may not be enough to provide a high degree of accuracy in determining these petrophysical parameters, which are critical to reserve estimates. Insufficient accuracy can be due to high complexities in the rock properties and/or a formation fluid distribution within the reservoir layers that is very difficult to characterize with conventional logs alone. The high degree of heterogeneity in the shaly sandstone rock properties of the Anaco area, East Venezuela, can be characterized by clean, high porosity, high permeability sands to very shaly, highly laminated, and low porosity rock. This wide variation in the reservoir properties may pose difficulties in identifying gas bearing zones which may affect the final gas reserves estimates in the area. The application of the magnetic resonance imaging (MRI) logging technology in the area, combined with the application of its latest acquisition and interpretation methods, has proven to be very adequate in detecting and quantifying gas zones as well as providing more realistic petrophysical parameters for better reserve estimates. This article demonstrates the effectiveness of applying the MRI logging technology to obtain improved petrophysical parameters that will help better characterize the shaly-sands of Anaco area gas reservoirs. This article also demonstrates the value of MRI in determining fluid types, including distinguishing between bound water and free water, as well as differentiating between gas and liquid

  2. Hydrocarbons and air pollution

    International Nuclear Information System (INIS)

    Herz, O.

    1992-01-01

    This paper shows the influence of hydrocarbons vapors, emitted by transports or by volatile solvents using, on air pollution. Hydrocarbons are the principal precursors of photochemical pollution. After a brief introduction on atmospheric chemistry and photochemical reactions, the author describes the french prevention program against hydrocarbons emissions. In the last chapter, informations on international or european community programs for photochemical pollution study are given. 5 figs., 10 tabs

  3. Production of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Day, D T; Day, R E

    1920-04-27

    A process is disclosed of converting hydro-carbon oils having high boiling points to hydro-carbon oils having low boiling points, which process comprises adding the oil to be treated to a mass of hydro-carbon oil bearing shale, passing the shale with the oil through a conveyor retort and subjecting the material while in the retort to a heat treatment involving a temperature of at least 500/sup 0/F.

  4. Hydrocarbon Reserves: Abundance or Scarcity

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    of reserves and resources (H. Le Leuch); Additional reserves: the role of new technologies - A global perspective on EORIOR (G. Fries); - Updating reservoir models with dynamic data and uncertainty quantification: an integrated approach (F. Roggero); Seismic technology for the OAPEC countries (P. Canal); Exploration knowledge and technologies: impact of progress - Statistical results (N. Alazard); Stratigraphic modelling as a key to find new potentialities in exploration (D. Granjeon); Modelling hydrocarbon migration as a tool for reserve estimation (J-L. Rudkiewicz); The contribution of surface and near surface geology to hydrocarbon discoveries (S.M. Kumati); Contribution of the exploration activity in renewing reserves - The case of Algeria (R. Lounissi); Egypt's petroleum hydrocarbon potential (H. Hataba); Future of hydrocarbon reserves in Syria (T. Hemsh); Natural gas, the fuel of choice for decades to com (M.F. Chabrelie); The role and importance of Arab natural gas in world market (M. Al-Lababidi); LNG and GTL: two pathways for natural gas utilization (C. Cameron); Yet to find hydrocarbon potential (S. Al Menhali); Libyan context of hydrocarbon reserves: abundance or scarcity? (M. Elazi)

  5. Hydrocarbon Reserves: Abundance or Scarcity

    International Nuclear Information System (INIS)

    2005-01-01

    of reserves and resources (H. Le Leuch); Additional reserves: the role of new technologies - A global perspective on EORIOR (G. Fries); - Updating reservoir models with dynamic data and uncertainty quantification: an integrated approach (F. Roggero); Seismic technology for the OAPEC countries (P. Canal); Exploration knowledge and technologies: impact of progress - Statistical results (N. Alazard); Stratigraphic modelling as a key to find new potentialities in exploration (D. Granjeon); Modelling hydrocarbon migration as a tool for reserve estimation (J-L. Rudkiewicz); The contribution of surface and near surface geology to hydrocarbon discoveries (S.M. Kumati); Contribution of the exploration activity in renewing reserves - The case of Algeria (R. Lounissi); Egypt's petroleum hydrocarbon potential (H. Hataba); Future of hydrocarbon reserves in Syria (T. Hemsh); Natural gas, the fuel of choice for decades to com (M.F. Chabrelie); The role and importance of Arab natural gas in world market (M. Al-Lababidi); LNG and GTL: two pathways for natural gas utilization (C. Cameron); Yet to find hydrocarbon potential (S. Al Menhali); Libyan context of hydrocarbon reserves: abundance or scarcity? (M. Elazi)

  6. Hydrocarbon Reserves: Abundance or Scarcity

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    impact on the growth of reserves and resources (H. Le Leuch); Additional reserves: the role of new technologies - A global perspective on EORIOR (G. Fries); - Updating reservoir models with dynamic data and uncertainty quantification: an integrated approach (F. Roggero); Seismic technology for the OAPEC countries (P. Canal); Exploration knowledge and technologies: impact of progress - Statistical results (N. Alazard); Stratigraphic modelling as a key to find new potentialities in exploration (D. Granjeon); Modelling hydrocarbon migration as a tool for reserve estimation (J-L. Rudkiewicz); The contribution of surface and near surface geology to hydrocarbon discoveries (S.M. Kumati); Contribution of the exploration activity in renewing reserves - The case of Algeria (R. Lounissi); Egypt's petroleum hydrocarbon potential (H. Hataba); Future of hydrocarbon reserves in Syria (T. Hemsh); Natural gas, the fuel of choice for decades to com (M.F. Chabrelie); The role and importance of Arab natural gas in world market (M. Al-Lababidi); LNG and GTL: two pathways for natural gas utilization (C. Cameron); Yet to find hydrocarbon potential (S. Al Menhali); Libyan context of hydrocarbon reserves: abundance or scarcity? (M. Elazi)

  7. Characteristics of volcanic reservoirs and distribution rules of effective reservoirs in the Changling fault depression, Songliao Basin

    Directory of Open Access Journals (Sweden)

    Pujun Wang

    2015-11-01

    Full Text Available In the Songliao Basin, volcanic oil and gas reservoirs are important exploration domains. Based on drilling, logging, and 3D seismic (1495 km2 data, 546 sets of measured physical properties and gas testing productivity of 66 wells in the Changling fault depression, Songliao Basin, eruptive cycles and sub-lithofacies were distinguished after lithologic correction of the 19,384 m volcanic well intervals, so that a quantitative analysis was conducted on the relation between the eruptive cycles, lithologies and lithofacies and the distribution of effective reservoirs. After the relationship was established between lithologies, lithofacies & cycles and reservoir physical properties & oil and gas bearing situations, an analysis was conducted on the characteristics of volcanic reservoirs and the distribution rules of effective reservoirs. It is indicated that 10 eruptive cycles of 3 sections are totally developed in this area, and the effective reservoirs are mainly distributed at the top cycles of eruptive sequences, with those of the 1st and 3rd Members of Yingcheng Formation presenting the best reservoir properties. In this area, there are mainly 11 types of volcanic rocks, among which rhyolite, rhyolitic tuff, rhyolitic tuffo lava and rhyolitic volcanic breccia are the dominant lithologies of effective reservoirs. In the target area are mainly developed 4 volcanic lithofacies (11 sub-lithofacies, among which upper sub-lithofacies of effusive facies and thermal clastic sub-lithofacies of explosion lithofacies are predominant in effective reservoirs. There is an obvious corresponding relationship between the physical properties of volcanic reservoirs and the development degree of effective reservoirs. The distribution of effective reservoirs is controlled by reservoir physical properties, and the formation of effective reservoirs is influenced more by porosity than by permeability. It is concluded that deep volcanic gas exploration presents a good

  8. Integrating gravimetric and interferometric synthetic aperture radar data for enhancing reservoir history matching of carbonate gas and volatile oil reservoirs

    KAUST Repository

    Katterbauer, Klemens

    2016-08-25

    Reservoir history matching is assuming a critical role in understanding reservoir characteristics, tracking water fronts, and forecasting production. While production data have been incorporated for matching reservoir production levels and estimating critical reservoir parameters, the sparse spatial nature of this dataset limits the efficiency of the history matching process. Recently, gravimetry techniques have significantly advanced to the point of providing measurement accuracy in the microgal range and consequently can be used for the tracking of gas displacement caused by water influx. While gravity measurements provide information on subsurface density changes, i.e., the composition of the reservoir, these data do only yield marginal information about temporal displacements of oil and inflowing water. We propose to complement gravimetric data with interferometric synthetic aperture radar surface deformation data to exploit the strong pressure deformation relationship for enhancing fluid flow direction forecasts. We have developed an ensemble Kalman-filter-based history matching framework for gas, gas condensate, and volatile oil reservoirs, which synergizes time-lapse gravity and interferometric synthetic aperture radar data for improved reservoir management and reservoir forecasts. Based on a dual state-parameter estimation algorithm separating the estimation of static reservoir parameters from the dynamic reservoir parameters, our numerical experiments demonstrate that history matching gravity measurements allow monitoring the density changes caused by oil-gas phase transition and water influx to determine the saturation levels, whereas the interferometric synthetic aperture radar measurements help to improve the forecasts of hydrocarbon production and water displacement directions. The reservoir estimates resulting from the dual filtering scheme are on average 20%-40% better than those from the joint estimation scheme, but require about a 30% increase in

  9. Morrowan stratigraphy, depositional systems, and hydrocarbon accumulation, Sorrento field, Cheyenne County, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Orchard, D.M.; Kidwell, M.R.

    1983-08-01

    The Sorrento field, located on the western flank of the present-day Las Animas arch in western Cheyenne County, Colorado, has approximately 29 million bbl of oil and 12 bcf of gas in place in sandstones of the Lower Pennsylvanian Morrow units. The sandstones were deposited in a fluvially dominated deltaic system, and the trap for the hydrocarbon accumulation is formed by pinch-out of this deltaic system onto regional dip. The primary reservoirs are point-bar deposits. At the Sorrento field, the basal Keyes limestone member of the Morrow formation rests unconformably on the Mississippian St. Louis Formation. Above the Keyes limestone, the Morrow shale is 180 to 214 ft (55 to 65 m) thick, and locally contains reservoir sands. Gas/oil and oil/water contacts are not uniform through the field owing to discontinuities between separate point bars. One such discontinuity is formed by an apparent mud plug of an abandoned channel separating two point bars on the southeastern end of the field. In a well 7000 ft (2100 m) from the edge of the meander belt, the regressive sequence is represented by a shoreline siltstone unit 8 ft (2 m) thick with flaser bedding, graded bedding, load structures, and rare wave-ripple cross-bedding overlain by 3 ft (1 m) of flood-plain mudstone and coal with no indication of proximity to a nearby sand system.

  10. Hydrocarbon potential of the Trinidad area - 1977

    Energy Technology Data Exchange (ETDEWEB)

    Persad, K.M.

    1978-06-01

    It is recognized that deltaic and associated sands, together with porous marine limestones, form the vast majority of the reservoirs in the major accumulations of hydrocarbons throughout the world. The source of the hydrocarbons is now thought to be kerogen which is generated from the organic content of principally marine shales which are formed in or near the continental shelves. The Trinidad area contains several sedimentary subbasins, most of which consist largely of deltaic and associated sediments. These sediments, like most of the ancient deltas of the world, contain major reserves of oil and gas. Other less important reserves should occur in sporadic (time-wise) porous limestones. The total proven and probable reserves of the Trinidad area are around 5 billion bbl of oil, of which 1.6 billion bbl already have been produced, and over 47 TCF of gas.

  11. AD1995: NW Europe's hydrocarbon industry

    International Nuclear Information System (INIS)

    Glennie, K.; Hurst, A.

    1996-01-01

    This volume concerns itself with wide-ranging aspects of the upstream hydro-carbon industry over the whole of NW Europe. As such, the book contrasts with many thematic volumes by presenting a broad range of topics side-by-side. One section of the book looks back at the history of geological exploration and production, and provides an overview of hydrocarbon exploration across NW Europe. Another section covers the state of the art in hydrocarbon exploration and production. This includes an update on computer-based basin modelling overpressure systems, innovations in reservoir engineering and reserve estimation, 3D seismic and the geochemical aspects of secondary migration. The final section of the book takes a look into the future. This covers the remaining hydrocarbon resources of the North Sea, managing risk in oil field development, oil field economics, and pollution and the environment. It is the editors' hope that several key areas of NW Europe's upstream oil industry have been usefully summarized in the volume. (Author)

  12. Optimized CO{sub 2} miscible hydrocarbon fracturing fluids

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, R.S.; Funkhouser, G.P.; Fyten, G.; Attaway, D.; Watkins, H. [Halliburton Energy Services, Calgary, AB (Canada); Lestz, R.S. [Chevron Canada Resources, Calgary, AB (Canada); Loree, D. [FracEx Inc. (Canada)

    2006-07-01

    Carbon dioxide (CO{sub 2}) miscible hydrocarbon fracturing fluids address issues of fluid retention in low-permeability gas reservoirs, including undersaturated and underpressured reservoirs. An optimized surfactant gel technology using carbon dioxide (CO{sub 2}) hydrocarbon fracturing fluids applicable to all gas-well stimulation applications was discussed in this paper. The crosslinked surfactant gel technology improved proppant transport, leakoff control, and generation of effective fracture half-length. Tests indicated that application of the surfactant cooled the fracture face, which had the effect of extending break times and increasing viscosity during pumping periods. Rapid recovery of the fracturing fluid eliminated the need for swabbing in some cases, and the fluid system was not adversely affected by shear. However, rheological test equipment capable of mixing liquid CO{sub 2} and viscosified hydrocarbons at downhole temperatures is required to determine rheology and required chemical concentrations. It was recommended that to achieve an effective methane-drive cleanup mechanism, treatments should be designed so that the gellant system can be effective with up to 50 per cent CO{sub 2} dissolved in oil. It was concluded that it should be possible to apply the technology to low permeability gas reservoirs. Viscosity curves and friction data were presented. Issues concerning the selection of tubulars and flowback procedures were also discussed. It was suggested that the cost of the hydrocarbon fracturing fluid can be recovered by the sale of recovered load fluid. 6 refs., 4 figs.

  13. Evaluating the utility of hydrocarbons for Re-Os geochronology : establishing the timing of processes in petroleum ore systems

    Energy Technology Data Exchange (ETDEWEB)

    Selby, D.; Creaser, R.A. [Alberta Univ., Edmonton, AB (Canada). Dept. of Earth and Atmospheric Sciences

    2005-07-01

    Oil from 6 Alberta oil sands deposits were analyzed with a rhenium-osmium (Re-Os) isotope chronometer, an emerging tool for determining valuable age information on the timing of petroleum generation and migration. The tool uses molybdenite and other sulphide minerals to establish the timing and duration of mineralization. However, establishing the timing events of petroleum systems can be problematic because viable sulphides for the Re-Os chronometer are often not available. Therefore, the known presence of Re and Os associated with organic matter in black shale, a common source of hydrocarbons, may suggest that bitumen and petroleum common to petroleum systems may be utilised for Re-Os geochronology. This study evaluated the potential of the Re-Os isotopic system for geochronology and as an isotopic tracer for hydrocarbon systems. The evaluation was based on Re-Os isotopic analyses of bitumen and oil sands. Hydrocarbons formed from migrated oil in both Alberta oil sand deposits and a Paleozoic Mississippi Valley-type lead-zinc deposit contain significant Re and Os contents with high {sup 187}Re/{sup 188}Os and radiogenic {sup 187}Os/{sup 188}Os ratios suitable for geochronology. The oil from the 6 Alberta oil sand deposits yields Re-Os analyses with very high Re/{sup 188}Os ratios, and radiogenic Os isotopic compositions. Regression of the Re-Os data yields a date of 116 {+-} 27 Ma. This date plausibly represents the period of in situ radiogenic growth of {sup 187}Os following hydrocarbon migration and reservoir filling. Therefore, directly dating these processes, and this formation age corresponds with recent burial history models for parts of the Western Canada Sedimentary Basin. The very high initial {sup 187}Os/{sup 188}Os for this regression requires rocks much older than Cretaceous for the hydrocarbon source.

  14. Plasma devices for hydrocarbon reformation

    KAUST Repository

    Cha, Min

    2017-01-01

    Plasma devices for hydrocarbon reformation are provided. Methods of using the devices for hydrocarbon reformation are also provided. The devices can include a liquid container to receive a hydrocarbon source, and a plasma torch configured

  15. Relative influence of deposition and diagenesis on carbonate reservoir layering

    Energy Technology Data Exchange (ETDEWEB)

    Poli, Emmanuelle [Total E and P, Courbevoie (France); Javaux, Catherine [Total E and P, Pointe Noire (Congo)

    2008-07-01

    The architecture heterogeneities and petrophysical properties of carbonate reservoirs result from a combination of platform morphology, related depositional environments, relative sea level changes and diagenetic events. The reservoir layering built for static and dynamic modelling purposes should reflect the key heterogeneities (depositional or diagenetic) which govern the fluid flow patterns. The layering needs to be adapted to the goal of the modelling, ranging from full field computations of hydrocarbon volumes, to sector-based fine-scale simulations to test the recovery improvement. This paper illustrates various reservoir layering types, including schemes dominated by depositional architecture, and those more driven by the diagenetic overprint. The examples include carbonate platform reservoirs from different stratigraphic settings (Tertiary, Cretaceous, Jurassic and Permian) and different regions (Europe, Africa and Middle East areas). This review shows how significant stratigraphic surfaces (such as sequence boundaries or maximum flooding) with their associated facies shifts, can be often considered as key markers to constrain the reservoir layering. Conversely, how diagenesis (dolomitization and karst development), resulting in units with particular poroperm characteristics, may significantly overprint the primary reservoir architecture by generating flow units which cross-cut depositional sequences. To demonstrate how diagenetic processes can create reservoir bodies with geometries that cross-cut the depositional fabric, different types of dolomitization and karst development are illustrated. (author)

  16. Rupture Dynamics and Scaling Behavior of Hydraulically Stimulated Micro-Earthquakes in a Shale Reservoir

    Science.gov (United States)

    Viegas, G. F.; Urbancic, T.; Baig, A. M.

    2014-12-01

    In hydraulic fracturing completion programs fluids are injected under pressure into fractured rock formations to open escape pathways for trapped hydrocarbons along pre-existing and newly generated fractures. To characterize the failure process, we estimate static and dynamic source and rupture parameters, such as dynamic and static stress drop, radiated energy, seismic efficiency, failure modes, failure plane orientations and dimensions, and rupture velocity to investigate the rupture dynamics and scaling relations of micro-earthquakes induced during a hydraulic fracturing shale completion program in NE British Columbia, Canada. The relationships between the different parameters combined with the in-situ stress field and rock properties provide valuable information on the rupture process giving insights into the generation and development of the fracture network. Approximately 30,000 micro-earthquakes were recorded using three multi-sensor arrays of high frequency geophones temporarily placed close to the treatment area at reservoir depth (~2km). On average the events have low radiated energy, low dynamic stress and low seismic efficiency, consistent with the obtained slow rupture velocities. Events fail in overshoot mode (slip weakening failure model), with fluids lubricating faults and decreasing friction resistance. Events occurring in deeper formations tend to have faster rupture velocities and are more efficient in radiating energy. Variations in rupture velocity tend to correlate with variation in depth, fault azimuth and elapsed time, reflecting a dominance of the local stress field over other factors. Several regions with different characteristic failure modes are identifiable based on coherent stress drop, seismic efficiency, rupture velocities and fracture orientations. Variations of source parameters with rock rheology and hydro-fracture fluids are also observed. Our results suggest that the spatial and temporal distribution of events with similar

  17. Preliminary Geospatial Analysis of Arctic Ocean Hydrocarbon Resources

    Energy Technology Data Exchange (ETDEWEB)

    Long, Philip E.; Wurstner, Signe K.; Sullivan, E. C.; Schaef, Herbert T.; Bradley, Donald J.

    2008-10-01

    Ice coverage of the Arctic Ocean is predicted to become thinner and to cover less area with time. The combination of more ice-free waters for exploration and navigation, along with increasing demand for hydrocarbons and improvements in technologies for the discovery and exploitation of new hydrocarbon resources have focused attention on the hydrocarbon potential of the Arctic Basin and its margins. The purpose of this document is to 1) summarize results of a review of published hydrocarbon resources in the Arctic, including both conventional oil and gas and methane hydrates and 2) develop a set of digital maps of the hydrocarbon potential of the Arctic Ocean. These maps can be combined with predictions of ice-free areas to enable estimates of the likely regions and sequence of hydrocarbon production development in the Arctic. In this report, conventional oil and gas resources are explicitly linked with potential gas hydrate resources. This has not been attempted previously and is particularly powerful as the likelihood of gas production from marine gas hydrates increases. Available or planned infrastructure, such as pipelines, combined with the geospatial distribution of hydrocarbons is a very strong determinant of the temporal-spatial development of Arctic hydrocarbon resources. Significant unknowns decrease the certainty of predictions for development of hydrocarbon resources. These include: 1) Areas in the Russian Arctic that are poorly mapped, 2) Disputed ownership: primarily the Lomonosov Ridge, 3) Lack of detailed information on gas hydrate distribution, and 4) Technical risk associated with the ability to extract methane gas from gas hydrates. Logistics may control areas of exploration more than hydrocarbon potential. Accessibility, established ownership, and leasing of exploration blocks may trump quality of source rock, reservoir, and size of target. With this in mind, the main areas that are likely to be explored first are the Bering Strait and Chukchi

  18. The origin of high hydrocarbon groundwater in shallow Triassic aquifer in Northwest Guizhou, China.

    Science.gov (United States)

    Liu, Shan; Qi, Shihua; Luo, Zhaohui; Liu, Fangzhi; Ding, Yang; Huang, Huanfang; Chen, Zhihua; Cheng, Shenggao

    2018-02-01

    Original high hydrocarbon groundwater represents a kind of groundwater in which hydrocarbon concentration exceeds 0.05 mg/L. The original high hydrocarbon will significantly reduce the environment capacity of hydrocarbon and lead environmental problems. For the past 5 years, we have carried out for a long-term monitoring of groundwater in shallow Triassic aquifer in Northwest Guizhou, China. We found the concentration of petroleum hydrocarbon was always above 0.05 mg/L. The low-level anthropogenic contamination cannot produce high hydrocarbon groundwater in the area. By using hydrocarbon potential, geochemistry and biomarker characteristic in rocks and shallow groundwater, we carried out a comprehensive study in Dalongjing (DLJ) groundwater system to determine the hydrocarbon source. We found a simplex hydrogeology setting, high-level water-rock-hydrocarbon interaction and obviously original hydrocarbon groundwater in DLJ system. The concentration of petroleum hydrocarbon in shallow aquifer was found to increase with the strong water-rock interaction. Higher hydrocarbon potential was found in the upper of Guanling formation (T 2 g 3 ) and upper of Yongningzhen formation (T 1 yn 4 ). Heavily saturated carbon was observed from shallow groundwater, which presented similar distribution to those from rocks, especially from the deeper groundwater. These results indicated that the high concentrations of original hydrocarbon in groundwater could be due to the hydrocarbon release from corrosion and extraction out of strata over time.

  19. Sediment management for reservoir

    International Nuclear Information System (INIS)

    Rahman, A.

    2005-01-01

    All natural lakes and reservoirs whether on rivers, tributaries or off channel storages are doomed to be sited up. Pakistan has two major reservoirs of Tarbela and Managla and shallow lake created by Chashma Barrage. Tarbela and Mangla Lakes are losing their capacities ever since first impounding, Tarbela since 1974 and Mangla since 1967. Tarbela Reservoir receives average annual flow of about 62 MAF and sediment deposits of 0.11 MAF whereas Mangla gets about 23 MAF of average annual flows and is losing its storage at the rate of average 34,000 MAF annually. The loss of storage is a great concern and studies for Tarbela were carried out by TAMS and Wallingford to sustain its capacity whereas no study has been done for Mangla as yet except as part of study for Raised Mangla, which is only desk work. Delta of Tarbala reservoir has advanced to about 6.59 miles (Pivot Point) from power intakes. In case of liquefaction of delta by tremor as low as 0.12g peak ground acceleration the power tunnels I, 2 and 3 will be blocked. Minimum Pool of reservoir is being raised so as to check the advance of delta. Mangla delta will follow the trend of Tarbela. Tarbela has vast amount of data as reservoir is surveyed every year, whereas Mangla Reservoir survey was done at five-year interval, which has now been proposed .to be reduced to three-year interval. In addition suspended sediment sampling of inflow streams is being done by Surface Water Hydrology Project of WAPDA as also some bed load sampling. The problem of Chasma Reservoir has also been highlighted, as it is being indiscriminately being filled up and drawdown several times a year without regard to its reaction to this treatment. The Sediment Management of these reservoirs is essential and the paper discusses pros and cons of various alternatives. (author)

  20. Optimising reservoir operation

    DEFF Research Database (Denmark)

    Ngo, Long le

    Anvendelse af optimeringsteknik til drift af reservoirer er blevet et væsentligt element i vandressource-planlægning og -forvaltning. Traditionelt har reservoirer været styret af heuristiske procedurer for udtag af vand, suppleret i en vis udstrækning af subjektive beslutninger. Udnyttelse af...... reservoirer involverer en lang række interessenter med meget forskellige formål (f.eks. kunstig vanding, vandkraft, vandforsyning mv.), og optimeringsteknik kan langt bedre lede frem til afbalancerede løsninger af de ofte modstridende interesser. Afhandlingen foreslår en række tiltag, hvormed traditionelle...

  1. Integration of Seismic and Petrophysics to Characterize Reservoirs in “ALA” Oil Field, Niger Delta

    Directory of Open Access Journals (Sweden)

    P. A. Alao

    2013-01-01

    Full Text Available In the exploration and production business, by far the largest component of geophysical spending is driven by the need to characterize (potential reservoirs. The simple reason is that better reservoir characterization means higher success rates and fewer wells for reservoir exploitation. In this research work, seismic and well log data were integrated in characterizing the reservoirs on “ALA” field in Niger Delta. Three-dimensional seismic data was used to identify the faults and map the horizons. Petrophysical parameters and time-depth structure maps were obtained. Seismic attributes was also employed in characterizing the reservoirs. Seven hydrocarbon-bearing reservoirs with thickness ranging from 9.9 to 71.6 m were delineated. Structural maps of horizons in six wells containing hydrocarbon-bearing zones with tops and bottoms at range of −2,453 to −3,950 m were generated; this portrayed the trapping mechanism to be mainly fault-assisted anticlinal closures. The identified prospective zones have good porosity, permeability, and hydrocarbon saturation. The environments of deposition were identified from log shapes which indicate a transitional-to-deltaic depositional environment. In this research work, new prospects have been recommended for drilling and further research work. Geochemical and biostratigraphic studies should be done to better characterize the reservoirs and reliably interpret the depositional environments.

  2. Integration of seismic and petrophysics to characterize reservoirs in "ALA" oil field, Niger Delta.

    Science.gov (United States)

    Alao, P A; Olabode, S O; Opeloye, S A

    2013-01-01

    In the exploration and production business, by far the largest component of geophysical spending is driven by the need to characterize (potential) reservoirs. The simple reason is that better reservoir characterization means higher success rates and fewer wells for reservoir exploitation. In this research work, seismic and well log data were integrated in characterizing the reservoirs on "ALA" field in Niger Delta. Three-dimensional seismic data was used to identify the faults and map the horizons. Petrophysical parameters and time-depth structure maps were obtained. Seismic attributes was also employed in characterizing the reservoirs. Seven hydrocarbon-bearing reservoirs with thickness ranging from 9.9 to 71.6 m were delineated. Structural maps of horizons in six wells containing hydrocarbon-bearing zones with tops and bottoms at range of -2,453 to -3,950 m were generated; this portrayed the trapping mechanism to be mainly fault-assisted anticlinal closures. The identified prospective zones have good porosity, permeability, and hydrocarbon saturation. The environments of deposition were identified from log shapes which indicate a transitional-to-deltaic depositional environment. In this research work, new prospects have been recommended for drilling and further research work. Geochemical and biostratigraphic studies should be done to better characterize the reservoirs and reliably interpret the depositional environments.

  3. Pore Characterization of Shale Rock and Shale Interaction with Fluids at Reservoir Pressure-Temperature Conditions Using Small-Angle Neutron Scattering

    Science.gov (United States)

    Ding, M.; Hjelm, R.; Watkins, E.; Xu, H.; Pawar, R.

    2015-12-01

    Oil/gas produced from unconventional reservoirs has become strategically important for the US domestic energy independence. In unconventional realm, hydrocarbons are generated and stored in nanopores media ranging from a few to hundreds of nanometers. Fundamental knowledge of coupled thermo-hydro-mechanical-chemical (THMC) processes that control fluid flow and propagation within nano-pore confinement is critical for maximizing unconventional oil/gas production. The size and confinement of the nanometer pores creates many complex rock-fluid interface interactions. It is imperative to promote innovative experimental studies to decipher physical and chemical processes at the nanopore scale that govern hydrocarbon generation and mass transport of hydrocarbon mixtures in tight shale and other low permeability formations at reservoir pressure-temperature conditions. We have carried out laboratory investigations exploring quantitative relationship between pore characteristics of the Wolfcamp shale from Western Texas and the shale interaction with fluids at reservoir P-T conditions using small-angle neutron scattering (SANS). We have performed SANS measurements of the shale rock in single fluid (e.g., H2O and D2O) and multifluid (CH4/(30% H2O+70% D2O)) systems at various pressures up to 20000 psi and temperature up to 150 oF. Figure 1 shows our SANS data at different pressures with H2O as the pressure medium. Our data analysis using IRENA software suggests that the principal changes of pore volume in the shale occurred on smaller than 50 nm pores and pressure at 5000 psi (Figure 2). Our results also suggest that with increasing P, more water flows into pores; with decreasing P, water is retained in the pores.

  4. Characterization of fracture reservoirs using static and dynamic data: From sonic and 3D seismic to permeability distribution. Annual report, March 1, 1996--February 28, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Parra, J.O.; Collier, H.A.; Owen, T.E. [and others

    1997-06-01

    In low porosity, low permeability zones, natural fractures are the primary source of permeability which affect both production and injection of fluids. The open fractures do not contribute much to porosity, but they provide an increased drainage network to any porosity. They also may connect the borehole to remote zones of better reservoir characteristics. An important approach to characterizing the fracture orientation and fracture permeability of reservoir formations is one based on the effects of such conditions on the propagation of acoustic and seismic waves in the rock. The project is a study directed toward the evaluation of acoustic logging and 3D-seismic measurement techniques as well as fluid flow and transport methods for mapping permeability anisotropy and other petrophysical parameters for the understanding of the reservoir fracture systems and associated fluid dynamics. The principal application of these measurement techniques and methods is to identify and investigate the propagation characteristics of acoustic and seismic waves in the Twin Creek hydrocarbon reservoir owned by Union Pacific Resources (UPR) and to characterize the fracture permeability distribution using production data. This site is located in the overthrust area of Utah and Wyoming. UPR drilled six horizontal wells, and presently UPR has two rigs running with many established drill hole locations. In addition, there are numerous vertical wells that exist in the area as well as 3D seismic surveys. Each horizontal well contains full FMS logs and MWD logs, gamma logs, etc.

  5. Advanced reservoir characterization in the Antelope Shale to establish the viability of CO{sub 2} enhanced oil recovery in California`s Monterey Formation siliceous shales. Annual report, February 12, 1996--February 11, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Toronyi, R.M.

    1997-12-01

    The Buena Vista Hills field is located about 25 miles southwest of Bakersfield, in Kern County, California, about two miles north of the city of Taft, and five miles south of the Elk Hills field. The Antelope Shale zone was discovered at the Buena Vista Hills field in 1952, and has since been under primary production. Little research was done to improve the completion techniques during the development phase in the 1950s, so most of the wells are completed with about 1000 ft of slotted liner. The proposed pilot consists of four existing producers on 20 acre spacing with a new 10 acre infill well drilled as the pilot CO{sub 2} injector. Most of the reservoir characterization of the first phase of the project will be performed using data collected in the pilot pattern wells. This is the first annual report of the project. It covers the period February 12, 1996 to February 11, 1997. During this period the Chevron Murvale 653Z-26B well was drilled in Section 26-T31S/R23E in the Buena Vista Hills field, Kern County, California. The Monterey Formation equivalent Brown and Antelope Shales were continuously cored, the zone was logged with several different kinds of wireline logs, and the well was cased to a total depth of 4907 ft. Core recovery was 99.5%. Core analyses that have been performed include Dean Stark porosity, permeability and fluid saturations, field wettability, anelastic strain recovery, spectral core gamma, profile permeametry, and photographic imaging. Wireline log analysis includes mineral-based error minimization (ELAN), NMR T2 processing, and dipole shear wave anisotropy. A shear wave vertical seismic profile was acquired after casing was set and processing is nearly complete.

  6. 3D geomechanical modeling and numerical simulation of in-situ stress fields in shale reservoirs: A case study of the lower Cambrian Niutitang formation in the Cen'gong block, South China

    Science.gov (United States)

    Liu, Jingshou; Ding, Wenlong; Yang, Haimeng; Wang, Ruyue; Yin, Shuai; Li, Ang; Fu, Fuquan

    2017-08-01

    An analysis of the in-situ state of stress in a shale reservoir was performed based on comprehensive information about the subsurface properties from wellbores established during the development of an oil and gas field. Industrial-level shale gas production has occurred in the Niutitang formation of the lower Cambrian Cen'gong block, South China. In this study, data obtained from hydraulic fracturing, drilling-induced fractures, borehole breakout, global positioning system (GPS), and well deviation statistics have been used to determine the orientation of the maximum horizontal principal stress. Additionally, hydraulic fracturing and multi-pole array acoustic logging (XMAC) were used to determine the vertical variations in the in-situ stress magnitude. Based on logging interpretation and mechanical experiments, the spatial distributions of mechanical parameters were obtained by seismic inversion, and a 3D heterogeneous geomechanical model was established using a finite element stress analysis approach to simulate the in-situ stress fields. The effects of depth, faults, rock mechanics, and layer variations on the principal stresses, horizontal stress difference (Δσ), horizontal stress difference coefficient (Kh), and stress type coefficient (Sp) were determined. The results show that the direction of the maximum principal stress is ESE 120°. Additionally, the development zones of natural fractures appear to correlate with regions with high principal stress differences. At depths shallower than 375 m, the stress type is mainly a thrust faulting stress regime. At depths ranging from 375 to 950 m, the stress type is mainly a strike-slip faulting stress regime. When the depth is > 950 m, the stress type is mainly a normal faulting stress regime. Depth, fault orientation, and rock mechanics all affect the type of stress. The knowledge regarding the Cen'gong block is reliable and can improve borehole stability, casing set point determination, well deployment

  7. Palynofacies characterization for hydrocarbon source rock ...

    Indian Academy of Sciences (India)

    source rock potential of the Subathu Formation in the area. Petroleum geologists are well aware of the fact that the dispersed organic matter derived either from marine or non-marine sediments on reach- ing its maturation level over extended period of time contributes as source material for the produc- tion of hydrocarbons.

  8. Plasma devices for hydrocarbon reformation

    KAUST Repository

    Cha, Min Suk

    2017-02-16

    Plasma devices for hydrocarbon reformation are provided. Methods of using the devices for hydrocarbon reformation are also provided. The devices can include a liquid container to receive a hydrocarbon source, and a plasma torch configured to be submerged in the liquid. The plasma plume from the plasma torch can cause reformation of the hydrocarbon. The device can use a variety of plasma torches that can be arranged in a variety of positions in the liquid container. The devices can be used for the reformation of gaseous hydrocarbons and/or liquid hydrocarbons. The reformation can produce methane, lower hydrocarbons, higher hydrocarbons, hydrogen gas, water, carbon dioxide, carbon monoxide, or a combination thereof.

  9. Metformin inhibits 7,12-dimethylbenz[a]anthracene-induced breast carcinogenesis and adduct formation in human breast cells by inhibiting the cytochrome P4501A1/aryl hydrocarbon receptor signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Maayah, Zaid H. [Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451 (Saudi Arabia); Ghebeh, Hazem [Stem Cell & Tissue Re-Engineering, King Faisal Specialist Hospital and Research Center, Riyadh 11211 (Saudi Arabia); Alhaider, Abdulqader A. [Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451 (Saudi Arabia); Camel Biomedical Research Unit, College of Pharmacy and Medicine, King Saud University, Riyadh 11451 (Saudi Arabia); El-Kadi, Ayman O.S. [Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton (Canada); Soshilov, Anatoly A.; Denison, Michael S. [Department of Environmental Toxicology, University of California at Davis, Davis, CA 95616 (United States); Ansari, Mushtaq Ahmad [Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451 (Saudi Arabia); Korashy, Hesham M., E-mail: hkorashy@ksu.edu.sa [Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451 (Saudi Arabia)

    2015-04-15

    Recent studies have established that metformin (MET), an oral anti-diabetic drug, possesses antioxidant activity and is effective against different types of cancer in several carcinogen-induced animal models and cell lines. However, whether MET can protect against breast cancer has not been reported before. Therefore, the overall objectives of the present study are to elucidate the potential chemopreventive effect of MET in non-cancerous human breast MCF10A cells and explore the underlying mechanism involved, specifically the role of cytochrome P4501A1 (CYP1A1)/aryl hydrocarbon receptor (AhR) pathway. Transformation of the MCF10A cells into initiated breast cancer cells with DNA adduct formation was conducted using 7,12-dimethylbenz[a]anthracene (DMBA), an AhR ligand. The chemopreventive effect of MET against DMBA-induced breast carcinogenesis was evidenced by the capability of MET to restore the induction of the mRNA levels of basic excision repair genes, 8-oxoguanine DNA glycosylase (OGG1) and apurinic/apyrimidinic endonuclease1 (APE1), and the level of 8-hydroxy-2-deoxyguanosine (8-OHdG). Interestingly, the inhibition of DMBA-induced DNA adduct formation was associated with proportional decrease in CYP1A1 and in NAD(P)H:quinone oxidoreductase 1 (NQO1) gene expression. Mechanistically, the involvements of AhR and nuclear factor erythroid 2-related factor-2 (Nrf2) in the MET-mediated inhibition of DMBA-induced CYP1A1 and NQO1 gene expression were evidenced by the ability of MET to inhibit DMBA-induced xenobiotic responsive element and antioxidant responsive element luciferase reporter gene expression which suggests an AhR- and Nrf2-dependent transcriptional control. However, the inability of MET to bind to AhR suggests that MET is not an AhR ligand. In conclusion, the present work shows a strong evidence that MET inhibits the DMBA-mediated carcinogenicity and adduct formation by inhibiting the expression of CYP1A1 through an AhR ligand-independent mechanism

  10. Metformin inhibits 7,12-dimethylbenz[a]anthracene-induced breast carcinogenesis and adduct formation in human breast cells by inhibiting the cytochrome P4501A1/aryl hydrocarbon receptor signaling pathway

    International Nuclear Information System (INIS)

    Maayah, Zaid H.; Ghebeh, Hazem; Alhaider, Abdulqader A.; El-Kadi, Ayman O.S.; Soshilov, Anatoly A.; Denison, Michael S.; Ansari, Mushtaq Ahmad; Korashy, Hesham M.

    2015-01-01

    Recent studies have established that metformin (MET), an oral anti-diabetic drug, possesses antioxidant activity and is effective against different types of cancer in several carcinogen-induced animal models and cell lines. However, whether MET can protect against breast cancer has not been reported before. Therefore, the overall objectives of the present study are to elucidate the potential chemopreventive effect of MET in non-cancerous human breast MCF10A cells and explore the underlying mechanism involved, specifically the role of cytochrome P4501A1 (CYP1A1)/aryl hydrocarbon receptor (AhR) pathway. Transformation of the MCF10A cells into initiated breast cancer cells with DNA adduct formation was conducted using 7,12-dimethylbenz[a]anthracene (DMBA), an AhR ligand. The chemopreventive effect of MET against DMBA-induced breast carcinogenesis was evidenced by the capability of MET to restore the induction of the mRNA levels of basic excision repair genes, 8-oxoguanine DNA glycosylase (OGG1) and apurinic/apyrimidinic endonuclease1 (APE1), and the level of 8-hydroxy-2-deoxyguanosine (8-OHdG). Interestingly, the inhibition of DMBA-induced DNA adduct formation was associated with proportional decrease in CYP1A1 and in NAD(P)H:quinone oxidoreductase 1 (NQO1) gene expression. Mechanistically, the involvements of AhR and nuclear factor erythroid 2-related factor-2 (Nrf2) in the MET-mediated inhibition of DMBA-induced CYP1A1 and NQO1 gene expression were evidenced by the ability of MET to inhibit DMBA-induced xenobiotic responsive element and antioxidant responsive element luciferase reporter gene expression which suggests an AhR- and Nrf2-dependent transcriptional control. However, the inability of MET to bind to AhR suggests that MET is not an AhR ligand. In conclusion, the present work shows a strong evidence that MET inhibits the DMBA-mediated carcinogenicity and adduct formation by inhibiting the expression of CYP1A1 through an AhR ligand-independent mechanism

  11. Formation evaluation in Devonian shale through application of new core and log analysis methods

    International Nuclear Information System (INIS)

    Luffel, D.L.; Guidry, F.K.

    1990-01-01

    In the Devonian shale of the Appalachian Basin all porosity in excess of about 2.5 percent is generally occupied by free hydrocarbons, which is mostly gas, based on results of new core and log analysis methods. In this study, sponsored by the Gas Research Institute, reservoir porosities averaged about 5 percent and free gas content averaged about 2 percent by bulk volume, based on analyses on 519 feet of conventional core in four wells. In this source-rich Devonian shale, which also provides the reservoir storage, the rock everywhere appears to be at connate, or irreducible, water saturation corresponding to two or three percent of bulk volume. This became evident when applying the new core and log analysis methods, along with a new plotting method relating bulk volume of pore fluids to porosity. This plotting method has proved to be a valuable tool: it provides useful insight on the fluid distribution present in the reservoir, it provides a clear idea of porosity required to store free hydrocarbons, it leads to a method of linking formation factor to porosity, and it provides a good quality control method to monitor core and log analysis results. In the Devonian shale an important part of the formation evaluation is to determine the amount of kerogen, since this appears as hydrocarbon-filled porosity to conventional logs. In this study Total Organic Carbon and pyrolysis analyses were made on 93 core samples from four wells. Based on these data a new method was used to drive volumetric kerogen and free oil content, and kerogen was found to range up to 26 percent by volume. A good correlation was subsequently developed to derive kerogen from the uranium response of the spectral gamma ray log. Another important result of this study is the measurement of formation water salinity directly on core samples. Results on 50 measurements in the four study wells ranged from 19,000 to 220,000 ppm NaCl

  12. Gasbuggy reservoir evaluation - 1969 report

    International Nuclear Information System (INIS)

    Atkinson, C.H.; Ward, Don C.; Lemon, R.F.

    1970-01-01

    The December 10, 1967, Project Gasbuggy nuclear detonation followed the drilling and testing of two exploratory wells which confirmed reservoir characteristics and suitability of the site. Reentry and gas production testing of the explosive emplacement hole indicated a collapse chimney about 150 feet in diameter extending from the 4,240-foot detonation depth to about 3,900 feet, the top of the 300-foot-thick Pictured Cliffs gas sand. Production tests of the chimney well in the summer of 1968 and during the last 12 months have resulted in a cumulative production of 213 million cubic feet of hydrocarbons, and gas recovery in 20 years is estimated to be 900 million cubic feet, which would be an increase by a factor of at least 5 over estimated recovery from conventional field wells in this low permeability area. At the end of production tests the flow rate was 160,000 cubic feet per day, which is 6 to 7 times that of an average field well in the area. Data from reentry of a pre-shot test well and a new postshot well at distances from the detonation of 300 and 250 feet, respectively, indicate low productivity and consequently low permeability in any fractures at these locations. (author)

  13. Gasbuggy reservoir evaluation - 1969 report

    Energy Technology Data Exchange (ETDEWEB)

    Atkinson, C H; Ward, Don C [Bureau of Mines, U.S. Department of the Interior (United States); Lemon, R F [El Paso Natural Gas Company (United States)

    1970-05-01

    The December 10, 1967, Project Gasbuggy nuclear detonation followed the drilling and testing of two exploratory wells which confirmed reservoir characteristics and suitability of the site. Reentry and gas production testing of the explosive emplacement hole indicated a collapse chimney about 150 feet in diameter extending from the 4,240-foot detonation depth to about 3,900 feet, the top of the 300-foot-thick Pictured Cliffs gas sand. Production tests of the chimney well in the summer of 1968 and during the last 12 months have resulted in a cumulative production of 213 million cubic feet of hydrocarbons, and gas recovery in 20 years is estimated to be 900 million cubic feet, which would be an increase by a factor of at least 5 over estimated recovery from conventional field wells in this low permeability area. At the end of production tests the flow rate was 160,000 cubic feet per day, which is 6 to 7 times that of an average field well in the area. Data from reentry of a pre-shot test well and a new postshot well at distances from the detonation of 300 and 250 feet, respectively, indicate low productivity and consequently low permeability in any fractures at these locations. (author)

  14. Producing Light Oil from a Frozen Reservoir: Reservoir and Fluid Characterization of Umiat Field, National Petroleum Reserve, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Hanks, Catherine

    2012-12-31

    Umiat oil field is a light oil in a shallow, frozen reservoir in the Brooks Range foothills of northern Alaska with estimated oil-in-place of over 1 billion barrels. Umiat field was discovered in the 1940’s but was never considered viable because it is shallow, in the permafrost, and far from any transportation infrastructure. The advent of modern drilling and production techniques has made Umiat and similar fields in northern Alaska attractive exploration and production targets. Since 2008 UAF has been working with Renaissance Alaska Inc. and, more recently, Linc Energy, to develop a more robust reservoir model that can be combined with rock and fluid property data to simulate potential production techniques. This work will be used to by Linc Energy as they prepare to drill up to 5 horizontal wells during the 2012-2013 drilling season. This new work identified three potential reservoir horizons within the Cretaceous Nanushuk Formation: the Upper and Lower Grandstand sands, and the overlying Ninuluk sand, with the Lower Grandstand considered the primary target. Seals are provided by thick interlayered shales. Reserve estimates for the Lower Grandstand alone range from 739 million barrels to 2437 million barrels, with an average of 1527 million bbls. Reservoir simulations predict that cold gas injection from a wagon-wheel pattern of multilateral injectors and producers located on 5 drill sites on the crest of the structure will yield 12-15% recovery, with actual recovery depending upon the injection pressure used, the actual Kv/Kh encountered, and other geologic factors. Key to understanding the flow behavior of the Umiat reservoir is determining the permeability structure of the sands. Sandstones of the Cretaceous Nanushuk Formation consist of mixed shoreface and deltaic sandstones and mudstones. A core-based study of the sedimentary facies of these sands combined with outcrop observations identified six distinct facies associations with distinctive permeability

  15. Reservoir characterization of Pennsylvanian sandstone reservoirs. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kelkar, M.

    1995-02-01

    This final report summarizes the progress during the three years of a project on Reservoir Characterization of Pennsylvanian Sandstone Reservoirs. The report is divided into three sections: (i) reservoir description; (ii) scale-up procedures; (iii) outcrop investigation. The first section describes the methods by which a reservoir can be described in three dimensions. The next step in reservoir description is to scale up reservoir properties for flow simulation. The second section addresses the issue of scale-up of reservoir properties once the spatial descriptions of properties are created. The last section describes the investigation of an outcrop.

  16. Geological Characterisation of Depleted Oil and Gas Reservoirs for ...

    African Jour