WorldWideScience

Sample records for hydrocarbon radicals isolated

  1. THERMOCHEMISTRY OF HYDROCARBON RADICALS

    Energy Technology Data Exchange (ETDEWEB)

    Kent M. Ervin, Principal Investigator

    2004-08-17

    Gas phase negative ion chemistry methods are employed to determine enthalpies of formation of hydrocarbon radicals that are important in combustion processes and to investigate the dynamics of ion-molecule reactions. Using guided ion beam tandem mass spectrometry, we measure collisional threshold energies of endoergic proton transfer and hydrogen atom transfer reactions of hydrocarbon molecules with negative reagent ions. The measured reaction threshold energies for proton transfer yield the relative gas phase acidities. In an alternative methodology, competitive collision-induced dissociation of proton-bound ion-molecule complexes provides accurate gas phase acidities relative to a reference acid. Combined with the electron affinity of the R {center_dot} radical, the gas phase acidity yields the RH bond dissociation energy of the corresponding neutral molecule, or equivalently the enthalpy of formation of the R{center_dot} organic radical, using equation: D(R-H) = {Delta}{sub acid}H(RH) + EA(R) - IE(H). The threshold energy for hydrogen abstraction from a hydrocarbon molecule yields its hydrogen atom affinity relative to the reagent anion, providing the RH bond dissociation energy directly. Electronic structure calculations are used to evaluate the possibility of potential energy barriers or dynamical constrictions along the reaction path, and as input for RRKM and phase space theory calculations. In newer experiments, we have measured the product velocity distributions to obtain additional information on the energetics and dynamics of the reactions.

  2. Laser spectroscopy of hydrocarbon radicals

    Energy Technology Data Exchange (ETDEWEB)

    Chen, P. [Harvard Univ., Cambridge, MA (United States)

    1993-12-01

    The author reports the application of supersonic jet flash pyrolysis to the specific preparation of a range of organic radicals, biradicals, and carbenes in a skimmed molecular beam. Each species was produced cleanly and specifically, with little or no secondary reactions by the thermal dissociation of appropriately designed and synthesized organic precursors. Photoelectron spectra of the three isomeric C{sub 3}H{sub 2} carbenes, ortho-benzyne, and the {alpha},3-dehydrotoluene biradical, were used to establish adiabatic ionization potentials for use in thermochemical determinations.

  3. Hydrocarbon radical thermochemistry: Gas-phase ion chemistry techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ervin, Kent M. [Univ. of Nevada, Reno, NV (United States)

    2014-03-21

    Final Scientific/Technical Report for the project "Hydrocarbon Radical Thermochemistry: Gas-Phase Ion Chemistry Techniques." The objective of this project is to exploit gas-phase ion chemistry techniques for determination of thermochemical values for neutral hydrocarbon radicals of importance in combustion kinetics.

  4. Ultrafast studies on the photophysics of matrix-isolated radical cations of polycyclic aromatic hydrocarbons: implications for the Diffuse Interstellar Bands (DIB) problem

    CERN Document Server

    Zhao, L; Shkrob, I A; Crowell, R A; Pommeret, S; Chronister, E L; Liu, A D; Trifunac, A D; Zhao, Liang; Lian, Rui; Shkrob, Ilya A.; Crowell, Robert A.; Pommeret, Stanislas; Chronister, Eric L.; Liu, An Dong; Trifunac, Alexander D.

    2004-01-01

    Rapid, efficient deactivation of the photoexcited PAH cations accounts for their remarkable photostability and have important implications for astrochemistry, as these cations are the leading candidates for the species responsible for the diffuse interstellar bands (DIB) observed throughout the Galaxy.Ultrafast relaxation dynamics for photoexcited PAH cations isolated in boric acid glass have been studied using femtosecond and picosecond transient grating spectroscopy. With the exception of perylene+, the recovery kinetics for the ground doublet (D0) states of these radical cations are biexponential, containing a fast (< 200 fs) and a slow (3-20 ps) components. No temperature dependence or isotope effect was observed for the fast component, whereas the slow component exhibits both the H/D isotope effect (1.1-1.3) and strong temperature dependence (15 to 300 K). We suggest that the fast component is due to internal Dn to D0 conversion and the slow component is due to vibrational energy transfer (VET) from a...

  5. Fundamental spectroscopic studies of carbenes and hydrocarbon radicals

    Energy Technology Data Exchange (ETDEWEB)

    Gottlieb, C.A.; Thaddeus, P. [Harvard Univ., Cambridge, MA (United States)

    1993-12-01

    Highly reactive carbenes and carbon-chain radicals are studied at millimeter wavelengths by observing their rotational spectra. The purpose is to provide definitive spectroscopic identification, accurate spectroscopic constants in the lowest vibrational states, and reliable structures of the key intermediates in reactions leading to aromatic hydrocarbons and soot particles in combustion.

  6. Fundamental spectroscopic studies of carbenes and hydrocarbon radicals

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-03-12

    Determination of bond dissociation energies and heats of formation of hydrocarbon radicals and carbenes requires knowledge of their structures, but this is not provided by standard mass spectrometric studies; what is needed is high-resolution spectroscopy, often best achieved at centimeter and millimeter wavelengths. Nearly 60 reactive organic molecules were investigated in the period from 1988--1998.

  7. Radical recombination in a hydrocarbon-fueled scramjet nozzle

    Directory of Open Access Journals (Sweden)

    Zhang Xiaoyuan

    2014-12-01

    Full Text Available To reveal the radical recombination process in the scramjet nozzle flow and study the effects of various factors of the recombination, weighted essentially non-oscillatory (WENO schemes are applied to solve the decoupled two-dimensional Euler equations with chemical reactions to simulate the hydrocarbon-fueled scramjet nozzle flow. The accuracy of the numerical method is verified with the measurements obtained by a shock tunnel experiment. The overall model length is nearly 0.5 m, with inlet static temperatures ranging from 2000 K to 3000 K, inlet static pressures ranging from 75 kPa to 175 kPa, and inlet Mach numbers of 2.0 ± 0.4 are involved. The fraction Damkohler number is defined as functions of static temperature and pressure to analyze the radical recombination progresses. Preliminary results indicate that the energy releasing process depends on different chemical reaction processes and species group contributions. In hydrocarbon-fueled scramjet nozzle flow, reactions with H have the greatest contribution during the chemical equilibrium shift. The contrast and analysis of the simulation results show that the radical recombination processes influenced by inflow conditions and nozzle scales are consistent with Damkohler numbers and potential dissociation energy release. The increase of inlet static temperature improves both of them, thus making the chemical non-equilibrium effects on the nozzle performance more significant. While the increase of inlet static pressure improves the former one and reduces the latter, it exerts little influence on the chemical non-equilibrium effects.

  8. Hydrocarbon Degrading Bacteria: Isolation and Identification

    Directory of Open Access Journals (Sweden)

    Lies Indah Sutiknowati

    2007-11-01

    Full Text Available There is little information how to identify hydrocarbon degrading bacteria for bioremediation of marine oil spills. We have used gravel which contaminated oil mousse from Beach Simulator Tank, in Marine Biotechnology Institute, Kamaishi, Japan, and grown on enrichment culture. Biostimulation with nutrients (N and P was done to analyze biodegradation of hydrocarbon compounds: Naphthalene, Phenanthrene, Trichlorodibenzofuran and Benzo[a]pyrene. Community of bacteria from enrichment culture was determined by DGGE. Isolating and screening the bacteria on inorganic medium contain hydrocarbon compounds and determination of bacteria by DAPI (number of cells and CFU. DNA was extracted from colonies of bacteria and sequence determination of the 16S rDNA was amplified by primers U515f and U1492r. Twenty nine strains had been sequence and have similarity about 90-99% to their closest taxa by homology Blast search and few of them have suspected as new species.

  9. Hydrocarbon-degradation by Isolate Pseudomonas lundensis UTAR FPE2

    Directory of Open Access Journals (Sweden)

    Adeline, S. Y. Ting

    2009-01-01

    Full Text Available In this study, the potential of isolate Pseudomonas lundensis UTAR FPE2 as a hydrocarbon degrader was established. Their biodegradation activity was first detected with the formation of clearing zones on Bushnell-Hass agar plates, with the largest diameter observed on plates supplemented with paraffin, followed by mineral oil and petrol. Utilization of hydrocarbon sources were again detected in broth cultures supplemented with similar hydrocarbon substrates, where the mean viable cell count recovered from hydrocarbon-supplemented broth cultures were higher than the initial inoculum except for napthalene. In both tests, the isolate showed higher degradability towards aliphatic hydrocarbon sources, and the least activity towards the aromatic hydrocarbon naphthalene. The isolate P. lundensis UTAR FPE2 (8 log10 cfu/mL also degraded crude diesel sample, with 69% degradation during the first three days. To conclude, this study suggests the potential use of this isolate for bioremediation of hydrocarbon-contaminated environments.

  10. Rate constants for the reaction of CF3O radicals with hydrocarbons at 298 K

    DEFF Research Database (Denmark)

    Kelly, C.; Treacy, J.; Sidebottom, H.W.;

    1993-01-01

    Rate constant ratios of the reactions of CF3O radicals with a number of hydrocarbons have been determined at 298 +/- 2 K and atmospheric pressure using a relative rate method. Using a previously determined value k(CF30 + C2H6) = 1.2 x 10(-12) cm3 molecule-1 s-1 these rate constant ratios provide......-1. The importance of the reactions of CF3O radicals with hydrocarbons under atmospheric conditions is discussed....

  11. Early events following radiolytic and photogeneration of radical cations in hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Werst, D.W.; Trifunac, A.D.

    1992-11-01

    Real-time studies in hydrocarbons have revealed a richness of chemistry involving the initial ionic species produced in radiolysis and photoionization. A modified radical cation mechanism patterned after the core mechanism for alkane radiolysis-formation of radical cations and their disappearance via ion-molecule reactions - is capable of explaining a wide range of observations in high-energy photochemistry, and thus unifies two high-energy regimes. Fundamental studies of radical cations suggest strategies for mitigating radiation effects in materials.

  12. Early events following radiolytic and photogeneration of radical cations in hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Werst, D.W.; Trifunac, A.D.

    1992-01-01

    Real-time studies in hydrocarbons have revealed a richness of chemistry involving the initial ionic species produced in radiolysis and photoionization. A modified radical cation mechanism patterned after the core mechanism for alkane radiolysis-formation of radical cations and their disappearance via ion-molecule reactions - is capable of explaining a wide range of observations in high-energy photochemistry, and thus unifies two high-energy regimes. Fundamental studies of radical cations suggest strategies for mitigating radiation effects in materials.

  13. Characterization of Petroleum Hydrocarbon Decomposing Fungi Isolated from Mangrove Rhizosphere

    Directory of Open Access Journals (Sweden)

    Nuni Gofar

    2011-01-01

    Full Text Available The research was done to obtain the isolates of soil borne fungi isolated from mangrove rhizosphere which were capable of degrading petroleum hydrocarbon compounds. The soil samples were collected from South Sumatra mangrove forest which was contaminated by petroleum. The isolates obtained were selected based on their ability to survive, to grow and to degrade polycyclic aromatic hydrocarbons in medium containing petroleum residue. There were 3 isolates of soil borne hydrocarbonoclastic fungi which were able to degrade petroleum in vitro. The 3 isolates were identified as Aspergillus fumigates, A. parasiticus, and Chrysonilia sitophila. C. sitophila was the best isolate to decrease total petroleum hydrocarbon (TPH from medium containing 5-20% petroleum residue.

  14. Detailed Studies of Hydrocarbon Radicals: C2H Dissociation

    Energy Technology Data Exchange (ETDEWEB)

    Wittig, Curt

    2014-10-06

    A novel experimental technique was examined whose goal was the ejection of radical species into the gas phase from a platform (film) of cold non-reactive material. The underlying principle was one of photo-initiated heat release in a stratum that lies below a layer of CO2 or a layer of amorphous solid water (ASW) and CO2. A molecular precursor to the radical species of interest is deposited near or on the film's surface, where it can be photo-dissociated. It proved unfeasible to avoid the rampant formation of fissures, as opposed to large "flakes." This led to many interesting results, but resulted in our aborting the scheme as a means of launching cold C2H radical into the gas phase. A journal article resulted that is germane to astrophysics but not combustion chemistry.

  15. Intracavity laser absorption spectroscopy detection of HCO radicals in atmospheric pressure hydrocarbon flames

    Science.gov (United States)

    Cheskis, Sergey

    1995-01-01

    Formyl radical, HCO, was monitored for the first time in an atmospheric pressure premixed hydrocarbon flame. Intracavity laser absorption spectroscopy based on quasi-(cw) argon-ion pumped dye laser was used. The sensitivity of the detection is ˜5×1012 cm-3 and can be improved with better flame and laser stabilization.

  16. Studies on hydrocarbon degradation by the bacterial isolate ...

    African Journals Online (AJOL)

    Studies on hydrocarbon degradation by the bacterial isolate ... Journal Home > Vol 4, No 3 (2015) > ... The degradation of 2 % heavy crude oil and other PAHs from the isolate PM-1 was assessed ... Algeria (5); Benin (2); Botswana (3); Burkina Faso (3); Cameroon (8); Congo, Republic (1); Côte d'Ivoire (4); Egypt, Arab Rep.

  17. Importance of fundamental sp, sp2, and sp3 hydrocarbon radicals in the growth of polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Shukla, Bikau; Koshi, Mitsuo

    2012-06-05

    The most basic chemistry of products formation in hydrocarbons pyrolysis has been explored via a comparative experimental study on the roles of fundamental sp, sp(2), and sp(3) hydrocarbon radicals/intermediates such as ethyne/ethynyl (C(2)H(2)/C(2)H), ethene/ethenyl (C(2)H(4)/C(2)H(3)), and methane/methyl (CH(4)/CH(3)) in products formations. By using an in situ time-of-flight mass spectrometry technique, gas-phase products of pyrolysis of acetylene (ethyne, C(2)H(2)), ethylene (ethene, C(2)H(4)), and acetone (propanone, CH(3)COCH(3)) were detected and found to include small aliphatic products to large polycyclic aromatic hydrocarbons (PAHs) of mass 324 amu. Observed products mass spectra showed a remarkable sequence of mass peaks at regular mass number intervals of 24, 26, or 14 indicating the role of the particular corresponding radicals, ethynyl (C(2)H), ethenyl (C(2)H(3)), or methyl (CH(3)), in products formation. The analysis of results revealed the following: (a) product formation in hydrocarbon pyrolysis is dominated by hydrogen abstraction and a vinyl (ethenyl, C(2)H(3)) radical addition (HAVA) mechanism, (b) contrary to the existing concept of termination of products mass growth at cyclopenta fused species like acenaphthylene, novel pathways forming large PAHs were found succeeding beyond such cyclopenta fused species by the further addition of C(2)H(x) or CH(3) radicals, (c) production of cyclopenta ring-fused PAHs (CP-PAHs) such as fluoranthene/corannulene appeared as a preferred route over benzenoid species like pyrene/coronene, (d) because of the high reactivity of the CH(3) radical, it readily converts unbranched products into products with aliphatic chains (branched product), and (e) some interesting novel products such as dicarbon monoxide (C(2)O), tricarbon monoxide (C(3)O), and cyclic ketones were detected especially in acetone pyrolysis. These results finally suggest that existing kinetic models of product formation should be modified to include

  18. Free Radical Imaging Techniques Applied to Hydrocarbon Flames Diagnosis

    Institute of Scientific and Technical Information of China (English)

    A. Caldeira-Pires

    2001-01-01

    This paper evaluates the utilization of free radical chemiluminescence imaging and tomographic reconstruction techniques to assess advanced information on reacting flows. Two different laboratory flow configurations were analyzed, including unconfined non-premixed jet flame measurements to evaluate flame fuel/air mixing patterns at the burner-port of a typical glass-furnace burner. The second case characterized the reaction zone of premixed flames within gas turbine combustion chambers, based on a laboratory scale model of a lean prevaporized premixed (LPP) combustion chamber.The analysis shows that advanced imaging diagnosis can provide new information on the characterization of flame mixing and reacting phenomena. The utilization of local C2 and CH chemiluminescence can assess useful information on the quality of the combustion process, which can be used to improve the design of practical combustors.

  19. Electron affinities of aromatic hydrocarbons and disproportionation of their radical-anions

    Energy Technology Data Exchange (ETDEWEB)

    Szwarc, M.

    1986-09-01

    Electron affinities of aromatic hydrocarbons measured in the gas-phase and in solutions are compared. The experimental methods used for their determination are briefly reviewed. The reduction yields the respective radical-anions. Radical-anions may undergo disproportionation, a reaction described by the scheme: 2A/sup -/ . , Cat/sup =/ in equilibrium A + A/sup 2-/, 2 Cat/sup +/, K/sub dipr/. The disproportionation constant, K/sub dipr/, is greatly affected by the nature of aromatic hydrocarbon, of the cation, and of the solvent. Variation of each of these factors is illustrated. Variation of the cation and solvent results in changes of the disproportionation constant as large as factors of 10/sup 25/. The causes of these variations are rationalized and discussed in terms of the respective ..delta..H and ..delta..S. Kinetics of disproportionation was investigated by flash-photolysis techniques. The experimental approach is described. The peculiarities of Ba salts deserved some discussion to clarify the nature of those salts. The effect of disproportionation on reactions of radical-anions are described: namely on cis-trans isomerization of stilbenes, on protonation of radical-anions of anthracene an perylene, on dissociation of radical anions of aromatic derivatives ethane, etc.

  20. Electron impact total and ionization cross-sections for some hydrocarbon molecules and radicals

    Energy Technology Data Exchange (ETDEWEB)

    Vinodkumar, M. [Open Univ., Dept. of Physics and Astronomy, Milton Keynes MK (United Kingdom); Vinodkumar, M. [VP and RPTP Science College, Vallabh Vidyanagar, Gujarat (India); Joshipura, K.N.; Limbachiya, C.G. [Sardar Patel Univ., Dept. of Physics, Vallabh Vidyanagar, Gujarat (India); Limbachiya, C.G. [PS Science College, Kadi (N.G.), Gujarat (India); Antony, B.K. [Massachusetts Lowell Univ., Dept. of Environmental, Earth and Atmospheric Sciences, Lowell, MA (United States)

    2006-01-15

    Electron impact total (50 to 2000 eV) and ionization (threshold to 2000 eV) cross-sections are calculated using the SCOP (spherical complex optical potential) and CSP-ic (complex scattering potential-ionization contribution) methods for the hydrocarbon molecules (CH{sub 4}, C{sub 2}H{sub 2}, C{sub 2}H{sub 4}, C{sub 2}H{sub 6}, C{sub 3}H{sub 4}, C{sub 3}H{sub 6} and C{sub 3}H{sub 8}) and radicals (CH{sub x} (x=1-3)). Present method has already been tested successfully to other plasma molecules and radicals. Our results exhibited in this paper show good agreement with experimental results where available. For the radical species, we have presently done a first estimate of the total cross-sections. (authors)

  1. Superoxide Radical Formation in Isolated PMN from Experimental Vaginal Trichomoniasis

    Directory of Open Access Journals (Sweden)

    Z Valadkhani

    2006-06-01

    Full Text Available Trichomoniasis, the most widespread sexually transmitted disease is caused by Trichomonas vaginalis. This parasite is site specific for the genitourinary tract and recruitment of macrophages as well as polymorphonuclear nutrophils (PMN to the site of infection is the first line of defense as a component of non-specific resistance and immunity. In this study, BALB/c mice were infected with 10 isolates from symptomatic and 10 from asymptomatic patients. Then PMN from vaginal washes, vaginal tissue and blood of infected mice was isolated and the rate of superoxide formation by intact stimulated PMN was measured. Results showed that, mice infected with symptomatic isolates indicated significant increase in polymorphs with increase in days of infection as compared with mice infected with asymptomatic isolate and control (uninfected animals. Vaginal tissue cells generated maximal amount of superoxide in symptomatic isolates infected animals (5.17 ± 0.36 as compared to asymptomatic isolates (4.54 ± 0.43, which brings out the maximal abnormality in PMN in this localized area. The amount of superoxide radicals generated by cells of vaginal washes and blood of symptomatic isolate infected mice 4.29 ± 0.25 and 2.16 ± 0.35 was less than the asymptomatic isolate (4.94 ± 0.49 and 3.18 ± 0.26, respectively. This study indicates that super oxide radical generation may play role in establishing the infection.

  2. Chemistry of polycyclic aromatic hydrocarbons formation from phenyl radical pyrolysis and reaction of phenyl and acetylene.

    Science.gov (United States)

    Comandini, A; Malewicki, T; Brezinsky, K

    2012-03-15

    An experimental investigation of phenyl radical pyrolysis and the phenyl radical + acetylene reaction has been performed to clarify the role of different reaction mechanisms involved in the formation and growth of polycyclic aromatic hydrocarbons (PAHs) serving as precursors for soot formation. Experiments were conducted using GC/GC-MS diagnostics coupled to the high-pressure single-pulse shock tube present at the University of Illinois at Chicago. For the first time, comprehensive speciation of the major stable products, including small hydrocarbons and large PAH intermediates, was obtained over a wide range of pressures (25-60 atm) and temperatures (900-1800 K) which encompass the typical conditions in modern combustion devices. The experimental results were used to validate a comprehensive chemical kinetic model which provides relevant information on the chemistry associated with the formation of PAH compounds. In particular, the modeling results indicate that the o-benzyne chemistry is a key factor in the formation of multi-ring intermediates in phenyl radical pyrolysis. On the other hand, the PAHs from the phenyl + acetylene reaction are formed mainly through recombination between single-ring aromatics and through the hydrogen abstraction/acetylene addition mechanism. Polymerization is the common dominant process at high temperature conditions.

  3. Calculation of electron affinities of polycyclic aromatic hydrocarbons and solvation energies of their radical anion.

    Science.gov (United States)

    Betowski, Leon D; Enlow, Mark; Riddick, Lee; Aue, Donald H

    2006-11-30

    Electron affinities (EAs) and free energies for electron attachment (DeltaGo(a,298K)) have been directly calculated for 45 polynuclear aromatic hydrocarbons (PAHs) and related molecules by a variety of theoretical methods, with standard regression errors of about 0.07 eV (mean unsigned error = 0.05 eV) at the B3LYP/6-31 + G(d,p) level and larger errors with HF or MP2 methods or using Koopmans' Theorem. Comparison of gas-phase free energies with solution-phase reduction potentials provides a measure of solvation energy differences between the radical anion and neutral PAH. A simple Born-charging model approximates the solvation effects on the radical anions, leading to a good correlation with experimental solvation energy differences. This is used to estimate unknown or questionable EAs from reduction potentials. Two independent methods are used to predict DeltaGo(a,298K) values: (1) based upon DFT methods, or (2) based upon reduction potentials and the Born model. They suggest reassignments or a resolution of conflicting experimental EAs for nearly one-half (17 of 38) of the PAH molecules for which experimental EAs have been reported. For the antiaromatic molecules, 1,3,5-tri-tert-butylpentalene and the dithia-substituted cyclobutadiene 1, the reduction potentials lead to estimated EAs close to those expected from DFT calculations and provide a basis for the prediction of the EAs and reduction potentials of pentalene and cyclobutadiene. The Born model has been used to relate the electrostatic solvation energies of PAH and hydrocarbon radical anions, and spherical halide anions, alkali metal cations, and ammonium ions to effective ionic radii from DFT electron-density envelopes. The Born model used for PAHs has been successfully extended here to quantitatively explain the solvation energy of the C60 radical anion.

  4. Isolation and characterization of ancient hydrocarbon biomarkers from crystalline minerals

    Science.gov (United States)

    Summons, R. E.; Carrasquillo, A.; Hallmann, C.; Sherman, L. S.; Waldbauer, J. R.

    2008-12-01

    Hydrocarbon biomarker analysis is conventionally conducted on bitumen (soluble fossilized organic matter) extracted from sedimentary rocks using organic solvents. Biomarkers can also be generated by pyrolysis of kerogen (insoluble organic matter) in the same rocks. These approaches have met with much success where the organic matter has not seen significant levels of thermal metamorphism but more limited success when applied to thermally mature Archean rocks. Biomarkers have also been isolated from fluid inclusions of crystalline minerals and this approach has found wide application in petroleum exploration because of the capability of minerals that form crystals in reservoir rocks to trap organics from different episodes of fluid migration. Lastly, biogenic crystalline minerals are well known to trap organics including amino acids, fatty acids or hydrocarbons from those organisms that laid down the minerals. In fact, recent observations suggest that hydrocarbon biomarkers can be abundantly preserved in crystalline minerals where they may be protected over long periods of time and also distinguished from more recent generations of organics from endolithic organisms (modern) or anthropogenic (fossil hydrocarbon) contaminants. Here we report analyses of biomarker lipids trapped in fluid inclusions or otherwise having a "tight association" with the minerals in sedimentary rocks from Neoarchean and Paleoproterozoic successions in Australia and Southern Africa. In particular, cores recovered from the Agouron Griqualand Drilling Project contain over 2500m of well-preserved late Archean Transvaal Supergroup sediments, dating from ca. 2.67 to 2.46Ga. Bitumen extracts of samples from these strata were obtained using clean drilling, sampling and handling protocols and without overprinting with contaminant hydrocarbons. Dissolution of the mineral matrix of extracted sediments, followed by another solvent extraction, yielded a second bitumen that comprised hydrocarbons that

  5. Polycyclic aromatic hydrocarbon (PAH) formation from benzyl radicals: a reaction kinetics study.

    Science.gov (United States)

    Sinha, Sourab; Raj, Abhijeet

    2016-03-21

    The role of resonantly stabilized radicals such as propargyl, cyclopentadienyl and benzyl in the formation of aromatic hydrocarbons such as benzene and naphthalene in the high temperature environments has been long known. In this work, the possibility of benzyl recombination to form three-ring aromatics, phenanthrene and anthracene, is explored. A reaction mechanism for it is developed, where reaction energetics are calculated using density functional theory (B3LYP functional with 6-311++G(d,p) basis set) and CBS-QB3, while temperature-dependent reaction kinetics are evaluated using transition state theory. The mechanism begins with barrierless formation of bibenzyl from two benzyl radicals with the release of 283.2 kJ mol(-1) of reaction energy. The further reactions involve H-abstraction by a H atom, H-desorption, H-migration, and ring closure to gain aromaticity. Through mechanism and rate of production analyses, the important reactions leading to phenanthrene and anthracene formation are determined. Phenanthrene is found to be the major product at high temperatures. Premixed laminar flame simulations are carried out by including the proposed reactions for phenanthrene formation from benzyl radicals and compared to experimentally observed species profiles to understand their effects on species concentrations.

  6. Visible absorptions of potential diffuse ISM hydrocarbons: C$_9$H$_9$ and C$_9$H$_5$ radicals

    CERN Document Server

    Steglich, Mathias; Maier, John P

    2016-01-01

    The laboratory detection of previously unobserved resonance-stabilized C$_9$H$_5$ and C$_9$H$_9$ radicals in the supersonic expansion of a hydrocarbon discharge source is reported. The radicals are tentatively assigned as acetylenic-substituted cyclopentadienyl C$_9$H$_5$ and vinyl-substituted benzyl C$_9$H$_9$ species. They are found to feature visible absorption bands that coincide with a few very weak diffuse interstellar bands toward HD183143 and HD204827.

  7. Isolable zwitterionic pyridinio-semiquinone pi-radicals. Mild and efficient single-step access to stable radicals.

    Science.gov (United States)

    Yi, Chenyi; Blum, Carmen; Liu, Shi-Xia; Keene, Tony D; Frei, Gabriela; Neels, Antonia; Decurtins, Silvio

    2009-06-04

    A rational design based on the proton-coupled electron transfer (PCET) concept allows us to structurally characterize for the first time isolable, air- and moisture-stable semiquinone radicals in a zwitterionic neutral form. The presence of an alkoxy and the bulky pyridinio substituents causes only a minor perturbation of either the redox potentials or the spectral UV-vis characteristics of the semiquinone core but significantly stabilizes the new radicals.

  8. Section i: Thermodynamic Properties of Hydrocarbon Radicals, Peroxy Hydrocarbon and Peroxy Chlorohydrocarbon Molecules and Radicals. Section II. Kinetics and Reaction Mechanisms For: (1) Chloroform Pyrolysis and Oxidation; (2) Benzene and Toluene Oxidation Under Atmospheric Conditions.

    Science.gov (United States)

    Lay, Tsan-Horng

    1995-01-01

    Alkyl radicals are important active intermediates in gas phase photochemistry and combustion reaction systems. With the exception of a limited number of the most elementary radicals, accurate thermodynamic properties of alkyl radicals are either not available or only rough estimations exist. An H atom Bond Increment approach is developed and a data base is derived, for accurately estimating thermodynamic properties (Delta H_{f }^circ298, S ^circ298 and Cp(T)) for generic classes of hydrocarbon radical species. Reactions of alkyl radicals with molecular oxygen are one of the major reaction paths for these radicals in atmospheric photochemistry, oxidation of hydrocarbon liquids and combustion process. Alkyl hydroperoxides are subsequently formed through the alkyl peroxy radicals reactions with varied chemical species present in the reaction system. Thermodynamic properties of the alkyl hydroperoxides and related radicals are therefore frequently required in gas phase modeling and kinetic studies on these systems. The thermodynamic properties of alkyl hydroperoxides, alkyl peroxy radicals and hydroperoxyl-1-ethyl radicals including the species with fluorine and chlorine substituents on the alpha-carbon are evaluated using molecular orbital calculations. Chloroform is used as a model chlorocarbon system with high Cl/H ratio to investigate thermal decomposition processes of chlorocarbons in oxidative and pyrolytic reaction environments. A detailed reaction mechanism is developed to describe the important features of products and reagent loss and is shown to predict the experimental data well. Reaction pathways and rate constants are developed for CCl _3, CCl_2 and rm C_2Cl_3 radical addition to O_2 and combination with O, OH HO_2 and ClO. The reversible addition reaction of OH radical with benzene to form the hydroxyl-2,4-cyclohexadienyl (benzene -OH) adduct and the subsequent reactions of this benzene -OH adduct with O_2 are important initial steps for the

  9. Role of phenyl radicals in the growth of polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Shukla, Bikau; Susa, Akio; Miyoshi, Akira; Koshi, Mitsuo

    2008-03-20

    To investigate the role of phenyl radical in the growth of PAHs (polycyclic aromatic hydrocarbons), pyrolysis of toluene with and without benzene has been studied by using a heatable tubular reactor couple with an in-situ sampling vacuum ultraviolet (VUV) single photon ionization (SPI) time-of-flight mass spectrometer (TOFMS) at temperatures 1155-1467 K and a pressure of 10.02 Torr with 0.56 s residence time. When benzene was added, a significant increase of phenyl addition products (biphenyl, terphenyl, and triphenylene) was observed and the mass spectra showed a clear regular sequence with an interval of approximately 74 mass number, corresponding to the phenyl addition (+C6H5) followed by H-elimination (-H) and cyclization (-H2). The analysis showed that the PAC (phenyl addition/cylization) mechanism is efficient for the growth of PAHs without a triple fusing site, for which the HACA (hydrogen abstraction/C2H2 addition) step is inefficient, and produces PAHs with five-membered rings. The PAC process was also suggested to be efficient in the subsequent growth of PAHs with five-membered rings. The role of the PAC mechanism in combustion conditions is discussed in relation to the importance of disordered five-membered ring structure in fullerene or soot core.

  10. Determination of the hydrocarbon-degrading metabolic capabilities of tropical bacterial isolates

    Energy Technology Data Exchange (ETDEWEB)

    Marquez-Rocha, F.J.; Olmos-Soto, J. [Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, San Diego, CA (United States). Departamento de Biotecnologia Marina; Rosano-Hernandez, M.A.; Muriel-Garcia, M. [Instituto Mexicano del Petroleo, CD Carmen Camp (Mexico). Zona Marina/Tecnologia Ambiental

    2005-01-01

    Of more than 20 bacteria isolated from a tropical soil using minimal medium supplemented with hydrocarbons, 11 grew well on diesel as sole carbon source, and another 11 grew in the presence of polynuclear aromatic hydrocarbons (PAHs). Ten isolates were identified phenotypically as Pseudomonas sp. and eight as Bacillus sp. Gene sequences representing the catabolic genes (alkM, todM, ndoM, and xylM) and 16S rRNA gene sequences characteristic for Pseudomona and Bacillus were amplified by PCR, using DNA recovered from the supernatant of hydrocarbon-contaminated soil suspensions. Based on their rapid growth characteristics in the presence of hydrocarbons and the formation of PCR products for the catabolic genes alkM and ndoM six isolates were selected for biodegradation assays. After 30 days a mixed culture of two isolates achieved close to 70% hydrocarbon removal and apparent mineralization of 16% of the hydrocarbons present in the soil. Biodegradation rates varied from 275 to 387 mg hydrocarbon kg{sup -1} day{sup -1}. Several bacterial isolates obtained in this study have catabolic capabilities for the biodegradation of alkanes and aromatic hydrocarbons including PAHs. (author)

  11. Cyclic Versus Linear Isomers Produced by Reaction of the Methylidyne Radical (CH) with Small Unsaturated Hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Goulay, Fabien; Trevitt, Adam J.; Meloni, Giovanni; Selby, Talitha M.; Osborn, David L.; Taatjes, Craig A.; Vereecken, Luc; Leone, Stephen R.

    2008-12-05

    The reactions of the methylidyne radical (CH) with ethylene, acetylene, allene, and methylacetylene are studied at room temperature using tunable vacuum ultraviolet (VUV) photoionization and time-resolved mass spectrometry. The CH radicals are prepared by 248 nm multiphoton photolysis of CHBr3 at 298 K and react with the selected hydrocarbon in a helium gas flow. Analysis of photoionization efficiency versus VUV photon wavelength permits isomer-specific detection of the reaction products and allows estimation of the reaction product branching ratios. The reactions proceed by either CH insertion or addition followed by H atom elimination from the intermediate adduct. In the CH + C2H4 reaction the C3H5 intermediate decays by H atom loss to yield 70(+-8)percent allene, 30(+-8)percent methylacetylene and less than 10percent cyclopropene, in agreement with previous RRKM results. In the CH + acetylene reaction, detection of mainly the cyclic C3H2 isomer is contrary to a previous RRKM calculation that predicted linear triplet propargylene to be 90percent of the total H-atom co-products. High-level CBS-APNO quantum calculations and RRKM calculation for the CH + C2H2 reaction presented in this manuscript predict a higher contribution of the cyclic C3H2 (27.0percent) versus triplet propargylene (63.5percent) than these earlier predictions. Extensive calculations on the C3H3 and C3H2D system combined with experimental isotope ratios for the CD + C2H2 reaction indicate that H-atom assisted isomerization in the present experiments is responsible for the discrepancy between the RRKM calculations and the experimental results. Cyclic isomers are also found to represent 30(+-6)percent of the detected products in the case of CH + methylacetylene, together with 33(+-6)percent 1,2,3-butatriene and 37(+-6)percent vinylacetylene. The CH + allene reaction gives 23(+-5)percent 1,2,3-butatriene and 77(+-5)percent vinylacetylene, whereas cyclic isomers are produced below the detection limit

  12. Ab initio study of the influence of resonance stabilization on intramolecular ring closure reactions of hydrocarbon radicals.

    Science.gov (United States)

    Wang, Kun; Villano, Stephanie M; Dean, Anthony M

    2016-03-28

    The intramolecular ring closure reactions of unsaturated hydrocarbon radicals potentially play an important role for the formation of molecular weight growth species, especially during the pyrolysis and oxidation of alkenes under low to intermediate temperatures. In this work we investigated a series of intramolecular cycloaddition reactions of both allylic- and alkyl-type dienyl radicals. In the first set of reactions, a resonant linear radical is converted into a non-resonant cyclic radical. In the second set, a non-resonant linear alkenyl radical isomerizes to either a resonant cyclic radical or a cyclic carbinyl radical. In both cases, three different reaction schemes are examined based on the location of the partially-formed resonance structure in the cyclic transition state. For each reaction scheme, both the endo- and exo-pathways were investigated. High pressure rate parameters are obtained from the results of CBS-QB3 electronic structure calculations combined with canonical transition state theory calculations. The results are discussed in the context of a Benson-type model to examine the impact of the partially-formed resonance stabilization on both the activation energies and pre-exponential factors. The results are compared to previously reported rate parameters for cycloaddition reactions of alkenyl radicals. The differences in the activation energies are primarily due to the bimolecular component of the activation energy. However, in some cases, the presence of the partial resonance structure significantly increases the strain energy for the ring that is formed in the transition state. The pre-exponential factors are also impacted by the formation of a partial resonance structure in the transition state. Lastly, the C6H9 potential energy surface is examined to show how the trends that are outlined here can be used to estimate rate parameters, which are needed to analyze pressure-dependent reaction systems.

  13. Bacterial Endophytes Isolated from Plants in Natural Oil Seep Soils with Chronic Hydrocarbon Contamination

    OpenAIRE

    Lumactud, Rhea; Shen, Shu Yi; Lau, Mimas; Fulthorpe, Roberta

    2016-01-01

    The bacterial endophytic communities of four plants growing abundantly in soils highly contaminated by hydrocarbons were analyzed through culturable and culture-independent means. Given their tolerance to the high levels of petroleum contamination at our study site, we sought evidence that Achillea millefolium, Solidago canadensis, Trifolium aureum, and Dactylis glomerata support high levels of hydrocarbon degrading endophytes. A total of 190 isolates were isolated from four plant species. Th...

  14. Bacterial endophytes isolated from plants in natural oil seep soils with chronic hydrocarbon contamination

    OpenAIRE

    Rhea eLumactud; Shu Yi eShen; Mimas eLau; Roberta eFulthorpe

    2016-01-01

    The bacterial endophytic communities of four plants growing abundantly in soils highly contaminated by hydrocarbons were analyzed through culturable and and culture-independent means. Given their tolerance to the high levels of petroleum contamination at our study site, we sought evidence that Achillea millefolium, Solidago canadensis, Trifolium aureum and Dactylis glomerata support high levels of hydrocarbon degrading endophytes. A total of 190 isolates were isolated from four plant species....

  15. Isolation and Characterization of Hydrocarbon-Degrading Yeast Strains from Petroleum Contaminated Industrial Wastewater

    Directory of Open Access Journals (Sweden)

    Boutheina Gargouri

    2015-01-01

    Full Text Available Two yeast strains are enriched and isolated from industrial refinery wastewater. These strains were observed for their ability to utilize several classes of petroleum hydrocarbons substrates, such as n-alkanes and aromatic hydrocarbons as a sole carbon source. Phylogenetic analysis based on the D1/D2 variable domain and the ITS-region sequences indicated that strains HC1 and HC4 were members of the genera Candida and Trichosporon, respectively. The mechanism of hydrocarbon uptaking by yeast, Candida, and Trichosporon has been studied by means of the kinetic analysis of hydrocarbons-degrading yeasts growth and substrate assimilation. Biodegradation capacity and biomass quantity were daily measured during twelve days by gravimetric analysis and gas chromatography coupled with mass spectrometry techniques. Removal of n-alkanes indicated a strong ability of hydrocarbon biodegradation by the isolated yeast strains. These two strains grew on long-chain n-alkane, diesel oil, and crude oil but failed to grow on short-chain n-alkane and aromatic hydrocarbons. Growth measurement attributes of the isolates, using n-hexadecane, diesel oil, and crude oil as substrates, showed that strain HC1 had better degradation for hydrocarbon substrates than strain HC4. In conclusion, these yeast strains can be useful for the bioremediation process and decreasing petroleum pollution in wastewater contaminated with petroleum hydrocarbons.

  16. Isolation and Characterization of Hydrocarbon-Degrading Yeast Strains from Petroleum Contaminated Industrial Wastewater

    Science.gov (United States)

    Gargouri, Boutheina; Mhiri, Najla; Karray, Fatma; Aloui, Fathi; Sayadi, Sami

    2015-01-01

    Two yeast strains are enriched and isolated from industrial refinery wastewater. These strains were observed for their ability to utilize several classes of petroleum hydrocarbons substrates, such as n-alkanes and aromatic hydrocarbons as a sole carbon source. Phylogenetic analysis based on the D1/D2 variable domain and the ITS-region sequences indicated that strains HC1 and HC4 were members of the genera Candida and Trichosporon, respectively. The mechanism of hydrocarbon uptaking by yeast, Candida, and Trichosporon has been studied by means of the kinetic analysis of hydrocarbons-degrading yeasts growth and substrate assimilation. Biodegradation capacity and biomass quantity were daily measured during twelve days by gravimetric analysis and gas chromatography coupled with mass spectrometry techniques. Removal of n-alkanes indicated a strong ability of hydrocarbon biodegradation by the isolated yeast strains. These two strains grew on long-chain n-alkane, diesel oil, and crude oil but failed to grow on short-chain n-alkane and aromatic hydrocarbons. Growth measurement attributes of the isolates, using n-hexadecane, diesel oil, and crude oil as substrates, showed that strain HC1 had better degradation for hydrocarbon substrates than strain HC4. In conclusion, these yeast strains can be useful for the bioremediation process and decreasing petroleum pollution in wastewater contaminated with petroleum hydrocarbons. PMID:26339653

  17. Isolation and Characterization of Hydrocarbon-Degrading Yeast Strains from Petroleum Contaminated Industrial Wastewater.

    Science.gov (United States)

    Gargouri, Boutheina; Mhiri, Najla; Karray, Fatma; Aloui, Fathi; Sayadi, Sami

    2015-01-01

    Two yeast strains are enriched and isolated from industrial refinery wastewater. These strains were observed for their ability to utilize several classes of petroleum hydrocarbons substrates, such as n-alkanes and aromatic hydrocarbons as a sole carbon source. Phylogenetic analysis based on the D1/D2 variable domain and the ITS-region sequences indicated that strains HC1 and HC4 were members of the genera Candida and Trichosporon, respectively. The mechanism of hydrocarbon uptaking by yeast, Candida, and Trichosporon has been studied by means of the kinetic analysis of hydrocarbons-degrading yeasts growth and substrate assimilation. Biodegradation capacity and biomass quantity were daily measured during twelve days by gravimetric analysis and gas chromatography coupled with mass spectrometry techniques. Removal of n-alkanes indicated a strong ability of hydrocarbon biodegradation by the isolated yeast strains. These two strains grew on long-chain n-alkane, diesel oil, and crude oil but failed to grow on short-chain n-alkane and aromatic hydrocarbons. Growth measurement attributes of the isolates, using n-hexadecane, diesel oil, and crude oil as substrates, showed that strain HC1 had better degradation for hydrocarbon substrates than strain HC4. In conclusion, these yeast strains can be useful for the bioremediation process and decreasing petroleum pollution in wastewater contaminated with petroleum hydrocarbons.

  18. Isolation and Structure Elucidation of Radical Scavengers from Thymus vulgaris Leaves

    NARCIS (Netherlands)

    Dapkevicius, A.; Beek, van T.A.; Lelyveld, G.P.; Veldhuizen, van A.; Groot, de Æ.; Linssen, J.P.H.; Venskutonis, R.

    2002-01-01

    2,2-Diphenyl-1-picrylhydrazyl radical (DPPH*) scavenging activity-guided fractionation of a leaf extract of Thymus vulgaris led to the isolation of the radical scavengers rosmarinic acid 1, eriodictyol, taxifolin, luteolin 7-glucuronide, p-cymene 2,3-diol, p-cymene 2,3-diol 6-6'-dimer, carvacrol, th

  19. Thermochemical properties, rotation barriers, and group additivity for unsaturated oxygenated hydrocarbons and radicals resulting from reaction of vinyl and phenyl radical systems with O2.

    Science.gov (United States)

    Sebbarand, Nadia; Bockhorn, Henning; Bozzelli, Joseph W

    2005-03-17

    Oxidation of unsaturated and aromatic hydrocarbons in atmospheric and combustion processes results in formation of linear and cyclic unsaturated, oxygenated-hydrocarbon intermediates. The thermochemical parameters delatafH degrees 298, S degrees 298, and C(p)(f298)(T) for these intermediates are needed to understand their stability and reaction paths in further oxidation. These properties are not available for a majority of these unsaturated oxy-hydrocarbons and their corresponding radicals, even via group additivity methods. Enthalpy, entropy, and heat capacity of a series of 40 oxygenated and non-oxygenated molecules, or radicals corresponding to hydrogen atom loss from the parent stable molecules are determined in this study. Enthalpy (delatafH degrees 298 in kcal mol(-1)) is derived from the density function calculations at the B3LYP/6-311g(d,p) calculated enthalpy of reaction (delatafH degrees rxn,298) and by use of isodesmic (work) reactions. Estimation of error in enthalpy delatafH degrees 298, from use of computational chemistry coupled with work reactions analysis, is presented using comparisons between the calculated and literature enthalpies of reaction. Entropies (S degrees 298) and heat capacities (C(p)(f298)(T)) were calculated using the B3LYP/6-311G(d,p) determined frequencies and geometries. Potential barriers for internal rotors in each molecule were determined and used (in place of torsion frequencies) to calculate contributions to S and C(p)(T) from the hindered rotors. Twenty-six groups for use in group additivity (GA) are also developed.

  20. Potent Free Radical Scavenging Activity of Propol Isolated from Brazilian Propolis

    National Research Council Canada - National Science Library

    Purusotam Basnet; Tetsuya Matsuno; Richard Neidlein

    1997-01-01

    ...) generated superoxide anion assay systems. The free radical scavenging activity guided fractionation and chemical analysis led to the isolation of a new compound, propol {3-[4-hydroxy-3-(3-oxo-but-1-enyl)-phenyl]-acrylic acid...

  1. Reactions of ethynyl radicals as a source of C 4 and C 5 hydrocarbons in Titan's atmosphere

    Science.gov (United States)

    Stahl, F.; Schleyer, P. v. R.; Schaefer, H. F., III; Kaiser, R. I.

    2002-06-01

    Crossed molecular beam experiments augmented by electronic structure computations of neutral-neutral reactions of the ethynyl radical (C 2H, X 2Σ+) with the unsaturated hydrocarbons acetylene (C 2H 2), methylacetylene (CH 3CCH), and allene (H 2CCCH 2) are reviewed briefly. All reactions are characterized by a C 2H versus H atom exchange and in the case of the C 2H/C 2H 2 system by an additional molecular hydrogen (H 2) elimination pathway. The attack of the ethynyl radical onto the π-electron density of the unsaturated hydrocarbons has no entrance barrier and initializes each reaction. Consecutive hydrogen atom migrations may precede the exit channels. Diacetylene (HCCCCH), the butadiynyl radical (HCCCC), methyldiacetylene (CH 3CCCCH), ethynylallene (H 2CCH(C 2H)), and penta-4-diyne (HCC(CH 2)C 2H) were identified as products of which only diacetylene has yet been observed in Titan's atmosphere. Our results, however, strongly suggest the presence of all these species on Titan, and the Cassini-Huygens mission is likely to detect these upon arrival in the Saturnian system in 2004.

  2. Intense, hyperthermal source of organic radicals for matrix-isolation spectroscopy

    Science.gov (United States)

    Zhang, Xu; Friderichsen, Anders V.; Nandi, Sreela; Ellison, G. Barney; David, Donald E.; McKinnon, J. Thomas; Lindeman, Theodore G.; Dayton, David C.; Nimlos, Mark R.

    2003-06-01

    We have incorporated a pulsed, hyperthermal nozzle with a cryostat to study the matrix-isolated infrared spectroscopy of organic radicals. The radicals are produced by pyrolysis in a heated, narrow-bore (1-mm-diam) SiC tube and then expanded into the cryostat vacuum chamber. The combination of high nozzle temperature (up to 1800 K) and near-sonic flow velocities (on the order of 104cm s-1) through the length of the 2 cm tube allows for high yield of radicals (approximately 1013 radicals pulse-1) and low residence time (on the order of 10 μs) in the nozzle. We have used this hyperthermal nozzle/matrix isolation experiment to observe the IR spectra of complex radicals such as allyl radical (CH2CHCH2), phenyl radical (C6H5), and methylperoxyl radical (CH3OO). IR spectra of samples produced with a hyperthermal nozzle are remarkably clean and relatively free of interfering radical chemistry. By monitoring the unimolecular thermal decomposition of allyl ethyl ether in the nozzle using matrix IR spectroscopy, we have derived the residence time (τnozzle) of the gas pulse in the nozzle to be around 30 μs.

  3. Vibronic structure in triatomic molecules: The hydrocarbon flame bands of the formyl radical (HCO). A theoretical study

    Science.gov (United States)

    Serrano-Andrés, Luis; Forsberg, Niclas; Malmqvist, Per-A.˚Ke

    1998-05-01

    A theoretical study of the vibrational structure of the X˜ 2A' ground and B˜ 2A' excited states of the formyl radical, HCO, and its deuterated form, DCO, has been performed. The potential energy surfaces have been computed by means of a multiconfigurational perturbative method, CASPT2. The computed geometries and the harmonic and anharmonic frequencies are successfully compared to the available experimental information. The vibrational intensities of the transition B˜ 2A'↔X˜2A' have been computed both for absorption and emission. The results lead to accurate determinations of several structural parameters and some reassignments of the vibrational transitions of the so-called hydrocarbon flame bands of the formyl radical.

  4. Quantum chemical investigation of the reaction of O(32) with certain hydrocarbon radicals

    Indian Academy of Sciences (India)

    Ashutosh Gupta; R P Singh; V B Singh; Brijesh Kumar Mishra; N Sathyamurthy

    2007-09-01

    The reaction of ground-state atomic oxygen [O(32)] with methyl, ethyl, -propyl and isopropyl radicals has been studied using the density functional method and the complete basis set model. The energies of the reactants, products, reaction intermediates and various transition states as well as the reaction enthalpies have been computed. The possible product channels and the reaction pathways are identified in each case. In the case of methyl radical the minimum energy reaction pathway leads to the products CO + H2 + H. In the case of ethyl radical the most facile pathway leads to the products, methanal + CH3 radical. For propyl radical (- and iso-), the minimum energy reaction pathway would lead to the channel containing ethanal + methyl radical.

  5. Soybean Ferritin: Isolation, Characterization, and Free Radical Generation

    Institute of Scientific and Technical Information of China (English)

    Andrea Galatro; Elizabeth Robello; Susana Puntarulo

    2012-01-01

    The main aim of this work was to assess the multi-task role of ferritin (Ft) in the oxidative metabolism of soybean (Glycine max).Soybean seeds incubated for 24 h yielded 41 ± 5 μg Ft/g fresh weight.The rate of in vitro incorporation of iron (Fe) into Ft was tested by supplementing the reaction medium with physiological Fe chelators.The control rate,observed in the presence of 100 μM Fe,was not significantly different from the values observed in the presence of 100 μM Fe-his.However,it was significantly higher in the presence of 100 μM Fe-citrate (approximately 4.5-fold) or of 100 μM Fe-ATP (approximately 14-fold).Moreover,a substantial decrease in the Trp-dependent fluorescence of the Ft protein was determined during Fe uptake from Fe-citrate,as compared with the control.On the other hand,Ft addition to homogenates from soybean embryonic axes reduced endogenously generated ascorbyl radical,according to its capacity for Fe uptake.The data presented here suggest that Ft could be involved in the generation of free radicals,such as hydroxyl radical,by Fe-catalyzed reactions.Moreover,the scavenging of these radicals by Ft itself could then lead to protein damage.However,Ft could also prevent cellular damage by the uptake of catalytically active Fe.

  6. Isolation and functional characterization of hydrocarbon emulsifying and solubilizing factors produced by a Pseudomonas species

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, P.G.; Banuah, J.N.; Bhagat, S.D.; Pathak, M.G.; Singh, H.D.

    1983-02-01

    Pseudomonas PG-1 cultivated on pristane produced in good amount a heat-stable polymeric substance which showed strong hydrocarbon emulsifying and solubilizing properties. The substance was isolated in crude form and was found to contain 34% protein, 16% carbohydrate, and 40% lipid. The hydrocarbon solubilizing activity of the isolate was strongly inhibited by EDTA but the chelating agent had no effect on the hydrocarbon emulsifying activity. Both activities of the isolate were strongly inhibited by chymotrypsin treatment indicating the importance of the protein moiety for its activity. Hydrocarbon solubilization by the isolate showed a certain degree of specificity to pristane in modest agitation generally used in microbial cultivation, but this specificity was lost by vigorous agitation in a Waring blender. It was proposed that in the first case, solubilization was effected by a solubilizing factor specific to pristane, whereas in the latter ease, nonspecific solubilization occurred due to the action of the emulsifying factor. The rate of pristane solubilization by heat-treated culture broth under the conditions of agitation used in cultivation (rotary shaker, 120 rpm) was found to be ca. 750 mg L/sup -1/h/sup -1/ which was much larger than the maximal pristane uptake rate of 170 mg L/sup -1/h/sup -1/ observed during microbial growth on the substrate. It was concluded that hydrocarbon solubilization could satisfactorily account for the substrate uptake and growth.

  7. Potent free radical scavenging activity of propol isolated from Brazilian propolis.

    Science.gov (United States)

    Basnet, P; Matsuno, T; Neidlein, R

    1997-01-01

    We evaluated free radical scavenging activity of the water, methanol and chloroform extracts of propolis in 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical and xanthine-xanthine oxidase (XOD) generated superoxide anion assay systems. The free radical scavenging activity guided fractionation and chemical analysis led to the isolation of a new compound, propol (3-[4-hydroxy-3-(3-oxo-but-1-enyl)-phenyl]-acrylic acid) from the water extract, which was more potent than most common antioxidants such as vitamin C and vitamin E (alpha-tocopherol) in these assay systems.

  8. Biodegradation of anthracene by a novel actinomycete, Microbacterium sp. isolated from tropical hydrocarbon-contaminated soil.

    Science.gov (United States)

    Salam, Lateef B; Obayori, Oluwafemi S; Olatoye, Nojeem O

    2014-01-01

    A novel anthracene-degrading Gram-positive actinomycete, Microbacterium sp. strain SL10 was isolated from a hydrocarbon-contaminated soil at a mechanical engineering workshop in Lagos, Nigeria. The polluted soil had an unusually high total hydrocarbon content of 157 g/kg and presence of various heavy metals. The isolate tolerated salt concentration of more than 4%. It resisted cefotaxime, streptomycin and ciprofloxacin, but susceptible to meropenem, linezolid and vancomycin. The isolate exhibited growth rate and doubling time of 0.82 days(-1) and 0.84 days, respectively on anthracene. It degraded 57.5 and 90.12% of anthracene within 12 and 21 days, respectively while the rate of anthracene utilization by the isolate was 4.79 mg l(-1) d(-1). To the best of our knowledge, this is the first report of isolation and characterization of anthracene-degrading Microbacterium sp.

  9. [Generation of superoxide radicals by the mitochondrial respiratory chain of isolated cardiomyocytes].

    Science.gov (United States)

    Kashkarov, K P; Vasil'eva, E V; Ruuge, E K

    1994-06-01

    Generation of superoxide radicals by the mitochondrial respiratory chain of cardiomyocites isolated from rat heart and treated with saponin was studied. The rate of O2- production was measured by electron paramagnetic resonance (EPR) spectroscopy using hydroxylamine TEMPONE-H as spin trap. A device has been constructed which provided permanent stirring of cardiomyocyte samples directly in the cavity and prevented cell aggregation. When substrates and antimycin A and/or rotenone are added, the radical production rate increased and reached its maximum in the presence of the both inhibitors. Superoxide dismutase as well as KCN suppressed the radical production, thus being suggestive of the generation of superoxide radicals in the bc1 complex, while the mechanism of O2- production is the same as was suggested for isolated mitochondria. The ratio between rates of O2- generation by isolated cardiomyocytes under various experimental conditions is in a good accord with corresponding parameter of isolated mitochondria. However, in the case of cardiomyocytes the absolute values of the O2- production rate are approximately twice as high as those in isolated mitochondria, presumably due to the partial damage of the mitochondrial respiratory chain during the isolation procedure.

  10. Degradation of Polycyclic Aromatic Hydrocarbons (PAHs) by Bacteria Isolated from Light Oil Polluted Soils

    Science.gov (United States)

    Ohnuma, T.; Suto, K.; Inoue, C.

    2007-03-01

    Polycyclic aromatic hydrocarbons (PAHs) have polluted soil and groundwater widely and for long term because of their low solubility at normal temperature. Several microorganisms, such as Pseudomonas sp., Sphigomonas sp., a white-rot fungus and so on, being able to decompose PAHs, have been isolated and researched. This study reported to investigate biodegradation of low molecule PAH by isolated bacteria from light oil polluted soil. 12 isolates were obtained from a light oil polluted soil using naphthalene, fluorene and anthracene as sole carbon source, of which 4 isolates grew with naphthalene, 4 isolates did with fluorene and 4 isolates did with anthracene. Among them 3 isolates showed the ability to degrade phenanthrene additionally. These phenanthrene degradation and growth rates were almost same as that of S. yanoikuyae (DSM6900), which is the typical bacteria of PAHs degrader. Therefore, the isolate seemed to have an expectation for PAHs degradation.

  11. Isolation and Characterization of Hydrocarbon-utilizing Bacteria from ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Sludge Samples obtained from Crude Oil Processing Facility in Nigeria. *. 1. WOKEM, VINCENT C ... bacteria isolated or found in the contaminated environments. This study ..... of a crude oil polluted tropical mangrove environment J. Appl. Sci.

  12. Isolation and screening of black fungi as degraders of volatile aromatic hydrocarbons

    NARCIS (Netherlands)

    Isola, D.; Selbmann, L.; de Hoog, G.S.; Fenice, M.; Onofri, S.; Prenafeta-Boldu, F.X.; Zucconi, L.

    2013-01-01

    Black fungi reported as degraders of volatile aromatic compounds were isolated from hydrocarbon-polluted sites and indoor environments. Several of the species encountered are known opportunistic pathogens or are closely related to pathogenic species causing severe mycoses, among which are

  13. Time-dependent density functional study of the electronic excited states of polycyclic aromatic hydrocarbon radical ions

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, So; Head-Gordon, Martin P; Szczepanski, Jan; Vala, Martin

    2003-06-19

    A uniform, comprehensive theoretical interpretation of spectroscopic data is presented for 53 radical ion species of polycyclic aromatic hydrocarbons (PAHs) with the aid of (Tamm–Dancoff) time-dependent density functional theory (TDDFT). TDDFT is capable of predicting the transition energies to the low-lying excited states of PAH ions with quantitative accuracy (the standard deviation from experimental results being less than 0.3 eV) and their intensity patterns qualitatively correctly. The accuracy is hardly affected by the sizes of PAH ions (azulene through dinaphthocoronene), the types of transitions (Koopmans or satellite transitions), the types of orbi-tals involved (π* ← π, π* ← σ, or σ* ← π transitions), the types of ions (cations or anions), or other geometrical or electronic perturbations (non-planarity, sp3 carbons, or heterocyclic or non-benzenoid rings).

  14. Isolation of biosurfactant producing microorganisms and lipases from wastewaters from slaughterhouses and soils contaminated with hydrocarbons

    OpenAIRE

    Becerra, Lizzie; Horna, María

    2016-01-01

    Surfactants are amphipathic molecules which reduce stress at the interface, thereby increasing water solubility and availability of organic compounds are produced by bacteria, fungi, and yeasts. For the isolation of biosurfactant producing bacteria and lipases, was plant in inducing means 10% of sewage effluent from slaughterhouses and soils contaminated with hydrocarbons Province taps Trujillo - Peru. Isolates were seed in agar cultures lecithin and rhodamine agar for determination of lipase...

  15. Isolation and determination of absolute configurations of insect-produced methyl-branched hydrocarbons.

    Science.gov (United States)

    Bello, Jan E; McElfresh, J Steven; Millar, Jocelyn G

    2015-01-27

    Although the effects of stereochemistry have been studied extensively for volatile insect pheromones, little is known about the effects of chirality in the nonvolatile methyl-branched hydrocarbons (MBCHs) used by many insects as contact pheromones. MBCHs generally contain one or more chiral centers and so two or more stereoisomeric forms are possible for each structure. However, it is not known whether insects biosynthesize these molecules in high stereoisomeric purity, nor is it known whether insects can distinguish the different stereoisomeric forms of MBCHs. This knowledge gap is due in part to the lack of methods for isolating individual MBCHs from the complex cuticular hydrocarbon (CHC) blends of insects, as well as the difficulty in determining the absolute configurations of the isolated MBCHs. To address these deficiencies, we report a straightforward method for the isolation of individual cuticular hydrocarbons from the complex CHC blend. The method was used to isolate 36 pure MBCHs from 20 species in nine insect orders. The absolute stereochemistries of the purified MBCHs then were determined by digital polarimetry. The absolute configurations of all of the isolated MBCHs were determined to be (R) by comparison with a library of synthesized, enantiomerically pure standards, suggesting that the biosynthetic pathways used to construct MBCHs are highly conserved within the Insecta. The development of a straightforward method for isolation of specific CHCs will enable determination of their functional roles by providing pure compounds for bioassays.

  16. Bacterial Endophytes Isolated from Plants in Natural Oil Seep Soils with Chronic Hydrocarbon Contamination.

    Science.gov (United States)

    Lumactud, Rhea; Shen, Shu Yi; Lau, Mimas; Fulthorpe, Roberta

    2016-01-01

    The bacterial endophytic communities of four plants growing abundantly in soils highly contaminated by hydrocarbons were analyzed through culturable and culture-independent means. Given their tolerance to the high levels of petroleum contamination at our study site, we sought evidence that Achillea millefolium, Solidago canadensis, Trifolium aureum, and Dactylis glomerata support high levels of hydrocarbon degrading endophytes. A total of 190 isolates were isolated from four plant species. The isolates were identified by partial 16S rDNA sequence analysis, with class Actinobacteria as the dominant group in all species except S. canadensis, which was dominated by Gammaproteobacteria. Microbacterium foliorum and Plantibacter flavus were present in all the plants, with M. foliorum showing predominance in D. glomerata and both endophytic bacterial species dominated T. aureum. More than 50% of the isolates demonstrated degradative capabilities for octanol, toluene, naphthalene, kerosene, or motor oil based on sole carbon source growth screens involving the reduction of tetrazolium dye. P. flavus isolates from all the sampled plants showed growth on all the petroleum hydrocarbons (PHCs) substrates tested. Mineralization of toluene and naphthalene was confirmed using gas-chromatography. 16S based terminal restriction fragment length polymorphism analysis revealed significant differences between the endophytic bacterial communities showing them to be plant host specific at this site. To our knowledge, this is the first account of the degradation potential of bacterial endophytes in these commonly occurring pioneer plants that were not previously known as phytoremediating plants.

  17. Characterization of Microorganisms Isolated from Petroleum Hydrocarbon Polluted Soil

    Directory of Open Access Journals (Sweden)

    Adriana Criste

    2016-02-01

    Full Text Available Bioremediation has received a great deal of attention, and bacteria isolated from polluted soil can be usedin that process. In this study, we performed an evaluation of the physiological groups of microorganisms fromsoil contaminated with petroleum. Bacterial strains were isolated from contaminated soil using the selectiveenrichment technique. Minimal Salt Media was used for serial dilutions to determine viable cell count. Thenumber of total viable cells and different types of microorganisms in the original sample was determined by serialdilution, agar plating procedure using selective media. The plates were incubated at 300C for 24-72 hours. Distinctcolonies growing on each plate were selected, and stored at freezing temperatures. The bacterial colonies werethen identified by Gram staining and biochemical tests. Following our research, it was observed that although thetotal microbial load of soil is relatively close in value, there are differences regarding the physiological group ofmicroorganisms. In the oil contaminated soil sample the largest group of microorganisms was the nitrous nitrifyingbacteria followed by nitrate bacteria. All bacterial strains that were isolated from soil samples contaminated withhydrocarbons but also the Pseudomonas putida and Bacillus subtillis strains can use diesel fuel as a food source.With the increase of diesel fuel concentration from culture medium, the majority of the bacterial strains that wereused in our experiments showed an increased value of absorbance. This fact suggests that these strains can be usedin bioremediation processes.

  18. Bacterial endophytes isolated from plants in natural oil seep soils with chronic hydrocarbon contamination

    Directory of Open Access Journals (Sweden)

    Rhea eLumactud

    2016-05-01

    Full Text Available The bacterial endophytic communities of four plants growing abundantly in soils highly contaminated by hydrocarbons were analyzed through culturable and and culture-independent means. Given their tolerance to the high levels of petroleum contamination at our study site, we sought evidence that Achillea millefolium, Solidago canadensis, Trifolium aureum and Dactylis glomerata support high levels of hydrocarbon degrading endophytes. A total of 190 isolates were isolated from four plant species. The isolates were identified by partial 16S rDNA sequence analysis, with class Actinobacteria as the dominant group in all species except Solidago canadensis, which was dominated by Gammaproteobacteria. Microbacterium foliorum and Plantibacter flavus were present in all the plants, with M. foliorum showing predominance in D. glomerata and both endophytic bacterial species dominated T. aureum. More than 50% of the isolates demonstrated degradative capabilities for octanol, toluene, naphthalene, kerosene or motor oil based on sole carbon source growth screens involving the reduction of tetrazolium dye. P. flavus isolates from all the sampled plants showed growth on all the petroleum hydrocarbons substrates tested. Mineralization of toluene and naphthalene was confirmed using gas-chromatography. 16S based terminal restriction fragment length polymorphism analysis revealed significant differences between the endophytic bacterial communities showing them to be plant host specific at this site. To our knowledge, this is the first account of the degradation potential of bacterial endophytes in these commonly occurring pioneer plants that were not previously known as phytoremediating plants.

  19. Study of the Radical Chain Mechanism of Hydrocarbon Oxidation for In Situ Combustion Process

    Directory of Open Access Journals (Sweden)

    Alexandra Ushakova

    2017-01-01

    Full Text Available Despite the abundance of in situ combustion models of oil oxidation, many of the effects are still beyond consideration. For example, until now, initial stages of oxidation were not considered from a position of radical chain process. This is a serious difficulty for the simulation of oil recovery process that involves air injection. To investigate the initial stages of oxidation, the paper considers the sequence of chemical reactions, including intermediate short-living compounds and radicals. We have attempted to correlate the main stages of the reaction with areas of heat release observed in the experiments. The system of differential equations based on the equations of oxidation reactions was solved. Time dependence of peroxides formation and start of heat release is analytically derived for the initial stages. We have considered the inhibition of initial oxidation stages by aromatic oil compounds and have studied the induction time in dependence on temperature. Chain ignition criteria for paraffins and crude oil in presence of core samples were obtained. The calculation results are compared with the stages of oxidation that arise by high-pressure differential scanning calorimetry. According to experimental observations we have determined which reactions are important for the process and which can be omitted or combined into one as insignificant.

  20. Generation of free radicals from organic hydroperoxide tumor promoters in isolated mouse keratinocytes. Formation of alkyl and alkoxyl radicals from tert-butyl hydroperoxide and cumene hydroperoxide.

    Science.gov (United States)

    Taffe, B G; Takahashi, N; Kensler, T W; Mason, R P

    1987-09-05

    The organic hydroperoxides tert-butyl hydroperoxide and cumene hydroperoxide are tumor promoters in the skin of SENCAR mice, and this activity is presumed to be mediated through the activation of the hydroperoxides to free radical species. In this study we have assessed the generation of free radicals from organic hydroperoxides in the target cell (the murine basal keratinocyte) using electron spin resonance. Incubation of primary isolates of keratinocytes from SENCAR mice in the presence of spin traps (5,5-dimethyl-1-pyrroline N-oxide or 2-methyl-2-nitrosopropane) and either tert-butyl hydroperoxide or cumene hydroperoxide resulted in the generation and detection of radical adducts of these spin traps. tert-Butyl alkoxyl and alkyl radical adducts of 5,5-dimethyl-1-pyrroline N-oxide were detected shortly after addition of tert-butyl hydroperoxide, whereas only alkyl radical adducts were observed with cumene hydroperoxide. Spin trapping of the alkyl radicals with 2-methyl-2-nitrosopropane led to the identification of methyl and ethyl radical adducts following both tert-butyl hydroperoxide and cumene hydroperoxide exposures. Prior heating of the cells to 100 degrees C for 30 min prevented radical formation. The radical generating capacity of subcellular fractions of these epidermal cells was examined using 5,5-dimethyl-1-pyrroline N-oxide and cumene hydroperoxide, and this activity was confined to the 105,000 X g supernatant fraction.

  1. Role of Kekul\\'e and Non-Kekul\\'e Structures in the Radical Character of Alternant Polycyclic Aromatic Hydrocarbons: A TAO-DFT Study

    CERN Document Server

    Yeh, Chia-Nan

    2016-01-01

    We investigate the role of Kekul\\'e and non-Kekul\\'e structures in the radical character of alternant polycyclic aromatic hydrocarbons (PAHs) using thermally-assisted-occupation density functional theory (TAO-DFT), an efficient electronic structure method for the study of large ground-state systems with strong static correlation effects. Our results reveal that the studies of Kekul\\'e and non-Kekul\\'e structures qualitatively describe the radical character of alternant PAHs, which could be useful when electronic structure calculations are infeasible due to the expensive computational cost. In addition, our results support previous findings on the increase in radical character with increasing system size. For alternant PAHs with the same number of aromatic rings, the geometrical arrangements of aromatic rings are responsible for their radical character.

  2. Hydrocarbon Biodegrading Potentials of a Proteus vulgaris Strain Isolated from Fish Samples

    Directory of Open Access Journals (Sweden)

    Patience O. Olajide

    2010-01-01

    Full Text Available A Proteus vulgaris bacterium SR-1 was isolated from a freshly killed fish sample collected close to the point of crude oil spill in the Niger Delta region, Nigeria. Problem statement: The application of native bacterial species in bioremediation processes has long been desired, because they would be cost effective and efficient in terms of acclimation time. The ability to isolate high numbers of certain oil-degrading microorganisms from oil-polluted environment is evidence that these microorganisms are the active degraders of that environment. In this study, we reported the potential of a candidate bacterium- Proteus vulgaris SR-1 in the biodegradation of Bonny light crude oil, diesel and kerosene. Approach: To screen for oil degrading capability, the bacterium was cultivated in Minimal Salts Medium (MSM supplemented with 1% (v/v sterile Bonny Light Crude Oil (BLCO. Oil degradation was monitored by measurement of turbidity using a spectrophotometer and the pH, total viable counts of the culture fluids were determined at time intervals as biodegradation indices. The ability of strain to degrade diesel and kerosene oils was also studied while the level of used hydrocarbon degradation was determined using the gravimetric analysis. The bacterium was screened for presence of Plasmid DNA and implication of plasmid in hydrocarbon degradation was investigated. Results: (1 The bacterium utilize hydrocarbons as sole source of carbon and it biodegraded Bonny light crude oil, kerosene and diesel media by as much as 78, 79 and 73.8% respectively, in the presence of 1.0% NaCl (w/v after 96 h. The total viable count after 96, 120 and 168 h of biodegradation of the test hydrocarbons range between 6.2 and 9.1 log10 c.f.u mL-1, (2 The results showed that increasing NaCl concentration in water had decreasing effect on hydrocarbon degradation. (3 pH of media decreased from 7.0 to between 3.29 and 5.02 during the reaction period while growth increases. (4 Plasmid

  3. The isolable cation radical of disilene: synthesis, characterization, and a reversible one-electron redox system.

    Science.gov (United States)

    Inoue, Shigeyoshi; Ichinohe, Masaaki; Sekiguchi, Akira

    2008-05-14

    The highly twisted tetrakis(di-tert-butylmethylsilyl)disilene 1 was treated with Ph3C+.BAr4- (BAr4-: TPFPB = tetrakis(pentafluorophenyl)borate) in toluene, producing disilene cation radical 3 upon one-electron oxidation. Cation radical 3 was isolated in the form of its borate salt as extremely air- and moisture-sensitive red-brown crystals. The molecular structure of 3 was established by X-ray crystallography, which showed a highly twisted structure (twisting angle of 64.9 degrees) along the central Si-Si bond with a bond length of 2.307(2) A, which is 2.1% elongated relative to that of 1. The cation radical is stabilized by sigma-pi hyperconjugation by the four tBu2MeSi groups attached to the two central sp2-Si atoms. An electron paramagnetic resonance (EPR) study of the hyperfine coupling constants (hfcc) of the 29Si nuclei indicates delocalization of the spin over the central two Si atoms. A reversible one-electron redox system between disilene, cation radical, and anion radical is also reported.

  4. Isolation, chemical and free radical scavenging characterization of phenolics from Trifolium scabrum L. aerial parts.

    Science.gov (United States)

    Kowalska, Iwona; Jedrejek, Dariusz; Ciesla, Lukasz; Pecio, Lukasz; Masullo, Milena; Piacente, Sonia; Oleszek, Wieslaw; Stochmal, Anna

    2013-05-08

    For the first time Trifolium scabrum L. was researched for its phenolic profile. Sixteen phenolics (isoflavones and flavonoids) were isolated and identified in the aerial parts of T. scabrum L. Their structures were established by electrospray ionization-mass spectrometry (ESI-MS) and nuclear magnetic resonance (NMR) techniques. Quantitative analysis of individual phenolics performed by means of ultraperformance liquid chromatography-mass spectrometry (UPLC-MS) was based on calibration curves obtained for previously isolated standard compounds. Additionally, the free radical scavenging potential of these substances was assessed by means of a simple benchtop thin-layer chromatography-2,2-diphenyl-1-picrylhydrazyl radical (TLC-DPPH(•)) bioassay. Thus, T. scabrum L. can be regarded as a potential source of estrogenic and antioxidant compounds, both of significance in the pharmaceutical as well as the food industry. The results show that T. scabrum L. can be considered as a natural and very good commercial source of phenolic compounds (mainly isoflavones).

  5. The role of the catalysts with highly dispersed and isolated active sites in the selective oxidation of light hydrocarbons

    Institute of Scientific and Technical Information of China (English)

    WANG Hongxuan; ZHAO Zhen

    2005-01-01

    This review summarizes the role of catalysts with highly dispersed and isolated active sites (active sites: supported atoms f≤0.5 % ) in the selective oxidation of light hydrocarbons, such as methane, ethane and propane, into oxygenatesand the epoxidation of olefins. The plausible structures of the highly dispersed and isolated active species, as well as their effects on the catalytic performances are discussed. The special physico-chemical properties and the functional mechanism of the catalysts with highly dispersed and isolated active sites, as well as the preparation, characterization of the catalysts with highly dispersed and isolated active sites and their applications in other types of reactions of lower hydrocarbons are summarized.

  6. Potential of Polycyclic Aromatic Hydrocarbon-Degrading Bacterial Isolates to Contribute to Soil Fertility

    Science.gov (United States)

    Chirima, George Johannes

    2016-01-01

    Restoration of polycyclic aromatic hydrocarbon- (PAH-) polluted sites is presently a major challenge in agroforestry. Consequently, microorganisms with PAH-degradation ability and soil fertility improvement attributes are sought after in order to achieve sustainable remediation of polluted sites. This study isolated PAH-degrading bacteria from enriched cultures of spent automobile engine-oil polluted soil. Isolates' partial 16S rRNA genes were sequenced and taxonomically classified. Isolates were further screened for their soil fertility attributes such as phosphate solubilization, atmospheric nitrogen fixation, and indoleacetic acid (IAA) production. A total of 44 isolates were obtained and belong to the genera Acinetobacter, Arthrobacter, Bacillus, Flavobacterium, Microbacterium, Ochrobactrum, Pseudomonas, Pseudoxanthomonas, Rhodococcus, and Stenotrophomonas. Data analysed by principal component analysis showed the Bacillus and Ochrobactrum isolates displayed outstanding IAA production. Generalized linear modelling statistical approaches were applied to evaluate the contribution of the four most represented genera (Pseudomonas, Acinetobacter, Arthrobacter, and Rhodococcus) to soil fertility. The Pseudomonas isolates were the most promising in all three soil fertility enhancement traits evaluated and all isolates showed potential for one or more of the attributes evaluated. These findings demonstrate a clear potential of the isolates to participate in restorative bioremediation of polluted soil, which will enhance sustainable agricultural production and environmental protection. PMID:27774456

  7. Xe-bearing hydrocarbon ions: Observation of Xe.acetylene+rad and Xe.benzene+rad radical cations and calculations of their ground state structures

    Science.gov (United States)

    Cui, Zhong-hua; Attah, Isaac K.; Platt, Sean P.; Aziz, Saadullah G.; Kertesz, Miklos; El-Shall, M. S.

    2016-04-01

    This work reports evidence for novel types of Xe-bearing hydrocarbon radical cations. The Xe.acetylene+rad radical cation adduct is observed at nearly room temperature using the mass-selected drift cell technique. The irreversible addition of the Xe atom and the lack of back dissociation to HCCH+rad + Xe is consistent with the calculated binding energy of 0.85 eV to be contrasted with the metastable nature of the neutral Xe.acetylene adduct. The observed Xe.benzene+rad radical cation appears to be a weakly bound complex stabilized mainly by ion-induced dipole interaction consistent with a calculated binding energy in the range of 0.14-0.17 eV.

  8. Inelastic scattering of OH radicals from organic liquids: isolating the thermal desorption channel.

    Science.gov (United States)

    King, Kerry L; Paterson, Grant; Rossi, Giovanni E; Iljina, Marija; Westacott, Robin E; Costen, Matthew L; McKendrick, Kenneth G

    2013-08-21

    Inelastic scattering of OH radicals from liquid surfaces has been investigated experimentally. An initially translationally and rotationally hot distribution of OH was generated by 193 nm photolysis of allyl alcohol. These radicals were scattered from an inert reference liquid, perfluorinated polyether (PFPE), and from the potentially reactive hydrocarbon liquids squalane (C30H62, 2,6,10,15,19,23-hexamethyltetracosane) and squalene (C30H50, trans-2,6,10,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene). The scattered OH v = 0 products were detected by laser-induced fluorescence. Strong correlations were observed between the translational and rotational energies of the products. The high-N levels are translationally hot, consistent with a predominantly direct, impulsive scattering mechanism. Impulsive scattering also populates the lower-N levels, but a component of translationally relaxed OH, with thermal-desorption characteristics, can also be seen clearly for all three liquids. More of this translationally and rotationally relaxed OH survives from squalane than from squalene. Realistic molecular dynamics simulations confirm that double-bond sites are accessible at the squalene surface. This supports the proposition that relaxed OH may be lost on squalene via an addition mechanism.

  9. Potential of Polycyclic Aromatic Hydrocarbon-Degrading Bacterial Isolates to Contribute to Soil Fertility

    Directory of Open Access Journals (Sweden)

    Maryam Bello-Akinosho

    2016-01-01

    Full Text Available Restoration of polycyclic aromatic hydrocarbon- (PAH- polluted sites is presently a major challenge in agroforestry. Consequently, microorganisms with PAH-degradation ability and soil fertility improvement attributes are sought after in order to achieve sustainable remediation of polluted sites. This study isolated PAH-degrading bacteria from enriched cultures of spent automobile engine-oil polluted soil. Isolates’ partial 16S rRNA genes were sequenced and taxonomically classified. Isolates were further screened for their soil fertility attributes such as phosphate solubilization, atmospheric nitrogen fixation, and indoleacetic acid (IAA production. A total of 44 isolates were obtained and belong to the genera Acinetobacter, Arthrobacter, Bacillus, Flavobacterium, Microbacterium, Ochrobactrum, Pseudomonas, Pseudoxanthomonas, Rhodococcus, and Stenotrophomonas. Data analysed by principal component analysis showed the Bacillus and Ochrobactrum isolates displayed outstanding IAA production. Generalized linear modelling statistical approaches were applied to evaluate the contribution of the four most represented genera (Pseudomonas, Acinetobacter, Arthrobacter, and Rhodococcus to soil fertility. The Pseudomonas isolates were the most promising in all three soil fertility enhancement traits evaluated and all isolates showed potential for one or more of the attributes evaluated. These findings demonstrate a clear potential of the isolates to participate in restorative bioremediation of polluted soil, which will enhance sustainable agricultural production and environmental protection.

  10. Effects of oxidative modification on gel properties of isolated porcine myofibrillar protein by peroxyl radicals.

    Science.gov (United States)

    Zhou, Feibai; Zhao, Mouming; Zhao, Haifeng; Sun, Weizheng; Cui, Chun

    2014-04-01

    AAPH-derived (2,2'-azobis (2-amidinopropane) dihydrochloride) peroxyl radicals were selected as representative free radicals of lipid peroxidation to investigate the effects of oxidative modifications on isolated porcine myofibrillar protein structures as well as their rheological and gelling properties. Incubation of myofibrillar protein with increasing concentrations of AAPH resulted in a gradual increase (p3 mM) concentrations of AAPH induced aggregation of myosin and denaturation of myosin, troponin and tropomyosin, respectively. These structural changes resulted in changes on gelation of myofibrillar protein. Low level protein oxidation (AAPH≤0.5 mM) had no remarkable effect (p>0.05) on the viscoelastic pattern of myofibrillar protein gelation. Moderate oxidative modification (AAPH~1mM) enhanced the water-holding capacity (WHC) and texture properties of gels, while further oxidation (AAPH>3mM) significantly reduced the gel quality.

  11. Isolation and characterization of different bacterial strains for bioremediation of n-alkanes and polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Guermouche M'rassi, A; Bensalah, F; Gury, J; Duran, R

    2015-10-01

    Crude oil is a common environmental pollutant composed of a large number of both aromatic and aliphatic hydrocarbons. Biodegradation is carried out by microbial communities that are important in determining the fate of pollutants in the environment. The intrinsic biodegradability of the hydrocarbons and the distribution in the environment of competent degrading microorganisms are crucial information for the implementation of bioremediation processes. In the present study, the biodegradation capacities of various bacteria toward aliphatic and aromatic hydrocarbons were determined. The purpose of the study was to isolate and characterize hydrocarbon-degrading bacteria from contaminated soil of a refinery in Arzew, Algeria. A collection of 150 bacterial strains was obtained; the bacterial isolates were identified by 16S rRNA gene sequencing and their ability to degrade hydrocarbon compounds characterized. The isolated strains were mainly affiliated to the Gamma-Proteobacteria class. Among them, Pseudomonas spp. had the ability to metabolize high molecular weight hydrocarbon compounds such as pristane (C19) at 35.11 % by strain LGM22 and benzo[a] pyrene (C20) at 33.93 % by strain LGM11. Some strains were able to grow on all the hydrocarbons tested including octadecane, squalene, phenanthrene, and pyrene. Some strains were specialized degrading only few substrates. In contrast, the strain LGM2 designated as Pseudomonas sp. was found able to degrade both linear and branched alkanes as well as low and high poly-aromatic hydrocarbons (PAHs). The alkB gene involved in alkane degradation was detected in LGM2 and other Pseudomonas-related isolates. The capabilities of the isolated bacterial strains to degrade alkanes and PAHs should be of great practical significance in bioremediation of oil-contaminated environments.

  12. Isolation, chemical characterization, and free radical scavenging activity of phenolics from Triticum aestivum L. aerial parts.

    Science.gov (United States)

    Kowalska, Iwona; Pecio, Lukasz; Ciesla, Lukasz; Oleszek, Wieslaw; Stochmal, Anna

    2014-11-19

    Fourteen phenolic compounds (flavonoids and phenolic acids) were isolated and 19 were identified in the aerial parts of Triticum aestivum L. The structures of these compounds were established on the basis of the data obtained by electrospray ionization-mass spectrometry (ESI-MS) and nuclear magnetic resonance (NMR) techniques. T. aestivum L. was found to be rich in flavones, especially in luteolin derivatives. Three of the isolated compounds, including luteolin 6-C-[6Glc″-O-E-caffeoyl-β-D-glucopyranosyl(1″→2)-β-glucopyranoside], luteolin 6-C-[5Rib″-O-E-feruoyl-β-D-ribofuranosyl(1″→2)-β-glucopyranoside], and 3',4',5'-O-trimethyltricetin 7-O-[β-D-glucuropyranosyl(1″→2)-β-D-glucopyranoside], have been reported for the first time in the plant kingdom. The amount of individual phenolics, in winter wheat, was also determined. Additionally, the free radical scavenging potential of the isolated compounds was tested in a simple and rapid thin-layer chromatography-2,2-diphenyl-1-picrylhydrazyl radical test (TLC-DPPH•) with image processing.

  13. Examination by EPR spectroscopy of free radicals in melanins isolated from A-375 cells exposed on valproic acid and cisplatin.

    Science.gov (United States)

    Chodurek, Ewa; Zdybel, Magdalena; Pilawa, Barbara; Dzierzewicz, Zofia

    2012-01-01

    Drug binding by melanin biopolymers influence the effectiveness of the chemotherapy, radiotherapy and photodynamic therapy. Free radicals of melanins take part in formation of their complex with drugs. The aim of this work was to determine the effect of the two compounds: valproic acid (VPA) and cisplatin (CPT) on free radicals properties of melanin isolated from A-375 melanoma cells. Free radicals were examined by an X-band (9.3 GHz) electron paramagnetic resonance (EPR) spectroscopy. EPR spectra were measured for the model synthetic eumelanin - DOPA-melanin, the melanin isolated from the control A-375 cells and these cells treated by VPA, CPT and both VPA and CPT. For all the examined samples broad EPR lines (deltaBpp: 0.48-0.68 mT) with g-factors of 2.0045-2.0060 characteristic for o-semiquinone free radicals were observed. Free radicals concentrations (N) in the tested samples, g-factors, amplitudes (A), integral intensities (I) and linewidths (deltaBpp) of the EPR spectra, were analyzed. The EPR lines were homogeneously broadened. Continuous microwave saturation of the EPR spectra indicated that slow spin-lattice relaxation processes existed in all the tested melanin samples. The relatively slowest spin-lattice relaxation processes characterized melanin isolated from A-375 cells treated with both VPA and CPT. The changes of the EPR spectra with increasing microwave power in the range of 2.2-70 mW were evaluated. Free radicals concentrations in the melanin from A-375 cells were higher than in the synthetic DOPA-melanin. The strong increase of free radicals concentration in the melanin from A-375 cells was observed after their treating by VPA. CPT also caused the increase of free radicals concentrations in the examined natural melanin. The free radicals concentration in melanin isolated from A-375 cells treated with both VPA and CPT was slightly higher than those in melanin from the control cells.

  14. Comparison of the fuel oil biodegradation potential of hydrocarbon-assimilating microorganisms isolated from a temperate agricultural soil

    Energy Technology Data Exchange (ETDEWEB)

    Chaineau, C.H.; Dupont, J.; Bury, E.; Oudot, J. [Museum National d' Histoire Naturelle, Laboratoire de Cryptogamie, 12 rue Buffon, 75005 Paris (France); Morel, J. [Ecole Nationale Superieure d' Agronomie et des Industries Alimentaires de Nancy, Laboratoire Sols et Environnement, INRA, 2 avenue de la Foret de Haye, B.P. 172, F-54505 Vandoeuvre-les-Nancy (France)

    1999-03-09

    Strains of hydrocarbon-degrading microorganisms (bacteria and fungi) were isolated from an agricultural soil in France. In a field, a portion was treated with oily cuttings resulting from the drilling of an onshore well. The cuttings which were spread at the rate of 600 g HC m{sup -2} contained 10% of fuel oil hydrocarbons (HC). Another part of the field was left untreated. Three months after HC spreading, HC adapted bacteria and fungi were isolated at different soil depths in the two plots and identified. The biodegradation potential of the isolated strains was monitored by measuring the degradation rate of total HC, saturated hydrocarbons, aromatic hydrocarbons and resins of the fuel. Bacteria of the genera Pseudomonas, Brevundimonas, Sphingomonas, Acinetobacter, Rhodococcus, Arthrobacter, Corynebacterium and fungi belonging to Aspergillus, Penicillium, Beauveria, Acremonium, Cladosporium, Fusarium, and Trichoderma were identified. The most active strains in the assimilation of saturates and aromatics were Arthrobacter sp., Sphingomonas spiritivorum, Acinetobacter baumanii, Beauveria alba and Penicillum simplicissimum. The biodegradation potential of the hydrocarbon utilizing microorganisms isolated from polluted or unpolluted soils were similar. In laboratory pure cultures, saturated HC were more degraded than aromatic HC, whereas resins were resistant to microbial attack. On an average, individual bacterial strains were more active than fungi in HC biodegradation. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  15. Comparison of the fuel oil biodegradation potential of hydrocarbon-assimilating microorganisms isolated from a temperate agricultural soil

    Energy Technology Data Exchange (ETDEWEB)

    Chaineau, C.H.; Dupont, J.; Bury, E.; Oudot, J. [Museum National d`Histoire Naturelle, Laboratoire de Cryptogamie, 12 rue Buffon, 75005 Paris (France); Morel, J. [Ecole Nationale Superieure d`Agronomie et des Industries Alimentaires de Nancy, Laboratoire Sols et Environnement, INRA, 2 avenue de la Foret de Haye, B.P. 172, F-54505 Vandoeuvre-les-Nancy (France)

    1999-03-09

    Strains of hydrocarbon-degrading microorganisms (bacteria and fungi) were isolated from an agricultural soil in France. In a field, a portion was treated with oily cuttings resulting from the drilling of an onshore well. The cuttings which were spread at the rate of 600 g HC m{sup -2} contained 10% of fuel oil hydrocarbons (HC). Another part of the field was left untreated. Three months after HC spreading, HC adapted bacteria and fungi were isolated at different soil depths in the two plots and identified. The biodegradation potential of the isolated strains was monitored by measuring the degradation rate of total HC, saturated hydrocarbons, aromatic hydrocarbons and resins of the fuel. Bacteria of the genera Pseudomonas, Brevundimonas, Sphingomonas, Acinetobacter, Rhodococcus, Arthrobacter, Corynebacterium and fungi belonging to Aspergillus, Penicillium, Beauveria, Acremonium, Cladosporium, Fusarium, and Trichoderma were identified. The most active strains in the assimilation of saturates and aromatics were Arthrobacter sp., Sphingomonas spiritivorum, Acinetobacter baumanii, Beauveria alba and Penicillum simplicissimum. The biodegradation potential of the hydrocarbon utilizing microorganisms isolated from polluted or unpolluted soils were similar. In laboratory pure cultures, saturated HC were more degraded than aromatic HC, whereas resins were resistant to microbial attack. On an average, individual bacterial strains were more active than fungi in HC biodegradation

  16. Characteristics of Newly Isolated Geobacillus sp. ZY-10 Degrading Hydrocarbons in Crude Oil.

    Science.gov (United States)

    Sun, Yumei; Ning, Zhanguo; Yang, Fan; Li, Xianzhen

    2015-01-01

    An obligately thermophilic strain ZY-10 was isolated from the crude oil in a high-temperature oilfield, which was capable of degrading heavy crude oil. Phenotypic and phylogenetic analysis demonstrated that the isolate should be grouped in the genus Geobacillus, which shared thd highest similarity (99%) of the 16S rDNA sequence to Geobacillus stearothermophilus. However, the major cellular fatty acid iso-15:0 (28.55%), iso-16:0 (24.93%), iso-17:0 (23.53%) and the characteristics including indole production, tolerance to NaN3 and carbohydrate fermentation showed some difference from the recognized species in the genus Geobacillus. The isolate could use tridecane, hexadecane, octacosane and hexatridecane as sole carbon source for cell growth, and the digesting rate of long-chain alkane was lower than that of short-chain alkane. When the isolate was cultured in the heavy crude oil supplement with inorganic salts and trace yeast extract, the concentration of short-chain alkane was significantly increased and the content of long-chain alkane was decreased, suggesting that the larger hydrocarbon components in crude oil were degraded into shorter-chain alkane. Strain ZY-10 would be useful for improving the mobility of crude oil and upgrading heavy crude oil in situ.

  17. Measurement of partition coefficients for selected polycyclic aromatic hydrocarbons between isolated plant cuticles and water.

    Science.gov (United States)

    Kim, Su-Jin; Lee, Hwang; Kwon, Jung-Hwan

    2014-10-01

    Partition coefficients between plant cuticles and water (Kcutw) were measured for 10 selected polycyclic aromatic hydrocarbons (PAHs) to evaluate the sorption capacity of plant cuticular layers for hydrophobic organic chemicals. The partitioning properties of PAHs between cuticles and water were evaluated by using (1) isolated cuticular layers and (2) leaf homogenate. The abaxial and adaxial cuticular layers of Euonymus japonicus were isolated by enzymatic digestion. A third-phase partitioning method using poly(dimethylsiloxane) (PDMS) was used to obtain Kcutw. The Kcutw values for the selected PAHs showed no significant differences between the abaxial and adaxial cuticular layers and ranged between 10(4.1) and 10(7.6). These values are close to or slightly higher than their 1-octanol/water partition coefficient (log Kow), indicating high sorption capacity of plant cuticles. On the contrary, partition coefficients between the lipid tissues of homogenized leaves and water were lower than those obtained using isolated cuticular layers by factors of 3.7-190, which is likely due to the breakdown of lipid layers. This indicates that the sorption of hydrophobic organic chemicals by plant leaves is better evaluated using isolated cuticles and that the sorption potential of plant leaves may be underestimated when leaf homogenates are used. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. The optical spectrum of a large isolated polycyclic aromatic hydrocarbon: hexa-peri-hexabenzocoronene, C42H18

    CERN Document Server

    Kokkin, Damian L; Nakajima, Masakazu; Nauta, Klaas; Varberg, Thomas D; Metha, Gregory F; Lucas, Nigel T; Schmidt, Timothy W

    2008-01-01

    The first optical spectrum of an isolated polycyclic aromatic hydrocarbon large enough to survive the photophysical conditions of the interstellar medium is reported. Vibronic bands of the first electronic transition of the all benzenoid polycyclic aromatic hydrocarbon hexa-peri-hexabenzocoronene were observed in the 4080-4530 Angstrom range by resonant 2-color 2-photon ionization spectroscopy. The strongest feature at 4261 Angstrom is estimated to have an oscillator strength of f=1.4x10^-3, placing an upper limit on the interstellar abundance of this polycyclic aromatic hydrocarbon at 4x10^12 cm^-2, accounting for a maximum of ~0.02% of interstellar carbon. This study opens up the possibility to rigorously test neutral polycyclic aromatic hydrocarbons as carriers of the diffuse interstellar bands in the near future.

  19. Isolation and taxonomic affiliation of N-heterocyclic aromatic hydrocarbon-transforming bacteria.

    Science.gov (United States)

    Willumsen, Pia Arentsen; Johansen, Jens Efsen; Karlson, Ulrich; Hansen, Bjarne Munk

    2005-05-01

    The azaarenes (nitrogen-containing heterocyclic aromatic hydrocarbons) are products of incomplete combustion processes and thus are widely distributed with tar and oil products in the environment. Despite their adverse organoleptic, toxic, and carcinogenic characteristics, the biodegradability and fate of multi-ring azaarenes have received little attention. This work demonstrates the presence of genetically diverse azaarene-degrading bacteria in coal tar-contaminated soils. Thirty-eight bacterial strains able to transform the three-ring azaarenes, 5,6- and 7,8-benzoquinoline, phenanthridine, phenazine, or acridine, were isolated. Only seven of these strains grew in liquid medium on the specific azaarene compounds on which they were isolated using plates; and the rest transformed the azaarenes without growth. Taxonomic characterization by 16S ribosomal DNA sequencing revealed that our enrichment technique provided a diversity of 18 different azaarene-transforming bacterial species. Only a few strains were able to mineralize the homocyclic analogue, phenanthrene. Several of the isolates, e.g., Dyadobacter fermentans, Methylopila capsulata, and Agrobacterium tumefaciens, were related to genera relatively unknown with respect to the biodegradation of xenobiotic compounds. These strains can provide further information on the fate of azaarenes in the environment.

  20. Study of a hydrocarbon-utilizing and emulsifier-producing Acinetobacter calcoaceticus strain isolated from heating oil.

    Science.gov (United States)

    Marín, M M; Pedregosa, A M; Ortiz, M L; Laborda, F

    1995-12-01

    Twenty bacterial strains were isolated from a sample of contaminated heating oil and screened for their ability to use petroleum and several common fuels as the sole source of carbon and energy. One of the isolates, named MM5, was able to grow on petroleum derivatives and brought about an emulsification of those compounds. Gas chromatography studies showed that strain MM5 was able to degrade hydrocarbons of heating oil. MM5 has been tentatively identified as a strain of Acinetobacter calcoaceticus. The fine structure of MM5 was examined by transmission electron microscopy. Incubation in the presence of hydrocarbon substrates resulted in the development of intracellular electron-transparent inclusions. These structures were absent in the non-hydrocarbon cultures studied.

  1. Draft Genome Sequence of Microbacterium foliorum Strain 122 Isolated from a Plant Growing in a Chronically Hydrocarbon-Contaminated Site.

    Science.gov (United States)

    Lumactud, Rhea; Fulthorpe, Roberta; Sentchilo, Vladimir; van der Meer, Jan Roelof

    2017-05-25

    Microbacterium foliorum strain 122 is a bacterial endophyte isolated from a Dactylis glomerata plant growing in a natural oil seep soil located in Oil Springs, Ontario, Canada. We present here a draft genome sequence of an endophytic strain that has promising potential in hydrocarbon degradation and plant growth promotion. Copyright © 2017 Lumactud et al.

  2. Draft Genome Sequence of Microbacterium foliorum Strain 122 Isolated from a Plant Growing in a Chronically Hydrocarbon-Contaminated Site

    OpenAIRE

    Lumactud, Rhea; Fulthorpe, Roberta; Sentchilo, Vladimir; van der Meer, Jan Roelof

    2017-01-01

    ABSTRACT Microbacterium foliorum strain 122 is a bacterial endophyte isolated from a Dactylis glomerata plant growing in a natural oil seep soil located in Oil Springs, Ontario, Canada. We present here a draft genome sequence of an endophytic strain that has promising potential in hydrocarbon degradation and plant growth promotion.

  3. Assessing the hydrocarbon degrading potential of indigenous bacteria isolated from crude oil tank bottom sludge and hydrocarbon-contaminated soil of Azzawiya oil refinery, Libya.

    Science.gov (United States)

    Mansur, Abdulatif A; Adetutu, Eric M; Kadali, Krishna K; Morrison, Paul D; Nurulita, Yuana; Ball, Andrew S

    2014-09-01

    The disposal of hazardous crude oil tank bottom sludge (COTBS) represents a significant waste management burden for South Mediterranean countries. Currently, the application of biological systems (bioremediation) for the treatment of COTBS is not widely practiced in these countries. Therefore, this study aims to develop the potential for bioremediation in this region through assessment of the abilities of indigenous hydrocarbonoclastic microorganisms from Libyan Hamada COTBS for the biotreatment of Libyan COTBS-contaminated environments. Bacteria were isolated from COTBS, COTBS-contaminated soil, treated COTBS-contaminated soil, and uncontaminated soil using Bushnell Hass medium amended with Hamada crude oil (1 %) as the main carbon source. Overall, 49 bacterial phenotypes were detected, and their individual abilities to degrade Hamada crude and selected COBTS fractions (naphthalene, phenanthrene, eicosane, octadecane and hexane) were evaluated using MT2 Biolog plates. Analyses using average well colour development showed that ~90 % of bacterial isolates were capable of utilizing representative aromatic fractions compared to 51 % utilization of representative aliphatics. Interestingly, more hydrocarbonoclastic isolates were obtained from treated contaminated soils (42.9 %) than from COTBS (26.5 %) or COTBS-contaminated (30.6 %) and control (0 %) soils. Hierarchical cluster analysis (HCA) separated the isolates into two clusters with microorganisms in cluster 2 being 1.7- to 5-fold better at hydrocarbon degradation than those in cluster 1. Cluster 2 isolates belonged to the putative hydrocarbon-degrading genera; Pseudomonas, Bacillus, Arthrobacter and Brevundimonas with 57 % of these isolates being obtained from treated COTBS-contaminated soil. Overall, this study demonstrates that the potential for PAH degradation exists for the bioremediation of Hamada COTBS-contaminated environments in Libya. This represents the first report on the isolation of

  4. Kinetics of nonstationary chemiluminescence during the inhibited oxidation of hydrocarbons and determination of the rate constants for peroxy radical decay

    Energy Technology Data Exchange (ETDEWEB)

    Rusina, I.F.; Emanuel, N.M.; Gagarina, A.B.

    1986-05-01

    This paper presents the results of a theoretical analysis of the kinetics of the nonstationary inhibited chemiluminescence and suggests a method for determining the absolute value of the rate constants for the recombination of peroxy radicals and for their removal by reaction with an inhibitor. From the rate curve for the chemiluminescence in the nonstationary regime following the introduction of an inhibitor it is possible simultaneously and independently to determine the absolute values of the rate constants for recombination of the peroxy radicals and their destruction by the inhibitor. Equations are obtained for calculating the time to establish the quasistationary concentration of peroxy radicals and of radicals formed from the inhibitor, using known values of the constants.

  5. Changes in acaricidal potency by introducing functional radicals and an acaricidal constituent isolated from Schizonepeta tenuifolia.

    Science.gov (United States)

    Yang, Ji-Yeon; Lee, Hoi-Seon

    2013-11-27

    The acaricidal potential of an active constituent isolated from Schizonepeta tenuifolia oil and its structurally related derivatives was evaluated using filter paper and impregnated cotton fabric disk bioassays against house dust and stored food mites. The acaricidal constituent of S. tenuifolia oil was isolated by chromatographic techniques and identified as 2-isopropyl-5-methylcyclohexanone by GC-MS, (1)H-, and (13)C NMR spectra. 2-Isopropyl-5-methylcyclohexanone was a potent acaricide against house dust and stored food mites, based on the LD50 values from the filter paper and impregnated cotton fabric disk bioassays, followed by 4-isopropylcyclohexanone, 2-isopropylidene-5-methylcyclohexanone, 2-methylcyclohexanone, 3-methylcyclohexanone, 4-methylcyclohexanone, and benzyl benzoate. Furthermore, 4-isopropylcyclohexanone and 2-isopropyl-5-methylcyclohexanone, which were introduced on the isopropyl (C3H7) functional radical of the cyclohexanone skeleton, had the highest acaricidal potency. These results indicate that S. tenuifolia oil and 2-isopropyl-5-methylcyclohexanone structural analogues could be effective natural acaricides for managing house dust and stored food mites.

  6. Hydroxyl radical scavenging activities of isoquinoline alkaloids isolated from Coptis chinensis.

    Science.gov (United States)

    Jang, Moon Hee; Kim, Hyun Young; Kang, Ki Sung; Yokozawa, Takako; Park, Jeong Hill

    2009-03-01

    The hydroxyl radical (*OH) scavenging and ferrous ion chelating activities of four isoquinoline alkaloids isolated from Coptis chinensis Franch were studied for the identification of their structural characteristics to scavenge *OH. The *OH was generated via Fe(II)-catalazed Fenton reaction in this study and the reliable measurement of *OH scavenging activities of isoquinoline alkaloids were achieved using electron spin resonance (ESR) spectrometry method. At the 1 mM concentration, berberrubine (85%) showed the strongest *OH scavenging activity and the next were in the decreasing order of coptisine (79%), berberine (23%), and palmatine (22%). The ferrous ion chelating effects of the alkaloids showed similar pattern with their *OH scavenging effects. These results suggest that *OH scavenging effects of the alkaloids were closely related to their ferrous ion chelating activities. In addition, metal chelating functional groups such as hydroxy group at C-9 and methylenedioxy group at C-9 and C-10 were thought to contribute to the *OH scavenging activities of the isoquinoline alkaloids.

  7. Isolation and characterization of heavy polycyclic aromatic hydrocarbon-degrading bacteria adapted to electrokinetic conditions.

    Science.gov (United States)

    Li, Fengmei; Guo, Shuhai; Hartog, Niels; Yuan, Ye; Yang, Xuelian

    2016-02-01

    Polycyclic aromatic hydrocarbon (PAH)-degrading bacteria capable of growing under electrokinetic conditions were isolated using an adjusted acclimation and enrichment procedure based on soil contaminated with heavy PAHs in the presence of an electric field. Their ability to degrade heavy PAHs under an electric field was individually investigated in artificially contaminated soils. The results showed that strains PB4 (Pseudomonas fluorescens) and FB6 (Kocuria sp.) were the most efficient heavy PAH degraders under electrokinetic conditions. They were re-inoculated into a polluted soil from an industrial site with a PAH concentration of 184.95 mg kg(-1). Compared to the experiments without an electric field, the degradation capability of Pseudomonas fluorescens and Kocuria sp. was enhanced in the industrially polluted soil under electrokinetic conditions. The degradation extents of total PAHs were increased by 15.4 and 14.0% in the electrokinetic PB4 and FB6 experiments (PB4 + EK and FB6 + EK) relative to the PB4 and FB6 experiments without electrokinetic conditions (PB4 and FB6), respectively. These results indicated that P. fluorescens and Kocuria sp. could efficiently degrade heavy PAHs under electrokinetic conditions and have the potential to be used for the electro-bioremediation of PAH-contaminated soil, especially if the soil is contaminated with heavy PAHs.

  8. Removal Capacities of Polycyclic Aromatic Hydrocarbons (PAHs by a Newly Isolated Strain from Oilfield Produced Water

    Directory of Open Access Journals (Sweden)

    Yi-Bin Qi

    2017-02-01

    Full Text Available The polycyclic aromatic hydrocarbon (PAH-degrading strain Q8 was isolated from oilfield produced water. According to the analysis of a biochemical test, 16S rRNA gene, house-keeping genes and DNA–DNA hybridization, strain Q8 was assigned to a novel species of the genus Gordonia. The strain could not only grow in mineral salt medium (MM and utilize naphthalene and pyrene as its sole carbon source, but also degraded mixed naphthalene, phenanthrene, anthracene and pyrene. The degradation ratio of these four PAHs reached 100%, 95.4%, 73.8% and 53.4% respectively after being degraded by Q8 for seven days. A comparative experiment found that the PAHs degradation efficiency of Q8 is higher than that of Gordonia alkaliphila and Gordonia paraffinivorans, which have the capacities to remove PAHs. Fourier transform infrared spectra, saturate, aromatic, resin and asphaltene (SARA and gas chromatography–mass spectrometry (GC–MS analysis of crude oil degraded by Q8 were also studied. The results showed that Q8 could utilize n-alkanes and PAHs in crude oil. The relative proportions of the naphthalene series, phenanthrene series, thiophene series, fluorene series, chrysene series, C21-triaromatic steroid, pyrene, and benz(apyrene were reduced after being degraded by Q8. Gordonia sp. nov. Q8 had the capacity to remediate water and soil environments contaminated by PAHs or crude oil, and provided a feasible way for the bioremediation of PAHs and oil pollution.

  9. Removal Capacities of Polycyclic Aromatic Hydrocarbons (PAHs) by a Newly Isolated Strain from Oilfield Produced Water

    Science.gov (United States)

    Qi, Yi-Bin; Wang, Chen-Yu; Lv, Cheng-Yuan; Lun, Zeng-Min; Zheng, Cheng-Gang

    2017-01-01

    The polycyclic aromatic hydrocarbon (PAH)-degrading strain Q8 was isolated from oilfield produced water. According to the analysis of a biochemical test, 16S rRNA gene, house-keeping genes and DNA–DNA hybridization, strain Q8 was assigned to a novel species of the genus Gordonia. The strain could not only grow in mineral salt medium (MM) and utilize naphthalene and pyrene as its sole carbon source, but also degraded mixed naphthalene, phenanthrene, anthracene and pyrene. The degradation ratio of these four PAHs reached 100%, 95.4%, 73.8% and 53.4% respectively after being degraded by Q8 for seven days. A comparative experiment found that the PAHs degradation efficiency of Q8 is higher than that of Gordonia alkaliphila and Gordonia paraffinivorans, which have the capacities to remove PAHs. Fourier transform infrared spectra, saturate, aromatic, resin and asphaltene (SARA) and gas chromatography–mass spectrometry (GC–MS) analysis of crude oil degraded by Q8 were also studied. The results showed that Q8 could utilize n-alkanes and PAHs in crude oil. The relative proportions of the naphthalene series, phenanthrene series, thiophene series, fluorene series, chrysene series, C21-triaromatic steroid, pyrene, and benz(a)pyrene were reduced after being degraded by Q8. Gordonia sp. nov. Q8 had the capacity to remediate water and soil environments contaminated by PAHs or crude oil, and provided a feasible way for the bioremediation of PAHs and oil pollution. PMID:28241412

  10. Biodegradation of complex hydrocarbons in spent engine oil by novel bacterial consortium isolated from deep sea sediment.

    Science.gov (United States)

    Ganesh Kumar, A; Vijayakumar, Lakshmi; Joshi, Gajendra; Magesh Peter, D; Dharani, G; Kirubagaran, R

    2014-10-01

    Complex hydrocarbon and aromatic compounds degrading marine bacterial strains were isolated from deep sea sediment after enrichment on spent engine (SE) oil. Phenotypic characterization and phylogenetic analysis of 16S rRNA gene sequences showed the isolates were related to members of the Pseudoalteromonas sp., Ruegeria sp., Exiguobacterium sp. and Acinetobacter sp. Biodegradation using 1% (v/v) SE oil with individual and mixed strains showed the efficacy of SE oil utilization within a short retention time. The addition of non-ionic surfactant 0.05% (v/v) Tween 80 as emulsifying agent enhanced the solubility of hydrocarbons and renders them more accessible for biodegradation. The degradation of several compounds and the metabolites formed during the microbial oxidation process were confirmed by Fourier transform infrared spectroscopy and Gas chromatography-mass spectrometry analyses. The potential of this consortium to biodegrade SE oil with and without emulsifying agent provides possible application in bioremediation of oil contaminated marine environment.

  11. Vibronic structure in triatomic molecules : The hydrocarbon flame bands of the formyl radical (HCO). A theoretical study

    OpenAIRE

    Serrano Andrés, Luis; Forsberg, Niclas; Malmqvist, Per-Ake

    1998-01-01

    A theoretical study of the vibrational structure of the math 2A′ ground and math 2A′ excited states of the formyl radical, HCO, and its deuterated form, DCO, has been performed. The potential energy surfaces have been computed by means of a multiconfigurational perturbative method, CASPT2. The computed geometries and the harmonic and anharmonic frequencies are successfully compared to the available experimental information. The vibrational intensities of the transition math 2A′↔math 2A′ have ...

  12. RRKM and master equation kinetic analysis of parallel addition reactions of isomeric radical intermediates in hydrocarbon flames

    Science.gov (United States)

    Winter, Pierre M.; Rheaume, Michael; Cooksy, Andrew L.

    2017-08-01

    We have calculated the temperature-dependent rate coefficients of the addition reactions of butadien-2-yl (C4H5) and acroylyl (C3H3O) radicals with ethene (C2H4), carbon monoxide (CO), formaldehyde (H2CO), hydrogen cyanide (HCN), and ketene (H2CCO), in order to explore the balance between kinetic and thermodynamic control in these combustion-related reactions. For the C4H5 radical, the 1,3-diene form of the addition products is more stable than the 1,2-diene, but the 1,2-diene form of the radical intermediate is stabilized by an allylic delocalization, which may influence the relative activation energies. For the reactions combining C3H3O with C2H4, CO, and HCN, the opposite is true: the 1,2-enone form of the addition products is more stable than the 1,3-enone, whereas the 1,3-enone is the slightly more stable radical species. Optimized geometries and vibrational modes were computed with the QCISD/aug-cc-pVDZ level and basis, followed by single-point CCSD(T)-F12a/cc-pVDZ-F12 energy calculations. Our findings indicate that the kinetics in all cases favor reaction along the 1,3 pathway for both the C4H5 and C3H3O systems. The Rice-Ramsperger-Kassel-Marcus (RRKM) microcanonical rate coefficients and subsequent solution of the chemical master equation were used to predict the time-evolution of our system under conditions from 500 K to 2000 K and from 10-5 bar to 10 bars. Despite the 1,3 reaction pathway being more favorable for the C4H5 system, our results predict branching ratios of the 1,2 to 1,3 product as high as 0.48 at 1 bar. Similar results hold for the acroylyl system under these combustion conditions, suggesting that under kinetic control the branching of these reactions may be much more significant than the thermodynamics would suggest. This effect may be partly attributed to the low energy difference between 1,2 and 1,3 forms of the radical intermediate. No substantial pressure-dependence is found for the overall forward reaction rates until pressures

  13. Isolation and characterization of charge-tagged phenylperoxyl radicals in the gas phase: direct evidence for products and pathways in low temperature benzene oxidation.

    Science.gov (United States)

    Kirk, Benjamin B; Harman, David G; Kenttämaa, Hilkka I; Trevitt, Adam J; Blanksby, Stephen J

    2012-12-28

    The phenylperoxyl radical has long been accepted as a critical intermediate in the oxidation of benzene and an archetype for arylperoxyl radicals in combustion and atmospheric chemistry. Despite being central to many contemporary mechanisms underpinning these chemistries, reports of the direct detection or isolation of phenylperoxyl radicals are rare and there is little experimental evidence connecting this intermediate with expected product channels. We have prepared and isolated two charge-tagged phenyl radical models in the gas phase [i.e., 4-(N,N,N-trimethylammonium)phenyl radical cation and 4-carboxylatophenyl radical anion] and observed their reactions with dioxygen by ion-trap mass spectrometry. Measured reaction rates show good agreement with prior reports for the neutral system (k(2)[(Me(3)N(+))C(6)H(4)˙ + O(2)] = 2.8 × 10(-11) cm(3) molecule(-1) s(-1), Φ = 4.9%; k(2)[((-)O(2)C)C(6)H(4)˙ + O(2)] = 5.4 × 10(-11) cm(3) molecule(-1) s(-1), Φ = 9.2%) and the resulting mass spectra provide unequivocal evidence for the formation of phenylperoxyl radicals. Collisional activation of isolated phenylperoxyl radicals reveals unimolecular decomposition by three pathways: (i) loss of dioxygen to reform the initial phenyl radical; (ii) loss of atomic oxygen yielding a phenoxyl radical; and (iii) ejection of the formyl radical to give cyclopentadienone. Stable isotope labeling confirms these assignments. Quantum chemical calculations for both charge-tagged and neutral phenylperoxyl radicals confirm that loss of formyl radical is accessible both thermodynamically and entropically and competitive with direct loss of both hydrogen atom and carbon dioxide.

  14. Alterations in intracellular ionic calcium levels in isolated adult rat cardiac myocytes due to the generation of free radicals

    Energy Technology Data Exchange (ETDEWEB)

    Burton, K.P.; Nazeran, H.; Hagler, H.K. (Univ. of Texas, Dallas, TX (United States))

    1991-03-15

    Oxygen-derived free radical production has been documented to occur on reperfusion of the ischemic myocardium. Intracellular ionic calcium ((Ca{sup ++}){sub i}) levels in isolated adult rat cardiac myocytes (M) exposed to free radicals were evaluated using the fluorescent calcium indicator, fura-2. The effect of different time periods of free radical exposure and the level of extracellular Ca{sup ++} concentration on altering (Ca{sup ++}){sub i} was examined. The free radical generating system (FRGS) utilized consisted of a HEPES buffered physiological salt solution containing 2.3 mM purine, 2.4. {mu}M iron-loaded transferrin and 0.01 U/ml xanthine oxidase. M maintained in HEPES buffer or the HEPES buffer containing purine and iron-loaded transferrin continued to stimulate, exhibited relatively uniform 340/380 ratios and maintained a rod shape for extended time periods. M continuously exposed to the FRGS showed a significant increase in (Ca{sup ++}){sub i}, became unresponsive to stimulation at 31 {plus minus} 7 (SE) min and eventually exhibited contracture. Exposure to the FRGS for 10 min resulted in a response similar to continuous exposure. M exposed to the FRGS for 5 min exhibited regular Ca{sup ++} transients for 55{plus minus}5 min. M exposed to the FRGS for 10 min and maintained in 2.5 mM Ca{sup ++} versus 1.25 mM Ca{sup ++}, accumulated significantly higher (CA{sup ++}){sub i}. Quiescent myocytes continuously exposed to the FRGS also exhibited a significant increase in (Ca{sup ++}){sub i} over time. Thus, a brief period of free radical exposure may induce subsequent damage. Alterations in Ca{sup ++} flux resulting from the generation of free radicals may possibly contribute to the development of Ca{sup ++} overload and myocardial arrhythmias.

  15. Free radical hydrogen atom abstraction from saturated hydrocarbons: A crossed-molecular-beams study of the reaction Cl + C{sub 3}H{sub 8} {yields} HCl + C{sub 3}H{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Blank, D.A.; Hemmi, N.; Suits, A.G.; Lee, Y.T. [Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    The abstraction of hydrogen atoms from saturated hydrocarbons are reactions of fundamental importance in combustion as well as often being the rate limiting step in free radical substitution reactions. The authors have begun studying these reactions under single collision conditions using the crossed molecular beam technique on beamline 9.0.2.1, utilizing VUV undulator radiation to selectively ionize the scattered hydrocarbon free radical products (C{sub x}H{sub 2x+1}). The crossed molecular beam technique involves two reactant molecular beams fixed at 90{degrees}. The molecular beam sources are rotatable in the plane defined by the two beams. The scattered neutral products travel 12.0 cm where they are photoionized using the VUV undulator radiation, mass selected, and counted as a function of time. In the authors initial investigations they are using halogen atoms as protypical free radicals to abstract hydrogen atoms from small alkanes. Their first study has been looking at the reaction of Cl + propane {r_arrow} HCl + propyl radical. In their preliminary efforts the authors have measured the laboratory scattering angular distribution and time of flight spectra for the propyl radical products at collision energies of 9.6 kcal/mol and 14.9 kcal/mol.

  16. Isolation and characterisation of in vitro and cellular free radical scavenging peptides from corn peptide fractions.

    Science.gov (United States)

    Wang, Liying; Ding, Long; Wang, Ying; Zhang, Yan; Liu, Jingbo

    2015-02-16

    Corn gluten meal, a corn processing industry by-product, is a good source for the preparation of bioactive peptides due to its special amino acid composition. In the present study, the in vitro and cellular free radical scavenging activities of corn peptide fractions (CPFs) were investigated. Results indicated that CPF1 (molecular weight less than 1 kDa) and CPF2 (molecular weight between 1 and 3 kDa) exhibited good hydroxyl radical, superoxide anion radical and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonicacid) diammonium salt (ABTS) radical scavenging activity and oxygen radical absorbance capacity (ORAC). Meanwhile, the in vitro radical scavenging activity of CPF1 was slightly higher than that of CPF2. Both CPF1 and CPF2 also exhibited significant cytoprotective effects and intracellular reactive oxygen species scavenging activity in Caco-2 cells exposed to hydrogen peroxide (H2O2). The amino acid composition analysis revealed that the CPF were rich in hydrophobic amino acids, which comprised of more than 45% of total amino acids. An antioxidant peptide sequence of Tyr-Phe-Cys-Leu-Thr (YFCLT) was identified from CPF1 using matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry (MALDI TOF/TOF MS). The YFCLT exhibited excellent ABTS radical scavenging activity with a 50% effective concentration (EC50) value of 37.63 µM, which was much lower than that of Trolox. In conclusion, corn gluten meal might be a good source to prepare antioxidant peptides.

  17. Assessment of intra-species diversity among strains of Acinetobacter baumannii isolated from sites contaminated with petroleum hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Manab Sarma, P.; Bhattacharya, D.; Krishnan, S. [TERI School of Advanced Studies, Center of Bioresources and Biotechnology, New Delhi (India); Lal, B. [TERI School of Advanced Studies, Microbial Biotechnology Division, New Delhi (India)

    2004-06-01

    Intra-species diversity among Acinetobacter baumannii strains isolated from crude oil-contaminated soils from different geographic regions in India was assessed, including their capability to degrade different fractions of total petroleum hydrocarbons. A total of 96 strains were isolated from five different sites. Of the 96 isolates, 25 strains were identified as Acinetobacter baumannii; all of these strains were biochemically profiled and grouped into eight phenovars on the basis of multivariate analysis of their substrate utilization profiles. All strains were able to degrade the total petroleum hydrocarbon fractions of crude oil. Intraspecies relatedness among the 25 strains was determined using tRNA intergenic spacer length polymorphism. Specific variants among the strains with different degradation capacities for different fractions of crude oil were detected. Environmental influences that cause intra-species diversity, such as functional resilience, within the selected strains of A. baumannii were also noted. It is suggested that such diversities may make it possible to select contaminant-specific strains for efficient biotechnological strategies in environmental remediation. 19 refs., 4 tabs., 3 figs.

  18. Biosurfactants produced by Microbacterium sp., isolated from aquatic macrophytes in hydrocarbon-contaminated area in the Rio Negro, Manaus, Amazonas

    Directory of Open Access Journals (Sweden)

    João Marcelo Silva Lima

    2017-05-01

    Full Text Available Endophytic bacteria isolated from Eichhornia crassipes (Mart Solms., collected in oil contaminated wastewater of effluent generated by Petrobras refinery in Manaus were investigated to determine their potential for producing biosurfactants. Assay with 2.6-dichlorophenol indophenol (DCPIP indicator to verify hydrocarbon biodegradation activity; oil emulsification test; drop-collapse method; surface tension and growth curve of biosurfactant production. The M87 Microbacterium sp. strain chosen for this work was identified by the sequencing of the rDNA region and the chemical characterization was performed by FTIR, UFLC/MS and 1H RMN techniques. The selected bacterial isolate provided 3g L-1 of biosurfactant, using diesel oil as sole carbon source, being efficient in biodegrading oil as demonstrated by the DCPIP test. Fractions obtained by column chromatography were efficient in reducing water surface tension around 40 mN m-1, especially fraction 1, which reduced it to 34.17 mN m-1. The different techniques of chemical analysis used for the identification of the biosurfactant isolate indicated that this is probably a long - chain fatty acid lipid type, which may be used in the future as both biosurfactant in decontamination processes of hydrocarbon-polluted areas or as bioemulsifier in countless processes, since it exhibited no toxicity as determined by Alamar Blue assay.

  19. Isolation and identification of radical scavengers in olive tree (Olea europaea) wood

    NARCIS (Netherlands)

    Pérez-Bonilla, M.; Salido, S.; Beek, van T.A.; Linares-Palomino, P.J.; Altarejos, J.; Nogueras, M.; Sánchez, A.

    2006-01-01

    Several extracts of Olea europaea wood (Picual olive cultivar) were obtained with solvents of different polarity and their antioxidant activities determined. The active compounds were detected in fractions of an ethyl acetate extract using HPLC with on-line radical scavenging detection. After applyi

  20. A combined experimental and theoretical study of reactions between the hydroxyl radical and oxygenated hydrocarbons relevant to astrochemical environments.

    Science.gov (United States)

    Shannon, R J; Caravan, R L; Blitz, M A; Heard, D E

    2014-02-28

    The kinetics of the reactions of the hydroxyl radical (OH) with acetone and dimethyl ether (DME) have been studied between 63-148 K and at a range of pressures using laser-flash photolysis coupled with laser induced fluorescence detection of OH in a pulsed Laval nozzle apparatus. For acetone, a large negative temperature dependence was observed, with the rate coefficient increasing from k1 = (1.6 ± 0.8) × 10(-12) cm(3) molecule(-1) s(-1) at 148 K to (1.0 ± 0.1) × 10(-10) cm(3) molecule(-1) s(-1) at 79 K, and also increasing with pressure. For DME, a similar behaviour was found, with the rate coefficient increasing from k2 = (3.1 ± 0.5) × 10(-12) cm(3) molecule(-1) s(-1) at 138 K to (1.7 ± 0.1) × 10(-11) cm(3) molecule(-1) s(-1) at 63 K, and also increasing with pressure. The temperature and pressure dependence of the experimental rate coefficients are rationalised for both reactions by the formation and subsequent stabilisation of a hydrogen bonded complex, with a non-zero rate coefficient extrapolated to zero pressure supportive of quantum mechanical tunnelling on the timescale of the experiments leading to products. In the case of DME, experiments performed in the presence of O2 provide additional evidence that the yield of the CH3OCH2 abstraction product, which can recycle OH in the presence of O2, is ≥50%. The experimental data are modelled using the MESMER (Master Equation Solver for Multi Energy Well Reactions) code which includes a treatment of quantum mechanical tunnelling, and uses energies and structures of transition states and complexes calculated by ab initio methods. Good agreement is seen between experiment and theory, with MESMER being able to reproduce for both reactions the temperature behaviour between ~70-800 K and the pressure dependence observed at ~80 K. At the limit of zero pressure, the model predicts a rate coefficient of ~10(-11) cm(3) molecule(-1) s(-1) for the reaction of OH with acetone at 20 K, providing evidence that the

  1. Isolated Late Metastasis of a Renal Cell Cancer Treated by Radical Distal Pancreatectomy

    Directory of Open Access Journals (Sweden)

    J. P. Barras

    1996-01-01

    Full Text Available A 53–year-old man underwent right nephrectomy for a locally advanced renal cell carcinoma with concomitant resection of a solitary metastasis in the right lung. Ten years later, he presented with haematochezia caused by a tumour in the tail of pancreas, invading the transverse colon and the greater curvature of the stomach. The tumour was radically resected, and histological examination revealed a solitary metastasis of the previous renal cell carcinoma. This case illustrates a rare indication for pancreatic resection because of pancreatic metastasis.

  2. An efficient method for high-purity anthocyanin isomers isolation from wild blueberries and their radical scavenging activity.

    Science.gov (United States)

    Chorfa, Nasima; Savard, Sylvain; Belkacemi, Khaled

    2016-04-15

    An efficient process for the purification of anthocyanin monomeric isomers from wild blueberries of Lake Saint-Jean region (Quebec, Canada) was developed and easy scalable at industrial purpose. The blueberries were soaked in acidified ethanol, filtered, and the filtrate was cleaned by solid phase extraction using silica gel C-18 and DSC-SCX cation-exchange resin. Anthocyanin-enriched elutes (87 wt.%) were successfully fractionated by preparative liquid chromatography. The major anthocyanins mono-galactoside, -glucoside and -arabinoside isomers of delphinidin, cyanidin, petunidin, peonidin and malvidin were isolated with a purity up to 100% according to their LC-MS and (1)H NMR spectra. The oxygen radical absorbance capacity (ORAC) of the obtained pure anthocyanins was evaluated. Delphinidin-3-galactoside has the highest capacity (13.062 ± 2.729 μmol TE/μmol), and malvidin-3-glucoside the lowest (0.851 ± 0.032 μmol TE/μmol). A mechanistic pathway preview is suggested for the anthocyanins scavenging free radical activity by hydrogen transfer.

  3. Matrix-isolated infrared absorption spectrum of CH2BrOO radical

    Science.gov (United States)

    Zhang, Xu; Sander, Stanley P.; Cheng, Lan; Thimmakondu, Venkatesan S.; Stanton, John F.

    2016-07-01

    The bromomethylperoxy radical, CH2BrOO, has been generated in cryogenic matrices. Six fundamental bands for CH2BrOO have been observed in an argon matrix at 5 K. The experimental frequencies (cm-1) are: ν4 = 1274.3, ν5 = 1229.4, ν6 = 1086.7, ν7 = 961.8, ν8 = 879.9, and ν10 = 515.4, two of which are detected for the first time. Ab initio calculations have been performed employing coupled-cluster methods. The experimental frequencies are shown to be in good agreement with the computation as well as the four bands (ν4, ν6, ν7 and ν8) observed by Huang and Lee in the gas phase.

  4. Photodisruption increases the free-radical reactivity of melanosomes isolated from retinal pigment epithelium

    Science.gov (United States)

    Glickman, Randolph D.; Jacques, Steven L.; Schwartz, Jon A.; Rodriguez, Tom; Lam, Kwok-Wai; Buhr, Gwen

    1996-05-01

    Melanin in vivo is usually packaged in melanosomes with protein coats that restrict direct interaction of the melanin with the surrounding medium. We found that disruption of the melanosomes by exposure to a pulsed laser increased the ability of the melanin radicals to oxidize NADPH in a photochemical reaction. Retinal pigment epithelial (RPE) melanosomes were prepared from fresh bovine eyes in 0.25 M sucrose. A reaction mixture of 7 mM NADPH, approximately 7500 RPE melanosomes, and 80 mM Tris buffer, pH 7.2, was prepared in a volume of 60 (mu) l. Of the two 25-(mu) l aliquots taken from this mixture, one was pre-exposed to the 2nd-harmonic output of a Q-switched Nd:YAG laser (532 nm, 1800 10-nsec pulses at 10 Hz), and then was exposed to an Argon ion continuous wave (CW) laser (488.1 and 514.5 nm) for five minutes. The other aliquot was exposed only to the Argon laser. The CW exposure excited the melanin radicals to a reactive state that oxidized NADPH, as assayed by the loss of absorbance at 340 nm. Native melanosomes oxidized less NADPH during Ar+ laser pumping than did melanosomes pre-exposed to the YAG laser. The YAG laser's stimulatory effect on melanosomes reactivity increased as the total energy it delivered rose above 3.5 J (0.14 J/cm2/pulse X 1800 pulses), up to a maximum NADPH oxidation at about 20 J (0.2 J/cm2/pulse X 1800 pulses, beam broadened at higher pulse energy). Electron microscopic analysis of the melanosomes confirmed the progressive physical disruption of melanosomes as the YAG pulse energy increased.

  5. Complete Genome Sequence of Bacillus pumilus PDSLzg-1, a Hydrocarbon-Degrading Bacterium Isolated from Oil-Contaminated Soil in China

    Science.gov (United States)

    Hao, Kun; Li, Hongna; Li, Feng

    2016-01-01

    Bacillus pumilus strain PDSLzg-1, an efficient hydrocarbon-degrading bacterium, was isolated from oil-contaminated soil. Here, we present the complete sequence of its circular chromosome and circular plasmid. The genomic information is essential for the study of degradation of oil by B. pumilus PDSLzg-1.

  6. Draft Genome Sequence of the Hydrocarbon-Degrading Bacterium Alcanivorax dieselolei KS-293 Isolated from Surface Seawater in the Eastern Mediterranean Sea

    KAUST Repository

    Barbato, Marta

    2015-12-10

    We report here the draft genome sequence of Alcanivorax dieselolei KS-293, a hydrocarbonoclastic bacterium isolated from the Mediterranean Sea, by supplying diesel oil as the sole carbon source. This strain contains multiple putative genes associated with hydrocarbon degradation pathways and that are highly similar to those described in A. dieselolei type strain B5.

  7. Highly Active and Stable Large Catalase Isolated from a Hydrocarbon Degrading Aspergillus terreus MTCC 6324

    Directory of Open Access Journals (Sweden)

    Preety Vatsyayan

    2016-01-01

    Full Text Available A hydrocarbon degrading Aspergillus terreus MTCC 6324 produces a high level of extremely active and stable cellular large catalase (CAT during growth on n-hexadecane to combat the oxidative stress caused by the hydrocarbon degrading metabolic machinery inside the cell. A 160-fold purification with specific activity of around 66 × 105 U mg−1 protein was achieved. The native protein molecular mass was 368 ± 5 kDa with subunit molecular mass of nearly 90 kDa, which indicates that the native CAT protein is a homotetramer. The isoelectric pH (pI of the purified CAT was 4.2. BLAST aligned peptide mass fragments of CAT protein showed its highest similarity with the catalase B protein from other fungal sources. CAT was active in a broad range of pH 4 to 12 and temperature 25°C to 90°C. The catalytic efficiency (Kcat/Km of 4.7 × 108 M−1 s−1 within the studied substrate range and alkaline pH stability (half-life, t1/2 at pH 12~15 months of CAT are considerably higher than most of the extensively studied catalases from different sources. The storage stability (t1/2 of CAT at physiological pH 7.5 and 4°C was nearly 30 months. The haem was identified as haem b by electrospray ionization tandem mass spectroscopy (ESI-MS/MS.

  8. Isolation and structure elucidation of new radical oxidation products of 5-hydroxy steroids

    NARCIS (Netherlands)

    Khripach, V.A.; Zhabinskii, V.N.; Kuchto, A.I.; Zhiburtovich, Y.Y.; Lyakhov, A.S.; Govorova, A.A.; Groen, M.B.; Louw, van der J.; Groot, de Æ.

    2006-01-01

    Three new products have been isolated from the lead-tetraacetate version of the hypoiodite oxidation of 3 beta,17 beta-diacetoxy-5-hydroxy-5 alpha-androstane. Along with the expected 1(10)unsaturated 5,10-seco steroidal 5-ketones, the fragmentation reaction gave two epimeric C-4 iodides. Their struc

  9. Draft Genome Sequences of Two Strains of Propionibacterium acnes Isolated from Radical Prostatectomy Specimens

    DEFF Research Database (Denmark)

    Mak, Tim N; Sfanos, Karen S; Brüggemann, Holger

    2013-01-01

    Propionibacterium acnes is a Gram-positive bacterium that is closely associated with various parts of the human body, in particular with sebaceous follicles of the skin. It has also been frequently isolated from diseased human prostates. Here, we report draft genome sequences of two P. acnes...

  10. RADICAL GRAFTING REACTIONS ONTO STARCH AND OTHER WATER-SOLUBLE COPOLYMERS IN ISOLATED GEL DROPLETS

    Institute of Scientific and Technical Information of China (English)

    ZHANG Liansheng; A.F.Johnson

    1993-01-01

    A novel radical grafting copolymerization process has been designed for water-soluble polymers which avoids the problems of conducting grafting reactions in highly viscous polymerization media.A variety of water-soluble graft copolymers having starch or dextran as the backbone chain with grafted side chains of polyacrylamide (-AM-),poly (acrylic acid) (-AA-),poly (acrylamide-co-acrylic acid) (-AM-NH4AA-) or poly (acrylamide-co-2-acrylamido-2-methyl-1-propanesulphinic acid)(-AM-AMPS-) have been synthesized in gel droplets using a ceric sulphate redox initiator,and their properties compared.The reaction conditions were optimized taking into account reaction kinetic data and the observed properties of the products produced under different reaction conditions.The effects of the ratios of [backbone]/[graft monomer],[AM]/[AA]/[AMPS],[Ce4+]/[S2O8=] and pH value on the reaction rate,conversion,grafting degree,grafted chain length and the product molecular weight have been investigated.

  11. Isolation and preliminary characterization of a respiratory nitrate reductase from hydrocarbon-degrading bacterium Gordonia alkanivorans S7.

    Science.gov (United States)

    Romanowska, Irena; Kwapisz, Ewa; Mitka, Magdalena; Bielecki, Stanisław

    2010-06-01

    Gordonia alkanivorans S7 is an efficient degrader of fuel oil hydrocarbons that can simultaneously utilize oxygen and nitrate as electron acceptors. The respiratory nitrate reductase (Nar) from this organism has been isolated using ion exchange chromatography and gel filtration, and then preliminarily characterized. PAGE, SDS-PAGE and gel filtration chromatography revealed that Nar consisted of three subunits of 103, 53 and 25 kDa. The enzyme was optimally active at pH 7.9 and 40 degrees C. K(m) values for NO(3)(-) (110 microM) and for ClO(3)(-) (138 microM) were determined for a reduced viologen as an electron donor. The purified Nar did not use NADH as the electron donor to reduce nitrate or chlorate. Azide was a strong inhibitor of its activity. Our results imply that enzyme isolated from G. alkanivorans S7 is a respiratory membrane-bound nitrate reductase. This is the first report of purification of a nitrate reductase from Gordonia species.

  12. Hydroxyl-radical-induced oxidation of 5-methylcytosine in isolated and cellular DNA.

    Science.gov (United States)

    Madugundu, Guru S; Cadet, Jean; Wagner, J Richard

    2014-06-01

    The methylation and oxidative demethylation of cytosine in CpG dinucleotides plays a critical role in the regulation of genes during cell differentiation, embryogenesis and carcinogenesis. Despite its low abundance, 5-methylcytosine (5mC) is a hotspot for mutations in mammalian cells. Here, we measured five oxidation products of 5mC together with the analogous products of cytosine and thymine in DNA exposed to ionizing radiation in oxygenated aqueous solution. The products can be divided into those that arise from hydroxyl radical (•OH) addition at the 5,6-double bond of 5mC (glycol, hydantoin and imidazolidine products) and those that arise from H-atom abstraction from the methyl group of 5mC including 5-hydroxymethylcytosine (5hmC) and 5-formylcytosine (5fC). Based on the analysis of these products, we show that the total damage at 5mC is about 2-fold greater than that at C in identical sequences. The formation of hydantoin products of 5mC is favored, compared to analogous reactions of thymine and cytosine, which favor the formation of glycol products. The distribution of oxidation products is sequence dependent in specific ODN duplexes. In the case of 5mC, the formation of 5hmC and 5fC represents about half of the total of •OH-induced oxidation products of 5mC. Several products of thymine, cytosine, 5mC, as well as 8-oxo-7,8-dihydroguanine (8oxoG), were also estimated in irradiated cells.

  13. Bioremediation of Petroleum hydrocarbon by using Pseudomonas species isolated from Petroleum contaminated soil

    Directory of Open Access Journals (Sweden)

    Vijay Kumar

    2014-12-01

    Full Text Available A newly isolated strain Pseudomonas fluorescens (Accession number KF 279042.1 have potential in diesel degradation and can be recommended for bioremediation of sites that are contaminated with diesel. This bacterium was characterized on the basis of microbiological, biochemical and molecular analysis. Bacterial growth optimization was studied based on carbon source, nitrogen source, pH and temperature. The strain was selected based on its ability to show growth in medium containing diesel. In addition, optimum temperature and pH for increased growth by the isolate were found to be 37oC and pH 8.0 indicating the maximum utilization of diesel. At the same time, production of protease and urease enzymes during the utilization of diesel was also assayed following the standard procedures.

  14. Biosurfactant production by Serratia rubidaea SNAU02 isolated from hydrocarbon contaminated soil and its physico-chemical characterization.

    Science.gov (United States)

    Nalini, S; Parthasarathi, R

    2013-11-01

    The aim of the study was to characterize and optimize the growth media for biosurfactant production from Serratia rubidaea SNAU02 isolated from hydrocarbon-contaminated soil from Cuddalore district, Tamilnadu, India. The biosurfactant produced by S. rubidaea SNAU02, was able to reduce the surface tension to 34.4 mN m(-1) in MSM medium. The biosurfactant was characterized by FT-IR and GC-MS analysis. The GC-MS analysis shows that dirhamnolipid was detected in abundance as predominant congener than monorhamnolipid. The response surface methodology (RSM) -central composite design (CCD) was performed to optimize the media for biosurfactant production. The maximum emulsification index was obtained under the optimal condition of 29.31 g L(-1) mannitol; 2.06 g L(-1) yeast extract, medium pH 6.97 and 5.69 g L(-1) NaCl. The biosurfactant produced by S. rubidaea recovered 92% of used engine oil adsorbed to a sand sample, suggested the potential application in microbial enhanced oil recovery and bioremediation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. The R304X mutation of the Aryl hydrocarbon receptor Interacting Protein gene in familial isolated pituitary adenomas: mutational Hot-Spot or founder effect?

    OpenAIRE

    Occhi, G.; Jaffrain-Rea, M. L.; Trivellin, G.; Albiger, N; Ceccato, F.; De Menis, E.; Angelini, M.; Ferasin, S; Beckers, Albert; F. Mantero; Scaroni, C.

    2010-01-01

    Background: Mutations in the Aryl hydrocarbon receptor Interacting Protein (AIP) gene have been described in about 15% of kindreds with Familial Isolated Pituitary Adenomas (FIPA) and in a minority of early onset sporadic pituitary adenomas (PA). Among the AIP mutations reported so far, the R304X (AIPR304X) represents, together with the "Finnish mutation" Q14X, the most common one. Methods: Three AIPR304X Italian families, including a newly reported kindred, have been genotyped for 12 genetic...

  16. Draft Genome Sequence of Hydrocarbon-Degrading Staphylococcus saprophyticus Strain CNV2, Isolated from Crude Oil-Contaminated Soil from the Noonmati Oil Refinery, Guwahati, Assam, India.

    Science.gov (United States)

    Mukherjee, Arghya; Chettri, Bobby; Langpoklakpam, James S; Singh, Arvind K; Chattopadhyay, Dhrubajyoti

    2016-05-12

    Here, we report the 2.6 Mb draft genome sequence of hydrocarbon-degrading Staphylococcus saprophyticus strain CNV2, isolated from oil-contaminated soil in Guwahati, India. CNV2 contains 2,545 coding sequences and has a G+C content of 33.2%. This is the first report of the genome sequence of an S. saprophyticus adapted to an oil-contaminated environment.

  17. Hydrocarbon pneumonia

    Science.gov (United States)

    Pneumonia - hydrocarbon ... Coughing Fever Shortness of breath Smell of a hydrocarbon product on the breath Stupor (decreased level of ... Most children who drink or inhale hydrocarbon products and develop ... hydrocarbons may lead to rapid respiratory failure and death.

  18. Degradation of polycyclic aromatic hydrocarbons by Pseudomonas sp.JM2 isolated from active sewage sludge of chemical plant

    Institute of Scientific and Technical Information of China (English)

    Jing Ma; Li Xu; Lingyun Jia

    2012-01-01

    It is important to screen strains that can decompose polycyclic aromatic hydrocarbons (PAHs) completely and rapidly with good adaptability for bioremediation in a local area.A bacterial strain JM2,which uses phenanthrene as its sole carbon source,was isolated from the active sewage sludge from a chemical plant in Jilin,China and identified as Pseudomonas based on 16S rDNA gene sequence analysis.Although the optimal growth conditions were determined to be pH 6.0 and 37℃,JM2 showed a broad pH and temperature profile.At pH 4.5 and 9.3,JM2 could degrade more than 40% of fluorene and phenanthrene (50 mg/L each) within 4 days.In addition,when the temperature was as low as 4℃,JM2 could degrade up to 24% fluorene and 12% phenanthrene.This showed the potential for JM2 to be applied in bioremediation over winter or in cold regions.Moreover,a nutrient augmentation study showed that adding formate into media could promote PAH degradation,while the supplement of salicylate had an inhibitive effect.Furthermore,in a metabolic pathway study,salicylate,phthaiic acid,and 9-fluorenone were detected during the degradation of fluorene or phenanthrene.In conclusion,Pseudomonas sp.JM2 is a high performance strain in the degradation of fluorene and phenanthrene under extreme pH and temperature conditions.It might be useful in the bioremediation of PAHs.

  19. CH{sub 3} and CD{sub 3} radicals isolated in argon: high resolution ESR spectra and analysis by three-dimensional quantum rotor model. A case study of low temperature quantum effects on radicals

    Energy Technology Data Exchange (ETDEWEB)

    Shiotani, Masaru; Yamada, Tomoya; Komaguchi, Kenji [Hiroshima Univ., Higashi-Hiroshima (Japan). Faculty of Engineering; Benetis, N.P.; Lund, A.; Soernes, A.R.

    1998-10-01

    The present study deals with high resolution isotropic ESR spectra of the CH{sub 3} and CD{sub 3} radicals isolated in solid argon matrix at low temperature from 4 K to 40 K. Argon gases mixed with methane (Ar/methane {approx_equal} 500 mole ratio) were condensed at the end of Suprasile ESR tube at 4.2 K. Methyl radicals were generated by X-ray irradiation at 4 K and subjected to an ESR study. The 6.0 K ESR spectrum of the CH{sub 4}/Ar system is shown in Fig. 1. For CH{sub 3} radical the {sup 1}H hyperfine (hf) quartet was observed with an equal intensity (A-lines). The E-lines were absent at 4 K, but became visible at m{sub F} = {+-}1/2 positions above 12 K increased with temperature. The CD{sub 3} gave a peculiar spectrum at 4 K with an abnormally strong central singlet superimposed on a much weaker seven line spectrum of a freely rotating CD{sub 3}. The temperature dependent spectra showed clear quantum effects due to three-dimensional spin-rotation couplings. The spectra were analyzed with the following assumptions: (a) a planar D{sub 3} geometry, (b) a free and three-dimensional quantum rotation and (c) a thermally isolated radical. Application of the Pauli principle in combination to the D{sub 3} point group resulted in interesting selections for ESR-transitions for both the CH{sub 3} and CD{sub 3} spectra. That is, the {sup 1}H hf quartet of CH{sub 3} radical (A-lines) was attributed to the rotational ground state, J=0, with totally symmetric A{sub 1} nuclear states. The central strong singlet of CD{sub 3} was attributed to one spin-rotation state with A{sub 2} antisymmetric nuclear states at the lowest rotational level of J=0. (author)

  20. Characterization and properties of biosurfactants produced by a newly isolated strain Bacillus methylotrophicus DCS1 and their applications in enhancing solubility of hydrocarbon.

    Science.gov (United States)

    Jemil, Nawel; Ben Ayed, Hanen; Hmidet, Noomen; Nasri, Moncef

    2016-11-01

    Six biosurfactant-producing bacteria were isolated from hydrocarbon contaminated soils in Sfax, Tunisia. Isolates were screened for biosurfactant production by different conventional methods including hemolytic activity, surface tension reduction, drop-collapsing and oil displacement tests. All these screening tests show that all the isolates behave differently. Among the isolated bacteria, DCS1 strain was selected for further studies based on its highest activities and it was identified as Bacillus methylotrophicus DCS1. This strain was found to be a potent producer of biosurfactant when cultivated in mineral-salts medium supplemented with diesel oil (2 %, v/v) as a sole carbon source. Physicochemical properties and stability of biosurfactants synthesized by B. methylotrophicus DCS1 were investigated. The produced biosurfactants DCS1, from Landy medium, possess high surface activity that could lower the surface tension of water to a value of 31 from 72 mN m(-1) and have a critical micelle concentration (CMC) of 100 mg L(-1). Compared with SDS and Tween 80, biosurfactants showed excellent emulsification activities against different hydrocarbon substrates and high solubilization efficiency towards diesel oil. Biosurfactants DCS1 showed good stability in a wide range of temperature, pH and salinity. These results suggested that biosurfactants produced by B. methylotrophicus DCS1 could be an alternative to chemically synthesized surfactants for use in bioremediation processes to enhance the solubility of hydrophobic compounds.

  1. Identification of chemical structure and free radical scavenging activity of diphlorethohydroxycarmalol isolated from a brown alga, Ishige okamurae.

    Science.gov (United States)

    Heo, Soo-Jin; Kim, Jong-Pyung; Jung, Won-Kyo; Lee, Nam-Ho; Kang, Hahk-Soo; Jun, Eun-Mi; Park, Soon-Hye; Kang, Sung-Myung; Lee, Young-Jae; Park, Pyo-Jam; Jeon, You-Jin

    2008-04-01

    To obtain a natural antioxidant from a marine biomass, this study investigated the antioxidative activity of methanolic extracts from the marine brown alga, Ishige okamurae collected off Jeju Island. A potent free radical scavenging activity was detected in the ethyl acetate fraction containing polyphenolic compounds, and the potent antioxidant elucidated as a kind of phlorotannin, diphlorethohydroxycarmalol, by NMR and mass spectroscopic data. The free radical scavenging activities of the diphlorethohydroxycarmalol were investigated in relation to 1,1-diphenyl-2-picrylhydrazyl (DPPH), alkyl, and hydroxyl radicals using an electron spin resonance (ESR) system. The diphlorethohydroxycarmalol was found to scavenge DPPH (IC50=3.41 microM) and alkyl (IC50=4.92 microM) radicals more effectively than the commercial antioxidant, ascorbic acid. Therefore, these results present diphlorethohydroxycarmalol as a new phlorotannin with a potent antioxidative activity that could be useful in cosmetics, foods, and pharmaceuticals.

  2. PHOTOGENERATION OF SINGLET OXYGEN AND FREE RADICALS IN DISSOLVED ORGANIC MATTER ISOLATED FROM THE MISSISSIPPI AND ATCHAFALAYA RIVER PLUMES

    Science.gov (United States)

    The photoreactivity to UV light of ultrafiltered dissolved organic matter (DOM) collected during cruises along salinity transects in the Mississippi and Atchafalaya River plumes was examined by measuring photogenerated free radicals and singlet molecular oxygen (1O2) photosensiti...

  3. Thraustochytrid protists degrade hydrocarbons

    Digital Repository Service at National Institute of Oceanography (India)

    Raikar, M.T.; Raghukumar, S.; Vani, V.; David, J.J.; Chandramohan, D.

    Although thraustochytrid protists are known to be of widespread occurrence in the sea, their hydrocarbon-degrading abilities have never been investigated. We isolated thraustochytrids from coastal waters and sediments of Goa coast by enriching MPN...

  4. Rats fed soy protein isolate (SPI) have impaired hepatic CYP1A1 induction by polycyclic aromatic hydrocarbons as a result of interference with aryl hydrocarbon receptor signaling

    Science.gov (United States)

    Consumption of soy diet has been found to reduce cancer incidence in animals and is associated with reduced cancer risk in humans. Previously, we have demonstrated that female Sprague-Dawley rats fed purified AIN-93G diets with soy protein isolate (SPI) as the sole protein source had reduced CYP1A1 ...

  5. Protection by uridine diphosphoglucuronic acid and DT-diaphorase against the cytotoxicity of polycyclic aromatic hydrocarbons isolated from a complex coal gasification condensate.

    Science.gov (United States)

    Swanson, M S; Haugen, D A; Reilly, C A; Stamoudis, V C

    1986-06-30

    The cytotoxicities of polycyclic aromatic hydrocarbon (PAH) subclasses isolated from a complex organic mixture (coal gasification condensate) were studied in vitro in Chinese hamster ovary cells, in the presence of rat liver microsomes from animals pretreated with Aroclor. Toxicity was enhanced by microsomal metabolism and was inversely related to aromatic ring number. Rat liver cytosol, semipurified DT-diaphorase, and uridine diphosphoglucuronic acid decreased the cytotoxicity of a variety of PAH mixtures and representative PAH, as well as individual PAH metabolites. The results indicate that the in vitro toxicity of complex PAH mixtures is caused primarily by hydroxy-PAH and quinone metabolites of the predominant, nonmutagenic two- and three-ring PAHs.

  6. Vibronic spectra of the p-benzoquinone radical anion and cation: a matrix isolation and computational study

    OpenAIRE

    Piech, Krzysztof; Bally, Thomas; Ichino, Takatoshi; Stanton, John

    2014-01-01

    The electronic and vibrational absorption spectra of the radical anion and cation of p-benzoquinone (PBQ) in an Ar matrix between 500 and 40 000 cm⁻¹ are presented and discussed in detail. Of particular interest is the radical cation, which shows very unusual spectroscopic features that can be understood in terms of vibronic coupling between the ground and a very low-lying excited state. The infrared spectrum of PBQ˙⁺ exhibits a very conspicuous and complicated pattern of features above 1900 ...

  7. Crossed beam reaction of cyano radicals with hydrocarbon molecules. IV. Chemical dynamics of cyanoacetylene (HCCCN; X 1Σ+) formation from reaction of CN(X 2Σ+) with acetylene, C2H2(X 1Σg+)

    Science.gov (United States)

    Huang, L. C. L.; Asvany, O.; Chang, A. H. H.; Balucani, N.; Lin, S. H.; Lee, Y. T.; Kaiser, R. I.; Osamura, Y.

    2000-11-01

    The chemical reaction dynamics to form cyanoacetylene, HCCCN (X 1Σ+), via the radical-neutral reaction of cyano radicals, CN(X 2Σ+;ν=0), with acetylene, C2H2(X 1Σg+), are unraveled in crossed molecular beam experiments at two collision energies of 21.1 and 27.0 kJ mol-1. Laboratory angular distributions and time-of-flight spectra of the HCCCN product are recorded at m/e=51 and 50. Experiments were supplemented by electronic structure calculations on the doublet C3H2N potential energy surface and RRKM investigations. Forward-convolution fitting of the crossed beam data combined with our theoretical investigations shows that the reaction has no entrance barrier and is initiated by an attack of the CN radical to the π electron density of the acetylene molecule to form a doublet cis/trans HCCHCN collision complex on the 2A' surface via indirect reactive scattering dynamics. Here 85% of the collision complexes undergo C-H bond rupture through a tight transition state located 22 kJ mol-1 above the cyanoacetylene, HCCCN (X 1Σ+) and H(2S1/2) products (microchannel 1). To a minor amount (15%) trans HCCHCN shows a 1,2-H shift via a 177 kJ mol-1 barrier to form a doublet H2CCCN radical, which is 46 kJ mol-1 more stable than the initial reaction intermediate (microchannel 2). The H2CCCN complex decomposes via a rather loose exit transition state situated only 7 kJ mol-1 above the reaction products HCCCN (X 1Σ+) and H(2S1/2). In both cases the geometry of the exit transition states is reflected in the observed center-of-mass angular distributions showing a mild forward/sideways peaking. The explicit identification of the cyanoacetylene as the only reaction product represents a solid background for the title reaction to be included in reaction networks modeling the chemistry in dark, molecular clouds, outflow of dying carbon stars, hot molecular cores, as well as the atmosphere of hydrocarbon rich planets and satellites such as the Saturnian moon Titan.

  8. Hydrogen radical additions to unsaturated hydrocarbons and the reverse beta-scission reactions: modeling of activation energies and pre-exponential factors.

    Science.gov (United States)

    Sabbe, Maarten K; Reyniers, Marie-Françoise; Waroquier, Michel; Marin, Guy B

    2010-01-18

    The group additivity method for Arrhenius parameters is applied to hydrogen addition to alkenes and alkynes and the reverse beta-scission reactions, an important family of reactions in thermal processes based on radical chemistry. A consistent set of group additive values for 33 groups is derived to calculate the activation energy and pre-exponential factor for a broad range of hydrogen addition reactions. The group additive values are determined from CBS-QB3 ab-initio-calculated rate coefficients. A mean factor of deviation of only two between CBS-QB3 and experimental rate coefficients for seven reactions in the range 300-1000 K is found. Tunneling coefficients for these reactions were found to be significant below 400 K and a correlation accounting for tunneling is presented. Application of the obtained group additive values to predict the kinetics for a set of 11 additions and beta-scissions yields rate coefficients within a factor of 3.5 of the CBS-QB3 results except for two beta-scissions with severe steric effects. The mean factor of deviation with respect to experimental rate coefficients of 2.0 shows that the group additive method with tunneling corrections can accurately predict the kinetics and is at least as accurate as the most commonly used density functional methods. The constructed group additive model can hence be applied to predict the kinetics of hydrogen radical additions for a broad range of unsaturated compounds.

  9. Infrared Spectra of the 1-CHLOROMETHYL-1-METHYLALLYL and 1-CHLOROMETHYL-2-METHYLALLYL Radicals Isolated in Solid Para-Hydrogen

    Science.gov (United States)

    Amicangelo, Jay C.; Lee, Yuan-Pern

    2017-06-01

    The reaction of chlorine atoms (Cl) with isoprene (C_5H_8) in solid para-hydrogen (p-H_2) matrices at 3.2 K has been studied using infrared spectroscopy. Mixtures of C_5H_8 and Cl_2 were co-deposited in p-H_2 at 3.2 K, followed by irradiation at 365 nm to cause the photodissociation of Cl_2 and the subsequent reaction of Cl atoms with C_5H_8. Upon 365 nm photolysis, a series of new lines appeared in the infrared spectrum, with the strongest appearing at 807.8 and 796.7 \\wn. To determine the grouping of lines to distinct chemical species, secondary photolysis was performed using a low-pressure Hg lamp in combination with various filters. Based on the secondary photolysis behavior, it was determined that the majority of the new lines belong to two distinct chemical species, designated as set A (3047.2, 1482.2, 1459.5, 1396.6, 1349.6, 1268.2, 1237.9, 1170.3, 1108.8, 807.8, 754.1, 605.6, 526.9, 472.7 \\wn) and set B (3112.7, 1487.6, 1382.6, 1257.7, 1229.1, 1034.8, 975.8, 942.4, 796.7, 667.9, 569.7 \\wn). The most likely reactions to occur between Cl and C_5H_8 under the low temperature conditions in solid p-H_2 are the addition of the Cl atom to the four distinct alkene carbon atoms to produce the corresponding chlorine atom addition radicals (ClC_5H_8). Quantum-chemical calculations were performed at the B3PW91/6-311++G(2d,2p) level of theory for the four possible ClC_5H_8 radicals in order to determine the relative energetics and the predicted harmonic vibrational spectra for each radical. The calculations predict that the addition of Cl to each of the four carbons is exothermic, with relative energies of 0.0, 74.5, 67.4, and 7.9 kJ/mol for the addition to carbons 1 - 4, respectively. When the lines of set A and B are compared to the scaled harmonic vibrational spectra for all four of the possible Cl addition radicals, it is found that the best agreement for set A is with the radical produced by the addition to carbon 4 (1-chloromethyl-2-methylallyl radical) and the

  10. Generation of hydroxyl radical in isolated pea root cell wall, and the role of cell wall-bound peroxidase, Mn-SOD and phenolics in their production.

    Science.gov (United States)

    Kukavica, Biljana; Mojovic, Milos; Vuccinic, Zeljko; Maksimovic, Vuk; Takahama, Umeo; Jovanovic, Sonja Veljovic

    2009-02-01

    The hydroxyl radical produced in the apoplast has been demonstrated to facilitate cell wall loosening during cell elongation. Cell wall-bound peroxidases (PODs) have been implicated in hydroxyl radical formation. For this mechanism, the apoplast or cell walls should contain the electron donors for (i) H(2)O(2) formation from dioxygen; and (ii) the POD-catalyzed reduction of H(2)O(2) to the hydroxyl radical. The aim of the work was to identify the electron donors in these reactions. In this report, hydroxyl radical (.OH) generation in the cell wall isolated from pea roots was detected in the absence of any exogenous reductants, suggesting that the plant cell wall possesses the capacity to generate .OH in situ. Distinct POD and Mn-superoxide dismutase (Mn-SOD) isoforms different from other cellular isoforms were shown by native gel electropho-resis to be preferably bound to the cell walls. Electron paramagnetic resonance (EPR) spectroscopy of cell wall isolates containing the spin-trapping reagent, 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide (DEPMPO), was used for detection of and differentiation between .OH and the superoxide radical (O(2)(-).). The data obtained using POD inhibitors confirmed that tightly bound cell wall PODs are involved in DEPMPO/OH adduct formation. A decrease in DEPMPO/OH adduct formation in the presence of H(2)O(2) scavengers demonstrated that this hydroxyl radical was derived from H(2)O(2). During the generation of .OH, the concentration of quinhydrone structures (as detected by EPR spectroscopy) increased, suggesting that the H(2)O(2) required for the formation of .OH in isolated cell walls is produced during the reduction of O(2) by hydroxycinnamic acids. Cell wall isolates in which the proteins have been denaturated (including the endogenous POD and SOD) did not produce .OH. Addition of exogenous H(2)O(2) again induced the production of .OH, and these were shown to originate from the Fenton reaction with tightly bound metal ions

  11. Excited states in electron-transfer reaction products : ultrafast relaxation dynamics of an isolated acceptor radical anion.

    OpenAIRE

    D. A. Horke; Roberts, G.M.; Verlet, J. R. R.

    2011-01-01

    The spectroscopy and ultrafast relaxation dynamics of excited states of the radical anion of a representative charge-transfer acceptor molecule, 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane, have been studied in the gas phase using time-resolved photoelectron spectroscopy. The photoelectron spectra reveal that at least two anion excited states are bound. Time-resolved studies show that both excited states are very short-lived and internally convert to the anion ground state, with the ...

  12. The potential for hydrocarbon biodegradation and production of extracellular polymeric substances by aerobic bacteria isolated from a Brazilian petroleum reservoir.

    Science.gov (United States)

    Vasconcellos, S P; Dellagnezze, B M; Wieland, A; Klock, J-H; Santos Neto, E V; Marsaioli, A J; Oliveira, V M; Michaelis, W

    2011-06-01

    Extracellular polymeric substances (EPS) can contribute to the cellular degradation of hydrocarbons and have a huge potential for application in biotechnological processes, such as bioremediation and microbial enhanced oil recovery (MEOR). Four bacterial strains from a Brazilian petroleum reservoir were investigated for EPS production, emulsification ability and biodegradation activity when hydrocarbons were supplied as substrates for microbial growth. Two strains of Bacillus species had the highest EPS production when phenanthrene and n-octadecane were offered as carbon sources, either individually or in a mixture. While Pseudomonas sp. and Dietzia sp., the other two evaluated strains, had the highest hydrocarbon biodegradation indices, EPS production was not detected. Low EPS production may not necessarily be indicative of an absence of emulsifier activity, as indicated by the results of a surface tension reduction assay and emulsification indices for the strain of Dietzia sp. The combined results gathered in this work suggest that a microbial consortium consisting of bacteria with interdependent metabolisms could thrive in petroleum reservoirs, thus overcoming the limitations imposed on each individual species by the harsh conditions found in such environments.

  13. Bioremediation of coastal areas 5 years after the Nakhodka oil spill in the Sea of Japan: isolation and characterization of hydrocarbon-degrading bacteria.

    Science.gov (United States)

    Chaerun, S Khodijah; Tazaki, Kazue; Asada, Ryuji; Kogure, Kazuhiro

    2004-09-01

    Five years after the 1997 Nakhodka oil spill in the Sea of Japan, seven bacterial strains capable of utilizing the heavy oil spilled from the Nakhodka Russian oil tanker were isolated from three coastal areas (namely Katano Seashore of Fukui Prefecture, Osawa and Atake seashores of Ishikawa Prefecture) and the Nakhodka Russian oil tanker after a 5-year bioremediation process. All bacterial strains isolated could utilize long-chain-length alkanes efficiently, but not aromatic, and all of them were able to grow well on heavy oil. Using 16S rDNA sequencing, most of the strains were affiliated to Pseudomonas aeruginosa. Comparing between the year 1997 (at the beginning of bioremediation process) and the year 2001 (after 5 years of bioremediation), there was no significant change in morphology and size of hydrocarbon-degrading bacteria during the 5-year bioremediation. Scanning and transmission electron microscopic observations revealed that a large number of hydrocarbon-degrading bacteria still existed in the sites consisting of a variety of morphological forms of bacteria, such as coccus (Streptococcus and Staphylococcus) and bacillus (Streptobacillus). On the application of bioremediation processes on the laboratory-scale, laboratory microcosm experiments (containing seawater, beach sand, and heavy oil) under aerobic condition by two different treatments (i.e., placed the inside building and the outside building) were established for bioremediation of heavy oil to investigate the significance of the role of hydrocarbon-degrading bacteria on them. There was no significant bacterial activity differentiation in the two treatments, and removal of heavy oil by hydrocarbon-degrading bacteria in the outside building was slightly greater than that in the inside building. The values of pH, Eh, EC, and dissolved oxygen (DO) in two treatments indicated that the bioremediation process took place under aerobic conditions (DO: 1-6 mg/l; Eh: 12-300 mV) and neutral

  14. Bioremediation of coastal areas 5 years after the Nakhodka oil spill in the Sea of Japan: isolation and characterization of hydrocarbon-degrading bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Chaerun, S. Khodijah [Kanazawa Univ., Graduate School of Natural Science and Technology, Kanazawa (Japan); Tazaki, Kazue; Asada, Ryuji [Kanazawa Univ., Dept. of Earth Sciences, Kanazawa (Japan); Kogure, Kazuhiro [Tokyo Univ., Ocean Research Inst., Nakano, Tokyo (Japan)

    2004-09-01

    Five years after the 1997 Nakhodka oil spill in the Sea of Japan, seven bacterial strains capable of utilizing the heavy oil spilled from the Nakhodka Russian oil tanker were isolated from three coastal areas (namely Katano Seashore of Fukui Prefecture, Osawa and Atake seashores of Ishikawa Prefecture) and the Nakhodka Russian oil tanker after a 5-year bioremediation process. All bacterial strains isolated could utilize long-chain-length alkanes efficiently, but not aromatic, and all of them were able to grow well on heavy oil. Using 16S rDNA sequencing, most of the strains were affiliated to Pseudomonas aeruginosa. Comparing between the year 1997 (at the beginning of bioremediation process) and the year 2001 (after 5 years of bioremediation), there was no significant change in morphology and size of hydrocarbon-degrading bacteria during the 5-year bioremediation. Scanning and transmission electron microscopic observations revealed that a large number of hydrocarbon- degrading bacteria still existed in the sites consisting of a variety of morphological forms of bacteria, such as coccus (Streptococcus and Staphylococcus) and bacillus (Streptobacillus). On the application of bioremediation processes on the laboratory-scale, laboratory microcosm experiments (containing seawater, beach sand, and heavy oil) under aerobic condition by two different treatments (i.e., placed inside the building and outside the building) were established for bioremediation of heavy oil to investigate the significance of the role of hydrocarbon-degrading bacteria on them. There was no significant bacterial activity differentiation in the two treatments, and removal of heavy oil by hydrocarbon degrading bacteria in the outside building was slightly greater than that in the inside building. The values of pH, Eh, EC, and dissolved oxygen (DO) in two treatments indicated that the bioremediation process took place under aerobic conditions (DO: 1-6 mg/l; Eh: 12-300 mV) and neutral

  15. Hydrocarbon degradation and plant colonization of selected bacterial strains isolated from the rhizsophere and plant interior of Italian ryegrass and Birdsfoot trefoil

    Science.gov (United States)

    Sohail, Y.; Andria, V.; Reichenauer, T. G.; Sessitsch, A.

    2009-04-01

    Hydrocarbon-degrading strains were isolated from the rhizosphere, root and shoot interior of Italian ryegrass (Lolium multiflorum var. Taurus), Birdsfoot trefoil (Lotus corniculatus var. Leo) grown in a soil contaminated with petroleum oil. Strains were tested regarding their phylogeny and their degradation efficiency. The most efficient strains were tested regarding their suitability to be applied for phytoremediation of diesel oils. Sterilized and non-sterilized agricultural soil, with and with out compost, were spiked with diesel and used for planting Italian ryegrass and birdsfoot trefoil. Four selected strains with high degradation activities, derived from the rhizosphere and plant interior, were selected for individual inoculation. Plants were harvested at flowering stage and plant biomass and hydrocarbon degradation was determined. Furthermore, it was investigated to which extent the inoculant strains were able to survive and colonize plants. Microbial community structures were analysed by 16S rRNA and alkB gene analysis. Results showed efficient colonization by the inoculant strains and improved degradation by the application of compost combined with inoculation as well as on microbial community structures will be presented.

  16. Application of a biofilm formed by a mixture of yeasts isolated in Vietnam to degrade aromatic hydrocarbon polluted wastewater collected from petroleum storage.

    Science.gov (United States)

    Nhi Cong, Le Thi; Ngoc Mai, Cung Thi; Thanh, Vu Thi; Nga, Le Phi; Minh, Nghiem Ngoc

    2014-01-01

    In this study, three good biofilm-forming yeast strains, including Candida viswanathii TH1, Candida tropicalis TH4 and Trichosporon asahii B1, were isolated from oil-contaminated water and sediment samples collected in coastal zones of Vietnam. These strains were registered in the GenBank database with the accession numbers JX129175, JX129176 and KC139404 for strain TH1, TH4 and B1, respectively. The biofilm formed by a mixture of these organisms degraded 90, 85, 82 and 67% of phenol, naphthalene, anthracene and pyrene, respectively, after a 7-day incubation period using an initial concentration of 600 ppm phenol and 200 ppm of each of the other compounds. In addition, this biofilm completely degraded these aromatic compounds, which were from wastewater collected from petroleum tanks in Do Xa, Hanoi after 14 days of incubation based on gas chromatography mass spectrometry analysis. To the best of our knowledge, reports on polycyclic aromatic hydrocarbon and phenol degradation by biofilm-forming yeasts are limited. The results obtained indicate that the biofilm formed by multiple yeast strains may considerably increase the degradation efficiency of aromatic hydrocarbon compounds, and may lead to a new approach for eliminating petroleum oil-contaminated water in Vietnam.

  17. Genome sequence of obligate marine polycyclic aromatic hydrocarbons-degrading bacterium Cycloclasticus sp. 78-ME, isolated from petroleum deposits of the sunken tanker Amoco Milford Haven, Mediterranean Sea.

    Science.gov (United States)

    Messina, Enzo; Denaro, Renata; Crisafi, Francesca; Smedile, Francesco; Cappello, Simone; Genovese, Maria; Genovese, Lucrezia; Giuliano, Laura; Russo, Daniela; Ferrer, Manuel; Golyshin, Peter; Yakimov, Michail M

    2016-02-01

    Cycloclasticus sp. 78-ME isolated from petroleum deposits of the sunken tanker “Amoco Milford Haven” (Gulf of Genoa, Ligurian Sea, Italy) could effectively degrade polycyclic aromatic hydrocarbons of up to five condensed rings. The genome of 78-ME was sequenced and analysed to gain insights into its remarkable degrading capacities. It comprises two circular replicons, the 2,613,078 bp chromosome and the plasmid of 42,347 bp, with 41.84% and 53.28% of the G + C content respectively. A total of 2585 protein-coding genes were obtained, and three large operons with more than fifteen enzymes belonging to four different classes of ring-cleavage dioxygenases were found.

  18. Effects of preconditioning on reperfusion arrhythmias, myocardial functions, formation of free radicals, and ion shifts in isolated ischemic/reperfused rat hearts.

    Science.gov (United States)

    Tosaki, A; Cordis, G A; Szerdahelyi, P; Engelman, R M; Das, D K

    1994-03-01

    The effects of preconditioning on development of reperfusion-induced ventricular fibrillation (VF), ventricular tachycardia (VT), free radical formation, and ion shifts, particularly those of Na, K, Ca, and Mg, were studied in isolated rat heart. Hearts were randomly divided into four groups: group I, aerobically perfused time-matched controls with no preconditioning or ischemia; group II, hearts subjected to 30-min global ischemia followed by 30-min reperfusion; group III, hearts subjected to one cycle of preconditioning, consisting of 5-min global ischemia plus 10-min reperfusion, followed by 30-min global ischemia plus 30-min reperfusion; and group IV, hearts subjected to four cycles of preconditioning (5-min ischemia plus 10-min reperfusion) followed by 30-min ischemia plus 30-min reperfusion. The incidences of VF and VT were reduced from their nonpreconditioned ischemic values of 100 and 100% in group II to 83 and 92% in group III and to 33% (p < 0.05) and 41% (p < 0.05) in group IV, respectively. Maximum malondialdehyde formation, as an indirect marker of free radicals, was observed after 30-min ischemia followed by 10-min reperfusion (0.72 +/- 0.1 nmol/ml) in the nonpreconditioned ischemic group (protocol II). One and four cycles of preconditioning reduced formation of malondialdehyde from the nonpreconditioned ischemic value of 0.72 +/- 0.1 to 0.35 +/- 0.02 and 0.26 +/- 0.02 nmol/ml (p < 0.05), respectively. The same trend was observed when free radical formation was directly detected by salicylic acid.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Improved enrichment and isolation of polycyclic aromatic hydrocarbons (PAH)-degrading microorganisms in soil using anthracene as a model PAH.

    Science.gov (United States)

    Jacques, Rodrigo J S; Okeke, Benedict C; Bento, Fátima M; Peralba, Maria C R; Camargo, Flávio A O

    2009-06-01

    Lack of attention to soil and microbial characteristics that influence PAHs degradation has been a leading cause of failures in isolation of efficient PAH degraders and bioaugumentation processes with microbial consortia. This study compared the classic method of isolation of PAHs-degraders with a modified method employing a pre-enrichment respirometric analysis. The modified enrichment of PAH degrading microorganisms using in vitro microcosm resulted to reduced enrichment period and more efficient PAH-degrading microbial consortia. Results indicate that natural soils with strong heterotrophic microbial activity determined through pre-enrichment analysis, are better suited for the isolation of efficient PAH degrading microorganisms with significant reduction of the enrichment period.

  20. Formation of brominated disinfection byproducts from natural organic matter isolates and model compounds in a sulfate radical-based oxidation process

    KAUST Repository

    Wang, Yuru

    2014-12-16

    A sulfate radical-based advanced oxidation process (SR-AOP) has received increasing application interest for the removal of water/wastewater contaminants. However, limited knowledge is available on its side effects. This study investigated the side effects in terms of the production of total organic bromine (TOBr) and brominated disinfection byproducts (Br-DBPs) in the presence of bromide ion and organic matter in water. Sulfate radical was generated by heterogeneous catalytic activation of peroxymonosulfate. Isolated natural organic matter (NOM) fractions as well as low molecular weight (LMW) compounds were used as model organic matter. Considerable amounts of TOBr were produced by SR-AOP, where bromoform (TBM) and dibromoacetic acid (DBAA) were identified as dominant Br-DBPs. In general, SR-AOP favored the formation of DBAA, which is quite distinct from bromination with HOBr/OBr- (more TBM production). SR-AOP experimental results indicate that bromine incorporation is distributed among both hydrophobic and hydrophilic NOM fractions. Studies on model precursors reveal that LMW acids are reactive TBM precursors (citric acid > succinic acid > pyruvic acid > maleic acid). High DBAA formation from citric acid, aspartic acid, and asparagine was observed; meanwhile aspartic acid and asparagine were the major precursors of dibromoacetonitrile and dibromoacetamide, respectively.

  1. Excited states in electron-transfer reaction products: ultrafast relaxation dynamics of an isolated acceptor radical anion.

    Science.gov (United States)

    Horke, Daniel A; Roberts, Gareth M; Verlet, Jan R R

    2011-08-04

    The spectroscopy and ultrafast relaxation dynamics of excited states of the radical anion of a representative charge-transfer acceptor molecule, 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane, have been studied in the gas phase using time-resolved photoelectron spectroscopy. The photoelectron spectra reveal that at least two anion excited states are bound. Time-resolved studies show that both excited states are very short-lived and internally convert to the anion ground state, with the lower energy state relaxing within 200 fs and a near-threshold valence-excited state relaxing on a 60 fs time scale. These excited states, and in particular the valence-excited state, present efficient pathways for electron-transfer reactions in the highly exergonic inverted region which commonly displays rates exceeding predictions from electron-transfer theory.

  2. Microbial degradation of petroleum hydrocarbons.

    Science.gov (United States)

    Varjani, Sunita J

    2017-01-01

    Petroleum hydrocarbon pollutants are recalcitrant compounds and are classified as priority pollutants. Cleaning up of these pollutants from environment is a real world problem. Bioremediation has become a major method employed in restoration of petroleum hydrocarbon polluted environments that makes use of natural microbial biodegradation activity. Petroleum hydrocarbons utilizing microorganisms are ubiquitously distributed in environment. They naturally biodegrade pollutants and thereby remove them from the environment. Removal of petroleum hydrocarbon pollutants from environment by applying oleophilic microorganisms (individual isolate/consortium of microorganisms) is ecofriendly and economic. Microbial biodegradation of petroleum hydrocarbon pollutants employs the enzyme catalytic activities of microorganisms to enhance the rate of pollutants degradation. This article provides an overview about bioremediation for petroleum hydrocarbon pollutants. It also includes explanation about hydrocarbon metabolism in microorganisms with a special focus on new insights obtained during past couple of years. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Matrix-isolation studies on the radiation-induced chemistry in H₂O/CO₂ systems: reactions of oxygen atoms and formation of HOCO radical.

    Science.gov (United States)

    Ryazantsev, Sergey V; Feldman, Vladimir I

    2015-03-19

    The radiation-induced transformations occurring upon X-ray irradiation of solid CO2/H2O/Ng systems (Ng = Ar, Kr, Xe) at 8-10 K and subsequent annealing up to 45 K were studied by Fourier transform infrared spectroscopy. The infrared (IR) spectra of deposited matrices revealed the presence of isolated monomers, dimers, and intermolecular H2O···CO2 complexes. Irradiation resulted in effective decomposition of matrix-isolated carbon dioxide and water yielding CO molecules and OH radicals, respectively. Annealing of the irradiated samples led to formation of O3, HO2, and a number of xenon hydrides of HXeY type (in the case of xenon matrices). The formation of these species was used for monitoring of the postirradiation thermally induced chemical reactions involving O and H atoms generated by radiolysis. It was shown that the radiolysis of CO2 in noble-gas matrices produced high yields of stabilized oxygen atoms. In all cases, the temperatures at which O atoms become mobile and react are lower than those of H atoms. Dynamics and reactivity of oxygen atoms was found to be independent of the precursor nature. In addition, the formation of HOCO radicals was observed in all the noble-gas matrices at remarkably low temperatures. The IR spectra of HOCO and DOCO were first characterized in krypton and xenon matrices. It was concluded that the formation of HOCO was mainly due to the radiation-induced evolution of the weakly bound H2O···CO2 complexes. This result indicates the significance of weak intermolecular interactions in the radiation-induced chemical processes in inert low-temperature media.

  4. Polycyclic Aromatic Hydrocarbons

    Science.gov (United States)

    Salama, Farid

    2010-01-01

    Carbonaceous materials play an important role in space. Polycyclic Aromatic Hydrocarbons (PAHs) are a ubiquitous component of the carbonaceous materials. PAHs are the best-known candidates to account for the IR emission bands. They are also thought to be among the carriers of the diffuse interstellar absorption bands (DIBs). PAH ionization states reflect the ionization balance of the medium while PAH size, composition, and structure reflect the energetic and chemical history of the medium. A major challenge is to reproduce in the laboratory the physical conditions that exist in the emission and absorption interstellar zones. The harsh physical conditions of the ISM -low temperature, collisionless, strong UV radiation fields- are simulated in the laboratory by associating a molecular beam with an ionizing discharge to generate a cold plasma expansion. PAH ions and radicals are formed from the neutral precursors in an isolated environment at low temperature and probed with high-sensitivity cavity ringdown spectroscopy in the NUV-NIR range. Carbon nanoparticles are also formed during the short residence time of the precursors in the plasma and are characterized with time-offlight mass spectrometry. These experiments provide unique information on the spectra of large carbonaceous molecules and ions in the gas phase that can now be directly compared to interstellar and circumstellar observations (IR emission bands, DIBs, extinction curve). These findings also hold great potential for understanding the formation process of interstellar carbonaceous grains. We will review recent progress in the experimental and theoretical studies of PAHs, compare the laboratory data with astronomical observations and discuss the global implications.

  5. Using the second law of thermodynamics for enrichment and isolation of microorganisms to produce fuel alcohols or hydrocarbons.

    Science.gov (United States)

    Kohn, Richard A; Kim, Seon-Woo

    2015-10-07

    Fermentation of crops, waste biomass, or gases has been proposed as a means to produce desired chemicals and renewable fuels. The second law of thermodynamics has been shown to determine the net direction of metabolite flow in fermentation processes. In this article, we describe a process to isolate and direct the evolution of microorganisms that convert cellulosic biomass or gaseous CO2 and H2 to biofuels such as ethanol, 1-butanol, butane, or hexane (among others). Mathematical models of fermentation elucidated sets of conditions that thermodynamically favor synthesis of desired products. When these conditions were applied to mixed cultures from the rumen of a cow, bacteria that produced alcohols or alkanes were isolated. The examples demonstrate the first use of thermodynamic analysis to isolate bacteria and control fermentation processes for biofuel production among other uses.

  6. Resonance ionization detection of combustion radicals

    Energy Technology Data Exchange (ETDEWEB)

    Cool, T.A. [Cornell Univ., Ithaca, NY (United States)

    1993-12-01

    Fundamental research on the combustion of halogenated organic compounds with emphasis on reaction pathways leading to the formation of chlorinated aromatic compounds and the development of continuous emission monitoring methods will assist in DOE efforts in the management and disposal of hazardous chemical wastes. Selective laser ionization techniques are used in this laboratory for the measurement of concentration profiles of radical intermediates in the combustion of chlorinated hydrocarbon flames. A new ultrasensitive detection technique, made possible with the advent of tunable VUV laser sources, enables the selective near-threshold photoionization of all radical intermediates in premixed hydrocarbon and chlorinated hydrocarbon flames.

  7. Isolation and characterisation of fungi growing on volatile aromatic hydrocarbons as their sole carbon and energy source

    NARCIS (Netherlands)

    Prenafeta-Boldu, F.X.; Kuhn, A.; Luykx, D.; Anke, H.; Groenestijn, van J.W.; Bont, de J.A.M.

    2001-01-01

    Five fungal strains that are able to grow on toluene were isolated from enrichment cultures. Three different techniques were used: solid state-like batches, air biofilters and liquid cultures. Fungal growth in the latter systems was favoured by combining low pH and low water activity. Soil and groun

  8. Effect of hydrocarbon stapling on the properties of α-helical antimicrobial peptides isolated from the venom of hymenoptera.

    Science.gov (United States)

    Chapuis, Hubert; Slaninová, Jiřina; Bednárová, Lucie; Monincová, Lenka; Buděšínský, Miloš; Čeřovský, Václav

    2012-11-01

    The impact of inserting hydrocarbon staples into short α-helical antimicrobial peptides lasioglossin III and melectin (antimicrobial peptides of wild bee venom) on their biological and biophysical properties has been examined. The stapling was achieved by ring-closing olefin metathesis, either between two S-2-(4'-pentenyl) alanine residues (S (5)) incorporated at i and i + 4 positions or between R-2-(7'-octenyl) alanine (R (8)) and S (5) incorporated at the i and i + 7 positions, respectively. We prepared several lasioglossin III and melectin analogs with a single staple inserted into different positions within the peptide chains as well as analogs with double staples. The stapled peptides exhibited a remarkable increase in hemolytic activity, while their antimicrobial activities decreased. Some single stapled peptides showed a higher resistance against proteolytic degradation than native ones, while the double stapled analogs were substantially more resistant. The CD spectra of the singly stapled peptides measured in water showed only a slightly better propensity to form α-helical structure when compared to native peptides, whereas the doubly stapled analogs exhibited dramatically enhanced α-helicity.

  9. Infrared Spectroscopy of Matrix-Isolated Polycyclic Aromatic Hydrocarbon Cations. 3. The Polyacenes Anthracene, Tetracene, and Pentacene

    Science.gov (United States)

    Hudgins, D. M.; Allamandola, L. J.

    1995-01-01

    Gaseous, ionized Polycyclic Aromatic Hydrocarbons (PAH's) are thought to be responsible for a very common family of interstellar infrared emission bands. Unfortunately, very little infrared spectroscopic data are available on ionized PAH's. Here we present the near- and mid-infrared spectra of the polyacene cations anthracene, tetracene, and pentacene. We also report the vibrational frequencies and relative intensities of the pentacene anion. The cation bands corresponding to the CC modes are typically about 10-20 times more intense than those of the CH out-of-plane bending vibrations. For the cations the CC stretching and CH in-plane bending modes give rise to bands which are an order of magnitude stronger than for the neutral species, and the CH out-of-plane bends produce bands which are 3-20 times weaker than in the neutral species. This behavior is similar to that found for most other PAH cations. The most intense PAH cation bands fall within the envelopes of the most intense interstellar features. The strongest absorptions in the polyacenes anthracene, tetracene, and pentacene tend to group around 1400 / cm (between about 1340 and 1500 / cm) and near 1180 /cm, regions of only moderate interstellar emission. These very strong polyacene bands tend to fall in gaps in the spectra of the other PAH cations studied to date suggesting that while PAHs with polyacene structures may contribute to specific regions of the interstellar emission spectra, they are not dominant members of the interstellar PAH family.

  10. Infrared Spectroscopy of Matrix-Isolated Polycyclic Aromatic Hydrocarbon Cations. 3; The Polyacenes Anthracene, Tetracence, and Pentacene

    Science.gov (United States)

    Hudgins, D. M.; Allamandola, L. J.

    1995-01-01

    Gaseous, ionized polycyclic aromatic hydrocarbons (PAHS) are thought to be responsible for a very common family of interstellar infrared emission bands. Unfortunately, very little infrared spectroscopic data are available on ionized PAHS. Here we present the near- and mid-infrared spectra of the polyacene cations anthracene, tetracene, and pentacene. We also report the vibrational frequencies and relative intensities of the pentacene anion. The cation bands corresponding to the CC modes are typically about 10-20 times more intense than those of the CH out-of-plane bending vibrations. For the cations the CC stretching and CH in-plane bending modes give rise to bands which are an order of magnitude stronger than for the neutral species, and the CH out-of-plane bends produce bands which are 3-20 times weaker than in the neutral species. This behavior is similar to that found for most other PAH cations. The most intense PAH cation bands fall within the envelopes of the most intense interstellar features. The strongest absorptions in the polyacenes anthracene, tetracene, and pentacene tend to group around 1400/cm (between about 1340 and 1500/cm) and near 1180/cm, regions of only moderate interstellar emission. These very strong polyacene bands tend to fall in gaps in the spectra of the other PAH cations studied to date suggesting that while PAHs with polyacene structures may contribute to specific regions of the interstellar emission spectra, they are not dominant members of the interstellar PAH family.

  11. Growth of hydrocarbon utilizing microorganisms

    Digital Repository Service at National Institute of Oceanography (India)

    Bhosle, N.B.; Mavinkurve, S.

    Two isolates from marine mud having broad spectrum hydrocarbon utilizing profile were identified as Arthrobacter simplex and Candida tropicalis.Both the organisms grew exponentially on crude oil. The cell yield of the organisms was influenced...

  12. Ferromagnetic behavior of formyl-group-carrying stable thioaminyl radicals.

    Science.gov (United States)

    Miura, Yozo; Nakamura, Shogo; Teki, Yoshio

    2003-10-17

    Four formyl-group-carrying thioaminyl radicals were generated, and one radical could be isolated as radical crystals. Magnetic susceptibility measurements of the isolated radical showed a ferromagnetic regular linear-chain interaction of 2J/k(B) = 3.2 K, which was explained in terms of the X-ray crystallographic results.

  13. Premating isolation is determined by larval rearing substrates in cactophilic Drosophila mojavensis. IX. Host plant and population specific epicuticular hydrocarbon expression influences mate choice and sexual selection.

    Science.gov (United States)

    Havens, J A; Etges, W J

    2013-03-01

    Sexual signals in cactophilic Drosophila mojavensis include cuticular hydrocarbons (CHCs), contact pheromones that mediate female discrimination of males during courtship. CHCs, along with male courtship songs, cause premating isolation between diverged populations, and are influenced by genotype × environment interactions caused by different host cacti. CHC profiles of mated and unmated adult flies from a Baja California and a mainland Mexico population of D. mojavensis reared on two host cacti were assayed to test the hypothesis that male CHCs mediate within-population female discrimination of males. In multiple choice courtship trials, mated and unmated males differed in CHC profiles, indicating that females prefer males with particular blends of CHCs. Mated and unmated females significantly differed in CHC profiles as well. Adults in the choice trials had CHC profiles that were significantly different from those in pair-mated adults from no-choice trials revealing an influence of sexual selection. Females preferred different male CHC blends in each population, but the influence of host cactus on CHC variation was significant only in the mainland population indicating population-specific plasticity in CHCs. Different groups of CHCs mediated female choice-based sexual selection in each population suggesting that geographical and ecological divergence has the potential to promote divergence in mate communication systems.

  14. [Destruction of aromatic hydrocarbons by the Rhodococcus wratislaviensis KT112-7 strain isolated from waste products of a salt-mining factory].

    Science.gov (United States)

    Egorova, D O; Korsakova, E S; Demakov, V A; Plotnikova, E G

    2013-01-01

    The destruction of aromatic hydrocarbons by the Rhodococcus wratislaviensis KT112-7 strain isolated from technogenic mineral waste products of the BKRU1 Uralkalii factory has been investigated (city of Berezniki, Perm krai). The R. wratislaviensis KT112-7 was shown to utilize increased concentrations of ophthalic (o-PA) (8 g/L) and benzoic (BA) (3.4 g/L) acids. The strain grows with o-FA, BA, and biphenyl at a NaCl content of up to 50, 90, and 75 g/L in the culture medium, respectively. Based on an analysis of the metabolic profile and nucleotide sequences of the bphA1, benA, and phtB genes, the KT112-7 strain was established to decompose o-PA via the formation of 3,4-dihydroxyphthalic and 3,4-dihydroxybenzoic acids. The decomposition of biphenyl is carried out via the formation of BA and then at low concentrations of NaCl (up to 50 g/L) via the formation of 4-hydroxybenzoic acid followed by its oxidation; at high concentrations of NaCl (over 60 g/L), via the direct oxidation of benzoic acid with the production of catechol. These data indicate that the Rhodococcus wratislaviensis KT112-7 destructor strain is a promising strain for the development of new biotechnologies directed at the utilization (transformation) of aromatic compounds, including under the conditions of increased mineralization.

  15. Familial isolated pituitary adenomas (FIPA) and the pituitary adenoma predisposition due to mutations in the aryl hydrocarbon receptor interacting protein (AIP) gene.

    Science.gov (United States)

    Beckers, Albert; Aaltonen, Lauri A; Daly, Adrian F; Karhu, Auli

    2013-04-01

    Pituitary adenomas are one of the most frequent intracranial tumors and occur with a prevalence of approximately 1:1000 in the developed world. Pituitary adenomas have a serious disease burden, and their management involves neurosurgery, biological therapies, and radiotherapy. Early diagnosis of pituitary tumors while they are smaller may help increase cure rates. Few genetic predictors of pituitary adenoma development exist. Recent years have seen two separate, complimentary advances in inherited pituitary tumor research. The clinical condition of familial isolated pituitary adenomas (FIPA) has been described, which encompasses the familial occurrence of isolated pituitary adenomas outside of the setting of syndromic conditions like multiple endocrine neoplasia type 1 and Carney complex. FIPA families comprise approximately 2% of pituitary adenomas and represent a clinical entity with homogeneous or heterogeneous pituitary adenoma types occurring within the same kindred. The aryl hydrocarbon receptor interacting protein (AIP) gene has been identified as causing a pituitary adenoma predisposition of variable penetrance that accounts for 20% of FIPA families. Germline AIP mutations have been shown to associate with the occurrence of large pituitary adenomas that occur at a young age, predominantly in children/adolescents and young adults. AIP mutations are usually associated with somatotropinomas, but prolactinomas, nonfunctioning pituitary adenomas, Cushing disease, and other infrequent clinical adenoma types can also occur. Gigantism is a particular feature of AIP mutations and occurs in more than one third of affected somatotropinoma patients. Study of pituitary adenoma patients with AIP mutations has demonstrated that these cases raise clinical challenges to successful treatment. Extensive research on the biology of AIP and new advances in mouse Aip knockout models demonstrate multiple pathways by which AIP may contribute to tumorigenesis. This review assesses

  16. Isolation of Marine Polycyclic Aromatic Hydrocarbon (PAH)-Degrading Cycloclasticus Strains from the Gulf of Mexico and Comparison of Their PAH Degradation Ability with That of Puget Sound Cycloclasticus Strains

    OpenAIRE

    1998-01-01

    Phenanthrene- and naphthalene-degrading bacteria were isolated from four offshore and nearshore locations in the Gulf of Mexico by using a modified most-probable-number technique. The concentrations of these bacteria ranged from 102 to 106 cells per ml of wet surficial sediment in mildly contaminated and noncontaminated sediments. A total of 23 strains of polycyclic aromatic hydrocarbon (PAH)-degrading bacteria were obtained. Based on partial 16S ribosomal DNA sequences and phenotypic charact...

  17. Measurement of radical-species concentrations and polycyclic aromatic hydrocarbons in flames by fluorescence and absorption using a tunable dye laser. Progress report, March 1, 1980-February 28, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Lucht, R.P.; Sweeney, D.W.; Laurendeau, N.M.

    1981-03-01

    A theoretical and experimental investigation of OH saturated fluorescence is described. The goal of the research is to develop a saturated fluorescence technique which will yield accurate molecular number densities over a wide range of flame pressure, temperature, and composition. Experimentally, OH is excited by a ten nanosecond pulse from a Nd:YAG-pumped dye laser tuned to an isolated rotational transition in the (0,0) band of the A/sup 2/..sigma../sup +/-X/sup 2/ pi electronic system. The resulting fluorescence signal is resolved both spectrally and temporally. Total OH number densities are calculated by collecting fluorescence from the directly excited upper rotational level, and using the balanced cross-rate model to analyze the experimental data. Fluorescence measurements of OH number density agree to within a factor of three with the results of independent OH absorption measurements. Significantly, the ratio of the fluorescence signal to the number density measured by absorption is nearly the same in 30, 100 and 250 torr H/sub 2//O/sub 2//N/sub 2/ flat flames, demonstrating the insensitivity of the saturated fluorescence signal to the quenching environment of the radical. Collisional transfer in excited OH is studied by recording the time development of OH fluorescence spectrum. The experimental spectra are compared with the results of time-dependent computer modeling. By varying rotational transfer rates until the calculated and experimental spectra agree, rotational transfer cross sections can be calculated. The signal processing system was thoroughly checked by comparing the photomultiplier output to that of a fast photodiode, and by comparing single pulse Rayleigh scattering and fluorescence traces with sampling oscilloscope traces.

  18. Isolation and Characterization of the 2,2'-Azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) Radical Cation-Scavenging Reaction Products of Arbutin.

    Science.gov (United States)

    Tai, Akihiro; Ohno, Asako; Ito, Hideyuki

    2016-09-28

    Arbutin, a glucoside of hydroquinone, has shown strong 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical cation-scavenging activity, especially in reaction stoichiometry. This study investigated the reaction mechanism of arbutin against ABTS radical cation that caused high stoichiometry of arbutin in an ABTS radical cation-scavenging assay. HPLC analysis of the reaction mixture of arbutin and ABTS radical cation indicated the existence of two reaction products. The two reaction products were purified and identified to be a covalent adduct of arbutin with an ABTS degradation fragment and 3-ethyl-6-sulfonate benzothiazolone. A time-course study of the radical-scavenging reactions of arbutin and the two reaction products suggested that one molecule of arbutin scavenges three ABTS radical cation molecules to generate an arbutin-ABTS fragment adduct as a final reaction product. The results suggest that one molecule of arbutin reduced two ABTS radical cation molecules to ABTS and then cleaved the third ABTS radical cation molecule to generate two products, an arbutin-ABTS fragment adduct and 3-ethyl-6-sulfonate benzothiazolone.

  19. Enhanced ethylene and ethane production with free-radical cracking catalysts.

    Science.gov (United States)

    Kolts, J H; Delzer, G A

    1986-05-09

    A series of free-radical catalysts have been discovered that increase the yield of highly valuable olefins from the cracking of low molecular weight paraffins. For example, catalytic cracking of n-butane, isobutane, and propane over manganese or iron supported on magnesium oxide (MgO) gave product distributions different from those given by thermal (free-radical) cracking or cracking over traditional acid catalysts. With n-butane and propane feeds, the products from catalytic cracking included large amounts of ethylene and ethane; with isobutane feed, propylene was the major product. Physical characterization of the MgO-supported catalyst showed the manganese to be in a 2+ oxidation state in the reduced catalyst and a 4+ oxidation state in the fully oxidized catalyst. Manganese was also shown to be uniformly distributed in the support material with very little enrichment at the surface. Matrix isolation of the gasphase radicals from n-butane feed showed that ethyl and methyl radicals were produced over the active catalysts. In the thermal process, only methyl radicals were produced. The mechanism of the catalytic reaction appears to be selective formation of primary carbanions at the catalyst surface followed by electron transfer and release of primary hydrocarbon radicals to the gas phase.

  20. Degradation on polycyclic aromatic hydrocarbon (PAHs)by mixed microorganism isolated from coastal sediments%海洋微生物对多环芳烃的降解

    Institute of Scientific and Technical Information of China (English)

    郭楚玲; 哈里德; 郑天凌; 洪华生; 田蕴

    2001-01-01

    The goal of this paper is to characterize microorganisms (bacteria) isolated from sediment samples contaminated with polycyclic aromatic hydrocarbon(PAHs). ST4——pyrene enriched microorganism were studied. They can use pyrene, phenanthrene, fluoranthene as the only source of carbon and energy. Cells of the microorganism were inoculated in mineral salt medium(MSM) at 10,25,50,100,200 mg/dm3 pyrene in acetone solution. The highest optical density (OD600) and the highest degradation rate were obtained at 50 mg/dm3. Additional nutrients have evident effect on the growth of mixed culture.%从海域沉积物中富集分离出以芘作为唯一碳源和能源的海洋微生物,以ST4富集培养的混合微生物作为研究对象;该海洋混合菌株能利用菲(Phe)、芘(Pyr)、荧蒽(Fla)等多种多环芳烃;在不同浓度的芘的降解中,当芘的浓度为50mg/dm3时,其生长水平和降解速率最高;当芘的浓度为200mg/dm3时,其生长受到抑制,芘几乎不能被降解.外加营养盐酵母浸出液和葡萄糖促进降解微生物的生长,提高降解速率.研究表明了海洋微生物在多环芳烃污染环境的生物修复应用前景.

  1. Desulfosarcina widdelii sp. nov. and Desulfosarcina alkanivorans sp. nov., hydrocarbon-degrading sulfate-reducing bacteria isolated from marine sediment and emended description of the genus Desulfosarcina.

    Science.gov (United States)

    Watanabe, Miho; Higashioka, Yuriko; Kojima, Hisaya; Fukui, Manabu

    2017-08-01

    In previous studies, two hydrocarbon-degrading sulfate-reducing bacteria, strains PP31T and PL12T, were obtained from oil-polluted marine sediments of Shuaiba, Kuwait. They had been reported as organisms capable of anaerobic degradation of p-xylene and n-alkanes, respectively. The 16S rRNA gene sequence of strain PP31T showed 98.8 % sequence similarities to that of Desulfosarcina variabilis'Montpellier'T. Strains PL12T had 97.8 % of sequence similarity to Desulfosarcina ovata oXys1T. They both have been partially characterized, but not been validly published as new species of the genus Desulfosarcina. In this study, additional characterizations of these strains were made to describe them as two new species of the genus Desulfosarcina. Major cellular fatty acids of strain PP31T were C15 : 0 (25.9 %) and anteiso-C15 : 0 (22.3 %), whereas those of strain PL12T were C15 : 0 (21.3 %), C16 : 0 (17.8 %) and anteiso-15 : 0 (11.6 %). The phylogenetic tree based on 16S rRNA gene revealed that these isolates should not be classified as any of the known species in the genus Desulfosarcina. On the basis of phenotypic and phylogenetic analyses, these two sulfate reducers are proposed to form two novel species of the genus Desulfosarcina : Desulfosarcina widdelii sp. nov. (PP31T=JCM 31729T=DSM 103921T) and Desulfosarcina alkanivorans sp. nov. (PL12T=JCM 31728T=DSM 103901T). In addition, emended description of the genus Desulfosarcina is presented in this study.

  2. Geobacter daltonii sp. nov., an Fe(III)- and uranium(VI)-reducing bacterium isolated from a shallow subsurface exposed to mixed heavy metal and hydrocarbon contamination.

    Science.gov (United States)

    Prakash, Om; Gihring, Thomas M; Dalton, Dava D; Chin, Kuk-Jeong; Green, Stefan J; Akob, Denise M; Wanger, Greg; Kostka, Joel E

    2010-03-01

    An Fe(III)- and uranium(VI)-reducing bacterium, designated strain FRC-32(T), was isolated from a contaminated subsurface of the USA Department of Energy Oak Ridge Field Research Center (ORFRC) in Oak Ridge, Tennessee, where the sediments are exposed to mixed waste contamination of radionuclides and hydrocarbons. Analyses of both 16S rRNA gene and the Geobacteraceae-specific citrate synthase (gltA) mRNA gene sequences retrieved from ORFRC sediments indicated that this strain was abundant and active in ORFRC subsurface sediments undergoing uranium(VI) bioremediation. The organism belonged to the subsurface clade of the genus Geobacter and shared 92-98 % 16S rRNA gene and 75-81 % rpoB gene sequence similarities with other recognized species of the genus. In comparison to its closest relative, Geobacter uraniireducens Rf4(T), according to 16S rRNA gene sequence similarity, strain FRC-32(T) showed a DNA-DNA relatedness value of 21 %. Cells of strain FRC-32(T) were Gram-negative, non-spore-forming, curved rods, 1.0-1.5 microm long and 0.3-0.5 microm in diameter; the cells formed pink colonies in a semisolid cultivation medium, a characteristic feature of the genus Geobacter. The isolate was an obligate anaerobe, had temperature and pH optima for growth at 30 degrees C and pH 6.7-7.3, respectively, and could tolerate up to 0.7 % NaCl although growth was better in the absence of NaCl. Similar to other members of the Geobacter group, strain FRC-32(T) conserved energy for growth from the respiration of Fe(III)-oxyhydroxide coupled with the oxidation of acetate. Strain FRC-32(T) was metabolically versatile and, unlike its closest relative, G. uraniireducens, was capable of utilizing formate, butyrate and butanol as electron donors and soluble ferric iron (as ferric citrate) and elemental sulfur as electron acceptors. Growth on aromatic compounds including benzoate and toluene was predicted from preliminary genomic analyses and was confirmed through successive transfer with

  3. Hydrocarbon degradation abilities of psychrotolerant Bacillus strains

    Directory of Open Access Journals (Sweden)

    Fulya Kolsal

    2017-06-01

    Full Text Available Biodegradation requires identification of hydrocarbon degrading microbes and the investigation of psychrotolerant hydrocarbon degrading microbes is essential for successful biodegradation in cold seawater. In the present study, a total of 597 Bacillus isolates were screened to select psychrotolerant strains and 134 isolates were established as psychrotolerant on the basis of their ability to grow at 7 °C. Hydrocarbon degradation capacities of these 134 psychrotolerant isolate were initially investigated on agar medium containing different hydrocarbons (naphthalene, n-hexadecane, mineral oil and 47 positive isolates were grown in broth medium containing hydrocarbons at 20 °C under static culture. Bacterial growth was estimated in terms of viable cell count (cfu ml–1. Isolates showing the best growth in static culture were further grown in presence of crude oil under shaking culture and viable cell count was observed between 8.3 × 105–7.4 × 108 cfu ml–1. In the final step, polycyclic aromatic hydrocarbon (PAH (chrysene and naphthalene degradation yield of two most potent isolates was determined by GC-MS along with the measurement of pH, biomass and emulsification activities. Results showed that isolates Ege B.6.2i and Ege B.1.4Ka have shown 60% and 36% chrysene degradation yield, respectively, while 33% and 55% naphthalene degradation yield, respectively, with emulsification activities ranges between 33–50%. These isolates can be used to remove hydrocarbon contamination from different environments, particularly in cold regions.

  4. Method of dispersing a hydrocarbon using bacteria

    Science.gov (United States)

    Tyndall, Richard L.

    1996-01-01

    New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  5. Sulfonated hydrocarbon graft architectures for cation exchange membranes

    DEFF Research Database (Denmark)

    Nielsen, Mads Møller; Jankova Atanasova, Katja; Hvilsted, Søren

    2013-01-01

    A synthetic strategy to hydrocarbon graft architectures prepared from a commercial polysulfone and aimed as ion exchange membrane material is proposed. Polystyrene is grafted from a polysulfone macroinitiator by atom transfer radical polymerization, and subsequently sulfonated with acetyl sulfate...

  6. Characterization of hydrocarbon utilizing fungi from hydrocarbon ...

    African Journals Online (AJOL)

    Prof. Ogunji

    hydrocarbon polluted sediments and water .... ecosystem may result in selective increase or decrease in microbial population (Okpokwasili ... been implicated in degradation of hydrocarbons such as crude oil, polyaromatic hydrocarbons and.

  7. Peroxy Radical Chemistry and Partitioning under a Ponderosa Pine Canopy

    Science.gov (United States)

    Wolfe, G. M.; Cantrell, C. A.; Mauldin, L.; Kim, S.; Henry, S. B.; Boyle, E. S.; Karl, T.; Harley, P. C.; Turnipseed, A.; Zheng, W.; Flocke, F. M.; Apel, E. C.; Hornbrook, R. S.; Hall, S. R.; Ullmann, K.; Guenther, A. B.; DiGangi, J. P.; Kaser, L.; Schnitzhofer, R.; Hansel, A.; Graus, M.; Nakashima, Y.; Kajii, Y. J.; Keutsch, F. N.

    2012-12-01

    As the first intermediates in the OH-initiated oxidation of hydrocarbons, peroxy radicals are central to the photochemistry of the lower atmosphere. Peroxy radical abundance and partitioning controls relative rates of radical propagation and termination in low-NOx regimes, and the coupled cycling of these molecules lies at the heart of recently-highlighted deficiencies in traditional chemical mechanisms. Using observations of hydroperoxy (HO2) and total peroxy (HO2 + RO2) radicals acquired during the summer 2010 BEACHON-ROCs campaign, we explore the processes affecting radical-mediated chemistry within a rural Ponderosa pine forest in central Colorado. Steady-state and fully-coupled 0-D modeling studies are used to provide complementary perspectives on our understanding of the radical budget in this environment. Analysis will focus on the nature and impact of unidentified radical sources and sinks and on how the composition of the peroxy radical pool modulates radical regeneration.

  8. Apparatus for hydrocarbon extraction

    Science.gov (United States)

    Bohnert, George W.; Verhulst, Galen G.

    2013-03-19

    Systems and methods for hydrocarbon extraction from hydrocarbon-containing material. Such systems and methods relate to extracting hydrocarbon from hydrocarbon-containing material employing a non-aqueous extractant. Additionally, such systems and methods relate to recovering and reusing non-aqueous extractant employed for extracting hydrocarbon from hydrocarbon-containing material.

  9. Methane Conversion to C2 Hydrocarbons Using Glow Discharge Plasma

    Institute of Scientific and Technical Information of China (English)

    HU Miao; CHEN Jierong

    2007-01-01

    The infrared emission spectra of methane, H', CH and C2 hydrocarbons in natural gas were measured. The process of methane decomposition and C2 hydrocarbons formation was investigated. The experiment showed that the time and conditions of methane decomposition and C2 hydrocarbons formation were different. Methane conversion rate increased with the increase in the current and decrease in the amount of methane. Furthermore, an examination of the reaction mechanisms revealed that free radicals played an important role in the chain reaction.

  10. Radical prostatectomy

    DEFF Research Database (Denmark)

    Fode, Mikkel; Sønksen, Jens; Jakobsen, Henrik

    2014-01-01

    OBJECTIVE: The aim of this study was to compare oncological and functional outcomes between robot-assisted laparoscopic radical prostatectomy (RALP) and retropubic radical prostatectomy (RRP) during the initial phase with RALP at a large university hospital. MATERIAL AND METHODS: Patient and tumour...... surgery and at follow-up and they were asked to report their use of pads/diapers. Potency was defined as an IIEF-5 score of at least 17 with or without phosphodiesterase-5 inhibitors. Patients using up to one pad daily for security reasons only were considered continent. Positive surgical margins, blood...... loss and functional outcomes were compared between groups. RESULTS: Overall, 453 patients were treated with RRP and 585 with RALP. On multivariate logistic regression analyses, the type of surgery did not affect surgical margins (p = 0.96) or potency at 12 months (p = 0.7). Patients who had undergone...

  11. Theoretical studies of hydrocarbon combustion chemistry. Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, H.F. III

    1994-08-01

    The author reports here the results of DZP CISD calculations for methylcarbene. Geometry, symmetry, and vibrational modes for the radical are reported for both the singlet and the triplet state. Future work will focus on the ethyl radical-oxygen interaction relevant to hydrocarbon combustion.

  12. The Reaction Kinetics of Neutral Free Radicals and Radical Ions Studied by Laser Flash Photolysis

    OpenAIRE

    Friedline, Robert Alan

    2004-01-01

    t-Butoxyl radical has been used as a chemical model for hydrogen abstractions in many enzymatic and biological systems. However, the question has arisen as to how well this reactive intermediate mimics these systems. In addressing this concern, absolute rate constants and Arrhenius parameters for hydrogen abstraction by t-butoxyl radical were measured for a broad class of substrates including amines, hydrocarbons, and alcohols using laser flash photolysis. Initially, no obvious reactivity ...

  13. Radiation Chemistry of Organic Liquids: Saturated Hydrocarbons

    CERN Document Server

    Shkrob, Ilya A; Trifunac, A D

    2004-01-01

    In this review (124 refs), several problems in radiolysis of saturated hydrocarbons are examined. Special attention is paid to the chemistry of radical cations, high-mobility holes, excited state and spur dynamics, magnetic field and spin effects, and optically detected magnetic resonance spectroscopy.

  14. Compost bioremediation of hydrocarbon-contaminated soil ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-05-16

    May 16, 2008 ... Total petroleum hydrocarbons (TPH) was reduced by 17% in the .... Identification of bacterial isolates was done by biochemical tests. Atagana 1517 ..... control the prolonged thermophilic period in two-phase olive oil mill.

  15. Molecular characterization of autochthonous hydrocarbon utilizing ...

    African Journals Online (AJOL)

    Hydrocarbon utilizing bacteria in water, soil and sediment samples collected from ... of the genomic DNA extracted from each bacterial isolate was amplified with ... that16S rRNA-gene-based techniques be used when studying the bacterial ...

  16. Rotational States of Methyl Radical Monitored by EPR Line Shape of Matrix-Isolated CH3 in CO2 and N2O Solids

    Science.gov (United States)

    Dmitriev, Yu. A.; Melnikov, V. D.; Zelenetckii, I. A.; Benetis, N. P.

    2016-12-01

    Methyl radicals, CH3, were trapped in matrices of solid CO2 and N2O by condensing the methyl along with the matrix constituents from the gas phase. The obtained EPR spectra were analyzed using EasySpin and/ or SimFonia simulation software and ab-initio computed quantum-chemistry parameters. We focus on two distinguished features of the spectra: the temperature-dependent linewidth anisotropy and the origin of the weak satellite doublets. The low-temperature spectral analysis of the satellites was based on the coupled representation of the three proton spins of CH3 and a recently obtained parameterization of the spin Hamiltonian based on one nuclear quartet and two doublets within the D3 group. These features were closely correlated to the state of rotation of the trapped radical.

  17. 野葛异黄酮糖苷的分离纯化及体外清除自由基活性的研究%Free radical scavenging capacities of isoflavonoid glycosides isolated from Pueraria Radix

    Institute of Scientific and Technical Information of China (English)

    杨华; 韩坤; 宛晓春; 方从兵

    2011-01-01

    以野葛的根样为试材,依次通过总黄酮提取、有机溶荆分级分离和柱色谱法进行分离纯化,获得4种异黄酮糖苷组分,依据核磁共振谱和质谱分析结果分别鉴定为葛根素、大豆苷、芒柄花苷和染料木苷.采用1,1-二苯基苦基苯肼(DPPH·)的有机自由基体系和超氧阴离子(O2·-)的无机活性氧自由基体系,对上述4种异黄酮糖苷化舍物的体外清除自由基能力和抗氧化活性进行测定.结果表明,4个异黄酮糖苷组分对DPPH·自由基和O2-·自由基均具有一定的清除活性,清除能力的大小与处理浓度均成正相关关系,对DPPH·自由基的清除效果由高到低依次为染料木苷、大豆苷、葛根素和芒柄花苷,抑制O2·-自由基能力由强到弱依次为葛根素、大豆苷、染料木苷和芒柄花苷.%Crude total isoflavonoids extracted from Pueraria Radix were partitioned by different organic solvents, then isolated and purified by several column chromatographic techniques and four isoflavonoid glycosides were obtained. On basis of the NMR and ESI-MS spectra, these four compounds can be identified as puerarin, daidzin, ononin, and genistin, respectively. Using an organic free radical system of 1, 1-diphenyl-2-picrylhydrazyl (DPPH · ) and an inorganic free radical system of superoxide anion free radical, the free radical scavenging capacities and antioxidant activities of these four isoflavonoid glycosides were examined in vitro. The results showed that all the four isoflavonoid glycosides were discovered to possess the scavenging capacities of the DPPH · free radical and superoxide anion radical. Meanwhile, there was a significantly positive correlation between the two free radical scavenging capacities and the treated concentrations of the four isoflavonoid glycosides. Genistin showed the highest DPPH · free radical scavenging capacity, followed by daidzin and puerarin,and ononin was the lowest among them. However, the

  18. Cool Sooting Flames of Hydrocarbons

    Institute of Scientific and Technical Information of China (English)

    Z.A. MANSUROV

    2001-01-01

    This paper presents the study of polycyclic aromatic hydrocarbons (PAH) and paramagnetism of soot particles sampled from cool sooting flames of methane and propane in a separately-heated two-sectional reactor under atmospheric pressure at the reactor temperatures of 670-1170 K. The temperature profiles of the flames were studied. The sampling was carried out with a quartz sampler and the samples were frozen with liquid nitrogen. A number of polyaromatic hydrocarbons such as pyrene, fluoranthene, coronene, anthanthrene, 1,12-benzperylene,were identified by spectroscopic methods in the extract of soot. The processes of soot formation at methaneoxygen mixture combustion in the electric field with applied potential changed from 0 to 2,2 kV at different polarity of electrodes have been investigated. It has been stated that at the electrical field application, an increase in soot particle sizes and soot yield occurs; besides, at the application of the field, speeding up the positively charged particles, the interplanar distance decreases. On the basis of investigation of soot particles paramagnetism, it was shown that initially soot particles have high carcinogetic activity and pollute the environment owing to a rapid decrease of the number of these radical centers. The reduction of the radical concentration is connected with radical recombination on soot.

  19. Isolation

    DEFF Research Database (Denmark)

    Agerholm, Frank Juul

    2011-01-01

    Næringsstoffet har i dette nummer sat fokus på ”velvære i vinterkulden”, ”indendørsaktiviteter” og ”fedtafgift”. I klummen vises det, at disse tre fokusområder, der for en umiddelbar betragtning måske nok synes noget uensartede, falder sammen i ét tema: Isolation!......Næringsstoffet har i dette nummer sat fokus på ”velvære i vinterkulden”, ”indendørsaktiviteter” og ”fedtafgift”. I klummen vises det, at disse tre fokusområder, der for en umiddelbar betragtning måske nok synes noget uensartede, falder sammen i ét tema: Isolation!...

  20. Anaerobic Microbial Degradation of Hydrocarbons: From Enzymatic Reactions to the Environment.

    Science.gov (United States)

    Rabus, Ralf; Boll, Matthias; Heider, Johann; Meckenstock, Rainer U; Buckel, Wolfgang; Einsle, Oliver; Ermler, Ulrich; Golding, Bernard T; Gunsalus, Robert P; Kroneck, Peter M H; Krüger, Martin; Lueders, Tillmann; Martins, Berta M; Musat, Florin; Richnow, Hans H; Schink, Bernhard; Seifert, Jana; Szaleniec, Maciej; Treude, Tina; Ullmann, G Matthias; Vogt, Carsten; von Bergen, Martin; Wilkes, Heinz

    2016-01-01

    Hydrocarbons are abundant in anoxic environments and pose biochemical challenges to their anaerobic degradation by microorganisms. Within the framework of the Priority Program 1319, investigations funded by the Deutsche Forschungsgemeinschaft on the anaerobic microbial degradation of hydrocarbons ranged from isolation and enrichment of hitherto unknown hydrocarbon-degrading anaerobic microorganisms, discovery of novel reactions, detailed studies of enzyme mechanisms and structures to process-oriented in situ studies. Selected highlights from this program are collected in this synopsis, with more detailed information provided by theme-focused reviews of the special topic issue on 'Anaerobic biodegradation of hydrocarbons' [this issue, pp. 1-244]. The interdisciplinary character of the program, involving microbiologists, biochemists, organic chemists and environmental scientists, is best exemplified by the studies on alkyl-/arylalkylsuccinate synthases. Here, research topics ranged from in-depth mechanistic studies of archetypical toluene-activating benzylsuccinate synthase, substrate-specific phylogenetic clustering of alkyl-/arylalkylsuccinate synthases (toluene plus xylenes, p-cymene, p-cresol, 2-methylnaphthalene, n-alkanes), stereochemical and co-metabolic insights into n-alkane-activating (methylalkyl)succinate synthases to the discovery of bacterial groups previously unknown to possess alkyl-/arylalkylsuccinate synthases by means of functional gene markers and in situ field studies enabled by state-of-the-art stable isotope probing and fractionation approaches. Other topics are Mo-cofactor-dependent dehydrogenases performing O2-independent hydroxylation of hydrocarbons and alkyl side chains (ethylbenzene, p-cymene, cholesterol, n-hexadecane), degradation of p-alkylated benzoates and toluenes, glycyl radical-bearing 4-hydroxyphenylacetate decarboxylase, novel types of carboxylation reactions (for acetophenone, acetone, and potentially also benzene and

  1. Emulsification of hydrocarbons by subsurface bacteria

    Science.gov (United States)

    Francy, D.S.; Thomas, J.M.; Raymond, R.L.; Ward, C.H.

    1991-01-01

    Biosurfactants have potential for use in enhancement of in situ biorestoration by increasing the bioavailability of contaminants. Microorganisms isolated from biostimulated, contaminated and uncontaminated zones at the site of an aviation fuel spill and hydrocarbon-degrading microorganisms isolated from sites contaminated with unleaded gasoline were examined for their abilities to emulsify petroleum hydrocarbons. Emulsifying ability was quantified by a method involving agitation and visual inspection. Biostimulated-zone microbes and hydrocarbon-degrading microorganisms were the best emulsifiers as compared to contaminated and uncontaminated zone microbes. Biostimulation (nutrient and oxygen addition) may have been the dominant factor which selected for and encouraged growth of emulsifiers; exposure to hydrocarbon was also important. Biostimulated microorganisms were better emulsifiers of aviation fuel (the contaminant hydrocarbon) than of heavier hydrocarbon to which they were not previously exposed. By measuring surface tension changes of culture broths, 11 out of 41 emulsifiers tested were identified as possible biosurfactant producers and two isolates produced large surface tension reductions indicating the high probability of biosurfactant production.Biosurfactants have potential for use in enhancement of in situ biorestoration by increasing the bioavailability of contaminants. Microorganisms isolated from biostimulated, contaminated and uncontaminated zones at the site of an aviation fuel spill and hydrocarbon-degrading microorganisms isolated from sites contaminated with unleaded gasoline were examined for their abilities to emulsify petroleum hydrocarbons. Emulsifying ability was quantified by a method involving agitation and visual inspection. Biostimulated-zone microbes and hydrocarbon-degrading microorganisms were the best emulsifiers as compared to contaminated and uncontaminated zone microbes. Biostimulation (nutrient and oxygen addition) may have been

  2. The hydrocarbon sphere

    Energy Technology Data Exchange (ETDEWEB)

    Mandev, P.

    1984-01-01

    The hydrocarbon sphere is understood to be the area in which hydrocarbon compounds are available. It is believed that the lower boundary on the hydrocarbon sphere is most probably located at a depth where the predominant temperatures aid in the destruction of hydrocarbons (300 to 400 degrees centigrade). The upper limit on the hydrocarbon sphere obviously occurs at the earth's surface, where hydrocarbons oxidize to H20 and CO2. Within these ranges, the occurrence of the hydrocarbon sphere may vary from the first few hundred meters to 15 kilometers or more. The hydrocarbon sphere is divided into the external (mantle) sphere in which the primary gas, oil and solid hydrocarbon fields are located, and the internal (metamorphic) sphere containing primarily noncommercial accumulations of hydrocarbon gases and solid carbon containing compounds (anthraxilite, shungite, graphite, etc.) based on the nature and scale of hydrocarbon compound concentrations (natural gas, oil, maltha, asphalt, asphaltite, etc.).

  3. Isolation of marine polycyclic aromatic hydrocarbon (PAH)-degrading Cycloclasticus strains from the Gulf of Mexico and comparison of their PAH degradation ability with that of Puget Sound Cycloclasticus strains

    Energy Technology Data Exchange (ETDEWEB)

    Geiselbrecht, A.D.; Hedlund, B.P.; Tichi, M.A.; Staley, J.T. [Univ. of Washington, Seattle, WA (United States). Dept. of Microbiology

    1998-12-01

    Phenanthrene- and naphthalene-degrading bacteria were isolated from four offshore and nearshore locations in the Gulf of Mexico by using a modified most-probable-number technique. The concentrations of these bacteria ranged from 10{sup 2} to 10{sup 6} cells per ml of wet surficial sediment in mildly contaminated and noncontaminated sediments. A total of 23 strains of polycyclic aromatic hydrocarbon (PAH)-degrading bacteria were obtained. Based on partial 16S ribosomal DNA sequences and Phenotypic characteristics, these 23 strains are members of the genus Cycloclasticus. Three representatives were chosen for a complete phylogenetic analysis, which confirmed the close relationship of these isolates to type strain Cycloclasticus pugetii PS-1, which was isolated from Puget Sound. PAH substrate utilization tests which included high-molecular-weight PAHs revealed that these isolates had similar, broad substrate ranges which included naphthalene, substituted naphthalenes, phenanthrene, biphenyl, anthracene, acenaphthene, and fluorene. Degradation of pyrene and fluoranthene occurred only when the strains were incubated with phenanthrene. Two distinct partial PAH dioxygenase iron sulfur protein (ISP) gene sequences were PCR amplified from Puget Sound and Gulf of Mexico Cycloclasticus strains. Phylogenetic analyses of these sequences revealed that one ISP type is related to the bph type of ISP sequences, while the other ISP type is related to the nah type of ISP sequences. The predicted ISP amino acid sequences for the Gulf of Mexico and Puget Sound strains are identical, which supports the hypothesis that these geographically separated isolates are closely related phylogentically. Cycloclasticus species appear to be numerically important and widespread PAH-degrading bacteria in both Puget Sound and the Gulf of Mexico.

  4. Ignorance Radicalized

    Directory of Open Access Journals (Sweden)

    Gergo Somodi

    2009-12-01

    Full Text Available The aim of this paper is twofold. I criticize Michael Devitt's linguistic---as opposed to Chomsky's psychological---conception of linguistics on the one hand, and I modify his related view on linguistic intuitions on the other. I argue that Devitt's argument for the linguistic conception is in conflict with one of the main theses of that very conception, according to which linguistics should be about physical sentence tokens of a given language rather than about the psychologically real competence of native speakers. The basis of this conflict is that Devitt's view on language, as I will show, inherits too much from the criticized Chomskian view. This is also the basis of Devitt's strange claim that it is the linguist, and not the ordinary speaker, whose linguistic intuition should have an evidential role in linguistics. I will argue for the opposite by sketching a view on language that is more appropriate to the linguistic conception. That is, in criticizing Devitt, I am not defending the Chomskian approach. My aim is to radicalize Devitt's claims.

  5. Transferable Tight-Binding Potential for Hydrocarbons

    CERN Document Server

    Wang, Y; Wang, Yang

    1994-01-01

    A transferable tight-binding potential has been constructed for heteroatomic systems containing carbon and hydrogen. The electronic degree of freedom is treated explicitly in this potential using a small set of transferable parameters which has been fitted to small hydrocarbons and radicals. Transferability to other higher hydrocarbons were tested by comparison with ab initio calculations and experimental data. The potential can correctly reproduce changes in the electronic configuration as a function of the local bonding geometry around each carbon atom. This type of potential is well suited for computer simulations of covalently bonded systems in both gas-phase and condensed-phase systems.

  6. Terrorism, radicalization, and de-radicalization

    NARCIS (Netherlands)

    Doosje, B.; Moghaddam, F.M.; Kruglanski, A.W.; de Wolf, A.; Mann, L.; Feddes, A.R.

    2016-01-01

    In this article, we review the literature and present a model of radicalization and de-radicalization. In this model, we distinguish three phases in radicalization: (1) a sensitivity phase, (2) a group membership phase and (3) an action phase. We describe the micro-level, meso-level and macro-level

  7. Methane Decomposition and C2 Hydrocarbon Formation under the Condition of DC Discharge Plasma

    Institute of Scientific and Technical Information of China (English)

    Jianxun He; Miao Hu; Zhiguo Lu

    2004-01-01

    The infrared emission spectra of methane, H, CH and C2 hydrocarbons in natural gas were measured. The processes of methane decomposition and formation of C2 hydrocarbons were studied. The experiment shows that methane decomposition can be divided into three periods as the reaction proceeds.In the first period, a large number of free radicals were formed. While in the last period, the formation of C2 hydrocarbons and the decrease of free radicals were observed. The time and conditions of methane decomposition and formation of C2 hydrocarbons are different.

  8. Isolation of antioxidative secoiridoids from olive wood (Olea europaea L.) guided by on-line HPLC-DAD-radical scavenging detection

    NARCIS (Netherlands)

    Pérez-Bonilla, M.; Salido, S.; Beek, van T.A.; Waard, de P.; Linares-Palomino, P.J.; Sánchez, A.; Altarejos, J.

    2011-01-01

    The woody portion of olive tree pruning is a source of natural antioxidants of potential interest for the food industry. This work deals with the isolation and identification of further antioxidants present in an ethyl acetate extract of olive (Olea europaea L.) wood. Thus, a new secoiridoid, oleuro

  9. Isolation of antioxidative secoiridoids from olive wood (Olea europaea L.) guided by on-line HPLC-DAD-radical scavenging detection

    NARCIS (Netherlands)

    Pérez-Bonilla, M.; Salido, S.; Beek, van T.A.; Waard, de P.; Linares-Palomino, P.J.; Sánchez, A.; Altarejos, J.

    2011-01-01

    The woody portion of olive tree pruning is a source of natural antioxidants of potential interest for the food industry. This work deals with the isolation and identification of further antioxidants present in an ethyl acetate extract of olive (Olea europaea L.) wood. Thus, a new secoiridoid, oleuro

  10. Direct determination of atom and radical concentrations in thermal reactions of hydrocarbons and other gases. Progress report, June 1, 1976--December 31, 1976. [Design and construction of shock tube for measuring reaction products

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, G. B.; Lifshitz, A.

    1977-01-01

    A shock tube has been designed and constructed for the purpose of measuring atom and radical concentrations in thermal reactions of gases. Design features which lead to extremely low levels of contamination include a turbomolecular vacuum pump, metal O-rings in the test section, stainless steel bellows-seal valves, and provision for baking all components to 150 to 200/sup 0/C. The optical system consists of a microwave discharge lamp through which various gas mixtures may flow at low pressures, MgF/sub 2/ windows on the shock tube, and a photodetector. For initial measurements of H and O atoms, a solar blind photomultiplier sensitive at 110 to 140 nm is being used. During the balance of the contract year (January 1--May 31) testing of the shock tube will be completed, the light source will be characterized, and measurements of H atom concentrations in shock-heated mixtures of CH/sub 4/--Ar and H/sub 2/--O/sub 2/--Ar will be started.

  11. Raman characteristics of hydrocarbon and hydrocarbon inclusions

    Institute of Scientific and Technical Information of China (English)

    ZHANG Nai; TIAN ZuoJi; LENG YingYing; WANG HuiTong; SONG FuQing; MENG JianHua

    2007-01-01

    The Raman spectrograms of hydrocarbon standard samples show that: (1) the Raman spectrogram of normal paraffin has very strong peaks of methyl and methylene (from 2700 cm-1 to 2970 cm-1); (2)branch methyl has the particular peak of 748 cm-1±; (3) six cyclic has the particular peak of 804 cm-1±; (4)phenyl has two particular peaks of 988 cm-1± and 3058 cm-1± and the 988 cm-1± peak is stronger than the 3058 cm-1± peak; and (5) hexene has three alkenyl spectrum peaks of 1294 cm-1±, 1635 cm-1± and 2996 cm-1±, with the 1635 cm-1± peak being the strongest, showing that the number of carbon in hydrocarbon does not affect its Raman spectrogram, and the hydrocarbon molecular structure and base groups affect its Raman spectrogram, the same hydrocarbons (such as normal paraffin) have the same Raman spectrogram; the types (such as CH4, C2H6, C3H8) and the content of hydrocarbon in oil inclusions are not estimated by their characteristic Raman peaks. According to the Raman spectrograms of hydrocarbon compositions, the Raman spectrogram of hydrocarbon inclusion can be divided into five types: saturated hydrocarbon Raman spectrogram, fluoresce Raman spectrogram, saturated hydrocarbon bitumen Raman spectrogram, bitumen Raman spectrogram, and ethane Raman spectrogram.And according to the characteristics of Raman spectrogram, hydrocarbon inclusions can be divided into five types: saturated hydrocarbon inclusion, less saturated hydrocarbon (oil or gas) inclusion,saturated hydrocarbon bitumen inclusion, bitumen inclusion, and methane water inclusion.

  12. Raman characteristics of hydrocarbon and hydrocarbon inclusions

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The Raman spectrograms of hydrocarbon standard samples show that: (1) the Raman spectrogram of normal paraffin has very strong peaks of methyl and methylene (from 2700 cm-1 to 2970 cm-1); (2) branch methyl has the particular peak of 748 cm-1±; (3) six cyclic has the particular peak of 804 cm-1±; (4) phenyl has two particular peaks of 988 cm-1± and 3058 cm-1± and the 988 cm-1± peak is stronger than the 3058 cm-1± peak; and (5) hexene has three alkenyl spectrum peaks of 1294 cm-1±, 1635 cm-1± and 2996 cm-1±, with the 1635 cm-1± peak being the strongest, showing that the number of carbon in hy-drocarbon does not affect its Raman spectrogram, and the hydrocarbon molecular structure and base groups affect its Raman spectrogram, the same hydrocarbons (such as normal paraffin) have the same Raman spectrogram; the types (such as CH4, C2H6, C3H8) and the content of hydrocarbon in oil inclu-sions are not estimated by their characteristic Raman peaks. According to the Raman spectrograms of hydrocarbon compositions, the Raman spectrogram of hydrocarbon inclusion can be divided into five types: saturated hydrocarbon Raman spectrogram, fluoresce Raman spectrogram, saturated hydro-carbon bitumen Raman spectrogram, bitumen Raman spectrogram, and ethane Raman spectrogram. And according to the characteristics of Raman spectrogram, hydrocarbon inclusions can be divided into five types: saturated hydrocarbon inclusion, less saturated hydrocarbon (oil or gas) inclusion, saturated hydrocarbon bitumen inclusion, bitumen inclusion, and methane water inclusion.

  13. Isolation and characterization of engine oil degrading indigenous ...

    African Journals Online (AJOL)

    AJB SERVER

    2007-01-04

    Jan 4, 2007 ... bacterial isolates were responsible for the oil degradation. All isolates were ... and water soluble) hydrocarbons that would be more of a concern for ... Mechanical method to reduce hydrocarbon pollution is expensive and time ...

  14. Draft Genome Sequence of Geobacillus subterraneus Strain K, a Hydrocarbon-Oxidizing Thermophilic Bacterium Isolated from a Petroleum Reservoir in Kazakhstan

    Science.gov (United States)

    Poltaraus, Andrey B.; Sokolova, Diyana S.; Grouzdev, Denis S.; Ivanov, Timophey M.; Malakho, Sophia G.; Korshunova, Alena V.; Tourova, Tatiyana P.

    2016-01-01

    The draft genome sequence of Geobacillus subterraneus strain K, a thermophilic aerobic oil-oxidizing bacterium isolated from production water of the Uzen high-temperature oil field in Kazakhstan, is presented here. The genome is annotated for elucidation of the genomic and phenotypic diversity of thermophilic alkane-oxidizing bacteria. PMID:27491973

  15. Biodegradation of polycyclic aromatic hydrocarbons by an acidophilic Stenotrophomonas maltophilia strain AJH1 isolated from a mineral mining site in Saudi Arabia.

    Science.gov (United States)

    Arulazhagan, P; Al-Shekri, K; Huda, Q; Godon, J J; Basahi, J M; Jeyakumar, D

    2017-01-01

    The present study aims at analyzing the degradation of polycyclic aromatic hydrocarbons (PAHs) at acidic conditions (pH = 2) by acidophilic Stenotrophomonas maltophilia strain AJH1 (KU664513). The strain AJH1 was obtained from an enrichment culture obtained from soil samples of mining area in the presence of PAH as sole sources of carbon and energy. Strain AJH1was able to degrade low (anthracene, phenanthrene, naphthalene, fluorene) and high (pyrene, benzo(e)pyrene and benzo(k)fluoranthene) molecular weight PAHs in acidophilic mineral salt medium at pH 2, with removal rates of up to 95% (LMW PAH) and 80% (HMW PAH), respectively. In addition, strain AJH1 treated petroleum wastewater with 89 ± 1.1% COD removal under acidic condition (pH 2) in a continuously stirred reactor. Acidophilic S. maltophilia strain AJH1, hence holds the promise as an effective degrader for biological treatment of PAHs contaminated wastewater at acidic pH.

  16. Thermal simulation experiments of saturated hydrocarbons with calcium sulfate and element sulfur: Implications on origin of H2S

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Temperature-programmed simulation experiments of saturated hydrocarbons with calcium sulfate and element sulfur were compared in this study. Based on the variation analysis of the yields and evolvement features of gaseous hydrocarbon (C1-C5) and inorganic gaseous CO2, H2 and H2S, the reaction mechanisms were analyzed and discussed. In the calcium sulfate-saturated hydrocarbon system, H2S was produced by a small quantity, which indicates this reaction belongs to the low-degreed thermal sulfate reduction (TSR) and is featured of self-pyrolysis. In the sulfur-saturated hydrocarbon system, the heated sulfur becomes sulfur radical, which has strong catalysis capability and can fasten the cracking of C―H bond in the alkyl group in the saturated hydrocarbons. As a result, the cracking of C―H bond leads to the yields enhancement of CO2 and H2, and at the same time, H2S was produced since the cracked hydrogen can be instantly combined with sulfur radical. Therefore, this reaction in the sulfur-hydrocarbon system belongs to the catalysis of sulfur radical. Furthermore, the promoted pyrolysis effects of C6+ hydrocarbons by sulfur radical in the low-temperature stage in the sul- fur-hydrocarbon system, together with the consumption effects of gaseous hydrocarbon in the high-temperature stage in the calcium-hydrocarbon system, result in the crossed phenomenon of the gaseous hydrocarbon yields curves.

  17. Bioremediation of polycyclic aromatic hydrocarbon (PAH) compounds: (acenaphthene and fluorene) in water using indigenous bacterial species isolated from the Diep and Plankenburg rivers, Western Cape, South Africa.

    Science.gov (United States)

    Alegbeleye, Oluwadara Oluwaseun; Opeolu, Beatrice Olutoyin; Jackson, Vanessa

    2016-11-24

    This study was conducted to investigate the occurrence of PAH degrading microorganisms in two river systems in the Western Cape, South Africa and their ability to degrade two PAH compounds: acenaphthene and fluorene. A total of 19 bacterial isolates were obtained from the Diep and Plankenburg rivers among which four were identified as acenaphthene and fluorene degrading isolates. In simulated batch scale experiments, the optimum temperature for efficient degradation of both compounds was determined in a shaking incubator after 14 days, testing at 25°C, 30°C, 35°C, 37°C, 38°C, 40°C and 45°C followed by experiments in a Stirred Tank Bioreactor using optimum temperature profiles from the batch experiment results. All experiments were run without the addition of supplements, bulking agents, biosurfactants or any other form of biostimulants. Results showed that Raoultella ornithinolytica, Serratia marcescens, Bacillus megaterium and Aeromonas hydrophila efficiently degraded both compounds at 37°C, 37°C, 30°C and 35°C respectively. The degradation of fluorene was more efficient and rapid compared to that of acenaphthene and degradation at Stirred Tank Bioreactor scale was more efficient for all treatments. Raoultella ornithinolytica, Serratia marcescens, Bacillus megaterium and Aeromonas hydrophila degraded a mean total of 98.60%, 95.70%, 90.20% and 99.90% acenaphthene, respectively and 99.90%, 97.90%, 98.40% and 99.50% fluorene, respectively. The PAH degrading microorganisms isolated during this study significantly reduced the concentrations of acenaphthene and fluorene and may be used on a larger, commercial scale to bioremediate PAH contaminated river systems.

  18. Methylobacterium populi VP2: plant growth-promoting bacterium isolated from a highly polluted environment for polycyclic aromatic hydrocarbon (PAH) biodegradation.

    Science.gov (United States)

    Ventorino, Valeria; Sannino, Filomena; Piccolo, Alessandro; Cafaro, Valeria; Carotenuto, Rita; Pepe, Olimpia

    2014-01-01

    The use of microorganisms to accelerate the natural detoxification processes of toxic substances in the soil represents an alternative ecofriendly and low-cost method of environmental remediation compared to harmful incineration and chemical treatments. Fourteen strains able to grow on minimal selective medium with a complex mixture of different classes of xenobiotic compounds as the sole carbon source were isolated from the soil of the ex-industrial site ACNA (Aziende Chimiche Nazionali Associate) in Cengio (Savona, Italy). The best putative degrading isolate, Methylobacterium populi VP2, was identified using a polyphasic approach on the basis of its phenotypic, biochemical, and molecular characterisation. Moreover, this strain also showed multiple plant growth promotion activities: it was able to produce indole-3-acetic acid (IAA) and siderophores, solubilise phosphate, and produce a biofilm in the presence of phenanthrene and alleviate phenanthrene stress in tomato seeds. This is the first report on the simultaneous occurrence of the PAH-degrading ability by Methylobacterium populi and its multiple plant growth-promoting activities. Therefore, the selected indigenous strain, which is naturally present in highly contaminated soils, is good candidate for plant growth promotion and is capable of biodegrading xenobiotic organic compounds to remediate contaminated soil alone and/or soil associated with plants.

  19. Methylobacterium populi VP2: Plant Growth-Promoting Bacterium Isolated from a Highly Polluted Environment for Polycyclic Aromatic Hydrocarbon (PAH Biodegradation

    Directory of Open Access Journals (Sweden)

    Valeria Ventorino

    2014-01-01

    Full Text Available The use of microorganisms to accelerate the natural detoxification processes of toxic substances in the soil represents an alternative ecofriendly and low-cost method of environmental remediation compared to harmful incineration and chemical treatments. Fourteen strains able to grow on minimal selective medium with a complex mixture of different classes of xenobiotic compounds as the sole carbon source were isolated from the soil of the ex-industrial site ACNA (Aziende Chimiche Nazionali Associate in Cengio (Savona, Italy. The best putative degrading isolate, Methylobacterium populi VP2, was identified using a polyphasic approach on the basis of its phenotypic, biochemical, and molecular characterisation. Moreover, this strain also showed multiple plant growth promotion activities: it was able to produce indole-3-acetic acid (IAA and siderophores, solubilise phosphate, and produce a biofilm in the presence of phenanthrene and alleviate phenanthrene stress in tomato seeds. This is the first report on the simultaneous occurrence of the PAH-degrading ability by Methylobacterium populi and its multiple plant growth-promoting activities. Therefore, the selected indigenous strain, which is naturally present in highly contaminated soils, is good candidate for plant growth promotion and is capable of biodegrading xenobiotic organic compounds to remediate contaminated soil alone and/or soil associated with plants.

  20. A radical approach to radical innovation

    NARCIS (Netherlands)

    D. Deichmann (Dirk); J.C.M. van den Ende (Jan)

    2014-01-01

    textabstractInnovation pays. Amazon, Apple, Facebook, Google – nearly every one of today’s most successful companies has a talent for developing radical new ideas. But how best to encourage radical initiative taking from employees, and does their previous success or failure at it play a role?

  1. A radical approach to radical innovation

    OpenAIRE

    Deichmann, Dirk; van der Ende, Jan

    2014-01-01

    textabstractInnovation pays. Amazon, Apple, Facebook, Google – nearly every one of today’s most successful companies has a talent for developing radical new ideas. But how best to encourage radical initiative taking from employees, and does their previous success or failure at it play a role?

  2. Genome sequencing and annotation of Geobacillus sp. 1017, a hydrocarbon-oxidizing thermophilic bacterium isolated from a heavy oil reservoir (China

    Directory of Open Access Journals (Sweden)

    Vitaly V. Kadnikov

    2017-03-01

    Full Text Available The draft genome sequence of Geobacillus sp. strain 1017, a thermophilic aerobic oil-oxidizing bacterium isolated from formation water of the Dagang high-temperature oilfield, China, is presented here. The genome comprised 3.6 Mbp, with the G + C content of 51.74%. The strain had a number of genes responsible for numerous metabolic and transport systems, exopolysaccharide biosynthesis, and decomposition of sugars and aromatic compounds, as well as the genes related to resistance to metals and metalloids. The genome sequence is available at DDBJ/EMBL/GenBank under the accession no MQMG00000000. This genome is annotated for elucidation of the genomic and phenotypic diversity of new thermophilic alkane-oxidizing bacteria of the genus Geobacillus.

  3. Free-radicals aided combustion with scramjet applications

    Science.gov (United States)

    Yang, Yongsheng; Kumar, Ramohalli

    1992-01-01

    Theoretical and experimental investigations aimed at altering 'nature-prescribed' combustion rates in hydrogen/hydrocarbon reactions with (enriched) air are presented. The intent is to anchor flame zones in supersonic streams, and to ensure proper and controllable complete combustion in scramjets. The diagnostics are nonintrusive through IR thermograms and acoustic emissions in the control and free-radicals altered flame zones.

  4. Evidence for strong, widespread chlorine radical chemistry associated with pollution outflow from continental Asia

    Science.gov (United States)

    Baker, Angela K.; Sauvage, Carina; Thorenz, Ute R.; van Velthoven, Peter; Oram, David E.; Zahn, Andreas; Brenninkmeijer, Carl A. M.; Williams, Jonathan

    2016-11-01

    The chlorine radical is a potent atmospheric oxidant, capable of perturbing tropospheric oxidative cycles normally controlled by the hydroxyl radical. Significantly faster reaction rates allow chlorine radicals to expedite oxidation of hydrocarbons, including methane, and in polluted environments, to enhance ozone production. Here we present evidence, from the CARIBIC airborne dataset, for extensive chlorine radical chemistry associated with Asian pollution outflow, from airborne observations made over the Malaysian Peninsula in winter. This region is known for persistent convection that regularly delivers surface air to higher altitudes and serves as a major transport pathway into the stratosphere. Oxidant ratios inferred from hydrocarbon relationships show that chlorine radicals were regionally more important than hydroxyl radicals for alkane oxidation and were also important for methane and alkene oxidation (>10%). Our observations reveal pollution-related chlorine chemistry that is both widespread and recurrent, and has implications for tropospheric oxidizing capacity, stratospheric composition and ozone chemistry.

  5. Biodegradation of polycyclic aromatic hydrocarbons by a bacterial consortium enriched from mangrove sediments

    National Research Council Canada - National Science Library

    Shahriari Moghadam, Mohsen; Ebrahimipour, Gholamhossein; Abtahi, Behrooz; Ghassempour, Alireza; Hashtroudi, Mehri Seyed

    2014-01-01

    Polycyclic aromatic hydrocarbons (PAHs) biodegradation in contaminated sediment is an attractive remediation technique and its success depends on the optimal condition for the PAH-degrading isolates...

  6. Radical theory of rings

    CERN Document Server

    Gardner, JW

    2003-01-01

    Radical Theory of Rings distills the most noteworthy present-day theoretical topics, gives a unified account of the classical structure theorems for rings, and deepens understanding of key aspects of ring theory via ring and radical constructions. Assimilating radical theory's evolution in the decades since the last major work on rings and radicals was published, the authors deal with some distinctive features of the radical theory of nonassociative rings, associative rings with involution, and near-rings. Written in clear algebraic terms by globally acknowledged authorities, the presentation

  7. [Lavoisier and radicals].

    Science.gov (United States)

    Lafont, Olivier

    2007-01-01

    Lavoisier and his co-workers (Guyton de Morveau, Bertholet, Fourcroy) considered that acids were constituted of oxygen and of something else that they called radicals. These radicals were known in some cases, i.e. nitrogen for nitrous acid, carbon for carbonic acid, phosphorus for phosphoric acid. In the case of sulfur, the sulfuric radical could be associated with different quantities of oxigen leading to sulfuric or sulfurous acids. In other cases radicals remained unknown at the time i.e. muriatic radical for muriatic acid, or benzoyl radical for benzoic acid. It is interesting to notice that Lavoisier evoked the case of compound radicals constituted of different substances such as carbon and hydrogen.

  8. Growth of fungi on volatile aromatic hydrocarbons

    NARCIS (Netherlands)

    Prenafeta Boldú, F.X.

    2002-01-01

    The present study aimed the better understanding of the catabolism of monoaromatic hydrocarbons by fungi. This knowledge can be used to enhance the biodegradation of BTEX pollutants. Fungi with the capacity of using toluene as the sole source of carbon and energy were isolated by enriching environme

  9. Crossed beam reaction of cyano radicals with hydrocarbon molecules. I. Chemical dynamics of cyanobenzene (C6H5CN; X 1A1) and perdeutero cyanobenzene (C6D5CN; X 1A1) formation from reaction of CN(X 2Σ+) with benzene C6H6(X 1A1g), and d6-benzene C6D6(X 1A1g)

    Science.gov (United States)

    Balucani, N.; Asvany, O.; Chang, A. H. H.; Lin, S. H.; Lee, Y. T.; Kaiser, R. I.; Bettinger, H. F.; Schleyer, P. v. R.; Schaefer, H. F.

    1999-10-01

    The chemical reaction dynamics to form cyanobenzene C6H5CN(X 1A1), and perdeutero cyanobenzene C6D5CN(X 1A1) via the neutral-neutral reaction of the cyano radical CN(X 2Σ+), with benzene C6H6(X 1A1g) and perdeutero benzene C6D6(X 1A1g), were investigated in crossed molecular beam experiments at collision energies between 19.5 and 34.4 kJ mol-1. The laboratory angular distributions and time-of-flight spectra of the products were recorded at mass to charge ratios m/e=103-98 and 108-98, respectively. Forward-convolution fitting of our experimental data together with electronic structure calculations (B3LYP/6-311+G**) indicate that the reaction is without entrance barrier and governed by an initial attack of the CN radical on the carbon side to the aromatic π electron density of the benzene molecule to form a Cs symmetric C6H6CN(C6D6CN) complex. At all collision energies, the center-of-mass angular distributions are forward-backward symmetric and peak at π/2. This shape documents that the decomposing intermediate has a lifetime longer than its rotational period. The H/D atom is emitted almost perpendicular to the C6H5CN plane, giving preferentially sideways scattering. This experimental finding can be rationalized in light of the electronic structure calculations depicting a H-C-C angle of 101.2° in the exit transition state. The latter is found to be tight and located about 32.8 kJ mol-1 above the products. Our experimentally determined reaction exothermicity of 80-95 kJ mol-1 is in good agreement with the theoretically calculated one of 94.6 kJ mol-1. Neither the C6H6CN adduct nor the stable iso cyanobenzene isomer C6H5NC were found to contribute to the scattering signal. The experimental identification of cyanobenzene gives a strong background for the title reaction to be included with more confidence in reaction networks modeling the chemistry in dark, molecular clouds, outflow of dying carbon stars, hot molecular cores, as well as the atmosphere of hydrocarbon

  10. Initial microbial degradation of polycyclic aromatic hydrocarbons

    Directory of Open Access Journals (Sweden)

    Milić Jelena

    2016-01-01

    Full Text Available The group of polycyclic aromatic hydrocarbons (PAHs are very hazardous environmental pollutants because of their mutagenic, carcinogenic and toxic effects on living systems. The aim of this study was to examine and compare the ability and efficiency of selected bacterial isolates obtained from oil-contaminated areas to biodegrade PAHs. The potential of the bacteria to biodegrade various aromatic hydrocarbons was assessed using the 2,6-dichlorophenol-indophenol assay. Further biodegradation of PAHs was monitored by gravimetric and gas-chromatographic analysis. Among the eight bacterial isolates, identified on the basis of 16S rDNA sequences, two isolates, Planomicrobium sp. RNP01 and Rhodococcus sp. RNP05, had the ability to grow on and utilize almost all examined hydrocarbons. Those isolates were further examined for biodegradation of phenanthrene and pyrene, as single substrates, and as a mixture, in vitro for ten days. After three days, both isolates degraded a significant amount phenanthrene, which has a simpler chemical structure than pyrene. Planomicrobium sp.RNP01 commenced biodegradation of pyrene in the PAH mixture only after it had almost completly degraded phenanthrene. The isolated and characterized bacteria, Planomicrobium sp. RNP01 and Rhodococcus sp. RNP05, have shown high bioremediation potential and are likely candidates to be used for degradation of highly toxic PAHs in contaminated areas. [Projekat Ministarstva nauke Republike Srbije, br. III43004

  11. Contemporary Radical Prostatectomy

    Directory of Open Access Journals (Sweden)

    Qiang Fu

    2011-01-01

    Full Text Available Purpose. Patients diagnosed with clinically localized prostate cancer have more surgical treatment options than in the past. This paper focuses on the procedures' oncological or functional outcomes and perioperative morbidities of radical retropubic prostatectomy, radical perineal prostatectomy, and robotic-assisted laparoscopic radical prostatectomy. Materials and Methods. A MEDLINE/PubMed search of the literature on radical prostatectomy and other new management options was performed. Results. Compared to the open procedures, robotic-assisted radical prostatectomy has no confirmed significant difference in most literatures besides less blood loss and blood transfusion. Nerve sparing is a safe means of preserving potency on well-selected patients undergoing radical prostatectomy. Positive surgical margin rates of radical prostatectomy affect the recurrence and survival of prostate cancer. The urinary and sexual function outcomes have been vastly improved. Neoadjuvant treatment only affects the rate of positive surgical margin. Adjuvant therapy can delay and reduce the risk of recurrence and improve the survival of the high risk prostate cancer. Conclusions. For the majority of patients with organ-confined prostate cancer, radical prostatectomy remains a most effective approach. Radical perineal prostatectomy remains a viable approach for patients with morbid obesity, prior pelvic surgery, or prior pelvic radiation. Robot-assisted laparoscopic prostatectomy (RALP has become popular among surgeons but has not yet become the firmly established standard of care. Long-term data have confirmed the efficacy of radical retropubic prostatectomy with disease control rates and cancer-specific survival rates.

  12. Observation of the widetilde{A} - widetilde{X} Electronic Transition of C_6-C_{10} Peroxy Radicals

    Science.gov (United States)

    Kline, Neal D.; Miller, Terry A.

    2013-06-01

    The widetilde{A} - widetilde{X} electronic transition of straight chain C_6-C_{10} peroxy radicals and of the isooctyl peroxy radical have been observed and analyzed. These larger hydrocarbons are significant constituents of gasoline with heptane (octane rating of 0) and isooctane (2,2,4 trimethylpentane; octane rating of 100) being the two standards on which the octane rating scale is based. Spectra were obtained by abstraction of hydrogen atoms from the hydrocarbons using chlorine atoms. The origin and -OO stretch regions of the straight chain peroxy radicals are easily identifiable. It is relatively easy to uniquely identify hexyl peroxy, but differentiation among the spectra of the larger straight chain peroxy radicals has proven difficult. However, isooctyl peroxy is easily distinguished and the observation of the tertiary peroxy radical along with the primary and/or secondary peroxy radical(s) is discussed.

  13. Hydrocarbon degradation by Antarctic coastal bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Cavanagh, J.E. [University of Tasmania, Hobart (Australia). Antarctic Cooperative Research Centre; CSIRO Div of Marine Research, Hobart (Australia); University of Tasmania, Hobart (Australia). Dept. of Agricultural Science; Nichols, P.D. [University of Tasmania, Hobart (Australia). Antarctic Cooperative Research Centre; CSIRO Div. of Marine Research, Hobart (Australia); Franzmann, P.D. [CSIRO Land and Water, Wembley (Australia); McMeekin, T.A. [University of Tasmania, Hobart (Australia). Antarctic Cooperative Research Centre

    1999-07-01

    Bacterial cultures obtained through selective enrichment of beach sand collected 60 days and one year after treatment of sites in a pilot oil spill trial conducted at Airport Beach, Vestfold Hills, East Antarctica, were examined for the ability to degrade n-alkanes and phenanthrene. The effects of different hydrocarbon mixtures (Special Antarctic Blend [SAB] and BP-Visco), (fish oil [orange roughy]) and inoculation of replicate sites with water from Organic Lake, (previously shown to contain hydrocarbon-degrading bacteria) on the indigenous microbial population, were examined. Of the cultures obtained, those from sites treated with SAB and BP-Visco degraded n-alkanes most consistently and typically to the greatest extent. Two mixed cultures obtained from samples collected at 60 days and two isolates obtained from these cultures extensively degraded phenanthrene. 1-Hydroxy-naphthoic acid formed the major phenanthrene metabolite. Lower levels of salicyclic acid, 1-naphthol, 1,4-naphthaquinone and phenanthrene 9-10 dihydrodiol were detected in extracts of phenanthrene grown cultures. This study shows that under laboratory conditions indigenous Antarctica bacteria can degrade n-alkanes and the more recalcitrant polycyclic aromatic hydrocarbon, phenanthrene. The enrichment of hydrocarbon degrading microorganisms in Antarctic ecosystems exposed to hydrocarbons, is relevant for the long term fate of hydrocarbon spills in this environment. (author)

  14. Methods for determining the efficacy of radical-trapping antioxidants.

    Science.gov (United States)

    Li, Bo; Pratt, Derek A

    2015-05-01

    Hydrocarbon autoxidation is the free radical chain reaction primarily responsible for the oxidative degradation of organic materials, including those that make up cells, tissues, and organs. The identification of compounds that slow this process (antioxidants) and the quantitation of their efficacies have long been goals of academic and industrial researchers. Antioxidants are generally divided into two types: preventive and radical-trapping (also commonly referred to as chain-breaking). Preventive antioxidants slow the rate of initiation of autoxidation, whereas radical-trapping antioxidants slow the rate of propagation by reacting with chain-propagating peroxyl radicals. The purpose of this review is to provide a comprehensive overview of different approaches to measure the kinetics of the reactions of radical-trapping antioxidants with peroxyl radicals, and their use to study the inhibition of hydrocarbon (lipid) autoxidation in homogeneous solution, as well as biphasic media (lipid bilayers) and cell culture. Direct and indirect approaches are presented and advantages and disadvantages of each are discussed in order to facilitate method selection for investigators seeking to address particular questions in this immensely popular field. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. A methylflavan with free radical scavenging properties from Pancratium littorale.

    Science.gov (United States)

    Ioset, J R; Marston, A; Gupta, M P; Hostettmann, K

    2001-01-01

    The isolation of 7,4'-dihydroxy-8-methylflavan (1) from the dichloromethane extract of Pancratium littorale stem was guided by an assay for free radical scavenging activity towards the 2,2-diphenyl-1-picryl-hydrazyl radical (DPPH). The structure of 1 was established by spectrometric methods including UV, EI mass spectrometry, 1H and 13C-NMR. The free radical scavenging properties of 1 were quantified in solution using spectrophotometry.

  16. Covalently Bound Nitroxyl Radicals in an Organic Framework

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Barbara K.; Braunecker, Wade A.; Bobela, David C.; Nanayakkara, Sanjini U.; Reid, Obadiah G.; Johnson, Justin C.

    2016-09-15

    A series of covalent organic framework (COF) structures is synthesized that possesses a tunable density of covalently bound nitroxyl radicals within the COF pores. The highest density of organic radicals produces an electron paramagnetic resonance (EPR) signal that suggests the majority of radicals strongly interact with other radicals, whereas for smaller loadings the EPR signals indicate the radicals are primarily isolated but with restricted motion. The dielectric loss as determined from microwave absorption of the framework structures compared with an amorphous control suggests that free motion of the radicals is inhibited when more than 25% of available sites are occupied. The ability to tune the mode of radical interactions and the subsequent effect on redox, electrical, and optical characteristics in a porous framework may lead to a class of structures with properties ideal for photoelectrochemistry or energy storage.

  17. Thermal simulation experiments of saturated hydro-carbons with calcium sulfate and element sulfur: Implications on origin of H_2S

    Institute of Scientific and Technical Information of China (English)

    CHEN TengShui; HE Qin; LU Hong; PENG PingAn; LIU JinZhong

    2009-01-01

    Temperature-programmed simulation experiments of saturated hydrocarbons with calcium sulfate and element sulfur were compared in this study. Based on the variation analysis of the yields and evolve-ment features of gaseous hydrocarbon (C_1-C_5) and inorganic gaseous CO_2, H_2 and H_2S, the reaction mechanisms were analyzed and discussed. In the calcium sulfate-saturated hydrocarbon system, H2S was produced by a small quantity, which indicates this reaction belongs to the low-degreed thermal sulfate reduction (TSR) and is featured of self-pyrolysis. In the sulfur-saturated hydrocarbon system, the heated sulfur becomes sulfur radical, which has strong catalysis capability and can fasten the cracking of C-H bond in the alkyl group in the saturated hydrocarbons. As a result, the cracking of C-H bond leads to the yields enhancement of CO_2 and H_2, and at the same time, H2S was produced since the cracked hydrogen can be instantly combined with sulfur radical. Therefore, this reaction in the sulfur-hydrocarbon system belongs to the catalysis of sulfur radical. Furthermore, the promoted pyro-lysis effects of C_(6+). hydrocarbons by sulfur radical in the low-temperature stage in the sul-fur-hydrocarbon system, together with the consumption effects of gaseous hydrocarbon in the high-temperature stage in the calcium-hydrocarbon system, result in the crossed phenomenon of the gaseous hydrocarbon yields curves.

  18. Forgotten Radicals in Biology

    OpenAIRE

    2008-01-01

    Redox reactions play key roles in intra- and inter-cellular signaling, and in adaptative processes of tissues towards stress. Among the major free radicals with essential functions in cells are reactive oxygen species (ROS) including superoxide anion (O2 •-), hydroxyl radical (•OH) and reactive nitrogen species (RNS) such as nitric oxide (•NO). In this article, we review the forgotten and new radicals with potential relevance to cardiovascular pathophysiology. Approximately 0.3% of O2 •- pres...

  19. Spectroscopy of free radicals and radical containing entrance-channel complexes in superfluid helium nano-droplets

    CERN Document Server

    K"upper, J; K\\"upper, Jochen; Merritt, Jeremy M.

    2006-01-01

    The spectroscopy of free radicals and radical containing entrance-channel complexes embedded in superfluid helium nano-droplets is reviewed. The collection of dopants inside individual droplets in the beam represents a micro-canonical ensemble, and as such each droplet may be considered an isolated cryo-reactor. The unique properties of the droplets, namely their low temperature (0.4 K) and fast cooling rates ($\\sim10^{16}$ K s$^{-1}$) provides novel opportunities for the formation and high-resolution studies of molecular complexes containing one or more free radicals. The production methods of radicals are discussed in light of their applicability for embedding the radicals in helium droplets. The spectroscopic studies performed to date on molecular radicals and on entrance / exit-channel complexes of radicals with stable molecules are detailed. The observed complexes provide new information on the potential energy surfaces of several fundamental chemical reactions and on the intermolecular interactions pres...

  20. Oxygenated Derivatives of Hydrocarbons

    Science.gov (United States)

    For the book entitled “Insect Hydrocarbons: Biology, Biochemistry and Chemical Ecology”, this chapter presents a comprehensive review of the occurrence, structure and function of oxygenated derivatives of hydrocarbons. The book chapter focuses on the occurrence, structural identification and functi...

  1. Hydrocarbon Spectral Database

    Science.gov (United States)

    SRD 115 Hydrocarbon Spectral Database (Web, free access)   All of the rotational spectral lines observed and reported in the open literature for 91 hydrocarbon molecules have been tabulated. The isotopic molecular species, assigned quantum numbers, observed frequency, estimated measurement uncertainty and reference are given for each transition reported.

  2. Political Primitivism, Differential Socialization, and Lower-Class Leftist Radicalism

    Science.gov (United States)

    Portes, Alejandro

    1971-01-01

    Examines hypotheses linking lower class leftist radicalism to the political primitivism caused by lack of education, lack of media exposure, infrequent participation in organizations, and personal isolation--on the basis of data from 382 Chilean urban slum dwellers. (RJ)

  3. Plasma devices for hydrocarbon reformation

    KAUST Repository

    Cha, Min Suk

    2017-02-16

    Plasma devices for hydrocarbon reformation are provided. Methods of using the devices for hydrocarbon reformation are also provided. The devices can include a liquid container to receive a hydrocarbon source, and a plasma torch configured to be submerged in the liquid. The plasma plume from the plasma torch can cause reformation of the hydrocarbon. The device can use a variety of plasma torches that can be arranged in a variety of positions in the liquid container. The devices can be used for the reformation of gaseous hydrocarbons and/or liquid hydrocarbons. The reformation can produce methane, lower hydrocarbons, higher hydrocarbons, hydrogen gas, water, carbon dioxide, carbon monoxide, or a combination thereof.

  4. Plant hydrocarbon recovery process

    Energy Technology Data Exchange (ETDEWEB)

    Dzadzic, P.M.; Price, M.C.; Shih, C.J.; Weil, T.A.

    1982-01-26

    A process for production and recovery of hydrocarbons from hydrocarbon-containing whole plants in a form suitable for use as chemical feedstocks or as hydrocarbon energy sources which process comprises: (A) pulverizing by grinding or chopping hydrocarbon-containing whole plants selected from the group consisting of euphorbiaceae, apocynaceae, asclepiadaceae, compositae, cactaceae and pinaceae families to a suitable particle size, (B) drying and preheating said particles in a reducing atmosphere under positive pressure (C) passing said particles through a thermal conversion zone containing a reducing atmosphere and with a residence time of 1 second to about 30 minutes at a temperature within the range of from about 200* C. To about 1000* C., (D) separately recovering the condensable vapors as liquids and the noncondensable gases in a condition suitable for use as chemical feedstocks or as hydrocarbon fuels.

  5. Growing up Radical: Investigation of Benzyl-Like Radicals with Increasing Chain Lengths

    Science.gov (United States)

    Korn, Joseph A.; Jawad, Khadija M.; Hewett, Daniel M.; Zwier, Timothy S.

    2015-06-01

    Combustion processes involve complex chemistry including pathways leading to polyaromatic hydrocarbons (PAHs) from small molecule precursors. Resonance stabilized radicals (RSRs) likely play an important role in the pathways to PAHs due to their unusual stability. Benzyl radical is a prototypical RSR that is stabilized by conjugation with the phenyl ring. Earlier work on α-methyl benzyl radical showed perturbations to the spectroscopy due to a hindered methyl rotor. If the alkyl chain is lengthened then multiple conformations become possible. This talk will discuss the jet-cooled spectroscopy of α-ethyl benzyl radical and α-propyl benzyl radical produced from the discharge of 1-phenyl propanol and 1-phenyl butanol respectively. Electronic spectra were obtained via resonant two-photon ionization, and IR spectra were obtained by resonant ion-dip infrared spectroscopy. Kidwell, N. M.; Reilly, N. J.; Nebgen, B.; Mehta-Hurt, D. N.; Hoehn, R. D.; Kokkin, D. L.; McCarthy, M. C.; Slipchenko, L. V.; Zwier, T. S. The Journal of Physical Chemistry A 2013, 117, 13465.

  6. The Radicalization Puzzle [video

    OpenAIRE

    Mohammed Hafez; Center for Homeland Defense and Security Naval Postgraduate School

    2015-01-01

    This 20 minute lecture, by Dr. Mohammad Hafez of the Naval Postgraduate School examines the driving factors behind the process of radicalization, turning seemingly ordinary men and women into potential terrorists. The lecture is based on the article "The Radicalization Puzzle: A Theoretical Synthesis of Empirical Approaches to Homegrown Extremism" in Studies in Conflict and Terrorism, by Mohammad Hafez and Creighton Mullins.

  7. Orgasm after radical prostatectomy

    NARCIS (Netherlands)

    Koeman, M; VanDriel, MF; Schultz, WCMW; Mensink, HJA

    1996-01-01

    Objective To evaluate the ability to obtain and the quality of orgasm after radical prostatectomy, Patients and methods The orgasms experienced after undergoing radical prostatectomy were evaluated in 20 men (median age 65 years, range 56-76) using a semi-structured interview and a self-administered

  8. Organic free radicals in clathrate hydrates investigated by muon spin spectroscopy.

    Science.gov (United States)

    Percival, Paul W; Mozafari, Mina; Brodovitch, Jean-Claude; Chandrasena, Lalangi

    2014-02-20

    Very little is known about the behavior of free H atoms and small organic radicals inside clathrate hydrate structures despite the relevance of such species to combustion of hydrocarbon hydrates. Muonium is an H atom analog, essentially a light isotope of hydrogen, and can be used to probe the chemistry of H atoms and transient free radicals. We demonstrate the first application of muon spin spectroscopy to characterize radicals in clathrate hydrates. Atomic muonium was detected in hydrates of cyclopentane and tetrahydrofuran, and muoniated free radicals were detected in the hydrates of cyclopentene and 2,5-dihydrofuran, indicating rapid addition of muonium to the organic guest. Muon avoided level-crossing spectra of the radicals in hydrates are markedly different to those of the same radicals in pure organic liquids at the same temperature, and this can be explained by limited mobility of the enclathrated radicals, leading to anisotropy in the hyperfine interactions.

  9. Salvage robotic radical prostatectomy

    Directory of Open Access Journals (Sweden)

    Samuel D Kaffenberger

    2014-01-01

    Full Text Available Failure of non-surgical primary treatment for localized prostate cancer is a common occurrence, with rates of disease recurrence ranging from 20% to 60%. In a large proportion of patients, disease recurrence is clinically localized and therefore potentially curable. Unfortunately, due to the complex and potentially morbid nature of salvage treatment, radical salvage surgery is uncommonly performed. In an attempt to decrease the morbidity of salvage therapy without sacrificing oncologic efficacy, a number of experienced centers have utilized robotic assistance to perform minimally invasive salvage radical prostatectomy. Herein, we critically evaluate the existing literature on salvage robotic radical prostatectomy with a focus on patient selection, perioperative complications and functional and early oncologic outcomes. These results are compared with contemporary and historical open salvage radical prostatectomy series and supplemented with insights we have gained from our experience with salvage robotic radical prostatectomy. The body of evidence by which conclusions regarding the efficacy and safety of robotic salvage radical prostatectomy can be drawn comprises fewer than 200 patients with limited follow-up. Preliminary results are promising and some outcomes have been favorable when compared with contemporary open salvage prostatectomy series. Advantages of the robotic platform in the performance of salvage radical prostatectomy include decreased blood loss, short length of stay and improved visualization. Greater experience is required to confirm the long-term oncologic efficacy and functional outcomes as well as the generalizability of results achieved at experienced centers.

  10. Gnosticism and Radical Feminism

    DEFF Research Database (Denmark)

    Cahana, Jonathan

    2016-01-01

    and radical feminism would easily fall under this definition. There is, however, one major difference: since radical feminism is a relatively recent phenomenon which also benefited from modern modes of text production and preservation, almost all of the sources are still with us. This, in turn, may allow us...... to use radical feminism to make certain aspects of ancient Gnosticism re-emerge from their long submersion, provided that enough similarities can be independently drawn between the two phenomena to merit such a comparison. This paper therefore presents a comparison between concepts and positions...

  11. Radical aminomethylation of imines.

    Science.gov (United States)

    Fujii, Shintaro; Konishi, Takehito; Matsumoto, Yusuke; Yamaoka, Yousuke; Takasu, Kiyosei; Yamada, Ken-Ichi

    2014-09-05

    Taking advantage of the high level of performance of N-alkoxycarbonyl-imines, we achieved the first example of addition of the aminomethyl radical to imine. The reaction efficiency depended on the structure of the radical precursor, whether it is an iodide or a xanthate, and an electron-withdrawing group on the nitrogen atom of the radical. This reaction allows direct introduction of an N-substituted aminomethyl group onto imine to provide 1,2-diamine as well as the short-step synthesis of ICI-199,441.

  12. Radical chemistry of artemisinin

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, Evgenii T; Solodova, S L; Denisova, Taisa G [Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region (Russian Federation)

    2010-12-29

    The review summarizes physicochemical characteristics of the natural sesquiterpene peroxide artemisinin. The kinetic schemes of transformations of artemisinin radicals under anaerobic conditions are presented and analyzed. The sequence of radical reactions of artemisinin in the presence of oxygen is considered in detail. Special emphasis is given to the intramolecular chain oxidation resulting in the transformation of artemisinin into polyatomic hydroperoxide. The kinetic characteristics of elementary reaction steps involving alkyl, alkoxyl, and peroxyl radicals generated from artemisinin are discussed. The results of testing of artemisinin and its derivatives for the antimalarial activity and the scheme of the biochemical synthesis of artemisinin in nature are considered.

  13. Radical chemistry of artemisinin

    Science.gov (United States)

    Denisov, Evgenii T.; Solodova, S. L.; Denisova, Taisa G.

    2010-12-01

    The review summarizes physicochemical characteristics of the natural sesquiterpene peroxide artemisinin. The kinetic schemes of transformations of artemisinin radicals under anaerobic conditions are presented and analyzed. The sequence of radical reactions of artemisinin in the presence of oxygen is considered in detail. Special emphasis is given to the intramolecular chain oxidation resulting in the transformation of artemisinin into polyatomic hydroperoxide. The kinetic characteristics of elementary reaction steps involving alkyl, alkoxyl, and peroxyl radicals generated from artemisinin are discussed. The results of testing of artemisinin and its derivatives for the antimalarial activity and the scheme of the biochemical synthesis of artemisinin in nature are considered.

  14. [Research progress on free radicals in human body].

    Science.gov (United States)

    Wang, Q B; Xu, F P; Wei, C X; Peng, J; Dong, X D

    2016-08-10

    Free radicals are the intermediates of metabolism, widely exist in the human bodies. Under normal circumstances, the free radicals play an important role in the metabolic process on human body, cell signal pathway, gene regulation, induction of cell proliferation and apoptosis, so as to maintain the normal growth and development of human body and to inhibit the growth of bacteria, virus and cancer. However, when organic lesion occurs affected by external factors or when equilibrium of the free radicals is tipped in the human body, the free radicals will respond integratedly with lipids, protein or nucleic acid which may jeopardize the health of human bodies. This paper summarizes the research progress of the free radicals conducted in recent years, in relations to the perspective of the types, origins, test methods of the free radicals and their relationship with human's health. In addition, the possible mechanisms of environmental pollutants (such as polycyclic aromatic hydrocarbons) mediating oxidative stress and free radicals scavenging in the body were also summarized.

  15. Using Distonic Radical Ions to Probe the Chemistry of Key Combustion Intermediates: The Case of the Benzoxyl Radical Anion

    Science.gov (United States)

    Li, Cong; Lam, Adrian K. Y.; Khairallah, George N.; White, Jonathan M.; O'Hair, Richard A. J.; da Silva, Gabriel

    2013-04-01

    The benzoxyl radical is a key intermediate in the combustion of toluene and other aromatic hydrocarbons, yet relatively little experimental work has been performed on this species. Here, a combination of electrospray ionization (ESI), multistage mass spectrometry experiments, and density functional theory (DFT) calculations are used to examine the formation and fragmentation of a benzoxyl (benzyloxyl) distonic radical anion. Excited 4-carboxylatobenzoxyl radical anions were produced via two methods: (1) collision induced dissociation (CID) of the nitrate ester 4-(nitrooxymethyl)benzoate, -O2CC6H4CH2ONO2, and (2) reaction of ozone with the 4-carboxylatobenzyl radical anion, -O2CC6H4CH2 •. In neither case was the stabilized -O2CC6H4CH2O• radical anion intermediate detected. Instead, dissociation products at m/ z 121 and 149 were observed. These products are attributed to benzaldehyde (O2 -CC6H4CHO) and benzene (-O2CC6H5) products from respective loss of H and HCO radicals in the vibrationally excited benzoxyl intermediate. In no experiments was a product at m/ z 120 (i.e., -O2CC6H4 •) detected, corresponding to absence of the commonly assumed phenyl radical + CH2=O channel. The results reported suggest that distonic ions are useful surrogates for reactive intermediates formed in combustion chemistry.

  16. Radical prostatectomy - discharge

    Science.gov (United States)

    ... to 6 months. You will learn exercises (called Kegel exercises) that strengthen the muscles in your pelvis. ... Radical prostatectomy Retrograde ejaculation Urinary incontinence Patient Instructions Kegel exercises - self-care Suprapubic catheter care Urinary catheters - ...

  17. HYDROCARBON-DEGRADING BACTERIA AND SURFACTANT ACTIVITY

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R; Topher Berry, T; Grazyna A. Plaza, G; jacek Wypych, j

    2006-08-15

    Fate of benzene ethylbenzene toluene xylenes (BTEX) compounds through biodegradation was investigated using two different bacteria, Ralstonia picketti (BP-20) and Alcaligenes piechaudii (CZOR L-1B). These bacteria were isolated from extremely polluted petroleum hydrocarbon contaminated soils. PCR and Fatty Acid Methyl Ester (FAME) were used to identify the isolates. Biodegradation was measured using each organism individually and in combination. Both bacteria were shown to degrade each of the BTEX compounds. Alcaligenes piechaudii biodegraded BTEXs more efficiently while mixed with BP-20 and individually. Biosurfactant production was observed by culture techniques. In addition 3-hydroxy fatty acids, important in biosurfactant production, was observed by FAME analysis. In the all experiments toluene and m+p- xylenes were better growth substrates for both bacteria than the other BTEX compounds. In addition, the test results indicate that the bacteria could contribute to bioremediation of aromatic hydrocarbons (BTEX) pollution increase biodegradation through the action by biosurfactants.

  18. Hydrogen Abstraction from Hydrocarbons by NH2.

    Science.gov (United States)

    Siddique, Kamal; Altarawneh, Mohammednoor; Gore, Jeff; Westmoreland, Phillip R; Dlugogorski, Bogdan Z

    2017-03-23

    This contribution investigates thermokinetic parameters of bimolecular gas-phase reactions involving the amine (NH2) radical and a large number of saturated and unsaturated hydrocarbons. These reactions play an important role in combustion and pyrolysis of nitrogen-rich fuels, most notably biomass. Computations performed at the CBS-QB3 level and based on the conventional transition-state theory yield potential-energy surfaces and reaction rate constants, accounting for tunnelling effects and the presence of hindered rotors. In an analogy to other H abstraction systems, we demonstrate only a small influence of variational effects on the rate constants for selected reaction. The studied reactions cover the abstraction of hydrogen atoms by the NH2 radical from the C-H bonds in C1-C4 species, and four C5 hydrocarbons of 2-methylbutane, 2-methyl-1-butene, 3-methyl-1-butene, 3-methyl-2-butene, and 3-methyl-1-butyne. For the abstraction of H from methane, in the temperature windows 300-500 and 1600-2000 K, the calculated reaction rate constants concur with the available experimental measurements, i.e., kcalculated/kexperimetal = 0.3-2.5 and 1.1-1.4, and the previous theoretical estimates. Abstraction of H atom from ethane attains the ratio of kcalculated/kexperimetal equal to 0.10-1.2 and 1.3-1.5 over the temperature windows of available experimental measurements, i.e., 300-900 K and 1500-2000 K, respectively. For the remaining alkanes (propane and n-butane), the average kexperimental/kcalculated ratio remains 2.6 and 1.3 over the temperature range of experimental data. Also, comparing the calculated standard enthalpy of reaction (ΔrH°298) with the available experimental measurements for alkanes, we found the mean unsigned error of computations as 3.7 kJ mol(-1). This agreement provides an accuracy benchmark of our methodology, affording the estimation of the unreported kinetic parameters for H abstractions from alkenes and alkynes. On the basis of the Evans

  19. An elusive vinyl radical isolated as an appended unit in a five-coordinate Co(iii)-bis(iminobenzosemiquinone) complex formed via ligand-centered C-S bond cleavage.

    Science.gov (United States)

    Sarkar, Prasenjit; Tiwari, Archana; Sarmah, Amrit; Bhandary, Subhrajyoti; Roy, Ram Kinkar; Mukherjee, Chandan

    2016-08-23

    Redox-active ligand H4Pra(edt(AP/AP)) experienced C-S bond cleavage during complexation reaction with Co(OAc)2·2H2O in the presence of Et3N in CH3OH in air. Thus, formed complex 1 was composed of two iminobenzosemiquinone radicals in its coordination sphere and an unprecedented stable tethered-vinyl radical. The complex has been characterized by mass, X-ray single crystal, X-band EPR, variable-temperature magnetic moment measurements and DFT based computational study.

  20. Missing Peroxy Radical Sources Within a Rural Forest Canopy

    Science.gov (United States)

    Wolfe, G. M.; Cantrell, C.; Kim, S.; Mauldin, R. L., III; Karl, T.; Harley, P.; Turnipseed, A.; Zheng, W.; Flocke, F.; Apel, E. C.; Hornbrook, R. S.; Hall, S. R.; Ullmann, K.; Henry, S. B.; DiGangi, J. P.; Boyle, E. S.; Kaser, L.; Schnitzhofer, R.; Hansel, A.; Graus, M.; Nakashima, Y.; Kajii, Y.; Guenther, A.; Keutsch, F. N.

    2013-01-01

    Organic peroxy (RO2) and hydroperoxy (HO2) radicals are key intermediates in the photochemical processes that generate ozone, secondary organic aerosol and reactive nitrogen reservoirs throughout the troposphere. In regions with ample biogenic hydrocarbons, the richness and complexity of peroxy radical chemistry presents a significant challenge to current-generation models, especially given the scarcity of measurements in such environments. We present peroxy radical observations acquired within a Ponderosa pine forest during the summer 2010 Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics and Nitrogen - Rocky Mountain Organic Carbon Study (BEACHON-ROCS). Total peroxy radical mixing ratios reach as high as 180 pptv and are among the highest yet recorded. Using the comprehensive measurement suite to constrain a near-explicit 0-D box model, we investigate the sources, sinks and distribution of peroxy radicals below the forest canopy. The base chemical mechanism underestimates total peroxy radicals by as much as a factor of 3. Since primary reaction partners for peroxy radicals are either measured (NO) or under-predicted (HO2 and RO2, i.e. self-reaction), missing sources are the most likely explanation for this result. A close comparison of model output with observations reveals at least two distinct source signatures. The first missing source, characterized by a sharp midday maximum and a strong dependence on solar radiation, is consistent with photolytic production of HO2. The diel profile of the second missing source peaks in the afternoon and suggests a process that generates RO2 independently of sun-driven photochemistry, such as ozonolysis of reactive hydrocarbons. The maximum magnitudes of these missing sources (approximately 120 and 50 pptv min-1, respectively) are consistent with previous observations alluding to unexpectedly intense oxidation within forests. We conclude that a similar mechanism may underlie many such observations.

  1. Missing Peroxy Radical Sources within a Summertime Ponderosa Pine Forest

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, G. M.; Cantrell, Chris; Kim, S.; Mauldin, R. L.; Karl, Thomas G.; Harley, P.; Turnipseed, A.; Zheng, W.; Flocke, Frank M.; Apel, E. C.; Hornbrook, R. S.; Hall, S. R.; Ullmann, K.; Henry, S. B.; DiGangi, J. P.; Boyle, E. S.; Kaser, L.; Schnitzhofer, R.; Hansel, A.; Graus, M.; Nakashima, Yoshihiro; Kajii, Yoshizumi; Guenther, Alex B.; Keutsch, Frank N.

    2014-05-13

    Organic peroxy (RO2) and hydroperoxy (HO2) radicals are key intermediates in the photochemical processes that generate ozone, secondary organic aerosol and reactive nitrogen reservoirs throughout the troposphere. In regions with ample biogenic hydrocarbons, the richness and complexity of peroxy radical chemistry presents a significant challenge to current-generation models, especially given the scarcity of measurements in such environments. We present peroxy radical observations acquired within a Ponderosa pine forest during the summer 2010 Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics and Nitrogen – Rocky Mountain Organic Carbon Study (BEACHON-ROCS). Total peroxy radical mixing ratios reach as high as 180 pptv and are among the highest yet recorded. Using the comprehensive measurement suite to constrain a near-explicit 0-D box model, we investigate the sources, sinks and distribution of peroxy radicals below the forest canopy. The base chemical mechanism underestimates total peroxy radicals by as much as a factor of 3. Peroxy radical sinks are unlikely to be overestimated, suggesting missing sources. A close comparison of model results with observations reveals at least two distinct source signatures. The first missing source, characterized by a sharp midday maximum and a strong dependence on solar radiation, is consistent with photolytic production of HO2. The diel profile of the second missing source peaks in the afternoon and suggests a process that generates RO2 independently of sun-driven photochemistry, such as ozonolysis of reactive hydrocarbons. The maximum magnitudes of these missing sources (~120 and 50 pptv min-1, respectively) are consistent with previous observations alluding to unexpectedly intense oxidation within the forest, and we conclude that a similar mechanism may underlie many such anomalous findings.

  2. Missing peroxy radical sources within a summertime ponderosa pine forest

    Science.gov (United States)

    Wolfe, G. M.; Cantrell, C.; Kim, S.; Mauldin, R. L., III; Karl, T.; Harley, P.; Turnipseed, A.; Zheng, W.; Flocke, F.; Apel, E. C.; Hornbrook, R. S.; Hall, S. R.; Ullmann, K.; Henry, S. B.; DiGangi, J. P.; Boyle, E. S.; Kaser, L.; Schnitzhofer, R.; Hansel, A.; Graus, M.; Nakashima, Y.; Kajii, Y.; Guenther, A.; Keutsch, F. N.

    2014-05-01

    Organic peroxy (RO2) and hydroperoxy (HO2) radicals are key intermediates in the photochemical processes that generate ozone, secondary organic aerosol and reactive nitrogen reservoirs throughout the troposphere. In regions with ample biogenic hydrocarbons, the richness and complexity of peroxy radical chemistry presents a significant challenge to current-generation models, especially given the scarcity of measurements in such environments. We present peroxy radical observations acquired within a ponderosa pine forest during the summer 2010 Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics and Nitrogen - Rocky Mountain Organic Carbon Study (BEACHON-ROCS). Total peroxy radical mixing ratios reach as high as 180 pptv (parts per trillion by volume) and are among the highest yet recorded. Using the comprehensive measurement suite to constrain a near-explicit 0-D box model, we investigate the sources, sinks and distribution of peroxy radicals below the forest canopy. The base chemical mechanism underestimates total peroxy radicals by as much as a factor of 3. Since primary reaction partners for peroxy radicals are either measured (NO) or underpredicted (HO2 and RO2, i.e., self-reaction), missing sources are the most likely explanation for this result. A close comparison of model output with observations reveals at least two distinct source signatures. The first missing source, characterized by a sharp midday maximum and a strong dependence on solar radiation, is consistent with photolytic production of HO2. The diel profile of the second missing source peaks in the afternoon and suggests a process that generates RO2 independently of sun-driven photochemistry, such as ozonolysis of reactive hydrocarbons. The maximum magnitudes of these missing sources (~120 and 50 pptv min-1, respectively) are consistent with previous observations alluding to unexpectedly intense oxidation within forests. We conclude that a similar mechanism may underlie many

  3. Terpene hydrocarbons in Pimpinella anisum L.

    Science.gov (United States)

    Burkhardt, G; Reichling, J; Martin, R; Becker, H

    1986-06-20

    The essential oil of anise (fruits and shoots) was investigated focusing on the composition of the hydrocarbon fraction. Several sesquiterpenes were identified by GC-MS and the relative composition of the fractions was established by GC analysis. gamma-Himachalene and the diterpene neophytadiene were isolated by TLC and column chromatography at low temperatures. Their structures were determined by MS and NMR including 1H-1H correlated COSY and NOE experiments.

  4. Thermochemistry of Hydrocarbons. Back to Extended Hückel Theory.

    Science.gov (United States)

    Voityuk, Alexander A

    2008-11-11

    A modified Extended Hückel method that provides accurate values of heats of formation and structural parameters of hydrocarbons is described. The results are reported for an extensive set of molecules and radicals belonging to different classes. The calculated heats of formation for 120 molecules and 26 radicals are close to the experimental data with the mean absolute error of 1.90 kcal/mol. The internal consistency of the calculated data allows reliable prediction of the reaction enthalpy for various hydrocarbon transformations. The proposed scheme is computationally very efficient, and the calculation of a large system requires only a few seconds on a PC. A computer program for the calculation is provided in the Supporting Information .

  5. Free Radical Reactions in Food.

    Science.gov (United States)

    Taub, Irwin A.

    1984-01-01

    Discusses reactions of free radicals that determine the chemistry of many fresh, processed, and stored foods. Focuses on reactions involving ascorbic acid, myoglobin, and palmitate radicals as representative radicals derived from a vitamin, metallo-protein, and saturated lipid. Basic concepts related to free radical structure, formation, and…

  6. Laparoscopic radical trachelectomy.

    Science.gov (United States)

    Rendón, Gabriel J; Ramirez, Pedro T; Frumovitz, Michael; Schmeler, Kathleen M; Pareja, Rene

    2012-01-01

    The standard treatment for patients with early-stage cervical cancer has been radical hysterectomy. However, for women interested in future fertility, radical trachelectomy is now considered a safe and feasible option. The use of minimally invasive surgical techniques to perform this procedure has recently been reported. We report the first case of a laparoscopic radical trachelectomy performed in a developing country. The patient is a nulligravid, 30-y-old female with stage IB1 adenocarcinoma of the cervix who desired future fertility. She underwent a laparoscopic radical trachelectomy and bilateral pelvic lymph node dissection. The operative time was 340 min, and the estimated blood loss was 100mL. There were no intraoperative or postoperative complications. The final pathology showed no evidence of residual disease, and all pelvic lymph nodes were negative. At 20 mo of follow-up, the patient is having regular menses but has not yet attempted to become pregnant. There is no evidence of recurrence. Laparoscopic radical trachelectomy with pelvic lymphadenectomy in a young woman who desires future fertility may also be an alternative technique in the treatment of early cervical cancer in developing countries.

  7. The reformation of liquid hydrocarbons in an aqueous discharge reactor

    KAUST Repository

    Zhang, Xuming

    2015-04-21

    We present an aqueous discharge reactor for the reformation of liquid hydrocarbons. To increase a dielectric constant of a liquid medium, we added distilled water to iso-octane and n-dodecane. As expected, we found decreased discharge onset voltage and increased discharge power with increased water content. Results using optical emission spectroscopy identified OH radicals and O atoms as the predominant oxidative reactive species with the addition of water. Enriched CH radicals were also visualized, evidencing the existence of cascade carbon-carbon cleavage and dehydrogenation processes in the aqueous discharge. The gaseous product consisted primarily of hydrogen, carbon monoxide, and unsaturated hydrocarbons. The composition of the product was readily adjustable by varying the volume of water added, which demonstrated a significant difference in composition with respect to the tested liquid hydrocarbon. In this study, we found no presence of CO2 emissions or the contamination of the reactor by solid carbon deposition. These findings offer a new approach to the reforming processes of liquid hydrocarbons and provide a novel concept for the design of a practical and compact plasma reformer. © 2015 IOP Publishing Ltd.

  8. Bacteria isolated from amoebae/bacteria consortium

    Science.gov (United States)

    Tyndall, Richard L.

    1995-01-01

    New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  9. Photodissociation dynamics and spectroscopy of free radical combustion intermediates

    Energy Technology Data Exchange (ETDEWEB)

    Osborn, D.L.

    1996-12-01

    The photodissociation spectroscopy and dynamics of free radicals is studied by the technique of fast beam photofragment translational spectroscopy. Photodetachment of internally cold, mass-selected negative ions produces a clean source of radicals, which are subsequently dissociated and detected. The photofragment yield as a function of photon energy is obtained, mapping out the dissociative and predissociative electronic states of the radical. In addition, the photodissociation dynamics, product branching ratios, and bond energies are probed at fixed photon energies by measuring the translational energy, P(E{sub T}), and angular distribution of the recoiling fragments using a time- and position-sensitive detector. Ab initio calculations are combined with dynamical and statistical models to interpret the observed data. The photodissociation of three prototypical hydrocarbon combustion intermediates forms the core of this work.

  10. Photodissociation dynamics and spectroscopy of free radical combustion intermediates

    Energy Technology Data Exchange (ETDEWEB)

    Osborn, David Lewis [Univ. of California, Berkeley, CA (United States)

    1996-12-01

    The photodissociation spectroscopy and dynamics of free radicals is studied by the technique of fast beam photofragment translational spectroscopy. Photodetachment of internally cold, mass-selected negative ions produces a clean source of radicals, which are subsequently dissociated and detected. The photofragment yield as a function of photon energy is obtained, mapping out the dissociative and predissociative electronic states of the radical. In addition, the photodissociation dynamics, product branching ratios, and bond energies are probed at fixed photon energies by measuring the translational energy, P(ET), and angular distribution of the recoiling fragments using a time- and position-sensitive detector. Ab initio calculations are combined with dynamical and statistical models to interpret the observed data. The photodissociation of three prototypical hydrocarbon combustion intermediates forms the core of this work.

  11. Sexuality Following Radical Prostatectomy

    DEFF Research Database (Denmark)

    Fode, Mikkel; Serefoglu, Ege C; Albersen, Maarten;

    2017-01-01

    INTRODUCTION: Radical prostatectomies can result in urinary incontinence and sexual dysfunction. Traditionally, these issues have been studied separately, and the sexual problem that has received the most focus has been erectile dysfunction. AIM: To summarize the literature on sexually related side...... effects and their consequences after radical prostatectomy and focus on the occurrence and management of problems beyond erectile dysfunction. METHODS: The literature on sexuality after radical prostatectomy was reviewed through a Medline search. Original research using quantitative and qualitative...... methodologies was considered. Priority was given to studies exploring aspects of sexuality other than erectile function. MAIN OUTCOME MEASURES: The prevalence, predictive factors, and management of post-prostatectomy sexual problems beyond erectile dysfunction. RESULTS: Most patients will develop urinary...

  12. Laparoscopic radical prostatectomy

    Directory of Open Access Journals (Sweden)

    Lipke Michael

    2005-01-01

    Full Text Available Millions of men are diagnosed annually with prostate cancer worldwide. With the advent of PSA screening, there has been a shift in the detection of early prostate cancer, and there are increased numbers of men with asymptomatic, organ confined disease. Laparoscopic radical prostatectomy is the latest, well accepted treatment that patients can select. We review the surgical technique, and oncologic and functional outcomes of the most current, large series of laparoscopic radical prostatectomy published in English. Positive margin rates range from 2.1-6.9% for pT2a, 9.9-20.6% for pT2b, 24.5-42.3% for pT3a, and 22.6-54.5% for pT3b. Potency rates after bilateral nerve sparing laparoscopic radical prostatectomy range from 47.1 to 67%. Continence rates at 12 months range from 83.6 to 92%.

  13. Gangs, Terrorism, and Radicalization

    Directory of Open Access Journals (Sweden)

    Scott Decker

    2011-01-01

    Full Text Available What can street gangs tell us about radicalization and extremist groups? At first glance, these two groups seem to push the boundaries of comparison. In this article, we examine the important similarities and differences across criminal, deviant, and extremist groups. Drawing from research on street gangs, this article explores issues such as levels of explanation,organizational structure, group process, and the increasingly important role of technology and the Internet in the context of radicalization. There are points of convergence across these groups, but it is important to understand the differences between these groups. This review finds little evidence to support the contention that American street gangs are becoming increasingly radicalized. This conclusion is based largely on organizational differences between gangs and terror groups.

  14. Quantitative Hydrocarbon Surface Analysis

    Science.gov (United States)

    Douglas, Vonnie M.

    2000-01-01

    The elimination of ozone depleting substances, such as carbon tetrachloride, has resulted in the use of new analytical techniques for cleanliness verification and contamination sampling. The last remaining application at Rocketdyne which required a replacement technique was the quantitative analysis of hydrocarbons by infrared spectrometry. This application, which previously utilized carbon tetrachloride, was successfully modified using the SOC-400, a compact portable FTIR manufactured by Surface Optics Corporation. This instrument can quantitatively measure and identify hydrocarbons from solvent flush of hardware as well as directly analyze the surface of metallic components without the use of ozone depleting chemicals. Several sampling accessories are utilized to perform analysis for various applications.

  15. Miscellaneous hydrocarbon solvents.

    Science.gov (United States)

    Bebarta, Vikhyat; DeWitt, Christopher

    2004-08-01

    The solvents discussed in this article are common solvents not categorized as halogenated, aromatic, or botanical. The solvents discussed are categorized into two groups: hydrocarbon mixtures and single agents. The hydrocarbon mixtures discussed are Stoddard solvent, naphtha, and kerosene. The remaining solvents described are n-hexane, methyl n-butyl ketone, dimethylformamide, dimethyl sulfoxide, and butyl mercaptans. Effects common to this group of agents and their unique effects are characterized. Treatment of exposures and toxic effects of these solvents is described, and physiochemical properties and occupational exposure levels are listed.

  16. Radical dematerialization and degrowth

    Science.gov (United States)

    Kallis, Giorgos

    2017-05-01

    The emission targets agreed in Paris require a radical reduction of material extraction, use and disposal. The core claim of this article is that a radical dematerialization can only be part and parcel of degrowth. Given that capitalist economies are designed to grow, this raises the question of whether, and under what circumstances, the inevitable `degrowth' can become socially sustainable. Three economic policies are discussed in this direction: work-sharing, green taxes and public money. This article is part of the themed issue 'Material demand reduction'.

  17. Molecular products and radicals from pyrolysis of lignin.

    Science.gov (United States)

    Kibet, J; Khachatryan, L; Dellinger, B

    2012-12-04

    Thermal degradation of lignin under two reaction regimes (pyrolysis in N(2) and oxidative pyrolysis in 4% O(2) in N(2)) has been investigated in a tubular, isothermal, flow-reactor over the temperature range 200-900 °C at a residence time of 0.2 s. Two experimental protocols were adopted: (1) Partial pyrolysis in which the same lignin sample was continuously pyrolyzed at each temperature and (2) conventional pyrolysis, in which new lignin samples were pyrolyzed at each pyrolysis temperature. The results identified common relationships between the two modes of experiments, as well as some differences. The majority of products from partial pyrolysis peaked between 300 and 500 °C, whereas for conventional pyrolysis reaction products peaked between 400 and 500 °C. The principal products were syringol (2,6-dimethoxy phenol), guaiacol (2-methoxy phenol), phenol, and catechol. Of the classes of compounds analyzed, the phenolic compounds were the most abundant, contributing over 40% of the total compounds detected. Benzene, styrene, and p-xylene were formed in significant amounts throughout the entire temperature range. Interestingly, six ringed polycyclic aromatic hydrocarbons were formed during partial pyrolysis. Oxidative pyrolysis did not result in large differences from pyrolysis; the main products still were syringol, guaiacol, phenol, the only significant difference being the product distribution peaked between 200 and 400 °C. For the first time, low temperature matrix isolation electron paramagnetic resonance was successfully interfaced with the pyrolysis reactor to elucidate the structures of the labile reaction intermediates. The EPR results suggested the presence of methoxyl, phenoxy, and substituted phenoxy radicals as precursors for formation of major products; syringol, guaiacol, phenols, and substituted phenols.

  18. Microbial production of aliphatic hydrocarbons. Progress report, February 1, 1979-September 30, 1979. [Optimization for commercial oily hydrocarbon production

    Energy Technology Data Exchange (ETDEWEB)

    Tornabene, T G

    1979-09-01

    The neutral lipids of nine species of methanogenic bacteria, two thermoacidophiles, two alkalinophiles and 20 algal samples were analyzed. The major components were C/sub 30/, C/sub 25/, and/or C/sub 20/ acyclic isoprenoid hydrocarbons with a continuous range of hydroisoprenoid homologues. The range or acyclic isoprenoids detected were from C/sub 14/ to C/sub 30/. The neutral lipid composition from these bacteria resembles the isoprenoid distribution isolated from ancient sediments and petroleum. Therefore, these findings may have major implications to biological and biogeochemical evolution. In this connection, samples and cores from ancient sediments and future fossil fuel source beds are being analyzed for these neutral lipids as well as the more polar isopranyl glycerol-ether lipids. The derivation of fossil fuels and the biomass accumulations are the focal points of this phase of the study. Ancient and recent sediments, future source beds, and local esturaries are being enriched for microorganisms to establish a range and capability profile for hydrocarbon production. Only a relatively small percent of the microorganisms isolated demonstrated the ability to synthesize hydrocarbons; however, one particular algal isolate demonstrated that it can synthesize hydrocarbons while in a green physiological stage. Greater production is expected in the brown phase of growth. Hydrocarbon biosynthesis studies were conducted in an attempt to better understand the conditions required to maximize hydrocarbon production. The program involved physical and chemical parameters as well as assays of specifically labelled precusors with a cell free enzyme system to measure their conversions to hydrocarbons. The results have indicated a complex one enzyme system is involved in condensation and reduction of two fatty acids into hydrocarbons.

  19. A simple strategy for investigating the diversity and hydrocarbon degradation abilities of cultivable bacteria from contaminated soil.

    Science.gov (United States)

    Bučková, Maria; Puškarová, Andrea; Chovanová, Katarína; Kraková, Lucia; Ferianc, Peter; Pangallo, Domenico

    2013-06-01

    The use of indigenous bacterial strains is a valuable bioremediation strategy for cleaning the environment from hydrocarbon pollutants. The isolation and selection of hydrocarbon-degrading bacteria is therefore crucial for obtaining the most promising strains for site decontamination. Two different media, a minimal medium supplemented with a mixture of polycyclic aromatic hydrocarbons and a MS medium supplemented with triphenyltetrazolium chloride, were used for the isolation of bacterial strains from two hydrocarbon contaminated soils and from their enrichment phases. The hydrocarbon degradation abilities of these bacterial isolates were easily and rapidly assessed using the 2,6-dichlorophenol indophenol assay. The diversity of the bacterial communities isolated from these two soil samples and from their enrichment phases was evaluated by the combination of a bacterial clustering method, fluorescence ITS-PCR, and bacterial identification by 16S rRNA sequencing. Different PCR-based assays were performed in order to detect the genes responsible for hydrocarbon degradation. The best hydrocarbon-degrading bacteria, including Arthrobacter sp., Enterobacter sp., Sphingomonas sp., Pseudomonas koreensis, Pseudomonas putida and Pseudomonas plecoglossicida, were isolated directly from the soil samples on minimal medium. The nahAc gene was detected only in 13 Gram-negative isolates and the sequences of nahAc-like genes were obtained from Enterobacter, Stenotrophomonas, Pseudomonas brenneri, Pseudomonas entomophila and P. koreensis strains. The combination of isolation on minimal medium with the 2,6-dichlorophenol indophenol assay was effective in selecting different hydrocarbon-degrading strains from 353 isolates.

  20. Simplified Modeling of Oxidation of Hydrocarbons

    Science.gov (United States)

    Bellan, Josette; Harstad, Kenneth

    2008-01-01

    A method of simplified computational modeling of oxidation of hydrocarbons is undergoing development. This is one of several developments needed to enable accurate computational simulation of turbulent, chemically reacting flows. At present, accurate computational simulation of such flows is difficult or impossible in most cases because (1) the numbers of grid points needed for adequate spatial resolution of turbulent flows in realistically complex geometries are beyond the capabilities of typical supercomputers now in use and (2) the combustion of typical hydrocarbons proceeds through decomposition into hundreds of molecular species interacting through thousands of reactions. Hence, the combination of detailed reaction- rate models with the fundamental flow equations yields flow models that are computationally prohibitive. Hence, further, a reduction of at least an order of magnitude in the dimension of reaction kinetics is one of the prerequisites for feasibility of computational simulation of turbulent, chemically reacting flows. In the present method of simplified modeling, all molecular species involved in the oxidation of hydrocarbons are classified as either light or heavy; heavy molecules are those having 3 or more carbon atoms. The light molecules are not subject to meaningful decomposition, and the heavy molecules are considered to decompose into only 13 specified constituent radicals, a few of which are listed in the table. One constructs a reduced-order model, suitable for use in estimating the release of heat and the evolution of temperature in combustion, from a base comprising the 13 constituent radicals plus a total of 26 other species that include the light molecules and related light free radicals. Then rather than following all possible species through their reaction coordinates, one follows only the reduced set of reaction coordinates of the base. The behavior of the base was examined in test computational simulations of the combustion of

  1. Time sequenced heating of multiple layers in a hydrocarbon containing formation

    Science.gov (United States)

    Goldberg, Bernard; Hale, Arthur Herman; Miller, David Scott; Vinegar, Harold J.

    2009-12-22

    A method for treating a hydrocarbon containing formation may include providing heat to a first hydrocarbon layer in the formation from a first heater located in an opening in the formation. The opening and the first heater may have a horizontal or inclined portion located in the first hydrocarbon layer and at least one connecting portion extending between the horizontal or inclined portion and the surface. Isolation material is placed in the opening such that the isolation material partially isolates the layer in which the horizontal or inclined portion of the first heater is located. An additional horizontal or inclined opening portion that extends from at least one of the connecting portions of the opening is formed in a second hydrocarbon layer. A second heater to provide heat the second hydrocarbon formation is placed in the additional substantially horizontal opening portion.

  2. Apparatus and methods for hydrocarbon extraction

    Science.gov (United States)

    Bohnert, George W.; Verhulst, Galen G.

    2016-04-26

    Systems and methods for hydrocarbon extraction from hydrocarbon-containing material. Such systems and methods relate to extracting hydrocarbon from hydrocarbon-containing material employing a non-aqueous extractant. Additionally, such systems and methods relate to recovering and reusing non-aqueous extractant employed for extracting hydrocarbon from hydrocarbon-containing material.

  3. Spectroscopy, Kinetics, and Dynamics of Combustion Radicals

    Energy Technology Data Exchange (ETDEWEB)

    Nesbitt, David J. [Research/Professor

    2013-08-06

    Spectroscopy, kinetics and dynamics of jet cooled hydrocarbon transients relevant to the DOE combustion mission have been explored, exploiting i) high resolution IR lasers, ii) slit discharge sources for formation of jet cooled radicals, and iii) high sensitivity detection with direct laser absorption methods and near the quantum shot noise limit. What makes this combination powerful is that such transients can be made under high concentrations and pressures characteristic of actual combustion conditions, and yet with the resulting species rapidly cooled (T ≈10-15K) in the slit supersonic expansion. Combined with the power of IR laser absorption methods, this provides novel access to spectral detection and study of many critical combustion species.

  4. Mechanism for diamond growth from methyl radicals

    Science.gov (United States)

    Harris, Stephen J.

    1990-06-01

    We use a 9-carbon model compound to describe a proposed mechanism for homoepitaxial growth of diamond from methyl radicals on a hydrogenated, electrically neutral (100) surface. We estimate enthalpy and entropy changes for each step in the mechanism using group additivity methods, taking into account the types of bonding and steric repulsions found on the (100) surface. Rate constants are estimated based on analogous reactions for hydrocarbon molecules, while gas phase species concentrations are taken from our previous measurements. The rate equations are then integrated. The method, which contains no adjustable parameters or phenomenological constants, predicts a growth rate of between 0.06 and 0.6 μm/h, depending on the local details of the surface. Uncertainties related to the use of a model compound rather than diamond are discussed. The analysis demonstrates that the proposed mechanism is feasible.

  5. Radical School Reform.

    Science.gov (United States)

    Gross, Beatrice, Ed.; Gross, Ronald, Ed.

    This book provides a comprehensive examination of the nature of the school crisis and the ways in which radical thinkers and educators are dealing with it. Excerpts from the writings of Jonathan Kozol, John Holt, Kenneth Clark, and others are concerned with the realities of education in ghettos and suburbs. Paul Goodman, Marshall McLuhan, Sylvia…

  6. Homegrown religious radicalization

    DEFF Research Database (Denmark)

    Khawaja, Iram

    It has been reported that a growing number of youngsters from Western Europe are engaging in conflicts motivated by religious and political conflicts in the Middle East. This paper explores the reasons behind this seemingly religious radicalization from the point of view of the youngsters and the...

  7. Radically enhanced molecular recognition

    KAUST Repository

    Trabolsi, Ali

    2009-12-17

    The tendency for viologen radical cations to dimerize has been harnessed to establish a recognition motif based on their ability to form extremely strong inclusion complexes with cyclobis(paraquat-p-phenylene) in its diradical dicationic redox state. This previously unreported complex involving three bipyridinium cation radicals increases the versatility of host-guest chemistry, extending its practice beyond the traditional reliance on neutral and charged guests and hosts. In particular, transporting the concept of radical dimerization into the field of mechanically interlocked molecules introduces a higher level of control within molecular switches and machines. Herein, we report that bistable and tristable [2]rotaxanes can be switched by altering electrochemical potentials. In a tristable [2]rotaxane composed of a cyclobis(paraquat-p-phenylene) ring and a dumbbell with tetrathiafulvalene, dioxynaphthalene and bipyridinium recognition sites, the position of the ring can be switched. On oxidation, it moves from the tetrathiafulvalene to the dioxynaphthalene, and on reduction, to the bipyridinium radical cation, provided the ring is also reduced simultaneously to the diradical dication. © 2010 Macmillan Publishers Limited. All rights reserved.

  8. Violent Radicalization in Europe

    DEFF Research Database (Denmark)

    Dalgaard-Nielsen, Anja

    2010-01-01

    When, why, and how do people living in a democracy become radicalized to the point of being willing to use or directly support the use of terrorist violence against fellow citizens? This question has been at the center of academic and public debate over the past years as terrorist attacks...

  9. Beyond Radical Educational Cynicism.

    Science.gov (United States)

    Wood, George H.

    1982-01-01

    An alternative is presented to counter current radical arguments that the schools cannot bring about social change because they are instruments of capitalism. The works of Samuel Bowles, Herbert Gintis, and Louis Althusser are discussed. Henry Giroux's "Ideology, Culture and the Process of Schooling" provides an alternative to cynicism.…

  10. Electromeric rhodium radical complexes

    NARCIS (Netherlands)

    Puschmann, F.F.; Harmer, J.; Stein, D.; Rüegger, H.; de Bruin, B.; Grützmacher, H.

    2010-01-01

    Radical changes: One single P-Rh-P angle determines whether the odd electron in the paramagnetic complex [Rh(trop2PPh)(PPh3)] is delocalized over the whole molecule (see picture, blue) or is localized on the P—Rh unit (red). The two energetically almost degenerate electromers exist in a fast equilib

  11. Homegrown religious radicalization

    DEFF Research Database (Denmark)

    Khawaja, Iram

    and their families. Existing literature and ways of thinking about the social psychological process of radicalization will be reviewed, such as social identity theory and transformative learning theory, and a theoretical framework based on a focus on belonging, recognition and the sense of community will be proposed...

  12. On Radical Feminism

    Institute of Scientific and Technical Information of China (English)

    翟良锴

    2015-01-01

    <正>All men are created equal.For centuries,human have been struggling for their rights.Women,as a special social force,are fighting vigorously for their equal rights with men.According to an introduction to feminism,there are three main types of feminism:socialist,reformist and radical(Feminism 101).In order

  13. Optrode for sensing hydrocarbons

    Science.gov (United States)

    Miller, Holly; Milanovich, Fred P.; Hirschfeld, Tomas B.; Miller, Fred S.

    1987-01-01

    A two-phase system employing the Fujiwara reaction is provided for the fluorometric detection of halogenated hydrocarbons. A fiber optic is utilized to illuminate a column of pyridine trapped in a capillary tube coaxially attached at one end to the illuminating end of the fiber optic. A strongly alkaline condition necessary for the reaction is maintained by providing a reservoir of alkali in contact with the column of pyridine, the surface of contact being adjacent to the illuminating end of the fiber optic. A semipermeable membrane caps the other end of the capillary tube, the membrane being preferentially permeable to the halogenated hydrocarbon and but preferentially impermeable to water and pyridine. As the halogenated hydrocarbon diffuses through the membrane and into the column of pyridine, fluorescent reaction products are formed. Light propagated by the fiber optic from a light source, excites the fluorescent products. Light from the fluorescence emission is also collected by the same fiber optic and transmitted to a detector. The intensity of the fluorescence gives a measure of the concentration of the halogenated hydrocarbons.

  14. Experimental determination of the balance of HO{sub x} radicals in polluted air

    Energy Technology Data Exchange (ETDEWEB)

    Volz-Thomas, A.; Kramp, F.; Kolahgar, B. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Chemie und Dynamik der Geosphaere 2: Chemie der Belasteten Atmosphaere

    1999-07-01

    During two field campaigns (SLOPE 92 and 96), simultaneous measurements of ozone and ozone precursors were conducted at Schauinsland in the Black-Forest and in the valley north of Schauinsland that channels the flow of polluted air from the city of Freiburg to the site. From the decay of reactive hydrocarbons and NO{sub x} between the two measuring sites and the known rate coefficients for their reaction with OH the average concentration of OH radicals in the air masses was estimated. The analysis yielded OH concentrations between 5 x 10{sup 6} and almost 10{sup 7} cm{sup -3}, fairly large in presence of high NO{sub x} concentration around 10 ppb or more. The analysis of the budgets of OH and HO{sub x} shows that the relatively high OH concentrations can only be sustained if efficient recycling of OH via HO{sub 2} is assumed to occur and that, based on the C{sub 2}-C{sub 8} hydrocarbons measured during SLOPE 92, about two HO{sub 2} molecules must be formed for each OH radical that reacts with a hydrocarbon molecule. Additional measurements of C{sub 6}-C{sub 15} hydrocarbons made during SLOPE 96 showed that the total hydrocarbon reactivity was about twice as large than that given by the hydrocarbons measured in 1992 and that biogenic hydrocarbons made up for a large fraction of the total reactivity. Because of the higher VOC to NO{sub x} ratio, the amplification factor required to close the budget was less than 1.5 HO{sub 2} for each OH radical consumed by reaction with a hydrocarbon. Measurements of ozone and ozone precursors from balloons and airplane were made to obtain information about a possible effect of mixing processes on the OH estimation. (orig.)

  15. Aeromagnetics of southern Alberta within areas of hydrocarbon accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Leblanc, G. E.; Morris, W. A. [McMaster Univ., School of Geography and Geology, Hamilton, ON (Canada)

    1999-12-01

    The relationship between the observed geomagnetic field and hydrocarbon pools is investigated by reviewing the sources of magnetic anomalies in sedimentary basins and the methods for isolating individual contributions, with specific reference to noise suppression. A recent high resolution aeromagnetic survey acquired by the Geological Survey of Canada in southern Alberta is used as the test case to demonstrate the method and the potential of aeromagnetic surveys to resolve structural controls on hydrocarbon emplacement. The investigation was undertaken in an effort to account for the fact that several features of the residual magnetic field appear to be common to a majority of hydrocarbon pools. Some of these commonalities are: (1) the long axis of the pool appears to be coincident with the strike of the basement-sourced magnetic signal, (2) hydrocarbon pools encompass areas of broad low amplitude magnetic anomalies, (3) cross-cutting fractures or faulting systems are located within areas of a majority of hydrocarbon pools, and (4) pools are associated with linear and/or curvilinear magnetic lineaments, of which a great number have topographic expression. These associations may arise as a result of eH/pH conditions of the hydrocarbons and the surrounding sediments, or they may arise purely as a result of the trapping structures. The physical extent of the interaction area of the pool with the surrounding sediment may be another factor in explaining the association of hydrocarbons and magnetics. 48 refs., 9 figs.

  16. Mantle hydrocarbons: abiotic or biotic?

    Science.gov (United States)

    Sugisaki, R; Mimura, K

    1994-06-01

    Analyses of 227 rocks from fifty localities throughout the world showed that mantle derived rocks such as tectonized peridotites in ophiolite sequences (tectonites) arid peridotite xenoliths in alkali basalts contain heavier hydrocarbons (n-alkanes), whereas igneous rocks produced by magmas such as gabbro arid granite lack them. The occurrence of hydrocarbons indicates that they were not derived either from laboratory contamination or from held contamination; these compounds found in the mantle-derived rocks are called here "mantle hydrocarbons." The existence of hydrocarbons correlates with petrogenesis. For example, peridotite cumulates produced by magmatic differentiation lack hydrocarbons whereas peridotite xenoliths derived from the mantle contain them. Gas chromatographic-mass spectrometric records of the mantle hydrocarbons resemble those of aliphatics in meteorites and in petroleum. Features of the hydrocarbons are that (a) the mantle hydrocarbons reside mainly along grain boundaries and in fluid inclusions of minerals; (b) heavier isoprenoids such as pristane and phytane are present; and (c) delta 13C of the mantle hydrocarbons is uniform (about -27%). Possible origins for the mantle hydrocarbons are as follows. (1) They were in organically synthesized by Fischer-Tropsch type reaction in the mantle. (2) They were delivered by meteorites and comets to the early Earth. (3) They were recycled by subduction. The mantle hydrocarbons in the cases of (1) and (2) are abiogenic and those in (3) are mainly biogenic. It appears that hydrocarbons may survive high pressures and temperatures in the mantle, but they are decomposed into lighter hydrocarbon gases such as CH4 at lower pressures when magmas intrude into the crust; consequently, peridotite cumulates do not contain heavier hydrocarbons but possess hydrocarbon gases up to C4H10.

  17. Bacterial sources for phenylalkane hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, L.; Winans, R.E. [Argonne National Lab., IL (United States); Langworthy, T. [Univ. of South Dakota, Vermillion, SD (United States)

    1996-10-01

    The presence of phenylalkane hydrocarbons in geochemical samples has been the source of much controversy. Although an anthropogenic input from detergent sources always appears likely, the distribution of phenylalkane hydrocarbons in some cases far exceeding that attributed to detergent input has led to a reappraisal of this view. Indeed, recent work involving analysis of the lipid hydrocarbon extracts from extant Thermoplasma bacteria has revealed the presence of phenylalkane hydrocarbons. The presence of phenylalkane hydrocarbons in sedimentary organic matter may therefore represent potential biological markers for thermophilic bacteria.

  18. Proton-Conducting Sulfonated Ionomers by Chemical Modification and Atom Transfer Radical Polymerization

    DEFF Research Database (Denmark)

    Nielsen, Mads Møller

    of hydrocarbon macromolecular architectures, PSU with postsulfonated polystyrene (PS) grafts are investigated. Here, IEC is controlled through the degree of substitution, the graft length and DS. The grafting is performed with atom transfer radical polymerization (ATRP). The third assessment is dedicated...

  19. Hydrocarbon-utilizing microorganisms naturally associated with sawdust.

    Science.gov (United States)

    Ali, N; Eliyas, M; Al-Sarawi, H; Radwan, S S

    2011-05-01

    Sawdust, one of the materials used as sorbent for removing spilled oil from polluted environments was naturally colonized by hydrocarbon-utilizing fungi, 1×10(5)-2×10(5) colony forming units (CFU) g(-1), depending on the hydrocarbon substrate. This sorbent was initially free of hydrocarbon-utilizing bacteria. Incubating wet sawdust at 30°C resulted in gradually increasing the fungal counts to reach after 6months between 5×10(6) and 7×10(6)CFUg(-1), and the appearance of hydrocarbon-utilizing bacteria in numbers between 8×10(4) and 3×10(5)cellsg(-1). The fungi belonged to the genera Candida (32% of the total), Penicillium (21%), Aspergillus (15%), Rhizopus (12%), Cladosporium (9%), Mucor (7%) and Fusarium (4%). Based on their 16S rRNA gene sequences the bacteria were affiliated to Actinobacterium sp. (38%), Micrococcus luteus (30%), Rhodococcus erythropolis, (19%) and Rhodococcus opacus (13%). Individual pure fungal and bacterial isolates grew on a wide range of individual pure aliphatic (n-alkanes with chain lengths between C(9) and C(40)) and aromatic (benzene, biphenyl, anthracene, naphthalene and phenanthrene) hydrocarbons as sole sources of carbon and energy. Quantitative determinations revealed that all fungal and bacterial isolates could consume considerable proportions of crude oil, phenanthrene (an aromatic hydrocarbon) and n-hexadecane (an aliphatic hydrocarbon) in batch cultures. It was concluded that when sawdust is used as a sorbent, the associated microorganisms probably contribute to the bioremediation of oil and hydrocarbon pollutants in the environment.

  20. Hydrogen Radicals, Nitrogen Radicals, and the Production of O3 in the Upper Troposphere

    Science.gov (United States)

    Wennberg, P. O.; Hanisco, T. F.; Jaegle, L.; Jacob, D. J.; Hintsa, E. J.; Lanzendorf, E. J.; Anderson, J. G.; Gao, R.-S.; Keim, E. R.; Donnelly, S. G.; DelNegro, L. A.; Fahey, D. W.; McKeen, S. A.; Salawitch, R. J.; Webster, C. R.; May, R. D.; Herman, R. L.; Proffitt, M. H.; Margitan, J. J.; Atlas, E. L.

    1998-01-01

    The concentrations of the hydrogen radicals OH and HO2 in the middle and upper troposphere were measured simultaneously with those of NO, O3, CO, H2O, CH4, non-methane hydrocarbons, and with the ultraviolet and visible radiation field. The data allow a direct examination of the processes that produce O3, in this region of the atmosphere. Comparison of the measured concentrations of OH and HO2 with calculations based on their production from water vapor, ozone, and methane demonstrate that these sources are insufficient to explain the observed radical concentrations in the upper troposphere. The photolysis of carbonyl and peroxide compounds transported to this region from the lower troposphere may provide the source of HO(x) required to sustain the measured abundances of these radical species. The mechanism by which NO affects the production of 03 is also illustrated by the measurements. In the upper tropospheric air masses sampled, the production rate for ozone (determined from the measured concentrations of HO2 and NO) is calculated to be about 1 part per billion by volume each day.This production rate is faster than previously thought and implies that anthropogenic activities that add NO to the upper troposphere, such as biomass burning and aviation, will lead to production of more 03 than expected.

  1. Superconductivity in aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Kubozono, Yoshihiro, E-mail: kubozono@cc.okayama-u.ac.jp [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Research Center of New Functional Materials for Energy Production, Storage and Transport, Okayama University, Okayama 700-8530 (Japan); Japan Science and Technology Agency, ACT-C, Kawaguchi 332-0012 (Japan); Goto, Hidenori; Jabuchi, Taihei [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Yokoya, Takayoshi [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Research Center of New Functional Materials for Energy Production, Storage and Transport, Okayama University, Okayama 700-8530 (Japan); Kambe, Takashi [Department of Physics, Okayama University, Okayama 700-8530 (Japan); Sakai, Yusuke; Izumi, Masanari; Zheng, Lu; Hamao, Shino; Nguyen, Huyen L.T. [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Sakata, Masafumi; Kagayama, Tomoko; Shimizu, Katsuya [Center of Science and Technology under Extreme Conditions, Osaka University, Osaka 560-8531 (Japan)

    2015-07-15

    Highlights: • Aromatic superconductor is one of core research subjects in superconductivity. Superconductivity is observed in certain metal-doped aromatic hydrocarbons. Some serious problems to be solved exist for future advancement of the research. This article shows the present status of aromatic superconductors. - Abstract: ‘Aromatic hydrocarbon’ implies an organic molecule that satisfies the (4n + 2) π-electron rule and consists of benzene rings. Doping solid aromatic hydrocarbons with metals provides the superconductivity. The first discovery of such superconductivity was made for K-doped picene (K{sub x}picene, five benzene rings). Its superconducting transition temperatures (T{sub c}’s) were 7 and 18 K. Recently, we found a new superconducting K{sub x}picene phase with a T{sub c} as high as 14 K, so we now know that K{sub x}picene possesses multiple superconducting phases. Besides K{sub x}picene, we discovered new superconductors such as Rb{sub x}picene and Ca{sub x}picene. A most serious problem is that the shielding fraction is ⩽15% for K{sub x}picene and Rb{sub x}picene, and it is often ∼1% for other superconductors. Such low shielding fractions have made it difficult to determine the crystal structures of superconducting phases. Nevertheless, many research groups have expended a great deal of effort to make high quality hydrocarbon superconductors in the five years since the discovery of hydrocarbon superconductivity. At the present stage, superconductivity is observed in certain metal-doped aromatic hydrocarbons (picene, phenanthrene and dibenzopentacene), but the shielding fraction remains stubbornly low. The highest priority research area is to prepare aromatic superconductors with a high superconducting volume-fraction. Despite these difficulties, aromatic superconductivity is still a core research target and presents interesting and potentially breakthrough challenges, such as the positive pressure dependence of T{sub c} that is clearly

  2. "Super-Reducing" Photocatalysis: Consecutive Energy and Electron Transfers with Polycyclic Aromatic Hydrocarbons.

    Science.gov (United States)

    Brasholz, Malte

    2017-08-21

    Donation welcome: Recent developments in visible-light photocatalysis allow the utilization of increasingly negative reduction potentials. Successive energy and electron transfer with polycyclic aromatic hydrocarbons enables the catalytic formation of strongly reducing arene radical anions, classical stoichiometric reagents for one-electron reduction in organic synthesis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Women and radicalization

    OpenAIRE

    Badran, Margot

    2006-01-01

    The paper focuses on women and radicalization within the context of Muslim societies (majority, minority, and half Muslim) societies and groups, mainly in Asia and Africa. The basic argument advanced in this paper is that Islamic feminism with its gender-egalitarian discourse and practices has a major role to play in the empowerment of Muslim women—and of men and society as a whole—and should be brought to bear in devising policy, strategy, and tools.

  4. Probability and radical behaviorism

    Science.gov (United States)

    Espinosa, James M.

    1992-01-01

    The concept of probability appears to be very important in the radical behaviorism of Skinner. Yet, it seems that this probability has not been accurately defined and is still ambiguous. I give a strict, relative frequency interpretation of probability and its applicability to the data from the science of behavior as supplied by cumulative records. Two examples of stochastic processes are given that may model the data from cumulative records that result under conditions of continuous reinforcement and extinction, respectively. PMID:22478114

  5. Probability and radical behaviorism

    OpenAIRE

    Espinosa, James M.

    1992-01-01

    The concept of probability appears to be very important in the radical behaviorism of Skinner. Yet, it seems that this probability has not been accurately defined and is still ambiguous. I give a strict, relative frequency interpretation of probability and its applicability to the data from the science of behavior as supplied by cumulative records. Two examples of stochastic processes are given that may model the data from cumulative records that result under conditions of continuous reinforc...

  6. Radical chic, javisst!

    NARCIS (Netherlands)

    Hartle, J.F.

    2012-01-01

    Det är lätt att raljera över engagerade människor, i synnerhet när engagemanget framstår som ytligt och chict snarare än grundläggande och autentiskt. Men vad ligger bakom ett sådant avfärdande? Johan Frederik Hartle läser om Tom Wolfes klassiska essä "Radical Chic" och visar hur Wolfe −− genom att

  7. Radical substitution with azide

    DEFF Research Database (Denmark)

    Pedersen, Christian Marcus; Marinescu, Lavinia Georgeta; Bols, Mikael

    2005-01-01

    and the substrate. A primary deuterium kinetic isotope effect was found for the azidonation of benzyl ethers both with TMSN3-PhI(OAc)2 and with IN3. Also a Hammett free energy relationship study of this reaction showed good correlation with sigma+ constants giving with rho-values of -0.47 for TMSN3-PhI(OAc)2 and -0.......39 for IN3. On this basis a radical mechanism of the reaction was proposed....

  8. Membrane separation of hydrocarbons

    Science.gov (United States)

    Chang, Y. Alice; Kulkarni, Sudhir S.; Funk, Edward W.

    1986-01-01

    Mixtures of heavy oils and light hydrocarbons may be separated by passing the mixture through a polymeric membrane. The membrane which is utilized to effect the separation comprises a polymer which is capable of maintaining its integrity in the presence of hydrocarbon compounds and which has been modified by being subjected to the action of a sulfonating agent. Sulfonating agents which may be employed will include fuming sulfuric acid, chlorosulfonic acid, sulfur trioxide, etc., the surface or bulk modified polymer will contain a degree of sulfonation ranging from about 15 to about 50%. The separation process is effected at temperatures ranging from about ambient to about 100.degree. C. and pressures ranging from about 50 to about 1000 psig.

  9. [Radical prostatectomy - pro robotic].

    Science.gov (United States)

    Gillitzer, R

    2012-05-01

    Anatomical radical prostatectomy was introduced in the early 1980s by Walsh and Donker. Elucidation of key anatomical structures led to a significant reduction in the morbidity of this procedure. The strive to achieve similar oncological and functional results to this gold standard open procedure but with further reduction of morbidity through a minimally invasive access led to the establishment of laparoscopic prostatectomy. However, this procedure is complex and difficult and is associated with a long learning curve. The technical advantages of robotically assisted surgery coupled with the intuitive handling of the device led to increased precision and shortening of the learning curve. These main advantages, together with a massive internet presence and aggressive marketing, have resulted in a rapid dissemination of robotic radical prostatectomy and an increasing patient demand. However, superiority of robotic radical prostatectomy in comparison to the other surgical therapeutic options has not yet been proven on a scientific basis. Currently robotic-assisted surgery is an established technique and future technical improvements will certainly further define its role in urological surgery. In the end this technical innovation will have to be balanced against the very high purchase and running costs, which remain the main limitation of this technology.

  10. Biodegradation of polycyclic aromatic hydrocarbons by Novosphingobium pentaromativorans US6-1

    National Research Council Canada - National Science Library

    Lyu, Yihua; Zheng, Wei; Zheng, Tianling; Tian, Yun

    2014-01-01

    Novosphingobium pentaromativorans US6-1, a marine bacterium isolated from muddy sediments of Ulsan Bay, Republic of Korea, was previously shown to be capable of degrading multiple polycyclic aromatic hydrocarbons (PAHs...

  11. Hydrocarbon-utilising micro-organisms from Dona Paula Bay, Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Bhosle, N.B.; Mavinkurve, S.

    Twenty-three hydrocarbon-utilising bacteria and one yeast were isolated, using enrichment techniques, from water and sediment samples. Vibrio and Pseudomonas were the predominant genera. Of the different organisms screened, Bacillus, Candida...

  12. Direct hydrocarbon fuel cells

    Science.gov (United States)

    Barnett, Scott A.; Lai, Tammy; Liu, Jiang

    2010-05-04

    The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

  13. Inhibition and Promotion of Pyrolysis by Hydrogen Sulfide (H2S) and Sulfanyl Radical (SH).

    Science.gov (United States)

    Zeng, Zhe; Altarawneh, Mohammednoor; Oluwoye, Ibukun; Glarborg, Peter; Dlugogorski, Bogdan Z

    2016-11-17

    This study resolves the interaction of sulfanyl radical (SH) with aliphatic (C1-C4) hydrocarbons, using CBS-QB3 based calculations. We obtained the C-H dissociation enthalpies and located the weakest link in each hydrocarbon. Subsequent computations revealed that, H abstraction by SH from the weakest C-H sites in alkenes and alkynes, except for ethylene, appears noticeably exothermic. Furthermore, abstraction of H from propene, 1-butene, and iso-butene displays pronounced spontaneity (i.e., ΔrG° < -20 kJ mol(-1) between 300-1200 K) due to the relatively weak allylic hydrogen bond. However, an alkyl radical readily abstracts H atom from H2S, with H2S acting as a potent scavenger for alkyl radicals in combustion processes. That is, these reactions proceed in the opposite direction than those involving SH and alkene or alkyne species, exhibiting shallow barriers and strong spontaneity. Our findings demonstrate that the documented inhibition effect of hydrogen sulfide (H2S) on pyrolysis of alkanes does not apply to alkenes and alkynes. During interaction with hydrocarbons, the inhibitive effect of H2S and promoting interaction of SH radical depend on the reversibility of the H abstraction processes. For the three groups of hydrocarbon, Evans-Polanyi plots display linear correlations between the bond dissociation enthalpies of the abstracted hydrogens and the relevant activation energies. In the case of methane, we demonstrated that the reactivity of SH radicals toward abstracting H atoms exceeds that of HO2 but falls below those of OH and NH2 radicals.

  14. Hydrocarbon analysis using desorption atmospheric pressure chemical ionization

    KAUST Repository

    Jjunju, Fred Paul Mark

    2013-07-01

    Characterization of the various petroleum constituents (hydronaphthalenes, thiophenes, alkyl substituted benzenes, pyridines, fluorenes, and polycyclic aromatic hydrocarbons) was achieved under ambient conditions without sample preparation by desorption atmospheric pressure chemical ionization (DAPCI). Conditions were chosen for the DAPCI experiments to control whether ionization was by proton or electron transfer. The protonated molecule [M+H]+ and the hydride abstracted [MH]+ form were observed when using an inert gas, typically nitrogen, to direct a lightly ionized plasma generated by corona discharge onto the sample surface in air. The abundant water cluster ions generated in this experiment react with condensed-phase functionalized hydrocarbon model compounds and their mixtures at or near the sample surface. On the other hand, when naphthalene was doped into the DAPCI gas stream, its radical cation served as a charge exchange reagent, yielding molecular radical cations (M+) of the hydrocarbons. This mode of sample ionization provided mass spectra with better signal/noise ratios and without unwanted side-products. It also extended the applicability of DAPCI to petroleum constituents which could not be analyzed through proton transfer (e.g., higher molecular PAHs such as chrysene). The thermochemistry governing the individual ionization processes is discussed and a desorption/ionization mechanism is inferred. © 2012 Elsevier B.V.

  15. Unravelling the impact of hydrocarbon structure on the fumarate addition mechanism--a gas-phase ab initio study.

    Science.gov (United States)

    Bharadwaj, Vivek S; Vyas, Shubham; Villano, Stephanie M; Maupin, C Mark; Dean, Anthony M

    2015-02-14

    The fumarate addition reaction mechanism is central to the anaerobic biodegradation pathway of various hydrocarbons, both aromatic (e.g., toluene, ethyl benzene) and aliphatic (e.g., n-hexane, dodecane). Succinate synthase enzymes, which belong to the glycyl radical enzyme family, are the main facilitators of these biochemical reactions. The overall catalytic mechanism that converts hydrocarbons to a succinate molecule involves three steps: (1) initial H-abstraction from the hydrocarbon by the radical enzyme, (2) addition of the resulting hydrocarbon radical to fumarate, and (3) hydrogen abstraction by the addition product to regenerate the radical enzyme. Since the biodegradation of hydrocarbon fuels via the fumarate addition mechanism is linked to bio-corrosion, an improved understanding of this reaction is imperative to our efforts of predicting the susceptibility of proposed alternative fuels to biodegradation. An improved understanding of the fuel biodegradation process also has the potential to benefit bioremediation. In this study, we consider model aromatic (toluene) and aliphatic (butane) compounds to evaluate the impact of hydrocarbon structure on the energetics and kinetics of the fumarate addition mechanism by means of high level ab initio gas-phase calculations. We predict that the rate of toluene degradation is ∼100 times faster than butane at 298 K, and that the first abstraction step is kinetically significant for both hydrocarbons, which is consistent with deuterium isotope effect studies on toluene degradation. The detailed computations also show that the predicted stereo-chemical preference of the succinate products for both toluene and butane are due to the differences in the radical addition rate constants for the various isomers. The computational and kinetic modeling work presented here demonstrates the importance of considering pre-reaction and product complexes in order to accurately treat gas phase systems that involve intra and inter

  16. Catalysis of Radical Reactions: A Radical Chemistry Perspective.

    Science.gov (United States)

    Studer, Armido; Curran, Dennis P

    2016-01-04

    The area of catalysis of radical reactions has recently flourished. Various reaction conditions have been discovered and explained in terms of catalytic cycles. These cycles rarely stand alone as unique paths from substrates to products. Instead, most radical reactions have innate chains which form products without any catalyst. How do we know if a species added in "catalytic amounts" is a catalyst, an initiator, or something else? Herein we critically address both catalyst-free and catalytic radical reactions through the lens of radical chemistry. Basic principles of kinetics and thermodynamics are used to address problems of initiation, propagation, and inhibition of radical chains. The catalysis of radical reactions differs from other areas of catalysis. Whereas efficient innate chain reactions are difficult to catalyze because individual steps are fast, both inefficient chain processes and non-chain processes afford diverse opportunities for catalysis, as illustrated with selected examples.

  17. Benzoxyl radical decomposition kinetics: formation of benzaldehyde + H, phenyl + CH2O, and benzene + HCO.

    Science.gov (United States)

    da Silva, Gabriel; Bozzelli, Joseph W

    2009-06-25

    The kinetics of benzoxyl radical decomposition was studied using ab initio computational chemistry and RRKM rate theory. The benzoxyl radical is an important but short-lived intermediate in the combustion of toluene and other alkylated aromatic hydrocarbons. A theoretical study of the thermochemistry and kinetics to products over a range of temperatures and pressures for benzoxyl decomposition is reported. Ab initio calculations with the G3X theoretical method reveal low-energy pathways from the benzoxyl radical to benzaldehyde + H and the phenyl radical + formaldehyde (CH(2)O), as well as a novel mechanism to benzene + the formyl radical (HC(*)O). RRKM simulations were performed for benzoxyl decomposition as a function of temperature and pressure. Benzaldehyde formation constitutes more than 80% of the total reaction products at temperatures below 1000 K, decreasing to around 50% at 2000 K. Formation of benzene + HC(*)O and phenyl + CH(2)O is of similar importance, each accounting for 5-10% of the decomposition products at around 1000 K, increasing to 20-30% at 2000 K. The results presented here should lead to improved kinetic models for the oxidation of alkylated aromatic hydrocarbons, particularly for the formation of benzene as a direct oxidation product of toluene. Re-evaluation of the phenyl radical heat of formation leads us to suggest a benzene C-H bond dissociation energy in the range of 113.5-114.5 kcal mol(-1).

  18. Repair effect of thymine radical anion by echinocoside using pulse radiolysis

    Institute of Scientific and Technical Information of China (English)

    李雯艳; 郑荣梁; 赵松岭; 姜岳; 林念芸

    1996-01-01

    Repair activities of thymine radical anion by echinocoside, isolated from Pedicularis plicata. were studied using pulse radiolysis technique. The thymine radical anion was produced by the reaction of hydrated electron with thymine. Echinocoside. one of the polyphenols of phenylpropanoid glycoside, was added to the thymine aqueous solution saturated with N2. Kinetic analysis by transient absorption spectrum showed that thymine radical anion was formed at first, and then after several decades of microseconds of pulse radiolysis. the spectrum of thymine radical anion was changed to that of echinocoside radical anion. The evidence indicated that thymine radical anion was repaired through one-electron-transfer between the DNA base radical anion and echinocoside. The rate constant of electron transfer by echinocoside was 1.45× 109 dm3 · mol1 · s 1.

  19. Radically innovative steelmaking technologies

    Science.gov (United States)

    Szekely, Julian

    1980-09-01

    The steel industry is faced with serious problems caused by the increasing cost of energy, labor and capital and by tough overseas competition, employing new highly efficient process plants. The very high cost of capital and of capital equipment renders the construction of new green field site plants, exemplifying the best available technology economically unattractive. For this reason, over the long term the development radically innovative steelmaking technologies appears to be the only satisfactory resolution of this dilemma. The purpose of this article is to present a critical review of some of the radically innovative steelmaking technologies that have been proposed during the past few years and to develop the argument that these indeed do deserve serious consideration at the present time. It should be stressed, however, that these innovative technologies can be implemented only as part of a carefully conceived long range plan, which contains as a subset short term solutions, such as trigger prices improved investment credits, and so forth and intermediate term solutions, such as more extensive use of continuous casting, external desulfurization and selective modernization in general.

  20. Bursectomy at radical gastrectomy

    Institute of Scientific and Technical Information of China (English)

    Cuneyt; Kayaalp

    2015-01-01

    Radical gastrectomy with extended lymph node dissec tion and prophylactic resection of the omentum, peri toneum over the posterior lesser sac, pancreas and/o spleen was advocated at the beginning of the 1960 s in Japan. In time, prophylactic routine resections of the pancreas and/or spleen were abandoned because of the high incidence of postoperative complications. However omentectomy and bursectomy continued to be standard parts of traditional radical gastrectomy. The bursaomentalis was thought to be a natural barrier against invasion of cancer cells into the posterior part of the stomach. The theoretical rationale for bursectomy was to reduce the risk of peritoneal recurrences by eliminating the peritoneum over the lesser sac, which might include free cancer cells or micrometastases. Over time, the indication for bursectomy was gradually reduced to only patients with posterior gastric wall tumors penetrating the serosa. Despite its theoretical advantages, its benefit for recurrence or survival has not been proven yet. The possible reasons for this inconsistency are discussed in this review. In conclusion, the value of bursectomy in the treatment of gastric cancer is still under debate and large-scale randomized studies are necessary. Until clear evidence of patient benefit is obtained, its routine use cannot be recommended.

  1. Conversion of Methane to C2 Hydrocarbons via Cold Plasma Reaction

    Institute of Scientific and Technical Information of China (English)

    Baowei Wang; Genhui Xu

    2003-01-01

    Direct conversion of methane to C2 hydrocarbons via cold plasma reaction with catalysts has been studied at room temperature and atmospheric pressure. Methane can be converted into C2 hydrocarbons in different selectivity depending on the form of the reactor, power of plasma, flow rate of methane, ratio of N2/CH4 and nature of the catalysts. The selectivity to C2 hydrocarbons can reach as high as 98.64%, and the conversion of methane as high as 60% and the yield of C2 hydrocarbons as high as 50% are obtained. Coking can be minimized under the conditions of: proper selection of the catalysts,appropriate high flow rate of inlet methane and suitable ratio of N2 to CH4. The catalyst surface provides active sites for radical recombination.

  2. Biodegradation and dissolution of polyaromatic hydrocarbons by Stenotrophomonas sp.

    Science.gov (United States)

    Tiwari, Bhagyashree; Manickam, N; Kumari, Smita; Tiwari, Akhilesh

    2016-09-01

    The aim of this work was to study the biodegradation capabilities of a locally isolated bacterium, Stenotrophomonas sp. strain IITR87 to degrade the polycyclic aromatic hydrocarbons and also check the preferential biodegradation of polycyclic aromatic hydrocarbons (PAHs). From preferential substrate degradation studies, it was found that Stenotrophomonas sp. strain IITR87 first utilized phenanthrene (three membered ring), followed by pyrene (four membered ring), then benzo[α]pyrene (five membered ring). Dissolution study of PAHs with surfactants, rhamnolipid and tritonX-100 showed that the dissolution of PAHs increased in the presence of surfactants.

  3. Petroleum Hydrocarbon Degradation Potential of Soil Bacteria Native to the Yellow River Delta

    Institute of Scientific and Technical Information of China (English)

    WANG Zhen-Yu; GAO Dong-Mei; LI Feng-Min; ZHAO Jian; XIN Yuan-Zheng; S.SIMKINS; XING Bao-Shan

    2008-01-01

    The bioremediation potential of bacteria indigenous to soils of the Yellow River Delta in China was evaluated as a treatment option for soil remediation. Petroleum hydrocarbon degraders were isolated from contaminated soil samples from the Yellow River Delta. Four microbial communities and eight isolates were obtained. The optimal temperature, salinity, pH, and the ratios of C, N, and P (C:N:P) for the maximum biodegradation of diesel oil, crude oil, n-alkanes, and polyaromatic hydrocarbons by ndigenous bacteria were determined, and the kinetics changes in microbial communities were monitored. In general, the mixed microbial consortia demonstrated wider catabolic versatility and faster overall rate of hydrocarbon degradation than individual isolates. Our experimental results demonstrated the feasibility of biodegradation of petroleum hydrocarbon by indigenous bacteria for oil remediation in the Yellow River Delta.

  4. Hydrocarbon conversion catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Hoek, A.; Huizinga, T.; Maxwell, I.E.

    1989-08-15

    This patent describes a process for hydrocracking hydrocarbon oils into products of lower average molecular weight and lower average boiling point. It comprises contacting a hydrocarbon oil at a temperature between 250{sup 0}C and 500{sup 0}C and a pressure up to 300 bar in the presence of hydrogen with a catalyst consisting essentially of a Y zeolite modified to have a unit cell size below 24.35A, a water absorption capacity (at 25{sup 0}C and a rho/rho/sub o/ value of 0.2) of at least 8% by weight of the zeolite and a pore volume of at least 0.25 ml/g wherein between 10% and 60% of the total pore volume is made up of pores having a diameter of at least 8 nm; an alumina binder and at least one hydrogenation component selected from the group consisting of a Group VI metal, a Group VIII metal and mixtures thereof.

  5. Exploration of hydrocarbon degrading bacteria on soils contaminated by crude oil from South Sumatera

    Directory of Open Access Journals (Sweden)

    A. Napoleon

    2014-07-01

    Full Text Available The goal of this research was to explore hydrocarbon degrading bacteria on crude oil contaminated soil with potential to degrade hydrocarbon in oil pollutant. The research started by early August 2013 till January 2014. Soil sampling for this research was taken on several places with contaminated soil location such as Benakat, Rimau, and Pengabuan all of it located in South Sumatera. Conclusion from this research Isolates obtained from three (3 sites of contaminated soil and treated using SBS medium were Bacillus cereus, Pseudomonas aeruginosa, Klebsiella pnumoniae, Streptococcus beta hemolisa, Proteus mirabilis, Staphylococcus epidermis and Acinotobacter calcoaceticus. Isolates that survived on 300 ppm of hydrocarbon concentration were Bacillus cereus, Pseudomonas aeruginosa and Acinetobacter cakciaceticus Selected isolates posses the ability to degrade hydrocarbon by breaking hydrocarbon substance as the energy source to support isolates existence up to 1,67 TPH level. Based on results accomplish by this research, we urge for further research involving the capacity of isolates to degrade wide variety of hydrocarbon substance and more to develop the potential of these bacteria for bioremediation.

  6. Aryl hydrocarbon hydroxylase represents CYP1B1, and not CYP1A1, in human freshly isolated white cells: trimodal distribution of Japanese population according to induction of CYP1B1 mRNA by environmental dioxins.

    Science.gov (United States)

    Toide, Kenji; Yamazaki, Hiroshi; Nagashima, Rikako; Itoh, Keisuke; Iwano, Shunsuke; Takahashi, Yoshiki; Watanabe, Shaw; Kamataki, Tetsuya

    2003-03-01

    The expression level of mRNAs for cytochrome P450 (CYP) 1A1 and 1B1 in freshly prepared white cells from 72 subjects exposed to dioxins at waste incinerators was investigated. The amounts of CYP1B1 mRNA ranged from 0.16 to 671 molecules/10(7) molecules of 18S rRNA, whereas the amounts of CYP1A1 mRNA were dioxins. The inducibility of CYP1B1 mRNA in leukocytes, defined as the ratio of CYP1B1 mRNA to the plasma concentration of dioxins, varied among the subjects. It was found that the subjects showed trimodal distribution according to inducibility: 39 (54.2%), 25 (34.7%), and 8 (11.1%) of 72 subjects were judged as poor, intermediate, and high responders to environmental dioxins, respectively. The amounts of CYP1B1 mRNA in leukocytes of the intermediate and high responders were highly correlated with the plasma concentrations of dioxins (P dioxins is involved in aromatic hydrocarbon hydroxylase activities in human lymphocytes.

  7. Thermophysical Properties of Hydrocarbon Mixtures

    Science.gov (United States)

    SRD 4 NIST Thermophysical Properties of Hydrocarbon Mixtures (PC database for purchase)   Interactive computer program for predicting thermodynamic and transport properties of pure fluids and fluid mixtures containing up to 20 components. The components are selected from a database of 196 components, mostly hydrocarbons.

  8. Hydrocarbon Receptor Pathway in Dogs

    NARCIS (Netherlands)

    Steenbeek, F.G. van; Spee, B.; Penning, L.C.; Kummeling, A.; Gils, I.H.M.; Grinwis, G.C.M.; Leenen, D. van; Holstege, F.C.P.; Vos-Loohuis, M.; Rothuizen, J.; Leegwater, P.A.J.

    2013-01-01

    The aryl hydrocarbon receptor (AHR) mediates biological responses to toxic chemicals. An unexpected role for AHR in vascularization was suggested when mice lacking AHR displayed impaired closure of the ductus venosus after birth, as did knockout mice for aryl hydrocarbon receptor interacting protein

  9. Hydrocarbon Receptor Pathway in Dogs

    NARCIS (Netherlands)

    Steenbeek, F.G. van; Spee, B.; Penning, L.C.; Kummeling, A.; Gils, I.H.M.; Grinwis, G.C.M.; Leenen, D. van; Holstege, F.C.P.; Vos-Loohuis, M.; Rothuizen, J.; Leegwater, P.A.J.

    The aryl hydrocarbon receptor (AHR) mediates biological responses to toxic chemicals. An unexpected role for AHR in vascularization was suggested when mice lacking AHR displayed impaired closure of the ductus venosus after birth, as did knockout mice for aryl hydrocarbon receptor interacting

  10. Hydroxyl radical reactivity at the air-ice interface

    Directory of Open Access Journals (Sweden)

    T. F. Kahan

    2010-01-01

    Full Text Available Hydroxyl radicals are important oxidants in the atmosphere and in natural waters. They are also expected to be important in snow and ice, but their reactivity has not been widely studied in frozen aqueous solution. We have developed a spectroscopic probe to monitor the formation and reactions of hydroxyl radicals in situ. Hydroxyl radicals are produced in aqueous solution via the photolysis of nitrite, nitrate, and hydrogen peroxide, and react rapidly with benzene to form phenol. Similar phenol formation rates were observed in aqueous solution and bulk ice. However, no reaction was observed at air-ice interfaces, or when bulk ice samples were crushed prior to photolysis to increase their surface area. We also monitored the heterogeneous reaction between benzene present at air-water and air-ice interfaces with gas-phase OH produced from HONO photolysis. Rapid phenol formation was observed on water surfaces, but no reaction was observed at the surface of ice. Under the same conditions, we observed rapid loss of the polycyclic aromatic hydrocarbon (PAH anthracene at air-water interfaces, but no loss was observed at air-ice interfaces. Our results suggest that the reactivity of hydroxyl radicals toward aromatic organics is similar in bulk ice samples and in aqueous solution, but is significantly suppressed in the quasi-liquid layer (QLL that exists at air-ice interfaces.

  11. Radicals in Berkeley?

    Science.gov (United States)

    Linn, Stuart

    2015-04-03

    In a previous autobiographical sketch for DNA Repair (Linn, S. (2012) Life in the serendipitous lane: excitement and gratification in studying DNA repair. DNA Repair 11, 595-605), I wrote about my involvement in research on mechanisms of DNA repair. In this Reflections, I look back at how I became interested in free radical chemistry and biology and outline some of our bizarre (at the time) observations. Of course, these studies could never have succeeded without the exceptional aid of my mentors: my teachers; the undergraduate and graduate students, postdoctoral fellows, and senior lab visitors in my laboratory; and my faculty and staff colleagues here at Berkeley. I am so indebted to each and every one of these individuals for their efforts to overcome my ignorance and set me on the straight and narrow path to success in research. I regret that I cannot mention and thank each of these mentors individually.

  12. Diesel-related hydrocarbons can dominate gas phase reactive carbon in megacities

    Directory of Open Access Journals (Sweden)

    R. E. Dunmore

    2015-09-01

    Full Text Available Hydrocarbons are key precursors to two priority air pollutants, ozone and particulate matter. Those with two to seven carbons have historically been straightforward to observe and have been successfully reduced in many developed cities through air quality policy interventions. Longer chain hydrocarbons released from diesel vehicles are not considered explicitly as part of air quality strategies and there are few direct measurements of their gaseous abundance in the atmosphere. This study describes the chemically comprehensive and continuous measurements of organic compounds in a developed megacity (London, which demonstrate that on a seasonal median basis, diesel-related hydrocarbons represent only 20–30 % of the total hydrocarbon mixing ratio but comprise more than 50 % of the atmospheric hydrocarbon mass and are a dominant local source of secondary organic aerosols. This study shows for the first time that 60 % of the winter primary hydrocarbon hydroxyl radical reactivity is from diesel-related hydrocarbons and using the maximum incremental reactivity scale, we predict that they contribute up to 50 % of the ozone production potential in London. Comparing real-world urban composition with regulatory emissions inventories in the UK and US highlights a previously unaccounted for, but very significant, under-reporting of diesel-related hydrocarbons; an underestimation of a factor ~4 for C9 species rising to a factor of over 70 for C12 during winter. These observations show that hydrocarbons from diesel vehicles can dominate gas phase reactive carbon in cities with high diesel fleet fractions. Future control of urban particulate matter and ozone in such locations requires a shift in policy focus onto gas phase hydrocarbons released from diesels as this vehicle type continues to displace gasoline world-wide.

  13. Chemistry of carbonization - I. A theoretical study of free radical formation from starting materials

    Energy Technology Data Exchange (ETDEWEB)

    Ruette, F.; Sierraalta, A.; Castells, V.; Laya, M. (Instituto Venezolano de Investigaciones Cientificas, Caracas (Venezuela). Laboratorio de Quimica Computacional)

    1993-01-01

    The effect of size, shape, and aromaticity in the formation of radicals from model polyaromatic hydrocarbons (PAH) was theoretically studied using the MINDO/3 method. The results were interpreted in terms of hydrogen transfer on carbonization and liquefaction processes of coal-related compounds. Additives that donate or withdraw electrons were modeled by calculating negatively or positively charged systems. The results show that the hydrogen donating properties of PAHs increase with the increase of their molecular weights. The formation of anionic [pi]-radicals is thermodynamically favoured, contrary to cationic [pi]-radicals. Negative charge favoured the formation of low molecular weight radicals, and therefore, the hydrogen transfer from light to heavy PAHs. Positive charges, in general, do not facilitate the hydrogen transfer. 42 refs., 2 figs., 4 tabs.

  14. Muoniated acyl and thioacyl radicals

    Energy Technology Data Exchange (ETDEWEB)

    McKenzie, Iain [TRIUMF and Department of Chemistry, 8888 University Drive, Simon Fraser University, Burnaby B.C., V5A 1S6 (Canada); Brodovitch, Jean-Claude [TRIUMF and Department of Chemistry, 8888 University Drive, Simon Fraser University, Burnaby B.C., V5A 1S6 (Canada); Ghandi, Khashayar [TRIUMF and Department of Chemistry, 8888 University Drive, Simon Fraser University, Burnaby B.C., V5A 1S6 (Canada); Percival, Paul W. [TRIUMF and Department of Chemistry, 8888 University Drive, Simon Fraser University, Burnaby B.C., V5A 1S6 (Canada)]. E-mail: percival@sfu.ca

    2006-03-31

    The product of the reaction of muonium with tert-butylisocyanate was previously assigned as the muoniated tert-butylaminyl radical (I. McKenzie, J.-C. Brodovitch, K. Ghandi, S. Kecman, P. W. Percival, Physica B 326 (2003) 76). This assignment is incorrect since the muon and {sup 14}N hyperfine-coupling constants (hfcc) of this radical would have the opposite sign, which is in conflict with the experimental results. The radical is now reassigned as the muoniated N-tert-butylcarbamoyl radical, based on the similarities between the experimental muon and {sup 14}N hfcc and hfcc calculated at the UB3LYP/6-311G(d,p)//UB3LYP/EPR-III level. The large zero-point energy in the N-Mu bond results in the dissociation barrier of the muoniated N-tert-butylcarbamoyl radical being above the combined energy of the reactants, in contrast to the N-tert-butylcarbamoyl radical where the dissociation barrier lies below the combined energy of the reactants. The reaction of muonium with tert-butylisothiocyanate produced both conformers of the muoniated N-tert-butylthiocarbamoyl radical and their assignment was based on the similarities between the experimental and calculated muon hfcc. These are the first acyl and thioacyl radicals to be directly detected by muon spin spectroscopy.

  15. Radical chic? Yes we are!

    OpenAIRE

    Hartle, J.F.

    2012-01-01

    Ever since Tom Wolfe in a classical 1970 essay coined the term "radical chic", upper-class flirtation with radical causes has been ridiculed. But by separating aesthetics from politics Wolfe was actually more reactionary than the people he criticized, writes Johan Frederik Hartle.

  16. Melatonin scavenges phenylglyoxylic ketyl radicals.

    Science.gov (United States)

    Sersen, F; Vencel, T; Annus, J

    2004-12-01

    The antioxidant properties of melatonin were tested in this work by EPR technique. It was found that melatonin scavenges phenylglyoxylic ketyl radicals. Its effectiveness was 10-times lower than that of vitamin C. A new method of generation of phenylglyoxylic ketyl radicals by spontaneous decomposition of D,L-2,3-diphenyltartaric acid in propan-2-ol was used.

  17. Electronic Transition Spectra of Thiophenoxy and Phenoxy Radicals in Hollow Cathode Discharges

    Science.gov (United States)

    Araki, Mitsunori; Wako, Hiromichi; Niwayama, Kei; Tsukiyama, Koichi

    2014-06-01

    Diffuse interstellar bands (DIBs) still remain the longest standing unsolved problem in spectroscopy and astrochemistry, although several hundreds of DIBs have been already detected. It is expected that identifications of DIBs can give us crucial information for extraterrestrial organic molecule. One of the best approaches to identify carrier molecules of DIBs is a measurement of DIB candidate molecule produced in the laboratory to compare their absorption spectra with astronomically observed DIB spectra. Radical in a gas phase is a potential DIB candidate molecule. The electronic transitions of polyaromatic hydrocarbon radicals result in optical absorption. However, because radicals are unstable, their electronic transitions are difficult to observe using a laboratory spectrometer system. To solve this difficulty, we have developed a glow-discharge cell using a hollow cathode in which radicals can be effectively produced as a high-density plasma. The radicals produced were measured by using the cavity ringdown (CRD) spectrometer and the discharge emission spectrometer. The CRD spectrometer, which consists of a tunable pulse laser system, an optical cavity and a discharge device, is an apparatus to observe an high-resolution optical absorption spectrum. The electronic transition of the thiophenoxy radical C6H5OS was observed in the discharge emission of thiophenol C6H5OH. The electronic transition frequency of the thiophenoxy radical was measured. A optical discharge emission was examined by using a HORIBA Jobin Yvon iHR320 monochromator. We detected the phenoxy radical C6H5O in the discharge of phenol C6H5OH. The band observed at 6107 Å in the discharge was assigned to the electronic transition of the phenoxy radical on the basis of the sample gas dependences and the reported low resolution spectrum. The electronic transition frequency of the phenoxy radical was measured. Comparison studies of the thiophenoxy and phenoxy radicals were made with known DIB spectra

  18. Insights into gas-phase reaction mechanisms of small carbon radicals using isomer-resolved product detection.

    Science.gov (United States)

    Trevitt, Adam J; Goulay, Fabien

    2016-02-17

    For reactive gas-phase environments, including combustion, extraterrestrials atmospheres and our Earth's atmosphere, the availability of quality chemical data is essential for predictive chemical models. These data include reaction rate coefficients and product branching fractions. This perspective overviews recent isomer-resolved production detection experiments for reactions of two of the most reactive gas phase radicals, the CN and CH radicals, with a suite of small hydrocarbons. A particular focus is given to flow-tube experiments using synchrotron photoionization mass spectrometry. Coupled with computational studies and other experiment techniques, flow tube isomer-resolved product detection have provided significant mechanistic details of these radical + neutral reactions with some general patterns emerging.

  19. Inhibition and Promotion of Pyrolysis by Hydrogen Sulfide (H2S) and Sulfanyl Radical (SH)

    DEFF Research Database (Denmark)

    Zeng, Zhe; Altarawneh, Mohammednoor; Oluwoye, Ibukun

    2016-01-01

    , an alkyl radical readily abstracts H atom from H2S, with H2S acting as a potent scavenger for alkyl radicals in combustion processes. That is, these reactions proceed in the opposite direction than those involving SH and alkene or alkyne species, exhibiting shallow barriers and strong spontaneity. Our...... findings demonstrate that the documented inhibition effect of hydrogen sulfide (H2S) on pyrolysis of alkanes does not apply to alkenes and alkynes. During interaction with hydrocarbons, the inhibitive effect of H2S and promoting interaction of SH radical depend on the reversibility of the H abstraction...

  20. The chemistry of separations ligand degradation by organic radical cations

    Energy Technology Data Exchange (ETDEWEB)

    Mezyk, S.P.; Horne, G.P. [California State University at Long Beach, Long Beach, CA 90840 (United States); Mincher, B.J.; Zalupski, P.R. [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Cook, A.R.; Wishart, J.F. [Chemistry Department, Brookhaven National Laboratory, New York, 11973 (United States)

    2016-07-01

    Solvent based extractions of used nuclear fuel use designer ligands in an organic phase extracting ligand complexed metal ions from an acidic aqueous phase. These extractions will be performed in highly radioactive environments, and the radiation chemistry of all these complexing agents and their diluents will play a major role in determining extraction efficiency, separation factors, and solvent-recycle longevity. Although there has been considerable effort in investigating ligand damage occurring in acidic water radiolysis conditions, only minimal fundamental kinetic and mechanistic data has been reported for the degradation of extraction ligands in the organic phase. Extraction solvent phases typically use normal alkanes such as dodecane, TPH, and kerosene as diluents. The radiolysis of such diluents produce a mixture of radical cations (R{sup .+}), carbon-centered radicals (R{sup .}), solvated electrons, and molecular products such as hydrogen. Typically, the radical species will preferentially react with the dissolved oxygen present to produce relatively inert peroxyl radicals. This isolates the alkane radical cation species, R{sup .+} as the major radiolytically-induced organic species that can react with, and degrade, extraction agents in this phase. Here we report on our recent studies of organic radical cation reactions with 2 ligands: CMPO and TODGA. Elucidating these parameters, and combining them with the known acidic aqueous phase chemistry, will allow a full, fundamental, understanding of the impact of radiation on solvent extraction based separation processes to be achieved. (authors)

  1. Isolation and assessment of the molecular and electronic structures of azo-anion-radical complexes of chromium and molybdenum. Experimental and theoretical characterization of complete electron-transfer series.

    Science.gov (United States)

    Joy, Sucheta; Krämer, Tobias; Paul, Nanda D; Banerjee, Priyabrata; McGrady, John E; Goswami, Sreebrata

    2011-10-17

    The reaction of 3 equiv of the ligand 2-[(2-chlorophenyl)azo]pyridine (L(a)) or 2-[(4-chlorophenyl)azo]pyridine (L(b)) with 1 equiv of Cr(CO)(6) or Mo(CO)(6) in boiling n-octane afforded [Cr(L(a/b))(3)](0) (1a and 1b) and [Mo(L(a/b))(3)](0) (2a and 2b). The chemical oxidation reaction of these neutral complexes with I(2) in CH(2)Cl(2) provided access to air-stable one-electron-oxidized species as their triiodide (I(3)(-)) salts. The electronic structures of chromium and molybdenum centers coordinated by the three redox noninnocent ligands L(a/b) along with their redox partners have been elucidated by using a host of physical methods: X-ray crystallography, magnetic susceptibility measurements, nuclear magnetic resonance, cyclic voltammetry, absorption spectroscopy, electron paramagnetic resonance spectroscopy, and density functional theory. The four representative complexes, 1a, [1a]I(3), 2a, and [2a]I(3), have been characterized by X-ray crystallography. The results indicate a predominant azo-anion-radical description of the ligands in the neutral chromium(III) species, [Cr(III)(L(•-))(3)], affording a singlet ground state through strong metal-ligand antiferromagnetic coupling. All of the electrochemical processes are ligand-based; i.e., the half-filled (t(2g))(3) set of the Cr(III) d(3) ion remains unchanged throughout. The description of the molybdenum analogue is less clear-cut because mixing between metal- and ligand-based orbitals is more significant. On the basis of variations in net spin densities and orbital compositions, we argue that the oxidation events are again primarily ligand-based, although the electron density at the molybdenum center is clearly more variable than that at the chromium center in the corresponding series [1a](+), 1a, and [1a](-).

  2. Glucoraphanin, the bioprecursor of the widely extolled chemopreventive agent sulforaphane found in broccoli, induces Phase-I xenobiotic metabolizing enzymes and increases free radical generation in rat liver

    Energy Technology Data Exchange (ETDEWEB)

    Perocco, Paolo [Department of Experimental Pathology, Cancerology Section, viale Filopanti 22, I-40126, University of Bologna, Bologna (Italy); Bronzetti, Giorgio [Institute of Biology and Agricultural Biotechnology - CNR Research Area, via Moruzzi, I-56124 Pisa (Italy); Canistro, Donatella; Sapone, Andrea; Affatato, Alessandra; Pozzetti, Laura; Broccoli, Massimiliano [Department of Pharmacology, Molecular Toxicology Unit, via Irnerio 48, I-40126, University of Bologna, Bologna (Italy); Valgimigli, Luca [Department of Organic Chemistry ' A. Mangini' , Viale Risorgimento 4, I-40127, Alma-Mater Studiorum, University of Bologna, Bologna (Italy); Pedulli, Gian Franco [Department of Organic Chemistry ' A. Mangini' , Viale Risorgimento 4, I-40127, Alma-Mater Studiorum, University of Bologna, Bologna (Italy); Iori, Renato [C.R.A - Research Institute for Industrial Crops, via di Corticella 133, I-40129 Bologna (Italy); Barillari, Jessica [Institute of Biology and Agricultural Biotechnology - CNR Research Area, via Moruzzi, I-56124 Pisa (Italy)]|[C.R.A - Research Institute for Industrial Crops, via di Corticella 133, I-40129 Bologna (Italy); Sblendorio, Valeriana [Department of Pharmacology, Molecular Toxicology Unit, via Irnerio 48, I-40126, University of Bologna, Bologna (Italy); Legator, Marvin S. [Department of Preventive Medicine and Community Health, Division of Environmental Toxicology, The University of Texas Medical Branch at Galveston, 700 Harborside Drive, Galveston, TX 77555-1110 (United States); Paolini, Moreno [Department of Pharmacology, Molecular Toxicology Unit, via Irnerio 48, I-40126, University of Bologna, Bologna (Italy); Abdel-Rahman, Sherif Z. [Department of Preventive Medicine and Community Health, Division of Environmental Toxicology, The University of Texas Medical Branch at Galveston, 700 Harborside Drive, Galveston, TX 77555-1110 (United States)]. E-mail: sabdelra@utmb.edu

    2006-03-20

    Epidemiological and animal studies linking high fruit and vegetable consumption to lower cancer risk have strengthened the belief that long-term administration of isolated naturally occurring dietary constituents could reduce the risk of cancer. In recent years, metabolites derived from phytoalexins, such as glucoraphanin found in broccoli and other cruciferous vegetables (Brassicaceae), have gained much attention as potential cancer chemopreventive agents. The protective effect of these micronutrients is assumed to be due to the inhibition of Phase-I carcinogen-bioactivating enzymes and/or induction of Phase-II detoxifying enzymes, an assumption that still remains uncertain. The protective effect of glucoraphanin is thought to be due to sulforaphane, an isothiocyanate metabolite produced from glucoraphanin by myrosinase. Here we show, in rat liver, that while glucoraphanin slightly induces Phase-II enzymes, it powerfully boosts Phase-I enzymes, including activators of polycyclic aromatic hydrocarbons (PAHs), nitrosamines and olefins. Induction of the cytochrome P450 (CYP) isoforms CYP1A1/2, CYP3A1/2 and CYP2E1 was confirmed by Western immunoblotting. CYP induction was paralleled by an increase in the corresponding mRNA levels. Concomitant with this Phase-I induction, we also found that glucoraphanin generated large amount of various reactive radical species, as determined by electron paramagnetic resonance (EPR) spectrometry coupled to a radical-probe technique. This suggests that long-term uncontrolled administration of glucoraphanin could actually pose a potential health hazard.

  3. pi-dimerization of pleiadiene radical cations at low temperatures revealed by UV-vis spectroelectrochemistry and quantum theory

    NARCIS (Netherlands)

    van het Goor, Layo; van Duijnen, Piet Th.; Koper, Carola; Jenneskens, Leonardus W.; Havenith, Remco W. A.; Hartl, Frantisek

    2011-01-01

    One-electron oxidation of the non-alternant polycyclic aromatic hydrocarbon pleiadiene and related cyclohepta[c,d]pyrene and cyclohepta[c,d]fluoranthene in THF produces corresponding radical cations detectable in the temperature range of 293-263 K only on the subsecond time scale of cyclic voltammet

  4. Effects of delocalization on intrinsic barriers for H-atom transfer: Implications for the radical hydrogen transfer reaction

    Energy Technology Data Exchange (ETDEWEB)

    Camaioni, D.M.; Autrey, S.T.; Ferris, K.F.; Franz, J.A.

    1992-08-01

    PM3 calculations of transition states (TS) for both normal H-atom transfer and radical hydrogen transfer (RHT) reactions of a a wide-variety of hydrocarbon structures have enabled development of quantitative structure-reactivity relationships. Results indicate that activation barriers for RHT reactions are large enough that thermoneutral and endothermic reactions should not compete with alternative multistep pathways.

  5. Development of an efficient bacterial consortium for the potential remediation of hydrocarbons from contaminated sites

    Directory of Open Access Journals (Sweden)

    Kaustuvmani Patowary

    2016-07-01

    Full Text Available The intrinsic biodegradability of hydrocarbons and the distribution of proficient degrading microorganisms in the environment are very crucial for the implementation of bioremediation practices. Among others, one of the most favorable methods that can enhance the effectiveness of bioremediation of hydrocarbon-contaminated environment is the application of biosurfactant producing microbes. In the present study, the biodegradation capacities of native bacterial consortia towards total petroleum hydrocarbons (TPH with special emphasis to poly aromatic hydrocarbons (PAHs were determined. The purpose of the study was to isolate TPH degrading bacterial strains from various petroleum contaminated soil of Assam, India and develop a robust bacterial consortium for bioremediation of crude oil of this native land. From a total of 23 bacterial isolates obtained from three different hydrocarbons contaminated samples 5 isolates, namely KS2, PG1, PG5, R1 and R2 were selected as efficient crude oil degraders with respect to their growth on crude oil enriched samples. Isolates KS2, PG1 and R2 are biosurfactant producers and PG5, R1 are non-producers. Fourteen different consortia were designed involving both biosurfactant producing and non-producing isolates. Consortium 10, which comprises two Bacillus strains namely, Bacillus pumilus KS2 and Bacillus cereus R2 (identified by 16s rRNA sequencing has shown the best result in the desired degradation of crude oil. The consortium showed degradation up to 84.15% of total petroleum hydrocarbon (TPH after five weeks of incubation, as revealed from gravimetric analysis. FTIR (Fourier transform infrared and GCMS (Gas chromatography-mass spectrometer analyses were correlated with gravimetric data which reveals that the consortium has removed a wide range of petroleum hydrocarbons in comparison with abiotic control including different aliphatic and aromatic hydrocarbons.

  6. Bromination of hydrocarbons with CBr4, initiated by light-emitting diode irradiation

    Directory of Open Access Journals (Sweden)

    Yuta Nishina

    2013-08-01

    Full Text Available The bromination of hydrocarbons with CBr4 as a bromine source, induced by light-emitting diode (LED irradiation, has been developed. Monobromides were synthesized with high efficiency without the need for any additives, catalysts, heating, or inert conditions. Action and absorption spectra suggest that CBr4 absorbs light to give active species for the bromination. The generation of CHBr3 was confirmed by NMR spectroscopy and GC–MS spectrometry analysis, indicating that the present bromination involves the homolytic cleavage of a C–Br bond in CBr4 followed by radical abstraction of a hydrogen atom from a hydrocarbon.

  7. Closed-Shell Polycyclic Aromatic Hydrocarbon Cations: A New Category of Interstellar Polycyclic Aromatic Hydrocarbons

    Science.gov (United States)

    Hudgins, Douglas M.; Bauschlicher, Charles W., Jr.; Allamandola, Louis J.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Density functional theory has been employed to calculate the harmonic frequencies and intensities of a range of polycyclic aromatic hydrocarbon (PAH) cations that explore both size and electronic structure effects of the infrared spectroscopic properties of these species. The sample extends the size range of PAH species considered to more than 50 carbon atoms and includes several representatives from each of two heretofore unexplored categories of PAH cations: (1) fully benzenoid PAH cations whose carbon skeleton is composed of an odd number of carbon atoms (C(sub odd) PAHs); and (2) protonated PAH cations (HPAH+). Unlike the radical electronic structures of the PAH cations that have been the subject of previous theoretical and experimental work, the species in these two classes have a closed-shell electronic configuration. The calculated spectra of circumcoronene, C54H18 in both neutral and (radical) cationic form are also reported and compared with those of the other species. Overall, the C(sub odd) PAHs spectra are dominated by strong CC stretching modes near 1600 cm(exp -1) and display spectra that are remarkably insensitive to molecular size. The HPAH+ species evince a more complex spectrum consistent with the added contributions of aliphatic modes and their generally lower symmetry. Finally, for both classes of closed-shell cations, the intensity of the aromatic CH stretching modes is found to increase with molecular size far out of proportion with the number of CH groups, approaching a value more typical of neutral PAHs for the largest species studied.

  8. Air-dust-borne associations of phototrophic and hydrocarbon-utilizing microorganisms: promising consortia in volatile hydrocarbon bioremediation.

    Science.gov (United States)

    Al-Bader, Dhia; Eliyas, Mohamed; Rayan, Rihab; Radwan, Samir

    2012-11-01

    Aquatic and terrestrial associations of phototrophic and heterotrophic microorganisms active in hydrocarbon bioremediation have been described earlier. The question arises: do similar consortia also occur in the atmosphere? Dust samples at the height of 15 m were collected from Kuwait City air, and analyzed microbiologically for phototrophic and heterotrophic hydrocarbon-utilizing microorganisms, which were subsequently characterized according to their 16S rRNA gene sequences. The hydrocarbon utilization potential of the heterotrophs alone, and in association with the phototrophic partners, was measured quantitatively. The chlorophyte Gloeotila sp. and the two cyanobacteria Nostoc commune and Leptolyngbya thermalis were found associated with dust, and (for comparison) the cynobacteria Leptolyngbya sp. and Acaryochloris sp. were isolated from coastal water. All phototrophic cultures harbored oil vapor-utilizing bacteria in the magnitude of 10(5) g(-1). Each phototrophic culture had its unique oil-utilizing bacteria; however, the bacterial composition in Leptolyngbya cultures from air and water was similar. The hydrocarbon-utilizing bacteria were affiliated with Acinetobacter sp., Aeromonas caviae, Alcanivorax jadensis, Bacillus asahii, Bacillus pumilus, Marinobacter aquaeolei, Paenibacillus sp., and Stenotrophomonas maltophilia. The nonaxenic cultures, when used as inocula in batch cultures, attenuated crude oil in light and dark, and in the presence of antibiotics and absence of nitrogenous compounds. Aqueous and diethyl ether extracts from the phototrophic cultures enhanced the growth of the pertinent oil-utilizing bacteria in batch cultures, with oil vapor as a sole carbon source. It was concluded that the airborne microbial associations may be effective in bioremediating atmospheric hydrocarbon pollutants in situ. Like the aquatic and terrestrial habitats, the atmosphere contains dust-borne associations of phototrophic and heterotrophic hydrocarbon

  9. Free radicals and male reproduction.

    Science.gov (United States)

    Agarwal, Ashok; Allamaneni, Shyam S R

    2011-03-01

    Male factor accounts for almost 50% cases of infertility. The exact mechanism of sperm dysfunction is not known in many cases. Extensive research in the last decade has led to the identification of free radicals (reactive oxygen species) as mediators of sperm dysfunction in both specific diagnoses and idiopathic cases of male infertility. Elevated levels of reactive oxygen species are seen in up to 30-80% of men with male infertility. The role of free radicals has been studied extensively in the process of human reproduction. We know now that a certain level of free radicals is necessary for normal sperm function, whereas an excessive level of free radicals can cause detrimental effect on sperm function and subsequent fertilisation and offspring health. Oxidative stress develops when there is an imbalance between generation of free radicals and scavenging capacity of anti-oxidants in reproductive tract. Oxidative stress has been shown to affect both standard semen parameters and fertilising capacity. In addition, high levels of free radicals have been associated with lack of or poor fertility outcome after natural conception or assisted reproduction. Diagnostic techniques to quantify free radicals in infertile patients can assist physicians treating patients with infertility to plan for proper treatment strategies. In vivo anti-oxidants can be used against oxidative stress in male reproductive tract. Supplementation of in vitro anti-oxidants can help prevent the oxidative stress during sperm preparation techniques in assisted reproduction.

  10. About the order in aerobic heterotrophic microbial communities from hydrocarbon-contaminated sites

    NARCIS (Netherlands)

    Becker, P.M.

    1999-01-01

    The organizational structure of communities of aerobic heterotrophic bacteria was studied by means of physiological and molecular typing of the members of arbitrary samples of isolates, ASsI. The isolate sample assay (ISA) was applied to three different hydrocarbon-polluted sites: a dry windrow pile

  11. About the order in aerobic heterotrophic microbial communities from hydrocarbon-contaminated sites

    NARCIS (Netherlands)

    Becker, P.M.

    1999-01-01

    The organizational structure of communities of aerobic heterotrophic bacteria was studied by means of physiological and molecular typing of the members of arbitrary samples of isolates, ASsI. The isolate sample assay (ISA) was applied to three different hydrocarbon-polluted sites: a dry windrow pile

  12. Guest Editorial: Processes of Radicalization and De-Radicalization

    Directory of Open Access Journals (Sweden)

    Donatella Della Porta

    2012-05-01

    Full Text Available The study of radicalization and de-radicalization, understood as processes leading towards the increased or decreased use of political violence, is central to the question of how political violence emerges, how it can be prevented, and how it can be contained. The focus section of this issue of the International Journal of Conflict and Violence addresses radicalization and de-radicalization, seeking to develop a more comprehensive understanding of the processes, dynamics, and mechanisms involved and taking an interdisciplinary approach to overcome the fragmentation into separate disciplines and focus areas. Contributions by Pénélope Larzillière, Felix Heiduk, Bill Kissane, Hank Johnston, Christian Davenport and Cyanne Loyle, Veronique Dudouet, and Lasse Lindekilde address repressive settings, legitimacy, institutional aspects, organizational outcomes, and dynamics in Europe, Asia, Africa, and North and South America.

  13. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review.

    Science.gov (United States)

    Haritash, A K; Kaushik, C P

    2009-09-30

    PAHs are aromatic hydrocarbons with two or more fused benzene rings with natural as well as anthropogenic sources. They are widely distributed environmental contaminants that have detrimental biological effects, toxicity, mutagenecity and carcinogenicity. Due to their ubiquitous occurrence, recalcitrance, bioaccumulation potential and carcinogenic activity, the PAHs have gathered significant environmental concern. Although PAH may undergo adsorption, volatilization, photolysis, and chemical degradation, microbial degradation is the major degradation process. PAH degradation depends on the environmental conditions, number and type of the microorganisms, nature and chemical structure of the chemical compound being degraded. They are biodegraded/biotransformed into less complex metabolites, and through mineralization into inorganic minerals, H(2)O, CO(2) (aerobic) or CH(4) (anaerobic) and rate of biodegradation depends on pH, temperature, oxygen, microbial population, degree of acclimation, accessibility of nutrients, chemical structure of the compound, cellular transport properties, and chemical partitioning in growth medium. A number of bacterial species are known to degrade PAHs and most of them are isolated from contaminated soil or sediments. Pseudomonas aeruginosa, Pseudomons fluoresens, Mycobacterium spp., Haemophilus spp., Rhodococcus spp., Paenibacillus spp. are some of the commonly studied PAH-degrading bacteria. Lignolytic fungi too have the property of PAH degradation. Phanerochaete chrysosporium, Bjerkandera adusta, and Pleurotus ostreatus are the common PAH-degrading fungi. Enzymes involved in the degradation of PAHs are oxygenase, dehydrogenase and lignolytic enzymes. Fungal lignolytic enzymes are lignin peroxidase, laccase, and manganese peroxidase. They are extracellular and catalyze radical formation by oxidation to destabilize bonds in a molecule. The biodegradation of PAHs has been observed under both aerobic and anaerobic conditions and the rate

  14. Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs): A review

    Energy Technology Data Exchange (ETDEWEB)

    Haritash, A.K., E-mail: akharitash@gmail.com [Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar, Haryana (India); Kaushik, C.P. [Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar, Haryana (India)

    2009-09-30

    PAHs are aromatic hydrocarbons with two or more fused benzene rings with natural as well as anthropogenic sources. They are widely distributed environmental contaminants that have detrimental biological effects, toxicity, mutagenecity and carcinogenicity. Due to their ubiquitous occurrence, recalcitrance, bioaccumulation potential and carcinogenic activity, the PAHs have gathered significant environmental concern. Although PAH may undergo adsorption, volatilization, photolysis, and chemical degradation, microbial degradation is the major degradation process. PAH degradation depends on the environmental conditions, number and type of the microorganisms, nature and chemical structure of the chemical compound being degraded. They are biodegraded/biotransformed into less complex metabolites, and through mineralization into inorganic minerals, H{sub 2}O, CO{sub 2} (aerobic) or CH{sub 4} (anaerobic) and rate of biodegradation depends on pH, temperature, oxygen, microbial population, degree of acclimation, accessibility of nutrients, chemical structure of the compound, cellular transport properties, and chemical partitioning in growth medium. A number of bacterial species are known to degrade PAHs and most of them are isolated from contaminated soil or sediments. Pseudomonas aeruginosa, Pseudomons fluoresens, Mycobacterium spp., Haemophilus spp., Rhodococcus spp., Paenibacillus spp. are some of the commonly studied PAH-degrading bacteria. Lignolytic fungi too have the property of PAH degradation. Phanerochaete chrysosporium, Bjerkandera adusta, and Pleurotus ostreatus are the common PAH-degrading fungi. Enzymes involved in the degradation of PAHs are oxygenase, dehydrogenase and lignolytic enzymes. Fungal lignolytic enzymes are lignin peroxidase, laccase, and manganese peroxidase. They are extracellular and catalyze radical formation by oxidation to destabilize bonds in a molecule. The biodegradation of PAHs has been observed under both aerobic and anaerobic conditions

  15. Thermal Decomposition of Furan Generates Propargyl Radicals

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliou, A.; Nimlos, M. R.; Daily, J. W.; Ellison, G. B.

    2009-07-01

    The thermal decomposition of furan has been studied by a 1 mm x 2 cm tubular silicon carbide reactor, C{sub 4}H{sub 4}O + {Delta} {yields} products. Unlike previous studies, these experiments are able to identify the initial furan decomposition products. Furan is entrained in either He or Ar carrier gas and is passed through a heated (1600 K) SiC tubular reactor. Furan decomposes during transit through the tubular reactor (approximately 65 {micro}s) and exits to a vacuum chamber. Within one nozzle diameter of leaving the nozzle, the gases cool to less than 50 K, and all reactions cease. The resultant molecular beam is interrogated by photoionization mass spectroscopy as well as infrared spectroscopy. Earlier G2(MP2) electronic structure calculations predicted that furan will thermally decompose to acetylene, ketene, carbon monoxide, and propyne at lower temperatures. At higher temperatures, these calculations forecast that propargyl radical could result. We observe all of these species (see Scheme 1). As the pressure in the tubular reactor is raised, the photoionization mass spectra show clear evidence for the formation of aromatic hydrocarbons.

  16. Hydrocarbon Leak Detection Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — FTT is proposing the development of a sensor to detect the presence of hydrocarbons in turbopump Inter-Propellant Seals (IPS). The purpose of the IPS is to prevent...

  17. Conversion of natural gas to C2 hydrocarbons through dielectric-barrier discharge plasma catalysis

    Institute of Scientific and Technical Information of China (English)

    王保伟; 许根慧

    2002-01-01

    The experiments are carried out in the system of continuous flow reactors with dielectric-barrier discharge (DBD) for studies on the conversion of natural gas to C2 hydrocarbons through plasma catalysis under the atmosphere pressure and room temperature. The influence of discharge frequency, structure of electrode, discharge voltage, number of electrode, ratio of H2/CH4, flow rate and catalyst on conversion of methane and selectivity of C2 hydrocarbons are investigated. At the same time, the reaction process is investigated. Higher conversion of methane and selectivity of C2 hydrocarbons are achieved and deposited carbons are eliminated by proper choice of parameters. The appropriate operation parameters in dielectric-barrier discharge plasma field are that the supply voltage is 20-40 kV (8.4-40 W), the frequency of power supply is 20 kHz, the structure of (b) electrode is suitable, and the flow of methane is 20-60 mL@min?1. The conversion of methane can reach 45%, the selectivity of C2 hydrocarbons is 76%, and the total selectivity of C2 hydrocarbons and C3 hydrocarbons is nearly 100%. The conversion of methane increases with the increase of voltage and decreases with the flow of methane increase; the selectivity of C2 hydrocarbons decreases with the increase of voltage and increases with the flow of methane increase. The selectivity of C2 hydrocarbons is improved with catalyst for conversion of natural gas to C2 hydrocarbons in plasma field. Methane molecule collision with radicals is mainly responsible for product formation.

  18. Bioassay of polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Van Kirk, E.A.

    1980-08-01

    A positive relationship was found between the photodynamic activity of 24 polycyclic aromatic hydrocarbons versus published results on the mutagenicity, carcinogenicity, and initiation of unscheduled DNA synthesis. Metabolic activation of benzo(a)pyrene resulted in detection of increased mutagenesis in Paramecium tetraurelia as found also in the Ames Salmonella assay. The utility of P. tetraurelia as a biological detector of hazardous polycyclic aromatic hydrocarbons is discussed.

  19. Electrochemical decomposition of chlorinated hydrocarbons

    OpenAIRE

    McGee, Gerard Anthony

    1993-01-01

    This work involves the characterisation of the electrochemical decomposition of chlorinated hydrocarbons. A variety of methods were employed involving the use of catalytic reagents to enhance the rate at which chlorinated organic compounds are reduced. The first reagent used was oxygen which was electrochemically reduced to superoxide in nonaqueous solvents. Superoxide is a reactive intermediate and decomposes chlorinated hydrocarbons. However it was found that since the rate of reaction betw...

  20. Aliphatic hydrocarbons of the fungi.

    Science.gov (United States)

    Weete, J. D.

    1972-01-01

    Review of studies of aliphatic hydrocarbons which have been recently detected in the spores of phytopathogenic fungi, and are found to be structurally very similar to the alkanes of higher plants. It appears that the hydrocarbon components of the few mycelial and yeast forms reported resemble the distribution found in bacteria. The occurence and distribution of these compounds in the fungi is discussed. Suggested functional roles of fungal spore alkanes are presented.

  1. LIQUID HYDROCARBON FUEL CELL DEVELOPMENT.

    Science.gov (United States)

    A compound anode consists of a reforming catalyst bed in direct contact with a palladium-silver fuel cell anode. The objective of this study was to...prove the feasibility of operating a compound anode fuel cell on a liquid hydrocarbon and to define the important parameters that influence cell...performance. Both reformer and fuel cell tests were conducted with various liquid hydrocarbon fuels. Included in this report is a description of the

  2. Bacterial community response to petroleum hydrocarbon amendments in freshwater, marine, and hypersaline water-containing microcosms.

    Science.gov (United States)

    Jurelevicius, Diogo; Alvarez, Vanessa Marques; Marques, Joana Montezano; de Sousa Lima, Laryssa Ribeiro Fonseca; Dias, Felipe de Almeida; Seldin, Lucy

    2013-10-01

    Hydrocarbon-degrading bacterial communities from freshwater, marine, and hypersaline Brazilian aquatic ecosystems (with water salinities corresponding to 0.2%, 4%, and 5%, respectively) were enriched with different hydrocarbons (heptadecane, naphthalene, or crude oil). Changes within the different microcosms of bacterial communities were analyzed using cultivation approaches and molecular methods (DNA and RNA extraction, followed by genetic fingerprinting and analyses of clone libraries based on the 16S rRNA-coding gene). A redundancy analysis (RDA) of the genetic fingerprint data and a principal component analysis (PCA) of the clone libraries revealed hydrocarbon-enriched bacterial communities specific for each ecosystem studied. However, within the same ecosystem, different bacterial communities were selected according to the petroleum hydrocarbon used. In general, the results demonstrated that Acinetobacter and Cloacibacterium were the dominant genera in freshwater microcosms; the Oceanospirillales order and the Marinobacter, Pseudomonas, and Cycloclasticus genera predominated in marine microcosms; and the Oceanospirillales order and the Marinobacter genus were selected in the different hydrocarbon-containing microcosms in hypersaline water. Determination of total petroleum hydrocarbons (TPHs) in all microcosms after 32 days of incubation showed a decrease in the hydrocarbon concentration compared to that for the controls. A total of 50 (41.3%) isolates from the different hydrocarbon-contaminated microcosms were associated with the dominant operational taxonomic units (OTUs) obtained from the clone libraries, and their growth in the hydrocarbon contaminating the microcosm from which they were isolated as the sole carbon source was observed. These data provide insight into the general response of bacterial communities from freshwater, marine, and hypersaline aquatic ecosystems to petroleum hydrocarbon contamination.

  3. HYDROCARBONS RESERVES IN VENEZUELA

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Cruz, D.J.

    2007-07-01

    Venezuela is an important player in the energy world, because of its hydrocarbons reserves. The process for calculating oil and associated gas reserves is described bearing in mind that 90% of the gas reserves of Venezuela are associated to oil. Likewise, an analysis is made of the oil reserves figures from 1975 to 2003. Reference is also made to inconsistencies found by international experts and the explanations offered in this respect by the Ministry of Energy and Petroleum (MENPET) and Petroleos de Venezuela (PDVSA) regarding the changes that took place in the 1980s. In turn, Hubbert's Law is explained to determine peak production of conventional oil that a reservoir or field will reach, as well as its relationship with remaining reserves. Emphasis is placed on the interest of the United Nations on this topic. The reserves of associated gas are presented along with their relationship with the different crude oils that are produced and with injected gas, as well as with respect to the possible changes that would take place in the latter if oil reserves are revised. Some recommendations are submitted so that the MENPET starts preparing the pertinent policies ruling reserves. (auth)

  4. Evaluation of hydrocarbon potential

    Energy Technology Data Exchange (ETDEWEB)

    Cashman, P.H.; Trexler, J.H. Jr. [Univ. of Nevada, Reno, NV (United States)

    1992-09-30

    Task 8 is responsible for assessing the hydrocarbon potential of the Yucca Mountain vincinity. Our main focus is source rock stratigraphy in the NTS area in southern Nevada. (In addition, Trexler continues to work on a parallel study of source rock stratigraphy in the oil-producing region of east central Nevada, but this work is not funded by Task 8.) As a supplement to the stratigraphic studies, we are studying the geometry and kinematics of deformation at NTS, particularly as these pertain to reconstructing Paleozoic stratigraphy and to predicting the nature of the Late Paleozoic rocks under Yucca Mountain. Our stratigraphic studies continue to support the interpretation that rocks mapped as the {open_quotes}Eleana Formation{close_quotes} are in fact parts of two different Mississippian units. We have made significant progress in determining the basin histories of both units. These place important constraints on regional paleogeographic and tectonic reconstructions. In addition to continued work on the Eleana, we plan to look at the overlying Tippipah Limestone. Preliminary TOC and maturation data indicate that this may be another potential source rock.

  5. CONTINENT RADICAL PROSTATECTOMY

    Directory of Open Access Journals (Sweden)

    Yu. P. Sernyak

    2014-07-01

    Full Text Available Objective: to evaluate the impact of dissection of the dorsal venous complex without pre-ligation, suturing, or coagulation during radical prostatectomy (RPE in patients with localized prostate cancer (PC on the quality of surgery and the function of urinary retention.Subjects and methods. The data of 42 patients who had undergone posterior and anterior anatomical repair and vesicourethral anastomosis using a V-lock suture after prostatectomy were analyzed. All the patients were divided into 2 groups. Group 1 consisted of 22 patients in whom the dorsal venous complex was closed using a 3-0 vicryl suture before urethral dissection. Group 2 included 20 patients in whom the urethra was dissected without suturing the venous complex.Results. In group 1, complete urinary retention after catheter removal was noted in 9 (40.9 % and 15 (68 % patients within 24 hours and after 3 months, respectively. Following 12 months, two (9 % patients were observed to have partial mild urinary incontinence (as many as 2 pads per day. Group 2 patients showed complete urinary retention in 17 (85 % cases on the first day after catheter removal; all the patients retained urine 3 months later.Conclusion. In patients with localized PC, dissection of the dorsal venous complex without presuturing during laparoscopic RPE exerts a considerable impact on the preservation of urinary retention, namely 45% more of the patients reported complete urinary retention in early periods and 10 % more did this in later periods. At the same time, there was no statistically significant increase in intraoperative blood loss (p > 0.05, the number of positive edges, or biochemical recurrences.

  6. CONTINENT RADICAL PROSTATECTOMY

    Directory of Open Access Journals (Sweden)

    Yu. P. Sernyak

    2013-01-01

    Full Text Available Objective: to evaluate the impact of dissection of the dorsal venous complex without pre-ligation, suturing, or coagulation during radical prostatectomy (RPE in patients with localized prostate cancer (PC on the quality of surgery and the function of urinary retention.Subjects and methods. The data of 42 patients who had undergone posterior and anterior anatomical repair and vesicourethral anastomosis using a V-lock suture after prostatectomy were analyzed. All the patients were divided into 2 groups. Group 1 consisted of 22 patients in whom the dorsal venous complex was closed using a 3-0 vicryl suture before urethral dissection. Group 2 included 20 patients in whom the urethra was dissected without suturing the venous complex.Results. In group 1, complete urinary retention after catheter removal was noted in 9 (40.9 % and 15 (68 % patients within 24 hours and after 3 months, respectively. Following 12 months, two (9 % patients were observed to have partial mild urinary incontinence (as many as 2 pads per day. Group 2 patients showed complete urinary retention in 17 (85 % cases on the first day after catheter removal; all the patients retained urine 3 months later.Conclusion. In patients with localized PC, dissection of the dorsal venous complex without presuturing during laparoscopic RPE exerts a considerable impact on the preservation of urinary retention, namely 45% more of the patients reported complete urinary retention in early periods and 10 % more did this in later periods. At the same time, there was no statistically significant increase in intraoperative blood loss (p > 0.05, the number of positive edges, or biochemical recurrences.

  7. Production of Reactive Oxygen Species by Polyhalogenated Cyclic Hydrocarbons (PCH)

    Science.gov (United States)

    1992-07-14

    value is the mean ± S.D. of four animals 0.030 0.26 - 12 -HOURS W24 - IIiOURS 0.24 - 0.025 48- HOURS ENOaRd 72 - HOURS0 22 -( mama ) "" 0 0.020 0 0 0ŕ... tumor promotion leading to membrane perturbation.’ 0 Hence, membrane fluidity and lipid peroxidation of isolated hepatic mitochondria and microsomes from...superoxide anion radical production by tumor promoters. Cancer Len. 11: 257-262; 1981. 3. Witz, G. The role of free radicals in tumor promotion: Oxy

  8. Redox Properties of Free Radicals.

    Science.gov (United States)

    Neta, P.

    1981-01-01

    Describes pulse radiolysis as a useful means in studing one-electron redox potentials. This method allows the production of radicals and the determination of their concentration and rates of reaction. (CS)

  9. Reprodcutive results of radical trachelectomy

    National Research Council Canada - National Science Library

    Martínez-Chapa, Arnulfo; Alonso-Reyes, Nelly; Luna-Macías, Miguel

    2015-01-01

    .... Between March 1999 and December 2013, 27 cases with cervical cancer in early stages were treated with vaginal or abdominal radical trachelectomy in the ISSSTE Regional Hospital in Monterrey, NL (Mexico...

  10. Chemical Analysis of Hydrocarbon Grease from Spin Bearing Tests

    Science.gov (United States)

    1982-09-30

    antioxidant but rather to some grease degradation products. (The antioxidant is expected to vaporize and leave the grease under vacuum.) The gas...to 10-3 torr level, phenyl-8- naphthylamIne Is sufficiently volatile to vaporize and leave the grease. The appearance of the solitary, hydrocarbon...Configuration of 2,4- Decadienals Isolated from Oils Containing Linoleic Acid," Nature 185, 310-311 (1960). 7. B. G. Tarladgis, and B. M. Watts

  11. Occurrence of fungi degrading aromatic hydrocarbons in activated sludge biocenoses

    Directory of Open Access Journals (Sweden)

    Anna Grabińska-Łoniewska

    2014-08-01

    Full Text Available A set of 21 strains of yeast-like microorganisms isolated from biocenoses of aerobic and anaerobic wastewater treatment systems were assayed for their ability to utilize aromatic hydrocarbons as a sole C-source. Basing on the achieved results, the highly biochemically active strains for application in enhancing of wastewaters and exhaust gases purification as well as soil bioremediation were selected.

  12. Value of no-touch isolation technique in radical resection for pancreatic head adenocarcinoma%无接触分离技术在胰头癌根治性切除术中应用价值探讨

    Institute of Scientific and Technical Information of China (English)

    仇爱峰; 王学斌; 王立胜; 施育华

    2010-01-01

    目的:研究无接触分离技术(no-touch isolation technique,NUT)在胰头癌根治性切除术中的应用,探讨以NUT技术为重点的胰十二指肠切除术对肿瘤转移及预后的影响.方法:对2004年2月~2009年9月施行胰十二指肠切除术的57例胰头癌患者进行对照研究.其中NUT组32例,常规手术组25例.测定手术病例肿瘤切除前、后门静脉血细胞角蛋白20(CK20)mRNA表达情况.分析两组生存期、肝转移率和死亡率.结果:两组患者术后并发症发生率无明显差异.切除肿瘤病灶前,门静脉血内CK20 mRNA的阳性表达率常规手术组和NUT组分别为16.00%,18.75%,无统计学差异.肿瘤切除后,常规手术组CK20 mRNA的阳性率显著高于NUT组(52.00%vs.25.00%,P=0.036).术后随访,NUT组、常规手术组术后1、3、5年生存率分别为76.6%,50.0%,40.0%和75.0%,33.3%,8.8%.NUT组5年生存率高于常规手术组(P=0.018).术后死亡原因分析显示NUT组肝转移率显著低于常规手术组(P=0.024).结论:胰头癌根治性切除术中采用NUT技术能有效减少癌细胞播散,减少术后肝转移发生率,改善预后.

  13. Solid hydrocarbon assisted reduction: a new process of generating micron scale metal particles

    OpenAIRE

    Ryan M McCabe

    2015-01-01

    Approved for public release; distribution is unlimited The goal of this research is to test a central hypothesis: that gas species generated by the thermal and/or catalytically assisted decomposition of hydrocarbons in an inert atmosphere can reduce metal oxides to a metallic state. It is postulated that the decomposition releases gas phase radicals that can bind with oxygen in the metal oxides, forming volatile, stable oxides such as CO2 and water. This research consisted of thermally dec...

  14. Development of an Efficient Bacterial Consortium for the Potential Remediation of Hydrocarbons from Contaminated Sites.

    Science.gov (United States)

    Patowary, Kaustuvmani; Patowary, Rupshikha; Kalita, Mohan C; Deka, Suresh

    2016-01-01

    The intrinsic biodegradability of hydrocarbons and the distribution of proficient degrading microorganisms in the environment are very crucial for the implementation of bioremediation practices. Among others, one of the most favorable methods that can enhance the effectiveness of bioremediation of hydrocarbon-contaminated environment is the application of biosurfactant producing microbes. In the present study, the biodegradation capacities of native bacterial consortia toward total petroleum hydrocarbons (TPH) with special emphasis to poly aromatic hydrocarbons were determined. The purpose of the study was to isolate TPH degrading bacterial strains from various petroleum contaminated soil of Assam, India and develop a robust bacterial consortium for bioremediation of crude oil of this native land. From a total of 23 bacterial isolates obtained from three different hydrocarbons contaminated samples five isolates, namely KS2, PG1, PG5, R1, and R2 were selected as efficient crude oil degraders with respect to their growth on crude oil enriched samples. Isolates KS2, PG1, and R2 are biosurfactant producers and PG5, R1 are non-producers. Fourteen different consortia were designed involving both biosurfactant producing and non-producing isolates. Consortium 10, which comprises two Bacillus strains namely, Bacillus pumilus KS2 and B. cereus R2 (identified by 16s rRNA sequencing) has shown the best result in the desired degradation of crude oil. The consortium showed degradation up to 84.15% of TPH after 5 weeks of incubation, as revealed from gravimetric analysis. FTIR (Fourier transform infrared) and GCMS (Gas chromatography-mass spectrometer) analyses were correlated with gravimetric data which reveals that the consortium has removed a wide range of petroleum hydrocarbons in comparison with abiotic control including different aliphatic and aromatic hydrocarbons.

  15. Role of alcohol dehydrogenase activity and the acetaldehyde in ethanol- induced ethane and pentane production by isolated perfused rat liver.

    Science.gov (United States)

    Müller, A; Sies, H

    1982-01-01

    The volatile hydrocarbons ethane and n-pentane are produced at increased rates by isolated perfused rat liver during the metabolism of acutely ethanol. The effect is half-maximal at 0.5 mM-ethanol, and its is not observed when inhibitors of alcohol dehydrogenase such as 4-methyl- or 4-propyl-pyrazole are also present. Propanol, another substrate for the dehydrogenase, is also active. Increased alkane production can be initiated by adding acetaldehyde in the presence of 4-methyl- or 4-propyl-pyrazole. An antioxidant, cyanidanol, suppresses the ethanol-induced alkane production. The data obtained with the isolated organ demonstrate that products known to arise from the peroxidation of polyunsaturated fatty acids are formed in the presence of ethanol and that the activity of alcohol dehydrogenase is required for the generation of the active radical species. The mere presence of ethanol, e.g. at binding sites of special form(s) of cytochrome P-450, it not sufficient to elicit an increased production of volatile hydrocarbons by rat liver. PMID:6751324

  16. Weakly Bound Free Radicals in Combustion: "Prompt" Dissociation of Formyl Radicals and Its Effect on Laminar Flame Speeds

    Energy Technology Data Exchange (ETDEWEB)

    Labbe, Nicole J.; Sivaramakrishnan, Raghu; Goldsmith, C. Franklin; Georgievskii, Yuri; Miller, James A.; Klippenstein, Stephen J.

    2016-01-07

    Weakly bound free radicals have low-dissociation thresholds such that at high temperatures, timescales for dissociation and collisional relaxation become comparable, leading to significant dissociation during the vibrational-rotational relaxation process. Here we characterize this “prompt” dissociation of formyl (HCO), an important combustion radical, using direct dynamics calculations for OH + CH2O and H + CH2O (key HCO-forming reactions). For all other HCO-forming reactions, presumption of a thermal incipient HCO distribution was used to derive prompt dissociation fractions. Inclusion of these theoretically derived HCO prompt dissociation fractions into combustion kinetics models provides an additional source for H-atoms that feeds chain branching reactions. Simulations using these updated combustion models are therefore shown to enhance flame propagation in 1,3,5-trioxane and acetylene. The present results suggest that HCO prompt dissociation should be included when simulating flames of hydrocarbons and oxygenated molecules and that prompt dissociations of other weakly bound radicals may also impact combustion simulations

  17. Weakly Bound Free Radicals in Combustion: "Prompt" Dissociation of Formyl Radicals and Its Effect on Laminar Flame Speeds.

    Science.gov (United States)

    Labbe, Nicole J; Sivaramakrishnan, Raghu; Goldsmith, C Franklin; Georgievskii, Yuri; Miller, James A; Klippenstein, Stephen J

    2016-01-01

    Weakly bound free radicals have low-dissociation thresholds such that at high temperatures, time scales for dissociation and collisional relaxation become comparable, leading to significant dissociation during the vibrational-rotational relaxation process. Here we characterize this "prompt" dissociation of formyl (HCO), an important combustion radical, using direct dynamics calculations for OH + CH2O and H + CH2O (key HCO-forming reactions). For all other HCO-forming reactions, presumption of a thermal incipient HCO distribution was used to derive prompt dissociation fractions. Inclusion of these theoretically derived HCO prompt dissociation fractions into combustion kinetics models provides an additional source for H-atoms that feeds chain-branching reactions. Simulations using these updated combustion models are therefore shown to enhance flame propagation in 1,3,5-trioxane and acetylene. The present results suggest that HCO prompt dissociation should be included when simulating flames of hydrocarbons and oxygenated molecules and that prompt dissociations of other weakly bound radicals may also impact combustion simulations.

  18. Effect of indole-3-acetic acid on pea root growth, peroxidase profiles and hydroxyl radical formation

    Directory of Open Access Journals (Sweden)

    Kukavica Biljana

    2007-01-01

    Full Text Available Changes in growth, peroxidase profiles, and hydroxyl radical formation were examined in IAA (0.5-10 mg/l treated pea plants grown hydroponically and in isolated roots in liquid in vitro culture. IAA inhibited root elongation, both in hydroponically grown pea plants and in isolated roots in vitro. A remarkable increase in the number of POD iso­forms was noticed in isolated roots grown in vitro, compared to the roots from plants grown hydroponically. IAA induced both disappearance of several root POD isoforms and hydroxyl radical formation in the root and the root cell wall.

  19. Peroxy radical partitioning during the AMMA radical intercomparison exercise

    Directory of Open Access Journals (Sweden)

    M. D. Andrés-Hernández

    2010-04-01

    Full Text Available Peroxy radicals were measured onboard two scientific aircrafts during the AMMA (African Monsoon Multidisciplinary Analysis campaign in summer 2006. This paper reports results from the flight on 16 August 2006 during which measurements of HO2 by laser induced fluorescence spectroscopy at low pressure (LIF-FAGE and total peroxy radicals (RO2*=HO2+ΣRO2, R= organic chain by two similar instruments based on the peroxy radical chemical amplification (PerCA technique were subject of a blind intercomparison. The German DLR-Falcon and the British FAAM-BAe-146 flew wing tip to wing tip for about 30 min making concurrent measurements on 2 horizontal level runs at 697 and 485 hPa over the same geographical area in Burkina Faso. A full set of supporting measurements comprising photolysis frequencies, and relevant trace gases like CO, NO, NO2, NOy, O3 and a wider range of VOCs were collected simultaneously.

    Results are discussed on the basis of the characteristics and limitations of the different instruments used. Generally, no data bias are identified and the RO2* data available agree quite reasonably within the instrumental errors. The [RO2*]/[HO2] ratios, which vary between 1:1 and 3:1, as well as the peroxy radical variability, concur with variations in photolysis rates and in other potential radical precursors. Model results provide additional information about dominant radical formation and loss processes.

  20. Flavonoid constituents and free radical scavenging activity of Alchemilla mollis.

    Science.gov (United States)

    Trendafilova, Antoaneta; Todorova, Milka; Nikolova, Milena; Gavrilova, Anna; Vitkova, Antonina

    2011-12-01

    Antioxidant capacity of the methanolic extract of Alchemilla mollis was measured by its ability to scavenge the DPPH radical. The EtOAc fraction obtained after partition of the total extract was found to be the most active radical scavenger (IC50 9.8 +/- 1.8 microg/mL) and was subjected to fractionation by Sephadex LH-20 CC. Further purification by RP-18 CC led to the isolation of eight flavonoid glycosides: cis- and trans-tiliroside (1 and 2), rhodiolgin (3), hyperoside (4), isoquercitrin (5), miquelianin (6), sinocrassoside D2 (7), and gossypetin-3-O-beta-D-galactopyranosyl-7-O-alpha-L-rhamnopyranoside (8). It was found that 8 is a new compound and its antioxidant activity is also reported. Identification of the isolated compounds was carried out by spectroscopic and spectrometric analysis (1D and 2D NMR, UV and MS).

  1. Substrate-bound Structures of Benzylsuccinate Synthase Reveal How Toluene Is Activated in Anaerobic Hydrocarbon Degradation*

    Science.gov (United States)

    Funk, Michael A.; Marsh, E. Neil G.; Drennan, Catherine L.

    2015-01-01

    Various bacteria perform anaerobic degradation of small hydrocarbons as a source of energy and cellular carbon. To activate non-reactive hydrocarbons such as toluene, enzymes conjugate these molecules to fumarate in a radical-catalyzed, C—C bond-forming reaction. We have determined x-ray crystal structures of the glycyl radical enzyme that catalyzes the addition of toluene to fumarate, benzylsuccinate synthase (BSS), in two oligomeric states with fumarate alone or with both substrates. We find that fumarate is secured at the bottom of a long active site cavity with toluene bound directly above it. The two substrates adopt orientations that appear ideal for radical-mediated C—C bond formation; the methyl group of toluene is positioned between fumarate and a cysteine that forms a thiyl radical during catalysis, which is in turn adjacent to the glycine that serves as a radical storage residue. Toluene is held in place by fumarate on one face and tight packing by hydrophobic residues on the other face and sides. These hydrophobic residues appear to become ordered, thus encapsulating toluene, only in the presence of BSSβ, a small protein subunit that forms a tight complex with BSSα, the catalytic subunit. Enzymes related to BSS are able to metabolize a wide range of hydrocarbons through attachment to fumarate. Using our structures as a guide, we have constructed homology models of several of these “X-succinate synthases” and determined conservation patterns that will be useful in understanding the basis for catalysis and specificity in this family of enzymes. PMID:26224635

  2. Standard Electrode Potentials Involving Radicals in Aqueous Solution: Inorganic Radicals

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, David A.; Huie, Robert E.; Koppenol, Willem H.; Lymar, Sergei V.; Merenyi, Gabor; Neta, Pedatsur; Ruscic, Branko; Stanbury, David M.; Steenken, Steen; Wardman, Peter

    2015-12-01

    Recommendations are made for standard potentials involving select inorganic radicals in aqueous solution at 25 °C. These recommendations are based on a critical and thorough literature review and also by performing derivations from various literature reports. The recommended data are summarized in tables of standard potentials, Gibbs energies of formation, radical pKa’s, and hemicolligation equilibrium constants. In all cases, current best estimates of the uncertainties are provided. An extensive set of Data Sheets is appended that provide original literature references, summarize the experimental results, and describe the decisions and procedures leading to each of the recommendations

  3. Radical formation by heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Beuter, W.

    1982-09-01

    Certain reduced heavy metal ions can convert oxygen to a ''reactive oxygen species'' by donation of an electron. The reactive oxygen then attacks structures susceptible to oxidation, in particular unsaturated fatty acids, and peroxidizes them in a radical reaction. This process is inhibited by the presence of vitamin E and by other means. Peroxidized lipids decay forming free radicals in the process which themselves can peroxidise neighbouring lipids in a radical chain reaction. This decay is, moreover, catalysed by reduced heavy metal ions but on the other hand retarded by selenium-containing glutathione peroxidase. Radical formation by heavy metals is considerably involved in (i) the production of parenteral iron poisoning of the piglet (ii) haemolytic crisis occurring in ruminants through chronic copper poisoning (iii) the production of lead poisoning in ruminants and other animals. These types of poisonings are made worse by a deficiency of vitamin E and/or selenium. Factors which increase the bio-availability of the free heavy metal ion or reduce the redox potential thereof can aid radical formation as well as factors which lead to a reduction of the heavy metal ion e.g. cysteine, ascorbic acid or glucose.

  4. Pulsed radiation studies of carotenoid radicals and excited states

    Energy Technology Data Exchange (ETDEWEB)

    Burke, M

    2001-04-01

    The one-electron reduction potentials of the radical cations of five dietary carotenoids, in aqueous micellar environments, have been obtained from a pulse radiolysis study of electron transfer between the carotenoids and tryptophan radical cations as a function of pH, and lie in the range 980 to 1060 mV. The decays of the carotenoid radical cations suggest a distribution of exponential lifetimes. The radicals persist for up to about one second, depending on the medium and may re-orientate within a biological environment to react with other biomolecules, such as tyrosine, cysteine or ascorbic acid, which was indeed confirmed. Spectral information of carotenoid pigmented liposomes has been collected, subsequently pulse radiolysis was used to generate the radical cations of {beta}-carotene, zeaxanthin and lutein, in unilamellar vesicles of dipalmitoyl phosphatidyl choline. The rate constants for the 'repair' of these carotenoid radical cations by water-soluble vitamin C were found to be similar ({approx}1 x 10{sup 7} M{sup -1}s{sup -1}) for {beta}-carotene and zeaxanthin and somewhat lower ({approx}0.5 x 10{sup 7} M{sup -1}s{sup -1}) for lutein. The results are discussed in terms of the microenvironment of the carotenoids and suggest that for {beta}-carotene, a hydrocarbon carotenoid, the radical cation is able to interact with a water-soluble species even though the parent hydrocarbon carotenoid is probably entirely in the non-polar region of the liposome. Studies investigating the ability of ingested lycopene to protect human lymphoid cells against singlet oxygen and nitrogen dioxide radical mediated cell damage have shown that a high lycopene diet is beneficial in protecting human cells against reactive oxygen species. Triplet states of carotenoids were produced in benzene solvent and their triplet lifetimes were found to depend on the concentration of the parent molecule. The rate constants obtained for ground state quenching correlate with the number

  5. Enrichment of light hydrocarbon mixture

    Science.gov (United States)

    Yang; Dali; Devlin, David; Barbero, Robert S.; Carrera, Martin E.; Colling, Craig W.

    2010-08-10

    Light hydrocarbon enrichment is accomplished using a vertically oriented distillation column having a plurality of vertically oriented, nonselective micro/mesoporous hollow fibers. Vapor having, for example, both propylene and propane is sent upward through the distillation column in between the hollow fibers. Vapor exits neat the top of the column and is condensed to form a liquid phase that is directed back downward through the lumen of the hollow fibers. As vapor continues to ascend and liquid continues to countercurrently descend, the liquid at the bottom of the column becomes enriched in a higher boiling point, light hydrocarbon (propane, for example) and the vapor at the top becomes enriched in a lower boiling point light hydrocarbon (propylene, for example). The hollow fiber becomes wetted with liquid during the process.

  6. Athermal bladder neck dissection during robot-assisted radical prostatectomy

    OpenAIRE

    Fabrizio Dal Moro

    2014-01-01

    Introduction With improved understanding of the precise anatomy, surgical techniques during robot-assisted radical prostatectomy (RARP) have been refined, with the aim of improving functional outcomes without compromising oncological adequacy and results. Nevertheless, postoperative urinary incontinence remains a frustrating side-effect. Anatomically, bladder neck (BN) serves as an internal sphincter. The longitudinal fibres of BN may be identified and isolated with a meticulous dissection at...

  7. Competition Kinetics of the Nonbranched-Chain Addition of Free Radicals to Olefins, Formaldehyde, and Oxygen

    Directory of Open Access Journals (Sweden)

    M. M. Silaev

    2011-01-01

    Full Text Available Five reaction schemes are suggested for the initiated nonbranched-chain addition of free radicals to the multiple bonds of alkenes, formaldehyde, and oxygen. The schemes include reactions competing with chain propagation through a reactive free radical. The chain evolution stage in these schemes involves three or four types of free radicals. One of them— CH2=C(CH3•CH2, CH2=CH•CHOH, H•C=O, −CH3C6H4CH2O•4, or HO•4—is relatively low-reactive and inhibits the chain process by shortening of the kinetic chain length. Based on the suggested schemes, nine rate equations containing one to three parameters to be determined directly are set up using quasi-steady-state treatment. These equations provide good fits for the nonmonotonic (peaking dependences of the formation rates of the molecular addition products (1 : 1 adducts on the concentration of the unsaturated component in liquid homogeneous binary systems consisting of a saturated component (hydrocarbon, alcohol, etc. and an unsaturated component (olefin, formaldehyde, or dioxygen. The unsaturated compound in these systems is both a reactant and an autoinhibitor generating low-reactive free radicals. A similar kinetic description is applicable to nonbranched-chain free-radical hydrogen oxidation. The energetics of the key radical-molecule reactions is considered.

  8. Growth study on chrysene degraders isolated from polycyclic ...

    African Journals Online (AJOL)

    GRACE

    2006-05-16

    May 16, 2006 ... isolated from polycyclic aromatic hydrocarbon polluted soils by enrichment culture using chrysene as ... metabolism have been described; Rhodococcus sp. ..... accumulate in the membrane lipid bilayer, affecting the structural ...

  9. π-electron S = ½ quantum spin-liquid state in an ionic polyaromatic hydrocarbon

    Science.gov (United States)

    Takabayashi, Yasuhiro; Menelaou, Melita; Tamura, Hiroyuki; Takemori, Nayuta; Koretsune, Takashi; Štefančič, Aleš; Klupp, Gyöngyi; Buurma, A. Johan C.; Nomura, Yusuke; Arita, Ryotaro; Arčon, Denis; Rosseinsky, Matthew J.; Prassides, Kosmas

    2017-07-01

    Molecular solids with cooperative electronic properties based purely on π electrons from carbon atoms offer a fertile ground in the search for exotic states of matter, including unconventional superconductivity and quantum magnetism. The field was ignited by reports of high-temperature superconductivity in materials obtained by the reaction of alkali metals with polyaromatic hydrocarbons, such as phenanthrene and picene, but the composition and structure of any compound in this family remained unknown. Here we isolate the binary caesium salts of phenanthrene, Cs(C14H10) and Cs2(C14H10), to show that they are multiorbital strongly correlated Mott insulators. Whereas Cs2(C14H10) is diamagnetic because of orbital polarization, Cs(C14H10) is a Heisenberg antiferromagnet with a gapped spin-liquid state that emerges from the coupled highly frustrated Δ-chain magnetic topology of the alternating-exchange spiral tubes of S = ½ (C14H10)•- radical anions. The absence of long-range magnetic order down to 1.8 K (T/J ≈ 0.02 J is the dominant exchange constant) renders the compound an excellent candidate for a spin-½ quantum-spin liquid (QSL) that arises purely from carbon π electrons.

  10. Free Radicals in Organic Matter for Thermal History Reconstruction of Carbonate Succession

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Geothermometer is one of the most useful methods to reconstruct the thermal history of sedimentary basins. This paper introduces the application of free radicals concentration of organic matter as a thermal indicator in the thermal history reconstruction of carbonate succession, based on anhydrous thermal simulation results of type Ⅰ and Ⅱ1 kerogen. A series of free radicals data are obtained under thermal simulation of different heating temperatures and times, and quantitative models between free radical concentration (Ng) of organic matter and time-temperature index (TTI) for types Ⅰ and type Ⅱ1 kerogen are also obtained. This Ng- TTI relation was used to model the Ordovician thermal gradients of Well TZ12 in the Tarim Basin. The modeling result is corresponding to the results obtained by apatite fission track data and published data. This new method of thermal history reconstruction will be benefit to the hydrocarbon generation and accumulation study and resource assessment of carbonate succession.

  11. Hydrocarbons preserved in a ~2.7 Ga outcrop sample from the Fortescue Group, Pilbara Craton, Western Australia.

    Science.gov (United States)

    Hoshino, Y; Flannery, D T; Walter, M R; George, S C

    2015-03-01

    The hydrocarbons preserved in an Archean rock were extracted, and their composition and distribution in consecutive slices from the outside to the inside of the rock were examined. The 2.7 Ga rock was collected from the Fortescue Group in the Pilbara region, Western Australia. The bitumen I (solvent-extracted rock) and bitumen II (solvent-extracted hydrochloric acid-treated rock) fractions have different hydrocarbon compositions. Bitumen I contains only trace amounts of aliphatic hydrocarbons and virtually no aromatic hydrocarbons. In contrast, bitumen II contains abundant aliphatic and aromatic hydrocarbons. The difference seems to reflect the weathering history and preservational environment of the investigated rock. Aliphatic hydrocarbons in bitumen I are considered to be mainly from later hydrocarbon inputs, after initial deposition and burial, and are therefore not indigenous. The lack of aromatic hydrocarbons in bitumen I suggests a severe weathering environment since uplift and exposure of the rock at the Earth's surface in the Cenozoic. On the other hand, the high abundance of aromatic hydrocarbons in bitumen II suggests that bitumen II hydrocarbons have been physically isolated from removal by their encapsulation within carbonate minerals. The richness of aromatic hydrocarbons and the relative scarcity of aliphatic hydrocarbons may reflect the original compositions of organic materials biosynthesised in ancient organisms in the Archean era, or the high thermal maturity of the rock. Cyanobacterial biomarkers were observed in the surficial slices of the rock, which may indicate that endolithic cyanobacteria inhabited the surface outcrop. The distribution of aliphatic and aromatic hydrocarbons implies a high thermal maturity, which is consistent with the lack of any specific biomarkers, such as hopanes and steranes, and the prehnite-pumpellyite facies metamorphic grade.

  12. Postirradiation fibrosarcoma following radical mastectomy

    Energy Technology Data Exchange (ETDEWEB)

    Iwasaki, K.; Nagamitsu, S.; Tsuneyoshi, M.

    1978-03-01

    A case of fibrosarcoma arising in the scar of the radical mastectomy with postoperative irradiation of breast carcinoma is reported. The tumors arose five times in spite of the extirpations including surrounding tissue since 11 years after radical mastectomy and postoperative irradiation. All of arisen tumors were diagnosed fibrosarcoma histologically and with every recurrence the aggravation of malignancy of tumors was shown. In this case, the primary tumor of the breast was infiltrating carcinoma and no sign of fibrosarcoma was noted histologically. The mastectomy scar was indicated the irradiation therapy postoperatively and fibrosarcoma developed 11 years after postoperative irradiation. Namely, this case agreed to the strict criteria of the postirradiation sarcoma proposed by Cahan et al. In this paper, a case of postirradiation fibrosarcoma arising in the scar of radical mastectomy for carcinoma is presented.

  13. Epistemological barriers to radical behaviorism.

    Science.gov (United States)

    O'Donohue, W T; Callaghan, G M; Ruckstuhl, L E

    1998-01-01

    The historian and philosopher of science Gaston Bachelard proposed the concept of epistemological barriers to describe the intellectual challenges encountered by scientists in their work. In order to embrace novel ways of approaching a problem in science, scientists must overcome barriers or obstacles posed by their prior views. For example, Einsteinian physics presents scientists with claims that space is curved and that time and space are on the same continuum. We utilize Bachelard's concept of epistemological barriers to describe the differences between the intellectual journeys students pursuing advanced studies face when attempting to accept cognitive psychology or radical behaviorism. We contend that the folk psychological beliefs that students typically hold when entering these studies pose less challenge to cognitive psychology than to radical behaviorism. We also suggest that these barriers may also partly be involved in the problematic exegesis that has plagued radical behaviorism. In close, we offer some suggestions for dealing with these epistemological barriers.

  14. Epistemological barriers to radical behaviorism

    Science.gov (United States)

    O'Donohue, William T.; Callaghan, Glenn M.; Ruckstuhl, L. E.

    1998-01-01

    The historian and philosopher of science Gaston Bachelard proposed the concept of epistemological barriers to describe the intellectual challenges encountered by scientists in their work. In order to embrace novel ways of approaching a problem in science, scientists must overcome barriers or obstacles posed by their prior views. For example, Einsteinian physics presents scientists with claims that space is curved and that time and space are on the same continuum. We utilize Bachelard's concept of epistemological barriers to describe the differences between the intellectual journeys students pursuing advanced studies face when attempting to accept cognitive psychology or radical behaviorism. We contend that the folk psychological beliefs that students typically hold when entering these studies pose less challenge to cognitive psychology than to radical behaviorism. We also suggest that these barriers may also partly be involved in the problematic exegesis that has plagued radical behaviorism. In close, we offer some suggestions for dealing with these epistemological barriers. PMID:22478314

  15. High Pressure Preignition Chemistry of Hydrocarbons and Hydrocarbon Mixtures

    Science.gov (United States)

    2007-11-02

    and hydrocarbon blends in our various combustion systems, with emphasis on the effects of elevated pressure using our pressurized flow reactor ( PFR ...facility. Detailed experimental data were generated from the PFR for use in associated kinetic modeling work. We continued to develop and extend both

  16. Total Petroleum Hydrocarbons (TPH): ToxFAQs

    Science.gov (United States)

    ... a state: This map displays locations where Total Petroleum Hydrocarbons (TPH) is known to be present. On ... I get more information? ToxFAQs TM for Total Petroleum Hydrocarbons (TPH) ( Hidrocarburos Totales de Petróleo (TPH) ) August ...

  17. Vaginal radical trachelectomy: an update.

    Science.gov (United States)

    Plante, Marie

    2008-11-01

    The vaginal radical trachelectomy has emerged as a valuable fertility-preserving treatment option for young women with early-stage disease. Cancer-related infertility is associated with feelings of depression, grief, stress, and sexual dysfunction. Data have shown that the overall oncological outcome is safe and that the obstetrical outcome is promising. In this article, we analyze the data on the vaginal radical trachelectomy published over the last 10 years in the context of what we have learned, what issues remain unclear, and what the future holds.

  18. Radical democratic politics and feminism

    Directory of Open Access Journals (Sweden)

    Martínez Labrin, Soledad

    2006-05-01

    Full Text Available In the article I present a reflection around the radical democratic project proposed by Chantal Mouffe and Ernesto Laclau. Specifically, I examine the application of the project in the context of the “new social movements” and especially, of feminist movement. I state the need of drawing attention to universalism and essentialism as the main obstacles to generate a collective proposal without margins. Nevertheless, doubts remind about the possibility of building up a feminism tailored by the radical democratic project, in a stage in which the political action of such a movement is characterized by categories that are closed and crystallized

  19. 33 CFR 157.166 - Hydrocarbon emissions.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Hydrocarbon emissions. 157.166... Crude Oil Washing (COW) System on Tank Vessels Cow Operations § 157.166 Hydrocarbon emissions. If the... ballasted in that port the hydrocarbon vapors in each tank are contained by a means under § 157.132....

  20. Compositions and methods for hydrocarbon functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Gunnoe, Thomas Brent; Fortman, George; Boaz, Nicholas C.; Groves, John T.

    2017-03-28

    Embodiments of the present disclosure provide for methods of hydrocarbon functionalization, methods and systems for converting a hydrocarbon into a compound including at least one group ((e.g., hydroxyl group) (e.g., methane to methanol)), functionalized hydrocarbons, and the like.

  1. Effective viscosity of confined hydrocarbons

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Samoilov, V.N.; Persson, B.N.J.

    2012-01-01

    We present molecular dynamics friction calculations for confined hydrocarbon films with molecular lengths from 20 to 1400 carbon atoms. We find that the logarithm of the effective viscosity ηeff for nanometer-thin films depends linearly on the logarithm of the shear rate: log ηeff=C-nlog γ̇, where...

  2. Fire-safe hydrocarbon fuels

    Energy Technology Data Exchange (ETDEWEB)

    Fodor, G.E.; Weatherford, W.D. Jr.; Wright, B.R.

    1979-11-06

    A stabilized, fire-safe, aqueous hydrocarbon fuel emulsion prepared by mixing: a diesel fuel; an emulsifier (consisting of oleyl diethanolamide, diethanolamine, and diethanolamine soap of oleic acid) which has been treated with about 0 to 7 1/2 of oleic acid. A modified version of this fuel also contains 0 to 0.5% of an antimisting agent, and water.

  3. Hydrophobic encapsulation of hydrocarbon gases.

    Science.gov (United States)

    Leontiev, Alexander V; Saleh, Anas W; Rudkevich, Dmitry M

    2007-04-26

    [reaction: see text] Encapsulation data for hydrophobic hydrocarbon gases within a water-soluble hemicarcerand in aqueous solution are reported. It is concluded that hydrophobic interactions serve as the primary driving force for the encapsulation, which can be used for the design of gas-separating polymers with intrinsic inner cavities.

  4. DPPH FREE RADICAL SCAVENGER ACTIVITY OF FLAVONOID FROM THE LEAVES OF FERN Chingia sakayensis (Zeiller Holtt

    Directory of Open Access Journals (Sweden)

    Suyatno Suyatno

    2010-06-01

    Full Text Available A flavonoid compound in flavonol type namely kaemferol was isolated from the ethyl acetate fraction of the methanol extract of the fern Chingia sakayensis (Zeiller Holtt's leaves. The DPPH free radical scavenger activity of kaemferol was stronger than buthyl hyroxy toluene (BHT but it was weaker than ascorbic acid (vitamin C and -tocopherol (vitamin E.   Keywords: Chingia sakayensis, kaemferol, DPPH free radical scavenger activity

  5. Exploring the Theories of Radicalization

    Directory of Open Access Journals (Sweden)

    Maskaliūnaitė Asta

    2015-12-01

    Full Text Available After the London bombings in July 2005, the concern of terrorism scholars and policy makers has turned to “home-grown” terrorism and potential for political violence from within the states. “Radicalization” became a new buzz word. This article follows a number of reviews of the literature on radicalization and offers another angle for looking at this research. First, it discusses the term “radicalization” and suggests the use of the following definition of radicalization as a process by which a person adopts belief systems which justify the use of violence to effect social change and comes to actively support as well as employ violent means for political purposes. Next, it proposes to see the theories of radicalization focusing on the individual and the two dimensions of his/her motivation: whether that motivation is internal or external and whether it is due to personal choice or either internal (due to some psychological traits or external compulsion. Though not all theories fall neatly within these categories, they make it possible to make comparisons of contributions from a variety of different areas thus reflecting on the interdisciplinary nature of the study of terrorism in general and radicalization as a part of it.

  6. Detecting Social Polarization and Radicalization

    DEFF Research Database (Denmark)

    Qureshi, Pir Abdul Rasool; Memon, Nasrullah; Wiil, Uffe Kock

    2011-01-01

    This paper proposes a novel system to detect social polarization and to estimate the chances of violent radicalization associated with it. The required processes for such a system are indicated; it is also analyzed how existing technologies can be integrated into the proposed system to fulfill...

  7. Students' Ideas and Radical Constructivism

    Science.gov (United States)

    Sánchez Gómez, Pedro J.

    2016-01-01

    In this article, I study, from the point of view of the analytic philosophy of mind, the compatibility of students' ideas studies (SIS) with radical constructivism (RC). I demonstrate that RC is based on a psychology of "narrow mental states"; that is, the idea that the mental content of an individual can be fully characterised without…

  8. Is Radical Innovation Management Misunderstood?

    DEFF Research Database (Denmark)

    Kristiansen, Jimmi Normann; Gertsen, Frank

    2015-01-01

    This paper poses a critical view on radical innovation (RI) management research and practice. The study investigates how expected RI performance influences firms’ under- standing of their RI capability. RI performance is often based on output measures such as market shares or fiscal return...

  9. Penile rehabilitation after radical prostatectomy

    DEFF Research Database (Denmark)

    Fode, Mikkel; Ohl, Dana A; Ralph, David

    2013-01-01

    The pathophysiology of erectile dysfunction after radical prostatectomy (RP) is believed to include neuropraxia, which leads to temporarily reduced oxygenation and subsequent structural changes in penile tissue. This results in veno-occlusive dysfunction, therefore, penile rehabilitation programmes...... rehabilitation improves erectile function after RP so many times that it becomes a truth even without the proper scientific backing....

  10. Students' Ideas and Radical Constructivism

    Science.gov (United States)

    Sánchez Gómez, Pedro J.

    2016-01-01

    In this article, I study, from the point of view of the analytic philosophy of mind, the compatibility of students' ideas studies (SIS) with radical constructivism (RC). I demonstrate that RC is based on a psychology of "narrow mental states"; that is, the idea that the mental content of an individual can be fully characterised without…

  11. Radical review of NHS funding.

    Science.gov (United States)

    1988-02-06

    The Government is to carry out a radical review of the way the NHS is funded, Prime Minister Margaret Thatcher confirmed last week. And she hinted that she herself would be taking a leading role in drawing up proposals for reform.

  12. The Other Women: Radicalizing Feminism.

    Science.gov (United States)

    Puigvert, Lidia; Darder, Antonia; Merrill, Barbara; de los Reyes, Eileen; Stromquist, Nelly

    A recent international symposium on radicalizing feminism explored ways of developing a dialogic feminism that emphasizes working in different settings under the common goal of including women who have been invisible in the dominant feminist literature by furthering theories and practices based on the principles of dialogic feminism. The seminar…

  13. Wild radical square zero algebras

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    It is shown that a radical square zero algebra is wild, if and only if it is of Corner's type, and it is strictly wild if and only if it is Endo-wild. This gives a negative answer to a problem posed by Simson.

  14. Radical Innovation and Network Evolution

    NARCIS (Netherlands)

    S.M.W. Phlippen (Sandra); M. Riccaboni

    2007-01-01

    textabstractThis paper examines how a radical technological innovation affects alliance formation of firms and subsequent network structures. We use longitudinal data of interfirm R&D collaborations in the biopharmaceutical industry in which a new technological regime is established. Our findings su

  15. Detecting Social Polarization and Radicalization

    DEFF Research Database (Denmark)

    Qureshi, Pir Abdul Rasool; Memon, Nasrullah; Wiil, Uffe Kock

    2011-01-01

    This paper proposes a novel system to detect social polarization and to estimate the chances of violent radicalization associated with it. The required processes for such a system are indicated; it is also analyzed how existing technologies can be integrated into the proposed system to fulfill...

  16. [Reprodcutive results of radical trachelectomy].

    Science.gov (United States)

    Martínez-Chapa, Arnulfo; Alonso-Reyes, Nelly; Luna-Macías, Miguel

    2015-12-01

    Historically, cervical cancer in early stages has been treated with radical hysterectomy and radiotherapy with no option in keeping the uterine-ovarian function. Since two decades ago, evidence shows these cases are candidates for radical trachelectomy, a procedure capable of preserving the fertility without affecting the oncological outcome. To analyze reproductive results among patients treated with radical trachelectomy, in a reference center from the northeast of Mexico. Between March 1999 and December 2013, 27 cases with cervical cancer in early stages were treated with vaginal or abdominal radical trachelectomy in the ISSSTE Regional Hospital in Monterrey, NL (Mexico). We obtained the gynecological, medical and surgical clinical history. Plan of analysis consisted of descriptive statistics. Age range was 27-39 years. Main complications were cervical stenosis (n=1) and erosion of cerclaje (n=2). Eighteen patients tried to get pregnant, 8 of them got a spontaneous pregnancy; 1 more patient required assisted reproduction technics and did not succeed. All pregnancies were delivered by cesarean section and were preterm births; 3 underwent premature rupture of membranes. Two pregnancies ended in abortion, one at 10 weeks with severe hemorrhage that needed hysterectomy; the second one, at 1 7 weeks, received a fine uterine curettage. Only 6 cases (33%) got a live birth. Only one third of the attempted pregnancies got a live birth. Assisted reproduction technics play an important role and should be offer to all cases. Cerclaje is an important factor to carry a pregnancy up to the third trimester.

  17. Recovery of Aliphatic Hydrocarbons from Oil Field Sludge using Bacillus sp

    Directory of Open Access Journals (Sweden)

    Rizwan Ahmed Bhutto

    2015-04-01

    Full Text Available Bioremediation of aliphatic HC (Hydrocarbons in the oily sludge of Kunnar oil and gas field, Pakistan was attempted by means of previously isolated and developed Bacillus sp. Both autoclaved and non-autoclaved sludge samples were analyzed for a reaction time of 30 days with pH 7 and temperature of 380C in 50 ml MSM growth media for the sludge concentration of 5, 10 and 50% with 2, 4 and 6ml of Bacillus sp. relatively, in air atmosphere. Stabilization of the samples by microbial activity resulted in the decrease in TPH (Total Petroleum Hydrocarbon concentration by 60, 69 and 87% in autoclaved samples in contrast to the decrease of 70, 84 and 94% observed in non-autoclaved samples, relatively. Hydrocarbon degradation in oily sludge was investigated via GC which transpired that 97 and 99% concentration of aliphatic hydrocarbons in autoclaved and non-autoclaved samples was removed at 5% of TPH concentration, relatively. However, with 10% TPH concentration aliphatic hydrocarbons reduction was 68% in autoclaved samples to that of 87% in non-autoclaved samples. Further increase in the hydrocarbons concentration by 50% yielded in the removal of aliphatic hydrocarbons by 65% in autoclaved samples as compared to 98% decrease in non-autoclaved samples.

  18. The Role of Isolation in Radicalization: How Important Is It?

    Science.gov (United States)

    2013-12-01

    York: Prometheus Books, 1996), (Kindle ed.), 643. 138 Michel, Herbeck and Telles, American Terrorist, 21. 139 Ibid., 25. 40...1972. Shafik came to the United States on a visa to study medicine in southern Alabama. Southern Alabama’s historically conservative culture appealed to...degree in medicine . One day, he disenrolled from the university.271 Around the same time, Hammami travelled back to Syria with his father to meet his

  19. Effects of non-thermal plasmas and electric field on hydrocarbon/air flames

    Science.gov (United States)

    Ganguly, Biswa

    2009-10-01

    Need to improve fuel efficiency, and reduce emission from hydrocarbon combustor in automotive and gas turbine engines have reinvigorated interest in reducing combustion instability of a lean flame. The heat generation rate in a binary reaction is HQ =N^2 c1c2 Q exp(-E/RT), where N is the density, c1 and c2 are mol fractions of the reactants, Q is the reaction heat release, E is the activation energy, R is the gas constant and T is the average temperature. For hydrocarbon-air reactions, the typical value of E/R ˜20, so most heat release reactions are confined to a thin reaction sheet at T >=1400 K. The lean flame burning condition is susceptible to combustion instability due to a critical balance between heat generation and heat loss rates, especially at high gas flow rate. Radical injection can increase flame speed by reducing the hydrocarbon oxidation reaction activation barrier and it can improve flame stability. Advances in nonequilibrium plasma generation at high pressure have prompted its application for energy efficient radical production to enhance hydrocarbon-air combustion. Dielectric barrier discharges and short pulse excited corona discharges have been used to enhance combustion stability. Direct electron impact dissociation of hydrocarbon and O2 produces radicals with lower fuel oxidation reaction activation barriers, initiating heat release reaction CnHm+O CnHm-1+ OH (and other similar sets of reactions with partially dissociated fuel) below the typical cross-over temperature. Also, N2 (A) produced in air discharge at a moderate E/n can dissociate O2 leading to oxidation of fuel at lower gas temperature. Low activation energy reactions are also possible by dissociation of hydrocarbon CnHm+e -> CnHm-2+H2+e, where a chain propagation reaction H2+ O OH+H can be initiated at lower gas temperature than possible under thermal equilibrium kinetics. Most of heat release comes from the reaction CO+OH-> CO2 +H, nonthermal OH production seem to improve

  20. Reaction of hydroxyl radical with phenylpropanoid glycosides from Pedicularis species: a pulse radiolysis study

    Institute of Scientific and Technical Information of China (English)

    王潘奋; 郑荣梁; 高建军; 贾忠建; 王文峰; 姚思德; 张加山; 林念芸

    1996-01-01

    Using pulse radiolysis technique, the reaction between hydroxyl radical and 7 phenylpropanoidglycosides: echinacoside, verbascoside, leucosceptoside A, martynoside, pediculariosides A, M and N which were isolated from Pedicularis were examined. The rate constants of these reactions were determined by transient absorption spectra. All 7 phenylpropanoid glycosides react with hydroxyl radical at high rate constants within (0.97-1.91)×1010L · mol-1 · s-1. suggesting that they are effective hydroxyl radical scavengers. The results demonstrate that the numbers of phenolic hydroxyl groups of phenylpropanoid glycosides are directly related to their scavenging activities. The scavenging activities are likely related to o-dihydroxy group of phenylpropanoid glycosides as well.

  1. Transition-Metal Hydride Radical Cations.

    Science.gov (United States)

    Hu, Yue; Shaw, Anthony P; Estes, Deven P; Norton, Jack R

    2016-08-10

    Transition-metal hydride radical cations (TMHRCs) are involved in a variety of chemical and biochemical reactions, making a more thorough understanding of their properties essential for explaining observed reactivity and for the eventual development of new applications. Generally, these species may be treated as the ones formed by one-electron oxidation of diamagnetic analogues that are neutral or cationic. Despite the importance of TMHRCs, the generally sensitive nature of these complexes has hindered their development. However, over the last four decades, many more TMHRCs have been synthesized, characterized, isolated, or hypothesized as reaction intermediates. This comprehensive review focuses on experimental studies of TMHRCs reported through the year 2014, with an emphasis on isolated and observed species. The methods used for the generation or synthesis of TMHRCs are surveyed, followed by a discussion about the stability of these complexes. The fundamental properties of TMHRCs, especially those pertaining to the M-H bond, are described, followed by a detailed treatment of decomposition pathways. Finally, reactions involving TMHRCs as intermediates are described.

  2. Fast co-pyrolysis of waste newspaper with high-density polyethylene for high yields of alcohols and hydrocarbons.

    Science.gov (United States)

    Chen, Weimin; Shi, Shukai; Chen, Minzhi; Zhou, Xiaoyan

    2017-09-01

    Waste newspaper (WP) was first co-pyrolyzed with high-density polyethylene (HDPE) using pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) to enhance the yields of alcohols and hydrocarbons. The effects of WP: HDPE feed ratio (100:0, 75:25, 50:50, 25:75, 0:100) and temperature (500-800°C) on products distribution were investigated and the interaction mechanism during co-pyrolysis was also proposed. Maximum yields of alcohols and hydrocarbons reached 85.88% (feed ratio 50:50wt.%, 600°C). Hydrogen supplements and deoxidation by HDPE and subsequently fragments recombination result in the conversion of aldehydes and ketones into branched hydrocarbons. Radicals from WP degradation favor the secondary crack for HDPE products resulting in the formation of linear hydrocarbons with low carbon number. Hydrocarbons with activated radical site from HDPE degradation were interacted with hydroxyl from WP degradation promoting the formation of linear long chain alcohols. Moreover, co-pyrolysis significantly enhanced condensable oil qualities, which were close to commercial diesel No. 0. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Reduction of petroleum hydrocarbons and toxicity in refinery wastewater by bioremediation.

    Science.gov (United States)

    Płaza, Grazyna A; Jangid, Kamlesh; Lukasik, Krystyna; Nałecz-Jawecki, Grzegorz; Berry, Christopher J; Brigmon, Robin L

    2008-10-01

    The aim of the study was to investigate petroleum waste remediation and toxicity reduction by five bacterial strains: Ralstonia picketti SRS (BP-20), Alcaligenes piechaudii SRS (CZOR L-1B), Bacillus subtilis (I'-1a), Bacillus sp. (T-1), and Bacillus sp. (T'-1), previously isolated from petroleum-contaminated soils. Petroleum hydrocarbons were significantly degraded (91%) by the mixed bacterial cultures in 30 days (reaching up to 29% in the first 72 h). Similarly, the toxicity of the biodegraded petroleum waste decreased 3-fold after 30 days. This work shows the influence of bacteria on hydrocarbon degradation and associated toxicity, and its dependence on the specific microorganisms present. The ability of these mixed cultures to degrade hydrocarbons and reduce toxicity makes them candidates for environmental restoration applications at other hydrocarbon-contaminated environments.

  4. Subsurface fate of spilled petroleum hydrocarbons in continuous permafrost

    Science.gov (United States)

    McCarthy, K.; Walker, L.; Vigoren, L.

    2004-01-01

    Accidental releases of approximately 2000 m3 of fuel have resulted in subsurface contamination adjacent to Imikpuk Lake, a drinking-water source near Barrow, AK. This paper presents a conceptual model of the distribution and transport of subsurface free-phase hydrocarbons at this site. The mean annual temperature in Barrow is -13 ??C, and average monthly temperatures exceed 0 ??C only during the months of June, July, and August. As a result, the region is underlain by areally continuous permafrost that extends to depths of up to 300 m and constrains subsurface hydrologic processes to a shallow zone that temporarily thaws each summer. During the 1993 and 1994 thaw seasons, the measured depth of thaw varied across the site from approximately 0.5 to 2 m. However, exploratory borings in 1995 showed that free-phase hydrocarbons were present at depths greater than 3 m, indicating that permafrost at this site is not a barrier to the vertical migration of nonaqueous-phase liquids. In 1996, a subsurface containment barrier was installed to prevent lateral movement of contaminated water to Imikpuk Lake, and a recovery trench was excavated upgradient of the barrier to facilitate removal of free-phase hydrocarbons. Free-phase hydrocarbons were recovered from the trench during 1996, 1997, and 1998. Recovery rates diminished over this time, and in 1999, no further product was recovered and the recovery operation was halted. Subsequent exploratory borings in 2001 and 2002 have revealed that some product remains in the subsurface. Data indicate that this remaining product exists in small discrete pockets or very thin layers of hydrocarbon floating on brine. These small reservoirs appear to be isolated from one another by relatively impermeable permafrost. Published by Elsevier B.V.

  5. Biodegradation of petroleum hydrocarbons in hypersaline environments

    Directory of Open Access Journals (Sweden)

    Luiz Fernando Martins

    2012-09-01

    Full Text Available Literature on hydrocarbon degradation in extreme hypersaline media presents studies that point to a negative effect of salinity increase on hydrocarbonoclastic activity, while several others report an opposite tendency. Based on information available in the literature, we present a discussion on the reasons that justify these contrary results. Despite the fact that microbial ability to metabolize hydrocarbons is found in extreme hypersaline media, indeed some factors are critical for the occurrence of hydrocarbon degradation in such environments. How these factors affect hydrocarbon degradation and their implications for the assessment of hydrocarbon biodegradation in hypersaline environments are presented in this review.

  6. Syngas Upgrading to Hydrocarbon Fuels Technology Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Talmadge, M.; Biddy, M.; Dutta, A.; Jones, S.; Meyer, A.

    2013-03-01

    This technology pathway case investigates the upgrading of woody biomass derived synthesis gas (syngas) to hydrocarbon biofuels. While this specific discussion focuses on the conversion of syngas via a methanol intermediate to hydrocarbon blendstocks, there are a number of alternative conversion routes for production of hydrocarbons through a wide array of intermediates from syngas. Future work will also consider the variations to this pathway to determine the most economically viable and lowest risk conversion route. Technical barriers and key research needs have been identified that should be pursued for the syngas-to-hydrocarbon pathway to be competitive with petroleum-derived gasoline-, diesel- and jet-range hydrocarbon blendstocks.

  7. Biodegradation of petroleum hydrocarbons in hypersaline environments

    Science.gov (United States)

    Martins, Luiz Fernando; Peixoto, Raquel Silva

    2012-01-01

    Literature on hydrocarbon degradation in extreme hypersaline media presents studies that point to a negative effect of salinity increase on hydrocarbonoclastic activity, while several others report an opposite tendency. Based on information available in the literature, we present a discussion on the reasons that justify these contrary results. Despite the fact that microbial ability to metabolize hydrocarbons is found in extreme hypersaline media, indeed some factors are critical for the occurrence of hydrocarbon degradation in such environments. How these factors affect hydrocarbon degradation and their implications for the assessment of hydrocarbon biodegradation in hypersaline environments are presented in this review. PMID:24031900

  8. Laboratorio di Comunicazione Militante, Isola Art Centre, and MACAO: enhancing autonomous social organisation through artistic means and rethinking the radical imaginary and the radical imagination in curatorial practice.

    Directory of Open Access Journals (Sweden)

    Aria Spinelli

    2017-10-01

    Full Text Available This article analyses the relation between curatorial practice and political theory, through a recuperation and proposal of the philosophical work of Greek-French philosopher Cornelius Castoriadis. In it, I will isolated the terms the radical imaginary and the radical imagination, and argue that their relation to curatorial practice is exemplified in the politics of cultural spaces that use autonomous social organisation as their means for artistic production. In his writings, specifically in his manuscript The Imaginary Institution of Society (1998, Castoriadis uses the terms to describe the capacity of socialized human beings to rethink and criticize social structures, and sees the radical imaginary and the radical imagination as means of a radical social transformation towards autonomy, or rather towards autonomous social organisation. Within this framework, this article proposes a historical parallelism between three self-organised platforms for art and activism from Milan, such as Laboratorio di Comunicazione Militante, Isola Art Centre, and MACAO, arguing that they are three cases in which autonomous social organisation is a means for artistic and curatorial production. This historical parallelism, constructed around the concepts of the radical imaginary and the radical imagination, demonstrates how the work of Castoriadis is a valuable resource for contextualising and analysing processes politicization of artistic, curatorial and cultural practices. Based on his writings, this article wants to also highlight the importance of autonomous social organisation as a functional framework capable unpacking the complexity of the relation between artistic, curatorial and cultural practices and political and social activism.

  9. Reaction between protein radicals and other biomolecules

    DEFF Research Database (Denmark)

    Østdal, Henrik; Davies, Michael Jonathan; Andersen, Henrik J

    2002-01-01

    The present study investigates the reactivity of bovine serum albumin (BSA) radicals towards different biomolecules (urate, linoleic acid, and a polypeptide, poly(Glu-Ala-Tyr)). The BSA radical was formed at room temperature through a direct protein-to-protein radical transfer from H(2)O(2......)-activated immobilized horseradish peroxidase (im-HRP). Subsequently, each of the three different biomolecules was separately added to the BSA radicals, after removal of im-HRP by centrifugation. Electron spin resonance (ESR) spectroscopy showed that all three biomolecules quenched the BSA radicals....... Subsequent analysis showed a decrease in the concentration of urate upon reaction with the BSA radical, while the BSA radical in the presence of poly(Glu-Ala-Tyr) resulted in increased formation of the characteristic protein oxidation product, dityrosine. Reaction between the BSA radical and a linoleic acid...

  10. Formation of polycyclic aromatic hydrocarbons and soot in fuel-rich oxidation of methane in a laminar flow reactor

    DEFF Research Database (Denmark)

    Skjøth-Rasmussen, Martin Skov; Glarborg, Peter; Østberg, M.

    2004-01-01

    Conversion of methane to higher hydrocarbons, polycyclic aromatic hydrocarbons (PAHs), and soot was investigated under fuel-rich conditions in a laminar flow reactor. The effects of stoichiometry, dilution, and water vapor addition were studied at temperatures between 1073 and 1823 K. A chemical...... decrease with increasing addition of water vapor. The effect is described qualitatively by the reaction mechanism. The enhanced oxidation of acetylene is attributed to higher levels of hydroxyl radicals, formed from the reaction between the water vapor and hydrogen atoms....

  11. EPR and DFT Study of the Polycyclic Aromatic Radical Cations from FriedeI-Crafts Alkylation Reactions

    Institute of Scientific and Technical Information of China (English)

    Tao Wang; An-an Wu; Li-guo Gao; Han-qing Wang

    2009-01-01

    Electron paramagnetic resonance and electron-nuclear double resonance methods were used to study the polycyclic aromatic radical cations produced in a Friedel-Crafts alkylating sys-tem, with m-xylene, or p-xylene and alkyl chloride. The results indicate that the observed electron paramagnetic resonance spectra are due to polycyclic aromatic radicals formed from the parent hydrocarbons. It is suggested that benzyl halides produced in the Friedel-Crafts alkylation reactions undergo Scholl self-condensation to give polycyclic aromatic hydrocar-bons, which are converted into corresponding polycyclic aromatic radical cations in the presence of AlCl3. The identification of observed two radicals 2,6-dimethylanthracene and 1,4,5,8-tetramethylanthracene were supported by density functional theory calculations us-ing the B3LYP/6-31G(d,p)//B3LYP/6-31G(d) approach. The theoretical coupling constants support the experimental assignment of the observed radicals.

  12. Aqueous reactions of chlorine dioxide with hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Rav-Acha, C.; Choshen, E.

    1987-11-01

    In contrast to mechanisms proposed earlier in the literature, according to which chlorine dioxide (ClO/sub 2/) reacts with various hydrocarbons in aqueous media by abstracting allylic or benzylic hydrogens, it is shown that ClO/sub 2/ reacts with olefins through initial electron transfer. Hydrocarbons that can undergo facile oxidation, such as polycyclic aromatic hydrocarbons (PAH) and some olefins, react with ClO/sub 2/ quite rapidly, while saturated aliphatic hydrocarbons, some aromatic hydrocarbons, and olefins substituted with electron-withdrawing groups remain unreactive. This was substantiated by comparing the reactivities toward ClO/sub 2/ of a variety of hydrocarbons, including aliphatic and aromatic hydrocarbons, saturated and unsaturated acids, PAH, or cyclic and acyclic olefins. The results were supported by a detailed kinetic and product study of the reaction between ClO/sub 2/ and some model compounds.

  13. Semiconductor Photocatalysis for Chemoselective Radical Coupling Reactions.

    Science.gov (United States)

    Kisch, Horst

    2017-04-18

    problem of quantitative comparisons of photocatalytic activities or apparent quantum yields and propose a basic three-step mechanistic model. Finally, we address the question whether or not the unique photoredox properties of simple inorganic semiconductor powders may lead to previously unknown visible light induced organic syntheses. For that, we summarize novel radical C-C- and C-N- couplings photocatalyzed by self-prepared cadmium sulfide powders. Electron acceptor and donor substrates like imines or 1,2-diazenes, and cyclic olefins or unsaturated ethers, respectively, undergo a linear addition reaction. The hitherto unknown products have all been isolated in good to moderate yields and may be of pharmaceutical interest. In the first reaction step photogenerated electron-hole pairs produce through proton-coupled electron transfer the corresponding radicals. Their subsequent chemoselective heterocoupling affords the products, correlating with an insertion of the imine or 1,2-diazene into an allylic C(sp(3))-H bond of the donor substrate. In the absence of an imine or 1,2-diazene, cyclic allyl/enol ethers are dehydrodimerized under concomitant hydrogen evolution. Even a visible light photosulfoxidation of alkanes is catalyzed by titania. In these heterogeneous photoredox reactions the role of the semiconductor photocatalyst is multifunctional. It induces favorable substrate preorientations in the surface-solvent layer, it catalyzes proton-coupled interfacial electron transfer to and from substrates generating intermediate radicals, and it enables their subsequent chemoselective coupling in the surface-solvent interface. Different from molecular photosensitizers, which enable only one one-electron transfer with one single substrate, photoexcited semiconductors induce two concerted one-electron transfer reactions with two substrates. This is because the light generated electron-hole pairs are trapped at distinct surface sites and undergo proton-coupled interfacial electron

  14. Thermal Decomposition of C7H7 Radicals; Benzyl, Tropyl, and Norbornadienyl

    Science.gov (United States)

    Buckingham, Grant; Ellison, Barney; Daily, John W.; Ahmed, Musahid

    2015-06-01

    Benzyl radical (C6H5CH2) and two other C7H7 radicals are commonly encountered in the combustion of substituted aromatic compounds found in biofuels and gasoline. High temperature pyrolysis of benzyl radical requires isomerization to other C7H7 radicals that may include cycloheptatrienyl (tropyl) radical (cyc-C7H7) and norbornadienyl radical. The thermal decomposition of all three radicals has now been investigated using a micro-reactor that heats dilute gas-phase samples up to 1600 K and has a residence time of about 100 μ-sec. The pyrolysis products exit the reactor into a supersonic expansion and are detected using synchrotron-based photoionization mass spectrometry and matrix-isolation IR spectroscopy. The products of the pyrolysis of benzyl radical (C6H5CH2) along with three isotopomers (C6H513CH2, C6D5CH2, and C6H5CD2) were detected and identified. The distribution of 13C atoms and D atoms indicate that multiple different decomposition pathways are active. Buckingham, G. T., Ormond, T. K., Porterfield, J. P., Hemberger, P., Kostko, O., Ahmed, M., Robichaud, D. J., Nimlos, M. R., Daily, J. W., Ellison, G. B. 2015, Journal of Chemical Physics 142 044307

  15. Screening of Potential Free Radicals Scavenger and Antibacterial Activities of Purwoceng (Pimpinella alpina Molk)

    Science.gov (United States)

    Wahyuningrum, Retno; Utami, Pri Iswati; Dhiani, Binar Asrining; Kumalasari, Malikhah; Kusumawardani, Rizka Sari

    2016-01-01

    Purwoceng (Pimpinella alpina Molk) is a traditional medicinal plant used for its aphrodisiac values. This plant was originated Dieng Plateu, Central Java, Indonesia. Purwoceng has been reported to contain steroid, flavonoids, glycoside, saponins, tannins, and phenolic. Based on secondary metabolite compounds of Purwoceng herbs, a research need to be done to determine the other potential free radicals scavenger and antibacterial activities of Purwoceng. The objectives of this research are to screen the potential free radicals scavenger activity of in vitro using DPPH (1,1 diphenyl-2-picryl-hydrazil) radicals and NO• (nitric oxide) radicals, and antibacterial activity of Purwoceng. The extraction is done by a maceration method with petroleum ether, ethyl acetate, and ethanol solvent, respectively. Free radicals scavenger test was performed using DPPH radicals and NO• radicals, while antibacterial activity screening was performed using agar diffusion test. The results showed that ethyl acetate extract of Purwoceng has free radical scavenger activity with IC50 53.07 ppm lower than butylated hydroxytoluene. Ethyl acetate extract and ethanol extract of Purwoceng have antibacterial activity against Staphyloccus aureus, Escherichia coli, and MG42 bacterial isolate. PMID:27965755

  16. Screening of Potential Free Radicals Scavenger and Antibacterial Activities of Purwoceng (Pimpinella alpina Molk).

    Science.gov (United States)

    Wahyuningrum, Retno; Utami, Pri Iswati; Dhiani, Binar Asrining; Kumalasari, Malikhah; Kusumawardani, Rizka Sari

    2016-11-01

    Purwoceng (Pimpinella alpina Molk) is a traditional medicinal plant used for its aphrodisiac values. This plant was originated Dieng Plateu, Central Java, Indonesia. Purwoceng has been reported to contain steroid, flavonoids, glycoside, saponins, tannins, and phenolic. Based on secondary metabolite compounds of Purwoceng herbs, a research need to be done to determine the other potential free radicals scavenger and antibacterial activities of Purwoceng. The objectives of this research are to screen the potential free radicals scavenger activity of in vitro using DPPH (1,1 diphenyl-2-picryl-hydrazil) radicals and NO• (nitric oxide) radicals, and antibacterial activity of Purwoceng. The extraction is done by a maceration method with petroleum ether, ethyl acetate, and ethanol solvent, respectively. Free radicals scavenger test was performed using DPPH radicals and NO• radicals, while antibacterial activity screening was performed using agar diffusion test. The results showed that ethyl acetate extract of Purwoceng has free radical scavenger activity with IC50 53.07 ppm lower than butylated hydroxytoluene. Ethyl acetate extract and ethanol extract of Purwoceng have antibacterial activity against Staphyloccus aureus, Escherichia coli, and MG42 bacterial isolate.

  17. Anionic clusters in dusty hydrocarbon and silane plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hollenstein, C.; Schwarzenbach, W.; Howling, A.A.; Courteille, C.; Dorier, J.L.; Sansonnens, L. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP)

    1995-10-01

    Measurements of anions and cations are reported for hydrocarbon and silane rf capacitive glow discharges. Series of anions were observed by quadrupole mass spectrometry using power-modulated plasmas and their structures are interpreted from the form of the mass spectra. Various experiments in silane plasmas show that anion confinement results in particles and conversely, anion de-trapping can inhibit particle formation. In contrast, the polymerized neutral flux magnitudes, mass spectra and dynamics are independent of the powder formation. Powder is known to form readily in deposition plasmas containing electronegative free radicals, and the general role of anions in particle formation is discussed in the light of these experiments. (author) 6 figs., 21 refs.

  18. Isolation and Characterization of Hydrocarbon-Degrading Bacteria ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Manage. June 2017. Vol. ... highest and lowest bacterial counts in subsoil samples were found out to be 1.14 x 106 CFU/g and ... could lead to health hazards. ... A variety of technologies is currently available to ... A ten-fold serial dilution was.

  19. Oxygen free radicals in rheumatoid arthritis

    NARCIS (Netherlands)

    P. Biemond (Pieter)

    1986-01-01

    textabstractCurrent knowledge strongly suggests that oxygen free radicals are involved in the pathogenesis of RA. Additional information about the mechanism of free radical attack is necessary in order to find out if interaction with the mechanism of free radical damage can be used in the treatment

  20. EPR spin trapping of protein radicals

    DEFF Research Database (Denmark)

    Davies, Michael Jonathan; Hawkins, Clare Louise

    2004-01-01

    Electron paramagnetic resonance (EPR) spin trapping was originally developed to aid the detection of low-molecular-mass radicals formed in chemical systems. It has subsequently found widespread use in biology and medicine for the direct detection of radical species formed during oxidative stress ...... examples of radical formation on proteins....

  1. Does Addition of NO2 to Carbon-Centered Radicals Yield RONO or RNO2? An Investigation Using Distonic Radical Ions

    Science.gov (United States)

    Kirk, Benjamin B.; Trevitt, Adam J.; Blanksby, Stephen J.

    2013-04-01

    Nitrogen dioxide is used as a "radical scavenger" to probe the position of carbon-centered radicals within complex radical ions in the gas phase. As with analogous neutral radical reactions, this addition results in formation of an [M + NO2]+ adduct, but the structural identity of this species remains ambiguous. Specifically, the question remains: do such adducts have a nitro- (RNO2) or nitrosoxy- (RONO) moiety, or are both isomers present in the adduct population? In order to elucidate the products of such reactions, we have prepared and isolated three distonic phenyl radical cations and observed their reactions with nitrogen dioxide in the gas phase by ion-trap mass spectrometry. In each case, stabilized [M + NO2]+ adduct ions are observed and isolated. The structure of these adducts is probed by collision-induced dissociation and ultraviolet photodissociation action spectroscopy and a comparison made to the analogous spectra of authentic nitro- and nitrosoxy-benzenes. We demonstrate unequivocally that for the phenyl radical cations studied here, all stabilized [M + NO2]+ adducts are exclusively nitrobenzenes. Electronic structure calculations support these mass spectrometric observations and suggest that, under low-pressure conditions, the nitrosoxy-isomer is unlikely to be isolated from the reaction of an alkyl or aryl radical with NO2. The combined experimental and theoretical results lead to the prediction that stabilization of the nitrosoxy-isomer will only be possible for systems wherein the energy required for dissociation of the RO-NO bond (or other low energy fragmentation channels) rises close to, or above, the energy of the separated reactants.

  2. Emission behavior of OH radical in internal EGR using a 2-cycle engine; 2 cycle engine wo mochiita naibu EGR no OH radical no hakko kyodo

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, S.; Amino, Y.; Yoshida, K.; Shoji, H.; Saima, A. [Nihon University, Tokyo (Japan)

    1997-10-01

    The purpose of this study was to examine and consider the influence, which the remained gas exercised on combustion. 2-cycle engine was Used as the test engine. Internal EGR was run. The means was that the test engine was fitted the back pressure control plate on the exhaust port. The conditions, which were run with internal EGR and without internal EGR, were compared. The OH radical, which plays important role in combustion of hydrocarbon fuels, was measured with emission spectroscopy. In internal EGR, the unburned end gas on exhaust port side was susceptible to the remained gas. 6 refs., 8 figs., 1 tab.

  3. Treatment of hydrocarbon contamination under flow through conditions by using magnetite catalyzed chemical oxidation.

    Science.gov (United States)

    Usman, M; Faure, P; Lorgeoux, C; Ruby, C; Hanna, K

    2013-01-01

    Soil pollution by hydrocarbons (aromatic and aliphatic hydrocarbons) is a major environmental issue. Various treatments have been used to remove them from contaminated soils. In our previous studies, the ability of magnetite has been successfully explored to catalyze chemical oxidation for hydrocarbon remediation in batch slurry system. In the present laboratory study, column experiments were performed to evaluate the efficiency of magnetite catalyzed Fenton-like (FL) and activated persulfate (AP) oxidation for hydrocarbon degradation. Flow-through column experiments are intended to provide a better representation of field conditions. Organic extracts isolated from three different soils (an oil-contaminated soil from petrochemical industrial site and two soils polluted by polycyclic aromatic hydrocarbon (PAH) originating from coking plant sites) were spiked on sand. After solvent evaporation, spiked sand was packed in column and was subjected to oxidation using magnetite as catalyst. Oxidant solution was injected at a flow rate of 0.1 mL min(-1) under water-saturated conditions. Organic analyses were performed by GC-mass spectrometry, GC-flame ionization detector, and micro-Fourier transform infrared spectroscopy. Significant abatement of both types of hydrocarbons (60-70 %) was achieved after chemical oxidation (FL and AP) of organic extracts. No significant by-products were formed during oxidation experiment, underscoring the complete degradation of hydrocarbons. No selective degradation was observed for FL with almost similar efficiency towards all hydrocarbons. However, AP showed less reactivity towards higher molecular weight PAHs and aromatic oxygenated compounds. Results of this study demonstrated that magnetite-catalyzed chemical oxidation can effectively degrade both aromatic and aliphatic hydrocarbons (enhanced available contaminants) under flow-through conditions.

  4. Highly durable photochromic radical complexes having no steric protections of radicals.

    Science.gov (United States)

    Kobayashi, Yoichi; Mishima, Yasuhiro; Mutoh, Katsuya; Abe, Jiro

    2017-04-21

    Steric protection groups are usually necessary for stable radicals. However, here, we developed novel photochromic radical complexes which generate sterically unprotected imidazolyl and phenoxyl radicals upon UV light irradiation based on the phenoxyl-imidazolyl radical complex (PIC) framework. These photochromic compounds show excellent durability against repeated irradiation of intense nanosecond laser pulses even in polar protic solvents, such as ethanol.

  5. Free radical generation and antioxidant content in chloroplasts from soybean leaves expsoed to ultraviolet-B

    Energy Technology Data Exchange (ETDEWEB)

    Galatro, A.; Simontacchi, M.; Puntarulo, S. [Univ. of Buenos Aires, School of Pharmacy and Biochemistry, Physical Chemistry, Buenos Aires (Argentina)

    2001-07-01

    The aim of this work was to study the effect of ultraviolet-B (UV-B) exposure on oxidative status in chloroplasts isolated from soybean (Glycine max cv. Hood). Chloroplasts were isolated from soybean leaves excised from either control seedlings or those exposed to 30 and 60 kJ m{sup -2} day{sup -1} of UV-B radiation for 4 days. Chloroplastic oxidative conditions were assessed as carbon-centered radical, carbonyl groups and ascorbyl radical content. Treatment with UV-B increased the carbon-centered radical-dependent EPR signal significantly by 55 and 100% in chloroplasts from leaves exposed to 30 and 60 kJ m{sup -2} day{sup -1} UV-B, respectively, compared to radical content in chloroplasts from control leaves. The content of carbonyl groups increased by 37 and 62% in chloroplasts isolated from soybean leaves irradiated for 4 days with 30 and 60 kJ m{sup -2} day{sup -1} UV-B, respectively. The content of soluble metabolites in isolated chloroplasts should not be taken as absolute in vivo values; however, these data are valuable for comparative studies. UV-B exposure did not significantly affect ascorbyl radical content compared to controls. The content of ascorbic acid and thiols in chloroplasts isolated from leaves exposed to 60 kJ m{sup -2} day{sup -1} UV-B was increased by 117 and 20.8%, respectively, compared to controls. Neither the content of total carotene nor that of {beta}-carotene or {alpha}-tocopherol was affected by the irradiation. The results: presented here suggest that the increased content of lipid radicals and oxidized proteins in the chloroplasts isolated from leaves exposed to UV-B could be ascribed to both the lack of antioxidant response in the lipid soluble fraction and the modest increase in the soluble antioxidant content. (au)

  6. In vitro radical scavenging activity of two Columbian Magnoliaceae

    Science.gov (United States)

    Puertas M., Miguel A.; Mesa v., Ana M.; Sáez v., Jairo A.

    2005-08-01

    The recent interest in the conservation of the tropical forest is due, at least in part, to the potential economic and health benefits that can be exploited from several plants. This report shows the in vitro antioxidant activity of some fractions isolated from leaves of two Columbian Magnoliaceae, Talauma hernandezii G. Lozano-C and Dugandiodendron yarumalense Lozano. The activity was determined using the radical monocation 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS·+) and the stable free radical 2-2-diphenyl-1-picrylhydrazyl (DPPH·), as part of general biological screening of these plants. The antioxidant capacity obtained from fractions was similar to those of α-tocopherol, tert-butylated hydroxyanisole (BHA), and ascorbic acid. The most active scavenger extract was the fraction 7 (TAA = 48.6 mmol Trolox/kg extract and IC50 ≤ 0.01 kg extract/mmol DPPH); and the least active was the fraction 1 (TAA = 11.23 mmol Trolox/kg extract and IC50 = 0.21 kg extract/mmol DPPH) all of them isolated from D. yarumalense. These results suggest that these plants can be attractive as source of antioxidant compounds with the ability to reduce radicals like ATBS and DPPH.

  7. Metal Complexes And Free Radical Toxins Produced By Pfiesteria Piscicida

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, P.D.R.; Beauchesne, K.R.; Huncik, K.M.; Davis, W.C.; Christopher, S.J.; Riggs-Gelasco, P.; Gelasco, A.K.

    2009-06-03

    Metal-containing organic toxins produced by Pfiesteria piscicida were characterized, for the first time, by corroborating data obtained from five distinct instrumental methods: nuclear magnetic resonance spectroscopy (NMR), inductively coupled plasma mass spectrometry (ICPMS), liquid chromatography particle beam glow discharge mass spectrometry (LC/PB-GDMS), electron paramagnetic resonance spectroscopy (EPR), and X-ray absorption spectroscopy (XAS). The high toxicity of the metal-containing toxins is due to metal-mediated free radical production. This mode of activity explains the toxicity of Pfiesteria, as well as previously reported difficulty in observing the molecular target, due to the ephemeral nature of radical species. The toxins are highly labile in purified form, maintaining activity for only 2-5 days before all activity is lost. The multiple toxin congeners in active extracts are also susceptible to decomposition in the presence of white light, pH variations, and prolonged heat. These findings represent the first formal isolation and characterization of a radical forming toxic organic-ligated metal complex isolated from estuarine/marine dinoflagellates. These findings add to an increased understanding regarding the active role of metals interacting with biological systems in the estuarine environment, as well as their links and implications to human health.

  8. Metal Complexes and Free Radical Toxins Produced by Pfiesteria piscicida

    Energy Technology Data Exchange (ETDEWEB)

    Moeller,P.; Beauchesne, K.; Huncik, K.; Davis, W.; Christopher, S.; Riggs-Gelasco, P.; Gelasco, A.

    2007-01-01

    Metal-containing organic toxins produced by Pfiesteria piscicida were characterized, for the first time, by corroborating data obtained from five distinct instrumental methods: nuclear magnetic resonance spectroscopy (NMR), inductively coupled plasma mass spectrometry (ICP-MS), liquid chromatography particle beam glow discharge mass spectrometry (LC/PB-GDMS), electron paramagnetic resonance spectroscopy (EPR), and X-ray absorption spectroscopy (XAS). The high toxicity of the metal-containing toxins is due to metal-mediated free radical production. This mode of activity explains the toxicity of Pfiesteria, as well as previously reported difficulty in observing the molecular target, due to the ephemeral nature of radical species. The toxins are highly labile in purified form, maintaining activity for only 2-5 days before all activity is lost. The multiple toxin congeners in active extracts are also susceptible to decomposition in the presence of white light, pH variations, and prolonged heat. These findings represent the first formal isolation and characterization of a radical forming toxic organic-ligated metal complex isolated from estuarine/marine dinoflagellates. These findings add to an increased understanding regarding the active role of metals interacting with biological systems in the estuarine environment, as well as their links and implications to human health.

  9. Role of methyl radicals in the growth of PAHs.

    Science.gov (United States)

    Shukla, Bikau; Miyoshi, Akira; Koshi, Mitsuo

    2010-04-01

    The role of methyl radicals in the networking of sp(2) carbons has been explored through kinetic analysis of mass spectra of the gas-phase products of the pyrolysis of toluene and toluene/acetone mixtures. Pyrolytic reactions were performed in a flow tube reactor at temperatures of 1140-1320 K and a constant total pressure of 10.38 Torr with a residence time of 0.585 s. On addition of acetone, methyl substituted products and their derivatives were enhanced. Mass peaks were observed in several sequences at an interval of 14 mass units; these ions correspond to methyl substituted products formed as a result of hydrogen abstraction (-H) followed by methyl radical addition (+CH(3)). Each major peak was usually preceded by a peak at two mass units lower, which was likely produced through dehydrogenation/dehydrocyclization (-H(2)) of methyl substituted products. Detected species include a large number of alkyl, cyclotetrafused (CT), cyclopentafused (CP) mono-, di-, and polycyclic aromatic hydrocarbons (PAHs) along with primary PAHs. The analysis showed that MAC (methyl addition/cyclization) has a unique capacity to induce the sequential growth of hexagonal networks of sp(2) carbons from all fusing sites of a PAH. Moreover, MAC was found capable of answering an important question in PAH growth, which is expansion of the CT --> CP --> hexagonal network for which other reported mechanisms are inefficient.

  10. DNA binding hydroxyl radical probes

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Vicky J.; Konigsfeld, Katie M.; Aguilera, Joe A. [Department of Radiology, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0610 (United States); Milligan, Jamie R., E-mail: jmilligan@ucsd.edu [Department of Radiology, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0610 (United States)

    2012-01-15

    The hydroxyl radical is the primary mediator of DNA damage by the indirect effect of ionizing radiation. It is a powerful oxidizing agent produced by the radiolysis of water and is responsible for a significant fraction of the DNA damage associated with ionizing radiation. There is therefore an interest in the development of sensitive assays for its detection. The hydroxylation of aromatic groups to produce fluorescent products has been used for this purpose. We have examined four different chromophores, which produce fluorescent products when hydroxylated. Of these, the coumarin system suffers from the fewest disadvantages. We have therefore examined its behavior when linked to a cationic peptide ligand designed to bind strongly to DNA. - Highlights: > Examined four aromatic groups as a means to detect hydroxyl radicals by fluorescence. > Coumarin system suffers from the fewest disadvantages. > Characterized its reactivity when linked to a hexa-arginine peptide.

  11. Microbial production of gaseous hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Hideo

    1987-10-20

    Microbial production of ethylene, isobutane and a saturated gaseous hydrocarbon mixture was described. Microbial ethylene production was studied with Penicillium digitatum IFO 9372 and a novel pathway of the ethylene biosynthesis through alpha-ketoglutarate was proposed. Rhodotorula minuta IFO 1102 was selected for the microbial production of isobutane and the interesting actions of L-leucine and L-phenylalanine for the isobutane production were found. It was finally presented about the microbial production of a saturated gaseous hydrocarbon mixture with Rhizopus japonicus IFO 4758 was described. A gas mixture was produced through a chemical reaction of SH compounds and some cellular component such as squalene under aerobic conditions. (4 figs, 7 tabs, 41 refs)

  12. Hydrocarbon Rocket Technology Impact Forecasting

    Science.gov (United States)

    Stuber, Eric; Prasadh, Nishant; Edwards, Stephen; Mavris, Dimitri N.

    2012-01-01

    Ever since the Apollo program ended, the development of launch propulsion systems in the US has fallen drastically, with only two new booster engine developments, the SSME and the RS-68, occurring in the past few decades.1 In recent years, however, there has been an increased interest in pursuing more effective launch propulsion technologies in the U.S., exemplified by the NASA Office of the Chief Technologist s inclusion of Launch Propulsion Systems as the first technological area in the Space Technology Roadmaps2. One area of particular interest to both government agencies and commercial entities has been the development of hydrocarbon engines; NASA and the Air Force Research Lab3 have expressed interest in the use of hydrocarbon fuels for their respective SLS Booster and Reusable Booster System concepts, and two major commercially-developed launch vehicles SpaceX s Falcon 9 and Orbital Sciences Antares feature engines that use RP-1 kerosene fuel. Compared to engines powered by liquid hydrogen, hydrocarbon-fueled engines have a greater propellant density (usually resulting in a lighter overall engine), produce greater propulsive force, possess easier fuel handling and loading, and for reusable vehicle concepts can provide a shorter turnaround time between launches. These benefits suggest that a hydrocarbon-fueled launch vehicle would allow for a cheap and frequent means of access to space.1 However, the time and money required for the development of a new engine still presents a major challenge. Long and costly design, development, testing and evaluation (DDT&E) programs underscore the importance of identifying critical technologies and prioritizing investment efforts. Trade studies must be performed on engine concepts examining the affordability, operability, and reliability of each concept, and quantifying the impacts of proposed technologies. These studies can be performed through use of the Technology Impact Forecasting (TIF) method. The Technology Impact

  13. Geoscientists and the Radical Middle

    Science.gov (United States)

    Tinker, S. W.

    2015-12-01

    Addressing the great challenges facing society requires industry, government, and academia to work together. I call this overlap space, where compromises are made and real solutions determined, the Radical Middle. Radical because it can appear at times as if the loudest and most publicly influential voices lie outside of the actual solution space, content to provoke but not problem-solve. One key area where geoscientists can play a lead role in the Radical Middle is in the overlap between energy, the environment, and the economy. Globally, fossil fuels still represent 85% of the aggregate energy mix. As existing conventional oil and natural-gas reservoir production continues to slowly decline, unconventional reservoirs, led today by shale and other more expensive resources, will represent a growing part of the oil and gas production mix. Many of these unconventional reservoirs require hydraulic fracturing. The positive economic impact of hydraulic fracturing and associated natural gas and oil production on the United States economy is well documented and undeniable. Yet there are environmental concerns about fracking, and some states and nations have imposed moratoria. This energy-environment-economy space is ideal for leadership from the geosciences. Another such overlap space is the potential for geoscience leadership in relations with China, whose economy and global presence continue to expand. Although China is building major hydropower and natural-gas power plants, as well as nuclear reactors, coal is still king—with the associated environmental impacts. Carbon sequestration—onshore in brine and to enhance oil recovery, as well as offshore—could prove viable. It is vital that educated and objective geoscientists from industry, government, and academia leave their corners and work together in the Radical Middle to educate the public and develop and deliver balanced, economically sensible energy and environmental strategies.

  14. Deep desulfurization of hydrocarbon fuels

    Science.gov (United States)

    Song, Chunshan [State College, PA; Ma, Xiaoliang [State College, PA; Sprague, Michael J [Calgary, CA; Subramani, Velu [State College, PA

    2012-04-17

    The invention relates to processes for reducing the sulfur content in hydrocarbon fuels such as gasoline, diesel fuel and jet fuel. The invention provides a method and materials for producing ultra low sulfur content transportation fuels for motor vehicles as well as for applications such as fuel cells. The materials and method of the invention may be used at ambient or elevated temperatures and at ambient or elevated pressures without the need for hydrogen.

  15. Hydrocarbon prospectivity in Western Greece

    Energy Technology Data Exchange (ETDEWEB)

    Maravelis, Angelos; Makrodimitras, George; Zelilidis, Avraam [Patras Univ. (Greece). Lab. of Sedimentology

    2012-06-15

    The geology of Western Greece is dominated by the most external zones of the Hellenide fold-and-thrust belt, namely the Pre-Apulian (or Paxoi) and Ionian zones. With Western Greece and Albania having undergone, in broad terms, similar geological histories, also the hydrocarbon potentials of both areas may be compared. Likewise, the hydrocarbon potential of Italy's Apulian Platform, adjoining in the westerly offshore, may serve as an analogue. Three basin types within Western Greece that deserve hydrocarbon exploration have been examined and are grouped, correlated to major tectonic features, namely foreland (Ionian thrusts' foreland basin), piggy-back (Ionian thrusts' back-arc basin) and strike-slip basins. Additionally, strike-slip basins are further subdivided into the basin north of the Borsh-Khardhiqit strike-slip fault and the Preveza basin, north of Cephalonia transfer fault. Their filling histories suggest the occurrence of Mesozoic carbonate plays and Oligocene/Miocene sandstone plays both for oil and gas.

  16. Abnormal pressure in hydrocarbon environments

    Science.gov (United States)

    Law, B.E.; Spencer, C.W.

    1998-01-01

    Abnormal pressures, pressures above or below hydrostatic pressures, occur on all continents in a wide range of geological conditions. According to a survey of published literature on abnormal pressures, compaction disequilibrium and hydrocarbon generation are the two most commonly cited causes of abnormally high pressure in petroleum provinces. In young (Tertiary) deltaic sequences, compaction disequilibrium is the dominant cause of abnormal pressure. In older (pre-Tertiary) lithified rocks, hydrocarbon generation, aquathermal expansion, and tectonics are most often cited as the causes of abnormal pressure. The association of abnormal pressures with hydrocarbon accumulations is statistically significant. Within abnormally pressured reservoirs, empirical evidence indicates that the bulk of economically recoverable oil and gas occurs in reservoirs with pressure gradients less than 0.75 psi/ft (17.4 kPa/m) and there is very little production potential from reservoirs that exceed 0.85 psi/ft (19.6 kPa/m). Abnormally pressured rocks are also commonly associated with unconventional gas accumulations where the pressuring phase is gas of either a thermal or microbial origin. In underpressured, thermally mature rocks, the affected reservoirs have most often experienced a significant cooling history and probably evolved from an originally overpressured system.

  17. Preparation of various C-2 branched carbohydrates using intramolecular radical reactions.

    Science.gov (United States)

    Choe, S W; Jung, M E

    2000-12-01

    A new and efficient method for the facile synthesis of C-2 branched carbohydrates has been developed using an intramolecular radical cyclization fragmentation reaction. The desired C-2 branched glucopyranosides were isolated in 40-84% yield. Additionally, an unexpected furanoside was obtained from a tributyltin iodide-promoted rearrangement of the radical intermediate. The C-2 formyl glycal was also isolated in good yield using tris(trimethylsilyl)silane (TTMSS) as the reducing agent. This method was extended to synthesize a beta C-2 branched glucopyranoside, a C-2 branched galactoside and a C-2 cyano glucopyranoside.

  18. Chemical Constituents and their DPPH Radical Scavenging Activity of Nepalese Crude Drug Begonia picta

    Directory of Open Access Journals (Sweden)

    Khem Raj Joshi

    2015-04-01

    Full Text Available Vitexin (1, isovitexin (2, orientin (3, isoorientin (4 and 1, 3 - dih y d roxy - 6, 7 - dimethoxyxanthone (5 were isolated from the whole plant of Begonia picta , a Nepalese crude drug commonly known as “ Magarkaanche ”. Structures were elucidated on the basis of chemical and spectroscopic methods. All of these compounds were isolated for the first time from B. picta and their in vitro antioxidant activity was evaluated by diphenyl-2-picrylhydrazyl ( DPPH free radical scavenging assay. Compounds 3 and 4 showed significant free radical scavenging activity.

  19. Shock-tube pyrolysis of chlorinated hydrocarbons - Formation of soot

    Science.gov (United States)

    Frenklach, M.; Hsu, J. P.; Miller, D. L.; Matula, R. A.

    1986-01-01

    Soot formation in pyrolysis of chlorinated methanes, their mixtures with methane, and chlorinated ethylenes were studied behind reflected shock waves by monitoring the attenuation of an He-Ne laser beam. An additional single-pulse shock-tube study was conducted for the pyrolysis of methane, methyl chloride, and dichloromethane. The experiments were performed at temperatures 1300-3000 K, pressures of 0.4-3.6 bar, and total carbon atom concentrations of 1-5 x 10 to the 17th atoms cu cm. The amounts of soot produced in the pyrolysis of chlorinated hydrocarbons are larger than that of their nonchlorinated counterparts. The sooting behavior and product distribution can be generally explained in terms of chlorine-catalyzed chemical reaction mechanisms. The pathway to soot from chlorinated methanes and ethylenes with high H:Cl ratio proceeds via the formation of C2H, C2H2, and C2H3 species. For chlorinated hydrocarbons with low H:Cl ratio, the formation of C2 and its contribution to soot formation at high temperatures becomes significant. There is evidence for the importance of CHCl radical and its reactions in the pyrolysis of dichloromethane.

  20. Shock-tube pyrolysis of chlorinated hydrocarbons - Formation of soot

    Science.gov (United States)

    Frenklach, M.; Hsu, J. P.; Miller, D. L.; Matula, R. A.

    1986-01-01

    Soot formation in pyrolysis of chlorinated methanes, their mixtures with methane, and chlorinated ethylenes were studied behind reflected shock waves by monitoring the attenuation of an He-Ne laser beam. An additional single-pulse shock-tube study was conducted for the pyrolysis of methane, methyl chloride, and dichloromethane. The experiments were performed at temperatures 1300-3000 K, pressures of 0.4-3.6 bar, and total carbon atom concentrations of 1-5 x 10 to the 17th atoms cu cm. The amounts of soot produced in the pyrolysis of chlorinated hydrocarbons are larger than that of their nonchlorinated counterparts. The sooting behavior and product distribution can be generally explained in terms of chlorine-catalyzed chemical reaction mechanisms. The pathway to soot from chlorinated methanes and ethylenes with high H:Cl ratio proceeds via the formation of C2H, C2H2, and C2H3 species. For chlorinated hydrocarbons with low H:Cl ratio, the formation of C2 and its contribution to soot formation at high temperatures becomes significant. There is evidence for the importance of CHCl radical and its reactions in the pyrolysis of dichloromethane.

  1. Thermochemical properties and bond dissociation energies of C3-C5 cycloalkyl hydroperoxides and peroxy radicals: cycloalkyl radical + (3)O2 reaction thermochemistry.

    Science.gov (United States)

    Auzmendi-Murua, Itsaso; Bozzelli, Joseph W

    2012-07-19

    Cyclic aliphatic hydrocarbons are major components in modern fuels; they can be present in the reactants, and they can be formed during the gas-phase oxidation processes. In combustion and thermal oxidation processes, these cyclics will form radicals that react with (3)O(2) to form peroxy radicals. In this study, density functional theory and higher level ab initio calculations are used to calculate thermochemical properties and bond dissociation energies of 3-5-membered cycloalkanes, corresponding hydroperoxides, hydroperoxycycloalkyl radicals, and cycloalkyl radicals that occur in these reaction systems. Geometries, vibration frequencies, and thermochemical properties, ΔH(f 298)°, are calculated with the B3LYP/6-31 g(d,p), B3LYP/6-31 g(2d,2p), composite CBS-QB3, and G3MP2B3 methods. Standard enthalpies of formation at 298 K are evaluated using isodesmic reaction schemes with several work reactions for each species. Group additivity contributions are developed, and application of group additivity with comparison to calculated values is illustrated. Entropy and heat capacities, S°(T) and C(p)°(T) (5 K ≤ T ≤ 5000), are determined using geometric parameters and frequencies from the B3LYP/6-31 g(d,p) calculations.

  2. Molecular comparison of cultivable protozoa from a pristine and a polycyclic aromatic hydrocarbon polluted site

    DEFF Research Database (Denmark)

    Lara, E; Berney, C; Ekelund, Flemming

    2007-01-01

    We compared the abundance and diversity of cultivable protozoa (flagellates and amoebae) in a polycyclic aromatic hydrocarbon (PAH) polluted soil and an unpolluted control, by isolating and cultivating clonal strains. The number of cultivable protozoa was higher in the polluted soil; however...

  3. Biotransformation of the polycyclic aromatic hydrocarbon pyrene in the marine polychaete Nereis virens

    DEFF Research Database (Denmark)

    Jørgensen, Anne; Glessing, Anders M B; Rasmussen, Lene Juel

    2005-01-01

    In vivo and in vitro biotransformation of the polycyclic aromatic hydrocarbon (PAH) pyrene was investigated in the marine polychaete Nereis virens. Assays were designed to characterize phase I and II enzymes isolated from gut tissue. High-pressure liquid chromatography measurement of 1-hydroxypyr...

  4. Biotransformation of the polycyclic aromatic hydrocarbon pyrene by the marine polychaete Nereis virens

    DEFF Research Database (Denmark)

    Jørgensen, Anne; Giessing, Anders M. B.; Rasmussen, Lene Juel

    2005-01-01

    In vivo and in vitro biotransformation of the polycyclic aromatic hydrocarbon (PAH) pyrene was investigated in the marine polychaete Nereis virens. Assays were designed to characterize phase I and II enzymes isolated from gut tissue. High-pressure liquid chromatography measurement of 1-hydroxypyr...

  5. Blunt apical dissection during anatomic radical retropubic prostatectomy

    Directory of Open Access Journals (Sweden)

    Yacoub Saif

    2009-02-01

    Full Text Available Abstract Background Meticulous apical dissection during a radical prostatectomy is imperative to achieve desirable pathologic and quality of life outcomes. Findings We describe a novel technique using careful blunt dissection to better delineate the apex of the prostate, providing a simple means to potentially lessen positive surgical margins at the apex and promote better continence and erectile function in men undergoing an anatomic radical prostatectomy. Median operative time and blood loss were 190 minutes and 675 mL, respectively. Only 10 percent of the patients with positive surgical margins were found to have apical positive surgical margins. Ninety-three percent of patients reported no urinary leakage. Conclusion We believe our technique of isolating the DVC with blunt dissection and then ligating and transecting the DVC to be feasible approach that requires larger studies to truly confirm its utility.

  6. LETTING GO: DE-RADICALIZATION IN EGYPT

    Directory of Open Access Journals (Sweden)

    Zeynep Kaya

    2016-03-01

    Full Text Available The literature on the causes of how terrorist organizations are formed and how counter terrorism measures can be more effective is immense. What is novel in terrorism literature is de-radicalization in terrorist organizations. This paper hopes to shed light on the de-radicalization process in terrorist organizations based in Egypt. In order to achieve that goal, the first part of the paper will deal with the de-radicalization process. The second part will briefly describe the major radical terrorist organizations that are effective in Egypt. The last part will combine the two parts and bring in suggestions on the de-radicalization process itself. Terrorism and de-radicalization are complicated threats to nearly all societies. Therefore, it is important to go beyond security and intelligence approaches and take proactive measures. It is best to view what is de-radicalization and how it can be achieved.

  7. Oxidative stress, free radicals and protein peroxides.

    Science.gov (United States)

    Gebicki, Janusz M

    2016-04-01

    Primary free radicals generated under oxidative stress in cells and tissues produce a cascade of reactive secondary radicals, which attack biomolecules with efficiency determined by the reaction rate constants and target concentration. Proteins are prominent targets because they constitute the bulk of the organic content of cells and tissues and react readily with many of the secondary radicals. The reactions commonly lead to the formation of carbon-centered radicals, which generally convert in vivo to peroxyl radicals and finally to semistable hydroperoxides. All of these intermediates can initiate biological damage. This article outlines the advantages of the application of ionizing radiations to studies of radicals, with particular reference to the generation of desired radicals, studies of the kinetics of their reactions and correlating the results with events in biological systems. In one such application, formation of protein hydroperoxides in irradiated cells was inhibited by the intracellular ascorbate and glutathione.

  8. Hydrocarbon Reserves: Abundance or Scarcity

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    IFP and the OAPEC jointly organize a regular international seminar dealing with world oil-related problems appearing in the news. For the first time, this seminar has been opened to oil and gas company specialists, service companies, research centers and independents. This year's theme concerns oil and gas reserves: are they abundant or are we headed towards the shortages announced by some experts? This theme is especially topical in that: oil and gas currently meet two thirds of world energy needs and almost completely dominate the transport sector; the reserves declared by the OAPEC countries account for nearly half of world reserves; the price of a barrel of oil went through the roof in 2004; world energy demand is growing fast and alternative sources of energy are far from ready to take over from oil and gas in the next few decades. Since the reserves correspond to the volume it is technically and economically viable to produce, the seminar has, of course, dealt with the technical and economic questions that arise in connection with exploration and production, but it has also considered changes in the geopolitical context. Presentations by the leading companies of the OAPEC countries and by the IFP group were completed by presentation from the International Energy Agency (IEA), the United States Geological Survey (USGS), the IHS Energy Group, Total and Gaz de France. This document gathers the transparencies of the following presentations: Hydrocarbon reserves in OAPEC members countries: current and future (M. Al-Lababidi); Non OAPEC liquid reserves and production forecasts (Y. Mathieu); World oil and gas resources and production outlook (K. Chew); Global investments in the upstream (F. Birol); Total's policy in the oil and gas sector (C. de Margerie); Gaz de France's policy in the oil and gas sector (J. Abiteboul); NOC/IOC's opportunities in OPEC countries (I. Sandrea); Relationships between companies, countries and investors: How they may

  9. Antioxidant properties of Neu2000 on mitochondrial free radicals and oxidative damage.

    Science.gov (United States)

    Visavadiya, Nishant P; McEwen, Melanie L; Pandya, Jignesh D; Sullivan, Patrick G; Gwag, Byoung Joo; Springer, Joe E

    2013-03-01

    Neu2000 [2-hydroxy-5-(2,3,5,6-tetrafluoro-4 trifluoromethylbenzylamino) benzoic acid] is a dual-acting neuroprotective agent that functions both as a noncompetitive N-methyl-d-aspartate (NMDA) receptor antagonist and a free radical scavenger. In the present study, we investigated the scavenging activity of Neu2000 on various classes of reactive oxygen species and reactive nitrogen species (ROS/RNS) as well as its efficacy for reducing free radicals and oxidative stress/damage induced in spinal cord mitochondrial preparations. Neu2000 exerted scavenging activity against superoxide, nitric oxide, and hydroxyl radicals, and efficiently scavenged peroxynitrite. In the mitochondrial studies, Neu2000 markedly inhibited ROS/RNS and hydrogen peroxide levels following antimycin treatment. In addition, Neu2000 effectively scavenged hydroxyl radicals generated by iron(III)-ascorbate, reduced protein carbonyl formation mediated by hydroxyl radicals and peroxynitrite, and prevented glutathione oxidation caused by tert-butyl hydroperoxide in isolated mitochondria. Interestingly, incubation of isolated mitochondria with Neu2000 followed by centrifugation and removal of the supernatant also resulted in a concentration-dependent decrease in lipid peroxidation. This observation suggests that Neu2000 enters mitochondria to target free radicals or indirectly affects mitochondrial function in a manner that promotes antioxidant activity. The results of the present study demonstrate that Neu2000 possesses potent in vitro antioxidant activity due, most likely, to its active phenoxy group.

  10. Correlation between hydrocarbon distribution and water-hydrocarbon ratio in Fischer-Tropsch synthesis

    Institute of Scientific and Technical Information of China (English)

    Xiaofeng Zhou; Qingling Chen; Yuewu Tao; Huixin Weng

    2011-01-01

    In order to shorten the evaluation cycle of cobalt catalyst before the optimized catalyst is fixed on,a mathematical method is proposed to calculate weight percentage of C5+ hydrocarbons.Based on the carbide polymerization mechanism and the main hydrocarbons being linear alkanes and α-olefins,the correlation between hydrocarbon distribution and the molecular mass ratio of water to hydrocarbons is discussed.The result shows the ratio was within the range of 1.125-1.286 and the lower the ratio,the more gaseous hydrocarbons were obtained.Moreover,a linear equation between the weight percentage of C5+ hydrocarbons and the weight ratio of C5+ hydrocarbons to the total water is established.These results are validated by corresponding experiments.The weight percentage of C5+ hydrocarbons could be immediately calculated by this linear equation without detailed gas chromatography (GC) analysis of them.

  11. Methane Conversion to C2 Hydrocarbons by Abnormal Glow Discharge at Atmospheric Pressure

    Institute of Scientific and Technical Information of China (English)

    Dai Wei; Yu Hui; Chen Qi; Yin Yongxiang; Dai Xiaoyan

    2005-01-01

    Methane conversion to C2 hydrocarbons has been investigated with the addition of hydrogen in a plasma reactor of abnormal glow discharge at atmospheric pressure. The aim of this experiment is to minimize coke formation and improve discharge stability. The typical conditions in the experiment are 300 ml of total feed flux and 400 W of discharge power. The experimental results show that methane conversion is from 91.6% to 35.2% in mol, acetylene selectivity is from 90.2% to 57.6%, and ethylene selectivity is approximately from 7.8% to 3.6%,where the coke increases gradually along with the increase of CH4/H2 from 2: 8 to 9: 1. A stable discharge for a considerable running time can be obtained only at a lower ratio of CH4/H2= 2:8 or 3: 7. These phenomena indicate that the coke deposition during methane conversion is obviously reduced by adding a large amount of hydrogen during an abnormal glow discharge.A qualitative interpretation is presented, namely, with abundant hydrogen, the possibility that hydrogen molecules are activated to hydrogen radicals is increased with the help of the abnormal glow discharge. These hydrogen radicals react with carbon radicals to form C2 hydrocarbon products. Therefore, the deposition of coke is restrained.

  12. Biodegradation of Aromatic Hydrocarbons in an Extremely Acidic Environment

    Science.gov (United States)

    Stapleton, Raymond D.; Savage, Dwayne C.; Sayler, Gary S.; Stacey, Gary

    1998-01-01

    The potential for biodegradation of aromatic hydrocarbons was evaluated in soil samples recovered along gradients of both contaminant levels and pH values existing downstream of a long-term coal pile storage basin. pH values for areas greatly impacted by runoff from the storage basin were 2.0. Even at such a reduced pH, the indigenous microbial community was metabolically active, showing the ability to oxidize more than 40% of the parent hydrocarbons, naphthalene and toluene, to carbon dioxide and water. Treatment of the soil samples with cycloheximide inhibited mineralization of the aromatic substrates. DNA hybridization analysis indicated that whole-community nucleic acids recovered from these samples did not hybridize with genes, such as nahA, nahG, nahH, todC1C2, and tomA, that encode common enzymes from neutrophilic bacteria. Since these data suggested that the degradation of aromatic compounds may involve a microbial consortium instead of individual acidophilic bacteria, experiments using microorganisms isolated from these samples were initiated. While no defined mixed cultures were able to evolve 14CO2 from labeled substrates in these mineralization experiments, an undefined mixed culture including a fungus, a yeast, and several bacteria successfully metabolized approximately 27% of supplied naphthalene after 1 week. This study shows that biodegradation of aromatic hydrocarbons can occur in environments with extremely low pH values. PMID:9797263

  13. Bacterial biosurfactant in enhancing solubility and metabolism of petroleum hydrocarbons.

    Science.gov (United States)

    Bordoloi, N K; Konwar, B K

    2009-10-15

    Biosurfactant can make hydrocarbon complexes more mobile with the potential use in oil recovery, pumping of crude oil and in bioremediation of crude oil contaminant. In the investigation, bacterial isolates capable of utilizing poly-cyclic aromatic hydrocarbons like phenanthrene, pyrene and fluorene were used. A gradual decrease of the supplemented hydrocarbons in the culture medium was observed with corresponding increase in bacterial biomass and protein. The medium having the combined application of fluorine and phenanthrene caused better biosurfactant production (0.45 g l(-1)) and (0.38 g l(-1)) by Pseudomonas aeruginosa strains MTCC7815 and MTCC7814. The biosurfactant from MTCC7815 (41.0 microg ml(-1)) and MTCC7812 (26 microg ml(-1)) exhibited higher solubilization of pyrene; whereas, MTCC8165 caused higher solubilization of phenanthrene; and that of MTCC7812 (24.45 microg ml(-1)) and MTCC8163 (24.49 microg ml(-1)) caused more solubilzation of fluorene. Higher solubilization of pyrene and fluorene by the biosurfactant of MTCC7815 and MTCC7812, respectively enhanced their metabolism causing sustained growth. Biosurfactants were found to be lipopeptide and protein-starch-lipid complex in nature and they could reduce the surface tension of pure water (72 m Nm(-1)) to 35 m Nm(-1). The critical micelle concentration (CMC) was also lower than the chemical surfactant sodium dodecyl sulphate (SDS). They differed in quantity and structure. The predominant rhamnolipids present in biosurfactants were Rha-C(8)-C(10) and Rha-C(10)-C(8).

  14. HYDROCARBON AND SULFUR SENSORS FOR SOFC SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    A.M. Azad; Chris Holt; Todd Lesousky; Scott Swartz

    2003-11-01

    The following report summarizes work conducted during the Phase I program Hydrocarbon and Sulfur Sensors for SOFC Systems under contract No. DE-FC26-02NT41576. For the SOFC application, sensors are required to monitor hydrocarbons and sulfur in order to increase the operation life of SOFC components. This report discusses the development of two such sensors, one based on thick film approach for sulfur monitoring and the second galvanic based for hydrocarbon monitoring.

  15. Atmospheric oxidation of selected hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Benter, T.; Olariu, R.I.

    2002-02-01

    This work presents investigations on the gas-phase chemistry of phenol and the cresol isomers performed in a 1080 l quartz glass reactor in Wuppertal and in a large-volume outdoor photoreactor EUPHORE in Valencia, Spain. The studies aimed at clarifying the oxidation mechanisms of the reactions of these compounds with OH and NO{sub 3} radicals. Product investigations on the oxidation of phenol and the cresol isomers initiated by OH radicals were performed in the 1080 l quartz glass reactor with analyses by in situ FT-IR absorption spectroscopy. The primary focus of the investigations was on the determination of product yields. This work represents the first determination and quantification of 1,2-dihydroxybenzenes in the OH oxidation of phenolic compounds. Possible reaction pathways leading to the observed products have been elucidated. (orig.)

  16. 40 CFR 90.316 - Hydrocarbon analyzer calibration.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Hydrocarbon analyzer calibration. 90... Equipment Provisions § 90.316 Hydrocarbon analyzer calibration. (a) Calibrate the FID and HFID hydrocarbon... thereafter, adjust the FID and HFID hydrocarbon analyzer for optimum hydrocarbon response as specified...

  17. 40 CFR 86.121-90 - Hydrocarbon analyzer calibration.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Hydrocarbon analyzer calibration. 86... Complete Heavy-Duty Vehicles; Test Procedures § 86.121-90 Hydrocarbon analyzer calibration. The hydrocarbon... FID and HFID hydrocarbon analyzers shall be adjusted for optimum hydrocarbon response....

  18. 40 CFR 91.316 - Hydrocarbon analyzer calibration.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Hydrocarbon analyzer calibration. 91....316 Hydrocarbon analyzer calibration. (a) Calibrate the FID and HFID hydrocarbon analyzer as described... thereafter, adjust the FID and HFID hydrocarbon analyzer for optimum hydrocarbon response as specified...

  19. 40 CFR 89.319 - Hydrocarbon analyzer calibration.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Hydrocarbon analyzer calibration. 89... Equipment Provisions § 89.319 Hydrocarbon analyzer calibration. (a) The FID hydrocarbon analyzer shall... and at least annually thereafter, adjust the FID hydrocarbon analyzer for optimum hydrocarbon...

  20. Analysis of siloxanes in hydrocarbon mixtures using comprehensive two-dimensional gas chromatography.

    Science.gov (United States)

    Ghosh, Abhijit; Seeley, Stacy K; Nartker, Steven R; Seeley, John V

    2014-09-19

    A comprehensive two-dimensional gas chromatography (GC×GC) method for separating siloxanes from hydrocarbons has been developed using a systematic process. First, the retention indices of a set of siloxanes and a set of hydrocarbons were determined on 6 different stationary phases. The retention indices were then used to model GC×GC separation on 15 different stationary phase pairs. The SPB-Octyl×DB-1 pair was predicted to provide the best separation of the siloxanes from the hydrocarbons. The efficacy of this stationary phase pair was experimentally tested by performing a GC×GC analysis of gasoline spiked with siloxanes and by analyzing biogas obtained from a local wastewater treatment facility. The model predictions agreed well with the experimental results. The SPB-Octyl×DB-1 stationary phase pair constrained the hydrocarbons to a narrow range of secondary retention times and fully isolated the siloxanes from the hydrocarbon band. The resulting GC×GC method allows siloxanes to be resolved from complex mixtures of hydrocarbons without requiring the use of a selective detector.

  1. Degradation Characteristics and Community Structure of a Hydrocarbon Degrading Bacterial Consortium

    Institute of Scientific and Technical Information of China (English)

    Li Zheng; Gu Guizhou; Zhao Chaocheng; Zhao Dongfeng

    2015-01-01

    A hydrocarbon degrading bacterial consortium KO5-2 was isolated from oil-contaminated soil of Karamay in Xinjiang, China, which could remove 56.9%of 10 g/L total petroleum hydrocarbons (TPH) at 30℃after 7 days of incu-bation, and could also remove 100%of lfuorene, 98.93%of phenanthrene and 65.73%of pyrene within 3, 7 and 9 days, respectively. Twelve strains from six different genera were isolated from KO5-2 and only eight ones were able to utilize the TPH. The denaturing gradient gel electrophoresis (DGGE) was used to investigate the microbial community shifts in ifve different carbon sources (including TPH, saturated hydrocarbons, lfuorene, phenanthrene and pyrene). The test results indi-cated that the community compositions of KO5-2 in carbon sources of TPH and saturated hydrocarbons, respectively, were roughly the same, while they were distinctive in the three different carbon sources of PAHs. Rhodococcus sp. and Pseudo-monas sp. could survive in the ifve kinds of carbon sources. Bacillus sp., Sphingomonas sp. and Ochrobactrum sp. likely played key roles in the degradation of saturated hydrocarbons, PAHs and phenanthrene, respectively. This study showed that speciifc bacterial phylotypes were associated with different contaminants and complex interactions between bacterial spe-cies, and the medium conditions inlfuenced the biodegradation capacity of the microbial communities involved in bioreme-diation processes.

  2. Zirconacyclopentadiene-annulated polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Kiel, Gavin R.; Ziegler, Micah S.; Tilley, T. Don [Department of Chemistry, University of California, Berkeley, CA (United States)

    2017-04-18

    Syntheses of large polycyclic aromatic hydrocarbons (PAHs) and graphene nanostructures demand methods that are capable of selectively and efficiently fusing large numbers of aromatic rings, yet such methods remain scarce. Herein, we report a new approach that is based on the quantitative intramolecular reductive cyclization of an oligo(diyne) with a low-valent zirconocene reagent, which gives a PAH with one or more annulated zirconacyclopentadienes (ZrPAHs). The efficiency of this process is demonstrated by a high-yielding fivefold intramolecular coupling to form a helical ZrPAH with 16 fused rings (from a precursor with no fused rings). Several other PAH topologies are also reported. Protodemetalation of the ZrPAHs allowed full characterization (including by X-ray crystallography) of PAHs containing one or more appended dienes with the ortho-quinodimethane (o-QDM) structure, which are usually too reactive for isolation and are potentially valuable for the fusion of additional rings by Diels-Alder reactions. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Online radicalization: the net or the netizen?

    Directory of Open Access Journals (Sweden)

    Femi Richard Omotoyinbo

    2014-10-01

    Full Text Available Purpose - Radicalization has gained some unusual prominence in the academic circles; maintaining a generic existence not only in the political sector. And with the advent of the Information Communication Technology (ICT, radicalization has begun to have some virtual dimension even in the remotest of human communities. This study seeks to mobilize a universal awareness on the collective urgency to oppose Online Radicalization (a radicalization that happens through the internet due to its propensity to engendering conflicts. It also aims at identifying the principal cause of online radicalization and steer a clear course for a practical reversal in the systems of online radicalization.Design/methodology/approach - The study is divided into three primary parts. The general notion of radicalization is the focus of the first part; which is further analysed into the levels of online radicalization with its accompanying developments and segments. The second part utilizes analytic and historical method to pinpoint the principal cause of online radicalization amidst the suspected causal factors (the Net and the Netizen. The final part analytically focuses on the Netizen (a user/citizen of the internet as the primary cause of online radicalization, and how the global community can bring about a corresponding change in the Net by the application of some measures on the Netizen.Findings - By virtue of the analytic plus historical methods employed by this study; it was initially identified that radicalization is basically having two versions which are online and offline. Further emphasis on the online version reveals that its existence is only made possible by the availability of the internet (the Net. Since the Net is a global phenomenon online radicalization is considered to be worldwide: a menace of globalization. However, the study later indicated that the Net is a facilitator and a cause of online radicalization. A view was deduced that the Netizen is

  4. Detection of hydrocarbons in irradiated foods

    Energy Technology Data Exchange (ETDEWEB)

    Miyahara, Makoto; Maitani, Tamio [National Inst. of Health Sciences, Tokyo (Japan); Saito, Akiko; Kamimura, Tomomi; Nagasawa, Taeko [Kitasato Univ., Sagamihara, Kanagawa (Japan). School of Allied Health Sciences; Kobayashi, Yasuo; Ito, Hitoshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Establishment

    2003-06-01

    The hydrocarbon method for the detection of irradiated foods is now recognized as the international technique. This method is based on radiolysis of fatty acids in food to give hydrocarbons. In order to expand this technique's application, ten foods (butter, cheese, chicken, pork, beef, tuna, dry shrimp, avocado, papaya, and mango) were irradiated in the range from 0.5 to 10 kGy and the hydrocarbons in them were detected. Recoveries of the hydrocarbons from most foods were acceptable (38-128%). Some hydrocarbons were found in non-irradiated foods, particularly, in butter, cheese, tuna, and shrimp. Seven irradiated foods, butter, cheese, chicken, beef, pork, tuna, dry shrimp, and avocado were detectable at their practical doses by measuring the appropriate marker hydrocarbons. In most case, marker hydrocarbon will be 1,7-hexadecadiene. However, the marker hydrocarbons produced only in irradiated foods varied from food to food; therefore, it is necessary to check a specific irradiated food for marker hydrocarbons. On the other hand, two irradiated foods (papaya and mango which were irradiated at their practical doses) were difficult to distinguish from non-irradiated foods using this method. (author)

  5. HYDROCARBON RADICAL REACTIONS WITH O2: COMPARISON OF ALLYL, FORMYL AND VINYL TO ETHYL. (R824970)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  6. HYDROGEN ATOM BOND INCREMENTS (HBI) FOR CALCULATION OF THERMODYNAMIC PROPERTIES OF HYDROCARBON RADICAL SPECIES. (R824970)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  7. HYDROGEN ATOM BOND INCREMENTS (HBI) FOR CALCULATION OF THERMODYNAMIC PROPERTIES OF HYDROCARBON RADICAL SPECIES. (R824970)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  8. Characterization of Biosurfactant Produced during Degradation of Hydrocarbons Using Crude Oil As Sole Source of Carbon

    Science.gov (United States)

    Patowary, Kaustuvmani; Patowary, Rupshikha; Kalita, Mohan C.; Deka, Suresh

    2017-01-01

    Production and spillage of petroleum hydrocarbons which is the most versatile energy resource causes disastrous environmental pollution. Elevated oil degrading performance from microorganisms is demanded for successful microbial remediation of those toxic pollutants. The employment of biosurfactant-producing and hydrocarbon-utilizing microbes enhances the effectiveness of bioremediation as biosurfactant plays a key role by making hydrocarbons bio-available for degradation. The present study aimed the isolation of a potent biosurfactant producing indigenous bacteria which can be employed for crude oil remediation, along with the characterization of the biosurfactant produced during crude oil biodegradation. A potent bacterial strain Pseudomonas aeruginosa PG1 (identified by 16s rDNA sequencing) was isolated from hydrocarbon contaminated soil that could efficiently produce biosurfactant by utilizing crude oil components as the carbon source, thereby leading to the enhanced degradation of the petroleum hydrocarbons. Strain PG1 could degrade 81.8% of total petroleum hydrocarbons (TPH) after 5 weeks of culture when grown in mineral salt media (MSM) supplemented with 2% (v/v) crude oil as the sole carbon source. GCMS analysis of the treated crude oil samples revealed that P. aeruginosa PG1 could potentially degrade various hydrocarbon contents including various PAHs present in the crude oil. Biosurfactant produced by strain PG1 in the course of crude oil degradation, promotes the reduction of surface tension (ST) of the culture medium from 51.8 to 29.6 mN m−1, with the critical micelle concentration (CMC) of 56 mg L−1. FTIR, LC-MS, and SEM-EDS studies revealed that the biosurfactant is a rhamnolipid comprising of both mono and di rhamnolipid congeners. The biosurfactant did not exhibit any cytotoxic effect to mouse L292 fibroblastic cell line, however, strong antibiotic activity against some pathogenic bacteria and fungus was observed. PMID:28275373

  9. Radical constructivism: Between realism and solipsism

    Science.gov (United States)

    Martínez-Delgado, Alberto

    2002-11-01

    This paper criticizes radical constructivism of the Glasersfeld type, pointing out some contradictions between the declared radical principles and their theoretical and practical development. These contradictions manifest themselves in a frequent oscillation between solipsism and realism, despite constructivist claims to be an anti-realist theory. The paper also points out the contradiction between the relativism of the radical constructivist principles and the constructivist exclusion of other epistemological or educational paradigms. It also disputes the originality and importance of the radical constructivist paradigm, suggesting the idea of an isomorphism between radical constructivist theory and contemplative realism. In addition, some pedagogical and scientific methodological aspects of the radical constructivist model are examined. Although radical constructivism claims to be a rational theory and advocates deductive thinking, it is argued that there is no logical deductive connection between the radical principles of constructivism and the radical constructivist ideas about scientific research and learning. The paper suggests the possibility of an ideological substratum in the construction and hegemonic success of subjective constructivism and, finally, briefly advances an alternative realist model to epistemological and educational radical constructivism.

  10. Phytoconstituents with Radical Scavenging and Cytotoxic Activities from Diospyros shimbaensis

    Directory of Open Access Journals (Sweden)

    Per Aronsson

    2016-01-01

    Full Text Available As part of our search for natural products having antioxidant and anticancer properties, the phytochemical investigation of Diospyros shimbaensis (Ebenaceae, a plant belonging to a genus widely used in East African traditional medicine, was carried out. From its stem and root barks the new naphthoquinone 8,8′-oxo-biplumbagin (1 was isolated along with the known tetralones trans-isoshinanolone (2 and cis-isoshinanolone (3, and the naphthoquinones plumbagin (4 and 3,3′-biplumbagin (5. Compounds 2, 4, and 5 showed cytotoxicity (IC50 520–82.1 μM against MDA-MB-231 breast cancer cells. Moderate to low cytotoxicity was observed for the hexane, dichloromethane, and methanol extracts of the root bark (IC50 16.1, 29.7 and > 100 μg/mL, respectively, and for the methanol extract of the stem bark (IC50 59.6 μg/mL. The radical scavenging activity of the isolated constituents (1–5 was evaluated on the 2,2-diphenyl-1-picrylhydrazyl (DPPH radical scavenging assay. The applicability of the crude extracts and of the isolated constituents for controlling degenerative diseases is discussed.

  11. Aromatic-radical oxidation chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Glassman, I.; Brezinsky, K. [Princeton Univ., NJ (United States)

    1993-12-01

    The research effort has focussed on discovering an explanation for the anomalously high CO{sub 2} concentrations observed early in the reaction sequence of the oxidation of cyclopentadiene. To explain this observation, a number of plausible mechanisms have been developed which now await experimental verification. One experimental technique for verifying mechanisms is to probe the reacting system by perturbing the radical concentrations. Two forms of chemical perturbation of the oxidation of cyclopentadiene were begun during this past year--the addition of NO{sub 2} and CO to the reacting mixture.

  12. Radical conservatism and Danish imperialism

    DEFF Research Database (Denmark)

    2013-01-01

    on the basis of a close reading of their imperialist program in the pamphlet Danmark Udslettes! from 1918. Rige had been a vague term for the larger Danish polity that originated in a pre-national conceptualization of the polity as a realm. The article suggests that rige-as-realm was translated by the radical...... to signify the ambition of being a great power, the spiritual elevation of the nation through the transcendence of the decaying liberal modernity. The program addressed the tension between a conservative political attitude and modernity and thus signified a kind of reactionary modernism, which rejected...

  13. Remembering Dutch-Moluccan radicalism

    DEFF Research Database (Denmark)

    Marselis, Randi Lorenz

    2016-01-01

    This article examines memory politics in relation to radical actions of young Dutch-Moluccans, more specifically a train hijacking in 1977 at the village of De Punt in the Netherlands. The article examines how these historical events were remembered in the drama-documentary television film, De Punt......, as well as in user-generated comments in an online discussion. The television film represented an inclusive memory culture that made room for the difficult memories of all parties involved, including the radicalised, young hijackers. Based on a multidimensional model of mass media reception, the analysis...

  14. Carbon-sulfur bond-forming reaction catalysed by the radical SAM enzyme HydE

    Science.gov (United States)

    Rohac, Roman; Amara, Patricia; Benjdia, Alhosna; Martin, Lydie; Ruffié, Pauline; Favier, Adrien; Berteau, Olivier; Mouesca, Jean-Marie; Fontecilla-Camps, Juan C.; Nicolet, Yvain

    2016-05-01

    Carbon-sulfur bond formation at aliphatic positions is a challenging reaction that is performed efficiently by radical S-adenosyl-L-methionine (SAM) enzymes. Here we report that 1,3-thiazolidines can act as ligands and substrates for the radical SAM enzyme HydE, which is involved in the assembly of the active site of [FeFe]-hydrogenase. Using X-ray crystallography, in vitro assays and NMR spectroscopy we identified a radical-based reaction mechanism that is best described as the formation of a C-centred radical that concomitantly attacks the sulfur atom of a thioether. To the best of our knowledge, this is the first example of a radical SAM enzyme that reacts directly on a sulfur atom instead of abstracting a hydrogen atom. Using theoretical calculations based on our high-resolution structures we followed the evolution of the electronic structure from SAM through to the formation of S-adenosyl-L-cysteine. Our results suggest that, at least in this case, the widely proposed and highly reactive 5‧-deoxyadenosyl radical species that triggers the reaction in radical SAM enzymes is not an isolable intermediate.

  15. Complexes with nitrogen-centered radical ligands: classification, spectroscopic features, reactivity, and catalytic applications.

    Science.gov (United States)

    Olivos Suarez, Alma I; Lyaskovskyy, Volodymyr; Reek, Joost N H; van der Vlugt, Jarl Ivar; de Bruin, Bas

    2013-11-25

    The electronic structure, spectroscopic features, and (catalytic) reactivity of complexes with nitrogen-centered radical ligands are described. Complexes with aminyl ([M(˙NR2)]), nitrene/imidyl ([M(˙NR)]), and nitridyl radical ligands ([M(˙N)]) are detectable and sometimes even isolable species, and despite their radical nature frequently reveal selective reactivity patterns towards a variety of organic substrates. A classification system for complexes with nitrogen-centered radical ligands based on their electronic structure leads to their description as one-electron-reduced Fischer-type systems, one-electron-oxidized Schrock-type systems, or systems with a (nearly) covalent M-N π bond. Experimental data relevant for the assignment of the radical locus (i.e. metal or ligand) are discussed, and the application of complexes with nitrogen-centered radical ligands in the (catalytic) syntheses of nitrogen-containing organic molecules such as aziridines and amines is demonstrated with recent examples. This Review should contribute to a better understanding of the (catalytic) reactivity of nitrogen-centered radical ligands and the role they play in tuning the reactivity of coordination compounds. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Ischemia/reperfusion mediated oxygen free radical production in rat brain endothelium

    Energy Technology Data Exchange (ETDEWEB)

    Grammas, P.; Wood, K. (Univ. of Oklahoma, Oklahoma City (United States)); Liu, G.J.; Floyd, R.A. (Oklahoma Medical Research Foundation, Oklahoma City (United States)); Wood, K. (Univ. of Oklahoma Health Sciences Center, Oklahoma City (United States) Oklahoma Medical Research Foundation, Oklahoma City (United States))

    1991-03-11

    Oxygen free radicals have been increasingly implicated in ischemia/reperfusion mediated injury to tissue. Recent methods of assessing tissue oxygen free radical flux including spin trapping, salicylate hydroxylation, protein oxidation and specific enzymatic activity loss have clearly shown that ischemia/reperfusion mediates oxidative damage in brain. Vascular endothelia cells are increasingly implicated in inactivating oxidative damage. The authors have used salicylate to assess hydroxyl free radical flux during an anoxia-reoxygenation insult in isolated brain microvessels. Brain microvessels that were subjected to a 20 min anoxia period and then reoxygenated for 20 min hydroxylated salicylate to form tissue localized 2,3-dihydroxybenzoic acid (2,3-DHBA) whereas microvessels that remained oxygenated throughout contained very little 2,3-DHBA. The data suggest that anoxia/reoxygenation of microvessels produces tissue localized hydroxyl free radical flux.

  17. Arachidonic acid modulates hippocampal calcium current via protein kinase C and oxygen radicals.

    Science.gov (United States)

    Keyser, D O; Alger, B E

    1990-10-01

    Arachidonic acid (AA) is a second messenger liberated via receptor activation of phospholipase A2 or diacylglycerol-lipase. We used whole-cell voltage clamp of acutely isolated hippocampal CA1 pyramidal cells to investigate the hypothesis that AA modulates Ca2+ channel current (ICa) via activation of protein kinase C (PKC) and generation of free radicals. AA depressed ICa in a dose- and time-dependent manner similar to that previously reported for the action of phorbol esters on ICa. A similar depression was seen with a xanthine-based free radical generating system. The specific PKC inhibitor PKCI (19-36), the protein kinase inhibitor H-7, and the superoxide free radical scavenger SOD each blocked ICa depression by 70%-80%. Complete block of the AA response occurred when SOD was used simultaneously with a PKC inhibitor. These data suggest that PKC and free radicals play a role in AA-induced suppression of ICa.

  18. Recent studies in microbial degradation of petroleum hydrocarbons in hypersaline environments

    Directory of Open Access Journals (Sweden)

    Babu Zhereppa Fathepure

    2014-04-01

    Full Text Available Many hypersaline environments are often contaminated with petroleum compounds. Among these, oil and natural gas production sites all over the world and hundreds of kilometers of coastlines in the more arid regions of Gulf countries are of major concern due to the extent and magnitude of contamination. Because conventional microbiological processes do not function well at elevated salinities, bioremediation of hypersaline environments can only be accomplished using high salt-tolerant microorganisms capable of degrading petroleum compounds. In the last two decades, there have been many reports on the biodegradation of hydrocarbons in moderate to high salinity environments. Numerous microorganisms belonging to the domain Bacteria and Archaea have been isolated and their phylogeny and metabolic capacity to degrade a variety of aliphatic and aromatic hydrocarbons in varying salinities have been demonstrated. This article focuses on our growing understanding of bacteria and archaea responsible for the degradation of hydrocarbons under aerobic conditions in moderate to high salinity conditions. Even though organisms belonging to various genera have been shown to degrade hydrocarbons, members of the genera Halomonas Alcanivorax, Marinobacter, Haloferax, Haloarcula, and Halobacterium dominate the published literature. Despite rapid advances in understanding microbial taxa that degrade hydrocarbons under aerobic conditions, not much is known about organisms that carry out similar processes in anaerobic conditions. Also, information on molecular mechanisms and pathways of hydrocarbon degradation in high salinity is scarce and only recently there have been a few reports describing genes, enzymes and breakdown steps for some hydrocarbons. These limited studies have clearly revealed that degradation of oxygenated and non-oxygenated hydrocarbons by halophilic and halotolerant microorganisms occur by pathways similar to those found in non-halophiles.

  19. Applied bioremediation of petroleum hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Hinchee, R.E.; Kittel, J.A. [eds.] [Battelle Memorial Inst., Columbus, OH (United States); Reisinger, H.J. [ed.] [Integrated Science and Technology, Inc., Marietta, GA (United States)

    1995-12-31

    This volume is part of a ten volume set of papers derived from the Third International In Situ and On-Site Bioreclamation Symposium which was held in San Diego, California, in April 1995. The purpose of the conference was to provide a multidisciplinary forum for exchange of state-of-the-art information on bioremediation. The papers in this volume focus on petroleum hydrocarbon bioremediation, with an emphasis on pilot-scale and field-scale applications. Individual papers have been processed separately for inclusion in the appropriate data bases.

  20. Radical Reactions and Its Synthetic Application

    Institute of Scientific and Technical Information of China (English)

    Takeaki Naito

    2005-01-01

    @@ 1Introduction Strategies involving radical reactions have become preeminent tools in organic synthesis. Free radical-mediated cyclization has developed as a powerful method for preparing various types of cyclic compounds via carbon-carbon bond-forming processes. In order to develop effective and convenient methods for the synthesis of biologically active cyclic amines, we have focused our efforts on radical reactions using aldehydes, ketones,and C-C multiple bonds as a radical precursor and/or an oxime ether, hydrazone, and nitrone as a radical acceptor. In this lecture, I would like to talk on radical addition-cyclization of oxime ether and its application to the synthesis of martinellines.

  1. 40 CFR 52.1877 - Control strategy: Photochemical oxidants (hydrocarbons).

    Science.gov (United States)

    2010-07-01

    ... oxidants (hydrocarbons). 52.1877 Section 52.1877 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY....1877 Control strategy: Photochemical oxidants (hydrocarbons). (a) The requirements of Subpart G of this... national standard for photochemical oxidants (hydrocarbons) in the Metropolitan Cincinnati...

  2. Radicalization In Pakistan And The Spread Of Radical Islam In Pakistan

    Directory of Open Access Journals (Sweden)

    Bahir ahmad

    2015-08-01

    Full Text Available ABSTRACT It is pertinent to mention that radicalism is not intrinsic to Islam and radical interpretations of the religion or for that matter may occur within any way of life and religion Saikal 2003 and yet the question remains as to why Muslims in certain geographical regions have more radical approaches towards their religion and also that what are the causes of such radicalization. Becoming a radical Muslim is not even a matter of a day nor is it a sudden process. There are several reasons behind making a person radical peaceful angry smiling or tolerant. For knowing the reason behind radicalization or radicals persons one has to understand the causes. Tracing these causes is one of the ways to eliminate such behavior. The first step in the elimination of the radical sentiments in a person is to develop peace in his personality Fair Malhotra amp Shapiro 2010. The chapter which has been addressed here is going to shed light on the roots and symptoms of the radicalism. There will be a brief discussion on how the roots of radicalism can be traced and can be eliminated. The assessment and discussion will be conducted on the parameters of the economy media politics and theology from social cultural point of view. According to the analysis of Ahrari 2000 political factor is one of the major and direct factors which have resulted in causing of the radicalism. These factors however intertwine with one another. Radical actions cannot take place only because of the political factors.

  3. A shock tube study of the reactions of the hydroxyl radical with combustion species

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, N.; Koffend, J.B. [The Aerospace Corporation, Los Angeles, CA (United States)

    1993-12-01

    To extend the semi-empirical techniques of Benson and coworkers, and to extend the database of reliable high temperature measurements of OH radicals with hydrocarbons and other fuels and their decomposition products, the authors undertook a research program with both experimental and computational tasks. The experimental goal was to design a procedure for measuring, at combustion temperatures, the reaction rate coefficients of OH radicals with fuels and other species of importance in combustion or propulsion systems. The computational effort was intended to refine the semi-empirical transition-state-theory procedures for extrapolating rate coefficients of reactions of OH with combustion species of interest, for predicting rate coefficients for species not studied in the laboratory, and to examine the ability of the theory to predict rate coefficients for different pathways in the case the reagent possessed more than one nonequivalent H atoms.

  4. Photodynamically generated bovine serum albumin radicals

    DEFF Research Database (Denmark)

    Silvester, J A; Timmins, G S; Davies, Michael Jonathan

    1998-01-01

    Porphyrin-sensitized photoxidation of bovine serum albumin (BSA) results in oxidation of the protein at (at least) two different, specific sites: the Cys-34 residue giving rise to a thiyl radical (RS.); and one or both of the tryptophan residues (Trp-134 and Trp-214) resulting in the formation of...... of proteases. The generation of protein-derived radicals also results in an enhancement of photobleaching of the porphyrin, suggesting that protein radical generation is linked to porphyrin photooxidation....

  5. Quantitative determination of atmospheric hydroperoxyl radical

    Science.gov (United States)

    Springston, Stephen R.; Lloyd, Judith; Zheng, Jun

    2007-10-23

    A method for the quantitative determination of atmospheric hydroperoxyl radical comprising: (a) contacting a liquid phase atmospheric sample with a chemiluminescent compound which luminesces on contact with hydroperoxyl radical; (b) determining luminescence intensity from the liquid phase atmospheric sample; and (c) comparing said luminescence intensity from the liquid phase atmospheric sample to a standard luminescence intensity for hydroperoxyl radical. An apparatus for automating the method is also included.

  6. Radical-free biology of oxidative stress

    OpenAIRE

    2008-01-01

    Free radical-induced macromolecular damage has been studied extensively as a mechanism of oxidative stress, but large-scale intervention trials with free radical scavenging antioxidant supplements show little benefit in humans. The present review summarizes data supporting a complementary hypothesis for oxidative stress in disease that can occur without free radicals. This hypothesis, which is termed the “redox hypothesis,” is that oxidative stress occurs as a consequence of disruption of thi...

  7. Superspecial radical%超特殊根

    Institute of Scientific and Technical Information of China (English)

    于淑兰

    2001-01-01

    定义了超特殊根,即由无零因子的绝对半素环类所确定的上根,并证明了它是一个特殊根。%The superspecial radical is defined, it is the upper radical, determined by the rings class consisted without divisors of zero and absolutely semiprings. And it is a special radical.

  8. Aromatic Radicals-Acetylene Particulate Matter Chemistry

    Science.gov (United States)

    2011-12-01

    Ethynylcylcopentadiene (C5H5C2H) C CH m-Formylphenyl radical (C6H4CHO) C O Formyl cyclopentadiene (C5H5CHO) O Table 12. Structures of the species...FINAL REPORT Aromatic Radicals -Acetylene Particulate Matter Chemistry SERDP Project WP-1575 DECEMBER 2011 Kenneth Brezinsky University... Radicals -Acetylene Particulate Matter Chemistry W912HQ-07-C-0019 WP-1575Dr. Kenneth Brezinsky University of Illinois DBA: Office of Business and Financial

  9. Serendipitous Findings While Researching Oxygen Free Radicals

    OpenAIRE

    Floyd, Robert A.

    2009-01-01

    This review is based on the honor of receiving the Discovery Award from the Society of Free Radical Biology and Medicine. The review is reflective and presents our thinking which led to experiments that yielded novel observations. Critical questioning of our understanding of oxygen free radicals in biomedical problems led us to use and develop more direct and extremely sensitive methods. This included nitrone free radical spin-trapping and HPLC-electrochemical detection. This technology led t...

  10. Neurotoxins: Free Radical Mechanisms and Melatonin Protection

    OpenAIRE

    2010-01-01

    Toxins that pass through the blood-brain barrier put neurons and glia in peril. The damage inflicted is usually a consequence of the ability of these toxic agents to induce free radical generation within cells but especially at the level of the mitochondria. The elevated production of oxygen and nitrogen-based radicals and related non-radical products leads to the oxidation of essential macromolecules including lipids, proteins and DNA. The resultant damage is referred to as oxidative and nit...

  11. Bioinspired terpene synthesis: a radical approach.

    Science.gov (United States)

    Justicia, José; Álvarez de Cienfuegos, Luis; Campaña, Araceli G; Miguel, Delia; Jakoby, Verena; Gansäuer, Andreas; Cuerva, Juan M

    2011-07-01

    This tutorial review highlights the development of radical-based bioinspired synthesis of terpenes from the initial proposal to the development of modern catalytic methods for performing such processes. The power of the radical approach is demonstrated by the straightforward syntheses of many natural products from readily available starting materials. The efficiency of these processes nicely complements the described cationic polyolefin cyclisations and even suggests that modern radical methods provide means to improve upon nature's synthetic pathways.

  12. Hydrocarbon conversion process and catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Hoek, A.; Huizinga, T.; Maxwell, I.E.

    1989-08-15

    This patent describes a process for hydrocracking hydrocarbon oils into products of lower average molecular weight and lower average boiling point. It comprises contacting hydrocarbon oil at a temperature between 250{sup 0}C and 500{sup 0}C and a pressure up to 300 bar in the presence of hydrogen with a catalyst consisting essentially of a Y zeolite modified to have a unit cell size below 24.40 A, a water adsorption capacity (at 25{sup 0}C and a rho/rho/sub o/ value of 0.2) of between 10% and 15% by weight of the zeolite and a pore volume of at least 0.25 ml/g wherein between 10% and 60% of the total pore volume is made up of pores having a diameter of at least 8 nm; am amorphous cracking component, a binder and at least one hydrogenation component selected from the group consisting of a Group VI metal, a Group VIII metal and mixtures thereof.

  13. Hydrocarbon degradation by antarctic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Cavanagh, J.A.E.; Nichols, P.D.; McMeekin, T.A.; Franzmann, P.D. [Univ. of Tasmania (Australia)] [and others

    1996-12-31

    Bacterial cultures obtained from sediment samples collected during a trial oil spill experiment conducted at Airport beach, Eastern Antarctica were selectively enriched for n-alkane-degrading and phenanthrenedegrading bacteria. Samples were collected from a control site and sites treated with different hydrocarbon mixtures - Special Antarctic blend (SAB), BP-Visco and orange roughy oils. One set of replicate sites was also treated with water from Organic Lake which had previously been shown to contain hydrocarbon-degrading bacteria. No viable bacteria were obtained from samples collected from sites treated with orange roughy oil. Extensive degradation of n-alkanes by enrichment cultures obtained from sites treated with SAB and BP-Visco occurred at both 25{degrees}C and 10{degrees}C. Extensive degradation of phenanthrene also occurred in enrichment cultures from these sites grown at 25{degrees}C. Concurrent increases of polar lipid in these cultures were also observed. The presence of 1,4-naphthaquinone and 1-naphthol during the growth of the cultures on phenanthrene is unusual and warrants further investigation of the mechanism of phenanthrene-degradation by these Antarctic bacteria.

  14. Integrated in situ characterization of molten salt catalyst surface: Evidence of sodium peroxide and OH radical formation

    KAUST Repository

    Takanabe, Kazuhiro

    2017-06-26

    Na-based catalysts (i.e., Na2WO4) were proposed to selectively catalyze OH radical formation from H2O and O2 at high temperatures. This reaction may proceed on molten salt state surfaces due to the lower melting point of the used Na salts compared to the reaction temperature. This study provides direct evidence of the molten salt state of Na2WO4, which can form OH radicals, using in situ techniques including X-ray diffraction (XRD), scanning transmission electron microscopy (STEM), laser induced fluorescence (LIF) spectrometer, and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS). As a result, Na2O2 species, which were hypothesized to be responsible for the formation of OH radicals, has been identified on the outer surfaces at temperatures ≥800°C, and these species are useful for various gas-phase hydrocarbon reactions including the selective transformation of methane to ethane.

  15. Near-Ring Radicals and Class Pairs

    Institute of Scientific and Technical Information of China (English)

    L.Godloza; N.J.Groenewald; W.A.Olivier

    2005-01-01

    For near-ring ideal mappings p1 and p2, we investigate radical theoretical properties of and the relationship among the class pairs (p1: p2), (Sp2: Sp1) and (Rp2:Rp1). Conditions on p1 and p2 are given for a general class pair to form a radical class of various types. These types include the Plotkin and KA-radical varieties. A number of examples are shown to motivate the suitability of the theory of Hoehnke-radicals over KA-radicals when radical pairs of near-rings are studied. In particular, it is shown that (pc: P3) forms a KA-radical class, where Pc denotes the class of completely prime nearrings and P3 the class of 3-prime near-rings. This gives another near-ring generalization of the 2-primal ring concept. The theory of radical pairs are also used to show that in general the class of 3-semiprime near-rings is not the semisimple class of the 3-prime radical.

  16. Free radicals in the aqueous environment

    Energy Technology Data Exchange (ETDEWEB)

    Wood, A.; Laurence, G. [Adelaide Univ., SA (Australia)

    1996-12-31

    Full text: The chemistry of the degradation of organic herbicides and fungicides in natural systems is important in determining operationally important parameters such as withholding times before planting or consumption. Disappearance rates in the field are frequently many time larger than expected from reactions such as hydrolysis arid photochemical- and radical-initiated reactions are frequently cited as causes of the degradation reactions. Reactions of OH and O{sub 2}{sup -} radicals and secondary radicals derived from these are increasingly postulated as being important in many aqueous environmental reactions. Free radical reactions may contribute to the degradation of organic pesticides and are directly implicated in the use of radical generating systems such as Fenton`s Reagent or hydrogen peroxide in the removal of chlorinated organic chemicals from drinking water. Natural sources of these radicals in aqueous systems are predominantly photochemical reactions or reactions initiated by transition metal ions. Hydrogen peroxide is present in many aqueous environments in relatively high concentrations and we are attempting to establish the presence of superoxide radicals in natural systems. The measurement of stationary state concentrations of free radicals as low as 10{sup -} {sup 15} M is a challenge to analytical and free radical chemists. Long term scavenging studies are difficult and generally non-specific. Current ideas will be reviewed and our approach to the measurement of superoxide in natural systems will be outlined.

  17. Formation of free radicals during phacoemulsification.

    Science.gov (United States)

    Holst, A; Rolfsen, W; Svensson, B; Ollinger, K; Lundgren, B

    1993-04-01

    During phacoemulsification cavitation bubbles are formed. These bubbles are believed to be one source of damage to corneal endothelium seen after phacoemulsification. Free radicals are induced whenever cavitation bubbles implode. The aim of this study was to confirm the initiation of free radicals by phacoemulsification and to correlate the power of ultrasound in the phacoemulsification process to the amount of free radicals formed, using both in vitro and in vivo techniques. The formation of free radicals was determined by adding luminol to a buffer and measuring the chemoluminescence in vitro and in rabbit eyes (Lumacounter 2080 or a single-photon-counting apparatus) during phacoemulsification. The data obtained show that free radicals are formed during phacoemulsification and that the amount of free radicals correlates with the power of ultrasound. Furthermore, the radical formation could be inhibited by the radical scavengers SOD, Healon and Healon GV. These results were achieved both in vitro in the test tube and in vivo in rabbit eyes. By showing that the addition of SOD to the irrigation buffer during phacoemulsification decreases the corneal endothelial cell damage, we show that free radicals could have a role in postoperative complications seen clinically.

  18. Resonance Raman Spectra of the Transient Cl2 and Br2 Radical Anions

    DEFF Research Database (Denmark)

    Wilbrandt, Robert Walter; Jensen, Niels-Henrik; Sillesen, Alfred Hegaard

    1984-01-01

    The resonance Raman spectra of the short-lived radical anions ClImage 2− and BrImage − in aqueous solution are reported. The observed wavenumbers of 279 cm−1 for ClImage − and 177 cm−1 for BrImage − are about 10% higher than those published for the corresponding species isolated in solid argon...

  19. Spectroscopically resolved competition between dissociation and detachment from nitrobenzene radical anion

    NARCIS (Netherlands)

    Steill, J. D.; Oomens, J.

    2011-01-01

    We report the vibrational spectrum of the gas-phase isolated nitrobenzene radical anion. The spectrum has been acquired by infrared multiple-photon absorption induced dissociation and electron detachment using the FT mass spectrometer coupled to the infrared free-electron laser FELIX. Upon wavelengt

  20. The Ethyl Radical in Superfluid Helium Nanodroplets: Rovibrational Spectroscopy and AB Initio Calcluations

    Science.gov (United States)

    Raston, Paul L.; Moradi, Christopher P.; Agarwal, Jay; Turney, Justin. M.; Schaefer, Henry F. Schaefer, Iii; Douberly, Gary E.

    2013-06-01

    The ethyl radical has been isolated and spectroscopically characterized in ^4He nanodroplets. The five fundamental CH stretch bands are observed near 3 μm and have band origins shifted Nesbitt. J. Chem. Phys. 112, 1823-1834 (2000). T. Haber, A. C. Blair, D. J. Nesbitt, M. D. Schuder. J. Chem. Phys. 124, 054316 (2006).