WorldWideScience

Sample records for hydrocarbon receptor-mediated signaling

  1. Induction of aryl hydrocarbon receptor-mediated and estrogen receptor-mediated activities, and modulation of cell proliferation by dinaphthofurans

    Czech Academy of Sciences Publication Activity Database

    Vondráček, Jan; Chramostová, Kateřina; Plíšková, M.; Bláha, L.; Brack, W.; Kozubík, Alois; Machala, M.

    2004-01-01

    Roč. 23, č. 9 (2004), s. 2214-2220 ISSN 0730-7268 R&D Projects: GA ČR GA525/03/1527 Institutional research plan: CEZ:AV0Z5004920 Keywords : aryl hydrocarbon receptor-mediated activity * estrogenicity * intercellular communication inhibition Subject RIV: BO - Biophysics Impact factor: 2.121, year: 2004

  2. Plant cell surface receptor-mediated signaling - a common theme amid diversity.

    Science.gov (United States)

    He, Yunxia; Zhou, Jinggeng; Shan, Libo; Meng, Xiangzong

    2018-01-29

    Sessile plants employ a diverse array of plasma membrane-bound receptors to perceive endogenous and exogenous signals for regulation of plant growth, development and immunity. These cell surface receptors include receptor-like kinases (RLKs) and receptor-like proteins (RLPs) that harbor different extracellular domains for perception of distinct ligands. Several RLK and RLP signaling pathways converge at the somatic embryogenesis receptor kinases (SERKs), which function as shared co-receptors. A repertoire of receptor-like cytoplasmic kinases (RLCKs) associate with the receptor complexes to relay intracellular signaling. Downstream of the receptor complexes, mitogen-activated protein kinase (MAPK) cascades are among the key signaling modules at which the signals converge, and these cascades regulate diverse cellular and physiological responses through phosphorylation of different downstream substrates. In this Review, we summarize the emerging common theme that underlies cell surface receptor-mediated signaling pathways in Arabidopsis thaliana : the dynamic association of RLKs and RLPs with specific co-receptors and RLCKs for signal transduction. We further discuss how signaling specificities are maintained through modules at which signals converge, with a focus on SERK-mediated receptor signaling. © 2018. Published by The Company of Biologists Ltd.

  3. Obesity is mediated by differential aryl hydrocarbon receptor signaling in mice fed a Western diet.

    Science.gov (United States)

    Kerley-Hamilton, Joanna S; Trask, Heidi W; Ridley, Christian J A; Dufour, Eric; Ringelberg, Carol S; Nurinova, Nilufer; Wong, Diandra; Moodie, Karen L; Shipman, Samantha L; Moore, Jason H; Korc, Murray; Shworak, Nicholas W; Tomlinson, Craig R

    2012-09-01

    Obesity is a growing worldwide problem with genetic and environmental causes, and it is an underlying basis for many diseases. Studies have shown that the toxicant-activated aryl hydrocarbon receptor (AHR) may disrupt fat metabolism and contribute to obesity. The AHR is a nuclear receptor/transcription factor that is best known for responding to environmental toxicant exposures to induce a battery of xenobiotic-metabolizing genes. The intent of the work reported here was to test more directly the role of the AHR in obesity and fat metabolism in lieu of exogenous toxicants. We used two congenic mouse models that differ at the Ahr gene and encode AHRs with a 10-fold difference in signaling activity. The two mouse strains were fed either a low-fat (regular) diet or a high-fat (Western) diet. The Western diet differentially affected body size, body fat:body mass ratios, liver size and liver metabolism, and liver mRNA and miRNA profiles. The regular diet had no significant differential effects. The results suggest that the AHR plays a large and broad role in obesity and associated complications, and importantly, may provide a simple and effective therapeutic strategy to combat obesity, heart disease, and other obesity-associated illnesses.

  4. The Role of Cgrp-Receptor Component Protein (Rcp in Cgrp-Mediated Signal Transduction

    Directory of Open Access Journals (Sweden)

    M. A. Prado

    2001-01-01

    Full Text Available The calcitonin gene-related peptide (CGRP-receptor component protein (RCP is a 17-kDa intracellular peripheral membrane protein required for signal transduction at CGRP receptors. To determine the role of RCP in CGRP-mediated signal transduction, RCP was depleted from NIH3T3 cells using antisense strategy. Loss of RCP protein correlated with loss of cAMP production by CGRP in the antisense cells. In contrast, loss of RCP had no effect on CGRP-mediated binding; therefore RCP is not acting as a chaperone for the CGRP receptor. Instead, RCP is a novel signal transduction molecule that couples the CGRP receptor to the cellular signal transduction machinery. RCP thus represents a prototype for a new class of signal transduction proteins that are required for regulation of G protein-coupled receptors.

  5. DMPD: Modulation of Toll-interleukin 1 receptor mediated signaling. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15662540 Modulation of Toll-interleukin 1 receptor mediated signaling. Li X, Qin J.... J Mol Med. 2005 Apr;83(4):258-66. Epub 2005 Jan 21. (.png) (.svg) (.html) (.csml) Show Modulation of Toll-i...nterleukin 1 receptor mediated signaling. PubmedID 15662540 Title Modulation of Toll-interleukin 1 receptor

  6. Antioxidant Functions of the Aryl Hydrocarbon Receptor

    Directory of Open Access Journals (Sweden)

    Cornelia Dietrich

    2016-01-01

    Full Text Available The aryl hydrocarbon receptor (AhR is a transcription factor belonging to the basic helix-loop-helix/PER-ARNT-SIM family. It is activated by a variety of ligands, such as environmental contaminants like polycyclic aromatic hydrocarbons or dioxins, but also by naturally occurring compounds and endogenous ligands. Binding of the ligand leads to dimerization of the AhR with aryl hydrocarbon receptor nuclear translocator (ARNT and transcriptional activation of several xenobiotic phase I and phase II metabolizing enzymes. It is generally accepted that the toxic responses of polycyclic aromatic hydrocarbons, dioxins, and structurally related compounds are mediated by activation of the AhR. A multitude of studies indicate that the AhR operates beyond xenobiotic metabolism and exerts pleiotropic functions. Increasing evidence points to a protective role of the AhR against carcinogenesis and oxidative stress. Herein, I will highlight data demonstrating a causal role of the AhR in the antioxidant response and present novel findings on potential AhR-mediated antioxidative mechanisms.

  7. Identification of potential pathway mediation targets in Toll-like receptor signaling.

    Directory of Open Access Journals (Sweden)

    Fan Li

    2009-02-01

    Full Text Available Recent advances in reconstruction and analytical methods for signaling networks have spurred the development of large-scale models that incorporate fully functional and biologically relevant features. An extended reconstruction of the human Toll-like receptor signaling network is presented herein. This reconstruction contains an extensive complement of kinases, phosphatases, and other associated proteins that mediate the signaling cascade along with a delineation of their associated chemical reactions. A computational framework based on the methods of large-scale convex analysis was developed and applied to this network to characterize input-output relationships. The input-output relationships enabled significant modularization of the network into ten pathways. The analysis identified potential candidates for inhibitory mediation of TLR signaling with respect to their specificity and potency. Subsequently, we were able to identify eight novel inhibition targets through constraint-based modeling methods. The results of this study are expected to yield meaningful avenues for further research in the task of mediating the Toll-like receptor signaling network and its effects.

  8. Testin, a novel binding partner of the calcium-sensing receptor, enhances receptor-mediated Rho-kinase signalling

    International Nuclear Information System (INIS)

    Magno, Aaron L.; Ingley, Evan; Brown, Suzanne J.; Conigrave, Arthur D.; Ratajczak, Thomas; Ward, Bryan K.

    2011-01-01

    Highlights: → A yeast two-hybrid screen revealed testin bound to the calcium-sensing receptor. → The second zinc finger of LIM domain 1 of testin is critical for interaction. → Testin bound to a region of the receptor tail important for cell signalling. → Testin and receptor interaction was confirmed in mammalian (HEK293) cells. → Overexpression of testin enhanced receptor-mediated Rho signalling in HEK293 cells. -- Abstract: The calcium-sensing receptor (CaR) plays an integral role in calcium homeostasis and the regulation of other cellular functions including cell proliferation and cytoskeletal organisation. The multifunctional nature of the CaR is manifested through ligand-dependent stimulation of different signalling pathways that are also regulated by partner binding proteins. Following a yeast two-hybrid library screen using the intracellular tail of the CaR as bait, we identified several novel binding partners including the focal adhesion protein, testin. Testin has not previously been shown to interact with cell surface receptors. The sites of interaction between the CaR and testin were mapped to the membrane proximal region of the receptor tail and the second zinc-finger of LIM domain 1 of testin, the integrity of which was found to be critical for the CaR-testin interaction. The CaR-testin association was confirmed in HEK293 cells by coimmunoprecipitation and confocal microscopy studies. Ectopic expression of testin in HEK293 cells stably expressing the CaR enhanced CaR-stimulated Rho activity but had no effect on CaR-stimulated ERK signalling. These results suggest an interplay between the CaR and testin in the regulation of CaR-mediated Rho signalling with possible effects on the cytoskeleton.

  9. Specialized odorant receptors in social insects that detect cuticular hydrocarbon cues and candidate pheromones.

    Science.gov (United States)

    Pask, Gregory M; Slone, Jesse D; Millar, Jocelyn G; Das, Prithwiraj; Moreira, Jardel A; Zhou, Xiaofan; Bello, Jan; Berger, Shelley L; Bonasio, Roberto; Desplan, Claude; Reinberg, Danny; Liebig, Jürgen; Zwiebel, Laurence J; Ray, Anandasankar

    2017-08-17

    Eusocial insects use cuticular hydrocarbons as components of pheromones that mediate social behaviours, such as caste and nestmate recognition, and regulation of reproduction. In ants such as Harpegnathos saltator, the queen produces a pheromone which suppresses the development of workers' ovaries and if she is removed, workers can transition to a reproductive state known as gamergate. Here we functionally characterize a subfamily of odorant receptors (Ors) with a nine-exon gene structure that have undergone a massive expansion in ants and other eusocial insects. We deorphanize 22 representative members and find they can detect cuticular hydrocarbons from different ant castes, with one (HsOr263) that responds strongly to gamergate extract and a candidate queen pheromone component. After systematic testing with a diverse panel of hydrocarbons, we find that most Harpegnathos saltator Ors are narrowly tuned, suggesting that several receptors must contribute to detection and discrimination of different cuticular hydrocarbons important in mediating eusocial behaviour.Cuticular hydrocarbons (CHC) mediate the interactions between individuals in eusocial insects, but the sensory receptors for CHCs are unclear. Here the authors show that in ants such as H. saltator, the 9-exon subfamily of odorant receptors (HsOrs) responds to CHCs, and ectopic expression of HsOrs in Drosophila neurons imparts responsiveness to CHCs.

  10. Inositol trisphosphate receptor mediated spatiotemporal calcium signalling.

    Science.gov (United States)

    Miyazaki, S

    1995-04-01

    Spatiotemporal Ca2+ signalling in the cytoplasm is currently understood as an excitation phenomenon by analogy with electrical excitation in the plasma membrane. In many cell types, Ca2+ waves and Ca2+ oscillations are mediated by inositol 1,4,5-trisphosphate (IP3) receptor/Ca2+ channels in the endoplasmic reticulum membrane, with positive feedback between cytosolic Ca2+ and IP3-induced Ca2+ release creating a regenerative process. Remarkable advances have been made in the past year in the analysis of subcellular Ca2+ microdomains using confocal microscopy and of Ca2+ influx pathways that are functionally coupled to IP3-induced Ca2+ release. Ca2+ signals can be conveyed into the nucleus and mitochondria. Ca2+ entry from outside the cell allows repetitive Ca2+ release by providing Ca2+ to refill the endoplasmic reticulum stores, thus giving rise to frequency-encoded Ca2+ signals.

  11. Interactions between polymorphisms in the aryl hydrocarbon receptor signalling pathway and exposure to persistent organochlorine pollutants affect human semen quality

    DEFF Research Database (Denmark)

    Brokken, L J S; Lundberg, P J; Spanò, M

    2014-01-01

    Persistent organic pollutants (POPs) may affect male reproductive function. Many dioxin-like POPs exert their effects by activation of the aryl hydrocarbon receptor (AHR) signalling pathway. We analysed whether gene-environment interactions between polymorphisms in AHR (R554K) and AHR repressor (...

  12. ZINC-INDUCED EGF RECEPTOR SIGNALING REQUIRES SRC-MEDIATED PHOSPHORYLATION OF THE EGF RECEPTOR ON TYROSINE 845 (Y845)

    Science.gov (United States)

    ZINC-INDUCED EGF RECEPTOR SIGNALING REQUIRES Src-MEDIATED PHOSPHORYLATION OF THE EGF RECEPTOR ON TYROSINE 845 (Y845)Weidong Wu1, Lee M. Graves2, Gordon N. Gill3 and James M. Samet4 1Center for Environmental Medicine and Lung Biology; 2Department of Pharmacology, University o...

  13. P2X receptor-mediated ATP purinergic signaling in health and disease

    Directory of Open Access Journals (Sweden)

    Jiang LH

    2012-09-01

    Full Text Available Lin-Hua JiangSchool of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United KingdomAbstract: Purinergic P2X receptors are plasma membrane proteins present in a wide range of mammalian cells where they act as a cellular sensor, enabling cells to detect and respond to extracellular adenosine triphosphate (ATP, an important signaling molecule. P2X receptors function as ligand-gated Ca2+-permeable cationic channels that open upon ATP binding to elevate intracellular Ca2+ concentrations and cause membrane depolarization. In response to sustained activation, P2X receptors induce formation of a pore permeable to large molecules. P2X receptors also interact with distinct functional proteins and membrane lipids to form specialized signaling complexes. Studies have provided compelling evidence to show that such P2X receptor-mediated ATP-signaling mechanisms determine and regulate a growing number and diversity of important physiological processes, including neurotransmission, muscle contraction, and cytokine release. There is accumulating evidence to support strong causative relationships of altered receptor expression and function with chronic pain, inflammatory diseases, cancers, and other pathologies or diseases. Numerous high throughput screening drug discovery programs and preclinical studies have thus far demonstrated the proof of concepts that the P2X receptors are druggable targets and selective receptor antagonism is a promising therapeutics approach. This review will discuss the recent progress in understanding the mammalian P2X receptors with respect to the ATP-signaling mechanisms, physiological and pathophysiological roles, and development and preclinical studies of receptor antagonists.Keywords: extracellular ATP, ion channel, large pore, signaling complex, chronic pain, inflammatory diseases

  14. Hypoxia perturbs aryl hydrocarbon receptor signaling and CYP1A1 expression induced by PCB 126 in human skin and liver-derived cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Vorrink, Sabine U. [Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA (United States); Department of Radiation Oncology, The University of Iowa, Iowa City, IA (United States); Severson, Paul L. [Department of Pharmacology and Toxicology, The University of Arizona, Tucson, AZ (United States); Kulak, Mikhail V. [Department of Surgery, The University of Iowa, Iowa City, IA (United States); Futscher, Bernard W. [Department of Pharmacology and Toxicology, The University of Arizona, Tucson, AZ (United States); Domann, Frederick E., E-mail: frederick-domann@uiowa.edu [Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA (United States); Department of Radiation Oncology, The University of Iowa, Iowa City, IA (United States); Department of Surgery, The University of Iowa, Iowa City, IA (United States)

    2014-02-01

    The aryl hydrocarbon receptor (AhR) is an important mediator of toxic responses after exposure to xenobiotics including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and dioxin-like polychlorinated biphenyls (PCBs). Activation of AhR responsive genes requires AhR dimerization with the aryl hydrocarbon receptor nuclear translocator (ARNT), a heterodimeric partner also shared by the hypoxia-inducible factor-1α (HIF-1α) protein. TCDD-stimulated AhR transcriptional activity can be influenced by hypoxia; however, it less well known whether hypoxia interferes with AhR transcriptional transactivation in the context of PCB-mediated AhR activation in human cells. Elucidation of this interaction is important in liver hepatocytes which extensively metabolize ingested PCBs and experience varying degrees of oxygen tension during normal physiologic function. This study was designed to assess the effect of hypoxia on AhR transcriptional responses after exposure to 3,3′,4,4′,5-pentachlorobiphenyl (PCB 126). Exposure to 1% O{sub 2} prior to PCB 126 treatment significantly inhibited CYP1A1 mRNA and protein expression in human HepG2 and HaCaT cells. CYP1A1 transcriptional activation was significantly decreased upon PCB 126 stimulation under conditions of hypoxia. Additionally, hypoxia pre-treatment reduced PCB 126 induced AhR binding to CYP1 target gene promoters. Importantly, ARNT overexpression rescued cells from the inhibitory effect of hypoxia on XRE-luciferase reporter activity. Therefore, the mechanism of interference of the signaling crosstalk between the AhR and hypoxia pathways appears to be at least in part dependent on ARNT availability. Our results show that AhR activation and CYP1A1 expression induced by PCB 126 were significantly inhibited by hypoxia and hypoxia might therefore play an important role in PCB metabolism and toxicity. - Highlights: • Significant crosstalk exists between AhR and HIF-1α signaling. • Hypoxia perturbs PCB 126 induced AhR function and

  15. The orphan receptor ALK7 and the Activin receptor ALK4 mediate signaling by Nodal proteins during vertebrate development

    Science.gov (United States)

    Reissmann, Eva; Jörnvall, Henrik; Blokzijl, Andries; Andersson, Olov; Chang, Chenbei; Minchiotti, Gabriella; Persico, M. Graziella; Ibáñez, Carlos F.; Brivanlou, Ali H.

    2001-01-01

    Nodal proteins have crucial roles in mesendoderm formation and left–right patterning during vertebrate development. The molecular mechanisms of signal transduction by Nodal and related ligands, however, are not fully understood. In this paper, we present biochemical and functional evidence that the orphan type I serine/threonine kinase receptor ALK7 acts as a receptor for mouse Nodal and Xenopus Nodal-related 1 (Xnr1). Receptor reconstitution experiments indicate that ALK7 collaborates with ActRIIB to confer responsiveness to Xnr1 and Nodal. Both receptors can independently bind Xnr1. In addition, Cripto, an extracellular protein genetically implicated in Nodal signaling, can independently interact with both Xnr1 and ALK7, and its expression greatly enhances the ability of ALK7 and ActRIIB to respond to Nodal ligands. The Activin receptor ALK4 is also able to mediate Nodal signaling but only in the presence of Cripto, with which it can also interact directly. A constitutively activated form of ALK7 mimics the mesendoderm-inducing activity of Xnr1 in Xenopus embryos, whereas a dominant-negative ALK7 specifically blocks the activities of Nodal and Xnr1 but has little effect on other related ligands. In contrast, a dominant-negative ALK4 blocks all mesoderm-inducing ligands tested, including Nodal, Xnr1, Xnr2, Xnr4, and Activin. In agreement with a role in Nodal signaling, ALK7 mRNA is localized to the ectodermal and organizer regions of Xenopus gastrula embryos and is expressed during early stages of mouse embryonic development. Therefore, our results indicate that both ALK4 and ALK7 can mediate signal transduction by Nodal proteins, although ALK7 appears to be a receptor more specifically dedicated to Nodal signaling. PMID:11485994

  16. Influence of ER leak on resting cytoplasmic Ca2+ and receptor-mediated Ca2+ signalling in human macrophage.

    Science.gov (United States)

    Layhadi, Janice A; Fountain, Samuel J

    2017-06-03

    Mechanisms controlling endoplasmic reticulum (ER) Ca 2+ homeostasis are important regulators of resting cytoplasmic Ca 2+ concentration ([Ca 2+ ] cyto ) and receptor-mediated Ca 2+ signalling. Here we investigate channels responsible for ER Ca 2+ leak in THP-1 macrophage and human primary macrophage. In the absence of extracellular Ca 2+ we employ ionomycin action at the plasma membrane to stimulate ER Ca 2+ leak. Under these conditions ionomycin elevates [Ca 2+ ] cyto revealing a Ca 2+ leak response which is abolished by thapsigargin. IP 3 receptors (Xestospongin C, 2-APB), ryanodine receptors (dantrolene), and translocon (anisomycin) inhibition facilitated ER Ca 2+ leak in model macrophage, with translocon inhibition also reducing resting [Ca 2+ ] cyto . In primary macrophage, translocon inhibition blocks Ca 2+ leak but does not influence resting [Ca 2+ ] cyto . We identify a role for translocon-mediated ER Ca 2+ leak in receptor-mediated Ca 2+ signalling in both model and primary human macrophage, whereby the Ca 2+ response to ADP (P2Y receptor agonist) is augmented following anisomycin treatment. In conclusion, we demonstrate a role of ER Ca 2+ leak via the translocon in controlling resting cytoplasmic Ca 2+ in model macrophage and receptor-mediated Ca 2+ signalling in model macrophage and primary macrophage. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Aryl hydrocarbon receptor ligand effects in RBL2H3 cells

    DEFF Research Database (Denmark)

    Maaetoft-Udsen, Kristina; Shimoda, Lori M. N.; Frøkiær, Hanne

    2012-01-01

    The aryl hydrocarbon receptor (AHR) mediates toxic effects of dioxin and xenobiotic metabolism. AHR has an emerging role in the immune system, but its physiological ligands and functional role in immunocytes remain poorly understood. Mast cells are immunocytes that are central to inflammatory...

  18. Phytomelatonin receptor PMTR1-mediated signaling regulates stomatal closure in Arabidopsis thaliana.

    Science.gov (United States)

    Wei, Jian; Li, Dong-Xu; Zhang, Jia-Rong; Shan, Chi; Rengel, Zed; Song, Zhong-Bang; Chen, Qi

    2018-04-27

    Melatonin has been detected in plants in 1995; however, the function and signaling pathway of this putative phytohormone are largely undetermined due to a lack of knowledge about its receptor. Here, we discovered the first phytomelatonin receptor (CAND2/PMTR1) in Arabidopsis thaliana and found that melatonin governs the receptor-dependent stomatal closure. The application of melatonin induced stomatal closure through the heterotrimeric G protein α subunit-regulated H 2 O 2 and Ca 2+ signals. The Arabidopsis mutant lines lacking AtCand2 that encodes a candidate G protein-coupled receptor were insensitive to melatonin-induced stomatal closure. Accordingly, the melatonin-induced H 2 O 2 production and Ca 2+ influx were completely abolished in cand2. CAND2 is a membrane protein that interacts with GPA1 and the expression of AtCand2 was tightly regulated by melatonin in various organs and guard cells. CAND2 showed saturable and specific 125 I-melatonin binding, with apparent K d (dissociation constant) of 0.73 ± 0.10 nmol/L (r 2  = .99), demonstrating this protein is a phytomelatonin receptor (PMTR1). Our results suggest that the phytomelatonin regulation of stomatal closure is dependent on its receptor CAND2/PMTR1-mediated H 2 O 2 and Ca 2+ signaling transduction cascade. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Lipophilic Chemicals from Diesel Exhaust Particles Trigger Calcium Response in Human Endothelial Cells via Aryl Hydrocarbon Receptor Non-Genomic Signalling

    Directory of Open Access Journals (Sweden)

    Bendik C. Brinchmann

    2018-05-01

    Full Text Available Exposure to diesel exhaust particles (DEPs affects endothelial function and may contribute to the development of atherosclerosis and vasomotor dysfunction. As intracellular calcium concentration [Ca2+]i is considered important in myoendothelial signalling, we explored the effects of extractable organic matter from DEPs (DEP-EOM on [Ca2+]i and membrane microstructure in endothelial cells. DEP-EOM of increasing polarity was obtained by pressurized sequential extraction of DEPs with n-hexane (n-Hex-EOM, dichloromethane (DCM-EOM, methanol, and water. Chemical analysis revealed that the majority of organic matter was extracted by the n-Hex- and DCM-EOM, with polycyclic aromatic hydrocarbons primarily occurring in n-Hex-EOM. The concentration of calcium was measured in human microvascular endothelial cells (HMEC-1 using micro-spectrofluorometry. The lipophilic n-Hex-EOM and DCM-EOM, but not the more polar methanol- and water-soluble extracts, induced rapid [Ca2+]i increases in HMEC-1. n-Hex-EOM triggered [Ca2+]i increase from intracellular stores, followed by extracellular calcium influx consistent with store operated calcium entry (SOCE. By contrast, the less lipophilic DCM-EOM triggered [Ca2+]i increase via extracellular influx alone, resembling receptor operated calcium entry (ROCE. Both extracts increased [Ca2+]i via aryl hydrocarbon receptor (AhR non-genomic signalling, verified by pharmacological inhibition and RNA-interference. Moreover, DCM-EOM appeared to induce an AhR-dependent reduction in the global plasma membrane order, as visualized by confocal fluorescence microscopy. DCM-EOM-triggered [Ca2+]i increase and membrane alterations were attenuated by the membrane stabilizing lipid cholesterol. In conclusion, lipophilic constituents of DEPs extracted by n-hexane and DCM seem to induce rapid AhR-dependent [Ca2+]i increase in HMEC-1 endothelial cells, possibly involving both ROCE and SOCE-mediated mechanisms. The semi-lipophilic fraction

  20. Liver Tumor Promotion by 2,3,7,8-Tetrachlorodibenzo-p-dioxin Is Dependent on the Aryl Hydrocarbon Receptor and TNF/IL-1 Receptors

    Science.gov (United States)

    Kennedy, Gregory D.; Nukaya, Manabu; Moran, Susan M.; Glover, Edward; Weinberg, Samuel; Balbo, Silvia; Hecht, Stephen S.; Pitot, Henry C.; Drinkwater, Norman R.; Bradfield, Christopher A.

    2014-01-01

    We set out to better understand the signal transduction pathways that mediate liver tumor promotion by 2,3,7,8-tetrachlorodibenzo-p-dioxn (“dioxin”). To this end, we first employed congenic mice homozygous for either the Ahrb1 or Ahrd alleles (encoding an aryl hydrocarbon receptor (AHR) with high or low binding affinity for dioxin, respectively) and demonstrated that hepatocellular tumor promotion in response to dioxin segregated with the Ahr locus. Once we had genetic evidence for the importance of AHR signaling, we then asked if tumor promotion by dioxin was influenced by “interleukin-1 (IL-1)-like” inflammatory cytokines. The importance of this question arose from our earlier observation that aspects of the acute hepatocellular toxicity of dioxin are dependent upon IL1-like cytokine signaling. To address this issue, we employed a triple knock-out (TKO) mouse model with null alleles at the loci encoding the three relevant receptors for tumor necrosis factors α and β and IL-1α and IL-1β (i.e., null alleles at the Tnfrsf1a, Tnfrsf1b, and Il-1r1 loci). The observation that TKO mice were resistant to the tumor promoting effects of dioxin in liver suggests that inflammatory cytokines play an important step in dioxin mediated liver tumor promotion in the mouse. Collectively, these data support the idea that the mechanism of dioxin acute hepatotoxicity and its activity as a promoter in a mouse two stage liver cancer model may be similar, i.e., tumor promotion by dioxin, like acute hepatotoxicity, are mediated by the linked action of two receptor systems, the AHR and the receptors for the “IL-1-like” cytokines. PMID:24718703

  1. Polycyclic Aromatic Hydrocarbons (PAHs) Mediate Transcriptional Activation of the ATP Binding Cassette Transporter ABCB6 Gene via the Aryl Hydrocarbon Receptor (AhR)*

    Science.gov (United States)

    Chavan, Hemantkumar; Krishnamurthy, Partha

    2012-01-01

    Liver is endowed with a mechanism to induce hepatic cytochromes P450 (CYP450s) in response to therapeutic drugs and environmental contaminants, leading to increased detoxification and elimination of the xenobiotics. Each CYP450 is composed of an apoprotein moiety and a heme prosthetic group, which is required for CYP450 activity. Thus, under conditions of CYP450 induction, there is a coordinate increase in heme biosynthesis to compensate for the increased expression of CYP450s. ABCB6, a mitochondrial ATP binding cassette transporter, which regulates coproporphyrinogen transport from the cytoplasm into the mitochondria to complete heme biosynthesis, represents a previously unrecognized rate-limiting step in heme biosynthesis. However, it is not known if exposure to drugs and environmental contaminants induces ABCB6 expression, to assure an adequate and apparently coordinated supply of heme for the generation of functional cytochrome holoprotein. In the present study, we demonstrate that polycyclic aromatic hydrocarbons (PAHs), the widely distributed environmental toxicants shown to induce porphyrin accumulation causing hepatic porphyria, up-regulate ABCB6 expression in both mice and humans. Using siRNA technology and Abcb6 knock-out mice, we demonstrate that PAH-mediated increase in hepatic porphyrins is compromised in the absence of ABCB6. Moreover, in vivo studies in aryl hydrocarbon receptor (AhR) knock-out mice demonstrate that PAH induction of ABCB6 is mediated by AhR. Promoter activation studies combined with electrophoretic mobility shift assay and chromatin immunoprecipitation assay demonstrate direct interactions between the AhR binding sites in the ABCB6 promoter and the AhR receptor, implicating drug activation mechanisms for ABCB6 similar to those found in inducible cytochrome P450s. These studies are the first to describe direct transcriptional activation of both mouse and human ABCB6 by xenobiotics. PMID:22761424

  2. Estrogen receptor α and aryl hydrocarbon receptor independent growth inhibitory effects of aminoflavone in breast cancer cells

    International Nuclear Information System (INIS)

    Brinkman, Ashley M; Wu, Jiacai; Ersland, Karen; Xu, Wei

    2014-01-01

    Numerous studies have implicated the aryl hydrocarbon receptor (AhR) as a potential therapeutic target for several human diseases, including estrogen receptor alpha (ERα) positive breast cancer. Aminoflavone (AF), an activator of AhR signaling, is currently undergoing clinical evaluation for the treatment of solid tumors. Of particular interest is the potential treatment of triple negative breast cancers (TNBC), which are typically more aggressive and characterized by poorer outcomes. Here, we examined AF’s effects on two TNBC cell lines and the role of AhR signaling in AF sensitivity in these model cell lines. AF sensitivity in MDA-MB-468 and Cal51 was examined using cell counting assays to determine growth inhibition (GI 50 ) values. Luciferase assays and qPCR of AhR target genes cytochrome P450 (CYP) 1A1 and 1B1 were used to confirm AF-mediated AhR signaling. The requirement of endogenous levels of AhR and AhR signaling for AF sensitivity was examined in MDA-MB-468 and Cal51 cells stably harboring inducible shRNA for AhR. The mechanism of AF-mediated growth inhibition was explored using flow cytometry for markers of DNA damage and apoptosis, cell cycle analysis, and β-galactosidase staining for senescence. Luciferase data was analyzed using Student’s T test. Three-parameter nonlinear regression was performed for cell counting assays. Here, we report that ERα-negative TNBC cell lines MDA-MB-468 and Cal51 are sensitive to AF. Further, we presented evidence suggesting that neither endogenous AhR expression levels nor downstream induction of AhR target genes CYP1A1 and CYP1B1 is required for AF-mediated growth inhibition in these cells. Between these two ERα negative cell lines, we showed that the mechanism of AF action differs slightly. Low dose AF mediated DNA damage, S-phase arrest and apoptosis in MDA-MB-468 cells, while it resulted in DNA damage, S-phase arrest and cellular senescence in Cal51 cells. Overall, this work provides evidence against the

  3. Mediator-dependent Nuclear Receptor Functions

    Science.gov (United States)

    Chen, Wei; Roeder, Robert

    2011-01-01

    As gene-specific transcription factors, nuclear hormone receptors are broadly involved in many important biological processes. Their function on target genes requires the stepwise assembly of different coactivator complexes that facilitate chromatin remodeling and subsequent preinitiation complex (PIC) formation and function. Mediator has proved to be a crucial, and general, nuclear receptor-interacting coactivator, with demonstrated functions in transcription steps ranging from chromatin remodeling to subsequent PIC formation and function. Here we discuss (i) our current understanding of pathways that nuclear receptors and other interacting cofactors employ to recruit Mediator to target gene enhancers and promoters, including conditional requirements for the strong NR-Mediator interactions mediated by the NR AF2 domain and the MED1 LXXLLL motifs and (ii) mechanisms by which Mediator acts to transmit signals from enhancer-bound nuclear receptors to the general transcription machinery at core promoters to effect PIC formation and function. PMID:21854863

  4. Distinct roles for aryl hydrocarbon receptor nuclear translocator and ah receptor in estrogen-mediated signaling in human cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Mark P Labrecque

    Full Text Available The activated AHR/ARNT complex (AHRC regulates the expression of target genes upon exposure to environmental contaminants such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD. Importantly, evidence has shown that TCDD represses estrogen receptor (ER target gene activation through the AHRC. Our data indicates that AHR and ARNT act independently from each other at non-dioxin response element sites. Therefore, we sought to determine the specific functions of AHR and ARNT in estrogen-dependent signaling in human MCF7 breast cancer and human ECC-1 endometrial carcinoma cells. Knockdown of AHR with siRNA abrogates dioxin-inducible repression of estrogen-dependent gene transcription. Intriguingly, knockdown of ARNT does not effect TCDD-mediated repression of estrogen-regulated transcription, suggesting that AHR represses ER function independently of ARNT. This theory is supported by the ability of the selective AHR modulator 3',4'-dimethoxy-α-naphthoflavone (DiMNF to repress estrogen-inducible transcription. Furthermore, basal and estrogen-activated transcription of the genes encoding cathepsin-D and pS2 are down-regulated in MCF7 cells but up-regulated in ECC-1 cells in response to loss of ARNT. These responses are mirrored at the protein level with cathepsin-D. Furthermore, knock-down of ARNT led to opposite but corresponding changes in estrogen-stimulated proliferation in both MCF7 and ECC-1 cells. We have obtained experimental evidence demonstrating a dioxin-dependent repressor function for AHR and a dioxin-independent co-activator/co-repressor function for ARNT in estrogen signalling. These results provide us with further insight into the mechanisms of transcription factor crosstalk and putative therapeutic targets in estrogen-positive cancers.

  5. Cobaltous chloride and hypoxia inhibit aryl hydrocarbon receptor-mediated responses in breast cancer cells

    International Nuclear Information System (INIS)

    Khan, Shaheen; Liu Shengxi; Stoner, Matthew; Safe, Stephen

    2007-01-01

    The aryl hydrocarbon receptor (AhR) is expressed in estrogen receptor (ER)-positive ZR-75 breast cancer cells. Treatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces CYP1A1 protein and mRNA levels and also activates inhibitory AhR-ERα crosstalk associated with hormone-induced reporter gene expression. In ZR-75 cells grown under hypoxia, induction of these AhR-mediated responses by TCDD was significantly inhibited. This was not accompanied by decreased nuclear AhR levels or decreased interaction of the AhR complex with the CYP1A1 gene promoter as determined in a chromatin immunoprecipitation assay. Hypoxia-induced loss of Ah-responsiveness was not associated with induction of hypoxia-inducible factor-1α or other factors that sequester the AhR nuclear translocation (Arnt) protein, and overexpression of Arnt under hypoxia did not restore Ah-responsiveness. The p65 subunit of NFκB which inhibits AhR-mediated transactivation was not induced by hypoxia and was primarily cytosolic in ZR-75 cells grown under hypoxic and normoxic conditions. In ZR-75 cells maintained under hypoxic conditions for 24 h, BRCA1 (an enhancer of AhR-mediated transactivation in breast cancer cells) was significantly decreased and this contributed to loss of Ah-responsiveness. In cells grown under hypoxia for 6 h, BRCA1 was not decreased, but induction of CYP1A1 by TCDD was significantly decreased. Cotreatment of ZR-75 cells with TCDD plus the protein synthesis inhibitor cycloheximide for 6 h enhanced CYP1A1 expression in cells grown under hypoxia and normoxia. These results suggest that hypoxia rapidly induces protein(s) that inhibit Ah-responsiveness and these may be similar to constitutively expressed inhibitors of Ah-responsiveness (under normoxia) that are also inhibited by cycloheximide

  6. Androgen Receptor Signaling in Bladder Cancer

    OpenAIRE

    Li, Peng; Chen, Jinbo; Miyamoto, Hiroshi

    2017-01-01

    Emerging preclinical findings have indicated that steroid hormone receptor signaling plays an important role in bladder cancer outgrowth. In particular, androgen-mediated androgen receptor signals have been shown to correlate with the promotion of tumor development and progression, which may clearly explain some sex-specific differences in bladder cancer. This review summarizes and discusses the available data, suggesting the involvement of androgens and/or the androgen receptor pathways in u...

  7. Cross-talk between an activator of nuclear receptors-mediated transcription and the D1 dopamine receptor signaling pathway.

    Science.gov (United States)

    Schmidt, Azriel; Vogel, Robert; Rutledge, Su Jane; Opas, Evan E; Rodan, Gideon A; Friedman, Eitan

    2005-03-01

    Nuclear receptors are transcription factors that usually interact, in a ligand-dependent manner, with specific DNA sequences located within promoters of target genes. The nuclear receptors can also be controlled in a ligand-independent manner via the action of membrane receptors and cellular signaling pathways. 5-Tetradecyloxy-2-furancarboxylic acid (TOFA) was shown to stimulate transcription from the MMTV promoter via chimeric receptors that consist of the DNA binding domain of GR and the ligand binding regions of the PPARbeta or LXRbeta nuclear receptors (GR/PPARbeta and GR/LXRbeta). TOFA and hydroxycholesterols also modulate transcription from NF-kappaB- and AP-1-controlled reporter genes and induce neurite differentiation in PC12 cells. In CV-1 cells that express D(1) dopamine receptors, D(1) dopamine receptor stimulation was found to inhibit TOFA-stimulated transcription from the MMTV promoter that is under the control of chimeric GR/PPARbeta and GR/LXRbeta receptors. Treatment with the D(1) dopamine receptor antagonist, SCH23390, prevented dopamine-mediated suppression of transcription, and by itself increased transcription controlled by GR/LXRbeta. Furthermore, combined treatment of CV-1 cells with TOFA and SCH23390 increased transcription controlled by the GR/LXRbeta chimeric receptor synergistically. The significance of this in vitro synergy was demonstrated in vivo, by the observation that SCH23390 (but not haloperidol)-mediated catalepsy in rats was potentiated by TOFA, thus showing that an agent that mimics the in vitro activities of compounds that activate members of the LXR and PPAR receptor families can influence D1 dopamine receptor elicited responses.

  8. Polycyclic’ Aromatic Hydrocarbon Induced Intracellular Signaling and Lymphocyte Apoptosis

    DEFF Research Database (Denmark)

    Schneider, Alexander M.

    The aryl hydrocarbon (dioxin) receptor (AhR) is a transcription factor possessing high affinity to potent environmental pollutants, polycyclic aromatic hydrocarbons (PAH) and related halogenated hydrocarbons (e.g. dioxins). Numerous research attribute toxicity of these compounds to the receptor...

  9. Activation of Brain Somatostatin Signaling Suppresses CRF Receptor-Mediated Stress Response.

    Science.gov (United States)

    Stengel, Andreas; Taché, Yvette F

    2017-01-01

    Corticotropin-releasing factor (CRF) is the hallmark brain peptide triggering the response to stress and mediates-in addition to the stimulation of the hypothalamus-pituitary-adrenal (HPA) axis-other hormonal, behavioral, autonomic and visceral components. Earlier reports indicate that somatostatin-28 injected intracerebroventricularly counteracts the acute stress-induced ACTH and catecholamine release. Mounting evidence now supports that activation of brain somatostatin signaling exerts a broader anti-stress effect by blunting the endocrine, autonomic, behavioral (with a focus on food intake) and visceral gastrointestinal motor responses through the involvement of distinct somatostatin receptor subtypes.

  10. DMPD: Signal transduction pathways mediated by the interaction of CpG DNA withToll-like receptor 9. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14751759 Signal transduction pathways mediated by the interaction of CpG DNA withTo...;16(1):17-22. (.png) (.svg) (.html) (.csml) Show Signal transduction pathways mediated by the interaction of... CpG DNA withToll-like receptor 9. PubmedID 14751759 Title Signal transduction pathways media

  11. Aryl hydrocarbon receptor (AhR) inducers and estrogen receptor (ER) activities in surface sediments of Three Gorges Reservoir, China evaluated with in vitro cell bioassays

    NARCIS (Netherlands)

    Wang, J.; Bovee, T.F.H.; Bi, Y.; Bernhöft, S.; Schramm, K.W.

    2014-01-01

    Two types of biological tests were employed for monitoring the toxicological profile of sediment cores in the Three Gorges Reservoir (TGR), China. In the present study, sediments collected in June 2010 from TGR were analyzed for estrogen receptor (ER)- and aryl hydrocarbon receptor (AhR)-mediated

  12. Progesterone receptors (PR) mediate STAT actions: PR and prolactin receptor signaling crosstalk in breast cancer models.

    Science.gov (United States)

    Leehy, Katherine A; Truong, Thu H; Mauro, Laura J; Lange, Carol A

    2018-02-01

    Estrogen is the major mitogenic stimulus of mammary gland development during puberty wherein ER signaling acts to induce abundant PR expression. PR signaling, in contrast, is the primary driver of mammary epithelial cell proliferation in adulthood. The high circulating levels of progesterone during pregnancy signal through PR, inducing expression of the prolactin receptor (PRLR). Cooperation between PR and prolactin (PRL) signaling, via regulation of downstream components in the PRL signaling pathway including JAKs and STATs, facilitates the alveolar morphogenesis observed during pregnancy. Indeed, these pathways are fully integrated via activation of shared signaling pathways (i.e. JAKs, MAPKs) as well as by the convergence of PRs and STATs at target genes relevant to both mammary gland biology and breast cancer progression (i.e. proliferation, stem cell outgrowth, tissue cell type heterogeneity). Thus, rather than a single mediator such as ER, transcription factor cascades (ER>PR>STATs) are responsible for rapid proliferative and developmental programming in the normal mammary gland. It is not surprising that these same mediators typify uncontrolled proliferation in a majority of breast cancers, where ER and PR are most often co-expressed and may cooperate to drive malignant tumor progression. This review will primarily focus on the integration of PR and PRL signaling in breast cancer models and the importance of this cross-talk in cancer progression in the context of mammographic density. Components of these PR/PRL signaling pathways could offer alternative drug targets and logical complements to anti-ER or anti-estrogen-based endocrine therapies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Enhanced NMDA receptor-mediated intracellular calcium signaling in magnocellular neurosecretory neurons in heart failure rats.

    Science.gov (United States)

    Stern, Javier E; Potapenko, Evgeniy S

    2013-08-15

    An enhanced glutamate excitatory function within the hypothalamic supraoptic and paraventricluar nuclei is known to contribute to increased neurosecretory and presympathetic neuronal activity, and hence, neurohumoral activation, during heart failure (HF). Still, the precise mechanisms underlying enhanced glutamate-driven neuronal activity in HF remain to be elucidated. Here, we performed simultaneous electrophysiology and fast confocal Ca²⁺ imaging to determine whether altered N-methyl-d-aspartate (NMDA) receptor-mediated changes in intracellular Ca²⁺ levels (NMDA-ΔCa²⁺) occurred in hypothalamic magnocellular neurosecretory cells (MNCs) in HF rats. We found that activation of NMDA receptors resulted in a larger ΔCa²⁺ in MNCs from HF when compared with sham rats. The enhanced NMDA-ΔCa²⁺ was neither dependent on the magnitude of the NMDA-mediated current (voltage clamp) nor on the degree of membrane depolarization or firing activity evoked by NMDA (current clamp). Differently from NMDA receptor activation, firing activity evoked by direct membrane depolarization resulted in similar changes in intracellular Ca²⁺ in sham and HF rats. Taken together, our results support a relatively selective alteration of intracellular Ca²⁺ homeostasis and signaling following activation of NMDA receptors in MNCs during HF. The downstream functional consequences of such altered ΔCa²⁺ signaling during HF are discussed.

  14. Cyprodinil as an activator of aryl hydrocarbon receptor

    International Nuclear Information System (INIS)

    Fang, Chien-Chung; Chen, Fei-Yun; Chen, Chang-Rong; Liu, Chien-Chiang; Wong, Liang-Chi; Liu, Yi-Wen; Su, Jyan-Gwo Joseph

    2013-01-01

    Highlights: ► Cyprodinil activated the aryl hydrocarbon receptor (AHR). ► Cyprodinil induced nuclear translocation of the AHR, and the expression of CYP1A1. ► Cyprodinil enhanced dexamethasone-induced gene expression. ► Cyprodinil phosphorylated ERK, indicating its deregulation of ERK activity. -- Abstract: Cyprodinil is a pyrimidinamine fungicide, used worldwide by agriculture. It is used to protect fruit plants and vegetables from a wide range of pathogens. Benzo[a]pyrene (BaP) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) are toxic environmental pollutants and are prototypes of aryl hydrocarbon receptor (AHR) ligands. Although the structure of cyprodinil distinctly differs from those of BaP and TCDD, our results show that cyprodinil induced nuclear translocation of the AHR, and induced the transcriptional activity of aryl hydrocarbon response element (AHRE). Cyprodinil induced the expression of cytochrome P450 (CYP) 1A1, a well-known AHR-targeted gene, in ovarian granulosa cells, HO23, and hepatoma cells, Hepa-1c1c7. Its induction did not appear in AHR signal-deficient cells, and was blocked by the AHR antagonist, CH-223191. Cyprodinil decreased AHR expression in HO23 cells, resulting in CYP1A1 expression decreasing after it peaked at 9 h of treatment in HO23 cells. Dexamethasone is a synthetic agonist of glucocorticoids. Cyprodinil enhanced dexamethasone-induced gene expression, and conversely, its induction of CYP1A1 expression was decreased by dexamethasone in HO23 cells, indicating its induction of crosstalk between the AHR and glucocorticoid receptor and its role as a potential endocrine disrupter. In addition to BaP, TCDD, and an AHR agonist, β-NF, cyprodinil also phosphorylated extracellular signal-regulated kinase (ERK) in HO23 and Hepa-1c1c7 cells, indicating its deregulation of ERK activity. In summary, our results demonstrate that cyprodinil, similar to BaP, acts as an AHR activator, a potential endocrine disrupter, and an ERK disrupter

  15. Activation of aryl hydrocarbon receptor reduces carbendazim-induced cell death

    International Nuclear Information System (INIS)

    Wei, Kuo-Liang; Chen, Fei-Yun; Lin, Chih-Yi; Gao, Guan-Lun; Kao, Wen-Ya; Yeh, Chi-Hui; Chen, Chang-Rong; Huang, Hao-Chun; Tsai, Wei-Ren; Jong, Koa-Jen; Li, Wan-Jung; Su, Jyan-Gwo Joseph

    2016-01-01

    Carbendazim inhibits microtubule assembly, thus blocking mitosis and inhibiting cancer cell proliferation. Accordingly, carbendazim is being explored as an anticancer drug. Data show that carbendazim increased mRNA and protein expressions and promoter activity of CYP1A1. In addition, carbendazim activated transcriptional activity of the aryl hydrocarbon response element, and induced nuclear translocation of the aryl hydrocarbon receptor (AhR), a sign the AhR is activated. Carbendazim-induced CYP1A1 expression was blocked by AhR antagonists, and was abolished in AhR signal-deficient cells. Results demonstrated that carbendazim activated the AhR, thereby stimulating CYP1A1 expression. In order to understand whether AhR-induced metabolic enzymes turn carbendazim into less-toxic metabolites, Hoechst 33342 staining to reveal carbendazim-induced nuclear changes and flow cytometry to reveal the subG 0 /G 1 population were applied to monitor carbendazim-induced cell apoptosis. Carbendazim induced less apoptosis in Hepa-1c1c7 cells than in AhR signal-deficient Hepa-1c1c7 mutant cells. Pretreatment with β-NF, an AhR agonist that highly induces CYP1A1 expression, decreased carbendazim-induced cell death. In addition, the lower the level of AhR was, the lower the vitality present in carbendazim-treated cells, including hepatoma cells and their derivatives with AhR RNA interference, also embryonic kidney cells, bladder carcinoma cells, and AhR signal-deficient Hepa-1c1c7 cells. In summary, carbendazim is an AhR agonist. The toxicity of carbendazim was lower in cells with the AhR signal. This report provides clues indicating that carbendazim is more potent at inducing cell death in tissues without than in those with the AhR signal, an important reference for applying carbendazim in cancer chemotherapy. - Highlights: • Carbendazim induced transcriptional activity of the aryl hydrocarbon response element. • Carbendazim induced nuclear translocation of the aryl hydrocarbon

  16. Activation of aryl hydrocarbon receptor reduces carbendazim-induced cell death

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Kuo-Liang [Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan, ROC (China); College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan, ROC (China); Chen, Fei-Yun; Lin, Chih-Yi [Department of Biochemical Science and Technology, National Chiayi University, Chiayi 60004, Taiwan, ROC (China); Gao, Guan-Lun [Department of Biochemical Science and Technology, National Chiayi University, Chiayi 60004, Taiwan, ROC (China); Department of Biological Resources, National Chiayi University, Chiayi, 60004, Taiwan, ROC (China); Kao, Wen-Ya [Department of Biochemical Science and Technology, National Chiayi University, Chiayi 60004, Taiwan, ROC (China); Yeh, Chi-Hui [Department of Environmental Engineering, College of Engineering, Da-Yeh University, Dacun, Changhua 51591, Taiwan, ROC (China); Chen, Chang-Rong [Department of Biochemical Science and Technology, National Chiayi University, Chiayi 60004, Taiwan, ROC (China); Huang, Hao-Chun [Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan, ROC (China); Tsai, Wei-Ren [Division of Applied Toxicology, Taiwan Agricultural Chemicals and Toxic Substances Research Institute, Council of Agriculture, Executive Yuan, Taichung 41358, Taiwan, ROC (China); Jong, Koa-Jen [Department of Biological Resources, National Chiayi University, Chiayi, 60004, Taiwan, ROC (China); Li, Wan-Jung [Department of Biochemical Science and Technology, National Chiayi University, Chiayi 60004, Taiwan, ROC (China); Su, Jyan-Gwo Joseph, E-mail: jgjsu@mail.ncyu.edu.tw [Department of Biochemical Science and Technology, National Chiayi University, Chiayi 60004, Taiwan, ROC (China)

    2016-09-01

    Carbendazim inhibits microtubule assembly, thus blocking mitosis and inhibiting cancer cell proliferation. Accordingly, carbendazim is being explored as an anticancer drug. Data show that carbendazim increased mRNA and protein expressions and promoter activity of CYP1A1. In addition, carbendazim activated transcriptional activity of the aryl hydrocarbon response element, and induced nuclear translocation of the aryl hydrocarbon receptor (AhR), a sign the AhR is activated. Carbendazim-induced CYP1A1 expression was blocked by AhR antagonists, and was abolished in AhR signal-deficient cells. Results demonstrated that carbendazim activated the AhR, thereby stimulating CYP1A1 expression. In order to understand whether AhR-induced metabolic enzymes turn carbendazim into less-toxic metabolites, Hoechst 33342 staining to reveal carbendazim-induced nuclear changes and flow cytometry to reveal the subG{sub 0}/G{sub 1} population were applied to monitor carbendazim-induced cell apoptosis. Carbendazim induced less apoptosis in Hepa-1c1c7 cells than in AhR signal-deficient Hepa-1c1c7 mutant cells. Pretreatment with β-NF, an AhR agonist that highly induces CYP1A1 expression, decreased carbendazim-induced cell death. In addition, the lower the level of AhR was, the lower the vitality present in carbendazim-treated cells, including hepatoma cells and their derivatives with AhR RNA interference, also embryonic kidney cells, bladder carcinoma cells, and AhR signal-deficient Hepa-1c1c7 cells. In summary, carbendazim is an AhR agonist. The toxicity of carbendazim was lower in cells with the AhR signal. This report provides clues indicating that carbendazim is more potent at inducing cell death in tissues without than in those with the AhR signal, an important reference for applying carbendazim in cancer chemotherapy. - Highlights: • Carbendazim induced transcriptional activity of the aryl hydrocarbon response element. • Carbendazim induced nuclear translocation of the aryl

  17. Airborne polycyclic aromatic hydrocarbons trigger human skin cells aging through aryl hydrocarbon receptor.

    Science.gov (United States)

    Qiao, Yuan; Li, Qiang; Du, Hong-Yang; Wang, Qiao-Wei; Huang, Ye; Liu, Wei

    2017-07-01

    Accumulating evidence suggests that polycyclic aromatic hydrocarbons (PAH) which adsorbed on the surface of ambient air particulate matters (PM), are the major toxic compound to cause cardiovascular and respiratory diseases, even cancer. However, its detrimental effects on human skin cell remain unclear. Here, we demonstrated that SRM1649b, a reference urban dust material of PAH, triggers human skin cells aging through cell cycle arrest, cell growth inhibition and apoptosis. Principally, SRM1649b facilitated Aryl hydrocarbon receptor (AhR) translocated into nucleus, subsequently activated ERK/MAPK signaling pathway, and upregulated aging-related genes expression. Most important, we found that AhR antagonist efficiently revert the aging of skin cells. Thus our novel findings firstly revealed the mechanism of skin aging under PAH contamination and provided potential strategy for clinical application. Copyright © 2017. Published by Elsevier Inc.

  18. Aromatic hydrocarbon receptor inhibits lysophosphatidic acid-induced vascular endothelial growth factor-A expression in PC-3 prostate cancer cells

    International Nuclear Information System (INIS)

    Wu, Pei-Yi; Lin, Yueh-Chien; Lan, Shun-Yan; Huang, Yuan-Li; Lee, Hsinyu

    2013-01-01

    Highlights: •LPA-induced VEGF-A expression was regulated by HIF-1α and ARNT. •PI3K mediated LPA-induced VEGF-A expression. •AHR signaling inhibited LPA-induced VEGF-A expression in PC-3 cells. -- Abstract: Lysophosphatidic acid (LPA) is a lipid growth factor with multiple biological functions and has been shown to stimulate cancer cell secretion of vascular endothelial growth factor-A (VEGF-A) and trigger angiogenesis. Hypoxia-inducible factor-1 (HIF-1), a heterodimer consisting of HIF-1α and HIF-1β (also known as aromatic hydrocarbon receptor nuclear translocator (ARNT)) subunits, is an important regulator of angiogenesis in prostate cancer (PC) through the enhancement of VEGF-A expression. In this study, we first confirmed the ability of LPA to induce VEGF-A expression in PC-3 cells and then validated that LPA-induced VEGF-A expression was regulated by HIF-1α and ARNT through phosphatidylinositol 3-kinase activation. Aromatic hydrocarbon receptor (AHR), a receptor for dioxin-like compounds, functions as a transcription factor through dimerization with ARNT and was found to inhibit prostate carcinogenesis and vanadate-induced VEGF-A production. Since ARNT is a common dimerization partner of AHR and HIF-1α, we hypothesized that AHR might suppress LPA-induced VEGF-A expression in PC-3 cells by competing with HIF-1α for ARNT. Here we demonstrated that overexpression and ligand activation of AHR inhibited HIF-1-mediated VEGF-A induction by LPA treatment of PC-3 cells. In conclusion, our results suggested that AHR activation may inhibit LPA-induced VEGF-A expression in PC-3 cells by attenuating HIF-1α signaling, and subsequently, suppressing angiogenesis and metastasis of PC. These results suggested that AHR presents a potential therapeutic target for the prevention of PC metastasis

  19. B cell antigen receptor signaling and internalization are mutually exclusive events.

    Directory of Open Access Journals (Sweden)

    Ping Hou

    2006-07-01

    Full Text Available Engagement of the B cell antigen receptor initiates two concurrent processes, signaling and receptor internalization. While both are required for normal humoral immune responses, the relationship between these two processes is unknown. Herein, we demonstrate that following receptor ligation, a small subpopulation of B cell antigen receptors are inductively phosphorylated and selectively retained at the cell surface where they can serve as scaffolds for the assembly of signaling molecules. In contrast, the larger population of non-phosphorylated receptors is rapidly endocytosed. Each receptor can undergo only one of two mutually exclusive fates because the tyrosine-based motifs that mediate signaling when phosphorylated mediate internalization when not phosphorylated. Mathematical modeling indicates that the observed competition between receptor phosphorylation and internalization enhances signaling responses to low avidity ligands.

  20. {delta}-Opioid receptor-stimulated Akt signaling in neuroblastoma x glioma (NG108-15) hybrid cells involves receptor tyrosine kinase-mediated PI3K activation

    Energy Technology Data Exchange (ETDEWEB)

    Heiss, Anika; Ammer, Hermann [Institute of Pharmacology, Toxicology and Pharmacy Ludwig-Maximilians-University of Munich Koeniginstrasse 16 80539 Muenchen Federal Republic of Germany (Germany); Eisinger, Daniela A., E-mail: eisinger@pharmtox.vetmed.uni-muenchen.de [Institute of Pharmacology, Toxicology and Pharmacy Ludwig-Maximilians-University of Munich Koeniginstrasse 16 80539 Muenchen Federal Republic of Germany (Germany)

    2009-07-15

    {delta}-Opioid receptor (DOR) agonists possess cytoprotective properties, an effect associated with activation of the 'pro-survival' kinase Akt. Here we delineate the signal transduction pathway by which opioids induce Akt activation in neuroblastoma x glioma (NG108-15) hybrid cells. Exposure of the cells to both [D-Pen{sup 2,5}]enkephalin and etorphine resulted in a time- and dose-dependent increase in Akt activity, as measured by means of an activation-specific antibody recognizing phosphoserine-473. DOR-mediated Akt signaling is blocked by the opioid antagonist naloxone and involves inhibitory G{sub i/o} proteins, because pre-treatment with pertussis toxin, but not over-expression of the G{sub q/11} scavengers EBP50 and GRK2-K220R, prevented this effect. Further studies with Wortmannin and LY294002 revealed that phophoinositol-3-kinase (PI3K) plays a central role in opioid-induced Akt activation. Opioids stimulate Akt activity through transactivation of receptor tyrosine kinases (RTK), because pre-treatment of the cells with inhibitors for neurotrophin receptor tyrosine kinases (AG879) and the insulin-like growth factor receptor IGF-1 (AG1024), but not over-expression of the G{beta}{gamma} scavenger phosducin, abolished this effect. Activated Akt translocates to the nuclear membrane, where it promotes GSK3 phosphorylation and prevents caspase-3 cleavage, two key events mediating inhibition of cell apoptosis and enhancement of cell survival. Taken together, these results demonstrate that in NG108-15 hybrid cells DOR agonists possess cytoprotective properties mediated by activation of the RTK/PI3K/Akt signaling pathway.

  1. δ-Opioid receptor-stimulated Akt signaling in neuroblastoma x glioma (NG108-15) hybrid cells involves receptor tyrosine kinase-mediated PI3K activation

    International Nuclear Information System (INIS)

    Heiss, Anika; Ammer, Hermann; Eisinger, Daniela A.

    2009-01-01

    δ-Opioid receptor (DOR) agonists possess cytoprotective properties, an effect associated with activation of the 'pro-survival' kinase Akt. Here we delineate the signal transduction pathway by which opioids induce Akt activation in neuroblastoma x glioma (NG108-15) hybrid cells. Exposure of the cells to both [D-Pen 2,5 ]enkephalin and etorphine resulted in a time- and dose-dependent increase in Akt activity, as measured by means of an activation-specific antibody recognizing phosphoserine-473. DOR-mediated Akt signaling is blocked by the opioid antagonist naloxone and involves inhibitory G i/o proteins, because pre-treatment with pertussis toxin, but not over-expression of the G q/11 scavengers EBP50 and GRK2-K220R, prevented this effect. Further studies with Wortmannin and LY294002 revealed that phophoinositol-3-kinase (PI3K) plays a central role in opioid-induced Akt activation. Opioids stimulate Akt activity through transactivation of receptor tyrosine kinases (RTK), because pre-treatment of the cells with inhibitors for neurotrophin receptor tyrosine kinases (AG879) and the insulin-like growth factor receptor IGF-1 (AG1024), but not over-expression of the Gβγ scavenger phosducin, abolished this effect. Activated Akt translocates to the nuclear membrane, where it promotes GSK3 phosphorylation and prevents caspase-3 cleavage, two key events mediating inhibition of cell apoptosis and enhancement of cell survival. Taken together, these results demonstrate that in NG108-15 hybrid cells DOR agonists possess cytoprotective properties mediated by activation of the RTK/PI3K/Akt signaling pathway.

  2. Prostaglandin Receptor Signaling in Disease

    Directory of Open Access Journals (Sweden)

    Toshiyuki Matsuoka

    2007-01-01

    Full Text Available Prostanoids, consisting of the prostaglandins (PGs and the thromboxanes (TXs, are a group of lipid mediators formed in response to various stimuli. They include PGD2, PGE2, PGF2α, PGI2, and TXA2. They are released outside of the cells immediately after synthesis, and exert their actions by binding to a G-protein coupled rhodopsin-type receptor on the surface of target cells. There are eight types of the prostanoid receptors conserved in mammals from mouse to human. They are the PGD receptor (DP, four subtypes of the PGE receptor (EP1, EP2, EP3, and EP4, the PGF receptor (FP, PGI receptor (IP, and TXA receptor (TP. Recently, mice deficient in each of these prostanoid receptors were generated and subjected to various experimental models of disease. These studies have revealed the roles of PG receptor signaling in various pathological conditions, and suggest that selective manipulation of the prostanoid receptors may be beneficial in treatment of the pathological conditions. Here we review these recent findings of roles of prostanoid receptor signaling and their therapeutic implications.

  3. A multiscale computational approach to dissect early events in the Erb family receptor mediated activation, differential signaling, and relevance to oncogenic transformations.

    Science.gov (United States)

    Liu, Yingting; Purvis, Jeremy; Shih, Andrew; Weinstein, Joshua; Agrawal, Neeraj; Radhakrishnan, Ravi

    2007-06-01

    We describe a hierarchical multiscale computational approach based on molecular dynamics simulations, free energy-based molecular docking simulations, deterministic network-based kinetic modeling, and hybrid discrete/continuum stochastic dynamics protocols to study the dimer-mediated receptor activation characteristics of the Erb family receptors, specifically the epidermal growth factor receptor (EGFR). Through these modeling approaches, we are able to extend the prior modeling of EGF-mediated signal transduction by considering specific EGFR tyrosine kinase (EGFRTK) docking interactions mediated by differential binding and phosphorylation of different C-terminal peptide tyrosines on the RTK tail. By modeling signal flows through branching pathways of the EGFRTK resolved on a molecular basis, we are able to transcribe the effects of molecular alterations in the receptor (e.g., mutant forms of the receptor) to differing kinetic behavior and downstream signaling response. Our molecular dynamics simulations show that the drug sensitizing mutation (L834R) of EGFR stabilizes the active conformation to make the system constitutively active. Docking simulations show preferential characteristics (for wildtype vs. mutant receptors) in inhibitor binding as well as preferential enhancement of phosphorylation of particular substrate tyrosines over others. We find that in comparison to the wildtype system, the L834R mutant RTK preferentially binds the inhibitor erlotinib, as well as preferentially phosphorylates the substrate tyrosine Y1068 but not Y1173. We predict that these molecular level changes result in preferential activation of the Akt signaling pathway in comparison to the Erk signaling pathway for cells with normal EGFR expression. For cells with EGFR over expression, the mutant over activates both Erk and Akt pathways, in comparison to wildtype. These results are consistent with qualitative experimental measurements reported in the literature. We discuss these

  4. Probing Biased Signaling in Chemokine Receptors

    DEFF Research Database (Denmark)

    Amarandi, Roxana Maria; Hjortø, Gertrud Malene; Rosenkilde, Mette Marie

    2016-01-01

    The chemokine system mediates leukocyte migration during homeostatic and inflammatory processes. Traditionally, it is described as redundant and promiscuous, with a single chemokine ligand binding to different receptors and a single receptor having several ligands. Signaling of chemokine receptors...... of others has been termed signaling bias and can accordingly be grouped into ligand bias, receptor bias, and tissue bias. Bias has so far been broadly overlooked in the process of drug development. The low number of currently approved drugs targeting the chemokine system, as well as the broad range...... of failed clinical trials, reflects the need for a better understanding of the chemokine system. Thus, understanding the character, direction, and consequence of biased signaling in the chemokine system may aid the development of new therapeutics. This review describes experiments to assess G protein...

  5. Dynamics of the actin cytoskeleton mediates receptor cross talk: An emerging concept in tuning receptor signaling

    Science.gov (United States)

    Mattila, Pieta K.; Batista, Facundo D.

    2016-01-01

    Recent evidence implicates the actin cytoskeleton in the control of receptor signaling. This may be of particular importance in the context of immune receptors, such as the B cell receptor, where dysregulated signaling can result in autoimmunity and malignancy. Here, we discuss the role of the actin cytoskeleton in controlling receptor compartmentalization, dynamics, and clustering as a means to regulate receptor signaling through controlling the interactions with protein partners. We propose that the actin cytoskeleton is a point of integration for receptor cross talk through modulation of protein dynamics and clustering. We discuss the implication of this cross talk via the cytoskeleton for both ligand-induced and low-level constitutive (tonic) signaling necessary for immune cell survival. PMID:26833785

  6. Modulation of β-catenin signaling by glucagon receptor activation.

    Directory of Open Access Journals (Sweden)

    Jiyuan Ke

    Full Text Available The glucagon receptor (GCGR is a member of the class B G protein-coupled receptor family. Activation of GCGR by glucagon leads to increased glucose production by the liver. Thus, glucagon is a key component of glucose homeostasis by counteracting the effect of insulin. In this report, we found that in addition to activation of the classic cAMP/protein kinase A (PKA pathway, activation of GCGR also induced β-catenin stabilization and activated β-catenin-mediated transcription. Activation of β-catenin signaling was PKA-dependent, consistent with previous reports on the parathyroid hormone receptor type 1 (PTH1R and glucagon-like peptide 1 (GLP-1R receptors. Since low-density-lipoprotein receptor-related protein 5 (Lrp5 is an essential co-receptor required for Wnt protein mediated β-catenin signaling, we examined the role of Lrp5 in glucagon-induced β-catenin signaling. Cotransfection with Lrp5 enhanced the glucagon-induced β-catenin stabilization and TCF promoter-mediated transcription. Inhibiting Lrp5/6 function using Dickkopf-1(DKK1 or by expression of the Lrp5 extracellular domain blocked glucagon-induced β-catenin signaling. Furthermore, we showed that Lrp5 physically interacted with GCGR by immunoprecipitation and bioluminescence resonance energy transfer assays. Together, these results reveal an unexpected crosstalk between glucagon and β-catenin signaling, and may help to explain the metabolic phenotypes of Lrp5/6 mutations.

  7. Orexin/hypocretin receptor 1 signaling mediates Pavlovian cue-food conditioning and extinction.

    Science.gov (United States)

    Keefer, Sara E; Cole, Sindy; Petrovich, Gorica D

    2016-08-01

    Learned food cues can drive feeding in the absence of hunger, and orexin/hypocretin signaling is necessary for this type of overeating. The current study examined whether orexin also mediates cue-food learning during the acquisition and extinction of these associations. In Experiment 1, rats underwent two sessions of Pavlovian appetitive conditioning, consisting of tone-food presentations. Prior to each session, rats received either the orexin 1 receptor antagonist SB-334867 (SB) or vehicle systemically. SB treatment did not affect conditioned responses during the first conditioning session, measured as food cup behavior during the tone and latency to approach the food cup after the tone onset, compared to the vehicle group. During the second conditioning session, SB treatment attenuated learning. All groups that received SB, prior to either the first or second conditioning session, displayed significantly less food cup behavior and had longer latencies to approach the food cup after tone onset compared to the vehicle group. These findings suggest orexin signaling at the 1 receptor mediates the consolidation and recall of cue-food acquisition. In Experiment 2, another group of rats underwent tone-food conditioning sessions (drug free), followed by two extinction sessions under either SB or vehicle treatment. Similar to Experiment 1, SB did not affect conditioned responses during the first session. During the second extinction session, the group that received SB prior to the first extinction session, but vehicle prior to the second, expressed conditioned food cup responses longer after tone offset, when the pellets were previously delivered during conditioning, and maintained shorter latencies to approach the food cup compared to the other groups. The persistence of these conditioned behaviors indicates impairment in extinction consolidation due to SB treatment during the first extinction session. Together, these results demonstrate an important role for orexin

  8. Orexin/hypocretin receptor 1 signaling mediates Pavlovian cue-food conditioning and extinction

    Science.gov (United States)

    Keefer, Sara E.; Cole, Sindy; Petrovich, Gorica D.

    2016-01-01

    Learned food cues can drive feeding in the absence of hunger, and orexin/hypocretin signaling is necessary for this type of overeating. The current study examined whether orexin also mediates cue-food learning during the acquisition and extinction of these associations. In Experiment 1, rats underwent two sessions of Pavlovian appetitive conditioning, consisting of tone-food presentations. Prior to each session, rats received either the orexin 1 receptor antagonist SB-334867 (SB) or vehicle systemically. SB treatment did not affect conditioned responses during the first conditioning session, measured as food cup behavior during the tone and latency to approach the food cup after the tone onset, compared to the vehicle group. During the second conditioning session, SB treatment attenuated learning. All groups that received SB, prior to either the first or second conditioning session, displayed significantly less food cup behavior and had longer latencies to approach the food cup after tone onset compared to the vehicle group. These findings suggest orexin signaling at the 1 receptor mediates the consolidation and recall of cue-food acquisition. In Experiment 2, another group of rats underwent tone-food conditioning sessions (drug free), followed by two extinction sessions under either SB or vehicle treatment. Similar to Experiment 1, SB did not affect conditioned responses during the first session. During the second extinction session, the group that received SB prior to the first extinction session, but vehicle prior to the second, expressed conditioned food cup responses longer after tone offset, when the pellets were previously delivered during conditioning, and maintained shorter latencies to approach the food cup compared to the other groups. The persistence of these conditioned behaviors indicates impairment in extinction consolidation due to SB treatment during the first extinction session. Together, these results demonstrate an important role for orexin

  9. Global analysis of gene expression mediated by OX1 orexin receptor signaling in a hypothalamic cell line.

    Directory of Open Access Journals (Sweden)

    Eric Koesema

    Full Text Available The orexins and their cognate G-protein coupled receptors have been widely studied due to their associations with various behaviors and cellular processes. However, the detailed downstream signaling cascades that mediate these effects are not completely understood. We report the generation of a neuronal model cell line that stably expresses the OX1 orexin receptor (OX1 and an RNA-Seq analysis of changes in gene expression seen upon receptor activation. Upon treatment with orexin, several families of related transcription factors are transcriptionally regulated, including the early growth response genes (Egr, the Kruppel-like factors (Klf, and the Nr4a subgroup of nuclear hormone receptors. Furthermore, some of the transcriptional effects observed have also been seen in data from in vivo sleep deprivation microarray studies, supporting the physiological relevance of the data set. Additionally, inhibition of one of the most highly regulated genes, serum and glucocorticoid-regulated kinase 1 (Sgk1, resulted in the diminished orexin-dependent induction of a subset of genes. These results provide new insight into the molecular signaling events that occur during OX1 signaling and support a role for orexin signaling in the stimulation of wakefulness during sleep deprivation studies.

  10. Androgen Receptor Signaling in Bladder Cancer

    Science.gov (United States)

    Li, Peng; Chen, Jinbo; Miyamoto, Hiroshi

    2017-01-01

    Emerging preclinical findings have indicated that steroid hormone receptor signaling plays an important role in bladder cancer outgrowth. In particular, androgen-mediated androgen receptor signals have been shown to correlate with the promotion of tumor development and progression, which may clearly explain some sex-specific differences in bladder cancer. This review summarizes and discusses the available data, suggesting the involvement of androgens and/or the androgen receptor pathways in urothelial carcinogenesis as well as tumor growth. While the precise mechanisms of the functions of the androgen receptor in urothelial cells remain far from being fully understood, current evidence may offer chemopreventive or therapeutic options, using androgen deprivation therapy, in patients with bladder cancer. PMID:28241422

  11. Androgen Receptor Signaling in Bladder Cancer

    Directory of Open Access Journals (Sweden)

    Peng Li

    2017-02-01

    Full Text Available Emerging preclinical findings have indicated that steroid hormone receptor signaling plays an important role in bladder cancer outgrowth. In particular, androgen-mediated androgen receptor signals have been shown to correlate with the promotion of tumor development and progression, which may clearly explain some sex-specific differences in bladder cancer. This review summarizes and discusses the available data, suggesting the involvement of androgens and/or the androgen receptor pathways in urothelial carcinogenesis as well as tumor growth. While the precise mechanisms of the functions of the androgen receptor in urothelial cells remain far from being fully understood, current evidence may offer chemopreventive or therapeutic options, using androgen deprivation therapy, in patients with bladder cancer.

  12. Cigarette smoke-induced cell death of a spermatocyte cell line can be prevented by inactivating the Aryl hydrocarbon receptor

    Science.gov (United States)

    Esakky, P; Hansen, D A; Drury, A M; Cusumano, A; Moley, K H

    2015-01-01

    Cigarette smoke exposure causes germ cell death during spermatogenesis. Our earlier studies demonstrated that cigarette smoke condensate (CSC) causes spermatocyte cell death in vivo and growth arrest of the mouse spermatocyte cell line (GC-2spd(ts)) in vitro via the aryl hydrocarbon receptor (AHR). We hypothesize here that inactivation of AHR could prevent the CSC-induced cell death in spermatocytes. We demonstrate that CSC exposure generates oxidative stress, which differentially regulates mitochondrial apoptosis in GC-2spd(ts) and wild type (WT) and AHR knockout (AHR-KO) mouse embryonic fibroblasts (MEFs). SiRNA-mediated silencing of Ahr augments the extent of CSC-mediated cellular damage while complementing the AHR-knockout condition. Pharmacological inhibition using the AHR-antagonist (CH223191) modulates the CSC-altered expression of apoptotic proteins and significantly abrogates DNA fragmentation though the cleavage of PARP appears AHR independent. Pretreatment with CH223191 at concentrations above 50 μM significantly prevents the CSC-induced activation of caspase-3/7 and externalization of phosphatidylserine in the plasma membrane. However, MAPK inhibitors alone or together with CH223191 could not prevent the membrane damage upon CSC addition and the caspase-3/7 activation and membrane damage in AHR-deficient MEF indicates the interplay of multiple cell signaling and cytoprotective ability of AHR. Thus the data obtained on one hand signifies the protective role of AHR in maintaining normal cellular homeostasis and the other, could be a potential prophylactic therapeutic target to promote cell survival and growth under cigarette smoke exposed environment by receptor antagonism via CH223191-like mechanism. Antagonist-mediated inactivation of the aryl hydrocarbon receptor blocks downstream events leading to cigarette smoke-induced cell death of a spermatocyte cell line. PMID:27551479

  13. SOCS proteins in regulation of receptor tyrosine kinase signaling

    DEFF Research Database (Denmark)

    Kazi, Julhash U.; Kabir, Nuzhat N.; Flores Morales, Amilcar

    2014-01-01

    Receptor tyrosine kinases (RTKs) are a family of cell surface receptors that play critical roles in signal transduction from extracellular stimuli. Many in this family of kinases are overexpressed or mutated in human malignancies and thus became an attractive drug target for cancer treatment....... The signaling mediated by RTKs must be tightly regulated by interacting proteins including protein-tyrosine phosphatases and ubiquitin ligases. The suppressors of cytokine signaling (SOCS) family proteins are well-known negative regulators of cytokine receptors signaling consisting of eight structurally similar...

  14. Aryl hydrocarbon receptor signaling modulates antiviral immune responses: ligand metabolism rather than chemical source is the stronger predictor of outcome.

    Science.gov (United States)

    Boule, Lisbeth A; Burke, Catherine G; Jin, Guang-Bi; Lawrence, B Paige

    2018-01-29

    The aryl hydrocarbon receptor (AHR) offers a compelling target to modulate the immune system. AHR agonists alter adaptive immune responses, but the consequences differ across studies. We report here the comparison of four agents representing different sources of AHR ligands in mice infected with influenza A virus (IAV): TCDD, prototype exogenous AHR agonist; PCB126, pollutant with documented human exposure; ITE, novel pharmaceutical; and FICZ, degradation product of tryptophan. All four compounds diminished virus-specific IgM levels and increased the proportion of regulatory T cells. TCDD, PCB126 and ITE, but not FICZ, reduced virus-specific IgG levels and CD8 + T cell responses. Similarly, ITE, PCB126, and TCDD reduced Th1 and Tfh cells, whereas FICZ increased their frequency. In Cyp1a1-deficient mice, all compounds, including FICZ, reduced the response to IAV. Conditional Ahr knockout mice revealed that all four compounds require AHR within hematopoietic cells. Thus, differences in the immune response to IAV likely reflect variances in quality, magnitude, and duration of AHR signaling. This indicates that binding affinity and metabolism may be stronger predictors of immune effects than a compound's source of origin, and that harnessing AHR will require finding a balance between dampening immune-mediated pathologies and maintaining sufficient host defenses against infection.

  15. Sweet Taste Receptor Signaling Network: Possible Implication for Cognitive Functioning

    Directory of Open Access Journals (Sweden)

    Menizibeya O. Welcome

    2015-01-01

    Full Text Available Sweet taste receptors are transmembrane protein network specialized in the transmission of information from special “sweet” molecules into the intracellular domain. These receptors can sense the taste of a range of molecules and transmit the information downstream to several acceptors, modulate cell specific functions and metabolism, and mediate cell-to-cell coupling through paracrine mechanism. Recent reports indicate that sweet taste receptors are widely distributed in the body and serves specific function relative to their localization. Due to their pleiotropic signaling properties and multisubstrate ligand affinity, sweet taste receptors are able to cooperatively bind multiple substances and mediate signaling by other receptors. Based on increasing evidence about the role of these receptors in the initiation and control of absorption and metabolism, and the pivotal role of metabolic (glucose regulation in the central nervous system functioning, we propose a possible implication of sweet taste receptor signaling in modulating cognitive functioning.

  16. Shc adaptor proteins are key transducers of mitogenic signaling mediated by the G protein-coupled thrombin receptor

    DEFF Research Database (Denmark)

    Chen, Y; Grall, D; Salcini, A E

    1996-01-01

    The serine protease thrombin activates G protein signaling systems that lead to Ras activation and, in certain cells, proliferation. Whereas the steps leading to Ras activation by G protein-coupled receptors are not well defined, the mechanisms of Ras activation by receptor tyrosine kinases have......-insensitive proteins appear to mediate this effect, since (i) pertussis toxin pre-treatment of cells does not blunt the action of thrombin and (ii) Shc phosphorylation on tyrosine can be stimulated by the muscarinic m1 receptor. Shc phosphorylation does not appear to involve protein kinase C, since the addition of 4...

  17. Mode of action and dose-response framework analysis for receptor-mediated toxicity : The aryl hydrocarbon receptor as a case study

    NARCIS (Netherlands)

    Budinsky, R. A.; Schrenk, D.; Simon, T.; Van Den Berg, M.; Reichard, J. F.; Silkworth, J. B.; Aylward, L. L.; Brix, A.; Gasiewicz, T.; Kaminski, N.; Perdew, G.; Starr, T. B.; Walker, N. J.; Rowlands, J. C.

    2014-01-01

    Dioxins and dioxin-like compounds are tumor promoters that cause liver cancer in rats and mice. The aryl hydrocarbon receptor (AHR) has been implicated as a key component in this tumor promotion response. Despite extensive knowledge of the toxicology of dioxins, no mode of action (MOA) hypothesis

  18. GLI1, a crucial mediator of sonic hedgehog signaling in prostate cancer, functions as a negative modulator for androgen receptor

    International Nuclear Information System (INIS)

    Chen, Guangchun; Goto, Yutaka; Sakamoto, Ryuichi; Tanaka, Kimitaka; Matsubara, Eri; Nakamura, Masafumi; Zheng, Hong; Lu, Jian; Takayanagi, Ryoichi; Nomura, Masatoshi

    2011-01-01

    Research highlights: → GLI1, which play a central role in sonic hedgehog signaling in prostate cancer, can act as a co-repressor to substantially block androgen receptor-mediated transactivation. → GLI1 directly interacts with AR. → SHH-GLI pathway might be one of determinants governing the transition of prostate cancer from an androgen-dependent to an androgen-independent state. -- Abstract: Sonic hedgehog (SHH) signaling, acting in a combinatorial manner with androgen signaling, is essential for prostate patterning and development. Recently, elevated activation of SHH signaling has been shown to play important roles in proliferation, progression and metastasis of prostate cancer. In this report, we demonstrate for the first time, that GLI1, which has been shown to play a central role in SHH signaling in prostate cancer, can act as a co-repressor to substantially block androgen receptor (AR)-mediated transactivation, at least in part, by directly interacting with AR. Our observations suggest that the SHH-GLI pathway might be one of determinants governing the transition of prostate cancer from an androgen-dependent to an androgen-independent state by compensating, or even superseding androgen signaling.

  19. Steroid Hormone Receptor Signals as Prognosticators for Urothelial Tumor

    Directory of Open Access Journals (Sweden)

    Hiroki Ide

    2015-01-01

    Full Text Available There is a substantial amount of preclinical or clinical evidence suggesting that steroid hormone receptor-mediated signals play a critical role in urothelial tumorigenesis and tumor progression. These receptors include androgen receptor, estrogen receptors, glucocorticoid receptor, progesterone receptor, vitamin D receptor, retinoid receptors, peroxisome proliferator-activated receptors, and others including orphan receptors. In particular, studies using urothelial cancer tissue specimens have demonstrated that elevated or reduced expression of these receptors as well as alterations of their upstream or downstream pathways correlates with patient outcomes. This review summarizes and discusses available data suggesting that steroid hormone receptors and related signals serve as biomarkers for urothelial carcinoma and are able to predict tumor recurrence or progression.

  20. Neuronal Orphan G-Protein Coupled Receptor Proteins Mediate Plasmalogens-Induced Activation of ERK and Akt Signaling.

    Directory of Open Access Journals (Sweden)

    Md Shamim Hossain

    Full Text Available The special glycerophospholipids plasmalogens (Pls are enriched in the brain and reported to prevent neuronal cell death by enhancing phosphorylation of Akt and ERK signaling in neuronal cells. Though the activation of Akt and ERK was found to be necessary for the neuronal cells survival, it was not known how Pls enhanced cellular signaling. To answer this question, we searched for neuronal specific orphan GPCR (G-protein coupled receptor proteins, since these proteins were believed to play a role in cellular signal transduction through the lipid rafts, where both Pls and some GPCRs were found to be enriched. In the present study, pan GPCR inhibitor significantly reduced Pls-induced ERK signaling in neuronal cells, suggesting that Pls could activate GPCRs to induce signaling. We then checked mRNA expression of 19 orphan GPCRs and 10 of them were found to be highly expressed in neuronal cells. The knockdown of these 10 neuronal specific GPCRs by short hairpin (sh-RNA lentiviral particles revealed that the Pls-mediated phosphorylation of ERK was inhibited in GPR1, GPR19, GPR21, GPR27 and GPR61 knockdown cells. We further found that the overexpression of these GPCRs enhanced Pls-mediated phosphorylation of ERK and Akt in cells. Most interestingly, the GPCRs-mediated cellular signaling was reduced significantly when the endogenous Pls were reduced. Our cumulative data, for the first time, suggest a possible mechanism for Pls-induced cellular signaling in the nervous system.

  1. Progesterone receptor (PR) polyproline domain (PPD) mediates inhibition of epidermal growth factor receptor (EGFR) signaling in non-small cell lung cancer cells.

    Science.gov (United States)

    Kawprasertsri, Sornsawan; Pietras, Richard J; Marquez-Garban, Diana C; Boonyaratanakornkit, Viroj

    2016-05-01

    Recent evidence has suggested a possible role for progesterone receptor (PR) in the progression of non-small cell lung cancer (NSCLC). However, little is known concerning roles of PR in NSCLC. PR contains a polyproline domain (PPD), which directly binds to the SH3 domain of signaling molecules. Because PPD-SH3 interactions are essential for EGFR signaling, we hypothesized that the presence of PR-PPD interfered with EGFR-mediated signaling and cell proliferation. We examined the role of PR-PPD in cell proliferation and signaling by stably expressing PR-B, or PR-B with disrupting mutations in the PPD (PR-BΔSH3), from a tetracycline-regulated promoter in A549 NSCLC cells. PR-B dose-dependently inhibited cell growth in the absence of ligand, and progestin (R5020) treatment further suppressed the growth. Treatment with RU486 abolished PR-B- and R5020-mediated inhibition of cell proliferation. Expression of PR-BΔSH3 and treatment with R5020 or RU486 had no effect on cell proliferation. Furthermore, PR-B expression but not PR-BΔSH3 expression reduced EGF-induced A549 proliferation and activation of ERK1/2, in the absence of ligand. Taken together, our data demonstrated the significance of PR extranuclear signaling through PPD interactions in EGFR-mediated proliferation and signaling in NSCLC. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. BDE-99, but not BDE-47, is a transient aryl hydrocarbon receptor agonist in zebrafish liver cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jie; Zhu, Jinyong; Chan, King Ming, E-mail: kingchan@cuhk.edu.hk

    2016-08-15

    Polybrominated diphenyl ethers (PBDEs) are endocrine-disrupting chemicals that affect the environment and the health of humans and wildlife. In this study, the zebrafish liver (ZFL) cell line was used in vitro to investigate two major PBDE contaminants: 2, 2′, 4, 4′, 5-pentabromodiphenyl ether (BDE-99) and 2, 2′, 4, 4′-tetrabromodiphenyl ether (BDE-47). BDE-99 was found to significantly induce cytochrome P450 (CYP1A), uridine diphosphate glucuronosyl transferase 1 family a, b (ugt1ab), 7-ethoxyresorufin-O-deethylase activity and an aryl hydrocarbon receptor (Ahr) dependent xenobiotic response element luciferase reporter system, confirming the Ahr-mediated activation of CYP1A by BDE-99. The time-course effect indicated that the role of BDE-99 in Ahr-mediated signaling is likely to be transient and highly dependent on the ability of BDE-99 to induce CYP1A and ugt1ab, and presumably its metabolism. BDE-99 also exhibited a significant dose-response effect on a developed zebrafish pregnane X receptor luciferase reporter gene system. However, the other abundant contaminant under study, BDE-47, did not exhibit the above effects. Together, these results indicated that the molecular mechanism of PBDEs induced in ZFL cells is a chemically specific process that differs between members of the PBDE family. CYP1A induction derived by BDE-99 warrants further risk assessment as the humans, wildlife and environment are exposed to a complex mixture including dioxin-like compounds and carcinogenic compounds. - Highlights: • BDE-99 is an aryl hydrocarbon receptor (Ahr) agonist in zebrafish liver cell-line ZFL. • BDE-99 induced EROD activity, CYP1A and ugt1ab gene expression, in ZFL. • BDE-99 induced the pregnane X receptor (Pxr) luciferase reporter gene system in ZFL. • BDE-47 did not show any effects in ZFL to induce CYP1A, ugt1ab, and EROD. • BDE-47 and -99 showed no induction of Rxr and Pxr pathways in ZFL cells.

  3. Sphingosine-1-phosphate (S1P) displays sustained S1P1 receptor agonism and signaling through S1P lyase-dependent receptor recycling.

    Science.gov (United States)

    Gatfield, John; Monnier, Lucile; Studer, Rolf; Bolli, Martin H; Steiner, Beat; Nayler, Oliver

    2014-07-01

    The sphingosine-1-phosphate (S1P) type 1 receptor (S1P1R) is a novel therapeutic target in lymphocyte-mediated autoimmune diseases. S1P1 receptor desensitization caused by synthetic S1P1 receptor agonists prevents T-lymphocyte egress from secondary lymphoid organs into the circulation. The selective S1P1 receptor agonist ponesimod, which is in development for the treatment of autoimmune diseases, efficiently reduces peripheral lymphocyte counts and displays efficacy in animal models of autoimmune disease. Using ponesimod and the natural ligand S1P, we investigated the molecular mechanisms leading to different signaling, desensitization and trafficking behavior of S1P1 receptors. In recombinant S1P1 receptor-expressing cells, ponesimod and S1P triggered Gαi protein-mediated signaling and β-arrestin recruitment with comparable potency and efficiency, but only ponesimod efficiently induced intracellular receptor accumulation. In human umbilical vein endothelial cells (HUVEC), ponesimod and S1P triggered translocation of the endogenous S1P1 receptor to the Golgi compartment. However, only ponesimod treatment caused efficient surface receptor depletion, receptor accumulation in the Golgi and degradation. Impedance measurements in HUVEC showed that ponesimod induced only short-lived Gαi protein-mediated signaling followed by resistance to further stimulation, whereas S1P induced sustained Gαi protein-mediated signaling without desensitization. Inhibition of S1P lyase activity in HUVEC rendered S1P an efficient S1P1 receptor internalizing compound and abrogated S1P-mediated sustained signaling. This suggests that S1P lyase - by facilitating S1P1 receptor recycling - is essential for S1P-mediated sustained signaling, and that synthetic agonists are functional antagonists because they are not S1P lyase substrates. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. The Complex Biology of the Aryl Hydrocarbon Receptor and Its Role in the Pituitary Gland.

    Science.gov (United States)

    Formosa, Robert; Vassallo, Josanne

    2017-08-01

    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor best known for its ability to mediate the effects of environmental toxins such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD or dioxin), polycyclic aromatic hydrocarbons (PAHs), benzene, and polychlorinated biphenyls (PCBs) through the initiation of transcription of a number of metabolically active enzymes. Therefore, the AHR has been studied mostly in the context of xenobiotic signaling. However, several studies have shown that the AHR is constitutively active and plays an important role in general cell physiology, independently of its activity as a xenobiotic receptor and in the absence of exogenous ligands. Within the pituitary, activation of the AHR by environmental toxins has been implicated in disruption of gonadal development and fertility. Studies carried out predominantly in mouse models have revealed the detrimental influence of several environmental toxins on specific cell lineages of the pituitary tissue mediated by activation of AHR and its downstream effectors. Activation of AHR during fetal development adversely affected pituitary development while adult models exposed to AHR ligands demonstrated varying degrees of pituitary dysfunction. Such dysfunction may arise as a result of direct effects on pituitary cells or indirect effects on the hypothalamic-pituitary-gonadal axis. This review offers in-depth analysis of all aspects of AHR biology, with a particular focus on its role and activity within the adenohypophysis and specifically in pituitary tumorigenesis. A novel mechanism by which the AHR may play a direct role in pituitary cell proliferation and tumor formation is postulated. This review therefore attempts to cover all aspects of the AHR's role in the pituitary tissue, from fetal development to adult physiology and the pathophysiology underlying endocrine disruption and pituitary tumorigenesis.

  5. NMDA receptors mediate neuron-to-glia signaling in mouse cortical astrocytes.

    Science.gov (United States)

    Lalo, Ulyana; Pankratov, Yuri; Kirchhoff, Frank; North, R Alan; Verkhratsky, Alexei

    2006-03-08

    Chemical transmission between neurons and glial cells is an important element of integration in the CNS. Here, we describe currents activated by NMDA in cortical astrocytes, identified in transgenic mice that express enhanced green fluorescent protein under control of the human glial fibrillary acidic protein promoter. Astrocytes were studied by whole-cell voltage clamp either in slices or after gentle nonenzymatic mechanical dissociation. Acutely isolated astrocytes showed a three-component response to glutamate. The initial rapid component was blocked by 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide (NBQX), which is an antagonist of AMPA receptors (IC50, 2 microM), and the NMDA receptor antagonist D-AP-5 blocked the later sustained component (IC50, 0.6 microM). The third component of glutamate application response was sensitive to D,L-threo-beta-benzyloxyaspartate, a glutamate transporter blocker. Fast application of NMDA evoked concentration-dependent inward currents (EC50, 0.3 microM); these showed use-dependent block by (+)-5-methyl-10,11-dihydro-5H-dibenzo [a,d] cyclohepten-5,10-imine maleate (MK-801). These NMDA-evoked currents were linearly dependent on membrane potential and were not affected by extracellular magnesium at concentrations up to 10 mM. Electrical stimulation of axons in layer IV-VI induced a complex inward current in astrocytes situated in the cortical layer II, part of which was sensitive to MK-801 at holding potential -80 mV and was not affected by the AMPA glutamate receptor antagonist NBQX. The fast miniature spontaneous currents were observed in cortical astrocytes in slices as well. These currents exhibited both AMPA and NMDA receptor-mediated components. We conclude that cortical astrocytes express functional NMDA receptors that are devoid of Mg2+ block, and these receptors are involved in neuronal-glial signal transmission.

  6. Human GH Receptor-IGF-1 Receptor Interaction: Implications for GH Signaling

    Science.gov (United States)

    Gan, Yujun; Buckels, Ashiya; Liu, Ying; Zhang, Yue; Paterson, Andrew J.; Jiang, Jing; Zinn, Kurt R.

    2014-01-01

    GH signaling yields multiple anabolic and metabolic effects. GH binds the transmembrane GH receptor (GHR) to activate the intracellular GHR-associated tyrosine kinase, Janus kinase 2 (JAK2), and downstream signals, including signal transducer and activator of transcription 5 (STAT5) activation and IGF-1 gene expression. Some GH effects are partly mediated by GH-induced IGF-1 via IGF-1 receptor (IGF-1R), a tyrosine kinase receptor. We previously demonstrated in non-human cells that GH causes formation of a GHR-JAK2-IGF-1R complex and that presence of IGF-1R (even without IGF-1 binding) augments proximal GH signaling. In this study, we use human LNCaP prostate cancer cells as a model system to further study the IGF-1R's role in GH signaling. GH promoted JAK2 and GHR tyrosine phosphorylation and STAT5 activation in LNCaP cells. By coimmunoprecipitation and a new split luciferase complementation assay, we find that GH augments GHR/IGF-1R complex formation, which is inhibited by a Fab of an antagonistic anti-GHR monoclonal antibody. Short hairpin RNA-mediated IGF-1R silencing in LNCaP cells reduced GH-induced GHR, JAK2, and STAT5 phosphorylation. Similarly, a soluble IGF-1R extracellular domain fragment (sol IGF-1R) interacts with GHR in response to GH and blunts GH signaling. Sol IGF-1R also markedly inhibits GH-induced IGF-1 gene expression in both LNCaP cells and mouse primary osteoblast cells. On the basis of these and other findings, we propose a model in which IGF-1R augments GH signaling by allowing a putative IGF-1R-associated molecule that regulates GH signaling to access the activated GHR/JAK2 complex and envision sol IGF-1R as a dominant-negative inhibitor of this IGF-1R-mediated augmentation. Physiological implications of this new model are discussed. PMID:25211187

  7. Effect of ARA9 on dioxin receptor mediated transcription

    International Nuclear Information System (INIS)

    Lees, M.J.; Whitelaw, M.L.

    2002-01-01

    The dioxin (Aryl hydrocarbon) receptor (DR) is a unique bHLH transcription factor which is activated by binding of planar aromatic hydrocarbons typified by dioxin (TCDD). The active receptor is key to metabolism of aryl hydrocarbon xenobiotics by being a potent inducer of CYP1A1 gene activity. Chlorinated dioxins are inert to metabolism and initiate multifarious toxicities, including potent tumour promotion. These ill-effects are mediated by the activated DR and we are studying the mechanisms by which the ligand binding domain of the DR controls activity of the protein. The DR ligand binding domain resides within a PAS (Per/Arnt/Sim homology) region which is contiguous with the bHLH. The latent bHLH/PAS dioxin receptor (DR) is found in the cytoplasm of most mammalian cell types in a complex with heat shock protein 90, a novel immunophilin like protein termed ARA9/XAP2/AIP, and the co-chaperone p23. Here we use antisense ARA9 constructs to reveal that in the absence of ARA9, the DR is unable to form a transcriptionally active complex. Co-expression of antisense ARA9 with a form of the DR which is constitutively targeted to the nucleus leads to dramatically decreased levels of the nuclear DR protein, implying that ARA9 may function beyond its currently proposed role in cytoplasmic retention of the latent DR

  8. Role of the Aryl Hydrocarbon Receptor in Colon Neoplasia

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Guofeng, E-mail: gxie@medicine.umaryland.edu; Raufman, Jean-Pierre [Division of Gastroenterology and Hepatology, Veterans Administration Maryland Health Care System, University of Maryland School of Medicine, Baltimore, MD 21201 (United States)

    2015-07-31

    For both men and women, colorectal cancer (CRC) is the second leading cause of cancer death in the United States, primarily as a consequence of limited therapies for metastatic disease. The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor with diverse functions in detoxification of xenobiotics, inflammatory responses, and tissue homeostasis. Emerging evidence indicates that AhR also plays an important role in regulating intestinal cell proliferation and tumorigenesis. Here, we review both the pro- and anti-carcinogenic properties of AhR signaling and its potential role as a therapeutic target in CRC.

  9. Distinct signalling properties of insulin receptor substrate (IRS)-1 and IRS-2 in mediating insulin/IGF-1 action

    DEFF Research Database (Denmark)

    Rabiee, Atefeh; Krüger, Marcus; Ardenkjær-Larsen, Jacob

    2018-01-01

    Insulin/IGF-1 action is driven by a complex and highly integrated signalling network. Loss-of-function studies indicate that the major insulin/IGF-1 receptor substrate (IRS) proteins, IRS-1 and IRS-2, mediate different biological functions in vitro and in vivo, suggesting specific signalling...... properties despite their high degree of homology. To identify mechanisms contributing to the differential signalling properties of IRS-1 and IRS-2 in the mediation of insulin/IGF-1 action, we performed comprehensive mass spectrometry (MS)-based phosphoproteomic profiling of brown preadipocytes from wild type......, IRS-1-/-and IRS-2-/-mice in the basal and IGF-1-stimulated states. We applied stable isotope labeling by amino acids in cell culture (SILAC) for the accurate quantitation of changes in protein phosphorylation. We found ~10% of the 6262 unique phosphorylation sites detected to be regulated by IGF-1...

  10. Testosterone-Dependent Interaction between Androgen Receptor and Aryl Hydrocarbon Receptor Induces Liver Receptor Homolog 1 Expression in Rat Granulosa Cells

    Science.gov (United States)

    Wu, Yanguang; Baumgarten, Sarah C.; Zhou, Ping

    2013-01-01

    Androgens play a major role in the regulation of normal ovarian function; however, they are also involved in the development of ovarian pathologies. These contrasting effects may involve a differential response of granulosa cells to the androgens testosterone (T) and dihydrotestosterone (DHT). To determine the molecular pathways that mediate the distinct effects of T and DHT, we studied the expression of the liver receptor homolog 1 (LRH-1) gene, which is differentially regulated by these steroids. We found that although both T and DHT stimulate androgen receptor (AR) binding to the LRH-1 promoter, DHT prevents T-mediated stimulation of LRH-1 expression. T stimulated the expression of aryl hydrocarbon receptor (AHR) and its interaction with the AR. T also promoted the recruitment of the AR/AHR complex to the LRH-1 promoter. These effects were not mimicked by DHT. We also observed that the activation of extracellular regulated kinases by T is required for AR and AHR interaction. In summary, T, but not DHT, stimulates AHR expression and the interaction between AHR and AR, leading to the stimulation of LRH-1 expression. These findings could explain the distinct response of granulosa cells to T and DHT and provide a molecular mechanism by which DHT negatively affects ovarian function. PMID:23689136

  11. Downregulation of toll-like receptor-mediated signalling pathways in oral lichen planus.

    Science.gov (United States)

    Sinon, Suraya H; Rich, Alison M; Parachuru, Venkata P B; Firth, Fiona A; Milne, Trudy; Seymour, Gregory J

    2016-01-01

    The objective of this study was to investigate the expression of Toll-like receptors (TLR) and TLR-associated signalling pathway genes in oral lichen planus (OLP). Initially, immunohistochemistry was used to determine TLR expression in 12 formalin-fixed archival OLP tissues with 12 non-specifically inflamed oral tissues as controls. RNA was isolated from further fresh samples of OLP and non-specifically inflamed oral tissue controls (n = 6 for both groups) and used in qRT(2)-PCR focused arrays to determine the expression of TLRs and associated signalling pathway genes. Genes with a statistical significance of ±two-fold regulation (FR) and a P-value < 0.05 were considered as significantly regulated. Significantly more TLR4(+) cells were present in the inflammatory infiltrate in OLP compared with the control tissues (P < 0.05). There was no statistically significant difference in the numbers of TLR2(+) and TLR8(+) cells between the groups. TLR3 was significantly downregulated in OLP (P < 0.01). TLR8 was upregulated in OLP, but the difference between the groups was not statistically significant. The TLR-mediated signalling-associated protein genes MyD88 and TIRAP were significantly downregulated (P < 0.01 and P < 0.05), as were IRAK1 (P < 0.05), MAPK8 (P < 0.01), MAP3K1 (P < 0.05), MAP4K4 (P < 0.05), REL (P < 0.01) and RELA (P < 0.01). Stress proteins HMGB1 and the heat shock protein D1 were significantly downregulated in OLP (P < 0.01). These findings suggest a downregulation of TLR-mediated signalling pathways in OLP lesions. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Design principles of nuclear receptor signaling: how complex networking improves signal transduction

    Science.gov (United States)

    Kolodkin, Alexey N; Bruggeman, Frank J; Plant, Nick; Moné, Martijn J; Bakker, Barbara M; Campbell, Moray J; van Leeuwen, Johannes P T M; Carlberg, Carsten; Snoep, Jacky L; Westerhoff, Hans V

    2010-01-01

    The topology of nuclear receptor (NR) signaling is captured in a systems biological graphical notation. This enables us to identify a number of ‘design' aspects of the topology of these networks that might appear unnecessarily complex or even functionally paradoxical. In realistic kinetic models of increasing complexity, calculations show how these features correspond to potentially important design principles, e.g.: (i) cytosolic ‘nuclear' receptor may shuttle signal molecules to the nucleus, (ii) the active export of NRs may ensure that there is sufficient receptor protein to capture ligand at the cytoplasmic membrane, (iii) a three conveyor belts design dissipating GTP-free energy, greatly aids response, (iv) the active export of importins may prevent sequestration of NRs by importins in the nucleus and (v) the unspecific nature of the nuclear pore may ensure signal-flux robustness. In addition, the models developed are suitable for implementation in specific cases of NR-mediated signaling, to predict individual receptor functions and differential sensitivity toward physiological and pharmacological ligands. PMID:21179018

  13. The Cannabinoid Receptor CB1 Modulates the Signaling Properties of the Lysophosphatidylinositol Receptor GPR55*

    Science.gov (United States)

    Kargl, Julia; Balenga, Nariman; Parzmair, Gerald P.; Brown, Andrew J.; Heinemann, Akos; Waldhoer, Maria

    2012-01-01

    The G protein-coupled receptor (GPCR) 55 (GPR55) and the cannabinoid receptor 1 (CB1R) are co-expressed in many tissues, predominantly in the central nervous system. Seven transmembrane spanning (7TM) receptors/GPCRs can form homo- and heteromers and initiate distinct signaling pathways. Recently, several synthetic CB1 receptor inverse agonists/antagonists, such as SR141716A, AM251, and AM281, were reported to activate GPR55. Of these, SR141716A was marketed as a promising anti-obesity drug, but was withdrawn from the market because of severe side effects. Here, we tested whether GPR55 and CB1 receptors are capable of (i) forming heteromers and (ii) whether such heteromers could exhibit novel signaling patterns. We show that GPR55 and CB1 receptors alter each others signaling properties in human embryonic kidney (HEK293) cells. We demonstrate that the co-expression of FLAG-CB1 receptors in cells stably expressing HA-GPR55 specifically inhibits GPR55-mediated transcription factor activation, such as nuclear factor of activated T-cells and serum response element, as well as extracellular signal-regulated kinases (ERK1/2) activation. GPR55 and CB1 receptors can form heteromers, but the internalization of both receptors is not affected. In addition, we observe that the presence of GPR55 enhances CB1R-mediated ERK1/2 and nuclear factor of activated T-cell activation. Our data provide the first evidence that GPR55 can form heteromers with another 7TM/GPCR and that this interaction with the CB1 receptor has functional consequences in vitro. The GPR55-CB1R heteromer may play an important physiological and/or pathophysiological role in tissues endogenously co-expressing both receptors. PMID:23161546

  14. Adaptor Protein Complex-2 (AP-2) and Epsin-1 Mediate Protease-activated Receptor-1 Internalization via Phosphorylation- and Ubiquitination-dependent Sorting Signals*

    Science.gov (United States)

    Chen, Buxin; Dores, Michael R.; Grimsey, Neil; Canto, Isabel; Barker, Breann L.; Trejo, JoAnn

    2011-01-01

    Signaling by protease-activated receptor-1 (PAR1), a G protein-coupled receptor (GPCR) for thrombin, is regulated by desensitization and internalization. PAR1 desensitization is mediated by β-arrestins, like most classic GPCRs. In contrast, internalization of PAR1 occurs through a clathrin- and dynamin-dependent pathway independent of β-arrestins. PAR1 displays two modes of internalization. Constitutive internalization of unactivated PAR1 is mediated by the clathrin adaptor protein complex-2 (AP-2), where the μ2-adaptin subunit binds directly to a tyrosine-based motif localized within the receptor C-tail domain. However, AP-2 depletion only partially inhibits agonist-induced internalization of PAR1, suggesting a function for other clathrin adaptors in this process. Here, we now report that AP-2 and epsin-1 are both critical mediators of agonist-stimulated PAR1 internalization. We show that ubiquitination of PAR1 and the ubiquitin-interacting motifs of epsin-1 are required for epsin-1-dependent internalization of activated PAR1. In addition, activation of PAR1 promotes epsin-1 de-ubiquitination, which may increase its endocytic adaptor activity to facilitate receptor internalization. AP-2 also regulates activated PAR1 internalization via recognition of distal C-tail phosphorylation sites rather than the canonical tyrosine-based motif. Thus, AP-2 and epsin-1 are both required to promote efficient internalization of activated PAR1 and recognize discrete receptor sorting signals. This study defines a new pathway for internalization of mammalian GPCRs. PMID:21965661

  15. Cell specific effects of PCB 126 on aryl hydrocarbone receptors in follicular cells of porcine ovaries

    Energy Technology Data Exchange (ETDEWEB)

    Wojtowicz, A.; Augustowska, K.; Gregoraszczuk, E. [Lab. of Physiology and Toxicology of Reproduction, Dept. of Animal Physiology, Inst. of Zoology, Jagiellonian Univ., Krakow (Poland)

    2004-09-15

    Polychlorinated biphenyles (PCBs) like other endocrine disrupters could interfere with natural hormones by binding to their receptors and thus mimicking the cellular response to them. They are known to possess either estrogenic or antiestrogenic properties. In our previous papers we demonstrated that PCBs are able to disrupt ovarian steroidogenesis. We found that the coplanar PCB 126 caused the decrease in estradiol secretion in whole cultured pig ovarian follicles. PCB 126 congener is structurally related to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Since TCDD effects are known to be mediated by aryl hydrocarbone receptors (AhRs), we decided to determine if PCB 126 affects signal transduction pathway activated by these receptors. It has been reported that the functional AhR is present in ovary including oocytes, granulosa and theca cells of rat, mouse, rhesus monkey and human ovary. Moreover, the expression of AhR in the rat ovary appeared to be estrous cycle-dependent, thus suggesting that AhR expression may be regulated by fluctuating hormone levels. This study was designed to investigate the effects of the non-ortho-substituted 3,3',4,4',5-pentachlorobiphenyl (PCB126) on the AhR activation, localization and protein level in pig ovarian follicle cells.

  16. Kynurenine 3-monooxygenase mediates inhibition of Th17 differentiation via catabolism of endogenous aryl hydrocarbon receptor ligands.

    Science.gov (United States)

    Stephens, Geoffrey L; Wang, Qun; Swerdlow, Bonnie; Bhat, Geetha; Kolbeck, Roland; Fung, Michael

    2013-07-01

    The aryl hydrocarbon receptor (AhR) is a key transcriptional regulator of Th17-cell differentiation. Although endogenous ligands have yet to be identified, evidence suggests that tryptophan metabolites can act as agonists for the AhR. Tryptophan metabolites are abundant in circulation, so we hypothesized that cell intrinsic factors might exist to regulate the exposure of Th17 cells to AhR-dependent activities. Here, we find that Th17 cells preferentially express kynurenine 3-monooxygenase (KMO), which is an enzyme involved in catabolism of the tryptophan metabolite kynurenine. KMO inhibition, either with a specific inhibitor or via siRNA-mediated silencing, markedly increased IL-17 production in vitro, whereas IFN-γ production by Th1 cells was unaffected. Inhibition of KMO significantly exacerbated disease in a Th17-driven model of autoimmune gastritis, suggesting that expression of KMO by Th17 cells serves to limit their continuous exposure to physiological levels of endogenous AhR ligands in vivo. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Signal Diversity of Receptor for Advanced Glycation End Products.

    Science.gov (United States)

    Sakaguchi, Masakiyo; Kinoshita, Rie; Putranto, Endy Widya; Ruma, I Made Winarsa; Sumardika, I Wayan; Youyi, Chen; Tomonobu, Naoko; Yamamoto, Ken-Ichi; Murata, Hitoshi

    2017-12-01

    The receptor for advanced glycation end products (RAGE) is involved in inflammatory pathogenesis. It functions as a receptor to multiple ligands such as AGEs, HMGB1 and S100 proteins, activating multiple intracellular signaling pathways with each ligand binding. The molecular events by which ligand-activated RAGE controls diverse signaling are not well understood, but some progress was made recently. Accumulating evidence revealed that RAGE has multiple binding partners within the cytoplasm and on the plasma membrane. It was first pointed out in 2008 that RAGE's cytoplasmic tail is able to recruit Diaphanous-1 (Dia-1), resulting in the acquisition of increased cellular motility through Rac1/Cdc42 activation. We also observed that within the cytosol, RAGE's cytoplasmic tail behaves similarly to a Toll-like receptor (TLR4)-TIR domain, interacting with TIRAP and MyD88 adaptor molecules that in turn activate multiple downstream signals. Subsequent studies demonstrated the presence of an alternative adaptor molecule, DAP10, on the plasma membrane. The coupling of RAGE with DAP10 is critical for enhancing the RAGE-mediated survival signal. Interestingly, RAGE interaction on the membrane was not restricted to DAP10 alone. The chemotactic G-protein-coupled receptors (GPCRs) formyl peptide receptors1 and 2 (FPR1 and FPR2) also interacted with RAGE on the plasma membrane. Binding interaction between leukotriene B4 receptor 1 (BLT1) and RAGE was also demonstrated. All of the interactions affected the RAGE signal polarity. These findings indicate that functional interactions between RAGE and various molecules within the cytoplasmic area or on the membrane area coordinately regulate multiple ligand-mediated RAGE responses, leading to typical cellular phenotypes in several pathological settings. Here we review RAGE's signaling diversity, to contribute to the understanding of the elaborate functions of RAGE in physiological and pathological contexts.

  18. Death receptor Fas (CD95) signaling in the central nervous system: tuning neuroplasticity?

    Science.gov (United States)

    Reich, Arno; Spering, Christopher; Schulz, Jörg B

    2008-09-01

    For over a decade, neuroscientific research has focused on processes of apoptosis and its contribution to the pathophysiology of neurological diseases. In the central nervous system, the degree of intrinsic mitochondrial-mediated apoptotic signaling expresses a cell's individual metabolic stress, whereas activation of the extrinsic death receptor-induced cascade is regarded as a sign of imbalanced cellular networks. Under physiological conditions, most neurons possess death receptors without being sensitive to receptor-mediated apoptosis. This paradox raises two questions: what is the evolutionary advantage of expressing potentially harmful proteins? How is their signaling controlled? This review summarizes the functional relevance of FasL-Fas signaling--a quintessential death ligand/receptor system--in different neurological disease models ranging from traumatic, inflammatory and ischemic to neurodegenerative processes. Furthermore, it outlines alternative non-apoptotic Fas signaling, shedding new light on its neuroplastic capacity. Finally, receptor-proximal regulatory proteins are introduced and identified as potential protagonists of disease-modifying neurological therapies.

  19. Rac-mediated Stimulation of Phospholipase Cγ2 Amplifies B Cell Receptor-induced Calcium Signaling*♦

    Science.gov (United States)

    Walliser, Claudia; Tron, Kyrylo; Clauss, Karen; Gutman, Orit; Kobitski, Andrei Yu.; Retlich, Michael; Schade, Anja; Röcker, Carlheinz; Henis, Yoav I.; Nienhaus, G. Ulrich; Gierschik, Peter

    2015-01-01

    The Rho GTPase Rac is crucially involved in controlling multiple B cell functions, including those regulated by the B cell receptor (BCR) through increased cytosolic Ca2+. The underlying molecular mechanisms and their relevance to the functions of intact B cells have thus far remained unknown. We have previously shown that the activity of phospholipase Cγ2 (PLCγ2), a key constituent of the BCR signalosome, is stimulated by activated Rac through direct protein-protein interaction. Here, we use a Rac-resistant mutant of PLCγ2 to functionally reconstitute cultured PLCγ2-deficient DT40 B cells and to examine the effects of the Rac-PLCγ2 interaction on BCR-mediated changes of intracellular Ca2+ and regulation of Ca2+-regulated and nuclear-factor-of-activated-T-cell-regulated gene transcription at the level of single, intact B cells. The results show that the functional Rac-PLCγ2 interaction causes marked increases in the following: (i) sensitivity of B cells to BCR ligation; (ii) BCR-mediated Ca2+ release from intracellular stores; (iii) Ca2+ entry from the extracellular compartment; and (iv) nuclear translocation of the Ca2+-regulated nuclear factor of activated T cells. Hence, Rac-mediated stimulation of PLCγ2 activity serves to amplify B cell receptor-induced Ca2+ signaling. PMID:25903139

  20. Mechanism of inhibition of growth hormone receptor signaling by suppressor of cytokine signaling proteins

    DEFF Research Database (Denmark)

    Hansen, J A; Lindberg, K; Hilton, D J

    1999-01-01

    In this study we have investigated the role of suppressor of cytokine signaling (SOCS) proteins in GH receptor-mediated signaling. GH-induced transcription was inhibited by SOCS-1 and SOCS-3, while SOCS-2 and cytokine inducible SH2-containing protein (CIS) had no effect By using chimeric SOCS pro...

  1. Amyloid β production is regulated by β2-adrenergic signaling-mediated post-translational modifications of the ryanodine receptor.

    Science.gov (United States)

    Bussiere, Renaud; Lacampagne, Alain; Reiken, Steven; Liu, Xiaoping; Scheuerman, Valerie; Zalk, Ran; Martin, Cécile; Checler, Frederic; Marks, Andrew R; Chami, Mounia

    2017-06-16

    Alteration of ryanodine receptor (RyR)-mediated calcium (Ca 2+ ) signaling has been reported in Alzheimer disease (AD) models. However, the molecular mechanisms underlying altered RyR-mediated intracellular Ca 2+ release in AD remain to be fully elucidated. We report here that RyR2 undergoes post-translational modifications (phosphorylation, oxidation, and nitrosylation) in SH-SY5Y neuroblastoma cells expressing the β-amyloid precursor protein (βAPP) harboring the familial double Swedish mutations (APPswe). RyR2 macromolecular complex remodeling, characterized by depletion of the regulatory protein calstabin2, resulted in increased cytosolic Ca 2+ levels and mitochondrial oxidative stress. We also report a functional interplay between amyloid β (Aβ), β-adrenergic signaling, and altered Ca 2+ signaling via leaky RyR2 channels. Thus, post-translational modifications of RyR occur downstream of Aβ through a β2-adrenergic signaling cascade that activates PKA. RyR2 remodeling in turn enhances βAPP processing. Importantly, pharmacological stabilization of the binding of calstabin2 to RyR2 channels, which prevents Ca 2+ leakage, or blocking the β2-adrenergic signaling cascade reduced βAPP processing and the production of Aβ in APPswe-expressing SH-SY5Y cells. We conclude that targeting RyR-mediated Ca 2+ leakage may be a therapeutic approach to treat AD. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Estrogen receptor α and aryl hydrocarbon receptor cross-talk in a transfected hepatoma cell line (HepG2 exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin

    Directory of Open Access Journals (Sweden)

    Manuela Göttel

    2014-01-01

    Full Text Available The prototype dioxin congener 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD is known to exert anti-estrogenic effects via activation of the aryl hydrocarbon receptor (AhR by interfering with the regulation of oestrogen homeostasis and the estrogen receptor α (ERα signalling pathway. The AhR/ER cross-talk is considered to play a crucial role in TCDD- and E2-dependent mechanisms of carcinogenesis, though the concerted mechanism of action in the liver is not yet elucidated. The present study investigated TCDD's impact on the transcriptional cross-talk between AhR and ERα and its modulation by 17β-estradiol (E2 in the human hepatoma cell line HepG2, which is AhR-responsive but ERα-negative. Transient transfection assays with co-transfection of hERα and supplementation of receptor antagonists showed anti-estrogenic action of TCDD via down-regulation of E2-induced ERα signaling. In contrast, enhancement of AhR signaling dependent on ERα was observed providing evidence for increased cytochrome P450 (CYP induction to promote E2 metabolism. However, relative mRNA levels of major E2-metabolizing CYP1A1 and 1B1 and the main E2-detoxifying catechol-O-methyltransferase were not affected by the co-treatments. This study provides new evidence of a TCDD-activated AhR-mediated molecular AhR/ERα cross-talk mechanism at transcriptional level via indirect inhibition of ERα and enhanced transcriptional activity of AhR in HepG2 cells.

  3. Pattern-recognition receptors: signaling pathways and dysregulation in canine chronic enteropathies-brief review.

    Science.gov (United States)

    Heilmann, Romy M; Allenspach, Karin

    2017-11-01

    Pattern-recognition receptors (PRRs) are expressed by innate immune cells and recognize pathogen-associated molecular patterns (PAMPs) as well as endogenous damage-associated molecular pattern (DAMP) molecules. With a large potential for synergism or convergence between their signaling pathways, PRRs orchestrate a complex interplay of cellular mediators and transcription factors, and thus play a central role in homeostasis and host defense. Aberrant activation of PRR signaling, mutations of the receptors and/or their downstream signaling molecules, and/or DAMP/PAMP complex-mediated receptor signaling can potentially lead to chronic auto-inflammatory diseases or development of cancer. PRR signaling pathways appear to also present an interesting new avenue for the modulation of inflammatory responses and to serve as potential novel therapeutic targets. Evidence for a dysregulation of the PRR toll-like receptor (TLR)2, TLR4, TLR5, and TLR9, nucleotide-binding oligomerization domain-containing protein (NOD)2, and the receptor of advanced glycation end products (RAGE) exists in dogs with chronic enteropathies. We describe the TLR, NOD2, and RAGE signaling pathways and evaluate the current veterinary literature-in comparison to human medicine-to determine the role of TLRs, NOD2, and RAGE in canine chronic enteropathies.

  4. Aryl hydrocarbon receptor and intestinal immunity.

    Science.gov (United States)

    Lamas, Bruno; Natividad, Jane M; Sokol, Harry

    2018-04-07

    Aryl hydrocarbon receptor (AhR) is a member of the basic helix-loop-helix-(bHLH) superfamily of transcription factors, which are associated with cellular responses to environmental stimuli, such as xenobiotics and oxygen levels. Unlike other members of bHLH, AhR is the only bHLH transcription factor that is known to be ligand activated. Early AhR studies focused on understanding the role of AhR in mediating the toxicity and carcinogenesis properties of the prototypic ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In recent years, however, it has become apparent that, in addition to its toxicological involvement, AhR is highly receptive to a wide array of endogenous and exogenous ligands, and that its activation leads to a myriad of key host physiological functions. In this study, we review the current understanding of the functions of AhR in the mucosal immune system with a focus on its role in intestinal barrier function and intestinal immune cells, as well as in intestinal homeostasis.

  5. Gambogic acid inhibits multiple myeloma mediated osteoclastogenesis through suppression of chemokine receptor CXCR4 signaling pathways.

    Science.gov (United States)

    Pandey, Manoj K; Kale, Vijay P; Song, Chunhua; Sung, Shen-shu; Sharma, Arun K; Talamo, Giampaolo; Dovat, Sinisa; Amin, Shantu G

    2014-10-01

    Bone disease, characterized by the presence of lytic lesions and osteoporosis is the hallmark of multiple myeloma (MM). Stromal cell-derived factor 1α (SDF-1α) and its receptor, CXC chemokine receptor 4 (CXCR4), has been implicated as a regulator of bone resorption, suggesting that agents that can suppress SDF1α/CXCR4 signaling might inhibit osteoclastogenesis, a process closely linked to bone resorption. We, therefore, investigated whether gambogic acid (GA), a xanthone, could inhibit CXCR4 signaling and suppress osteoclastogenesis induced by MM cells. Through docking studies we predicted that GA directly interacts with CXCR4. This xanthone down-regulates the expression of CXCR4 on MM cells in a dose- and time-dependent manner. The down-regulation of CXCR4 was not due to proteolytic degradation, but rather GA suppresses CXCR4 mRNA expression by inhibiting nuclear factor-kappa B (NF-κB) DNA binding. This was further confirmed by quantitative chromatin immunoprecipitation assay, as GA inhibits p65 binding at the CXCR4 promoter. GA suppressed SDF-1α-induced chemotaxis of MM cells and downstream signaling of CXCR4 by inhibiting phosphorylation of Akt, p38, and Erk1/2 in MM cells. GA abrogated the RANKL-induced differentiation of macrophages to osteoclasts in a dose- and time-dependent manner. In addition, we found that MM cells induced differentiation of macrophages to osteoclasts, and that GA suppressed this process. Importantly, suppression of osteoclastogenesis by GA was mediated through IL-6 inhibition. Overall, our results show that GA is a novel inhibitor of CXCR4 expression and has a strong potential to suppress osteoclastogenesis mediated by MM cells. Published by Elsevier Inc.

  6. Real-time trafficking and signaling of the glucagon-like peptide-1 receptor

    DEFF Research Database (Denmark)

    Roed, Sarah Noerklit; Wismann, Pernille; Underwood, Christina Rye

    2014-01-01

    The glucagon-like peptide-1 incretin receptor (GLP-1R) of family B G protein-coupled receptors (GPCRs) is a major drug target in type-2-diabetes due to its regulatory effect on post-prandial blood-glucose levels. The mechanism(s) controlling GLP-1R mediated signaling are far from fully understood....... A fundamental mechanism controlling the signaling capacity of GPCRs is the post-endocytic trafficking of receptors between recycling and degradative fates. Here, we combined microscopy with novel real-time assays to monitor both receptor trafficking and signaling in living cells. We find that the human GLP-1R...

  7. Cocaine Disrupts Histamine H3 Receptor Modulation of Dopamine D1 Receptor Signaling: σ1-D1-H3 Receptor Complexes as Key Targets for Reducing Cocaine's Effects

    Science.gov (United States)

    Moreno, Estefanía; Moreno-Delgado, David; Navarro, Gemma; Hoffmann, Hanne M.; Fuentes, Silvia; Rosell-Vilar, Santi; Gasperini, Paola; Rodríguez-Ruiz, Mar; Medrano, Mireia; Mallol, Josefa; Cortés, Antoni; Casadó, Vicent; Lluís, Carme; Ferré, Sergi; Ortiz, Jordi; Canela, Enric

    2014-01-01

    The general effects of cocaine are not well understood at the molecular level. What is known is that the dopamine D1 receptor plays an important role. Here we show that a key mechanism may be cocaine's blockade of the histamine H3 receptor-mediated inhibition of D1 receptor function. This blockade requires the σ1 receptor and occurs upon cocaine binding to σ1-D1-H3 receptor complexes. The cocaine-mediated disruption leaves an uninhibited D1 receptor that activates Gs, freely recruits β-arrestin, increases p-ERK 1/2 levels, and induces cell death when over activated. Using in vitro assays with transfected cells and in ex vivo experiments using both rats acutely treated or self-administered with cocaine along with mice depleted of σ1 receptor, we show that blockade of σ1 receptor by an antagonist restores the protective H3 receptor-mediated brake on D1 receptor signaling and prevents the cell death from elevated D1 receptor signaling. These findings suggest that a combination therapy of σ1R antagonists with H3 receptor agonists could serve to reduce some effects of cocaine. PMID:24599455

  8. Metformin suppresses CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating aryl hydrocarbon receptor expression

    Energy Technology Data Exchange (ETDEWEB)

    Do, Minh Truong; Kim, Hyung Gyun; Tran, Thi Thu Phuong; Khanal, Tilak; Choi, Jae Ho [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of); Chung, Young Chul [Department of Food Science and Culinary, International University of Korea, Jinju (Korea, Republic of); Jeong, Tae Cheon, E-mail: taecheon@ynu.ac.kr [College of Pharmacy, Yeungnam University, Gyeongsan (Korea, Republic of); Jeong, Hye Gwang, E-mail: hgjeong@cnu.ac.kr [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of)

    2014-10-01

    Induction of cytochrome P450 (CYP) 1A1 and CYP1B1 by environmental xenobiotic chemicals or endogenous ligands through the activation of the aryl hydrocarbon receptor (AhR) has been implicated in a variety of cellular processes related to cancer, such as transformation and tumorigenesis. Here, we investigated the effects of the anti-diabetes drug metformin on expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and inducible conditions. Our results indicated that metformin down-regulated the expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced conditions. Down-regulation of AhR expression was required for metformin-mediated decreases in CYP1A1 and CYP1B1 expression, and the metformin-mediated CYP1A1 and CYP1B1 reduction is irrelevant to estrogen receptor α (ERα) signaling. Furthermore, we found that metformin markedly down-regulated Sp1 protein levels in breast cancer cells. The use of genetic and pharmacological tools revealed that metformin-mediated down-regulation of AhR expression was mediated through the reduction of Sp1 protein. Metformin inhibited endogenous AhR ligand-induced CYP1A1 and CYP1B1 expression by suppressing tryptophan-2,3-dioxygenase (TDO) expression in MCF-7 cells. Finally, metformin inhibits TDO expression through a down-regulation of Sp1 and glucocorticoid receptor (GR) protein levels. Our findings demonstrate that metformin reduces CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating AhR signaling. Metformin would be able to act as a potential chemopreventive agent against CYP1A1 and CYP1B1-mediated carcinogenesis and development of cancer. - Graphical abstract: Schematic of the CYP1A1 and CYP1B1 gene regulation by metformin. - Highlights: • Metformin inhibits CYP1A1 and CYP1B1 expression. • Metformin down-regulates the AhR signaling. • Metformin reduces Sp1 protein expression. • Metformin suppresses TDO expression.

  9. Metformin suppresses CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating aryl hydrocarbon receptor expression

    International Nuclear Information System (INIS)

    Do, Minh Truong; Kim, Hyung Gyun; Tran, Thi Thu Phuong; Khanal, Tilak; Choi, Jae Ho; Chung, Young Chul; Jeong, Tae Cheon; Jeong, Hye Gwang

    2014-01-01

    Induction of cytochrome P450 (CYP) 1A1 and CYP1B1 by environmental xenobiotic chemicals or endogenous ligands through the activation of the aryl hydrocarbon receptor (AhR) has been implicated in a variety of cellular processes related to cancer, such as transformation and tumorigenesis. Here, we investigated the effects of the anti-diabetes drug metformin on expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and inducible conditions. Our results indicated that metformin down-regulated the expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced conditions. Down-regulation of AhR expression was required for metformin-mediated decreases in CYP1A1 and CYP1B1 expression, and the metformin-mediated CYP1A1 and CYP1B1 reduction is irrelevant to estrogen receptor α (ERα) signaling. Furthermore, we found that metformin markedly down-regulated Sp1 protein levels in breast cancer cells. The use of genetic and pharmacological tools revealed that metformin-mediated down-regulation of AhR expression was mediated through the reduction of Sp1 protein. Metformin inhibited endogenous AhR ligand-induced CYP1A1 and CYP1B1 expression by suppressing tryptophan-2,3-dioxygenase (TDO) expression in MCF-7 cells. Finally, metformin inhibits TDO expression through a down-regulation of Sp1 and glucocorticoid receptor (GR) protein levels. Our findings demonstrate that metformin reduces CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating AhR signaling. Metformin would be able to act as a potential chemopreventive agent against CYP1A1 and CYP1B1-mediated carcinogenesis and development of cancer. - Graphical abstract: Schematic of the CYP1A1 and CYP1B1 gene regulation by metformin. - Highlights: • Metformin inhibits CYP1A1 and CYP1B1 expression. • Metformin down-regulates the AhR signaling. • Metformin reduces Sp1 protein expression. • Metformin suppresses TDO expression

  10. The Mediator Kinase Module Restrains Epidermal Growth Factor Receptor Signaling and Represses Vulval Cell Fate Specification in Caenorhabditis elegans.

    Science.gov (United States)

    Grants, Jennifer M; Ying, Lisa T L; Yoda, Akinori; You, Charlotte C; Okano, Hideyuki; Sawa, Hitoshi; Taubert, Stefan

    2016-02-01

    Cell signaling pathways that control proliferation and determine cell fates are tightly regulated to prevent developmental anomalies and cancer. Transcription factors and coregulators are important effectors of signaling pathway output, as they regulate downstream gene programs. In Caenorhabditis elegans, several subunits of the Mediator transcriptional coregulator complex promote or inhibit vulva development, but pertinent mechanisms are poorly defined. Here, we show that Mediator's dissociable cyclin dependent kinase 8 (CDK8) module (CKM), consisting of cdk-8, cic-1/Cyclin C, mdt-12/dpy-22, and mdt-13/let-19, is required to inhibit ectopic vulval cell fates downstream of the epidermal growth factor receptor (EGFR)-Ras-extracellular signal-regulated kinase (ERK) pathway. cdk-8 inhibits ectopic vulva formation by acting downstream of mpk-1/ERK, cell autonomously in vulval cells, and in a kinase-dependent manner. We also provide evidence that the CKM acts as a corepressor for the Ets-family transcription factor LIN-1, as cdk-8 promotes transcriptional repression by LIN-1. In addition, we find that CKM mutation alters Mediator subunit requirements in vulva development: the mdt-23/sur-2 subunit, which is required for vulva development in wild-type worms, is dispensable for ectopic vulva formation in CKM mutants, which instead display hallmarks of unrestrained Mediator tail module activity. We propose a model whereby the CKM controls EGFR-Ras-ERK transcriptional output by corepressing LIN-1 and by fine tuning Mediator specificity, thus balancing transcriptional repression vs. activation in a critical developmental signaling pathway. Collectively, these data offer an explanation for CKM repression of EGFR signaling output and ectopic vulva formation and provide the first evidence of Mediator CKM-tail module subunit crosstalk in animals. Copyright © 2016 by the Genetics Society of America.

  11. Estradiol-induced desensitization of 5-HT1A receptor signaling in the paraventricular nucleus of the hypothalamus is independent of estrogen receptor-beta.

    Science.gov (United States)

    Rossi, Dania V; Dai, Ying; Thomas, Peter; Carrasco, Gonzalo A; DonCarlos, Lydia L; Muma, Nancy A; Li, Qian

    2010-08-01

    Estradiol regulates serotonin 1A (5-HT(1A)) receptor signaling. Since desensitization of 5-HT(1A) receptors may be an underlying mechanism by which selective serotonin reuptake inhibitors (SSRIs) mediate their therapeutic effects and combining estradiol with SSRIs enhances the efficacy of the SSRIs, it is important to determine which estrogen receptors are capable of desensitizating 5-HT(1A) receptor function. We previously demonstrated that selective activation of the estrogen receptor, GPR30, desensitizes 5-HT(1A) receptor signaling in rat hypothalamic paraventricular nucleus (PVN). However, since estrogen receptor-beta (ERbeta), is highly expressed in the PVN, we investigated the role of ERbeta in estradiol-induced desensitization of 5-HT(1A) receptor signaling. We first showed that a selective ERbeta agonist, diarylpropionitrile (DPN) has a 100-fold lower binding affinity than estradiol for GPR30. Administration of DPN did not desensitize 5-HT(1A) receptor signaling in rat PVN as demonstrated by agonist-stimulated hormone release. Second, we used a recombinant adenovirus containing ERbeta siRNAs to decrease ERbeta expression in the PVN. Reductions in ERbeta did not alter the estradiol-induced desensitization of 5-HT(1A) receptor signaling in oxytocin cells. In contrast, in animals with reduced ERbeta, estradiol administration, instead of producing desensitization, augmented the ACTH response to a 5-HT(1A) agonist. Combined with the results from the DPN treatment experiments, desensitization of 5-HT(1A) receptor signaling does not appear to be mediated by ERbeta in oxytocin cells, but that ERbeta, together with GPR30, may play a complex role in central regulation of 5-HT(1A)-mediated ACTH release. Determining the mechanisms by which estrogens induce desensitization may aid in the development of better treatments for mood disorders. Copyright 2010 Elsevier Ltd. All rights reserved.

  12. Distinct signalling properties of insulin receptor substrate (IRS)-1 and IRS-2 in mediating insulin/IGF-1 action.

    Science.gov (United States)

    Rabiee, Atefeh; Krüger, Marcus; Ardenkjær-Larsen, Jacob; Kahn, C Ronald; Emanuelli, Brice

    2018-07-01

    Insulin/IGF-1 action is driven by a complex and highly integrated signalling network. Loss-of-function studies indicate that the major insulin/IGF-1 receptor substrate (IRS) proteins, IRS-1 and IRS-2, mediate different biological functions in vitro and in vivo, suggesting specific signalling properties despite their high degree of homology. To identify mechanisms contributing to the differential signalling properties of IRS-1 and IRS-2 in the mediation of insulin/IGF-1 action, we performed comprehensive mass spectrometry (MS)-based phosphoproteomic profiling of brown preadipocytes from wild type, IRS-1 -/- and IRS-2 -/- mice in the basal and IGF-1-stimulated states. We applied stable isotope labeling by amino acids in cell culture (SILAC) for the accurate quantitation of changes in protein phosphorylation. We found ~10% of the 6262 unique phosphorylation sites detected to be regulated by IGF-1. These regulated sites included previously reported substrates of the insulin/IGF-1 signalling pathway, as well as novel substrates including Nuclear Factor I X and Semaphorin-4B. In silico prediction suggests the protein kinase B (PKB), protein kinase C (PKC), and cyclin-dependent kinase (CDK) as the main mediators of these phosphorylation events. Importantly, we found preferential phosphorylation patterns depending on the presence of either IRS-1 or IRS-2, which was associated with specific sets of kinases involved in signal transduction downstream of these substrates such as PDHK1, MAPK3, and PKD1 for IRS-1, and PIN1 and PKC beta for IRS-2. Overall, by generating a comprehensive phosphoproteomic profile from brown preadipocyte cells in response to IGF-1 stimulation, we reveal both common and distinct insulin/IGF-1 signalling events mediated by specific IRS proteins. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Prostate tumor progression in the TRAMP mouse. Protective effects of the aryl hydrocarbon receptor

    Energy Technology Data Exchange (ETDEWEB)

    Fritz, W.; Lin, T.M.; Peterson, R. [Wisconsin Univ., Madison, WI (United States)

    2004-09-15

    The developing male reproductive system is highly sensitive to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). TCDD binds to the aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, to produce sustained alterations in gene expression. Mice lacking the AhR (AhRKO, Ahr{sup -/-}) have permitted further characterization of the role of the AhR in mediating TCDD effects and revealed a physiological role for the AhR in normal development. We previously demonstrated that in utero and lactational TCDD exposure significantly reduced ventral, dorsolateral and anterior prostate weights, and that these effects were dependent on the AhR5. However, reductions in prostate lobe weights in untreated, AhRKO mice compared to wild-type counterparts at various ages demonstrated that the AhR signaling pathway is involved in normal development of the dorsolateral and anterior prostates, but apparently not the ventral prostate. Unaltered serum testosterone concentrations and modest reduction in serum 5{alpha}-androstane-3{alpha},17{beta}a-diol concentrations could not account for reductions in prostate weights in mice lacking AhR (Ahr{sup -/-}). Normal histology and lack of alteration in androgen receptor mRNA levels further indicate that the reduction in prostate weights is not a result of reduced androgen action in AhRKO mice. The observation that regulation of early prostate growth in mice occurs following AhR activation by TCDD, as well as by loss of AhR, suggests that the AhR may also regulate aberrant prostate growth that results from ''reawakening'' of the prostate growth regulatory signals later in life. Our objective was to determine if the AhR signaling pathway has an effect on prostate cancer development.

  14. Signal transduction through the IL-4 and insulin receptor families.

    Science.gov (United States)

    Wang, L M; Keegan, A; Frankel, M; Paul, W E; Pierce, J H

    1995-07-01

    Activation of tyrosine kinase-containing receptors and intracellular tyrosine kinases by ligand stimulation is known to be crucial for mediating initial and subsequent events involved in mitogenic signal transduction. Receptors for insulin and insulin-like growth factor 1 (IGF-1) contain cytoplasmic tyrosine kinase domains that undergo autophosphorylation upon ligand stimulation. Activation of these receptors also leads to pronounced and rapid tyrosine phosphorylation of insulin receptor substrate 1 (IRS-1) in cells of connective tissue origin. A related substrate, designated 4PS, is similarly phosphorylated by insulin and IGF-1 stimulation in many hematopoietic cell types. IRS-1 and 4PS possess a number of tyrosine phosphorylation sites that are within motifs that bind specific SH2-containing molecules known to be involved in mitogenic signaling such as PI-3 kinase, SHPTP-2 (Syp) and Grb-2. Thus, they appear to act as docking substrates for a variety of signaling molecules. The majority of hematopoietic cytokines bind to receptors that do not possess intrinsic kinase activity, and these receptors have been collectively termed as members of the hematopoietin receptor superfamily. Despite their lack of tyrosine kinase domains, stimulation of these receptors has been demonstrated to activate intracellular kinases leading to tyrosine phosphorylation of multiple substrates. Recent evidence has demonstrated that activation of different members of the Janus family of tyrosine kinases is involved in mediating tyrosine phosphorylation events by specific cytokines. Stimulation of the interleukin 4 (IL-4) receptor, a member of the hematopoietin receptor superfamily, is thought to result in activation of Jak1, Jak3, and/or Fes tyrosine kinases.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. beta-TrCP inhibition reduces prostate cancer cell growth via upregulation of the aryl hydrocarbon receptor.

    Directory of Open Access Journals (Sweden)

    Udi Gluschnaider

    2010-02-01

    Full Text Available Prostate cancer is a common and heterogeneous disease, where androgen receptor (AR signaling plays a pivotal role in development and progression. The initial treatment for advanced prostate cancer is suppression of androgen signaling. Later on, essentially all patients develop an androgen independent stage which does not respond to anti hormonal treatment. Thus, alternative strategies targeting novel molecular mechanisms are required. beta-TrCP is an E3 ligase that targets various substrates essential for many aspects of tumorigenesis.Here we show that beta-TrCP depletion suppresses prostate cancer and identify a relevant growth control mechanism. shRNA targeted against beta-TrCP reduced prostate cancer cell growth and cooperated with androgen ablation in vitro and in vivo. We found that beta-TrCP inhibition leads to upregulation of the aryl hydrocarbon receptor (AhR mediating the therapeutic effect. This phenomenon could be ligand independent, as the AhR ligand 2,3,7,8-Tetrachlorodibenzo-p-Dioxin (TCDD did not alter prostate cancer cell growth. We detected high AhR expression and activation in basal cells and atrophic epithelial cells of human cancer bearing prostates. AhR expression and activation is also significantly higher in tumor cells compared to benign glandular epithelium.Together these observations suggest that AhR activation may be a cancer counteracting mechanism in the prostate. We maintain that combining beta-TrCP inhibition with androgen ablation could benefit advanced prostate cancer patients.

  16. Peroxisome Proliferator-Activated Receptor and Vitamin D Receptor Signaling Pathways in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yasuko Kitagishi

    2013-10-01

    Full Text Available Peroxisome proliferator-activated receptors (PPARs are members of the superfamily of nuclear hormone receptors, which respond to specific ligands such as polyunsaturated fatty acids by altering gene expression. Three subtypes of this receptor have been discovered, each evolving to achieve different biological functions. Like other nuclear receptors, the transcriptional activity of PPARs is affected not only by ligand-stimulation, but also by cross-talk with other molecules. For example, both PPARs and the RXRs are ligand-activated transcription factors that coordinately regulate gene expression. In addition, PPARs and vitamin D receptor (VDR signaling pathways regulate a multitude of genes that are of importance for cellular functions including cell proliferation and cell differentiation. Interaction of the PPARs and VDR signaling pathways has been shown at the level of molecular cross-regulation of their transcription factor. A variety of ligands influencing the PPARs and VDR signaling pathways have been shown to reveal chemopreventive potential by mediating tumor suppressive activities in human cancers. Use of these compounds may represent a potential novel strategy to prevent cancers. This review summarizes the roles of the PPARs and the VDR in pathogenesis and progression of cancer.

  17. Peroxisome Proliferator-Activated Receptor and Vitamin D Receptor Signaling Pathways in Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Satoru, E-mail: smatsuda@cc.nara-wu.ac.jp; Kitagishi, Yasuko [Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506 (Japan)

    2013-10-21

    Peroxisome proliferator-activated receptors (PPARs) are members of the superfamily of nuclear hormone receptors, which respond to specific ligands such as polyunsaturated fatty acids by altering gene expression. Three subtypes of this receptor have been discovered, each evolving to achieve different biological functions. Like other nuclear receptors, the transcriptional activity of PPARs is affected not only by ligand-stimulation, but also by cross-talk with other molecules. For example, both PPARs and the RXRs are ligand-activated transcription factors that coordinately regulate gene expression. In addition, PPARs and vitamin D receptor (VDR) signaling pathways regulate a multitude of genes that are of importance for cellular functions including cell proliferation and cell differentiation. Interaction of the PPARs and VDR signaling pathways has been shown at the level of molecular cross-regulation of their transcription factor. A variety of ligands influencing the PPARs and VDR signaling pathways have been shown to reveal chemopreventive potential by mediating tumor suppressive activities in human cancers. Use of these compounds may represent a potential novel strategy to prevent cancers. This review summarizes the roles of the PPARs and the VDR in pathogenesis and progression of cancer.

  18. Peroxisome Proliferator-Activated Receptor and Vitamin D Receptor Signaling Pathways in Cancer Cells

    International Nuclear Information System (INIS)

    Matsuda, Satoru; Kitagishi, Yasuko

    2013-01-01

    Peroxisome proliferator-activated receptors (PPARs) are members of the superfamily of nuclear hormone receptors, which respond to specific ligands such as polyunsaturated fatty acids by altering gene expression. Three subtypes of this receptor have been discovered, each evolving to achieve different biological functions. Like other nuclear receptors, the transcriptional activity of PPARs is affected not only by ligand-stimulation, but also by cross-talk with other molecules. For example, both PPARs and the RXRs are ligand-activated transcription factors that coordinately regulate gene expression. In addition, PPARs and vitamin D receptor (VDR) signaling pathways regulate a multitude of genes that are of importance for cellular functions including cell proliferation and cell differentiation. Interaction of the PPARs and VDR signaling pathways has been shown at the level of molecular cross-regulation of their transcription factor. A variety of ligands influencing the PPARs and VDR signaling pathways have been shown to reveal chemopreventive potential by mediating tumor suppressive activities in human cancers. Use of these compounds may represent a potential novel strategy to prevent cancers. This review summarizes the roles of the PPARs and the VDR in pathogenesis and progression of cancer

  19. Distinct Phosphorylation Clusters Determine the Signaling Outcome of Free Fatty Acid Receptor 4/G Protein-Coupled Receptor 120

    DEFF Research Database (Denmark)

    Prihandoko, Rudi; Alvarez-Curto, Elisa; Hudson, Brian D

    2016-01-01

    of these phosphoacceptor sites to alanine completely prevented phosphorylation of mFFA4 but did not limit receptor coupling to extracellular signal regulated protein kinase 1 and 2 (ERK1/2) activation. Rather, an inhibitor of Gq/11proteins completely prevented receptor signaling to ERK1/2. By contrast, the recruitment...... activation. These unique observations define differential effects on signaling mediated by phosphorylation at distinct locations. This hallmark feature supports the possibility that the signaling outcome of mFFA4 activation can be determined by the pattern of phosphorylation (phosphorylation barcode...

  20. Age-related changes in expression and signaling of TAM receptor inflammatory regulators in monocytes.

    Science.gov (United States)

    Wang, Xiaomei; Malawista, Anna; Qian, Feng; Ramsey, Christine; Allore, Heather G; Montgomery, Ruth R

    2018-02-09

    The multifactorial immune deterioration in aging--termed "inflamm-aging"--is comprised of a state of low-grade, chronic inflammation and complex dysregulation of responses to immune stimulation. The TAM family (Tyro 3, Axl, and Mer) of receptor tyrosine kinases are negative regulators of Toll like receptor-mediated immune responses that broadly inhibit cytokine receptor cascades to inhibit inflammation. Here we demonstrate elevated expression of TAM receptors in monocytes of older adults, and an age-dependent difference in signaling mediator AKT resulting in dysregulated responses to signaling though Mer. Our results may be especially significant in tissue, where levels of Mer are highest, and may present avenues for modulation of chronic tissue inflammation noted in aging.

  1. Collagen Type I as a Ligand for Receptor-Mediated Signaling

    Directory of Open Access Journals (Sweden)

    Iris Boraschi-Diaz

    2017-05-01

    Full Text Available Collagens form the fibrous component of the extracellular matrix in all multi-cellular animals. Collagen type I is the most abundant collagen present in skin, tendons, vasculature, as well as the organic portion of the calcified tissue of bone and teeth. This review focuses on numerous receptors for which collagen acts as a ligand, including integrins, discoidin domain receptors DDR1 and 2, OSCAR, GPVI, G6b-B, and LAIR-1 of the leukocyte receptor complex (LRC and mannose family receptor uPARAP/Endo180. We explore the process of collagen production and self-assembly, as well as its degradation by collagenases and gelatinases in order to predict potential temporal and spatial sites of action of different collagen receptors. While the interactions of the mature collagen matrix with integrins and DDR are well-appreciated, potential signals from immature matrix as well as collagen degradation products are possible but not yet described. The role of multiple collagen receptors in physiological processes and their contribution to pathophysiology of diseases affecting collagen homeostasis require further studies.

  2. The Growth Hormone Receptor: Mechanism of Receptor Activation, Cell Signaling, and Physiological Aspects

    Directory of Open Access Journals (Sweden)

    Farhad Dehkhoda

    2018-02-01

    Full Text Available The growth hormone receptor (GHR, although most well known for regulating growth, has many other important biological functions including regulating metabolism and controlling physiological processes related to the hepatobiliary, cardiovascular, renal, gastrointestinal, and reproductive systems. In addition, growth hormone signaling is an important regulator of aging and plays a significant role in cancer development. Growth hormone activates the Janus kinase (JAK–signal transducer and activator of transcription (STAT signaling pathway, and recent studies have provided a new understanding of the mechanism of JAK2 activation by growth hormone binding to its receptor. JAK2 activation is required for growth hormone-mediated activation of STAT1, STAT3, and STAT5, and the negative regulation of JAK–STAT signaling comprises an important step in the control of this signaling pathway. The GHR also activates the Src family kinase signaling pathway independent of JAK2. This review covers the molecular mechanisms of GHR activation and signal transduction as well as the physiological consequences of growth hormone signaling.

  3. Molecular and functional profiling of histamine receptor-mediated calcium ion signals in different cell lines.

    Science.gov (United States)

    Meisenberg, Annika; Kaschuba, Dagmar; Balfanz, Sabine; Jordan, Nadine; Baumann, Arnd

    2015-10-01

    Calcium ions (Ca(2+)) play a pivotal role in cellular physiology. Often Ca(2+)-dependent processes are studied in commonly available cell lines. To induce Ca(2+) signals on demand, cells may need to be equipped with additional proteins. A prominent group of membrane proteins evoking Ca(2+) signals are G-protein coupled receptors (GPCRs). These proteins register external signals such as photons, odorants, and neurotransmitters and convey ligand recognition into cellular responses, one of which is Ca(2+) signaling. To avoid receptor cross-talk or cross-activation with introduced proteins, the repertoire of cell-endogenous receptors must be known. Here we examined the presence of histamine receptors in six cell lines frequently used as hosts to study cellular signaling processes. In a concentration-dependent manner, histamine caused a rise in intracellular Ca(2+) in HeLa, HEK 293, and COS-1 cells. The concentration for half-maximal activation (EC50) was in the low micromolar range. In individual cells, transient Ca(2+) signals and Ca(2+) oscillations were uncovered. The results show that (i) HeLa, HEK 293, and COS-1 cells express sufficient amounts of endogenous receptors to study cellular Ca(2+) signaling processes directly and (ii) these cell lines are suitable for calibrating Ca(2+) biosensors in situ based on histamine receptor evoked responses. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Role of aryl hydrocarbon receptor nuclear translocator in KATP channel-mediated insulin secretion in INS-1 insulinoma cells

    International Nuclear Information System (INIS)

    Kim, Ji-Seon; Zheng Haifeng; Kim, Sung Joon; Park, Jong-Wan; Park, Kyong Soo; Ho, Won-Kyung; Chun, Yang-Sook

    2009-01-01

    Aryl hydrocarbon receptor nuclear translocator (ARNT) has been known to participate in cellular responses to xenobiotic and hypoxic stresses, as a common partner of aryl hydrocarbon receptor and hypoxia inducible factor-1/2α. Recently, it was reported that ARNT is essential for adequate insulin secretion in response to glucose input and that its expression is downregulated in the pancreatic islets of diabetic patients. In the present study, the authors addressed the mechanism by which ARNT regulates insulin secretion in the INS-1 insulinoma cell line. In ARNT knock-down cells, basal insulin release was elevated, but insulin secretion was not further stimulated by a high-glucose challenge. Electrophysiological analyses revealed that glucose-dependent membrane depolarization was impaired in these cells. Furthermore, K ATP channel activity and expression were reduced. Of two K ATP channel subunits, Kir6.2 was found to be positively regulated by ARNT at the mRNA and protein levels. Based on these results, the authors suggest that ARNT expresses K ATP channel and by so doing regulates glucose-dependent insulin secretion.

  5. Hypocretin/Orexin regulation of dopamine signaling and cocaine self-administration is mediated predominantly by hypocretin receptor 1.

    Science.gov (United States)

    Prince, Courtney D; Rau, Andrew R; Yorgason, Jordan T; España, Rodrigo A

    2015-01-21

    Extensive evidence suggests that the hypocretins/orexins influence cocaine reinforcement and dopamine signaling via actions at hypocretin receptor 1. By comparison, the involvement of hypocretin receptor 2 in reward and reinforcement processes has received relatively little attention. Thus, although there is some evidence that hypocretin receptor 2 regulates intake of some drugs of abuse, it is currently unclear to what extent hypocretin receptor 2 participates in the regulation of dopamine signaling or cocaine self-administration, particularly under high effort conditions. To address this, we examined the effects of hypocretin receptor 1, and/or hypocretin receptor 2 blockade on dopamine signaling and cocaine reinforcement. We used in vivo fast scan cyclic voltammetry to test the effects of hypocretin antagonists on dopamine signaling in the nucleus accumbens core and a progressive ratio schedule to examine the effects of these antagonists on cocaine self-administration. Results demonstrate that blockade of either hypocretin receptor 1 or both hypocretin receptor 1 and 2 significantly reduces the effects of cocaine on dopamine signaling and decreases the motivation to take cocaine. In contrast, blockade of hypocretin receptor 2 alone had no significant effects on dopamine signaling or self-administration. These findings suggest a differential involvement of the two hypocretin receptors, with hypocretin receptor 1 appearing to be more involved than hypocretin receptor 2 in the regulation of dopamine signaling and cocaine self-administration. When considered with the existing literature, these data support the hypothesis that hypocretins exert a permissive influence on dopamine signaling and motivated behavior via preferential actions on hypocretin receptor 1.

  6. Interplay between Dioxin-Mediated Signaling and Circadian Clock: A Possible Determinant in Metabolic Homeostasis

    Directory of Open Access Journals (Sweden)

    Chun Wang

    2014-07-01

    Full Text Available The rotation of the earth on its axis creates the environment of a 24 h solar day, which organisms on earth have used to their evolutionary advantage by integrating this timing information into their genetic make-up in the form of a circadian clock. This intrinsic molecular clock is pivotal for maintenance of synchronized homeostasis between the individual organism and the external environment to allow coordinated rhythmic physiological and behavioral function. Aryl hydrocarbon receptor (AhR is a master regulator of dioxin-mediated toxic effects, and is, therefore, critical in maintaining adaptive responses through regulating the expression of phase I/II drug metabolism enzymes. AhR expression is robustly rhythmic, and physiological cross-talk between AhR signaling and circadian rhythms has been established. Increasing evidence raises a compelling argument that disruption of endogenous circadian rhythms contributes to the development of disease, including sleep disorders, metabolic disorders and cancers. Similarly, exposure to environmental pollutants through air, water and food, is increasingly cited as contributory to these same problems. Thus, a better understanding of interactions between AhR signaling and the circadian clock regulatory network can provide critical new insights into environmentally regulated disease processes. This review highlights recent advances in the understanding of the reciprocal interactions between dioxin-mediated AhR signaling and the circadian clock including how these pathways relate to health and disease, with emphasis on the control of metabolic function.

  7. Fcγ-receptor IIa-mediated Src Signaling Pathway Is Essential for the Antibody-Dependent Enhancement of Ebola Virus Infection.

    Directory of Open Access Journals (Sweden)

    Wakako Furuyama

    2016-12-01

    Full Text Available Antibody-dependent enhancement (ADE of Ebola virus (EBOV infection has been demonstrated in vitro, raising concerns about the detrimental potential of some anti-EBOV antibodies. ADE has been described for many viruses and mostly depends on the cross-linking of virus-antibody complexes to cell surface Fc receptors, leading to enhanced infection. However, little is known about the molecular mechanisms underlying this phenomenon. Here we show that Fcγ-receptor IIa (FcγRIIa-mediated intracellular signaling through Src family protein tyrosine kinases (PTKs is required for ADE of EBOV infection. We found that deletion of the FcγRIIa cytoplasmic tail abolished EBOV ADE due to decreased virus uptake into cellular endosomes. Furthermore, EBOV ADE, but not non-ADE infection, was significantly reduced by inhibition of the Src family protein PTK pathway, which was also found to be important to promote phagocytosis/macropinocytosis for viral uptake into endosomes. We further confirmed a significant increase of the Src phosphorylation mediated by ADE. These data suggest that antibody-EBOV complexes bound to the cell surface FcγRIIa activate the Src signaling pathway that leads to enhanced viral entry into cells, providing a novel perspective for the general understanding of ADE of virus infection.

  8. The Pseudo signal peptide of the corticotropin-releasing factor receptor type 2A prevents receptor oligomerization.

    Science.gov (United States)

    Teichmann, Anke; Rutz, Claudia; Kreuchwig, Annika; Krause, Gerd; Wiesner, Burkhard; Schülein, Ralf

    2012-08-03

    N-terminal signal peptides mediate the interaction of native proteins with the translocon complex of the endoplasmic reticulum membrane and are cleaved off during early protein biogenesis. The corticotropin-releasing factor receptor type 2a (CRF(2(a))R) possesses an N-terminal pseudo signal peptide, which represents a so far unique domain within the large protein family of G protein-coupled receptors (GPCRs). In contrast to a conventional signal peptide, the pseudo signal peptide remains uncleaved and consequently forms a hydrophobic extension at the N terminus of the receptor. The functional consequence of the presence of the pseudo signal peptide is not understood. Here, we have analyzed the significance of this domain for receptor dimerization/oligomerization in detail. To this end, we took the CRF(2(a))R and the homologous corticotropin-releasing factor receptor type 1 (CRF(1)R) possessing a conventional cleaved signal peptide and conducted signal peptide exchange experiments. Using single cell and single molecule imaging methods (fluorescence resonance energy transfer and fluorescence cross-correlation spectroscopy, respectively) as well as biochemical experiments, we obtained two novel findings; we could show that (i) the CRF(2(a))R is expressed exclusively as a monomer, and (ii) the presence of the pseudo signal peptide prevents its oligomerization. Thus, we have identified a novel functional domain within the GPCR protein family, which plays a role in receptor oligomerization and which may be useful to study the functional significance of this process in general.

  9. Aryl hydrocarbon receptor overexpression in miniaturized follicles in female pattern hair loss.

    Science.gov (United States)

    Ramos, Paulo Müller; Brianezi, Gabrielli; Martins, Ana Carolina Pereira; Silva, Márcia Guimarães da; Marques, Mariângela Esther Alencar; Miot, Hélio Amante

    2017-01-01

    The etiopathogenesis of female pattern hair loss is still poorly understood. In addition to genetic and hormonal elements, environmental factors could be involved. The aryl hydrocarbon receptor is expressed in keratinocytes and can be activated by environmental pollutants leading to alterations in the cell cycle, inflammation, and apoptosis. Here we demonstrate the overexpression of nuclear aryl hydrocarbon receptors in miniaturized hair follicles in female pattern hair loss.

  10. TGFβ activated kinase 1 (TAK1 at the crossroad of B cell receptor and Toll-like receptor 9 signaling pathways in human B cells.

    Directory of Open Access Journals (Sweden)

    Dániel Szili

    Full Text Available B cell development and activation are regulated by combined signals mediated by the B cell receptor (BCR, receptors for the B-cell activating factor of the tumor necrosis factor family (BAFF-R and the innate receptor, Toll-like receptor 9 (TLR9. However, the underlying mechanisms by which these signals cooperate in human B cells remain unclear. Our aim was to elucidate the key signaling molecules at the crossroads of BCR, BAFF-R and TLR9 mediated pathways and to follow the functional consequences of costimulation.Therefore we stimulated purified human B cells by combinations of anti-Ig, B-cell activating factor of the tumor necrosis factor family (BAFF and the TLR9 agonist, CpG oligodeoxynucleotide. Phosphorylation status of various signaling molecules, B cell proliferation, cytokine secretion, plasma blast generation and the frequency of IgG producing cells were investigated. We have found that BCR induced signals cooperate with BAFF-R- and TLR9-mediated signals at different levels of cell activation. BCR and BAFF- as well as TLR9 and BAFF-mediated signals cooperate at NFκB activation, while BCR and TLR9 synergistically costimulate mitogen activated protein kinases (MAPKs, ERK, JNK and p38. We show here for the first time that the MAP3K7 (TGF beta activated kinase, TAK1 is responsible for the synergistic costimulation of B cells by BCR and TLR9, resulting in an enhanced cell proliferation, plasma blast generation, cytokine and antibody production. Specific inhibitor of TAK1 as well as knocking down TAK1 by siRNA abrogates the synergistic signals. We conclude that TAK1 is a key regulator of receptor crosstalk between BCR and TLR9, thus plays a critical role in B cell development and activation.

  11. TAM receptor signaling in development.

    Science.gov (United States)

    Burstyn-Cohen, Tal

    2017-01-01

    TYRO3, AXL and MERTK comprise the TAM family of receptor protein tyrosine kinases. Activated by their ligands, protein S (PROS1) and growth-arrest-specific 6 (GAS6), they mediate numerous cellular functions throughout development and adulthood. Expressed by a myriad of cell types and tissues, they have been implicated in homeostatic regulation of the immune, nervous, vascular, bone and reproductive systems. The loss-of-function of TAM signaling in adult tissues culminates in the destruction of tissue homeostasis and diseased states, while TAM gain-of-function in various tumors promotes cancer phenotypes. Combinatorial ligand-receptor interactions may elicit different molecular and cellular responses. Many of the TAM regulatory functions are essentially developmental, taking place both during embryogenesis and postnatally. This review highlights current knowledge on the role of TAM receptors and their ligands during these developmental processes in the immune, nervous, vascular and reproductive systems.

  12. A dioxin-like compound induces hyperplasia and branching morphogenesis in mouse mammary gland, through alterations in TGF-β1 and aryl hydrocarbon receptor signaling.

    Science.gov (United States)

    Miret, Noelia; Rico-Leo, Eva; Pontillo, Carolina; Zotta, Elsa; Fernández-Salguero, Pedro; Randi, Andrea

    2017-11-01

    Hexachlorobenzene (HCB) is a widespread environmental pollutant and a dioxin-like compound that binds weakly to the aryl hydrocarbon receptor (AhR). Because AhR and transforming growth factor β1 (TGF-β1) converge to regulate common signaling pathways, alterations in this crosstalk might contribute to developing preneoplastic lesions. The aim of this study was to evaluate HCB action on TGF-β1 and AhR signaling in mouse mammary gland, through AhR+/+ and AhR-/- models. Results showed a differential effect in mouse mammary epithelial cells (NMuMG), depending on the dose: 0.05μM HCB induced cell migration and TGF-β1 signaling, whereas 5μM HCB reduced cell migration, promoted cell cycle arrest and stimulated the dioxin response element (DRE) -dependent pathway. HCB (5μM) enhanced α-smooth muscle actin expression and decreased TGF-β receptor II mRNA levels in immortalized mouse mammary fibroblasts AhR+/+, resembling the phenotype of transformed cells. Accordingly, their conditioned medium was able to enhance NMuMG cell migration. Assays in C57/Bl6 mice showed HCB (3mg/kg body weight) to enhance ductal hyperplasia, cell proliferation, estrogen receptor α nuclear localization, branch density, and the number of terminal end buds in mammary gland from AhR+/+ mice. Primary culture of mammary epithelial cells from AhR+/+ mice showed reduced AhR mRNA levels after HCB exposure (0.05 and 5μM). Interestingly, AhR-/- mice exhibited an increase in ductal hyperplasia and mammary growth in the absence of HCB treatment, thus revealing the importance of AhR in mammary development. Our findings show that environmental HCB concentrations modulate AhR and TGF-β1 signaling, which could contribute to altered mammary branching morphogenesis, likely leading to preneoplastic lesions and retaining terminal end buds. Copyright © 2017. Published by Elsevier Inc.

  13. Breast cancer oestrogen independence mediated by BCAR1 or BCAR3 genes is transmitted through mechanisms distinct from the oestrogen receptor signalling pathway or the epidermal growth factor receptor signalling pathway

    International Nuclear Information System (INIS)

    Dorssers, Lambert CJ; Agthoven, Ton van; Brinkman, Arend; Veldscholte, Jos; Smid, Marcel; Dechering, Koen J

    2005-01-01

    Tamoxifen is effective for endocrine treatment of oestrogen receptor-positive breast cancers but ultimately fails due to the development of resistance. A functional screen in human breast cancer cells identified two BCAR genes causing oestrogen-independent proliferation. The BCAR1 and BCAR3 genes both encode components of intracellular signal transduction, but their direct effect on breast cancer cell proliferation is not known. The aim of this study was to investigate the growth control mediated by these BCAR genes by gene expression profiling. We have measured the expression changes induced by overexpression of the BCAR1 or BCAR3 gene in ZR-75-1 cells and have made direct comparisons with the expression changes after cell stimulation with oestrogen or epidermal growth factor (EGF). A comparison with published gene expression data of cell models and breast tumours is made. Relatively few changes in gene expression were detected in the BCAR-transfected cells, in comparison with the extensive and distinct differences in gene expression induced by oestrogen or EGF. Both BCAR1 and BCAR3 regulate discrete sets of genes in these ZR-75-1-derived cells, indicating that the proliferation signalling proceeds along distinct pathways. Oestrogen-regulated genes in our cell model showed general concordance with reported data of cell models and gene expression association with oestrogen receptor status of breast tumours. The direct comparison of the expression profiles of BCAR transfectants and oestrogen or EGF-stimulated cells strongly suggests that anti-oestrogen-resistant cell proliferation is not caused by alternative activation of the oestrogen receptor or by the epidermal growth factor receptor signalling pathway

  14. Cooperative ethylene receptor signaling

    OpenAIRE

    Liu, Qian; Wen, Chi-Kuang

    2012-01-01

    The gaseous plant hormone ethylene is perceived by a family of five ethylene receptor members in the dicotyledonous model plant Arabidopsis. Genetic and biochemical studies suggest that the ethylene response is suppressed by ethylene receptor complexes, but the biochemical nature of the receptor signal is unknown. Without appropriate biochemical measures to trace the ethylene receptor signal and quantify the signal strength, the biological significance of the modulation of ethylene responses ...

  15. Regulation of Innate Lymphoid Cells by Aryl Hydrocarbon Receptor

    Science.gov (United States)

    Li, Shiyang; Bostick, John W.; Zhou, Liang

    2018-01-01

    With striking similarity to their adaptive T helper cell counterparts, innate lymphoid cells (ILCs) represent an emerging family of cell types that express signature transcription factors, including T-bet+ Eomes+ natural killer cells, T-bet+ Eomes− group 1 ILCs, GATA3+ group 2 ILCs, RORγt+ group 3 ILCs, and newly identified Id3+ regulatory ILC. ILCs are abundantly present in barrier tissues of the host (e.g., the lung, gut, and skin) at the interface of host–environment interactions. Active research has been conducted to elucidate molecular mechanisms underlying the development and function of ILCs. The aryl hydrocarbon receptor (Ahr) is a ligand-dependent transcription factor, best known to mediate the effects of xenobiotic environmental toxins and endogenous microbial and dietary metabolites. Here, we review recent progresses regarding Ahr function in ILCs. We focus on the Ahr-mediated cross talk between ILCs and other immune/non-immune cells in host tissues especially in the gut. We discuss the molecular mechanisms of the action of Ahr expression and activity in regulation of ILCs in immunity and inflammation, and the interaction between Ahr and other pathways/transcription factors in ILC development and function with their implication in disease. PMID:29354125

  16. Non-Dioxin-Like Polychlorinated Biphenyls Inhibit G-Protein Coupled Receptor-Mediated Ca2+ Signaling by Blocking Store-Operated Ca2+ Entry.

    Directory of Open Access Journals (Sweden)

    Se-Young Choi

    Full Text Available Polychlorinated biphenyls (PCBs are ubiquitous pollutants which accumulate in the food chain. Recently, several molecular mechanisms by which non-dioxin-like (NDL PCBs mediate neurodevelopmental and neurobehavioral toxicity have been elucidated. However, although the G-protein coupled receptor (GPCR is a significant target for neurobehavioral disturbance, our understanding of the effects of PCBs on GPCR signaling remains unclear. In this study, we investigated the effects of NDL-PCBs on GPCR-mediated Ca2+ signaling in PC12 cells. We found that ortho-substituted 2,2',6-trichlorinated biphenyl (PCB19 caused a rapid decline in the Ca2+ signaling of bradykinin, a typical Gq- and phospholipase Cβ-coupled GPCR, without any effect on its inositol 1,4,5-trisphosphate production. PCB19 reduced thapsigargin-induced sustained cytosolic Ca2+ levels, suggesting that PCB19 inhibits SOCE. The abilities of other NDL-PCBs to inhibit store-operated Ca2+ entry (SOCE were also examined and found to be of similar potencies to that of PCB19. PCB19 also showed a manner equivalent to that of known SOCE inhibitors. PCB19-mediated SOCE inhibition was confirmed by demonstrating the ability of PCB19 to inhibit the SOCE current and thapsigargin-induced Mn2+ influx. These results imply that one of the molecular mechanism by which NDL-PCBs cause neurobehavioral disturbances involves NDL-PCB-mediated inhibition of SOCE, thereby interfering with GPCR-mediated Ca2+ signaling.

  17. Inhibition of aryl hydrocarbon receptor-dependent transcription by resveratrol or kaempferol is independent of estrogen receptor α expression in human breast cancer cells

    Science.gov (United States)

    MacPherson, Laura; Matthews, Jason

    2016-01-01

    Resveratrol and kaempferol are natural chemopreventative agents that are also aryl hydrocarbon receptor (AHR) antagonists and estrogen receptor (ER) agonists. In this study we evaluated the role of ERα in resveratrol- and kaempferol-mediated inhibition of AHR-dependent transcription. Kaempferol or resveratrol inhibited dioxin-induced cytochrome P450 1A1 (CYP1A1) and CYP1B1 expression levels and recruitment of AHR, ERα and co-activators to CYP1A1 and CYP1B1. Both phytochemicals induced the expression and recruitment of ERα to gene amplified in breast cancer 1 (GREB1). RNAi-mediated knockdown of ERα in T-47D cells did not affect the inhibitory action of either phytochemical on AHR activity. Both compounds also inhibited AHR-dependent transcription in ERα-negative MDA-MB-231 and BT-549 breast cancer cells. These data show that ERα does not contribute to the AHR-inhibitory activities of resveratrol and kaempferol. PMID:20846786

  18. Imaging of persistent cAMP signaling by internalized G protein-coupled receptors.

    Science.gov (United States)

    Calebiro, Davide; Nikolaev, Viacheslav O; Lohse, Martin J

    2010-07-01

    G protein-coupled receptors (GPCRs) are the largest family of plasma membrane receptors. They mediate the effects of several endogenous cues and serve as important pharmacological targets. Although many biochemical events involved in GPCR signaling have been characterized in great detail, little is known about their spatiotemporal dynamics in living cells. The recent advent of optical methods based on fluorescent resonance energy transfer allows, for the first time, to directly monitor GPCR signaling in living cells. Utilizing these methods, it has been recently possible to show that the receptors for two protein/peptide hormones, the TSH and the parathyroid hormone, continue signaling to cAMP after their internalization into endosomes. This type of intracellular signaling is persistent and apparently triggers specific cellular outcomes. Here, we review these recent data and explain the optical methods used for such studies. Based on these findings, we propose a revision of the current model of the GPCR-cAMP signaling pathway to accommodate receptor signaling at endosomes.

  19. Elevated carbon dioxide blunts mammalian cAMP signaling dependent on inositol 1,4,5-triphosphate receptor-mediated Ca2+ release.

    Science.gov (United States)

    Cook, Zara C; Gray, Michael A; Cann, Martin J

    2012-07-27

    Elevated CO(2) is generally detrimental to animal cells, suggesting an interaction with core processes in cell biology. We demonstrate that elevated CO(2) blunts G protein-activated cAMP signaling. The effect of CO(2) is independent of changes in intracellular and extracellular pH, independent of the mechanism used to activate the cAMP signaling pathway, and is independent of cell context. A combination of pharmacological and genetic tools demonstrated that the effect of elevated CO(2) on cAMP levels required the activity of the IP(3) receptor. Consistent with these findings, CO(2) caused an increase in steady state cytoplasmic Ca(2+) concentrations not observed in the absence of the IP(3) receptor or under nonspecific acidotic conditions. We examined the well characterized cAMP-dependent inhibition of the isoform 3 Na(+)/H(+) antiporter (NHE3) to demonstrate a functional relevance for CO(2)-mediated reductions in cellular cAMP. Consistent with the cellular biochemistry, elevated CO(2) abrogated the inhibitory effect of cAMP on NHE3 function via an IP(3) receptor-dependent mechanism.

  20. Elevated Carbon Dioxide Blunts Mammalian cAMP Signaling Dependent on Inositol 1,4,5-Triphosphate Receptor-mediated Ca2+ Release*

    Science.gov (United States)

    Cook, Zara C.; Gray, Michael A.; Cann, Martin J.

    2012-01-01

    Elevated CO2 is generally detrimental to animal cells, suggesting an interaction with core processes in cell biology. We demonstrate that elevated CO2 blunts G protein-activated cAMP signaling. The effect of CO2 is independent of changes in intracellular and extracellular pH, independent of the mechanism used to activate the cAMP signaling pathway, and is independent of cell context. A combination of pharmacological and genetic tools demonstrated that the effect of elevated CO2 on cAMP levels required the activity of the IP3 receptor. Consistent with these findings, CO2 caused an increase in steady state cytoplasmic Ca2+ concentrations not observed in the absence of the IP3 receptor or under nonspecific acidotic conditions. We examined the well characterized cAMP-dependent inhibition of the isoform 3 Na+/H+ antiporter (NHE3) to demonstrate a functional relevance for CO2-mediated reductions in cellular cAMP. Consistent with the cellular biochemistry, elevated CO2 abrogated the inhibitory effect of cAMP on NHE3 function via an IP3 receptor-dependent mechanism. PMID:22654111

  1. Receptor activity-independent recruitment of βarrestin2 reveals specific signalling modes

    Science.gov (United States)

    Terrillon, Sonia; Bouvier, Michel

    2004-01-01

    The roles of βarrestins in regulating G protein coupling and receptor endocytosis following agonist stimulation of G protein-coupled receptors are well characterised. However, their ability to act on their own as direct modulators or activators of signalling remains poorly characterised. Here, βarrestin2 intrinsic signalling properties were assessed by forcing the recruitment of this accessory protein to vasopressin V1a or V2 receptors independently of agonist-promoted activation of the receptors. Such induction of a stable interaction with βarrestin2 initiated receptor endocytosis leading to intracellular accumulation of the βarrestin/receptor complexes. Interestingly, βarrestin2 association to a single receptor protomer was sufficient to elicit receptor dimer internalisation. In addition to recapitulating βarrestin2 classical actions on receptor trafficking, the receptor activity-independent recruitment of βarrestin2 activated the extracellular signal-regulated kinases. In the latter case, recruitment to the receptor itself was not required since kinase activation could be mediated by βarrestin2 translocation to the plasma membrane in the absence of any interacting receptor. These data demonstrate that βarrestin2 can act as a ‘bonafide' signalling molecule even in the absence of activated receptor. PMID:15385966

  2. Ligand-mediated negative regulation of a chimeric transmembrane receptor tyrosine phosphatase

    DEFF Research Database (Denmark)

    Desai, D M; Sap, J; Schlessinger, J

    1993-01-01

    CD45, a transmembrane protein tyrosine phosphatase (PTPase), is required for TCR signaling. Multiple CD45 isoforms, differing in the extracellular domain, are expressed in a tissue- and activation-specific manner, suggesting an important function for this domain. We report that a chimeric protein...... that ligand-mediated regulation of receptor-PTPases may have mechanistic similarities with receptor tyrosine kinases....

  3. C-terminal of human histamine H1 receptors regulates their agonist-induced clathrin-mediated internalization and G-protein signaling.

    Science.gov (United States)

    Hishinuma, Shigeru; Nozawa, Hiroki; Akatsu, Chizuru; Shoji, Masaru

    2016-11-01

    It has been suggested that the agonist-induced internalization of G-protein-coupled receptors from the cell surface into intracellular compartments regulates cellular responsiveness. We previously reported that G q/11 -protein-coupled human histamine H 1 receptors internalized via clathrin-dependent mechanisms upon stimulation with histamine. However, the molecular determinants of H 1 receptors responsible for agonist-induced internalization remain unclear. In this study, we evaluated the roles of the intracellular C-terminal of human histamine H 1 receptors tagged with hemagglutinin (HA) at the N-terminal in histamine-induced internalization in Chinese hamster ovary cells. The histamine-induced internalization was evaluated by the receptor binding assay with [ 3 H]mepyramine and confocal immunofluorescence microscopy with an anti-HA antibody. We found that histamine-induced internalization was inhibited under hypertonic conditions or by pitstop, a clathrin terminal domain inhibitor, but not by filipin or nystatin, disruptors of the caveolar structure and function. The histamine-induced internalization was also inhibited by truncation of a single amino acid, Ser487, located at the end of the intracellular C-terminal of H 1 receptors, but not by its mutation to alanine. In contrast, the receptor-G-protein coupling, which was evaluated by histamine-induced accumulation of [ 3 H]inositol phosphates, was potentiated by truncation of Ser487, but was lost by its mutation to alanine. These results suggest that the intracellular C-terminal of human H 1 receptors, which only comprises 17 amino acids (Cys471-Ser487), plays crucial roles in both clathrin-dependent internalization of H 1 receptors and G-protein signaling, in which truncation of Ser487 and its mutation to alanine are revealed to result in biased signaling toward activation of G-proteins and clathrin-mediated internalization, respectively. © 2016 International Society for Neurochemistry.

  4. Activation of the Aryl Hydrocarbon Receptor Interferes with Early Embryonic Development

    Directory of Open Access Journals (Sweden)

    Manolis Gialitakis

    2017-11-01

    Full Text Available The transcriptional program of early embryonic development is tightly regulated by a set of well-defined transcription factors that suppress premature expression of differentiation genes and sustain the pluripotent identity. It is generally accepted that this program can be perturbed by environmental factors such as chemical pollutants; however, the precise molecular mechanisms remain unknown. The aryl hydrocarbon receptor (AHR is a widely expressed nuclear receptor that senses environmental stimuli and modulates target gene expression. Here, we have investigated the AHR interactome in embryonic stem cells by mass spectrometry and show that ectopic activation of AHR during early differentiation disrupts the differentiation program via the chromatin remodeling complex NuRD (nucleosome remodeling and deacetylation. The activated AHR/NuRD complex altered the expression of differentiation-specific genes that control the first two developmental decisions without affecting the pluripotency program. These findings identify a mechanism that allows environmental stimuli to disrupt embryonic development through AHR signaling.

  5. Receptor-heteromer mediated regulation of endocannabinoid signaling in activated microglia. Role of CB1 and CB2 receptors and relevance for Alzheimer's disease and levodopa-induced dyskinesia.

    Science.gov (United States)

    Navarro, Gemma; Borroto-Escuela, Dasiel; Angelats, Edgar; Etayo, Íñigo; Reyes-Resina, Irene; Pulido-Salgado, Marta; Rodríguez-Pérez, Ana I; Canela, Enric I; Saura, Josep; Lanciego, José Luis; Labandeira-García, José Luis; Saura, Carlos A; Fuxe, Kjell; Franco, Rafael

    2018-01-01

    Endocannabinoids are important regulators of neurotransmission and, acting on activated microglia, they are postulated as neuroprotective agents. Endocannabinoid action is mediated by CB 1 and CB 2 receptors, which may form heteromeric complexes (CB 1 -CB 2 Hets) with unknown function in microglia. We aimed at establishing the expression and signaling properties of cannabinoid receptors in resting and LPS/IFN-γ-activated microglia. In activated microglia mRNA transcripts increased (2 fold for CB 1 and circa 20 fold for CB 2 ), whereas receptor levels were similar for CB 1 and markedly upregulated for CB 2 ; CB 1 -CB 2 Hets were also upregulated. Unlike in resting cells, CB 2 receptors became robustly coupled to G i in activated cells, in which CB 1 -CB 2 Hets mediated a potentiation effect. Hence, resting cells were refractory while activated cells were highly responsive to cannabinoids. Interestingly, similar results were obtained in cultures treated with ß-amyloid (Aß 1-42 ). Microglial activation markers were detected in the striatum of a Parkinson's disease (PD) model and, remarkably, in primary microglia cultures from the hippocampus of mutant β-amyloid precursor protein (APP Sw,Ind ) mice, a transgenic Alzheimer's disease (AD) model. Also of note was the similar cannabinoid receptor signaling found in primary cultures of microglia from APP Sw,Ind and in cells from control animals activated using LPS plus IFN-γ. Expression of CB 1 -CB 2 Hets was increased in the striatum from rats rendered dyskinetic by chronic levodopa treatment. In summary, our results showed sensitivity of activated microglial cells to cannabinoids, increased CB 1 -CB 2 Het expression in activated microglia and in microglia from the hippocampus of an AD model, and a correlation between levodopa-induced dyskinesia and striatal microglial activation in a PD model. Cannabinoid receptors and the CB 1 -CB 2 heteroreceptor complex in activated microglia have potential as targets in the

  6. High fructose-mediated attenuation of insulin receptor signaling does not affect PDGF-induced proliferative signaling in vascular smooth muscle cells.

    Science.gov (United States)

    Osman, Islam; Poulose, Ninu; Ganapathy, Vadivel; Segar, Lakshman

    2016-11-15

    Insulin resistance is associated with accelerated atherosclerosis. Although high fructose is known to induce insulin resistance, it remains unclear as to how fructose regulates insulin receptor signaling and proliferative phenotype in vascular smooth muscle cells (VSMCs), which play a major role in atherosclerosis. Using human aortic VSMCs, we investigated the effects of high fructose treatment on insulin receptor substrate-1 (IRS-1) serine phosphorylation, insulin versus platelet-derived growth factor (PDGF)-induced phosphorylation of Akt, S6 ribosomal protein, and extracellular signal-regulated kinase (ERK), and cell cycle proteins. In comparison with PDGF (a potent mitogen), neither fructose nor insulin enhanced VSMC proliferation and cyclin D1 expression. d-[ 14 C(U)]fructose uptake studies revealed a progressive increase in fructose uptake in a time-dependent manner. Concentration-dependent studies with high fructose (5-25mM) showed marked increases in IRS-1 serine phosphorylation, a key adapter protein in insulin receptor signaling. Accordingly, high fructose treatment led to significant diminutions in insulin-induced phosphorylation of downstream signaling components including Akt and S6. In addition, high fructose significantly diminished insulin-induced ERK phosphorylation. Nevertheless, high fructose did not affect PDGF-induced key proliferative signaling events including phosphorylation of Akt, S6, and ERK and expression of cyclin D1 protein. Together, high fructose dysregulates IRS-1 phosphorylation state and proximal insulin receptor signaling in VSMCs, but does not affect PDGF-induced proliferative signaling. These findings suggest that systemic insulin resistance rather than VSMC-specific dysregulation of insulin receptor signaling by high fructose may play a major role in enhancing atherosclerosis and neointimal hyperplasia. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Protective Effect of Mulberry (Morus alba L.) Extract against Benzo[a]pyrene Induced Skin Damage through Inhibition of Aryl Hydrocarbon Receptor Signaling.

    Science.gov (United States)

    Woo, Hyunju; Lee, JungA; Park, Deokhoon; Jung, Eunsun

    2017-12-20

    Benzo[a]pyrene (B[a]P), a type of polycyclic aromatic hydrocarbon, is present in the atmosphere surrounding our environment. Although B[a]P is a procarcinogen, enzymatically metabolized benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE) could intercalate into DNA to form bulky BPDE-DNA adducts as an ultimate carcinogenic product in human keratinocytes. The aim of this study was to evaluate the protective effect of mulberry extract, purified from the fruit of Morus Alba L., on B[a]P-induced cytotoxicity in human keratinocytes and its mechanisms of action. In this study, we confirmed that B[a]P induced nuclear translocation and the activation of aryl hydrocarbon receptor (AhR) were decreased by pretreatment of mulberry extract. Mulberry extract could decrease DNA damage through the suppression of B[a]P derived DNA adduct formation and restoration of cell cycle retardation at S phase in a dose-dependent manner. Additionally, cyanidin-3-glucoside (C3G), a major active compound of mulberry extract, showed biological activities to protect the cells from B[a]P exposure, similar to the effectivity of the mulberry extract. These results indicated that the inhibitory effect of C3G against B[a]P inducing skin cancer is attributable to repress the AhR signaling pathway.

  8. Allergen-Induced Dermatitis Causes Alterations in Cutaneous Retinoid-Mediated Signaling in Mice

    Science.gov (United States)

    Gericke, Janine; Ittensohn, Jan; Mihály, Johanna; Dubrac, Sandrine; Rühl, Ralph

    2013-01-01

    Nuclear receptor-mediated signaling via RARs and PPARδ is involved in the regulation of skin homeostasis. Moreover, activation of both RAR and PPARδ was shown to alter skin inflammation. Endogenous all-trans retinoic acid (ATRA) can activate both receptors depending on specific transport proteins: Fabp5 initiates PPARδ signaling whereas Crabp2 promotes RAR signaling. Repetitive topical applications of ovalbumin (OVA) in combination with intraperitoneal injections of OVA or only intraperitoneal OVA applications were used to induce allergic dermatitis. In our mouse model, expression of IL-4, and Hbegf increased whereas expression of involucrin, Abca12 and Spink5 decreased in inflamed skin, demonstrating altered immune response and epidermal barrier homeostasis. Comprehensive gene expression analysis showed alterations of the cutaneous retinoid metabolism and retinoid-mediated signaling in allergic skin immune response. Notably, ATRA synthesis was increased as indicated by the elevated expression of retinaldehyde dehydrogenases and increased levels of ATRA. Consequently, the expression pattern of genes downstream to RAR was altered. Furthermore, the increased ratio of Fabp5 vs. Crabp2 may indicate an up-regulation of the PPARδ pathway in allergen-induced dermatitis in addition to the altered RAR signaling. Thus, our findings suggest that ATRA levels, RAR-mediated signaling and signaling involved in PPARδ pathways are mainly increased in allergen-induced dermatitis and may contribute to the development and/or maintenance of allergic skin diseases. PMID:23977003

  9. Agonist-mediated activation of Bombyx mori diapause hormone receptor signals to extracellular signal-regulated kinases 1 and 2 through Gq-PLC-PKC-dependent cascade.

    Science.gov (United States)

    Jiang, Xue; Yang, Jingwen; Shen, Zhangfei; Chen, Yajie; Shi, Liangen; Zhou, Naiming

    2016-08-01

    Diapause is a developmental strategy adopted by insects to survive in challenging environments such as the low temperatures of a winter. This unique process is regulated by diapause hormone (DH), which is a neuropeptide hormone that induces egg diapause in Bombyx mori and is involved in terminating pupal diapause in heliothis moths. An G protein-coupled receptor from the silkworm, B. mori, has been identified as a specific cell surface receptor for DH. However, the detailed information on the DH-DHR system and its mechanism(s) involved in the induction of embryonic diapause remains unknown. Here, we combined functional assays with various specific inhibitors to elucidate the DHR-mediated signaling pathways. Upon activation by DH, B. mori DHR is coupled to the Gq protein, leading to a significant increase of intracellular Ca(2+) and cAMP response element-driven luciferase activity in an UBO-QIC, a specific Gq inhibitor, sensitive manner. B. mori DHR elicited ERK1/2 phosphorylation in a dose- and time-dependent manner in response to DH. This effect was almost completely inhibited by co-incubation with UBO-QIC and was also significantly suppressed by PLC inhibitor U73122, PKC inhibitors Gö6983 and the Ca(2+) chelator EGTA. Moreover, DHR-induced activation of ERK1/2 was significantly attenuated by treatment with the Gβγ specific inhibitors gallein and M119K and the PI3K specific inhibitor Wortmannin, but not by the Src specific inhibitor PP2. Our data also demonstrates that the EGFR-transactivation pathway is not involved in the DHR-mediated ERK1/2 phosphorylation. Future efforts are needed to clarify the role of the ERK1/2 signaling pathway in the DH-mediated induction of B. mori embryonic diapause. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. WNT4 mediates estrogen receptor signaling and endocrine resistance in invasive lobular carcinoma cell lines.

    Science.gov (United States)

    Sikora, Matthew J; Jacobsen, Britta M; Levine, Kevin; Chen, Jian; Davidson, Nancy E; Lee, Adrian V; Alexander, Caroline M; Oesterreich, Steffi

    2016-09-20

    Invasive lobular carcinoma (ILC) of the breast typically presents with clinical biomarkers consistent with a favorable response to endocrine therapies, and over 90 % of ILC cases express the estrogen receptor (ER). However, a subset of ILC cases may be resistant to endocrine therapies, suggesting that ER biology is unique in ILC. Using ILC cell lines, we previously demonstrated that ER regulates a distinct gene expression program in ILC cells, and we hypothesized that these ER-driven pathways modulate the endocrine response in ILC. One potential novel pathway is via the Wnt ligand WNT4, a critical signaling molecule in mammary gland development regulated by the progesterone receptor. The ILC cell lines MDA-MB-134-VI, SUM44PE, and BCK4 were used to assess WNT4 gene expression and regulation, as well as the role of WNT4 in estrogen-regulated proliferation. To assess these mechanisms in the context of endocrine resistance, we developed novel ILC endocrine-resistant long-term estrogen-deprived (ILC-LTED) models. ILC and ILC-LTED cell lines were used to identify upstream regulators and downstream signaling effectors of WNT4 signaling. ILC cells co-opted WNT4 signaling by placing it under direct ER control. We observed that ER regulation of WNT4 correlated with use of an ER binding site at the WNT4 locus, specifically in ILC cells. Further, WNT4 was required for endocrine response in ILC cells, as WNT4 knockdown blocked estrogen-induced proliferation. ILC-LTED cells remained dependent on WNT4 for proliferation, by either maintaining ER function and WNT4 regulation or uncoupling WNT4 from ER and upregulating WNT4 expression. In the latter case, WNT4 expression was driven by activated nuclear factor kappa-B signaling in ILC-LTED cells. In ILC and ILC-LTED cells, WNT4 led to suppression of CDKN1A/p21, which is critical for ILC cell proliferation. CDKN1A knockdown partially reversed the effects of WNT4 knockdown. WNT4 drives a novel signaling pathway in ILC cells, with a

  11. Phenomenology of tremor-like signals observed over hydrocarbon reservoirs

    NARCIS (Netherlands)

    Dangel, S.; Schaepman, M.E.; Stoll, E.P.; Carniel, R.; Barzandji, O.; Rode, E.D.; Singer, J.M.

    2003-01-01

    We have observed narrow-band, low-frequency (1.5-4 Hz, amplitude 0.01-10 mum/s) tremor signals on the surface over hydrocarbon reservoirs (oil, gas and water multiphase fluid systems in porous media) at currently 15 sites worldwide. These 'hydrocarbon tremors' possess remarkably similar spectral and

  12. Optodynamic simulation of β-adrenergic receptor signalling.

    Science.gov (United States)

    Siuda, Edward R; McCall, Jordan G; Al-Hasani, Ream; Shin, Gunchul; Il Park, Sung; Schmidt, Martin J; Anderson, Sonya L; Planer, William J; Rogers, John A; Bruchas, Michael R

    2015-09-28

    Optogenetics has provided a revolutionary approach to dissecting biological phenomena. However, the generation and use of optically active GPCRs in these contexts is limited and it is unclear how well an opsin-chimera GPCR might mimic endogenous receptor activity. Here we show that a chimeric rhodopsin/β2 adrenergic receptor (opto-β2AR) is similar in dynamics to endogenous β2AR in terms of: cAMP generation, MAP kinase activation and receptor internalization. In addition, we develop and characterize a novel toolset of optically active, functionally selective GPCRs that can bias intracellular signalling cascades towards either G-protein or arrestin-mediated cAMP and MAP kinase pathways. Finally, we show how photoactivation of opto-β2AR in vivo modulates neuronal activity and induces anxiety-like behavioural states in both fiber-tethered and wireless, freely moving animals when expressed in brain regions known to contain β2ARs. These new GPCR approaches enhance the utility of optogenetics and allow for discrete spatiotemporal control of GPCR signalling in vitro and in vivo.

  13. The PDZ protein GIPC regulates trafficking of the LPA1 receptor from APPL signaling endosomes and attenuates the cell's response to LPA.

    Directory of Open Access Journals (Sweden)

    Tal Varsano

    Full Text Available Lysophosphatidic acid (LPA mediates diverse cellular responses through the activation of at least six LPA receptors--LPA(1-6, but the interacting proteins and signaling pathways that mediate the specificity of these receptors are largely unknown. We noticed that LPA(1 contains a PDZ binding motif (SVV identical to that present in two other proteins that interact with the PDZ protein GIPC. GIPC is involved in endocytic trafficking of several receptors including TrkA, VEGFR2, lutropin and dopamine D2 receptors. Here we show that GIPC binds directly to the PDZ binding motif of LPA(1 but not that of other LPA receptors. LPA(1 colocalizes and coimmunoprecipitates with GIPC and its binding partner APPL, an activator of Akt signaling found on APPL signaling endosomes. GIPC depletion by siRNA disturbed trafficking of LPA(1 to EEA1 early endosomes and promoted LPA(1 mediated Akt signaling, cell proliferation, and cell motility. We propose that GIPC binds LPA(1 and promotes its trafficking from APPL-containing signaling endosomes to EEA1 early endosomes and thus attenuates LPA-mediated Akt signaling from APPL endosomes.

  14. The mediator complex in genomic and non-genomic signaling in cancer.

    Science.gov (United States)

    Weber, Hannah; Garabedian, Michael J

    2018-05-01

    Mediator is a conserved, multi-subunit macromolecular machine divided structurally into head, middle, and tail modules, along with a transiently associating kinase module. Mediator functions as an integrator of transcriptional regulatory activity by interacting with DNA-bound transcription factors and with RNA polymerase II (Pol II) to both activate and repress gene expression. Mediator has been shown to affect multiple steps in transcription, including chromatin looping between enhancers and promoters, pre-initiation complex formation, transcriptional elongation, and mRNA splicing. Individual Mediator subunits participate in regulation of gene expression by the estrogen and androgen receptors and are altered in a number of endocrine cancers, including breast and prostate cancer. In addition to its role in genomic signaling, MED12 has been implicated in non-genomic signaling by interacting with and activating TGF-beta receptor 2 in the cytoplasm. Recent structural studies have revealed extensive inter-domain interactions and complex architecture of the Mediator-Pol II complex, suggesting that Mediator is capable of reorganizing its conformation and composition to fit cellular needs. We propose that alterations in Mediator subunit expression that occur in various cancers could impact the organization and function of Mediator, resulting in changes in gene expression that promote malignancy. A better understanding of the role of Mediator in cancer could reveal new approaches to the diagnosis and treatment of Mediator-dependent endocrine cancers, especially in settings of therapy resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Epidermal growth factor receptor signaling mediates aldosterone-induced profibrotic responses in kidney

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Lili; Yang, Min; Ding, Wei [Department of Nephrology, Shanghai Fifth People' s Hospital, Fudan University, Shanghai 200240 (China); Zhang, Minmin [Department of Nephrology, Shanghai Huashan Hospital, Fudan University, Shanghai 200240 (China); Niu, Jianying [Department of Nephrology, Shanghai Fifth People' s Hospital, Fudan University, Shanghai 200240 (China); Qiao, Zhongdong [School of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai 200240 (China); Gu, Yong, E-mail: yonggu@vip.163.com [Department of Nephrology, Shanghai Fifth People' s Hospital, Fudan University, Shanghai 200240 (China); Department of Nephrology, Shanghai Huashan Hospital, Fudan University, Shanghai 200240 (China)

    2016-08-01

    Aldosterone has been recognized as a risk factor for the development of chronic kidney disease (CKD). Studies have indicated that enhanced activation of epidermal growth factor receptor (EGFR) is associated with the development and progression of renal fibrosis. But if EGFR is involved in aldosterone-induced renal fibrosis is less investigated. In the present study, we examined the effect of erlotinib, an inhibitor of EGFR tyrosine kinase activity, on the progression of aldosterone-induced renal profibrotic responses in a murine model underwent uninephrectomy. Erlotinib-treated rats exhibited relieved structural lesion comparing with rats treated with aldosterone alone, as characterized by glomerular hypertrophy, mesangial cell proliferation and expansion. Also, erlotinib inhibited the expression of TGF-β, α-SMA and mesangial matrix proteins such as collagen Ⅳ and fibronectin. In cultured mesangial cells, inhibition of EGFR also abrogated aldosterone-induced expression of extracellular matrix proteins, cell proliferation and migration. We also demonstrated that aldosterone induced the phosphorylation of EGFR through generation of ROS. And the activation of EGFR resulted in the phosphorylation of ERK1/2, leading to the activation of profibrotic pathways. Taken together, we concluded that aldosterone-mediated tissue fibrosis relies on ROS induced EGFR/ERK activation, highlighting EGFR as a potential therapeutic target for modulating renal fibrosis. - Highlights: • EGFR was involved in aldosterone-induced renal profibrotic responses. • Aldosterone-induced EGFR activation was mediated by MR-dependent ROS generation. • EGFR activated the MAPK/ERK1/2 signaling to promote renal fibrosis.

  16. Phenobarbital indirectly activates the constitutive active androstane receptor (CAR) by inhibition of epidermal growth factor receptor signaling.

    Science.gov (United States)

    Mutoh, Shingo; Sobhany, Mack; Moore, Rick; Perera, Lalith; Pedersen, Lee; Sueyoshi, Tatsuya; Negishi, Masahiko

    2013-05-07

    Phenobarbital is a central nervous system depressant that also indirectly activates nuclear receptor constitutive active androstane receptor (CAR), which promotes drug and energy metabolism, as well as cell growth (and death), in the liver. We found that phenobarbital activated CAR by inhibiting epidermal growth factor receptor (EGFR) signaling. Phenobarbital bound to EGFR and potently inhibited the binding of EGF, which prevented the activation of EGFR. This abrogation of EGFR signaling induced the dephosphorylation of receptor for activated C kinase 1 (RACK1) at Tyr(52), which then promoted the dephosphorylation of CAR at Thr(38) by the catalytic core subunit of protein phosphatase 2A. The findings demonstrated that the phenobarbital-induced mechanism of CAR dephosphorylation and activation is mediated through its direct interaction with and inhibition of EGFR.

  17. Regulation of Innate Lymphoid Cells by Aryl Hydrocarbon Receptor

    Directory of Open Access Journals (Sweden)

    Shiyang Li

    2018-01-01

    Full Text Available With striking similarity to their adaptive T helper cell counterparts, innate lymphoid cells (ILCs represent an emerging family of cell types that express signature transcription factors, including T-bet+ Eomes+ natural killer cells, T-bet+ Eomes− group 1 ILCs, GATA3+ group 2 ILCs, RORγt+ group 3 ILCs, and newly identified Id3+ regulatory ILC. ILCs are abundantly present in barrier tissues of the host (e.g., the lung, gut, and skin at the interface of host–environment interactions. Active research has been conducted to elucidate molecular mechanisms underlying the development and function of ILCs. The aryl hydrocarbon receptor (Ahr is a ligand-dependent transcription factor, best known to mediate the effects of xenobiotic environmental toxins and endogenous microbial and dietary metabolites. Here, we review recent progresses regarding Ahr function in ILCs. We focus on the Ahr-mediated cross talk between ILCs and other immune/non-immune cells in host tissues especially in the gut. We discuss the molecular mechanisms of the action of Ahr expression and activity in regulation of ILCs in immunity and inflammation, and the interaction between Ahr and other pathways/transcription factors in ILC development and function with their implication in disease.

  18. The aryl hydrocarbon receptor and estrogen receptor alpha differentially modulate nuclear factor erythroid-2-related factor 2 transactivation in MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Raymond; Matthews, Jason, E-mail: jason.matthews@utoronto.ca

    2013-07-15

    Nuclear factor erythroid-2-related factor 2 (NRF2; NFE2L2) plays an important role in mediating cellular protection against reactive oxygen species. NRF2 signaling is positively modulated by the aryl hydrocarbon receptor (AHR) but inhibited by estrogen receptor alpha (ERα). In this study we investigated the crosstalk among NRF2, AHR and ERα in MCF-7 breast cancer cells treated with the NRF2 activator sulforaphane (SFN), a dual AHR and ERα activator, 3,3′-diindolylmethane (DIM), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or 17β-estradiol (E2). SFN-dependent increases in NADPH-dependent oxidoreductase 1 (NQO1) and heme oxygenase I (HMOX1) mRNA levels were significantly reduced after co-treatment with E2. E2-dependent repression of NQO1 and HMOX1 was associated with increased ERα but reduced p300 recruitment and reduced histone H3 acetylation at both genes. In contrast, DIM + SFN or TCDD + SFN induced NQO1 and HMOX1 mRNA expression to levels higher than SFN alone, which was prevented by RNAi-mediated knockdown of AHR. DIM + SFN but not TCDD + SFN also induced recruitment of ERα to NQO1 and HMOX1. However, the presence of AHR at NQO1 and HMOX1 restored p300 recruitment and histone H3 acetylation, thereby reversing the ERα-dependent repression of NRF2. Taken together, our study provides further evidence of functional interplay among NRF2, AHR and ERα signaling pathways through altered p300 recruitment to NRF2-regulated target genes. - Highlights: • We examined crosstalk among ERα, AHR, and NRF2 in MCF-7 breast cancer cells. • AHR enhanced the mRNA expression levels of two NRF2 target genes – HMOX1 and NQO1. • ERα repressed HMOX1 and NQO1 expression via decreased histone acetylation. • AHR prevented ERα-dependent repression of HMOX1 and NQO1.

  19. The aryl hydrocarbon receptor and estrogen receptor alpha differentially modulate nuclear factor erythroid-2-related factor 2 transactivation in MCF-7 breast cancer cells

    International Nuclear Information System (INIS)

    Lo, Raymond; Matthews, Jason

    2013-01-01

    Nuclear factor erythroid-2-related factor 2 (NRF2; NFE2L2) plays an important role in mediating cellular protection against reactive oxygen species. NRF2 signaling is positively modulated by the aryl hydrocarbon receptor (AHR) but inhibited by estrogen receptor alpha (ERα). In this study we investigated the crosstalk among NRF2, AHR and ERα in MCF-7 breast cancer cells treated with the NRF2 activator sulforaphane (SFN), a dual AHR and ERα activator, 3,3′-diindolylmethane (DIM), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or 17β-estradiol (E2). SFN-dependent increases in NADPH-dependent oxidoreductase 1 (NQO1) and heme oxygenase I (HMOX1) mRNA levels were significantly reduced after co-treatment with E2. E2-dependent repression of NQO1 and HMOX1 was associated with increased ERα but reduced p300 recruitment and reduced histone H3 acetylation at both genes. In contrast, DIM + SFN or TCDD + SFN induced NQO1 and HMOX1 mRNA expression to levels higher than SFN alone, which was prevented by RNAi-mediated knockdown of AHR. DIM + SFN but not TCDD + SFN also induced recruitment of ERα to NQO1 and HMOX1. However, the presence of AHR at NQO1 and HMOX1 restored p300 recruitment and histone H3 acetylation, thereby reversing the ERα-dependent repression of NRF2. Taken together, our study provides further evidence of functional interplay among NRF2, AHR and ERα signaling pathways through altered p300 recruitment to NRF2-regulated target genes. - Highlights: • We examined crosstalk among ERα, AHR, and NRF2 in MCF-7 breast cancer cells. • AHR enhanced the mRNA expression levels of two NRF2 target genes – HMOX1 and NQO1. • ERα repressed HMOX1 and NQO1 expression via decreased histone acetylation. • AHR prevented ERα-dependent repression of HMOX1 and NQO1.

  20. Milrinone attenuates thromboxane receptor-mediated hyperresponsiveness in hypoxic pulmonary arterial myocytes.

    Science.gov (United States)

    Santhosh, K T; Elkhateeb, O; Nolette, N; Outbih, O; Halayko, A J; Dakshinamurti, S

    2011-07-01

    Neonatal pulmonary hypertension (PPHN) is characterized by pulmonary vasoconstriction, due in part to dysregulation of the thromboxane prostanoid (TP) receptor. Hypoxia induces TP receptor-mediated hyperresponsiveness, whereas serine phosphorylation mediates desensitization of TP receptors. We hypothesized that prostacyclin (IP) receptor activity induces TP receptor phosphorylation and decreases ligand affinity; that TP receptor sensitization in hypoxic myocytes is due to IP receptor inactivation; and that this would be reversible by the cAMP-specific phosphodiesterase inhibitor milrinone. We examined functional regulation of TP receptors by serine phosphorylation and effects of IP receptor stimulation and protein kinase A (PKA) activity on TP receptor sensitivity in myocytes from neonatal porcine resistance pulmonary arteries after 72 h hypoxia in vitro. Ca(2+) response curves to U46619 (TP receptor agonist) were determined in hypoxic and normoxic myocytes incubated with or without iloprost (IP receptor agonist), forskolin (adenylyl cyclase activator), H8 (PKA inhibitor) or milrinone. TP and IP receptor saturation binding kinetics were measured in presence of iloprost or 8-bromo-cAMP. Ligand affinity for TP receptors was normalized in vitro by IP receptor signalling intermediates. However, IP receptor affinity was compromised in hypoxic myocytes, decreasing cAMP production. Milrinone normalized TP receptor sensitivity in hypoxic myocytes by restoring PKA-mediated regulatory TP receptor phosphorylation. TP receptor sensitivity and EC(50) for TP receptor agonists was regulated by PKA, as TP receptor serine phosphorylation by PKA down-regulated Ca(2+) mobilization. Hypoxia decreased IP receptor activity and cAMP generation, inducing TP receptor hyperresponsiveness, which was reversed by milrinone. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  1. Differential actions of orexin receptors in brainstem cholinergic and monoaminergic neurons revealed by receptor knockouts: implications for orexinergic signaling in arousal and narcolepsy

    Directory of Open Access Journals (Sweden)

    Kristi A Kohlmeier

    2013-12-01

    Full Text Available Orexin neuropeptides influence multiple homeostatic functions and play an essential role in the expression of normal sleep-wake behavior. While their two known receptors (OX1 and OX2 are targets for novel pharmacotherapeutics, the actions mediated by each receptor remain largely unexplored. Using brain slices from mice constitutively lacking either receptor, we used whole-cell and Ca2+ imaging methods to delineate the cellular actions of each receptor within cholinergic (laterodorsal tegmental nucleus; LDT and monoaminergic (dorsal raphe; DR and locus coeruleus; LC brainstem nuclei – where orexins promote arousal and suppress REM sleep. In slices from OX2-/- mice, orexin-A (300 nM elicited wild-type responses in LDT, DR and LC neurons consisting of a depolarizing current and augmented voltage-dependent Ca2+ transients. In slices from OX1-/- mice, the depolarizing current was absent in LDT and LC neurons and was attenuated in DR neurons, although Ca2+-transients were still augmented. Since orexin-A produced neither of these actions in slices lacking both receptors, our findings suggest that orexin-mediated depolarization is mediated by both receptors in DR, but is exclusively mediated by OX1 in LDT and LC neurons, even though OX2 is present and OX2 mRNA appears elevated in brainstems from OX1-/- mice. Considering published behavioral data, these findings support a model in which orexin-mediated excitation of mesopontine cholinergic and monoaminergic neurons contributes little to stabilizing spontaneous waking and sleep bouts, but functions in context-dependent arousal and helps restrict muscle atonia to REM sleep. The augmented Ca2± transients mediated by both receptors appeared mediated by influx via L-type Ca2+ channels, which is often linked to transcriptional signaling. This could provide an adaptive signal to compensate for receptor loss or prolonged antagonism and may contribute to the reduced severity of narcolepsy in single receptor

  2. Mitogen-activated protein kinase signaling pathways promote low-density lipoprotein receptor-related protein 1-mediated internalization of beta-amyloid protein in primary cortical neurons.

    Science.gov (United States)

    Yang, Wei-Na; Ma, Kai-Ge; Qian, Yi-Hua; Zhang, Jian-Shui; Feng, Gai-Feng; Shi, Li-Li; Zhang, Zhi-Chao; Liu, Zhao-Hui

    2015-07-01

    Mounting evidence suggests that the pathological hallmarks of Alzheimer's disease (AD) are caused by the intraneuronal accumulation of beta-amyloid protein (Aβ). Reuptake of extracellular Aβ is believed to contribute significantly to the intraneuronal Aβ pool in the early stages of AD. Published reports have claimed that the low-density lipoprotein receptor-related protein 1 (LRP1) mediates Aβ1-42 uptake and lysosomal trafficking in GT1-7 neuronal cells and mouse embryonic fibroblast non-neuronal cells. However, there is no direct evidence supporting the role of LRP1 in Aβ internalization in primary neurons. Our recent study indicated that p38 MAPK and ERK1/2 signaling pathways are involved in regulating α7 nicotinic acetylcholine receptor (α7nAChR)-mediated Aβ1-42 uptake in SH-SY5Y cells. This study was designed to explore the regulation of MAPK signaling pathways on LRP1-mediated Aβ internalization in neurons. We found that extracellular Aβ1-42 oligomers could be internalized into endosomes/lysosomes and mitochondria in cortical neurons. Aβ1-42 and LRP1 were also found co-localized in neurons during Aβ1-42 internalization, and they could form Aβ1-42-LRP1 complex. Knockdown of LRP1 expression significantly decreased neuronal Aβ1-42 internalization. Finally, we identified that p38 MAPK and ERK1/2 signaling pathways regulated the internalization of Aβ1-42 via LRP1. Therefore, these results demonstrated that LRP1, p38 MAPK and ERK1/2 mediated the internalization of Aβ1-42 in neurons and provided evidence that blockade of LRP1 or inhibitions of MAPK signaling pathways might be a potential approach to lowering brain Aβ levels and served a potential therapeutic target for AD. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Disease-associated extracellular loop mutations in the adhesion G protein-coupled receptor G1 (ADGRG1; GPR56) differentially regulate downstream signaling.

    Science.gov (United States)

    Kishore, Ayush; Hall, Randy A

    2017-06-09

    Mutations to the adhesion G protein-coupled receptor ADGRG1 (G1; also known as GPR56) underlie the neurological disorder bilateral frontoparietal polymicrogyria. Disease-associated mutations in G1 studied to date are believed to induce complete loss of receptor function through disruption of either receptor trafficking or signaling activity. Given that N-terminal truncation of G1 and other adhesion G protein-coupled receptors has been shown to significantly increase the receptors' constitutive signaling, we examined two different bilateral frontoparietal polymicrogyria-inducing extracellular loop mutations (R565W and L640R) in the context of both full-length and N-terminally truncated (ΔNT) G1. Interestingly, we found that these mutations reduced surface expression of full-length G1 but not G1-ΔNT in HEK-293 cells. Moreover, the mutations ablated receptor-mediated activation of serum response factor luciferase, a classic measure of Gα 12/13 -mediated signaling, but had no effect on G1-mediated signaling to nuclear factor of activated T cells (NFAT) luciferase. Given these differential signaling results, we sought to further elucidate the pathway by which G1 can activate NFAT luciferase. We found no evidence that ΔNT activation of NFAT is dependent on Gα q/11 -mediated or β-arrestin-mediated signaling but rather involves liberation of Gβγ subunits and activation of calcium channels. These findings reveal that disease-associated mutations to the extracellular loops of G1 differentially alter receptor trafficking, depending on the presence of the N terminus, and differentially alter signaling to distinct downstream pathways. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. The aryl hydrocarbon receptor and glucocorticoid receptor interact to activate human metallothionein 2A

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Shoko, E-mail: satosho@rs.tus.ac.jp [Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan); Shirakawa, Hitoshi, E-mail: shirakah@m.tohoku.ac.jp [Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan); Tomita, Shuhei, E-mail: tomita@med.tottori-u.ac.jp [Division of Molecular Pharmacology, Department of Pathophysiological and Therapeutic Science, Yonago 683-8503 (Japan); Tohkin, Masahiro, E-mail: tohkin@phar.nagoya-cu.ac.jp [Department of Medical Safety Science, Graduate School of Pharmaceutical Science, Nagoya City University, Nagoya 267-8603 (Japan); Gonzalez, Frank J., E-mail: gonzalef@mail.nih.gov [Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Komai, Michio, E-mail: mkomai@m.tohoku.ac.jp [Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan)

    2013-11-15

    Although the aryl hydrocarbon receptor (AHR) and glucocorticoid receptor (GR) play essential roles in mammalian development, stress responses, and other physiological events, crosstalk between these receptors has been the subject of much debate. Metallothioneins are classic glucocorticoid-inducible genes that were reported to increase upon treatment with AHR agonists in rodent tissues and cultured human cells. In this study, the mechanism of human metallothionein 2A (MT2A) gene transcription activation by AHR was investigated. Cotreatment with 3-methylcholanthrene and dexamethasone, agonists of AHR and GR respectively, synergistically increased MT2A mRNA levels in HepG2 cells. MT2A induction was suppressed by RNA interference against AHR or GR. Coimmunoprecipitation experiments revealed a physical interaction between AHR and GR proteins. Moreover, chromatin immunoprecipitation assays indicated that AHR was recruited to the glucocorticoid response element in the MT2A promoter. Thus, we provide a novel mechanism whereby AHR modulates expression of human MT2A via the glucocorticoid response element and protein–protein interactions with GR. - Highlights: • Aryl hydrocarbon receptor forms a complex with glucocorticoid receptor in cells. • Human metallothionein gene is regulated by the AHR and GR interaction. • AHR–GR complex binds to glucocorticoid response element in metallothionein gene. • We demonstrated a novel transcriptional mechanism via AHR and GR interaction.

  5. The aryl hydrocarbon receptor and glucocorticoid receptor interact to activate human metallothionein 2A

    International Nuclear Information System (INIS)

    Sato, Shoko; Shirakawa, Hitoshi; Tomita, Shuhei; Tohkin, Masahiro; Gonzalez, Frank J.; Komai, Michio

    2013-01-01

    Although the aryl hydrocarbon receptor (AHR) and glucocorticoid receptor (GR) play essential roles in mammalian development, stress responses, and other physiological events, crosstalk between these receptors has been the subject of much debate. Metallothioneins are classic glucocorticoid-inducible genes that were reported to increase upon treatment with AHR agonists in rodent tissues and cultured human cells. In this study, the mechanism of human metallothionein 2A (MT2A) gene transcription activation by AHR was investigated. Cotreatment with 3-methylcholanthrene and dexamethasone, agonists of AHR and GR respectively, synergistically increased MT2A mRNA levels in HepG2 cells. MT2A induction was suppressed by RNA interference against AHR or GR. Coimmunoprecipitation experiments revealed a physical interaction between AHR and GR proteins. Moreover, chromatin immunoprecipitation assays indicated that AHR was recruited to the glucocorticoid response element in the MT2A promoter. Thus, we provide a novel mechanism whereby AHR modulates expression of human MT2A via the glucocorticoid response element and protein–protein interactions with GR. - Highlights: • Aryl hydrocarbon receptor forms a complex with glucocorticoid receptor in cells. • Human metallothionein gene is regulated by the AHR and GR interaction. • AHR–GR complex binds to glucocorticoid response element in metallothionein gene. • We demonstrated a novel transcriptional mechanism via AHR and GR interaction

  6. Pharmacological significance of the interplay between angiotensin receptors: MAS receptors as putative final mediators of the effects elicited by angiotensin AT1 receptors antagonists.

    Science.gov (United States)

    Pernomian, Larissa; Pernomian, Laena; Gomes, Mayara S; da Silva, Carlos H T P

    2015-12-15

    The interplay between angiotensin AT1 receptors and MAS receptors relies on several inward regulatory mechanisms from renin-angiotensin system (RAS) including the functional crosstalk between angiotensin II and angiotensin-(1-7), the competitive AT1 antagonism exhibited by angiotensin-(1-7), the antagonist feature assigned to AT1/MAS heterodimerization on AT1 signaling and the AT1-mediated downregulation of angiotensin-converting enzyme 2 (ACE2). Recently, such interplay has acquired an important significance to RAS Pharmacology since a few studies have supporting strong evidences that MAS receptors mediate the effects elicited by AT1 antagonists. The present Perspective provides an overview of the regulatory mechanisms involving AT1 and MAS receptors, their significance to RAS Pharmacology and the future directions on the interplay between angiotensin receptors. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Negative regulation of RIG-I-mediated antiviral signaling by TRK-fused gene (TFG) protein

    International Nuclear Information System (INIS)

    Lee, Na-Rae; Shin, Han-Bo; Kim, Hye-In; Choi, Myung-Soo; Inn, Kyung-Soo

    2013-01-01

    Highlights: •TRK-fused gene product (TFG) interacts with TRIM25 upon viral infection. •TFG negatively regulates RIG-I mediated antiviral signaling. •TFG depletion leads to enhanced viral replication. •TFG act downstream of MAVS. -- Abstract: RIG-I (retinoic acid inducible gene I)-mediated antiviral signaling serves as the first line of defense against viral infection. Upon detection of viral RNA, RIG-I undergoes TRIM25 (tripartite motif protein 25)-mediated K63-linked ubiquitination, leading to type I interferon (IFN) production. In this study, we demonstrate that TRK-fused gene (TFG) protein, previously identified as a TRIM25-interacting protein, binds TRIM25 upon virus infection and negatively regulates RIG-I-mediated type-I IFN signaling. RIG-I-mediated IFN production and nuclear factor (NF)-κB signaling pathways were upregulated by the suppression of TFG expression. Furthermore, vesicular stomatitis virus (VSV) replication was significantly inhibited by small inhibitory hairpin RNA (shRNA)-mediated knockdown of TFG, supporting the suppressive role of TFG in RIG-I-mediated antiviral signaling. Interestingly, suppression of TFG expression increased not only RIG-I-mediated signaling but also MAVS (mitochondrial antiviral signaling protein)-induced signaling, suggesting that TFG plays a pivotal role in negative regulation of RNA-sensing, RIG-I-like receptor (RLR) family signaling pathways

  8. Bioassay directed identification of natural aryl hydrocarbon-receptor agonists in marmalade

    NARCIS (Netherlands)

    Ede, van K.I.; Li, A.; Antunes Fernandes, E.C.; Mulder, P.P.J.; Peijnenburg, A.A.C.M.; Hoogenboom, L.A.P.

    2008-01-01

    Citrus fruit and citrus fruit products, like grapefruit, lemon and marmalade were shown to contain aryl hydrocarbon receptor (AhR) agonists, as detected with the DR CALUX® bioassay. This is of interest regarding the role of the Ah-receptor pathway in the adverse effects of dioxins, PCBs and other

  9. Differences in signal activation by LH and hCG are mediated by the LH/CG receptor`s extracellular hinge region

    Directory of Open Access Journals (Sweden)

    Paul eGrzesik

    2015-09-01

    Full Text Available The human lutropin/choriogonadotropin receptor (LHCGR can be activated by binding two slightly different gonadotropic glycoprotein hormones, choriogonadotropin (CG - secreted by the placenta, and lutropin (LH - produced by the pituitary. They induce different signaling profiles at the LHCGR. This cannot be explained by binding to the receptor's leucine-rich repeat domain (LRRD, as this binding is similar for the two hormones. We therefore speculate that there are previously unknown differences in the hormone/receptor interaction at the extracellular hinge region, which might help to understand functional differences between the two hormones. We have therefore performed a detailed study of the binding and action of LH and CG at the LHCGR hinge region. We focused on a primate-specific additional exon in the hinge region, which is located between LRRD and the serpentine domain. The segment of the hinge region encoded by exon10 was previously reported to be only relevant to hLH signaling, as the exon10-deletion receptor exhibits decreased hLH signaling, but unchanged hCG signaling. We designed an advanced homology model of the hormone/LHCGR complex, followed by experimental characterization of relevant fragments in the hinge region. In addition, we examined predictions of a helical exon10-encoded conformation by block-wise polyalanine (helix supporting mutations. These helix preserving modifications showed no effect on hormone induced signaling. However, introduction of a structure-disturbing double-proline mutant LHCGR-Q303P/E305P within the exon10-helix has, in contrast to exon10 deletion, no impact on hLH, but only on hCG signaling. This opposite effect on signaling by hLH and hCG can be explained by distinct sites of hormone interaction in the hinge region s. In conclusion, our analysis provides details of the differences between hLH- and hCG-induced signaling that are mainly determined in the L2-beta loop of the hormones and in the hinge region

  10. Delineation of the GPRC6A Receptor Signaling Pathways Using a Mammalian Cell Line Stably Expressing the Receptor

    DEFF Research Database (Denmark)

    Jacobsen, Stine Engesgaard; Nørskov-Lauritsen, Lenea; Thomsen, Alex Rojas Bie

    2013-01-01

    receptor has been suggested to couple to multiple G protein classes albeit via indirect methods. Thus, the exact ligand preferences and signaling pathways are yet to be elucidated. In the present study, we generated a Chinese hamster ovary (CHO) cell line that stably expresses mouse GPRC6A. In an effort...... and divalent cations, and for the first time, we conclusively show that these responses are mediated through the Gq pathway. We were not able to confirm previously published data demonstrating Gi- and Gs-mediated signaling; neither could we detect agonistic activity of testosterone and osteocalcin. Generation...... of the stable CHO cell line with robust receptor responsiveness and optimization of the highly sensitive homogeneous time resolved fluorescence technology allow fast assessment of Gq activation without previous manipulations like cotransfection of mutated G proteins. This cell-based assay system for GPRC6A...

  11. Signal transduction by the platelet-derived growth factor receptor

    International Nuclear Information System (INIS)

    Williams, L.T.; Escobedo, J.A.; Keating, M.T.; Coughlin, S.R.

    1988-01-01

    The mitogenic effects of platelet-derived growth factor (PDGF) are mediated by the PDGF receptor. The mouse PDGF receptor was recently purified on the basis of its ability to become tyrosine phosphorylated in response to the A-B human platelet form of PDGF, and the receptor amino acid sequence was determined from a full-length cDNA clone. Both the human and mouse receptor cDNA sequences have been expressed in Chinese hamster ovary fibroblast (CHO) cells that normally lack PDGF receptors. This paper summarizes recent results using this system to study signal transduction by the PDGF receptor. Some of the findings show that the KI domain of the PDGF receptor plays an important role in the stimulation of DNA synthesis by PDGF. Surprisingly, the kinase insert region is not essential for PDGF stimulation of PtdIns turnover, pH change, increase in cellular calcium, and receptor autophosphorylation. In addition, PDGF stimulates a conformational change in the receptor

  12. Genetic variability of aryl hydrocarbon receptor (AhR)-mediated regulation of the human UDP glucuronosyltransferase (UGT) 1A4 gene

    Energy Technology Data Exchange (ETDEWEB)

    Erichsen, Thomas J; Ehmer, Ursula; Kalthoff, Sandra; Lankisch, Tim O; Mueller, Tordis M [Department of Gastroenterology, Hepatology and Endocrinology, Hannover, Medical School, Hannover (Germany); Munzel, Peter A [Department of Toxicology, Institute of Pharmacology and Toxicology, University of Tubingen, Tubingen (Germany); Manns, Michael P [Department of Gastroenterology, Hepatology and Endocrinology, Hannover, Medical School, Hannover (Germany); Strassburg, Christian P. [Department of Gastroenterology, Hepatology and Endocrinology, Hannover, Medical School, Hannover (Germany)], E-mail: strassburg.christian@mh-hannover.de

    2008-07-15

    UDP glucuronosyltransferases (UGTs) play an important role for drug detoxification and toxicity. UGT function is genetically modulated by single nucleotide polymorphisms (SNPs) which lead to the expression of functionally altered protein, or altered expression levels. UGT1A4 activity includes anticonvulsants, antidepressants and environmental mutagens. In this study the induction of the human UGT1A4 gene and a potential influence of genetic variation in its promoter region were analyzed. SNPs at bp - 219 and - 163 occurred in 9% among 109 blood donors reducing UGT1A4 transcription by 40%. UGT1A4 transcription was dioxin inducible. Reporter gene experiments identified 2 xenobiotic response elements (XRE), which were functionally confirmed by mutagenesis analyses, and binding was demonstrated by electromobility shift assays. Constitutive human UGT1A4 gene expression and induction was aryl hydrocarbon receptor (AhR)-dependent, and reduced in the presence of SNPs at bp - 219 and - 163. AhR-mediated regulation of the human UGT1A4 gene by two XRE and a modulation by naturally occurring genetic variability by SNPs is demonstrated, which indicates gene-environment interaction with potential relevance for drug metabolism.

  13. Genetic variability of aryl hydrocarbon receptor (AhR)-mediated regulation of the human UDP glucuronosyltransferase (UGT) 1A4 gene

    International Nuclear Information System (INIS)

    Erichsen, Thomas J.; Ehmer, Ursula; Kalthoff, Sandra; Lankisch, Tim O.; Mueller, Tordis M.; Munzel, Peter A.; Manns, Michael P.; Strassburg, Christian P.

    2008-01-01

    UDP glucuronosyltransferases (UGTs) play an important role for drug detoxification and toxicity. UGT function is genetically modulated by single nucleotide polymorphisms (SNPs) which lead to the expression of functionally altered protein, or altered expression levels. UGT1A4 activity includes anticonvulsants, antidepressants and environmental mutagens. In this study the induction of the human UGT1A4 gene and a potential influence of genetic variation in its promoter region were analyzed. SNPs at bp - 219 and - 163 occurred in 9% among 109 blood donors reducing UGT1A4 transcription by 40%. UGT1A4 transcription was dioxin inducible. Reporter gene experiments identified 2 xenobiotic response elements (XRE), which were functionally confirmed by mutagenesis analyses, and binding was demonstrated by electromobility shift assays. Constitutive human UGT1A4 gene expression and induction was aryl hydrocarbon receptor (AhR)-dependent, and reduced in the presence of SNPs at bp - 219 and - 163. AhR-mediated regulation of the human UGT1A4 gene by two XRE and a modulation by naturally occurring genetic variability by SNPs is demonstrated, which indicates gene-environment interaction with potential relevance for drug metabolism

  14. Elevated insulin-like growth factor 1 receptor signaling induces antiestrogen resistance through the MAPK/ERK and PI3K/Akt signaling routes

    NARCIS (Netherlands)

    Zhang, Y.; Moerkens, M.; Ramaiahgari, S.; Bont, de H.J.G.M.; Price, L.; Meerman, J.H.N.; Water, van de B.

    2011-01-01

    INTRODUCTION: Insulin-like growth factor 1 (IGF-1) receptor (IGF-1R) is phosphorylated in all breast cancer subtypes. Past findings have shown that IGF-1R mediates antiestrogen resistance through cross-talk with estrogen receptor (ER) signaling and via its action upstream of the epidermal growth

  15. The Janus face of death receptor signalling during tumour immunoediting.

    Directory of Open Access Journals (Sweden)

    Eimear O' Reilly

    2016-10-01

    Full Text Available Cancer immune-surveillance is essential for the inhibition of carcinogenesis. Malignantly transformed cells can be recognised by both the innate and adaptive immune systems through different mechanisms. Immune effector cells induce extrinsic cell death in the identified tumour cells by expressing death ligand cytokines of the tumour necrosis factor ligand family. However, some tumour cells can escape immune elimination and progress. Acquisition of resistance to the death-ligand induced apoptotic pathway can be obtained through cleavage of effector-cell expressed death-ligands into a poorly active form, mutations or silencing of the death receptors or overexpression of decoy receptors and pro-survival proteins. Although the immune system is highly effective in the elimination of malignantly transformed cells, abnormal/ dysfunctional death-ligand signalling curbs its cytotoxicity. Moreover, death receptors can also transmit pro-survival and pro-migratory signals. Consequently, dysfunctional death receptor-mediated apoptosis/necroptosis signalling does not only give a passive resistance against cell death, but actively drives tumour cell motility, invasion and contributes to consequent metastasis. This dual contribution of the death ligand-death receptor signalling in both the early, elimination phase and then in the late, escape phase of the tumour immunoediting process is discussed in this review. Death receptor agonists still hold potential for cancer therapy since they can execute the tumour-eliminating immune-effector function even in the absence of activation of the immune system against the tumour. The opportunities and challenges of developing death receptor agonists into effective cancer therapeutics are also discussed.

  16. Role of the N-terminal activation domain of coactivator CoCoA in mediating transcriptional activation by β-catenin*

    OpenAIRE

    Yang, Catherine K.; Kim, Jeong Hoon; Stallcup, Michael R.

    2006-01-01

    The coiled-coil coactivator (CoCoA) is involved in transcriptional activation of target genes by nuclear receptors and the xenobiotic aryl hydrocarbon receptor, as well as target genes of the Wnt signaling pathway, which is mediated by the lymphocyte enhancer factor (LEF)/T cell factor transcription factors and the coactivator β-catenin. The recruitment of CoCoA by nuclear receptors is accomplished by the interaction of the central coiled-coiled domain of CoCoA with p160 coactivators; the C-t...

  17. Expansion of Sphingosine Kinase and Sphingosine-1-Phosphate Receptor Function in Normal and Cancer Cells: From Membrane Restructuring to Mediation of Estrogen Signaling and Stem Cell Programming

    Science.gov (United States)

    2018-01-01

    Sphingolipids, sphingolipid metabolizing enzymes, and their receptors network are being recognized as part of the signaling mechanisms, which govern breast cancer cell growth, migration, and survival during chemotherapy treatment. Approximately 70% of breast cancers are estrogen receptor (ER) positive and, thus, rely on estrogen signaling. Estrogen activates an intracellular network composed of many cytoplasmic and nuclear mediators. Some estrogen effects can be mediated by sphingolipids. Estrogen activates sphingosine kinase 1 (SphK1) and amplifies the intracellular concentration of sphingosine-1-phosphate (S1P) in breast cancer cells during stimulation of proliferation and survival. Specifically, Estrogen activates S1P receptors (S1PR) and induces growth factor receptor transactivation. SphK, S1P, and S1PR expression are causally associated with endocrine resistance and progression to advanced tumor stages in ER-positive breast cancers in vivo. Recently, the network of SphK/S1PR was shown to promote the development of ER-negative cancers and breast cancer stem cells, as well as stimulating angiogenesis. Novel findings confirm and broaden our knowledge about the cross-talk between sphingolipids and estrogen network in normal and malignant cells. Current S1PRs therapeutic inhibition was indicated as a promising chemotherapy approach in non-responsive and advanced malignancies. Considering that sphingolipid signaling has a prominent role in terminally differentiated cells, the impact should be considered when designing specific SphK/S1PR inhibitors. This study analyzes the dynamic of the transformation of sphingolipid axis during a transition from normal to pathological condition on the level of the whole organism. The sphingolipid-based mediation and facilitation of global effects of estrogen were critically accented as a bridging mechanism that should be explored in cancer prevention. PMID:29385066

  18. Expansion of Sphingosine Kinase and Sphingosine-1-Phosphate Receptor Function in Normal and Cancer Cells: From Membrane Restructuring to Mediation of Estrogen Signaling and Stem Cell Programming

    Directory of Open Access Journals (Sweden)

    Olga A. Sukocheva

    2018-01-01

    Full Text Available Sphingolipids, sphingolipid metabolizing enzymes, and their receptors network are being recognized as part of the signaling mechanisms, which govern breast cancer cell growth, migration, and survival during chemotherapy treatment. Approximately 70% of breast cancers are estrogen receptor (ER positive and, thus, rely on estrogen signaling. Estrogen activates an intracellular network composed of many cytoplasmic and nuclear mediators. Some estrogen effects can be mediated by sphingolipids. Estrogen activates sphingosine kinase 1 (SphK1 and amplifies the intracellular concentration of sphingosine-1-phosphate (S1P in breast cancer cells during stimulation of proliferation and survival. Specifically, Estrogen activates S1P receptors (S1PR and induces growth factor receptor transactivation. SphK, S1P, and S1PR expression are causally associated with endocrine resistance and progression to advanced tumor stages in ER-positive breast cancers in vivo. Recently, the network of SphK/S1PR was shown to promote the development of ER-negative cancers and breast cancer stem cells, as well as stimulating angiogenesis. Novel findings confirm and broaden our knowledge about the cross-talk between sphingolipids and estrogen network in normal and malignant cells. Current S1PRs therapeutic inhibition was indicated as a promising chemotherapy approach in non-responsive and advanced malignancies. Considering that sphingolipid signaling has a prominent role in terminally differentiated cells, the impact should be considered when designing specific SphK/S1PR inhibitors. This study analyzes the dynamic of the transformation of sphingolipid axis during a transition from normal to pathological condition on the level of the whole organism. The sphingolipid-based mediation and facilitation of global effects of estrogen were critically accented as a bridging mechanism that should be explored in cancer prevention.

  19. Dopamine Receptor D3 Signaling on CD4+ T Cells Favors Th1- and Th17-Mediated Immunity.

    Science.gov (United States)

    Contreras, Francisco; Prado, Carolina; González, Hugo; Franz, Dafne; Osorio-Barrios, Francisco; Osorio, Fabiola; Ugalde, Valentina; Lopez, Ernesto; Elgueta, Daniela; Figueroa, Alicia; Lladser, Alvaro; Pacheco, Rodrigo

    2016-05-15

    Dopamine receptor D3 (DRD3) expressed on CD4(+) T cells is required to promote neuroinflammation in a murine model of Parkinson's disease. However, how DRD3 signaling affects T cell-mediated immunity remains unknown. In this study, we report that TCR stimulation on mouse CD4(+) T cells induces DRD3 expression, regardless of the lineage specification. Importantly, functional analyses performed in vivo using adoptive transfer of OVA-specific OT-II cells into wild-type recipients show that DRD3 deficiency in CD4(+) T cells results in attenuated differentiation of naive CD4(+) T cells toward the Th1 phenotype, exacerbated generation of Th2 cells, and unaltered Th17 differentiation. The reciprocal regulatory effect of DRD3 signaling in CD4(+) T cells favoring Th1 generation and impairing the acquisition of Th2 phenotype was also reproduced using in vitro approaches. Mechanistic analysis indicates that DRD3 signaling evokes suppressor of cytokine signaling 5 expression, a negative regulator of Th2 development, which indirectly favors acquisition of Th1 phenotype. Accordingly, DRD3 deficiency results in exacerbated eosinophil infiltration into the airways of mice undergoing house dust mite-induced allergic response. Interestingly, our results show that, upon chronic inflammatory colitis induced by transfer of naive CD4(+) T cells into lymphopenic recipients, DRD3 deficiency not only affects Th1 response, but also the frequency of Th17 cells, suggesting that DRD3 signaling also contributes to Th17 expansion under chronic inflammatory conditions. In conclusion, our findings indicate that DRD3-mediated signaling in CD4(+) T cells plays a crucial role in the balance of effector lineages, favoring the inflammatory potential of CD4(+) T cells. Copyright © 2016 by The American Association of Immunologists, Inc.

  20. Ligand Receptor-Mediated Regulation of Growth in Plants.

    Science.gov (United States)

    Haruta, Miyoshi; Sussman, Michael R

    2017-01-01

    Growth and development of multicellular organisms are coordinately regulated by various signaling pathways involving the communication of inter- and intracellular components. To form the appropriate body patterns, cellular growth and development are modulated by either stimulating or inhibiting these pathways. Hormones and second messengers help to mediate the initiation and/or interaction of the various signaling pathways in all complex multicellular eukaryotes. In plants, hormones include small organic molecules, as well as larger peptides and small proteins, which, as in animals, act as ligands and interact with receptor proteins to trigger rapid biochemical changes and induce the intracellular transcriptional and long-term physiological responses. During the past two decades, the availability of genetic and genomic resources in the model plant species, Arabidopsis thaliana, has greatly helped in the discovery of plant hormone receptors and the components of signal transduction pathways and mechanisms used by these immobile but highly complex organisms. Recently, it has been shown that two of the most important plant hormones, auxin and abscisic acid (ABA), act through signaling pathways that have not yet been recognized in animals. For example, auxins stimulate cell elongation by bringing negatively acting transcriptional repressor proteins to the proteasome to be degraded, thus unleashing the gene expression program required for increasing cell size. The "dormancy" inducing hormone, ABA, binds to soluble receptor proteins and inhibits a specific class of protein phosphatases (PP2C), which activates phosphorylation signaling leading to transcriptional changes needed for the desiccation of the seeds prior to entering dormancy. While these two hormone receptors have no known animal counterparts, there are also many similarities between animal and plant signaling pathways. For example, in plants, the largest single gene family in the genome is the protein kinase

  1. Valerian inhibits rat hepatocarcinogenesis by activating GABA(A receptor-mediated signaling.

    Directory of Open Access Journals (Sweden)

    Anna Kakehashi

    Full Text Available Valerian is widely used as a traditional medicine to improve the quality of sleep due to interaction of several active components with the γ-aminobutyric acid (GABA A receptor (GABA(AR system. Recently, activation of GABA signaling in stem cells has been reported to suppress cell cycle progression in vivo. Furthermore, possible inhibitory effects of GABA(AR agonists on hepatocarcinogenesis have been reported. The present study was performed to investigate modulating effects of Valerian on hepatocarcinogenesis using a medium-term rat liver bioassay. Male F344 rats were treated with one of the most powerful Valerian species (Valeriana sitchensis at doses of 0, 50, 500 and 5000 ppm in their drinking water after initiation of hepatocarcinogenesis with diethylnitrosamine (DEN. Formation of glutathione S-transferase placental form positive (GST-P(+ foci was significantly inhibited by Valerian at all applied doses compared with DEN initiation control rats. Generation of 8-hydroxy-2'-deoxyguanosine in the rat liver was significantly suppressed by all doses of Valerian, likely due to suppression of Nrf2, CYP7A1 and induction of catalase expression. Cell proliferation was significantly inhibited, while apoptosis was induced in areas of GST-P(+ foci of Valerian groups associated with suppression of c-myc, Mafb, cyclin D1 and induction of p21(Waf1/Cip1, p53 and Bax mRNA expression. Interestingly, expression of the GABA(AR alpha 1 subunit was observed in GST-P(+ foci of DEN control rats, with significant elevation associated with Valerian treatment. These results indicate that Valerian exhibits inhibitory effects on rat hepatocarcinogenesis by inhibiting oxidative DNA damage, suppressing cell proliferation and inducing apoptosis in GST-P(+ foci by activating GABA(AR-mediated signaling.

  2. Molecular Mechanisms of SH2- and PTB-Domain-Containing Proteins in Receptor Tyrosine Kinase Signaling

    Science.gov (United States)

    Wagner, Melany J.; Stacey, Melissa M.; Liu, Bernard A.; Pawson, Tony

    2013-01-01

    Intracellular signaling is mediated by reversible posttranslational modifications (PTMs) that include phosphorylation, ubiquitination, and acetylation, among others. In response to extracellular stimuli such as growth factors, receptor tyrosine kinases (RTKs) typically dimerize and initiate signaling through phosphorylation of their cytoplasmic tails and downstream scaffolds. Signaling effectors are recruited to these phosphotyrosine (pTyr) sites primarily through Src homology 2 (SH2) domains and pTyr-binding (PTB) domains. This review describes how these conserved domains specifically recognize pTyr residues and play a major role in mediating precise downstream signaling events. PMID:24296166

  3. Molecular mechanisms of SH2- and PTB-domain-containing proteins in receptor tyrosine kinase signaling.

    Science.gov (United States)

    Wagner, Melany J; Stacey, Melissa M; Liu, Bernard A; Pawson, Tony

    2013-12-01

    Intracellular signaling is mediated by reversible posttranslational modifications (PTMs) that include phosphorylation, ubiquitination, and acetylation, among others. In response to extracellular stimuli such as growth factors, receptor tyrosine kinases (RTKs) typically dimerize and initiate signaling through phosphorylation of their cytoplasmic tails and downstream scaffolds. Signaling effectors are recruited to these phosphotyrosine (pTyr) sites primarily through Src homology 2 (SH2) domains and pTyr-binding (PTB) domains. This review describes how these conserved domains specifically recognize pTyr residues and play a major role in mediating precise downstream signaling events.

  4. SH3 domain-mediated binding of the Drk protein to Dos is an important step in signaling of Drosophila receptor tyrosine kinases.

    Science.gov (United States)

    Feller, Stephan M; Wecklein, Heike; Lewitzky, Marc; Kibler, Eike; Raabe, Thomas

    2002-08-01

    Activation of the Sevenless (Sev) receptor tyrosine kinase (RTK) in the developing Drosophila eye is required for the specification of the R7 photoreceptor cell fate. Daughter of Sevenless (Dos), a putative multi-site adaptor protein, is a substrate of the Sev kinase and is known to associate with the tyrosine phosphatase Corkscrew (Csw). Binding of Csw to Dos depends on the Csw Src homology 2 (SH2) domains and is an essential step for signaling by the Sev RTK. Dos, however, lacks a recognizable phosphotyrosine interaction domain and it was previously unclear how it is recruited to the Sev receptor. Here it is shown that the SH2/SH3 domain adaptor protein Drk can provide this link. Drk binds with its SH2 domain to the autophosphorylated Sev receptor while the C-terminal SH3 domain is able to associate with Dos. The Drk SH3 domain binding motifs on Dos were mapped to two sites which do not conform the known Drk SH3 domain binding motif (PxxPxR) but instead have the consensus PxxxRxxKP. Mutational analysis in vitro and in vivo provided evidence that both Drk binding sites fulfil an important function in the context of Sev and Drosophila epidermal growth factor receptor mediated signaling processes.

  5. Lunatic fringe-mediated Notch signaling regulates adult hippocampal neural stem cell maintenance.

    Science.gov (United States)

    Semerci, Fatih; Choi, William Tin-Shing; Bajic, Aleksandar; Thakkar, Aarohi; Encinas, Juan Manuel; Depreux, Frederic; Segil, Neil; Groves, Andrew K; Maletic-Savatic, Mirjana

    2017-07-12

    Hippocampal neural stem cells (NSCs) integrate inputs from multiple sources to balance quiescence and activation. Notch signaling plays a key role during this process. Here, we report that Lunatic fringe ( Lfng), a key modifier of the Notch receptor, is selectively expressed in NSCs. Further, Lfng in NSCs and Notch ligands Delta1 and Jagged1, expressed by their progeny, together influence NSC recruitment, cell cycle duration, and terminal fate. We propose a new model in which Lfng-mediated Notch signaling enables direct communication between a NSC and its descendants, so that progeny can send feedback signals to the 'mother' cell to modify its cell cycle status. Lfng-mediated Notch signaling appears to be a key factor governing NSC quiescence, division, and fate.

  6. Endoglin-mediated suppression of prostate cancer invasion is regulated by activin and bone morphogenetic protein type II receptors.

    Directory of Open Access Journals (Sweden)

    Michael J Breen

    Full Text Available Mortality from prostate cancer (PCa is due to the formation of metastatic disease. Understanding how that process is regulated is therefore critical. We previously demonstrated that endoglin, a type III transforming growth factor β (TGFβ superfamily receptor, suppresses human PCa cell invasion and metastasis. Endoglin-mediated suppression of invasion was also shown by us to be dependent upon the type I TGFβ receptor, activin receptor-like kinase 2 (ALK2, and the downstream effector, Smad1. In this study we demonstrate for the first time that two type II TGFβ receptors are required for endoglin-mediated suppression of invasion: activin A receptor type IIA (ActRIIA and bone morphogenetic protein receptor type II (BMPRII. Downstream signaling through these receptors is predominantly mediated by Smad1. ActRIIA stimulates Smad1 activation in a kinase-dependent manner, and this is required for suppression of invasion. In contrast BMPRII regulates Smad1 in a biphasic manner, promoting Smad1 signaling through its kinase domain but suppressing it through its cytoplasmic tail. BMPRII's Smad1-regulatory effects are dependent upon its expression level. Further, its ability to suppress invasion is independent of either kinase function or tail domain. We demonstrate that ActRIIA and BMPRII physically interact, and that each also interacts with endoglin. The current findings demonstrate that both BMPRII and ActRIIA are necessary for endoglin-mediated suppression of human PCa cell invasion, that they have differential effects on Smad1 signaling, that they make separate contributions to regulation of invasion, and that they functionally and physically interact.

  7. Benzo[a]pyrene induces intercellular adhesion molecule-1 through a caveolae and aryl hydrocarbon receptor mediated pathway

    International Nuclear Information System (INIS)

    Oesterling, Elizabeth; Toborek, Michal; Hennig, Bernhard

    2008-01-01

    Toxicologic and epidemiologic studies have linked benzo[a]pyrene (B[a]P) exposure with cardiovascular diseases such as atherosclerosis. The mechanisms of action leading to these diseases have not been fully understood. One key step in the development of atherosclerosis is vascular endothelial dysfunction, which is characterized by increased adhesiveness. To determine if B[a]P could lead to increased endothelial adhesiveness, the effects of B[a]P on human endothelial cell intercellular adhesion molecule-1 (ICAM-1) expression was investigated. B[a]P was able to increase ICAM-1 protein only after pretreatment with the aryl hydrocarbon receptor (AhR) agonist β-naphthoflavone (β-NF). Knockdown of AhR by siRNA or treatment with AhR antagonist α-naphthoflavone (α-NF) eliminated the induction of ICAM-1 from B[a]P, confirming the necessity of AhR in this process. Likewise, B[a]P only increased monocyte adhesion to the vascular endothelium when cells were pretreated with β-NF. Experiments were done to define a signaling mechanism. B[a]P increased phosphorylation of MEK and p38-MAPK, and inhibitors to these proteins blunted the ICAM-1 induction. B[a]P was also able to increase AP-1 DNA binding and phosphorylation of cJun. Phosphorylation of cJun was disrupted by MEK and p38-MAPK inhibitors linking the signaling cascade. Finally, the importance of membrane microdomains, caveolae, was demonstrated by knockdown of the structural protein caveolin-1. Disruption of caveolae eliminated the B[a]P-induced ICAM-1 expression. These data suggest a possible pro-inflammatory mechanism of action of B[a]P involving caveolae, leading to increased vascular endothelial adhesiveness, and this inflammation may be a critical step in the development of B[a]P-induced atherosclerosis

  8. Endothelin B Receptors on Primary Chicken Müller Cells and the Human MIO-M1 Müller Cell Line Activate ERK Signaling via Transactivation of Epidermal Growth Factor Receptors.

    Directory of Open Access Journals (Sweden)

    Mohammad Harun-Or-Rashid

    Full Text Available Injury to the eye or retina triggers Müller cells, the major glia cell of the retina, to dedifferentiate and proliferate. In some species they attain retinal progenitor properties and have the capacity to generate new neurons. The epidermal growth factor receptor (EGFR system and extracellular signal-regulated kinase (ERK signaling are key regulators of these processes in Müller cells. The extracellular signals that modulate and control these processes are not fully understood. In this work we studied whether endothelin receptor signaling can activate EGFR and ERK signaling in Müller cells. Endothelin expression is robustly upregulated at retinal injury and endothelin receptors have been shown to transactivate EGFRs in other cell types. We analyzed the endothelin signaling system in chicken retina and cultured primary chicken Müller cells as well as the human Müller cell line MIO-M1. The Müller cells were stimulated with receptor agonists and treated with specific blockers to key enzymes in the signaling pathway or with siRNAs. We focused on endothelin receptor mediated transactivation of EGFRs by using western blot analysis, quantitative reverse transcriptase PCR and immunocytochemistry. The results showed that chicken Müller cells and the human Müller cell line MIO-M1 express endothelin receptor B. Stimulation by the endothelin receptor B agonist IRL1620 triggered phosphorylation of ERK1/2 and autophosphorylation of (Y1173 EGFR. The effects could be blocked by Src-kinase inhibitors (PP1, PP2, EGFR-inhibitor (AG1478, EGFR-siRNA and by inhibitors to extracellular matrix metalloproteinases (GM6001, consistent with a Src-kinase mediated endothelin receptor response that engage ligand-dependent and ligand-independent EGFR activation. Our data suggest a mechanism for how injury-induced endothelins, produced in the retina, may modulate the Müller cell responses by Src-mediated transactivation of EGFRs. The data give support to a view in

  9. Dissecting Bacterial Cell Wall Entry and Signaling in Eukaryotic Cells: an Actin-Dependent Pathway Parallels Platelet-Activating Factor Receptor-Mediated Endocytosis.

    Science.gov (United States)

    Loh, Lip Nam; Gao, Geli; Tuomanen, Elaine I

    2017-01-03

    The Gram-positive bacterial cell wall (CW) peptidoglycan-teichoic acid complex is released into the host environment during bacterial metabolism or death. It is a highly inflammatory Toll-like receptor 2 (TLR2) ligand, and previous in vivo studies have demonstrated its ability to recapitulate pathological features of pneumonia and meningitis. We report that an actin-dependent pathway is involved in the internalization of the CW by epithelial and endothelial cells, in addition to the previously described platelet-activating factor receptor (PAFr)-dependent uptake pathway. Unlike the PAFr-dependent pathway, which is mediated by clathrin and dynamin and does not lead to signaling, the alternative pathway is sensitive to 5-(N-ethyl-N-isopropyl) amiloride (EIPA) and engenders Rac1, Cdc42, and phosphatidylinositol 3-kinase (PI3K) signaling. Upon internalization by this macropinocytosis-like pathway, CW is trafficked to lysosomes. Intracellular CW trafficking is more complex than previously recognized and suggests multiple points of interaction with and without innate immune signaling. Streptococcus pneumoniae is a major human pathogen infecting the respiratory tract and brain. It is an established model organism for understanding how infection injures the host. During infection or bacterial growth, bacteria shed their cell wall (CW) into the host environment and trigger inflammation. A previous study has shown that CW enters and crosses cell barriers by interacting with a receptor on the surfaces of host cells, termed platelet-activating factor receptor (PAFr). In the present study, by using cells that are depleted of PAFr, we identified a second pathway with features of macropinocytosis, which is a receptor-independent fluid uptake mechanism by cells. Each pathway contributes approximately the same amount of cell wall trafficking, but the PAFr pathway is silent, while the new pathway appears to contribute to the host inflammatory response to CW insult. Copyright © 2017

  10. Activation of GABAB receptors inhibits protein kinase B /Glycogen Synthase Kinase 3 signaling

    Directory of Open Access Journals (Sweden)

    Lu Frances Fangjia

    2012-11-01

    Full Text Available Abstract Accumulated evidence has suggested that potentiation of cortical GABAergic inhibitory neurotransmission may be a key mechanism in the treatment of schizophrenia. However, the downstream molecular mechanisms related to GABA potentiation remain unexplored. Recent studies have suggested that dopamine D2 receptor antagonists, which are used in the clinical treatment of schizophrenia, modulate protein kinase B (Akt/glycogen synthase kinase (GSK-3 signaling. Here we report that activation of GABAB receptors significantly inhibits Akt/GSK-3 signaling in a β-arrestin-dependent pathway. Agonist stimulation of GABAB receptors enhances the phosphorylation of Akt (Thr-308 and enhances the phosphorylation of GSK-3α (Ser-21/β (Ser-9 in both HEK-293T cells expressing GABAB receptors and rat hippocampal slices. Furthermore, knocking down the expression of β-arrestin2 using siRNA abolishes the GABAB receptor-mediated modulation of GSK-3 signaling. Our data may help to identify potentially novel targets through which GABAB receptor agents may exert therapeutic effects in the treatment of schizophrenia.

  11. Calcium-sensing receptor (CaSR): pharmacological properties and signaling pathways.

    Science.gov (United States)

    Conigrave, Arthur D; Ward, Donald T

    2013-06-01

    In this article we consider the mechanisms by which the calcium-sensing receptor (CaSR) induces its cellular responses via the control (activation or inhibition) of signaling pathways. We consider key features of CaSR-mediated signaling including its control of the heterotrimeric G-proteins Gq/11, Gi/o and G12/13 and the downstream consequences recognizing that very few CaSR-mediated cell phenomena have been fully described. We also consider the manner in which the CaSR contributes to the formation of specific signaling scaffolds via peptide recognition sequences in its intracellular C-terminal along with the origins of its high level of cooperativity, particularly for Ca(2+)o, and its remarkable resistance to desensitization. We also consider the nature of the mechanisms by which the CaSR controls oscillatory and sustained Ca(2+)i mobilizing responses and inhibits or elevates cyclic adenosine monophosphate (cAMP) levels dependent on the cellular and signaling context. Finally, we consider the diversity of the receptor's ligands, ligand binding sites and broader compartment-dependent physiological roles leading to the identification of pronounced ligand-biased signaling for agonists including Sr(2+) and modulators including l-amino acids and the clinically effective calcimimetic cinacalcet. We note the implications of these findings for the development of new designer drugs that might target the CaSR in pathophysiological contexts beyond those established for the treatment of disorders of calcium metabolism. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Interference by 2,3,7,8-tetrachlorodibenzo-p-dioxin with cultured mouse submandibular gland branching morphogenesis involves reduced epidermal growth factor receptor signaling

    International Nuclear Information System (INIS)

    Kiukkonen, Anu; Sahlberg, Carin; Partanen, Anna-Maija; Alaluusua, Satu; Pohjanvirta, Raimo; Tuomisto, Jouko; Lukinmaa, Pirjo-Liisa

    2006-01-01

    Toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) to mouse embryonic teeth, sharing features of early development with salivary glands in common, involves enhanced apoptosis and depends on the expression of epidermal growth factor (EGF) receptor. EGF receptor signaling, on the other hand, is essential for salivary gland branching morphogenesis. To see if TCDD impairs salivary gland morphogenesis and if the impairment is associated with EGF receptor signaling, we cultured mouse (NMRI) E13 submandibular glands with TCDD or TCDD in combination with EGF or fibronectin (FN), both previously found to enhance branching morphogenesis. Explants were examined stereomicroscopically and processed to paraffin sections. TCDD exposure impaired epithelial branching and cleft formation, resulting in enlarged buds. The glands were smaller than normal. EGF and FN alone concentration-dependently stimulated or inhibited branching morphogenesis but when co-administered with TCDD, failed to compensate for its effect. TCDD induced cytochrome P4501A1 expression in the glandular epithelium, indicating activation of the aryl hydrocarbon receptor. TCDD somewhat increased epithelial apoptosis as observed by terminal deoxynucleotidyl transferase (TdT)-mediated nick end-labeling method but the increase could not be correlated with morphological changes. The frequency of proliferating cells was not altered. Corresponding to the reduced cleft sites in TCDD-exposed explants, FN immunoreactivity in the epithelium was reduced. The results show that TCDD, comparably with EGF and FN at morphogenesis-inhibiting concentrations, impaired salivary gland branching morphogenesis in vitro. Together with the failure of EGF and FN at morphogenesis-stimulating concentrations to compensate for the effect of TCDD this implies that TCDD toxicity to developing salivary gland involves reduced EGF receptor signaling

  13. G Protein and β-arrestin signaling bias at the ghrelin receptor.

    Science.gov (United States)

    Evron, Tama; Peterson, Sean M; Urs, Nikhil M; Bai, Yushi; Rochelle, Lauren K; Caron, Marc G; Barak, Larry S

    2014-11-28

    The G protein-coupled ghrelin receptor GHSR1a is a potential pharmacological target for treating obesity and addiction because of the critical role ghrelin plays in energy homeostasis and dopamine-dependent reward. GHSR1a enhances growth hormone release, appetite, and dopamine signaling through G(q/11), G(i/o), and G(12/13) as well as β-arrestin-based scaffolds. However, the contribution of individual G protein and β-arrestin pathways to the diverse physiological responses mediated by ghrelin remains unknown. To characterize whether a signaling bias occurs for GHSR1a, we investigated ghrelin signaling in a number of cell-based assays, including Ca(2+) mobilization, serum response factor response element, stress fiber formation, ERK1/2 phosphorylation, and β-arrestin translocation, utilizing intracellular second loop and C-tail mutants of GHSR1a. We observed that GHSR1a and β-arrestin rapidly form metastable plasma membrane complexes following exposure to an agonist, but replacement of the GHSR1a C-tail by the tail of the vasopressin 2 receptor greatly stabilizes them, producing complexes observable on the plasma membrane and also in endocytic vesicles. Mutations of the contiguous conserved amino acids Pro-148 and Leu-149 in the GHSR1a intracellular second loop generate receptors with a strong bias to G protein and β-arrestin, respectively, supporting a role for conformation-dependent signaling bias in the wild-type receptor. Our results demonstrate more balance in GHSR1a-mediated ERK signaling from G proteins and β-arrestin but uncover an important role for β-arrestin in RhoA activation and stress fiber formation. These findings suggest an avenue for modulating drug abuse-associated changes in synaptic plasticity via GHSR1a and indicate the development of GHSR1a-biased ligands as a promising strategy for selectively targeting downstream signaling events. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Kidins220/ARMS as a functional mediator of multiple receptor signalling pathways.

    Science.gov (United States)

    Neubrand, Veronika E; Cesca, Fabrizia; Benfenati, Fabio; Schiavo, Giampietro

    2012-04-15

    An increasing body of evidence suggests that several membrane receptors--in addition to activating distinct signalling cascades--also engage in substantial crosstalk with each other, thereby adjusting their signalling outcome as a function of specific input information. However, little is known about the molecular mechanisms that control their coordination and integration of downstream signalling. A protein that is likely to have a role in this process is kinase-D-interacting substrate of 220 kDa [Kidins220, also known as ankyrin repeat-rich membrane spanning (ARMS), hereafter referred to as Kidins220/ARMS]. Kidins220/ARMS is a conserved membrane protein that is preferentially expressed in the nervous system and interacts with the microtubule and actin cytoskeleton. It interacts with neurotrophin, ephrin, vascular endothelial growth factor (VEGF) and glutamate receptors, and is a common downstream target of several trophic stimuli. Kidins220/ARMS is required for neuronal differentiation and survival, and its expression levels modulate synaptic plasticity. Kidins220/ARMS knockout mice show developmental defects mainly in the nervous and cardiovascular systems, suggesting a crucial role for this protein in modulating the cross talk between different signalling pathways. In this Commentary, we summarise existing knowledge regarding the physiological functions of Kidins220/ARMS, and highlight some interesting directions for future studies on the role of this protein in health and disease.

  15. Toxicological implications of polymorphisms in receptors for xenobiotic chemicals: The case of the aryl hydrocarbon receptor

    International Nuclear Information System (INIS)

    Okey, Allan B.; Franc, Monique A.; Moffat, Ivy D.; Tijet, Nathalie; Boutros, Paul C.; Korkalainen, Merja; Tuomisto, Jouko; Pohjanvirta, Raimo

    2005-01-01

    Mechanistic toxicology has predominantly been focused on adverse effects that are caused by reactive metabolites or by reactive oxygen species. However, many important xenobiotics exert their toxicity, not by generating reactive products, but rather by altering expression of specific genes. In particular, some environmental contaminants target nuclear receptors that function as regulators of transcription. For example, binding of xenobiotic chemicals to steroid receptors is a principle mechanism of endocrine disruption. The aryl hydrocarbon receptor (AHR) mediates toxicity of dioxin-like compounds. In mice, a polymorphism in the AHR ligand-binding domain reduces binding affinity by about 10-fold in the DBA/2 strain compared with the C57BL/6 strain; consequently, dose-response curves for numerous biochemical and toxic effects are shifted about one log to the right in DBA/2 mice. In the Han/Wistar (Kuopio) (H/W) rat strain, a polymorphism causes a deletion of 38 or 43 amino acids from the AHR transactivation domain. This deletion is associated with a greater than 1000-fold resistance to lethality from 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Genes in the conventional AH gene battery (e.g. CYP1A1, CYP1A2, CYP1B1, ALDH3A1, NQO1 and UGT1A1) remain responsive to TCDD in H/W rats despite the large deletion. However, the deletion may selectively alter the receptor's ability to dysregulate specific genes that are key to dioxin toxicity. We are identifying these genes using an expression array approach in dioxin-sensitive vs. dioxin-resistant rat strains and lines. Polymorphisms exist in the human AH receptor, but thus far they have not been shown to have any substantial effect on human responses to AHR-ligands

  16. Integrated in silico and in vivo approaches to investigate effects of BDE-99 mediated by the nuclear receptors on developing zebrafish.

    Science.gov (United States)

    Zhang, Li; Jin, Yaru; Han, Zhihua; Liu, Hongling; Shi, Laihao; Hua, Xiaoxue; Doering, Jon A; Tang, Song; Giesy, John P; Yu, Hongxia

    2018-03-01

    One of the most abundant polybrominated diphenyl ethers (PBDEs) is 2,2',4,4',5-pentabromodiphenyl ether (BDE-99), which persists and potentially bioaccumulates in aquatic wildlife. Previous studies in mammals have shown that BDE-99 affects development and disrupts certain endocrine functions through signaling pathways mediated by nuclear receptors. However, fewer studies have investigated the potential of BDE-99 to interact with nuclear receptors in aquatic vertebrates such as fish. In the present study, interactions between BDE-99 and nuclear receptors were investigated by in silico and in vivo approaches. This PBDE was able to dock into the ligand-binding domain of zebrafish aryl hydrocarbon receptor 2 (AhR2) and pregnane X receptor (PXR). It had a significant effect on the transcriptional profiles of genes associated with AhR or PXR. Based on the developed cytoscape of all zebrafish genes, it was also inferred that AhR and PXR could interact via cross-talk. In addition, both the in silico and in vivo approaches found that BDE-99 affected peroxisome proliferator-activated receptor alpha (PPARα), glucocorticoid receptor, and thyroid receptor. Collectively, our results demonstrate for the first time detailed in silico evidence that BDE-99 can bind to and interact with zebrafish AhR and PXR. These findings can be used to elaborate the molecular mechanism of BDE-99 and guide more objective environmental risk assessments. Environ Toxicol Chem 2018;37:780-787. © 2017 SETAC. © 2017 SETAC.

  17. PD-1 immunoreceptor inhibits B cell receptor-mediated signaling by recruiting src homology 2-domain-containing tyrosine phosphatase 2 to phosphotyrosine

    Science.gov (United States)

    Okazaki, Taku; Maeda, Akito; Nishimura, Hiroyuki; Kurosaki, Tomohiro; Honjo, Tasuku

    2001-01-01

    PD-1 is an immunoreceptor that belongs to the immunoglobulin (Ig) superfamily and contains two tyrosine residues in the cytoplasmic region. Studies on PD-1-deficient mice have shown that PD-1 plays critical roles in establishment and/or maintenance of peripheral tolerance, but the mode of action is totally unknown. To study the molecular mechanism for negative regulation of lymphocytes through the PD-1 receptor, we generated chimeric molecules composed of the IgG Fc receptor type IIB (FcγRIIB) extracellular region and the PD-1 cytoplasmic region and expressed them in a B lymphoma cell line, IIA1.6. Coligation of the cytoplasmic region of PD-1 with the B cell receptor (BCR) in IIA1.6 transformants inhibited BCR-mediated growth retardation, Ca2+ mobilization, and tyrosine phosphorylation of effector molecules, including Igβ, Syk, phospholipase C-γ2 (PLCγ2), and ERK1/2, whereas phosphorylation of Lyn and Dok was not affected. Mutagenesis studies indicated that these inhibitory effects do not require the N-terminal tyrosine in the immunoreceptor tyrosine-based inhibitory motif-like sequence, but do require the other tyrosine residue in the C-terminal tail. This tyrosine was phosphorylated and recruited src homology 2-domain-containing tyrosine phosphatase 2 (SHP-2) on coligation of PD-1 with BCR. These results show that PD-1 can inhibit BCR signaling by recruiting SHP-2 to its phosphotyrosine and dephosphorylating key signal transducers of BCR signaling. PMID:11698646

  18. β1-adrenergic receptors activate two distinct signaling pathways in striatal neurons

    Science.gov (United States)

    Meitzen, John; Luoma, Jessie I.; Stern, Christopher M.; Mermelstein, Paul G.

    2010-01-01

    Monoamine action in the dorsal striatum and nucleus accumbens plays essential roles in striatal physiology. Although research often focuses on dopamine and its receptors, norepinephrine and adrenergic receptors are also crucial in regulating striatal function. While noradrenergic neurotransmission has been identified in the striatum, little is known regarding the signaling pathways activated by β-adrenergic receptors in this brain region. Using cultured striatal neurons, we characterized a novel signaling pathway by which activation of β1-adrenergic receptors leads to the rapid phosphorylation of cAMP Response Element Binding Protein (CREB), a transcription-factor implicated as a molecular switch underlying long-term changes in brain function. Norepinephrine-mediated CREB phosphorylation requires β1-adrenergic receptor stimulation of a receptor tyrosine kinase, ultimately leading to the activation of a Ras/Raf/MEK/MAPK/MSK signaling pathway. Activation of β1-adrenergic receptors also induces CRE-dependent transcription and increased c-fos expression. In addition, stimulation of β1-adrenergic receptors produces cAMP production, but surprisingly, β1-adrenergic receptor activation of adenylyl cyclase was not functionally linked to rapid CREB phosphorylation. These findings demonstrate that activation of β1-adrenergic receptors on striatal neurons can stimulate two distinct signaling pathways. These adrenergic actions can produce long-term changes in gene expression, as well as rapidly modulate cellular physiology. By elucidating the mechanisms by which norepinephrine and β1-adrenergic receptor activation affects striatal physiology, we provide the means to more fully understand the role of monoamines in modulating striatal function, specifically how norepinephrine and β1-adrenergic receptors may affect striatal physiology. PMID:21143600

  19. Tyrosine Phosphorylation in Toll-Like Receptor Signaling

    Science.gov (United States)

    Chattopadhyay, Saurabh; Sen, Ganes C.

    2014-01-01

    There is a wealth of knowledge about how different Ser/Thr protein kinases participate in Toll-like receptor (TLR) signaling. In many cases, we know the identities of the Ser/Thr residues of various components of the TLR-signaling pathways that are phosphorylated, the functional consequences of the phosphorylation and the responsible protein kinases. In contrast, the analysis of Tyr-phosphorylation of TLRs and their signaling proteins is currently incomplete, because several existing analyses are not systematic or they do not rely on robust experimental data. Nevertheless, it is clear that many TLRs require, for signaling, ligand-dependent phosphorylation of specific Tyr residues in their cytoplasmic domains; the list includes TLR2, TLR3, TLR4, TLR5, TLR8 and TLR9. In this article, we discuss the current status of knowledge on the effect of Tyr-phosphorylation of TLRs and their signaling proteins on their biochemical and biological functions, the possible identities of the relevant protein tyrosine kinases (PTKs) and the nature of regulations of PTK-mediated activation of TLR signaling pathways. PMID:25022196

  20. Plant immune and growth receptors share common signalling components but localise to distinct plasma membrane nanodomains.

    Science.gov (United States)

    Bücherl, Christoph A; Jarsch, Iris K; Schudoma, Christian; Segonzac, Cécile; Mbengue, Malick; Robatzek, Silke; MacLean, Daniel; Ott, Thomas; Zipfel, Cyril

    2017-03-06

    Cell surface receptors govern a multitude of signalling pathways in multicellular organisms. In plants, prominent examples are the receptor kinases FLS2 and BRI1, which activate immunity and steroid-mediated growth, respectively. Intriguingly, despite inducing distinct signalling outputs, both receptors employ common downstream signalling components, which exist in plasma membrane (PM)-localised protein complexes. An important question is thus how these receptor complexes maintain signalling specificity. Live-cell imaging revealed that FLS2 and BRI1 form PM nanoclusters. Using single-particle tracking we could discriminate both cluster populations and we observed spatiotemporal separation between immune and growth signalling platforms. This finding was confirmed by visualising FLS2 and BRI1 within distinct PM nanodomains marked by specific remorin proteins and differential co-localisation with the cytoskeleton. Our results thus suggest that signalling specificity between these pathways may be explained by the spatial separation of FLS2 and BRI1 with their associated signalling components within dedicated PM nanodomains.

  1. Dopamine D2 receptors mediate two-odor discrimination and reversal learning in C57BL/6 mice

    Directory of Open Access Journals (Sweden)

    Grandy David K

    2004-04-01

    Full Text Available Abstract Background Dopamine modulation of neuronal signaling in the frontal cortex, midbrain, and striatum is essential for processing and integrating diverse external sensory stimuli and attaching salience to environmental cues that signal causal relationships, thereby guiding goal-directed, adaptable behaviors. At the cellular level, dopamine signaling is mediated through D1-like or D2-like receptors. Although a role for D1-like receptors in a variety of goal-directed behaviors has been identified, an explicit involvement of D2 receptors has not been clearly established. To determine whether dopamine D2 receptor-mediated signaling contributes to associative and reversal learning, we compared C57Bl/6J mice that completely lack functional dopamine D2 receptors to wild-type mice with respect to their ability to attach appropriate salience to external stimuli (stimulus discrimination and disengage from inappropriate behavioral strategies when reinforcement contingencies change (e.g. reversal learning. Results Mildly food-deprived female wild-type and dopamine D2 receptor deficient mice rapidly learned to retrieve and consume visible food reinforcers from a small plastic dish. Furthermore, both genotypes readily learned to dig through the same dish filled with sterile sand in order to locate a buried food pellet. However, the dopamine D2 receptor deficient mice required significantly more trials than wild-type mice to discriminate between two dishes, each filled with a different scented sand, and to associate one of the two odors with the presence of a reinforcer (food. In addition, the dopamine D2 receptor deficient mice repeatedly fail to alter their response patterns during reversal trials where the reinforcement rules were inverted. Conclusions Inbred C57Bl/6J mice that develop in the complete absence of functional dopamine D2 receptors are capable of olfaction but display an impaired ability to acquire odor-driven reinforcement contingencies

  2. Ethylene Regulates Levels of Ethylene Receptor/CTR1 Signaling Complexes in Arabidopsis thaliana*

    Science.gov (United States)

    Shakeel, Samina N.; Gao, Zhiyong; Amir, Madiha; Chen, Yi-Feng; Rai, Muneeza Iqbal; Haq, Noor Ul; Schaller, G. Eric

    2015-01-01

    The plant hormone ethylene is perceived by a five-member family of receptors in Arabidopsis thaliana. The receptors function in conjunction with the Raf-like kinase CTR1 to negatively regulate ethylene signal transduction. CTR1 interacts with multiple members of the receptor family based on co-purification analysis, interacting more strongly with receptors containing a receiver domain. Levels of membrane-associated CTR1 vary in response to ethylene, doing so in a post-transcriptional manner that correlates with ethylene-mediated changes in levels of the ethylene receptors ERS1, ERS2, EIN4, and ETR2. Interactions between CTR1 and the receptor ETR1 protect ETR1 from ethylene-induced turnover. Kinetic and dose-response analyses support a model in which two opposing factors control levels of the ethylene receptor/CTR1 complexes. Ethylene stimulates the production of new complexes largely through transcriptional induction of the receptors. However, ethylene also induces turnover of receptors, such that levels of ethylene receptor/CTR1 complexes decrease at higher ethylene concentrations. Implications of this model for ethylene signaling are discussed. PMID:25814663

  3. Molecular Signaling Pathways Mediating Osteoclastogenesis Induced by Prostate Cancer Cells

    International Nuclear Information System (INIS)

    Rafiei, Shahrzad; Komarova, Svetlana V

    2013-01-01

    Advanced prostate cancer commonly metastasizes to bone leading to osteoblastic and osteolytic lesions. Although an osteolytic component governed by activation of bone resorbing osteoclasts is prominent in prostate cancer metastasis, the molecular mechanisms of prostate cancer-induced osteoclastogenesis are not well-understood. We studied the effect of soluble mediators released from human prostate carcinoma cells on osteoclast formation from mouse bone marrow and RAW 264.7 monocytes. Soluble factors released from human prostate carcinoma cells significantly increased viability of naïve bone marrow monocytes, as well as osteoclastogenesis from precursors primed with receptor activator of nuclear factor κ-B ligand (RANKL). The prostate cancer-induced osteoclastogenesis was not mediated by RANKL as it was not inhibited by osteoprotegerin (OPG). However inhibition of TGFβ receptor I (TβRI), or macrophage-colony stimulating factor (MCSF) resulted in attenuation of prostate cancer-induced osteoclastogenesis. We characterized the signaling pathways induced in osteoclast precursors by soluble mediators released from human prostate carcinoma cells. Prostate cancer factors increased basal calcium levels and calcium fluctuations, induced nuclear localization of nuclear factor of activated t-cells (NFAT)c1, and activated prolonged phosphorylation of ERK1/2 in RANKL-primed osteoclast precursors. Inhibition of calcium signaling, NFATc1 activation, and ERK1/2 phosphorylation significantly reduced the ability of prostate cancer mediators to stimulate osteoclastogenesis. This study reveals the molecular mechanisms underlying the direct osteoclastogenic effect of prostate cancer derived factors, which may be beneficial in developing novel osteoclast-targeting therapeutic approaches

  4. The interleukin-4 receptor: signal transduction by a hematopoietin receptor.

    Science.gov (United States)

    Keegan, A D; Pierce, J H

    1994-02-01

    Over the last several years, the receptors for numerous cytokines have been molecularly characterized. Analysis of their amino acid sequences shows that some of these receptors bear certain motifs in their extracellular domains that define a family of receptors called the Hematopoietin receptor superfamily. Significant advances in characterizing the structure, function, and mechanisms of signal transduction have been made for several members of this family. The purpose of this review is to discuss the recent advances made for one of the family members, the interleukin (IL) 4 receptor. Other receptor systems have recently been reviewed elsewhere. The IL-4 receptor consists of, at the minimum, the cloned 140 kDa IL-4-binding chain with the potential for associating with other chains. The IL-4 receptor transduces its signal by activating a tyrosine kinase that phosphorylates cellular substrates, including the receptor itself, and the 170 kDa substrate called 4PS. Phosphorylated 4PS interacts with the SH2 domain of the enzyme PI-3'-kinase and increases its enzymatic activity. These early events in the IL-4 receptor initiated signaling pathway may trigger a series of signals that will ultimately lead to an IL-4 specific biologic outcome.

  5. Bile Acid-Mediated Sphingosine-1-Phosphate Receptor 2 Signaling Promotes Neuroinflammation during Hepatic Encephalopathy in Mice

    Directory of Open Access Journals (Sweden)

    Matthew McMillin

    2017-07-01

    Full Text Available Hepatic encephalopathy (HE is a neuropsychiatric complication that occurs due to deteriorating hepatic function and this syndrome influences patient quality of life, clinical management strategies and survival. During acute liver failure, circulating bile acids increase due to a disruption of the enterohepatic circulation. We previously identified that bile acid-mediated signaling occurs in the brain during HE and contributes to cognitive impairment. However, the influences of bile acids and their downstream signaling pathways on HE-induced neuroinflammation have not been assessed. Conjugated bile acids, such as taurocholic acid (TCA, can activate sphingosine-1-phosphate receptor 2 (S1PR2, which has been shown to promote immune cell infiltration and inflammation in other models. The current study aimed to assess the role of bile-acid mediated S1PR2 signaling in neuroinflammation and disease progression during azoxymethane (AOM-induced HE in mice. Our findings demonstrate a temporal increase of bile acids in the cortex during AOM-induced HE and identified that cortical bile acids were elevated as an early event in this model. In order to classify the specific bile acids that were elevated during HE, a metabolic screen was performed and this assay identified that TCA was increased in the serum and cortex during AOM-induced HE. To reduce bile acid concentrations in the brain, mice were fed a diet supplemented with cholestyramine, which alleviated neuroinflammation by reducing proinflammatory cytokine expression in the cortex compared to the control diet-fed AOM-treated mice. S1PR2 was expressed primarily in neurons and TCA treatment increased chemokine ligand 2 mRNA expression in these cells. The infusion of JTE-013, a S1PR2 antagonist, into the lateral ventricle prior to AOM injection protected against neurological decline and reduced neuroinflammation compared to DMSO-infused AOM-treated mice. Together, this identifies that reducing bile acid

  6. Essential roles of Gab1 tyrosine phosphorylation in growth factor-mediated signaling and angiogenesis.

    Science.gov (United States)

    Wang, Weiye; Xu, Suowen; Yin, Meimei; Jin, Zheng Gen

    2015-02-15

    Growth factors and their downstream receptor tyrosine kinases (RTKs) mediate a number of biological processes controlling cell function. Adaptor (docking) proteins, which consist exclusively of domains and motifs that mediate molecular interactions, link receptor activation to downstream effectors. Recent studies have revealed that Grb2-associated-binders (Gab) family members (including Gab1, Gab2, and Gab3), when phosphorylated on tyrosine residues, provide binding sites for multiple effector proteins, such as Src homology-2 (SH2)-containing protein tyrosine phosphatase 2 (SHP2) and phosphatidylinositol 3-kinase (PI3K) regulatory subunit p85, thereby playing important roles in transducing RTKs-mediated signals into pathways with diversified biological functions. Here, we provide an up-to-date overview on the domain structure and biological functions of Gab1, the most intensively studied Gab family protein, in growth factor signaling and biological functions, with a special focus on angiogenesis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Ran GTPase promotes cancer progression via Met receptor-mediated downstream signaling

    Science.gov (United States)

    Yuen, Hiu-Fung; Chan, Ka-Kui; Platt-Higgins, Angela; Dakir, El-Habib; Matchett, Kyle B.; Haggag, Yusuf Ahmed; Jithesh, Puthen V.; Habib, Tanwir; Faheem, Ahmed; Dean, Fennell A.; Morgan, Richard; Rudland, Philip S.; El-Tanani, Mohamed

    2016-01-01

    It has been shown previously that cancer cells with an activated oncogenic pathway, including Met activation, require Ran for growth and survival. Here, we show that knockdown of Ran leads to a reduction of Met receptor expression in several breast and lung cancer cell lines. This, in turn suppressed HGF expression and the Met-mediated activation of the Akt pathway, as well as cell adhesion, migration, and invasion. In a cell line model where Met amplification has previously been shown to contribute to gefitinib resistance, Ran knockdown sensitized cells to gefitinib-mediated inhibition of Akt and ERK1/2 phosphorylation and consequently reduced cell proliferation. We further demonstrate that Met reduction-mediated by knockdown of Ran, occurs at the post-transcriptional level, probably via a matrix metalloproteinase. Moreover, the level of immunoreactive Ran and Met are positively associated in human breast cancer specimens, suggesting that a high level of Ran may be a pre-requisite for Met overexpression. Interestingly, a high level of immunoreactive Ran dictates the prognostic significance of Met, indicating that the co-overexpression of Met and Ran may be associated with cancer progression and could be used in combination as a prognostic indicator. PMID:27716616

  8. Environmental polycyclic aromatic hydrocarbons affect androgen receptor activation in vitro

    DEFF Research Database (Denmark)

    Vinggaard, Anne Marie; Hnida, Christina; Larsen, John Christian

    2000-01-01

    Nine structurally different polycyclic aromatic hydrocarbons (PAHs) were tested for their ability to either agonize or antagonize the human androgen receptor (hAR) in a sensitive reporter gene assay based on CHO cells transiently cotransfected with a hAR vector and an MMTV-LUC vector. Benz...

  9. Destabilization of strigolactone receptor DWARF14 by binding of ligand and E3-ligase signaling effector DWARF3

    Science.gov (United States)

    Zhao, Li-Hua; Zhou, X Edward; Yi, Wei; Wu, Zhongshan; Liu, Yue; Kang, Yanyong; Hou, Li; de Waal, Parker W; Li, Suling; Jiang, Yi; Scaffidi, Adrian; Flematti, Gavin R; Smith, Steven M; Lam, Vinh Q; Griffin, Patrick R; Wang, Yonghong; Li, Jiayang; Melcher, Karsten; Xu, H Eric

    2015-01-01

    Strigolactones (SLs) are endogenous hormones and exuded signaling molecules in plant responses to low levels of mineral nutrients. Key mediators of the SL signaling pathway in rice include the α/β-fold hydrolase DWARF 14 (D14) and the F-box component DWARF 3 (D3) of the ubiquitin ligase SCFD3 that mediate ligand-dependent degradation of downstream signaling repressors. One perplexing feature is that D14 not only functions as the SL receptor but is also an active enzyme that slowly hydrolyzes diverse natural and synthetic SLs including GR24, preventing the crystallization of a binary complex of D14 with an intact SL as well as the ternary D14/SL/D3 complex. Here we overcome these barriers to derive a structural model of D14 bound to intact GR24 and identify the interface that is required for GR24-mediated D14-D3 interaction. The mode of GR24-mediated signaling, including ligand recognition, hydrolysis by D14, and ligand-mediated D14-D3 interaction, is conserved in structurally diverse SLs. More importantly, D14 is destabilized upon the binding of ligands and D3, thus revealing an unusual mechanism of SL recognition and signaling, in which the hormone, the receptor, and the downstream effectors are systematically destabilized during the signal transduction process. PMID:26470846

  10. Recent Advances on the Role of G Protein-Coupled Receptors in Hypoxia-Mediated Signaling

    OpenAIRE

    Lappano, Rosamaria; Rigiracciolo, Damiano; De Marco, Paola; Avino, Silvia; Cappello, Anna Rita; Rosano, Camillo; Maggiolini, Marcello; De Francesco, Ernestina Marianna

    2016-01-01

    G protein-coupled receptors (GPCRs) are cell surface proteins mainly involved in signal transmission; however, they play a role also in several pathophysiological conditions. Chemically heterogeneous molecules like peptides, hormones, lipids, and neurotransmitters activate second messengers and induce several biological responses by binding to these seven transmembrane receptors, which are coupled to heterotrimeric G proteins. Recently, additional molecular mechanisms have been involved in GP...

  11. Multivalent Soluble Antigen Arrays Exhibit High Avidity Binding and Modulation of B Cell Receptor-Mediated Signaling to Drive Efficacy against Experimental Autoimmune Encephalomyelitis.

    Science.gov (United States)

    Hartwell, Brittany L; Pickens, Chad J; Leon, Martin; Berkland, Cory

    2017-06-12

    A pressing need exists for antigen-specific immunotherapies (ASIT) that induce selective tolerance in autoimmune disease while avoiding deleterious global immunosuppression. Multivalent soluble antigen arrays (SAgA PLP:LABL ), consisting of a hyaluronic acid (HA) linear polymer backbone cografted with multiple copies of autoantigen (PLP) and cell adhesion inhibitor (LABL) peptides, are designed to induce tolerance to a specific multiple sclerosis (MS) autoantigen. Previous studies established that hydrolyzable SAgA PLP:LABL , employing a degradable linker to codeliver PLP and LABL, was therapeutic in experimental autoimmune encephalomyelitis (EAE) in vivo and exhibited antigen-specific binding with B cells, targeted the B cell receptor (BCR), and dampened BCR-mediated signaling in vitro. Our results pointed to sustained BCR engagement as the SAgA PLP:LABL therapeutic mechanism, so we developed a new version of the SAgA molecule using nonhydrolyzable conjugation chemistry, hypothesizing it would enhance and maintain the molecule's action at the cell surface to improve efficacy. "Click SAgA" (cSAgA PLP:LABL ) uses hydrolytically stable covalent conjugation chemistry (Copper-catalyzed Azide-Alkyne Cycloaddition (CuAAC)) rather than a hydrolyzable oxime bond to attach PLP and LABL to HA. We explored cSAgA PLP:LABL B cell engagement and modulation of BCR-mediated signaling in vitro through flow cytometry binding and calcium flux signaling assays. Indeed, cSAgA PLP:LABL exhibited higher avidity B cell binding and greater dampening of BCR-mediated signaling than hydrolyzable SAgA PLP:LABL . Furthermore, cSAgA PLP:LABL exhibited significantly enhanced in vivo efficacy compared to hydrolyzable SAgA PLP:LABL , achieving equivalent efficacy at one-quarter of the dose. These results indicate that nonhydrolyzable conjugation increased the avidity of cSAgA PLP:LABL to drive in vivo efficacy through modulated BCR-mediated signaling.

  12. Honey bee dopamine and octopamine receptors linked to intracellular calcium signaling have a close phylogenetic and pharmacological relationship.

    Directory of Open Access Journals (Sweden)

    Kyle T Beggs

    Full Text Available BACKGROUND: Three dopamine receptor genes have been identified that are highly conserved among arthropod species. One of these genes, referred to in honey bees as Amdop2, shows a close phylogenetic relationship to the a-adrenergic-like octopamine receptor family. In this study we examined in parallel the functional and pharmacological properties of AmDOP2 and the honey bee octopamine receptor, AmOA1. For comparison, pharmacological properties of the honey bee dopamine receptors AmDOP1 and AmDOP3, and the tyramine receptor AmTYR1, were also examined. METHODOLOGY/PRINCIPAL FINDINGS: Using HEK293 cells heterologously expressing honey bee biogenic amine receptors, we found that activation of AmDOP2 receptors, like AmOA1 receptors, initiates a rapid increase in intracellular calcium levels. We found no evidence of calcium signaling via AmDOP1, AmDOP3 or AmTYR1 receptors. AmDOP2- and AmOA1-mediated increases in intracellular calcium were inhibited by 10 µM edelfosine indicating a requirement for phospholipase C-β activity in this signaling pathway. Edelfosine treatment had no effect on AmDOP2- or AmOA1-mediated increases in intracellular cAMP. The synthetic compounds mianserin and epinastine, like cis-(Z-flupentixol and spiperone, were found to have significant antagonist activity on AmDOP2 receptors. All 4 compounds were effective antagonists also on AmOA1 receptors. Analysis of putative ligand binding sites offers a possible explanation for why epinastine acts as an antagonist at AmDOP2 receptors, but fails to block responses mediated via AmDOP1. CONCLUSIONS/SIGNIFICANCE: Our results indicate that AmDOP2, like AmOA1, is coupled not only to cAMP, but also to calcium-signalling and moreover, that the two signalling pathways are independent upstream of phospholipase C-β activity. The striking similarity between the pharmacological properties of these 2 receptors suggests an underlying conservation of structural properties related to receptor

  13. Mapping glucose-mediated gut-to-brain signalling pathways in humans.

    Science.gov (United States)

    Little, Tanya J; McKie, Shane; Jones, Richard B; D'Amato, Massimo; Smith, Craig; Kiss, Orsolya; Thompson, David G; McLaughlin, John T

    2014-08-01

    Previous fMRI studies have demonstrated that glucose decreases the hypothalamic BOLD response in humans. However, the mechanisms underlying the CNS response to glucose have not been defined. We recently demonstrated that the slowing of gastric emptying by glucose is dependent on activation of the gut peptide cholecystokinin (CCK1) receptor. Using physiological functional magnetic resonance imaging this study aimed to determine the whole brain response to glucose, and whether CCK plays a central role. Changes in blood oxygenation level-dependent (BOLD) signal were monitored using fMRI in 12 healthy subjects following intragastric infusion (250ml) of: 1M glucose+predosing with dexloxiglumide (CCK1 receptor antagonist), 1M glucose+placebo, or 0.9% saline (control)+placebo, in a single-blind, randomised fashion. Gallbladder volume, blood glucose, insulin, and GLP-1 and CCK concentrations were determined. Hunger, fullness and nausea scores were also recorded. Intragastric glucose elevated plasma glucose, insulin, and GLP-1, and reduced gall bladder volume (an in vivo assay for CCK secretion). Glucose decreased BOLD signal, relative to saline, in the brainstem and hypothalamus as well as the cerebellum, right occipital cortex, putamen and thalamus. The timing of the BOLD signal decrease was negatively correlated with the rise in blood glucose and insulin levels. The glucose+dex arm highlighted a CCK1-receptor dependent increase in BOLD signal only in the motor cortex. Glucose induces site-specific differences in BOLD response in the human brain; the brainstem and hypothalamus show a CCK1 receptor-independent reduction which is likely to be mediated by a circulatory effect of glucose and insulin, whereas the motor cortex shows an early dexloxiglumide-reversible increase in signal, suggesting a CCK1 receptor-dependent neural pathway. Copyright © 2014. Published by Elsevier Inc.

  14. Mapping glucose-mediated gut-to-brain signalling pathways in humans☆

    Science.gov (United States)

    Little, Tanya J.; McKie, Shane; Jones, Richard B.; D'Amato, Massimo; Smith, Craig; Kiss, Orsolya; Thompson, David G.; McLaughlin, John T.

    2014-01-01

    Objectives Previous fMRI studies have demonstrated that glucose decreases the hypothalamic BOLD response in humans. However, the mechanisms underlying the CNS response to glucose have not been defined. We recently demonstrated that the slowing of gastric emptying by glucose is dependent on activation of the gut peptide cholecystokinin (CCK1) receptor. Using physiological functional magnetic resonance imaging this study aimed to determine the whole brain response to glucose, and whether CCK plays a central role. Experimental design Changes in blood oxygenation level-dependent (BOLD) signal were monitored using fMRI in 12 healthy subjects following intragastric infusion (250 ml) of: 1 M glucose + predosing with dexloxiglumide (CCK1 receptor antagonist), 1 M glucose + placebo, or 0.9% saline (control) + placebo, in a single-blind, randomised fashion. Gallbladder volume, blood glucose, insulin, and GLP-1 and CCK concentrations were determined. Hunger, fullness and nausea scores were also recorded. Principal observations Intragastric glucose elevated plasma glucose, insulin, and GLP-1, and reduced gall bladder volume (an in vivo assay for CCK secretion). Glucose decreased BOLD signal, relative to saline, in the brainstem and hypothalamus as well as the cerebellum, right occipital cortex, putamen and thalamus. The timing of the BOLD signal decrease was negatively correlated with the rise in blood glucose and insulin levels. The glucose + dex arm highlighted a CCK1-receptor dependent increase in BOLD signal only in the motor cortex. Conclusions Glucose induces site-specific differences in BOLD response in the human brain; the brainstem and hypothalamus show a CCK1 receptor-independent reduction which is likely to be mediated by a circulatory effect of glucose and insulin, whereas the motor cortex shows an early dexloxiglumide-reversible increase in signal, suggesting a CCK1 receptor-dependent neural pathway. PMID:24685436

  15. Pancreatic adenocarcinoma upregulated factor (PAUF) confers resistance to pancreatic cancer cells against oncolytic parvovirus H-1 infection through IFNA receptor-mediated signaling

    Energy Technology Data Exchange (ETDEWEB)

    Kaowinn, Sirichat; Cho, Il-Rae; Moon, Jeong; Jun, Seung Won; Kim, Chang Seok [BK21+, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-736 (Korea, Republic of); Kang, Ho Young [Department of Microbiology, Pusan National University, Busan 609-736 (Korea, Republic of); Kim, Manbok [Department of Medical Science, Dankook University College of Medicine, Cheonan 330-714 (Korea, Republic of); Koh, Sang Seok [Department of Biological Sciences, Dong-A University, Busan 604-714 (Korea, Republic of); Chung, Young-Hwa, E-mail: younghc@pusan.ac.kr [BK21+, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-736 (Korea, Republic of)

    2015-04-03

    Pancreatic adenocarcinoma upregulated factor (PAUF), a novel oncogene, plays a crucial role in the development of pancreatic cancer, including its metastasis and proliferation. Therefore, PAUF-expressing pancreatic cancer cells could be important targets for oncolytic virus-mediated treatment. Panc-1 cells expressing PAUF (Panc-PAUF) showed relative resistance to parvovirus H-1 infection compared with Panc-1 cells expressing an empty vector (Panc-Vec). Of interest, expression of type I IFN-α receptor (IFNAR) was higher in Panc-PAUF cells than in Panc-Vec cells. Increased expression of IFNAR in turn increased the activation of Stat1 and Tyk2 in Panc-PAUF cells compared with that in Panc-Vec cells. Suppression of Tyk2 and Stat1, which are important downstream molecules for IFN-α signaling, sensitized pancreatic cancer cells to parvovirus H-1-mediated apoptosis. Further, constitutive suppression of PAUF sensitized Bxpc3 pancreatic cancer cells to parvovirus H-1 infection. Taken together, these results suggested that PAUF conferred resistance to pancreatic cancer cells against oncolytic parvovirus H-1 infection through IFNAR-mediated signaling. - Highlights: • PAUF confers resistance against oncolytic parvovirus H-1 infection. • PAUF enhances the expression of IFNAR in Panc-1 cells. • Increased activation of Tyk2 or Stat1 by PAUF provides resistance to parvovirus H-1-mediated apoptosis. • Constitutive inhibition of PAUF enhances parvovirus H-1-mediated oncolysis of Bxpc3 pancreatic cancer cells.

  16. Pancreatic adenocarcinoma upregulated factor (PAUF) confers resistance to pancreatic cancer cells against oncolytic parvovirus H-1 infection through IFNA receptor-mediated signaling

    International Nuclear Information System (INIS)

    Kaowinn, Sirichat; Cho, Il-Rae; Moon, Jeong; Jun, Seung Won; Kim, Chang Seok; Kang, Ho Young; Kim, Manbok; Koh, Sang Seok; Chung, Young-Hwa

    2015-01-01

    Pancreatic adenocarcinoma upregulated factor (PAUF), a novel oncogene, plays a crucial role in the development of pancreatic cancer, including its metastasis and proliferation. Therefore, PAUF-expressing pancreatic cancer cells could be important targets for oncolytic virus-mediated treatment. Panc-1 cells expressing PAUF (Panc-PAUF) showed relative resistance to parvovirus H-1 infection compared with Panc-1 cells expressing an empty vector (Panc-Vec). Of interest, expression of type I IFN-α receptor (IFNAR) was higher in Panc-PAUF cells than in Panc-Vec cells. Increased expression of IFNAR in turn increased the activation of Stat1 and Tyk2 in Panc-PAUF cells compared with that in Panc-Vec cells. Suppression of Tyk2 and Stat1, which are important downstream molecules for IFN-α signaling, sensitized pancreatic cancer cells to parvovirus H-1-mediated apoptosis. Further, constitutive suppression of PAUF sensitized Bxpc3 pancreatic cancer cells to parvovirus H-1 infection. Taken together, these results suggested that PAUF conferred resistance to pancreatic cancer cells against oncolytic parvovirus H-1 infection through IFNAR-mediated signaling. - Highlights: • PAUF confers resistance against oncolytic parvovirus H-1 infection. • PAUF enhances the expression of IFNAR in Panc-1 cells. • Increased activation of Tyk2 or Stat1 by PAUF provides resistance to parvovirus H-1-mediated apoptosis. • Constitutive inhibition of PAUF enhances parvovirus H-1-mediated oncolysis of Bxpc3 pancreatic cancer cells

  17. Taste Receptor Signaling-- From Tongues to Lungs

    Science.gov (United States)

    Kinnamon, Sue C.

    2013-01-01

    Taste buds are the transducing endorgans of gustation. Each taste bud comprises 50–100 elongated cells, which extend from the basal lamina to the surface of the tongue, where their apical microvilli encounter taste stimuli in the oral cavity. Salts and acids utilize apically located ion channels for transduction, while bitter, sweet and umami (glutamate) stimuli utilize G protein coupled receptors (GPCRs) and second messenger signaling mechanisms. This review will focus on GPCR signaling mechanisms. Two classes of taste GPCRs have been identified, the T1Rs for sweet and umami (glutamate) stimuli, and the T2Rs for bitter stimuli. These low affinity GPCRs all couple to the same downstream signaling effectors that include Gβγ activation of PLCβ2, IP3-mediated release of Ca2+ from intracellular stores, and Ca2+-dependent activation of the monovalent selective cation channel, TrpM5. These events lead to membrane depolarization, action potentials, and release of ATP as a transmitter to activate gustatory afferents. The Gα subunit, α-gustducin, activates a phosphodiesterase to decrease intracellular cAMP levels, although the precise targets of cAMP have not been identified. With the molecular identification of the taste GPCRs, it has become clear that taste signaling is not limited to taste buds, but occurs in many cell types of the airways. These include solitary chemosensory cells, ciliated epithelial cells, and smooth muscle cells. Bitter receptors are most abundantly expressed in the airways, where they respond to irritating chemicals and promote protective airway reflexes, utilizing the same downstream signaling effectors as taste cells. PMID:21481196

  18. Anxiolytic-Like Effects of Increased Ghrelin Receptor Signaling in the Amygdala

    DEFF Research Database (Denmark)

    Jensen, Morten; Ratner, Cecilia; Rudenko, Olga

    2016-01-01

    BACKGROUND: Besides the well-known effects of ghrelin on adiposity and food intake regulation, the ghrelin system has been shown to regulate aspects of behavior including anxiety and stress. However, the effect of virus-mediated overexpression of the ghrelin receptor in the amygdala has...... not previously been addressed directly. METHOD: First, we examined the acute effect of peripheral ghrelin administration on anxiety- and depression-like behavior using the open field, elevated plus maze, forced swim and tail suspension tests. Next, we examined the effect of peripheral ghrelin administration...... and ghrelin receptor deficiency on stress in a familiar and social environment using the Intellicage system. Importantly, we also used a novel approach to study ghrelin receptor signaling in the brain by overexpressing the ghrelin receptor in the amygdala. We examined the effect of ghrelin receptor...

  19. Cigarette smoke regulates VEGFR2-mediated survival signaling in rat lungs

    Directory of Open Access Journals (Sweden)

    Stevenson Christopher S

    2010-02-01

    Full Text Available Abstract Background Vascular endothelial growth factor (VEGF and VEGF receptor 2 (VEGFR2-mediated survival signaling is critical to endothelial cell survival, maintenance of the vasculature and alveolar structure and regeneration of lung tissue. Reduced VEGF and VEGFR2 expression in emphysematous lungs has been linked to increased endothelial cell death and vascular regression. Previously, we have shown that CS down-regulated the VEGFR2 and its downstream signaling in mouse lungs. However, the VEGFR2-mediated survival signaling in response to oxidants/cigarette smoke (CS is not known. We hypothesized that CS exposure leads to disruption of VEGFR2-mediated endothelial survival signaling in rat lungs. Methods Adult male Sprague-Dawley rats were exposed CS for 3 days, 8 weeks and 6 months to investigate the effect of CS on VEGFR2-mediated survival signaling by measuring the Akt/PI3-kinase/eNOS downstream signaling in rat lungs. Results and Discussion We show that CS disrupts VEGFR2/PI3-kinase association leading to decreased Akt and eNOS phosphorylation. This may further alter the phosphorylation of the pro-apoptotic protein Bad and increase the Bad/Bcl-xl association. However, this was not associated with a significant lung cell death as evidenced by active caspase-3 levels. These data suggest that although CS altered the VEGFR2-mediated survival signaling in the rat lungs, but it was not sufficient to cause lung cell death. Conclusion The rat lungs exposed to CS in acute, sub-chronic and chronic levels may be representative of smokers where survival signaling is altered but was not associated with lung cell death whereas emphysema is known to be associated with lung cell apoptosis.

  20. Insulin/insulin like growth factors in cancer: new roles for the aryl hydrocarbon receptor, tumor resistance mechanisms and new blocking strategies

    Directory of Open Access Journals (Sweden)

    Travis B Salisbury

    2015-02-01

    Full Text Available The insulin-like growth factor 1 receptor (IGF1R and the insulin receptor (IR are receptor tyrosine kinases (RTKs that are expressed in cancer cells. The results of different studies indicate that tumor proliferation and survival is dependent on the IGF1R and IR, and that their inhibition leads to reductions in proliferation and increases in cell death. Molecular targeting therapies that have been used in solid tumors include: anti-IGF1R antibodies, anti-IGF1/IGF2 antibodies and small molecule inhibitors that suppress IGF1R and IR kinase activity. New advances in the molecular basis of anti-IGF1R blocking antibodies reveal they are biased agonists and promote the binding of IGF1 to integrin β3 receptors in some cancer cells. Our recent reports indicate that pharmacological aryl hydrocarbon receptor (AHR ligands inhibit breast cancer cell responses to IGFs, suggesting that targeting AHR may have benefit in cancers whose proliferation and survival are dependent on insulin/IGF signaling. Novel aspects of IGF1R/IR in cancer, such as biased agonism, integrin β3 signaling, AHR and new therapeutic targeting strategies will be discussed.

  1. Subthreshold pharmacological and genetic approaches to analyzing CaV2.1-mediated NMDA receptor signaling in short-term memory.

    Science.gov (United States)

    Takahashi, Eiki; Niimi, Kimie; Itakura, Chitoshi

    2010-10-25

    Ca(V)2.1 is highly expressed in the nervous system and plays an essential role in the presynaptic modulation of neurotransmitter release machinery. Recently, the antiepileptic drug levetiracetam was reported to inhibit presynaptic Ca(V)2.1 functions, reducing glutamate release in the hippocampus, although the precise physiological role of Ca(V)2.1-regulated synaptic functions in cognitive performance at the system level remains unknown. This study examined whether Ca(V)2.1 mediates hippocampus-dependent spatial short-term memory using the object location and Y-maze tests, and perirhinal cortex-dependent nonspatial short-term memory using the object recognition test, via a combined pharmacological and genetic approach. Heterozygous rolling Nagoya (rol/+) mice carrying the Ca(V)2.1alpha(1) mutation had normal spatial and nonspatial short-term memory. A 100mg/kg dose of levetiracetam, which is ineffective in wild-type controls, blocked spatial short-term memory in rol/+ mice. At 5mg/kg, the N-methyl-D-aspartate (NMDA) receptor blocker (+/-)-3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP), which is ineffective in wild-type controls, also blocked the spatial short-term memory in rol/+ mice. Furthermore, a combination of subthreshold doses of levetiracetam (25 mg/kg) and CPP (2.5mg/kg) triggered a spatial short-term memory deficit in rol/+ mice, but not in wild-type controls. Similar patterns of nonspatial short-term memory were observed in wild-type and rol/+ mice when injected with levetiracetam (0-300 mg/kg). These results indicate that Ca(V)2.1-mediated NMDA receptor signaling is critical in hippocampus-dependent spatial short-term memory and differs in various regions. The combination subthreshold pharmacological and genetic approach presented here is easily performed and can be used to study functional signaling pathways in neuronal circuits. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Are styrene oligomers in coastal sediments of an industrial area aryl hydrocarbon-receptor agonists?

    Science.gov (United States)

    Hong, Seongjin; Lee, Junghyun; Lee, Changkeun; Yoon, Seo Joon; Jeon, Seungyeon; Kwon, Bong-Oh; Lee, Jong-Hyeon; Giesy, John P; Khim, Jong Seong

    2016-06-01

    Effect-directed analysis (EDA) was performed to identify the major aryl hydrocarbon receptor (AhR) agonists in sediments collected from a highly industrialized area (Lake Shihwa, Korea). Great AhR-mediated potencies were found in fractions containing aromatic compounds with log Kow values of 5-8, and relatively great concentrations of styrene oligomers (SOs) and polycyclic aromatic hydrocarbons (PAHs) were detected in those fractions. Until now, there was little information on occurrences and toxic relative potencies (RePs) of SOs in coastal environments. In the present study; i) distributions and compositions, ii) AhR binding affinities, and iii) contributions of SOs to total AhR-mediated potencies were determined in coastal sediments. Elevated concentrations of 10 SOs were detected in sediments of inland creeks ranging from 61 to 740 ng g(-1) dry mass (dm), while lesser concentrations were found in inner (mean = 33 ng g(-1) dm) and outer regions (mean = 25 ng g(-1) dm) of the lake. Concentrations of PAHs in sediments were comparable to those of SOs. 2,4-diphenyl-1-butene (SD3) was the predominant SO analogue in sediments. SOs and PAHs were accumulated in sediments near sources, and could not be transported to remote regions due to their hydrophobicity. RePs of 3 SOs could be derived, which were 1000- to 10,000-fold less than that of one representative potent AhR active PAH, benzo[a]pyrene. Although concentrations of SOs in sediments were comparable to those of PAHs, the collective contribution of SOs to total AhR-mediated potencies were rather small (coastal environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Epidermal growth factor receptor signalling in human breast cancer cells operates parallel to estrogen receptor α signalling and results in tamoxifen insensitive proliferation

    International Nuclear Information System (INIS)

    Moerkens, Marja; Zhang, Yinghui; Wester, Lynn; Water, Bob van de; Meerman, John HN

    2014-01-01

    Tamoxifen resistance is a major problem in the treatment of estrogen receptor (ER) α -positive breast cancer patients. Although the mechanisms behind tamoxifen resistance are still not completely understood, clinical data suggests that increased expression of receptor tyrosine kinases is involved. Here, we studied the estrogen and anti-estrogen sensitivity of human breast cancer MCF7 cells that have a moderate, retroviral-mediated, ectopic expression of epidermal growth factor receptor (MCF7-EGFR). Proliferation of MCF7-EGFR and parental cells was induced by 17β-estradiol (E2), epidermal growth factor (EGF) or a combination of these. Inhibition of proliferation under these conditions was investigated with 4-hydroxy-tamoxifen (TAM) or fulvestrant at 10 -12 to 10 -6 M. Cells were lysed at different time points to determine the phosphorylation status of EGFR, MAPK 1/3 , AKT and the expression of ERα. Knockdown of target genes was established using smartpool siRNAs. Transcriptomics analysis was done 6 hr after stimulation with growth factors using Affymetrix HG-U133 PM array plates. While proliferation of parental MCF7 cells could only be induced by E2, proliferation of MCF7-EGFR cells could be induced by either E2 or EGF. Treatment with TAM or fulvestrant did significantly inhibit proliferation of MCF7-EGFR cells stimulated with E2 alone. EGF treatment of E2/TAM treated cells led to a marked cell proliferation thereby overruling the anti-estrogen-mediated inhibition of cell proliferation. Under these conditions, TAM however did still inhibit ERα- mediated transcription. While siRNA-mediated knock-down of EGFR inhibited the EGF- driven proliferation under TAM/E2/EGF condition, knock down of ERα did not. The TAM resistant cell proliferation mediated by the conditional EGFR-signaling may be dependent on the PI3K/Akt pathway but not the MEK/MAPK pathway, since a MEK inhibitor (U0126), did not block the proliferation. Transcriptomic analysis under the various E2/TAM

  4. Proliferative signaling initiated in ACTH receptors

    Directory of Open Access Journals (Sweden)

    C.F.P. Lotfi

    2000-10-01

    Full Text Available This article reviews recent results of studies aiming to elucidate modes of integrating signals initiated in ACTH receptors and FGF2 receptors, within the network system of signal transduction found in Y1 adrenocortical cells. These modes of signal integration should be central to the mechanisms underlying the regulation of the G0->G1->S transition in the adrenal cell cycle. FGF2 elicits a strong mitogenic response in G0/G1-arrested Y1 adrenocortical cells, that includes a rapid and transient activation of extracellular signal-regulated kinases-mitogen-activated protein kinases (ERK-MAPK (2 to 10 min, b transcription activation of c-fos, c-jun and c-myc genes (10 to 30 min, c induction of c-Fos and c-Myc proteins by 1 h and cyclin D1 protein by 5 h, and d onset of DNA synthesis stimulation within 8 h. ACTH, itself a weak mitogen, interacts with FGF2 in a complex manner, blocking the FGF2 mitogenic response during the early and middle G1 phase, keeping ERK-MAPK activation and c-Fos and cyclin D1 induction at maximal levels, but post-transcriptionally inhibiting c-Myc expression. c-Fos and c-Jun proteins are mediators in both the strong and the weak mitogenic responses respectively triggered by FGF2 and ACTH. Induction of c-Fos and stimulation of DNA synthesis by ACTH are independent of PKA and are inhibited by the PKC inhibitor GF109203X. In addition, ACTH is a poor activator of ERK-MAPK, but c-Fos induction and DNA synthesis stimulation by ACTH are strongly inhibited by the inhibitor of MEK1 PD98059.

  5. Transcriptomic assessment of resistance to effects of an aryl hydrocarbon receptor (AHR agonist in embryos of Atlantic killifish (Fundulus heteroclitus from a marine Superfund site

    Directory of Open Access Journals (Sweden)

    Franks Diana G

    2011-05-01

    Full Text Available Abstract Background Populations of Atlantic killifish (Fundulus heteroclitus have evolved resistance to the embryotoxic effects of polychlorinated biphenyls (PCBs and other halogenated and nonhalogenated aromatic hydrocarbons that act through an aryl hydrocarbon receptor (AHR-dependent signaling pathway. The resistance is accompanied by reduced sensitivity to induction of cytochrome P450 1A (CYP1A, a widely used biomarker of aromatic hydrocarbon exposure and effect, but whether the reduced sensitivity is specific to CYP1A or reflects a genome-wide reduction in responsiveness to all AHR-mediated changes in gene expression is unknown. We compared gene expression profiles and the response to 3,3',4,4',5-pentachlorobiphenyl (PCB-126 exposure in embryos (5 and 10 dpf and larvae (15 dpf from F. heteroclitus populations inhabiting the New Bedford Harbor, Massachusetts (NBH Superfund site (PCB-resistant and a reference site, Scorton Creek, Massachusetts (SC; PCB-sensitive. Results Analysis using a 7,000-gene cDNA array revealed striking differences in responsiveness to PCB-126 between the populations; the differences occur at all three stages examined. There was a sizeable set of PCB-responsive genes in the sensitive SC population, a much smaller set of PCB-responsive genes in NBH fish, and few similarities in PCB-responsive genes between the two populations. Most of the array results were confirmed, and additional PCB-regulated genes identified, by RNA-Seq (deep pyrosequencing. Conclusions The results suggest that NBH fish possess a gene regulatory defect that is not specific to one target gene such as CYP1A but rather lies in a regulatory pathway that controls the transcriptional response of multiple genes to PCB exposure. The results are consistent with genome-wide disruption of AHR-dependent signaling in NBH fish.

  6. An endogenous aryl hydrocarbon receptor ligand inhibits proliferation and migration of human ovarian cancer cells.

    Science.gov (United States)

    Wang, Kai; Li, Yan; Jiang, Yi-Zhou; Dai, Cai-Feng; Patankar, Manish S; Song, Jia-Sheng; Zheng, Jing

    2013-10-28

    The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor mediates many biological processes. Herein, we investigated if 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE, an endogenous AhR ligand) regulated proliferation and migration of human ovarian cancer cells via AhR. We found that AhR was widely present in many histotypes of ovarian cancer tissues. ITE suppressed OVCAR-3 cell proliferation and SKOV-3 cell migration in vitro, which were blocked by AhR knockdown. ITE also suppressed OVCAR-3 cell growth in mice. These data suggest that the ITE might potentially be used for therapeutic intervention for at least a subset of human ovarian cancer. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. Pituitary adenylate cyclase 1 receptor internalization and endosomal signaling mediate the pituitary adenylate cyclase activating polypeptide-induced increase in guinea pig cardiac neuron excitability.

    Science.gov (United States)

    Merriam, Laura A; Baran, Caitlin N; Girard, Beatrice M; Hardwick, Jean C; May, Victor; Parsons, Rodney L

    2013-03-06

    After G-protein-coupled receptor activation and signaling at the plasma membrane, the receptor complex is often rapidly internalized via endocytic vesicles for trafficking into various intracellular compartments and pathways. The formation of signaling endosomes is recognized as a mechanism that produces sustained intracellular signals that may be distinct from those generated at the cell surface for cellular responses including growth, differentiation, and survival. Pituitary adenylate cyclase activating polypeptide (PACAP; Adcyap1) is a potent neurotransmitter/neurotrophic peptide and mediates its diverse cellular functions in part through internalization of its cognate G-protein-coupled PAC1 receptor (PAC1R; Adcyap1r1). In the present study, we examined whether PAC1R endocytosis participates in the regulation of neuronal excitability. Although PACAP increased excitability in 90% of guinea pig cardiac neurons, pretreatment with Pitstop 2 or dynasore to inhibit clathrin and dynamin I/II, respectively, suppressed the PACAP effect. Subsequent addition of inhibitor after the PACAP-induced increase in excitability developed gradually attenuated excitability with no changes in action potential properties. Likewise, the PACAP-induced increase in excitability was markedly decreased at ambient temperature. Receptor trafficking studies with GFP-PAC1 cell lines demonstrated the efficacy of Pitstop 2, dynasore, and low temperatures at suppressing PAC1R endocytosis. In contrast, brefeldin A pretreatments to disrupt Golgi vesicle trafficking did not blunt the PACAP effect, and PACAP/PAC1R signaling still increased neuronal cAMP production even with endocytic blockade. Our results demonstrate that PACAP/PAC1R complex endocytosis is a key step for the PACAP modulation of cardiac neuron excitability.

  8. Regulation of EGF Receptor Signaling by Histone Deacetylase 6 (HDAC6)-Mediated Reversible Acetylation

    National Research Council Canada - National Science Library

    Kovacs, Jeffrey J

    2005-01-01

    One of the hallmarks of cancer is uncontrolled cell growth and proliferation. In cells, a group of proteins called growth factor receptors are responsible for responding to the signals that trigger proliferation...

  9. The role of insulin receptor signaling in the brain.

    Science.gov (United States)

    Plum, Leona; Schubert, Markus; Brüning, Jens C

    2005-03-01

    The insulin receptor (IR) is expressed in various regions of the developing and adult brain, and its functions have become the focus of recent research. Insulin enters the central nervous system (CNS) through the blood-brain barrier by receptor-mediated transport to regulate food intake, sympathetic activity and peripheral insulin action through the inhibition of hepatic gluconeogenesis and reproductive endocrinology. On a molecular level, some of the effects of insulin converge with those of the leptin signaling machinery at the point of activation of phosphatidylinositol 3-kinase (PI3K), resulting in the regulation of ATP-dependent potassium channels. Furthermore, insulin inhibits neuronal apoptosis via activation of protein kinase B in vitro, and it regulates phosphorylation of tau, metabolism of the amyloid precursor protein and clearance of beta-amyloid from the brain in vivo. These findings indicate that neuronal IR signaling has a direct role in the link between energy homeostasis, reproduction and the development of neurodegenerative diseases.

  10. Adenosine A2A receptor-dependent proliferation of pulmonary endothelial cells is mediated through calcium mobilization, PI3-kinase and ERK1/2 pathways

    International Nuclear Information System (INIS)

    Ahmad, Aftab; Schaack, Jerome B.; White, Carl W.; Ahmad, Shama

    2013-01-01

    Highlights: •A 2A receptor-induced pulmonary endothelial growth is mediated by PI3K and ERK1/2. •Cytosolic calcium mobilization is also critical for pulmonary endothelial growth. •Effectors of A 2A receptor, like tyrosine kinases and cAMP increase PI3K/Akt signaling. •Activation of A 2A receptor can contribute to vascular remodeling. -- Abstract: Hypoxia and HIF-2α-dependent A 2A receptor expression and activation increase proliferation of human lung microvascular endothelial cells (HLMVECs). This study was undertaken to investigate the signaling mechanisms that mediate the proliferative effects of A 2A receptor. A 2A receptor-mediated proliferation of HLMVECs was inhibited by intracellular calcium chelation, and by specific inhibitors of ERK1/2 and PI3-kinase (PI3K). The adenosine A 2A receptor agonist CGS21680 caused intracellular calcium mobilization in controls and, to a greater extent, in A 2A receptor-overexpressing HLMVECs. Adenoviral-mediated A 2A receptor overexpression as well as receptor activation by CGS21680 caused increased PI3K activity and Akt phosphorylation. Cells overexpressing A 2A receptor also manifested enhanced ERK1/2 phosphorylation upon CGS21680 treatment. A 2A receptor activation also caused enhanced cAMP production. Likewise, treatment with 8Br-cAMP increased PI3K activity. Hence A 2A receptor-mediated cAMP production and PI3K and Akt phosphorylation are potential mediators of the A 2A -mediated proliferative response of HLMVECs. Cytosolic calcium mobilization and ERK1/2 phosphorylation are other critical effectors of HLMVEC proliferation and growth. These studies underscore the importance of adenosine A 2A receptor in activation of survival and proliferative pathways in pulmonary endothelial cells that are mediated through PI3K/Akt and ERK1/2 pathways

  11. Azadirachtin interacts with retinoic acid receptors and inhibits retinoic acid-mediated biological responses.

    Science.gov (United States)

    Thoh, Maikho; Babajan, Banaganapalli; Raghavendra, Pongali B; Sureshkumar, Chitta; Manna, Sunil K

    2011-02-11

    Considering the role of retinoids in regulation of more than 500 genes involved in cell cycle and growth arrest, a detailed understanding of the mechanism and its regulation is useful for therapy. The extract of the medicinal plant Neem (Azadirachta indica) is used against several ailments especially for anti-inflammatory, anti-itching, spermicidal, anticancer, and insecticidal activities. In this report we prove the detailed mechanism on the regulation of retinoic acid-mediated cell signaling by azadirachtin, active components of neem extract. Azadirachtin repressed all trans-retinoic acid (ATRA)-mediated nuclear transcription factor κB (NF-κB) activation, not the DNA binding but the NF-κB-dependent gene expression. It did not inhibit IκBα degradation, IκBα kinase activity, or p65 phosphorylation and its nuclear translocation but inhibited NF-κB-dependent reporter gene expression. Azadirachtin inhibited TRAF6-mediated, but not TRAF2-mediated NF-κB activation. It inhibited ATRA-induced Sp1 and CREB (cAMP-response element-binding protein) DNA binding. Azadirachtin inhibited ATRA binding with retinoid receptors, which is supported by biochemical and in silico evidences. Azadirachtin showed strong interaction with retinoid receptors. It suppressed ATRA-mediated removal of retinoid receptors, bound with DNA by inhibiting ATRA binding to its receptors. Overall, our data suggest that azadirachtin interacts with retinoic acid receptors and suppresses ATRA binding, inhibits falling off the receptors, and activates transcription factors like CREB, Sp1, NF-κB, etc. Thus, azadirachtin exerts anti-inflammatory and anti-metastatic responses by a novel pathway that would be beneficial for further anti-inflammatory and anti-cancer therapies.

  12. Azadirachtin Interacts with Retinoic Acid Receptors and Inhibits Retinoic Acid-mediated Biological Responses*

    Science.gov (United States)

    Thoh, Maikho; Babajan, Banaganapalli; Raghavendra, Pongali B.; Sureshkumar, Chitta; Manna, Sunil K.

    2011-01-01

    Considering the role of retinoids in regulation of more than 500 genes involved in cell cycle and growth arrest, a detailed understanding of the mechanism and its regulation is useful for therapy. The extract of the medicinal plant Neem (Azadirachta indica) is used against several ailments especially for anti-inflammatory, anti-itching, spermicidal, anticancer, and insecticidal activities. In this report we prove the detailed mechanism on the regulation of retinoic acid-mediated cell signaling by azadirachtin, active components of neem extract. Azadirachtin repressed all trans-retinoic acid (ATRA)-mediated nuclear transcription factor κB (NF-κB) activation, not the DNA binding but the NF-κB-dependent gene expression. It did not inhibit IκBα degradation, IκBα kinase activity, or p65 phosphorylation and its nuclear translocation but inhibited NF-κB-dependent reporter gene expression. Azadirachtin inhibited TRAF6-mediated, but not TRAF2-mediated NF-κB activation. It inhibited ATRA-induced Sp1 and CREB (cAMP-response element-binding protein) DNA binding. Azadirachtin inhibited ATRA binding with retinoid receptors, which is supported by biochemical and in silico evidences. Azadirachtin showed strong interaction with retinoid receptors. It suppressed ATRA-mediated removal of retinoid receptors, bound with DNA by inhibiting ATRA binding to its receptors. Overall, our data suggest that azadirachtin interacts with retinoic acid receptors and suppresses ATRA binding, inhibits falling off the receptors, and activates transcription factors like CREB, Sp1, NF-κB, etc. Thus, azadirachtin exerts anti-inflammatory and anti-metastatic responses by a novel pathway that would be beneficial for further anti-inflammatory and anti-cancer therapies. PMID:21127062

  13. Halogen-Mediated Conversion of Hydrocarbons to Commodities.

    Science.gov (United States)

    Lin, Ronghe; Amrute, Amol P; Pérez-Ramírez, Javier

    2017-03-08

    Halogen chemistry plays a central role in the industrial manufacture of various important chemicals, pharmaceuticals, and polymers. It involves the reaction of halogens or halides with hydrocarbons, leading to intermediate compounds which are readily converted to valuable commodities. These transformations, predominantly mediated by heterogeneous catalysts, have long been successfully applied in the production of polymers. Recent discoveries of abundant conventional and unconventional natural gas reserves have revitalized strong interest in these processes as the most cost-effective gas-to-liquid technologies. This review provides an in-depth analysis of the fundamental understanding and applied relevance of halogen chemistry in polymer industries (polyvinyl chloride, polyurethanes, and polycarbonates) and in the activation of light hydrocarbons. The reactions of particular interest include halogenation and oxyhalogenation of alkanes and alkenes, dehydrogenation of alkanes, conversion of alkyl halides, and oxidation of hydrogen halides, with emphasis on the catalyst, reactor, and process design. Perspectives on the challenges and directions for future development in this exciting field are provided.

  14. Prostaglandin E2 potentiation of P2X3 receptor mediated currents in dorsal root ganglion neurons

    Directory of Open Access Journals (Sweden)

    Huang Li-Yen

    2007-08-01

    Full Text Available Abstract Prostaglandin E2 (PGE2 is a well-known inflammatory mediator that enhances the excitability of DRG neurons. Homomeric P2X3 and heteromeric P2X2/3 receptors are abundantly expressed in dorsal root ganglia (DRG neurons and participate in the transmission of nociceptive signals. The interaction between PGE2 and P2X3 receptors has not been well delineated. We studied the actions of PGE2 on ATP-activated currents in dissociated DRG neurons under voltage-clamp conditions. PGE2 had no effects on P2X2/3 receptor-mediated responses, but significantly potentiated fast-inactivating ATP currents mediated by homomeric P2X3 receptors. PGE2 exerted its action by activating EP3 receptors. To study the mechanism underlying the action of PGE2, we found that the adenylyl cyclase activator, forskolin and the membrane-permeable cAMP analogue, 8-Br-cAMP increased ATP currents, mimicking the effect of PGE2. In addition, forskolin occluded the enhancement produced by PGE2. The protein kinase A (PKA inhibitors, H89 and PKA-I blocked the PGE2 effect. In contrast, the PKC inhibitor, bisindolymaleimide (Bis did not change the potentiating action of PGE2. We further showed that PGE2 enhanced α,β-meATP-induced allodynia and hyperalgesia and the enhancement was blocked by H89. These observations suggest that PGE2 binds to EP3 receptors, resulting in the activation of cAMP/PKA signaling pathway and leading to an enhancement of P2X3 homomeric receptor-mediated ATP responses in DRG neurons.

  15. L-Cysteine-induced up-regulation of the low-density lipoprotein receptor is mediated via a transforming growth factor-alpha signalling pathway.

    Science.gov (United States)

    Tanaka, Yuma; Shimada, Masaya; Nagaoka, Satoshi

    2014-02-14

    Sulphur-containing amino acids regulate plasma cholesterol levels in animals and humans. However, their mechanism of action remains unclear. Low-density lipoprotein receptor (LDLR) plays an important role in cholesterol metabolism. We therefore investigated the effects of sulphur-containing amino acids on the expression of LDLR in hepatocytes. HepG2 cells were cultured in Dulbecco's Modified Eagle's Medium with or without sulphur-containing amino acids and cysteine-containing compounds. We found that L-cysteine increased LDLR mRNA and enhanced LDLR gene promoter activity through the extracellular-signal-related kinase and p38 mitogen-activated protein kinase signalling pathways in HepG2 cells. Moreover, we observed that L-cysteine stimulated the release of transforming growth factor-alpha (TGF-α) and that TGF-α increased the LDLR mRNA levels. This study provides a report of the L-cysteine mediated up-regulation of the LDLR expression via TGF-α signalling pathway. Our findings provide insights into cholesterol homeostasis and amino acid signalling. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Silver Nanoparticle-Directed Mast Cell Degranulation Is Mediated through Calcium and PI3K Signaling Independent of the High Affinity IgE Receptor.

    Directory of Open Access Journals (Sweden)

    Nasser B Alsaleh

    Full Text Available Engineered nanomaterial (ENM-mediated toxicity often involves triggering immune responses. Mast cells can regulate both innate and adaptive immune responses and are key effectors in allergic diseases and inflammation. Silver nanoparticles (AgNPs are one of the most prevalent nanomaterials used in consumer products due to their antimicrobial properties. We have previously shown that AgNPs induce mast cell degranulation that was dependent on nanoparticle physicochemical properties. Furthermore, we identified a role for scavenger receptor B1 (SR-B1 in AgNP-mediated mast cell degranulation. However, it is completely unknown how SR-B1 mediates mast cell degranulation and the intracellular signaling pathways involved. In the current study, we hypothesized that SR-B1 interaction with AgNPs directs mast cell degranulation through activation of signal transduction pathways that culminate in an increase in intracellular calcium signal leading to mast cell degranulation. For these studies, we utilized bone marrow-derived mast cells (BMMC isolated from C57Bl/6 mice and RBL-2H3 cells (rat basophilic leukemia cell line. Our data support our hypothesis and show that AgNP-directed mast cell degranulation involves activation of PI3K, PLCγ and an increase in intracellular calcium levels. Moreover, we found that influx of extracellular calcium is required for the cells to degranulate in response to AgNP exposure and is mediated at least partially via the CRAC channels. Taken together, our results provide new insights into AgNP-induced mast cell activation that are key for designing novel ENMs that are devoid of immune system activation.

  17. Adaptive and innate immune reactions regulating mast cell activation: from receptor-mediated signaling to responses

    DEFF Research Database (Denmark)

    Tkaczyk, Christine; Jensen, Bettina M; Iwaki, Shoko

    2006-01-01

    differentially activate multiple signaling pathways within the mast cells required for the generation and/or release of inflammatory mediators. Thus, the composition of the suite of mediators released and the physiologic ramifications of these responses are dependent on the stimuli and the microenvironment...

  18. Phenobarbital but not diazepam reduces AMPA/Kainate receptor mediated currents and exerts opposite actions on initial seizures in the neonatal rat hippocampus

    Directory of Open Access Journals (Sweden)

    Romain eNardou

    2011-07-01

    Full Text Available Diazepam (DZP and phenobarbital (PB are extensively used as first and second line drugs to treat acute seizures in neonates and their actions are thought to be mediated by increasing the actions of GABAergic signals. Yet, their efficacy is variable with occasional failure or even aggravation of recurrent seizures questioning whether other mechanisms are not involved in their actions. We have now compared the effects of DZP and PB on ictal-like events (ILEs in an in vitro model of mirror focus (MF. Using the three-compartment chamber with the two immature hippocampi and their commissural fibers placed in 3 different compartments, kainate was applied to one hippocampus and PB or DZP to the contralateral one, either after one ILE or after many recurrent ILEs that produce an epileptogenic MF. We report that in contrast to PB, DZP aggravated propagating ILEs from the start and did not prevent the formation of MF. PB reduced and DZP increased the network driven Giant Depolarising Potentials suggesting that PB may exert additional actions that are not mediated by GABA signalling. In keeping with this, PB but not DZP reduced field potentials recorded in the presence of GABA and NMDA receptor antagonists. These effects are mediated by a direct action on AMPA/Kainate receptors since PB: i reduced AMPA/Kainate receptor mediated currents induced by focal applications of glutamate ; ii reduced the amplitude and the frequency of AMPA but not NMDA receptor mediated miniature EPSCs; iii augmented the number of AMPA receptor mediated EPSCs failures evoked by minimal stimulation. These effects persisted in MF. Therefore, PB exerts its anticonvulsive actions partly by reducing AMPA/Kainate receptors mediated EPSCs in addition to the pro-GABA effects. We suggest that PB may have advantage over DZP in the treatment of initial neonatal seizures since the additional reduction of glutamate receptors mediated signals may reduce the severity of neonatal seizures.

  19. Death receptor and mitochondria-mediated hepatocyte apoptosis underlies liver dysfunction in rats exposed to organic pollutants from drinking water.

    Science.gov (United States)

    Yang, Guanghong; Zhou, Zhiwei; Cen, Yanli; Gui, Xiaolin; Zeng, Qibing; Ao, Yunxia; Li, Qian; Wang, Shiran; Li, Jun; Zhang, Aihua

    2015-01-01

    Persistent organic pollutants in drinking water impose a substantial risk to the health of human beings, but the evidence for liver toxic effect and the underlying mechanism is scarce. This study aimed to examine the liver toxicity and elucidate the molecular mechanism of organic pollutants in drinking water in normal human liver cell line L02 cells and rats. The data showed that organic extraction from drinking water remarkably impaired rat liver function, evident from the increase in the serum level of alanine aminotransferase, aspartate aminotransferase, and cholinesterase, and decrease in the serum level of total protein and albumin. Organic extraction dose-dependently induced apoptotic cell death in rat liver and L02 cells. Administration of rats with organic extraction promoted death receptor signaling pathway through the increase in gene and protein expression level of Fas and FasL. Treatment of rats with organic extraction also induced mitochondria-mediated apoptosis via increasing the expression level of proapoptotic protein, Bax, but decreasing the expression level of antiapoptotic protein, Bcl-2, resulting in an upregulation of cytochrome c and activation of caspase cascade at both transcriptional and post-transcriptional levels. Moreover, organic extraction enhanced rat liver glutathione S-transferases activity and reactive oxygen species generation, and upregulated aryl hydrocarbon receptor and glutathione S-transferase A1 at both transcriptional and translational levels. Collectively, the results indicate that organic extraction from drinking water impairs liver function, with the involvement of death receptor and mitochondria-mediated apoptosis in rats. The results provide evidence and molecular mechanisms for organic pollutants in drinking water-induced liver dysfunction, which may help prevent and treat organic extraction-induced liver injury.

  20. Death receptor and mitochondria-mediated hepatocyte apoptosis underlies liver dysfunction in rats exposed to organic pollutants from drinking water

    Science.gov (United States)

    Yang, Guanghong; Zhou, Zhiwei; Cen, Yanli; Gui, Xiaolin; Zeng, Qibing; Ao, Yunxia; Li, Qian; Wang, Shiran; Li, Jun; Zhang, Aihua

    2015-01-01

    Persistent organic pollutants in drinking water impose a substantial risk to the health of human beings, but the evidence for liver toxic effect and the underlying mechanism is scarce. This study aimed to examine the liver toxicity and elucidate the molecular mechanism of organic pollutants in drinking water in normal human liver cell line L02 cells and rats. The data showed that organic extraction from drinking water remarkably impaired rat liver function, evident from the increase in the serum level of alanine aminotransferase, aspartate aminotransferase, and cholinesterase, and decrease in the serum level of total protein and albumin. Organic extraction dose-dependently induced apoptotic cell death in rat liver and L02 cells. Administration of rats with organic extraction promoted death receptor signaling pathway through the increase in gene and protein expression level of Fas and FasL. Treatment of rats with organic extraction also induced mitochondria-mediated apoptosis via increasing the expression level of proapoptotic protein, Bax, but decreasing the expression level of antiapoptotic protein, Bcl-2, resulting in an upregulation of cytochrome c and activation of caspase cascade at both transcriptional and post-transcriptional levels. Moreover, organic extraction enhanced rat liver glutathione S-transferases activity and reactive oxygen species generation, and upregulated aryl hydrocarbon receptor and glutathione S-transferase A1 at both transcriptional and translational levels. Collectively, the results indicate that organic extraction from drinking water impairs liver function, with the involvement of death receptor and mitochondria-mediated apoptosis in rats. The results provide evidence and molecular mechanisms for organic pollutants in drinking water-induced liver dysfunction, which may help prevent and treat organic extraction-induced liver injury. PMID:26316710

  1. Binding Mode and Structure-Activity Relationships of ITE as an Aryl Hydrocarbon Receptor (AhR) Agonist.

    Science.gov (United States)

    Dolciami, Daniela; Gargaro, Marco; Cerra, Bruno; Scalisi, Giulia; Bagnoli, Luana; Servillo, Giuseppe; Fazia, Maria Agnese Della; Puccetti, Paolo; Quintana, Francisco J; Fallarino, Francesca; Macchiarulo, Antonio

    2018-02-06

    Discovered as a modulator of the toxic response to environmental pollutants, aryl hydrocarbon receptor (AhR) has recently gained attention for its involvement in various physiological and pathological pathways. AhR is a ligand-dependent transcription factor activated by a large array of chemical compounds, which include metabolites of l-tryptophan (l-Trp) catabolism as endogenous ligands of the receptor. Among these, 2-(1'H-indole-3'-carbonyl)thiazole-4-carboxylic acid methyl ester (ITE) has attracted interest in the scientific community, being endowed with nontoxic, immunomodulatory, and anticancer AhR-mediated functions. So far, no information about the binding mode and interactions of ITE with AhR is available. In this study, we used docking and molecular dynamics to propose a putative binding mode of ITE into the ligand binding pocket of AhR. Mutagenesis studies were then instrumental in validating the proposed binding mode, identifying His 285 and Tyr 316 as important key residues for ligand-dependent receptor activation. Finally, a set of ITE analogues was synthesized and tested to further probe molecular interactions of ITE to AhR and characterize the relevance of specific functional groups in the chemical structure for receptor activity. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Hindbrain ghrelin receptor signaling is sufficient to maintain fasting glucose.

    Directory of Open Access Journals (Sweden)

    Michael M Scott

    Full Text Available The neuronal coordination of metabolic homeostasis requires the integration of hormonal signals with multiple interrelated central neuronal circuits to produce appropriate levels of food intake, energy expenditure and fuel availability. Ghrelin, a peripherally produced peptide hormone, circulates at high concentrations during nutrient scarcity. Ghrelin promotes food intake, an action lost in ghrelin receptor null mice and also helps maintain fasting blood glucose levels, ensuring an adequate supply of nutrients to the central nervous system. To better understand mechanisms of ghrelin action, we have examined the roles of ghrelin receptor (GHSR expression in the mouse hindbrain. Notably, selective hindbrain ghrelin receptor expression was not sufficient to restore ghrelin-stimulated food intake. In contrast, the lowered fasting blood glucose levels observed in ghrelin receptor-deficient mice were returned to wild-type levels by selective re-expression of the ghrelin receptor in the hindbrain. Our results demonstrate the distributed nature of the neurons mediating ghrelin action.

  3. Estrogen promotes megakaryocyte polyploidization via estrogen receptor beta-mediated transcription of GATA1.

    Science.gov (United States)

    Du, C; Xu, Y; Yang, K; Chen, S; Wang, X; Wang, S; Wang, C; Shen, M; Chen, F; Chen, M; Zeng, D; Li, F; Wang, T; Wang, F; Zhao, J; Ai, G; Cheng, T; Su, Y; Wang, J

    2017-04-01

    Estrogen is reported to be involved in thrombopoiesis and the disruption of its signaling may cause myeloproliferative disease, yet the underlying mechanisms remain largely unknown. GATA-binding factor 1 (GATA1) is a key regulator of megakaryocyte (MK) differentiation and its deficiency will lead to megakaryoblastic leukemia. Here we show that estrogen can dose-dependently promote MK polyploidization and maturation via activation of estrogen receptor beta (ERβ), accompanied by a significant upregulation of GATA1. Chromatin immunoprecipitation and a dual luciferase assay demonstrate that ERβ can directly bind the promoter region of GATA1 and activate its transcription. Steroid receptor coactivator 3 (SRC3) is involved in ERβ-mediated GATA1 transcription. The deficiency of ERβ or SRC3, similar to the inhibition of GATA1, leads to the impediment of estrogen-induced MK polyploidization and platelet production. Further investigations reveal that signal transducer and activator of transcription 1 signaling pathway downstream of GATA1 has a crucial role in estrogen-induced MK polyploidization, and ERβ-mediated GATA1 upregulation subsequently enhances nuclear factor erythroid-derived 2 expression, thereby promoting proplatelet formation and platelet release. Our study provides a deep insight into the molecular mechanisms of estrogen signaling in regulating thrombopoiesis and the pathogenesis of ER deficiency-related leukemia.

  4. Estrogen receptor signaling in prostate cancer: Implications for carcinogenesis and tumor progression.

    Science.gov (United States)

    Bonkhoff, Helmut

    2018-01-01

    The androgen receptor (AR) is the classical target for prostate cancer prevention and treatment, but more recently estrogens and their receptors have also been implicated in prostate cancer development and tumor progression. Recent experimental and clinical data were reviewed to elucidate pathogenetic mechanisms how estrogens and their receptors may affect prostate carcinogenesis and tumor progression. The estrogen receptor beta (ERβ) is the most prevalent ER in the human prostate, while the estrogen receptor alpha (ERα) is restricted to basal cells of the prostatic epithelium and stromal cells. In high grade prostatic intraepithelial neoplasia (HGPIN), the ERα is up-regulated and most likely mediates carcinogenic effects of estradiol as demonstrated in animal models. The partial loss of the ERβ in HGPIN indicates that the ERβ acts as a tumor suppressor. The tumor promoting function of the TMPRSS2-ERG fusion, a major driver of prostate carcinogenesis, is triggered by the ERα and repressed by the ERβ. The ERβ is generally retained in hormone naïve and metastatic prostate cancer, but is partially lost in castration resistant disease. The progressive emergence of the ERα and ERα-regulated genes (eg, progesterone receptor (PR), PS2, TMPRSS2-ERG fusion, and NEAT1) during prostate cancer progression and hormone refractory disease suggests that these tumors can bypass the AR by using estrogens and progestins for their growth. In addition, nongenomic estrogen signaling pathways mediated by orphan receptors (eg, GPR30 and ERRα) has also been implicated in prostate cancer progression. Increasing evidences demonstrate that local estrogen signaling mechanisms are required for prostate carcinogenesis and tumor progression. Despite the recent progress in this research topic, the translation of the current information into potential therapeutic applications remains highly challenging and clearly warrants further investigation. © 2017 Wiley Periodicals, Inc.

  5. Regulated internalization of NMDA receptors drives PKD1-mediated suppression of the activity of residual cell-surface NMDA receptors.

    Science.gov (United States)

    Fang, Xiao-Qian; Qiao, Haifa; Groveman, Bradley R; Feng, Shuang; Pflueger, Melissa; Xin, Wen-Kuan; Ali, Mohammad K; Lin, Shuang-Xiu; Xu, Jindong; Duclot, Florian; Kabbaj, Mohamed; Wang, Wei; Ding, Xin-Sheng; Santiago-Sim, Teresa; Jiang, Xing-Hong; Salter, Michael W; Yu, Xian-Min

    2015-11-19

    Constitutive and regulated internalization of cell surface proteins has been extensively investigated. The regulated internalization has been characterized as a principal mechanism for removing cell-surface receptors from the plasma membrane, and signaling to downstream targets of receptors. However, so far it is still not known whether the functional properties of remaining (non-internalized) receptor/channels may be regulated by internalization of the same class of receptor/channels. The N-methyl-D-aspartate receptor (NMDAR) is a principal subtype of glutamate-gated ion channel and plays key roles in neuronal plasticity and memory functions. NMDARs are well-known to undergo two types of regulated internalization - homologous and heterologous, which can be induced by high NMDA/glycine and DHPG, respectively. In the present work, we investigated effects of regulated NMDAR internalization on the activity of residual cell-surface NMDARs and neuronal functions. In electrophysiological experiments we discovered that the regulated internalization of NMDARs not only reduced the number of cell surface NMDARs but also caused an inhibition of the activity of remaining (non-internalized) surface NMDARs. In biochemical experiments we identified that this functional inhibition of remaining surface NMDARs was mediated by increased serine phosphorylation of surface NMDARs, resulting from the activation of protein kinase D1 (PKD1). Knockdown of PKD1 did not affect NMDAR internalization but prevented the phosphorylation and inhibition of remaining surface NMDARs and NMDAR-mediated synaptic functions. These data demonstrate a novel concept that regulated internalization of cell surface NMDARs not only reduces the number of NMDARs on the cell surface but also causes an inhibition of the activity of remaining surface NMDARs through intracellular signaling pathway(s). Furthermore, modulating the activity of remaining surface receptors may be an effective approach for treating receptor

  6. NADE, a p75NTR-associated cell death executor, is involved in signal transduction mediated by the common neurotrophin receptor p75NTR.

    Science.gov (United States)

    Mukai, J; Hachiya, T; Shoji-Hoshino, S; Kimura, M T; Nadano, D; Suvanto, P; Hanaoka, T; Li, Y; Irie, S; Greene, L A; Sato, T A

    2000-06-09

    The low affinity neurotrophin receptor p75NTR can mediate cell survival as well as cell death of neural cells by NGF and other neurotrophins. To elucidate p75NTR-mediated signal transduction, we screened p75NTR-associated proteins by a yeast two-hybrid system. We identified one positive clone and named NADE (p75NTR-associated cell death executor). Mouse NADE has marked homology to the human HGR74 protein. NADE specifically binds to the cell-death domain of p75NTR. Co-expression of NADE and p75NTR induced caspase-2 and caspase-3 activities and the fragmentation of nuclear DNA in 293T cells. However, in the absence of p75NTR, NADE failed to induce apoptosis, suggesting that NADE expression is necessary but insufficient for p75NTR-mediated apoptosis. Furthermore, p75NTR/NADE-induced cell death was dependent on NGF but not BDNF, NT-3, or NT-4/5, and the recruitment of NADE to p75NTR (intracellular domain) was dose-dependent. We obtained similar results from PC12 cells, nnr5 cells, and oligodendrocytes. Taken together, NADE is the first signaling adaptor molecule identified in the involvement of p75NTR-mediated apoptosis induced by NGF, and it may play an important role in the pathogenesis of neurogenetic diseases.

  7. Toll-like receptor 9 mediated responses in cardiac fibroblasts.

    Directory of Open Access Journals (Sweden)

    Ingrid Kristine Ohm

    Full Text Available Altered cardiac Toll-like receptor 9 (TLR9 signaling is important in several experimental cardiovascular disorders. These studies have predominantly focused on cardiac myocytes or the heart as a whole. Cardiac fibroblasts have recently been attributed increasing significance in mediating inflammatory signaling. However, putative TLR9-signaling through cardiac fibroblasts remains non-investigated. Thus, our aim was to explore TLR9-signaling in cardiac fibroblasts and investigate the consequence of such receptor activity on classical cardiac fibroblast cellular functions. Cultivated murine cardiac fibroblasts were stimulated with different TLR9 agonists (CpG A, B and C and assayed for the secretion of inflammatory cytokines (tumor necrosis factor α [TNFα], CXCL2 and interferon α/β. Expression of functional cardiac fibroblast TLR9 was proven as stimulation with CpG B and -C caused significant CXCL2 and TNFα-release. These responses were TLR9-specific as complete inhibition of receptor-stimulated responses was achieved by co-treatment with a TLR9-antagonist (ODN 2088 or chloroquine diphosphate. TLR9-stimulated responses were also found more potent in cardiac fibroblasts when compared with classical innate immune cells. Stimulation of cardiac fibroblasts TLR9 was also found to attenuate migration and proliferation, but did not influence myofibroblast differentiation in vitro. Finally, results from in vivo TLR9-stimulation with subsequent fractionation of specific cardiac cell-types (cardiac myocytes, CD45+ cells, CD31+ cells and cardiac fibroblast-enriched cell-fractions corroborated our in vitro data and provided evidence of differentiated cell-specific cardiac responses. Thus, we conclude that cardiac fibroblast may constitute a significant TLR9 responder cell within the myocardium and, further, that such receptor activity may impact important cardiac fibroblast cellular functions.

  8. Muscarinic Receptor Signaling in Colon Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Rosenvinge, Erik C. von, E-mail: evonrose@medicine.umaryland.edu; Raufman, Jean-Pierre [University of Maryland School of Medicine, Division of Gastroenterology & Hepatology, 22 S. Greene Street, N3W62, Baltimore, MD 21201 (United States); Department of Veterans Affairs, VA Maryland Health Care System, 10 North Greene Street, Baltimore, MD 21201 (United States)

    2011-03-02

    According to the adenoma-carcinoma sequence, colon cancer results from accumulating somatic gene mutations; environmental growth factors accelerate and augment this process. For example, diets rich in meat and fat increase fecal bile acids and colon cancer risk. In rodent cancer models, increased fecal bile acids promote colon dysplasia. Conversely, in rodents and in persons with inflammatory bowel disease, low-dose ursodeoxycholic acid treatment alters fecal bile acid composition and attenuates colon neoplasia. In the course of elucidating the mechanism underlying these actions, we discovered that bile acids interact functionally with intestinal muscarinic receptors. The present communication reviews muscarinic receptor expression in normal and neoplastic colon epithelium, the role of autocrine signaling following synthesis and release of acetylcholine from colon cancer cells, post-muscarinic receptor signaling including the role of transactivation of epidermal growth factor receptors and activation of the ERK and PI3K/AKT signaling pathways, the structural biology and metabolism of bile acids and evidence for functional interaction of bile acids with muscarinic receptors on human colon cancer cells. In murine colon cancer models, deficiency of subtype 3 muscarinic receptors attenuates intestinal neoplasia; a proof-of-concept supporting muscarinic receptor signaling as a therapeutic target for colon cancer.

  9. Muscarinic Receptor Signaling in Colon Cancer

    International Nuclear Information System (INIS)

    Rosenvinge, Erik C. von; Raufman, Jean-Pierre

    2011-01-01

    According to the adenoma-carcinoma sequence, colon cancer results from accumulating somatic gene mutations; environmental growth factors accelerate and augment this process. For example, diets rich in meat and fat increase fecal bile acids and colon cancer risk. In rodent cancer models, increased fecal bile acids promote colon dysplasia. Conversely, in rodents and in persons with inflammatory bowel disease, low-dose ursodeoxycholic acid treatment alters fecal bile acid composition and attenuates colon neoplasia. In the course of elucidating the mechanism underlying these actions, we discovered that bile acids interact functionally with intestinal muscarinic receptors. The present communication reviews muscarinic receptor expression in normal and neoplastic colon epithelium, the role of autocrine signaling following synthesis and release of acetylcholine from colon cancer cells, post-muscarinic receptor signaling including the role of transactivation of epidermal growth factor receptors and activation of the ERK and PI3K/AKT signaling pathways, the structural biology and metabolism of bile acids and evidence for functional interaction of bile acids with muscarinic receptors on human colon cancer cells. In murine colon cancer models, deficiency of subtype 3 muscarinic receptors attenuates intestinal neoplasia; a proof-of-concept supporting muscarinic receptor signaling as a therapeutic target for colon cancer

  10. Muscarinic Receptor Signaling in Colon Cancer

    Directory of Open Access Journals (Sweden)

    Jean-Pierre Raufman

    2011-03-01

    Full Text Available According to the adenoma-carcinoma sequence, colon cancer results from accumulating somatic gene mutations; environmental growth factors accelerate and augment this process. For example, diets rich in meat and fat increase fecal bile acids and colon cancer risk. In rodent cancer models, increased fecal bile acids promote colon dysplasia. Conversely, in rodents and in persons with inflammatory bowel disease, low-dose ursodeoxycholic acid treatment alters fecal bile acid composition and attenuates colon neoplasia. In the course of elucidating the mechanism underlying these actions, we discovered that bile acids interact functionally with intestinal muscarinic receptors. The present communication reviews muscarinic receptor expression in normal and neoplastic colon epithelium, the role of autocrine signaling following synthesis and release of acetylcholine from colon cancer cells, post-muscarinic receptor signaling including the role of transactivation of epidermal growth factor receptors and activation of the ERK and PI3K/AKT signaling pathways, the structural biology and metabolism of bile acids and evidence for functional interaction of bile acids with muscarinic receptors on human colon cancer cells. In murine colon cancer models, deficiency of subtype 3 muscarinic receptors attenuates intestinal neoplasia; a proof-of-concept supporting muscarinic receptor signaling as a therapeutic target for colon cancer.

  11. Extracellular Ca2+ is a danger signal activating the NLRP3 inflammasome through G protein-coupled calcium sensing receptors

    DEFF Research Database (Denmark)

    Rossol, Manuela; Pierer, Matthias; Raulien, Nora

    2012-01-01

    calcium activates the NLRP3 inflammasome via stimulation of G protein-coupled calcium sensing receptors. Activation is mediated by signalling through the calcium-sensing receptor and GPRC6A via the phosphatidyl inositol/Ca(2+) pathway. The resulting increase in the intracellular calcium concentration......, and this effect was inhibited in GPRC6A(-/-) mice. Our results demonstrate that G-protein-coupled receptors can activate the inflammasome, and indicate that increased extracellular calcium has a role as a danger signal and amplifier of inflammation....

  12. Induction of osteoblast differentiation by selective activation of kinase-mediated actions of the estrogen receptor.

    Science.gov (United States)

    Kousteni, Stavroula; Almeida, Maria; Han, Li; Bellido, Teresita; Jilka, Robert L; Manolagas, Stavros C

    2007-02-01

    Estrogens control gene transcription by cis or trans interactions of the estrogen receptor (ER) with target DNA or via the activation of cytoplasmic kinases. We report that selective activation of kinase-mediated actions of the ER with 4-estren-3alpha,17beta-diol (estren) or an estradiol-dendrimer conjugate, each a synthetic compound that stimulates kinase-mediated ER actions 1,000 to 10,000 times more potently than direct DNA interactions, induced osteoblastic differentiation in established cell lines of uncommitted osteoblast precursors and primary cultures of osteoblast progenitors by stimulating Wnt and BMP-2 signaling in a kinase-dependent manner. In sharp contrast, 17beta-estradiol (E(2)) suppressed BMP-2-induced osteoblast progenitor commitment and differentiation. Consistent with the in vitro findings, estren, but not E(2), stimulated Wnt/beta-catenin-mediated transcription in T-cell factor-lacZ transgenic mice. Moreover, E(2) stimulated BMP signaling in mice in which ERalpha lacks DNA binding activity and classical estrogen response element-mediated transcription (ERalpha(NERKI/-)) but not in wild-type controls. This evidence reveals for the first time the existence of a large signalosome in which inputs from the ER, kinases, bone morphogenetic proteins, and Wnt signaling converge to induce differentiation of osteoblast precursors. ER can either induce it or repress it, depending on whether the activating ligand (and presumably the resulting conformation of the receptor protein) precludes or accommodates ERE-mediated transcription.

  13. Receptor-like kinases as surface regulators for RAC/ROP-mediated pollen tube growth and interaction with the pistil

    Science.gov (United States)

    Zou, Yanjiao; Aggarwal, Mini; Zheng, Wen-Guang; Wu, Hen-Ming; Cheung, Alice Y.

    2011-01-01

    Background RAC/ROPs are RHO-type GTPases and are known to play diverse signalling roles in plants. Cytoplasmic RAC/ROPs are recruited to the cell membrane and activated in response to extracellular signals perceived and mediated by cell surface-located signalling assemblies, transducing the signals to regulate cellular processes. More than any other cell types in plants, pollen tubes depend on continuous interactions with an extracellular environment produced by their surrounding tissues as they grow within the female organ pistil to deliver sperm to the female gametophyte for fertilization. Scope We review studies on pollen tube growth that provide compelling evidence indicating that RAC/ROPs are crucial for regulating the cellular processes that underlie the polarized cell growth process. Efforts to identify cell surface regulators that mediate extracellular signals also point to RAC/ROPs being the molecular switches targeted by growth-regulating female factors for modulation to mediate pollination and fertilization. We discuss a large volume of work spanning more than two decades on a family of pollen-specific receptor kinases and some recent studies on members of the FERONIA family of receptor-like kinases (RLKs). Significance The research described shows the crucial roles that two RLK families play in transducing signals from growth regulatory factors to the RAC/ROP switch at the pollen tube apex to mediate and target pollen tube growth to the female gametophyte and signal its disintegration to achieve fertilization once inside the female chamber. PMID:22476487

  14. Orexin A/Hypocretin Modulates Leptin Receptor-Mediated Signaling by Allosteric Modulations Mediated by the Ghrelin GHS-R1A Receptor in Hypothalamic Neurons.

    Science.gov (United States)

    Medrano, Mireia; Aguinaga, David; Reyes-Resina, Irene; Canela, Enric I; Mallol, Josefa; Navarro, Gemma; Franco, Rafael

    2018-06-01

    The hypothalamus is a key integrator of nutrient-seeking signals in the form of hormones and metabolites originated in both the central nervous system and the periphery. The main autocrine and paracrine target of orexinergic-related hormones such as leptin, orexin/hypocretin, and ghrelin are neuropeptide Y neurons located in the arcuate nucleus of the hypothalamus. The aim of this study was to investigate the expression and the molecular and functional relationships between leptin, orexin/hypocretin and ghrelin receptors. Biophysical studies in a heterologous system showed physical interactions between them, with potential formation of heterotrimeric complexes. Functional assays showed robust allosteric interactions particularly different when the three receptors are expressed together. Further biochemical and pharmacological assays provided evidence of heterotrimer functional expression in primary cultures of hypothalamic neurons. These findings constitute evidence of close relationships in the action of the three hormones already starting at the receptor level in hypothalamic cells.

  15. Hypocretin/Orexin Regulation of Dopamine Signaling and Cocaine Self-Administration Is Mediated Predominantly by Hypocretin Receptor 1

    OpenAIRE

    Prince, Courtney D.; Rau, Andrew R.; Yorgason, Jordan T.; Espa?a, Rodrigo A.

    2014-01-01

    Extensive evidence suggests that the hypocretins/orexins influence cocaine reinforcement and dopamine signaling via actions at hypocretin receptor 1. By comparison, the involvement of hypocretin receptor 2 in reward and reinforcement processes has received relatively little attention. Thus, although there is some evidence that hypocretin receptor 2 regulates intake of some drugs of abuse, it is currently unclear to what extent hypocretin receptor 2 participates in the regulation of dopamine s...

  16. Hexachlorobenzene modulates the crosstalk between the aryl hydrocarbon receptor and transforming growth factor-β1 signaling, enhancing human breast cancer cell migration and invasion

    International Nuclear Information System (INIS)

    Miret, Noelia; Pontillo, Carolina; Ventura, Clara; Carozzo, Alejandro; Chiappini, Florencia

    2016-01-01

    Highlights: • HCB enhances TGF-β1 expression and activation levels in breast cancer cells. • HCB activates TGF-β1 pathways: Smad3, JNK and p38. • The HCB- induced migration and invasion involves TGF-β1 signaling pathways. • HCB modulates AhR levels and activation. • HCB enhances TGF-β1 mRNA expression in an AhR-dependent manner. - Abstract: Given the number of women affected by breast cancer, considerable interest has been raised in understanding the relationships between environmental chemicals and disease onset. Hexachlorobenzene (HCB) is a dioxin-like compound that is widely distributed in the environment and is a weak ligand of the aryl hydrocarbon receptor (AhR). We previously demonstrated that HCB acts as an endocrine disruptor capable of stimulating cell proliferation, migration, invasion, and metastasis in different breast cancer models. In addition, increasing evidence indicates that transforming growth factor-β1 (TGF-β1) can contribute to tumor maintenance and progression. In this context, this work investigated the effect of HCB (0.005, 0.05, 0.5, and 5 μM) on TGF-β1 signaling and AhR/TGF-β1 crosstalk in the human breast cancer cell line MDA-MB-231 and analyzed whether TGF-β1 pathways are involved in HCB-induced cell migration and invasion. RT-qPCR results indicated that HCB reduces AhR mRNA expression through TGF-β1 signaling but enhances TGF-β1 mRNA levels involving AhR signaling. Western blot analysis demonstrated that HCB could increase TGF-β1 protein levels and activation, as well as Smad3, JNK, and p38 phosphorylation. In addition, low and high doses of HCB were determined to exert differential effects on AhR protein levels, localization, and activation, with a high dose (5 μM) inducing AhR nuclear translocation and AhR-dependent CYP1A1 expression. These findings also revealed that c-Src and AhR are involved in HCB-mediated activation of Smad3. HCB enhances cell migration (scratch motility assay) and invasion (Transwell

  17. Aryl hydrocarbon receptor-dependent up-regulation of the heterodimeric amino acid transporter LAT1 (SLC7A5)/CD98hc (SLC3A2) by diesel exhaust particle extract in human bronchial epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Le Vee, Marc; Jouan, Elodie; Lecureur, Valérie [Institut de Recherches en Santé, Environnement et Travail (IRSET), UMR INSERM U1085, Faculté de Pharmacie, 2 Avenue du Pr Léon Bernard, 35043 Rennes (France); Fardel, Olivier, E-mail: olivier.fardel@univ-rennes1.fr [Institut de Recherches en Santé, Environnement et Travail (IRSET), UMR INSERM U1085, Faculté de Pharmacie, 2 Avenue du Pr Léon Bernard, 35043 Rennes (France); Pôle Biologie, Centre Hospitalier Universitaire, 2 rue Henri Le Guilloux, 35033 Rennes (France)

    2016-01-01

    The heterodimeric L-type amino acid transporter (LAT) 1/CD98hc is overexpressed in lung cancers with a poor prognosis factor. Factors that contribute to LAT1/CD98hc overexpression in lung cells remain however to be determined, but the implication of atmospheric pollution can be suspected. The present study was therefore designed to analyze the effects of diesel exhaust particle (DEP) extract (DEPe) on LAT1/CD98hc expression in bronchial epithelial BEAS-2B cells. Exposure to DEPe up-regulated LAT1 and CD98hc mRNA levels in a concentration-dependent manner, with DEPe EC{sub 50} values (around 0.2 μg/mL) relevant to environmental situations. DEPe concomitantly induced LAT1/CD98hc protein expression and LAT1-mediated leucine accumulation in BEAS-2B cells. Inhibition of the aryl hydrocarbon receptor (AhR) pathway through the use of a chemical AhR antagonist or the siRNA-mediated silencing of AhR expression was next found to prevent DEPe-mediated induction of LAT1/CD98hc, indicating that this regulation depends on AhR, known to be activated by major chemical DEP components like polycyclic aromatic hydrocarbons. DEPe exposure was finally shown to induce mRNA expression and activity of matrix metalloproteinase (MMP)-2 in BEAS-2B cells, in a CD98hc/focal adhesion kinase (FAK)/extracellular regulated kinase (ERK) manner, thus suggesting that DEPe-mediated induction of CD98hc triggers activation of the integrin/FAK/ERK signaling pathway known to be involved in MMP-2 regulation. Taken together, these data demonstrate that exposure to DEPe induces functional overexpression of the amino acid transporter LAT1/CD98hc in lung cells. Such a regulation may participate to pulmonary carcinogenic effects of DEPs, owing to the well-documented contribution of LAT1 and CD98hc to cancer development. - Highlights: • The amino acid transporter LAT1/CD98hc is up-regulated in DEPe-treated lung cells. • The aryl hydrocarbon receptor is involved in DEPe-triggered induction of LAT1/CD98hc.

  18. Receptor binding radiotracers for the angiotensin II receptor: radioiodinated [Sar1, Ile8]angiotensin II

    International Nuclear Information System (INIS)

    Gibson, R.E.; Beauchamp, H.T.; Fioravanti, C.; Brenner, N.; Burns, H.D.

    1994-01-01

    The potential for imaging the angiotensin II receptor was evaluated using the radioiodinated peptide antagonist [ 125 I][Sar 1 , Ile 8 ]angiotensin II. The radioligand provides a receptor-mediated signal in several tissues in rat (kidneys, adrenal and liver). The receptor-mediated signal of 3% ID/g kidney cortex should be sufficient to permit imaging, at least via SPECT. The radiotracer is sensitive to reductions in receptor concentration and can be used to define in vivo dose-occupancy curves of angiotensin II receptor ligands. Receptor-mediated images of [ 123 I][Sar 1 , Ile 8 ]angiotensin II were obtained in the rat kidney and Rhesus monkey liver. (author)

  19. Identification of benzothiazole derivatives and polycyclic aromatic hydrocarbons as aryl hydrocarbon receptor agonists present in tire extracts.

    Science.gov (United States)

    He, Guochun; Zhao, Bin; Denison, Michael S

    2011-08-01

    Leachate from rubber tire material contains a complex mixture of chemicals previously shown to produce toxic and biological effects in aquatic organisms. The ability of these leachates to induce Ah receptor (AhR)-dependent cytochrome P4501A1 expression in fish indicated the presence of AhR active chemicals, but the responsible chemicals and their direct interaction with the AhR signaling pathway were not examined. Using a combination of AhR-based bioassays, we have demonstrated the ability of tire extract to stimulate both AhR DNA binding and AhR-dependent gene expression and confirmed that the responsible chemicals were metabolically labile. The application of CALUX (chemical-activated luciferase gene expression) cell bioassay-driven toxicant identification evaluation not only revealed that tire extract contained a variety of known AhR-active polycyclic aromatic hydrocarbons but also identified 2-methylthiobenzothiazole and 2-mercaptobenzothiazole as AhR agonists. Analysis of a structurally diverse series of benzothiazoles identified many that could directly stimulate AhR DNA binding and transiently activate the AhR signaling pathway and identified benzothiazoles as a new class of AhR agonists. In addition to these compounds, the relatively high AhR agonist activity of a large number of fractions strongly suggests that tire extract contains a large number of physiochemically diverse AhR agonists whose identities and toxicological/biological significances are unknown. Copyright © 2011 SETAC.

  20. Varicose and cheerio collaborate with pebble to mediate semaphorin-1a reverse signaling in Drosophila.

    Science.gov (United States)

    Jeong, Sangyun; Yang, Da-Som; Hong, Young Gi; Mitchell, Sarah P; Brown, Matthew P; Kolodkin, Alex L

    2017-09-26

    The transmembrane semaphorin Sema-1a acts as both a ligand and a receptor to regulate axon-axon repulsion during neural development. Pebble (Pbl), a Rho guanine nucleotide exchange factor, mediates Sema-1a reverse signaling through association with the N-terminal region of the Sema-1a intracellular domain (ICD), resulting in cytoskeletal reorganization. Here, we uncover two additional Sema-1a interacting proteins, varicose (Vari) and cheerio (Cher), each with neuronal functions required for motor axon pathfinding. Vari is a member of the membrane-associated guanylate kinase (MAGUK) family of proteins, members of which can serve as scaffolds to organize signaling complexes. Cher is related to actin filament cross-linking proteins that regulate actin cytoskeleton dynamics. The PDZ domain binding motif found in the most C-terminal region of the Sema-1a ICD is necessary for interaction with Vari, but not Cher, indicative of distinct binding modalities. Pbl/Sema-1a-mediated repulsive guidance is potentiated by both vari and cher Genetic analyses further suggest that scaffolding functions of Vari and Cher play an important role in Pbl-mediated Sema-1a reverse signaling. These results define intracellular components critical for signal transduction from the Sema-1a receptor to the cytoskeleton and provide insight into mechanisms underlying semaphorin-induced localized changes in cytoskeletal organization.

  1. Role of alterations in Ca{sup 2+}-associated signaling pathways in the immunotoxicity of polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Davila, D.R.; Davs, D.P.; Campbell, K. [Univ. of New Mexico College of Pharmacy, Albuquerque, NM (United States)] [and others

    1995-08-01

    Polycyclic aromatic hydrocarbons (PAHs) are an important class of environmental pollutants that are known to be carcinogenic and immunotoxic. The effects of PAHs on the immune system of various animals and models have been studied for at least 30 yr. Despite these efforts, the mechanism or mechanisms by which PAHs exert their effects on the immune system are still largely unknown. During recent years, the molecular events associated with lymphocyte activation and receptor-mediated signaling have become increasingly clear. Substantial progress has been made in understanding the molecular and cellular bases for toxicant-induced immune cell injury. Understanding mechanisms of drug or chemical effects on the immune system is an important area of research in the field of immunotoxicology, and indeed in all fields of toxicology. Mechanistic toxicology plays an important role in risk assessment and extrapolation of potential human health effects. In this review, we have summarized recent evidence that has examined the effects of PAHs on the immune system of animals and humans. In particular, we have focused on the effects of PAHs on cell signaling in lymphoid cells and have examined the hypothesis that PAHs alter lymphocyte activation via calcium-dependent mechanisms. Previously published reports are discussed, and new data obtained with murine B cells and cell lines are presented demonstrating the relationship between alterations in intracellular calcium and immune dysregulation. These data demonstrate a strong association between PAH-induced alterations in B- and T-lymphocyte activation and changes in calcium homeostasis. 111 refs., 6 figs., 1 tab.

  2. G protein-coupled receptor kinase 2 negatively regulates chemokine signaling at a level downstream from G protein subunits

    NARCIS (Netherlands)

    Jimenez-Sainz, MC; Murga, C; Kavelaars, A; Jurado-Pueyo, M; Krakstad, BF; Heijnen, CJ; Mayor, F; Aragay, AM

    The G protein-coupled receptor kinase 2 (GRK2) phosphorylates and desensitizes ligand-activated G protein-coupled-receptors. Here, evidence is shown for a novel role of GRK2 in regulating chemokine-mediated signals. The presence of increased levels of GRK2 in human embryonic kidney (HEK) 293 cells

  3. MDMA Increases Excitability in the Dentate Gyrus: Role of 5HT2A Receptor Induced PGE2 Signaling

    Science.gov (United States)

    Collins, Stuart A.; Huff, Courtney; Chiaia, Nicolas; Gudelsky, Gary A.; Yamamoto, Bryan K.

    2015-01-01

    MDMA is a widely abused psychostimulant which causes release of serotonin in various forebrain regions. Recently, we reported that MDMA increases extracellular glutamate concentrations in the dentate gyrus, via activation of 5HT2A receptors. We examined the role of prostaglandin signaling in mediating the effects of 5HT2A receptor activation on the increases in extracellular glutamate and the subsequent long-term loss of parvalbumin interneurons in the dentate gyrus caused by MDMA. Administration of MDMA into the dentate gyrus of rats increased PGE2 concentrations which was prevented by coadministration of MDL100907, a 5HT2A receptor antagonist. MDMA-induced increases in extracellular glutamate were inhibited by local administration of SC-51089, an inhibitor of the EP1 prostaglandin receptor. Systemic administration of SC-51089 during injections of MDMA prevented the decreases in parvalbumin interneurons observed 10 days later. The loss of parvalbumin immunoreactivity after MDMA exposure coincided with a decrease in paired-pulse inhibition and afterdischarge threshold in the dentate gyrus. These changes were prevented by inhibition of EP1 and 5HT2A receptors during MDMA. Additional experiments revealed an increased susceptibility to kainic acid-induced seizures in MDMA treated rats which could be prevented with SC51089 treatments during MDMA exposure. Overall, these findings suggest that 5HT2A receptors mediate MDMA-induced PGE2 signaling and subsequent increases in glutamate. This signaling mediates parvalbumin cell losses as well as physiologic changes in the dentate gyrus, suggesting that the lack of the inhibition provided by these neurons increases the excitability within the dentate gyrus of MDMA treated rats. PMID:26670377

  4. Bovine lactoferrin counteracts Toll-like receptor mediated activation signals in antigen presenting cells.

    Directory of Open Access Journals (Sweden)

    Patrizia Puddu

    Full Text Available Lactoferrin (LF, a key element in mammalian immune system, plays pivotal roles in host defence against infection and excessive inflammation. Its protective effects range from direct antimicrobial activities against a large panel of microbes, including bacteria, viruses, fungi and parasites, to antinflammatory and anticancer activities. In this study, we show that monocyte-derived dendritic cells (MD-DCs generated in the presence of bovine LF (bLF fail to undergo activation by up-modulating CD83, co-stimulatory and major histocompatibility complex molecules, and cytokine/chemokine secretion. Moreover, these cells are weak activators of T cell proliferation and retain antigen uptake activity. Consistent with an impaired maturation, bLF-MD-DC primed T lymphocytes exhibit a functional unresponsiveness characterized by reduced expression of CD154 and impaired expression of IFN-γ and IL-2. The observed imunosuppressive effects correlate with an increased expression of molecules with negative regulatory functions (i.e. immunoglobulin-like transcript 3 and programmed death ligand 1, indoleamine 2,3-dioxygenase, and suppressor of cytokine signaling-3. Interestingly, bLF-MD-DCs produce IL-6 and exhibit constitutive signal transducer and activator of transcription 3 activation. Conversely, bLF exposure of already differentiated MD-DCs completely fails to induce IL-6, and partially inhibits Toll-like receptor (TLR agonist-induced activation. Cell-specific differences in bLF internalization likely account for the distinct response elicited by bLF in monocytes versus immature DCs, providing a mechanistic base for its multiple effects. These results indicate that bLF exerts a potent anti-inflammatory activity by skewing monocyte differentiation into DCs with impaired capacity to undergo activation and to promote Th1 responses. Overall, these bLF-mediated effects may represent a strategy to block excessive DC activation upon TLR-induced inflammation, adding

  5. Synaptically released zinc triggers metabotropic signaling via a zinc-sensing receptor in the hippocampus.

    Science.gov (United States)

    Besser, Limor; Chorin, Ehud; Sekler, Israel; Silverman, William F; Atkin, Stan; Russell, James T; Hershfinkel, Michal

    2009-03-04

    Zn(2+) is coreleased with glutamate from mossy fiber terminals and can influence synaptic function. Here, we demonstrate that synaptically released Zn(2+) activates a selective postsynaptic Zn(2+)-sensing receptor (ZnR) in the CA3 region of the hippocampus. ZnR activation induced intracellular release of Ca(2+), as well as phosphorylation of extracellular-regulated kinase and Ca(2+)/calmodulin kinase II. Blockade of synaptic transmission by tetrodotoxin or CdCl inhibited the ZnR-mediated Ca(2+) rises. The responses mediated by ZnR were largely attenuated by the extracellular Zn(2+) chelator, CaEDTA, and in slices from mice lacking vesicular Zn(2+), suggesting that synaptically released Zn(2+) triggers the metabotropic activity. Knockdown of the expression of the orphan G-protein-coupled receptor 39 (GPR39) attenuated ZnR activity in a neuronal cell line. Importantly, we observed widespread GPR39 labeling in CA3 neurons, suggesting a role for this receptor in mediating ZnR signaling in the hippocampus. Our results describe a unique role for synaptic Zn(2+) acting as the physiological ligand of a metabotropic receptor and provide a novel pathway by which synaptic Zn(2+) can regulate neuronal function.

  6. In brown adipocytes, adrenergically induced β1-/β3-(Gs)-, α2-(Gi)- and α1-(Gq)-signalling to Erk1/2 activation is not mediated via EGF receptor transactivation

    International Nuclear Information System (INIS)

    Wang, Yanling; Fälting, Johanna M.; Mattsson, Charlotte L.; Holmström, Therése E.; Nedergaard, Jan

    2013-01-01

    Brown adipose tissue is unusual in that the neurotransmitter norepinephrine influences cell destiny in ways generally associated with effects of classical growth factors: regulation of cell proliferation, of apoptosis, and progression of differentiation. The norepinephrine effects are mediated through G-protein-coupled receptors; further mediation of such stimulation to e.g. Erk1/2 activation is in cell biology in general accepted to occur through transactivation of the EGF receptor (by external or internal pathways). We have examined here the significance of such transactivation in brown adipocytes. Stimulation of mature brown adipocytes with cirazoline (α 1 -adrenoceptor coupled via G q ), clonidine (α 2 via G i ) or CL316243 (β 3 via G s ) or via β 1 -receptors significantly activated Erk1/2. Pretreatment with the EGF receptor kinase inhibitor AG1478 had, remarkably, no significant effect on Erk1/2 activation induced by any of these adrenergic agonists (although it fully abolished EGF-induced Erk1/2 activation), demonstrating absence of EGF receptor-mediated transactivation. Results with brown preadipocytes (cells in more proliferative states) were not qualitatively different. Joint stimulation of all adrenoceptors with norepinephrine did not result in synergism on Erk1/2 activation. AG1478 action on EGF-stimulated Erk1/2 phosphorylation showed a sharp concentration–response relationship (IC 50 0.3 µM); a minor apparent effect of AG1478 on norepinephrine-stimulated Erk1/2 phosphorylation showed nonspecific kinetics, implying caution in interpretation of partial effects of AG1478 as reported in other systems. Transactivation of the EGF receptor is clearly not a universal prerequisite for coupling of G-protein coupled receptors to Erk1/2 signalling cascades. - Highlights: • In brown adipocytes, norepinephrine regulates proliferation, apoptosis, differentiation. • EGF receptor transactivation is supposed to mediate GPCR-induced Erk1/2 activation. •

  7. Wnt5a signaling is a substantial constituent in bone morphogenetic protein-2-mediated osteoblastogenesis

    International Nuclear Information System (INIS)

    Nemoto, Eiji; Ebe, Yukari; Kanaya, Sousuke; Tsuchiya, Masahiro; Nakamura, Takashi; Tamura, Masato; Shimauchi, Hidetoshi

    2012-01-01

    Highlights: ► Wnt5a is identified in osteoblasts in tibial growth plate and bone marrow. ► Osteoblastic differentiation is associated with increased expression of Wnt5a/Ror2. ► Wnt5a/Ror2 signaling is important for BMP-2-mediated osteoblastic differentiation. ► Wnt5a/Ror2 operates independently of BMP-Smad pathway. -- Abstract: Wnts are secreted glycoproteins that mediate developmental and post-developmental physiology by regulating cellular processes including proliferation, differentiation, and apoptosis through β-catenin-dependent canonical and β-catenin-independent noncanonical pathway. It has been reported that Wnt5a activates noncanonical Wnt signaling through receptor tyrosine kinase-like orphan receptor 2 (Ror2). Although it appears that Wnt5a/Ror2 signaling supports normal bone physiology, the biological significance of noncanonical Wnts in osteogenesis is essentially unknown. In this study, we identified expression of Wnt5a in osteoblasts in the ossification zone of the tibial growth plate as well as bone marrow of the rat tibia as assessed by immunohistochemistry. In addition, we show that osteoblastic differentiation mediated by BMP-2 is associated with increased expression of Wnt5a and Ror2 using cultured pre-osteoblasts, MC3T3-E1 cells. Silencing gene expression of Wnt5a and Ror2 in MC3T3-E1 cells results in suppression of BMP-2-mediated osteoblastic differentiation, suggesting that Wnt5a and Ror2 signaling are of substantial importance for BMP-2-mediated osteoblastic differentiation. BMP-2 stimulation induced phosphorylation of Smad1/5/8 in a similar fashion in both siWnt5a-treated cells and control cells, suggesting that Wnt5a was dispensable for the phosphorylation of Smads by BMP-2. Taken together, our results suggest that Wnt5a/Ror2 signaling appears to be involved in BMP-2-mediated osteoblast differentiation in a Smad independent pathway.

  8. Assembly of Oligomeric Death Domain Complexes during Toll Receptor Signaling*

    Science.gov (United States)

    Moncrieffe, Martin C.; Grossmann, J. Günter; Gay, Nicholas J.

    2008-01-01

    The Drosophila Toll receptor is activated by the endogenous protein ligand Spätzle in response to microbial stimuli in immunity and spatial cues during embryonic development. Downstream signaling is mediated by the adaptor proteins Tube, the kinase Pelle, and the Drosophila homologue of myeloid differentiation primary response protein (dMyD88). Here we have characterized heterodimeric (dMyD88-Tube) and heterotrimeric (dMyD88-Tube-Pelle) death domain complexes. We show that both the heterodimeric and heterotrimeric complexes form kidney-shaped structures and that Tube is bivalent and has separate high affinity binding sites for dMyD88 and Pelle. Additionally we found no interaction between the isolated death domains of Pelle and dMyD88. These results indicate that the mode of assembly of the heterotrimeric dMyD88-Tube-Pelle complex downstream of the activated Toll receptor is unique. The measured dissociation constants for the interaction between the death domains of dMyD88 and Tube and of Pelle and a preformed dMyD88-Tube complex are used to propose a model of the early postreceptor events in Drosophila Toll receptor signaling. PMID:18829464

  9. Assembly of oligomeric death domain complexes during Toll receptor signaling.

    Science.gov (United States)

    Moncrieffe, Martin C; Grossmann, J Günter; Gay, Nicholas J

    2008-11-28

    The Drosophila Toll receptor is activated by the endogenous protein ligand Spätzle in response to microbial stimuli in immunity and spatial cues during embryonic development. Downstream signaling is mediated by the adaptor proteins Tube, the kinase Pelle, and the Drosophila homologue of myeloid differentiation primary response protein (dMyD88). Here we have characterized heterodimeric (dMyD88-Tube) and heterotrimeric (dMyD88-Tube-Pelle) death domain complexes. We show that both the heterodimeric and heterotrimeric complexes form kidney-shaped structures and that Tube is bivalent and has separate high affinity binding sites for dMyD88 and Pelle. Additionally we found no interaction between the isolated death domains of Pelle and dMyD88. These results indicate that the mode of assembly of the heterotrimeric dMyD88-Tube-Pelle complex downstream of the activated Toll receptor is unique. The measured dissociation constants for the interaction between the death domains of dMyD88 and Tube and of Pelle and a preformed dMyD88-Tube complex are used to propose a model of the early postreceptor events in Drosophila Toll receptor signaling.

  10. Assembly of Oligomeric Death Domain Complexes during Toll Receptor Signaling*

    OpenAIRE

    Moncrieffe, Martin C.; Grossmann, J. Günter; Gay, Nicholas J.

    2008-01-01

    The Drosophila Toll receptor is activated by the endogenous protein ligand Spätzle in response to microbial stimuli in immunity and spatial cues during embryonic development. Downstream signaling is mediated by the adaptor proteins Tube, the kinase Pelle, and the Drosophila homologue of myeloid differentiation primary response protein (dMyD88). Here we have characterized heterodimeric (dMyD88-Tube) and heterotrimeric (dMyD88-Tube-Pelle) death domain complexes. We show ...

  11. Current Views of Toll-Like Receptor Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Masahiro Yamamoto

    2010-01-01

    Full Text Available On microbial invasion, the host immediately evokes innate immune responses. Recent studies have demonstrated that Toll-like receptors (TLRs play crucial roles in innate responses that lead not only to the clearance of pathogens but also to the efficient establishment of acquired immunity by directly detecting molecules from microbes. In terms of intracellular TLR-mediated signaling pathways, cytoplasmic adaptor molecules containing Toll/IL-1R (TIR domains play important roles in inflammatory immune responses through the production of proinflammatory cytokines, nitric oxide, and type I interferon, and upregulation of costimulatory molecules. In this paper, we will describe our current understanding of the relationship between TLRs and their ligands derived from pathogens such as viruses, bacteria, fungi, and parasites. Moreover, we will review the historical and current literature to describe the mechanisms behind TLR-mediated activation of innate immune responses.

  12. T cell receptor (TCR-transgenic CD8 lymphocytes rendered insensitive to transforming growth factor beta (TGFβ signaling mediate superior tumor regression in an animal model of adoptive cell therapy

    Directory of Open Access Journals (Sweden)

    Quatromoni Jon G

    2012-06-01

    Full Text Available Abstract Tumor antigen-reactive T cells must enter into an immunosuppressive tumor microenvironment, continue to produce cytokine and deliver apoptotic death signals to affect tumor regression. Many tumors produce transforming growth factor beta (TGFβ, which inhibits T cell activation, proliferation and cytotoxicity. In a murine model of adoptive cell therapy, we demonstrate that transgenic Pmel-1 CD8 T cells, rendered insensitive to TGFβ by transduction with a TGFβ dominant negative receptor II (DN, were more effective in mediating regression of established B16 melanoma. Smaller numbers of DN Pmel-1 T cells effectively mediated tumor regression and retained the ability to produce interferon-γ in the tumor microenvironment. These results support efforts to incorporate this DN receptor in clinical trials of adoptive cell therapy for cancer.

  13. Two signaling molecules share a phosphotyrosine-containing binding site in the platelet-derived growth factor receptor.

    Science.gov (United States)

    Nishimura, R; Li, W; Kashishian, A; Mondino, A; Zhou, M; Cooper, J; Schlessinger, J

    1993-11-01

    Autophosphorylation sites of growth factor receptors with tyrosine kinase activity function as specific binding sites for Src homology 2 (SH2) domains of signaling molecules. This interaction appears to be a crucial step in a mechanism by which receptor tyrosine kinases relay signals to downstream signaling pathways. Nck is a widely expressed protein consisting exclusively of SH2 and SH3 domains, the overexpression of which causes cell transformation. It has been shown that various growth factors stimulate the phosphorylation of Nck and its association with autophosphorylated growth factor receptors. A panel of platelet-derived growth factor (PDGF) receptor mutations at tyrosine residues has been used to identify the Nck binding site. Here we show that mutation at Tyr-751 of the PDGF beta-receptor eliminates Nck binding both in vitro and in living cells. Moreover, the Y751F PDGF receptor mutant failed to mediate PDGF-stimulated phosphorylation of Nck in intact cells. A phosphorylated Tyr-751 is also required for binding of phosphatidylinositol-3 kinase to the PDGF receptor. Hence, the SH2 domains of p85 and Nck share a binding site in the PDGF receptor. Competition experiments with different phosphopeptides derived from the PDGF receptor suggest that binding of Nck and p85 is influenced by different residues around Tyr-751. Thus, a single tyrosine autophosphorylation site is able to link the PDGF receptor to two distinct SH2 domain-containing signaling molecules.

  14. Enantiospecific effects of ketoconazole on aryl hydrocarbon receptor.

    Directory of Open Access Journals (Sweden)

    Aneta Novotna

    Full Text Available Azole antifungal ketoconazole (KET was demonstrated to activate aryl hydrocarbon receptor (AhR. Since clinically used KET is a racemic mixture of two cis-enantiomers (2R,4S-(+-KET and (2S,4R-(--KET, we examined the effects of KET enantiomers on AhR signaling pathway. (+-KET dose-dependently activated AhR in human gene reporter cell line AZ-AHR, and displayed 5-20× higher agonist activity (efficacy, as compared to (--KET; both enantiomers were AhR antagonists with equal potency (IC50. Consistently, (+-KET strongly induced CYP1A1 mRNA and protein in human HepG2 cells, while (--KET exerted less than 10% of (+-KET activity. In primary human hepatocytes, both enantiomers preferentially induced CYP1A2 over CYP1A1 mRNA and protein, and the potency of (+-KET was slightly higher as compared to (--KET. Ligand binding assay with guinea pig liver cytosols revealed that both (+-KET and (--KET are weak ligands of AhR that displaced [3H]-TCDD with comparable potency. Similarly, both enantiomers weakly transformed AhR to DNA-binding form with similar potency, as showed by EMSA, in guinea pig liver cytosolic extracts and nuclear extracts from mouse Hepa-1 cells. We also examined effects of KET on glucocorticoid receptor (GR, a regulator of AhR activity. Both KET enantiomers antagonized GR with similar potency, as revealed by gene reporter assay in AZ-GR cell line and down-regulation of tyrosine aminotransferase mRNA in human hepatocytes. Finally, we demonstrate enantiospecific antifungal activities of KET enantiomers in six Candida spp. strains. In conclusion, the significance of current study is providing the first evidence of enatiospecific effects of cis-enantiomers of ketoconazole on AhR-CYP1A pathway.

  15. TGF-beta1 signaling plays a dominant role in the crosstalk between TGF-beta1 and the aryl hydrocarbon receptor ligand in prostate epithelial cells

    Czech Academy of Sciences Publication Activity Database

    Staršíchová, Andrea; Hrubá, E.; Slabáková, Eva; Pernicová, Zuzana; Procházková, Jiřina; Pěnčíková, K.; Šeda, Václav; Kabátková, Markéta; Vondráček, Jan; Kozubík, Alois; Machala, M.; Souček, Karel

    2012-01-01

    Roč. 24, č. 8 (2012), s. 1665-1676 ISSN 0898-6568 R&D Projects: GA ČR(CZ) GA310/07/0961 Institutional research plan: CEZ:AV0Z50040702 Keywords : transforming growth factor-beta * aryl hydrocarbon receptor ligand * prostate epithelial cells Subject RIV: BO - Biophysics Impact factor: 4.304, year: 2012

  16. Regulation of protease-activated receptor 1 signaling by the adaptor protein complex 2 and R4 subfamily of regulator of G protein signaling proteins.

    Science.gov (United States)

    Chen, Buxin; Siderovski, David P; Neubig, Richard R; Lawson, Mark A; Trejo, Joann

    2014-01-17

    The G protein-coupled protease-activated receptor 1 (PAR1) is irreversibly proteolytically activated by thrombin. Hence, the precise regulation of PAR1 signaling is important for proper cellular responses. In addition to desensitization, internalization and lysosomal sorting of activated PAR1 are critical for the termination of signaling. Unlike most G protein-coupled receptors, PAR1 internalization is mediated by the clathrin adaptor protein complex 2 (AP-2) and epsin-1, rather than β-arrestins. However, the function of AP-2 and epsin-1 in the regulation of PAR1 signaling is not known. Here, we report that AP-2, and not epsin-1, regulates activated PAR1-stimulated phosphoinositide hydrolysis via two different mechanisms that involve, in part, a subset of R4 subfamily of "regulator of G protein signaling" (RGS) proteins. A significantly greater increase in activated PAR1 signaling was observed in cells depleted of AP-2 using siRNA or in cells expressing a PAR1 (420)AKKAA(424) mutant with defective AP-2 binding. This effect was attributed to AP-2 modulation of PAR1 surface expression and efficiency of G protein coupling. We further found that ectopic expression of R4 subfamily members RGS2, RGS3, RGS4, and RGS5 reduced activated PAR1 wild-type signaling, whereas signaling by the PAR1 AKKAA mutant was minimally affected. Intriguingly, siRNA-mediated depletion analysis revealed a function for RGS5 in the regulation of signaling by the PAR1 wild type but not the AKKAA mutant. Moreover, activation of the PAR1 wild type, and not the AKKAA mutant, induced Gαq association with RGS3 via an AP-2-dependent mechanism. Thus, AP-2 regulates activated PAR1 signaling by altering receptor surface expression and through recruitment of RGS proteins.

  17. Protein kinase Cδ signaling downstream of the EGF receptor mediates migration and invasiveness of prostate cancer cells

    International Nuclear Information System (INIS)

    Kharait, Sourabh; Dhir, Rajiv; Lauffenburger, Douglas; Wells, Alan

    2006-01-01

    Tumor progression to the invasive phenotype occurs secondary to upregulated signaling from growth factor receptors that drive key cellular responses like proliferation, migration, and invasion. We hypothesized that Protein kinase Cδ (PKCδ)-mediated transcellular contractility is required for migration and invasion of prostate tumor cells. Two invasive human prostate cancer cell lines, DU145 cells overexpressing wildtype human EGFR (DU145WT) and PC3 cells, were studied. PKCδ is overexpressed in these cells relative to normal prostate epithelial cells, and is activated downstream of EGFR leading to cell motility via modulation of myosin light chain activity. Abrogation of PKCδ using Rottlerin and specific siRNA significantly decreased migration and invasion of both cell lines in vitro. Both PKCδ and phosphorylated PKCδ protein levels were higher in human prostate cancer tissue relative to normal donor prostate as assessed by Western blotting and immunohistochemistry. Thus, we conclude that PKCδ inhibition can limit migration and invasion of prostate cancer cells

  18. Human SR-BII mediates SAA uptake and contributes to SAA pro-inflammatory signaling in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Irina N Baranova

    Full Text Available Serum amyloid A (SAA is an acute phase protein with cytokine-like and chemotactic properties, that is markedly up-regulated during various inflammatory conditions. Several receptors, including FPRL-1, TLR2, TLR4, RAGE, class B scavenger receptors, SR-BI and CD36, have been identified as SAA receptors. This study provides new evidence that SR-BII, splice variant of SR-BI, could function as an SAA receptor mediating its uptake and pro-inflammatory signaling. The uptake of Alexa Fluor488 SAA was markedly (~3 fold increased in hSR-BII-expressing HeLa cells when compared with mock-transfected cells. The levels of SAA-induced interleukin-8 secretion by hSR-BII-expressing HEK293 cells were also significantly (~3-3.5 fold higher than those detected in control cells. Moderately enhanced levels of phosphorylation of all three mitogen-activated protein kinases, ERK1/2, and p38 and JNK, were observed in hSR-BII-expressing cells following SAA stimulation when compared with control wild type cells. Transgenic mice with pLiv-11-directed liver/kidney overexpression of hSR-BI or hSR-BII were used to assess the in vivo role of each receptor in SAA-induced pro-inflammatory response in these organs. Six hours after intraperitoneal SAA injection both groups of transgenic mice demonstrated markedly higher (~2-5-fold expression levels of inflammatory mediators in the liver and kidney compared to wild type mice. Histological examinations of hepatic and renal tissue from SAA-treated mice revealed moderate level of damage in the liver of both transgenic but not in the wild type mice. Activities of plasma transaminases, biomarkers of liver injury, were also moderately higher in hSR-B transgenic mice when compared to wild type mice. Our findings identify hSR-BII as a functional SAA receptor that mediates SAA uptake and contributes to its pro-inflammatory signaling via the MAPKs-mediated signaling pathways.

  19. Activation of Brain Somatostatin Signaling Suppresses CRF Receptor-Mediated Stress Response

    Directory of Open Access Journals (Sweden)

    Andreas Stengel

    2017-04-01

    Full Text Available Corticotropin-releasing factor (CRF is the hallmark brain peptide triggering the response to stress and mediates—in addition to the stimulation of the hypothalamus-pituitary-adrenal (HPA axis—other hormonal, behavioral, autonomic and visceral components. Earlier reports indicate that somatostatin-28 injected intracerebroventricularly counteracts the acute stress-induced ACTH and catecholamine release. Mounting evidence now supports that activation of brain somatostatin signaling exerts a broader anti-stress effect by blunting the endocrine, autonomic, behavioral (with a focus on food intake and visceral gastrointestinal motor responses through the involvement of distinct somatostatin receptor subtypes.

  20. Aryl Hydrocarbon Receptor Antagonists Mitigate the Effects of Dioxin on Critical Cellular Functions in Differentiating Human Osteoblast-Like Cells

    Directory of Open Access Journals (Sweden)

    Chawon Yun

    2018-01-01

    Full Text Available The inhibition of bone healing in humans is a well-established effect associated with cigarette smoking, but the underlying mechanisms are still unclear. Recent work using animal cell lines have implicated the aryl hydrocarbon receptor (AhR as a mediator of the anti-osteogenic effects of cigarette smoke, but the complexity of cigarette smoke mixtures makes understanding the mechanisms of action a major challenge. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD, dioxin is a high-affinity AhR ligand that is frequently used to investigate biological processes impacted by AhR activation. Since there are dozens of AhR ligands present in cigarette smoke, we utilized dioxin as a prototype ligand to activate the receptor and explore its effects on pro-osteogenic biomarkers and other factors critical to osteogenesis using a human osteoblast-like cell line. We also explored the capacity for AhR antagonists to protect against dioxin action in this context. We found dioxin to inhibit osteogenic differentiation, whereas co-treatment with various AhR antagonists protected against dioxin action. Dioxin also negatively impacted cell adhesion with a corresponding reduction in the expression of integrin and cadherin proteins, which are known to be involved in this process. Similarly, the dioxin-mediated inhibition of cell migration correlated with reduced expression of the chemokine receptor CXCR4 and its ligand, CXCL12, and co-treatment with antagonists restored migratory capacity. Our results suggest that AhR activation may play a role in the bone regenerative response in humans exposed to AhR activators, such as those present in cigarette smoke. Given the similarity of our results using a human cell line to previous work done in murine cells, animal models may yield data relevant to the human setting. In addition, the AhR may represent a potential therapeutic target for orthopedic patients who smoke cigarettes, or those who are exposed to secondhand smoke or other

  1. Role of aryl hydrocarbon receptor polymorphisms on TCDD-mediated CYP1B1 induction and IgM suppression by human B cells

    Energy Technology Data Exchange (ETDEWEB)

    Kovalova, Natalia, E-mail: kovalova@msu.edu [Department of Pharmacology and Toxicology, Michigan State University, Lansing, MI 48824 (United States); Institute for Integrative Toxicology, Michigan State University, Lansing, MI 48824 (United States); Manzan, Maria, E-mail: ale.manzan@gmail.com [Institute for Integrative Toxicology, Michigan State University, Lansing, MI 48824 (United States); Crawford, Robert, E-mail: crawfo28@msu.edu [Institute for Integrative Toxicology, Michigan State University, Lansing, MI 48824 (United States); Kaminski, Norbert, E-mail: kamins11@msu.edu [Department of Pharmacology and Toxicology, Michigan State University, Lansing, MI 48824 (United States); Institute for Integrative Toxicology, Michigan State University, Lansing, MI 48824 (United States)

    2016-10-15

    Previous studies have demonstrated that most of the intraspecies variation in sensitivity to the toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), including suppression of antibody responses, in murine models is due to single nucleotide polymorphisms (SNPs) within the aryl hydrocarbon receptor (AhR) gene. The underlying reason for variation in sensitivity to TCDD-induced suppression of IgM responses among humans is not well understood, but is thought, in part, to be a result of different polymorphic forms of the AhR expressed by different individuals. In this study, the functional properties of six (P517S, R554K, V570I, V570I + P517S, R554K + V570I and P517S + R554K + V570I) human AhR variants were examined in the human B cell line, SKW 6.4. TCDD-induced Cyp1B1 and Cyp1A2 mRNA expression levels and Cyp1B1-regulated reporter gene activity, used for comparative purposes, were markedly lower in SKW cells containing the R554K SNP than in SKW-AHR{sup +} (control AhR) cells. Furthermore, all AhR variants were able to mediate TCDD-induced suppression of the IgM response; however, a combined P517S + R554K + V570I variant partially reduced sensitivity to TCDD-mediated suppression of IgM secretion. Collectively, our findings show that the R554K human AhR SNP alone altered sensitivity of human B cells to TCDD-mediated induction of Cyp1B1 and Cyp1A2. By contrast, attenuation of TCDD-induced IgM suppression required a combination of all three SNPs P517S, R554K, and V570I. - Highlights: • Mouse, rat and SKW-AHR{sup +} B cells have a similar window of sensitivity to TCDD. • R554K AhR SNP alters B cell sensitivity to TCDD-mediated Cyp1B1 and Cyp1A2 induction. • Combination of P517S, R554K, and V570I SNPs attenuates TCDD-induced IgM suppression.

  2. Insulin signaling mediates sexual attractiveness in Drosophila.

    Directory of Open Access Journals (Sweden)

    Tsung-Han Kuo

    Full Text Available Sexually attractive characteristics are often thought to reflect an individual's condition or reproductive potential, but the underlying molecular mechanisms through which they do so are generally unknown. Insulin/insulin-like growth factor signaling (IIS is known to modulate aging, reproduction, and stress resistance in several species and to contribute to variability of these traits in natural populations. Here we show that IIS determines sexual attractiveness in Drosophila through transcriptional regulation of genes involved in the production of cuticular hydrocarbons (CHC, many of which function as pheromones. Using traditional gas chromatography/mass spectrometry (GC/MS together with newly introduced laser desorption/ionization orthogonal time-of-flight mass spectrometry (LDI-MS we establish that CHC profiles are significantly affected by genetic manipulations that target IIS. Manipulations that reduce IIS also reduce attractiveness, while females with increased IIS are significantly more attractive than wild-type animals. IIS effects on attractiveness are mediated by changes in CHC profiles. Insulin signaling influences CHC through pathways that are likely independent of dFOXO and that may involve the nutrient-sensing Target of Rapamycin (TOR pathway. These results suggest that the activity of conserved molecular regulators of longevity and reproductive output may manifest in different species as external characteristics that are perceived as honest indicators of fitness potential.

  3. Resolution of Toll-like receptor 4-mediated acute lung injury is linked to eicosanoids and suppressor of cytokine signaling 3.

    Science.gov (United States)

    Hilberath, Jan N; Carlo, Troy; Pfeffer, Michael A; Croze, Roxanne H; Hastrup, Frantz; Levy, Bruce D

    2011-06-01

    The purpose of this study was to investigate roles for Toll-like receptor 4 (TLR4) in host responses to sterile tissue injury. Hydrochloric acid was instilled into the left mainstem bronchus of TLR4-defective (both C3H/HeJ and congenic C.C3-Tlr4(Lps-d)/J) and control mice to initiate mild, self-limited acute lung injury (ALI). Outcome measures included respiratory mechanics, barrier integrity, leukocyte accumulation, and levels of select soluble mediators. TLR4-defective mice were more resistant to ALI, with significantly decreased perturbations in lung elastance and resistance, resulting in faster resolution of these parameters [resolution interval (R(i)); ∼6 vs. 12 h]. Vascular permeability changes and oxidative stress were also decreased in injured HeJ mice. These TLR4-defective mice paradoxically displayed increased lung neutrophils [(HeJ) 24×10(3) vs. (control) 13×10(3) cells/bronchoalveolar lavage]. Proresolving mechanisms for TLR4-defective animals included decreased eicosanoid biosynthesis, including cysteinyl leukotrienes (80% mean decrease) that mediated CysLT1 receptor-dependent vascular permeability changes; and induction of lung suppressor of cytokine signaling 3 (SOCS3) expression that decreased TLR4-driven oxidative stress. Together, these findings indicate pivotal roles for TLR4 in promoting sterile ALI and suggest downstream provocative roles for cysteinyl leukotrienes and protective roles for SOCS3 in the intensity and duration of host responses to ALI.

  4. Deficiency in LRP6-Mediated Wnt Signaling Contributes to Synaptic Abnormalities and Amyloid Pathology in Alzheimer’s Disease

    OpenAIRE

    Liu, Chia-Chen; Tsai, Chih-Wei; Deak, Ferenc; Rogers, Justin; Penuliar, Michael; Sung, You Me; Maher, James N.; Fu, Yuan; Li, Xia; Xu, Huaxi; Estus, Steven; Hoe, Hyang-Sook; Fryer, John D.; Kanekiyo, Takahisa; Bu, Guojun

    2014-01-01

    Alzheimer’s disease (AD) is an age-related neurological disorder characterized by synaptic loss and dementia. The low-density lipoprotein receptor-related protein 6 (LRP6) is an essential co-receptor for Wnt signaling and its genetic variants have been linked to AD risk. Here we report that neuronal LRP6-mediated Wnt signaling is critical for synaptic function and cognition. Conditional deletion of Lrp6 gene in mouse forebrain neurons leads to age-dependent deficits in synaptic integrity and ...

  5. Platelet alpha-2 adrenergic receptor-mediated phosphoinositide responses in endogenous depression

    International Nuclear Information System (INIS)

    Mori, Hideki; Koyama, Tsukasa; Yamashita, Itaru

    1991-01-01

    We have previously indicated that epinephrine stimulates phosphoinositide (PI) hydrolysis by activating alpha-2 adrenergic receptors in human platelets. This method involves the measurement of the accumulation of [ 3 H]-inositol-1-phosphate (IP-1) as an index of Pl hydrolysis; lithium is added to inhibit the metabolism of IP-1, thus giving an enhanced signal. In the present study, we assessed the platelet alpha-2 adrenergic receptor-mediated PI responses in samples from 15 unmedicated patients with endogenous depression and 15 age- and sex-matched control subjects. The responses to epinephrine in the depressed patients were significantly higher than those of the controls, whereas the basal values did not differ significantly. These results support the hypothesis that platelet alpha-2 adrenergic receptors may be supersensitive in patients with endogenous depression

  6. Motile cilia of human airway epithelia contain hedgehog signaling components that mediate noncanonical hedgehog signaling.

    Science.gov (United States)

    Mao, Suifang; Shah, Alok S; Moninger, Thomas O; Ostedgaard, Lynda S; Lu, Lin; Tang, Xiao Xiao; Thornell, Ian M; Reznikov, Leah R; Ernst, Sarah E; Karp, Philip H; Tan, Ping; Keshavjee, Shaf; Abou Alaiwa, Mahmoud H; Welsh, Michael J

    2018-02-06

    Differentiated airway epithelia produce sonic hedgehog (SHH), which is found in the thin layer of liquid covering the airway surface. Although previous studies showed that vertebrate HH signaling requires primary cilia, as airway epithelia mature, the cells lose primary cilia and produce hundreds of motile cilia. Thus, whether airway epithelia have apical receptors for SHH has remained unknown. We discovered that motile cilia on airway epithelial cells have HH signaling proteins, including patched and smoothened. These cilia also have proteins affecting cAMP-dependent signaling, including Gα i and adenylyl cyclase 5/6. Apical SHH decreases intracellular levels of cAMP, which reduces ciliary beat frequency and pH in airway surface liquid. These results suggest that apical SHH may mediate noncanonical HH signaling through motile cilia to dampen respiratory defenses at the contact point between the environment and the lung, perhaps counterbalancing processes that stimulate airway defenses. Copyright © 2018 the Author(s). Published by PNAS.

  7. The selectivity of receptor tyrosine kinase signaling is controlled by a secondary SH2 domain binding site.

    Science.gov (United States)

    Bae, Jae Hyun; Lew, Erin Denise; Yuzawa, Satoru; Tomé, Francisco; Lax, Irit; Schlessinger, Joseph

    2009-08-07

    SH2 domain-mediated interactions represent a crucial step in transmembrane signaling by receptor tyrosine kinases. SH2 domains recognize phosphotyrosine (pY) in the context of particular sequence motifs in receptor phosphorylation sites. However, the modest binding affinity of SH2 domains to pY containing peptides may not account for and likely represents an oversimplified mechanism for regulation of selectivity of signaling pathways in living cells. Here we describe the crystal structure of the activated tyrosine kinase domain of FGFR1 in complex with a phospholipase Cgamma fragment. The structural and biochemical data and experiments with cultured cells show that the selectivity of phospholipase Cgamma binding and signaling via activated FGFR1 are determined by interactions between a secondary binding site on an SH2 domain and a region in FGFR1 kinase domain in a phosphorylation independent manner. These experiments reveal a mechanism for how SH2 domain selectivity is regulated in vivo to mediate a specific cellular process.

  8. Enhancement of arachidonic acid signaling pathway by nicotinic acid receptor HM74A

    International Nuclear Information System (INIS)

    Tang, Yuting; Zhou, Lubing; Gunnet, Joseph W.; Wines, Pamela G.; Cryan, Ellen V.; Demarest, Keith T.

    2006-01-01

    HM74A is a G protein-coupled receptor for nicotinic acid (niacin), which has been used clinically to treat dyslipidemia for decades. The molecular mechanisms whereby niacin exerts its pleiotropic effects on lipid metabolism remain largely unknown. In addition, the most common side effect in niacin therapy is skin flushing that is caused by prostaglandin release, suggesting that the phospholipase A 2 (PLA 2 )/arachidonic acid (AA) pathway is involved. Various eicosanoids have been shown to activate peroxisome-proliferator activated receptors (PPAR) that play a diverse array of roles in lipid metabolism. To further elucidate the potential roles of HM74A in mediating the therapeutic effects and/or side effects of niacin, we sought to explore the signaling events upon HM74A activation. Here we demonstrated that HM74A synergistically enhanced UTP- and bradykinin-mediated AA release in a pertussis toxin-sensitive manner in A431 cells. Activation of HM74A also led to Ca 2+ -mobilization and enhanced bradykinin-promoted Ca 2+ -mobilization through Gi protein. While HM74A increased ERK1/2 activation by the bradykinin receptor, it had no effects on UTP-promoted ERK1/2 activation.Furthermore, UTP- and bradykinin-mediated AA release was significantly decreased in the presence of both MAPK kinase inhibitor PD 098059 and PKC inhibitor GF 109203X. However, the synergistic effects of HM74A were not dramatically affected by co-treatment with both inhibitors, indicating the cross-talk occurred at the receptor level. Finally, stimulation of A431 cells transiently transfected with PPRE-luciferase with AA significantly induced luciferase activity, mimicking the effects of PPARγ agonist rosiglitazone, suggesting that alteration of AA signaling pathway can regulate gene expression via endogenous PPARs

  9. Enhancement of arachidonic acid signaling pathway by nicotinic acid receptor HM74A

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yuting [Endocrine Therapeutics and Metabolic Disorders, Johnson and Johnson Pharmaceutical Research and Development, L.L.C., 1000 Rt. 202, Raritan, NJ 08869 (United States); Zhou, Lubing [Endocrine Therapeutics and Metabolic Disorders, Johnson and Johnson Pharmaceutical Research and Development, L.L.C., 1000 Rt. 202, Raritan, NJ 08869 (United States); Gunnet, Joseph W [Endocrine Therapeutics and Metabolic Disorders, Johnson and Johnson Pharmaceutical Research and Development, L.L.C., 1000 Rt. 202, Raritan, NJ 08869 (United States); Wines, Pamela G [Endocrine Therapeutics and Metabolic Disorders, Johnson and Johnson Pharmaceutical Research and Development, L.L.C., 1000 Rt. 202, Raritan, NJ 08869 (United States); Cryan, Ellen V [Endocrine Therapeutics and Metabolic Disorders, Johnson and Johnson Pharmaceutical Research and Development, L.L.C., 1000 Rt. 202, Raritan, NJ 08869 (United States); Demarest, Keith T [Endocrine Therapeutics and Metabolic Disorders, Johnson and Johnson Pharmaceutical Research and Development, L.L.C., 1000 Rt. 202, Raritan, NJ 08869 (United States)

    2006-06-23

    HM74A is a G protein-coupled receptor for nicotinic acid (niacin), which has been used clinically to treat dyslipidemia for decades. The molecular mechanisms whereby niacin exerts its pleiotropic effects on lipid metabolism remain largely unknown. In addition, the most common side effect in niacin therapy is skin flushing that is caused by prostaglandin release, suggesting that the phospholipase A{sub 2} (PLA{sub 2})/arachidonic acid (AA) pathway is involved. Various eicosanoids have been shown to activate peroxisome-proliferator activated receptors (PPAR) that play a diverse array of roles in lipid metabolism. To further elucidate the potential roles of HM74A in mediating the therapeutic effects and/or side effects of niacin, we sought to explore the signaling events upon HM74A activation. Here we demonstrated that HM74A synergistically enhanced UTP- and bradykinin-mediated AA release in a pertussis toxin-sensitive manner in A431 cells. Activation of HM74A also led to Ca{sup 2+}-mobilization and enhanced bradykinin-promoted Ca{sup 2+}-mobilization through Gi protein. While HM74A increased ERK1/2 activation by the bradykinin receptor, it had no effects on UTP-promoted ERK1/2 activation.Furthermore, UTP- and bradykinin-mediated AA release was significantly decreased in the presence of both MAPK kinase inhibitor PD 098059 and PKC inhibitor GF 109203X. However, the synergistic effects of HM74A were not dramatically affected by co-treatment with both inhibitors, indicating the cross-talk occurred at the receptor level. Finally, stimulation of A431 cells transiently transfected with PPRE-luciferase with AA significantly induced luciferase activity, mimicking the effects of PPAR{gamma} agonist rosiglitazone, suggesting that alteration of AA signaling pathway can regulate gene expression via endogenous PPARs.

  10. Effect of dioxins on regulation of tyrosine hydroxylase gene expression by aryl hydrocarbon receptor: a neurotoxicology study

    Directory of Open Access Journals (Sweden)

    Akahoshi Eiichi

    2009-06-01

    Full Text Available Abstract Background Dioxins and related compounds are suspected of causing neurological disruption. Epidemiological studies indicated that exposure to these compounds caused neurodevelopmental disturbances such as learning disability and attention deficit hyperactivity disorder, which are thought to be closely related to dopaminergic dysfunction. Although the molecular mechanism of their actions has not been fully investigated, a major participant in the process is aryl hydrocarbon receptor (AhR. This study focused on the effect of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD exposure on the regulation of TH, a rate-limiting enzyme of dopamine synthesis, gene expression by AhR. Methods N2a-Rβ cells were established by transfecting murine neuroblastoma Neuro2a with the rat AhR cDNA. TH expression induced by TCDD was assessed by RT-PCR and Western blotting. Participation of AhR in TCDD-induced TH gene expression was confirmed by suppressing AhR expression using the siRNA method. Catecholamines including dopamine were measured by high-performance liquid chromatography. A reporter gene assay was used to identify regulatory motifs in the promoter region of TH gene. Binding of AhR with the regulatory motif was confirmed by an electrophoretic mobility shift assay (EMSA. Results Induction of TH by TCDD through AhR activation was detected at mRNA and protein levels. Induced TH protein was functional and its expression increased dopamine synthesis. The reporter gene assay and EMSA indicated that AhR directly regulated TH gene expression. Regulatory sequence called aryl hydrocarbon receptor responsive element III (AHRE-III was identified upstream of the TH gene from -285 bp to -167 bp. Under TCDD exposure, an AhR complex was bound to AHRE-III as well as the xenobiotic response element (XRE, though AHRE-III was not identical to XRE, the conventional AhR-binding motif. Conclusion Our results suggest TCDD directly regulate the dopamine system by TH gene

  11. Distinct phosphotyrosines on a growth factor receptor bind to specific molecules that mediate different signaling pathways.

    Science.gov (United States)

    Fantl, W J; Escobedo, J A; Martin, G A; Turck, C W; del Rosario, M; McCormick, F; Williams, L T

    1992-05-01

    The receptor for platelet-derived growth factor (PDGF) binds two proteins containing SH2 domains, GTPase activating protein (GAP) and phosphatidylinositol 3-kinase (PI3-kinase). The sites on the receptor that mediate this interaction were identified by using phosphotyrosine-containing peptides representing receptor sequences to block specifically binding of either PI3-kinase or GAP. These results suggested that PI3-kinase binds two phosphotyrosine residues, each located in a 5 aa motif with an essential methionine at the fourth position C-terminal to the tyrosine. Point mutations at these sites caused a selective elimination of PI3-kinase binding and loss of PDGF-stimulated DNA synthesis. Mutation of the binding site for GAP prevented the receptor from associating with or phosphorylating GAP, but had no effect on PI3-kinase binding and little effect on DNA synthesis. Therefore, GAP and PI3-kinase interact with the receptor by binding to different phosphotyrosine-containing sequence motifs.

  12. Ionotropic crustacean olfactory receptors.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Corey

    Full Text Available The nature of the olfactory receptor in crustaceans, a major group of arthropods, has remained elusive. We report that spiny lobsters, Panulirus argus, express ionotropic receptors (IRs, the insect chemosensory variants of ionotropic glutamate receptors. Unlike insects IRs, which are expressed in a specific subset of olfactory cells, two lobster IR subunits are expressed in most, if not all, lobster olfactory receptor neurons (ORNs, as confirmed by antibody labeling and in situ hybridization. Ligand-specific ORN responses visualized by calcium imaging are consistent with a restricted expression pattern found for other potential subunits, suggesting that cell-specific expression of uncommon IR subunits determines the ligand sensitivity of individual cells. IRs are the only type of olfactory receptor that we have detected in spiny lobster olfactory tissue, suggesting that they likely mediate olfactory signaling. Given long-standing evidence for G protein-mediated signaling in activation of lobster ORNs, this finding raises the interesting specter that IRs act in concert with second messenger-mediated signaling.

  13. Exploring in vivo cholesterol-mediated interactions between activated EGF receptors in plasma membrane with single-molecule optical tracking

    International Nuclear Information System (INIS)

    Lin, Chien Y.; Huang, Jung Y.; Lo, Leu-Wei

    2016-01-01

    The first step in many cellular signaling processes occurs at various types of receptors in the plasma membrane. Membrane cholesterol can alter these signaling pathways of living cells. However, the process in which the interaction of activated receptors is modulated by cholesterol remains unclear. In this study, we measured single-molecule optical trajectories of epidermal growth factor receptors moving in the plasma membranes of two cancerous cell lines and one normal endothelial cell line. A stochastic model was developed and applied to identify critical information from single-molecule trajectories. We discovered that unliganded epidermal growth factor receptors may reside nearby cholesterol-riched regions of the plasma membrane and can move into these lipid domains when subjected to ligand binding. The amount of membrane cholesterol considerably affects the stability of correlated motion of activated epidermal growth factor receptors. Our results provide single-molecule evidence of membrane cholesterol in regulating signaling receptors. Because the three cell lines used for this study are quite diverse, our results may be useful to shed light on the mechanism of cholesterol-mediated interaction between activated receptors in live cells

  14. A role for inflammatory mediators in heterologous desensitization of CysLT1 receptor in human monocytes

    Science.gov (United States)

    Capra, Valérie; Accomazzo, Maria Rosa; Gardoni, Fabrizio; Barbieri, Silvia; Rovati, G. Enrico

    2010-01-01

    Cysteinyl-leukotrienes (cysteinyl-LT) are rapidly generated at sites of inflammation and, in addition to their role in asthma, rhinitis, and other immune disorders, are increasingly regarded as significant inflammatory factors in cancer, gastrointestinal, cardiovascular diseases. We recently demonstrated that in monocyte/macrophage–like U937 cells, extracellular nucleotides heterologously desensitize CysLT1 receptor (CysLT1R)-induced Ca2+ transients. Given that monocytes express a number of other inflammatory and chemoattractant receptors, this study was aimed at characterizing transregulation between these different stimuli. We demonstrate that in U937 cells and in primary human monocytes, a series of inflammatory mediators activating Gi-coupled receptor (FPR1, BLT1) desensitize CysLT1R-induced Ca2+ response unidirectionally through activation of PKC. Conversely, PAF-R, exclusively coupled to Gq, cross-desensitizes CysLT1R without the apparent involvement of any kinase. Interestingly, Gs-coupled receptors (β2AR, H1/2R, EP2/4R) are also able to desensitize CysLT1R response through activation of PKA. Heterologous desensitization seems to affect mostly the Gi-mediated signaling of the CysLT1R. The hierarchy of desensitization among agonists may be important for leukocyte signal processing at the site of inflammation. Considering that monocytes/macrophages are likely to be the major source of cysteinyl-LT in many immunological and inflammatory processes, shedding light on how their receptors are regulated will certainly help to better understand the role of these cells in orchestrating this complex network of integrated signals. PMID:19965602

  15. Analgesic effect of paeoniflorin in rats with neonatal maternal separation-induced visceral hyperalgesia is mediated through adenosine A(1) receptor by inhibiting the extracellular signal-regulated protein kinase (ERK) pathway.

    Science.gov (United States)

    Zhang, Xiao-Jun; Chen, Hong-Li; Li, Zhi; Zhang, Hong-Qi; Xu, Hong-Xi; Sung, Joseph J Y; Bian, Zhao-Xiang

    2009-11-01

    Paeoniflorin (PF), a chief active ingredient in the root of Paeonia lactiflora Pall (family Ranunculaceae), is effective in relieving colorectal distention (CRD)-induced visceral pain in rats with visceral hyperalgesia induced by neonatal maternal separation (NMS). This study aimed at exploring the underlying mechanisms of PF's analgesic effect on CRD-evoked nociceptive signaling in the central nervous system (CNS) and investigating whether the adenosine A(1) receptor is involved in PF's anti-nociception. CRD-induced visceral pain as well as phosphorylated-extracellular signal-regulated protein kinase (p-ERK) and phospho-cAMP response element-binding protein (p-CREB) expression in the CNS structures of NMS rats were suppressed by NMDA receptor antagonist dizocilpine (MK-801) and ERK phosphorylation inhibitor U0126. PF could similarly inhibit CRD-evoked p-ERK and c-Fos expression in laminae I-II of the lumbosacral dorsal horn and anterior cingulate cortex (ACC). PF could also reverse the CRD-evoked increased glutamate concentration by CRD as shown by dynamic microdialysis monitoring in ACC, whereas, DPCPX, an antagonist of adenosine A(1) receptor, significantly blocked the analgesic effect of PF and PF's inhibition on CRD-induced p-ERK and p-CREB expression. These results suggest that PF's analgesic effect is possibly mediated by adenosine A(1) receptor by inhibiting CRD-evoked glutamate release and the NMDA receptor dependent ERK signaling.

  16. NK cell cytotoxicity mediated by 2B4 and NTB-A is dependent on SAP acting downstream of receptor phosphorylation

    Directory of Open Access Journals (Sweden)

    Stephan eMeinke

    2013-01-01

    Full Text Available 2B4 (CD244 and NK-T-B-antigen (NTB-A, CD352 are activating receptors on human NK cells and belong to the family of SLAM-related receptors. Engagement of these receptors leads to phosphorylation of their cytoplasmic tails and recruitment of the adapter proteins SAP and EAT-2. X-linked lymphoproliferative syndrome (XLP is a severe immunodeficiency that results from mutations in the SAP gene. 2B4 and NTB-A-mediated cytotoxicity are abrogated in XLP NK cells. To elucidate the molecular basis for this defect we analyzed early signaling events in SAP knockdown cells. Similar to XLP NK cells, knockdown of SAP in primary human NK cells leads to a reduction of 2B4 and NTB-A-mediated cytotoxicity. We found that early signaling events such as raft recruitment and receptor phosphorylation are not affected by the absence of SAP, indicating the defect in the absence of SAP is downstream of these events. In addition, knockdown of EAT-2 does not impair 2B4 or NTB-A-mediated cytotoxicity. Surprisingly, EAT-2 recruitment to both receptors is abrogated in the absence of SAP, revealing a novel cooperativity between these adapters.

  17. Constitutively active RAS signaling reduces 1,25 dihydroxyvitamin D-mediated gene transcription in intestinal epithelial cells by reducing vitamin D receptor expression.

    Science.gov (United States)

    DeSmet, Marsha L; Fleet, James C

    2017-10-01

    High vitamin D status is associated with reduced colon cancer risk but these studies ignore the diversity in the molecular etiology of colon cancer. RAS activating mutations are common in colon cancer and they activate pro-proliferative signaling pathways. We examined the impact of RAS activating mutations on 1,25 dihydroxyvitamin D (1,25(OH) 2 D)-mediated gene expression in cultured colon and intestinal cell lines. Transient transfection of Caco-2 cells with a constitutively active mutant K-RAS (G12 V) significantly reduced 1,25(OH) 2 D-induced activity of both a human 25-hydroxyvitamin D, 24 hydroxyase (CYP24A1) promoter-luciferase and an artificial 3X vitamin D response element (VDRE) promoter-luciferase reporter gene. Young Adult Mouse Colon (YAMC) and Rat Intestinal Epithelial (RIE) cell lines with stable expression of mutant H-RAS had suppressed 1,25(OH) 2 D-mediated induction of CYP24A1 mRNA. The RAS effects were associated with lower Vitamin D receptor (VDR) mRNA and protein levels in YAMC and RIE cells and they could be partially reversed by VDR overexpression. RAS-mediated suppression of VDR levels was not due to either reduced VDR mRNA stability or increased VDR gene methylation. However, chromatin accessibility to the VDR gene at the proximal promoter (-300bp), an enhancer region at -6kb, and an enhancer region located in exon 3 was significantly reduced in RAS transformed YAMC cells (YAMC-RAS). These data show that constitutively active RAS signaling suppresses 1,25(OH) 2 D-mediated gene transcription in colon epithelial cells by reducing VDR gene transcription but the mechanism for this suppression is not yet known. These data suggest that cancers with RAS-activating mutations may be less responsive to vitamin D mediated treatment or chemoprevention. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Differences in Signal Activation by LH and hCG are Mediated by the LH/CG Receptor's Extracellular Hinge Region.

    Science.gov (United States)

    Grzesik, Paul; Kreuchwig, Annika; Rutz, Claudia; Furkert, Jens; Wiesner, Burkhard; Schuelein, Ralf; Kleinau, Gunnar; Gromoll, Joerg; Krause, Gerd

    2015-01-01

    The human lutropin (hLH)/choriogonadotropin (hCG) receptor (LHCGR) can be activated by binding two slightly different gonadotropic glycoprotein hormones, choriogonadotropin (CG) - secreted by the placenta, and lutropin (LH) - produced by the pituitary. They induce different signaling profiles at the LHCGR. This cannot be explained by binding to the receptor's leucine-rich-repeat domain (LRRD), as this binding is similar for the two hormones. We therefore speculate that there are previously unknown differences in the hormone/receptor interaction at the extracellular hinge region, which might help to understand functional differences between the two hormones. We have therefore performed a detailed study of the binding and action of LH and CG at the LHCGR hinge region. We focused on a primate-specific additional exon in the hinge region, which is located between LRRD and the serpentine domain. The segment of the hinge region encoded by exon10 was previously reported to be only relevant to hLH signaling, as the exon10-deletion receptor exhibits decreased hLH signaling, but unchanged hCG signaling. We designed an advanced homology model of the hormone/LHCGR complex, followed by experimental characterization of relevant fragments in the hinge region. In addition, we examined predictions of a helical exon10-encoded conformation by block-wise polyalanine (helix supporting) mutations. These helix preserving modifications showed no effect on hormone-induced signaling. However, introduction of a structure-disturbing double-proline mutant LHCGR-Q303P/E305P within the exon10-helix has, in contrast to exon10-deletion, no impact on hLH, but only on hCG signaling. This opposite effect on signaling by hLH and hCG can be explained by distinct sites of hormone interaction in the hinge region. In conclusion, our analysis provides details of the differences between hLH- and hCG-induced signaling that are mainly determined in the L2-beta loop of the hormones and in the hinge

  19. Molecular Basis of the Extracellular Ligands Mediated Signaling by the Calcium Sensing Receptor

    Directory of Open Access Journals (Sweden)

    Chen Zhang

    2016-09-01

    Full Text Available Ca2+-sensing receptors (CaSRs play a central role in regulating extracellular calcium concentration ([Ca2+]o homeostasis and many (pathophysiological processes in multiple organs. This regulation is orchestrated by a cooperative response to extracellular stimuli such as small changes in Ca2+, Mg2+, amino acids and other ligands. In addition, CaSR is a pleiotropic receptor regulating several intracellular signaling pathways, including calcium mobilization and intracellular calcium oscillation. Nearly 200 mutations and polymorphisms have been found in CaSR in relation to a variety of human disorders associated with abnormal Ca2+ homeostasis. In this review, we summarize efforts directed at identifying binding sites for calcium and amino acids. Both homotropic cooperativity among multiple calcium binding sites and heterotropic cooperativity between calcium and amino acid were revealed using computational modeling, predictions, and site-directed mutagenesis coupled with functional assays. The hinge region of the bilobed Venus flytrap (VFT domain of CaSR plays a pivotal role in coordinating multiple extracellular stimuli, leading to cooperative responses from the receptor. We further highlight the extensive number of disease-associated mutations that have also been shown to affect CaSR’s cooperative action via several types of mechanisms. These results provide insights into the molecular bases of the structure and functional cooperativity of this receptor and other members of family C of the G protein-coupled receptors (cGPCRs in health and disease states, and may assist in the prospective development of novel receptor-based therapeutics.

  20. Oxidative stress augments toll-like receptor 8 mediated neutrophilic responses in healthy subjects

    Directory of Open Access Journals (Sweden)

    Matsunaga Kazuto

    2009-06-01

    Full Text Available Abstract Background Excessive oxidative stress has been reported to be generated in inflamed tissues and contribute to the pathogenesis of inflammatory lung diseases, exacerbations of which induced by viral infections are associated with toll-like receptor (TLR activation. Among these receptors, TLR8 has been reported as a key receptor that recognizes single-strand RNA virus. However, it remains unknown whether TLR8 signaling is potentiated by oxidative stress. The aim of this study is to examine whether oxidative stress modulates TLR8 signaling in vitro. Methods Human peripheral blood neutrophils were obtained from healthy non-smokers and stimulated with TLR 7/8 agonist imidazoquinoline resiquimod (R848 in the presence or absence of hydrogen peroxide (H2O2. Neutrophilic responses including cytokine release, superoxide production and chemotaxis were examined, and the signal transduction was also analyzed. Results Activation of TLR8, but not TLR7, augmented IL-8 release. The R848-augmented IL-8 release was significantly potentiated by pretreatment with H2O2 (p L-cysteine reversed this potentiation. The combination of H2O2 and R848 significantly potentiated NF-kB phosphorylation and IkBα degradation. The H2O2-potentiated IL-8 release was suppressed by MG-132, a proteosome inhibitor, and by dexamethasone. The expressions of TLR8, myeloid differentiation primary response gene 88 (MyD88, and tumor necrosis factor receptor-associated factor 6 (TRAF6 were not affected by H2O2. Conclusion TLR8-mediated neutrophilic responses were markedly potentiated by oxidative stress, and the potentiation was mediated by enhanced NF-kB activation. These results suggest that oxidative stress might potentiate the neutrophilic inflammation during viral infection.

  1. Differences between lutropin-mediated and choriogonadotropin-mediated receptor activation.

    Science.gov (United States)

    Grzesik, Paul; Teichmann, Anke; Furkert, Jens; Rutz, Claudia; Wiesner, Burkhard; Kleinau, Gunnar; Schülein, Ralf; Gromoll, Jörg; Krause, Gerd

    2014-03-01

    The human lutropin/choriogonadotropin receptor (hLHR) for the gonadotropic hormones human luteinizing hormone (hLH; lutropin) and human choriogonadotropin (hCG) is crucial for normal sexual development and fertility. We aimed to unravel differences between the two hLHR hormones in molecular activation mechanisms at hLHR. We utilized a specific hLHR variant that lacks exon 10 (hLHR-delExon10), which maintains full cAMP signaling by hCG, but decreases hLH-induced receptor signaling, resulting in a pathogenic phenotype. Exon 10 encodes 27 amino acids within the hinge region, which is an extracellular segment that is important for signaling and hormone interaction. Initially, we assumed that the lack of exon 10 might disturb intermolecular trans-activation of hLH, a mechanism that has been reported for hCG at hLHR. Coexpression of signaling-deficient hLHR and binding-deficient hLHR can be used to examine the mechanisms of receptor signaling, in particular intermolecular cooperation and intramolecular cis-activation. Therefore, hLHR-delExon10 was combined with the hLHR Lys605→Glu mutant, in which signaling is abolished, and the hLHR mutant Cys131→Arg, in which binding is deficient. We found that hCG signaling was partially rescued, indicating trans-activation. However, the hLH signal could not be restored via forced trans-activation with any construct. Fluorescence cross-correlation spectroscopy detected oligomerization in all combinations, indicating that these functional differences cannot be explained by monomerization of hLHR-delExon10. Thus, our data demonstrate not only that the different behavior of hLH at hLHR-delExon10 is unlikely to be related to modified intermolecular receptor activation, but also that hLH may exclusively stimulate the targeted hLHR by cis-activation, whereas hCG is also capable of inducing trans-activation. © 2014 FEBS.

  2. DNA and protein co-administration induces tolerogenic dendritic cells through DC-SIGN mediated negative signals.

    Science.gov (United States)

    Li, Jinyao; Geng, Shuang; Liu, Xiuping; Liu, Hu; Jin, Huali; Liu, Chang-Gong; Wang, Bin

    2013-10-01

    We previously demonstrated that DNA and protein co-administration induced differentiation of immature dendritic cells (iDCs) into CD11c(+)CD40(low)IL-10(+) regulatory DCs (DCregs) via the caveolin-1 (Cav-1) -mediated signal pathway. Here, we demonstrate that production of IL-10 and the low expression of CD40 play a critical role in the subsequent induction of regulatory T cells (Tregs) by the DCregs. We observed that DNA and protein were co-localized with DC-SIGN in caveolae and early lysosomes in the treated DCs, as indicated by co-localization with Cav-1 and EEA-1 compartment markers. DNA and protein also co-localized with LAMP-2. Gene-array analysis of gene expression showed that more than a thousand genes were significantly changed by the DC co-treatment with DNA + protein compared with controls. Notably, the level of DC-SIGN expression was dramatically upregulated in pOVA + OVA co-treated DCs. The expression levels of Rho and Rho GNEF, the down-stream molecules of DC-SIGN mediated signal pathway, were also greatly upregulated. Further, the level of TLR9, the traditional DNA receptor, was significantly downregulated. These results suggest that DC-SIGN as the potential receptor for DNA and protein might trigger the negative pathway to contribute the induction of DCreg combining with Cav-1 mediated negative signal pathway.

  3. Polymorphism of the aryl-hydrocarbon receptor gene in intron 10 of human cancers

    Directory of Open Access Journals (Sweden)

    M. Rocas

    2011-11-01

    Full Text Available Polychlorinated dibenzo-p-dioxins (PCDDs and related halogenated aromatic hydrocarbons (e.g., PCDFs, often called "dioxins", are ubiquitously present environmental contaminants. Some of them, notably 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, are among the most toxic synthetic compounds known. The biological effects of dioxins are mediated via the aryl hydrocarbon receptor (AhR. Mutations in the AhR transactivation domain are linked to sensitivity to the acute lethality of TCDD. We present here a study of AhR gene polymorphism in normal and cancer human tissues affecting pre-mRNA splicing in the AhR gene-coding transactivation domain region (exon 10, intron 10, exon 11 region, previously shown to be associated with AhR dysfunction. We tested 126 pairs of normal and cancer tissue samples from liver, lung, stomach, kidney, mucous, breast, and pancreas of 49 males and 77 females (45-70 years of age. We used in vitro splicing assay, RT-PCR and sequencing methods. Our results showed that in an in vitro system it is possible to reconstitute cellular pre-mRNA splicing events. Tested cancer tissues did not contain mutations in the AhR transactivation domain region when the DNA sequences were compared with those from normal tissues. There were also no differences in AhR mRNA splice variants between normal and malignant breast tissues and no polymorphisms in the studied regions or cDNA.

  4. Receptor Activity-modifying Protein-directed G Protein Signaling Specificity for the Calcitonin Gene-related Peptide Family of Receptors.

    Science.gov (United States)

    Weston, Cathryn; Winfield, Ian; Harris, Matthew; Hodgson, Rose; Shah, Archna; Dowell, Simon J; Mobarec, Juan Carlos; Woodlock, David A; Reynolds, Christopher A; Poyner, David R; Watkins, Harriet A; Ladds, Graham

    2016-10-14

    The calcitonin gene-related peptide (CGRP) family of G protein-coupled receptors (GPCRs) is formed through the association of the calcitonin receptor-like receptor (CLR) and one of three receptor activity-modifying proteins (RAMPs). Binding of one of the three peptide ligands, CGRP, adrenomedullin (AM), and intermedin/adrenomedullin 2 (AM2), is well known to result in a Gα s -mediated increase in cAMP. Here we used modified yeast strains that couple receptor activation to cell growth, via chimeric yeast/Gα subunits, and HEK-293 cells to characterize the effect of different RAMP and ligand combinations on this pathway. We not only demonstrate functional couplings to both Gα s and Gα q but also identify a Gα i component to CLR signaling in both yeast and HEK-293 cells, which is absent in HEK-293S cells. We show that the CGRP family of receptors displays both ligand- and RAMP-dependent signaling bias among the Gα s , Gα i , and Gα q/11 pathways. The results are discussed in the context of RAMP interactions probed through molecular modeling and molecular dynamics simulations of the RAMP-GPCR-G protein complexes. This study further highlights the importance of RAMPs to CLR pharmacology and to bias in general, as well as identifying the importance of choosing an appropriate model system for the study of GPCR pharmacology. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. A novel ecdysone receptor mediates steroid-regulated developmental events during the mid-third instar of Drosophila.

    Directory of Open Access Journals (Sweden)

    Benjamin F B Costantino

    2008-06-01

    Full Text Available The larval salivary gland of Drosophila melanogaster synthesizes and secretes glue glycoproteins that cement developing animals to a solid surface during metamorphosis. The steroid hormone 20-hydroxyecdysone (20E is an essential signaling molecule that modulates most of the physiological functions of the larval gland. At the end of larval development, it is known that 20E--signaling through a nuclear receptor heterodimer consisting of EcR and USP--induces the early and late puffing cascade of the polytene chromosomes and causes the exocytosis of stored glue granules into the lumen of the gland. It has also been reported that an earlier pulse of hormone induces the temporally and spatially specific transcriptional activation of the glue genes; however, the receptor responsible for triggering this response has not been characterized. Here we show that the coordinated expression of the glue genes midway through the third instar is mediated by 20E acting to induce genes of the Broad Complex (BRC through a receptor that is not an EcR/USP heterodimer. This result is novel because it demonstrates for the first time that at least some 20E-mediated, mid-larval, developmental responses are controlled by an uncharacterized receptor that does not contain an RXR-like component.

  6. Iron mediates N-methyl-D-aspartate receptor-dependent stimulation of calcium-induced pathways and hippocampal synaptic plasticity.

    Science.gov (United States)

    Muñoz, Pablo; Humeres, Alexis; Elgueta, Claudio; Kirkwood, Alfredo; Hidalgo, Cecilia; Núñez, Marco T

    2011-04-15

    Iron deficiency hinders hippocampus-dependent learning processes and impairs cognitive performance, but current knowledge on the molecular mechanisms underlying the unique role of iron in neuronal function is sparse. Here, we investigated the participation of iron on calcium signal generation and ERK1/2 stimulation induced by the glutamate agonist N-methyl-D-aspartate (NMDA), and the effects of iron addition/chelation on hippocampal basal synaptic transmission and long-term potentiation (LTP). Addition of NMDA to primary hippocampal cultures elicited persistent calcium signals that required functional NMDA receptors and were independent of calcium influx through L-type calcium channels or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors; NMDA also promoted ERK1/2 phosphorylation and nuclear translocation. Iron chelation with desferrioxamine or inhibition of ryanodine receptor (RyR)-mediated calcium release with ryanodine-reduced calcium signal duration and prevented NMDA-induced ERK1/2 activation. Iron addition to hippocampal neurons readily increased the intracellular labile iron pool and stimulated reactive oxygen species production; the antioxidant N-acetylcysteine or the hydroxyl radical trapper MCI-186 prevented these responses. Iron addition to primary hippocampal cultures kept in calcium-free medium elicited calcium signals and stimulated ERK1/2 phosphorylation; RyR inhibition abolished these effects. Iron chelation decreased basal synaptic transmission in hippocampal slices, inhibited iron-induced synaptic stimulation, and impaired sustained LTP in hippocampal CA1 neurons induced by strong stimulation. In contrast, iron addition facilitated sustained LTP induction after suboptimal tetanic stimulation. Together, these results suggest that hippocampal neurons require iron to generate RyR-mediated calcium signals after NMDA receptor stimulation, which in turn promotes ERK1/2 activation, an essential step of sustained LTP.

  7. Astrocytes protect neurons against methylmercury via ATP/P2Y(1) receptor-mediated pathways in astrocytes.

    Science.gov (United States)

    Noguchi, Yusuke; Shinozaki, Youichi; Fujishita, Kayoko; Shibata, Keisuke; Imura, Yoshio; Morizawa, Yosuke; Gachet, Christian; Koizumi, Schuichi

    2013-01-01

    Methylmercury (MeHg) is a well known environmental pollutant that induces serious neuronal damage. Although MeHg readily crosses the blood-brain barrier, and should affect both neurons and glial cells, how it affects glia or neuron-to-glia interactions has received only limited attention. Here, we report that MeHg triggers ATP/P2Y1 receptor signals in astrocytes, thereby protecting neurons against MeHg via interleukin-6 (IL-6)-mediated pathways. MeHg increased several mRNAs in astrocytes, among which IL-6 was the highest. For this, ATP/P2Y1 receptor-mediated mechanisms were required because the IL-6 production was (i) inhibited by a P2Y1 receptor antagonist, MRS2179, (ii) abolished in astrocytes obtained from P2Y1 receptor-knockout mice, and (iii) mimicked by exogenously applied ATP. In addition, (iv) MeHg released ATP by exocytosis from astrocytes. As for the intracellular mechanisms responsible for IL-6 production, p38 MAP kinase was involved. MeHg-treated astrocyte-conditioned medium (ACM) showed neuro-protective effects against MeHg, which was blocked by anti-IL-6 antibody and was mimicked by the application of recombinant IL-6. As for the mechanism of neuro-protection by IL-6, an adenosine A1 receptor-mediated pathway in neurons seems to be involved. Taken together, when astrocytes sense MeHg, they release ATP that autostimulates P2Y1 receptors to upregulate IL-6, thereby leading to A1 receptor-mediated neuro-protection against MeHg.

  8. Membrane Trafficking of Death Receptors: Implications on Signalling

    Directory of Open Access Journals (Sweden)

    Wulf Schneider-Brachert

    2013-07-01

    Full Text Available Death receptors were initially recognised as potent inducers of apoptotic cell death and soon ambitious attempts were made to exploit selective ignition of controlled cellular suicide as therapeutic strategy in malignant diseases. However, the complexity of death receptor signalling has increased substantially during recent years. Beyond activation of the apoptotic cascade, involvement in a variety of cellular processes including inflammation, proliferation and immune response was recognised. Mechanistically, these findings raised the question how multipurpose receptors can ensure selective activation of a particular pathway. A growing body of evidence points to an elegant spatiotemporal regulation of composition and assembly of the receptor-associated signalling complex. Upon ligand binding, receptor recruitment in specialized membrane compartments, formation of receptor-ligand clusters and internalisation processes constitute key regulatory elements. In this review, we will summarise the current concepts of death receptor trafficking and its implications on receptor-associated signalling events.

  9. CB1 receptor-mediated signaling underlies the hippocampal synaptic, learning, and memory deficits following treatment with JWH-081, a new component of spice/K2 preparations.

    Science.gov (United States)

    Basavarajappa, Balapal S; Subbanna, Shivakumar

    2014-02-01

    Recently, synthetic cannabinoids have been sprayed onto plant material, which is subsequently packaged and sold as "Spice" or "K2" to mimic the effects of marijuana. A recent report identified several synthetic additives in samples of "Spice/K2", including JWH-081, a synthetic ligand for the cannabinoid receptor 1 (CB1). The deleterious effects of JWH-081 on brain function are not known, particularly on CB1 signaling, synaptic plasticity, learning and memory. Here, we evaluated the effects of JWH-081 on pCaMKIV, pCREB, and pERK1/2 signaling events followed by long-term potentiation (LTP), hippocampal-dependent learning and memory tasks using CB1 receptor wild-type (WT) and knockout (KO) mice. Acute administration of JWH-081 impaired CaMKIV phosphorylation in a dose-dependent manner, whereas inhibition of CREB phosphorylation in CB1 receptor WT mice was observed only at higher dose of JWH-081 (1.25 mg/kg). JWH-081 at higher dose impaired CaMKIV and CREB phosphorylation in a time-dependent manner in CB1 receptor WT mice but not in KO mice and failed to alter ERK1/2 phosphorylation. In addition, SR treated or CB1 receptor KO mice have a lower pCaMKIV/CaMKIV ratio and higher pCREB/CREB ratio compared with vehicle or WT littermates. In hippocampal slices, JWH-081 impaired LTP in CB1 receptor WT but not in KO littermates. Furthermore, JWH-081 at higher dose impaired object recognition, spontaneous alternation and spatial memory on the Y-maze in CB1 receptor WT mice but not in KO mice. Collectively our findings suggest that deleterious effects of JWH-081 on hippocampal function involves CB1 receptor mediated impairments in CaMKIV and CREB phosphorylation, LTP, learning and memory in mice. © 2013 Wiley Periodicals, Inc.

  10. Insulin signaling inhibits the 5-HT2C receptor in choroid plexus via MAP kinase

    Directory of Open Access Journals (Sweden)

    Guan Kunliang

    2003-06-01

    Full Text Available Abstract Background G protein-coupled receptors (GPCRs interact with heterotrimeric GTP-binding proteins (G proteins to modulate acute changes in intracellular messenger levels and ion channel activity. In contrast, long-term changes in cellular growth, proliferation and differentiation are often mediated by tyrosine kinase receptors and certain GPCRs by activation of mitogen-activated protein (MAP kinases. Complex interactions occur between these signaling pathways, but the specific mechanisms of such regulatory events are not well-understood. In particular it is not clear whether GPCRs are modulated by tyrosine kinase receptor-MAP kinase pathways. Results Here we describe tyrosine kinase receptor regulation of a GPCR via MAP kinase. Insulin reduced the activity of the 5-HT2C receptor in choroid plexus cells which was blocked by the MAP kinase kinase (MEK inhibitor, PD 098059. We demonstrate that the inhibitory effect of insulin and insulin-like growth factor type 1 (IGF-1 on the 5-HT2C receptor is dependent on tyrosine kinase, RAS and MAP kinase. The effect may be receptor-specific: insulin had no effect on another GPCR that shares the same G protein signaling pathway as the 5-HT2C receptor. This effect is also direct: activated MAP kinase mimicked the effect of insulin, and removing a putative MAP kinase site from the 5-HT2C receptor abolished the effect of insulin. Conclusion These results show that insulin signaling can inhibit 5-HT2C receptor activity and suggest that MAP kinase may play a direct role in regulating the function of a specific GPCR.

  11. Human glutathione S-transferase P1-1 functions as an estrogen receptor α signaling modulator

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiyuan [Department of Biological Science, Sookmyung Women’s University, Seoul (Korea, Republic of); An, Byoung Ha [Department of Food and Nutrition, College of Life Science, Sookmyung Women’s University, Seoul (Korea, Republic of); Kim, Min Jung; Park, Jong Hoon [Department of Biological Science, Sookmyung Women’s University, Seoul (Korea, Republic of); Kang, Young Sook [Department of Pharmacy, College of Pharmacy, Sookmyung Women’s University, Seoul (Korea, Republic of); Chang, Minsun, E-mail: minsunchang@sm.ac.kr [Department of Medical and Pharmaceutical Science, College of Science, Sookmyung Women’s University, Seoul (Korea, Republic of)

    2014-09-26

    Highlights: • GSTP induces the classical ERα signaling event. • The functional GSTP is a prerequisite for GSTP-induced ERα transcription activity. • The expression of RIP140, a transcription cofactor, was inhibited by GSTP protein. • We propose the novel non-enzymatic role of GSTP. - Abstract: Estrogen receptor α (ERα) plays a crucial role in estrogen-mediated signaling pathways and exerts its action as a nuclear transcription factor. Binding of the ligand-activated ERα to the estrogen response element (ERE) is a central part of ERα-associated signal transduction pathways and its aberrant modulation is associated with many disease conditions. Human glutathione S-transferase P1-1 (GSTP) functions as an enzyme in conjugation reactions in drug metabolism and as a regulator of kinase signaling pathways. It is overexpressed in tumors following chemotherapy and has been associated with a poor prognosis in breast cancer. In this study, a novel regulatory function of GSTP has been proposed in which GSTP modulates ERE-mediated ERα signaling events. Ectopic expression of GSTP was able to induce the ERα and ERE-mediated transcriptional activities in ERα-positive but GSTP-negative MCF7 human breast cancer cells. This inductive effect of GSTP on the ERE-transcription activity was diminished when the cells express a mutated form of the enzyme or are treated with a GSTP-specific chemical inhibitor. It was found that GSTP inhibited the expression of the receptor interacting protein 140 (RIP140), a negative regulator of ERα transcription, at both mRNA and protein levels. Our study suggests a novel non-enzymatic role of GSTP which plays a significant role in regulating the classical ERα signaling pathways via modification of transcription cofactors such as RIP140.

  12. Xingshentongqiao Decoction Mediates Proliferation, Apoptosis, Orexin-A Receptor and Orexin-B Receptor Messenger Ribonucleic Acid Expression and Represses Mitogen-activated Protein Kinase Signaling

    Directory of Open Access Journals (Sweden)

    Yuanli Dong

    2015-01-01

    Full Text Available Background: Hypocretin (HCRT signaling plays an important role in the pathogenesis of narcolepsy and can be significantly influenced by Chinese herbal therapy. Our previous study showed that xingshentongqiao decoction (XSTQ is clinically effective for the treatment of narcolepsy. To determine whether XSTQ improves narcolepsy by modulating HCRT signaling, we investigated its effects on SH-SY5Y cell proliferation, apoptosis, and HCRT receptor 1/2 (orexin receptor 1 [OX1R] and orexin receptor 2 [OX2R] expression. The signaling pathways involved in these processes were also assessed. Methods: The effects of XSTQ on proliferation and apoptosis in SH-SY5Y cells were assessed using cell counting kit-8 and annexin V-fluorescein isothiocyanate assays. OX1R and OX2R expression was assessed by quantitative real-time polymerase chain reaction analysis. Western blotting for mitogen-activated protein kinase (MAPK pathway activation was performed to further assess the signaling mechanism of XSTQ. Results: XSTQ reduced the proliferation and induced apoptosis of SH-SY5Y cells. This effect was accompanied by the upregulation of OX1R and OX2R expression and the reduced phosphorylation of extracellular signal-regulated kinase (Erk 1/2, p38 MAPK and c-Jun N-terminal kinase (JNK. Conclusions: XSTQ inhibits proliferation and induces apoptosis in SH-SY5Y cells. XSTQ also promotes OX1R and OX2R expression. These effects are associated with the repression of the Erk1/2, p38 MAPK, and JNK signaling pathways. These results define a molecular mechanism for XSTQ in regulating HCRT and MAPK activation, which may explain its ability to treat narcolepsy.

  13. Mixed Signals: Co-Stimulation in Invariant Natural Killer T Cell-Mediated Cancer Immunotherapy

    Directory of Open Access Journals (Sweden)

    Susannah C. Shissler

    2017-11-01

    Full Text Available Invariant natural killer T (iNKT cells are an integral component of the immune system and play an important role in antitumor immunity. Upon activation, iNKT cells can directly kill malignant cells as well as rapidly produce cytokines that stimulate other immune cells, making them a front line defense against tumorigenesis. Unfortunately, iNKT cell number and activity are reduced in multiple cancer types. This anergy is often associated with upregulation of co-inhibitory markers such as programmed death-1. Similar to conventional T cells, iNKT cells are influenced by the conditions of their activation. Conventional T cells receive signals through the following three types of receptors: (1 T cell receptor (TCR, (2 co-stimulation molecules, and (3 cytokine receptors. Unlike conventional T cells, which recognize peptide antigen presented by MHC class I or II, the TCRs of iNKT cells recognize lipid antigen in the context of the antigen presentation molecule CD1d (Signal 1. Co-stimulatory molecules can positively and negatively influence iNKT cell activation and function and skew the immune response (Signal 2. This study will review the background of iNKT cells and their co-stimulatory requirements for general function and in antitumor immunity. We will explore the impact of monoclonal antibody administration for both blocking inhibitory pathways and engaging stimulatory pathways on iNKT cell-mediated antitumor immunity. This review will highlight the incorporation of co-stimulatory molecules in antitumor dendritic cell vaccine strategies. The use of co-stimulatory intracellular signaling domains in chimeric antigen receptor-iNKT therapy will be assessed. Finally, we will explore the influence of innate-like receptors and modification of immunosuppressive cytokines (Signal 3 on cancer immunotherapy.

  14. The essential role of G protein-coupled receptor (GPCR) signaling in regulating T cell immunity.

    Science.gov (United States)

    Wang, Dashan

    2018-06-01

    The aim of this paper is to clarify the critical role of GPCR signaling in T cell immunity. The G protein-coupled receptors (GPCRs) are the most common targets in current pharmaceutical industry, and represent the largest and most versatile family of cell surface communicating molecules. GPCRs can be activated by a diverse array of ligands including neurotransmitters, chemokines as well as sensory stimuli. Therefore, GPCRs are involved in many key cellular and physiological processes, such as sense of light, taste and smell, neurotransmission, metabolism, endocrine and exocrine secretion. In recent years, GPCRs have been found to play an important role in immune system. T cell is an important type of immune cell, which plays a central role in cell-mediated immunity. A variety of GPCRs and their signaling mediators (RGS proteins, GRKs and β-arrestin) have been found to express in T cells and involved T cell-mediated immunity. We will summarize the role of GPCR signaling and their regulatory molecules in T cell activation, homeostasis and function in this article. GPCR signaling plays an important role in T cell activation, homeostasis and function. GPCR signaling is critical in regulating T cell immunity.

  15. Acquired and innate immunity to polyaromatic hydrocarbons

    International Nuclear Information System (INIS)

    Yusuf, Nabiha; Timares, Laura; Seibert, Megan D.; Xu Hui; Elmets, Craig A.

    2007-01-01

    Polyaromatic hydrocarbons are ubiquitous environmental pollutants that are potent mutagens and carcinogens. Researchers have taken advantage of these properties to investigate the mechanisms by which chemicals cause cancer of the skin and other organs. When applied to the skin of mice, several carcinogenic polyaromatic hydrocarbons have also been shown to interact with the immune system, stimulating immune responses and resulting in the development of antigen-specific T-cell-mediated immunity. Development of cell-mediated immunity is strain-specific and is governed by Ah receptor genes and by genes located within the major histocompatibility complex. CD8 + T cells are effector cells in the response, whereas CD4 + T cells down-regulate immunity. Development of an immune response appears to have a protective effect since strains of mice that develop a cell-mediated immune response to carcinogenic polyaromatic hydrocarbons are less likely to develop tumors when subjected to a polyaromatic hydrocarbon skin carcinogenesis protocol than mice that fail to develop an immune response. With respect to innate immunity, TLR4-deficient C3H/HeJ mice are more susceptible to polyaromatic hydrogen skin tumorigenesis than C3H/HeN mice in which TLR4 is normal. These findings support the hypothesis that immune responses, through their interactions with chemical carcinogens, play an active role in the prevention of chemical skin carcinogenesis during the earliest stages. Efforts to augment immune responses to the chemicals that cause tumors may be a productive approach to the prevention of tumors caused by these agents

  16. Purple sweet potato color attenuates domoic acid-induced cognitive deficits by promoting estrogen receptor-α-mediated mitochondrial biogenesis signaling in mice.

    Science.gov (United States)

    Lu, Jun; Wu, Dong-Mei; Zheng, Yuan-Lin; Hu, Bin; Cheng, Wei; Zhang, Zi-Feng

    2012-02-01

    Recent findings suggest that endoplasmic reticulum stress may be involved in the pathogenesis of domoic acid-induced neurodegeneration. Purple sweet potato color, a class of naturally occurring anthocyanins, has beneficial health and biological effects. Recent studies have also shown that anthocyanins have estrogenic activity and can enhance estrogen receptor-α expression. In this study, we evaluated the effect of purple sweet potato color on cognitive deficits induced by hippocampal mitochondrial dysfunction in domoic acid-treated mice and explored the potential mechanisms underlying this effect. Our results showed that the oral administration of purple sweet potato color to domoic acid-treated mice significantly improved their behavioral performance in a step-through passive avoidance task and a Morris water maze task. These improvements were mediated, at least in part, by a stimulation of estrogen receptor-α-mediated mitochondrial biogenesis signaling and by decreases in the expression of p47phox and gp91phox. Decreases in reactive oxygen species and protein carbonylation were also observed, along with a blockade of the endoplasmic reticulum stress pathway. Furthermore, purple sweet potato color significantly suppressed endoplasmic reticulum stress-induced apoptosis, which prevented neuron loss and restored the expression of memory-related proteins. However, knockdown of estrogen receptor-α using short hairpin RNA only partially blocked the neuroprotective effects of purple sweet potato color in the hippocampus of mice cotreated with purple sweet potato color and domoic acid, indicating that purple sweet potato color acts through multiple pathways. These results suggest that purple sweet potato color could be a possible candidate for the prevention and treatment of cognitive deficits in excitotoxic and other brain disorders. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.

  17. Erythropoietin Receptor Signaling Is Membrane Raft Dependent

    Science.gov (United States)

    McGraw, Kathy L.; Fuhler, Gwenny M.; Johnson, Joseph O.; Clark, Justine A.; Caceres, Gisela C.; Sokol, Lubomir; List, Alan F.

    2012-01-01

    Upon erythropoietin (Epo) engagement, Epo-receptor (R) homodimerizes to activate JAK2 and Lyn, which phosphorylate STAT5. Although recent investigations have identified key negative regulators of Epo-R signaling, little is known about the role of membrane localization in controlling receptor signal fidelity. Here we show a critical role for membrane raft (MR) microdomains in creation of discrete signaling platforms essential for Epo-R signaling. Treatment of UT7 cells with Epo induced MR assembly and coalescence. Confocal microscopy showed that raft aggregates significantly increased after Epo stimulation (mean, 4.3±1.4(SE) vs. 25.6±3.2 aggregates/cell; p≤0.001), accompanied by a >3-fold increase in cluster size (p≤0.001). Raft fraction immunoblotting showed Epo-R translocation to MR after Epo stimulation and was confirmed by fluorescence microscopy in Epo stimulated UT7 cells and primary erythroid bursts. Receptor recruitment into MR was accompanied by incorporation of JAK2, Lyn, and STAT5 and their activated forms. Raft disruption by cholesterol depletion extinguished Epo induced Jak2, STAT5, Akt and MAPK phosphorylation in UT7 cells and erythroid progenitors. Furthermore, inhibition of the Rho GTPases Rac1 or RhoA blocked receptor recruitment into raft fractions, indicating a role for these GTPases in receptor trafficking. These data establish a critical role for MR in recruitment and assembly of Epo-R and signal intermediates into discrete membrane signaling units. PMID:22509308

  18. GPER1-mediated IGFBP-1 induction modulates IGF-1-dependent signaling in tamoxifen-treated breast cancer cells.

    Science.gov (United States)

    Vaziri-Gohar, Ali; Houston, Kevin D

    2016-02-15

    Tamoxifen, a selective estrogen receptor modulator, is a commonly prescribed adjuvant therapy for estrogen receptor-α (ERα)-positive breast cancer patients. To determine if extracellular factors contribute to the modulation of IGF-1 signaling after tamoxifen treatment, MCF-7 cells were treated with IGF-1 in conditioned medium (CM) obtained from 4-OHT-treated MCF-7 cells and the accumulation of phospho-Akt (S473) was measured. CM inhibited IGF-1-dependent cell signaling and suggesting the involvement of extracellular factors (ie. IGFBPs). A significant increase in IGFBP-1 mRNA and extracellular IGFBP-1 protein was observed in 4-OHT-treated MCF-7 cells. Knockdown experiments demonstrated that both GPER1 and CREB mediate IGFBP-1 induction. Furthermore, experiments showed that 4-OHT-dependent IGFBP-1 transcription is downstream of GPER1-activation in breast cancer cells. Additionally, neutralization and knockdown experiments demonstrated a role for IGFBP-1 in the observed inhibition of IGF-1 signaling. These results suggested that 4-OHT inhibits IGF-1 signaling via GPER1 and CREB mediated extracellular IGFBP-1 accumulation in breast cancer cells. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  19. Receptor downregulation and desensitization enhance the information processing ability of signalling receptors

    Directory of Open Access Journals (Sweden)

    Resat Haluk

    2007-11-01

    Full Text Available Abstract Background In addition to initiating signaling events, the activation of cell surface receptors also triggers regulatory processes that restrict the duration of signaling. Acute attenuation of signaling can be accomplished either via ligand-induced internalization of receptors (endocytic downregulation or via ligand-induced receptor desensitization. These phenomena have traditionally been viewed in the context of adaptation wherein the receptor system enters a refractory state in the presence of sustained ligand stimuli and thereby prevents the cell from over-responding to the ligand. Here we use the epidermal growth factor receptor (EGFR and G-protein coupled receptors (GPCR as model systems to respectively examine the effects of downregulation and desensitization on the ability of signaling receptors to decode time-varying ligand stimuli. Results Using a mathematical model, we show that downregulation and desensitization mechanisms can lead to tight and efficient input-output coupling thereby ensuring synchronous processing of ligand inputs. Frequency response analysis indicates that upstream elements of the EGFR and GPCR networks behave like low-pass filters with the system being able to faithfully transduce inputs below a critical frequency. Receptor downregulation and desensitization increase the filter bandwidth thereby enabling the receptor systems to decode inputs in a wider frequency range. Further, system-theoretic analysis reveals that the receptor systems are analogous to classical mechanical over-damped systems. This analogy enables us to metaphorically describe downregulation and desensitization as phenomena that make the systems more resilient in responding to ligand perturbations thereby improving the stability of the system resting state. Conclusion Our findings suggest that in addition to serving as mechanisms for adaptation, receptor downregulation and desensitization can play a critical role in temporal information

  20. Congenital amegakaryocytic thrombocytopenia iPS cells exhibit defective MPL-mediated signaling.

    Science.gov (United States)

    Hirata, Shinji; Takayama, Naoya; Jono-Ohnishi, Ryoko; Endo, Hiroshi; Nakamura, Sou; Dohda, Takeaki; Nishi, Masanori; Hamazaki, Yuhei; Ishii, Ei-ichi; Kaneko, Shin; Otsu, Makoto; Nakauchi, Hiromitsu; Kunishima, Shinji; Eto, Koji

    2013-09-01

    Congenital amegakaryocytic thrombocytopenia (CAMT) is caused by the loss of thrombopoietin receptor-mediated (MPL-mediated) signaling, which causes severe pancytopenia leading to bone marrow failure with onset of thrombocytopenia and anemia prior to leukopenia. Because Mpl(-/-) mice do not exhibit the human disease phenotype, we used an in vitro disease tracing system with induced pluripotent stem cells (iPSCs) derived from a CAMT patient (CAMT iPSCs) and normal iPSCs to investigate the role of MPL signaling in hematopoiesis. We found that MPL signaling is essential for maintenance of the CD34+ multipotent hematopoietic progenitor (MPP) population and development of the CD41+GPA+ megakaryocyte-erythrocyte progenitor (MEP) population, and its role in the fate decision leading differentiation toward megakaryopoiesis or erythropoiesis differs considerably between normal and CAMT cells. Surprisingly, complimentary transduction of MPL into normal or CAMT iPSCs using a retroviral vector showed that MPL overexpression promoted erythropoiesis in normal CD34+ hematopoietic progenitor cells (HPCs), but impaired erythropoiesis and increased aberrant megakaryocyte production in CAMT iPSC-derived CD34+ HPCs, reflecting a difference in the expression of the transcription factor FLI1. These results demonstrate that impaired transcriptional regulation of the MPL signaling that normally governs megakaryopoiesis and erythropoiesis underlies CAMT.

  1. The Association of CXC Receptor 4 Mediated Signaling Pathway with Oxaliplatin-Resistant Human Colorectal Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Wen-Shih Huang

    Full Text Available The stromal cell-derived factor-1 (SDF-1/CXC receptor 4 (CXCR4 axis plays an important role in tumor angiogenesis and invasiveness in colorectal cancer (CRC progression. In addition, metastatic CRC remains one of the most difficult human malignancies to treat because of its chemoresistant behavior. However, the mechanism by which correlation occurs between CXCR4 and the clinical response of CRC to chemotherapy remains unknown. We generated chemoresistant cells with increasing doses of oxaliplatin (OXA and 5-Fluorouracil (5FU to develop resistance at a clinical dose. We found that the putative markers did not change in the parental cells, but HCT-116/OxR and HCT-116/5-FUR were more aggressive and had higher tumor growth (demonstrated by wound healing, chemotaxis assay, and a nude mice xenograft model with the use of oxaliplatin. Apoptosis induced by oxaliplatin treatment was significantly decreased in HCT-116/OxR compared to the parental cells. Moreover, HCT-116/OxR cells displayed increased levels of p-gp, p-Akt p-ERK, p-IKBβ, CXCR4, and Bcl-2, but they also significantly inhibited the apoptotic pathways when compared to the parental strain. We evaluated the molecular mechanism governing the signaling pathway associated with anti-apoptosis activity and the aggressive status of chemoresistant cells. Experiments involving specific inhibitors demonstrated that the activation of the pathways associated with CXCR4, ERK1/2 mitogen-activated protein kinase (MAPK, and phosphatidylinositol 3-kinase (PI3K/Akt is critical to the functioning of the HCT-116/OxR and HCT-116/5-FUR characteristics of chemosensitivity. These findings elucidate the mechanism of CXCR4/PI3K/Akt downstream signaling and provide strategies to inhibit CXCR4 mediated signaling pathway in order to overcome CRC's resistance to chemotherapy.

  2. Proteinase-activated receptors - mediators of early and delayed normal tissue radiation responses

    International Nuclear Information System (INIS)

    Hauer-Jensen, M.

    2003-01-01

    Proteinase-activated receptors (PARs) are G-protein coupled receptors that are activated by proteolytic exposure of a receptor-tethered ligand. The discovery of this receptor family represents one of the most intriguing recent developments in signal transduction. PARs are involved in the regulation of many normal and pathophysiological processes, notably inflammatory and fibroproliferative responses to injury. Preclinical studies performed in our laboratory suggest that proteinase-activated receptor-1 (PAR-1) plays a critical role in the mechanism of chronicity of radiation fibrosis, while proteinase-activated receptor-2 (PAR-2) may mediate important fibroproliferative responses in irradiated intestine. Specifically, activation of PAR-1 by thrombin, and PAR-2 by pancreatic trypsin and mast cell proteinases, appears to be involved in acute radiation-induced inflammation, as well as in subsequent extracellular matrix deposition, leading to the development of intestinal wall fibrosis and clinical complications. Pharmacological modulators of PAR-1 or PAR-2 expression or activation would be potentially useful as preventive or therapeutic agents in patients who receive radiation therapy, especially if blockade could be targeted to specific tissues or cellular compartments

  3. Mannose Receptor Mediates the Immune Response to Ganoderma atrum Polysaccharides in Macrophages.

    Science.gov (United States)

    Li, Wen-Juan; Tang, Xiao-Fang; Shuai, Xiao-Xue; Jiang, Cheng-Jia; Liu, Xiang; Wang, Le-Feng; Yao, Yu-Fei; Nie, Shao-Ping; Xie, Ming-Yong

    2017-01-18

    The ability of mannose receptor (MR) to recognize the carbohydrate structures is well-established. Here, we reported that MR was crucial for the immune response to a Ganoderma atrum polysaccharide (PSG-1), as evidenced by elevation of MR in association with increase of phagocytosis and concentrations of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in normal macrophages. Elevation of MR triggered by PSG-1 also led to control lipopolysaccharide (LPS)-triggered inflammatory response via the increase of interleukin-10 (IL-10) and inhibition of phagocytosis and IL-1β. Anti-MR antibody partly attenuated PSG-1-mediated anti-inflammatory responses, while it could not affect TNF-α secretion, suggesting that another receptor was involved in PSG-1-triggered immunomodulatory effects. MR and toll-like receptor (TLR)4 coordinated the influences on the TLR4-mediated signaling cascade by the nuclear factor-κB (NF-κB) pathway in LPS-stimulated macrophages subjected to PSG-1. Collectively, immune response to PSG-1 required recognition by MR in macrophages. The NF-κB pathway served as a central role for the coordination of MR and TLR4 to elicit immune response to PSG-1.

  4. The carboxyl terminal tyrosine 417 residue of NOK has an autoinhibitory effect on NOK-mediated signaling transductions

    International Nuclear Information System (INIS)

    Li Yinghua; Zhong Shan; Rong Zhili; Ren Yongming; Li Zhiyong; Zhang Shuping; Chang Zhijie; Liu Li

    2007-01-01

    Receptor protein tyrosine kinases (RPTKs) are essential mediators of cell growth, differentiation, migration, and metabolism. Recently, a novel RPTK named NOK has been cloned and characterized. In current study, we investigated the role of the carboxyl terminal tyrosine 417 residue of NOK in the activations of different signaling pathways. A single tyrosine to phenylalanine point mutation at Y417 site (Y417 F) not only dramatically enhanced the NOK-induced activation of extracellular signal-regulated kinase (ERK), but also markedly promoted the NOK-mediated activation of both signal transducer and activator of transcription 1 and 3 (STAT1 and 3). Moreover, the proliferation potential of NIH3T3-NOK (Y417F) stable cells were significantly elevated as compared with that of NIH3T3-NOK. Overall, our results demonstrate that the tyrosine Y417 residue at the carboxyl tail of NOK exhibits an autoinhibitory role in NOK-mediated signaling transductions

  5. Glucocorticoid receptor signaling in health and disease

    Science.gov (United States)

    Kadmiel, Mahita; Cidlowski, John A.

    2013-01-01

    Glucocorticoids are steroid hormones regulated in a circadian and stres-associated manner to maintain various metabolic and homeostatic functions that are necessary for life. Synthetic glucocorticoids are widely prescribed drugs for many conditions including asthma, chronic obstructive pulmonary disease (COPD), and inflammatory disorders of the eye. Research in the last few years has begun to unravel the profound complexity of glucocorticoid signaling and has contributed remarkably to improved therapeutic strategies. Glucocorticoids signal through the glucocorticoid receptor, a member of the superfamily of nuclear receptors, in both genomic and non-genomic ways in almost every tissue in the human body. In this review, we will provide an update on glucocorticoid receptor signaling and highlight the role of GR signaling in physiological and pathophysiological conditions in the major organ systems in the human body. PMID:23953592

  6. Inter-domain tagging implicates caveolin-1 in insulin receptor trafficking and Erk signaling bias in pancreatic beta-cells

    Directory of Open Access Journals (Sweden)

    Tobias Boothe

    2016-05-01

    Full Text Available Objective: The role and mechanisms of insulin receptor internalization remain incompletely understood. Previous trafficking studies of insulin receptors involved fluorescent protein tagging at their termini, manipulations that may be expected to result in dysfunctional receptors. Our objective was to determine the trafficking route and molecular mechanisms of functional tagged insulin receptors and endogenous insulin receptors in pancreatic beta-cells. Methods: We generated functional insulin receptors tagged with pH-resistant fluorescent proteins between domains. Confocal, TIRF and STED imaging revealed a trafficking pattern of inter-domain tagged insulin receptors and endogenous insulin receptors detected with antibodies. Results: Surprisingly, interdomain-tagged and endogenous insulin receptors in beta-cells bypassed classical Rab5a- or Rab7-mediated endocytic routes. Instead, we found that removal of insulin receptors from the plasma membrane involved tyrosine-phosphorylated caveolin-1, prior to trafficking within flotillin-1-positive structures to lysosomes. Multiple methods of inhibiting caveolin-1 significantly reduced Erk activation in vitro or in vivo, while leaving Akt signaling mostly intact. Conclusions: We conclude that phosphorylated caveolin-1 plays a role in insulin receptor internalization towards lysosomes through flotillin-1-positive structures and that caveolin-1 helps bias physiological beta-cell insulin signaling towards Erk activation. Author Video: Author Video Watch what authors say about their articles Keywords: Insulin receptor internalization, Insulin resistance, Pancreatic islet beta-cells, Autocrine insulin signaling

  7. Mechanisms underlying odorant-induced and spontaneous calcium signals in olfactory receptor neurons of spiny lobsters, Panulirus argus.

    Science.gov (United States)

    Tadesse, Tizeta; Derby, Charles D; Schmidt, Manfred

    2014-01-01

    We determined if a newly developed antennule slice preparation allows studying chemosensory properties of spiny lobster olfactory receptor neurons under in situ conditions with Ca(2+) imaging. We show that chemical stimuli reach the dendrites of olfactory receptor neurons but not their somata, and that odorant-induced Ca(2+) signals in the somata are sufficiently stable over time to allow stimulation with a substantial number of odorants. Pharmacological manipulations served to elucidate the source of odorant-induced Ca(2+) transients and spontaneous Ca(2+) oscillations in the somata of olfactory receptor neurons. Both Ca(2+) signals are primarily mediated by an influx of extracellular Ca(2+) through voltage-activated Ca(2+) channels that can be blocked by CoCl2 and the L-type Ca(2+) channel blocker verapamil. Intracellular Ca(2+) stores contribute little to odorant-induced Ca(2+) transients and spontaneous Ca(2+) oscillations. The odorant-induced Ca(2+) transients as well as the spontaneous Ca(2+) oscillations depend on action potentials mediated by Na(+) channels that are largely TTX-insensitive but blocked by the local anesthetics tetracaine and lidocaine. Collectively, these results corroborate the conclusion that odorant-induced Ca(2+) transients and spontaneous Ca(2+) oscillations in the somata of olfactory receptor neurons closely reflect action potential activity associated with odorant-induced phasic-tonic responses and spontaneous bursting, respectively. Therefore, both types of Ca(2+) signals represent experimentally accessible proxies of spiking.

  8. Acute engagement of Gq-mediated signaling in the bed nucleus of the stria terminalis induces anxiety-like behavior.

    Science.gov (United States)

    Mazzone, C M; Pati, D; Michaelides, M; DiBerto, J; Fox, J H; Tipton, G; Anderson, C; Duffy, K; McKlveen, J M; Hardaway, J A; Magness, S T; Falls, W A; Hammack, S E; McElligott, Z A; Hurd, Y L; Kash, T L

    2018-01-01

    The bed nucleus of the stria terminalis (BNST) is a brain region important for regulating anxiety-related behavior in both humans and rodents. Here we used a chemogenetic strategy to investigate how engagement of G protein-coupled receptor (GPCR) signaling cascades in genetically defined GABAergic BNST neurons modulates anxiety-related behavior and downstream circuit function. We saw that stimulation of vesicular γ-aminobutyric acid (GABA) transporter (VGAT)-expressing BNST neurons using hM3Dq, but neither hM4Di nor rM3Ds designer receptors exclusively activated by a designer drug (DREADD), promotes anxiety-like behavior. Further, we identified that activation of hM3Dq receptors in BNST VGAT neurons can induce a long-term depression-like state of glutamatergic synaptic transmission, indicating DREADD-induced changes in synaptic plasticity. Further, we used DREADD-assisted metabolic mapping to profile brain-wide network activity following activation of G q -mediated signaling in BNST VGAT neurons and saw increased activity within ventral midbrain structures, including the ventral tegmental area and hindbrain structures such as the locus coeruleus and parabrachial nucleus. These results highlight that G q -mediated signaling in BNST VGAT neurons can drive downstream network activity that correlates with anxiety-like behavior and points to the importance of identifying endogenous GPCRs within genetically defined cell populations. We next used a microfluidics approach to profile the receptorome of single BNST VGAT neurons. This approach yielded multiple G q -coupled receptors that are associated with anxiety-like behavior and several potential novel candidates for regulation of anxiety-like behavior. From this, we identified that stimulation of the G q -coupled receptor 5-HT 2C R in the BNST is sufficient to elevate anxiety-like behavior in an acoustic startle task. Together, these results provide a novel profile of receptors within genetically defined BNST VGAT

  9. TSLP signaling pathway map: a platform for analysis of TSLP-mediated signaling.

    Science.gov (United States)

    Zhong, Jun; Sharma, Jyoti; Raju, Rajesh; Palapetta, Shyam Mohan; Prasad, T S Keshava; Huang, Tai-Chung; Yoda, Akinori; Tyner, Jeffrey W; van Bodegom, Diederik; Weinstock, David M; Ziegler, Steven F; Pandey, Akhilesh

    2014-01-01

    Thymic stromal lymphopoietin (TSLP) is a four-helix bundle cytokine that plays a critical role in the regulation of immune responses and in the differentiation of hematopoietic cells. TSLP signals through a heterodimeric receptor complex consisting of an interleukin-7 receptor α chain and a unique TSLP receptor (TSLPR) [also known as cytokine receptor-like factor 2 (CRLF2)]. Cellular targets of TSLP include dendritic cells, B cells, mast cells, regulatory T (Treg) cells and CD4+ and CD8+ T cells. The TSLP/TSLPR axis can activate multiple signaling transduction pathways including the JAK/STAT pathway and the PI-3 kinase pathway. Aberrant TSLP/TSLPR signaling has been associated with a variety of human diseases including asthma, atopic dermatitis, nasal polyposis, inflammatory bowel disease, eosinophilic eosophagitis and, most recently, acute lymphoblastic leukemia. A centralized resource of the TSLP signaling pathway cataloging signaling events is not yet available. In this study, we present a literature-annotated resource of reactions in the TSLP signaling pathway. This pathway map is publicly available through NetPath (http://www.netpath.org/), an open access signal transduction pathway resource developed previously by our group. This map includes 236 molecules and 252 reactions that are involved in TSLP/TSLPR signaling pathway. We expect that the TSLP signaling pathway map will provide a rich resource to study the biology of this important cytokine as well as to identify novel therapeutic targets for diseases associated with dysregulated TSLP/TSLPR signaling. Database URL: http://www.netpath.org/pathways?path_id=NetPath_24.

  10. Purinergic receptor antagonists inhibit odorant-mediated CREB phosphorylation in sustentacular cells of mouse olfactory epithelium.

    LENUS (Irish Health Repository)

    Dooley, Ruth

    2012-02-01

    BACKGROUND: Extracellular nucleotides have long been known to play neuromodulatory roles and to be involved in intercellular signalling. In the olfactory system, ATP is released by olfactory neurons, and exogenous ATP can evoke an increase in intracellular calcium concentration in sustentacular cells, the nonneuronal supporting cells of the olfactory epithelium. Here we investigate the hypothesis that olfactory neurons communicate with sustentacular cells via extracellular ATP and purinergic receptor activation. RESULTS: Here we show that exposure of mice to a mixture of odorants induced a significant increase in the levels of the transcription factor CREB phosphorylated at Ser-133 in the nuclei of both olfactory sensory neurons and sustentacular cells. This activation was dependent on adenylyl cyclase III-mediated olfactory signaling and on activation of P2Y purinergic receptors on sustentacular cells. Purinergic receptor antagonists inhibited odorant-dependent CREB phosphorylation specifically in the nuclei of the sustentacular cells. CONCLUSION: Our results point to a possible role for extracellular nucleotides in mediating intercellular communication between the neurons and sustentacular cells of the olfactory epithelium in response to odorant exposure. Maintenance of extracellular ionic gradients and metabolism of noxious chemicals by sustentacular cells may therefore be regulated in an odorant-dependent manner by olfactory sensory neurons.

  11. Purinergic receptor antagonists inhibit odorant-mediated CREB phosphorylation in sustentacular cells of mouse olfactory epithelium

    LENUS (Irish Health Repository)

    Dooley, Ruth

    2011-08-22

    Abstract Background Extracellular nucleotides have long been known to play neuromodulatory roles and to be involved in intercellular signalling. In the olfactory system, ATP is released by olfactory neurons, and exogenous ATP can evoke an increase in intracellular calcium concentration in sustentacular cells, the nonneuronal supporting cells of the olfactory epithelium. Here we investigate the hypothesis that olfactory neurons communicate with sustentacular cells via extracellular ATP and purinergic receptor activation. Results Here we show that exposure of mice to a mixture of odorants induced a significant increase in the levels of the transcription factor CREB phosphorylated at Ser-133 in the nuclei of both olfactory sensory neurons and sustentacular cells. This activation was dependent on adenylyl cyclase III-mediated olfactory signaling and on activation of P2Y purinergic receptors on sustentacular cells. Purinergic receptor antagonists inhibited odorant-dependent CREB phosphorylation specifically in the nuclei of the sustentacular cells. Conclusion Our results point to a possible role for extracellular nucleotides in mediating intercellular communication between the neurons and sustentacular cells of the olfactory epithelium in response to odorant exposure. Maintenance of extracellular ionic gradients and metabolism of noxious chemicals by sustentacular cells may therefore be regulated in an odorant-dependent manner by olfactory sensory neurons.

  12. Purinergic receptor antagonists inhibit odorant-mediated CREB phosphorylation in sustentacular cells of mouse olfactory epithelium

    Directory of Open Access Journals (Sweden)

    Hatt Hanns

    2011-08-01

    Full Text Available Abstract Background Extracellular nucleotides have long been known to play neuromodulatory roles and to be involved in intercellular signalling. In the olfactory system, ATP is released by olfactory neurons, and exogenous ATP can evoke an increase in intracellular calcium concentration in sustentacular cells, the nonneuronal supporting cells of the olfactory epithelium. Here we investigate the hypothesis that olfactory neurons communicate with sustentacular cells via extracellular ATP and purinergic receptor activation. Results Here we show that exposure of mice to a mixture of odorants induced a significant increase in the levels of the transcription factor CREB phosphorylated at Ser-133 in the nuclei of both olfactory sensory neurons and sustentacular cells. This activation was dependent on adenylyl cyclase III-mediated olfactory signaling and on activation of P2Y purinergic receptors on sustentacular cells. Purinergic receptor antagonists inhibited odorant-dependent CREB phosphorylation specifically in the nuclei of the sustentacular cells. Conclusion Our results point to a possible role for extracellular nucleotides in mediating intercellular communication between the neurons and sustentacular cells of the olfactory epithelium in response to odorant exposure. Maintenance of extracellular ionic gradients and metabolism of noxious chemicals by sustentacular cells may therefore be regulated in an odorant-dependent manner by olfactory sensory neurons.

  13. IGF-1 signaling mediated cell-specific skeletal mechano-transduction.

    Science.gov (United States)

    Tian, Faming; Wang, Yongmei; Bikle, Daniel D

    2018-02-01

    Mechanical loading preserves bone mass and stimulates bone formation, whereas skeletal unloading leads to bone loss. In addition to osteocytes, which are considered the primary sensor of mechanical load, osteoblasts, and bone specific mesenchymal stem cells also are involved. The skeletal response to mechanical signals is a complex process regulated by multiple signaling pathways including that of insulin-like growth factor-1 (IGF-1). Conditional osteocyte deletion of IGF-1 ablates the osteogenic response to mechanical loading. Similarly, osteocyte IGF-1 receptor (IGF-1R) expression is necessary for reloading-induced periosteal bone formation. Transgenic overexpression of IGF-1 in osteoblasts results in enhanced responsiveness to in vivo mechanical loading in mice, a response which is eliminated by osteoblastic conditional disruption of IGF-1 in vivo. Bone marrow derived stem cells (BMSC) from unloaded bone fail to respond to IGF-1 in vitro. IGF-1R is required for the transduction of a mechanical stimulus to downstream effectors, transduction which is lost when the IGF-1R is deleted. Although the molecular mechanisms are not yet fully elucidated, the IGF signaling pathway and its interactions with potentially interlinked signaling cascades involving integrins, the estrogen receptor, and wnt/β-catenin play an important role in regulating adaptive response of cancer bone cells to mechanical stimuli. In this review, we discuss recent advances investigating how IGF-1 and other interlinked molecules and signaling pathways regulate skeletal mechano-transduction involving different bone cells, providing an overview of the IGF-1 signaling mediated cell-specific response to mechanical stimuli. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:576-583, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  14. Aryl hydrocarbon receptor (AhR and its endogenous agonist – indoxyl sulfate in chronic kidney disease

    Directory of Open Access Journals (Sweden)

    Tomasz Kamiński

    2017-07-01

    Full Text Available The indoxyl sulfate (IS, indoxyl sulphate is the end product of dietary tryptophan degradation by indole pathway and significantly higher serum and tissue concentrations of this compound is observed in patients with impaired renal function. Despite the high albumin binding affinity, the remaining free fraction of IS has a number of biological effects related to the generation of oxidative stress andactivation of signaling pathways related to NF-кB, p53 protein, STAT3, TGF-β and Smad2/3. IS induces the inflammatory process, exerts nephrotoxic activity and is also a factor impairing the cardiovascular system.Its high concentrations are associated with the occurrence of cardiovascular incidents, whose frequency is significantly higher in patients with chronic kidney disease. Evaluation of the mechanisms that underlie the high reactivity of indoxyl sulfate and its biological effects showed that this compound is an agonist of the aryl hydrocarbon receptor (AhR. This receptor plays an important role in maintaining homeostasis Moreover, AhR exerts high transcriptional activity, so ligands of obciążethis receptor may exert different biological effects. The following paper describes the role of indoxyl sulfate as AhR ligand in the context of the excessive accumulation, which appears as one of the symptoms associated with chronic kidney disease.

  15. Nitric oxide from inflammatory origin impairs neural stem cell proliferation by inhibiting epidermal growth factor receptor signaling

    Directory of Open Access Journals (Sweden)

    Bruno Pereira Carreira

    2014-10-01

    Full Text Available Neuroinflammation is characterized by activation of microglial cells, followed by production of nitric oxide (NO, which may have different outcomes on neurogenesis, favoring or inhibiting this process. In the present study, we investigated how the inflammatory mediator NO can affect proliferation of neural stem cells (NSC, and explored possible mechanisms underlying this effect. We investigated which mechanisms are involved in the regulation of NSC proliferation following treatment with an inflammatory stimulus (LPS plus IFN-γ, using a culture system of subventricular zone (SVZ-derived NSC mixed with microglia cells obtained from wild-type mice (iNOS+/+ or from iNOS knockout mice (iNOS-/-. We found an impairment of NSC cell proliferation in iNOS+/+ mixed cultures, which was not observed in iNOS-/- mixed cultures. Furthermore, the increased release of NO by activated iNOS+/+ microglial cells decreased the activation of the ERK/MAPK signaling pathway, which was concomitant with an enhanced nitration of the EGF receptor. Preventing nitrogen reactive species formation with MnTBAP, a scavenger of peroxynitrite, or using the peroxynitrite degradation catalyst FeTMPyP, cell proliferation and ERK signaling were restored to basal levels in iNOS+/+ mixed cultures. Moreover, exposure to the NO donor NOC-18 (100 µM, for 48 h, inhibited SVZ-derived NSC proliferation. Regarding the antiproliferative effect of NO, we found that NOC-18 caused the impairment of signaling through the ERK/MAPK pathway, which may be related to increased nitration of the EGF receptor in NSC. Using MnTBAP nitration was prevented, maintaining ERK signaling, rescuing NSC proliferation. We show that NO from inflammatory origin leads to a decreased function of the EGF receptor, which compromised proliferation of NSC. We also demonstrated that NO-mediated nitration of the EGF receptor caused a decrease in its phosphorylation, thus preventing regular proliferation signaling through the

  16. Plant cell wall signalling and receptor-like kinases.

    Science.gov (United States)

    Wolf, Sebastian

    2017-02-15

    Communication between the extracellular matrix and the cell interior is essential for all organisms as intrinsic and extrinsic cues have to be integrated to co-ordinate development, growth, and behaviour. This applies in particular to plants, the growth and shape of which is governed by deposition and remodelling of the cell wall, a rigid, yet dynamic, extracellular network. It is thus generally assumed that cell wall surveillance pathways exist to monitor the state of the wall and, if needed, elicit compensatory responses such as altered expression of cell wall remodelling and biosynthesis genes. Here, I highlight recent advances in the field of cell wall signalling in plants, with emphasis on the role of plasma membrane receptor-like kinase complexes. In addition, possible roles for cell wall-mediated signalling beyond the maintenance of cell wall integrity are discussed. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  17. A single amino acid residue controls Ca2+ signaling by an octopamine receptor from Drosophila melanogaster.

    Science.gov (United States)

    Hoff, Max; Balfanz, Sabine; Ehling, Petra; Gensch, Thomas; Baumann, Arnd

    2011-07-01

    Rhythmic activity of cells and cellular networks plays an important role in physiology. In the nervous system oscillations of electrical activity and/or second messenger concentrations are important to synchronize neuronal activity. At the molecular level, rhythmic activity can be initiated by different routes. We have recently shown that an octopamine-activated G-protein-coupled receptor (GPCR; DmOctα1Rb, CG3856) from Drosophila initiates Ca(2+) oscillations. Here, we have unraveled the molecular basis of cellular Ca(2+) signaling controlled by the DmOctα1Rb receptor using a combination of pharmacological intervention, site-directed mutagenesis, and functional cellular Ca(2+) imaging on heterologously expressed receptors. Phosphorylation of a single amino acid residue in the third intracellular loop of the GPCR by PKC is necessary and sufficient to desensitize the receptor. From its desensitized state, DmOctα1Rb is resensitized by dephosphorylation, and a new Ca(2+) signal occurs on octopamine stimulation. Our findings show that transient changes of the receptor's surface profile have a strong effect on its physiological signaling properties. We expect that the detailed knowledge of DmOctα1Rb-dependent signal transduction fosters the identification of specific drugs that can be used for GPCR-mediated pest control, since octopamine serves important physiological and behavioral functions in arthropods.

  18. Sigma-1 receptor enhances neurite elongation of cerebellar granule neurons via TrkB signaling.

    Science.gov (United States)

    Kimura, Yuriko; Fujita, Yuki; Shibata, Kumi; Mori, Megumi; Yamashita, Toshihide

    2013-01-01

    Sigma-1 receptor (Sig-1R) is an integral membrane protein predominantly expressed in the endoplasmic reticulum. Sig-1R demonstrates a high affinity to various synthetic compounds including well-known psychotherapeutic drugs in the central nervous system (CNS). For that, it is considered as an alternative target for psychotherapeutic drugs. On the cellular level, when Sig-1R is activated, it is known to play a role in neuroprotection and neurite elongation. These effects are suggested to be mediated by its ligand-operated molecular chaperone activity, and/or upregulation of various Ca(2+) signaling. In addition, recent studies show that Sig-1R activation induces neurite outgrowth via neurotrophin signaling. Here, we tested the hypothesis that Sig-1R activation promotes neurite elongation through activation of tropomyosin receptor kinase (Trk), a family of neurotrophin receptors. We found that 2-(4-morpholinethyl)1-phenylcyclohexanecarboxylate (PRE-084), a selective Sig-1R agonist, significantly promoted neurite outgrowth, and K252a, a Trk inhibitor, attenuated Sig-1R-mediated neurite elongation in cerebellar granule neurons (CGNs). Moreover, we revealed that Sig-1R interacts with TrkB, and PRE-084 treatment enhances phosphorylation of Y515, but not Y706. Thus, our results indicate that Sig-1R activation promotes neurite outgrowth in CGNs through Y515 phosphorylation of TrkB.

  19. Role of CD137 signaling in dengue virus-mediated apoptosis

    International Nuclear Information System (INIS)

    Nagila, Amar; Netsawang, Janjuree; Srisawat, Chatchawan; Noisakran, Sansanee; Morchang, Atthapan; Yasamut, Umpa; Puttikhunt, Chunya; Kasinrerk, Watchara

    2011-01-01

    Highlights: → For the first time the role of CD137 in dengue virus (DENV) infection. → Induction of DENV-mediated apoptosis by CD137 signaling. → Sensitization to CD137-mediated apoptosis by dengue virus capsid protein (DENV C). → Nuclear localization of DENV C is required for CD137-mediated apoptosis. -- Abstract: Hepatic dysfunction is a well recognized feature of dengue virus (DENV) infection. However, molecular mechanisms of hepatic injury are still poorly understood. A complex interaction between DENV and the host immune response contributes to DENV-mediated tissue injury. DENV capsid protein (DENV C) physically interacts with the human death domain-associated protein Daxx. A double substitution mutation in DENV C (R85A/K86A) abrogates Daxx interaction, nuclear localization and apoptosis. Therefore we compared the expression of cell death genes between HepG2 cells expressing DENV C and DENV C (R85A/K86A) using a real-time PCR array. Expression of CD137, which is a member of the tumor necrosis factor receptor family, increased significantly in HepG2 cells expressing DENV C compared to HepG2 cells expressing DENV C (R85A/K86A). In addition, CD137-mediated apoptotic activity in HepG2 cells expressing DENV C was significantly increased by anti-CD137 antibody compared to that of HepG2 cells expressing DENV C (R85A/K86A). In DENV-infected HepG2 cells, CD137 mRNA and CD137 positive cells significantly increased and CD137-mediated apoptotic activity was increased by anti-CD137 antibody. This work is the first to demonstrate the contribution of CD137 signaling to DENV-mediated apoptosis.

  20. Role of CD137 signaling in dengue virus-mediated apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Nagila, Amar [Medical Molecular Biology Unit, Office for Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok (Thailand); Department of Biochemistry, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok (Thailand); Netsawang, Janjuree [Faculty of Medical Technology, Rangsit University, Bangkok (Thailand); Srisawat, Chatchawan [Department of Biochemistry, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok (Thailand); Noisakran, Sansanee [Dengue Hemorrhagic Fever Research Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok (Thailand); Morchang, Atthapan; Yasamut, Umpa [Medical Molecular Biology Unit, Office for Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok (Thailand); Department of Immunology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok (Thailand); Puttikhunt, Chunya [Dengue Hemorrhagic Fever Research Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok (Thailand); Kasinrerk, Watchara [Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai (Thailand); Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at Chiang Mai University, Chiang Mai (Thailand); and others

    2011-07-08

    Highlights: {yields} For the first time the role of CD137 in dengue virus (DENV) infection. {yields} Induction of DENV-mediated apoptosis by CD137 signaling. {yields} Sensitization to CD137-mediated apoptosis by dengue virus capsid protein (DENV C). {yields} Nuclear localization of DENV C is required for CD137-mediated apoptosis. -- Abstract: Hepatic dysfunction is a well recognized feature of dengue virus (DENV) infection. However, molecular mechanisms of hepatic injury are still poorly understood. A complex interaction between DENV and the host immune response contributes to DENV-mediated tissue injury. DENV capsid protein (DENV C) physically interacts with the human death domain-associated protein Daxx. A double substitution mutation in DENV C (R85A/K86A) abrogates Daxx interaction, nuclear localization and apoptosis. Therefore we compared the expression of cell death genes between HepG2 cells expressing DENV C and DENV C (R85A/K86A) using a real-time PCR array. Expression of CD137, which is a member of the tumor necrosis factor receptor family, increased significantly in HepG2 cells expressing DENV C compared to HepG2 cells expressing DENV C (R85A/K86A). In addition, CD137-mediated apoptotic activity in HepG2 cells expressing DENV C was significantly increased by anti-CD137 antibody compared to that of HepG2 cells expressing DENV C (R85A/K86A). In DENV-infected HepG2 cells, CD137 mRNA and CD137 positive cells significantly increased and CD137-mediated apoptotic activity was increased by anti-CD137 antibody. This work is the first to demonstrate the contribution of CD137 signaling to DENV-mediated apoptosis.

  1. Embelin and its derivatives unravel the signaling, proinflammatory and antiatherogenic properties of GPR84 receptor.

    Science.gov (United States)

    Gaidarov, Ibragim; Anthony, Todd; Gatlin, Joel; Chen, Xiaohua; Mills, David; Solomon, Michelle; Han, Sangdon; Semple, Graeme; Unett, David J

    2018-05-01

    GPR84 is an orphan G-protein coupled receptor, expressed on monocytes, macrophages and neutrophils and is significantly upregulated by inflammatory stimuli. The physiological role of GPR84 remains largely unknown. Medium chain fatty acids (MCFA) activate the receptor and have been proposed to be its endogenous ligands, although the high concentrations of MCFAs required for receptor activation generally exceed normal physiological levels. We identified the natural product embelin as a highly potent and selective surrogate GPR84 agonist (originally disclosed in patent application WO2007027661A2, 2007) and synthesized close structural analogs with widely varying receptor activities. These tools were used to perform a comprehensive study of GPR84 signaling and function in recombinant cells and in primary human macrophages and neutrophils. Activation of recombinant GPR84 by embelin in HEK293 cells results in G i/o as well as G12/13-Rho signaling. In human macrophages, GPR84 initiates PTX sensitive Erk1/2 and Akt phosphorylation, PI-3 kinase activation, calcium flux, and release of prostaglandin E2. In addition, GPR84 signaling in macrophages elicits G i Gβγ-mediated augmentation of intracellular cAMP, rather than the decrease expected from G iα engagement. GPR84 activation drives human neutrophil chemotaxis and primes them for amplification of oxidative burst induced by FMLP and C5A. Loss of GPR84 is associated with attenuated LPS-induced release of proinflammatory mediators IL-6, KC-GROα, VEGF, MIP-2 and NGAL from peritoneal exudates. While initiating numerous proinflammatory activities in macrophages and neutrophils, GPR84 also possesses GPR109A-like antiatherosclerotic properties in macrophages. Macrophage receptor activation leads to upregulation of cholesterol transporters ABCA1 and ABCG1 and stimulates reverse cholesterol transport. These data suggest that GPR84 may be a target of therapeutic value and that distinct modes of receptor modulation (inhibition vs

  2. Netrin-1 induces the migration of Schwann cells via p38 MAPK and PI3K-Akt signaling pathway mediated by the UNC5B receptor

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Jianwei [General Hospital of Tianjin Medical University, No. 154, Anshan Road, Heping District, Tianjin 300052 (China); Tianjin Institute of Orthopedics in Traditional Chinese and Western Medicine, No. 155, Munan Road, Tianjin 300050 (China); Sun, Xiaolei; Ma, Jianxiong [Tianjin Institute of Orthopedics in Traditional Chinese and Western Medicine, No. 155, Munan Road, Tianjin 300050 (China); Ma, Xinlong, E-mail: gengxiao502@163.com [General Hospital of Tianjin Medical University, No. 154, Anshan Road, Heping District, Tianjin 300052 (China); Tianjin Institute of Orthopedics in Traditional Chinese and Western Medicine, No. 155, Munan Road, Tianjin 300050 (China); Zhang, Yang; Li, Fengbo; Li, Yanjun; Zhao, Zhihu [Tianjin Institute of Orthopedics in Traditional Chinese and Western Medicine, No. 155, Munan Road, Tianjin 300050 (China)

    2015-08-14

    Schwann cells (SCs) play an essentially supportive role in the regeneration of injured peripheral nerve system (PNS). As Netrin-1 is crucial for the normal development of nervous system (NS) and can direct the process of damaged PNS regeneration, our study was designed to determine the role of Netrin-1 in RSC96 Schwann cells (an immortalized rat Schwann cell line) proliferation and migration. Our studies demonstrated that Netrin-1 had no effect on RSC96 cells proliferation, while significantly promoted RSC96 cells migration. The Netrin-1-induced RSC96 cells migration was significantly attenuated by inhibition of p38 and PI3K through pretreatment with SB203580 and LY294002 respectively, but not inhibition of MEK1/2 and JNK by U0126-EtOH and SP600125 individually. Treatment with Netrin-1 enhanced the phosphorylation of p38 and Akt. QRT-PCR indicated that Netrin-1 and only its receptors Unc5a, Unc5b and Neogenin were expressed in RSC96 cells, among which Unc5b expressed the most. And UNC5B protein was significantly increased after stimulated by Netrin-1. In conclusion, we show here that Netrin-1-enhanced SCs migration is mediated by activating p38 MAPK and PI3K-Akt signal cascades via receptor UNC5B, which suggests that Netrin-1 could serve as a new therapeutic strategy and has potential application value for PNS regeneration. - Highlights: • Netrin-1 attracts RSC96 Schwann cells migration in a dose dependent manner. • Netrin-1 induced Schwann cells migration is p38 and PI3K-Akt signaling dependent. • UNC5B may be dominant receptor mediating Netrin-1′ effect on RSC96 cells motility. • Netrin-1 may promote peripheral nerve repair by enhancing Schwann cells motility.

  3. Receptor tyrosine kinase signaling: a view from quantitative proteomics

    DEFF Research Database (Denmark)

    Dengjel, Joern; Kratchmarova, Irina; Blagoev, Blagoy

    2009-01-01

    Growth factor receptor signaling via receptor tyrosine kinases (RTKs) is one of the basic cellular communication principals found in all metazoans. Extracellular signals are transferred via membrane spanning receptors into the cytoplasm, reversible tyrosine phosphorylation being the hallmark of all...

  4. Characterization of murine melanocortin receptors mediating adipocyte lipolysis and examination of signalling pathways involved

    DEFF Research Database (Denmark)

    Møller, Cathrine Laustrup; Raun, Kirsten; Jacobsen, Marianne Lambert

    2011-01-01

    hormone (a-MSH) generated from proopiomelanocortin (POMC), as well as synthetic MSH analogues to stimulate lipolysis in murine 3T3-L1 adipocytes it is shown that MC2R and MC5R are lipolytic mediators in differentiated 3T3-L1 adipocytes. Involvement of cAMP, phosphorylated extracellular signal...

  5. Molecular mechanisms of glucocorticoid receptor signaling

    Directory of Open Access Journals (Sweden)

    Marta Labeur

    2010-10-01

    Full Text Available This review highlights the most recent findings on the molecular mechanisms of the glucocorticoid receptor (GR. Most effects of glucocorticoids are mediated by the intracellular GR which is present in almost every tissue and controls transcriptional activation via direct and indirect mechanisms. Nevertheless the glucocorticoid responses are tissue -and gene- specific. GR associates selectively with corticosteroid ligands produced in the adrenal gland in response to changes of humoral homeostasis. Ligand interaction with GR promotes either GR binding to genomic glucocorticoid response elements, in turn modulating gene transcription, or interaction of GR monomers with other transcription factors activated by other signalling pathways leading to transrepression. The GR regulates a broad spectrum of physiological functions, including cell differentiation, metabolism and inflammatory responses. Thus, disruption or dysregulation of GR function will result in severe impairments in the maintenance of homeostasis and the control of adaptation to stress.

  6. Tyrosine 769 of the keratinocyte growth factor receptor is required for receptor signaling but not endocytosis

    International Nuclear Information System (INIS)

    Ceridono, Mara; Belleudi, Francesca; Ceccarelli, Simona; Torrisi, Maria Rosaria

    2005-01-01

    Keratinocyte growth factor receptor (KGFR) is a receptor tyrosine kinase expressed on epithelial cells which belongs to the family of fibroblast growth factor receptors (FGFRs). Following ligand binding, KGFR is rapidly autophosphorylated on specific tyrosine residues in the intracellular domain, recruits substrate proteins, and is rapidly internalized by clathrin-mediated endocytosis. The role of different autophosphorylation sites in FGFRs, and in particular the role of the tyrosine 766 in FGFR1, first identified as PLCγ binding site, has been extensively studied. We analyzed here the possible role of the tyrosine 769 in KGFR, corresponding to tyrosine 766 in FGFR1, in the regulation of KGFR signal transduction and MAPK activation as well as in the control of the endocytic process of KGFR. A mutant KGFR in which tyrosine 769 was substituted by phenylalanine was generated and transfected in NIH3T3 and HeLa cells. Our results indicate that tyrosine 769 is required for the binding to KGFR and tyrosine phosphorylation of PLCγ as well as for the full activation of MAPKs and for cell proliferation through the regulation of FRS2 tyrosine phosphorylation, suggesting that this residue represents a key regulator of KGFR signal transduction. Our data also show that tyrosine 769 is not involved in the regulation of the endocytic process of KGFR

  7. Signaling properties and pharmacological analysis of two sulfakinin receptors from the red flour beetle, Tribolium castaneum.

    Science.gov (United States)

    Zels, Sven; Verlinden, Heleen; Dillen, Senne; Vleugels, Rut; Nachman, Ronald J; Vanden Broeck, Jozef

    2014-01-01

    Sulfakinin is an insect neuropeptide that constitutes an important component of the complex network of hormonal and neural factors that regulate feeding and digestion. The key modulating functions of sulfakinin are mediated by binding and signaling via G-protein coupled receptors. Although a substantial amount of functional data have already been reported on sulfakinins in different insect species, only little information is known regarding the properties of their respective receptors. In this study, we report on the molecular cloning, functional expression and characterization of two sulfakinin receptors in the red flour beetle, Tribolium castaneum. Both receptor open reading frames show extensive sequence similarity with annotated sulfakinin receptors from other insects. Comparison of the sulfakinin receptor sequences with homologous vertebrate cholecystokinin receptors reveals crucial conserved regions for ligand binding and receptor activation. Quantitative reverse transcriptase PCR shows that transcripts of both receptors are primarily expressed in the central nervous system of the beetle. Pharmacological characterization using 29 different peptide ligands clarified the essential requirements for efficient activation of these sulfakinin receptors. Analysis of the signaling pathway in multiple cell lines disclosed that the sulfakinin receptors of T. castaneum can stimulate both the Ca²⁺ and cyclic AMP second messenger pathways. This in depth characterization of two insect sulfakinin receptors may provide useful leads for the further development of receptor ligands with a potential applicability in pest control and crop protection.

  8. Harman induces CYP1A1 enzyme through an aryl hydrocarbon receptor mechanism

    International Nuclear Information System (INIS)

    El Gendy, Mohamed A.M.; El-Kadi, Ayman O.S.

    2010-01-01

    Harman is a common compound in several foods, plants and beverages. Numerous studies have demonstrated its mutagenic, co-mutagenic and carcinogenic effects; however, the exact mechanism has not been fully identified. Aryl hydrocarbon receptor (AhR) is a transcription factor regulating the expression of the carcinogen-activating enzyme; cytochrome P450 1A1 (CYP1A1). In the present study, we examined the ability of harman to induce AhR-mediated signal transduction in human and rat hepatoma cells; HepG2 and H4IIE cells. Our results showed that harman significantly induced CYP1A1 mRNA in a time- and concentration-dependent manner. Similarly, harman significantly induced CYP1A1 at protein and activity levels in a concentration-dependent manner. Moreover, the AhR antagonist, resveratrol, inhibited the increase in CYP1A1 activity by harman. The RNA polymerase inhibitor, actinomycin D, completely abolished the CYP1A1 mRNA induction by harman, indicating a transcriptional activation. The role of AhR in CYP1A1 induction by harman was confirmed by using siRNA specific for human AhR. The ability of harman to induce CYP1A1 was strongly correlated with its ability to stimulate AhR-dependent luciferase activity and electrophoretic mobility shift assay. At post-transcriptional and post-translational levels, harman did not affect the stability of CYP1A1 at the mRNA and the protein levels, excluding other mechanisms participating in the obtained effects. We concluded that harman can directly induce CYP1A1 gene expression in an AhR-dependent manner and may represent a novel mechanism by which harman promotes mutagenicity, co-mutagenicity and carcinogenicity.

  9. Regulators of G-protein signaling 4: modulation of 5-HT1A-mediated neurotransmitter release in vivo.

    Science.gov (United States)

    Beyer, Chad E; Ghavami, Afshin; Lin, Qian; Sung, Amy; Rhodes, Kenneth J; Dawson, Lee A; Schechter, Lee E; Young, Kathleen H

    2004-10-01

    Regulators of G-protein signaling (RGS) play a key role in the signal transduction of G-protein-coupled receptors (GPCRs). Specifically, RGS proteins function as GTPase accelerating proteins (GAPs) to dampen or "negatively regulate" GPCR-mediated signaling. Our group recently showed that RGS4 effectively GAPs Galpha(i)-mediated signaling in CHO cells expressing the serotonin-1A (5-HT(1A)) receptor. However, whether a similar relationship exists in vivo has yet to be identified. In present studies, a replication-deficient herpes simplex virus (HSV) was used to elevate RGS4 mRNA in the rat dorsal raphe nuclei (DRN) while extracellular levels of 5-HT in the striatum were monitored by in vivo microdialysis. Initial experiments conducted with noninfected rats showed that acute administration of 8-OH-DPAT (0.01-0.3 mg/kg, subcutaneous [s.c.]) dose dependently decreased striatal levels of 5-HT, an effect postulated to result from activation of somatodendritic 5-HT(1A) autoreceptors in the DRN. In control rats receiving a single intra-DRN infusion of HSV-LacZ, 8-OH-DPAT (0.03 mg/kg, s.c.) decreased 5-HT levels to an extent similar to that observed in noninfected animals. Conversely, rats infected with HSV-RGS4 in the DRN showed a blunted neurochemical response to 8-OH-DPAT (0.03 mg/kg, s.c.); however, increasing the dose to 0.3 mg/kg reversed this effect. Together, these findings represent the first in vivo evidence demonstrating that RGS4 functions to GAP Galpha(i)-coupled receptors and suggest that drug discovery efforts targeting RGS proteins may represent a novel mechanism to manipulate 5-HT(1A)-mediated neurotransmitter release.

  10. Differential modulation of expression of nuclear receptor mediated genes by tris(2-butoxyethyl) phosphate (TBOEP) on early life stages of zebrafish (Danio rerio)

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhiyuan, E-mail: zhiyuan_nju@163.com [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023 (China); Yu, Yijun, E-mail: yjun.yu@gmail.com [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023 (China); Tang, Song [School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK S7N 5B3 (Canada); Liu, Hongling, E-mail: hlliu@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023 (China); Su, Guanyong; Xie, Yuwei [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023 (China); Giesy, John P. [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023 (China); Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3 (Canada); Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK S7N 5B3 (Canada); Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region (Hong Kong); Hecker, Markus [School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK S7N 5B3 (Canada); Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3 (Canada); Yu, Hongxia [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023 (China)

    2015-12-15

    Highlights: • Effects of TBOEP on expression of genes of several nuclear hormone receptors and their relationship with adverse effect pathways in zebrafish. • TBOEP was neither an agonist nor antagonist of AR or AhR as determined by use of in vitro mammalian cell-based receptor transactivation assays. • Modulation of ER- and MR-dependent pathways allowed for development of feasible receptor-mediated, critical mechanisms of toxic action. - Abstract: As one substitute for phased-out brominated flame retardants (BFRs), tris(2-butoxyethyl) phosphate (TBOEP) is frequently detected in aquatic organisms. However, knowledge about endocrine disrupting mechanisms associated with nuclear receptors caused by TBOEP remained restricted to results from in vitro studies with mammalian cells. In the study, results of which are presented here, embryos/larvae of zebrafish (Danio rerio) were exposed to 0.02, 0.1 or 0.5 μM TBOEP to investigate expression of genes under control of several nuclear hormone receptors (estrogen receptors (ERs), androgen receptor (AR), thyroid hormone receptor alpha (TRα), mineralocorticoid receptor (MR), glucocorticoid receptor (GR), aryl hydrocarbon (AhR), peroxisome proliferator-activated receptor alpha (PPARα), and pregnane × receptor (P × R)) pathways at 120 hpf. Exposure to 0.5 μM TBOEP significantly (p < 0.05, one-way analysis of variance) up-regulated expression of estrogen receptors (ERs, er1, er2a, and er2b) genes and ER-associated genes (vtg4, vtg5, pgr, ncor, and ncoa3), indicating TBOEP modulates the ER pathway. In contrast, expression of most genes (mr, 11βhsd, ube2i,and adrb2b) associated with the mineralocorticoid receptor (MR) pathway were significantly down-regulated. Furthermore, in vitro mammalian cell-based (MDA-kb2 and H4IIE-luc) receptor transactivation assays, were also conducted to investigate possible agonistic or antagonistic effects on AR- and AhR-mediated pathways. In mammalian cells, none of these pathways were

  11. Impact of culture medium on maturation of bone marrow-derived murine dendritic cells via the aryl hydrocarbon receptor.

    Science.gov (United States)

    Ilchmann, Anne; Krause, Maren; Heilmann, Monika; Burgdorf, Sven; Vieths, Stefan; Toda, Masako

    2012-05-01

    The aryl hydrocarbon receptor (AhR) plays a role in modulating dendritic cell (DC) immunity. Iscove's modified Dulbecco's medium (IMDM) contains higher amounts of AhR ligands than RPMI1640 medium. Here, we examined the influence of AhR ligand-containing medium on the maturation and T-cell stimulatory capacity of bone marrow-derived murine dendritic cells (BMDCs). BMDCs generated in IMDM (BMDCs/IMDM) expressed higher levels of co-stimulatory and MHC class II molecules, and lower levels of pattern-recognition receptors, especially toll-like receptor (TLR) 2, TLR4, and scavenger receptor class A (SR-A), compared to BMDCs generated in RPMI1640 medium (BMDCs/RPMI). Cytokine responses against ligands of TLRs and antigen uptake mediated by SR-A were remarkably reduced in BMDCs/IMDM, whereas the T-cell stimulatory capacity of the cells was enhanced, compared to BMDCs/RPMI. The enhanced maturation of BMDCs/IMDM was attenuated in the presence of an AhR antagonist, indicating involvement of AhR in the maturation. Interestingly, BMDCs/IMDM induced Th2 and Th17 differentiation at low and high concentrations of antigen respectively, when co-cultured with CD4(+) T-cells from antigen-specific T-cell receptor transgenic mice. In contrast, BMDCs/RPMI induced Th1 differentiation predominantly in the co-culture. Taken together, optimal selection of medium seems necessary when studying BMDCs, depending on the target receptors on the cell surface of DCs and type of helper T-cells for the co-culture. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Dopamine D2L receptor-interacting proteins regulate dopaminergic signaling

    Directory of Open Access Journals (Sweden)

    Norifumi Shioda

    2017-10-01

    Full Text Available Dopamine receptor family proteins include seven transmembrane and trimeric GTP-binding protein-coupled receptors (GPCRs. Among them, the dopamine D2 receptor (D2R is most extensively studied. All clinically used antipsychotic drugs serve as D2R antagonists in the mesolimbic dopamine system, and their ability to block D2R signaling is positively correlated with antipsychotic efficiency. Human genetic studies also show a significant association of DRD2 polymorphisms with disorders including schizophrenia and Parkinson's disease. D2R exists as two alternatively spliced isoforms, the long isoform (D2LR and the short isoform (D2SR, which differ in a 29-amino acid (AA insert in the third cytoplasmic loop. Importantly, previous reports demonstrate functional diversity between the two isoforms in humans. In this review, we focus on binding proteins that specifically interact with the D2LR 29AA insert. We discuss how D2R activities are mediated not only by heterotrimeric G proteins but by D2LR-interacting proteins, which in part regulate diverse D2R activities. Keywords: Dopamine D2L receptor, Antipsychotic drugs, DRD2 polymorphisms, Alternatively spliced isoforms, D2LR-interacting proteins

  13. N-wasp is essential for the negative regulation of B cell receptor signaling.

    Directory of Open Access Journals (Sweden)

    Chaohong Liu

    2013-11-01

    Full Text Available Negative regulation of receptor signaling is essential for controlling cell activation and differentiation. In B-lymphocytes, the down-regulation of B-cell antigen receptor (BCR signaling is critical for suppressing the activation of self-reactive B cells; however, the mechanism underlying the negative regulation of signaling remains elusive. Using genetically manipulated mouse models and total internal reflection fluorescence microscopy, we demonstrate that neuronal Wiskott-Aldrich syndrome protein (N-WASP, which is coexpressed with WASP in all immune cells, is a critical negative regulator of B-cell signaling. B-cell-specific N-WASP gene deletion causes enhanced and prolonged BCR signaling and elevated levels of autoantibodies in the mouse serum. The increased signaling in N-WASP knockout B cells is concurrent with increased accumulation of F-actin at the B-cell surface, enhanced B-cell spreading on the antigen-presenting membrane, delayed B-cell contraction, inhibition in the merger of signaling active BCR microclusters into signaling inactive central clusters, and a blockage of BCR internalization. Upon BCR activation, WASP is activated first, followed by N-WASP in mouse and human primary B cells. The activation of N-WASP is suppressed by Bruton's tyrosine kinase-induced WASP activation, and is restored by the activation of SH2 domain-containing inositol 5-phosphatase that inhibits WASP activation. Our results reveal a new mechanism for the negative regulation of BCR signaling and broadly suggest an actin-mediated mechanism for signaling down-regulation.

  14. Functional requirements for inhibitory signal transmission by the immunomodulatory receptor CD300a.

    Science.gov (United States)

    DeBell, Karen E; Simhadri, Venkateswara R; Mariano, John L; Borrego, Francisco

    2012-04-26

    Activation signals can be negatively regulated by cell surface receptors bearing immunoreceptor tyrosine-based inhibitory motifs (ITIMs). CD300a, an ITIM bearing type I transmembrane protein, is expressed on many hematopoietic cells, including subsets of lymphocytes. We have taken two approaches to further define the mechanism by which CD300a acts as an inhibitor of immune cell receptor signaling. First, we have expressed in Jurkat T cells a chimeric receptor consisting of the extracellular domains of killer-cell immunoglobulin-like receptor (KIR)2DL2 fused to the transmembrane and cytoplasmic segments of CD300a (KIR-CD300a) to explore surrogate ligand-stimulated inhibition of superantigen stimulated T cell receptor (TCR) mediated cell signaling. We found that intact CD300a ITIMs were essential for inhibition and that the tyrosine phosphorylation of these ITIMs required the src tyrosine kinase Lck. Tyrosine phosphorylation of the CD300a ITIMs created docking sites for both src homology 2 domain containing protein tyrosine phosphatase (SHP)-1 and SHP-2. Suppression of SHP-1 and SHP-2 expression in KIR-CD300a Jurkat T cells with siRNA and the use of DT40 chicken B cell lines expressing CD300a and deficient in several phosphatases revealed that SHP-1, but not SHP-2 or the src homology 2 domain containing inositol 5' phosphatase SHIP, was utilized by CD300a for its inhibitory activity. These studies provide new insights into the function of CD300a in tuning T and B cell responses.

  15. Activation of the aryl hydrocarbon receptor is the major toxic mode of action of an organic extract of a reference urban dust particulate matter mixture: The role of polycyclic aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Andrysik, Zdenek; Vondracek, Jan; Marvanova, Sona; Ciganek, Miroslav; Neca, Jiri; Pencikova, Katerina; Mahadevan, Brinda; Topinka, Jan; Baird, William M.; Kozubik, Alois; Machala, Miroslav

    2011-01-01

    Highlights: → SRM1649a extract and its fractions are potent activators of AhR in a model of epithelial cells. → AhR-dependent effects include both induction of CYP1 enzymes and disruption of cell proliferation control. → Polycyclic aromatic hydrocarbons present in the neutral SRM1649a fraction are major contributors to the AhR-mediated toxic effects. → Activation of AhR and related nongenotoxic effects occur at significantly lower doses than the formation of DNA adducts and activation of DNA damage response. → More attention should be paid to the AhR-dependent nongenotoxic events elicited by urban particulate matter constituents. - Abstract: Many of the toxic and carcinogenic effects of urban air pollution have been linked to polycyclic aromatic hydrocarbons (PAHs) adsorbed to airborne particulate matter (PM). The carcinogenic properties of PAHs in complex organic mixtures derived from PM have been chiefly attributed to their mutagenicity. Nevertheless, PAHs are also potent activators of the aryl hydrocarbon receptor (AhR), which may contribute to their nongenotoxic effects, including tumor promotion. As the genotoxicity of carcinogenic PAHs in complex mixtures derived from urban PM is often inhibited by other mixture constituents, the AhR-mediated activity of urban PM extracts might significantly contribute to the carcinogenic activity of such mixtures. In the present study, we used an organic extract of the urban dust standard reference material, SRM1649a, as a model mixture to study a range of toxic effects related to DNA damage and AhR activation. Both the organic extract and its neutral aromatic fraction formed a low number of DNA adducts per nucleotide in the liver epithelial WB-F344 cells model, without inducing DNA damage response, such as tumor suppressor p53 activation and apoptosis. In contrast, we found that this extract, as well as its neutral and polar fractions, were potent inducers of a range of AhR-mediated responses, including induction

  16. IFN-γ signaling to astrocytes protects from autoimmune mediated neurological disability.

    Directory of Open Access Journals (Sweden)

    Claudia Hindinger

    Full Text Available Demyelination and axonal degeneration are determinants of progressive neurological disability in patients with multiple sclerosis (MS. Cells resident within the central nervous system (CNS are active participants in development, progression and subsequent control of autoimmune disease; however, their individual contributions are not well understood. Astrocytes, the most abundant CNS cell type, are highly sensitive to environmental cues and are implicated in both detrimental and protective outcomes during autoimmune demyelination. Experimental autoimmune encephalomyelitis (EAE was induced in transgenic mice expressing signaling defective dominant-negative interferon gamma (IFN-γ receptors on astrocytes to determine the influence of inflammation on astrocyte activity. Inhibition of IFN-γ signaling to astrocytes did not influence disease incidence, onset, initial progression of symptoms, blood brain barrier (BBB integrity or the composition of the acute CNS inflammatory response. Nevertheless, increased demyelination at peak acute disease in the absence of IFN-γ signaling to astrocytes correlated with sustained clinical symptoms. Following peak disease, diminished clinical remission, increased mortality and sustained astrocyte activation within the gray matter demonstrate a critical role of IFN-γ signaling to astrocytes in neuroprotection. Diminished disease remission was associated with escalating demyelination, axonal degeneration and sustained inflammation. The CNS infiltrating leukocyte composition was not altered; however, decreased IL-10 and IL-27 correlated with sustained disease. These data indicate that astrocytes play a critical role in limiting CNS autoimmune disease dependent upon a neuroprotective signaling pathway mediated by engagement of IFN-γ receptors.

  17. ERK controls epithelial cell death receptor signalling and cellular FLICE-like inhibitory protein (c-FLIP) in ulcerative colitis

    DEFF Research Database (Denmark)

    Seidelin, Jakob Benedict; Coskun, Mehmet; Vainer, Ben

    2013-01-01

    Intestinal epithelial cell (IEC) death signalling through the Fas receptor is impaired in active ulcerative colitis (UC). This is possibly due to the activation of cytoprotective pathways resulting in limitation of the tissue injury secondary to inflammation. We hypothesized that inflammatory...... the resistance to receptor mediated epithelial apoptosis in active UC. Oncogenic c-FLIP could promote propagation of DNA-damaged IECs and contribute to cancer development in UC....

  18. Lymphotropic Virions Affect Chemokine Receptor-Mediated Neural Signaling and Apoptosis: Implications for Human Immunodeficiency Virus Type 1-Associated Dementia

    Science.gov (United States)

    Zheng, Jialin; Ghorpade, Anuja; Niemann, Douglas; Cotter, Robin L.; Thylin, Michael R.; Epstein, Leon; Swartz, Jennifer M.; Shepard, Robin B.; Liu, Xiaojuan; Nukuna, Adeline; Gendelman, Howard E.

    1999-01-01

    Chemokine receptors pivotal for human immunodeficiency virus type 1 (HIV-1) infection in lymphocytes and macrophages (CCR3, CCR5, and CXCR4) are expressed on neural cells (microglia, astrocytes, and/or neurons). It is these cells which are damaged during progressive HIV-1 infection of the central nervous system. We theorize that viral coreceptors could effect neural cell damage during HIV-1-associated dementia (HAD) without simultaneously affecting viral replication. To these ends, we studied the ability of diverse viral strains to affect intracellular signaling and apoptosis of neurons, astrocytes, and monocyte-derived macrophages. Inhibition of cyclic AMP, activation of inositol 1,4,5-trisphosphate, and apoptosis were induced by diverse HIV-1 strains, principally in neurons. Virions from T-cell-tropic (T-tropic) strains (MN, IIIB, and Lai) produced the most significant alterations in signaling of neurons and astrocytes. The HIV-1 envelope glycoprotein, gp120, induced markedly less neural damage than purified virions. Macrophage-tropic (M-tropic) strains (ADA, JR-FL, Bal, MS-CSF, and DJV) produced the least neural damage, while 89.6, a dual-tropic HIV-1 strain, elicited intermediate neural cell damage. All T-tropic strain-mediated neuronal impairments were blocked by the CXCR4 antibody, 12G5. In contrast, the M-tropic strains were only partially blocked by 12G5. CXCR4-mediated neuronal apoptosis was confirmed in pure populations of rat cerebellar granule neurons and was blocked by HA1004, an inhibitor of calcium/calmodulin-dependent protein kinase II, protein kinase A, and protein kinase C. Taken together, these results suggest that progeny HIV-1 virions can influence neuronal signal transduction and apoptosis. This process occurs, in part, through CXCR4 and is independent of CD4 binding. T-tropic viruses that traffic in and out of the brain during progressive HIV-1 disease may play an important role in HAD neuropathogenesis. PMID:10482576

  19. Identification of cinnabarinic acid as a novel endogenous aryl hydrocarbon receptor ligand that drives IL-22 production.

    Science.gov (United States)

    Lowe, Margaret M; Mold, Jeff E; Kanwar, Bittoo; Huang, Yong; Louie, Alexander; Pollastri, Michael P; Wang, Cuihua; Patel, Gautam; Franks, Diana G; Schlezinger, Jennifer; Sherr, David H; Silverstone, Allen E; Hahn, Mark E; McCune, Joseph M

    2014-01-01

    The aryl hydrocarbon receptor (AHR) binds to environmental toxicants including synthetic halogenated aromatic hydrocarbons and is involved in a diverse array of biological processes. Recently, the AHR was shown to control host immunity by affecting the balance between inflammatory T cells that produce IL-17 (Th17) and IL-22 versus regulatory T cells (Treg) involved in tolerance. While environmental AHR ligands can mediate this effect, endogenous ligands are likely to be more relevant in host immune responses. We investigated downstream metabolites of tryptophan as potential AHR ligands because (1) tryptophan metabolites have been implicated in regulating the balance between Th17 and Treg cells and (2) many of the AHR ligands identified thus far are derivatives of tryptophan. We characterized the ability of tryptophan metabolites to bind and activate the AHR and to increase IL-22 production in human T cells. We report that the tryptophan metabolite, cinnabarinic acid (CA), is an AHR ligand that stimulates the differentiation of human and mouse T cells producing IL-22. We compare the IL-22-stimulating activity of CA to that of other tryptophan metabolites and define stimulation conditions that lead to CA production from immune cells. Our findings link tryptophan metabolism to AHR activation and define a novel endogenous AHR agonist with potentially broad biological functions.

  20. Identification of aryl hydrocarbon receptor binding targets in mouse hepatic tissue treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin

    International Nuclear Information System (INIS)

    Lo, Raymond; Celius, Trine; Forgacs, Agnes L.; Dere, Edward; MacPherson, Laura; Harper, Patricia; Zacharewski, Timothy; Matthews, Jason

    2011-01-01

    Genome-wide, promoter-focused ChIP-chip analysis of hepatic aryl hydrocarbon receptor (AHR) binding sites was conducted in 8-week old female C57BL/6 treated with 30 μg/kg/body weight 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) for 2 h and 24 h. These studies identified 1642 and 508 AHR-bound regions at 2 h and 24 h, respectively. A total of 430 AHR-bound regions were common between the two time points, corresponding to 403 unique genes. Comparison with previous AHR ChIP-chip studies in mouse hepatoma cells revealed that only 62 of the putative target genes overlapped with the 2 h AHR-bound regions in vivo. Transcription factor binding site analysis revealed an over-representation of aryl hydrocarbon response elements (AHREs) in AHR-bound regions with 53% (2 h) and 68% (24 h) of them containing at least one AHRE. In addition to AHREs, E2f-Myc activator motifs previously implicated in AHR function, as well as a number of other motifs, including Sp1, nuclear receptor subfamily 2 factor, and early growth response factor motifs were also identified. Expression microarray studies identified 133 unique genes differentially regulated after 4 h treatment with TCDD. Of which, 39 were identified as AHR-bound genes at 2 h. Ingenuity Pathway Analysis on the 39 AHR-bound TCDD responsive genes identified potential perturbation in biological processes such as lipid metabolism, drug metabolism, and endocrine system development as a result of TCDD-mediated AHR activation. Our findings identify direct AHR target genes in vivo, highlight in vitro and in vivo differences in AHR signaling and show that AHR recruitment does not necessarily result in changes in target gene expression. -- Highlights: ► ChIP-chip analysis of hepatic AHR binding after 2 h and 24 h of TCDD. ► We identified 1642 and 508 AHR-bound regions at 2 h and 24 h. ► 430 regions were common to both time points and highly enriched with AHREs. ► Only 62 putative target regions overlapped AHR-bound regions in

  1. Identification of aryl hydrocarbon receptor binding targets in mouse hepatic tissue treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Raymond; Celius, Trine [Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario (Canada); Forgacs, Agnes L. [Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI (United States); Center for Integrative Toxicology, Michigan State University, East Lansing, MI (United States); Dere, Edward [Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI (United States); MacPherson, Laura [Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario (Canada); Harper, Patricia [Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario (Canada); Research Institute, The Hospital for Sick Children, Toronto, Ontario (Canada); Zacharewski, Timothy [Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI (United States); Center for Integrative Toxicology, Michigan State University, East Lansing, MI (United States); Matthews, Jason, E-mail: jason.matthews@utoronto.ca [Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario (Canada)

    2011-11-15

    Genome-wide, promoter-focused ChIP-chip analysis of hepatic aryl hydrocarbon receptor (AHR) binding sites was conducted in 8-week old female C57BL/6 treated with 30 {mu}g/kg/body weight 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) for 2 h and 24 h. These studies identified 1642 and 508 AHR-bound regions at 2 h and 24 h, respectively. A total of 430 AHR-bound regions were common between the two time points, corresponding to 403 unique genes. Comparison with previous AHR ChIP-chip studies in mouse hepatoma cells revealed that only 62 of the putative target genes overlapped with the 2 h AHR-bound regions in vivo. Transcription factor binding site analysis revealed an over-representation of aryl hydrocarbon response elements (AHREs) in AHR-bound regions with 53% (2 h) and 68% (24 h) of them containing at least one AHRE. In addition to AHREs, E2f-Myc activator motifs previously implicated in AHR function, as well as a number of other motifs, including Sp1, nuclear receptor subfamily 2 factor, and early growth response factor motifs were also identified. Expression microarray studies identified 133 unique genes differentially regulated after 4 h treatment with TCDD. Of which, 39 were identified as AHR-bound genes at 2 h. Ingenuity Pathway Analysis on the 39 AHR-bound TCDD responsive genes identified potential perturbation in biological processes such as lipid metabolism, drug metabolism, and endocrine system development as a result of TCDD-mediated AHR activation. Our findings identify direct AHR target genes in vivo, highlight in vitro and in vivo differences in AHR signaling and show that AHR recruitment does not necessarily result in changes in target gene expression. -- Highlights: Black-Right-Pointing-Pointer ChIP-chip analysis of hepatic AHR binding after 2 h and 24 h of TCDD. Black-Right-Pointing-Pointer We identified 1642 and 508 AHR-bound regions at 2 h and 24 h. Black-Right-Pointing-Pointer 430 regions were common to both time points and highly enriched with

  2. Glycoprotein 130 receptor signaling mediates α-cell dysfunction in a rodent model of type 2 diabetes

    DEFF Research Database (Denmark)

    Chow, Samuel Z; Speck, Madeleine; Yoganathan, Piriya

    2014-01-01

    Dysregulated glucagon secretion accompanies islet inflammation in type 2 diabetes. We recently discovered that interleukin (IL)-6 stimulates glucagon secretion from human and rodent islets. IL-6 family cytokines require the glycoprotein 130 (gp130) receptor to signal. In this study, we elucidated...

  3. Cannabinoid transmission in the prelimbic cortex bidirectionally controls opiate reward and aversion signaling through dissociable kappa versus μ-opiate receptor dependent mechanisms.

    Science.gov (United States)

    Ahmad, Tasha; Lauzon, Nicole M; de Jaeger, Xavier; Laviolette, Steven R

    2013-09-25

    Cannabinoid, dopamine (DA), and opiate receptor pathways play integrative roles in emotional learning, associative memory, and sensory perception. Modulation of cannabinoid CB1 receptor transmission within the medial prefrontal cortex (mPFC) regulates the emotional valence of both rewarding and aversive experiences. Furthermore, CB1 receptor substrates functionally interact with opiate-related motivational processing circuits, particularly in the context of reward-related learning and memory. Considerable evidence demonstrates functional interactions between CB1 and DA signaling pathways during the processing of motivationally salient information. However, the role of mPFC CB1 receptor transmission in the modulation of behavioral opiate-reward processing is not currently known. Using an unbiased conditioned place preference paradigm with rats, we examined the role of intra-mPFC CB1 transmission during opiate reward learning. We report that activation or inhibition of CB1 transmission within the prelimbic cortical (PLC) division of the mPFC bidirectionally regulates the motivational valence of opiates; whereas CB1 activation switched morphine reward signaling into an aversive stimulus, blockade of CB1 transmission potentiated the rewarding properties of normally sub-reward threshold conditioning doses of morphine. Both of these effects were dependent upon DA transmission as systemic blockade of DAergic transmission prevented CB1-dependent modulation of morphine reward and aversion behaviors. We further report that CB1-mediated intra-PLC opiate motivational signaling is mediated through a μ-opiate receptor-dependent reward pathway, or a κ-opiate receptor-dependent aversion pathway, directly within the ventral tegmental area. Our results provide evidence for a novel CB1-mediated motivational valence switching mechanism within the PLC, controlling dissociable subcortical reward and aversion pathways.

  4. Nicotine impairs cyclooxygenase-2-dependent kinin-receptor-mediated murine airway relaxations

    International Nuclear Information System (INIS)

    Xu, Yuan; Cardell, Lars-Olaf

    2014-01-01

    Introduction: Cigarette smoke induces local inflammation and airway hyperreactivity. In asthmatics, it worsens the symptoms and increases the risk for exacerbation. The present study investigates the effects of nicotine on airway relaxations in isolated murine tracheal segments. Methods: Segments were cultured for 24 h in the presence of vehicle, nicotine (10 μM) and/or dexamethasone (1 μM). Airway relaxations were assessed in myographs after pre-contraction with carbachol (1 μM). Kinin receptors, cyclooxygenase (COX) and inflammatory mediator expressions were assessed by real-time PCR and confocal-microscopy-based immunohistochemistry. Results: The organ culture procedure markedly increased bradykinin- (selective B 2 receptor agonist) and des-Arg 9 -bradykinin- (selective B 1 receptor agonist) induced relaxations, and slightly increased relaxation induced by isoprenaline, but not that induced by PGE 2 . The kinin receptor mediated relaxations were epithelium-, COX-2- and EP2-receptor-dependent and accompanied by drastically enhanced mRNA levels of kinin receptors, as well as inflammatory mediators MCP-1 and iNOS. Increase in COX-2 and mPGES-1 was verified both at mRNA and protein levels. Nicotine selectively suppressed the organ-culture-enhanced relaxations induced by des-Arg 9 -bradykinin and bradykinin, at the same time reducing mPGES-1 mRNA and protein expressions. α7-nicotinic acetylcholine receptor inhibitors α-bungarotoxin and MG624 both blocked the nicotine effects on kinin B 2 receptors, but not those on B 1 . Dexamethasone completely abolished kinin-induced relaxations. Conclusion: It is tempting to conclude that a local inflammatory process per se could have a bronchoprotective component by increasing COX-2 mediated airway relaxations and that nicotine could impede this safety mechanism. Dexamethasone further reduced airway inflammation together with relaxations. This might contribute to the steroid resistance seen in some patients with asthma

  5. Nicotine impairs cyclooxygenase-2-dependent kinin-receptor-mediated murine airway relaxations

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yuan, E-mail: yuan.xu@ki.se; Cardell, Lars-Olaf

    2014-02-15

    Introduction: Cigarette smoke induces local inflammation and airway hyperreactivity. In asthmatics, it worsens the symptoms and increases the risk for exacerbation. The present study investigates the effects of nicotine on airway relaxations in isolated murine tracheal segments. Methods: Segments were cultured for 24 h in the presence of vehicle, nicotine (10 μM) and/or dexamethasone (1 μM). Airway relaxations were assessed in myographs after pre-contraction with carbachol (1 μM). Kinin receptors, cyclooxygenase (COX) and inflammatory mediator expressions were assessed by real-time PCR and confocal-microscopy-based immunohistochemistry. Results: The organ culture procedure markedly increased bradykinin- (selective B{sub 2} receptor agonist) and des-Arg{sup 9}-bradykinin- (selective B{sub 1} receptor agonist) induced relaxations, and slightly increased relaxation induced by isoprenaline, but not that induced by PGE{sub 2}. The kinin receptor mediated relaxations were epithelium-, COX-2- and EP2-receptor-dependent and accompanied by drastically enhanced mRNA levels of kinin receptors, as well as inflammatory mediators MCP-1 and iNOS. Increase in COX-2 and mPGES-1 was verified both at mRNA and protein levels. Nicotine selectively suppressed the organ-culture-enhanced relaxations induced by des-Arg{sup 9}-bradykinin and bradykinin, at the same time reducing mPGES-1 mRNA and protein expressions. α7-nicotinic acetylcholine receptor inhibitors α-bungarotoxin and MG624 both blocked the nicotine effects on kinin B{sub 2} receptors, but not those on B{sub 1}. Dexamethasone completely abolished kinin-induced relaxations. Conclusion: It is tempting to conclude that a local inflammatory process per se could have a bronchoprotective component by increasing COX-2 mediated airway relaxations and that nicotine could impede this safety mechanism. Dexamethasone further reduced airway inflammation together with relaxations. This might contribute to the steroid resistance seen in

  6. Cocaine Inhibits Dopamine D2 Receptor Signaling via Sigma-1-D2 Receptor Heteromers

    Science.gov (United States)

    Navarro, Gemma; Moreno, Estefania; Bonaventura, Jordi; Brugarolas, Marc; Farré, Daniel; Aguinaga, David; Mallol, Josefa; Cortés, Antoni; Casadó, Vicent; Lluís, Carmen; Ferre, Sergi

    2013-01-01

    Under normal conditions the brain maintains a delicate balance between inputs of reward seeking controlled by neurons containing the D1-like family of dopamine receptors and inputs of aversion coming from neurons containing the D2-like family of dopamine receptors. Cocaine is able to subvert these balanced inputs by altering the cell signaling of these two pathways such that D1 reward seeking pathway dominates. Here, we provide an explanation at the cellular and biochemical level how cocaine may achieve this. Exploring the effect of cocaine on dopamine D2 receptors function, we present evidence of σ1 receptor molecular and functional interaction with dopamine D2 receptors. Using biophysical, biochemical, and cell biology approaches, we discovered that D2 receptors (the long isoform of the D2 receptor) can complex with σ1 receptors, a result that is specific to D2 receptors, as D3 and D4 receptors did not form heteromers. We demonstrate that the σ1-D2 receptor heteromers consist of higher order oligomers, are found in mouse striatum and that cocaine, by binding to σ1 -D2 receptor heteromers, inhibits downstream signaling in both cultured cells and in mouse striatum. In contrast, in striatum from σ1 knockout animals these complexes are not found and this inhibition is not seen. Taken together, these data illuminate the mechanism by which the initial exposure to cocaine can inhibit signaling via D2 receptor containing neurons, destabilizing the delicate signaling balance influencing drug seeking that emanates from the D1 and D2 receptor containing neurons in the brain. PMID:23637801

  7. Polysaccharide of Dendrobium huoshanense activates macrophages via toll-like receptor 4-mediated signaling pathways.

    Science.gov (United States)

    Xie, Song-Zi; Hao, Ran; Zha, Xue-Qiang; Pan, Li-Hua; Liu, Jian; Luo, Jian-Ping

    2016-08-01

    The present work aimed at investigating the pattern recognition receptor (PRR) and immunostimulatory mechanism of a purified Dendrobium huoshanense polysaccharide (DHP). We found that DHP could bind to the surface of macrophages and stimulate macrophages to secrete NO, TNF-α and IL-1β. To unravel the mechanism for the binding of DHP to macrophages, flow cytometry, confocal laser-scanning microscopy, affinity electrophoresis, SDS-PAGE and western blotting were employed to verify the type of PRR responsible for the recognition of DHP by RAW264.7 macrophages and peritoneal macrophages of C3H/HeN and C3H/HeJ macrophages. Results showed that toll-like receptor 4 (TLR4) was an essential receptor for macrophages to directly bind DHP. Further, the phosphorylation of ERK, JNK, Akt and p38 were observed to be time-dependently promoted by DHP, as well as the nuclear translocation of NF-κB p65. These results suggest that DHP activates macrophages via its direct binding to TLR4 to trigger TLR4 signaling pathways. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Melanocortin MC(4) receptor-mediated feeding and grooming in rodents.

    Science.gov (United States)

    Mul, Joram D; Spruijt, Berry M; Brakkee, Jan H; Adan, Roger A H

    2013-11-05

    Decades ago it was recognized that the pharmacological profile of melanocortin ligands that stimulated grooming behavior in rats was strikingly similar to that of Xenopus laevis melanophore pigment dispersion. After cloning of the melanocortin MC1 receptor, expressed in melanocytes, and the melanocortin MC4 receptor, expressed mainly in brain, the pharmacological profiles of these receptors appeared to be very similar and it was demonstrated that these receptors mediate melanocortin-induced pigmentation and grooming respectively. Grooming is a low priority behavior that is concerned with care of body surface. Activation of central melanocortin MC4 receptors is also associated with meal termination, and continued postprandial stimulation of melanocortin MC4 receptors may stimulate natural postprandial grooming behavior as part of the behavioral satiety sequence. Indeed, melanocortins fail to suppress food intake or induce grooming behavior in melanocortin MC4 receptor-deficient rats. This review will focus on how melanocortins affect grooming behavior through the melanocortin MC4 receptor, and how melanocortin MC4 receptors mediate feeding behavior. This review also illustrates how melanocortins were the most likely candidates to mediate grooming and feeding based on the natural behaviors they induced. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Role of type I interferon receptor signaling on NK cell development and functions.

    Directory of Open Access Journals (Sweden)

    Jean Guan

    Full Text Available Type I interferons (IFN are unique cytokines transcribed from intronless genes. They have been extensively studied because of their anti-viral functions. The anti-viral effects of type I IFN are mediated in part by natural killer (NK cells. However, the exact contribution of type I IFN on NK cell development, maturation and activation has been somewhat difficult to assess. In this study, we used a variety of approaches to define the consequences of the lack of type I interferon receptor (IFNAR signaling on NK cells. Using IFNAR deficient mice, we found that type I IFN affect NK cell development at the pre-pro NK stage. We also found that systemic absence of IFNAR signaling impacts NK cell maturation with a significant increase in the CD27+CD11b+ double positive (DP compartment in all organs. However, there is tissue specificity, and only in liver and bone marrow is the maturation defect strictly dependent on cell intrinsic IFNAR signaling. Finally, using adoptive transfer and mixed bone marrow approaches, we also show that cell intrinsic IFNAR signaling is not required for NK cell IFN-γ production in the context of MCMV infection. Taken together, our studies provide novel insights on how type I IFN receptor signaling regulates NK cell development and functions.

  10. Estrogen-mediated inactivation of FOXO3a by the G protein-coupled estrogen receptor GPER

    International Nuclear Information System (INIS)

    Zekas, Erin; Prossnitz, Eric R.

    2015-01-01

    Estrogen (17β-estradiol) promotes the survival and proliferation of breast cancer cells and its receptors represent important therapeutic targets. The cellular actions of estrogen are mediated by the nuclear estrogen receptors ERα and ERβ as well as the 7-transmembrane spanning G protein-coupled estrogen receptor (GPER). We previously reported that estrogen activates the phosphoinositide 3-kinase (PI3Kinase) pathway via GPER, resulting in phosphatidylinositol (3,4,5)-trisphosphate (PIP3) production within the nucleus of breast cancer cells; however, the mechanisms and consequences of this activity remained unclear. MCF7 breast cancer cells were transfected with GFP-fused Forkhead box O3 (FOXO3) as a reporter to assess localization in response to estrogen stimulation. Inhibitors of PI3Kinases and EGFR were employed to determine the mechanisms of estrogen-mediated FOXO3a inactivation. Receptor knockdown with siRNA and the selective GPER agonist G-1 elucidated the estrogen receptor(s) responsible for estrogen-mediated FOXO3a inactivation. The effects of selective estrogen receptor modulators and downregulators (SERMs and SERDs) on FOXO3a in MCF7 cells were also determined. Cell survival (inhibition of apoptosis) was assessed by caspase activation. In the estrogen-responsive breast cancer cell line MCF7, FOXO3a inactivation occurs on a rapid time scale as a result of GPER, but not ERα, stimulation by estrogen, established by the GPER-selective agonist G-1 and knockdown of GPER and ERα. GPER-mediated inactivation of FOXO3a is effected by the p110α catalytic subunit of PI3Kinase as a result of transactivation of the EGFR. The SERMs tamoxifen and raloxifene, as well as the SERD ICI182,780, were active in mediating FOXO3a inactivation in a GPER-dependent manner. Additionally, estrogen-and G-1-mediated stimulation of MCF7 cells results in a decrease in caspase activation under proapoptotic conditions. Our results suggest that non-genomic signaling by GPER contributes

  11. Biased and g protein-independent signaling of chemokine receptors

    DEFF Research Database (Denmark)

    Steen, Anne; Larsen, Olav; Thiele, Stefanie

    2014-01-01

    ), different receptors (with the same ligand), or different tissues or cells (for the same ligand-receptor pair). Most often biased signaling is differentiated into G protein-dependent and β-arrestin-dependent signaling. Yet, it may also cover signaling differences within these groups. Moreover, it may...

  12. c-MPL provides tumor-targeted T-cell receptor-transgenic T cells with costimulation and cytokine signals.

    Science.gov (United States)

    Nishimura, Christopher D; Brenner, Daniel A; Mukherjee, Malini; Hirsch, Rachel A; Ott, Leah; Wu, Meng-Fen; Liu, Hao; Dakhova, Olga; Orange, Jordan S; Brenner, Malcolm K; Lin, Charles Y; Arber, Caroline

    2017-12-21

    Adoptively transferred T-cell receptor (TCR)-engineered T cells depend on host-derived costimulation and cytokine signals for their full and sustained activation. However, in patients with cancer, both signals are frequently impaired. Hence, we developed a novel strategy that combines both essential signals in 1 transgene by expressing the nonlymphoid hematopoietic growth factor receptor c-MPL (myeloproliferative leukemia), the receptor for thrombopoietin (TPO), in T cells. c-MPL signaling activates pathways shared with conventional costimulatory and cytokine receptor signaling. Thus, we hypothesized that host-derived TPO, present in the tumor microenvironment, or pharmacological c-MPL agonists approved by the US Food and Drug Administration could deliver both signals to c-MPL-engineered TCR-transgenic T cells. We found that c-MPL + polyclonal T cells expand and proliferate in response to TPO, and persist longer after adoptive transfer in immunodeficient human TPO-transgenic mice. In TCR-transgenic T cells, c-MPL activation enhances antitumor function, T-cell expansion, and cytokine production and preserves a central memory phenotype. c-MPL signaling also enables sequential tumor cell killing, enhances the formation of effective immune synapses, and improves antileukemic activity in vivo in a leukemia xenograft model. We identify the type 1 interferon pathway as a molecular mechanism by which c-MPL mediates immune stimulation in T cells. In conclusion, we present a novel immunotherapeutic strategy using c-MPL-enhanced transgenic T cells responding to either endogenously produced TPO (a microenvironment factor in hematologic malignancies) or c-MPL-targeted pharmacological agents. © 2017 by The American Society of Hematology.

  13. Retinoid receptor signaling and autophagy in acute promyelocytic leukemia.

    LENUS (Irish Health Repository)

    Orfali, Nina

    2014-05-15

    Retinoids are a family of signaling molecules derived from vitamin A with well established roles in cellular differentiation. Physiologically active retinoids mediate transcriptional effects on cells through interactions with retinoic acid (RARs) and retinoid-X (RXR) receptors. Chromosomal translocations involving the RARα gene, which lead to impaired retinoid signaling, are implicated in acute promyelocytic leukemia (APL). All-trans-retinoic acid (ATRA), alone and in combination with arsenic trioxide (ATO), restores differentiation in APL cells and promotes degradation of the abnormal oncogenic fusion protein through several proteolytic mechanisms. RARα fusion-protein elimination is emerging as critical to obtaining sustained remission and long-term cure in APL. Autophagy is a degradative cellular pathway involved in protein turnover. Both ATRA and ATO also induce autophagy in APL cells. Enhancing autophagy may therefore be of therapeutic benefit in resistant APL and could broaden the application of differentiation therapy to other cancers. Here we discuss retinoid signaling in hematopoiesis, leukemogenesis, and APL treatment. We highlight autophagy as a potential important regulator in anti-leukemic strategies.

  14. Protein tyrosine kinase and mitogen-activated protein kinase signalling pathways contribute to differences in heterophil-mediated innate immune responsiveness between two lines of broilers

    Science.gov (United States)

    Protein tyrosine phosphorylation mediates signal transduction of cellular processes, with protein tyrosine kinases (PTKs) regulating virtually all signaling events. The mitogen-activated protein kinase (MAPK) super-family consists of three conserved pathways that convert receptor activation into ce...

  15. Primary cilia and coordination of receptor tyrosine kinase (RTK) and transforming growth factor β (TGF-β) signaling

    DEFF Research Database (Denmark)

    Christensen, Søren Tvorup; Morthorst, Stine Kjær; Mogensen, Johanne Bay

    2017-01-01

    are at the root of a pleiotropic group of diseases and syndromic disorders called ciliopathies. In this review, we present an overview of primary cilia-mediated regulation of receptor tyrosine kinase (RTK) and transforming growth factor β (TGF-β) signaling. Further, we discuss how defects in the coordination...

  16. Nuclear Receptor Signaling Atlas: Opening Access to the Biology of Nuclear Receptor Signaling Pathways.

    Science.gov (United States)

    Becnel, Lauren B; Darlington, Yolanda F; Ochsner, Scott A; Easton-Marks, Jeremy R; Watkins, Christopher M; McOwiti, Apollo; Kankanamge, Wasula H; Wise, Michael W; DeHart, Michael; Margolis, Ronald N; McKenna, Neil J

    2015-01-01

    Signaling pathways involving nuclear receptors (NRs), their ligands and coregulators, regulate tissue-specific transcriptomes in diverse processes, including development, metabolism, reproduction, the immune response and neuronal function, as well as in their associated pathologies. The Nuclear Receptor Signaling Atlas (NURSA) is a Consortium focused around a Hub website (www.nursa.org) that annotates and integrates diverse 'omics datasets originating from the published literature and NURSA-funded Data Source Projects (NDSPs). These datasets are then exposed to the scientific community on an Open Access basis through user-friendly data browsing and search interfaces. Here, we describe the redesign of the Hub, version 3.0, to deploy "Web 2.0" technologies and add richer, more diverse content. The Molecule Pages, which aggregate information relevant to NR signaling pathways from myriad external databases, have been enhanced to include resources for basic scientists, such as post-translational modification sites and targeting miRNAs, and for clinicians, such as clinical trials. A portal to NURSA's Open Access, PubMed-indexed journal Nuclear Receptor Signaling has been added to facilitate manuscript submissions. Datasets and information on reagents generated by NDSPs are available, as is information concerning periodic new NDSP funding solicitations. Finally, the new website integrates the Transcriptomine analysis tool, which allows for mining of millions of richly annotated public transcriptomic data points in the field, providing an environment for dataset re-use and citation, bench data validation and hypothesis generation. We anticipate that this new release of the NURSA database will have tangible, long term benefits for both basic and clinical research in this field.

  17. Nuclear Receptor Signaling Atlas: Opening Access to the Biology of Nuclear Receptor Signaling Pathways.

    Directory of Open Access Journals (Sweden)

    Lauren B Becnel

    Full Text Available Signaling pathways involving nuclear receptors (NRs, their ligands and coregulators, regulate tissue-specific transcriptomes in diverse processes, including development, metabolism, reproduction, the immune response and neuronal function, as well as in their associated pathologies. The Nuclear Receptor Signaling Atlas (NURSA is a Consortium focused around a Hub website (www.nursa.org that annotates and integrates diverse 'omics datasets originating from the published literature and NURSA-funded Data Source Projects (NDSPs. These datasets are then exposed to the scientific community on an Open Access basis through user-friendly data browsing and search interfaces. Here, we describe the redesign of the Hub, version 3.0, to deploy "Web 2.0" technologies and add richer, more diverse content. The Molecule Pages, which aggregate information relevant to NR signaling pathways from myriad external databases, have been enhanced to include resources for basic scientists, such as post-translational modification sites and targeting miRNAs, and for clinicians, such as clinical trials. A portal to NURSA's Open Access, PubMed-indexed journal Nuclear Receptor Signaling has been added to facilitate manuscript submissions. Datasets and information on reagents generated by NDSPs are available, as is information concerning periodic new NDSP funding solicitations. Finally, the new website integrates the Transcriptomine analysis tool, which allows for mining of millions of richly annotated public transcriptomic data points in the field, providing an environment for dataset re-use and citation, bench data validation and hypothesis generation. We anticipate that this new release of the NURSA database will have tangible, long term benefits for both basic and clinical research in this field.

  18. Epigenetics of Estrogen Receptor Signaling: Role in Hormonal Cancer Progression and Therapy

    International Nuclear Information System (INIS)

    Mann, Monica; Cortez, Valerie; Vadlamudi, Ratna K.

    2011-01-01

    Estrogen receptor (ERα) signaling plays a key role in hormonal cancer progression. ERα is a ligand-dependent transcription factor that modulates gene transcription via recruitment to the target gene chromatin. Emerging evidence suggests that ERα signaling has the potential to contribute to epigenetic changes. Estrogen stimulation is shown to induce several histone modifications at the ERα target gene promoters including acetylation, phosphorylation and methylation via dynamic interactions with histone modifying enzymes. Deregulation of enzymes involved in the ERα -mediated epigenetic pathway could play a vital role in ERα driven neoplastic processes. Unlike genetic alterations, epigenetic changes are reversible, and hence offer novel therapeutic opportunities to reverse ERα driven epigenetic changes. In this review, we summarize current knowledge on mechanisms by which ERα signaling potentiates epigenetic changes in cancer cells via histone modifications

  19. Epigenetics of Estrogen Receptor Signaling: Role in Hormonal Cancer Progression and Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Monica; Cortez, Valerie [Department of Cellular and Structural Biology, UTHSCSA, 7703 Floyd Curl Drive, San Antonio, TX 78229 (United States); Vadlamudi, Ratna K., E-mail: vadlamudi@uthscsa.edu [Department of Obstetrics and Gynecology, UTHSCSA, 7703 Floyd Curl Drive, San Antonio, TX 78229 (United States)

    2011-03-29

    Estrogen receptor (ERα) signaling plays a key role in hormonal cancer progression. ERα is a ligand-dependent transcription factor that modulates gene transcription via recruitment to the target gene chromatin. Emerging evidence suggests that ERα signaling has the potential to contribute to epigenetic changes. Estrogen stimulation is shown to induce several histone modifications at the ERα target gene promoters including acetylation, phosphorylation and methylation via dynamic interactions with histone modifying enzymes. Deregulation of enzymes involved in the ERα -mediated epigenetic pathway could play a vital role in ERα driven neoplastic processes. Unlike genetic alterations, epigenetic changes are reversible, and hence offer novel therapeutic opportunities to reverse ERα driven epigenetic changes. In this review, we summarize current knowledge on mechanisms by which ERα signaling potentiates epigenetic changes in cancer cells via histone modifications.

  20. A single peroxisomal targeting signal mediates matrix protein import in diatoms.

    Directory of Open Access Journals (Sweden)

    Nicola H Gonzalez

    Full Text Available Peroxisomes are single membrane bound compartments. They are thought to be present in almost all eukaryotic cells, although the bulk of our knowledge about peroxisomes has been generated from only a handful of model organisms. Peroxisomal matrix proteins are synthesized cytosolically and posttranslationally imported into the peroxisomal matrix. The import is generally thought to be mediated by two different targeting signals. These are respectively recognized by the two import receptor proteins Pex5 and Pex7, which facilitate transport across the peroxisomal membrane. Here, we show the first in vivo localization studies of peroxisomes in a representative organism of the ecologically relevant group of diatoms using fluorescence and transmission electron microscopy. By expression of various homologous and heterologous fusion proteins we demonstrate that targeting of Phaeodactylum tricornutum peroxisomal matrix proteins is mediated only by PTS1 targeting signals, also for proteins that are in other systems imported via a PTS2 mode of action. Additional in silico analyses suggest this surprising finding may also apply to further diatoms. Our data suggest that loss of the PTS2 peroxisomal import signal is not reserved to Caenorhabditis elegans as a single exception, but has also occurred in evolutionary divergent organisms. Obviously, targeting switching from PTS2 to PTS1 across different major eukaryotic groups might have occurred for different reasons. Thus, our findings question the widespread assumption that import of peroxisomal matrix proteins is generally mediated by two different targeting signals. Our results implicate that there apparently must have been an event causing the loss of one targeting signal even in the group of diatoms. Different possibilities are discussed that indicate multiple reasons for the detected targeting switching from PTS2 to PTS1.

  1. A threshold model for receptor tyrosine kinase signaling specificity and cell fate determination [version 1; referees: 4 approved

    Directory of Open Access Journals (Sweden)

    Allen Zinkle

    2018-06-01

    Full Text Available Upon ligand engagement, the single-pass transmembrane receptor tyrosine kinases (RTKs dimerize to transmit qualitatively and quantitatively different intracellular signals that alter the transcriptional landscape and thereby determine the cellular response. The molecular mechanisms underlying these fundamental events are not well understood. Considering recent insights into the structural biology of fibroblast growth factor signaling, we propose a threshold model for RTK signaling specificity in which quantitative differences in the strength/longevity of ligand-induced receptor dimers on the cell surface lead to quantitative differences in the phosphorylation of activation loop (A-loop tyrosines as well as qualitative differences in the phosphorylation of tyrosines mediating substrate recruitment. In this model, quantitative differences on A-loop tyrosine phosphorylation result in gradations in kinase activation, leading to the generation of intracellular signals of varying amplitude/duration. In contrast, qualitative differences in the pattern of tyrosine phosphorylation on the receptor result in the recruitment/activation of distinct substrates/intracellular pathways. Commensurate with both the dynamics of the intracellular signal and the types of intracellular pathways activated, unique transcriptional signatures are established. Our model provides a framework for engineering clinically useful ligands that can tune receptor dimerization stability so as to bias the cellular transcriptome to achieve a desired cellular output.

  2. Structure, signaling mechanism and regulation of the natriuretic peptide receptor guanylate cyclase.

    Energy Technology Data Exchange (ETDEWEB)

    Misono, K. S.; Philo, J. S.; Arakawa, T.; Ogata, C. M.; Qiu, Y.; Ogawa, H.; Young, H. S. (Biosciences Division); (Univ. of Nevada); (Alliance Protein Labs.)

    2011-06-01

    Atrial natriuretic peptide (ANP) and the homologous B-type natriuretic peptide are cardiac hormones that dilate blood vessels and stimulate natriuresis and diuresis, thereby lowering blood pressure and blood volume. ANP and B-type natriuretic peptide counterbalance the actions of the renin-angiotensin-aldosterone and neurohormonal systems, and play a central role in cardiovascular regulation. These activities are mediated by natriuretic peptide receptor-A (NPRA), a single transmembrane segment, guanylyl cyclase (GC)-linked receptor that occurs as a homodimer. Here, we present an overview of the structure, possible chloride-mediated regulation and signaling mechanism of NPRA and other receptor GCs. Earlier, we determined the crystal structures of the NPRA extracellular domain with and without bound ANP. Their structural comparison has revealed a novel ANP-induced rotation mechanism occurring in the juxtamembrane region that apparently triggers transmembrane signal transduction. More recently, the crystal structures of the dimerized catalytic domain of green algae GC Cyg12 and that of cyanobacterium GC Cya2 have been reported. These structures closely resemble that of the adenylyl cyclase catalytic domain, consisting of a C1 and C2 subdomain heterodimer. Adenylyl cyclase is activated by binding of G{sub s}{alpha} to C2 and the ensuing 7{sup o} rotation of C1 around an axis parallel to the central cleft, thereby inducing the heterodimer to adopt a catalytically active conformation. We speculate that, in NPRA, the ANP-induced rotation of the juxtamembrane domains, transmitted across the transmembrane helices, may induce a similar rotation in each of the dimerized GC catalytic domains, leading to the stimulation of the GC catalytic activity.

  3. IRS-1 acts as an endocytic regulator of IGF-I receptor to facilitate sustained IGF signaling.

    Science.gov (United States)

    Yoneyama, Yosuke; Lanzerstorfer, Peter; Niwa, Hideaki; Umehara, Takashi; Shibano, Takashi; Yokoyama, Shigeyuki; Chida, Kazuhiro; Weghuber, Julian; Hakuno, Fumihiko; Takahashi, Shin-Ichiro

    2018-04-11

    Insulin-like growth factor-I receptor (IGF-IR) preferentially regulates the long-term IGF activities including growth and metabolism. Kinetics of ligand-dependent IGF-IR endocytosis determines how IGF induces such downstream signaling outputs. Here, we find that the insulin receptor substrate (IRS)-1 modulates how long ligand-activated IGF-IR remains at the cell surface before undergoing endocytosis in mammalian cells. IRS-1 interacts with the clathrin adaptor complex AP2. IRS-1, but not an AP2-binding-deficient mutant, delays AP2-mediated IGF-IR endocytosis after the ligand stimulation. Mechanistically, IRS-1 inhibits the recruitment of IGF-IR into clathrin-coated structures; for this reason, IGF-IR avoids rapid endocytosis and prolongs its activity on the cell surface. Accelerating IGF-IR endocytosis via IRS-1 depletion induces the shift from sustained to transient Akt activation and augments FoxO-mediated transcription. Our study establishes a new role for IRS-1 as an endocytic regulator of IGF-IR that ensures sustained IGF bioactivity, independent of its classic role as an adaptor in IGF-IR signaling. © 2018, Yoneyama et al.

  4. Signaling properties and pharmacological analysis of two sulfakinin receptors from the red flour beetle, Tribolium castaneum.

    Directory of Open Access Journals (Sweden)

    Sven Zels

    Full Text Available Sulfakinin is an insect neuropeptide that constitutes an important component of the complex network of hormonal and neural factors that regulate feeding and digestion. The key modulating functions of sulfakinin are mediated by binding and signaling via G-protein coupled receptors. Although a substantial amount of functional data have already been reported on sulfakinins in different insect species, only little information is known regarding the properties of their respective receptors. In this study, we report on the molecular cloning, functional expression and characterization of two sulfakinin receptors in the red flour beetle, Tribolium castaneum. Both receptor open reading frames show extensive sequence similarity with annotated sulfakinin receptors from other insects. Comparison of the sulfakinin receptor sequences with homologous vertebrate cholecystokinin receptors reveals crucial conserved regions for ligand binding and receptor activation. Quantitative reverse transcriptase PCR shows that transcripts of both receptors are primarily expressed in the central nervous system of the beetle. Pharmacological characterization using 29 different peptide ligands clarified the essential requirements for efficient activation of these sulfakinin receptors. Analysis of the signaling pathway in multiple cell lines disclosed that the sulfakinin receptors of T. castaneum can stimulate both the Ca²⁺ and cyclic AMP second messenger pathways. This in depth characterization of two insect sulfakinin receptors may provide useful leads for the further development of receptor ligands with a potential applicability in pest control and crop protection.

  5. Angiotensin type 2 receptor (AT2R) and receptor Mas

    DEFF Research Database (Denmark)

    Villela, Daniel; Leonhardt, Julia; Patel, Neal

    2015-01-01

    The angiotensin type 2 receptor (AT2R) and the receptor Mas are components of the protective arms of the renin-angiotensin system (RAS), i.e. they both mediate tissue protective and regenerative actions. The spectrum of actions of these two receptors and their signalling mechanisms display striki...

  6. PRMT1-mediated methylation of the EGF receptor regulates signaling and cetuximab response

    KAUST Repository

    Liao, Hsin-Wei; Hsu, Jung-Mao; Xia, Weiya; Wang, Hung-Ling; Wang, Ying-Nai; Chang, Wei-Chao; Arold, Stefan T.; Chou, Chao-Kai; Tsou, Pei-Hsiang; Yamaguchi, Hirohito; Fang, Yueh-Fu; Lee, Hong-Jen; Lee, Heng-Huan; Tai, Shyh-Kuan; Yang, Mhu-Hwa; Morelli, Maria P.; Sen, Malabika; Ladbury, John E.; Chen, Chung-Hsuan; Grandis, Jennifer R.; Kopetz, Scott; Hung, Mien-Chie

    2015-01-01

    Posttranslational modifications to the intracellular domain of the EGFR are known to regulate EGFR functions; however, modifications to the extracellular domain and their effects remain relatively unexplored. Here, we determined that methylation at R198 and R200 of the EGFR extracellular domain by protein arginine methyltransferase 1 (PRMT1) enhances binding to EGF and subsequent receptor dimerization and signaling activation. In a mouse orthotopic colorectal cancer xenograft model, expression of a methylation-defective EGFR reduced tumor growth. Moreover, increased EGFR methylation sustained signaling activation and cell proliferation in the presence of the therapeutic EGFR monoclonal antibody cetuximab. In colorectal cancer patients, EGFR methylation level also correlated with a higher recurrence rate after cetuximab treatment and reduced overall survival. Together, these data indicate that R198/R200 methylation of the EGFR plays an important role in regulating EGFR functionality and resistance to cetuximab treatment.

  7. PRMT1-mediated methylation of the EGF receptor regulates signaling and cetuximab response

    KAUST Repository

    Liao, Hsin-Wei

    2015-11-16

    Posttranslational modifications to the intracellular domain of the EGFR are known to regulate EGFR functions; however, modifications to the extracellular domain and their effects remain relatively unexplored. Here, we determined that methylation at R198 and R200 of the EGFR extracellular domain by protein arginine methyltransferase 1 (PRMT1) enhances binding to EGF and subsequent receptor dimerization and signaling activation. In a mouse orthotopic colorectal cancer xenograft model, expression of a methylation-defective EGFR reduced tumor growth. Moreover, increased EGFR methylation sustained signaling activation and cell proliferation in the presence of the therapeutic EGFR monoclonal antibody cetuximab. In colorectal cancer patients, EGFR methylation level also correlated with a higher recurrence rate after cetuximab treatment and reduced overall survival. Together, these data indicate that R198/R200 methylation of the EGFR plays an important role in regulating EGFR functionality and resistance to cetuximab treatment.

  8. PRMT1-mediated methylation of the EGF receptor regulates signaling and cetuximab response

    Science.gov (United States)

    Liao, Hsin-Wei; Hsu, Jung-Mao; Xia, Weiya; Wang, Hung-Ling; Wang, Ying-Nai; Chang, Wei-Chao; Arold, Stefan T.; Chou, Chao-Kai; Tsou, Pei-Hsiang; Yamaguchi, Hirohito; Fang, Yueh-Fu; Lee, Hong-Jen; Lee, Heng-Huan; Tai, Shyh-Kuan; Yang, Mhu-Hwa; Morelli, Maria P.; Sen, Malabika; Ladbury, John E.; Chen, Chung-Hsuan; Grandis, Jennifer R.; Kopetz, Scott; Hung, Mien-Chie

    2015-01-01

    Posttranslational modifications to the intracellular domain of the EGFR are known to regulate EGFR functions; however, modifications to the extracellular domain and their effects remain relatively unexplored. Here, we determined that methylation at R198 and R200 of the EGFR extracellular domain by protein arginine methyltransferase 1 (PRMT1) enhances binding to EGF and subsequent receptor dimerization and signaling activation. In a mouse orthotopic colorectal cancer xenograft model, expression of a methylation-defective EGFR reduced tumor growth. Moreover, increased EGFR methylation sustained signaling activation and cell proliferation in the presence of the therapeutic EGFR monoclonal antibody cetuximab. In colorectal cancer patients, EGFR methylation level also correlated with a higher recurrence rate after cetuximab treatment and reduced overall survival. Together, these data indicate that R198/R200 methylation of the EGFR plays an important role in regulating EGFR functionality and resistance to cetuximab treatment. PMID:26571401

  9. Cerebellar Kainate Receptor-Mediated Facilitation of Glutamate Release Requires Ca2+-Calmodulin and PKA

    Directory of Open Access Journals (Sweden)

    Rafael Falcón-Moya

    2018-06-01

    Full Text Available We elucidated the mechanisms underlying the kainate receptor (KAR-mediated facilitatory modulation of synaptic transmission in the cerebellum. In cerebellar slices, KA (3 μM increased the amplitude of evoked excitatory postsynaptic currents (eEPSCs at synapses between axon terminals of parallel fibers (PF and Purkinje neurons. KA-mediated facilitation was antagonized by NBQX under condition where AMPA receptors were previously antagonized. Inhibition of protein kinase A (PKA suppressed the effect of KA on glutamate release, which was also obviated by the prior stimulation of adenylyl cyclase (AC. KAR-mediated facilitation of synaptic transmission was prevented by blocking Ca2+ permeant KARs using philanthotoxin. Furthermore, depletion of intracellular Ca2+ stores by thapsigargin, or inhibition of Ca2+-induced Ca2+-release by ryanodine, abrogated the synaptic facilitation by KA. Thus, the KA-mediated modulation was conditional on extracellular Ca2+ entry through Ca2+-permeable KARs, as well as and mobilization of Ca2+ from intracellular stores. Finally, KAR-mediated facilitation was sensitive to calmodulin inhibitors, W-7 and calmidazolium, indicating that the increased cytosolic [Ca2+] sustaining KAR-mediated facilitation of synaptic transmission operates through a downstream Ca2+/calmodulin coupling. We conclude that, at cerebellar parallel fiber-Purkinje cell synapses, presynaptic KARs mediate glutamate release facilitation, and thereby enhance synaptic transmission through Ca2+-calmodulin dependent activation of adenylyl cyclase/cAMP/protein kinase A signaling.

  10. Cannabinoid Receptors and the Endocannabinoid System: Signaling and Function in the Central Nervous System

    Directory of Open Access Journals (Sweden)

    Shenglong Zou

    2018-03-01

    Full Text Available The biological effects of cannabinoids, the major constituents of the ancient medicinal plant Cannabis sativa (marijuana are mediated by two members of the G-protein coupled receptor family, cannabinoid receptors 1 (CB1R and 2. The CB1R is the prominent subtype in the central nervous system (CNS and has drawn great attention as a potential therapeutic avenue in several pathological conditions, including neuropsychological disorders and neurodegenerative diseases. Furthermore, cannabinoids also modulate signal transduction pathways and exert profound effects at peripheral sites. Although cannabinoids have therapeutic potential, their psychoactive effects have largely limited their use in clinical practice. In this review, we briefly summarized our knowledge of cannabinoids and the endocannabinoid system, focusing on the CB1R and the CNS, with emphasis on recent breakthroughs in the field. We aim to define several potential roles of cannabinoid receptors in the modulation of signaling pathways and in association with several pathophysiological conditions. We believe that the therapeutic significance of cannabinoids is masked by the adverse effects and here alternative strategies are discussed to take therapeutic advantage of cannabinoids.

  11. ISOLATION AND CHARACTERIZATION OF AXOLOTL NPDC-1 AND ITS EFFECTS ON RETINOIC ACID RECEPTOR SIGNALING

    Science.gov (United States)

    Theodosiou, Maria; Monaghan, James R; Spencer, Michael L; Voss, S Randal; Noonan, Daniel J

    2009-01-01

    Retinoic acid, a key morphogen in early vertebrate development and tissue regeneration, mediates its effects through the binding of receptors that act as ligand-induced transcription factors. These binding events function to recruit an array of transcription co-regulatory proteins to specific gene promoters. One such co-regulatory protein, neuronal proliferation and differentiation control-1 (NPDC-1), is broadly expressed during mammalian development and functions as an in vitro repressor of retinoic acid receptor (RAR)-mediated transcription. To obtain comparative and developmental insights about NPDC-1 function, we cloned the axolotl (Ambystoma mexicanum) orthologue and measured transcript abundances among tissues sampled during the embryonic and juvenile phases of development, and also during spinal cord regeneration. Structurally, the axolotl orthologue of NPDC-1 retained sequence identity to mammalian sequences in all functional domains. Functionally, we observed that axolotl NPDC-1 mRNA expression peaked late in embryogenesis, with highest levels of expression occurring during the time of limb development, a process regulated by retinoic acid signaling. Also similar to what has been observed in mammals, axolotl NPDC-1 directly interacts with axolotl RAR, modulates axolotl RAR DNA binding, and represses cell proliferation and axolotl RAR-mediated gene transcription. These data justify axolotl as a model to further investigate NPDC-1 and its role in regulating retinoic acid signaling. PMID:17331771

  12. Study of signal transduction mechanism of angiotensin 2 receptor by means of site-directed mutagenesis; Bui totsuzen hen'iho wo mochiita anjiotenshin 2 reseputa no joho dentatsu kiko no kaimei

    Energy Technology Data Exchange (ETDEWEB)

    Yamano, Yoshiaki [Tottori University, Tottori (Japan). Faculty of Agriculture

    1998-12-16

    The renin-angiotensin system (RAS) plays an important role in the regulation of blood pressure. In order to clarify the signaling mechanism mediated by angiotensin 2 receptor, Gq-protein binding amino acid residues of this receptor were clarified by site-directed mutagenesis study. Amino acid residues in the carboxyl tail region were changed by alanines, individually. These mutated receptors were expressed stably in CHO cells, and GTP effect and second messenger molecules were determined, and three residues (Y 312, F313 and L 314) in this region were determined to be concerned for the binding of Gq protein. The other signaling systems, Gi, MAP kinase, JAK-STAT mediated, were reported to be concerned for this receptor. Novel drags for high blood pressure therapy would be explored by clarifying these signaling mechanisms. (author)

  13. Med1 subunit of the mediator complex in nuclear receptor-regulated energy metabolism, liver regeneration, and hepatocarcinogenesis.

    Science.gov (United States)

    Jia, Yuzhi; Viswakarma, Navin; Reddy, Janardan K

    2014-01-01

    Several nuclear receptors regulate diverse metabolic functions that impact on critical biological processes, such as development, differentiation, cellular regeneration, and neoplastic conversion. In the liver, some members of the nuclear receptor family, such as peroxisome proliferator-activated receptors (PPARs), constitutive androstane receptor (CAR), farnesoid X receptor (FXR), liver X receptor (LXR), pregnane X receptor (PXR), glucocorticoid receptor (GR), and others, regulate energy homeostasis, the formation and excretion of bile acids, and detoxification of xenobiotics. Excess energy burning resulting from increases in fatty acid oxidation systems in liver generates reactive oxygen species, and the resulting oxidative damage influences liver regeneration and liver tumor development. These nuclear receptors are important sensors of exogenous activators as well as receptor-specific endogenous ligands. In this regard, gene knockout mouse models revealed that some lipid-metabolizing enzymes generate PPARα-activating ligands, while others such as ACOX1 (fatty acyl-CoA oxidase1) inactivate these endogenous PPARα activators. In the absence of ACOX1, the unmetabolized ACOX1 substrates cause sustained activation of PPARα, and the resulting increase in energy burning leads to hepatocarcinogenesis. Ligand-activated nuclear receptors recruit the multisubunit Mediator complex for RNA polymerase II-dependent gene transcription. Evidence indicates that the Med1 subunit of the Mediator is essential for PPARα, PPARγ, CAR, and GR signaling in liver. Med1 null hepatocytes fail to respond to PPARα activators in that these cells do not show induction of peroxisome proliferation and increases in fatty acid oxidation enzymes. Med1-deficient hepatocytes show no increase in cell proliferation and do not give rise to liver tumors. Identification of nuclear receptor-specific coactivators and Mediator subunits should further our understanding of the complexities of metabolic

  14. Lysophosphatidic acid signaling through its receptor initiates profibrotic epithelial cell fibroblast communication mediated by epithelial cell derived connective tissue growth factor.

    Science.gov (United States)

    Sakai, Norihiko; Chun, Jerold; Duffield, Jeremy S; Lagares, David; Wada, Takashi; Luster, Andrew D; Tager, Andrew M

    2017-03-01

    The expansion of the fibroblast pool is a critical step in organ fibrosis, but the mechanisms driving expansion remain to be fully clarified. We previously showed that lysophosphatidic acid (LPA) signaling through its receptor LPA 1 expressed on fibroblasts directly induces the recruitment of these cells. Here we tested whether LPA-LPA 1 signaling drives fibroblast proliferation and activation during the development of renal fibrosis. LPA 1 -deficient (LPA 1 -/- ) or -sufficient (LPA 1 +/+ ) mice were crossed to mice with green fluorescent protein expression (GFP) driven by the type I procollagen promoter (Col-GFP) to identify fibroblasts. Unilateral ureteral obstruction-induced increases in renal collagen were significantly, though not completely, attenuated in LPA 1 -/- Col-GFP mice, as were the accumulations of both fibroblasts and myofibroblasts. Connective tissue growth factor was detected mainly in tubular epithelial cells, and its levels were suppressed in LPA 1 -/- Col-GFP mice. LPA-LPA 1 signaling directly induced connective tissue growth factor expression in primary proximal tubular epithelial cells, through a myocardin-related transcription factor-serum response factor pathway. Proximal tubular epithelial cell-derived connective tissue growth factor mediated renal fibroblast proliferation and myofibroblast differentiation. Administration of an inhibitor of myocardin-related transcription factor/serum response factor suppressed obstruction-induced renal fibrosis. Thus, targeting LPA-LPA 1 signaling and/or myocardin-related transcription factor/serum response factor-induced transcription could be promising therapeutic strategies for renal fibrosis. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  15. Osteoclast TGF-β Receptor Signaling Induces Wnt1 Secretion and Couples Bone Resorption to Bone Formation

    Science.gov (United States)

    Weivoda, Megan M; Ruan, Ming; Pederson, Larry; Hachfeld, Christine; Davey, Rachel A; Zajac, Jeffrey D; Westendorf, Jennifer J; Khosla, Sundeep; Oursler, Merry Jo

    2016-01-01

    Osteoblast-mediated bone formation is coupled to osteoclast-mediated bone resorption. These processes become uncoupled with age, leading to increased risk for debilitating fractures. Therefore, understanding how osteoblasts are recruited to sites of resorption is vital to treating age-related bone loss. Osteoclasts release and activate TGF-β from the bone matrix. Here we show that osteoclastspecific inhibition of TGF-β receptor signaling in mice results in osteopenia due to reduced osteoblast numbers with no significant impact on osteoclast numbers or activity. TGF-β induced osteoclast expression of Wnt1, a protein crucial to normal bone formation, and this response was blocked by impaired TGF-β receptor signaling. Osteoclasts in aged murine bones had lower TGF-β signaling and Wnt1 expression in vivo. Ex vivo stimulation of osteoclasts derived from young or old mouse bone marrow macrophages showed no difference in TGF-β–induced Wnt1 expression. However, young osteoclasts expressed reduced Wnt1 when cultured on aged mouse bone chips compared to young mouse bone chips, consistent with decreased skeletal TGF-β availability with age. Therefore, osteoclast responses to TGF-β are essential for coupling bone resorption to bone formation, and modulating this pathway may provide opportunities to treat age-related bone loss. PMID:26108893

  16. An Aryl Hydrocarbon Receptor-Mediated Amplification Loop That Enforces Cell Migration in ER-/PR-/Her2- Human Breast Cancer Cells.

    Science.gov (United States)

    Novikov, Olga; Wang, Zhongyan; Stanford, Elizabeth A; Parks, Ashley J; Ramirez-Cardenas, Alejandra; Landesman, Esther; Laklouk, Israa; Sarita-Reyes, Carmen; Gusenleitner, Daniel; Li, Amy; Monti, Stefano; Manteiga, Sara; Lee, Kyongbum; Sherr, David H

    2016-11-01

    The endogenous ligand-activated aryl hydrocarbon receptor (AHR) plays an important role in numerous biologic processes. As the known number of AHR-mediated processes grows, so too does the importance of determining what endogenous AHR ligands are produced, how their production is regulated, and what biologic consequences ensue. Consequently, our studies were designed primarily to determine whether ER - /PR - /Her2 - breast cancer cells have the potential to produce endogenous AHR ligands and, if so, how production of these ligands is controlled. We postulated that: 1) malignant cells produce tryptophan-derived AHR ligand(s) through the kynurenine pathway; 2) these metabolites have the potential to drive AHR-dependent breast cancer migration; 3) the AHR controls expression of a rate-limiting kynurenine pathway enzyme(s) in a closed amplification loop; and 4) environmental AHR ligands mimic the effects of endogenous ligands. Data presented in this work indicate that primary human breast cancers, and their metastases, express high levels of AHR and tryptophan-2,3-dioxygenase (TDO); representative ER - /PR - /Her2 - cell lines express TDO and produce sufficient intracellular kynurenine and xanthurenic acid concentrations to chronically activate the AHR. TDO overexpression, or excess kynurenine or xanthurenic acid, accelerates migration in an AHR-dependent fashion. Environmental AHR ligands 2,3,7,8-tetrachlorodibenzo[p]dioxin and benzo[a]pyrene mimic this effect. AHR knockdown or inhibition significantly reduces TDO2 expression. These studies identify, for the first time, a positive amplification loop in which AHR-dependent TDO2 expression contributes to endogenous AHR ligand production. The net biologic effect of AHR activation by endogenous ligands, which can be mimicked by environmental ligands, is an increase in tumor cell migration, a measure of tumor aggressiveness. Copyright © 2016 by The Author(s).

  17. Adenosine Receptors Differentially Regulate the Expression of Regulators of G-Protein Signalling (RGS 2, 3 and 4 in Astrocyte-Like Cells.

    Directory of Open Access Journals (Sweden)

    Till Nicolas Eusemann

    Full Text Available The "regulators of g-protein signalling" (RGS comprise a large family of proteins that limit by virtue of their GTPase accelerating protein domain the signal transduction of G-protein coupled receptors. RGS proteins have been implicated in various neuropsychiatric diseases such as schizophrenia, drug abuse, depression and anxiety and aggressive behaviour. Since conditions associated with a large increase of adenosine in the brain such as seizures or ischemia were reported to modify the expression of some RGS proteins we hypothesized that adenosine might regulate RGS expression in neural cells. We measured the expression of RGS-2,-3, and -4 in both transformed glia cells (human U373 MG astrocytoma cells and in primary rat astrocyte cultures stimulated with adenosine agonists. Expression of RGS-2 mRNA as well as RGS2 protein was increased up to 30-fold by adenosine agonists in astrocytes. The order of potency of agonists and the blockade by the adenosine A2B-antagonist MRS1706 indicated that this effect was largely mediated by adenosine A2B receptors. However, a smaller effect was observed due to activation of adenosine A2A receptors. In astrocytoma cells adenosine agonists elicited an increase in RGS-2 expression solely mediated by A2B receptors. Expression of RGS-3 was inhibited by adenosine agonists in both astrocytoma cells and astrocytes. However while this effect was mediated by A2B receptors in astrocytoma cells it was mediated by A2A receptors in astrocytes as assessed by the order of potency of agonists and selective blockade by the specific antagonists MRS1706 and ZM241385 respectively. RGS-4 expression was inhibited in astrocytoma cells but enhanced in astrocytes by adenosine agonists.

  18. Steroid receptor coactivators 1 and 2 mediate fetal-to-maternal signaling that initiates parturition

    OpenAIRE

    Gao, Lu; Rabbitt, Elizabeth H.; Condon, Jennifer C.; Renthal, Nora E.; Johnston, John M.; Mitsche, Matthew A.; Chambon, Pierre; Xu, Jianming; O’Malley, Bert W.; Mendelson, Carole R.

    2015-01-01

    The precise mechanisms that lead to parturition are incompletely defined. Surfactant protein-A (SP-A), which is secreted by fetal lungs into amniotic fluid (AF) near term, likely provides a signal for parturition; however, SP-A–deficient mice have only a relatively modest delay (~12 hours) in parturition, suggesting additional factors. Here, we evaluated the contribution of steroid receptor coactivators 1 and 2 (SRC-1 and SRC-2), which upregulate SP-A transcription, to the parturition process...

  19. Identification of a novel Gnao-mediated alternate olfactory signaling pathway in murine OSNs

    Directory of Open Access Journals (Sweden)

    Paul eScholz

    2016-03-01

    Full Text Available It is generally agreed that in olfactory sensory neurons (OSNs, the binding of odorant molecules to their specific olfactory receptor (OR triggers a cAMP-dependent signaling cascade, activating cyclic-nucleotide gated (CNG channels. However, considerable controversy dating back more than 20 years has surrounded the question of whether alternate signaling plays a role in mammalian olfactory transduction. In this study, we demonstrate a specific alternate signaling pathway in Olfr73-expressing OSNs. Methylisoeugenol (MIEG and at least one other known weak Olfr73 agonist (Raspberry Ketone trigger a signaling cascade independent from the canonical pathway, leading to the depolarization of the cell. Interestingly, this pathway is mediated by Gnao activation, leading to Cl- efflux; however, the activation of adenylyl cyclase III (ACIII, the recruitment of Ca2+ from extra-or intracellular stores, and phosphatidylinositol 3-kinase-dependent signaling (PI signaling are not involved. Furthermore, we demonstrated that our newly identified pathway coexists with the canonical olfactory cAMP pathway in the same OSN and can be triggered by the same OR in a ligand-selective manner. We suggest that this pathway might reflect a mechanism for odor recognition predominantly used in early developmental stages before olfactory cAMP signaling is fully developed. Taken together, our findings support the existence of at least one odor-induced alternate signal transduction pathway in native OSNs mediated by Olfr73 in a ligand-selective manner.

  20. Follicle-stimulating hormone (FSH) activates extracellular signal-regulated kinase phosphorylation independently of beta-arrestin- and dynamin-mediated FSH receptor internalization

    Science.gov (United States)

    Piketty, Vincent; Kara, Elodie; Guillou, Florian; Reiter, Eric; Crepieux, Pascale

    2006-01-01

    Background The follicle-stimulating hormone receptor (FSH-R) is a seven transmembrane spanning receptor (7TMR) which plays a crucial role in male and female reproduction. Upon FSH stimulation, the FSH-R activates the extracellular signal-regulated kinases (ERK). However, the mechanisms whereby the agonist-stimulated FSH-R activates ERK are poorly understood. In order to activate ERK, some 7 TMRs require beta-arrestin-and dynamin-dependent internalization to occur, whereas some others do not. In the present study, we examined the ability of the FSH-activated FSH-R to induce ERK phosphorylation, in conditions where its beta-arrestin- and dynamin-mediated internalization was impaired. Methods Human embryonic kidney (HEK) 293 cells were transiently transfected with the rat FSH-R. Internalization of the FSH-R was manipulated by co-expression of either a beta-arrestin (319–418) dominant negative peptide, either an inactive dynamin K44A mutant or of wild-type beta-arrestin 1 or 2. The outcomes on the FSH-R internalization were assayed by measuring 125I-FSH binding at the cell surface when compared to internalized 125I-FSH binding. The resulting ERK phosphorylation level was visualized by Western blot analysis. Results In HEK 293 cells, FSH stimulated ERK phosphorylation in a dose-dependent manner. Co-transfection of the beta- arrestin (319–418) construct, or of the dynamin K44A mutant reduced FSH-R internalization in response to FSH, without affecting ERK phosphorylation. Likewise, overexpression of wild-type beta-arrestin 1 or 2 significantly increased the FSH-R internalization level in response to FSH, without altering FSH-induced ERK phosphorylation. Conclusion From these results, we conclude that the FSH-R does not require beta-arrestin- nor dynamin-mediated internalization to initiate ERK phosphorylation in response to FSH. PMID:16787538

  1. Stronger Dopamine D1 Receptor-Mediated Neurotransmission in Dyskinesia.

    Science.gov (United States)

    Farré, Daniel; Muñoz, Ana; Moreno, Estefanía; Reyes-Resina, Irene; Canet-Pons, Júlia; Dopeso-Reyes, Iria G; Rico, Alberto J; Lluís, Carme; Mallol, Josefa; Navarro, Gemma; Canela, Enric I; Cortés, Antonio; Labandeira-García, José L; Casadó, Vicent; Lanciego, José L; Franco, Rafael

    2015-12-01

    Radioligand binding assays to rat striatal dopamine D1 receptors showed that brain lateralization of the dopaminergic system were not due to changes in expression but in agonist affinity. D1 receptor-mediated striatal imbalance resulted from a significantly higher agonist affinity in the left striatum. D1 receptors heteromerize with dopamine D3 receptors, which are considered therapeutic targets for dyskinesia in parkinsonian patients. Expression of both D3 and D1-D3 receptor heteromers were increased in samples from 6-hydroxy-dopamine-hemilesioned rats rendered dyskinetic by treatment with 3, 4-dihydroxyphenyl-L-alanine (L-DOPA). Similar findings were obtained using striatal samples from primates. Radioligand binding studies in the presence of a D3 agonist led in dyskinetic, but not in lesioned or L-DOPA-treated rats, to a higher dopamine sensitivity. Upon D3-receptor activation, the affinity of agonists for binding to the right striatal D1 receptor increased. Excess dopamine coming from L-DOPA medication likely activates D3 receptors thus making right and left striatal D1 receptors equally responsive to dopamine. These results show that dyskinesia occurs concurrently with a right/left striatal balance in D1 receptor-mediated neurotransmission.

  2. Epidermal growth factor receptor signaling promotes metastatic prostate cancer through microRNA-96-mediated downregulation of the tumor suppressor ETV6.

    Science.gov (United States)

    Tsai, Yuan-Chin; Chen, Wei-Yu; Siu, Man Kit; Tsai, Hong-Yuan; Yin, Juan Juan; Huang, Jiaoti; Liu, Yen-Nien

    2017-01-01

    It has been suggested that ETV6 serves as a tumor suppressor; however, its molecular regulation and cellular functions remain unclear. We used prostate cancer as a model system and demonstrated a molecular mechanism in which ETV6 can be regulated by epidermal growth factor receptor (EGFR) signaling through microRNA-96 (miR-96)-mediated downregulation. In addition, EGFR acts as a transcriptional coactivator that binds to the promoter of primary miR-96 and transcriptionally regulates miR-96 levels. We analyzed two sets of clinical prostate cancer samples, confirmed association patterns that were consistent with the EGFR-miR-96-ETV6 signaling model and demonstrated that the reduced ETV6 levels were associated with malignant prostate cancer. Based on results derived from multiple approaches, we identified the biological functions of ETV6 as a tumor suppressor that inhibits proliferation and metastasis in prostate cancer. We present a molecular mechanism in which EGFR activation leads to the induction of miR-96 expression and suppression of ETV6, which contributes to prostate cancer progression. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Corticotropin-Releasing Factor Mediates Pain-Induced Anxiety through the ERK1/2 Signaling Cascade in Locus Coeruleus Neurons

    Science.gov (United States)

    Borges, Gisela Patrícia; Micó, Juan Antonio; Neto, Fani Lourença

    2015-01-01

    Background: The corticotropin-releasing factor is a stress-related neuropeptide that modulates locus coeruleus activity. As locus coeruleus has been involved in pain and stress-related patologies, we tested whether the pain-induced anxiety is a result of the corticotropin-releasing factor released in the locus coeruleus. Methods: Complete Freund’s adjuvant-induced monoarthritis was used as inflammatory chronic pain model. α-Helical corticotropin-releasing factor receptor antagonist was microinjected into the contralateral locus coeruleus of 4-week-old monoarthritic animals. The nociceptive and anxiety-like behaviors, as well as phosphorylated extracellular signal-regulated kinases 1/2 and corticotropin-releasing factor receptors expression, were quantified in the paraventricular nucleus and locus coeruleus. Results: Monoarthritic rats manifested anxiety and increased phosphorylated extracellular signal-regulated kinases 1/2 levels in the locus coeruleus and paraventricular nucleus, although the expression of corticotropin-releasing factor receptors was unaltered. α-Helical corticotropin-releasing factor antagonist administration reversed both the anxiogenic-like behavior and the phosphorylated extracellular signal-regulated kinases 1/2 levels in the locus coeruleus. Conclusions: Pain-induced anxiety is mediated by corticotropin-releasing factor neurotransmission in the locus coeruleus through extracellular signal-regulated kinases 1/2 signaling cascade. PMID:25716783

  4. DMPD: Lysophospholipid receptors: signaling and biology. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15189145 Lysophospholipid receptors: signaling and biology. Ishii I, Fukushima N, Y...e X, Chun J. Annu Rev Biochem. 2004;73:321-54. (.png) (.svg) (.html) (.csml) Show Lysophospholipid receptors...: signaling and biology. PubmedID 15189145 Title Lysophospholipid receptors: signaling and biology. Authors

  5. Purinergic Signalling in Inflammatory Renal Disease

    Directory of Open Access Journals (Sweden)

    Nishkantha eArulkumaran

    2013-07-01

    Full Text Available Extracellular purines have a role in renal physiology and adaption to inflammation. However, inflammatory renal disease may be mediated by extracellular purines, resulting in renal injury. The role of purinergic signalling is dependent on the concentrations of extracellular purines. Low basal levels of purines are important in normal homeostasis and growth. Concentrations of extracellular purines are significantly elevated during inflammation and mediate either an adaptive role or propagate local inflammation. Adenosine signalling mediates alterations in regional renal blood flow by regulation of the renal microcirculation, tubulo-glomerular feedback, and tubular transport of sodium and water. Increased extracellular ATP and renal P2 receptor-mediated inflammation are associated with various renal diseases, including hypertension, diabetic nephropathy, and glomerulonephritis. Experimental data suggests P2 receptor deficiency or receptor antagonism is associated with amelioration of antibody-mediated nephritis, suggesting a pathogenic (rather than adaptive role of purinergic signalling. We discuss the role of extracellular nucleotides in adaptation to ischaemic renal injury and in the pathogenesis of inflammatory renal disease.

  6. Nuclear Receptor Signaling Atlas (NURSA)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Nuclear Receptor Signaling Atlas (NURSA) is designed to foster the development of a comprehensive understanding of the structure, function, and role in disease...

  7. Ah receptor mediated suppression of the antibody response in mice is primarily dependent on the Ah phenotype of lymphoid tissue

    International Nuclear Information System (INIS)

    Silkworth, J.B.; Antrim, L.A.; Sack, G.

    1986-01-01

    Halogenated aromatic hydrocarbons act through the aromatic hydrocarbon (Ah) receptor in mice to produce a series of toxic effects of the immune system. The receptor protein is a product of the Ah gene locus. Ah responsive (Ahb/Ahb) mice express a high affinity receptor in both lymphoid and nonlymphoid tissues whereas nonresponsive Ahd/Ahd mice express a poor affinity receptor. To determine the role of the Ah receptor of lymphoid tissue relative to that of nonlymphoid tissue in the induction of immune impairment, bone marrow was used to reconstitute lethally irradiated mice of the same or opposite Ah phenotype. All mice were given 3,3',4,4'-tetrachlorobiphenyl (35 and 350 mumol/kg) ip 2 days before immunization with sheep erythrocytes (SRBC). The immune response to this T dependent antigen and organ weights were determined 5 or 7 days later in normal or chimeric mice, respectively. Monoclonal Lyt 1.1 and Lyt 1.2 antibodies were used to establish the origin of the cells which repopulated the chimeric thymuses. The immune responses of both BALB/cBy (Ahb/Ahb) and the BALB/cBy X DBA/2 hybrid, CByD2F1 (Ahb/Ahd), were significantly suppressed but DBA/2 mice were unaffected. The immune responses of chimeric BALB/cBy----BALB/cBy and BALB/cBy----DBA/2 (donor----recipient) mice were also significantly suppressed and thymic atrophy was observed in both cases. The serum anti-SRBC antibody titers of DBA/2----BALB/cBy chimeras were also significantly decreased although not to the same extent as in BALB/cBy----DBA/2 mice. Chimeric DBA/2----DBA/2 mice were not affected. These results indicate that the sensitivity to Ah receptor mediated suppression of the antibody response is primarily determined by the Ah phenotype of the lymphoid tissue

  8. A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors

    KAUST Repository

    Melcher, Karsten

    2009-12-03

    Abscisic acid (ABA) is a ubiquitous hormone that regulates plant growth, development and responses to environmental stresses. Its action is mediated by the PYR/PYL/RCAR family of START proteins, but it remains unclear how these receptors bind ABA and, in turn, how hormone binding leads to inhibition of the downstream type 2C protein phosphatase (PP2C) effectors. Here we report crystal structures of apo and ABA-bound receptors as well as a ternary PYL2-ABA-PP2C complex. The apo receptors contain an open ligand-binding pocket flanked by a gate that closes in response to ABA by way of conformational changes in two highly conserved ?-loops that serve as a gate and latch. Moreover, ABA-induced closure of the gate creates a surface that enables the receptor to dock into and competitively inhibit the PP2C active site. A conserved tryptophan in the PP2C inserts directly between the gate and latch, which functions to further lock the receptor in a closed conformation. Together, our results identify a conserved gate-latch-lock mechanism underlying ABA signalling. © 2009 Macmillan Publishers Limited. All rights reserved.

  9. A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors

    KAUST Repository

    Melcher, Karsten; Ng, Ley-Moy; Zhou, X. Edward; Soon, Fen-Fen; Xu, Yong; Suino-Powell, Kelly M.; Park, Sang-Youl; Weiner, Joshua J.; Fujii, Hiroaki; Chinnusamy, Viswanathan; Kovach, Amanda; Li, Jun; Wang, Yonghong; Li, Jiayang; Peterson, Francis C.; Jensen, Davin R.; Yong, Eu-Leong; Volkman, Brian F.; Cutler, Sean R.; Zhu, Jian-Kang; Xu, H. Eric

    2009-01-01

    Abscisic acid (ABA) is a ubiquitous hormone that regulates plant growth, development and responses to environmental stresses. Its action is mediated by the PYR/PYL/RCAR family of START proteins, but it remains unclear how these receptors bind ABA and, in turn, how hormone binding leads to inhibition of the downstream type 2C protein phosphatase (PP2C) effectors. Here we report crystal structures of apo and ABA-bound receptors as well as a ternary PYL2-ABA-PP2C complex. The apo receptors contain an open ligand-binding pocket flanked by a gate that closes in response to ABA by way of conformational changes in two highly conserved ?-loops that serve as a gate and latch. Moreover, ABA-induced closure of the gate creates a surface that enables the receptor to dock into and competitively inhibit the PP2C active site. A conserved tryptophan in the PP2C inserts directly between the gate and latch, which functions to further lock the receptor in a closed conformation. Together, our results identify a conserved gate-latch-lock mechanism underlying ABA signalling. © 2009 Macmillan Publishers Limited. All rights reserved.

  10. Fcγ receptor-mediated inflammation inhibits axon regeneration.

    Directory of Open Access Journals (Sweden)

    Gang Zhang

    Full Text Available Anti-glycan/ganglioside antibodies are the most common immune effectors found in patients with Guillain-Barré Syndrome, which is a peripheral autoimmune neuropathy. We previously reported that disease-relevant anti-glycan autoantibodies inhibited axon regeneration, which echo the clinical association of these antibodies and poor recovery in Guillain-Barré Syndrome. However, the specific molecular and cellular elements involved in this antibody-mediated inhibition of axon regeneration are not previously defined. This study examined the role of Fcγ receptors and macrophages in the antibody-mediated inhibition of axon regeneration. A well characterized antibody passive transfer sciatic nerve crush and transplant models were used to study the anti-ganglioside antibody-mediated inhibition of axon regeneration in wild type and various mutant and transgenic mice with altered expression of specific Fcγ receptors and macrophage/microglia populations. Outcome measures included behavior, electrophysiology, morphometry, immunocytochemistry, quantitative real-time PCR, and western blotting. We demonstrate that the presence of autoantibodies, directed against neuronal/axonal cell surface gangliosides, in the injured mammalian peripheral nerves switch the proregenerative inflammatory environment to growth inhibitory milieu by engaging specific activating Fcγ receptors on recruited monocyte-derived macrophages to cause severe inhibition of axon regeneration. Our data demonstrate that the antibody orchestrated Fcγ receptor-mediated switch in inflammation is one mechanism underlying inhibition of axon regeneration. These findings have clinical implications for nerve repair and recovery in antibody-mediated immune neuropathies. Our results add to the complexity of axon regeneration in injured peripheral and central nervous systems as adverse effects of B cells and autoantibodies on neural injury and repair are increasingly recognized.

  11. Suppression of TLR4-mediated inflammatory response by macrophage class A scavenger receptor (CD204)

    Energy Technology Data Exchange (ETDEWEB)

    Ohnishi, Koji; Komohara, Yoshihiro; Fujiwara, Yukio; Takemura, Kenichi [Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto (Japan); Lei, XiaoFeng [Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto (Japan); Department of Biochemistry, Showa University School of Medicine, Tokyo (Japan); Nakagawa, Takenobu [Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto (Japan); Sakashita, Naomi [Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto (Japan); Department of Human Pathology, Institute of Health Biosciences, The University of Tokushima, Tokushima (Japan); Takeya, Motohiro, E-mail: takeya@kumamoto-u.ac.jp [Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto (Japan)

    2011-08-05

    Highlights: {yields} We focused on the interaction between SR-A and TLR4 signaling in this study. {yields} SR-A deletion promoted NF{kappa}B activation in macrophages in septic model mouse. {yields} SR-A suppresses both MyD88-dependent and -independent TLR4 signaling in vitro. {yields} SR-A clears LPS binding to TLR4 which resulting in the suppression of TLR4 signals. -- Abstract: The class A scavenger receptor (SR-A, CD204), one of the principal receptors expressed on macrophages, has been found to regulate inflammatory response and attenuate septic endotoxemia. However, the detailed mechanism of this process has not yet been well characterized. To clarify the regulative mechanisms of lipopolysaccharide (LPS)-induced macrophage activation by SR-A, we evaluated the activation of Toll-like receptor 4 (TLR4)-mediated signaling molecules in SR-A-deficient (SR-A{sup -/-}) macrophages. In a septic shock model, the blood levels of tumor necrosis factor (TNF)-{alpha}, interleukin (IL)-6 and interferon (IFN)-{beta} were significantly increased in SR-A{sup -/-} mice compared to wild-type mice, and elevated nuclear factor kappa B (NF{kappa}B) activation was detected in SR-A{sup -/-} macrophages. SR-A deletion increased the production of pro-inflammatory cytokines, and the phosphorylation of mitogen-activated protein kinase (MAPK) and NF{kappa}B in vitro. SR-A deletion also promoted the nuclear translocation of NF{kappa}B and IFN regulatory factor (IRF)-3. In addition, a competitive binding assay with acetylated low-density lipoprotein, an SR-A-specific ligand, and anti-SR-A antibody induced significant activation of TLR4-mediated signaling molecules in wild-type macrophages but not in SR-A{sup -/-} macrophages. These results suggest that SR-A suppresses the macrophage activation by inhibiting the binding of LPS to TLR4 in a competitive manner and it plays a pivotal role in the regulation of the LPS-induced inflammatory response.

  12. Single-cell analysis reveals a link between CD3- and CD59-mediated signaling pathways in Jurkat T cells

    International Nuclear Information System (INIS)

    Lipp, A. M.

    2012-01-01

    Elevation of intracellular free calcium concentration ([Ca2+]i) is a key signal during T cell activation and is commonly used as a read-out parameter for stimulation of T cell signaling. Upon T cell stimulation a variety of calcium signals is produced by individual cells of the T cell population and the type of calcium signal strongly influences cell fate decisions. The heterogeneous nature of T cells is masked in ensemble measurements, which highlights the need for single-cell measurements. In this study we used single-cell calcium measurements in Jurkat cells to investigate signaling pathways, which are triggered by different proteins, namely CD3 and CD59. By application of an automated cluster algorithm the presented assay provides unbiased analysis of a large data set of individual calcium time traces generated by the whole cell population. By using this method we could demonstrate that the Jurkat population generates heterogeneous calcium signals in a stimulus-dependent manner. Furthermore, our data revealed the existence of a link between CD3- and CD59-mediated signaling pathways. Single-cell calcium measurements in Jurkat cells expressing different levels of the T cell receptor (TCR) complex indicated that CD59-mediated calcium signaling is critically dependent on TCR surface expression levels. In addition, triggering CD59-mediated calcium signaling resulted in down-regulation of TCR surface expression levels, which is known to happen upon direct TCR triggering too. Moreover, by using siRNA-mediated protein knock-downs and protein knock-out Jurkat mutants we could show that CD3- and CD59-mediated calcium signaling require identical key proteins. We therefore explored by which mechanism CD59-mediated signaling couples into TCR-mediated signaling. Fluorescence recovery after photobleaching (FRAP) experiments and live-cell protein-protein interaction assays provided no evidence of a direct physical interaction between CD3- and CD59-mediated signaling pathways

  13. Signal interaction of Hedgehog/GLI and epidermal growth factor receptor signaling in cancer development

    International Nuclear Information System (INIS)

    Eberl, M.

    2012-01-01

    The subject of this PhD thesis is based on the cooperation of Hedgehog (HH)/GLI with epidermal growth factor receptor (EGFR) signaling synergistically promoting oncogenic transformation and cancer growth. In previous studies we have demonstrated that the HH/GLI and EGFR signaling pathways interact synergistically resulting not only in selective induction of HH/GLI-EGFR target genes, but also in the onset of oncogenic transformation and tumor formation (Kasper, Schnidar et al. 2006; Schnidar, Eberl et al. 2009). However, the molecular key mediators acting downstream of HH/GLI and EGFR signal cooperation were largely unknown and the in vivo evidence for the therapeutic relevance of HH/GLI and EGFR signal cooperation in HH-associated cancers was lacking. During my PhD thesis I could demonstrate that the integration of EGFR and HH/GLI signaling involves activation of RAS/MEK/ERK and JUN/AP1 signaling in response to EGFR activation. Furthermore I succeeded in identifying genes, including stem cell- (SOX2, SOX9), tumor growth- (JUN, TGFA, FGF19) and metastasis-associated genes (SPP1/osteopontin, CXCR4) that showed synergistic transcriptional activation by HH/GLI-EGFR signal integration. Importantly, I could demonstrate that these genes arrange themselves within a stable interdependent signaling network, which is required for in vivo growth of basal cell carcinoma (BCC) and tumor-initiating pancreatic cancer cells. These data validate EGFR signaling as additional drug target in HH/GLI driven cancers and provide new therapeutic strategies based on combined targeting of cooperative HH/GLI-EGFR signaling and selected downstream target genes (Eberl, Klingler et al. 2012). (author) [de

  14. Endogenous Glucagon-like Peptide-1 Receptor Signaling in the Nucleus Tractus Solitarius is Required for Food Intake Control.

    Science.gov (United States)

    Alhadeff, Amber L; Mergler, Blake D; Zimmer, Derek J; Turner, Christopher A; Reiner, David J; Schmidt, Heath D; Grill, Harvey J; Hayes, Matthew R

    2017-06-01

    Alhough the glucagon-like peptide-1 (GLP-1) system is critical to energy balance control and is a target for obesity pharmacotherapies, the receptor-population-mediating effects of endogenous GLP-1 signaling are not fully understood. To address this, we developed a novel adeno-associated virus (AAV-GLP-1R) that utilizes short hairpin RNA to chronically knock down GLP-1 receptors (GLP-1R) in rats. As pharmacological studies highlight the hindbrain nucleus tractus solitarius (NTS) as a brain region important for GLP-1R-mediated effects on energy balance, AAV-GLP-1R was injected into the NTS to examine the role of endogenous NTS GLP-1R signaling in energy balance control. Chow intake and meal size were significantly increased following chronic NTS GLP-1R knockdown. In addition, NTS GLP-1R knockdown significantly increased self-administration of palatable food under both fixed and progressive ratio schedules of reinforcement. Collectively, these data demonstrate that endogenous NTS GLP-1R signaling is required for the control of food intake and motivation to feed, and provide a new strategy to investigate the importance of distinct GLP-1R populations in the control of a variety of functions.

  15. Cholesterol activates the G-protein coupled receptor Smoothened to promote Hedgehog signaling

    Science.gov (United States)

    Luchetti, Giovanni; Sircar, Ria; Kong, Jennifer H; Nachtergaele, Sigrid; Sagner, Andreas; Byrne, Eamon FX; Covey, Douglas F; Siebold, Christian; Rohatgi, Rajat

    2016-01-01

    Cholesterol is necessary for the function of many G-protein coupled receptors (GPCRs). We find that cholesterol is not just necessary but also sufficient to activate signaling by the Hedgehog (Hh) pathway, a prominent cell-cell communication system in development. Cholesterol influences Hh signaling by directly activating Smoothened (SMO), an orphan GPCR that transmits the Hh signal across the membrane in all animals. Unlike many GPCRs, which are regulated by cholesterol through their heptahelical transmembrane domains, SMO is activated by cholesterol through its extracellular cysteine-rich domain (CRD). Residues shown to mediate cholesterol binding to the CRD in a recent structural analysis also dictate SMO activation, both in response to cholesterol and to native Hh ligands. Our results show that cholesterol can initiate signaling from the cell surface by engaging the extracellular domain of a GPCR and suggest that SMO activity may be regulated by local changes in cholesterol abundance or accessibility. DOI: http://dx.doi.org/10.7554/eLife.20304.001 PMID:27705744

  16. 4-tert-Octylphenol stimulates the expression of cathepsins in human breast cancer cells and xenografted breast tumors of a mouse model via an estrogen receptor-mediated signaling pathway

    International Nuclear Information System (INIS)

    Lee, Hye-Rim; Choi, Kyung-Chul

    2013-01-01

    Highlights: ► Cathepsins B and D were markedly enhanced by octylphenol (OP) in MCF-7 cells. ► OP may accelerate breast cancer cell growth and cathepsins via ER-mediated signaling. ► Breast cancer cells exposed with OP to mouse model were more aggressive. ► OP can promote metastasis through the amplification of cathepsins B and D via ER-mediated signaling pathway. -- Abstract: Endocrine disrupting chemicals (EDCs) are defined as environmental compounds that modulate steroid hormone receptor-dependent responses an abnormal manner, resulting in adverse health problems for humans such as cancer growth and metastasis. Cathepsins are proteases that have been implicated in cancer progression. However, there have been few studies about the association between cathepsins and estrogenic chemicals during the cancer progression. In this study, we examined the effect(s) of 4-tert-octylphenol (OP), a potent EDC, on the expression of cathepsins B and D in human MCF-7 breast cancer cells and a xenograft mouse model. Treatment with OP significantly induced the proliferation MCF-7 cells in an MTT assay. In addition, the expression of cathepsins B and D was markedly enhanced in MCF-7 cells at both the transcriptional and the translational levels following treatment with E2 or OP up to 48 h. These results demonstrated the ability of OP to disrupt normal transcriptional regulation of cathepsins B and D in human breast cancer cells. However, the effects of OP on cell growth or overexpression of cathepsins by inhibiting ER-mediated signaling were abolished by an ER antagonist and siRNA specific for ERα. In conclusion, our findings suggest that OP at 10 −6 M, like E2, may accelerate breast cancer cell proliferation and the expression of cathepsins through an ER-mediated signaling pathway. In addition, the breast cancer cells exposed with OP to a xenograft mouse model were more aggressive according to our histological analysis and showed markedly increased expression of

  17. The TAM-family receptor Mer mediates production of HGF through the RhoA-dependent pathway in response to apoptotic cells.

    Science.gov (United States)

    Park, Hyun-Jung; Baen, Ji-Yeon; Lee, Ye-Ji; Choi, Youn-Hee; Kang, Jihee Lee

    2012-08-01

    The TAM receptor protein tyrosine kinases Tyro3, Axl, and Mer play important roles in macrophage function. We investigated the roles of the TAM receptors in mediating the induction of hepatocyte growth factor (HGF) during the interaction of macrophages with apoptotic cells. Mer-specific neutralizing antibody, small interfering RNA (siRNA), and a recombinant Mer protein (Mer/Fc) inhibited HGF mRNA and protein expression, as well as activation of RhoA, Akt, and specific mitogen-activated protein (MAP) kinases in response to apoptotic cells. Inhibition of Axl or Tyro3 with specific antibodies, siRNA, or Fc-fusion proteins did not prevent apoptotic cell-induced HGF mRNA and protein expression and did not inhibit activation of the postreceptor signaling molecules RhoA and certain MAP kinases, including extracellular signal-regulated protein kinase and c-Jun NH(2)-terminal kinase. However, Axl- and Tyro3-specific blockers did inhibit the activation of Akt and p38 MAP kinase in response to apoptotic cells. In addition, none of the TAM receptors mediated the effects of apoptotic cells on transforming growth factor-β or epidermal growth factor mRNA expression. However, they were involved in the induction of vascular endothelial growth factor mRNA expression. Our data provide evidence that when macrophages interact with apoptotic cells, only Mer of the TAM-family receptors is responsible for mediating transcriptional HGF production through a RhoA-dependent pathway.

  18. Oculomotor deficits in aryl hydrocarbon receptor null mouse.

    Directory of Open Access Journals (Sweden)

    Aline Chevallier

    Full Text Available The Aryl hydrocarbon Receptor or AhR, a ligand-activated transcription factor, is known to mediate the toxic and carcinogenic effects of various environmental pollutants such as 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD. Recent studies in Caenorhabditis elegans and Drosophila melanogaster show that the orthologs of the AhR are expressed exclusively in certain types of neurons and are implicated in the development and the homeostasis of the central nervous system. While physiological roles of the AhR were demonstrated in the mammalian heart, liver and gametogenesis, its ontogenic expression and putative neural functions remain elusive. Here, we report that the constitutive absence of the AhR in adult mice (AhR-/- leads to abnormal eye movements in the form of a spontaneous pendular horizontal nystagmus. To determine if the nystagmus is of vestibular, visual, or cerebellar origin, gaze stabilizing reflexes, namely vestibulo-ocular and optokinetic reflexes (VOR and OKR, were investigated. The OKR is less effective in the AhR-/- mice suggesting a deficit in the visuo-motor circuitry, while the VOR is mildly affected. Furthermore, the AhR is expressed in the retinal ganglion cells during the development, however electroretinograms revealed no impairment of retinal cell function. The structure of the cerebellum of the AhR-/- mice is normal which is compatible with the preserved VOR adaptation, a plastic process dependent on cerebellar integrity. Finally, intoxication with TCDD of control adults did not lead to any abnormality of the oculomotor control. These results demonstrate that the absence of the AhR leads to acquired central nervous system deficits in the adults. Given the many common features between both AhR mouse and human infantile nystagmus syndromes, the AhR-/- mice might give insights into the developmental mechanisms which lead to congenital eye disorders.

  19. A Review About Lycopene-Induced Nuclear Hormone Receptor Signalling in Inflammation and Lipid Metabolism via still Unknown Endogenous Apo-10´-Lycopenoids.

    Science.gov (United States)

    Caris-Veyrat, Catherine; Garcia, Ada L; Reynaud, Eric; Lucas, Renata; Aydemir, Gamze; Rühl, Ralph

    2017-10-20

    Lycopene is the red pigment in tomatoes and tomato products and is an important dietary carotenoid found in the human organism. Lycopene-isomers, oxidative lycopene metabolites and apo-lycopenoids are found in the food matrix. Lycopene intake derived from tomato consumption is associated with alteration of lipid metabolism and a lower incidence of cardiovascular diseases (CVD). Lycopene is mainly described as a potent antioxidant but novel studies are shifting towards its metabolites and their capacity to mediate nuclear receptor signalling. Di-/tetra-hydro-derivatives of apo-10´-lycopenoic acid and apo-15´-lycopenoic acids are potential novel endogenous mammalian lycopene metabolites which may act as ligands for nuclear hormone mediated activation and signalling. In this review, we postulate that complex lycopene metabolism results in various lycopene metabolites which have the ability to mediate transactivation of various nuclear hormone receptors like RARs, RXRs and PPARs. A new mechanistic explanation of how tomato consumption could positively modulate inflammation and lipid metabolism is discussed.

  20. Identification of cinnabarinic acid as a novel endogenous aryl hydrocarbon receptor ligand that drives IL-22 production.

    Directory of Open Access Journals (Sweden)

    Margaret M Lowe

    Full Text Available The aryl hydrocarbon receptor (AHR binds to environmental toxicants including synthetic halogenated aromatic hydrocarbons and is involved in a diverse array of biological processes. Recently, the AHR was shown to control host immunity by affecting the balance between inflammatory T cells that produce IL-17 (Th17 and IL-22 versus regulatory T cells (Treg involved in tolerance. While environmental AHR ligands can mediate this effect, endogenous ligands are likely to be more relevant in host immune responses. We investigated downstream metabolites of tryptophan as potential AHR ligands because (1 tryptophan metabolites have been implicated in regulating the balance between Th17 and Treg cells and (2 many of the AHR ligands identified thus far are derivatives of tryptophan. We characterized the ability of tryptophan metabolites to bind and activate the AHR and to increase IL-22 production in human T cells. We report that the tryptophan metabolite, cinnabarinic acid (CA, is an AHR ligand that stimulates the differentiation of human and mouse T cells producing IL-22. We compare the IL-22-stimulating activity of CA to that of other tryptophan metabolites and define stimulation conditions that lead to CA production from immune cells. Our findings link tryptophan metabolism to AHR activation and define a novel endogenous AHR agonist with potentially broad biological functions.

  1. Interaction among Saccharomyces cerevisiae pheromone receptors during endocytosis

    Directory of Open Access Journals (Sweden)

    Chien-I Chang

    2014-03-01

    Full Text Available This study investigates endocytosis of Saccharomyces cerevisiae α-factor receptor and the role that receptor oligomerization plays in this process. α-factor receptor contains signal sequences in the cytoplasmic C-terminal domain that are essential for ligand-mediated endocytosis. In an endocytosis complementation assay, we found that oligomeric complexes of the receptor undergo ligand-mediated endocytosis when the α-factor binding site and the endocytosis signal sequences are located in different receptors. Both in vitro and in vivo assays suggested that ligand-induced conformational changes in one Ste2 subunit do not affect neighboring subunits. Therefore, recognition of the endocytosis signal sequence and recognition of the ligand-induced conformational change are likely to be two independent events.

  2. Upregulation of FLG, LOR, and IVL Expression by Rhodiola crenulata Root Extract via Aryl Hydrocarbon Receptor: Differential Involvement of OVOL1

    Directory of Open Access Journals (Sweden)

    Akiko Hashimoto-Hachiya

    2018-06-01

    Full Text Available Rhodiola species are antioxidative, salubrious plants that are known to inhibit oxidative stress induced by ultraviolet and γ-radiation in epidermal keratinocytes. As certain phytochemicals activate aryl hydrocarbon receptors (AHR or OVO-like 1 (OVOL1 to upregulate the expression of epidermal barrier proteins such as filaggrin (FLG, loricrin (LOR, and involucrin (IVL, we investigated such regulation by Rhodiola crenulata root extract (RCE. We demonstrated that RCE induced FLG and LOR upregulation in an AHR-OVOL1-dependent fashion. However, RCE-mediated IVL upregulation was AHR-dependent but OVOL1-independent. Coordinated upregulation of skin barrier proteins by RCE via AHR may be beneficial in the management of barrier-disrupted inflammatory skin diseases such as atopic dermatitis.

  3. Glutamate Receptors in the Central Nucleus of the Amygdala Mediate Cisplatin-Induced Malaise and Energy Balance Dysregulation through Direct Hindbrain Projections.

    Science.gov (United States)

    Alhadeff, Amber L; Holland, Ruby A; Nelson, Alexandra; Grill, Harvey J; De Jonghe, Bart C

    2015-08-05

    Cisplatin chemotherapy is used commonly to treat a variety of cancers despite severe side effects such as nausea, vomiting, and anorexia that compromise quality of life and limit treatment adherence. The neural mechanisms mediating these side effects remain elusive despite decades of clinical use. Recent data highlight the dorsal vagal complex (DVC), lateral parabrachial nucleus (lPBN), and central nucleus of the amygdala (CeA) as potential sites of action in mediating the side effects of cisplatin. Here, results from immunohistochemical studies in rats identified a population of cisplatin-activated DVC neurons that project to the lPBN and a population of cisplatin-activated lPBN calcitonin gene-related peptide (CGRP, a marker for glutamatergic neurons in the lPBN) neurons that project to the CeA, outlining a neuroanatomical circuit that is activated by cisplatin. CeA gene expressions of AMPA and NMDA glutamate receptor subunits were markedly increased after cisplatin treatment, suggesting that CeA glutamate receptor signaling plays a role in mediating cisplatin side effects. Consistent with gene expression results, behavioral/pharmacological data showed that CeA AMPA/kainate receptor blockade attenuates cisplatin-induced pica (a proxy for nausea/behavioral malaise in nonvomiting laboratory rodents) and that CeA NMDA receptor blockade attenuates cisplatin-induced anorexia and body weight loss in addition to pica, demonstrating that glutamate receptor signaling in the CeA is critical for the energy balance dysregulation caused by cisplatin treatment. Together, these data highlight a novel circuit and CGRP/glutamatergic mechanism through which cisplatin-induced malaise and energy balance dysregulation are mediated. To treat cancer effectively, patients must follow prescribed chemotherapy treatments without interruption, yet most cancer treatments produce side effects that devastate quality of life (e.g., nausea, vomiting, anorexia, weight loss). Although hundreds of

  4. Glutamate Receptors in the Central Nucleus of the Amygdala Mediate Cisplatin-Induced Malaise and Energy Balance Dysregulation through Direct Hindbrain Projections

    Science.gov (United States)

    Alhadeff, Amber L.; Holland, Ruby A.; Nelson, Alexandra; Grill, Harvey J.

    2015-01-01

    Cisplatin chemotherapy is used commonly to treat a variety of cancers despite severe side effects such as nausea, vomiting, and anorexia that compromise quality of life and limit treatment adherence. The neural mechanisms mediating these side effects remain elusive despite decades of clinical use. Recent data highlight the dorsal vagal complex (DVC), lateral parabrachial nucleus (lPBN), and central nucleus of the amygdala (CeA) as potential sites of action in mediating the side effects of cisplatin. Here, results from immunohistochemical studies in rats identified a population of cisplatin-activated DVC neurons that project to the lPBN and a population of cisplatin-activated lPBN calcitonin gene-related peptide (CGRP, a marker for glutamatergic neurons in the lPBN) neurons that project to the CeA, outlining a neuroanatomical circuit that is activated by cisplatin. CeA gene expressions of AMPA and NMDA glutamate receptor subunits were markedly increased after cisplatin treatment, suggesting that CeA glutamate receptor signaling plays a role in mediating cisplatin side effects. Consistent with gene expression results, behavioral/pharmacological data showed that CeA AMPA/kainate receptor blockade attenuates cisplatin-induced pica (a proxy for nausea/behavioral malaise in nonvomiting laboratory rodents) and that CeA NMDA receptor blockade attenuates cisplatin-induced anorexia and body weight loss in addition to pica, demonstrating that glutamate receptor signaling in the CeA is critical for the energy balance dysregulation caused by cisplatin treatment. Together, these data highlight a novel circuit and CGRP/glutamatergic mechanism through which cisplatin-induced malaise and energy balance dysregulation are mediated. SIGNIFICANCE STATEMENT To treat cancer effectively, patients must follow prescribed chemotherapy treatments without interruption, yet most cancer treatments produce side effects that devastate quality of life (e.g., nausea, vomiting, anorexia, weight loss

  5. Evodiamine as a novel antagonist of aryl hydrocarbon receptor

    International Nuclear Information System (INIS)

    Yu, Hui; Tu, Yongjiu; Zhang, Chun; Fan, Xia; Wang, Xi; Wang, Zhanli; Liang, Huaping

    2010-01-01

    Research highlights: → Evodiamine interacted with the AhR. → Evodiamine inhibited the specific binding of [ 3 H]-TCDD to the AhR. → Evodiamine acts as an antagonist of the AhR. -- Abstract: Evodiamine, the major bioactive alkaloid isolated from Wu-Chu-Yu, has been shown to interact with a wide variety of proteins and modify their expression and activities. In this study, we investigated the interaction between evodiamine and the aryl hydrocarbon receptor (AhR). Molecular modeling results revealed that evodiamine directly interacted with the AhR. Cytosolic receptor binding assay also provided the evidence that evodiamine could interact with the AhR with the K i value of 28.4 ± 4.9 nM. In addition, we observed that evodiamine suppressed the 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induced nuclear translocation of the AhR and the expression of CYP1A1 dose-dependently. These results suggested that evodiamine was able to bind to the AhR as ligand and exhibit antagonistic effects.

  6. The Aryl Hydrocarbon Receptor Binds to E2F1 and Inhibits E2F1-induced Apoptosis

    Science.gov (United States)

    Marlowe, Jennifer L.; Fan, Yunxia; Chang, Xiaoqing; Peng, Li; Knudsen, Erik S.; Xia, Ying

    2008-01-01

    Cellular stress by DNA damage induces checkpoint kinase-2 (CHK2)-mediated phosphorylation and stabilization of the E2F1 transcription factor, leading to induction of apoptosis by activation of a subset of proapoptotic E2F1 target genes, including Apaf1 and p73. This report characterizes an interaction between the aryl hydrocarbon (Ah) receptor (AHR), a ligand-activated transcription factor, and E2F1 that results in the attenuation of E2F1-mediated apoptosis. In Ahr−/− fibroblasts stably transfected with a doxycycline-regulated AHR expression vector, inhibition of AHR expression causes a significant elevation of oxidative stress, γH2A.X histone phosphorylation, and E2F1-dependent apoptosis, which can be blocked by small interfering RNA-mediated knockdown of E2F1 expression. In contrast, ligand-dependent AHR activation protects these cells from etoposide-induced cell death. In cells expressing both proteins, AHR and E2F1 interact independently of the retinoblastoma protein (RB), because AHR and E2F1 coimmunoprecipitate from extracts of RB-negative cells. Additionally, chromatin immunoprecipitation assays indicate that AHR and E2F1 bind to the Apaf1 promoter at a region containing a consensus E2F1 binding site but no AHR binding sites. AHR activation represses Apaf1 and TAp73 mRNA induction by a constitutively active CHK2 expression vector. Furthermore, AHR overexpression blocks the transcriptional induction of Apaf1 and p73 and the accumulation of sub-G0/G1 cells resulting from ectopic overexpression of E2F1. These results point to a proproliferative, antiapoptotic function of the Ah receptor that likely plays a role in tumor progression. PMID:18524851

  7. Construction and Deciphering of Human Phosphorylation-Mediated Signaling Transduction Networks.

    Science.gov (United States)

    Zhang, Menghuan; Li, Hong; He, Ying; Sun, Han; Xia, Li; Wang, Lishun; Sun, Bo; Ma, Liangxiao; Zhang, Guoqing; Li, Jing; Li, Yixue; Xie, Lu

    2015-07-02

    Protein phosphorylation is the most abundant reversible covalent modification. Human protein kinases participate in almost all biological pathways, and approximately half of the kinases are associated with disease. PhoSigNet was designed to store and display human phosphorylation-mediated signal transduction networks, with additional information related to cancer. It contains 11 976 experimentally validated directed edges and 216 871 phosphorylation sites. Moreover, 3491 differentially expressed proteins in human cancer from dbDEPC, 18 907 human cancer variation sites from CanProVar, and 388 hyperphosphorylation sites from PhosphoSitePlus were collected as annotation information. Compared with other phosphorylation-related databases, PhoSigNet not only takes the kinase-substrate regulatory relationship pairs into account, but also extends regulatory relationships up- and downstream (e.g., from ligand to receptor, from G protein to kinase, and from transcription factor to targets). Furthermore, PhoSigNet allows the user to investigate the impact of phosphorylation modifications on cancer. By using one set of in-house time series phosphoproteomics data, the reconstruction of a conditional and dynamic phosphorylation-mediated signaling network was exemplified. We expect PhoSigNet to be a useful database and analysis platform benefiting both proteomics and cancer studies.

  8. Aryl hydrocarbon receptor (AhR-mediated perturbations in gene expression during early stages of CD4+ T-cell differentiation

    Directory of Open Access Journals (Sweden)

    Diana eRohlman

    2012-08-01

    Full Text Available Activation of the aryl hydrocarbon receptor (AhR by its prototypic ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, mediates potent suppression of T-cell dependent immune responses. The suppressive effects of TCDD occur early during CD4+ T-cell differentiation in the absence of effects on proliferation and have recently been associated with the induction of AhR-dependent regulatory T-cells (Treg. Since AhR functions as a ligand-activated transcription factor, changes in gene expression induced by TCDD during the early stages of CD4+ T-cell differentiation are likely to reflect fundamental mechanisms of AhR action. A custom panel of genes associated with T-cell differentiation was used to query changes in gene expression induced by exposure to 1 nM TCDD. CD4+ T-cells from AhR+/+ and AhR-/- mice were cultured with cytokines known to polarize the differentiation of T-cells to various effector lineages. Treatment with TCDD induced expression of Cyp1a1, Cyp1b1 and Ahrr in CD4+ T-cells from AhR+/+ mice under all culture conditions, validating the presence and activation of AhR in these cells. The highest levels of AhR activation occurred under Th17 conditions at 24 hours and Tr1 conditions at 48 hours. Unexpectedly, expression levels of most genes associated with early T-cell differentiation were unaltered by AhR activation, including lineage-specific genes that drive CD4+ T-cell polarization. The major exception was AhR-dependent up-regulation of Il22 that was seen under all culture conditions. Independent of TCDD, AhR down-regulated the expression of Il17a and Rorc based on increased expression of these genes in AhR-deficient cells across culture conditions. These findings are consistent with a role for AhR in down-regulation of inflammatory immune responses and implicate IL-22 as a potential contributor to the immunosuppressive effects of TCDD.

  9. The phosphatidylinositol-3 kinase pathway is not essential for insulin-like growth factor I receptor-mediated clonogenic radioresistance

    International Nuclear Information System (INIS)

    Yu, Dong; Watanabe, Hiroshi; Shibuya, Hitoshi; Miura, Masahiko

    2002-01-01

    The insulin-like growth factor I receptor (IGF-IR) is known to induce clonogenic radioresistance in cells following ionizing irradiation. To explore the downstream signaling pathways, we focused on the phosphatidylinositol-3 kinase (PI3-K) pathway, which is thought to be the primary cell survival signal originating from the receptor. For this purpose, R- cells deficient in the endogenous IGF-IR were used as a recipient of the human IGF-IR with or without mutations at potential PI3-K activation sites: NPXY 950 and Y 1316 XXM. Mutats with double mutation at Y950/Y1316 exhibited not abrogated, but reduced activation of insulin receptor substance-1 (IRS-1), PI3-K, and Akt upon IGF-I stimulation. However, the mutants had the same clonogenic radioresistance as cells with wild type (WT) receptors. Neither wortmannin nor LY294002, specific inhibitors of PI3-K, affected the radioresistance of cells with WT receptors at concentrations specific for PI3-K. Collectively, these results indicate that the PI3-K pathway is not essential for IGF-IR-mediated clonogenic radioresistance. (author)

  10. Neuroprotective effects of 17β-estradiol rely on estrogen receptor membrane initiated signals

    Directory of Open Access Journals (Sweden)

    Marco eFiocchetti

    2012-04-01

    Full Text Available 17β-estradiol (E2 exerts protective effects in the central nervous system besides its crucial role in many physiological and pathological events. E2 effects are not restricted to the brain areas related with the control of the reproductive function, but rather are widespread throughout the developing and the adult brain. E2 actions are mediated by estrogen receptors (i.e., ERα and ERβ belonging to the nuclear receptor super family. As members of the ligand-regulated transcription factor family, the actions of ERs in the brain were thought to mediate only the E2 long-term transcriptional effects. However, a growing body of evidence has emerged indicating the presence of rapid, membrane initiated E2 effects in the brain which result independent from ER transcriptional activities and involved in E2-induced neuroprotection. Aim of this review is to focus on the rapid effects of E2 in the brain taking into account the specific contribution of the signaling pathway of ERβ subtype in neuroprotective actions of E2.

  11. Targeting TGF-β Signaling by Antisense Oligonucleotide-mediated Knockdown of TGF-β Type I Receptor

    Directory of Open Access Journals (Sweden)

    Dwi U Kemaladewi

    2014-01-01

    Full Text Available Duchenne muscular dystrophy (DMD is caused by lack of functional dystrophin and results in progressive myofiber damage and degeneration. In addition, impaired muscle regeneration and fibrosis contribute to the progressive pathology of DMD. Importantly, transforming growth factor-β (TGF-β is implicated in DMD pathology and is known to stimulate fibrosis and inhibit muscle regeneration. In this study, we present a new strategy to target TGF-β signaling cascades by specifically inhibiting the expression of TGF-β type I receptor TGFBR1 (ALK5. Antisense oligonucleotides (AONs were designed to specifically induce exon skipping of mouse ALK5 transcripts. AON-induced exon skipping of ALK5 resulted in specific downregulation of full-length receptor transcripts in vitro in different cell types, repression of TGF-β activity, and enhanced C2C12 myoblast differentiation. To determine the effect of these AONs in dystrophic muscles, we performed intramuscular injections of ALK5 AONs in mdx mice, which resulted in a decrease in expression of fibrosis-related genes and upregulation of Myog expression compared to control AON-injected muscles. In summary, our study presents a novel method to target TGF-β signaling cascades with potential beneficial effects for DMD.

  12. Enhancement of B-cell receptor signaling by a point mutation of adaptor protein 3BP2 identified in human inherited disease cherubism.

    Science.gov (United States)

    Ogi, Kazuhiro; Nakashima, Kenji; Chihara, Kazuyasu; Takeuchi, Kenji; Horiguchi, Tomoko; Fujieda, Shigeharu; Sada, Kiyonao

    2011-09-01

    Tyrosine phosphorylation of adaptor protein c-Abl-Src homology 3 (SH3) domain-binding protein-2 (3BP2, also referred to SH3BP2) positively regulates the B-cell antigen receptor (BCR)-mediated signal transduction, leading to the activation of nuclear factor of activated T cells (NFAT). Here we showed the effect of the proline to arginine substitution of 3BP2 in which is the most common mutation in patients with cherubism (P418R) on B-cell receptor signaling. Comparing to the wild type, overexpression of the mutant form of 3BP2 (3BP2-P416R, corresponding to P418R in human protein) enhanced BCR-mediated activation of NFAT. 3BP2-P416R increased the signaling complex formation with Syk, phospholipase C-γ2 (PLC-γ2), and Vav1. In contrast, 3BP2-P416R could not change the association with the negative regulator 14-3-3. Loss of the association mutant that was incapable to associate with 14-3-3 could not mimic BCR-mediated NFAT activation in Syk-deficient cells. Moreover, BCR-mediated phosphorylation of extracellular signal regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) was not affected by P416R mutation. These results showed that P416R mutation of 3BP2 causes the gain of function in B cells by increasing the interaction with specific signaling molecules. © 2011 The Authors. Journal compilation © 2011 by the Molecular Biology Society of Japan/Blackwell Publishing Ltd.

  13. Nontranscriptional activation of PI3K/Akt signaling mediates hypotensive effect following activation of estrogen receptor β in the rostral ventrolateral medulla of rats

    Directory of Open Access Journals (Sweden)

    Wu Kay LH

    2012-08-01

    Full Text Available Abstract Background Estrogen acts on the rostral ventrolateral medulla (RVLM, where sympathetic premotor neurons are located, to elicit vasodepressor effects via an estrogen receptor (ERβ-dependent mechanism. We investigated in the present study nontranscriptional mechanism on cardiovascular effects following activation of ERβ in the RVLM, and delineated the involvement of phosphatidylinositol 3-kinase (PI3K/serine/threonine kinase (Akt signaling pathway in the effects. Methods In male Sprague–Dawley rats maintained under propofol anesthesia, changes in arterial pressure, heart rate and sympathetic neurogenic vasomotor tone were examined after microinjection bilaterally into RVLM of 17β-estradiol (E2β or a selective ERα or ERβ agonist. Involvement of ER subtypes and PI3K/Akt signaling pathway in the induced cardiovascular effects were studied using pharmacological tools of antagonists or inhibitors, gene manipulation with antisense oligonucleotide (ASON or adenovirus-mediated gene transfection. Results Similar to E2β (1 pmol, microinjection of ERβ agonist, diarylpropionitrile (DPN, 1, 2 or 5 pmol, into bilateral RVLM evoked dose-dependent hypotension and reduction in sympathetic neurogenic vasomotor tone. These vasodepressive effects of DPN (2 pmol were inhibited by ERβ antagonist, R,R-tetrahydrochrysene (50 pmol, ASON against ERβ mRNA (250 pmol, PI3K inhibitor LY294002 (5 pmol, or Akt inhibitor (250 pmol, but not by ERα inhibitor, methyl-piperidino-pyrazole (1 nmol, or transcription inhibitor, actinomycin D (5 or 10 nmol. Gene transfer by microinjection into bilateral RVLM of adenovirus encoding phosphatase and tensin homologues deleted on chromosome 10 (5 × 108 pfu reversed the vasodepressive effects of DPN. Conclusions Our results indicate that vasodepressive effects following activation of ERβ in RVLM are mediated by nongenomic activation of PI3K/Akt signaling pathway. This study provides new insight in the

  14. Augmented BMPRIA-mediated BMP signaling in cranial neural crest lineage leads to cleft palate formation and delayed tooth differentiation.

    Directory of Open Access Journals (Sweden)

    Lu Li

    Full Text Available The importance of BMP receptor Ia (BMPRIa mediated signaling in the development of craniofacial organs, including the tooth and palate, has been well illuminated in several mouse models of loss of function, and by its mutations associated with juvenile polyposis syndrome and facial defects in humans. In this study, we took a gain-of-function approach to further address the role of BMPR-IA-mediated signaling in the mesenchymal compartment during tooth and palate development. We generated transgenic mice expressing a constitutively active form of BmprIa (caBmprIa in cranial neural crest (CNC cells that contributes to the dental and palatal mesenchyme. Mice bearing enhanced BMPRIa-mediated signaling in CNC cells exhibit complete cleft palate and delayed odontogenic differentiation. We showed that the cleft palate defect in the transgenic animals is attributed to an altered cell proliferation rate in the anterior palatal mesenchyme and to the delayed palatal elevation in the posterior portion associated with ectopic cartilage formation. Despite enhanced activity of BMP signaling in the dental mesenchyme, tooth development and patterning in transgenic mice appeared normal except delayed odontogenic differentiation. These data support the hypothesis that a finely tuned level of BMPRIa-mediated signaling is essential for normal palate and tooth development.

  15. Metformin-mediated growth inhibition involves suppression of the IGF-I receptor signalling pathway in human pancreatic cancer cells

    International Nuclear Information System (INIS)

    Karnevi, Emelie; Said, Katarzyna; Andersson, Roland; Rosendahl, Ann H

    2013-01-01

    Epidemiological studies have shown direct associations between type 2 diabetes and obesity, both conditions associated with hyperglycaemia and hyperinsulinemia, and the risk of pancreatic cancer. Up to 80% of pancreatic cancer patients present with either new-onset type 2 diabetes or impaired glucose tolerance at the time of diagnosis. Recent population studies indicate that the incidence of pancreatic cancer is reduced among diabetics taking metformin. In this study, the effects of exposure of pancreatic cancer cells to high glucose levels on their growth and response to metformin were investigated. The human pancreatic cancer cell lines AsPC-1, BxPC-3, PANC-1 and MIAPaCa-2 were grown in normal (5 mM) or high (25 mM) glucose conditions, with or without metformin. The influence by metformin on proliferation, apoptosis and the AMPK and IGF-IR signalling pathways were evaluated in vitro. Metformin significantly reduced the proliferation of pancreatic cancer cells under normal glucose conditions. Hyperglycaemia however, protected against the metformin-induced growth inhibition. The anti-proliferative actions of metformin were associated with an activation of AMP-activated protein kinase AMPK Thr172 together with an inhibition of the insulin/insulin-like growth factor-I (IGF-I) receptor activation and downstream signalling mediators IRS-1 and phosphorylated Akt. Furthermore, exposure to metformin during normal glucose conditions led to increased apoptosis as measured by poly(ADP-ribose) polymerase (PARP) cleavage. In contrast, exposure to high glucose levels promoted a more robust IGF-I response and Akt activation which correlated to stimulated AMPK Ser485 phosphorylation and impaired AMPK Thr172 phosphorylation, resulting in reduced anti-proliferative and apoptotic effects by metformin. Our results indicate that metformin has direct anti-tumour activities in pancreatic cancer cells involving AMPK Thr172 activation and suppression of the insulin/IGF signalling pathways

  16. Reactivation of estrogen receptor α by vorinostat sensitizes mesenchymal-like triple-negative breast cancer to aminoflavone, a ligand of the aryl hydrocarbon receptor.

    Science.gov (United States)

    Stark, Karri; Burger, Angelika; Wu, Jianmei; Shelton, Phillip; Polin, Lisa; Li, Jing

    2013-01-01

    Aminoflavone (AF) acts as a ligand of the aryl hydrocarbon receptor (AhR). Expression of estrogen receptor α (ERα) and AhR-mediated transcriptional induction of CYP1A1 can sensitize breast cancer cells to AF. The objective of this study was to investigate the combined antitumor effect of AF and the histone deacetylase inhibitor vorinostat for treating mesenchymal-like triple-negative breast cancer (TNBC) as well as the underlying mechanisms of such treatment. In vitro antiproliferative activity of AFP464 (AF prodrug) in breast cancer cell lines was evaluated by MTS assay. In vitro, the combined effect of AFP464 and vorinostat on cell proliferation was assessed by the Chou-Talalay method. In vivo, antitumor activity of AFP464, given alone and in combination with vorinostat, was studied using TNBC xenograft models. Knockdown of ERα was performed using specific, small-interfering RNA. Western blot, quantitative RT-PCR, immunofluorescence, and immunohistochemical staining were performed to study the mechanisms underlying the combined antitumor effect. Luminal and basal A subtype breast cancer cell lines were sensitive to AFP464, whereas basal B subtype or mesenchymal-like TNBC cells were resistant. Vorinostat sensitized mesenchymal-like TNBC MDA-MB-231 and Hs578T cells to AFP464. It also potentiated the antitumor activity of AFP464 in a xenograft model using MDA-MB-231 cells. In vitro and in vivo mechanistic studies suggested that vorinostat reactivated ERα expression and restored AhR-mediated transcriptional induction of CYP1A1. The response of breast cancer cells to AF or AFP464 was associated with their gene expression profile. Vorinostat sensitized mesenchymal-like TNBC to AF, at least in part, by reactivating ERα expression and restoring the responsiveness of AhR to AF.

  17. Blockade of IP[subscript 3]-Mediated SK Channel Signaling in the Rat Medial Prefrontal Cortex Improves Spatial Working Memory

    Science.gov (United States)

    Brennan, Avis R.; Dolinsky, Beth; Vu, Mai-Anh T.; Stanley, Marion; Yeckel, Mark F.; Arnsten, Amy F. T.

    2008-01-01

    Planning and directing thought and behavior require the working memory (WM) functions of prefrontal cortex. WM is compromised by stress, which activates phosphatidylinositol (PI)-mediated IP[subscript 3]-PKC intracellular signaling. PKC overactivation impairs WM operations and in vitro studies indicate that IP[subscript 3] receptor (IP[subscript…

  18. Inhibition of PTP1B Restores IRS1-Mediated Hepatic Insulin Signaling in IRS2-Deficient Mice

    Science.gov (United States)

    González-Rodríguez, Águeda; Gutierrez, Jose A. Mas; Sanz-González, Silvia; Ros, Manuel; Burks, Deborah J.; Valverde, Ángela M.

    2010-01-01

    OBJECTIVE Mice with complete deletion of insulin receptor substrate 2 (IRS2) develop hyperglycemia, impaired hepatic insulin signaling, and elevated gluconeogenesis, whereas mice deficient for protein tyrosine phosphatase (PTP)1B display an opposing hepatic phenotype characterized by increased sensitivity to insulin. To define the relationship between these two signaling pathways in the regulation of liver metabolism, we used genetic and pharmacological approaches to study the effects of inhibiting PTP1B on hepatic insulin signaling and expression of gluconeogenic enzymes in IRS2−/− mice. RESEARCH DESIGN AND METHODS We analyzed glucose homeostasis and insulin signaling in liver and isolated hepatocytes from IRS2−/− and IRS2−/−/PTP1B−/− mice. Additionally, hepatic insulin signaling was assessed in control and IRS2−/− mice treated with resveratrol, an antioxidant present in red wine. RESULTS In livers of hyperglycemic IRS2−/− mice, the expression levels of PTP1B and its association with the insulin receptor (IR) were increased. The absence of PTP1B in the double-mutant mice restored hepatic IRS1-mediated phosphatidylinositol (PI) 3-kinase/Akt/Foxo1 signaling. Moreover, resveratrol treatment of hyperglycemic IRS2−/− mice decreased hepatic PTP1B mRNA and inhibited PTP1B activity, thereby restoring IRS1-mediated PI 3-kinase/Akt/Foxo1 signaling and peripheral insulin sensitivity. CONCLUSIONS By regulating the phosphorylation state of IR, PTB1B determines sensitivity to insulin in liver and exerts a unique role in the interplay between IRS1 and IRS2 in the modulation of hepatic insulin action. PMID:20028942

  19. Application of a fuzzy neural network model in predicting polycyclic aromatic hydrocarbon-mediated perturbations of the Cyp1b1 transcriptional regulatory network in mouse skin

    Energy Technology Data Exchange (ETDEWEB)

    Larkin, Andrew [Department of Environmental and Molecular Toxicology, Oregon State University (United States); Department of Statistics, Oregon State University (United States); Superfund Research Center, Oregon State University (United States); Siddens, Lisbeth K. [Department of Environmental and Molecular Toxicology, Oregon State University (United States); Superfund Research Center, Oregon State University (United States); Krueger, Sharon K. [Superfund Research Center, Oregon State University (United States); Linus Pauling Institute, Oregon State University (United States); Tilton, Susan C.; Waters, Katrina M. [Superfund Research Center, Oregon State University (United States); Computational Biology and Bioinformatics Group, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Williams, David E., E-mail: david.williams@oregonstate.edu [Department of Environmental and Molecular Toxicology, Oregon State University (United States); Superfund Research Center, Oregon State University (United States); Linus Pauling Institute, Oregon State University (United States); Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331 (United States); Baird, William M. [Department of Environmental and Molecular Toxicology, Oregon State University (United States); Superfund Research Center, Oregon State University (United States); Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331 (United States)

    2013-03-01

    Polycyclic aromatic hydrocarbons (PAHs) are present in the environment as complex mixtures with components that have diverse carcinogenic potencies and mostly unknown interactive effects. Non-additive PAH interactions have been observed in regulation of cytochrome P450 (CYP) gene expression in the CYP1 family. To better understand and predict biological effects of complex mixtures, such as environmental PAHs, an 11 gene input-1 gene output fuzzy neural network (FNN) was developed for predicting PAH-mediated perturbations of dermal Cyp1b1 transcription in mice. Input values were generalized using fuzzy logic into low, medium, and high fuzzy subsets, and sorted using k-means clustering to create Mamdani logic functions for predicting Cyp1b1 mRNA expression. Model testing was performed with data from microarray analysis of skin samples from FVB/N mice treated with toluene (vehicle control), dibenzo[def,p]chrysene (DBC), benzo[a]pyrene (BaP), or 1 of 3 combinations of diesel particulate extract (DPE), coal tar extract (CTE) and cigarette smoke condensate (CSC) using leave-one-out cross-validation. Predictions were within 1 log{sub 2} fold change unit of microarray data, with the exception of the DBC treatment group, where the unexpected down-regulation of Cyp1b1 expression was predicted but did not reach statistical significance on the microarrays. Adding CTE to DPE was predicted to increase Cyp1b1 expression, whereas adding CSC to CTE and DPE was predicted to have no effect, in agreement with microarray results. The aryl hydrocarbon receptor repressor (Ahrr) was determined to be the most significant input variable for model predictions using back-propagation and normalization of FNN weights. - Highlights: ► Tested a model to predict PAH mixture-mediated changes in Cyp1b1 expression ► Quantitative predictions in agreement with microarrays for Cyp1b1 induction ► Unexpected difference in expression between DBC and other treatments predicted ► Model predictions

  20. The aryl hydrocarbon receptor meets immunology: friend or foe? A little of both

    Directory of Open Access Journals (Sweden)

    Walker eJulliard

    2014-10-01

    Full Text Available The aryl hydrocarbon receptor (AHR has long been studied by toxicologists as a ligand-activated transcription factor that is activated by dioxin and other environmental pollutants such as polycyclic aromatic hydrocarbons. The hallmark of AHR activation is the upregulation of the cytochrome P450 enzymes that metabolize many of these toxic compounds. However, recent findings demonstrate that both exogenous and endogenous AHR ligands can alter innate and adaptive immune responses including effects on T-cell differentiation. Kynurenine, a tryptophan breakdown product, is one such endogenous ligand of the AHR. Expression of indoleamine 2,3-dioxygenase by dendritic cells causes accumulation of kynurenine and results in subsequent tolerogenic effects including increased regulatory T cell activity. At the same time, polycyclic aromatic hydrocarbons found in pollution enhance Th17 differentiation in the lungs of exposed mice via the AHR. In this perspective, we will discuss the importance of the AHR in the immune system and the role this might play in normal physiology and response to disease.

  1. Activated factor X signaling via protease-activated receptor 2 suppresses pro-inflammatory cytokine production from LPS-stimulated myeloid cells.

    LENUS (Irish Health Repository)

    Gleeson, Eimear M

    2013-07-19

    Vitamin K-dependent proteases generated in response to vascular injury and infection enable fibrin clot formation, but also trigger distinct immuno-regulatory signaling pathways on myeloid cells. Factor Xa, a protease crucial for blood coagulation, also induces protease-activated receptor-dependent cell signaling. Factor Xa can bind both monocytes and macrophages, but whether factor Xa-dependent signaling stimulates or suppresses myeloid cell cytokine production in response to Toll-like receptor activation is not known. In this study, exposure to factor Xa significantly impaired pro-inflammatory cytokine production from lipopolysaccharide-treated peripheral blood mononuclear cells, THP-1 monocytic cells and murine macrophages. Furthermore, factor Xa inhibited nuclear factor-kappa B activation in THP-1 reporter cells, requiring phosphatidylinositide 3-kinase activity for its anti-inflammatory effect. Active-site blockade, γ-carboxyglutamic acid domain truncation and a peptide mimic of the factor Xa inter-epidermal growth factor-like region prevented factor Xa inhibition of lipopolysaccharide-induced tumour necrosis factor-α release. In addition, factor Xa anti-inflammatory activity was markedly attenuated by the presence of an antagonist of protease-activated receptor 2, but not protease-activated receptor 1. The key role of protease-activated receptor 2 in eliciting factor Xa-dependent anti-inflammatory signaling on macrophages was further underscored by the inability of factor Xa to mediate inhibition of tumour necrosis factor-α and interleukin-6 release from murine bone marrow-derived protease-activated receptor 2-deficient macrophages. We also show for the first time that, in addition to protease-activated receptor 2, factor Xa requires a receptor-associated protein-sensitive low-density lipoprotein receptor to inhibit lipopolysaccharide-induced cytokine production. Collectively, this study supports a novel function for factor Xa as an endogenous, receptor

  2. An Aryl Hydrocarbon Receptor-Mediated Amplification Loop That Enforces Cell Migration in ER−/PR−/Her2− Human Breast Cancer Cells

    Science.gov (United States)

    Novikov, Olga; Wang, Zhongyan; Stanford, Elizabeth A.; Parks, Ashley J.; Ramirez-Cardenas, Alejandra; Landesman, Esther; Laklouk, Israa; Sarita-Reyes, Carmen; Gusenleitner, Daniel; Li, Amy; Monti, Stefano; Manteiga, Sara; Lee, Kyongbum

    2016-01-01

    The endogenous ligand-activated aryl hydrocarbon receptor (AHR) plays an important role in numerous biologic processes. As the known number of AHR-mediated processes grows, so too does the importance of determining what endogenous AHR ligands are produced, how their production is regulated, and what biologic consequences ensue. Consequently, our studies were designed primarily to determine whether ER−/PR−/Her2− breast cancer cells have the potential to produce endogenous AHR ligands and, if so, how production of these ligands is controlled. We postulated that: 1) malignant cells produce tryptophan-derived AHR ligand(s) through the kynurenine pathway; 2) these metabolites have the potential to drive AHR-dependent breast cancer migration; 3) the AHR controls expression of a rate-limiting kynurenine pathway enzyme(s) in a closed amplification loop; and 4) environmental AHR ligands mimic the effects of endogenous ligands. Data presented in this work indicate that primary human breast cancers, and their metastases, express high levels of AHR and tryptophan-2,3-dioxygenase (TDO); representative ER−/PR−/Her2− cell lines express TDO and produce sufficient intracellular kynurenine and xanthurenic acid concentrations to chronically activate the AHR. TDO overexpression, or excess kynurenine or xanthurenic acid, accelerates migration in an AHR-dependent fashion. Environmental AHR ligands 2,3,7,8-tetrachlorodibenzo[p]dioxin and benzo[a]pyrene mimic this effect. AHR knockdown or inhibition significantly reduces TDO2 expression. These studies identify, for the first time, a positive amplification loop in which AHR-dependent TDO2 expression contributes to endogenous AHR ligand production. The net biologic effect of AHR activation by endogenous ligands, which can be mimicked by environmental ligands, is an increase in tumor cell migration, a measure of tumor aggressiveness. PMID:27573671

  3. Timing is critical for effective glucocorticoid receptor mediated repression of the cAMP-induced CRH gene.

    Directory of Open Access Journals (Sweden)

    Siem van der Laan

    Full Text Available Glucocorticoid negative feedback of the hypothalamus-pituitary-adrenal axis is mediated in part by direct repression of gene transcription in glucocorticoid receptor (GR expressing cells. We have investigated the cross talk between the two main signaling pathways involved in activation and repression of corticotrophin releasing hormone (CRH mRNA expression: cyclic AMP (cAMP and GR. We report that in the At-T20 cell-line the glucocorticoid-mediated repression of the cAMP-induced human CRH proximal promoter activity depends on the relative timing of activation of both signaling pathways. Activation of the GR prior to or in conjunction with cAMP signaling results in an effective repression of the cAMP-induced transcription of the CRH gene. In contrast, activation of the GR 10 minutes after onset of cAMP treatment, results in a significant loss of GR-mediated repression. In addition, translocation of ligand-activated GR to the nucleus was found as early as 10 minutes after glucocorticoid treatment. Interestingly, while both signaling cascades counteract each other on the CRH proximal promoter, they synergize on a synthetic promoter containing 'positive' response elements. Since the order of activation of both signaling pathways may vary considerably in vivo, we conclude that a critical time-window exists for effective repression of the CRH gene by glucocorticoids.

  4. Resistance to EGF receptor inhibitors in glioblastoma mediated by phosphorylation of the PTEN tumor suppressor at tyrosine 240.

    Science.gov (United States)

    Fenton, Tim R; Nathanson, David; Ponte de Albuquerque, Claudio; Kuga, Daisuke; Iwanami, Akio; Dang, Julie; Yang, Huijun; Tanaka, Kazuhiro; Oba-Shinjo, Sueli Mieko; Uno, Miyuki; Inda, Maria del Mar; Wykosky, Jill; Bachoo, Robert M; James, C David; DePinho, Ronald A; Vandenberg, Scott R; Zhou, Huilin; Marie, Suely K N; Mischel, Paul S; Cavenee, Webster K; Furnari, Frank B

    2012-08-28

    Glioblastoma multiforme (GBM) is the most aggressive of the astrocytic malignancies and the most common intracranial tumor in adults. Although the epidermal growth factor receptor (EGFR) is overexpressed and/or mutated in at least 50% of GBM cases and is required for tumor maintenance in animal models, EGFR inhibitors have thus far failed to deliver significant responses in GBM patients. One inherent resistance mechanism in GBM is the coactivation of multiple receptor tyrosine kinases, which generates redundancy in activation of phosphoinositide-3'-kinase (PI3K) signaling. Here we demonstrate that the phosphatase and tensin homolog deleted on chromosome 10 (PTEN) tumor suppressor is frequently phosphorylated at a conserved tyrosine residue, Y240, in GBM clinical samples. Phosphorylation of Y240 is associated with shortened overall survival and resistance to EGFR inhibitor therapy in GBM patients and plays an active role in mediating resistance to EGFR inhibition in vitro. Y240 phosphorylation can be mediated by both fibroblast growth factor receptors and SRC family kinases (SFKs) but does not affect the ability of PTEN to antagonize PI3K signaling. These findings show that, in addition to genetic loss and mutation of PTEN, its modulation by tyrosine phosphorylation has important implications for the development and treatment of GBM.

  5. Histamine H2 Receptor-Mediated Suppression of Intestinal Inflammation by Probiotic Lactobacillus reuteri.

    Science.gov (United States)

    Gao, Chunxu; Major, Angela; Rendon, David; Lugo, Monica; Jackson, Vanessa; Shi, Zhongcheng; Mori-Akiyama, Yuko; Versalovic, James

    2015-12-15

    Probiotics and commensal intestinal microbes suppress mammalian cytokine production and intestinal inflammation in various experimental model systems. Limited information exists regarding potential mechanisms of probiotic-mediated immunomodulation in vivo. In this report, we demonstrate that specific probiotic strains of Lactobacillus reuteri suppress intestinal inflammation in a trinitrobenzene sulfonic acid (TNBS)-induced mouse colitis model. Only strains that possess the hdc gene cluster, including the histidine decarboxylase and histidine-histamine antiporter genes, can suppress colitis and mucosal cytokine (interleukin-6 [IL-6] and IL-1β in the colon) gene expression. Suppression of acute colitis in mice was documented by diminished weight loss, colonic injury, serum amyloid A (SAA) protein concentrations, and reduced uptake of [(18)F]fluorodeoxyglucose ([(18)F]FDG) in the colon by positron emission tomography (PET). The ability of probiotic L. reuteri to suppress colitis depends on the presence of a bacterial histidine decarboxylase gene(s) in the intestinal microbiome, consumption of a histidine-containing diet, and signaling via the histamine H2 receptor (H2R). Collectively, luminal conversion of l-histidine to histamine by hdc(+) L. reuteri activates H2R, and H2R signaling results in suppression of acute inflammation within the mouse colon. Probiotics are microorganisms that when administered in adequate amounts confer beneficial effects on the host. Supplementation with probiotic strains was shown to suppress intestinal inflammation in patients with inflammatory bowel disease and in rodent colitis models. However, the mechanisms of probiosis are not clear. Our current studies suggest that supplementation with hdc(+) L. reuteri, which can convert l-histidine to histamine in the gut, resulted in suppression of colonic inflammation. These findings link luminal conversion of dietary components (amino acid metabolism) by gut microbes and probiotic-mediated

  6. Critical roles for LIGHT and its receptors in generating T cell-mediated immunity during Leishmania donovani infection.

    Directory of Open Access Journals (Sweden)

    Amanda C Stanley

    2011-10-01

    Full Text Available LIGHT (TNFSF14 is a member of the TNF superfamily involved in inflammation and defence against infection. LIGHT signals via two cell-bound receptors; herpes virus entry mediator (HVEM and lymphotoxin-beta receptor (LTβR. We found that LIGHT is critical for control of hepatic parasite growth in mice with visceral leishmaniasis (VL caused by infection with the protozoan parasite Leishmania donovani. LIGHT-HVEM signalling is essential for early dendritic cell IL-12/IL-23p40 production, and the generation of IFNγ- and TNF-producing T cells that control hepatic infection. However, we also discovered that LIGHT-LTβR interactions suppress anti-parasitic immunity in the liver in the first 7 days of infection by mechanisms that restrict both CD4(+ T cell function and TNF-dependent microbicidal mechanisms. Thus, we have identified distinct roles for LIGHT in infection, and show that manipulation of interactions between LIGHT and its receptors may be used for therapeutic advantage.

  7. Aryl hydrocarbon receptor nuclear translocator in human liver is regulated by miR-24

    Energy Technology Data Exchange (ETDEWEB)

    Oda, Yuki; Nakajima, Miki; Mohri, Takuya [Drug Metabolism and Toxicology, Division of Pharmaceutical Sciences, Graduate School of Medical Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan); Takamiya, Masataka; Aoki, Yasuhiro [Department of Legal Medicine, Iwate Medical University School of Medicine, 19-1 Uchimaru, Morioka 020-8505 (Japan); Fukami, Tatsuki [Drug Metabolism and Toxicology, Division of Pharmaceutical Sciences, Graduate School of Medical Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan); Yokoi, Tsuyoshi, E-mail: tyokoi@kenroku.kanazawa-u.ac.jp [Drug Metabolism and Toxicology, Division of Pharmaceutical Sciences, Graduate School of Medical Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan)

    2012-05-01

    Aryl hydrocarbon receptor nuclear translocator (ARNT) forms a heterodimer with aryl hydrocarbon receptor or hypoxia inducible factor 1α to mediate biological responses to xenobiotic exposure and hypoxia. Although the regulation mechanism of the ARNT expression is largely unknown, earlier studies reported that the human ARNT protein level was decreased by hydrogen peroxide or reactive oxygen species. These stimuli increase the miR-24 level in various human cell lines. In silico analysis predicts that some microRNAs including miR-16 and miR-23b may bind to ARNT mRNA. This background prompted us to investigate whether human ARNT is regulated by microRNAs. Overexpression of miR-24 into HuH-7 and HepG2 cells significantly decreased the ARNT protein level, but not the ARNT mRNA level, indicating translational repression. However, overexpression of miR-16 or miR-23b caused no change in the ARNT expression. The miR-24-dependent down-regulation of ARNT decreased the expression of its downstream genes such as CYP1A1 and carbonic anhydrase IX. Luciferase assay was performed to determine the element on the ARNT mRNA to which miR-24 binds. Finally, it was demonstrated that the miR-24 levels in a panel of 26 human livers were inversely correlated with the protein levels or the translational efficiency of ARNT. Taken together, we found that miR-24 negatively regulates ARNT expression in human liver, affecting the expression of its downstream genes. miR-24 would be one of the factors underlying the mechanisms by which ARNT protein is decreased by reactive oxygen species. -- Highlights: ► Overexpression of miR-24 into human cell lines decreased the ARNT protein level. ► miR-24-dependent down-regulation of ARNT affected the expression of CYP1A1 and CA IX. ► Luciferase assay was performed to identify functional MREs for miR-24 in ARNT mRNA. ► The miR-24 levels inversely correlated with the ARNT protein levels in human liver.

  8. Constitutive Expression of Aryl Hydrocarbon Receptor in Keratinocytes Causes Inflammatory Skin Lesions

    OpenAIRE

    Tauchi, Masafumi; Hida, Azumi; Negishi, Takaaki; Katsuoka, Fumiki; Noda, Shuhei; Mimura, Junsei; Hosoya, Tomonori; Yanaka, Akinori; Aburatani, Hiroyuki; Fujii-Kuriyama, Yoshiaki; Motohashi, Hozumi; Yamamoto, Masayuki

    2005-01-01

    Occupational and environmental exposure to polycyclic aromatic hydrocarbons (PAHs) has been suggested to provoke inflammatory and/or allergic disorders, including asthma, rhinitis, and dermatitis. The molecular mechanisms of this PAH-mediated inflammation remain to be clarified. Previous studies implied the involvement of PAHs as irritants and allergens, with the reactive oxygen species generated from the oxygenated PAHs believed to be an exacerbating factor. It is also possible that PAHs con...

  9. IMPDHII Protein Inhibits Toll-like Receptor 2-mediated Activation of NF-κB*

    Science.gov (United States)

    Toubiana, Julie; Rossi, Anne-Lise; Grimaldi, David; Belaidouni, Nadia; Chafey, Philippe; Clary, Guilhem; Courtine, Emilie; Pene, Frederic; Mira, Jean-Paul; Claessens, Yann-Erick; Chiche, Jean-Daniel

    2011-01-01

    Toll-like receptor 2 (TLR2) plays an essential role in innate immunity by the recognition of a large variety of pathogen-associated molecular patterns. It induces its recruitment to lipid rafts induces the formation of a membranous activation cluster necessary to enhance, amplify, and control downstream signaling. However, the exact composition of the TLR2-mediated molecular complex is unknown. We performed a proteomic analysis in lipopeptide-stimulated THP1 and found IMPDHII protein rapidly recruited to lipid raft. Whereas IMPDHII is essential for lymphocyte proliferation, its biologic function within innate immune signal pathways has not been established yet. We report here that IMPDHII plays an important role in the negative regulation of TLR2 signaling by modulating PI3K activity. Indeed, IMPDHII increases the phosphatase activity of SHP1, which participates to the inactivation of PI3K. PMID:21460227

  10. The aryl hydrocarbon receptor ligand ITE inhibits TGFβ1-induced human myofibroblast differentiation.

    Science.gov (United States)

    Lehmann, Geniece M; Xi, Xia; Kulkarni, Ajit A; Olsen, Keith C; Pollock, Stephen J; Baglole, Carolyn J; Gupta, Shikha; Casey, Ann E; Huxlin, Krystel R; Sime, Patricia J; Feldon, Steven E; Phipps, Richard P

    2011-04-01

    Fibrosis can occur in any human tissue when the normal wound healing response is amplified. Such amplification results in fibroblast proliferation, myofibroblast differentiation, and excessive extracellular matrix deposition. Occurrence of these sequelae in organs such as the eye or lung can result in severe consequences to health. Unfortunately, medical treatment of fibrosis is limited by a lack of safe and effective therapies. These therapies may be developed by identifying agents that inhibit critical steps in fibrotic progression; one such step is myofibroblast differentiation triggered by transforming growth factor-β1 (TGFβ1). In this study, we demonstrate that TGFβ1-induced myofibroblast differentiation is blocked in human fibroblasts by a candidate endogenous aryl hydrocarbon receptor (AhR) ligand 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE). Our data show that ITE disrupts TGFβ1 signaling by inhibiting the nuclear translocation of Smad2/3/4. Although ITE functions as an AhR agonist, and biologically persistent AhR agonists, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin, cause severe toxic effects, ITE exhibits no toxicity. Interestingly, ITE effectively inhibits TGFβ1-driven myofibroblast differentiation in AhR(-/-) fibroblasts: Its ability to inhibit TGFβ1 signaling is AhR independent. As supported by the results of this study, the small molecule ITE inhibits myofibroblast differentiation and may be useful clinically as an antiscarring agent. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  11. BILF1 Mediated Transformation Correlates with Constitutive Signaling

    DEFF Research Database (Denmark)

    Lyngaa, Rikke Birgitte

    2009-01-01

    BIFL1 is a G protein-coupled receptor encoded by human EBV. It signals constitutively through G_alpha_i and is an orphan receptor known to down regulate MHCI expression. BILF1 also engage in dimerization with several chemokine receptors and it induced the activity of NF-kappa beta and inhibits...

  12. The Bacterial Effector AvrPto Targets the Regulatory Coreceptor SOBIR1 and Suppresses Defense Signaling Mediated by the Receptor-Like Protein Cf-4

    NARCIS (Netherlands)

    Wu, Jinbin; Burgh, Van Der Aranka M.; Bi, Guozhi; Zhang, Lisha; Alfano, James R.; Martin, Gregory B.; Joosten, Matthieu H.A.J.

    2018-01-01

    Receptor-like proteins (RLPs) and receptor-like kinases (RLKs) are cell-surface receptors that are essential for detecting invading pathogens and subsequent activation of plant defense responses. RLPs lack a cytoplasmic kinase domain to trigger downstream signaling leading to host resistance. The

  13. Clathrin-dependent internalization, signaling, and metabolic processing of guanylyl cyclase/natriuretic peptide receptor-A.

    Science.gov (United States)

    Somanna, Naveen K; Mani, Indra; Tripathi, Satyabha; Pandey, Kailash N

    2018-04-01

    Cardiac hormones, atrial and brain natriuretic peptides (ANP and BNP), have pivotal roles in renal hemodynamics, neuroendocrine signaling, blood pressure regulation, and cardiovascular homeostasis. Binding of ANP and BNP to the guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA) induces rapid internalization and trafficking of the receptor via endolysosomal compartments, with concurrent generation of cGMP. However, the mechanisms of the endocytotic processes of NPRA are not well understood. The present study, using 125 I-ANP binding assay and confocal microscopy, examined the function of dynamin in the internalization of NPRA in stably transfected human embryonic kidney-293 (HEK-293) cells. Treatment of recombinant HEK-293 cells with ANP time-dependently accelerated the internalization of receptor from the cell surface to the cell interior. However, the internalization of ligand-receptor complexes of NPRA was drastically decreased by the specific inhibitors of clathrin- and dynamin-dependent receptor internalization, almost 85% by monodansylcadaverine, 80% by chlorpromazine, and 90% by mutant dynamin, which are specific blockers of endocytic vesicle formation. Visualizing the internalization of NPRA and enhanced GFP-tagged NPRA in HEK-293 cells by confocal microscopy demonstrated the formation of endocytic vesicles after 5 min of ANP treatment; this effect was blocked by the inhibitors of clathrin and by mutant dynamin construct. Our results suggest that NPRA undergoes internalization via clathrin-mediated endocytosis as part of its normal itinerary, including trafficking, signaling, and metabolic degradation.

  14. Cardiac Alpha1-Adrenergic Receptors: Novel Aspects of Expression, Signaling Mechanisms, Physiologic Function, and Clinical Importance

    Science.gov (United States)

    O’Connell, Timothy D.; Jensen, Brian C.; Baker, Anthony J.

    2014-01-01

    Adrenergic receptors (AR) are G-protein-coupled receptors (GPCRs) that have a crucial role in cardiac physiology in health and disease. Alpha1-ARs signal through Gαq, and signaling through Gq, for example, by endothelin and angiotensin receptors, is thought to be detrimental to the heart. In contrast, cardiac alpha1-ARs mediate important protective and adaptive functions in the heart, although alpha1-ARs are only a minor fraction of total cardiac ARs. Cardiac alpha1-ARs activate pleiotropic downstream signaling to prevent pathologic remodeling in heart failure. Mechanisms defined in animal and cell models include activation of adaptive hypertrophy, prevention of cardiac myocyte death, augmentation of contractility, and induction of ischemic preconditioning. Surprisingly, at the molecular level, alpha1-ARs localize to and signal at the nucleus in cardiac myocytes, and, unlike most GPCRs, activate “inside-out” signaling to cause cardioprotection. Contrary to past opinion, human cardiac alpha1-AR expression is similar to that in the mouse, where alpha1-AR effects are seen most convincingly in knockout models. Human clinical studies show that alpha1-blockade worsens heart failure in hypertension and does not improve outcomes in heart failure, implying a cardioprotective role for human alpha1-ARs. In summary, these findings identify novel functional and mechanistic aspects of cardiac alpha1-AR function and suggest that activation of cardiac alpha1-AR might be a viable therapeutic strategy in heart failure. PMID:24368739

  15. Exogenous S1P Exposure Potentiates Ischemic Stroke Damage That Is Reduced Possibly by Inhibiting S1P Receptor Signaling.

    Science.gov (United States)

    Moon, Eunjung; Han, Jeong Eun; Jeon, Sejin; Ryu, Jong Hoon; Choi, Ji Woong; Chun, Jerold

    2015-01-01

    Initial and recurrent stroke produces central nervous system (CNS) damage, involving neuroinflammation. Receptor-mediated S1P signaling can influence neuroinflammation and has been implicated in cerebral ischemia through effects on the immune system. However, S1P-mediated events also occur within the brain itself where its roles during stroke have been less well studied. Here we investigated the involvement of S1P signaling in initial and recurrent stroke by using a transient middle cerebral artery occlusion/reperfusion (M/R) model combined with analyses of S1P signaling. Gene expression for S1P receptors and involved enzymes was altered during M/R, supporting changes in S1P signaling. Direct S1P microinjection into the normal CNS induced neuroglial activation, implicating S1P-initiated neuroinflammatory responses that resembled CNS changes seen during initial M/R challenge. Moreover, S1P microinjection combined with M/R potentiated brain damage, approximating a model for recurrent stroke dependent on S1P and suggesting that reduction in S1P signaling could ameliorate stroke damage. Delivery of FTY720 that removes S1P signaling with chronic exposure reduced damage in both initial and S1P-potentiated M/R-challenged brain, while reducing stroke markers like TNF-α. These results implicate direct S1P CNS signaling in the etiology of initial and recurrent stroke that can be therapeutically accessed by S1P modulators acting within the brain.

  16. Exogenous S1P Exposure Potentiates Ischemic Stroke Damage That Is Reduced Possibly by Inhibiting S1P Receptor Signaling

    Directory of Open Access Journals (Sweden)

    Eunjung Moon

    2015-01-01

    Full Text Available Initial and recurrent stroke produces central nervous system (CNS damage, involving neuroinflammation. Receptor-mediated S1P signaling can influence neuroinflammation and has been implicated in cerebral ischemia through effects on the immune system. However, S1P-mediated events also occur within the brain itself where its roles during stroke have been less well studied. Here we investigated the involvement of S1P signaling in initial and recurrent stroke by using a transient middle cerebral artery occlusion/reperfusion (M/R model combined with analyses of S1P signaling. Gene expression for S1P receptors and involved enzymes was altered during M/R, supporting changes in S1P signaling. Direct S1P microinjection into the normal CNS induced neuroglial activation, implicating S1P-initiated neuroinflammatory responses that resembled CNS changes seen during initial M/R challenge. Moreover, S1P microinjection combined with M/R potentiated brain damage, approximating a model for recurrent stroke dependent on S1P and suggesting that reduction in S1P signaling could ameliorate stroke damage. Delivery of FTY720 that removes S1P signaling with chronic exposure reduced damage in both initial and S1P-potentiated M/R-challenged brain, while reducing stroke markers like TNF-α. These results implicate direct S1P CNS signaling in the etiology of initial and recurrent stroke that can be therapeutically accessed by S1P modulators acting within the brain.

  17. Curcumin blocks interleukin (IL)-2 signaling in T-lymphocytes by inhibiting IL-2 synthesis, CD25 expression, and IL-2 receptor signaling

    International Nuclear Information System (INIS)

    Forward, Nicholas A.; Conrad, David M.; Power Coombs, Melanie R.; Doucette, Carolyn D.; Furlong, Suzanne J.; Lin, Tong-Jun; Hoskin, David W.

    2011-01-01

    Highlights: → Curcumin inhibits CD4 + T-lymphocyte proliferation. → Curcumin inhibits interleukin-2 (IL-2) synthesis and CD25 expression by CD4 + T-lymphocytes. → Curcumin interferes with IL-2 receptor signaling by inhibiting JAK3 and STAT5 phosphorylation. → IL-2-dependent regulatory T-lymphocyte function and Foxp3 expression is downregulated by curcumin. -- Abstract: Curcumin (diferulomethane) is the principal curcuminoid in the spice tumeric and a potent inhibitor of activation-induced T-lymphocyte proliferation; however, the molecular basis of this immunosuppressive effect has not been well studied. Here we show that micromolar concentrations of curcumin inhibited DNA synthesis by mouse CD4 + T-lymphocytes, as well as interleukin-2 (IL-2) and CD25 (α chain of the high affinity IL-2 receptor) expression in response to antibody-mediated cross-linking of CD3 and CD28. Curcumin acted downstream of protein kinase C activation and intracellular Ca 2+ release to inhibit IκB phosphorylation, which is required for nuclear translocation of the transcription factor NFκB. In addition, IL-2-dependent DNA synthesis by mouse CTLL-2 cells, but not constitutive CD25 expression, was impaired in the presence of curcumin, which demonstrated an inhibitory effect on IL-2 receptor (IL-2R) signaling. IL-2-induced phosphorylation of STAT5A and JAK3, but not JAK1, was diminished in the presence of curcumin, indicating inhibition of critical proximal events in IL-2R signaling. In line with the inhibitory action of curcumin on IL-2R signaling, pretreatment of CD4 + CD25 + regulatory T-cells with curcumin downregulated suppressor function, as well as forkhead box p3 (Foxp3) expression. We conclude that curcumin inhibits IL-2 signaling by reducing available IL-2 and high affinity IL-2R, as well as interfering with IL-2R signaling.

  18. Scavenger receptor-mediated endocytosis by sinusoidal cells in rat bone marrow

    International Nuclear Information System (INIS)

    Geoffroy, J.S.

    1987-01-01

    Endocytosis of serum albumin by sinusoidal endothelial cells in rat bone marrow was investigated initially at the ultrastructural level with subsequent biochemical investigation of the specificity mediating this event. Bovine serum albumin adsorbed to 20nm colloidal gold particles (AuBSA) was chosen as the electron microscopic probe. Morphological data strongly suggested that a receptor was involved in uptake of AuBSA. Confirmation of receptor involvement in the uptake of AuBSA by marrow sinusoidal endothelial cells was achieved utilizing an in situ isolated hind limb perfusion protocol in conjunction with unlabeled, radiolabeled, and radio-/colloidal gold labeled probes. The major findings of competition and saturation experiments were: (1) endocytosis of AuBSA was mediated by a receptor for modified/treated serum albumin; (2) endocytosis of formaldehyde-treated serum albumin was mediated by a binding site which may be the same or closely related to the site responsible for the uptake of AuBSA; and (3) endocytosis of native untreated albumin was not mediated by receptor and probably represents fluid-phase pinocitosis

  19. Regulator of G-protein signaling-5 is a marker of hepatic stellate cells and expression mediates response to liver injury.

    Directory of Open Access Journals (Sweden)

    Arya J Bahrami

    Full Text Available Liver fibrosis is mediated by hepatic stellate cells (HSCs, which respond to a variety of cytokine and growth factors to moderate the response to injury and create extracellular matrix at the site of injury. G-protein coupled receptor (GPCR-mediated signaling, via endothelin-1 (ET-1 and angiotensin II (AngII, increases HSC contraction, migration and fibrogenesis. Regulator of G-protein signaling-5 (RGS5, an inhibitor of vasoactive GPCR agonists, functions to control GPCR-mediated contraction and hypertrophy in pericytes and smooth muscle cells (SMCs. Therefore we hypothesized that RGS5 controls GPCR signaling in activated HSCs in the context of liver injury. In this study, we localize RGS5 to the HSCs and demonstrate that Rgs5 expression is regulated during carbon tetrachloride (CCl4-induced acute and chronic liver injury in Rgs5LacZ/LacZ reporter mice. Furthermore, CCl4 treated RGS5-null mice develop increased hepatocyte damage and fibrosis in response to CCl4 and have increased expression of markers of HSC activation. Knockdown of Rgs5 enhances ET-1-mediated signaling in HSCs in vitro. Taken together, we demonstrate that RGS5 is a critical regulator of GPCR signaling in HSCs and regulates HSC activation and fibrogenesis in liver injury.

  20. PINK1 positively regulates IL-1β-mediated signaling through Tollip and IRAK1 modulation

    Directory of Open Access Journals (Sweden)

    Lee Hyun Jung

    2012-12-01

    Full Text Available Abstract Background Parkinson disease (PD is characterized by a slow, progressive degeneration of dopaminergic neurons in the substantianigra. The cause of neuronal loss in PD is not well understood, but several genetic loci, including PTEN-induced putative kinase 1 (PINK1, have been linked to early-onset autosomal recessive forms of familial PD. Neuroinflammation greatly contributes to PD neuronal degeneration and pathogenesis. IL-1 is one of the principal cytokines that regulates various immune and inflammatory responses via the activation of the transcription factors NF-κB and activating protein-1. Despite the close relationship between PD and neuroinflammation, the functional roles of PD-linked genes during inflammatory processes remain poorly understood. Methods To explore the functional roles of PINK1 in response to IL-1β stimulation, HEK293 cells, mouse embryonic fibroblasts derived from PINK1-null (PINK1−/− and control (PINK1+/+ mice, and 293 IL-1RI cells stably expressing type 1 IL-1 receptor were used. Immunoprecipitation and western blot analysis were performed to detect protein–protein interaction and protein ubiquitination. To confirm the effect of PINK1 on NF-κB activation, NF-κB-dependent firefly luciferase reporter assay was conducted. Results PINK1 specifically binds two components of the IL-1-mediated signaling cascade, Toll-interacting protein (Tollip and IL-1 receptor-associated kinase 1 (IRAK1. The association of PINK1 with Tollip, a negative regulator of IL-1β signaling, increases upon IL-1β stimulation, which then facilitates the dissociation of Tollip from IRAK1 as well as the assembly of the IRAK1–TNF receptor-associated factor 6 (TRAF6 complex. PINK1 also enhances Lys63-linked polyubiquitination of IRAK1, an essential modification of recruitment of NF-κB essential modulator and subsequent IκB kinase activation, and increases formation of the intermediate signalosome including IRAK1, TRAF6, and

  1. An Alzheimer Disease-linked Rare Mutation Potentiates Netrin Receptor Uncoordinated-5C-induced Signaling That Merges with Amyloid β Precursor Protein Signaling.

    Science.gov (United States)

    Hashimoto, Yuichi; Toyama, Yuka; Kusakari, Shinya; Nawa, Mikiro; Matsuoka, Masaaki

    2016-06-03

    A missense mutation (T835M) in the uncoordinated-5C (UNC5C) netrin receptor gene increases the risk of late-onset Alzheimer disease (AD) and also the vulnerability of neurons harboring the mutation to various insults. The molecular mechanisms underlying T835M-UNC5C-induced death remain to be elucidated. In this study, we show that overexpression of wild-type UNC5C causes low-grade death, which is intensified by an AD-linked mutation T835M. An AD-linked survival factor, calmodulin-like skin protein (CLSP), and a natural ligand of UNC5C, netrin1, inhibit this death. T835M-UNC5C-induced neuronal cell death is mediated by an intracellular death-signaling cascade, consisting of death-associated protein kinase 1/protein kinase D/apoptosis signal-regulating kinase 1 (ASK1)/JNK/NADPH oxidase/caspases, which merges at ASK1 with a death-signaling cascade, mediated by amyloid β precursor protein (APP). Notably, netrin1 also binds to APP and partially inhibits the death-signaling cascade, induced by APP. These results may provide new insight into the amyloid β-independent pathomechanism of AD. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Interaction of fish aryl hydrocarbon receptor paralogs (AHR1 and AHR2) with the retinoblastoma protein

    Energy Technology Data Exchange (ETDEWEB)

    Merson, Rebeka R., E-mail: rmerson@ric.edu [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Biology Department, Rhode Island College, 500 Mt. Pleasant Ave., Providence, RI 02908 (United States); Karchner, Sibel I.; Hahn, Mark E. [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States)

    2009-08-13

    The aryl hydrocarbon receptor (AHR) mediates the toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds. In some mammalian cell lines, TCDD induces G1 cell cycle arrest, which depends on an interaction between the AHR and the retinoblastoma tumor suppressor (RB). Mammals possess one AHR, whereas fishes possess two or more AHR paralogs that differ in the domains important for AHR-RB interactions in mammals. To test the hypothesis that fish AHR paralogs differ in their ability to interact with RB, we cloned RB cDNA from Atlantic killifish, Fundulus heteroclitus, and studied the interactions of killifish RB protein with killifish AHR1 and AHR2. In coimmunoprecipitation experiments, in vitro-expressed killifish RB coprecipitated with both AHR1 and AHR2. Consistent with these results, both killifish AHR1 and AHR2 interacted with RB in mammalian two-hybrid assays. These results suggest that both fish AHR1 and AHR2 paralogs may have the potential to influence cell proliferation through interactions with RB.

  3. Drosophila motor neuron retraction during metamorphosis is mediated by inputs from TGF-β/BMP signaling and orphan nuclear receptors.

    Directory of Open Access Journals (Sweden)

    Ana Boulanger

    Full Text Available Larval motor neurons remodel during Drosophila neuro-muscular junction dismantling at metamorphosis. In this study, we describe the motor neuron retraction as opposed to degeneration based on the early disappearance of β-Spectrin and the continuing presence of Tubulin. By blocking cell dynamics with a dominant-negative form of Dynamin, we show that phagocytes have a key role in this process. Importantly, we show the presence of peripheral glial cells close to the neuro-muscular junction that retracts before the motor neuron. We show also that in muscle, expression of EcR-B1 encoding the steroid hormone receptor required for postsynaptic dismantling, is under the control of the ftz-f1/Hr39 orphan nuclear receptor pathway but not the TGF-β signaling pathway. In the motor neuron, activation of EcR-B1 expression by the two parallel pathways (TGF-β signaling and nuclear receptor triggers axon retraction. We propose that a signal from a TGF-β family ligand is produced by the dismantling muscle (postsynapse compartment and received by the motor neuron (presynaptic compartment resulting in motor neuron retraction. The requirement of the two pathways in the motor neuron provides a molecular explanation for the instructive role of the postsynapse degradation on motor neuron retraction. This mechanism insures the temporality of the two processes and prevents motor neuron pruning before postsynaptic degradation.

  4. Drosophila motor neuron retraction during metamorphosis is mediated by inputs from TGF-β/BMP signaling and orphan nuclear receptors.

    Science.gov (United States)

    Boulanger, Ana; Farge, Morgane; Ramanoudjame, Christophe; Wharton, Kristi; Dura, Jean-Maurice

    2012-01-01

    Larval motor neurons remodel during Drosophila neuro-muscular junction dismantling at metamorphosis. In this study, we describe the motor neuron retraction as opposed to degeneration based on the early disappearance of β-Spectrin and the continuing presence of Tubulin. By blocking cell dynamics with a dominant-negative form of Dynamin, we show that phagocytes have a key role in this process. Importantly, we show the presence of peripheral glial cells close to the neuro-muscular junction that retracts before the motor neuron. We show also that in muscle, expression of EcR-B1 encoding the steroid hormone receptor required for postsynaptic dismantling, is under the control of the ftz-f1/Hr39 orphan nuclear receptor pathway but not the TGF-β signaling pathway. In the motor neuron, activation of EcR-B1 expression by the two parallel pathways (TGF-β signaling and nuclear receptor) triggers axon retraction. We propose that a signal from a TGF-β family ligand is produced by the dismantling muscle (postsynapse compartment) and received by the motor neuron (presynaptic compartment) resulting in motor neuron retraction. The requirement of the two pathways in the motor neuron provides a molecular explanation for the instructive role of the postsynapse degradation on motor neuron retraction. This mechanism insures the temporality of the two processes and prevents motor neuron pruning before postsynaptic degradation.

  5. Polycyclic aromatic hydrocarbons and cytochrome P450 in HIV pathogenesis

    Science.gov (United States)

    Rao, P. S. S.; Kumar, Santosh

    2015-01-01

    High prevalence of cigarette smoking in HIV patients is associated with increased HIV pathogenesis and disease progression. While the effect of smoking on the occurrence of lung cancer has been studied extensively, the association between smoking and HIV pathogenesis is poorly studied. We have recently shown the possible role of cytochrome P450 (CYP) in smoking/nicotine-mediated viral replication. In this review, we focus on the potential role of CYP pathway in polycyclic aromatic hydrocarbons (PAH), important constituents of cigarette smoke, mediated HIV pathogenesis. More specifically, we will discuss the role of CYP1A1 and CYP1B1, which are the major PAH-activating CYP enzymes. Our results have shown that treatment with cigarette smoke condensate (CSC) increases viral replication in HIV-infected macrophages. CSC contains PAH, which are known to be activated by CYP1A1 and CYP1B1 into procarcinogens/toxic metabolites. The expression of these CYPs is regulated by aryl hydrocarbon receptors (AHR), the cellular target of PAH, and an important player in various diseases including cancer. We propose that PAH/AHR-mediated CYP pathway is a novel target to develop new interventions for HIV positive smokers. PMID:26082767

  6. A G Protein-biased Designer G Protein-coupled Receptor Useful for Studying the Physiological Relevance of Gq/11-dependent Signaling Pathways.

    Science.gov (United States)

    Hu, Jianxin; Stern, Matthew; Gimenez, Luis E; Wanka, Lizzy; Zhu, Lu; Rossi, Mario; Meister, Jaroslawna; Inoue, Asuka; Beck-Sickinger, Annette G; Gurevich, Vsevolod V; Wess, Jürgen

    2016-04-08

    Designerreceptorsexclusivelyactivated by adesignerdrug (DREADDs) are clozapine-N-oxide-sensitive designer G protein-coupled receptors (GPCRs) that have emerged as powerful novel chemogenetic tools to study the physiological relevance of GPCR signaling pathways in specific cell types or tissues. Like endogenous GPCRs, clozapine-N-oxide-activated DREADDs do not only activate heterotrimeric G proteins but can also trigger β-arrestin-dependent (G protein-independent) signaling. To dissect the relative physiological relevance of G protein-mediatedversusβ-arrestin-mediated signaling in different cell types or physiological processes, the availability of G protein- and β-arrestin-biased DREADDs would be highly desirable. In this study, we report the development of a mutationally modified version of a non-biased DREADD derived from the M3muscarinic receptor that can activate Gq/11with high efficacy but lacks the ability to interact with β-arrestins. We also demonstrate that this novel DREADD is activein vivoand that cell type-selective expression of this new designer receptor can provide novel insights into the physiological roles of G protein (Gq/11)-dependentversusβ-arrestin-dependent signaling in hepatocytes. Thus, this novel Gq/11-biased DREADD represents a powerful new tool to study the physiological relevance of Gq/11-dependent signaling in distinct tissues and cell types, in the absence of β-arrestin-mediated cellular effects. Such studies should guide the development of novel classes of functionally biased ligands that show high efficacy in various pathophysiological conditions but display a reduced incidence of side effects. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Aripiprazole Increases the PKA Signalling and Expression of the GABAA Receptor and CREB1 in the Nucleus Accumbens of Rats.

    Science.gov (United States)

    Pan, Bo; Lian, Jiamei; Huang, Xu-Feng; Deng, Chao

    2016-05-01

    The GABAA receptor is implicated in the pathophysiology of schizophrenia and regulated by PKA signalling. Current antipsychotics bind with D2-like receptors, but not the GABAA receptor. The cAMP-responsive element-binding protein 1 (CREB1) is also associated with PKA signalling and may be related to the positive symptoms of schizophrenia. This study investigated the effects of antipsychotics in modulating D2-mediated PKA signalling and its downstream GABAA receptors and CREB1. Rats were treated orally with aripiprazole (0.75 mg/kg, ter in die (t.i.d.)), bifeprunox (0.8 mg/kg, t.i.d.), haloperidol (0.1 mg/kg, t.i.d.) or vehicle for 1 week. The levels of PKA-Cα and p-PKA in the prefrontal cortex (PFC), nucleus accumbens (NAc) and caudate putamen (CPu) were detected by Western blots. The mRNA levels of Gabrb1, Gabrb2, Gabrb3 and Creb1, and their protein expression were measured by qRT-PCR and Western blots, respectively. Aripiprazole elevated the levels of p-PKA and the ratio of p-PKA/PKA in the NAc, but not the PFC and CPu. Correlated with this elevated PKA signalling, aripiprazole elevated the mRNA and protein expression of the GABAA (β-1) receptor and CREB1 in the NAc. While haloperidol elevated the levels of p-PKA and the ratio of p-PKA/PKA in both NAc and CPu, it only tended to increase the expression of the GABAA (β-1) receptor and CREB1 in the NAc, but not the CPu. Bifeprunox had no effects on PKA signalling in these brain regions. These results suggest that aripiprazole has selective effects on upregulating the GABAA (β-1) receptor and CREB1 in the NAc, probably via activating PKA signalling.

  8. Direct soil contact values for ecological receptors exposed to weathered petroleum hydrocarbon (PHC) fraction 2.

    Science.gov (United States)

    Angell, Robin A; Kullman, Steve; Shrive, Emma; Stephenson, Gladys L; Tindal, Miles

    2012-11-01

    Ecological tier 1 Canada-wide standards (CWS) for petroleum hydrocarbon (PHC) fraction 2 (F2; >nC10-C16) in soil were derived using ecotoxicological assessment endpoints (effective concentrations [ECs]/lethal concentrations [LCs]/inhibitory concentrations, 25% [IC25s]) with freshly spiked (fresh) fine- and coarse-grained soils. These soil standards might be needlessly conservative when applied to field samples with weathered hydrocarbons. The purpose of the present study was to assess the degradation and toxicity of weathered PHC F2 in a fine-grained soil and to derive direct soil contact values for ecological receptors. Fine-grained reference soils were spiked with distilled F2 and weathered for 183 d. Toxicity tests using plants and invertebrates were conducted with the weathered F2-spiked soils. Endpoint EC/IC25s were calculated and used to derive soil standards for weathered F2 in fine-grained soil protective of ecological receptors exposed via direct soil contact. The values derived for weathered F2 were less restrictive than current ecological tier 1 CWS for F2 in soil. Copyright © 2012 SETAC.

  9. The Multiple Faces of Prostaglandin E2 G-Protein Coupled Receptor Signaling during the Dendritic Cell Life Cycle

    Directory of Open Access Journals (Sweden)

    Alessandra Cambi

    2013-03-01

    Full Text Available Many processes regulating immune responses are initiated by G-protein coupled receptors (GPCRs and report biochemical changes in the microenvironment. Dendritic cells (DCs are the most potent antigen-presenting cells and crucial for the regulation of innate and adaptive immune responses. The lipid mediator Prostaglandin E2 (PGE2 via four GPCR subtypes (EP1-4 critically regulates DC generation, maturation and migration. The role of PGE2 signaling in DC biology was unraveled by the characterization of EP receptor subtype expression in DC progenitor cells and DCs, the identification of the signaling pathways initiated by these GPCR subtypes and the classification of DC responses to PGE2 at different stages of differentiation. Here, we review the advances in PGE2 signaling in DCs and describe the efforts still to be made to understand the spatio-temporal fine-tuning of PGE2 responses by DCs.

  10. Augmentation of Muscle Blood Flow by Ultrasound Cavitation Is Mediated by ATP and Purinergic Signaling.

    Science.gov (United States)

    Belcik, J Todd; Davidson, Brian P; Xie, Aris; Wu, Melinda D; Yadava, Mrinal; Qi, Yue; Liang, Sherry; Chon, Chae Ryung; Ammi, Azzdine Y; Field, Joshua; Harmann, Leanne; Chilian, William M; Linden, Joel; Lindner, Jonathan R

    2017-03-28

    Augmentation of tissue blood flow by therapeutic ultrasound is thought to rely on convective shear. Microbubble contrast agents that undergo ultrasound-mediated cavitation markedly amplify these effects. We hypothesized that purinergic signaling is responsible for shear-dependent increases in muscle perfusion during therapeutic cavitation. Unilateral exposure of the proximal hindlimb of mice (with or without ischemia produced by iliac ligation) to therapeutic ultrasound (1.3 MHz, mechanical index 1.3) was performed for 10 minutes after intravenous injection of 2×10 8 lipid microbubbles. Microvascular perfusion was evaluated by low-power contrast ultrasound perfusion imaging. In vivo muscle ATP release and in vitro ATP release from endothelial cells or erythrocytes were assessed by a luciferin-luciferase assay. Purinergic signaling pathways were assessed by studying interventions that (1) accelerated ATP degradation; (2) inhibited P2Y receptors, adenosine receptors, or K ATP channels; or (3) inhibited downstream signaling pathways involving endothelial nitric oxide synthase or prostanoid production (indomethacin). Augmentation in muscle perfusion by ultrasound cavitation was assessed in a proof-of-concept clinical trial in 12 subjects with stable sickle cell disease. Therapeutic ultrasound cavitation increased muscle perfusion by 7-fold in normal mice, reversed tissue ischemia for up to 24 hours in the murine model of peripheral artery disease, and doubled muscle perfusion in patients with sickle cell disease. Augmentation in flow extended well beyond the region of ultrasound exposure. Ultrasound cavitation produced an ≈40-fold focal and sustained increase in ATP, the source of which included both endothelial cells and erythrocytes. Inhibitory studies indicated that ATP was a critical mediator of flow augmentation that acts primarily through either P2Y receptors or adenosine produced by ectonucleotidase activity. Combined indomethacin and inhibition of

  11. The CB1 Receptor as an Important Mediator of Hedonic Reward Processing

    Science.gov (United States)

    Friemel, Chris M; Zimmer, Andreas; Schneider, Miriam

    2014-01-01

    The endocannabinoid (ECB) system has emerged recently as a key mediator for reward processing. It is well known that cannabinoids affect appetitive learning processes and can induce reinforcing and rewarding effects. However, the involvement of the ECB system in hedonic aspects of reward-related behavior is not completely understood. With the present study, we investigated the modulatory role of the ECB system on hedonic perception, measured by the pleasure attenuated startle (PAS) paradigm for a palatable food reward. Here, a conditioned odor is thought to induce a pleasant affective state that attenuates an aversive reflex—the acoustic startle response. Modulatory effects of the CB1 receptor antagonist/inverse agonist SR1411716 and the cannabinoid agonist WIN 55 212-2 on PAS were examined in rats. PAS was also measured in CB1 receptor knockout (KO) and wild-type (WT) mice. Pharmacological inhibition as well as the absence of CB1 receptors was found to reduce PAS, whereas WIN 55 212-2 administration increased PAS. Finally, presentation of a conditioned reward cue was found to induce striatal FosB/ΔFosB expression in WT mice, but not in KO mice, indicating a reduced stimulation of reward-related brain regions in conditioned KO mice by odor presentation. We here show that in addition to our previous studies in rats, PAS may also serve as a valuable and suitable measure to assess hedonic processing in mice. Our data further indicate that the ECB system, and in particular CB1 receptor signaling, appears to be highly important for the mediation of hedonic aspects of reward processing. PMID:24718372

  12. Importance of leptin signaling and signal transducer and activator of transcription-3 activation in mediating the cardiac hypertrophy associated with obesity.

    Science.gov (United States)

    Leifheit-Nestler, Maren; Wagner, Nana-Maria; Gogiraju, Rajinikanth; Didié, Michael; Konstantinides, Stavros; Hasenfuss, Gerd; Schäfer, Katrin

    2013-07-11

    The adipokine leptin and its receptor are expressed in the heart, and leptin has been shown to promote cardiomyocyte hypertrophy in vitro. Obesity is associated with hyperleptinemia and hypothalamic leptin resistance as well as an increased risk to develop cardiac hypertrophy and heart failure. However, the role of cardiac leptin signaling in mediating the cardiomyopathy associated with increased body weight is unclear, in particular, whether it develops subsequently to cardiac leptin resistance or overactivation of hypertrophic signaling pathways via elevated leptin levels. The cardiac phenotype of high-fat diet (HFD)-induced obese wildtype (WT) mice was examined and compared to age-matched genetically obese leptin receptor (LepR)-deficient (LepRdb/db) or lean WT mice. To study the role of leptin-mediated STAT3 activation during obesity-induced cardiac remodeling, mice in which tyrosine residue 1138 within LepR had been replaced with a serine (LepRS1138) were also analyzed. Obesity was associated with hyperleptinemia and elevated cardiac leptin expression in both diet-induced and genetically obese mice. Enhanced LepR and STAT3 phosphorylation levels were detected in hearts of obese WT mice, but not in those with LepR mutations. Moreover, exogenous leptin continued to induce cardiac STAT3 activation in diet-induced obese mice. Although echocardiography revealed signs of cardiac hypertrophy in all obese mice, the increase in left ventricular (LV) mass and diameter was significantly more pronounced in LepRS1138 animals. LepRS1138 mice also exhibited an increased activation of signaling proteins downstream of LepR, including Jak2 (1.8-fold), Src kinase (1.7-fold), protein kinase B (1.3-fold) or C (1.6-fold). Histological analysis of hearts revealed that the inability of leptin to activate STAT3 in LepRdb/db and LepRS1138 mice was associated with reduced cardiac angiogenesis as well as increased apoptosis and fibrosis. Our findings suggest that hearts from obese mice

  13. Sphingosine 1-phosphate receptor activation enhances BMP-2-induced osteoblast differentiation

    International Nuclear Information System (INIS)

    Sato, Chieri; Iwasaki, Tsuyoshi; Kitano, Sachie; Tsunemi, Sachi; Sano, Hajime

    2012-01-01

    Highlights: ► We investigated the role of S1P signaling for osteoblast differentiation. ► Both S1P and FTY enhanced BMP-2-stimulated osteoblast differentiation by C2C12 cells. ► S1P signaling enhanced BMP-2-stimulated Smad and ERK phosphorylation by C2C12 cells. ► MEK/ERK signaling is a pathway underlying S1P signaling for osteoblast differentiation. -- Abstract: We previously demonstrated that sphingosine 1-phosphate (S1P) receptor-mediated signaling induced proliferation and prostaglandin productions by synovial cells from rheumatoid arthritis (RA) patients. In the present study we investigated the role of S1P receptor-mediated signaling for osteoblast differentiation. We investigated osteoblast differentiation using C2C12 myoblasts, a cell line derived from murine satellite cells. Osteoblast differentiation was induced by the treatment of bone morphogenic protein (BMP)-2 in the presence or absence of either S1P or FTY720 (FTY), a high-affinity agonist of S1P receptors. Osteoblast differentiation was determined by osteoblast-specific transcription factor, Runx2 mRNA expression, alkaline phosphatase (ALP) activity and osteocalcin production by the cells. Smad1/5/8 and extracellular signal-regulated kinase (ERK) 1/2 phosphorylation was examined by Western blotting. Osteocalcin production by C2C12 cells were determined by ELISA. Runx2 expression and ALP activity by BMP-2-stimulated C2C12 cells were enhanced by addition of either S1P or FTY. Both S1P and FTY enhanced BMP-2-induced ERK1/2 and Smad1/5/8 phosphorylation. The effect of FTY was stronger than that of S1P. S1P receptor-mediated signaling on osteoblast differentiation was inhibited by addition of mitogen-activated protein kinase/ERK kinase (MEK) 1/2 inhibitor, indicating that the S1P receptor-mediated MEK1/2-ERK1/2 signaling pathway enhanced BMP-2-Smad signaling. These results indicate that S1P receptor-mediated signaling plays a crucial role for osteoblast differentiation.

  14. The role of aryl hydrocarbon receptor signaling pathway in cardiotoxicity of acute lead intoxication in vivo and in vitro rat model.

    Science.gov (United States)

    Ansari, Mushtaq A; Maayah, Zaid H; Bakheet, Saleh A; El-Kadi, Ayman O; Korashy, Hesham M

    2013-04-05

    Lead (Pb(2+)) is a naturally occurring systemic toxicant heavy metal that affects several organs in the body including the kidneys, liver, and central nervous system. However, Pb(2+)-induced cardiotoxicity has never been investigated yet and the exact mechanism of Pb(2+) associated cardiotoxicity has not been studied. The current study was designed to investigate the potential effect of Pb(2+) to induce cardiotoxicity in vivo and in vitro rat model and to explore the molecular mechanisms and the role of aryl hydrocarbon receptor (AhR) and regulated gene, cytochrome P4501A1 (CYP1A1), in Pb(2+)-mediated cardiotoxicity. For these purposes, Wistar albino rats were treated with Pb(2+) (25, 50 and 100mg/kg, i.p.) for three days and the effects on physiological and histopathological parameters of cardiotoxicity were determined. At the in vitro level, rat cardiomyocyte H9c2 cell lines were incubated with increasing concentration of Pb(2+) (25, 50, and 100 μM) and the expression of hypertrophic genes, α- and β-myosin heavy chain (α-MHC and β-MHC), brain Natriuretic Peptide (BNP), and CYP1A1 were determined at the mRNA and protein levels using real-time PCR and Western blot analysis, respectively. The results showed that Pb(2+) significantly induced cardiotoxicity and heart failure as evidenced by increase cardiac enzymes, lactate dehydrogenase and creatine kinase and changes in histopathology in vivo. In addition, Pb(2+) treatment induced β-MHC and BNP whereas inhibited α-MHC mRNA and protein levels in vivo in a dose-dependent manner. In contrast, at the in vitro level, Pb(2+) treatment induced both β-MHC and α-MHC mRNA levels in time- and dose-dependent manner. Importantly, these changes were accompanied with a proportional increase in the expression of CYP1A1 mRNA and protein expression levels, suggesting a role for the CYP1A1 in cardiotoxicity. The direct evidence for the involvement of CYP1A1 in the induction of cardiotoxicity by Pb(2+) was evidenced by the

  15. Role of desensitization and subunit expression for kainate receptor-mediated neurotoxicity in murine neocortical cultures

    DEFF Research Database (Denmark)

    Jensen, J B; Schousboe, A; Pickering, D S

    1999-01-01

    ) toxicity mediated by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors, and (3) toxicity that can be mediated by kainate receptors when desensitization of the receptors is blocked. The indirect action at NMDA receptors was discovered because (5R, 10S)-(+)-5-methyl-10,11-dihydro-5H...... nedioxy-5H-2,3-benzodiazepine (GYKI 53655), a selective AMPA receptor antagonist, abolished the remaining toxicity. These results indicated that kainate- and domoate-mediated toxicity involves both the NMDA and the AMPA receptors. Pretreatment of the cultures with concanavalin A to prevent desensitization...

  16. Structure of the EGF receptor transactivation circuit integrates multiple signals with cell context

    Energy Technology Data Exchange (ETDEWEB)

    Joslin, Elizabeth J.; Shankaran, Harish; Opresko, Lee K.; Bollinger, Nikki; Lauffenburger, Douglas A.; Wiley, H. S.

    2010-05-10

    Transactivation of the epidermal growth factor receptor (EGFR) has been proposed to be a mechanism by which a variety of cellular inputs can be integrated into a single signaling pathway, but the regulatory topology of this important system is unclear. To understand the transactivation circuit, we first created a “non-binding” reporter for ligand shedding. We then quantitatively defined how signals from multiple agonists were integrated both upstream and downstream of the EGFR into the extracellular signal regulated kinase (ERK) cascade in human mammary epithelial cells. We found that transactivation is mediated by a recursive autocrine circuit where ligand shedding drives EGFR-stimulated ERK that in turn drives further ligand shedding. The time from shedding to ERK activation is fast (<5 min) whereas the recursive feedback is slow (>15 min). Simulations showed that this delay in positive feedback greatly enhanced system stability and robustness. Our results indicate that the transactivation circuit is constructed so that the magnitude of ERK signaling is governed by the sum of multiple direct inputs, while recursive, autocrine ligand shedding controls signal duration.

  17. Receptor density balances signal stimulation and attenuation in membrane-assembled complexes of bacterial chemotaxis signaling proteins

    Science.gov (United States)

    Besschetnova, Tatiana Y.; Montefusco, David J.; Asinas, Abdalin E.; Shrout, Anthony L.; Antommattei, Frances M.; Weis, Robert M.

    2008-01-01

    All cells possess transmembrane signaling systems that function in the environment of the lipid bilayer. In the Escherichia coli chemotaxis pathway, the binding of attractants to a two-dimensional array of receptors and signaling proteins simultaneously inhibits an associated kinase and stimulates receptor methylation—a slower process that restores kinase activity. These two opposing effects lead to robust adaptation toward stimuli through a physical mechanism that is not understood. Here, we provide evidence of a counterbalancing influence exerted by receptor density on kinase stimulation and receptor methylation. Receptor signaling complexes were reconstituted over a range of defined surface concentrations by using a template-directed assembly method, and the kinase and receptor methylation activities were measured. Kinase activity and methylation rates were both found to vary significantly with surface concentration—yet in opposite ways: samples prepared at high surface densities stimulated kinase activity more effectively than low-density samples, whereas lower surface densities produced greater methylation rates than higher densities. FRET experiments demonstrated that the cooperative change in kinase activity coincided with a change in the arrangement of the membrane-associated receptor domains. The counterbalancing influence of density on receptor methylation and kinase stimulation leads naturally to a model for signal regulation that is compatible with the known logic of the E. coli pathway. Density-dependent mechanisms are likely to be general and may operate when two or more membrane-related processes are influenced differently by the two-dimensional concentration of pathway elements. PMID:18711126

  18. Activation of the sympathetic nervous system mediates hypophagic and anxiety-like effects of CB₁ receptor blockade.

    Science.gov (United States)

    Bellocchio, Luigi; Soria-Gómez, Edgar; Quarta, Carmelo; Metna-Laurent, Mathilde; Cardinal, Pierre; Binder, Elke; Cannich, Astrid; Delamarre, Anna; Häring, Martin; Martín-Fontecha, Mar; Vega, David; Leste-Lasserre, Thierry; Bartsch, Dusan; Monory, Krisztina; Lutz, Beat; Chaouloff, Francis; Pagotto, Uberto; Guzman, Manuel; Cota, Daniela; Marsicano, Giovanni

    2013-03-19

    Complex interactions between periphery and the brain regulate food intake in mammals. Cannabinoid type-1 (CB1) receptor antagonists are potent hypophagic agents, but the sites where this acute action is exerted and the underlying mechanisms are not fully elucidated. To dissect the mechanisms underlying the hypophagic effect of CB1 receptor blockade, we combined the acute injection of the CB1 receptor antagonist rimonabant with the use of conditional CB1-knockout mice, as well as with pharmacological modulation of different central and peripheral circuits. Fasting/refeeding experiments revealed that CB1 receptor signaling in many specific brain neurons is dispensable for the acute hypophagic effects of rimonabant. CB1 receptor antagonist-induced hypophagia was fully abolished by peripheral blockade of β-adrenergic transmission, suggesting that this effect is mediated by increased activity of the sympathetic nervous system. Consistently, we found that rimonabant increases gastrointestinal metabolism via increased peripheral β-adrenergic receptor signaling in peripheral organs, including the gastrointestinal tract. Blockade of both visceral afferents and glutamatergic transmission in the nucleus tractus solitarii abolished rimonabant-induced hypophagia. Importantly, these mechanisms were specifically triggered by lipid-deprivation, revealing a nutrient-specific component acutely regulated by CB1 receptor blockade. Finally, peripheral blockade of sympathetic neurotransmission also blunted central effects of CB1 receptor blockade, such as fear responses and anxiety-like behaviors. These data demonstrate that, independently of their site of origin, important effects of CB1 receptor blockade are expressed via activation of peripheral sympathetic activity. Thus, CB1 receptors modulate bidirectional circuits between the periphery and the brain to regulate feeding and other behaviors.

  19. Phytomonitoring and phytoremediation of agrochemicals and related compounds based on recombinant cytochrome P450s and aryl hydrocarbon receptors (AhRs).

    Science.gov (United States)

    Shimazu, Sayuri; Inui, Hideyuki; Ohkawa, Hideo

    2011-04-13

    Molecular mechanisms of metabolism and modes of actions of agrochemicals and related compounds are important for understanding selective toxicity, biodegradability, and monitoring of biological effects on nontarget organisms. It is well-known that in mammals, cytochrome P450 (P450 or CYP) monooxygenases metabolize lipophilic foreign compounds. These P450 species are inducible, and both CYP1A1 and CYP1A2 are induced by aryl hydrocarbon receptor (AhR) combined with a ligand. Gene engineering of P450 and NADPH cytochrome P450 oxidoreductase (P450 reductase) was established for bioconversion. Also, gene modification of AhRs was developed for recombinant AhR-mediated β-glucronidase (GUS) reporter assay of AhR ligands. Recombinant P450 genes were transformed into plants for phytoremediation, and recombinant AhR-mediated GUS reporter gene expression systems were each transformed into plants for phytomonitoring. Transgenic rice plants carrying CYP2B6 metabolized the herbicide metolachlor and remarkably reduced the residues in the plants and soils under paddy field conditions. Transgenic Arabidopsis plants carrying recombinant guinea pig (g) AhR-mediated GUS reporter genes detected PCB126 at the level of 10 ng/g soils in the presence of biosurfactants MEL-B. Both phytomonitoring and phytoremediation plants were each evaluated from the standpoint of practical uses.

  20. Receptor activity modifying proteins (RAMPs) interact with the VPAC1 receptor: evidence for differential RAMP modulation of multiple signalling pathways

    International Nuclear Information System (INIS)

    Christopoulos, G.; Morfis, M.; Sexton, P.M.; Christopoulos, A.; Laburthe, M.; Couvineau, A.

    2001-01-01

    Full text: Receptor activity modifying proteins (RAMP) constitute a family of three accessory proteins that affect the expression and/or phenotype of the calcitonin receptor (CTR) or CTR-like receptor (CRLR). In this study we screened a range of class II G protein-coupled receptors (PTH1, PTH2, GHRH, VPAC1, VPAC2 receptors) for possible RAMP interactions by measurement of receptor-induced translocation of c-myc tagged RAMP1 or HA tagged RAMP3. Of these, only the VPAC1 receptor caused significant translocation of c-myc-RAMP1 or HA-RAMP3 to the cell surface. Co-transfection of VPAC1 and RAMPs did not alter 125 I-VIP binding and specificity. VPAC1 receptor function was subsequently analyzed through parallel determinations of cAMP accumulation and phosphoinositide (PI) hydrolysis in the presence and absence of each of the three RAMPs. In contrast to CTR-RAMP interaction, where there was an increase in cAMP Pharmacologisand a decrease in PI hydrolysis, VPAC1-RAMP interaction was characterized by a specific increase in agonist-mediated PI hydrolysis when co-transfected with RAMP2. This change was due to an enhancement of Emax with no change in EC 50 value for VIP. No significant change in cAMP accumulation was observed. This is the first demonstration of an interaction of RAMPs with a G protein-coupled receptor outside the CTR family and may suggest a more generalized role for RAMPs in modulating G protein-coupled receptor signaling. Copyright (2001) Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists

  1. Ionotropic NMDA and P2X1/5 receptors mediate synaptically induced Ca2+ signalling in cortical astrocytes

    Czech Academy of Sciences Publication Activity Database

    Palygin, O.; Lalo, U.; Verkhratsky, Alexei; Pankratov, Y.

    2010-01-01

    Roč. 48, č. 4 (2010), s. 225-231 ISSN 0143-4160 R&D Projects: GA ČR GA305/08/1384 Institutional research plan: CEZ:AV0Z50390703 Keywords : Astroglia * Ca2+ signalling * NMDA receptors Subject RIV: FH - Neurology Impact factor: 3.553, year: 2010

  2. Hypoxia attenuates inflammatory mediators production induced by Acanthamoeba via Toll-like receptor 4 signaling in human corneal epithelial cells

    International Nuclear Information System (INIS)

    Pan, Hong; Wu, Xinyi

    2012-01-01

    Highlights: ► Hypoxia attenuates Acanthamoeba-induced the production of IL-8 and IFN-β. ► Hypoxia inhibits TLR4 expression in a time-dependent manner in HCECs. ► Hypoxia inhibits Acanthamoeba-induced the activation of NF-κB and ERK1/2 in HCECs. ► Hypoxia decreases Acanthamoeba-induced inflammatory response via TLR4 signaling. ► LPS-induced the secretion of IL-6 and IL-8 is abated by hypoxia via TLR4 signaling. -- Abstract: Acanthamoeba keratitis (AK) is a vision-threatening corneal infection that is intimately associated with contact lens use which leads to hypoxic conditions on the corneal surface. However, the effect of hypoxia on the Acanthamoeba-induced host inflammatory response of corneal epithelial cells has not been studied. In the present study, we investigated the effect of hypoxia on the Acanthamoeba-induced production of inflammatory mediators interleukin-8 (IL-8) and interferon-β (IFN-β) in human corneal epithelial cells and then evaluated its effects on the Toll-like receptor 4 (TLR4) signaling, including TLR4 and myeloid differentiation primary response gene (88) (MyD88) expression as well as the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and extracellular signal-regulated kinases 1/2 (ERK1/2). We then studied the effect of hypoxia on a TLR4-specific inflammatory response triggered by the TLR4 ligand lipopolysaccharide (LPS). Our data showed that hypoxia significantly decreased the production of IL-8 and IFN-β. Furthermore, hypoxia attenuated Acanthamoeba-triggered TLR4 expression as well as the activation of NF-κB and ERK1/2, indicating that hypoxia abated Acanthamoeba-induced inflammatory responses by affecting TLR4 signaling. Hypoxia also inhibited LPS-induced IL-6 and IL-8 secretion, myeloid differentiation primary response gene (88) MyD88 expression and NF-κB activation, confirming that hypoxia suppressed the LPS-induced inflammatory response by affecting TLR4 signaling. In conclusion

  3. Phosphorylation inhibits DNA-binding of alternatively spliced aryl hydrocarbon receptor nuclear translocator

    International Nuclear Information System (INIS)

    Kewley, Robyn J.; Whitelaw, Murray L.

    2005-01-01

    The basic helix-loop-helix/PER-ARNT-SIM homology (bHLH/PAS) transcription factor ARNT (aryl hydrocarbon receptor nuclear translocator) is a key component of various pathways which induce the transcription of cytochrome P450 and hypoxia response genes. ARNT can be alternatively spliced to express Alt ARNT, containing an additional 15 amino acids immediately N-terminal to the DNA-binding basic region. Here, we show that ARNT and Alt ARNT proteins are differentially phosphorylated by protein kinase CKII in vitro. Phosphorylation had an inhibitory effect on DNA-binding to an E-box probe by Alt ARNT, but not ARNT, homodimers. This inhibitory phosphorylation occurs through Ser77. Moreover, a point mutant, Alt ARNT S77A, shows increased activity on an E-box reporter gene, consistent with Ser77 being a regulatory site in vivo. In contrast, DNA binding by an Alt ARNT/dioxin receptor heterodimer to the xenobiotic response element is not inhibited by phosphorylation with CKII, nor does Alt ARNT S77A behave differently from wild type Alt ARNT in the context of a dioxin receptor heterodimer

  4. In brown adipocytes, adrenergically induced β{sub 1}-/β{sub 3}-(G{sub s})-, α{sub 2}-(G{sub i})- and α{sub 1}-(G{sub q})-signalling to Erk1/2 activation is not mediated via EGF receptor transactivation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yanling; Fälting, Johanna M.; Mattsson, Charlotte L.; Holmström, Therése E.; Nedergaard, Jan, E-mail: jan@metabol.su.se

    2013-10-15

    Brown adipose tissue is unusual in that the neurotransmitter norepinephrine influences cell destiny in ways generally associated with effects of classical growth factors: regulation of cell proliferation, of apoptosis, and progression of differentiation. The norepinephrine effects are mediated through G-protein-coupled receptors; further mediation of such stimulation to e.g. Erk1/2 activation is in cell biology in general accepted to occur through transactivation of the EGF receptor (by external or internal pathways). We have examined here the significance of such transactivation in brown adipocytes. Stimulation of mature brown adipocytes with cirazoline (α{sub 1}-adrenoceptor coupled via G{sub q}), clonidine (α{sub 2} via G{sub i}) or CL316243 (β{sub 3} via G{sub s}) or via β{sub 1}-receptors significantly activated Erk1/2. Pretreatment with the EGF receptor kinase inhibitor AG1478 had, remarkably, no significant effect on Erk1/2 activation induced by any of these adrenergic agonists (although it fully abolished EGF-induced Erk1/2 activation), demonstrating absence of EGF receptor-mediated transactivation. Results with brown preadipocytes (cells in more proliferative states) were not qualitatively different. Joint stimulation of all adrenoceptors with norepinephrine did not result in synergism on Erk1/2 activation. AG1478 action on EGF-stimulated Erk1/2 phosphorylation showed a sharp concentration–response relationship (IC{sub 50} 0.3 µM); a minor apparent effect of AG1478 on norepinephrine-stimulated Erk1/2 phosphorylation showed nonspecific kinetics, implying caution in interpretation of partial effects of AG1478 as reported in other systems. Transactivation of the EGF receptor is clearly not a universal prerequisite for coupling of G-protein coupled receptors to Erk1/2 signalling cascades. - Highlights: • In brown adipocytes, norepinephrine regulates proliferation, apoptosis, differentiation. • EGF receptor transactivation is supposed to mediate GPCR

  5. Distinct signaling mechanisms in multiple developmental pathways by the SCRAMBLED receptor of Arabidopsis.

    Science.gov (United States)

    Kwak, Su-Hwan; Woo, Sooah; Lee, Myeong Min; Schiefelbein, John

    2014-10-01

    SCRAMBLED (SCM), a leucine-rich repeat receptor-like kinase in Arabidopsis (Arabidopsis thaliana), is required for positional signaling in the root epidermis and for tissue/organ development in the shoot. To further understand SCM action, we generated a series of kinase domain variants and analyzed their ability to complement scm mutant defects. We found that the SCM kinase domain, but not kinase activity, is required for its role in root epidermal patterning, supporting the view that SCM is an atypical receptor kinase. We also describe a previously uncharacterized role for SCM in fruit dehiscence, because mature siliques from scm mutants fail to open properly. Interestingly, the kinase domain of SCM appears to be dispensable for this developmental process. Furthermore, we found that most of the SCM kinase domain mutations dramatically inhibit inflorescence development. Because this process is not affected in scm null mutants, it is likely that SCM acts redundantly to regulate inflorescence size. The importance of distinct kinase residues for these three developmental processes provides an explanation for the maintenance of the conserved kinase domain in the SCM protein, and it may generally explain its conservation in other atypical kinases. Furthermore, these results indicate that individual leucine-rich repeat receptor-like kinases may participate in multiple pathways using distinct signaling mechanisms to mediate diverse cellular communication events. © 2014 American Society of Plant Biologists. All Rights Reserved.

  6. Investigating altered nitric oxide signalling as an up-stream mediator of the antidepressant action of ketamine

    DEFF Research Database (Denmark)

    Liebenberg, N.; Muller, H. K.; Elfving, B.

    2012-01-01

    Background and Aim: Stress-induced excessive glutamate transmission at N-methyl-D-aspartate (NMDA) receptors may underlie a major mechanism in the pathophysiology that leads to depression, while ketamine, an NMDA receptor antagonist, has been shown to induce a rapid antidepressant effect in depre......Background and Aim: Stress-induced excessive glutamate transmission at N-methyl-D-aspartate (NMDA) receptors may underlie a major mechanism in the pathophysiology that leads to depression, while ketamine, an NMDA receptor antagonist, has been shown to induce a rapid antidepressant effect...... in depressed patients following a single intravenous administration that is sustained for (plus or minus) 7 days. A number of downstream cellular mechanisms appear to mediate the antidepressant action of ketamine, and the majority of evidence point to a rapid activation of protein translation leading...... to and activated by NMDA receptors, while the uncoupling of the nNOS-NMDA receptor complex prevents NMDA-induced excitotoxicity. Thus, it is possible that the inhibition of nitric oxide (NO) signalling underlies a key upstream mechanism in the antidepressant action of ketamine. Methods: We used a genetic rat model...

  7. Somatostatin receptor-mediated imaging and therapy: basic science, current knowledge, limitations and future perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Breeman, W.A.P.; Jong, M. de; Kwekkeboom, D.J.; Valkema, R.; Bakker, W.H.; Kooij, P.P.M. [Dept. of Nuclear Medicine, Erasmus Medical Centre Rotterdam (Netherlands); Visser, T.J. [Dept. of Internal Medicine, Erasmus Medical Centre Rotterdam (Netherlands); Krenning, E.P. [Dept. of Nuclear Medicine, Erasmus Medical Centre Rotterdam (Netherlands); Dept. of Internal Medicine, Erasmus Medical Centre Rotterdam (Netherlands)

    2001-09-01

    In vivo somatostatin receptor-mediated scintigraphy has proven to be a valuable method for the visualisation of neuroendocrine tumours and their metastases. A new application is the use of radiolabelled analogues for somatostatin receptor-mediated therapy. This paper presents a review on the basic science, historical background and current knowledge of somatostatin receptor subtypes and their expression in neuroendocrine tumours. New somatostatin analogues, new chelators, ''new'' radionuclides and combinations thereof are also discussed. Due attention is given to limitations and future perspectives of somatostatin receptor-mediated imaging and therapy. (orig.)

  8. Somatostatin receptor-mediated imaging and therapy: basic science, current knowledge, limitations and future perspectives

    International Nuclear Information System (INIS)

    Breeman, W.A.P.; Jong, M. de; Kwekkeboom, D.J.; Valkema, R.; Bakker, W.H.; Kooij, P.P.M.; Visser, T.J.; Krenning, E.P.

    2001-01-01

    In vivo somatostatin receptor-mediated scintigraphy has proven to be a valuable method for the visualisation of neuroendocrine tumours and their metastases. A new application is the use of radiolabelled analogues for somatostatin receptor-mediated therapy. This paper presents a review on the basic science, historical background and current knowledge of somatostatin receptor subtypes and their expression in neuroendocrine tumours. New somatostatin analogues, new chelators, ''new'' radionuclides and combinations thereof are also discussed. Due attention is given to limitations and future perspectives of somatostatin receptor-mediated imaging and therapy. (orig.)

  9. Analysis of Human TAAR8 and Murine Taar8b Mediated Signaling Pathways and Expression Profile

    Directory of Open Access Journals (Sweden)

    Jessica Mühlhaus

    2014-11-01

    Full Text Available The thyroid hormone derivative 3-iodothyronamine (3-T1AM exerts metabolic effects in vivo that contradict known effects of thyroid hormones. 3-T1AM acts as a trace amine-associated receptor 1 (TAAR1 agonist and activates Gs signaling in vitro. Interestingly, 3-T1AM-meditated in vivo effects persist in Taar1 knockout-mice indicating that further targets of 3-T1AM might exist. Here, we investigated another member of the TAAR family, the only scarcely studied mouse and human trace-amine-associated receptor 8 (Taar8b, TAAR8. By RT-qPCR and locked-nucleic-acid (LNA in situ hybridization, Taar8b expression in different mouse tissues was analyzed. Functionally, we characterized TAAR8 and Taar8b with regard to cell surface expression and signaling via different G-protein-mediated pathways. Cell surface expression was verified by ELISA, and cAMP accumulation was quantified by AlphaScreen for detection of Gs and/or Gi/o signaling. Activation of G-proteins Gq/11 and G12/13 was analyzed by reporter gene assays. Expression analyses revealed at most marginal Taar8b expression and no gender differences for almost all analyzed tissues. In heart, LNA-in situ hybridization demonstrated the absence of Taar8b expression. We could not identify 3-T1AM as a ligand for TAAR8 and Taar8b, but both receptors were characterized by a basal Gi/o signaling activity, a so far unknown signaling pathway for TAARs.

  10. G Protein-Coupled Receptor-G-Protein βγ-Subunit Signaling Mediates Renal Dysfunction and Fibrosis in Heart Failure.

    Science.gov (United States)

    Kamal, Fadia A; Travers, Joshua G; Schafer, Allison E; Ma, Qing; Devarajan, Prasad; Blaxall, Burns C

    2017-01-01

    Development of CKD secondary to chronic heart failure (CHF), known as cardiorenal syndrome type 2 (CRS2), clinically associates with organ failure and reduced survival. Heart and kidney damage in CRS2 results predominantly from chronic stimulation of G protein-coupled receptors (GPCRs), including adrenergic and endothelin (ET) receptors, after elevated neurohormonal signaling of the sympathetic nervous system and the downstream ET system, respectively. Although we and others have shown that chronic GPCR stimulation and the consequent upregulated interaction between the G-protein βγ-subunit (Gβγ), GPCR-kinase 2, and β-arrestin are central to various cardiovascular diseases, the role of such alterations in kidney diseases remains largely unknown. We investigated the possible salutary effect of renal GPCR-Gβγ inhibition in CKD developed in a clinically relevant murine model of nonischemic hypertrophic CHF, transverse aortic constriction (TAC). By 12 weeks after TAC, mice developed CKD secondary to CHF associated with elevated renal GPCR-Gβγ signaling and ET system expression. Notably, systemic pharmacologic Gβγ inhibition by gallein, which we previously showed alleviates CHF in this model, attenuated these pathologic renal changes. To investigate a direct effect of gallein on the kidney, we used a bilateral ischemia-reperfusion AKI mouse model, in which gallein attenuated renal dysfunction, tissue damage, fibrosis, inflammation, and ET system activation. Furthermore, in vitro studies showed a key role for ET receptor-Gβγ signaling in pathologic fibroblast activation. Overall, our data support a direct role for GPCR-Gβγ in AKI and suggest GPCR-Gβγ inhibition as a novel therapeutic approach for treating CRS2 and AKI. Copyright © 2016 by the American Society of Nephrology.

  11. Atrial natriuretic factor receptor guanylate cyclase, ANF-RGC, transduces two independent signals, ANF and Ca2+

    Directory of Open Access Journals (Sweden)

    Teresa eDuda

    2014-03-01

    Full Text Available Atrial natriuretic factor receptor guanylate cyclase, ANF-RGC, was the first discovered member of the mammalian membrane guanylate cyclase family. The hallmark feature of the family is that a single protein contains both the site for recognition of the regulatory signal and the ability to transduce it into the production of the second messenger, cyclic GMP. For over two decades, the family has been classified into two subfamilies, the hormone receptor subfamily with ANF-RGC being its paramount member, and the Ca2+ modulated subfamily, which includes the rod outer segment guanylate cyclases, ROS-GC1 and 2, and the olfactory neuroepithelial guanylate cyclase, ONE-GC. ANF-RGC is the receptor and the signal transducer of the most hypotensive hormones, atrial natriuretic factor (ANF and B-type natriuretic peptide (BNP. After binding these hormones at the extracellular domain it, at its intracellular domain, signals activation of the C-terminal catalytic module and accelerates the production of cyclic GMP. Cyclic GMP then serves the second messenger role in biological responses of ANF and BNP such as natriuresis, diuresis, vasorelaxation and anti-proliferation. Very recently another modus operandi for ANF-RGC was revealed. Its crux is that ANF-RGC activity is also regulated by Ca2+. The Ca2+ sensor neurocalcin  mediates this signaling mechanism. Strikingly, the Ca2+ and ANF signaling mechanisms employ separate structural motifs of ANF-RGC in modulating its core catalytic domain in accelerating the production of cyclic GMP. In this review the biochemistry and physiology of these mechanisms with emphasis on cardiovascular regulation will be discussed.

  12. Angiotensin-II-induced Muscle Wasting is Mediated by 25-Hydroxycholesterol via GSK3β Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Congcong Shen

    2017-02-01

    Full Text Available While angiotensin II (ang II has been implicated in the pathogenesis of cardiac cachexia (CC, the molecules that mediate ang II's wasting effect have not been identified. It is known TNF-α level is increased in patients with CC, and TNF-α release is triggered by ang II. We therefore hypothesized that ang II induced muscle wasting is mediated by TNF-α. Ang II infusion led to skeletal muscle wasting in wild type (WT but not in TNF alpha type 1 receptor knockout (TNFR1KO mice, suggesting that ang II induced muscle loss is mediated by TNF-α through its type 1 receptor. Microarray analysis identified cholesterol 25-hydroxylase (Ch25h as the down stream target of TNF-α. Intraperitoneal injection of 25-hydroxycholesterol (25-OHC, the product of Ch25h, resulted in muscle loss in C57BL/6 mice, accompanied by increased expression of atrogin-1, MuRF1 and suppression of IGF-1/Akt signaling pathway. The identification of 25-OHC as an inducer of muscle wasting has implications for the development of specific treatment strategies in preventing muscle loss.

  13. Receptor-mediated endocytosis of polypeptide hormones is a regulated process: inhibition of [125I]iodoinsulin internalization in hypoinsulinemic diabetes of rat and man

    International Nuclear Information System (INIS)

    Carpentier, J.L.; Robert, A.; Grunberger, G.; van Obberghen, E.; Freychet, P.; Orci, L.; Gorden, P.

    1986-01-01

    Much data suggest that receptor-mediated endocytosis is regulated in states of hormone excess. Thus, in hyperinsulinemic states there is an accelerated loss of cell surface insulin receptors. In the present experiments we addressed this question in hypoinsulinemic states, in which insulin binding to cell surface receptors is generally increased. In hepatocytes obtained from hypoinsulinemic streptozotocin-induced diabetic rats, [ 125 I]iodoglucagon internalization was increased, while at the same time [ 125 I]iodoinsulin internalization was decreased. The defect in [ 125 I]iodoinsulin internalization was corrected by insulin treatment of the animal. In peripheral blood monocytes from patients with type I insulinopenic diabetes, internalization of [ 125 I]iodoinsulin was impaired; this defect was not present in insulin-treated patients. These data in the hypoinsulinemic rat and human diabetes suggest that receptor-mediated endocytosis is regulated in states of insulin deficiency as well as insulin excess. Delayed or reduced internalization of the insulin-receptor complex could amplify the muted signal caused by deficient hormone secretion

  14. Characterisation of Signalling by the Endogenous GPER1 (GPR30 Receptor in an Embryonic Mouse Hippocampal Cell Line (mHippoE-18.

    Directory of Open Access Journals (Sweden)

    Nicholas J Evans

    Full Text Available Estrogen can modulate neuronal development and signalling by both genomic and non-genomic pathways. Many of its rapid, non-genomic effects on nervous tissue have been suggested to be mediated via the activation of the estrogen sensitive G-protein coupled receptor (GPER1 or GPR30. There has been much controversy over the cellular location, signalling properties and endogenous activators of GPER1. Here we describe the pharmacology and signalling properties of GPER1 in an immortalized embryonic hippocampal cell line, mHippoE-18. This cell line does not suffer from the inherent problems associated with the study of this receptor in native tissue or the problems associated with heterologously expression in clonal cell lines. In mHippoE-18 cells, 17β-Estradiol can mediate a dose-dependent rapid potentiation of forskolin-stimulated cyclic AMP levels but does not appear to activate the ERK1/2 pathway. The effect of 17β-Estradiol can be mimicked by the GPER1 agonist, G1, and also by tamoxifen and ICI 182,780 which activate GPER1 in a variety of other preparations. The response is not mimicked by the application of the classical estrogen receptor agonists, PPT, (an ERα agonist or DPN, (an ERβ agonist, further suggesting that this effect of 17β-Estradiol is mediated through the activation of GPER1. However, after exposure of the cells to the GPER1 specific antagonists, G15 and G36, the stimulatory effects of the above agonists are replaced by dose-dependent inhibitions of forskolin-stimulated cyclic AMP levels. This inhibitory effect is mimicked by aldosterone in a dose-dependent way even in the absence of the GPER1 antagonists. The results are discussed in terms of possible "Biased Antagonism" whereby the antagonists change the conformation of the receptor resulting in changes in the agonist induced coupling of the receptor to different second messenger pathways.

  15. Assays of dioxins and dioxin-like compounds in actually contaminated soils using transgenic tobacco plants carrying a recombinant mouse aryl hydrocarbon receptor-mediated β-glucuronidase reporter gene expression system.

    Science.gov (United States)

    Inui, Hideyuki; Gion, Keiko; Utani, Yasushi; Wakai, Taketo; Kodama, Susumu; Eun, Heesoo; Kim, Yun-Seok; Ohkawa, Hideo

    2012-01-01

    The transgenic tobacco plant XD4V-26 carrying the recombinant mouse aryl hydrocarbon receptor XD4V-mediated β-glucuronidase (GUS) reporter gene expression system was used for assay of dioxins and dioxin-like compounds consisting of polychlorinated dibenzeno-p-dioxins, polychlorinated dibenzofurans, and coplanar polychlorinated biphenyls (Co-PCBs) in actually contaminated soils. The transgenic tobacco plant XD4V-26 showed a significant dose-dependent induced GUS activity when cultured on MS medium containing PCB126 [toxic equivalency factor (TEF) = 0.1]. In contrast, PCB169 and PCB180, which have 0.03 of TEF and unassigned TEF values, respectively, did not significantly induce GUS activity under the same conditions as with PCB126. When the tobacco plants were cultivated for up to 5 weeks on actually contaminated soils with dioxins and dioxin-like compounds collected from the periphery of an incinerator used for disposal of residential and industrial wastes, GUS activity in the leaves was dose-dependently increased. The plants clearly detected 360 pg-TEQ g(-1) of dioxins and dioxin-like compounds in this assay. There was a positive correlation between GUS activity and TEQ value of dioxins and dioxin-like compounds in the plants. This assay does not require any extraction and purification processes for the actually contaminated soil samples.

  16. Functionally biased signalling properties of 7TM receptors - opportunities for drug development for the ghrelin receptor

    DEFF Research Database (Denmark)

    Sivertsen, B; Holliday, N; Madsen, A N

    2013-01-01

    UNLABELLED: The ghrelin receptor is a 7 transmembrane (7TM) receptor involved in a variety of physiological functions including growth hormone secretion, increased food intake and fat accumulation as well as modulation of reward and cognitive functions. Because of its important role in metabolism...... and energy expenditure, the ghrelin receptor has become an important therapeutic target for drug design and the development of anti-obesity compounds. However, none of the compounds developed so far have been approved for commercial use. Interestingly, the ghrelin receptor is able to signal through several...... review, we have described how ligands and mutations in the 7TM receptor may bias the receptors to favour either one G-protein over another or to promote G-protein independent signalling pathways rather than G-protein-dependent pathways. For the ghrelin receptor, both agonist and inverse agonists have...

  17. The insulin receptor substrate-1-related 4PS substrate but not the interleukin-2R gamma chain is involved in interleukin-13-mediated signal transduction.

    Science.gov (United States)

    Wang, L M; Michieli, P; Lie, W R; Liu, F; Lee, C C; Minty, A; Sun, X J; Levine, A; White, M F; Pierce, J H

    1995-12-01

    Interleukin-13 (IL-13) induced a potent mitogenic response in IL-3-dependent TF-1 cells and DNA synthesis to a lesser extent in MO7E and FDC-P1 cells. IL-13 stimulation of these lines, like IL-4 and insulin-like growth factor-1 (IGF-1), resulted in tyrosine phosphorylation of a 170-kD substrate. The tyrosine-phosphorylated 170-kD substrate strongly associated with the 85-kD subunit of phosphoinositol-3 (PI-3) kinase and with Grb-2. Anti-4PS serum readily detected the 170-kD substrate in lysates from both TF-1 and FDC-P1 cells stimulated with IL-13 or IL-4. These data provide evidence that IL-13 induces tyrosine phosphorylation of the 4PS substrate, providing an essential interface between the IL-13 receptor and signaling molecules containing SH2 domains. IL-13 and IL-4 stimulation of murine L cell fibroblasts, which endogenously express the IL-4 receptor (IL-4R alpha) and lack expression of the IL-2 receptor gamma subunit (IL-2R gamma), resulted in tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1)/4PS. Enhanced tyrosine phosphorylation of IRS-1/4PS was observed in response to IL-4, but not IL-13 treatment of L cells transfected with the IL-2R gamma chain. These results indicate that IL-13 does not use the IL-2R gamma subunit in its receptor complex and that expression of IL-2R gamma enhances, but is not absolutely required for mediating IL-4-induced tyrosine phosphorylation of IRS-1/4PS.

  18. Ubiquitylation of an internalized killer cell Ig-like receptor by Triad3A disrupts sustained NF-κB signaling.

    Science.gov (United States)

    Miah, S M Shahjahan; Purdy, Amanda K; Rodin, Nicholas B; MacFarlane, Alexander W; Oshinsky, Jennifer; Alvarez-Arias, Diana A; Campbell, Kerry S

    2011-03-01

    Killer cell Ig-like receptor (KIR) with two Ig-like domains and a long cytoplasmic domain 4 (2DL4; CD158d) is a unique KIR expressed on human NK cells, which stimulates cytokine production, but mechanisms regulating its expression and function are poorly understood. By yeast two-hybrid screening, we identified the E3 ubiquitin ligase, Triad3A, as an interaction partner for the 2DL4 cytoplasmic domain. The protein interaction was confirmed in vivo, and Triad3A expression induced polyubiquitylation and degradation of 2DL4. Overexpression of Triad3A selectively abrogated the cytokine-producing function of 2DL4, whereas Triad3A short hairpin RNA reversed ubiquitylation and restored cytokine production. Expression of Triad3A in an NK cell line did not affect receptor surface expression, internalization, or early signaling, but significantly reduced receptor turnover and suppressed sustained NF-κB activation. 2DL4 endocytosis was found to be vital to stimulate cytokine production, and Triad3A expression diminished localization of internalized receptor in early endosomes. Our results reveal a critical role for endocytosed 2DL4 receptor to generate sustained NF-κB signaling and drive cytokine production. We conclude that Triad3A is a key negative regulator of sustained 2DL4-mediated NF-κB signaling from internalized 2DL4, which functions by promoting ubiquitylation and degradation of endocytosed receptor from early endosomes.

  19. Retinoid receptor signaling and autophagy in acute promyelocytic leukemia

    International Nuclear Information System (INIS)

    Orfali, Nina; McKenna, Sharon L.; Cahill, Mary R.; Gudas, Lorraine J.; Mongan, Nigel P.

    2014-01-01

    Retinoids are a family of signaling molecules derived from vitamin A with well established roles in cellular differentiation. Physiologically active retinoids mediate transcriptional effects on cells through interactions with retinoic acid (RARs) and retinoid-X (RXR) receptors. Chromosomal translocations involving the RARα gene, which lead to impaired retinoid signaling, are implicated in acute promyelocytic leukemia (APL). All-trans-retinoic acid (ATRA), alone and in combination with arsenic trioxide (ATO), restores differentiation in APL cells and promotes degradation of the abnormal oncogenic fusion protein through several proteolytic mechanisms. RARα fusion-protein elimination is emerging as critical to obtaining sustained remission and long-term cure in APL. Autophagy is a degradative cellular pathway involved in protein turnover. Both ATRA and ATO also induce autophagy in APL cells. Enhancing autophagy may therefore be of therapeutic benefit in resistant APL and could broaden the application of differentiation therapy to other cancers. Here we discuss retinoid signaling in hematopoiesis, leukemogenesis, and APL treatment. We highlight autophagy as a potential important regulator in anti-leukemic strategies. - Highlights: • Normal and aberrant retinoid signaling in hematopoiesis and leukemia is reviewed. • We suggest a novel role for RARα in the development of X-RARα gene fusions in APL. • ATRA therapy in APL activates transcription and promotes onco-protein degradation. • Autophagy may be involved in both onco-protein degradation and differentiation. • Pharmacologic autophagy induction may potentiate ATRA's therapeutic effects

  20. Retinoid receptor signaling and autophagy in acute promyelocytic leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Orfali, Nina [Cork Cancer Research Center, University College Cork, Cork (Ireland); Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA. (United States); McKenna, Sharon L. [Cork Cancer Research Center, University College Cork, Cork (Ireland); Cahill, Mary R. [Department of Hematology, Cork University Hospital, Cork (Ireland); Gudas, Lorraine J., E-mail: ljgudas@med.cornell.edu [Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA. (United States); Mongan, Nigel P., E-mail: nigel.mongan@nottingham.ac.uk [Faculty of Medicine and Health Science, School of Veterinary Medicine and Science, University of Nottingham, LE12 5RD (United Kingdom); Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA. (United States)

    2014-05-15

    Retinoids are a family of signaling molecules derived from vitamin A with well established roles in cellular differentiation. Physiologically active retinoids mediate transcriptional effects on cells through interactions with retinoic acid (RARs) and retinoid-X (RXR) receptors. Chromosomal translocations involving the RARα gene, which lead to impaired retinoid signaling, are implicated in acute promyelocytic leukemia (APL). All-trans-retinoic acid (ATRA), alone and in combination with arsenic trioxide (ATO), restores differentiation in APL cells and promotes degradation of the abnormal oncogenic fusion protein through several proteolytic mechanisms. RARα fusion-protein elimination is emerging as critical to obtaining sustained remission and long-term cure in APL. Autophagy is a degradative cellular pathway involved in protein turnover. Both ATRA and ATO also induce autophagy in APL cells. Enhancing autophagy may therefore be of therapeutic benefit in resistant APL and could broaden the application of differentiation therapy to other cancers. Here we discuss retinoid signaling in hematopoiesis, leukemogenesis, and APL treatment. We highlight autophagy as a potential important regulator in anti-leukemic strategies. - Highlights: • Normal and aberrant retinoid signaling in hematopoiesis and leukemia is reviewed. • We suggest a novel role for RARα in the development of X-RARα gene fusions in APL. • ATRA therapy in APL activates transcription and promotes onco-protein degradation. • Autophagy may be involved in both onco-protein degradation and differentiation. • Pharmacologic autophagy induction may potentiate ATRA's therapeutic effects.

  1. G protein-coupled receptor 91 signaling in diabetic retinopathy and hypoxic retinal diseases.

    Science.gov (United States)

    Hu, Jianyan; Li, Tingting; Du, Xinhua; Wu, Qiang; Le, Yun-Zheng

    2017-10-01

    G protein-coupled receptor 91 (GPR91) is a succinate-specific receptor and activation of GPR91 could initiate a complex signal transduction cascade and upregulate inflammatory and pro-angiogenic cytokines. In the retina, GPR91 is predominately expressed in ganglion cells, a major cellular entity involved in the pathogenesis of diabetic retinopathy (DR) and other hypoxic retinal diseases. During the development of DR and retinopathy of prematurity (ROP), chronic hypoxia causes an increase in the levels of local succinate. Succinate-mediated GPR91 activation upregulates vascular endothelial growth factor (VEGF) through ERK1/2-C/EBP β (c-Fos) and/or ERK1/2-COX-2/PGE2 signaling pathways, which in turn, leads to the breakdown of blood-retina barriers in these disorders. In this review, we will have a brief introduction of GPR91 and its biological functions and a more detailed discussion about the role and mechanisms of GPR91 in DR and ROP. A better understanding of GPR91 regulation may be of great significance in identifying new biomarkers and drug targets for the prediction and treatment of DR, ROP, and hypoxic retinal diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Autonomous and nonautonomous regulation of axis formation by antagonistic signaling via 7-span cAMP receptors and GSK3 in Dictyostelium.

    Science.gov (United States)

    Ginsburg, G T; Kimmel, A R

    1997-08-15

    Early during Dictyostelium development a fundamental cell-fate decision establishes the anteroposterior (prestalk/prespore) axis. Signaling via the 7-transmembrane cAMP receptor CAR4 is essential for creating and maintaining a normal pattern; car4-null alleles have decreased levels of prestalk-specific mRNAs but enhanced expression of prespore genes. car4- cells produce all of the signals required for prestalk differentiation but lack an extracellular factor necessary for prespore differentiation of wild-type cells. This secreted factor decreases the sensitivity of prespore cells to inhibition by the prestalk morphogen DIF-1. At the cell autonomous level, CAR4 is linked to intracellular circuits that activate prestalk but inhibit prespore differentiation. The autonomous action of CAR4 is antagonistic to the positive intracellular signals mediated by another cAMP receptor, CAR1 and/or CAR3. Additional data indicate that these CAR-mediated pathways converge at the serine/threonine protein kinase GSK3, suggesting that the anterior (prestalk)/posterior (prespore) axis of Dictyostelium is regulated by an ancient mechanism that is shared by the Wnt/Fz circuits for dorsoventral patterning during early Xenopus development and establishing Drosophila segment polarity.

  3. Clathrin-dependent internalization of the angiotensin II AT₁A receptor links receptor internalization to COX-2 protein expression in rat aortic vascular smooth muscle cells.

    Science.gov (United States)

    Morinelli, Thomas A; Walker, Linda P; Velez, Juan Carlos Q; Ullian, Michael E

    2015-02-05

    The major effects of Angiotensin II (AngII) in vascular tissue are mediated by AngII AT1A receptor activation. Certain effects initiated by AT1A receptor activation require receptor internalization. In rat aortic vascular smooth muscle cells (RASMC), AngII stimulates cyclooxygenase 2 protein expression. We have previously shown this is mediated by β-arrestin-dependent receptor internalization and NF-κB activation. In this study, a specific inhibitor of clathrin-mediated endocytosis (CME), pitstop-2, was used to test the hypothesis that clathrin-dependent internalization of activated AT1A receptor mediates NF-κB activation and subsequent cyclooxygenase 2 expression. Radioligand binding assays, real time qt-PCR and immunoblotting were used to document the effects of pitstop-2 on AngII binding and signaling in RASMC. Laser scanning confocal microscopy (LSCM) was used to image pitstop-2׳s effects on AT1 receptor/GFP internalization in HEK-293 cells and p65 NF-κB nuclear localization in RASMC. Pitstop-2 significantly inhibited internalization of AT1A receptor (44.7% ± 3.1% Control vs. 13.2% ± 8.3% Pitstop-2; n=3) as determined by radioligand binding studies in RASMC. Studies utilizing AT1A receptor/GFP expressed in HEK 293 cells and LSCM confirmed these findings. Pitstop-2 significantly inhibited AngII-induced p65 NF-κB phosphorylation and nuclear localization, COX-2 message and protein expression in RASMC without altering activation of p42/44 ERK or TNFα signaling. Pitstop-2, a specific inhibitor of clathrin-mediated endocytosis, confirms that internalization of activated AT1A receptor mediates AngII activation of cyclooxygenase 2 expression in RASMC. These data provide support for additional intracellular signaling pathways activated through β-arrestin mediated internalization of G protein-coupled receptors, such as AT1A receptors. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. SMRT repression of nuclear receptors controls the adipogenic set point and metabolic homeostasis

    NARCIS (Netherlands)

    Nofsinger, Russell R.; Li, Pingping; Hong, Suk-Hyun; Jonker, Johan W.; Barish, Grant D.; Ying, Hao; Cheng, Sheue-Yann; LeBlanc, Mathias; Xu, Wei; Pei, Liming; Kang, Yeon-Joo; Nelson, Michael; Downes, Michael; Yu, Ruth T.; Olefsky, Jerrold M.; Lee, Chih-Hao; Evans, Ronald M.

    2008-01-01

    The nuclear receptor corepressor, silencing mediator of retinoid and thyroid hormone receptors (SMRT), is recruited by a plethora of transcription factors to mediate lineage and signal-dependent transcriptional repression. We generated a knockin mutation in the receptor interaction domain (RID) of

  5. Electroacupuncture improves cerebral blood flow and attenuates moderate ischemic injury via Angiotensin II its receptors-mediated mechanism in rats.

    Science.gov (United States)

    Li, Jing; He, Jiaojun; Du, Yuanhao; Cui, Jingjun; Ma, Ying; Zhang, Xuezhu

    2014-11-11

    To investigate the effects and potential mechanism of electroacupuncture intervention on expressions of Angiotensin II and its receptors-mediated signaling pathway in experimentally induced cerebral ischemia. Totally 126 male Wistar rats were randomly divided into control group, model group and EA group. The latter two were further divided into ten subgroups (n = 6) following Middle Cerebral Artery Occlusion (MCAO). Changes in regional cerebral blood flow (rCBF) and expressions of Angiotensin II and its receptors (AT1R, AT2R), as well as effector proteins in phosphatidyl inositol signal pathway were monitored before and at different times after MCAO. MCAO-induced decline of ipsilateral rCBF was partially suppressed by electroacupuncture, and contralateral blood flow was also superior to that of model group. Angiotensin II level was remarkably elevated immediately after MCAO, while electroacupuncture group exhibited significantly lower levels at 1 to 3 h and the value was significantly increased thereafter. The enhanced expression of AT1R was partially inhibited by electroacupuncture, while increased AT2R level was further induced. Electroacupuncture stimulation attenuated and postponed the upregulated-expressions of Gq and CaM these upregulations. ELISA results showed sharply increased expressions of DAG and IP3, which were remarkably neutralized by electroacupuncture. MCAO induced significant increases in expression of Angiotensin II and its receptor-mediated signal pathway. These enhanced expressions were significantly attenuated by electroacupuncture intervention, followed by reduced vasoconstriction and improved blood supply in ischemic region, and ultimately conferred beneficial effects on cerebral ischemia.

  6. In vivo characterization of high Basal signaling from the ghrelin receptor

    DEFF Research Database (Denmark)

    Petersen, Pia Steen; Woldbye, David P D; Madsen, Andreas Nygaard

    2009-01-01

    The receptor for the orexigenic peptide, ghrelin, is one of the most constitutively active 7TM receptors known, as demonstrated under in vitro conditions. Change in expression of a constitutively active receptor is associated with change in signaling independent of the endogenous ligand. In the f......The receptor for the orexigenic peptide, ghrelin, is one of the most constitutively active 7TM receptors known, as demonstrated under in vitro conditions. Change in expression of a constitutively active receptor is associated with change in signaling independent of the endogenous ligand....... In the following study, we found that the expression of the ghrelin receptor in the hypothalamus was up-regulated approximately 2-fold in rats both during 48-h fasting and by streptozotocin-induced hyperphagia. In a separate experiment, to probe for the effect of the high basal signaling of the ghrelin receptor...... in vivo, we used intracerebroventricular administration by osmotic pumps of a peptide [D-Arg(1), D-Phe(5), D-Trp(7,9), Leu(11)]-substance P. This peptide selectively displays inverse agonism at the ghrelin receptor as compared with an inactive control peptide with just a single amino acid substitution...

  7. Matrix-immobilized BMP-2 on microcontact printed fibronectin as in vitro tool to study BMP-mediated signaling and cell migration

    Directory of Open Access Journals (Sweden)

    Kristin eHauff

    2015-05-01

    Full Text Available During development, bone morphogenetic proteins (BMPs exert important functions in several tissues by regulating signaling for cell differentiation and migration. In vivo the extracellular matrix (ECM not only provides a support for adherent cells, but also presents a reservoir of growth factors (GFs. Several constituents of the ECM provide adhesive cues, which serve as binding sites for cell transmembrane receptors, such as integrins, which convey adhesion-mediated signaling to the intracellular compartment. Integrins do not function alone but rather crosstalk and cooperate with other receptors, such as GF receptors, in regulating cell responses to extracellular signals. To this, we present here the immobilization of BMP-2 onto cellular fibronectin (cFN, a key protein of the ECM, to investigate their impact on GF-mediated signaling and migration.Following biotinylation, BMP-2 was linked to biotinylated cFN using NeutrAvidin (NA as cross-linker. Characterization with QCM-D and ELISA confirmed the efficient immobilization of BMP-2 on cFN over a period of 24 h.To validate the bioactivity of matrix-immobilized BMP-2 (iBMP-2 we investigated short- and long-term responses of C2C12 myoblasts in comparison to soluble BMP-2 (sBMP-2 or in absence of GFs. Similarly to sBMP-2, iBMP-2 triggered Smad 1/5 phosphorylation and translocation into the nucleus corresponding to the activation of BMP-mediated Smad-dependent pathway. Additionally, successful suppression of myotube formation was observed after six days.We next implemented this approach to fabricate cFN micro patterned stripes by soft lithography. These stripes only allowed cell-surface interaction on the pattern due to passivation of the surface in between, thus serving as platform for studies on directed cell migration. During a 10 h-period, cells showed an increased migratory activity upon BMP-2 exposure.Thus, this versatile tool retains the GF's bioactivity and allows the presentation of ECM

  8. Functional Genomic investigation of Peroxisome Proliferator-Activated Receptor Gamma (PPARG mediated transcription response in gastric cancer

    Directory of Open Access Journals (Sweden)

    Karthikeyan Selvarasu

    2017-10-01

    Full Text Available Cancer is a complex and progressive multi-step disorder that results from the transformation of normal cells to malignant derivatives. Several oncogenic signaling pathways are involved in this transformation. PPARG (Peroxisome proliferator-activated receptor gamma mediated transcription and signaling is involved in few cancers. We have investigated the PPARG in gastric tumors. The objective of the present study was to investigate the PPARG mediated transcriptional response in gastric tumors. Gene-set based and pathway focused gene-set enrichment analysis of available PPARG signatures in gastric tumor mRNA profiles shows that PPARG mediated transcription is highly activated in intestinal sub-type of gastric tumors. Further, we have derived the PPARG associated genes in gastric cancer and their expression was identified for the association with the better survival of the patients. Analysis of the PPARG associated genes reveals their involvement in mitotic cell cycle process, chromosome organization and nuclear division. Towards identifying the association with other oncogenic signaling process, E2F regulated genes were found associated with PPARG mediated transcription. The current results reveal the possible stratification of gastric tumors based on the PPARG gene expression and the possible development of PPARG targeted gastric cancer therapeutics. The identified PPARG regulated genes were identified to be targetable by pioglitazone and rosiglitazone. The identification of PPARG genes also in the normal stomach tissues reveal the possible involvement of these genes in the normal physiology of stomach and needs to be investigated.

  9. The SRC homology 2 domain of Rin1 mediates its binding to the epidermal growth factor receptor and regulates receptor endocytosis.

    Science.gov (United States)

    Barbieri, M Alejandro; Kong, Chen; Chen, Pin-I; Horazdovsky, Bruce F; Stahl, Philip D

    2003-08-22

    Activated epidermal growth factor receptors (EGFRs) recruit intracellular proteins that mediate receptor signaling and endocytic trafficking. Rin1, a multifunctional protein, has been shown to regulate EGFR internalization (1). Here we show that EGF stimulation induces a specific, rapid, and transient membrane recruitment of Rin1 and that recruitment is dependent on the Src homology 2 (SH2) domain of Rin1. Immunoprecipitation of EGFR is accompanied by co-immunoprecipitation of Rin1 in a time- and ligand-dependent manner. Association of Rin1 and specifically the SH2 domain of Rin1 with the EGFR was dependent on tyrosine phosphorylation of the intracellular domain of the EGFR. The recruitment of Rin1, observed by light microscopy, indicated that although initially cytosolic, Rin1 was recruited to both plasma membrane and endosomes following EGF addition. Moreover, the expression of the SH2 domain of Rin1 substantially impaired the internalization of EGF without affecting internalization of transferrin. Finally, we found that Rin1 co-immunoprecipitated with a number of tyrosine kinase receptors but not with cargo endocytic receptors. These results indicate that Rin1 provides a link via its SH2 domain between activated tyrosine kinase receptors and the endocytic pathway through the recruitment and activation of Rab5a.

  10. Williams syndrome transcription factor (WSTF) acts as an activator of estrogen receptor signaling in breast cancer cells and the effect can be abrogated by 1α,25-dihydroxyvitamin D3

    DEFF Research Database (Denmark)

    Lundqvist, Johan; Kirkegaard, Tove; Laenkholm, Anne Vibeke

    2018-01-01

    A majority of estrogen receptor positive (ER+) breast cancers are growth stimulated by estrogens. The ability to inhibit the ER signaling pathway is therefore of critical importance in the current treatment of ER+ breast cancers. It has been reported that 1α,25-dihydroxyvitamin D3 down......-regulates the expression of the CYP19A1 gene, encoding the aromatase enzyme that catalyzes the synthesis of estradiol. Furthermore, 1α,25-dihydroxyvitamin D3 has also been reported to down-regulate the expression of estrogen receptor α (ERα), the main mediator of ER signaling.This study reports a novel transcription...... factor critical to 1α,25-dihydroxyvitamin D3-mediated regulation of estrogenic signaling in MCF-7 breast cancer cells. We have investigated the molecular mechanisms for the 1α,25-dihydroxyvitamin D3-mediated down-regulation of CYP19A1 and ERα gene expression in human MCF-7 breast cancer cells and found...

  11. Activation of the sympathetic nervous system mediates hypophagic and anxiety-like effects of CB1 receptor blockade

    Science.gov (United States)

    Bellocchio, Luigi; Soria-Gómez, Edgar; Quarta, Carmelo; Metna-Laurent, Mathilde; Cardinal, Pierre; Binder, Elke; Cannich, Astrid; Delamarre, Anna; Häring, Martin; Martín-Fontecha, Mar; Vega, David; Leste-Lasserre, Thierry; Bartsch, Dusan; Monory, Krisztina; Lutz, Beat; Chaouloff, Francis; Pagotto, Uberto; Guzman, Manuel; Cota, Daniela; Marsicano, Giovanni

    2013-01-01

    Complex interactions between periphery and the brain regulate food intake in mammals. Cannabinoid type-1 (CB1) receptor antagonists are potent hypophagic agents, but the sites where this acute action is exerted and the underlying mechanisms are not fully elucidated. To dissect the mechanisms underlying the hypophagic effect of CB1 receptor blockade, we combined the acute injection of the CB1 receptor antagonist rimonabant with the use of conditional CB1-knockout mice, as well as with pharmacological modulation of different central and peripheral circuits. Fasting/refeeding experiments revealed that CB1 receptor signaling in many specific brain neurons is dispensable for the acute hypophagic effects of rimonabant. CB1 receptor antagonist-induced hypophagia was fully abolished by peripheral blockade of β-adrenergic transmission, suggesting that this effect is mediated by increased activity of the sympathetic nervous system. Consistently, we found that rimonabant increases gastrointestinal metabolism via increased peripheral β-adrenergic receptor signaling in peripheral organs, including the gastrointestinal tract. Blockade of both visceral afferents and glutamatergic transmission in the nucleus tractus solitarii abolished rimonabant-induced hypophagia. Importantly, these mechanisms were specifically triggered by lipid-deprivation, revealing a nutrient-specific component acutely regulated by CB1 receptor blockade. Finally, peripheral blockade of sympathetic neurotransmission also blunted central effects of CB1 receptor blockade, such as fear responses and anxiety-like behaviors. These data demonstrate that, independently of their site of origin, important effects of CB1 receptor blockade are expressed via activation of peripheral sympathetic activity. Thus, CB1 receptors modulate bidirectional circuits between the periphery and the brain to regulate feeding and other behaviors. PMID:23487769

  12. Protein kinase C alpha controls erythropoietin receptor signaling.

    NARCIS (Netherlands)

    M.M. von Lindern (Marieke); M. Parren-Van Amelsvoort (Martine); T.B. van Dijk (Thamar); E. Deiner; B. Löwenberg (Bob); E. van den Akker (Emile); S. van Emst-de Vries (Sjenet); P.J. Willems (Patrick); H. Beug (Hartmut)

    2000-01-01

    textabstractProtein kinase C (PKC) is implied in the activation of multiple targets of erythropoietin (Epo) signaling, but its exact role in Epo receptor (EpoR) signal transduction and in the regulation of erythroid proliferation and differentiation remained elusive. We

  13. p75 Neurotrophin Receptor Cleavage by α- and γ-Secretases Is Required for Neurotrophin-mediated Proliferation of Brain Tumor-initiating Cells*

    Science.gov (United States)

    Forsyth, Peter A.; Krishna, Niveditha; Lawn, Samuel; Valadez, J. Gerardo; Qu, Xiaotao; Fenstermacher, David A.; Fournier, Michelle; Potthast, Lisa; Chinnaiyan, Prakash; Gibney, Geoffrey T.; Zeinieh, Michele; Barker, Philip A.; Carter, Bruce D.; Cooper, Michael K.; Kenchappa, Rajappa S.

    2014-01-01

    Malignant gliomas are highly invasive, proliferative, and resistant to treatment. Previously, we have shown that p75 neurotrophin receptor (p75NTR) is a novel mediator of invasion of human glioma cells. However, the role of p75NTR in glioma proliferation is unknown. Here we used brain tumor-initiating cells (BTICs) and show that BTICs express neurotrophin receptors (p75NTR, TrkA, TrkB, and TrkC) and their ligands (NGF, brain-derived neurotrophic factor, and neurotrophin 3) and secrete NGF. Down-regulation of p75NTR significantly decreased proliferation of BTICs. Conversely, exogenouous NGF stimulated BTIC proliferation through α- and γ-secretase-mediated p75NTR cleavage and release of its intracellular domain (ICD). In contrast, overexpression of the p75NTR ICD induced proliferation. Interestingly, inhibition of Trk signaling blocked NGF-stimulated BTIC proliferation and p75NTR cleavage, indicating a role of Trk in p75NTR signaling. Further, blocking p75NTR cleavage attenuated Akt activation in BTICs, suggesting role of Akt in p75NTR-mediated proliferation. We also found that p75NTR, α-secretases, and the four subunits of the γ-secretase enzyme were elevated in glioblastoma multiformes patients. Importantly, the ICD of p75NTR was commonly found in malignant glioma patient specimens, suggesting that the receptor is activated and cleaved in patient tumors. These results suggest that p75NTR proteolysis is required for BTIC proliferation and is a novel potential clinical target. PMID:24519935

  14. p75 neurotrophin receptor cleavage by α- and γ-secretases is required for neurotrophin-mediated proliferation of brain tumor-initiating cells.

    Science.gov (United States)

    Forsyth, Peter A; Krishna, Niveditha; Lawn, Samuel; Valadez, J Gerardo; Qu, Xiaotao; Fenstermacher, David A; Fournier, Michelle; Potthast, Lisa; Chinnaiyan, Prakash; Gibney, Geoffrey T; Zeinieh, Michele; Barker, Philip A; Carter, Bruce D; Cooper, Michael K; Kenchappa, Rajappa S

    2014-03-21

    Malignant gliomas are highly invasive, proliferative, and resistant to treatment. Previously, we have shown that p75 neurotrophin receptor (p75NTR) is a novel mediator of invasion of human glioma cells. However, the role of p75NTR in glioma proliferation is unknown. Here we used brain tumor-initiating cells (BTICs) and show that BTICs express neurotrophin receptors (p75NTR, TrkA, TrkB, and TrkC) and their ligands (NGF, brain-derived neurotrophic factor, and neurotrophin 3) and secrete NGF. Down-regulation of p75NTR significantly decreased proliferation of BTICs. Conversely, exogenouous NGF stimulated BTIC proliferation through α- and γ-secretase-mediated p75NTR cleavage and release of its intracellular domain (ICD). In contrast, overexpression of the p75NTR ICD induced proliferation. Interestingly, inhibition of Trk signaling blocked NGF-stimulated BTIC proliferation and p75NTR cleavage, indicating a role of Trk in p75NTR signaling. Further, blocking p75NTR cleavage attenuated Akt activation in BTICs, suggesting role of Akt in p75NTR-mediated proliferation. We also found that p75NTR, α-secretases, and the four subunits of the γ-secretase enzyme were elevated in glioblastoma multiformes patients. Importantly, the ICD of p75NTR was commonly found in malignant glioma patient specimens, suggesting that the receptor is activated and cleaved in patient tumors. These results suggest that p75NTR proteolysis is required for BTIC proliferation and is a novel potential clinical target.

  15. Selectivity and specificity of sphingosine-1-phosphate receptor ligands: caveats and critical thinking in characterizing receptor-mediated effects.

    Science.gov (United States)

    Salomone, Salvatore; Waeber, Christian

    2011-01-01

    Receptors for sphingosine-1-phosphate (S1P) have been identified only recently. Their medicinal chemistry is therefore still in its infancy, and few selective agonists or antagonists are available. Furthermore, the selectivity of S1P receptor agonists or antagonists is not well established. JTE-013 and BML-241 (also known as CAY10444), used extensively as specific S1P(2) and S1P(3) receptors antagonists respectively, are cases in point. When analyzing S1P-induced vasoconstriction in mouse basilar artery, we observed that JTE-013 inhibited not only the effect of S1P, but also the effect of U46619, endothelin-1 or high KCl; JTE-013 strongly inhibited responses to S1P in S1P(2) receptor knockout mice. Similarly, BML-241 has been shown to inhibit increases in intracellular Ca(2+) concentration via P(2) receptor or α(1A)-adrenoceptor stimulation and α(1A)-adrenoceptor-mediated contraction of rat mesenteric artery, while it did not affect S1P(3)-mediated decrease of forskolin-induced cyclic AMP accumulation. Another putative S1P(1/3) receptor antagonist, VPC23019, does not inhibit S1P(3)-mediated vasoconstriction. With these examples in mind, we discuss caveats about relying on available pharmacological tools to characterize receptor subtypes.

  16. Selectivity and specificity of sphingosine-1-phosphate receptor ligands: caveats and critical thinking in characterizing receptor-mediated effects

    Directory of Open Access Journals (Sweden)

    Christian eWaeber

    2011-02-01

    Full Text Available Receptors for sphingosine-1-phosphate (S1P have been identified only recently. Their medicinal chemistry is therefore still in its infancy, and few selective agonists or antagonists are available. Furthermore, the selectivity of S1P receptor agonists or antagonists is not well established. JTE-013 and BML-241 (also known as CAY10444, used extensively as specific S1P2 and S1P3 receptors antagonists respectively, are cases in point. When analyzing S1P-induced vasoconstriction in mouse basilar artery, we observed that JTE-013 inhibited not only the effect of S1P, but also the effect of U46619, endothelin-1 or high KCl; JTE-013 strongly inhibited responses to S1P in S1P2 receptor knockout mice. Similarly, BML-241 has been shown to inhibit increases in intracellular Ca2+ concentration via P2 receptor or α1A-adrenoceptor stimulation and α1A-adrenoceptor-mediated contraction of rat mesenteric artery, while it did not affect S1P3-mediated decrease of forskolin-induced cyclic AMP accumulation. Another putative S1P1/3 receptor antagonist, VPC23019, does not inhibit S1P3-mediated vasoconstriction. With these examples in mind, we discuss caveats about relying on available pharmacological tools to characterize receptor subtypes.

  17. Signal Transduction of Sphingosine-1-Phosphate G Protein—Coupled Receptors

    Directory of Open Access Journals (Sweden)

    Nicholas Young

    2006-01-01

    Full Text Available Sphingosine-1-phosphate (S1P is a bioactive lipid capable of eliciting dramatic effects in a variety of cell types. Signaling by this molecule is by a family of five G protein—coupled receptors named S1P1–5 that signal through a variety of pathways to regulate cell proliferation, migration, cytoskeletal organization, and differentiation. These receptors are expressed in a wide variety of tissues and cell types, and their cellular effects contribute to important biological and pathological functions of S1P in many processes, including angiogenesis, vascular development, lymphocyte trafficking, and cancer. This review will focus on the current progress in the field of S1P receptor signaling and biology.

  18. Modulation of BCR Signaling by the Induced Dimerization of Receptor-Associated SYK

    Directory of Open Access Journals (Sweden)

    Mark L. Westbroek

    2017-12-01

    Full Text Available Clustering of the B cell antigen receptor (BCR by polyvalent antigens is transmitted through the SYK tyrosine kinase to the activation of multiple intracellular pathways that determine the physiological consequences of receptor engagement. To explore factors that modulate the quantity and quality of signals sent by the crosslinked BCR, we developed a novel chemical mediator of dimerization to induce clustering of receptor-associated SYK. To accomplish this, we fused SYK with E. coli dihydrofolate reductase (eDHFR, which binds the small molecule trimethoprim (TMP with high affinity and selectivity and synthesized a dimer of TMP with a flexible linker. The TMP dimer is able to induce the aggregation of eDHFR-linked SYK in live cells. The induced dimerization of SYK bound to the BCR differentially regulates the activation of downstream transcription factors, promoting the activation of Nuclear Factor of Activated T cells (NFAT without affecting the activation of NFκB. The dimerization of SYK enhances the duration but not the amplitude of calcium mobilization by enhancing the extent and duration of its interaction with the crosslinked BCR at the plasma membrane.

  19. Sphingosine 1-phosphate receptor activation enhances BMP-2-induced osteoblast differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Chieri [Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501 (Japan); Iwasaki, Tsuyoshi, E-mail: tsuyo-i@huhs.ac.jp [Division of Pharmacotherapy, Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, 1-3-6 Minatojima, Chuo-ku, Kobe 650-8530 (Japan); Kitano, Sachie; Tsunemi, Sachi; Sano, Hajime [Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501 (Japan)

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer We investigated the role of S1P signaling for osteoblast differentiation. Black-Right-Pointing-Pointer Both S1P and FTY enhanced BMP-2-stimulated osteoblast differentiation by C2C12 cells. Black-Right-Pointing-Pointer S1P signaling enhanced BMP-2-stimulated Smad and ERK phosphorylation by C2C12 cells. Black-Right-Pointing-Pointer MEK/ERK signaling is a pathway underlying S1P signaling for osteoblast differentiation. -- Abstract: We previously demonstrated that sphingosine 1-phosphate (S1P) receptor-mediated signaling induced proliferation and prostaglandin productions by synovial cells from rheumatoid arthritis (RA) patients. In the present study we investigated the role of S1P receptor-mediated signaling for osteoblast differentiation. We investigated osteoblast differentiation using C2C12 myoblasts, a cell line derived from murine satellite cells. Osteoblast differentiation was induced by the treatment of bone morphogenic protein (BMP)-2 in the presence or absence of either S1P or FTY720 (FTY), a high-affinity agonist of S1P receptors. Osteoblast differentiation was determined by osteoblast-specific transcription factor, Runx2 mRNA expression, alkaline phosphatase (ALP) activity and osteocalcin production by the cells. Smad1/5/8 and extracellular signal-regulated kinase (ERK) 1/2 phosphorylation was examined by Western blotting. Osteocalcin production by C2C12 cells were determined by ELISA. Runx2 expression and ALP activity by BMP-2-stimulated C2C12 cells were enhanced by addition of either S1P or FTY. Both S1P and FTY enhanced BMP-2-induced ERK1/2 and Smad1/5/8 phosphorylation. The effect of FTY was stronger than that of S1P. S1P receptor-mediated signaling on osteoblast differentiation was inhibited by addition of mitogen-activated protein kinase/ERK kinase (MEK) 1/2 inhibitor, indicating that the S1P receptor-mediated MEK1/2-ERK1/2 signaling pathway enhanced BMP-2-Smad signaling. These results indicate that S1P

  20. Microglia P2Y13 Receptors Prevent Astrocyte Proliferation Mediated by P2Y1 Receptors

    Directory of Open Access Journals (Sweden)

    Clara Quintas

    2018-05-01

    Full Text Available Cerebral inflammation is a common feature of several neurodegenerative diseases that requires a fine interplay between astrocytes and microglia to acquire appropriate phenotypes for an efficient response to neuronal damage. During brain inflammation, ATP is massively released into the extracellular medium and converted into ADP. Both nucleotides acting on P2 receptors, modulate astrogliosis through mechanisms involving microglia-astrocytes communication. In previous studies, primary cultures of astrocytes and co-cultures of astrocytes and microglia were used to investigate the influence of microglia on astroglial proliferation induced by ADPβS, a stable ADP analog. In astrocyte cultures, ADPβS increased cell proliferation through activation of P2Y1 and P2Y12 receptors, an effect abolished in co-cultures (of astrocytes with ∼12.5% microglia. The possibility that the loss of the ADPβS-mediated effect could have been caused by a microglia-induced degradation of ADPβS or by a preferential microglial localization of P2Y1 or P2Y12 receptors was excluded. Since ADPβS also activates P2Y13 receptors, the contribution of microglial P2Y13 receptors to prevent the proliferative effect of ADPβS in co-cultures was investigated. The results obtained indicate that P2Y13 receptors are low expressed in astrocytes and mainly expressed in microglia. Furthermore, in co-cultures, ADPβS induced astroglial proliferation in the presence of the selective P2Y13 antagonist MRS 2211 (3 μM and of the selective P2Y12 antagonist AR-C66096 (0.1 μM, suggesting that activation of microglial P2Y12 and P2Y13 receptors may induce the release of messengers that inhibit astroglial proliferation mediated by P2Y1,12 receptors. In this microglia-astrocyte paracrine communication, P2Y12 receptors exert opposite effects in astroglial proliferation as a result of its cellular localization: cooperating in astrocytes with P2Y1 receptors to directly stimulate proliferation and in